‘® redhat.

JBoss Operations Network

3.1
Deploying Applications and Content

for provisioning applications and managing content streams
Edition 3.1.2

Ella Deon Lackey

JBoss Operations Network 3.1 Deploying Applications and Content

for provisioning applications and managing content streams
Edition 3.1.2

Ella Deon Lackey
dlackey@redhat.com

Legal Notice

Copyright © 2012 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

JBoss Operations Network can control content for its resources in a number of different ways:
deploying and upgrading applications through provisioning; creating content repositories; and
defining content streams for resources, such as the JBoss Customer Service Portal. This guide
provides GUI-based procedures to manage content that can be used by resources.

http://creativecommons.org/licenses/by-sa/3.0/

1.

2.

3.

4,

8.

9.

Table of Contents

Summary: Using JBoss ON to Deploy Applications and Update Content

An Introduction to Provisioning ContentBundles 0ivinut.

2.1. Bundles: Content and Recipes

2.2. Destinations (and Bundle Deployments)

2.3. File Handling During Provisioning

2.4. Requirements and Resource Types

2.5. Bundles and JBoss ON Servers and Agents
2.5.1. Resource Support and the Agent Resource Plug-in
2.5.2. Server-Side and Agent Plug-ins for Recipe Types

Managing and Deploying Bundles with the JBossONCLI

Extended Example: Common Provisioning Use Cases (and How They Handle Files)

4.1. Deploying A Full Application Server
4.2. Deploying A Web Application
4.3. Deploying Configuration Files

. Extended Example: Provisioning Applications to a JBoss EAP Server (Planning)
. The Workflow for Creating and DeployingaBundle,

.Creating AntBundlest it i s

7.1. Supported Ant Versions
7.2. Additional Ant References
7.3. Breakdown of an Ant Recipe
7.4. Using Ant Tasks
7.4.1. Supported Ant Tasks
7.4.2. Using Default, Pre-Install, and Post-Install Targets
7.4.3. Calling Ant Targets
7.5. Using Templatized Configuration Files
7.6. Limits and Considerations for Ant Recipes
7.6.1. Unsupported Ant Tasks
7.6.2. Symlinks
7.6.3. WARNING: The Managed (Target) Directory and Overwriting or Saving Files
7.7. A Reference of JBoss ON Ant Recipe Elements
7.7.1. rhg:bundle
7.7.2. rhg:input-property
7.7.3. rhg:deployment-unit
7.7.4. rhg:archive
7.7.5. rhq:url-archive
7.7.6. rhqg:file
7.7.7. rhq:url-file
7.7.8. rhg:audit
7.7.9. rhg:replace
7.7.10. rhg:ignore
7.7.11. rhq:fileset
7.7.12. rhg:system-service

Testing Bundle Packagesc.oiiiiiiiiiiiinnnrnnrnnnernrnnsnns

8.1. Installing the Bundle Deployer Tool
8.2. Using the Bundle Deployer Tool

Provisioning Bundlescciiiiiii i i i

Table of Contents

© © © 0o o O AN

................. 13

............... 15

............... 16

16
17
17
20
20
20
20
21
23
23
23
24
25
26
26
28
28
29
31
32
34
35
35
36
37

37
38

12. Document Information

Deploying Applications and Content

9.1. Uploading Bundles to JBoss ON

9.2. Deploying Bundles to a Resource

9.3. Viewing the Bundle Deployment History

9.4. Reverting a Deployed Bundle

9.5. Deploying a Bundle to a Clean Destination
9.6. Purging a Bundle from a Resource

9.7. Upgrading Ant Bundles

9.8. Deleting a Bundle from the JBoss ON Server

10. Managing Resource-Level Content Updates
10.1. About Content
10.1.1. What Content Is: Packages

10.1.2. Where Content Comes From: Providers and Repositories

10.1.3. Package Versions and History
10.1.4. Authorization to Repositories and Packages
10.2. Creating a Content Source
10.2.1. Creating a Content Source (General)
10.2.2. Enabling the Default JBoss Patch Content Source
10.2.3. Creating a Content Source (Local Disk)
10.3. Managing Repositories
10.3.1. Creating a Repository
10.3.2. Linking Content Sources to Repositories
10.3.3. Associating Resources with the Repository
10.4. Uploading Packages
10.5. Synchronizing Content Sources or Repositories
10.5.1. Scheduling Synchronization
10.5.2. Manually Synchronizing Content Sources or Resources
10.6. Tracking Content Versions for a Resource

11. Deploying Applications on Application Servers
11.1. Setting Permissions for Agent and Resource Users
11.2. Deploying EAR and WAR Files

11.3. Updating Applications

11.4. Deleting an Application

12.1. Document History

39
42
45
47
49
49
50
51

52
52
52
53
53
55
56
56
58
60
63
64
65
67
70
71
72
72
74

74
75
75
78
82

1. Summary: Using JBoss ON to Deploy Applications and Update Content

1. Summary: Using JBoss ON to Deploy Applications and Update Content

One of the core management tools for JBoss Operations Network is to create, update, or remove content
from its managed resources. Content can be anything associated with a resource or configuration, such as
text files, binary files like JARs, EARs, and WARs, patches, and XML files. That content can be deployed on
a managed resource to update that resource's configuration, to create a child resource, or to deploy an
entirely new application.

There are two ways to manage content for resources:
Resource-level content through the Content tabs
Provisioning applications through bundles

Resource-level content allows a specific managed resource, usually a JBoss application server or a web
server, to be associated with stored and versioned packages in named repositories. These packages can be
uploaded into JBoss ON (so JBoss ON is essentially the content repository), they can be pulled from an
external repository, or they can be discovered through agent plug-ins. In other words, there are three actions
that resource-level content management can perform:

It can deliver packages, updates, and patches to a resource.

It can deploy content to a resource and even create a new child resource. This is particularly useful with
web and application servers which can have different contexts as children.

It can discover the current packages installed on a resource, creating a package digest that administrators
can use to manage that asset.

Resource-level content management is limited how far it can be used to create resources. That is why JBoss
ON has another system of deploying content, one that allows it to deploy full application servers or to
consistently apply content across multiple resources: provisioning through bundles.

Bundles are added to the JBoss ON server, so they are not restricted to a single resource. They are
deployed to compatible groups of resources, either platforms or JBoss servers (or other resource types which
define a bundle target in their plug-in descriptor). This allows multiple resources to be updated at once, using
the same content.

Bundle provisioning also allows more flexible and complex deployment options:
Use Ant calls to perform operations before or after deploying the bundle
Allow user-defined values or edits to configuration at the time a bundle is provisioned

Have multiple versions of the same content bundle deployed and deployable to resources at the same
time

Revert to an earlier bundle version

2. An Introduction to Provisioning Content Bundles

Provisioning is a way that administrators can define and control applications, from development to production.
The ultimate effect of the provisioning system is simplifying how applications are deployed. Administrators
can control which versions of the same application are deployed to different resources, from different content
sources, within the same application definition (the bundle definition). Resources can be reverted to different
versions or jump ahead in deployment.

Deploying Applications and Content

Provisioning takes one set of files (a bundle) and then pushes it to a platform or an application server (the
destination). There are more complex ways of defining the content, the destinations, and the rules for that
deployment, but the core of the way that provisioning handles content is to take versioned bundles and send
it to the designated resource.

Provisioning works with compatible groups, not individual resources. Administrators can define groups based
on disparate environments and consistently apply application changes (upgrades, new deployments, or
reversions) across all group members, simultaneously.

And the type of content which can be deployed, itself, is flexible. A bundle can contain raw configuration files,
scripts, ZIP archives, JAR files, or full application servers — the definition of content is fairly loose.

This is in contrast to the resource-level content management in JBoss ON. The type of content is relatively
limited. Patches or configuration is applied per-resource. New applications can only be deployed as children
of existing resources and it has to be another resource type.

Provisioning focuses on application management, not purely resource management.

2.1. Bundles: Content and Recipes

A bundle is a set of content, packaged in an archive. In real life, a bundle is usually an application, but it can
also contain a set of configuration files, scripts, libraries, or any other content required to set up an
application or a resource.

The purpose of a bundle is to take that defined set of content and allow JBoss ON to copy it onto a remote
resource. The provisioning process basically builds the application on the targeted resource, so in that sense,
the bundle is an application distribution. Each bundle version has its own recipe which tells JBoss ON what
files exist in the bundle, any tokens which need to have real values supplied at deployment, and how to
handle the bundle and existing files on the remote machine.

The recipe, configuration files, and content are all packaged together into the bundle. This is usually a ZIP
file, which the agent unpacks during provisioning.

As with other content managed in JBoss ON, the bundle is versioned. Different versions can be deployed to
different resources, which is good for handling different application streams in different environments (say,
QA and production). Versioning bundles also allows JBoss ON to revert or upgrade bundles easily.

The bundle can contain almost any kind of content, but it has to follow a certain structure for it to be properly
deployed by JBoss ON. The recipe is an Ant build file called deploy . xml; this must always be located in the
top level of the bundle archive.

Past the placement of the recipe, the files and directories within the bundle can be located anywhere in the
archive. In fact, the files do not necessarily need to be included in the bundle file at all; when the bundle is
created, any or all files for the bundle can be pulled off a URL, which allows the content to be taken from an
SVN or GIT repository, FTP server, or website.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

The Bundle Distribution

the recipe associated bunde fies

A
| CANW

configuration JAR /P

fles fle file
deploy.xmi |

Figure 1. Bundle Layout

The bundle archive can contain other archives, such as JAR, WAR, and ZIP files. Provisioning uses Ant to
build out bundles on the target machine, so any files which Ant can process can be processed as part of the
bundle. The Ant provisioning system can process WAR, JAR, and ZIP archive files.

2.2. Destinations (and Bundle Deployments)

Uploading a bundle to JBoss ON does not push the bundle anywhere, so it is not automatically associated

with a resource or group. (Bundles, unlike content, is resource-independent. It exists as its own definition in
JBoss ON, apart from the inventory.) When the bundle is actually provisioned, then the provisioning wizard
prompts for the administrator to define the destination.

A destination is the place where bundles get deployed. The destination is the combination of three elements:
A compatible resource group (of either platforms or JBoss servers)

A base location, which is the root directory to use to deploy the bundle. Resource plug-ins define a base
location for that specific resource type in the <bundle-target> element. This can be the root directory
or, for JBoss servers, common directories like the profile directory. There may be multiple available base
locations.

The deployment directory, which is a subdirectory beneath the base directory where the bundle content is
actually sent.

For example, an administrator wants to deploy a web application to a JBoss EAP 5 server, in the
deploy/myApp/ directory. The JBoss AS5 plug-in defines two possible base locations, one for the
installation directory and one for the profile directory. The administrator chooses the profile directory, since
the application is an exploded JAR file. The agent then derives the real, absolute path of the application from
those three elements:

JBoss AS group + {$PROFILE_DIR} + deploy/myApp/

Deploying Applications and Content

If the PROFILE_DIR is /opt/jbossas/default/server/, then the destination is:
/opt/jbossas/default/server/deploy/myApp/

If the same resource group contains a JBoss EAP instance running on a Windows server, with a
PROFILE_DIR of C:\jbossas\server\, then the path is derived slightly differently, appropriate for the
platform:

C:\jbossas\default\server\deploy\myApp

It is up to the agent, based on the platform and resource information for its inventory, to determine the
absolute path for the destination to which the bundle should be deployed.

Once a bundle is actually deployed to a destination, then that association — bundle version and destination
— is the bundle deployment.

Bundles) 10021

¥ Bundl
undles Back to All Bundles

@ |ava Petstore

= G My New App E’:'a My New App
= q[:] Destinations

(@@ conf directory Description : thisis just an
@ /opt/appsitest-versions

= r| iversinns Version Count: 3
&1 1.0
i.il __Destinations Count : 2
f-]| 2.2 :
'iil 3.0 Versions Destinations

@ User App

@ Bundle Versions

ID | Version Mame
10021 1.0 My New App
10024 2.2 My New App
10041 3.0 My New App

Figure 2. Bundles, Versions, and Destinations

2.3. File Handling During Provisioning

1. Summary: Using JBoss ON to Deploy Applications and Update Content

Behavior at Deployment

A bundle file contains a set of files and directories that should be pushed to a resource. However, the
provisioning process does not merely copy the files over to the deployment directory. Provisioning treats a
bundle as, essentially, a template that defines the entire content structure for the target (root) directory.

For example, a bundle contains these files:

app.conf
lib/myapp.jar

If the root directory is deploy/myApp/, then the final configuration is going to be:

deploy/myApp/app.conf
deploy/myApp/lib/myapp.jar

By default, if there are any files in deploy/myApp/, then they will be removed before the bundle is copied
over, so that the deployment directory looks exactly the way the bundle is configured.

For an application-specific destination, like deploy/myApp/, then that behavior is totally acceptable
because the defined application content should be the only content in that directory. However, bundles can
contain a variety of content and can be deployed almost anywhere on a platform or within a JBoss server. In
a lot of real life infrastructures, the directory where the bundle is deployed may have existing data that should
be preserved.

The deployment directory is the root directory for the bundle. The recipe for the bundle can define a
parameter that tells the provisioning process how to handle data in that root directory — specifically, should it
ignore (preserve) existing files and subdirectories in the root directory, or should it manage the root directory
and make it match the bundle structure.

The manageRootDir option in the recipe tells the provisioning system whether to delete everything and force
the directory to match the bundle content. The default is for that to be true, for the bundle to define the conten
and structure of the root directory. If the data in that directory must be saved, the manageRootDir option car
be set to false, which means that provisioning will copy over the bundle and create the appropriate files and
subdirectories, but it will not manage (remove) the existing content in the directory.

