
Red Hat JBoss Operations Network 3.3

Development - Writing Custom Plug-ins

Guidelines for Writing Custom Server and Agent Resource Plug-ins

Last Updated: 2018-01-09

Red Hat JBoss Operations Network 3.3 Development - Writing Custom
Plug-ins

Guidelines for Writing Custom Server and Agent Resource Plug-ins

Jared Morgan
jmorgan@redhat.com

Zach Rhoads
zach@redhat.com

Ella Deon Ballard
dlackey@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this guide to understand how to write Resource Plug-ins for the Server and its Agents.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. AN OVERVIEW OF JBOSS ON PLUG-INS
1.1. EXTENDING JBOSS ON: PLUG-INS DEFINED
1.2. BASIC COMPONENTS OF PLUG-INS IN JBOSS ON
1.3. DOWNLOADING THE PLUG-IN FILES

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND
2.1. AN INTRO TO SERVER-SIDE PLUG-INS
2.2. THE BREAKDOWN OF SERVER-SIDE PLUG-IN CONFIGURATION
2.3. ANATOMY OF ALERT SENDER SERVER-SIDE PLUG-INS

CHAPTER 3. WRITING SERVER-SIDE PLUG-INS: PROCEDURES
3.1. TIP: CHECKING XSD ANNOTATIONS
3.2. WRITING SERVER-SIDE PLUG-INS
3.3. VALIDATING SERVER-SIDE PLUG-INS
3.4. DEPLOYING SERVER-SIDE PLUG-INS
3.5. UPDATING SERVER-SIDE PLUG-INS
3.6. DISABLING SERVER-SIDE PLUG-INS
3.7. RESTARTING SERVER-SIDE PLUG-IN CONTAINERS
3.8. SETTING PLUG-IN CONFIGURATION PROPERTIES
3.9. DELETING SERVER-SIDE PLUG-INS

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND
4.1. ABOUT THE ADVANCED MANAGEMENT PLUG-IN SYSTEM (AMPS) FOR AGENT PLUG-INS
4.2. THE BREAKDOWN OF AGENT PLUG-IN CONFIGURATION
4.3. EXTENDED EXAMPLE: CONTENT TYPES FOR RESOURCES
4.4. EXTENDED EXAMPLE: HTTP METRICS
4.5. EXAMPLES: EMBEDDED AND INJECTED PLUG-IN DEPENDENCIES
4.6. EXTENDED EXAMPLE: DRIFT MONITORING
4.7. EXTENDED EXAMPLE: PROVISIONING AND CONTENT DEPLOYMENTS (BUNDLES)
4.8. EXTENDED EXAMPLE: ASYNCHRONOUS AVAILABILITY CHECKS

CHAPTER 5. WRITING AGENT PLUG-INS: PROCEDURES
5.1. TIP: CHECKING XSD ANNOTATIONS
5.2. VALIDATING AGENT PLUG-INS
5.3. NOTES ON EDITING AGENT PLUG-INS
5.4. DEPLOYING AGENT PLUG-INS
5.5. UPDATING AGENT PLUG-INS
5.6. DISABLING AGENT PLUG-INS
5.7. DELETING AGENT PLUG-INS

CHAPTER 6. AGENT ADVANCED MANAGEMENT PLUG-IN SYSTEM (AMPS) REFERENCE
6.1. DOMAIN OBJECTS
6.2. PLUG-IN FACETS
6.3. PLUG-IN COMPONENTS
6.4. NATIVE SYSTEM INFORMATION ACCESS

CHAPTER 7. DOCUMENT INFORMATION
7.1. GIVING FEEDBACK

APPENDIX A. DOCUMENT HISTORY

3
3
4
6

7
7
9

23

30
30
30
31
32
34
35
36
37
39

41
41
42
59
60
69
73
75
76

79
79
79
80
80
82
82
83

86
86
86
88
89

90
90

91

Table of Contents

1

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

2

CHAPTER 1. AN OVERVIEW OF JBOSS ON PLUG-INS
A plug-in makes an application more useful in a specific kind of way. It is a way of providing new
functionality or more options for existing functionality. In JBoss ON, there are two categories of plug-ins,
depending on what functionality needs to be created: server-side plug-ins and agent plug-ins. JBoss ON
has a very simple and tightly integrated framework for deploying new plug-ins, which makes it relatively
easy to extend JBoss ON to do a specific, custom task. Almost any subsystem or functionality in JBoss
ON can be expanded and customized by writing additional plug-ins. This guide is an introduction to how
to write and implement plug-ins in JBoss ON.

Report a bug

1.1. EXTENDING JBOSS ON: PLUG-INS DEFINED

JBoss ON follows a hub and spoke approach with a server at its heart. The agents are deployed locally
on resources and interact with the resources, as well as the JBoss ON server. The server (or cluster of
servers) processes data coming in from agents. The data are stored in a database connected to the
server. Users can look at the data and trigger operations through a web-based GUI on the server.

Figure 1.1. JBoss ON Architecture

CHAPTER 1. AN OVERVIEW OF JBOSS ON PLUG-INS

3

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43418-751071+%5BLatest%5D&comment=Title%3A+An+Overview+of+%26JON%3B+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

A plug-in defines what features it is using and then it contains the code (or API) necessary carry out
whatever features or operations it has defined. In JBoss ON, a plug-in is targeted to work on either a
server or on an agent.

Server-side plug-ins relate to any operation or task that is performed by the server. This includes alerting
and notifications, managing content and packages, setting GUI appearance and functionality, and
integrating JBoss ON information with other applications. A server-side plug-in is first identified by the
server subsystem which it is associated with, and then with its functionality.

Agent plug-ins are used for any task that relates to resources, primarily managing inventory (by defining
resource types) and configuring monitoring. An gent plug-in, then, is associated purely by its resource
type.

There are some similarities between server-side and agent plug-ins structurally.

Every plug-in is packaged as a JAR file.

Every plug-in has a required XML file, the plug-in descriptor, which defines all of the plug-in
capabilities.

Every plug-in contains compiled Java files which contain the code necessary to perform all of the
actions defined in the descriptor.

Plug-ins run inside a plug-in container, which is the entity that directly interacts with the plug-ins
and starts and stops all plug-ins.

All custom plug-ins are deployed to the JBoss ON server. Server-side plug-ins are propagated
across the high availability cloud to all of the other servers, while agent plug-ins are made
available through the server for the agents to download.

Report a bug

1.2. BASIC COMPONENTS OF PLUG-INS IN JBOSS ON

There are some common elements that comprise plug-ins in JBoss ON. Each of these elements is
described in more detail in the server-side and agent plug-in sections, but this sections provides some
more general context on these elements and compares some differences in the way that server-side and
agent plug-ins use these elements.

Report a bug

1.2.1. Plug-in Containers

All JBoss ON plug-ins run inside a plug-in container. This container is responsible for loading, starting,
and stopping all plug-ins. Neither the agent nor the server interacts directly with plug-ins; rather, the
agent and server both host plug-in containers. The agent or server talks to the plug-in container, and the
plug-in container talks to the plug-ins.

For an agent plug-in, there is nothing relevant about the plug-in container; all agent plug-ins use the
same one. The container is essentially invisible to plug-in writers.

Server-side plug-ins, however ,have a very different relationship with the plug-in containers. The server
runs multiple plug-in containers, each one designated for a specific subsystem or purpose. The plug-in
container, itself, provides some configuration for server-side plug-ins by providing additional schema
definitions and certain kinds of functionality. The plug-in container is the first identifying category for a
server-side plug-in by distinguishing the type of server-side plug-in.

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

4

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43419-752748+%5BLatest%5D&comment=Title%3A+Extending+%26JON%3B%3A+Plug-ins+Defined%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43419-752748+20+Apr+2015+13%3A58+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43420-751073+%5BLatest%5D&comment=Title%3A+Basic+Components+of+Plug-ins+in+%26JON%3B%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

The plug-in container, along with controlling the relationship between the agent or server and the plug-in,
also moderates the relationship between plug-ins and their classes. The plug-in container manages plug-
in dependencies (for agent plug-ins), shared classes, and external libraries required by the plug-in.

Report a bug

1.2.2. Plug-in Descriptor

The plug-in descriptor is the file which defines what a specific plug-in does. This file loads the required
API classes that allow the plug-in to interact with its plug-in container and, by extension, the server or
agent. It defines the specific configuration for the plug-in instance, sets schedules or operations, and
explicitly defines the intended functionality for the plug-in.

The plug-in descriptor is always an XML file. Both agent and server-side plug-ins require that the plug-in
descriptor be placed in a META-INF/ directory in the JAR file of the plug-in. For server-side plug-ins, this
file must be named rhq-serverplugin.xml, and for agent plug-ins, rhq-plugin.xml.

Report a bug

1.2.3. Plug-in Schema Definitions

Since the plug-in descriptor is an XML file, there must be a schema definition to use to configure
elements and attributes within the file. All of the plug-ins in JBoss ON use a core schema defined with
the agent plug-ins, rhq-configuration.xsd. Server-side plug-ins extend that schema with an
additional schema definition file, rhq-serverplugin.xsd, and then custom schema definitions for
each server-side plug-in type.

Report a bug

1.2.4. Java Files

The actual code for the plug-in is contained in Java files within the plug-in JAR package.

Agent plug-ins usually have at least two and sometimes several Java files for each plug-in. There are
several reasons for this:

Agent plug-ins can define both parent and children elements (platforms, servers, and services)
in the same plug-in, and each resource type uses its own plug-in code.

Agent plug-ins have two and sometimes three discrete functions. Almost every agent plug-in
must have a discovery component (discovery Java file) that dictates how to identify and
inventory whatever resource type is defined by the plug-in. Additionally, agent plug-ins may
enable event collection for resources, which requires a separate component (event poller Java
file) to track the resource logs. Last, there has to be a component (Java file) which actually
implements the plug-in functionality.

Agent plug-ins allow dependencies. Parent plug-ins can share classes with their children. An
agent plug-in can set a dependency on any other agent plug-in that allows it to load that plug-ins
classes. To make plug-ins perform better and to make it easier to access the relevant plug-in
code, agent plug-ins are frequently broken into smaller Java files to allow the plug-in code to be
reused.

Server-side plug-ins usually have only a single Java file to define the plug-in behavior. Since server-side
plug-ins do not have dependencies with each other and do not interact with other subsystems (like
discovery and event monitoring) everything related to the plug-in can be defined in a single file.

CHAPTER 1. AN OVERVIEW OF JBOSS ON PLUG-INS

5

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43421-751074+%5BLatest%5D&comment=Title%3A+Plug-in+Containers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43421-751074+15+Apr+2015+12%3A48+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43422-751075+%5BLatest%5D&comment=Title%3A+Plug-in+Descriptor%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43422-751075+15+Apr+2015+12%3A48+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43423-751076+%5BLatest%5D&comment=Title%3A+Plug-in+Schema+Definitions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43423-751076+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

Report a bug

1.2.5. External Libraries

Any library or class that a plug-in requires that is not contained within its own Java files is an external
library.

Agent plug-ins can interact through dependencies and shared classes. External libraries or classes for
an agent plug-in refer to libraries or classes defined in another agent plug-in. This is one reason that it is
so common for agent plug-ins to require JMX plug-in dependency, because it makes all of the JMX and
EMS libraries in that plug-in available to the other agent plug-in. Agent plug-ins can also share their
classes with a child plug-in, which both simplifies library management (by making the same library
available to multiple plug-ins at once) and simplifies plug-in writing.

Server plug-ins do not interact with one another, so it is not possible to establish dependencies or share
classes between server-side plug-ins, even in the same plug-in container. However, server-side plug-ins
do allow external libraries to be packaged in the plug-in JAR file and can access any library in the lib/
directory within the JAR file.

Report a bug

1.3. DOWNLOADING THE PLUG-IN FILES

Sample plug-ins are available through the RHQ source code. To check out the code:

git clone http://git.fedorahosted.org/git/rhq/rhq.git

Example agent and server-side plug-ins are in the sourceRoot/etc/samples/ directory. These include
both fully-developed examples and plug-in templates that can be used for writing new plug-ins. Rather
than checking out the entire source code, you can manually download the sample files at this URL:

http://git.fedorahosted.org/git/?
p=rhq/rhq.git;a=tree;f=etc/samples;hb=master

Report a bug

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

6

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43424-751077+%5BLatest%5D&comment=Title%3A+Java+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43424-751077+15+Apr+2015+12%3A48+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43425-751078+%5BLatest%5D&comment=Title%3A+External+Libraries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43425-751078+15+Apr+2015+12%3A48+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43426-751079+%5BLatest%5D&comment=Title%3A+Downloading+the+Plug-in+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43426-751079+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS:
BACKGROUND

All JBoss ON plug-ins have a similar configuration and deployment style, with minor differences in what
is required for the plug-ins to access the systems. Server-side plug-ins refer to any plug-in which
accesses the core JBoss ON server to perform its actions; essentially, these are global plug-ins used for
the central server behavior.

Report a bug

2.1. AN INTRO TO SERVER-SIDE PLUG-INS

Server-side plug-ins extend the functionality of the JBoss ON server. JBoss ON comes with several
categories of server-side plug-ins already:

Alert sender plug-ins for methods to send alert notifications for resources

Bundle plug-ins for deploying files and application

Drift plug-ins for monitoring resource or filesystem configuration and files

Content plug-ins for managing resource configurations

Generic plug-ins for everything else

Server-side plug-ins are not limited to those three categories; the server-side plug-in framework allows
substantial access to the server itself. Server-side plug-ins can be used to run remote scripts in response
to monitoring events or to provision systems in a custom work flow — anything that is within the purview
of the JBoss ON server.

This is a much more casual approach to implementing plug-ins than the more structured, formal agent
plug-in system. This allows much more latitude in what plug-in developers are able to accomplish.

IMPORTANT

All server-side plug-ins have full access to the server's stateless session beans (SLSBs).
This allows a lot of latitude and versatility in the functionality of server-side plug-ins and
allows access to any server subsystem. However, this also makes server-side plug-ins
extremely powerful. Be cautious in writing and deploying server-side plug-ins.

Server-side plug-ins have a different framework for writing and deploying plug-ins than the framework for
agent plug-ins. Here are some general bits of information that are useful as you begin writing server-side
plug-ins:

Once the server-side plug-in is built and deployed, the plug-in is a JAR file with a META-INF/
directory which contains the rhq-serverplugin.xml plug-in descriptor.

Each plug-in is independent of every other plug-in. Unlike agent plug-ins, server-side plug-ins do
not interact with each other. There are no plug-in dependencies for server-side plug-ins.

Server-side plug-ins are organized according to their type, and the type corresponds to the subsystem or
functional area which the plug-in extends. Each type of plug-in is contained within a defined plug-in
container.

Server-side plug-ins are managed in the JBoss ON server within a plug-in container that relates to the

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

7

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43427-751080+%5BLatest%5D&comment=Title%3A+Writing+Server-Side+Plug-ins%3A+Background%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

function of the plug-in, and the plug-in container handles general tasks like starting and stopping plug-ins
and providing general configuration settings for that type of plug-in. (All plug-in containers are,
themselves, members of a single master plug-in container.)

Figure 2.1. Server-Side Plug-in Containers

There is only one plug-in container for each type of plug-in, but there can be an unlimited number of
server-side plug-ins within each plug-in container.

NOTE

A plug-in container defines what type a plug-in is. A plug-in, then, can only be in one plug-
in container because it can only be of one type.

Table 2.1, “Available Plug-in Containers” summarizes the available plug-in containers with JBoss ON.

Table 2.1. Available Plug-in Containers

Plug-in Type Description Container Name

Generic Catch-all type for any custom
plug-ins. This type of plug-in only
interacts with the plug-in
container for the container to start
and stop the plug-in and to
initialize and shutdown the plug-in
libraries.

Generic Plugin

Alert methods Defines an alert notification
method, or the way that an alert is
sent.

AlertHandler

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

8

Bundle Defines and processes a type of
bundle. This type of plug-in
performs tasks that the core
server needs to process and
manage bundles of specific
bundle types, such as Ant recipes
or file-based bundles. Each
bundle server plug-in knows
about and can process a single
bundle type.

Bundle Plugin

Drift Processes drift operations and
configuration. This stores and
retrieves content (files) being
managed for drift detection and
remediation.

Drift JPA Plugin

Content Contains metadata for a a
repository or a group of
repositories.

PackageSource

Repository (also Package) Defines a content repository. Plug-
ins can define a single
repository,which is then used for
provisioning, entitlements, and
updates for JBoss ON-managed
resources.

ChannelSource

Plug-in Type Description Container Name

NOTE

New plug-in containers cannot be created without rebuilding JBoss ON, because the
plug-in containers are part of the core JBoss ON code. Rather than defining a new plug-in
type, use the generic plug-in container, since this provides full access to the server
functionality, anyway.

Report a bug

2.2. THE BREAKDOWN OF SERVER-SIDE PLUG-IN CONFIGURATION

JBoss ON plug-ins are packaged .jar files.The directory structure, libraries, and classes used by those
.jar files is completely up to the discretion and requirements of the plug-in writer, with only one
requirement: All plug-in .jar files must have a plug-in descriptor file, META-INF/rhq-
serverplugin.xml.

NOTE

The one major guideline when writing plugins is that it should implement the
org.rhq.enterprise.server.plugin.pc.ServerPluginComponent class. This
controls the lifecycle of the plug-in within the container.

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

9

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43428-752935+%5BLatest%5D&comment=Title%3A+An+Intro+to+Server-Side+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43428-752935+21+Apr+2015+12%3A52+en-US+%5BLatest%5D

The server-side plug-in is defined within the JBoss ON server through three types of files:

An XML file which functions as the plug-in's descriptor

Java files which pull in the descriptor information and implement the classes for the plug-in.

Optional library dependencies. Any third-party libraries must be stored in the plug-in JAR file's
lib/ directory.

Report a bug

2.2.1. Descriptor and Configuration

The plug-in descriptor is the mechanism that tells the plug-in container how the plug-in should be
deployed, along with any additional information about the plug-in configuration and behavior. The plug-in
descriptor is contained in an XML file which can use any default or user-defined tags and attributes to
define that configuration.

NOTE

The XML file for the server-side plug-in is defined in the rhq-serverplugin.xml file in
the META-INF/ directory in the plug-in's JAR file. (Default server-side plug-ins follow this
same configuration.) This file is required.

The most important configuration in the plug-in descriptor is the basic definition for the plug-in which
includes the type of plug-in, its name, and its version. Every plug-in has this basic definition. If the version
number is not passed manually in the plug-in descriptor, then it is picked up automatically from the
MANIFEST.MF file.

The key to server-side plug-ins is their flexibility. They have near absolute access to server functionality
and can extend any of the existing functions of the server — monitoring, alerting, remote actions,
provisioning, resource configuration, whatever. Maintaining this flexibility demands that server-side plug-
ins at least have the option of advanced configuration in three general areas:

Scheduling actions periodically or using cron schedules

Setting global parameters for all instances of a specific plug-in type

Allowing local or instance-specific configuration for a plug-in type

Report a bug

2.2.1.1. Definitions and Classes

Each server-side plug-in has a root element that contains attributes for the name, display name,
package, version, and other plug-in information. This also imports and defines the XML schema
definitions used for the plug-in configuration (which is described in more detail in Section 2.2.2, “Schema
Files”).

Example 2.1. Plug-in Descriptor: Definition

<alert-plugin
 name="alert-email"
 displayName="Alert:Email"
 xmlns="urn:xmlns:rhq-serverplugin.alert"

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

10

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43429-751082+%5BLatest%5D&comment=Title%3A+The+Breakdown+of+Server-Side+Plug-in+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43430-751083+%5BLatest%5D&comment=Title%3A+Descriptor+and+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

The second part of the plug-in configuration sets the components or classes to use with the plug-in.
Every server-side plug-in will implement the
org.rhq.enterprise.server.plugin.pc.ServerPluginComponent class, which provides
simple lifecycle management for the plug-in. This component provides the hook for the container to
initialize, start, stop, and shut down the plug-in. When a plug-in is initialized, it is given a server plug-in
context that provides information about the runtime environment of the plug-in.

This component is a stateful object, remaining alive for as long as the plug-in is initialized. While this
object is alive, the plug-in can perform any tasks or call any methods to do the work they need to do.

Developers have the option of invoking a component for the plug-in in one of two ways:

Using the <plugin-component> tag to specify the class (this is available to every type of plug-
in)

Using a user-defined tag to identify the class (this is available to some types of server-side plug-
ins, depending on the available schema for the plug-in container)

It's not required to use any given invocation method for a plug-in, so using something like <plugin-
component> is optional. Whatever the method of invoking the component, only one plug-in component
can be specified in the descriptor.

Example 2.2. Plug-in Descriptor: Class Info

Alternatively, a container-defined tag (like <plugin-class> for the email alert server-side plug-in) can
be created for the plug-in. Creating a class introduces the option to provide configuration options or other
information with the component.

NOTE

The example in Example 2.2, “Plug-in Descriptor: Class Info” is specific to certain type of
server-side plug-in. Not all server-side plug-ins support that structure.

Some descriptor tags are made available through the schema defined for that plug-in
type. That is the schema that is defined in the plug-in container schema files. In this
example, the alert sender plug-in container supplies the <plugin-class> element for
any alert sender plug-in to hook into the alert mechanism in JBoss ON.

Container-defined schema isn't ad hoc. It can't be dropped into just any plug-in file, and
developers cannot define their own schema elements.

 xmlns:c="urn:xmlns:rhq-configuration"
 xmlns:serverplugin="urn:xmlns:rhq-serverplugin"
 package="org.rhq.enterprise.server.plugins.alertEmail"
 description="Alert sender plugin that sends alert
notifications via email"
 version="1.0"
 >

<serverplugin:plugin-component class="MyLifecycleListener" />

<plugin-class>RolesSender</plugin-class>

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

11

Report a bug

2.2.1.2. Control Operations

Sometimes a user need to interact directly with a server plug-in's stateful component. This interaction
can take any number of forms, such retrieving a list of agents or resources in contact with the plug-in to
testing the plug-in itself.

To allow user-defined controls, the ServerPluginComponent class can optionally implement the
ControlFacet interface. These control operations can then be invoked directly in the JBoss ON web
interface, in the plug-in configuration area.

Control operations are configured in the plug-in descriptor using the <control> element, which is a
child to the <plugin-component> element. Controls are optional, so you do not have to specify any,
or you can specify multiple controls. Each control can also have optional parameters for the user to pass
to the control operation, as well as (optional) result properties.

Example 2.3. Control Operation Configuration

Control operations can be used with any server-side plug-in type.

Report a bug

2.2.1.3. Scheduling Jobs

One of the main advantages of the server-side plug-in framework is the capability to define scheduled
jobs for the plug-in. The plug-in container handles actually scheduling and invoking those jobs. The plug-
in descriptor has the scheduling information which simply tells the plug-in container what classes and
methods should be invoked when the job is triggered, how often those jobs should be triggered, and what
configuration settings to pass to the job method when it is invoked.

The job can perform any work it needs to get done when it is invoked, including accessing the plug-in's
stateful component, as well as any information about the job itself through the
ScheduledJobInvocationContext component.

Job configuration is entirely flexible:

A job class can be stateless (meaning each job class is instantiated for each job invocation) or it
can be stateful by invoking the plug-in component instance.

<serverplugin:plugin-component class="MyLifecycleListener">
 <serverplugin:control name="testControl" description="A test control
operation">
 <serverplugin:parameters>
 <c:simple-property name="paramProp" required="true"
description="Set to 'fail' to simulate an error"/>
 </serverplugin:parameters>
 <serverplugin:results>
 <c:simple-property name="resultProp" required="false"/>
 </serverplugin:results>
 </serverplugin:control>
</serverplugin:plugin-component>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

12

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43431-752934+%5BLatest%5D&comment=Title%3A+Definitions+and+Classes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43431-752934+21+Apr+2015+12%3A51+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43432-752751+%5BLatest%5D&comment=Title%3A+Control+Operations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43432-752751+20+Apr+2015+14%3A08+en-US+%5BLatest%5D

NOTE

Any server-side plug-in can define a plug-in component to act as the lifecycle
listener for the plug-in. Using a plug-in component is extremely useful; in fact, it is
the only mechanism for a Generic server-side plug-in to connect with the core
server.

A job can be concurrent, meaning more than one invocation can be performed at any one time
on any number of servers (including on the same server). If a job is not concurrent, that means
one and only one job invocation can be performed at any time. (If a job is not concurrent and is
not clustered, then only one job invocation can be performed anywhere in the JBoss ON server
cloud).

A job can be clustered, meaning the job can be run from any server in the JBoss ON server
cloud. If a job is not clustered, the job always runs on the machine where the job was
scheduled. This works in conjunction with the concurrent setting.

The schedule can be either periodic (such as running every hour) or recurring on a pattern (such
as every Monday at 5pm).

There can be multiple jobs scheduled for the same plug-in, each in its own <map-property>
under the plug-in's <scheduled-jobs> entry.

Each scheduled job is a mapping entry that sets the name, schedule, frequency, methods, or classes
invoked by the job, and any callback data.

Example 2.4. Plug-in Descriptor: Scheduled Jobs

<serverplugin:scheduled-jobs>
 <!-- notice that we use the map name as the methodName -->
 <c:map-property name="myScheduledJobMethod1">
 <c:simple-property name="enabled" type="boolean"
required="true" default="true" summary="true" description="Whether or
not the job should be scheduled"/>
 <c:simple-property name="scheduleType" type="string"
required="true" default="cron" summary="true" description="Indicates
when the schedule triggers">
 <c:property-options>
 <c:option value="periodic"/>
 <c:option value="cron" default="true"/>
 </c:property-options>
 </c:simple-property>
 <c:simple-property name="scheduleTrigger" type="string"
required="true" default="0 0/5 * * * ?" summary="true"
description="Based on the schedule type, this is either the period, in
milliseconds, or the cron expression"/>
 <c:simple-property name="concurrent" type="boolean"
required="false" default="false" summary="true" description="Whether or
not the job can be run multiple times concurrently"/>
 <c:simple-property name="clustered" type="boolean"
required="false" default="true" summary="true" description="Whether or
not the job can be run anywhere in the JBoss ON server cluster, or if it
must be run on the server where the job was schedule."/>
 </c:map-property>
</serverplugin:scheduled-jobs>

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

13

There is only one <scheduled-jobs> container entry. Each individual job is within this container, in
mapping (<map-property>) entries.

Report a bug

2.2.1.3.1. States for Jobs

Server-side plug-ins can run one of two jobs: stateless or stateful. The only difference between a stateful
job and a stateless job is whether the job specifies a class. If a plug-in does not specify a class, the plug-
in job is stateful because it uses the plug-in component. If the job specifies a class, then the class is
instantiated every time a new job starts, so the job is stateless.

At its simplest, a stateless job requires only a class and a method to call when the plug-in is started. For
example:

Example 2.5. Stateless Job Configuration

Aside from the class specified for stateless jobs, stateless and stateful jobs have similar configuration
options. Both stateful and stateless jobs can take other optional parameters that help schedule the job.
Scheduled jobs use the same configuration properties as other components in the plug-in, but scheduled
jobs have a specialized semantics that require special properties to be defined to set create the job.
Essentially, this is a property map for each job. These properties include:

1. A method name for the job to invoke. For stateful jobs, the target method is in the plug-in
component; for stateless jobs, it is in the class specified with the class property. Either way, the
method name tells the server what to call. A default method is already defined in the plug-in
component, and stateful jobs can call on that without having a specific method name property.

Any method must either have no arguments or have a single argument of the type
ScheduledJobInvocationContext.

2. A setting showing whether the job is enabled.

3. A schedule type showing whether it's a periodic or cron job. The type of job is identified in the
option which is set to true. For example:

<c:map-property name="statelessJob1" description="invokes a stateless
job class but given a job context">
 <c:simple-property name="class" type="string" required="true"
readOnly="true" default="MyScheduledJob" summary="true" />
 <c:simple-property name="methodName" type="string"
required="true" readOnly="true" default="executeWithContext"
summary="true" />
</c:map-property>

<c:simple-property name="methodName" type="string" required="true"
readOnly="true" default="executeWithContext" summary="true" />

<simple-property name="enabled" type="boolean" ... />

<simple-property name="scheduleType" ... default="periodic" ... >
 <c:property-options>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

14

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43433-752750+%5BLatest%5D&comment=Title%3A+Scheduling+Jobs%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

4. The actual schedule for when to run the job (the "trigger"), which can be a time period or a cron
schedule. For a periodic job, this gives a time interval, in milliseconds:

For a cron job, the default argument contains the full cron expression:

(A full description of the cron schedule format is at http://www.quartz-
scheduler.org/documentation/quartz-2.1.x/tutorials/tutorial-lesson-06.html.)

5. A setting on whether the job is concurrent (meaning, whether this job can be running multiple
times on more than one server or at the same time). If this is false, so that only one instance of
the job can be running at a time, then even if multiple servers are scheduled to run the job, it will
only run on one of them.

6. A job can allow a setting on whether it runs anywhere in the JBoss ON server cloud or if it must
be run on the same machine where the job was scheduled. Setting the cluster value to true
allows the job to be called from any server in the JBoss ON cloud, so the job is clustered. This
value should be false if the job must be run on all machines on schedule. Since all plug-ins are
registered on all servers automatically, a non-clustered job will run on each server,
independently.

7. A job can optionally contain custom strings which accept callback data.

Callback data can be of any type — boolean, string, long, or whatever else is appropriate for the
job being performed.

8. Stateless jobs have a property that passes the method name of the class. The method name
can identify the class that is called in the plug-in component or, alternatively, it can call a class to
instantiate when the job is invoked. Both the method and the class keys are shown in
Example 2.5, “Stateless Job Configuration”. Whatever class is used as the target, it must have
the method defined in the method name simple property.

Typically, the class isn't specified because the job will target the stateful plug-in component. The
class property allows the option of writing a stateless job, however.

 <c:option value="periodic" default="true"/>
 <c:option value="cron" />
 </c:property-options>
</c:simple-property>

<simple-property name="scheduleTrigger" type="string"
required="true" default="60000" ... />

<simple-property name="scheduleTrigger" type="string"
required="true" default="0 0/5 * * * ?" ... />

<simple-property name="concurrent" type="boolean" ... />

<simple-property name="clustered" type="boolean" default="true" ...
/>

<simple-property name="custom1" type="boolean" required="true"
default="true" summary="true" description="A custom boolean for
callback data"/>

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

15

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/tutorial-lesson-06.html

Report a bug

2.2.1.3.2. Concurrent and Clustered Jobs

When a scheduled job is run is determined by its schedule (scheduleTrigger setting). Where and
how a job is run is determined by two settings: concurrent and clustered.

Just because the scheduled time for a job arrives doesn't necessarily mean that a specific JBoss ON
server should run it. The server has to determine which server should run the task, and this is given in
the clustered setting. If the clustered setting is set to true, then any server in the JBoss ON server cloud
can invoke the task; if it is set to false, then the task can only run on the server where it is scheduled.

NOTE

One thing about clustering is that while the job can run on any server in the JBoss ON
server cloud, there is no way to predict or require which servers will run the job. Some
machines might never run the job.

On the other hand, the JBoss ON server-side plug-ins are automatically propagated to all
servers in the cloud when they are deployed. If clustering is turned off (meaning each job
only runs from the local server), all JBoss ON servers will eventually run this job
independent of when the other servers run the job. The end result is that you are
guaranteed that all JBoss ON servers will run this job on a consistent schedule and may
even run more than one of the jobs at the same time.

Once the JBoss ON server identifies where to run the task, then it must find out if the task is already
running. If the concurrent setting is true, then the job is invoked every the schedule is triggered, even if
the task is already running on another server (or even the same server). If concurrent is set to false and
the job is already running somewhere in the JBoss ON server cloud, then the server must wait until that
job invocation is complete before it can run the job.

The clustered and concurrent settings can play off each other in several ways.

If a job is clustered but not concurrent, then before the JBoss ON server can invoke a job, it has to check
whether it is running anywhere else in the JBoss ON server cloud. If it is, then the server has to wait until
that job completes before invoking the new job.

If the job is not clustered and not concurrent, then the JBoss ON server only checks the local machine to
see if the job is running. If the job is not running locally, then the JBoss ON server can invoke the job,
even if it is running on another server in the cloud because the job is not clustered.

Essentially, the clustered setting determines how strict the concurrency check should be. If clustered is
false, the concurrency check is performed only on the machine where the job was scheduled; if clustered
is true, the concurrency check is performed on all machines in the cluster.

Table 2.2. Comparison of Concurrent and Clustered Behavior

Concurrent Clustered When the schedule is
triggered...

true true ... the job will always be invoked. It
may be invoked on any server in
the JBoss ON server cloud.

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43434-752936+%5BLatest%5D&comment=Title%3A+States+for+Jobs%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43434-752936+21+Apr+2015+12%3A55+en-US+%5BLatest%5D

true false ... the job will always be invoked
and will run on the server where
the job is scheduled.

false true ... the JBoss ON server checks to
see if this job is running anywhere
else in the JBoss ON server
cloud. If it is, the new job must
wait until that old job has finished
before being invoked. Only one
instance of this job can ever be
running anywhere in the JBoss
ON server cloud.

false false ... the scheduler checks to see if
the job is already running locally
before invoking the job. Only one
job invocation may be running on
the server at any time, but multiple
servers in the cloud may be
running the job at the same time.

Concurrent Clustered When the schedule is
triggered...

NOTE

To guarantee that a job will run on all servers on a consistent schedule, set clustered to
false. concurrent will determine if you are allowed to start a new job on a machine while
an old job is still running on that machine.

To run a job somewhere, but not on any one specified JBoss ON server, set clustered to
true. concurrent will determine if you are allowed to have more than one job running
anywhere at any one time.

Report a bug

2.2.1.4. Plug-in Configuration (Both Global and Local)

Global configuration settings can be set for default values or global settings for every instance of that
server-side plug-in. All of the global configuration parameters are contained within a <plugin-
configuration> entry (defined in the standard JBoss ON schema) and then each parameter is
identified with a <simple-property> item. Global settings are useful for any plug-in which accesses a
single identity, such as alerts which use the same email or SNMP account.

Example 2.6. Plug-in Descriptor: Global Configuration

<serverplugin:plugin-configuration>
 <c:simple-property name="user" type="string"
required="false"/>

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43435-752749+%5BLatest%5D&comment=Title%3A+Concurrent+and+Clustered+Jobs%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43435-752749+20+Apr+2015+14%3A02+en-US+%5BLatest%5D

The same server-side plug-in can be created with multiple instances. These different instances are
obviously going to require slightly different settings in order to fulfill different functions. For example,
different instances of email alert senders should send notifications to different groups of sys admins.

These instance-specific configuration settings are identified in the plug-in descriptor through a
configuration entry using schema specific to the server-side plug-in (such as <alert-
configuration> and <simple-property> item).

Example 2.7. Plug-in Descriptor: Instance-Specific Configuration (Alerts)

Each plug-in container type defines its own set of schema, relevant to that type of plug-in. For example,
GUI or perspectives have separate explicit schema elements for different types of UI elements.

Example 2.8. Plug-in Descriptor: Instance-Specific Configuration (Perspectives)

Check the plug-in container schema in the sourceRoot/modules/enterprise/server/xml-
schemas/src/main/resources directory to see what elements are available for the specific type of
plug-in. Not all plug-in types accept local configuration settings; generic plug-ins, for example, only
accept global plug-in configuration.

 <c:simple-property name="password" type="password"
required="false"/>
</serverplugin:plugin-configuration>

<alert-configuration>
 <c:simple-property name="emailAddress" displayName="Receiver
Email Address(es)" type="longString"
 description="Email addresses (separated by comma) used
for notifications."/>

h5. </alert-configuration>

<perspectivePlugin
 description="The Core Perspective defining Core UI Elements"
 displayName="Core Perspective"
 name="CorePerspective"
 package="org.rhq.perspective.core"
 xmlns="urn:xmlns:rhq-serverplugin.perspective"
 xmlns:serverplugin="urn:xmlns:rhq-serverplugin"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- Menu -->
<menuItem name="logo" displayName="" url="/"
iconUrl="/images/JBossLogo_small.png">
 <position placement="firstChild" />
</menuItem>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

18

NOTE

The container schema is included with the RHQ source code, not the JBoss ON
packages. To check out the code:

git clone http://git.fedorahosted.org/git/rhq/rhq.git

The example plug-ins are the sourceRoot/etc/samples/custom-serverplugin/
directory which can be used as a template for writing new plug-ins. Rather than checking
out the entire source code, you can manually download the custom-serverplugin files at
this URL:

http://git.fedorahosted.org/git/?
p=rhq/rhq.git;a=tree;f=etc/samples/custom-
serverplugin;hb=master

Report a bug

2.2.2. Schema Files

The server-side plug-in is defined through its metadata and configuration in its XML plug-in descriptor
file. The configuration elements that are available to the descriptor are defined in the XML schema
definition (XSD) files for the plug-in container type.

The descriptor file must conform to the elements within the plug-in types scheme. If the descriptor is
improperly configured — such as missing required elements or attempting to use elements not defined in
the plug-in container's schema — then the plug-in will fail to load.

Every plug-in — both agent plug-ins and server-side plug-ins — uses the rhq-configuration.xsd
file. This file defines the basic configuration options available to any plug-in.

The schema in rhq-configuration.xsd file is extended by rhq-serverplugin.xsd. This file
provides additional XML elements that are specific to the functions of server-side plug-ins. This file is
referenced by every server-side plug-in.

The last XSD file used by a server-side plug-in is one that is specific to its plug-in container. The plug-in
container schema files may define required elements for plug-ins of that type (as with alert sender plug-
ins) or may not have any specific schema elements (as with generic plug-ins).

Specific server-side plug-in schema files are located in the
sourceRoot/modules/enterprise/server/xml-schemas/src/main/resources directory.

This section takes a high-level look at the configuration elements and attributes that are associated with
each XSD to give you enough familiarity with XSD in general and specifically the files with JBoss ON in
order to help write server-side plug-ins and extend the schema as necessary.

More information about each XSD file is available through the comments (in <xs:annotation> items)
in the XSD files themselves. For more information on XSD files and XML schema, check out a reference
guide for XML and XSD, like http://www.w3.org/TR/xmlschema-0/.

NOTE

The JBoss ON XSD files are annotated with descriptions of each configuration area
within the file.

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

19

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43436-752757+%5BLatest%5D&comment=Title%3A+Plug-in+Configuration+%28Both+Global+and+Local%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43436-752757+20+Apr+2015+14%3A25+en-US+%5BLatest%5D
http://www.w3.org/TR/xmlschema-0/

Report a bug

2.2.2.1. Parsing the Plug-in Container Schema Files

All of the schema elements available and required for a specific type of server-side plug-in are defined in
the schema for that type of plug-in container. There are two relevant elements configured in the XSD
files:

Elements

Attributes

NOTE

For more detailed information on XML schema, review a reference guide for XML and
XSD. For example http://www.w3.org/TR/xmlschema-0/.

Elements translate into available tags for the plug-ins XML file. For example:

In the plug-in's XML file, that element defines the tag:

Attributes are flags that available to the tags in the XML file. For example:

The attribute looks like this in the XML file:

Elements and attributes are arranged hierarchically in the XSD file. The container element for the plug-in
file is defined at the top of the XSD. Child elements reference the parent element's type and are included
as sub-elements within the parent's definition. Likewise, any attributes that are available to an element
are included within the element's definition.

One of the easiest ways to find the tags and attributes defined for a type of server-side plug-in is to check
the plug-in container schema in the sourceRoot/modules/enterprise/server/xml-
schemas/src/main/resources directory and search for <xs:element name=""> and
<xs:attribute name=""> entries.