A Warning

If you deploy a bundle to a high level directory like /etc on a platform or a critical directory like
deploy/ or conf/, then all of the existing files and subdirectories in that directory are deleted. This
can cause performance problems or data loss.

Bundles and Subdirectories

Even if the manageRootDir option is set to false, subdirectories and files contained in the bundle are
always managed by the bundle, even if they existed before the bundle was deployed.

For example, the deploy/ directory has this layout before any bundle is deployed:

deploy/
deploy/notes. txt
deploy/myAppl/

Deploying Applications and Content

deploy/myApp2/
deploy/myApp2/first. txt

A bundle is created with this layout:

myApp2/
myApp2/foo.txt
myApp2/bar . txt

If manageRootDir is set to false, the existing files in the deploy/ remain untouched, except for what is in
the myApp2/ subdirectory, because that directory is defined by the bundle. So, the final directory layout is
this:

deploy/ (ignored)
deploy/notes.txt (ignored)
deploy/myAppl/ (ignored)
deploy/myApp2/ (managed)
myApp2/foo.txt (managed)
myApp2/bar.txt (managed)

Any existing content in the root directory is backed up before it is deleted, so it can be restored later.

The backup directory is /home/ . rhqdeployments/resourcelD/backup.

Files Added After the Bundle Is Deployed

After the initial deployment, there can be instances where files are added to the deployment directory, such
as log files or additional data.

Within the deployment directory, the provisioning process overwrites any bundle-associated files with the
latest version and removes any files that are not part of the bundle. Log files and other data — as with the
root directory — need to be preserved between upgrades. Those known files and directories can be called
out in the recipe using the <rhq: ignore> element, which tells the provisioning process to ignore those files
within the deployment directory.

2.4. Requirements and Resource Types
By default, three resource types support bundles:
Platforms, all types
JBoss EAP 6 (AS 7) standalone servers [1]

JBoss EAP 5 and any server which uses the JBoss AS 5 plug-in

JBoss EAP 4 (deprecated)

1. Summary: Using JBoss ON to Deploy Applications and Update Content

Bundle support is defined in the plug-in descriptor, so custom plug-ins can be created that add bundle

2.5. Bundles and JBoss ON Servers and Agents

2.5.1. Resource Support and the Agent Resource Plug-in

Whether provisioning is supported is defined in the resource type. For a resource type to allow provisioning,
the resource plug-in descriptor must defined a bundle target. That is the indication to the agent the
provisioning is supported.

The <bundle-target> element simply defines allowed base directories for the resource which can be used
as base directories in the bundle definition.

<server name="JB0ssAS:JB0SsAS Server" ...>
<bundle-target>
<destination-base-dir name="Library Directory" description="Where the
jar libraries are'">
<value-context>pluginConfiguration</value-context>
<value-name>lib.dir</value-name>
</destination-base-dir>
<destination-base-dir name="Deploy Directory" description="Where the
deployments are">
<value-context>pluginConfiguration</value-context>
<value-name>deploy.dir</value-name>
</destination-base-dir>
</bundle-target>
</server>

Every resource plug-in descriptor defines a base directory, the root for all deployments, apart from
provisioning configuration. For platforms, this is the root directory. For servers, it is usually the installation
directory. The <bundle-target> can use the already-configured base directory or it can set different
directories to use. In the example, two directories — the deploy/ and 1ib/ directories — are given as
supported base directories. When a bundle definition is created, the wizard offers the choice of which
directory to use.

2.5.2. Server-Side and Agent Plug-ins for Recipe Types

By default, JBoss ON supports one type of recipe, an Ant build file. However, other types of recipes could be
supported because the recipe type is defined in a pair of plug-ins, one for the server and one for the agent.

The server-side plug-in tells the JBoss ON server how to manage bundles and destinations for that type of
recipe.

The agent plug-in creates a child resource for the platform which is used to perform provisioning operations
on the platform or target resource. For example, Ant bundles are actually deployed by the special JBoss ON
resource, Ant Bundle Handler. This resource is added automatically to platforms as a child resource to
enable Ant-based provisioning.

http://docs.redhat.com/docs/en-US/JBoss_Operations_Network/100/html/Writing_Custom_Plug-ins/agent-plugins.html#bundles-example

Deploying Applications and Content

Since recipe type support is implemented on the agent side through a special resource, that resource
must exist in the JBoss ON inventory for it to perform provisioning. For example, without the Ant
bundle handler in the inventory for a platform, JBoss ON cannot perform provisioning on that platform.

Administrators do not have to interact directly with the Ant bundle handler resource, but that child
resource must be present in the platform's inventory for Ant provisioning to work.

3. Managing and Deploying Bundles with the JBoss ON CLI

Both uploading bundles to JBoss ON and deploying bundles to resources can be performed using the JBoss
ON CLL.

The ability to script bundle deployments is very powerful, because it allows content or configuration updates,
even new application servers, to be deployed automatically based on activity in other resources across JBoss
ON. This is particularly useful with using JBoss ON CLI scripts in response to an alert:

A new JBoss application server can be deployed when an existing JBoss server experiences a heavy
load or decreased performance.

Configuration files for a selected snapshot image can be immediately deployed to a platform or JBoss
server to remedy configuration drift, in response to a drift alert.

A new web context can be deployed when another web is disabled within a mod_cluster domain.

Scripting also allows updates to be applied on schedule, such as having daily or weekly scheduled updates to
a QE environment — which is also useful because the bundle content can be pulled from a GIT or SVN
repository used by a build system first, and then deployed for testing.

4. Extended Example: Common Provisioning Use Cases (and How They
Handle Files)

and provisioning system — but what is provisioning really for? There are a handful of common use cases that
illustrate how provisioning works in a real environment.

Deploying a full application server
Deploying a web application to an application server

Deploying configuration files

10

http://docs.redhat.com/docs/en-US/JBoss_Operations_Network/100/html/API_Guides/index.html

3. Managing and Deploying Bundles with the JBoss ON CLI

One thing to remember for all of this is that bundles take content from point A (JBoss ON) and send it

the directory in the bundle is laid out. This means adding or editing files, creating or deleting
subdirectories, and deleting any existing content from the destination.

That concept of managing the layout and content of the destination influences the ways and effects of
deploying content.

4.1. Deploying A Full Application Server

Bundle Details

This is the core use for the provisioning system, deploying an entire application server. This bundle contains
the complete configuration stack for a server like JBoss EAP (or Tomcat or Apache). The bundle contains all
of the files used by the application — the JAR and configuration files and scripts for the EAP server, and all
EAR or WAR web applications that are to be deployed on that EPA instance. All of the application server and
web app files and directories are zipped into an archive, with the deploy . xml which defines the Ant recipe.

File Handling Details

Because this is a complete application server, it will be deployed into its own, new (or empty) directory, such
as /opt/my-application. That directory will be dedicated to the application server, so it will be entirely
managed by the bundle.

There is an attribute in the recipe called manageRootDir which tells the bundle system how to deploy content.
For deploying a full application server, the bundle system should have complete control over the directory, so
manageRootDir is set to true. This means:

Only files and subdirectories in the bundle distribution file will be in the root directory.
Any existing files or subdirectories will be deleted.

If files or subdirectories are added to the root directory, then they will be deleted when the bundle is
updated or redeployed, unless those files are explicitly ignored (a setting in the recipe).

4.2. Deploying A Web Application

Instead of deploying a full application server, it is possible to deploy a web application to the application
server. However, this takes an understanding of the directory layout of both the application server and the
web application.

For example, this is the deployment directory path for the application server:
/opt/my-application/deploy
The goal is to deploy a new web app, myAppl.war to the deploy/ directory.

/opt/my-application/deploy/myappl.war/

Bundle Details

11

Deploying Applications and Content

In this case, the bundle file contains only the WAR file itself and the deploy.xml recipe.

File Handling Details

Unlike the application server, when deploying the web app, there are or could be other web apps also in the
deploy/ directory. The bundle system, then, should not manage the root directory, meaning existing or new
files should be allowed within the root directory even if they are not included in the bundle.

The intent here is not to manage all of the content in the directory but to add to that content by deploying the
WAR file. So, the recipe should specifymanageRootDir=false, which tells the provisioning system to
leave alone any existing files in the directory that are outside the bundle.

Setting manageRootDir=false only preserves files outside the bundle deployment. If the bundle
directory is deploy/myApp/, then any files in deploy/myApp/ or subdirectories like
deploy/myApp/WEB-INF/ will be overwritten or removed when the bundle is deployed. The
subdirectories defined in the bundle distribution are still entirely managed by the bundle system.

One other consideration is that only one bundle can be deployed to a root directory. If there are multiple web
applications to be deployed to the same EAP server and all of them will be managed by the provisioning
system, then there are two options:

Include all of the web applications in the same bundle distribution. For example, to deploy myApp1.war
and myApp2.war to the deploy/ directory, both WAR files can be included in the same bundle and
deployed to deploy/myAppl.war/ and deploy/myApp2.war/ simultaneously.

It may not be possible to roll all of the web apps into the same bundle. Instead of using deploy/ as the
root directory, there could be two different bundle distributions that use a subdirectory as the root
directory. For example, the first web app could use deploy/myApp1/ so that the final deployment is
deploy/myApp1/myAppl.war/, while the second app usesdeploy/myApp2/, resulting in
deploy/myApp2/myApp2.war/.

This allows the two web applications to be deployed, updated, and reverted independently of each other.

4.3. Deploying Configuration Files

Another common scenario is deploying configuration files to an application server (or even another resource,
like a platform), using bundles.

This is very similar to deploying a web application. If JBoss ON deploys a bundle to a given directory, it
expects to manage the content within that directory and all content within any subdirectories defined
in the bundle. With configuration files, it is critical that you understand and include all of the configuration
files in the bundle or critical files could be removed.

For example, an administrator creates a bundle to deploy two configuration files:
New login configuration, in server/default/conf/login-config/xml
New JMX console users, in server/default/conf/props/jmx-console.properties

The root directory is the conf/ directory for the application server.

Bundle Details

12

5. Extended Example: Provisioning Applications to a JBoss EAP Server (Planning)

The bundle must contain all of the files that are expected to be in the conf/login-config/ and
conf/props/ subdirectories, not just the two new files that the administrator wants to use. Additionally, the
manageRootDir parameter in the recipe must be set to false so that all of the existing configuration files in
the root directory, conf/, are preserved.

File Handling Details

As with deploying a web app, the intent is to add new content, not to replace existing content. Setting
manageRootDir=false only preserves files outside the bundle deployment. However, because there are
two subdirectories defined in the bundle, JBoss ON will manage all of the content in those subdirectories.
This means:

The recipe has to have manageRootDir=false set for the bundle to preserve the other files in the
conf/ root directory.

Any files in the subdirectories of the bundle — conf/log-config/ and conf/props/ — will be
overwritten when the bundle is deployed. The provisioning process can ignore files in the root directory,
but it always manages (meaning, updates, adds, or deletes) files in any subdirectories identified in the
bundle so that they match the content of the bundle.

Existing files in the conf/log-config/ and conf/props/ subdirectories must be included in the
bundle distribution.

There is an alternative to including all of the configuration files in the bundle distribution.

The bundle, containing only the new files, could be deployed to a separate directory, like
/opt/bundle/. Then, an Ant post-install task can be defined in the recipe that copies the
configuration files from the root directory into the application server's conf/ directory.

5. Extended Example: Provisioning Applications to a JBoss EAP Server
(Planning)

The Setup

Tim the IT Guy at Example Co. has to manage the full application lifecycle for Example Music's online band
management application, MusicApp. There are two environments: one for QA and one for the live site. Both
environments contain a mix of Windows and Linux servers.

Tim wants to deploy the latest development version weekly to the QA environment, based on the most curren
build in their development GIT repo. He wants the most stable version of the application to be deployed to the
production environment, based on a static package.

What to Do

The best plan for Tim is to work backwards, starting with the way he wants his ideal QA and production
environments to be configured.

Tim's first step is to identify his destinations, based on his environments. Because he has two separate
environments, he wants to create two separate groups, one for QA and one for production. MusicApp runs on
a JBoss server, so his compatible groups will be for the JBoss AS/EAP resources rather than platforms.

13

Deploying Applications and Content

Additionally, the needs for each of his environments is different:
The QA environment needs ...
New builds directly from the GIT repository, every week.
A completely clean directory to begin from with every deployment.

There is a separate QA environment for each of Example Co.'s web applications, so MusicApp is the
only application running on those specific servers.

The production environment needs ...
A stable build that can be safely stored in JBoss ON.

To save historic data. The production environment has both log directories and user-supplied data
directories that need to be preserved between application upgrades.

A couple of different web applications run on the same production servers.

The application itself is the same for both environments. Instance-specific configuration — port numbers, the
application name, the machine IP address — are based on tokens that are realized when the application is
deployed. The JAR files contained in the bundle should be extracted at the time the application is deployed,
with the exception of one client which site members can either install or launch locally.

Tim decides to use different versions of the same bundle, labeling the QA versions as devel and the
production versions as stable.

There are some similarities between the devel and stable bundle recipes:

MusicApp should be deployed to the deploy/ directory, but because it is not the only application that
they run, it will have its own webapp context subdirectory. While this is not strictly necessary in the devel
environment (where MusicApp is the only application), this maintains consistency with the final
deployment destination.

Both recipes will configure the application JAR file, MusicApp. jar, to be exploded when it is deployed.
The client archive file, MyMusic. jar, will not be exploded (<rhq:file ... exploded="false">).

Tokens are defined in the raw configuration files and the recipe for the port numbers, IP addresses, and
application names.

And then there are differences in the recipes, related to how the devel and stable versions should handle
existing files.