<xs:element name="alert-plugin">

<alert-plugin>
Stuff
</alert-plugin>

<xs:attribute name="name">

<alert-plugin name="myAlertPlugin">
Stuff
</alert-plugin>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

20

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43437-752755+%5BLatest%5D&comment=Title%3A+Schema+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A
http://www.w3.org/TR/xmlschema-0/

NOTE

The container schema is included with the RHQ source code, not the JBoss ON
packages. To check out the code:

git clone http://git.fedorahosted.org/git/rhq/rhq.git

Report a bug

2.2.2.2. The rhq-configuration.xsd File

The rhq-configuration.xsd file provides schema which is available for all JBoss ON plug-ins. This
is used by both agent and server-side plug-ins.

The rhq-configuration.xsd file is in source/modules/core/client-
api/src/main/resources.

NOTE

The container schema is included with the RHQ source code, not the JBoss ON
packages. To check out the code:

git clone http://git.fedorahosted.org/git/rhq/rhq.git

The example plug-ins are the sourceRoot/etc/samples/custom-serverplugin/
directory which can be used as a template for writing new plug-ins. Rather than checking
out the entire source code, you can manually download the custom-serverplugin files at
this URL:

http://git.fedorahosted.org/git/?
p=rhq/rhq.git;a=tree;f=etc/samples/custom-
serverplugin;hb=master

The most commonly used elements defined in the rhq-configuration schema relate to setting
configuration values for a plug-in, like <simple-property> and <map-property>.

Table 2.3. rhq-configuration.xsd Schema Elements

Element Description

configuration-property For adding a configuration attribute to a plug-in for
user-defined settings.

simple-property For setting a default configuration value.

option For setting whether a property's values come from an
enumerated list (false) or can be anything defined by
the user (true).

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

21

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43438-752753+%5BLatest%5D&comment=Title%3A+Parsing+the+Plug-in+Container+Schema+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43438-752753+20+Apr+2015+14%3A15+en-US+%5BLatest%5D

The rhq-configuration.xsd file also defines the most common flags that can be used for the
plug-in descriptor, including the required name and optional displayName attributes.

Table 2.4. rhq-configuration.xsd Schema Element Attributes

Attribute Description

name Required. Gives a unique name for the plug-in.

displayName Gives the name to use for the plug-in in the GUI. If
this isn't given, then the name value is used.

description Gives a short description of the plug-in.

There are many other elements and attributes set in the rhq-configuration.xsd file. Each one is
described by the text in the <xs:annotation> tags for the item.

Report a bug

2.2.2.3. The rhq-serverplugin.xsd File

The rhq-serverplugin.xsd is the central server-side plug-in schema file.

The rhq-serverplugin.xsd file provides schema elements that are important for every server-side
plug-in. Possibly the two most important elements are <server-plugin> (for the plug-in's root
element) and <scheduled-jobs> (for running jobs on a resource or server).

The rhq-serverplugin.xsd file is in source/modules/enterprise/server/xml-
schemas/src/main/resources.

The most common elements in the rhq-serverplugin.xsd file are listed in Table 2.5, “rhq-
serverplugin.xsd Schema Elements”.

Table 2.5. rhq-serverplugin.xsd Schema Elements

Element Description

server-plugin Contains the root element for the plug-in descriptor.

help Contains additional usage information or other tips
that can help users integrate the plug-in with other
applications.

plugin-component Identifies a class that will be notified when the plug-in
stops or starts. This is a stateful object and is the
target of any scheduled stateful jobs.

scheduled-jobs Defines a schedule for the plug-in to execute any
specified task

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

22

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43439-752752+%5BLatest%5D&comment=Title%3A+The+rhq-configuration.xsd+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43439-752752+20+Apr+2015+14%3A13+en-US+%5BLatest%5D

Most of the attributes defined within the rhq-serverplugin.xsd contain flags that are used within the
root element of the plug-in descriptor. These add additional management attributes for controlling the
release and updates of server-side plug-ins.

Table 2.6. rhq-serverplugin.xsd Schema Element Attributes

Attribute Description

package For setting the plug-in package name.

version For setting the version of the plug-in. If the version
isn't set in the descriptor, the plug-ins JAR file,
META-INF/MANIFEST.MF, must define the
version number in the Implementation-
Version setting.

apiVersion For setting the version of the API used to write the
plug-in.

There are many other elements and attributes set in the rhq-serverplugin.xsd file. Each one is
described by the text in the <xs:annotation> tags for the item.

Report a bug

2.2.3. Java Class Files

Any Java class files used by the plug-in to implement elements like ServerPluginComponent or
ControlFacet must be available in the JAR file for the plug-ins.

Report a bug

2.3. ANATOMY OF ALERT SENDER SERVER-SIDE PLUG-INS

An alert notification sender is simply the method used to send an alert. Each sender is implemented
through an alert sender plug-in. Multiple instances of the same type of plug-in can be configured with
different settings; all the plug-in provides is the functionality of sending an alert in that way.

Alert senders are implemented as server-side plug-ins (with the same general configuration concepts as
those covered in Section 2.2, “The Breakdown of Server-Side Plug-in Configuration”. The server-side
plug-in framework allows the alert sender configuration to be easily extended through custom plug-ins or
even by editing the configuration of the default server-side plug-ins.

This section deconstructs the elements of one of the default server-side plug-ins — the email alert sender
— to make the process of creating an alert sender clear and simple.

Report a bug

2.3.1. Default Alert Senders

JBoss ON provides multiple alert sender plug-ins with the default installation, which cover some of the
most common ways of sending an alert.

Table 2.7. Default Alert Senders

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43440-752937+%5BLatest%5D&comment=Title%3A+The+rhq-serverplugin.xsd+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43440-752937+21+Apr+2015+12%3A55+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43441-751094+%5BLatest%5D&comment=Title%3A+Java+Class+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43441-751094+15+Apr+2015+12%3A48+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43442-751171+%5BLatest%5D&comment=Title%3A+Anatomy+of+Alert+Sender+Server-Side+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

Alert Method Description Plug-in Name

Email Sends emails with the alert
information to a user or list of
users.

alert-email

Roles Sends an internal message to a
JBoss ON user role.

alert-roles

SNMP Sends a notification to an SNMP
trap.

alert-snmp

Operations Initiated a JBoss ON-supported
task on a target resource.

alert-operations

Subject Sends a notification to a user in
JBoss ON.

alert-subject

Plug-in developers and administrators can create and deploy custom alert sender plug-ins to cover other
scenarios or formats that are specific to an organization, such as additional instant messaging systems.

Report a bug

2.3.2. Breakdown of a Real Alert Sender Plug-in

As described in Section 2.2, “The Breakdown of Server-Side Plug-in Configuration”, any server-side
plug-in uses three types of files for its configuration:

An XML plug-in descriptor that conforms to a given XML schema file (XSD)

Java files

The XML plug-in descriptor and the Java files are unique to every plug-in. All of the default alert senders,
however, use the same three schema files to provide attributes for the descriptor.

Section 3.4, “Deploying Server-Side Plug-ins” covers the process for building and deploying plug-ins.
This section annotates the elements of each of the configuration files used to define a default alert
sender (alert-email) as an example of how to write an alert plug-in.

Report a bug

2.3.2.1. Descriptor

Every plug-in descriptor is a file called rhq-serverplugin.xml in the
src/main/resources/META-INF/ file for that plug-in.

NOTE

The default alert schema has to be used with the plug-in descriptor for the alert plug-in
validator to work and for the alert to tie into the monitoring system successfully.

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

24

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43443-752758+%5BLatest%5D&comment=Title%3A+Default+Alert+Senders%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43443-752758+20+Apr+2015+14%3A25+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43444-751172+%5BLatest%5D&comment=Title%3A+Breakdown+of+a+Real+Alert+Sender+Plug-in%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

The header in the plug-in descriptor pulls in the schema files to use with the plug-in and defines the
package information (class, description, version number) for the plug-in. The displayName flag
contains the name to give for the plug-in in the list of installed server-side plug-ins.

The next section supplies help text for the alert.

The help text is displayed in a help description section in the UI.

Figure 2.2. Alert Help Text

The next section in the descriptor is filler for the alert-email plug-in.

For other types of server-side plug-ins, this area could contain scheduling information in a <scheduled-
jobs> element or implement a Java class in a <plugin-component> element. There's no reason to
schedule any jobs with an alert sender since the plug-ins do not perform tasks; they provide methods of
sending message from the server when an event is detected.

The global preferences define parameters that apply to every single instance of the alert, meaning it

<alert-plugin
 name="alert-email"
 displayName="Alert:Email"
 xmlns="urn:xmlns:rhq-serverplugin.alert"
 xmlns:c="urn:xmlns:rhq-configuration"
 xmlns:serverplugin="urn:xmlns:rhq-serverplugin"
 package="org.rhq.enterprise.server.plugins.alertEmail"
 description="Alert sender plug-in that sends alert notifications via
email"
>

<serverplugin:help>
 Used to send notifications to direct email addresses.
</serverplugin:help>

<!-- startup & tear down listener, + scheduled jobs
<serverplugin:plugin-component />
-->

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

25

applies to every notification which is configured to use that alert sender. These global configuration
parameters can be configured in the XML file, but they can also be edited through the JBoss ON GUI, as
described in Section 3.8, “Setting Plug-in Configuration Properties”.

For the alert-email plug-in, these parameters include the sender mail address to use for notifications, the
mail server, and any login credentials.

If defaults are set, then there is a default value given in the configuration itself. The alert-email plug-in,
however, doesn't have defaults set for any of its parameters, so the values for the plug-in configuration
have to be added through the plug-in configuration page.

The <short-name> element is required for every alert sender plug-in. This gives the name that is used
for the alert sender type in the notification area of the alert definition.

Since the <short-name> value is used in drop-down menus and other user-oriented areas, this value is
much more human-friendly than the displayName value.

The next section gives the plug-in class used to send the alert notification. The component for server-
side plug-ins is typically org.rhq.enterprise.server.plugins.pluginName, taken from the
package element in the <plugin> element of the descriptor. For the alert-email plug-in, the full
package name is org.rhq.enterprise.server.plugins.alertEmail, pointing to the
EmailSender.java class.

The last section in the alert-email descriptor provides the other half to the communication configuration.
The global parameters set things that apply to every notification, like the mail server that the JBoss ON
server used to send the email notification. The <alert-configuration> entry provides information

<!-- Global preferences for all email alerts -->

<serverplugin:plugin-configuration>
 <c:simple-property name="mailserver" displayName="Mail server
address" type="longString"
 description="Address of the mail server to use (if not the
default JBoss ON one)"
 required="false"/>
 <c:simple-property name="senderEmail" displayName="Email of sender"
type="string"
 description="Email of the account from which alert emails
should come from"
 required="false"/>
 <c:simple-property name="needsLogin" displayName="Needs credentials?"
 description="Mark this field if the server needs credentials to
send email and give them below" type="boolean"
 default="false"/>
 <c:simple-property name="user" type="string" required="false"/>
 <c:simple-property name="password" type="password" required="false"/>
</serverplugin:plugin-configuration>

<!-- How does this sender show up in drop downs etc -->

<short-name>Email</short-name>

 <!-- Class that does the actual sending -->

<plugin-class>EmailSender</plugin-class>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

26

that is configured individually, for every notification instance which uses that alert sender type. For
alert-email, this is a field which allows a list of email addresses that will receive the emailed
notifications.

Report a bug

2.3.2.2. Java Resource

The first part of the Java file identifies the package name and imports whatever properties are required
for that type of sender. For the email sender Java file, this includes configuration to pull in the alert send
plug-in container, the notification templates, and other classes to define alerts.

The rest of the EmailSender.java file pulls data from the notification configuration and the plug-in's global
configuration.

The opening sets up the sender.

The next lines pull in the email address to receive the notification from the notification configuration and
the mail server to send the notification and the sender's email account from the global configuration.

 <!-- What can a user configure when defining an alert -->

<alert-configuration>
 <c:simple-property name="emailAddress" displayName="Receiver Email
Address(es)" type="longString"
 description="Email addresses (separated by comma) used for
notifications."/>
 </alert-configuration>

package org.rhq.enterprise.server.plugins.alertEmail;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.rhq.core.domain.alert.Alert;
import org.rhq.core.domain.alert.notification.SenderResult;
import org.rhq.enterprise.server.plugin.pc.alert.AlertSender;
import org.rhq.enterprise.server.util.LookupUtil;

public class EmailSender extends AlertSender {

 @Override
 public SenderResult send(Alert alert) {
 String emailAddressString =
alertParameters.getSimpleValue("emailAddress", null);
 if (emailAddressString == null) {
 return SenderResult.getSimpleFailure("No email address
given");
 }

 List<String> emails = AlertSender.unfence(emailAddressString,

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

27

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43445-752761+%5BLatest%5D&comment=Title%3A+Descriptor%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43445-752761+20+Apr+2015+14%3A33+en-US+%5BLatest%5D

The last part configures the responses for the email alert plug-in, simple failure or success.

Report a bug

String.class, ",");
 try {
 Set<String> uniqueEmails = new HashSet<String>(emails);
 Collection<String> badEmails = LookupUtil.getAlertManager()
 .sendAlertNotificationEmails(alert, uniqueEmails);

 List<String> goodEmails = new ArrayList<String>
(uniqueEmails);
 goodEmails.removeAll(badEmails);

 SenderResult result = new SenderResult();
 result.setSummary("Target addresses were: " + uniqueEmails);
 if (goodEmails.size() > 0) {
 result.addSuccessMessage("Successfully sent to: " +
goodEmails);
 }
 if (badEmails.size() > 0) {
 result.addFailureMessage("Failed to send to: " +
badEmails);
 }
 return result;
 } catch (Throwable t) {
 return SenderResult.getSimpleFailure("Error sending email
notifications to " + emails + ", cause: "
 + t.getMessage());
 }

 }

 @Override
 public String previewConfiguration() {
 String emailAddressString =
alertParameters.getSimpleValue("emailAddress", null);
 if (emailAddressString == null ||
emailAddressString.trim().length() == 0) {
 return "<empty>";
 }
 return emailAddressString;
 }
}

 catch (Exception e) {
 log.warn("Sending of email failed: " + e);
 return SenderResult.getSimpleFailure("Sending failed :" +
e.getMessage());

 }
 return SenderResult.getSimpleSuccess("Send notification to " + txt +
", msg-id: " + status.getId());
 }
}

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

28

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43446-751099+%5BLatest%5D&comment=Title%3A+Java+Resource%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43446-751099+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

2.3.2.3. Schema Elements

The alert-email plug-in (as all of the default alert sender plug-ins) uses three schema files:

rhq-configuration.xsd, which is used by all JBoss ON plug-ins

rhq-serverplugin.xsd, which is used by all server-side plug-ins

rhq-serverplugin-alert.xsd, which is used by alert plug-ins

The schema in these files build on and expand each other.

The rhq-serverplugin-alert.xsd file is required for any alert sender plug-in. While additional
schema files can be added to contain other elements, the alert schema already contains several very
useful schema elements for the alert sender plug-ins.

Table 2.8. Useful Alert Schema Elements

Schema Element Description Parent Tag

alert-plugin The root element for a single alert
plug-in definition.

None.

short-name The display name for the plug-in,
which is used in the UI.

alert-plugin

plugin-class The class which implements the
plug-in's functionality.

alert-plugin

alert-configuration A (default) configuration element
to display in the UI when the alert
instance is configured. This
includes general data like a user
name, password, URL, server
name, or port.

alert-plugin

Report a bug

CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND

29

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43447-752759+%5BLatest%5D&comment=Title%3A+Schema+Elements%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43447-752759+20+Apr+2015+14%3A27+en-US+%5BLatest%5D

CHAPTER 3. WRITING SERVER-SIDE PLUG-INS:
PROCEDURES

3.1. TIP: CHECKING XSD ANNOTATIONS

There are a number of XSD files that provide elements for server-side plug-ins: rhq-
configuration.xsd, rhq-serverplugin.xsd, and type-specific files like rhq-serverplugin-
alert.xsd.

Different properties and attributes are defined in these schema files. They are annotated so you can see
what the existing, default schema makes available.

For example, for the <control> element:

 <xs:element name="control" type="serverplugin:ControlType" minOccurs="0"
maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Defines operations a user can invoke on the
plugin component.
 Typically, a user interface will allow a user to
invoke these operations to
 control the server plugin component during
runtime.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

Read through the annotations in the XSD files to help plan what your plug-in will do and determine
whether your configuration requires custom schema.

Report a bug

3.2. WRITING SERVER-SIDE PLUG-INS

Server-side plug-ins are flexible and while there are some categories that structure the behavior of
server-side plug-ins (alerts, content, GUI), generic plug-ins can cover almost any server function.

The outline of writing server-side plug-ins is:

1. Optional. Manually download example plug-ins to use as a template from The RHQ Project
GitHub Page.

2. Identify the type of plug-in. Each server-side plug-in is managed by a higher level plug-in
container, which correlates to the type or function of the plug-in.

3. Optional. Write custom schema for the plug-in configuration.

4. Create the directory for the custom plugin in the
sourceRoot/modules/enterprise/server/plugins directory. For example:

mkdir myPlugin
cd myPlugin/
mkdir -p src/main/java/org/rhq/enterprise/server/plugins/myPlugin

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

30

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43448-751101+%5BLatest%5D&comment=Title%3A+Tip%3A+Checking+XSD+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43448-751101+15+Apr+2015+12%3A48+en-US+%5BLatest%5D
https://github.com/rhq-project/rhq/tree/master/etc/samples/custom-serverplugin

mkdir -p src/main/resources/META-INF

5. Copy the pom.xml file from a similar existing plug-in to use for the Maven builds to package
your new plug-in. For example:

cp ../alert-email/pom.xml .

6. Edit the pom.xml file so that its properties reflect the new plug-in.

NOTE

Be sure to include the location of the parent repositories used by server-side plug-
ins, which are in
https://repository.jboss.org/nexus/content/groups/public/org
/rhq/rhq-enterprise-server-plugins-parent/. For example:

 <repositories>
 <repository>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <id>jboss</id>
 <name>JBoss Repository</name>

<url>https://repository.jboss.org/nexus/content/groups/pu
blic/org/rhq/rhq-enterprise-server-plugins-parent/</url>
 </repository>
...
 </repositories>

7. Write the plug-in descriptor that defines that specific plug-in instance. The plug-in descriptor
defines everything from the plug-in classes to scheduled jobs. Plug-in descriptor elements are
covered in Section 2.2.1.4, “Plug-in Configuration (Both Global and Local)”.

8. Implement the Java classes for the plug-in.

9. Build the plug-in. During the Maven build process, the plug-in files can be validated.

mvn install

10. Deploy the plug-in, as in Section 3.4, “Deploying Server-Side Plug-ins”. When a server-side
plug-in is deployed on one server, it is automatically propagated to all of the other JBoss ON
servers in the cloud.

Report a bug

3.3. VALIDATING SERVER-SIDE PLUG-INS

The JBoss ON server includes special classes that validate server-side plug-ins as part of the Maven
build process.

Validation means that the build process checks that the server-side plug-in descriptor is acceptable and
complete. Every server-side plug-in is checked for a handful of things:

CHAPTER 3. WRITING SERVER-SIDE PLUG-INS: PROCEDURES

31

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43449-751174+%5BLatest%5D&comment=Title%3A+Writing+Server-Side+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43449-751174+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

The XML is well-formed and validates with the configured server plug-in XML schema

If a plug-in component is specified, its class is found in the plug-in JAR and can be instantiated

All scheduled jobs are configured properly

The plug-in has a valid version

The plug-in configuration is declared correctly

NOTE

Plug-in validation is executed during the Maven build process when creating the JAR file.
If the plug-in JAR is built using another system or on a different machine, then validation
isn't run.

To automatically validate a plug-in during a build using Maven; any plug-ins to be validated must be
added to the validator's pom.xml configuration file.