The QA environment always requires a pristine deployment. This requires three settings:

The manageRootDir value is always true, so no existing files are preserved during the initial
deployment.

No <rhq:ignore> elements are set, so no generated files are preserved during an upgrade.

The cleanDeployment option is always set in the JBoss ON CLI script that automates deployments.
This removes all bundle-associated files in the directory before deploying the new bundle.

The production environment needs to preserve its existing data between upgrades, which requires two
settings:

The manageRootDir value is always false, which preserves existing files during the initial
deployment.

14

6. The Workflow for Creating and Deploying a Bundle

Two <rhq:ignore> elements are set, one for the log directory and one for the data directory
containing the site member uploads.

The last significant action comes when the bundles are actually uploaded to JBoss ON.

Version 1 of the application is already stable and complete, so Tim creates the first bundle as a stable
version. He packages the deploy . xml with the other application files in a ZIP file and uploads the entire
bundle directly to JBoss ON, so it is stored in the JBoss ON database.

Version 2 is a devel version. The QA environment requires frequent updates based on the latest build in GIT.
Tim uploads the deploy.xml separately, but he points the provisioning wizard to the GIT URL for all of the
associated packages. When the bundle is deployed, JBoss ON takes the packages from the repository.

The Results

Tim deployed version 1 of the bundle to the production environment, and he deployed version 2 to the QA
environment.

This means that Tim has deployed different versions of the same application, pulled from different sources, to
different resources. If he ever has a problem with the production server, he can simply revert it to the last
stable version.

Additionally, he can script bundle deployments to the QA environment, so his tests can be fully automated.

6. The Workflow for Creating and Deploying a Bundle

1. Identify what files belong in the archive, such as an application server, an individual web application,
configuration files for drift management, or other things.

2. Determine how the location where the bundle will be deployed will be handled. Existing files and
directories can be overwritten or preserved, depending on the definitions in the recipe. This is

3. Identify what information will be deployment-specific, such as whether the deployed content will
require a port number, hostname, or other setting. Some of these values can use tokens in the
configuration file and the provisioning process can interactively prompt for the specific value at
deployment time.

4. Create the content which will be deployed.

5. Create an Ant recipe, named deploy.xml. The recipe defines what content and configuration files
are part of the bundle and how that content should be deployed on the bundle destination. Pre- and
post-install targets are supported, so there can be additional processing on the local system to
configure or start services as required.

6. After the bundle content, configuration file, and recipe are created, compress all of those files into a
bundle archive. This must have the deploy . xml recipe file in the top level of the directory and then

15

Deploying Applications and Content

JBoss ON allows JAR and ZIP formats for the bundle archive.

7. Optionally, verify that the bundle is correctly formatted by running the bundle deployer tool. This is

10. Deploy the bundle to the target groups, as described in Section 9.2, “Deploying Bundles to a

7. Creating Ant Bundles

Bundles are archive files that is stored on the server and then downloaded by an agent to deploy to a
platform or resource. A bundle distribution is comprised of two elements:

An Ant recipe file named deploy.xml

Any associated application files. These application files can be anything; commonly, they fall into two
categories:

Archive files (JAR or ZIP files)

Raw text configuration files, which can include tokens where users define the values when the bundle
is deployed

The process and guidelines for actually creating an Ant recipe are outside the scope of this
documentation. This document outlines the options and requirements for using Ant recipes specifically
to work with the JBoss ON provisioning system.

For basic instructions, options, and tutorials for writing Ant tasks, see the Apache Ant documentation
at http://ant.apache.org/manual/index.html.

7.1. Supported Ant Versions

Table 1. Ant Versions

‘ Software Version

Ant
1.8.0

Ant-Contrib
1.0b3

16

http://ant.apache.org/manual/index.html

7. Creating Ant Bundles

7.2. Additional Ant References

Provisioning relies on Ant configuration and tasks, so a good understanding of the Ant build process is
beneficial. There are several resources for additional Ant information:

7.3. Breakdown of an Ant Recipe

The Ant recipe for JBoss ON bundles is the same basic file as a standard Apache Ant file and is processed
by an integrated Ant build system in JBoss ON. This Ant recipe file must be bundled in the top directory of
the distribution ZIP file and be named deploy . xml.

The JBoss ON Ant recipes allows all of the standard tasks that are available for Ant builds, which provides
flexibility in scripting a deployment for a complex application. The JBoss ON Ant recipe must also provide
additional information about the deployment that will be used by the provisioning process; this includes
information about the destination and, essentially, metadata about the application itself.

Example 1. Simple Ant Recipe

For provisioning, the Ant recipe is more of a definition file than a true script file, although it can call Ant
targets and do pre- and post-provisioning operations. As with other Ant scripts, the JBoss ON Ant recipe
uses a standard XML file with a <project> root element and defined targets and tasks. The elements
defined in the <rhq:bundle> area pass metadata to the JBoss ON provisioning system when the project
is built.

The first part of the deploy . xml file simply identifies the file as an an script and references the
provisioning Ant elements.

<?xml version="1.0"?>
<project name="test-bundle" default="main"
xmlns:rhg="antlib:org.rhq.bundle">

The next element identifies the specific bundle file itself. The provisioning system can manage and deploy
multiple versions of the same application; the <rhq:bundle> element contains information about the
specific version of the bundle (including, naturally enough, an optional version number).

<rhqg:bundle name="Example App" version="2.4" description="an example
bundle'">

All that is required for a recipe is the <rhq: bundle> element that defines the name of the application.
However, the bundle element contains all of the information about the application and, importantly, how the
provisioning system should handle content contained in the application.

The first item to address is any templatized property that is used in a configuration file. This is covered in

17

http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/using.html#buildfile
http://www.liquibase.org/manual/ant
http://sourceforge.net/projects/ant-contrib

Deploying Applications and Content

element identifies it in the recipe. The name argument is the input_field value in the token, the
description argument gives the field description used in the Ul and the other arguments set whether
the value is required, what its allowed syntax is, and any default values to supply. (This doesn't list the files
which use tokens, only the tokens themselves.)

<rhq:input-property

name="listener.port"

description="This is where the product will listen for
incoming messages"

required="true"

defaultValue="8080"

type="integer"/>

There is a single element which identifies all of the content deployed by the bundle, the
<rhq:deployment -unit> element. The entire application — its name, included ZIP or JAR files,
configuration files, Ant targets — are all defined in the <rhq:deployment -unit> parent element.

The name and any Ant targets are defined as arguments on <rhq:deployment -unit> directly. In this,
the name is appserver, and one preinstall target and one postinstall target are set.

<rhqg:deployment-unit name="appserver"
preinstallTarget="preinstall" postinstallTarget="postinstall"
manageRootDir="false">

There is one other critical element on the <rhq:deployment -unit> element: the manageRootDir

deployment directory when the bundle is first deployed, they are deleted by default. Setting
manageRootDir to false means that the provisioning process does not manage the deployment directory
— meaning any existing files are left alone when the bundle is deployed.

Any existing content in the root directory is backed up before it is deleted, so it can be restored later. The
backup directory is /home/ . rhqdeployments/resourcelD/backup.

Any configuration file is identified in an <rhq: file> element. The name is the name of the configuration
file within the bundle, while the destinationFile is the relative (to the deployment directory) path and
filename of the file after it is deployed.

<rhg:file name="test-v2.properties"
destinationFile="conf/test.properties" replace="true"/>

Bundles can contain archive files, either ZIP or JAR files. Every archive file is identified in an
<rhq:archive> element within the deployment-unit. The <rhq:archive> element does three things:

Identify the archive file by name.

Define how to handle the archive. Simply put, it sets whether to copy the archive over to the destination
and then leave it as-is, still as an archive, or whether to extract the archive once it is deployed. This is
called exploding the archive. If an archive is exploded, then a postinstall task can be called to move or
edit files, as necessary.

Identify any files within the archive which contain tokens that need to be realized. This is a child
element, <rhq:fileset>. This can use wildcards to include types of files or files within
subdirectories or it can explicitly state which files to process.

18

7. Creating Ant Bundles

<rhq:archive name="MyApp.zip" exploded="true">
<rhq:replace>
<rhq:fileset>
<include name="**/* .properties'"/>
</rhq:fileset>
</rhqg:replace>
</rhqg:archive>

Another possible child element sets how to handle any files within the deployment directory that are not
part of the bundle. For example, the application may generate log files or it may allow users to upload
content. By default, the provisioning process cleans out a directory from non-bundle content every time a
bundle is provisioned. However, logs, user-supplied data, and other types of files are data that should
remain intact after provisioning. Any files or subdirectories which should be ignored by the provisioning
process (and therefore preserved) are identified in the <rhq:ignore> element. In this case, any * . log
files within the 1logs/ directory are saved.

<rhq:ignore>
<rhq:fileset>
<include name="logs/*.log"/>
</rhq:fileset>
</rhqg:ignore>
</rhqg:deployment-unit>
</rhqg:bundle>

This only applies to upgrading a bundle, meaning after the initial deployment.

The last elements set the Ant tasks to run before or after deploying the content, as identified initially in the
<rhq:deployment -unit> arguments. Most common Ant tasks are supported (as described in

deployed to and whether the operation was successful. The postinstall task prints a message when the
deployment is complete.

<target name="main" />

<target name="preinstall">
<echo>Deploying Test Bundle v2.4 to ${rhg.deploy.dir}...</echo>
<property name="preinstallTargetExecuted" value="true"/>
<rhq:audit status="SUCCESS" action="Preinstall Notice"
info="Preinstalling to ${rhq.deploy.dir}" message="Another optional
message'>
Some additional, optional details regarding
the deployment of ${rhqg.deploy.dir}
</rhqg:audit>
</target>

<target name="postinstall">
<echo>Done deploying Test Bundle v2.4 to ${rhqg.deploy.dir}.</echo>
<property name="postinstallTargetExecuted" value="true"/>
</target>
</project>

19

http://ant.apache.org/manual/using.html#buildfile

Deploying Applications and Content

7.4. Using Ant Tasks

Ant bundle distribution file supports more complex Ant configuration, including Ant tasks and targets.

7.4.1. Supported Ant Tasks

Any standard Ant task can be run as part of the Ant bundle provisioning (with the exception of <antcall>
and <macrodef>). This includes common commands like echo, mkdir, and touch — whatever is required
to deploy the content fully.

The <antcall> element cannot be used with the Ant recipe. <antcall> calls a target within the
deploy.xml file, which loops back to the file, which calls the<antcall> task again, which calls the
deploy.xml file again. This creates an infinite loop.

To perform the same operations that would be done with <antcall>, use the <ant> task to
reference a separate XML file which contains the custom Ant targets. This is described in
Section 7.4.3, “Calling Ant Targets”.

The macrodef call, and therefore macro definitions, are not supported with Ant bundles.

Along with the standard Ant tasks, Ant bundle recipes can use optional Ant tasks:

7.4.2. Using Default, Pre-Install, and Post-Install Targets

As with other Ant tasks, the <project> allows a default target, which is required by the provisioning system.
This is a no-op because the Ant recipe mainly defines the metadata for and identifies files used by the
provisioning process. Other operations aren't necessary. This target is required by Ant, even though it is a
no-op target. Use pre- and post-install targets to perform tasks with the bundle before and after it is
unpacked.

For example:

<target name="main" />

Additionally, JBoss ON provisioning tasks can define both pre- and post-install targets. This allows custom
tasks, like simple progress messages or setting properties.

7.4.3. Calling Ant Targets

20

http://www.liquibase.org/manual/ant
http://sourceforge.net/projects/ant-contrib

7. Creating Ant Bundles

1. In deploy.xml for the Ant recipe, add a<rhq:deployment -unit> element which identifies the
Ant target.

<rhq:deployment-unit name="jar" postinstallTarget="myExampleCall">

2. Then, define the target.

<target name="myExampleCall">
<ant antfile="another.xml" target="doSomething">
<property name="paraml" value="111"></property>
</ant>
</target>

3. Create a separate another . xml file in the same directory as the deploy.xml file. This file
contains the Ant task.

<?xml version="1.0"?>
<project name="another" default="main">
<target name="doSomething">
<echo>inside doSomething. parami=${paramil}</echo>
</target>
</project>

7.5. Using Templatized Configuration Files

A bundle can contain configuration files for an application. These configuration files can use hard-coded
values or they can use tokens that are filled in (automatically or with user-supplied values) when the bundle
is actually deployed.

For a user-defined token to be realized, it must be referenced in the recipe so that the bundle
deployment wizard will prompt for the value, using the <rhgq:input-property> key in the Ant

User-defined tokens can be any property; the values are supplied through the provisioning Ul and inserted
into the templatized configuration file.

The token key is a simple attribute-value assertion, with the input_field as the element in the Ul and the
property being the value in the configuration file. The property of user-defined tokens must contain only
alphanumeric characters, an underscore (), or a period (.); no other characters are allowed.

input_field=@@property@@

For example, to set a port number token in a configuration file, define the property:

21

Deploying Applications and Content

port=@@listener.port@@

The user-defined token then must be noted in the recipe, so that the provisioning process knows to realize
the phrase. To configure a property in an Ant recipe, add a <rhq:input-property> key in the Ant XML
file.

For example:

<rhg:input-property
name="listener.port"
/>

The provisioning wizard prompts for a value for all of the user-defined tokens referenced in the recipe.

Properties

Jump to Section

¥ (General Properties

port 41582 the port

Figure 3. Port Token During Provisioning

Along with user-defined variables that can be specified in the recipe file, there are variables that are made
implicitly available to recipes. These tokens can be used in a templatized file as a user-defined variable
without having to define the token template in the recipe itself.

Table 2. Variables Defined by JBoss ON

‘ Token Description

rhqg.deploy.dir The directory location where the bundle will be
installed.

rhqg.deploy.id A unique ID assigned to the specific bundle
deployment.

rhg.deploy.name The name of the bundle deployment.

Additionally, some tokens can be realized by the provisioning process pulling information from the local

from Java system properties. They can be inserted directly in the templatized configuration file without having
to put a corresponding entry in the recipe. For example:

@@rhqg.system.hostname@@

Table 3. System-Defined Tokens

‘ Token Name Taken From... Java API
rhq.system.hostname Java API SystemInfo.getHostname()
rhg.system.os.name Java API SystemInfo.getOperatingSystemN
ame()

22

‘ Token Name Taken From...
rhqg.system.os.version Java API
rhq.system.os.type Java API
rhq.system.architecture Java API
rhqg.system.cpu.count Java API

rhq.system.interfaces.java.addres Java API
s

rhq.system.interfaces.network_ad Java API
apter_name.mac

rhq.system.interfaces.network_ad Java API
apter_name .type

rhq.system.interfaces.network_ad Java API
apter_name flags

rhq.system.interfaces.network_ad Java API
apter_name.address

rhq.system.interfaces.network_ad Java API
apter_name.multicast.address

rhqg.system.sysprop.java.io.tmpdir Java system property
rhq.system.sysprop.file.separator Java system property
rhqg.system.sysprop.line.separator Java system property

rhg.system.sysprop.path.separato Java system property
r

rhg.system.sysprop.java.home Java system property
rhg.system.sysprop.java.version ~ Java system property

rhg.system.sysprop.user.timezon Java system property
e

rhg.system.sysprop.user.region Java system property
rhg.system.sysprop.user.country ~ Java system property

rhg.system.sysprop.user.languag Java system property
e

7.6. Limits and Considerations for Ant Recipes

7.6.1. Unsupported Ant Tasks

recipes, but there are some tasks which are not supported:

7. Creating Ant Bundles

Java API
SystemInfo.getOperatingSystemV
ersion()
SystemlInfo.getOperatingSystemT

ype().toString()
SystemInfo.getSystemArchitectur
e()
SystemInfo.getNumberOfCpus()

InetAddress.getByName(Systeml
nfo.getHostname()).getHostAddre
ss()

NetworkAdapterinfo.getMacAddre
ss()

NetworkAdapterinfo.getType()
NetworkAdapterinfo.getAllFlags()

NetworkAdapterinfo.getUnicastAd
dresses().get(0).getHostAddress()
NetworkAdapterinfo.getMulticastA
ddresses().get(0).getHostAddress
0

<antcall> (instead, use <ant> to reference a separate XML file in the bundle which contains the Ant

targets)

<macrodef> and macro definitions

7.6.2. Symlinks

The Java utilities library (java.util. zip) included for the bundling system does not support symbolic
links. Therefore, bundle recipes and configuration files cannot use symlinks.

23

Deploying Applications and Content

Symlinks may be an issue for an application server (such as EAP or EPP) which was installed initially from
an RPM and then compressed to be used in a bundle. The RPMs available from Red Hat Network contain
operating system-specific symlinks which would cause failures during provisioning.

If it is necessary to reference shared libraries or other files (which would normally be referenced with a
symlink), then include the required libraries in an archive with the bundle and use an Ant task to extract the
files when deploying the bundle. For example:

<untar src="abc.tar.gz" compression="gzip" dest="somedirectory"/>

7.6.3. WARNING: The Managed (Target) Directory and Overwriting or Saving Files

One important thing to consider with an Ant recipe is how to handle files in the deployment directory. (This is

By default, deploying or updating a bundle replaces everything in the deployment directory, either by
overwriting it or deleting it. The file handling rules are very similar to RPM package upgrade rules. This is
very simplified, but the provisioning process responds in one of two ways to existing files the deployment
directory:

1. The file in the current directory is also in the bundle. In this case, the bundle file always overwrites the
current file. (There is one exception to this. If the file in the bundle has not been updated and is the
same version as the local file, but the local file has modifications. In that case, the local file is
preserved.)

2. The file in the current directory does not exist in the bundle. In that case, the bundle deletes the file in
the current directory.

The behavior for #2, when a file is deleted, can be changed by settings in the Ant recipe.

There are three ways to manage if and how files are preserved during provisioning: manageRootDir,
<rhq:ignore>, and cleanDeployment.

manageRootDir

All of the information about the application being deployed is defined in the <rhq:deployment -unit>
element in a bundle recipe. The manageRootDir attribute on the <rhq:deployment -unit> element sets
how the provisioning process should handle existing files in the deployment directory.

The default value is manageRootDir=true which means that the provisioning process deletes any other files
in the root directory.

Any existing content in the root directory is backed up before it is deleted, so it can be restored later.

The backup directory is /home/ . rhqdeployments/resourcelD/backup.

Alternately, the value can be set to false, which tells the provisioning process to ignore any existing files in
the root directory, as long as there is not a corresponding file in the bundle.

The manageRootDir attribute applies to both the initial deployment and upgrade operations, so this can be
used to preserve files that may exist in a directory before a bundle is ever deployed.

24

7. Creating Ant Bundles

When a bundle will no longer be used on a resource, it can be entirely removed from the filesystem.
This is called purging. The way that the provisioning system handles files when purging a bundle
mirrors that way that it handles files when provisioning a system. By default, purging a bundle deletes
everything in the deployment directory. If the manageRootDir option is set in the bundle, then the
provisioning process removes all of the files and directories associated with the bundle and leaves
unrelated files and directories intact.

<rhq:ighore>

There can be files that are used or created by an application, apart from the bundle, which need to be
preserved after a bundle deployment. This can include things like log files, instance-specific configuration
files, or user-supplied content like images. These files can be ignored during the provisioning process, which
preserves the files instead of removing them.

To save files, use the <rhq:ignore> element and list the directories or files to preserve.

<rhq:ignore>
<rhq:fileset>
<include name="logs/*.log"/>
</rhqg:fileset>
</rhqg:ignore>

The <rhq:ignore> element only applies when bundles are updated; it does not apply when a bundle is
initially provisioned.

Also, the <rhq:ignore> element only applies to file that exist outside the bundle. Any files that are in the
bundle will overwrite any corresponding files in the deployment directory, even if they are specified in the
<rhq:ignore> element.

Clean Deployment

Both manageRootDir and <rhq:ignore> are set in the recipe. At the time that the bundle is actually
provisioned, there is an option to run a clean deployment. The clean deployment option deletes everything in
the deployment directory and provisions the bundle in a clean directory, regardless of the manageRootDir
and <rhq: ignore> settings in the recipe.

25

Deploying Applications and Content

7.7.1. rhq:bundle
Contains the definition for the main JBoss ON-related Ant task that is required for any Ant bundle recipe. This
element defines basic information about the bundle and is the parent element for all of the specific details

about what is in the bundle and how it should be provisioned.

Element Attributes

‘ Attribute Description Optional or Required
name The name given to the bundle. Required
version The version string for this specific Required

bundle. Bundles can have the
same name, but each bundle of
that name must have a unique
version string. These version
strings normally conform to an
OSGi style of versioning, such as
1.00r1.2.FINAL.

description A readable description of this Optional
specific bundle version.

Example

<rhq:bundle name="example" version="1.0" description="an example bundle">

7.7.2. rhq:input-property

Adds a property to the bundle task that defines a template token that must have its value supplied by a user a
the time the bundle is deployed. This is similar to standard Ant properties.

configuration without having to set a <rhq: input-property> definition.

26

7. Creating Ant Bundles

All input properties set some parameter that must have its value defined by a user when the bundle is
provisioned on a resource, and the fields to enter those values are automatically generated in the JBoss ON
Ul bundle deployment wizard.

Element Attributes

‘ Attribute Description Optional or Required

name The name of the user-defined Required
property. Within the recipe, this
property can be referred to by this
name, in the format
${property_name}.

description A readable description of the Required
property. This is the text string
displayed in the JBoss ON bundle
Ul when the bundle is deployed.

type Sets the syntax accepted for the Required
user-defined value. There are
several different options:

string
longString
long
password
file
directory
boolean
integer
float
double

required Sets whether the property is Optional
required or optional for
configuration. The default value is
false, which means the property
is optional. If this argument isn't
given, then it is assumed that the
property is optional.
defaultvValue Gives a value for the property to Optional
use if the user does not define a
value when the bundle is
deployed.

Example

<rhq:input-property

name="listener.port"

description="This is where the product will listen for incoming
messages"

required="true"

defaultValue="8080"

type="integer"/>

See Also

27

Deploying Applications and Content

7.7.3. rhq:deployment-unit

Defines the bundle content — such as applications or configuration files — being deployed by the bundle. A
deployment unit can be simple text files, archives, or a full software product, including an application server,
web server, or database. A deployment unit can have multiple archive and configuration files associated with
it.

Only a single deployment unit is provisioned at a time by the provisioning process, so there can be only one
<rhq:deployment-unit> elementin a bundle recipe.

Element Attributes

‘ Attribute Description Optional or Required
name The name of the application. Required
manageRootDir Sets whether JBoss ON should Optional

manage all files in the top root
directory (deployment directory)
where the bundle is deployed. If
false, any unrelated files found in
the top deployment directory are
ignored and will not be overwritten
or removed when future bundle
updates are deployed. The default
is true. Any existing content in the
root directory is backed up before
it is deleted, so it can be restored
later. The backup directory is
/home/ .rhqdeployments/reso

urcelD/backup.

preinstallTarget An Ant target that is invoked Optional
before the deployment unit is
installed.

postinstallTarget An Ant target that is invoked after Optional

the deployment unit is installed.
Example

<rhq:deployment-unit name="appserver" preinstallTarget="preinstall"
postinstallTarget="postinstall">

See Also

7.7.4. rhq:archive

Defines any archive file that is associated with deploying the application. An archive can be a ZIP or JAR file.
A bundle doesn't require an archive file, so this element is optional.

Element Attributes

28

7. Creating Ant Bundles

‘ Attribute Description Optional or Required

name The filename of the archive file to Required
include in the bundle.

If the archive file is
packaged with the Ant
recipe file inside the
bundle distribution ZIP file,
then the name must
contain the relative path to
the location of the archive
file in the ZIP file.

exploded Sets whether the archive's Optional
contents will be extracted and
stored into the bundle destination
directory (true) or whether to store
the files in the same relative
directory as is given in the name
attribute (false). If the files are
exploded, they are extracted
starting in the deployment
directory. Post-install targets can
be used to move files after they
have been extracted.

Example

<rhg:archive name="file.zip">
<rhqg:replace>
<rhqg:fileset>
<include name="**/* properties"/>
</rhq:fileset>
</rhq:replace>
</rhqg:archive>

See Also

7.7.5. rhq:url-archive

Defines remote archive to use, which is accessed through the given URL. This is similar to rhq:archive
except that the server accesses the archive over the network rather than including the archive directly in the
bundle distribution file.

Element Attributes

29

Deploying Applications and Content

‘ Attribute Description Optional or Required

url Gives the URL to the location of Required
the archive file. The archive is
downloaded and installed in the
deployment directory.

For the bundle to be
successfully deployed, the
URL must be accessible to
all agent machines where
this bundle is to be
deployed. If an agent
cannot access the URL, it
cannot pull down the
archive and thus cannot
deploy it on the machine.

exploded If true, the archive's contents will Optional
be extracted and stored into the
bundle destination directory; if
false, the zip file will be
compressed and stored in the top
level destination directory.

If the files are exploded,
they are extracted starting
in the deployment
directory. Post-install
targets can be used to
move files after they have
been extracted.

Example

<rhq:url-archive url="http://server.example.com/apps/files/archive.zip">
<rhqg:replace>
<rhg:fileset>
<include name="**/* properties"/>
</rhq:fileset>
</rhq:replace>
</rhq:url-archive>

See Also

30

7. Creating Ant Bundles

7.7.6. rhq:file

Contains the information to identify and process configuration files for the application which have token
values that must be realized. Normally, configuration files are copied directly from the bundle package into
the deployment directory. The <rhq: file> element calls out files that require processing before they should
be copied to the destination. The attributes on the <rhq: file> element set the name of the raw file in the
bundle distribution ZIP file and the name of the target file that it should be copied to.

Raw files can be included with the archive files that contain properties or configuration for the application.
These configuration files can be templatized with user-defined or system-defined tokens, like those listed in

distribution file that are templatized must be listed in the Ant recipe so that they are processed and the tokens
are realized.

Element Attributes

‘ Attribute Description Optional or Required
name The name of the raw configuration Required
file.

If the configuration file is
packaged with the Ant
recipe file inside the
bundle distribution ZIP file,
then the name must
contain the relative path to
the location of the file
within the ZIP file.

31

Deploying Applications and Content

‘ Attribute Description Optional or Required
destinationFile The full path and filename for the Required, unless destinationDir is
file on the destination resource. used

Relative paths must be relative to
the final deployment directory
(defined in the rhq.deploy.dir
parameter when the bundle is
deployed). It is also possible to
use absolute paths, as long as
both the directory and the
filename are specified.

If the destinationDir
attribute is used, the
destinationFile
attribute cannot be used.

destinationDir The directory where this file isto ~ Required, unless destinationFile
be copied. If this is a relative path, is used
it is relative to the deployment
directory given by the user when
the bundle is deployed. If this is
an absolute path, that is the
location on the filesystem where
the file will be copied. This
attribute sets the directory for the
file to be copied to. The actual file
name is set in the name attribute.

If the destinationFile

attribute is used, the
destinationDir attribute

cannot be used.
replace Indicates whether the file is Required
templatized and requires

additional processing to realize
the token values.