1. Open the pom.xml file in the
sourceRoot/modules/enterprise/server/plugins/validate-all-serverplugins/
directory.

2. Add a <pathelement> line to the file which points to the custom server-side plug-in JAR file.
For example:

3. Build the plug-in.

mvn install

TIP

The RHQ source code includes a validator utility which can be used with custom plug-in
infrastructure. This is contained in the
org.rhq.enterprise.server.plugin.pc.ServerPluginValidatorUtil class.

Report a bug

3.4. DEPLOYING SERVER-SIDE PLUG-INS

Server-side are deployed in one of two ways:

Copying the plug-in JAR file into the sourceRoot/plugins/ folder in the server root directory
(locally).

Uploading the plug-in JAR file through the web interface (remotely).

Server-side plug-ins are hot-deployed, so they are active as soon as they are deployed without having to
restart any of the JBoss ON servers. Every server-side plug-in is deployed globally and is automatically
propagated among the server cloud. The configuration for each server is polled regularly (at an interval
defined in the server properties file).

<pathelement location="../myPlugin/target/myPlugin.jar" />

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

32

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43450-751103+%5BLatest%5D&comment=Title%3A+Validating+Server-Side+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43450-751103+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

By default, every server-side plug-in is automatically enabled (and therefore active) unless the
configuration in the plug-in descriptor explicitly prevents it from being deployed enabled. When a plug-in
is deployed and enabled, it is automatically propagated to other JBoss ON servers in the infrastructure.

Figure 3.1. Server-Side Plug-in Propagation

There are two possible states for a server-side plug-in:

Deployed and enabled

Deployed and disabled

Report a bug

3.4.1. Remotely Deploying Server-Side Plug-ins

1. In the top menu, click the Administration tab.

2. In the Configuration box on the left navigation bar, click the Server Plugins link.

CHAPTER 3. WRITING SERVER-SIDE PLUG-INS: PROCEDURES

33

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43451-752762+%5BLatest%5D&comment=Title%3A+Deploying+Server-Side+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

3. Scroll to the Upload Plugin section at the bottom of the page.

4. Click the Browse... button, and browse to the plug-in JAR file's location.

5. To deploy the plug-in, click the Upload button.

Any plug-ins uploaded to one server are automatically deployed and registered on all other JBoss ON
servers in the cloud within a few minutes.

Report a bug

3.4.2. Locally Deploying Server-Side Plug-ins

Each server installation has a top-level plugins/ directory. The server periodically polls this directory. Any
new or updated JAR files are copied to the appropriate directory in the server configuration, and then the
original JAR file is deleted from the plugins/ directory.

If the JAR file is on the same host machine as an JBoss ON server, the JAR file can just be copied into
that sourceRoot/plugins/ directory and the server will deploy it.

Report a bug

3.5. UPDATING SERVER-SIDE PLUG-INS

Server-side plug-ins can be updated by deploying updated plug-in JAR files. The plug-in descriptor can

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

34

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43452-751105+%5BLatest%5D&comment=Title%3A+Remotely+Deploying+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43452-751105+15+Apr+2015+12%3A48+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43453-751106+%5BLatest%5D&comment=Title%3A+Locally+Deploying+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43453-751106+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

contain a version number for the plug-in package. The server uses this version number (or, alternatively,
the Implementation-Version setting found in the META-INF/MANIFEST.MF file in the JAR file) to
identify later version of the plug-in and to update the plug-ins on the JBoss ON servers in the cloud.

Report a bug

3.6. DISABLING SERVER-SIDE PLUG-INS

All plug-ins are enabled when they are deployed unless otherwise indicated. When a plug-in is disabled,
it remains listed in the configuration for all of the JBoss ON servers in the cloud and is prevented from
being loaded or started by the server.

To disable a plug-in:

1. In the top menu, click the Administration tab.

2. In the Configuration box on the left navigation bar, click the Server Plugins link.

3. Select the server-side plug-in to be disabled.

4. Click the DISABLE button.

CHAPTER 3. WRITING SERVER-SIDE PLUG-INS: PROCEDURES

35

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43454-751107+%5BLatest%5D&comment=Title%3A+Updating+Server-Side+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43454-751107+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

The 'Enabled?' field on the server plug-in administration page indicates whether the plug-in is enabled
or not.

Any disabled plug-in can be re-enabled later by selecting that plug-in and clicking the ENABLE button.

Report a bug

3.7. RESTARTING SERVER-SIDE PLUG-IN CONTAINERS

Each type of server-side plug-in is controlled by a corresponding plug-in container. Each plug-in
container is controlled, in turn, by a master plug-in container. The plug-in containers load, start, and stop
plug-ins.

As developers hot-deploy new server-side plug-ins, it can be useful to restart the plug-in container to
check the plug-in performance. This is done by restarting the master plug-in container.

NOTE

All other actions with server-side plug-ins occur in the cloud. When a new plug-in is
added, it is added to the entire cloud. Plug-in containers, however, perform their tasks
locally. Restarting the plug-in containers, then, restarts the master plug-in container for
whichever JBoss ON server is hosting the web interface (in essence, the server which is
local to the command) — and it only restarts that master plug-in container.

1. In the top menu, click the Administration tab.

2. In the Configuration box on the left navigation bar, click the Server Plugins link.

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

36

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43455-751108+%5BLatest%5D&comment=Title%3A+Disabling+Server-Side+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43455-751108+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

3. Scroll to the bottom of the table, and click the RESTART MASTER PLUGIN CONTAINER button.

4. When the restart process is done (and assuming no problems were encountered), a success
message is shown in the upper right corner.

Report a bug

3.8. SETTING PLUG-IN CONFIGURATION PROPERTIES

Some default server-side plug-ins and custom plug-ins allow administrators to define specific
configuration properties for the plug-in instance. The available properties are defined in the plug-in's
rhq-plugin.xml file, and the values are then supplied in the JBoss ON UI.

The descriptor file can define certain configuration parameters that apply to every instance of that plug-in
(the descriptor parameters are described in Section 2.2.1, “Descriptor and Configuration” for server-side
plug-ins and Section 4.2.2, “Descriptor and Configuration” for agent plugins). The descriptor can set
default values to use or can leave these fields blank. Either way, the global plug-in configuration
parameters can be set or changed in the JBoss ON web UI.

CHAPTER 3. WRITING SERVER-SIDE PLUG-INS: PROCEDURES

37

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43459-751112+%5BLatest%5D&comment=Title%3A+Restarting+Plug-in+Containers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43459-751112+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

1. In the top menu, click the Administration tab.

2. In the Configuration box on the left navigation bar, click the Server Plugins link.

3. Click the name of the server-side plug-in in the table.

4. In the middle of the plug-in details page, expand the Plugin Configuration section to
access the configuration properties.

NOTE

If necessary, unselect the Unset checkbox to activate a field to be edited.

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

38

5. Click the SAVE button at the top of the configuration section.

Report a bug

3.9. DELETING SERVER-SIDE PLUG-INS

WARNING

Deleting a plug-in removes all resource types and resources associated with the
plug-in. This operation cannot be undone.

1. In the top menu, click the Administration tab.

2. In the Configuration box on the left navigation bar, click the Server Plugins link.



CHAPTER 3. WRITING SERVER-SIDE PLUG-INS: PROCEDURES

39

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43460-751177+%5BLatest%5D&comment=Title%3A+Setting+Plug-in+Configuration+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43460-751177+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

3. Select the plug-in to delete.

4. Click the Delete button.

Report a bug

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

40

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43495-751148+%5BLatest%5D&comment=Title%3A+Deleting+Server-side+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43495-751148+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND
Agent plug-ins extend the control capabilities that agents have as they interact with resources. This can
include adding monitoring, operations, or configuration over resources.

Report a bug

4.1. ABOUT THE ADVANCED MANAGEMENT PLUG-IN SYSTEM (AMPS)
FOR AGENT PLUG-INS

Agent resource plug-ins in JBoss ON have a certain pattern or system to how they are written. This is
called the Advanced Management Plug-in System (AMPS). AMPS is defined in the core API for JBoss
ON.

An agent plug-in is comprised of five parts (which, collectively, are the AMPS system):

The agent's plug-in container. The plug-in contain runs inside the JBoss ON agent and it
provides a manager for all of the deployed resource plug-ins.

The plug-in container is what actually manages the lifecycle of the resource plug-ins. The agent
starts the plug-in container, and the plug-in container starts the resource plug-ins. The plug-in
container also handles all the classloading, threading, and running for resource plug-ins.

Plug-in developers never need to interact with the plug-in container. As long as a plug-in is
written with the appropriate components and with a valid plug-in descriptor, the agent will be
able to manage the resource.

Domain objects. This defines the individual objects for plug-ins, specifically resources, resource
types, and configuration. All of the other elements in AMPS use the domain objects to define
resource elements.

One of the largest API sets within the domain object is configuration. The configuration API is
used anywhere that a set of configuration properties is required, from plug-in configuration
settings to connect to a resource to operation arguments.

The plug-in components. These components define the actual component interfaces that are
used by agent plug-ins, well as the facets that plug-ins can support.

The plug-in components are the public API.

This element within AMPS is the part that plug-in writers use. This contains the interfaces that
plug-in writers implement in the resource plug-in.

Native System. A lot of information require to monitor or manage a resource is available from the
operating system information. The native system provides JNI or native access to that operating
system information and can pull information from the process table, run external programs, or
gather system metrics.

Resource plug-ins.. JBoss ON has a set of resource plug-ins already defined. Each individual
resource plug-in manages a particular product (applications and servers, services, or platforms).
These plug-ins are loaded into the agent's plug-in container and implement the plug-in
components defined in the API.

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

41

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43461-751114+%5BLatest%5D&comment=Title%3A+Writing+Agent+Plug-ins%3A+Background%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

NOTE

Agent plug-ins can leverage the JBoss ON domain and native system APIs to define
objects and communication layers, respectively.

Report a bug

4.2. THE BREAKDOWN OF AGENT PLUG-IN CONFIGURATION

Agents do not have a fixed functionality; their functions, from monitoring to the resources they can
inventory, are defined by their plug-ins.

At its core, an agent plug-in consists of a single JAR file and an XML plug-in descriptor file (rhq-
plugin.xml inside the META-INF/ directory).

Along with the plug-in descriptor, an agent plug-in has up to three different types of Java files for each
plug-in defined in the JAR file package:

A plug-in component file that contains all of the code for the plug-in functionality

A *Discovery.java file that configures the discovery process for the resources defined in the
plug-in

A *EventPoller.java that defines the events that can be collected by the resource

The definitions in the Java files closely track the configuration for the plug-in in the rhq-plugin.xml
plug-in descriptor.

TIP

Generating an agent plug-in template with the plug-in generator creates files with TODO
markers to help guide writing the plug-in.

Report a bug

4.2.1. Schema Files

The agent plug-in is defined through its metadata and configuration in its XML plug-in descriptor file. The
configuration elements that are available to the descriptor are defined in the XML schema definition
(XSD) files for agent plug-ins.

All JBoss ON plug-ins — both agent plug-ins and server-side plug-ins — uses the rhq-
configuration.xsd file to define the basic configuration options available.

Agents also use the rhq-plugin.xsd file, which extends the rhq-configuration.xsd schema and
adds additional elements specifically for resource-related plug-ins.

NOTE

More information about specific elements within both XSD files is available through the
comments (in <xs:annotation> items) in the XSD files themselves.

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

42

http://docs.redhat.com/docs/en-US/JBoss_Operations_Network/100/html/API/index.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43462-752938+%5BLatest%5D&comment=Title%3A+About+the+Advanced+Management+Plug-in+System+%28AMPS%29+for+Agent+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43462-752938+21+Apr+2015+12%3A59+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43463-751116+%5BLatest%5D&comment=Title%3A+The+Breakdown+of+Agent+Plug-in+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

The rhq-configuration.xsd file provides schema which is available for all JBoss ON plug-ins. The
rhq-configuration.xsd file is in source/modules/core/client-api/src/main/resources.

The most commonly used elements defined in the rhq-configuration schema relate to setting
configuration values for a plug-in, like <simple-property> and <map-property>.

Table 4.1. rhq-configuration.xsd Schema Elements

Element Description

configuration-property For adding a configuration attribute to a plug-in for
user-defined settings.

simple-property For setting a default configuration value.

option For setting whether a property's values come from an
enumerated list (false) or can be anything defined by
the user (true).

The rhq-configuration.xsd file also defines the most common flags that can be used for the
plug-in descriptor, including the required name and optional displayName attributes.

Table 4.2. rhq-configuration.xsd Schema Attributes

Attribute Description

name Required. Gives a unique name for the plug-in.

displayName Gives the name to use for the plug-in in the GUI. If
this isn't given, then the name value is used.

description Gives a short description of the plug-in.

The rhq-plugin.xsd provides all of the schema elements specifically for agent plug-ins. The rhq-
plugin.xsd file is in the source/modules/core/client-api/src/main/resources directory.

The most common elements in the rhq-plugin.xsd file are listed in Table 4.3, “rhq-plugin.xsd
Schema Elements”.

Table 4.3. rhq-plugin.xsd Schema Elements

Element Description

plugin Contains the root element for the plug-in descriptor.

depends Identifies any other plug-ins which this plug-in
requires or extends.

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

43

platforms, servers, services Identifies the type for a resource defined within the
agent plug-in. <platforms> are top-level
elements, but <servers> and <services> are
added as children of platforms or other server and
service resources.

metric An element within a platform, server, or service which
defines metrics which can be collected for that
resource type.

Child elements and attributes for this resource
element are listed in the rhq-plugin.xsd file.

Values that form part of a larger data structure, such
as an array of values, need to be deconstructed into
individual values before they can be monitored.

event An element within a platform, server, or service which
defines whether that resource supports events. There
are no other configuration properties with events; the
events themselves are culled from the resource's log
files.

bundle-target Configures whether and how bundles can be
deployed to a resource.

Child elements and attributes for this resource
element are listed in the rhq-plugin.xsd file.

drift-definition Configures whether and how drift monitoring can be
performed for a resource.

Child elements and attributes for this resource
element are listed in the rhq-plugin.xsd file.

resource-configuration Defines a configuration property for a resource type.

Child elements and attributes for this resource
element are listed in the rhq-plugin.xsd file.

operation Defines an operation that can be performed on that
resource type.

Child elements and attributes for this resource
element are listed in the rhq-plugin.xsd file.

content Configures what types of packages can be uploaded
or deployed on a resource type.

Child elements and attributes for this resource
element are listed in the rhq-plugin.xsd file.

Element Description

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

44

Most of the attributes defined within the rhq-plugin.xsd contain flags that are used within the root
element of the plug-in descriptor. These add additional management attributes for controlling the release
and updates of agent plug-ins.

Table 4.4. rhq-plugin.xsd Schema Attributes

Attribute Description

package For setting the plug-in package name.

version For setting the version of the plug-in. This must be in
an OSGi-compatible format.

ampsVersion For the agent plug-in system version that this plug-in
requires. This must be in an OSGi-compatible format.

pluginLifecycleListener For the listener which initializes and shuts down the
plug-in.

discovery Sets whether a resource type is detected by
discovery scans. This flag may not be necessary for
child resources that will be discovered by the parent
resource.

There are many other elements and attributes set in the rhq-plugin.xsd file. Each one is described
by the text in the <xs:annotation> tags for the item.

Report a bug

4.2.2. Descriptor and Configuration

A plug-in descriptor contains the metadata that described everything about the plug-in and the resource
it configured. The descriptor describes the type and interactions of the resource type the agent plug-in
defines.

The plug-in descriptor contains the information about name of the resource, the supported resource
versions, the total resource hierarchy (meaning parents or children of the resource), configuration
properties that the agent uses to connect to the resource, and all of the monitoring metrics, operations,
and events related to the resource that can be managed by the agent.

The plug-in descriptor also contains information about the plug-in itself.

A resource definition in a plug-in descriptor can be a platform, server, or service. Multiple resources can
be defined in a single plug-in descriptor; one resource is the root (parent) element, and the rest of the
resources defines are its children.

Because the plug-in descriptor is an XML file, it follows a clear and structured schema definition. The
schema definitions are what allow the plug-in descriptor to expose the resource's management interfaces
to JBoss ON.

The plug-in descriptor, at a minimum, defines the resource type. Past that, it defines the different aspects
of the resource that JBoss ON can manage:

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

45

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43464-753236+%5BLatest%5D&comment=Title%3A+Schema+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43464-753236+22+Apr+2015+09%3A32+en-US+%5BLatest%5D

The names of the resource types (servers and services) supported by the plug-in

Any configuration settings that the agent's plug-in components use to connect to the resource

Any metrics (measurement definitions) to use to monitor the resource; this depends on the type
of data issued by the resource itself.

A set of operations that can be invoked on the resource. This is commonly start and stop
operations, but it can include application-specific operations or other actions, like running a
script.

Resource configuration values that can be edited in the actual configuration of the resource.

The plug-in configuration tells the components how to connect to the resource. The resource
configuration, on the other hand, are settings in the resource itself that can be edited externally.

Any child resources that are part of the resource hierarchy. For example, a JBoss server has
data source services running within them, so the data source services are defined in the JBoss
server resource plug-in, as a child resource of the JBoss server.

Report a bug

4.2.2.1. Resource Type, Metadata, and Plug-in Configuration

The top element in an agent plug-in is the <plugin> element.

Several attributes on this element are important:

name and displayName give the internal and GUI name of the plug-in.

ampsVersion gives the version number of the plug-in itself.

package gives the name of the classes used by the components in the plug-in.

The next element in the plug-in descriptor defines the root resource that is defined by the plug-in. This
can be <platform>, <server>, or <service>.

One or multiple resources can be defined in a plug-in descriptor. The plug-in descriptor not only defines
those resource types, but it organizes those types in a parent-child hierarchy. For example, a JBoss EJB
service only runs inside of a JBoss server, so the EJB service resource type should logically be a child
type of the JBoss server resource type.

The hierarchy is defined by nesting <service> resource definitions inside <server> (or other
<service>) resource definitions.

<plugin name="JMX"
 displayName="Generic JMX"
 package="org.rhq.plugins.jmx"
 description="Supports management of JMX MBean Servers via various
remoting systems."
 ampsVersion="2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:xmlns:rhq-plugin"
 xmlns:c="urn:xmlns:rhq-configuration">

 <server name="JMX Server" discovery="JMXDiscoveryComponent"

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

46

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43465-751118+%5BLatest%5D&comment=Title%3A+Descriptor+and+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

IMPORTANT

Do not rename resource types when you edit the resource plug-in. This breaks backward
compatibility with any resource that was inventoried using the older version of the plug-in.

Two of the attributes are related to the Java resource files associated with the plug-in:

discovery identifies the discovery component used to identify the resource type.

class identifies the plug-in component which contains the actual code of the plug-in.

Two of the attributes define how resources of that type are added to the inventory:

supportsManualAdd allows resources to be added to the inventory by administrators.

createDeletePolicy sets whether children can be added or removed manually from
inventory.

The last part that relates to configuring the plug-in is setting (optional) plug-in configuration properties.
These are flexible and can define anything related to the information required to identify or set up a
resource which matches the resource type in the plug-in, even setting constraints on allowed values or
templates to define default settings.

The port has a constraint so, the GUI can validate the input being between 0 and 65535. The protocol
can be selected from a list of drop-down menu items, with a default value of HTTP.

There are three types of properties:

<simple-property>, which defines a one key-value pair

<map-property>, which defines multiple key-value pairs related to a single entity, following the
java.util.Map concept

class="JMXServerComponent"
 description="Generic JMX Server"
 supportsManualAdd="true" createDeletePolicy="neither">

<plugin-configuration>
 <c:list-property name="Servers">
 <c:map-property name="OneServer">
 <c:simple-property name="host"/>
 <c:simple-property name="port">
 <c:integer-constraint
 minimum="0"
 maximum="65535"/>
 </c:simple-property>
 <c:simple-property name="protocol">
 <c:property-options>
 <c:option value="http" default="true"/>
 <c:option value="https"/>
 </c:property-options>
 </c:simple-property>
 </c:map-property>
 </c:list-property>
</plugin-configuration>

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

47

<list-property>, which contains a list of properties

Both <map-property> and <list-property> define groups of <simple-property> element.
Additionally, these properties can be formally grouped together under <group> element. Using a
<group> element creates a collapsible configuration ares in the UI.