Example

<rhqg:file name="test-v2.properties" destinationFile="subdir/test.properties"
replace="true"/>

32

7. Creating Ant Bundles

If neither the destinationDir nor the destinationFile attribute is used, then the raw file is placed in
the same location under the deployment directory as its location in the bundle distribution.

7.7.7. rhq:url-file

As with rhq: file, contains the information to identify and process configuration files for the application
which have token values that must be realized. This option specifies a remote file which is downloaded from
the given URL, rather than being included in the bundle archive.

Element Attributes

‘ Attribute Description Optional or Required

url Gives the URL to the templatized Required
file. The file is downloaded and
installed in the deployment
directory.

For the bundle to be
successfully deployed, the
URL must be accessible to
all agent machines where
this bundle is to be
deployed. If an agent
cannot access the URL, it
cannot pull down the
archive and thus cannot
deploy it on the machine.

destinationFile The full path and filename for the Required, unless destinationDir is
file on the destination resource. used
Relative paths must be relative to
the final deployment directory
(defined in the rhq.deploy.dir
parameter when the bundle is
deployed). It is also possible to
use absolute paths, as long as
both the directory and the
filename are specified.

If the destinationDir
attribute is used, the
destinationFile
attribute cannot be used.

This attribute must give both the
path name and the file name.

33

Deploying Applications and Content

‘ Attribute Description Optional or Required

destinationDir The directory where this fileisto ~ Required, unless destinationFile
be copied. If this is a relative path, is used
it is relative to the deployment
directory given by the user when
the bundle is deployed. If this is
an absolute path, that is the
location on the filesystem where
the file will be copied. This
attribute sets the directory for the
file to be copied to. The actual file
name is set in the name attribute.

If the destinationFile
attribute is used, the
destinationDir attribute
cannot be used.

replace Indicates whether the file is Required
templatized and requires
additional processing to realize
the token values.

Example

<rhq:url-file url="http://server.example.com/apps/files/test.conf"
destinationFile="subdir/test.properties" replace="true"/>

If neither the destinationDir nor the destinationFile attribute is used, then the raw file is placed in
the same location under the deployment directory as its location in the bundle distribution.

See Also

7.7.8. rhq:audit

Sets custom audit trail messages to use during the provisioning process. This is useful with complex recipes
that perform some additional custom tasks. As the tasks are processed, the rhq:audit configuration sends
information to the server about the additional processing steps and their results.

Element Attributes

‘ Attribute Description Optional or Required

status The status of the processing. The Optional
possible values are SUCCESS,
WARN, and FAILURE. The
default is SUCCESS.

action The name of the processing step. Required

info A short summary of what the Optional
action is doing, such as the name
of the target of the action or an
affected filename.

34

7. Creating Ant Bundles

‘ Attribute Description Optional or Required
message A brief text string which provides Optional
additional information about the
action.
Example

<rhq:audit status="SUCCESS" action="Preinstall Notice" info="Preinstalling
to ${rhqg.deploy.dir}" message="Another optional message">

Some additional, optional details regarding

the deployment of ${rhqg.deploy.dir}
</rhq:audit>

7.7.9. rhq:replace

Lists templatized files, in children <rhq: fileset> elements, contained in the archive which need to have
token values realized when the archive is deployed.

Any file which uses a token that must be replaced with a real value is a templatized file. When the
provisioning process runs, the token value is substituted with the defined value. This element lists all of the
files which are templatized; the only files which are processed by the provisioning system for token
substitution are the ones listed in the <rhq: replace> element.

Example

<rhqg:archive name="file.zip">
<rhqg:replace>
<rhqg:fileset>
<include name="**/* properties"/>
</rhq:fileset>
</rhq:replace>
</rhq:archive>

See Also

7.7.10. rhq:ignore

Lists files in the deployment directory which should not be deleted when a new bundle is deployed. This only
applies to upgrade operations, not to the initial deployment of a bundle.

Once an application is deployed, instance-specific files — like data files or logs — can be created and should
be retained if the application is ever upgraded. This element, much like <rhq: replace>, contains a list of
files or directories in the instance to save.

If a file is ignored in the recipe, then the file is not deleted when the bundle is deployed. However, if a
file of the same name exists in the bundle, then the local file is overwritten.

35

Deploying Applications and Content

Do not attempt to ignore files that are packaged in the bundle. Only files generated by the applications, such
as log and data files, should be ignored by the provisioning process since they should be preserved for the
upgraded instance.

It is possible to deploy one bundle to a subdirectory of another bundle (such as Bundle A is deployed
to /opt/myapp and Bundle B to /opt/myapp/webapp1l).

In that case, set the recipe in Bundle A to ignore the directory to which Bundle B will be deployed. This
prevents updates or reversions for Bundle A from overwriting the configuration from Bundle B.

Example

<rhq:ignore>
<rhq:fileset>
<include name="logs/*.log"/>
</rhqg:fileset>
</rhqg:ignore>

See Also

7.7.11. rhq:fileset

Provides a list of files.

Two JBoss ON elements — <rhq:replace> and <rhq: ignore> — define file lists in either the archive file
or the deployment directory. This element contains the list of files.

Child Element
‘ Child Element Description
<include name=filename /> The filename of the file. For <rhq:replace>, this

is a file within the archive (JAR or ZIP) file which is
templatized and must have its token values realized.
For <rhq:ignore>, this is a file in the application's
deployment directory which should be ignored and
preserved when the bundle is upgraded.

Example

<rhq:replace>
<rhq:fileset>
<include name="**/* .properties"/>
</rhq:fileset>
</rhqg:replace>

See Also

36

8. Testing Bundle Packages

7.7.12. rhq:system-service

Points to a script file to launch as part of the provisioning process. This is usually an init file or similar file that
can be used by the deployed application to set the application up as a system service.

Element Attributes

‘ Attribute Description Optional or Required
name The name of the script. Required
scriptFile The filename of the script. If the Required

script file is packaged with the Ant
recipe file inside the bundle
distribution ZIP file, then the
scriptFile must contain the
relative path to the location of the
file in the ZIP file.
configFile The name of any configuration or Optional
properties file used by the script. If
the configuration file is packaged
with the Ant recipe file inside the
bundle distribution ZIP file, then
the configFile must contain the
relative path to the location of the
file in the ZIP file.
overwriteScript Sets whether to overwrite any Optional
existing init file to configure the
application as a system service.

startLevels Sets the run level for the Optional
application service.

startPriority Sets the start order or priority for ~ Optional
the application service.

stopPriority Sets the stop order or priority for ~ Optional

the application service.

Example
<rhqg:system-service name="example-bundle-init" scriptFile="example-init-
script"
configFile="example-init-config" overwriteScript="true"
startLevels="3,4,5" startPriority="80" stopPriority="20"/>

8. Testing Bundle Packages

Ant recipes can be complex, so it's important (and useful) to test a bundle before deploying it. JBoss ON
includes a command-line tool that can be used to test Ant provisioning bundles quickly.

8.1. Installing the Bundle Deployer Tool

37

Deploying Applications and Content

This tool can be downloaded and installed on any machine, independent of any JBoss ON server or agent.

1. Click the Administration tab in the top menu.

:;BDES Dashboard Inventory Reports Bundles Help
LY o

2. Select the Downloads in the left menu table.
3. Scroll to the Bundle Deployer Download section, and click the package download link.

A Security

.&«, Downloads
-
A Topology

4 Agent Download
W Configuration

4 Command Line Client Download
42 System Settings

@}Templates
2 Downloads
¥ Plugins

¥ Bundle Deployer Download
Link : Download Bundle Deployer rhg-bundle-de ployer zip

This is the Bundle Deployer tool. It is for use by developers and packagers of RHO bundles. This
standalone tool allows you to test your bundles and their recipes from a console,

Connectors Download

4. Save the .zip file into the directory where the bundle tool should be installed, such as /opt/.

5. Unzip the packages.
cd /opt/

unzip rhqg-bundle-deployer-version.zip

8.2. Using the Bundle Deployer Tool

This bundle deployment tool is only to test the provisioning process and deployed application. This
tool does not interact with the JBoss ON server or agent, so JBoss ON is unaware of any applications
deployed with this tool and cannot manage them.

1. Unzip the bundle distribution package to check (or copy an unzipped directory that contains the
application files). For example:

mkdir /tmp/test-bundle
cd /tmp/test-bundle
unzip MyBundle.zip

2. Open the top directory of the bundle distribution, where the deploy.xml Ant recipe file is.

3. Set the bundle deployer tool location in the PATH.

PATH="/o0opt/rhg-bundle-deployer-3.0.0/bin:$PATH"

38

9. Provisioning Bundles

4. Run the bundle deploy tool, and use the format -Dinput_properties to pass the values to user-defined
tokens in the templatized files. For example:

rhg-ant -Drhq.deploy.dir=/opt/exampleApp -Dlistener.port=7081

This installs the application in /opt/exampleApp and sets a port value of 7081.

Optionally, use the rhq.deploy. id attribute to set an identifier for the deployment. The
default is 0, which means a new deployment. When bundles are deployed in the Ul, the
server assigns a unigue ID to the deployment. Using the rhq.deploy. id attribute on a new
deployment simulates the server's ID assignment.

Using the rhq.deploy. id attribute if there is already a previous deployment allows you to
test the upgrade performance of the bundle. Performing an upgrade requires a new, unique ID
number.

9. Provisioning Bundles

9.1. Uploading Bundles to JBoss ON

All of the files associated with a distribution — the recipe, any JARs or ZIPs, and any configuration files —
have to be accessible to JBoss ON. Either the files need to be uploaded and stored in the JBoss ON
database or a URL to the packages needs to be configured.

If the files are all combined in a single ZIP file to upload, then the recipe file must be in the top level of
the package.

1. In the top menu, click the Bundles tab.

Dashboard Inventory Reports m Administration Help

2. Scroll to the bottom of the window and click the New button.

39

Deploying Applications and Content

Dashboard Inventory Reports Administration Help rhgadmin | Logout

W Bundles

Fo | Favorites vl | Message Center
@ Bundles

@ Java Petstore

Name Description Latest Version Wersions Cour

a sample bundle consisting of
Java Petstore |BossAS 6.0 running the |ava 2.0 1
Petstore application

. Repositories

Total Rows: 1 (s

3. Upload the distribution package or the recipe file.

Bundle Creation Wizard

Create Bundle

Provide A Bundle Distribution

(y Upload

Step 1 of 3

Click To Upload A Recipe File

Previous | |

There are three options on how the bundle distribution is made available to the JBoss ON server:

40

9. Provisioning Bundles

URL points to any URL, such as an FTP site or SVN or GIT repo, where there is a complete
bundle distribution file available.

Using an SVN or GIT repo allows you to pull the packages directly from a build system.

Upload uploads a single bundle distribution file (which includes both the recipe an all associated
files) from the local system to the JBoss ON server.

Recipe uploads a recipe file only, and then any additional files required for the bundle are
uploaded separately. This option includes an edit field where the uploaded recipe can be edited
before it is sent to the server.

When uploading a recipe file separately than the bundle archive files, every closing tag be
explicitly stated (meaning every entry must have the format <tag></tag>, not the
abbreviated format <tag />). Otherwise, the recipe may be incorrectly interpreted in the
text box and fail to upload to the server.

The XML must be well-formed, or the recipe fails validation and the upload fails.

Additionally, the Recipe option's upload button does not work on Internet Explorer. To
add a recipe file using this option with Internet Explorer, copy the entire recipe file and
paste it directly into the text box.

4. In the next screen, upload any associated files that were not uploaded previously. For the URL and
Upload, all of the files are usually uploaded in a single file, so there is nothing to do on this screen.
For the Recipe option, all of the files listed in the recipe must be uploaded manually at this step.

Bundle Creation Wizard

Create Bundle
My Mew App (1.0)

Upload Bundle Files

serverxml: |fexport/archives/serverxml Upload |
main.properies: J'e::pnrtfarchives.n’main.prnper Upload |
bundlezip: |fexportfarchives/bundle zip Upload | "

5. The final screen shows all of the information for the new bundle. Click Finish to save the new
bundle.

41

Deploying Applications and Content

Bundle Creation Wizard

Create Bundle
My Mew App (1.0)

Step 3 of 3

Type : Ant Bundle

Name : My Mew App

Version : 1.0

Description : thisis just an example

Files : bundle.zip
main.properies
serverxml

Cancel Previous | | Finish

9.2. Deploying Bundles to a Resource

Bundles are deployed to resources by deploying the bundle to a JBoss ON group. Any compatible group that
contains resources which support bundles (platforms and JBoss AS resources by default) is automatically
listed as an option for the destination.

For platforms, the groups cannot contain different operating systems and architectures. However, the same

bundle distribution file and properties can be used for any platform because the provisioning process will
automatically format the deployment directory and provisioned files to match the platform's architecture.

1. In the top menu, click the Bundles tab.

Dashboard Inventory Reports Administration Help

2. Scroll to the bottom of the window and click the Deploy button.

Alternatively, click the name of the bundle in the list, and then click the deploy button at the top of the
bundle page.

3. Select the bundles to deploy from the list on the left and use the arrows to move them to the box on
the right.

42

9. Provisioning Bundles

Bundle Deployment Wizard -3

Bundle Deployment

Step 1l of 6

Select Deployment Bundle

Search : Bundle Type :

MName name

Java Petstore Mo items to show.
My New App

User App

Other App

Cancel

4. Once the bundles are selected, define the destination information.

The destination is a combination of the resources the bundle is deployed on and the directory to
which is it deployed. Each destination is uniquely defined for each bundle.

To define the destination, first select the resource group from the Resource drop-down menu. The
resource group identifies the type of resource to which the bundle is being deployed, and the
resource type defines other deployment parameters. When the group is selected, then the base
location is defined. For a platform, this is the root directory. For a JBoss AS instance, it is the
installation directory. For custom resources, the base location is defined in the plug-in descriptor.

If you haven't created a compatible group or if you want to create a new group specifically for
this bundle deployment, click the + icon to create the group. Then, continue with the
provisioning process.

Set the actual deployment directory to which to deploy the bundle. This directory is a relative path to
the plug-in-defined base location.

43

Deploying Applications and Content

Bundle Deployment Wizard

Bundle Deployment

” Step 2 of 6
Linux platforms

New Destination

Destination Name : Linux platforms

Destination Description :

Resource Group : |p|atForm group | i | 0 7]

Base Lacation: @ ;:;l:rﬂfqﬁvstem: The top root directory on the

Deployment Directory : opt/webapos/| @

Previous | |

5. Select the version of the bundle to deploy. If there are multiple versions of a bundle available, then
any of those versions can be selected. There are also quick options to deploy the latest version or the
currently deployed version.

Bundle Deployment Wizard

Bundle Deployment Step 2 of 5
conf directory

Select Deployment Bundle Version

Latest Version [1.0]
Deploy Options :
(") Select Version from List:

Deployment Version | 1.0

Cancel Previous | |

6. If there are any user-defined properties, then they are entered in the fields in the next page. User-
defined properties are configured in the bundle recipe using tokens.

44

9. Provisioning Bundles

Bundle Deployment Wizard -3

Bundle Deployment Step 3 of 5
conf directory

Set Deployment Configuration

Jump to Section

W General Properties

app.ipaddress 127.0.0.0 the IP address

hittp_port 31880 the HTTP port

https.port 41582 the HTTPS port

7. Fill in the information about the specific deployment instance. The checkbox sets the option on
whether to overwrite anything in the existing deployment directory or whether to preserve any
existing files.

Bundle Deployment Wizard

Bundle Deployment Step 4 of 5
Ceployment [1] of Wersion [1.0] to [conf directory]

Provide Deployment Information

Deployment Name : Deployment [1] of Version [1.0] to [conf directory]

Initial deployment]

Deployment Description :

|:| Clean Deployment? (wipe deploy directory on destination platform)

Cancel Previous | |

8. The final screen shows the progress for deploying the packages. Click Finish to complete the
deployment.

9.3. Viewing the Bundle Deployment History

A bundle has two areas of information: one for its versions and one for its destinations (places where it is
deployed). The main bundle entry shows only those two things, the versions and the destinations. The versior
area is a way to track and control the content of the bundle, while the destinations area is a way to track and
control the process of deploying bundles.

45

Deploying Applications and Content

Bundles) 10021

¥ Bundl
undles Back to All Bundles

ﬂ |ava Petstore
= @ My New App ﬁ My New App
= 1,[:] Destinations

(@ conf directory

(@ /opt/apps/test-versions

= ﬁ]‘ufersinns Version Count : 3

11.0
h‘l __Destinations Count : 2
&l 22 :

h_] 3.0 I Versions || Destinations

Description : thisis just an

ﬂ User App

Bundle Versions

ID | Version Mame
10021 1.0 My New App
10024 2.2 My New App
10041 3.0 My New App

Figure 4. Bundles, Versions, and Destinations

Selecting a version under the main bundle entry shows its recipe (on the Summary tab) and a list of all of the
files associated with that particular version (on the Files tab). The Deployments tab shows every
destination, with timestamps and comments, that that particular version of the bundle has been deployed to.

uies) mynewsss) versions) 1o

W Bundl
uneies Back to Bundle: My New App

[Java Petstore

B § My New App My New App: 1.0
= q’_j Destinations

{8 conf directory | Summar{ ” Deployments || | Files
[/homefdiackey/co @ Bundle Deployments

‘Lj Ve‘rsions ID | Deployment Name Bundle Versio Description Status Deployment Time
5'_' Lo 10012 Deployment [2] of Version [1.0] ta 1.0 v SUCCESS /772010 17:49
h'_l 22 10011 Deployment [1] of Version [1.0] to 1.0 Initial deployrment. i, FAILURE FIT2010 17:48

Oth:hr-lA:: 10021 Deployment [1] of Version [1.0] to 1.0 testing v’ SUCCESS 7/7/2010 18:25

Figure 5. Deployment Information for a Version

46

9. Provisioning Bundles

A destination entry shows only a list of versions that have been deployed to that destination. In a sense, the
destination area is the best areas to track the audit history of an application. Each deployment of a bundle
version to a destination is listed below the destination, with the live version marked. Reversions are also

marked, showing what version the deployment was downgraded to.

% Bundl
Hneles Back to Bundle: driftBundle
= G driftBundle
= (J Destinations m drift destination
= [drift destination Tags: @
|9 (live) Deployment [1] of Vers
Summary
|4 Deployment [1] of Version [1.|
= Eflnew-test Bundle : driftBundle 2 Deploy
i Created : Friday, May 11, 2012 5:40:03 PN
|3 (live) Deployment [1] of Vers y, May 11, & Revert
= 'L] VErsions Group : Linux Group - Thu May 10 15:10:28 EDT 2012
[. * Purge
@ o Base Location : /optidrift i
@ 20 Deploy Directory : . [Delete

Description : bundle to remediate drift

Bundle Deployments

Deployment Mame Description Bundle Version Deployment Time Status
Deployment [1] of Version
[2.0] to [drift destination]. test 2.0 Mfl" ;?,ﬁ’;j o
Upgrade from Version [1.0] T
Deployment [1] of Version May 16, 2012

test 10 11:35:30 PM o

[1.0] to [drift destination]

Figure 6. Deployment History for a Destination

Along with showing the history of deployments and updates, the destinations area is the place where new
versions can be deployed or reverted most directly.

9.4. Reverting a Deployed Bundle

Ant bundles can be rolled back to a previous version number or a previous deployment of that bundle. This
provides some extra protection and flexibility when deploying and managing applications, particularly for
testing and production systems.

1. In the top menu, click the Bundles tab.

Dashboard Inventory Reports m Administration Help

2. In the left navigation window, expand the bundle node, and then open the Destinations folder
beneath it.

3. Select the destination from the left navigation.

4. In the main window for the destination, click the Revert button.

47

Deploying Applications and Content

Back to Bundle: Example App
F platform
Tags: v2.4 myapp (]
— Summary
Bundle : Example App | # Deploy |
Created : Thursday, September 01, 2011 5:53:17 PM
| & Revert |
Group : plat group
Base Location : Root File System | a Purge |
Deploy Directory : home/dlackey! | [# Delete |
Description :
E] Bundle Deployments
Deployment Mame Description Bundle Version Deployment

5. The next page shows the summary of the current deployment and the immediate previous
deployment, which it will be reverted to.

Bundle Revert Wizard

Bundle Revert Step 1 of 3

Revert Deployment Confirmation

Live Deployment:

Name : Deployment [2] of Version [3.0] to [testing]
Description : Deployment [2] of Version [3.0] to [testing]
Bundle

Version : L

Previous Deployment:

Name : Deployment [1] of Version [3.0] to [testing]
Description : Deployment [1] of Version [3.0] to [testing]

Version : 30

Reverting Live Deployment to Previous Deployment. Click 'Next' to continue...

Cancel

48

9. Provisioning Bundles

6. Add any notes to the revert action. Optionally, select the checkbox to clean the deployment directory
and install the previous version fresh.

Bundle Revert Wizard

Bundle Revert Step 2 of 3
Deployment [3] Revert To: Deployment [1] of Version [3.0] to [testing]

Provide Revert Information

Revert Deployment Name : Deployment [3] Revert To: Deployment [1] of Version [3.0] to [testing]
[REVERT From]
Deployment [2] of Version [3.0] to [testing]

Revert Deployment Description : [REVERT To]
other

Clean Deployment? (wipe deploy directory prior to the revert deploy)

7. Click Finish on the final screen to complete the rollback.

9.5. Deploying a Bundle to a Clean Destination

A bundle can be deployed to a destination where there may already be an application, files, or even a
previous bundle deployment. When deploying a new bundle, there are two options for how the provisioning
process handles the update:

Preserve the existing files and directories, with appropriate upgrades, according to the recipe

Completely overwrite the existing files and deploy the bundle in an empty directory

To deploy the bundle in a clean directory, then select the Clean Deploy checkbox when running through

Clean Deployment? (wipe deploy directory on destination platform)

9.6. Purging a Bundle from a Resource
Purging a bundle removes all of the files associated with the bundle from all of the target resources. However,

this does not remove the bundle from the JBoss ON database, so it can be easily re-deployed to the same
resources later or to other resources.

49

Deploying Applications and Content

The exact files that are purged mirrors how the bundle manages the deployment directory. By default,
purging includes deleting the deployment directory (manageRootDir=true). If the deployment
directory is used by other applications — like an app server deploy/ directory — then those other
applications or files will also be deleted. After purging, there is no live deployment and nothing to
revert.

1. In the top menu, click the Bundles tab.

Dashboard Inventory Reports Administration Help

2. In the left navigation window, expand the bundle node, and then open the Destinations folder
beneath it.

3. Select the destination from the left navigation.

4. In the main window for the destination, click the Purge button.

Back to Bundle: Example App

platform

Tags: v2.4 myapp (]

— Summary
Bundle : Example App | 2 Deploy |
Created : Thursday, September 01, 2011 5:53:17 PM
| % Revert |
Group : plat group
Base Location : Root File System | 3 Purge |
Deploy Directory : home/dlackey/ | [Delete |
Description :
Hj Bundle Deployments
Deployment Mame Description Bundle Version Deployment

5. When prompted, confirm that you want to remove the bundled application and configuration from the
target resources.

9.7. Upgrading Ant Bundles
The bundle upgrade process decides whether to upgrade (meaning, overwrite) files within the application's

deployment directory by comparing the MD5 hash codes on the files. There are several different upgrade
scenarios:

50

9. Provisioning Bundles

If the hash code on the new file is different than the original file and there are no local modifications, then
JBoss ON installs the new file over the existing file.

If the hash code on the new file is different than the original file and there are local modifications, then
JBoss ON backs up the original file and installs the new file.

If the hash code on the new file and the original file is the same and there are local modifications on the
original file, then the provisioning process preserves the original file, in place.

If there was no file in the previous bundle but there is one in the new bundle, then the new file is used and
any file that was added manually is backed up.

Backed up files are saved to a backup/ directory within the deployment's destination directory. If the original
file was located outside the application's directory (like, it was stored according to an absolute location rather
than a relative location), then it is saved in an ext -backup/ directory within the deployment's destination

directory.

If a file is ignored in the recipe, then the file is left unchanged. Never ignore files packaged in the
bundle. Only files generated by the applications, such as log and data files, should be ignored by the
provisioning process since they should be preserved for the upgraded instance.

If a completely fresh installation is required, then it is possible to run a clean deployment. This is

9.8. Deleting a Bundle from the JBoss ON Server

Deleting a bundle removes all of its recipes and associated files from the JBoss ON database. The deployed
applications or configuration remain intact on the target resources.

1. In the top menu, click the Bundles tab.

Dashboard Inventory Reports m Administration Help

2. In the left navigation window, expand the bundle node, and then open the Destinations folder
beneath it.

3. Select the destination from the left navigation.

4. In the main window for the destination, click the Delete button.

51

Deploying Applications and Content

Back to Bundle: Example App

m platform

Tags: v2.4 myapp 2

Summary
Bundle : Example App ;-:ij Deploy
Created : Thursday, September 01, 2011 5:53:17 PM
‘? Rewvert
Group : plat group
Base Location : Root File System 3 FLs
Deploy Directory : home/dlackey/ I Delete
Description :
Iﬁl Bundle Deployments
Deployment Mame Description Bundle Version Deployment

5. When prompted, confirm that you want to delete the bundle.

10. Managing Resource-Level Content Updates

JBoss Operations Network can be used to store and deploy content to resources. This can be done to apply
updates and patches (as with JBoss AS servers) or to set up repositories used for provisioning applications
and deploying custom software.

10.1. About Content

Content for a resource can be almost anything, such as WAR and EAR files, configuration files, or scripts.
JBoss ON provides a central framework to associate content, repositories, and resources in the inventory.

10.1.1. What Content Is: Packages

A package is anything that is installed on a platform or for a server or application. This can be a JAR file or
even a configuration file. A package simply provides some form of content for a resource. Packages can be
sent to a resource through a JBoss ON-recognized repository or simply by uploading the package to the
JBoss ON server and then sending it to the resource.

A resource can only be associated with or manage content if the resource plug-in identifies that content is
available and the type of content that is supported. For example, application and web servers like JBoss
AS/EAP and Tomcat support EAR, WAR, and JAR files as content; but a database like PostgreSQL does not
support any content types.

In a sense, content is both the software bits, scripts, or configuration files associated with a resource and also
a resource itself. When content is added to a resource, it becomes a child resource in the JBoss ON
hierarchy — but it can be managed, reverted, updated, or replaced by uploading new software bits. The
parent resource (such as the application server) supports content; the child resource is a content backed
resource.

Content can be added to a resource either by manually creating a child resource (and uploading the

52

10. Managing Resource-Level Content Updates

packages) or by adding the package to a content source and deploying it to the parent resource. The agent
can also actively check for new content as part of its discovery scan and add any discovered content to its
inventory. The agent's recurring package discovery scan has a default interval of 24 hours, as with the
services scan.

10.1.2. Where Content Comes From: Providers and Repositories

Content sources are developers and distributors of content. Sources can be external third party software
developers or internal development teams that create custom content. The type of content available from
sources includes both software packages (such as configuration scripts) and updates (version upgrades,
patches, and errata).

A repository is a user-defined collection of software packages, which can come from one or multiple content
sources. A repository may contain packages for an application or family of applications or for a specific
purpose, like repositories for laptop configuration and repositories for installing web servers.