Templates can preset some configuration properties.

Report a bug

4.2.2.2. Discovery and Process Scans

The central functionality of JBoss ON is the inventory. Each resource must be present in that inventory,
so the plug-in descriptor has to define how resources are detected and how they are added to inventory.
This is done through the discovery component.

The <plugin> element has a discovery attribute which identifies the discovery Java file for the
resource plug-in. (If there are multiple resources defined in the plug-in, then there will be multiple
discovery components.)

When the agent plug-in is generated using the plug-in generator, it creates the appropriate template to
add the discovery requirements. The discovery component has to have the information to find a resource
instance and to assign a unique identifier to that resource.

 <c:template name="JDK 5" description="Connect to JDK 5">
 <c:simple-property name="type"
default="org.mc4j.ems.connection.support.metadata.J2SE5ConnectionTypeDescr
iptor"/>
 <c:simple-property name="connectorAddress"
default="service:jmx:rmi:///jndi/rmi://localhost:8999/jmxrmi"/>
 </c:template>

/**
 * Discovery class
 */
public class testDiscovery implements ResourceDiscoveryComponent
,ManualAddFacet
{

 private final Log log = LogFactory.getLog(this.getClass());

 /**
 * Do the manual add of this one resource
 */
 public DiscoveredResourceDetails discoverResource(Configuration
pluginConfiguration, ResourceDiscoveryContext context) throws
InvalidPluginConfigurationException {

 // TODO implement this
 DiscoveredResourceDetails detail = null; // new
DiscoveredResourceDetails(
// context.getResourceType(), // ResourceType
//);

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

48

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43466-751119+%5BLatest%5D&comment=Title%3A+Resource+Type%2C+Metadata%2C+and+Plug-in+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43466-751119+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

Identifying resource instances is a critical part of maintaining the inventory. Any resource must be unique
and must be consistently identified between discovery scans . Agents identify resources by constructing
a unique resource key. A resource key varies by resource type. Whatever the key is, it has to intrinsic to
the resources and detectable for the agent. Keys do not have to be globally unique, but they must be
unique beneath a parent resource. For a JMX server, the resource key is its connector address, which is
unique to the instance.

Optional dependencies can affect discovery. Embedded plug-ins copy the child type from the source
plug-in, and then use the embedded plug-in's discovery component to run the discovery. Injected plug-ins
take a parent resource and cycle through all potential children resource types and run a discovery for
each type, injecting the parent component into each child type's discovery method.

Often, resources are processes running on the local machine. The JBoss ON agent can query the
process table to detect those local processes. This is first defined in the plug-in descriptor using a
<process-scan> element and then implemented in the discovery component.

Each resource type defined in the plug-in descriptor can have a <process-scan> child element. The
<process-scan> element itself is empty, but has two required attributes: name and query. name
identifies the specific scan method. query is the attribute that does something. The query is a string
written in Process Info Query Language (PIQL). This value is used to search for the process.

The sourceforge PIQL API docs provide much more information on the syntax of PIQL queries.

The basic format of a PIQL process scan query is a three-part term which looks for the process, some
kind of identifying marker, and then the value to match.

process|attribute|match=value,arg|attribute|match=value

 return detail;
 }
}

 public DiscoveredResourceDetails discoverResource(Configuration
pluginConfig,

ResourceDiscoveryContext discoveryContext)
 throws InvalidPluginConfigurationException {
 // TODO: Connect to the remote JVM to verify the user-specified
conn props are valid, and if connecting
 // fails, throw an exception.
 String resourceKey =
pluginConfig.getSimpleValue(CONNECTOR_ADDRESS_CONFIG_PROPERTY, null);
 String connectionType =
pluginConfig.getSimpleValue(CONNECTION_TYPE, null);

 // TODO (ips, 09/04/09): We should connect to the remote JVM in
order to obtain its version.
 String version = null;

 DiscoveredResourceDetails resourceDetails = new
DiscoveredResourceDetails(discoveryContext.getResourceType(),
 resourceKey, "Java VM", version, connectionType + " [" +
resourceKey + "]", pluginConfig, null);
 return resourceDetails;
 }

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

49

http://rhq.sourceforge.net/rhq-1.0.1/apidocs/org/rhq/core/system/pquery/ProcessInfoQuery.html

For a process scan for discovery, the scan will usually look for a process name or a PID file.

Looking for a process by name can require additional attributes to help narrow the search down to a
specific type of resource or even a specific instance. For example, a JBoss AS instance has a process
name that starts with java and an argument with the value org.jboss.Main. The ps information contains
both of those attributes.

The PIQL query, then attempts to match the process name, using the basename query attribute, with a
matching argument, defined in the arg query attribute.

process|attribute|match=value,arg|attribute|match=value
 | | |____ |_ |____ |______
process|basename|match=^java.*,arg|org.jboss.Main|match=.*

Alternatively, the process scan query can match a pid file, which is a simple way to identify processes. A
PID-based PIQL query has a slightly simpler format:

process|attribute|match=value

For example:

After defining the scan query in the rhq-plugin.xml descriptor file, then the discovery component
must be written to implement the scan and process results.

Example 4.1. Process Scan Method in the Discovery Component

jsmith 2035 0.0 -1.5 724712 30616 p7 S+ 9:49PM 0:01.61
java
 -Dprogram.name=run.sh -Xms128m -Xmx512m -
Dsun.rmi.dgc.client.gcInterval=3600000
 -Dsun.rmi.dgc.server.gcInterval=3600000 -Djboss.platform.mbeanserver
 -Djava.endorsed.dirs=/devel/jboss-4.0.5.GA/lib/endorsed
 -classpath /devel/jboss-4.0.5.GA/bin/run.jar:/lib/tools.jar
 org.jboss.Main -c minimal

process|pidfile|match=/etc/product/lock.pid

 List<ProcessScanResult< autoDiscoveryResults =
 context.getAutoDiscoveredProcesses();
 for (ProcessScanResult result : autoDiscoveryResults) {
 ProcessInfo procInfo = result.getProcessInfo();

 // as before
 DiscoveredResourceDetails detail =
 new DiscoveredResourceDetails(
 resourceType, key, name, null,
 description, childConfig, procInfo
);
 result.add(detail);
 }

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

50

The agent manages resources by gathering metrics (for monitoring) and by launching scheduled
operations, or tasks, on the resource. These two areas are configured similarly in the plug-in.

Monitoring areas are configured through <metric> elements in the plug-in descriptor.

The most relevant attributes on that attribute relate to the monitoring property (which is partially defined
by the resource itself).

property identifies the resource monitoring property.

measurementType sets the data type being collected.

units sets the units of the thing being monitored.

In the plug-in Java component, the metric is first set up by pulling in the MeasurementFacet.

Then, there is an entry for monitoring in a MeasurementReport, with a
MeasurementScheduleRequest entity for each type of monitoring data.

IMPORTANT

When defining metrics, values that form part of a larger data structure, such as an array of
values, need to be deconstructed into individual values before they can be monitored.

 <metric displayName="Bytes Sent"
 description="Shows the rate that data bytes are sent by
the Web service."
 property="Bytes Sent/sec"
 defaultOn="true"
 displayType="summary"
 measurementType="trendsup"
 units="bytes"/>

public class testComponent implements ResourceComponent
, MeasurementFacet
, OperationFacet

 public void getValues(MeasurementReport report,
Set<MeasurementScheduleRequest> metrics) throws Exception {

 String propertyBase = "\\Web Service(_Total)\\";
 Pdh pdh = new Pdh();

 for (MeasurementScheduleRequest request : metrics) {
 double value = pdh.getRawValue(propertyBase +
request.getName());
 report.addData(new MeasurementDataNumeric(request, value));
 }
}

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

51

Similarly, operations are configured in the plug-in descriptor in an <operation> element, implemented
in the plug-in Java component through an OperationFacet, and then invoked in a OperationResult
method.

Report a bug

4.2.2.3. Events

Events for resources are essentially types of log messages that are recognized by the agent.

In the plug-in descriptor, an event is configured by a simple <event> element, no children, that identifies
the logging area by name.

The event handling is handled through an EventPoller component. This can be in the larger plug-in
Java component, but it is usually broken into a separate *EventPoller.java component. The way to
implement event polling depends on the resource and the nature of its logging. One of the simplest ways
is to call the EventPoller(), then define the event type and set how the event is polled.

Report a bug

4.2.2.4. Resource Configuration

Resources can have parameters or settings changed through the JBoss ON GUI, managed by the
agent. Those properties that can be edited are defined in the plug-in descriptor in <resource-
configuration> elements. These configuration elements follow the same conventions as the
<plugin-configuration> elements. The properties are defined as <simple-property> elements
and can be listed (for options), mapped, or organized into groups that are collapsible sections in the UI.

<event name="errorLogEntry" description="an entry in the error log file"/>

 public PerfTestEventPoller(ResourceContext resourceContext) {
 this.resourceContext = resourceContext;
 }

 public String getEventType() {
 return PERFTEST_EVENT_TYPE;
 }

 public Set<Event> poll() {
 int count =
Integer.parseInt(System.getProperty(SYSPROP_EVENTS_COUNT, "1"));
 String severityString =
System.getProperty(SYSPROP_EVENTS_SEVERITY, EventSeverity.INFO.name());
 EventSeverity severity = EventSeverity.valueOf(severityString);
 Set<Event> events = new HashSet<Event>(count);
 for (int i = 0; i < count; i++) {
 Event event = new Event(PERFTEST_EVENT_TYPE, "source.loc",
System.currentTimeMillis(), severity, "event #"
 + i);
 events.add(event);
 }
 return events;
 }

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

52

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43467-752939+%5BLatest%5D&comment=Title%3A+Discovery+and+Process+Scans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43467-752939+21+Apr+2015+13%3A03+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43468-751121+%5BLatest%5D&comment=Title%3A+Events%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43468-751121+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

The first thing that is defined in the plug-in Java component is the ability to load the current configuration.

The second part in the plug-in component allows the agent to change the configuration properties.

 <resource-configuration>
 <c:group name="Attributes">
 <c:simple-property
 name="appBase"
 required="true"
 readOnly="true"
 description="The Application Base directory for this
virtual host." />
 <c:simple-property
 name="autoDeploy"
 type="boolean"
 description="Does this host deploy new applications
dropped in appBase at runtime?" />
 <c:simple-property
 name="deployOnStartup"
 type="boolean"
 description="Does this host deploy applications in
appBase at startup?" />
 <c:simple-property
 name="deployXML"
 displayName="Deploy XML"
 type="boolean"
 description="deploy Context XML config files?" />
 <c:simple-property
 name="unpackWARs"
 displayName="Unpack WARs"
 type="boolean"
 description="Does this Host automatically unpack
deployed WAR files?" />
 <c:simple-property
 name="aliases"
 required="false"
 type="longString"
 description="Aliases assigned to the Host. When
editing, each alias must be on a new line. Aliases are automatically
lowercased." />
 </c:group>
 </resource-configuration>

 public Configuration loadResourceConfiguration() {
 Configuration configuration = super.loadResourceConfiguration();
 try {
 resetConfig(CONFIG_ALIASES, configuration);
 } catch (Exception e) {
 log.error("Failed to reset role property value", e);
 }

 return configuration;
 }

 public void updateResourceConfiguration(ConfigurationUpdateReport

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

53

Report a bug

4.2.3. Lifecycle Listeners

Some plug-ins need to perform some initialization immediately when they load and some cleanup when
they unload. Global initialization and shutdown of a plug-in is performed by its lifecycle listener.

The org.rhq.core.pluginapi.plugin.PluginLifecycleListener class allocates global
resources needed by plug-in components and cleans up those resources.

report) {
 Configuration reportConfiguration = report.getConfiguration();
 // reserve the new alias settings
 PropertySimple newAliases =
reportConfiguration.getSimple(CONFIG_ALIASES);
 // get the current alias settings
 resetConfig(CONFIG_ALIASES, reportConfiguration);
 PropertySimple currentAliases =
reportConfiguration.getSimple(CONFIG_ALIASES);
 // remove the aliases config from the report so they are ignored
by the mbean config processing
 reportConfiguration.remove(CONFIG_ALIASES);

 // perform standard processing on remaining config
 super.updateResourceConfiguration(report);

 // add back the aliases config so the report is complete
 reportConfiguration.put(newAliases);

 // if the mbean update failed, return now
 if (ConfigurationUpdateStatus.SUCCESS != report.getStatus()) {
 return;
 }

 // try updating the alias settings
 try {
 consolidateSettings(newAliases, currentAliases, "addAlias",
"removeAlias", "alias");
 } catch (Exception e) {
 newAliases.setErrorMessage(ThrowableUtil.getStackAsString(e));
 report.setErrorMessage("Failed setting resource configuration
- see property error messages for details");
 log.info("Failure setting Tomcat VHost aliases configuration
value", e);
 }

 // If all went well, persist the changes to the Tomcat server.xml
 try {
 storeConfig();
 } catch (Exception e) {
 report
 .setErrorMessage("Failed to persist configuration change.
Changes will not survive Tomcat restart unless a successful Store
Configuration operation is performed.");
 }
 }

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

54

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43469-751122+%5BLatest%5D&comment=Title%3A+Resource+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43469-751122+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

Each plug-in can optionally define one lifecycle listener by specifying a pluginLifecycleListener
attribute in the top-level <plugin> element.

Report a bug

4.2.4. Plug-in Dependencies: Defining Relationships Between Plug-ins

Agent plug-ins can have relationships with other agent plug-ins. These relationships created
dependencies between plug-ins, where plug-ins are only operable when other plug-ins are loaded, that
allow plug-ins to share classes, or that extend the resource hierarchy by adding additional parent or child
resources to an existing resource definition.

A parent plug-in is one that has another plug-in depending on it. A child plug-in is a plug-in that depends
on another plug-in.

Agent plug-ins have three ways of defining dependencies:

1. Required dependencies are set using the <depends> element. Just using <depends> means
that the required plug-in must be loaded or the other plug-in will fail to load. Adding the
useClasses attribute makes the classes and JAR files for the parent plug-in available to the
child plug-in.

2. An injection plug-in dependency means that a root-level resource runs inside another resource
type, and that parent resource is defined as a parent plug-in. This essentially adds a new child to
an existing resource type.

3. An embedded plug-in dependency means that a new parent resource type is added for an
existing child. This can allow the child to be extended to share the new parent's classloader
(depending on both plug-ins' configuration) or simply expand discovery.

IMPORTANT

Embedded and injection plug-in dependencies are mutually exclusive. They cannot be
used in the same plug-in definition.

There is one interesting similarity in all of these plug-in dependency models: Metadata and class
definitions flow in only one direction, from a parent plug-in to its dependent plug-in. Information cannot
flow in the other direction.

Report a bug

4.2.4.1. Required Plug-in Dependencies

The <depends> element directly under the <plug-in> element defines a parent plug-in that the plug-in
depends on and required to be loaded. The <depends> element is what specifies a required
dependency. The plug-in will not deploy successfully, unless all <depends> plug-ins are also
successfully deployed.

<plugin name="Apache"
 displayName="Apache HTTP Server"
 description="Management of Apache web servers"
 package="org.rhq.plugins.apache"
 pluginLifecycleListener="ApachePluginLifecycleListener"
 ...

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

55

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43470-751123+%5BLatest%5D&comment=Title%3A+Lifecycle+Listeners%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43470-751123+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43471-751124+%5BLatest%5D&comment=Title%3A+Plug-in+Dependencies%3A+Defining+Relationships+Between+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

The <depends> element can pull in JARs from the parent plug-in by specifying the useClasses
attribute. The useClasses option can be set for only one required dependency in a single plug-in
descriptor. If no <depends> element has a useClasses attribute, the last <depends> element
specified in the plug-in descriptor, by default, has its useClasses attribute to true.

The <depends> element is used if the plug-in needs access to another plug-in's classes or if the plug-in
should only be deployed when another plug-in is also deployed.

TIP

The embedded and injection plug-in dependencies are optional dependencies. If the
specified plug-in isn't loaded, then the plug-in simply runs without loading those
dependencies. To make an embedded or injection plug-in a required dependency, then
set the embedded or injection plug-in as a required plug-in using the <depends> element,
as well as the other configuration.

Report a bug

4.2.4.2. Embedded Plug-in Dependencies

An embedded plug-in dependency adds a new parent resource for an existing child resource. The
dependent plug-in (for the new parent resource) depends on the child.

With an embedded plug-in dependency, the server or service definition can be a copy of a source
resource type found in another plug-in. That copy is defined in the plug-in descriptor by setting the
sourcePlugin and sourceType attributes on the resource elements. When a plug-in source is
specified, the server or service is copied from the source resource type, which means it has the same
metadata as the source, with the exception that the embedded server or service can override the
discovery and resource classes and, potentially, have a different name.

An embedded plug-in is an optional dependency.

Report a bug

4.2.4.3. Injection Plug-in Dependencies

A root-level resource type in an agent plug-in can define parent resource types that it can run inside of.
This essentially injects the resource type as a child type to another, existing resource. This is an injection
plug-in dependency.

The injection plug-in dependency illustrates that a child resource type knows about its parent resource
types, but the parents do not know about the child. Knowledge of plug-ins flow down, not up. A parent
plug-in's type information is known to its child plug-in, but a parent plug-in does not know anything about
the child plug-ins that depend on it.

An injection dependency is a list of allowed parents, within a <runs-inside> element. Each parent is
an optional dependency.

Report a bug

<runs-inside>
 <parent-resource-type name="JMX Server" plugin="JMX" />
 <parent-resource-type name="JBoss Server" plugin="JBoss AS" />
</runs-inside>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

56

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43472-751125+%5BLatest%5D&comment=Title%3A+Required+Plug-in+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43472-751125+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43473-751126+%5BLatest%5D&comment=Title%3A+Embedded+Plug-in+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43473-751126+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43474-751127+%5BLatest%5D&comment=Title%3A+Injection+Plug-in+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43474-751127+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

4.2.5. Class Sharing Between Plug-ins

All agent plug-ins have their own classloader while running in the plug-in container. Each resource in
inventory will be assigned a classloader, which can be the same as its plug-in classloader.

Figure 4.1. Agent Components, Together

All plug-in classloaders are isolated from one another, unless the <depends useClasses="">
attribute is set to true. If a plug-in is a direct dependent of another plug-in, and that dependency is
defined with <depends useClasses="true">, then that parent plug-in's JAR classes (and all of its parent
JARs) are available to the dependent plug-in's classloader.

The most common reason to create that kind of dependency, and share JARs and classes between
plug-ins, is because one resource defined in one plug-in is deployed and running in another resource
defined in another plug-in. The child plug-in needs a way to connect to its parent resource to perform
things like discovery and management of the child resource. By default, all managed resources are
assigned a resource classloader that is shared. This classloader can belong to the plug-in or to the
parent resource.

When a resource component needs to create a connection to its actual managed resource, that
resource's classloader must be different than the normal, shared plug-in classloader. The resource
usually needs to have the client JARs necessary to connect to the managed resource within its own
classloader, and those client JARs are usually very specific to the version of the resource being
managed. The connecting resource should be in charge of creating the connection, since it knows how
to do it. When a resource requires its own connection classloader, specify the attribute
classLoader="instance" on the resource type and make sure the resource type's discovery
component implements the ClassLoaderFacet so it tells the plug-in container where any additional
connection classes can be found for the specific version of the specific resource being managed.

In Example 4.2, “classLoader for Plug-in Z”, the Z1.server has a classLoader option set to shared.
This means that Z1.server resources share their classloaders with their parent resources, and that
classloader may be a resource classloader or a plug-in classloader. Every Z1.server resource uses the
same classloader.

Example 4.2. classLoader for Plug-in Z

<plug-in name="Z">

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

57

Normally, setting a classLoader option to instance means that each resource uses its own resource
plug-in. However, for Z2.server, the Z2.server plug-in is extended by embedding the values for Plug-in D,
so Z2.server resources share their classloaders with their parent plug-in.

Z3.server simply uses its own resource classloader because its classLoader option is set to instance
and it has no injected or embedded dependencies. When the classLoader option is set to instance,
the ResourceDiscoveryComponent implementation can optionally define a ClassLoaderFacet
with a method (getAdditionalClasspathUrls) that returns a List<URL> pointing to additional
JARs that should be placed in the resource's classloader. When the plug-in container needs to create a
classloader for a resource, it checks if the resource's discovery component implements this facet, and, if
so, it gets the additional classpath URLs and adds them to the resource classloader when it creates it.

If a resource type is defined with either an injection or embedded dependency, then its classloader
depends on both its classLoader attribute value and its parent's classLoader attribute value.

Resource ClassLoader Parent ClassLoader ClassLoader Description

shared shared The useClasses value must be
set to true so that the resource
can access both its classes and
the parent classes.

instance shared The resource primarily needs its
own classes, but it may be
beneficial for useclasses to be
set to true to so that the child can
use parent classes.

shared instance The resource uses only its own
classloader.

instance instance The resource uses only its own
classloader.

<depends plugin="A" />

<server name="Z1.server" classLoader="shared">
 <runs-inside>
 <parent-resource-type name="B1.server" plugin="B"/>
 <parent-resource-type name="C1.server" plugin="C"/>
 </runs-inside>
</server>

<server name="Z2.server" sourcePlugin="D" sourceType="D1"
classLoader="instance">
</server>

<server name="Z3.server" classLoader="instance">
</server>

</plugin>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

58

Report a bug

4.3. EXTENDED EXAMPLE: CONTENT TYPES FOR RESOURCES

All of the behavior for how a resource is managed in JBoss ON depends on how it is described in its
resource plug-in for the agent. This includes all of the monitoring metrics that can be collected, any
configuration that can be set, and any operations that can be performed. This also includes any content
that can be deployed for that resource and what kind of content is expected.

A package refers to any piece of content. A package is usually a file of some kind, like a JBoss AS JAR
file. However, since the package type for a resource is defined in the resource plug-in, a package can be
anything, so long as the resource plug-in is configured to use it.

As with other elements related to the resource, the package type is defined in the plug-in descriptor for
the resource type. Each package type can define certain attributes (listed in Package Attributes), but
every package must define its name and its type (of four given categories).

In the plug-in descriptor, package types are identified by <content> elements. The required properties
are set as flags on the main <content> element; any configurable properties, which are set by the user
when new packages are uploaded to the resource, are given in <c:simple-property> child
elements. For example, this content element in the Platform Resource Plug-in identifies deployable
(category) package types for Windows platforms:

While packages can be manually added to a resource, an agent can also actively check for new content
and add any discovered content to its inventory. A package is inventoried in JBoss ON through a
recurring package discovery scan. The interval at which this discovery occurs can be explicitly set in the
package's definition in the plug-in's descriptor or it can use the default value given in the plug-in schema
file.

Package Attributes

Display Name (Optional)

A user interface friendly name of the package type.

Description (Optional)

Describes the type of content found in packages of this type.

Category (Required)

 <content name="InstalledSoftware" displayName="Installed Software"
category="deployable" description="Installed Windows Software">
 <configuration>
 <c:simple-property name="Publisher"/>
 <c:simple-property name="Comments"/>
 <c:simple-property name="Contact"/>
 <c:simple-property name="HelpLink"/>
 <c:simple-property name="HelpTelephone"/>
 <c:simple-property name="InstallLocation"/>
 <c:simple-property name="InstallSource"/>
 <c:simple-property name="EstimatedSize"
units="kilobytes"/>
 </configuration>
 </content>

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43475-752933+%5BLatest%5D&comment=Title%3A+Class+Sharing+Between+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43475-752933+21+Apr+2015+12%3A51+en-US+%5BLatest%5D

One of four enumerated options:

Executable Script (which is potentially editable)

Executable Binary

Configuration (a configuration file for the resource)

Deployable

Discovery Interval (Optional)

Defines the time between package discovery scans for this type; different package types can be
configured with intervals to represent the likelihood of the package inventory changing.

Creation Type Flag (Optional)

If set to true, a package of this type is used when creating resources of the enclosing resource type.
An example of this situation is a Java EAR file. There is an EAR resource type that represents the
enterprise application in JBoss ON. Under that resource type, there is a package type defined to
represent the EAR file itself. This package type is flagged as a creation type; when creating a new
EAR resource, the EAR file must be created at the same time. The default for this attribute is false,
as packages will typically not represent the creation of a new resource.

Configuration (Optional)

The configuration element allows the plug-in to define an open-ended set of attributes about the
package type. These values will be populated during package discovery, and if not marked as read
only, can be specified by the user at artifact creation time. An example of a property in this
configuration element is a Boolean that describes if an EAR file is deployed as exploded or zipped.
When EAR files are discovered, this flag will be populated and carry package type specified
information. Additionally, when deploying a new EAR file through JBoss ON, this flag can be set to
indicate how the package should be deployed on the AS instance.

Report a bug

4.4. EXTENDED EXAMPLE: HTTP METRICS

This example plug-in is written for the agent to connect to an HTTP server to monitor the web server
itself for performance or availability. This plug-in performs two tasks:

Issue a GET or HEAD request to the base URL for the given server.

Collect both the HTTP return code and the response time as a resource trait.

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43476-752949+%5BLatest%5D&comment=Title%3A+Extended+Example%3A+Content+Types+for+Resources%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43476-752949+21+Apr+2015+13%3A40+en-US+%5BLatest%5D

Figure 4.2. Basic Agent Plug-in Scenario

NOTE

For simplicity, this plug-in is written for an agent that is running on the same machine as a
JBoss ON server.

The HTTP metrics plug-in is designed to run a server and a child service to collect two monitoring
metrics. This requires two Java files which define the plug-in behavior and the behavior of a discovery
component that the plug-in requires to locate URLs.

As with all agent plug-ins, this example also has a rhq-plugin.xml file as the plug-in descriptor, which
is required for JBoss ON to recognize the plug-in configuration. The plug-in is built as a maven project,
so it has a pom.xml file, although that is not a requirement, since any properly configured JAR file can
be deployed as an agent plug-in.

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

61

Figure 4.3. Directory Layout of an Agent Plug-in Project

Report a bug

4.4.1. Looking at the Plug-in Descriptor (rhq-plugin.xml)

The plug-in descriptor is where everything is glued together. The first part of the plug-in descriptor
defines the basic information about the plug-in, like its name, version number, and schema.

Example 4.3. Basic Plug-in Information

<?xml version="1.0" encoding="UTF-8" ?>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43477-752940+%5BLatest%5D&comment=Title%3A+Extended+Example%3A+HTTP+Metrics%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

The package attribute identifies the Java package for Java class names that are referenced in the plug-
in configuration in the descriptor.

The HTTP Metrics plug-in is defines as a server which runs a child resource. Services cannot run on
their own, so defining the HTTP Metrics resource as a server first allows multiple services to be
launched off of it.

Example 4.4. Server Definition

The next step is to add a service element as a child of the server. To differentiate between the server
and the service operations, the service has its own discovery and plug-in components, meaning its own
.java files and classes. The supportsManualAdd option sells JBoss ON that the HTTP services can
be added manually through the UI, which is important for administration.

Example 4.5. Service Definition

The middle of the <service> element defines the plug-in properties that are configured through the UI.
This can be simple (setting a simple string for the URL).

Example 4.6. Simple Configuration Properties

<plugin name="HttpTest"
 displayName="HttpTest plugin"
 package="org.rhq.plugins.httptest"
 version="2.0"
 description="Monitoring of http servers"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:xmlns:rhq-plugin"
 xmlns:c="urn:xmlns:rhq-configuration">

<server name="HttpCheck"
 description="Httpserver pinging"
 discovery="HttpDiscoveryComponent"
 class="HttpComponent">

<service name="HttpServiceCheck"
 discovery="HttpServiceDiscoveryComponent"
 class="HttpServiceComponent"
 description="One remote Http Server"
 supportsManualAdd="true"

<plugin-configuration>
 <c:simple-property name="url"
 type="string"
 required="true" />
</plugin-configuration>

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

63

The properties can be more advanced and allow specific values for the protocol, port, and hostname or
IP address, depending on how much information needs to be configured.

Example 4.7. Complex Configuration Properties

The last part of the <service> element contains the metrics that are configured for the HTTP Metrics
plug-in. The first metric, for the response time, collects a numeric data type. The status metric collects a
trait data type. (JBoss ON is intelligent enough to only store changed traits to conserve space.)

Example 4.8. Defined Metrics

The attributes available to define the metric are defined in the agent plug-in XML schema. The attributes
used in this example are listed in Table 4.5, “metric Attributes”.

When defining metrics, values that form part of a larger data structure, such as an array of values, need
to be deconstructed into individual values before they can be monitored.

Table 4.5. metric Attributes

<plugin-configuration>
 <c:list-property name="Servers">
 <c:map-property name="OneServer">
 <c:simple-property name="host"/>
 <c:simple-property name="port">
 <c:integer-constraint
 minimum="0"
 maximum="65535"/>
 </c:simple-property>
 <c:simple-property name="protocol">
 <c:property-options>
 <c:option value="http" default="true"/>
 <c:option value="https"/>
 </c:property-options>
 </c:simple-property>
 </c:map-property>
 </c:list-property>
</plugin-configuration>

 <metric property="responseTime"
 displayName="Response Time"
 measurementType="dynamic"
 units="milliseconds"
 displayType="summary"/>

 <metric property="status"
 displayName="Status Code"
 data type="trait"
 displayType="summary"/>
 </service>
 </server>
</plugin>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

64

Attribute Description

property Gives the unique name of this metric. The name can
also be obtained in the code using the getName()
call.

description Gives a human readable description of the metric.

displayName Gives the name that gets displayed in the JBoss ON
UI.

data type Sets the type of metric, such as numeric or trait.

units The measurement units to use for numerical data
type.

displayType If the value is set to summary, the metric is
displayed in the indicator charts and collected by
default.

defaultOn Sets whether the metric collected by default.

measurementType Sets what characteristics the numerical values have.
The options are trends up, trends down, or dynamic.
For both trends metrics, the system automatically
creates additional per minute metrics.

Values that form part of a larger data structure, such
as an array of values, need to be deconstructed into
individual values before they can be monitored.

Report a bug

4.4.2. Looking at the Discovery Components (HttpDiscoveryComponent.java and
HttpServiceDiscoveryComponent.java)

Two Java files define how to discover the HTTP metrics server and any URL defined to be monitored.

The first Java file, HttpDiscoveryComponent.java, discovers the HTTP metrics server. The
discovery component is called by the InventoryManager in the agent to discover resources. This can be
done by a process table scan, querying the MBeanServer, or other means. Whatever the method, the
most important thing is that the discovery component returns the same unique key each time for the
same resource. The DiscoveryComponent needs to implement
org.rhq.core.pluginapi.inventory.ResourceDiscoveryComponent and you need to
implement discoverResources().

Basically, this retrieves a list of resources discovered by the process scan and creates the details about
the discovered resource. Using ProcessInfo gets more information about the process and can be used to
exclude certain types of discovered resources from the final list.

Example 4.9. HttpDiscoveryComponent.java

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

65

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43478-753237+%5BLatest%5D&comment=Title%3A+Looking+at+the+Plug-in+Descriptor+%28rhq-plugin.xml%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43478-753237+22+Apr+2015+09%3A32+en-US+%5BLatest%5D

The service discovery component (defined in HttpServiceDiscoveryComponent.java) relies on
information passed through the GUI to configure its resources, rather than a discovery scan. The initial
definition in the Java file is similar to the one for the server discovery, but this definition has an additional
List<Configuration> childConfigs which processes the information that is passed through the
UI. This pulls the information for the required url information supplied by the user.

Example 4.10. Service Discovery

public class HttpDiscoveryComponent implements
 ResourceDiscoveryComponent
{
 public Set discoverResources(ResourceDiscoveryContext context)
 throws InvalidPluginConfigurationException, Exception
 {
 Set<DiscoveredResourceDetails> result =
 new HashSet<DiscoveredResourceDetails>();

 String key = "http://localhost:7080/"; // Jon server
 String name = key;
 String description = "Http server at " + key;
 Configuration configuration = null;
 ResourceType resourceType = context.getResourceType();
 DiscoveredResourceDetails detail =
 new DiscoveredResourceDetails(resourceType,
 key, name, null, description,
 configuration, null
);

 result.add(detail);

 return result;
 }

public class HttpServiceDiscoveryComponent
 implements ResourceDiscoveryComponent<HttpServiceComponent>;
{
 public Set<DiscoveredResourceDetails> discoverResources
 (ResourceDiscoveryContext<HttpServiceComponent> context)
 throws InvalidPluginConfigurationException, Exception
 {
 Set<DiscoveredResourceDetails> result =
 new HashSet<DiscoveredResourceDetails>();
 ResourceType resourceType = context.getResourceType();

 List<Configuration> childConfigs =
 context.getPluginConfigurations();
 for (Configuration childConfig : childConfigs) {
 String key = childConfig.getSimpleValue("url", null);
 if (key == null)
 throw new InvalidPluginConfigurationException(
 "No URL provided");

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

66

The list of URLs that are configured are processed and added as a resource with the resource name,
description, type, and (critically) the unique resource key that is used by the discovery process.

Example 4.11. Listing HTTP URL Resources

Report a bug

4.4.3. Looking at the Plug-in Components (HttpComponent.java and
HttpServiceComponent.java)

The plug-in component is the part of the plug-in that does the work after the discovery has finished.

For the server component (HttpComponent.java), the plug-in is pretty simple. The component only
implements placeholder methods from the ResourceComponent interface to set the server availability.
Setting the availability to UP automatically allows the resource component to start.

Example 4.12. Server Availability After Discovery

The service component (HttpServiceComponent.java) is more complex because it must carry out
the operations defined in the plug-in descriptor.

Each of the basic functions in the plug-in descriptor is implemented through an appropriate agent facet.
All of the gent facets are listed in Section 6.2, “Plug-in Facets”. The HTTP metrics component specifically
maps the <metric> element in the descriptor to the MeasurementFacet.

Each facet has its own methods to implement. For monitoring and other operations that require
processing metrics, the MeasurementFacet implements the following method:

The MeasurementReport passed in is where the monitoring results are added. The metrics value is
a list of metrics for which data should be gathered. All of this information can be defined in the
<metrics> element or in the UI configuration.

So the next part is the plug-in component to do the work.

 String name = key;
 String description = "Http server at " + key;
 DiscoveredResourceDetails detail =
 new DiscoveredResourceDetails(
 resourceType, key, name, null,
 description, childConfig, null
);
 result.add(detail);
 }
 return result;
 }

 public AvailabilityType getAvailability() {
 return AvailabilityType.UP;
 }

getValues(MeasurementReport report, Set metrics)

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

67

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43479-752941+%5BLatest%5D&comment=Title%3A+Looking+at+the+Discovery+Components+%28HttpDiscoveryComponent.java+and+HttpServiceDiscoveryComponent.java%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43479-752941+21+Apr+2015+13%3A04+en-US+%5BLatest%5D

To monitor things, the getValues() method from the MeasurementFacet must be implemented, but
that's not the first step to take. A resource cannot be discovered if the resource is down, so the first step
is to set a start value to start the service from ResourceContext and give it an availability of UP.

Example 4.13. Service Resource Availability

Once the service is started, then the getValues() can be implemented. This actually collects the
monitoring data from the given URLs.

Example 4.14. Implementing getValues()

The final step is to process the information. Implementing the getData() method in the
MeasurementFacet loops the incoming request to see which metric is wanted and then to supply the
collected value. Depending on the type of data, the data may be to be wrapped into the correct
MeasurementData* class.

public class HttpComponent implements ResourceComponent,
 MeasurementFacet
{
 URL url; // remote server url
 long time; // response time from last collection
 String status; // Status code from last collection

 public void start(ResourceContext context)
 throws InvalidPluginConfigurationException, Exception
 {
 url = new URL(context.getResourceKey());
 // Provide an initial status, so
 // getAvailability() returns up
 status = "200";
 }

public void getValues(MeasurementReport report,
 Set<MeasurementScheduleRequest> metrics)
 throws Exception
 {
 getData();
 // Loop over the incoming requests and
 // fill in the requested data
 for (MeasurementScheduleRequest request : metrics)
 {
 if (request.getName().equals("responseTime")) {
 report.addData(new MeasurementDataNumeric(
 request, new Double(time)));
 } else if (request.getName().equals("status")) {
 report.addData(new MeasurementDataTrait
 (request, status));
 }
 }
 }

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

68

Example 4.15. Implementing getData()

This implementation for the HTTP Metrics plug-in is very simple. It opens a URL connection, takes the
time it takes to connect, and gets the status code. That's all.

Report a bug

4.5. EXAMPLES: EMBEDDED AND INJECTED PLUG-IN
DEPENDENCIES

JBoss ON agent plug-ins have several different ways of defining dependencies between plug-ins: simple
depends, embedded, and injected. The way that a dependency is defined has some affect on how the
plug-in behaves. This is all explored more in Section 4.2.4, “Plug-in Dependencies: Defining
Relationships Between Plug-ins”.

These examples show how each of the dependency types are defined in the plug-in descriptors for
agent plug-ins.

Report a bug

4.5.1. Simple Dependency: JBoss AS and JMX Plug-ins

A required dependency is defined using the <depends> tag. This means that the required plug-in has to
be deployed successfully before the plug-in which requires it can be deployed. A simple example of this
is JBoss AS, which has a JMX server running inside it. The JBoss AS plug-in for JBoss ON, then, sets a
dependency on the JMX plug-in.

The JMX plug-in descriptor simply defines the configuration for the JMX server.

Example 4.16. JMX Plug-in Descriptor

private void getData()
 {
 HttpURLConnection con = null;
 int code = 0;
 try {
 con = (HttpURLConnection) url.openConnection();
 con.setConnectTimeout(1000);
 long now = System.currentTimeMillis();
 con.connect();
 code = con.getResponseCode();
 long t2 = System.currentTimeMillis();
 time = t2 - now;
 } catch (Exception e) {
 e.printStackTrace();
 }
 if (con != null)
 con.disconnect();

 status = String.valueOf(code);
 }

<plugin name="JMX">

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

69

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43480-752945+%5BLatest%5D&comment=Title%3A+Looking+at+the+Plug-in+Components+%28HttpComponent.java+and+HttpServiceComponent.java%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43480-752945+21+Apr+2015+13%3A09+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43481-751179+%5BLatest%5D&comment=Title%3A+Examples%3A+Embedded+and+Injected+Plug-in+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

The JBoss AS plug-in descriptor lists the JMX plug-in as a dependency. This makes all of the JMX plug-
in classes available to the JBoss AS plug-in classloader (since the useClasses argument is set to
true), but the JBoss AS plug-in descriptor does not actually define or use any source types related to or
referencing the JMX plug-in.

Example 4.17. JBoss AS Plug-in Descriptor

IMPORTANT

Plug-ins can require or depend on multiple plug-ins. However, only one of those
dependencies can have the value of useClasses=true.

TIP

The JMX plug-in is a generic plug-in and can be used by many other plug-ins. Any
application that can be managed by JMX can use the JMX plug-in to pick up all of its
dependencies, as well as EMS libraries which extend the JMX plug-in.

Report a bug

4.5.2. Embedded Dependency: JVM MBeanServer and JBoss AS

Java Virtual Machines have a built-in JMX MBeanServer called the platform MBeanServer. Any JVM
with this platform MBeanServer can be monitored for memory, garbage collectors, threading, and other
subsystems through MBeans in the MBeanServer.

The JMX plug-in in JBoss ON can define resource types for each platform MBean, allowing the JBoss
ON agent to monitor those MBeans as JBoss ON service resources.

The platform MBeanServer can be found in a standalone JVM process or embedded inside a JBoss AS
VM process. If the JVM being monitored is embedded in a JBoss server, then the JBoss ON plug-ins are
configured with an embedded plug-in dependency. An embedded dependency means that one plug-in is
aware that another plug-in is running inside it.