Repositories aren't siloed, separate containers for packages; they are essentially views that show a subset of
available packages. All packages are stored in the JBoss ON database. A JBoss ON repository is a way of
grouping those packages, both to make it easier to administer with resources and to provide a mechanism of

Resources can be subscribed to content repositories that are configured in JBoss ON, which provides a
smooth and reliable mechanism for delivering consistent, administrator-configured content to resources.

10.1.3. Package Versions and History

Packages are versioned within JBoss ON itself. When a package is added to a resource or content source,
the installer prompts for a version number; this is used as the Ul display number.

This display version number is not required; if it is not given, then the JBoss ON server derives a number
based on a calculated SHA-256 checksum for the package and the specification version and the
implementation version in the META-INF/MANIFEST . MF file (for EARs and WARS).

SPEC(IMPLEMENTATION)[sha256=abcd1234]

=]
[

ot]
, Lrsample.war (//localhost/'sample) v 5
LY Summary Inventory F Alerts |&=| Monitoring | (*/) Operations -—:_,_ Drift @ Content
Deployed Mew Subscriptions Histary
Filter: 'P:;t?rﬁlge Type Package Version Filter:
Al = W]
Hame Version Type | Installation Date
]|
1.0.0-GA (1) WAR |
[| sample.war [Sha256-67a25301 {5041 22dc58 1507 f9cidbc83c 4030aa3lcheb356acaldeeb18280] | File | 0 o0 TM EST
Total: 1

SPEC [sha265=abc]

Figure 7. Package Version Numbers

For example, for a META-INF/MANIFEST . MF file with these version numbers:

Manifest-Version: 1.0

53

Deploying Applications and Content

Created-By: Apache Maven
Specification-Title: My Example App
Specification-Version: 1.0.0-GA
Specification-Vendor: Example, Corp.
Implementation-Title: My Example App
Implementation-Version: 1.x
Implementation-Vendor-Id: org.example
Implementation-Vendor: Example, Corp.

This creates a version number for the package like this:

1.0.0-GA(1.x)[sha256=abcd1234]

If the META-INF/MANIFEST . MF file does not contain one of the specification version or the implementation
version, then only one is used. For example, if only the implementation version is given:

(1.x) [sha256=abcd1234]

If no version number is given, then the SHA is used as the identifier. (The SHA is used as the identifier
internally, anyway.)

[sha256=abcd1234]

For exploded WARs and EARs, the calculated SHA-256 checksum is added to the MANIFEST . MF file. This
allows the agent to check the file during discovery scans to verify the version of the package quickly.

Manifest-Version: 1.0
Created-By: Apache Maven
RHQ-Sha256: 570f196c4a1025a717269d16d11d6f37

For unexploded (archived) content, the checksum is recalculated with every package discovery scan and
compared to the checksum in inventory.

Exploded WARs and EARs can be deployed on JBoss and Tomcat servers. Because the content
deployment process edits the META-INF/MANIFEST . MF file, the deployed content is not exactly
identical to the content packages that were uploaded.

A clear versioning system makes it possible to handle package lifecycles in a clear and effective way.
Updated content can be tracked as it is deployed, updates can be applied consistently, and packages can be
reverted to a previous version. The same repository can also contain different versions of the same package,
making it possible to apply different versions to different resources.

Package versions from different content sources can be associated with the same repository.

54

10. Managing Resource-Level Content Updates

Whenever a package is installed on a resource, it is recorded in the content history for the resource and the
package. Since there can be multiple files associated with a single package, then there can be multiple files
recorded in the content history, all associated with that package version.

Versioning only matters to content knit with a resource, like EARs and WARs. Other types of content
stored in content sources (like CLI scripts used for alerting) do not track versions. Content deployed
in bundles handles versioning through the bundle definition, not the content system.

10.1.4. Authorization to Repositories and Packages

There are a lot of reasons that users need to be able to access content in repositories. The most common is
to manage packages on resources, but there are other reasons, too, like using the server CLI scripts in a
repository to respond to alerts.

JBoss ON provides a way to balance the need for clear and simple access to content with the need to protect
private or sensitive information. JBoss ON defines clear authorization rules for content repositories.

Every user has the ability to create repositories and to upload packages to them — regardless of the
permissions for that user.

When a repository is created, there are settings which control access to them:

Owner sets write access to a repository. It assigns the repository to belong to a specific user. If no user is
specified, then only users with the manage repositories permission have the right to access those
repositories.

Private sets read (download) access to the repository. It sets whether the repository can be viewed by
anyone or only by the owner and users with the manage repositories permission. Public repositories are
viewable by everyone, regardless of the owner.

Basic Details

MName:

Description:

Private:

Owner:

Figure 8. Repository Ownership and Access Settings

55

Deploying Applications and Content

Repo managers (users with the manage repositories permission) can change the ownership and privacy
settings of a repository. Users without the manage repositories permission can change the privacy settings
but they cannot change the ownership; the repository is always owned by them or managed by the repo
manager.

Be very careful when switching public repositories to private. Any operations which relied on those
repositories, such as running server CLI scripts in response to alerts, will no longer work if the
privileges of the user are insufficient to access the repository.

JBoss ON uses the repositories access control permission to define users with administrative access to
repositories. Any user with that permission can manage any configured repository, regardless of who the
repository's owner is. Repositories without an owner can only be managed by users with the repositories
permission. Lastly, only users with this permission can associate a content source with a repository; all other
users must add packages to the repository manually.

10.2. Creating a Content Source

A content source is whatever mechanism supplies software packages to JBoss ON and, through JBoss ON's
content management, to resources. JBoss ON supports several different types of content sources.

Table 4. Types of Content Sources

Source Type Description Requires Credentials?

Remote URL Downloads from a remote URL. No
This can use a couple of different
protocols, such as FTP.

HTTP Similar to the Remote URL Optionally allows credentials to
content source, connects over a log into the given HTTP site or the
network connection to the source. proxy server [a]
This uses specifically the HTTP
protocol. The HTTP content
source can also connect to an
HTTP proxy.

HTTPS is not supported.

JBoss Customer Portal Feed Similar to the Remote URL Yesla]
(RSS) content source, except that it
works specifically with the
Customer Portal RSS feed for
JBoss cumulative patches.

Local Disk Connects to a single local No
directory (on the local system or
NFS-mounted) and looks for
packages of the specified type
and architecture to download.

[a] Any passwords given in the content source configuration are obfuscated in the JBoss ON database.

10.2.1. Creating a Content Source (General)

1. In the top menu, click the Administration tab.

56

10. Managing Resource-Level Content Updates

2. In the Content menu table on the left, select the Content Sources item.

3. Below the list of current content sources, click the CREATE NEW button.

= . ’
‘. JBoss Dashboard Inventory Reports Bundles m Help
O @ e

A Security
~ Topology
4 Configuration
V¥ Content

@ Content Sources
[Repositories

rhgadmin | Legout

[F 0 |Favorites | | Message Center

Content Sources

|:| Name Date Created Date Modified Lazy Load? Download Mode Description
B/L/11, 6:47:17 | &1L, 547:17
[| yum-ge P, EDT PM, EDT true FILESYSTEM
CREATE NEW DELETE SELECTED SYNC SELECTED Total: 1

5. When the content source type is selected, a form automatically opens to fill in the basic details and
configuration for the resource. These basic details identify the content source in the JBoss ON
server and are the same for each content source type, while the configuration is specific to the

content source type.

Content Source Type

Name

Remote URL Content Source
Local Disk Storage Content Source

Yum Repository Content Source *
HTTP Content Source

De scription
This content source retrieves packages from a remote system identified by a URL.

This content source retrieves packages from a local file system. If deployed in an HA
environment, this must be on a distributed file system that all servers can access.

This content source retrieves packages from a local or remote Yum repository .

This content source retrieves packages from a remote HTTP server, possibly wia a proxy.

Basic Details

Name: |yum-ge

Description:

Sync Schedule: [003%+?

Lazy Load:
Download Mode: | FILESYSTEM &
Configuration

* denotes & required field.

Name Unset | Value Description

Location * http:,’,.'downIoad.fedomproject.orgfpubfepelftestingf5f$basezl The URL or
path to the
fum
repository

Give a unique name and optional description for the content source provider.

The schedule sets how frequently the content in the JBoss ON database is updated by the

The lazy load setting sets whether to download packages only when they are installed (Yes) or if

all packages should be download immediately.

57

http://www.opensymphony.com/quartz/wikidocs/CronTriggers Tutorial.html

Deploying Applications and Content

The download mode sets how the content is stored in JBoss ON. The default is DATABASE,
which stores all packages in the JBoss ON database instance. The other options are to store the
packages on a network filesystem or not to store them at all.

6. Fill in the other configuration information for the content source. The required information varies
depending on the content source type. This is going to require some kind of connection information,
such as a URL or directory path, and possibly authentication information, like a username and
password.

Any passwords stored for content sources are obfuscated in the JBoss ON database.

10.2.2. Enabling the Default JBoss Patch Content Source

For JBoss patches, the default content provider connects the JBoss ON server to the cumulative patches
provided by the JBoss Customer Service Portal. The default repository associated with the content provider
is where the metadata about the patches and the patches themselves are stored within JBoss ON.

The JBoss ON agent is the entity which actually executes the patching process on a resource. The agent is
informed of updates, pulls the information from the server, and then updates the local JAR and class files
within the managed JBoss instance. The patching process runs independently of any server configuration
profile or base configuration.

JBoss products can receive and apply patch updates through the JBoss Customer Portal feed in JBoss ON.
The supported products include:

JBoss Enterprise Application Platform (EAP)
JBoss Enterprise Web Platform and Web Services (EWP and EWS)
JBoss Enterprise Data Services (EDS)

JBoss SOA Platform (SOA-P)

A Customer Portal feed is only available for a product or a specific version of a product if there is a
patch in the Customer Portal for that product. JBoss ON depends on the JBoss Customer Portal to
provide patch information.

Perform patch installations during off hours or scheduled maintenance periods.

1. Inthe Administration tab in the top menu, open the Content menu and select the Content
Sources item.

2. Click the JBoss Customer Portal Patch Feed source.

58

10. Managing Resource-Level Content Updates

| —— o —_ = | == 1
e

fﬂnﬂ Overview Resources Groups Administration Help

[F L0

Content Sources

Content Sources

|:| Mame Date Created Date Modified Lazy Load?

3110, 41640 PM, 310, 41640 PM,

EDT EDT LS

[] | JBoss CSP Paich Feed

CREATE NEW DELETE SELECTED SYNC SELECTED

Go To All Repositories Vie

3. Click the Edit button at the bottom of the Customer Portal Feed Settings areato modify the
content source.

4. Fill in the required connection information.

Content Sources > JBoss C5P Patch Feed
Basic Details

Type: |BossASPatchSource

Name: ||Boss CSP Patch Feed]

an R55 feed published by [+
the |F
Description: |5, ' (c5p) website which E

provides a list of all |Boss |~

Synchronization Schedule: [0 ool1*? l

Lazy Load:

Download Mode: | DATABASE &

Creation Date: 3/31/10, 4:16:40 FM, EDT
Last Modified Date: 3/31/10, 4:16:40 PM, EDT
Last Download Error: None

* denotes a required fiald

2

Name Unset | Value Description

Feed URL * [hﬁps:#access.redhat.comjjbossnetwork,n'restrictedﬂeedjsoftware] URL of the RSS feed.

Username O |j5mith | Username used to log into the CSP.

Password O | | Password used to log into the CSP.

Active * @ O Indicates if this instance should go
Yes Mo out and check the feed for

packages.

5

“save] cance |

The Customer Portal username and password.

59

Deploying Applications and Content

The Customer Portal password is obfuscated when it is stored in the JBoss ON database.

The URL for the content source

The activation state. This should be Yes to enable automatic patching.

Most of the default settings, such as the schedule, can be kept.

Keep the Lazy Load checkbox activated, or all patches defined in the RSS feed, 1 GB of
data, is preemptively downloaded by the JBoss ON server.

5. Click Save.

6. Optionally, use Synchronize button to force the content source to pull down the latest RSS Feed

and synchronize it with the local data. The history of synchronization attempts is listed in the
Synchronization Results section.

. Perform any manual steps to complete the patch installation.

Some patches require additional, manual changes, such as editing an XML configuration file. There
are several different situations that require manual intervention:

The file to be patched is not present in the configuration.
There are files that need to be removed manually.

Configuration files, such as XML or Java properties files, require patches that need to be applied
manually.

Seam is being used and must be patched manually.

Basically, admin intervention is required to resolve anything that is outside the default configuration,
like merging in custom configuration or updating custom libraries.

JBoss ON performs the standard steps required to apply patches to a JBoss instance, but it does not
(and should not) have any way to parse and then merge changes in the configuration. JBoss ON
does not attempt to determine, value, and apply custom changes. That sort of heuristic is best
performed by an administrator.

Any manual steps which are required to complete the patch are listed in the content update summary
after the patch is applied.

10.2.3. Creating a Content Source (Local Disk)

synchronization to work.

60

https://access.redhat.com/jbossnetwork/restricted/feed/software.html?product=all&downloadType=all&flavor=rss&version=&jonVersion=2.0

10. Managing Resource-Level Content Updates

A single content source can be associated with multiple repositories, and this is true for local disk
configuration. For local disk providers, the content source defines a root directory, and then the repository
name identifies the subdirectory which contains the packages.

- S

s lexportimyContentSource 2

l I

2 & @

rpms jars ears-;l
I

fexport/myContentSource/ears

i

fexport/myContentSource/|ars

.\\ fexport/myContentSource/rpms /.

e —

Figure 9. Local Disk Structure

This structure allows multiple repositories to use the same base directory in the content provider.