The JMX plug-in descriptor simply defines the JMX server.

Example 4.18. JMX Plug-in Descriptor

 <server name="JMX Server" discovery="JMXDiscoveryComponent"
class="JMXServerComponent">
 ...
 </server>
</plugin>

<plugin name="JBossAS">
 <depends plugin="JMX" useClasses="true"/>
 <server name="JBossAS Server" discovery="JBossASDiscoveryComponent"
class="JBossASServerComponent">
 ...
 </server>
</plugin>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

70

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43482-752946+%5BLatest%5D&comment=Title%3A+Simple+Dependency%3A+JBoss+AS+and+JMX+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43482-752946+21+Apr+2015+13%3A10+en-US+%5BLatest%5D

The embedding is done in the JBoss AS plug-in descriptor. Along with setting a required dependency for
the JMX plug-in, the JBoss AS plug-in's <server> definition pulls in the sourcePlugin and
sourceType attributes. The reason for this is to run a second JMX discovery scan, this one using the
org.rhq.plugins.jmx.EmbeddedJMXServerDiscoveryComponent class to run a special
discovery scan looking for a JVM embedded in a JBoss AS instance. The sourcePlugin and
sourceType attributes, then, copy the resource type and give it a unique name so that any embedded
JVMs are treated as different resource types than standalone JVMs.

Example 4.19. JBoss AS Plug-in Descriptor

This type of embedded plug-in also illustrates that an embedded resource type can be discovered using
a different discovery component from that of the source plug-in type.

Report a bug

4.5.3. Injected Dependency: Hibernate with JVM and JBoss AS

An injection dependency is the logical opposite of an embedded dependency; it is an awareness in the
plug-in that the resource configured by the plug-in is running inside another resource. The parent
resources are listed as dependencies.

<plugin name="JMX">
 <server name="JMX Server" discovery="JMXDiscoveryComponent"
class="JMXServerComponent">
 <service name="VM Memory System"
 discovery="MBeanResourceDiscoveryComponent"
 class="MBeanResourceComponent"
 description="The memory system of the Java virtual
machine">
 ...
 </service>
 ...
 </server>
</plugin>

<plugin name="JBossAS">
 <depends plugin="JMX" useClasses="true"/>
 <server name="JBossAS Server" discovery="JBossASDiscoveryComponent"
class="JBossASServerComponent">
 <server name="JBoss AS JVM"
 description="JVM of the JBossAS"
 sourcePlugin="JMX"
 sourceType="JMX Server"

discovery="org.rhq.plugins.jmx.EmbeddedJMXServerDiscoveryComponent"
 class="org.rhq.plugins.jmx.JMXServerComponent">
 ...
 </server>
 ...
 </server>
</plugin>

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

71

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43483-752947+%5BLatest%5D&comment=Title%3A+Embedded+Dependency%3A+JVM+MBeanServer+and+JBoss+AS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43483-752947+21+Apr+2015+13%3A11+en-US+%5BLatest%5D

One common example of this is Hibernate. Hibernate can run in either a standalone J2SE JVM instance
or a JBoss AS server; for this example, it runs inside a JVM in a JBoss AS instance. The plug-ins have
chained dependencies, where either the JMX and JBoss AS plug-ins can be parents to the Hibernate
plug-in, and both the Hibernate and JBoss AS plug-ins list the JMX plug-in as a required dependency.

Figure 4.4. Hibernate, JMX, and JBoss AS Dependencies

As before, the JMX plug-in descriptor only defines the JMX plug-in, without any dependencies.

Example 4.20. JMX Plug-in Descriptor

The JBoss AS plug-in sets a required dependency on the JMX plug-in, but no other dependencies are
required to be defined (although they could be).

Example 4.21. JBoss AS Plug-in Descriptor

<plugin name="JMX">
 <server name="JMX Server" discovery="JMXDiscoveryComponent"
class="JMXServerComponent">
 ...
 </server>
</plugin>

<plugin name="JBoss AS">
 <depends plugin="JMX" useClasses="true"/>
 <server name="JBossAS Server" discovery="JBossASDiscoveryComponent"
class="JBossASServerComponent">
 ...
 </server>
</plugin>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

72

The most complex definition is for the Hibernate plug-in. This sets an explicit dependency on the JMX
plug-in using the <depends> element. The Hibernate plug-in then defines what resource types could
operate as its parents by running a discovery scan (specifically for the Hibernate Statistics resource)
against potential parent types. The list of parent resource types is contained in the <runs-inside>
element, and each potential parent is identified by name and plug-in type in <parent-resource-
type> elements.

Example 4.22. Hibernate Plug-in Descriptor

When a plug-in is dependent on another plug-in, it is implicitly dependent on whatever other plug-ins are
required. For example, Hibernate depends on the JBoss AS plug-in. Even if the Hibernate plug-in didn't
explicitly state a dependency on the JMX plug-in, it would still be dependent on the JMX Plug-in because
the JBoss AS plug-in requires it.

Report a bug

4.6. EXTENDED EXAMPLE: DRIFT MONITORING

Drift monitoring is allowed for a resource by defining a default drift definition in the plug-in. In the plug-in
configuration, the drift definition creates a default template that indicates that a resource supports drift
monitoring. (Additional templates can be created by users or the default template can be revised when it
is applied to a resource.)

At its most basic, the drift definition sets a target location for the drift system to monitor. This location can
be identified from several different configuration areas for the resource:

fileSystem, which is any directory on the machine local to the resource

pluginConfiguration, which is defined property in the resource plug-in, like a home directory

resourceConfiguration, a resource configuration property

measurementTrait, a trait that is gathered about the resource

This target location is the base directory. The element which identifies where to find the value for the
base directory the value name, while the actual value is the context. For example, for a base directory of
/etc/, the elements in the drift definition are:

 <depends plugin="JMX" useClasses="true"/>
 <service name="Hibernate Statistics"

discovery="org.rhq.plugins.jmx.MBeanResourceDiscoveryComponent"
class="StatisticsComponent">
 <runs-inside>
 <parent-resource-type name="JMX Server" plugin="JMX"/>
 <parent-resource-type name="JBossAS Server" plugin="JBossAS"/>
 </runs-inside>
 ...
 </service>
</plugin>

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

73

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43484-752942+%5BLatest%5D&comment=Title%3A+Injected+Dependency%3A+Hibernate+with+JVM+and+JBoss+AS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43484-752942+21+Apr+2015+13%3A06+en-US+%5BLatest%5D

Value name: fileSystem
Value context: /etc

The most basic drift definition only needs to define the value name and context.

Example 4.23. Base Directory Only

It is possible to set more information, like subdirectories or file types which should be explicitly included
or excluded. These are additional paths, beneath the base directory, and file types can be identified by
patterns.

If a directory or file type is explicitly included, then all other files and directories are implicitly excluded
(and vice versa, if something is explicitly excluded, everything else is implicitly included). There can be
multiple paths and patterns defined.

Example 4.24. Included Paths and Patterns

NOTE

Multiple drift definitions can be defined for a resource type, but each drift definition defined
only a single base directory to monitor for drift.

Report a bug

 <drift-definition name="Template-File System"
 description="Monitor the file system for drift.
Definitions should set a more specific base directory as the file system
root is not recommended.">
 <basedir>
 <value-context>fileSystem</value-context>
 <value-name>/</value-name>
 </basedir>
 </drift-definition>

<drift-definition name="Template-Base Files"
 description="Monitor base application server files
for drift. It defines monitoring for some standard sub-directories of
the HOME directory. Note, it is not recommeded to monitor all files for
an application server. There are many files, and many temp files.">
 <basedir>
 <value-context>pluginConfiguration</value-context>
 <value-name>homeDir</value-name>
 </basedir>
 <includes>
 <include path="bin" pattern="*/*.sh" />
 <include path="lib" />
 <include path="client" />
 </includes>
</drift-definition>

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

74

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43485-752943+%5BLatest%5D&comment=Title%3A+Extended+Example%3A+Drift+Monitoring%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43485-752943+21+Apr+2015+13%3A07+en-US+%5BLatest%5D

4.7. EXTENDED EXAMPLE: PROVISIONING AND CONTENT
DEPLOYMENTS (BUNDLES)

Allowing content to be deployed to a resource using the bundle system is enabled by defining allowed
target locations for content to be provisioned to.

As with drift configuration, bundle configuration identifies the target location based on information in one
of four areas:

fileSystem, which is any directory on the machine local to the resource

pluginConfiguration, which is defined property in the resource plug-in, like a home directory

resourceConfiguration, a resource configuration property

measurementTrait, a trait that is gathered about the resource

That area is the value name in the bundle definition. The actual value is the value context.

Example 4.25. A Single Bundle Base Directory

The potential target locations, the <destination-base-dir>, are presented to users as options when
they are provisioning a bundle. Users can deploy a bundle to any, user-defined directory beneath that
base directory, but they cannot deploy to a location outside that directory. If users will reasonably want to
provision content to multiple directories, then each directory needs to be added to the <bundle-
target> definition.

Example 4.26. Multiple Bundle Base Directories

 <bundle-target>
 <destination-base-dir name="Root File System" description="The
top root directory on the platform (/)" >
 <value-context>fileSystem</value-context>
 <value-name>/</value-name>
 </destination-base-dir>
 </bundle-target>

<bundle-target>
 <destination-base-dir name="Install Directory" description="The top
directory where the JBossAS Server is installed. ">
 <value-context>pluginConfiguration</value-context>
 <value-name>homeDir</value-name>
 </destination-base-dir>
 <destination-base-dir name="Profile Directory" description="The
profile configuration directory.">
 <value-context>pluginConfiguration</value-context>
 <value-name>serverHomeDir</value-name>
 </destination-base-dir>
</bundle-target>

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

75

NOTE

There can be only one bundle definition for a resource type, but it can define multiple
locations where content is allowed to be deployed.

Report a bug

4.8. EXTENDED EXAMPLE: ASYNCHRONOUS AVAILABILITY CHECKS

Availability scans are performed by a resource plug-in itself, for its defined resource types, and then
reported to the agent.

NOTE

Any async availability collector only applies to the resource types within the plug-in. This
is much safer and more performant configuration than increasing the agent's availability
availability scan time. The availability scan time applies to all plug-ins in the plug-in
container, so a longer timeout interval could easily result in the agent delaying or missing
sending availability updates to the JBoss ON server and spuriously skew the histories of
all resources on the platform.

Resource availability is defined within a plug-in as part of starting a resource type, as described in
Section 4.4.3, “Looking at the Plug-in Components (HttpComponent.java and
HttpServiceComponent.java)”. The method for retrieving and setting an availability state for a resource is
getAvailability().

When a resource is started, it is automatically set to an UP state. The plug-in container checks for that
availability state as part of the agent's periodic availability and monitoring scans.

Availability checks are typically very fast, fractions of a second. The plug-in container limits how long an
availability check can run to five seconds, to prevent a rogue plug-in from delaying availability reporting
for all other resources managed by the agent. There can be instances where a certain plug-in or
resource type consistently has scans longer than the five-second timeout period.

Custom plug-ins can use a special availability collector to perform asynchronous availability checking.
Basically, with async availability checks, the resource component creates its own, independent thread to
run availability checks. Within that thread, the availability checks can take as long as they need to
complete. The availability checks can also be run fairly frequently, every minute by default, to make sure
that the availability state is current, even if the full check takes longer to complete.

The component caches and then reports the most recent availability result to the plug-in container. That
stored last availability can be delivered very quickly, in the fractions of a second that the plug-in
container expects.

Async availability checks are implemented through the AvailabilityCollectorRunnable class.

The availability collector is defined in three parts of the plug-in.

First, the availability collector itself is added as a data member.

Example 4.27. Part 1: The Collector

public class YourResourceComponent implements ResourceComponent {

 // your component needs this data member - it is your availability

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

76

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43486-752944+%5BLatest%5D&comment=Title%3A+Extended+Example%3A+Provisioning+and+Content+Deployments+%28Bundles%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43486-752944+21+Apr+2015+13%3A08+en-US+%5BLatest%5D

Then, the collector is added to the Section 6.2.1, “AvailabilityFacet” within the resource's start method.
The facet object starts the collector, returns an availability type, and sets a collection interval for the
longer availability checks. The facet is what connects to the resource, periodically, to check its
availability.

The collector is part of the resource context and is defined in both the start and stop methods.

Example 4.28. Part 2: Start the Availability Collector

Resource availability — with or without asynchronous availability checking — is collected with the
getAvailability() method. When the async availability collector is created, then the
getAvailability() method needs to return the last known results stored in the collector rather than
attempting to run a new availability scan.

So the last configuration point for the async availability check is to configure the return value for the
getAvailability() method.

collector
 private AvailabilityCollectorRunnable availCollector;

 public void start(ResourceContext context) {
 availCollector =
resourceContext.createAvailabilityCollectorRunnable(new
AvailabilityFacet() {
 public AvailabilityType getAvailability() {
 // Perform the actual check to see if the managed
resource is up or not
 // This method is not on a timer and can return the
availability in any amount of time
 // that it needs to take.
 return ...AvailabilityType...;
 }
 }, 60000L); // 1 minute - the minimum interval allowed

 // Now that you've created your availability collector, start
it to assign it a thread in the pool.
 availCollector.start();

 // ... and the rest of your component's start method goes here
...
 }

 public void stop() {
 // Stop your availability collector to cancel the collector and
kill its thread.
 availCollector.stop();

 // ... and the rest of your component's stop method goes here
...
 }

CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND

77

Example 4.29. Part 2: Return the Last Known Availability

Report a bug

 public AvailabilityType getAvailability() {
 // This method quickly returns the last known availability that was
recorded
 // by the availability collector.
 return availCollector.getLastKnownAvailability();
 }
}

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

78

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43487-753363+%5BLatest%5D&comment=Title%3A+Extended+Example%3A+Asynchronous+Availability+Checks%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43487-753363+22+Apr+2015+15%3A38+en-US+%5BLatest%5D

CHAPTER 5. WRITING AGENT PLUG-INS: PROCEDURES

5.1. TIP: CHECKING XSD ANNOTATIONS

There are a couple of XSD files that provide elements for agent (resource) plug-ins: rhq-
configuration.xsd and rhq-plugin.xsd.

Different properties and attributes are defined in these schema files. They are annotated so you can see
what the existing, default schema makes available.

For example, for the subCategory attribute:

 <xs:attribute name="subCategory" use="optional">
 <xs:annotation>
 <xs:documentation>
 Resource types can be grouped into subcategories. A
subcategory
 defines "like" resource types so they can, for example, be
shown together
 in a UI group tab. You can, therefore, define multiple
resource types
 and group them together by making their subCategory
attributes the same.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

Read through the annotations in the XSD files to help plan what your plug-in will do and determine
whether your configuration requires custom schema.

Report a bug

5.2. VALIDATING AGENT PLUG-INS

If the agent plug-in was generated using the JBoss ON plug-in generator and built with Maven, the plug-
in itself can be validated using Maven. The JBoss ON/RHQ plug-in source files have a special validation
class which can help ensure that the agent plug-in is valid before deploying it (and potentially harming an
agent).

mvn org.rhq:rhq-plugin-validator:rhq-plugin-validate

If the agent plug-in was not created using the JBoss ON/RHQ plug-in generator, then add a <build>
element to point to the validator and a pointer to the <pluginRepositories> element to point to the
Maven repository.

<build>
 <plugins>
 <plugin>
 <groupId>org.rhq</groupId>
 <artifactId>rhq-core-plugin-validator</artifactId>
 <version>1.0.1-SNAPSHOT</version>
 </plugin>

CHAPTER 5. WRITING AGENT PLUG-INS: PROCEDURES

79

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43488-751141+%5BLatest%5D&comment=Title%3A+Tip%3A+Checking+XSD+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43488-751141+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

Report a bug

5.3. NOTES ON EDITING AGENT PLUG-INS

The settings for a resource plug-in can be changed by editing the rhq-plugin.xml file and rebuilding
the plug-in.

IMPORTANT

Do not rename resource types when you edit the resource plug-in. This breaks backward
compatibility with any resource that was inventoried using the older version of the plug-in.

Report a bug

5.4. DEPLOYING AGENT PLUG-INS

Agent plug-in files are stored in the agentInstallDir/rhq-agent/plugins/ directory. Agent plug-ins are
deployed by uploading them to the JBoss ON server, and the JBoss ON servers distribute them to the
agents. As with server-side plug-ins, agent plug-ins can be deployed to a local JBoss ON server or
through the JBoss ON UI.

Agent plug-ins are loaded when the agent starts. When a new agent plug-in is added, the agent can be
restarted or a manual plug-in load operation launched.

Report a bug

5.4.1. Remotely Deploying Agent Plug-ins

1. In the top menu, click the Administration tab.

2. In the Configuration box on the left navigation bar, click the Agent Plugins link.

 </plugins>
</build>
...

...
<pluginRepositories>
 <pluginRepository>
 <id>jboss</id>
 <name>JBoss Plugin Repository</name>
 <url>http://repository.jboss.org/maven2/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>
...

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

80

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43489-751142+%5BLatest%5D&comment=Title%3A+Validating+Agent+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43489-751142+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43490-751143+%5BLatest%5D&comment=Title%3A+Notes+on+Editing+Agent+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43490-751143+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43491-751144+%5BLatest%5D&comment=Title%3A+Deploying+Agent+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A

3. Scroll to the Upload Plugin section at the bottom of the page.

4. Click the Browse... button, and browse to the plug-in JAR file's location.

5. When the plug-in to be deployed is listed in the box, click the Upload button.

6. Once you have finished uploading agent plug-ins, use the Scan For Updates button. The
update process may take several minutes depending on the size and number of resource types
defined by the added plug-ins.

7. To deploy the plug-in updates to the agents within the system, use the Update Plugins On
Agents button.

NOTE

The plug-in can also be deployed by restarting each RHQ Agent or by invoking
the Update All Plugins resource operation for each RHQ Agent resource:

Select main Inventory tab,

select the All Resources option from the Resources menu on the left,

select the name of the relevant agent,

create a schedule under the Operations tab.

CHAPTER 5. WRITING AGENT PLUG-INS: PROCEDURES

81

Report a bug

5.4.2. Locally Deploying Agent Plug-ins

Each server installation has a top-level plugins/ directory. The server periodically polls this directory.
Any new or updated JAR files are copied to the appropriate directory in the server configuration, and
then the original JAR file is deleted from the plugins/ directory.

If the JAR file is on the same host machine as an JBoss ON server, the JAR file can just be copied into
that sourceRoot/plugins/ directory and the server will deploy it.

Report a bug

5.5. UPDATING AGENT PLUG-INS

Agent plug-ins can be updated by deploying updated plug-in JAR files. The plug-in descriptor can
contain a version number for the plug-in package. The server uses this version number (or, alternatively,
the Implementation-Version setting found in the META-INF/MANIFEST.MF file in the JAR file) to
identify the later version of the plug-in and to update the plug-ins on the JBoss ON servers in the cloud.

Report a bug

5.6. DISABLING AGENT PLUG-INS

All plug-ins are enabled when they are deployed unless otherwise indicated. When a plug-in is disabled,
it remains listed in the configuration for all of the JBoss ON servers in the cloud and is prevented from
being loaded or started by the server.

To disable a plug-in:

1. In the top menu, click the Administration tab.

2. In the Configuration box on the left navigation bar, click the Agent Plugins link.

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

82

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43492-751145+%5BLatest%5D&comment=Title%3A+Remotely+Deploying+Agent+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43492-751145+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43493-751146+%5BLatest%5D&comment=Title%3A+Locally+Deploying+Agent+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43493-751146+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43454-751107+%5BLatest%5D&comment=Title%3A+Updating+Agent+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43454-751107+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

3. Select the agent plug-in to be disabled.

4. Click the DISABLE button.

The 'Enabled?' field on the agent plug-in administration page indicates whether the plug-in is enabled
or not.

Any disabled plug-in can be re-enabled later by selecting that plug-in and clicking the ENABLE button.

Report a bug

5.7. DELETING AGENT PLUG-INS

CHAPTER 5. WRITING AGENT PLUG-INS: PROCEDURES

83

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43455-751108+%5BLatest%5D&comment=Title%3A+Disabling+Agent+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43455-751108+15+Apr+2015+12%3A48+en-US+%5BLatest%5D

WARNING

Deleting a plug-in removes all resource types and resources associated with the
plug-in. This operation cannot be undone.

1. In the top menu, click the Administration tab.

2. In the Configuration box on the left navigation bar, click the Agent Plugins link.

3. Select the plug-in to delete.

4. Click the Delete button.



Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

84

Report a bug

CHAPTER 5. WRITING AGENT PLUG-INS: PROCEDURES

85

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43495-751148+%5BLatest%5D&comment=Title%3A+Deleting+Agent+Plug-ins%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43495-751148+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

CHAPTER 6. AGENT ADVANCED MANAGEMENT PLUG-IN
SYSTEM (AMPS) REFERENCE

This is a reference of common components and elements used to write agent plug-ins.

Report a bug

6.1. DOMAIN OBJECTS

Domain objects include the basic pieces of the management inventory that define resources and types.

Report a bug

6.1.1. Resource and ResourceType

A Resource represents a single entity in inventory, be it a platform, server or service. The precise
semantics of platforms, servers, adn services is vague, so a Resource object encapsulates any resource
no matter what its category.

ResourceCategory is an enumeration that is associated with each Resource and indicates if the
Resource is considered a platform, server, or service.

ResourceType represents types of resource instances that can be added to inventory. ResourceTypes
are defined by plug-in descriptors. Another way of looking at it is that a ResourceType defines an
application or service that can be managed by JBoss ON. ResourceTypes are added to JBoss ON as
agent plug-ins are deployed, so a JBoss AS plug-in allows you to manage JBoss servers, a Tomcat
plug-in manages Tomcat servers, and a custom plug-in can manage a custom application.

Report a bug

6.2. PLUG-IN FACETS

A facet is simply an optional piece of functionality that a plug-in writer chooses to expose to the plug-in
container and ultimately to the JBoss ON system as a whole. A plug-in writer is free to have his resource
components implement some, all or none of these facets (obviously, the more facets that are
implemented and exposed, the more powerful and useful the plug-in becomes).

Report a bug

6.2.1. AvailabilityFacet

This facet provides basic availability checking - is a managed resource up or down? When the plug-in
container needs to know if a resource is running or not, it will ask the resource component's availability
facet. Unlike the other facets, the AvailabilityFacet is required to be implemented by all resource
components. You are forced to implement it because the ResourceComponent interface extends the
AvailabilityFacet. You can optionally use the asynchronous availability collector to perform the avail
checking.

Report a bug

6.2.2. ConfigurationFacet

This facet provides the ability for a resource component to modify the configuration of the actual
managed resource. When a resource component implements this facet, it is saying it has the capability

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

86

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43497-751150+%5BLatest%5D&comment=Title%3A+Agent+Advanced+Management+Plug-in+System+%28AMPS%29+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43498-751151+%5BLatest%5D&comment=Title%3A+Domain+Objects%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43499-751152+%5BLatest%5D&comment=Title%3A+Resource+and+ResourceType%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43499-751152+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43500-751153+%5BLatest%5D&comment=Title%3A+Plug-in+Facets%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43501-751154+%5BLatest%5D&comment=Title%3A+AvailabilityFacet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43501-751154+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

to get the current configuration of the managed resource as well as be able to change it. As an example,
the JBoss AS Data Source Service resource component implements the ConfigurationFacet because it
can report back to the user what the current settings are of that data source (e.g. its JDBC driver, its
JNDI name, its connection pool size, etc) and it can allow the user to change those settings.

Report a bug

6.2.3. ContentFacet

Resources may have content associated with them including deployed software or software parts and
other content. This system can be used to inventory these software parts and to install and remove
them. Deployed content can be EARs and WAR applications or libraries and deployment files on JBoss
EAP. Plug-ins can support arbitrary types of content with this system.

Resources may have additional files (aka "content") associated with it - configuration files, deployment
files, etc. Those resources that have associated content can implement the ContentFacet to help create,
delete and manage that content.

Report a bug

6.2.4. ManualAddFacet

This facet should be implemented by the ResourceDiscoveryComponent class for types of resources that
can be manually added to inventory via the JBoss ON GUI. In addition, the corresponding server or
service elements in the plug-in descriptor must include the supportsManualAdd="true" attribute. Manual
add can be a useful capability when a particular Resource cannot be auto-discovered for some reason.

Report a bug

6.2.5. MeasurementFacet

This facet exposes the capability for the component to collect measurement data from the managed
resource and to report that data back to the server. For a measurement facet to work, the plug-in must
define one or more metric definitions for the resource component's resource type in the plug-in
descriptor. The resource component does not have to concern itself with how to schedule measurement
collections and when it should collect the data. The only thing the MeasurementFacet requires the
resource component to do is go out to the actual managed resource and collect the requested data. The
plug-in container will manage all measurement collection schedules and will only call into the resource
component's MeasurementFacet when the time is appropriate and it will only ask for the metrics that
need to be collected at that time.

The measurement facet is what provides the graphs of measurement data that you see in the JBoss ON
GUI Console.

Report a bug

6.2.6. OperationFacet

This facet allows the resource component to perform operations (aka control actions) on the managed
resource itself. This allows, for example, the JBoss AS Server resource component to provide the
capability to start and stop the JBoss AS server. Other examples of operations are being able to clear a
connection pool for a data source, or ask a resource to empty a data cache. Whatever the managed
resource can be told to do, a resource component can expose that as an operation to the JBoss ON
user.

CHAPTER 6. AGENT ADVANCED MANAGEMENT PLUG-IN SYSTEM (AMPS) REFERENCE

87

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43502-751155+%5BLatest%5D&comment=Title%3A+ConfigurationFacet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43502-751155+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43503-751156+%5BLatest%5D&comment=Title%3A+ContentFacet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43503-751156+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43504-751157+%5BLatest%5D&comment=Title%3A+ManualAddFacet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43504-751157+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43505-751158+%5BLatest%5D&comment=Title%3A+MeasurementFacet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43505-751158+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

Report a bug

6.2.7. ResourceFactoryFacet

Some resource components can support the creation and deletion of child resources (for example, a
resource component representing the JBoss AS server can create and delete JBoss AS data source
services by creating and deleting *-ds.xml files). This facet exposes this functionality.

Report a bug

6.2.8. SupportFacet

To support managed resources, there is some data that support organizations might wish to know about
regarding a managed resource, such as the contents of its log files, data files, and configuration files.
The SupportFacet will provide a hook into this "support and maintenance" view of the managed
resource.

Report a bug

6.3. PLUG-IN COMPONENTS

6.3.1. ResourceDiscoveryComponent

The discovery component is an implementation written by the plug-in writer that performs the discovery of
the actual managed resources. The discovery component's job is to scan the platform (that is, the
machine the agent/plug-in container/plug-in is running on) and to report back what it finds. A discovery
component is only responsible for finding resources that it directly is in charge of managing. That is to
say, a JBoss AS plug-in discovery component is not responsible for discovering all Apache Web Servers
- it only needs to find JBoss AS resources (leave the discovery of Apache Web Servers to the Apache
plug-in).

A discovery component will be told to go hunt for resources at an appropriate time by the plug-in
container. When the plug-in container asks the discovery component to go discover more resources, it
will send in a ResourceDiscoveryContext object to the discovery component. This context contains
all the information the component needs to perform its duties of finding and creating new resources. The
discovery context is also used to inject resources into the discovery component, in the case where the
plug-in container was able to discover new resources on behalf of the discovery component. A plug-in
container can only auto-discover resources if the appropriate metadata is supplied to it via the plug-in's
descriptor.

Report a bug

6.3.2. ResourceComponent

A resource component is a plug-in abstraction that represents an actual managed resource. A resource
component is stateful whose lifecycle is managed by the plug-in container.

The plug-in container will start and stop a resource component at the appropriate times. When a
resource component is started, it typically connects to its underlying resource (the managed resource it
represents) and maintains that connection until it is stopped by the plug-in container (this is an
implementation detail that a plug-in writer is free to change). A resource component implementation
provides a way for the plug-in container to ask for the availability of the managed resource ("is this
resource up? or has it gone down?") and to access optional functionality facets that a plug-in writer
chooses to expose. More on facets below.

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

88

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43506-751159+%5BLatest%5D&comment=Title%3A+OperationFacet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43506-751159+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43507-751160+%5BLatest%5D&comment=Title%3A+ResourceFactoryFacet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43507-751160+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43508-751161+%5BLatest%5D&comment=Title%3A+SupportFacet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43508-751161+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43509-751162+%5BLatest%5D&comment=Title%3A+ResourceDiscoveryComponent%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43509-751162+15+Apr+2015+12%3A49+en-US+%5BLatest%5D

Report a bug

6.4. NATIVE SYSTEM INFORMATION ACCESS

All plug-ins have access to a set of native libraries that allow plug-in components to ask the underlying
operating system for details about the machine on which the plug-in is running. Some of these features
are not available on all hardware and OS platforms - only those platforms that have the native libraries
available will be able to support all features described below. However, for those platforms that do not
have the native libraries available, there will still be a limited feature set available.

Report a bug

6.4.1. SystemInfoFactory and SystemInfo

The plug-ins will have access to a SystemInfo object that is specific to the hardware/OS platform on
which the plug-in is running. Once a plug-in obtains a SystemInfo object from its context (either
ResourceDiscoveryContext or ResourceContext), it can make calls to that object which will call
down into the native libraries to obtain the requested data from the operating system. If there are no
native libraries available, the SystemInfo will be backed with a pure Java implementation of some, but not
all, of the methods defined in the SystemInfo interface (see the JavaSystemInfo implementation of that
interface). The methods that are not supported by the pure Java implementation will throw an
UnsupportedOperationException.

Report a bug

6.4.2. ProcessInfoQuery

The SystemInfo interface provides the ability to probe the operating system's process table. This is useful
for ResourceDiscoveryComponent implementations because they can scan the list of running processes
and attempt to determine if they can auto-detect a managed resource it is tasked to discover.

Through the use of the ProcessInfoQuery object, you can find processes that match a given set of
criteria, defined by the Process Info Query Language (PIQL). You can even set pre-defined PIQL
queries in your plug-in's descriptor via the process-scan tag to have the plug-in container scan the
process table on behalf of your plug-in.

NOTE

Rather than repeat already documented information see ProcessInfoQuery
http://git.fedorahosted.org/git/rhq/rhq.git?
p=rhq/rhq.git;a=blob;hb=master;f=modules/core/native-
system/src/main/java/org/rhq/core/system/pquery/ProcessInfoQuery.java to learn more
about the syntax and usage of PIQL.

Report a bug

CHAPTER 6. AGENT ADVANCED MANAGEMENT PLUG-IN SYSTEM (AMPS) REFERENCE

89

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43510-751163+%5BLatest%5D&comment=Title%3A+ResourceComponent%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43510-751163+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43511-751164+%5BLatest%5D&comment=Title%3A+Native+System+Information+Access%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43512-751165+%5BLatest%5D&comment=Title%3A+SystemInfoFactory+and+SystemInfo%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43512-751165+15+Apr+2015+12%3A49+en-US+%5BLatest%5D
http://git.fedorahosted.org/git/rhq/rhq.git?p=rhq/rhq.git;a=blob;hb=master;f=modules/core/native-system/src/main/java/org/rhq/core/system/pquery/ProcessInfoQuery.java
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43513-752951+%5BLatest%5D&comment=Title%3A+ProcessInfoQuery%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43513-752951+21+Apr+2015+13%3A47+en-US+%5BLatest%5D

CHAPTER 7. DOCUMENT INFORMATION
This guide is part of the overall set of guides for users and administrators of JBoss ON. Our goal is
clarity, completeness, and ease of use.

Report a bug

7.1. GIVING FEEDBACK

If there is an error in this guide, or there are ways to improve the documentation, please let us know.
Bugs can be filed against the documentation for the product in Bugzilla,
http://bugzilla.redhat.com/bugzilla. Make the bug report as specific as possible, so we can be more
effective in correcting any issues:

1. Select the JBoss products group.

2. Select Red Hat JBoss Operations Network from the list.

3. Set the component to Documentation.

4. Set the version number to 3.3.

5. For errors, give the page number (for the PDF) or URL (for the HTML), and give a succinct
description of the problem, such as incorrect procedure or typo.

For enhancements, put in what information needs to be added and why.

6. Give a clear title for the bug. For example, "Incorrect command example for setup
script options" is better than "Bad example".

We appreciate receiving any feedback — requests for new sections, corrections, improvements,
enhancements, even new ways of delivering the documentation or new styles of docs. You are welcome
to contact Red Hat Customer Content Services directly through the Authors of this document.

Report a bug

Red Hat JBoss Operations Network 3.3 Writing Custom Plug-ins

90

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+IDs%3A%0A43514-751167+%5BLatest%5D&comment=Title%3A+Document+Information%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A
http://bugzilla.redhat.com/bugzilla
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23083%2C+Writing+Custom+Plug-ins-3.3-3.3%0ABuild+Date%3A+01-07-2015+13%3A45%3A14%0ATopic+ID%3A+43515-752930+%5BLatest%5D&comment=Title%3A+Giving+Feedback%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43515-752930+21+Apr+2015+12%3A07+en-US+%5BLatest%5D

APPENDIX A. DOCUMENT HISTORY
Revision 3.3.2-7 Thu Jun 25 2015 Jared Morgan

Prepared for JBoss ON 3.3.2 Release, with a minor change to the book brand for the new splash page

Revision 3.3.1-1 Wed Feb 18 2015 Jared Morgan
Prepared for JBoss ON 3.3.1 Release

Revision 3.3-10 Mon Nov 17 2014 Jared Morgan
Updated for JBoss ON 3.3 GA

APPENDIX A. DOCUMENT HISTORY

91

	Table of Contents
	CHAPTER 1. AN OVERVIEW OF JBOSS ON PLUG-INS
	1.1. EXTENDING JBOSS ON: PLUG-INS DEFINED
	1.2. BASIC COMPONENTS OF PLUG-INS IN JBOSS ON
	1.2.1. Plug-in Containers
	1.2.2. Plug-in Descriptor
	1.2.3. Plug-in Schema Definitions
	1.2.4. Java Files
	1.2.5. External Libraries

	1.3. DOWNLOADING THE PLUG-IN FILES

	CHAPTER 2. WRITING SERVER-SIDE PLUG-INS: BACKGROUND
	2.1. AN INTRO TO SERVER-SIDE PLUG-INS
	2.2. THE BREAKDOWN OF SERVER-SIDE PLUG-IN CONFIGURATION
	2.2.1. Descriptor and Configuration
	2.2.1.1. Definitions and Classes
	2.2.1.2. Control Operations
	2.2.1.3. Scheduling Jobs
	2.2.1.4. Plug-in Configuration (Both Global and Local)

	2.2.2. Schema Files
	2.2.2.1. Parsing the Plug-in Container Schema Files
	2.2.2.2. The rhq-configuration.xsd File
	2.2.2.3. The rhq-serverplugin.xsd File

	2.2.3. Java Class Files

	2.3. ANATOMY OF ALERT SENDER SERVER-SIDE PLUG-INS
	2.3.1. Default Alert Senders
	2.3.2. Breakdown of a Real Alert Sender Plug-in
	2.3.2.1. Descriptor
	2.3.2.2. Java Resource
	2.3.2.3. Schema Elements

	CHAPTER 3. WRITING SERVER-SIDE PLUG-INS: PROCEDURES
	3.1. TIP: CHECKING XSD ANNOTATIONS
	3.2. WRITING SERVER-SIDE PLUG-INS
	3.3. VALIDATING SERVER-SIDE PLUG-INS
	3.4. DEPLOYING SERVER-SIDE PLUG-INS
	3.4.1. Remotely Deploying Server-Side Plug-ins
	3.4.2. Locally Deploying Server-Side Plug-ins

	3.5. UPDATING SERVER-SIDE PLUG-INS
	3.6. DISABLING SERVER-SIDE PLUG-INS
	3.7. RESTARTING SERVER-SIDE PLUG-IN CONTAINERS
	3.8. SETTING PLUG-IN CONFIGURATION PROPERTIES
	3.9. DELETING SERVER-SIDE PLUG-INS

	CHAPTER 4. WRITING AGENT PLUG-INS: BACKGROUND
	4.1. ABOUT THE ADVANCED MANAGEMENT PLUG-IN SYSTEM (AMPS) FOR AGENT PLUG-INS
	4.2. THE BREAKDOWN OF AGENT PLUG-IN CONFIGURATION
	4.2.1. Schema Files
	4.2.2. Descriptor and Configuration
	4.2.2.1. Resource Type, Metadata, and Plug-in Configuration
	4.2.2.2. Discovery and Process Scans
	4.2.2.3. Events
	4.2.2.4. Resource Configuration

	4.2.3. Lifecycle Listeners
	4.2.4. Plug-in Dependencies: Defining Relationships Between Plug-ins
	4.2.4.1. Required Plug-in Dependencies
	4.2.4.2. Embedded Plug-in Dependencies
	4.2.4.3. Injection Plug-in Dependencies

	4.2.5. Class Sharing Between Plug-ins

	4.3. EXTENDED EXAMPLE: CONTENT TYPES FOR RESOURCES
	4.4. EXTENDED EXAMPLE: HTTP METRICS
	4.4.1. Looking at the Plug-in Descriptor (rhq-plugin.xml)
	4.4.2. Looking at the Discovery Components (HttpDiscoveryComponent.java and HttpServiceDiscoveryComponent.java)
	4.4.3. Looking at the Plug-in Components (HttpComponent.java and HttpServiceComponent.java)

	4.5. EXAMPLES: EMBEDDED AND INJECTED PLUG-IN DEPENDENCIES
	4.5.1. Simple Dependency: JBoss AS and JMX Plug-ins
	4.5.2. Embedded Dependency: JVM MBeanServer and JBoss AS
	4.5.3. Injected Dependency: Hibernate with JVM and JBoss AS

	4.6. EXTENDED EXAMPLE: DRIFT MONITORING
	4.7. EXTENDED EXAMPLE: PROVISIONING AND CONTENT DEPLOYMENTS (BUNDLES)
	4.8. EXTENDED EXAMPLE: ASYNCHRONOUS AVAILABILITY CHECKS

	CHAPTER 5. WRITING AGENT PLUG-INS: PROCEDURES
	5.1. TIP: CHECKING XSD ANNOTATIONS
	5.2. VALIDATING AGENT PLUG-INS
	5.3. NOTES ON EDITING AGENT PLUG-INS
	5.4. DEPLOYING AGENT PLUG-INS
	5.4.1. Remotely Deploying Agent Plug-ins
	5.4.2. Locally Deploying Agent Plug-ins

	5.5. UPDATING AGENT PLUG-INS
	5.6. DISABLING AGENT PLUG-INS
	5.7. DELETING AGENT PLUG-INS

	CHAPTER 6. AGENT ADVANCED MANAGEMENT PLUG-IN SYSTEM (AMPS) REFERENCE
	6.1. DOMAIN OBJECTS
	6.1.1. Resource and ResourceType

	6.2. PLUG-IN FACETS
	6.2.1. AvailabilityFacet
	6.2.2. ConfigurationFacet
	6.2.3. ContentFacet
	6.2.4. ManualAddFacet
	6.2.5. MeasurementFacet
	6.2.6. OperationFacet
	6.2.7. ResourceFactoryFacet
	6.2.8. SupportFacet

	6.3. PLUG-IN COMPONENTS
	6.3.1. ResourceDiscoveryComponent
	6.3.2. ResourceComponent

	6.4. NATIVE SYSTEM INFORMATION ACCESS
	6.4.1. SystemInfoFactory and SystemInfo
	6.4.2. ProcessInfoQuery

	CHAPTER 7. DOCUMENT INFORMATION
	7.1. GIVING FEEDBACK

	APPENDIX A. DOCUMENT HISTORY