JBoss ON derives the information for the local disk based on the combination of the content source
configuration (root directory) and the repository configuration (subdirectory). For the sync to work, the
repository must have the identical name as the subdirectory which contains the packages.

Each subdirectory name must be unique through the hierarchy of the root directory tree. For example,
there should not be directories named /export/myContentSource/test and
/export/myContentSource/subdir/test.

Having two directories, even at different levels, with the same name can result in unpredictable
package sync behavior.

To set up the local disk provider:

1. Set up the content source as in Section 10.2.1, “Creating a Content Source (General)”.

61

Deploying Applications and Content

If the subdirectories to sync already exist, then the content source configuration prompts for
possible repositories to associate with the local disk provider based on the subdirectory
names.

2. Enter the root directory path.

Basic Details

Description:

Sync Schedule: 003 **?

Lazy Load:
Download Mode: H
Configuration
* denctes 2 required fiaidl
Name Unset | Value Description
Root Directory * Jexport/myContentSource| T3
directory
that contains
all content
that is to be
served by

this content
source. In an
HA
environment,
this must be
ana
distributed
file system
that all
SErVErs can

a0pess,

3. Enter the content package information, which the JBoss ON server uses to identify the packages to
pull into the content storage.

62

10. Managing Resource-Level Content Updates

Configuration
* denctes 3 required feld,
i
Namea Unset | Value Diascription
Package Source Enabled * . . Indicates i this
Yes MNa instance of the

plugin should act
a5 a package
source

Filename Filtar * = A regulzr
exprassion that
identifies a file of
this package type
(e.g. " Fjar,

Package Type Hame *

Architecture Name *

Resource Type *

jboss-as-7 - DomainDeployment - File

noarch [=]

jboss-as-7 - JBossAST Host Contraller

=686 rpmsT)

The name that
identifies the kind
of package this
type represents
(e.g. "sar’, 'rpmi’)

The specific
hardware
architecturs this
type of package
can be deployed
an. If there 5 no
specific
architecturs
required, use
‘noarch’. (e.g.
688", "amded’)
The name of the
resource type on
wrhich this
package can be
deployed. This is
the resourcs type
name a5 defined
in the agent
plugin. {=.g.
"Linw, "JBossAS
Server’)

k=)

4. Create the repository, as in Section 10.3.1, “Creating a Repository”, and give it the name of the

subdirectory to use.

Each subdirectory name must be unique through the hierarchy of the root directory tree. For
example, there should not be directories named /export/myContentSource/test and
/export/myContentSource/subdir/test.

Having two directories, even at different levels, with the same name can result in
unpredictable package sync behavior.

5. Create the subdirectory on the local system, and copy in the packages which should be added to the

JBoss ON content system.

10.3. Managing Repositories

A repository is essentially a mapping between the data in a content source and specific resources in the

JBoss ON inventory.

63

Deploying Applications and Content

10.3.1. Creating a Repository

64

1. In the top menu, click the Administration tab.
2. In the Content menu table on the left, select the Repositories item.

3. Below the list of current repositories, click the CREATE NEW button.

-t
‘.-BOS Dashboard Inventory Reports Bundles Help rhgadmin | Legout
Y Yo

PO Faworites | |Message Center
A Security Re positories

Topolo
sk [wame pate Created Syne Status Deseription
N R AT 54111, 2:46:39 PM,

[] Java Petstore EDT

NONE
¥ Content

B/L/11, 64823 PM,
[} Content Sources [0 new-repo ECT SUCCESS

G Repositories
CREATE NEW IMPORT DELETE SELECTED SYNC SELECTED Total: 2

4. Fill in the name and a description. Additionally, set the authorization restrictions for the repository by

setting an owner for the repo and whether it is public or private.

Only users with the repositories permission can set an owner. All repositories created by users
without the repositories permission automatically belong to that user.

L
:;B()SS Dashboard Inventory Reports Bundles Help
LY Lo

A Security Basic Details

~
Topology Marme: |new-repo

Configuration

W Content Description:

@ Content Sources

[} Repositories Private:

[“save]~ cancer |

. Click Save.
. On the Repositories page, click the name of the new repository in the list.

. Optional. To change the default synchronization schedule, click the Edit button and enter a new

schedule, in a cron format, in the Sync Schedule field.

repository.

10. Managing Resource-Level Content Updates

You can search for specific resources or types of resources and subscribe multiple resources
at once.

10.3.2. Linking Content Sources to Repositories

There are a couple of ways to map the repositories to the right content sources. A repository can be
subscribed to multiple content sources by editing the repository configuration. A content source can be added
to multiple repositories simultaneously by importing the content source.

10.3.2.1. Associating Content Sources with a Repository
1. In the top menu, click the Administration tab.
2. In the Content menu table on the left, select the Repositories item.

3. Onthe Repositories page, click the name of the repository in the list.

-t
‘.-BDS Dashboard Inventory Reports Bundles Help rhgadmin | Legout
Y Yo

P‘O Faworites | |Message Center
Security Re positories

Topolo
sk [wame pate Created Syne Status Deseription
N R AT 54111, 2:46:39 PM,

[] Java Petstore EDT

NONE
¥ Content
B/L/11, 64823 PM,
@ Content Sources [| new-repo ECT SUCCESS
@ Repositories
CREATE NEW IMPORT DELETE SELECTED SYNC SELECTED Total: 2

4. Inthe Content Sources section of the repository's details page, click the Associate button to
add existing content sources to the repository.

65

Deploying Applications and Content

Basic Details

Name: new-repo
Description:
Private: true
Owner: rhgadmin
Sync Schedule: 003 **7
Creation Date: 6/1/11, 6:48:23 PM, EDT
Last Modified Date: 6/1/11, 7:32:12 PM, EDT
Synchronization Status: NONE
Raw Percentage: 0
Synchronization Progress: Not Synching
Synchronization Results:

EDIT SYNCHRONIZE

Content Sources Associated with This Re pository

D Name Date Created Date Modified Lazy Load? Download Mode Description

ASSOCIATE... DISASSOCIATE SELECTED Total: O

Resources Subscribed To This Re pository

I:‘ REesoUrce Location version Description

Linux

L Linwx Linux Server 1 2615164151 el5

Linux Cperating System

SUBSCRIBE... UNSUBSCRIBE SELECTED Total: 1
Packages
Fiker By: | co_

5. Select checkboxes next to the content sources to associate with the repository.

Content Sources Associated With This Repository

D Name Date Created Date Modified Lazy Load? Description

DISASSOCIATE SELECTED Total: 0

Available Content Sources

D Name Date Created pate Modified Lazy Load? Description
&1, 54717 PM, | /1711, 6:47:17 PM,
yum-ge EDT EDT i

ASSOCIATE SELECTED Total: 1

6. Click the ASSOCIATE SELECTED button.

10.3.2.2. Importing a Content Source into Repositories

If the same content source will be associated with multiple repositories, the content source can be imported
into all of them simultaneously.

1. In the top menu, click the Administration tab.
2. In the Content menu table on the left, select the Repositories item.

3. Onthe Repositories page, click the IMPORT button.

66

. : BOSS-

Dashboard

A Security
Topology
A Configuration
¥ Content

G Content Sources
G Repositories

Inventory Reports

Re positories
[wame

[] Java Petstore

[new-repo

CREATE NEW

Bundles

Date Created

5/4/11, 2:46:39 PM,
EDT

B/L/11, 64823 PM,
EDT

IMPORT

Administration

DELETE SELECTED

10. Managing Resource-Level Content Updates

Help rhgadmin | Legout

P 0 | Fawvorites | |Message Center

Sync Status Description
NONE
SUCCESS

SYNC SELECTED Total: 2

4. Select the radio button by the name of the content source to import.

5. When the content source is selected, then a list of available repositories for that content source
automatically opens. In the Available repositories.... area, select the checkbox by the
name of each repository to associate with the content source.

Content Sources

=
‘2 yum-ge

Available repositories provided by yum-ge

I:‘ Name

[] |dev.repo

[|prod-web.repo

IMPORT SELECTED

6. Click the IMPORT SELECTED button.

Total:2

repository is a user-defined view of a subset of packages stored in the JBoss ON database. A
repository is not a separate container.

When adding a package to one repository through the Ul, it may fail with an error claiming that the
package already exists, even if the package isn't in the specified repository. This is because a
package with the same name exists in another repository and it causes a collision in the database.

It is currently not possible to have the same package in two repositories or to move or share a
package between repositories.

It is possible to work around this issue by using CLI scripts. The JBoss ON CLI scripts store the
username of the person uploading the package in the package version data automatically. If a person
has access to all of the packages one has uploaded, then it is possible to extrapolate which repository
contains the package and then manage the package there.

10.3.3. Associating Resources with the Repository

Content can only be sent to a resource if that resource is first associated with a repository. A resource-
repository association can be made by editing the resource entry or by editing the repository entry.

10.3.3.1. Adding Resources to a Repository

67

Deploying Applications and Content

1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select the Repositories item.

3. Onthe Repositories page, click the name of the repository to edit.

‘:.:;BOS Dashboard Inventory Reports Bundles Help rhgadmin | Legout
sy Be vt
P' 0 | Fawvorites | |Message Center

Security Re positories
~ Topology [name Date Created Syne Status Deseription
: Enn:lgliratmn [Java Petstore Eér;{rll, 24539 PM, NONE

onten

(0§ Content Sources [new-repo E%frn' BAB2IPM. | o cepss

G Repositories CREATE NEW IMPORT DELETE SELECTED SYNC SELECTED Total: 2

4. In the Resources section, click the SUBSCRIBE button to add resources to the repository.

Basic Details

Name: new-repo
Description:
Private:

Owner:

true
rhgadmin
QO3+**?
6/1/11, 6:48:23 PM, EDT
Last Modified Date: 6/1/11, 7:32:12 PM, EDT
Synchronization Status: NONE
Raw Percentage: 0
Synchronization Progress:
Synchronization Results:

EDIT SYNCHRONIZE

Content Sources Associated with This Re pository

Sync Schedule:
Creation Date:

Not Synching

D Name Date Created Date Modified Lazy Load? Download Mode Description

ASSOCIATE... DISASSOCIATE SELECTED Total: O

Resources Subscribed To This Re pository

I:‘ Resource Location Version Description

Linux

L Linwx Linux Server 1 2615164151 el5

Linux Cperating System

SUBSCRIBE... UNSUBSCRIBE SELECTED Total: 1
Packages
Fiker By: | co_

5. Select checkboxes next to the resources to associate with the repository. It is possible to filter the list
of resources by name or by type.

68

10. Managing Resource-Level Content Updates

Resources Subscribed To This Repository

D Resource Location Wersion Cescription

) R Linux Linux Operating
L] Linux Linux Server 1 7618164151 85 | System

UNSUBSCRIBE SELECTED Total: 1

Available Resources

Search: [] [Ser\rer :]u
RESOUTCE Location Version Cescription
L]
Apache HTTP Server) . Apache Web
0.0.0.0:80 Linux Linux Server 1 2.23 Server
the local file used
) N far mapping
[] | Cohbler Cobbler Linux Linux Server 1 modules and
setttings
) - The cron
1 | cron Linux Linux Server 1 canfiguration
)) . Configuration for
[] | Postfix Server server Linux Linux Server 1 Postix Server
Samba Server) R Configuration for
[| server.samba Linux Linux Server 1 Samba Server
[] | RHQ Agent Linux Linux Server 1 4.0.0-SNAPSHOT E:‘S_I:‘"a”agemem
SUBSCRIBE SELECTED Total: 13

6. Click the SUBSCRIBE SELECTED button.

10.3.3.2. Managing the Repositories for a Resource

A few resource types, like platforms, have content tabs in their configuration which allows them to control
their content subscriptions.

1. Select the resource type in the Resources menu table on the left, and then browse or search for the

resource.
wt*
o JBoss Dashboard Inventory
." =y Feel Hat
W Resources Inve

Discwery Queue
t,[JAII Resources
IE_lF'Iatfnrrns From

‘ﬂ? SEMVErS

iﬂ Services

.]:'E Unavailable Servers

2. Click the Content tab of the resource.

3. Open the Subscriptions subtab.

69

Deploying Applications and Content

4. The Available Repositories section has a list of repositories that the resource isn't subscribed
to. Click the checkboxes by all of the repositories to subscribe the resource to.

» ELinux 1 v &2
Tags: ()

L0 Summary Inventory P Alerts Manitoring E| Events || (*) Operations @ Content

Deployed Mew Subscriptions History

Current Resource Subscriptions

|:| Name Description Package Count Created Last Modified
REMOVE SUBSCRIPTIONS Totak 0
Available Repositories
D Name Description Package Count Created Last Modified
6/3M1, 412:45 PM, | 6/8M1, 4:12:45 PM,
new-repo 0 EOT EOT
ADD SUBSCRIPTIONS Totalk 1

5. Click ADD SUBSCRIPTIONS.

The same process can be used to unsubscribe a resource from content repositories.
10.4. Uploading Packages

Packages can be pulled from a content source, but individual packages can also be uploaded directly to the

JBoss ON server. A variety of package types are supported, including JAR files, basic scripts, JBoss ON CLI
scripts, and patches.

1. In the top menu, click the Administration tab.
2. In the Content menu table on the left, select the Repositories item.

3. Onthe Repositories page, click the name of the repository in the list.

-t
‘.uBOSS Dashboard Inventory Reports Bundles m Help rhgadmin | Legout
LY

PO Faworites | |Message Center
Security Re positories

Topology

[wame pate Created Syne Status Deseription
A Configuration

[] | Java Petsiore 5/4/11, 2:46:39 PM,

NONE
¥ Content Seu
B/L/11, 64823 PM,
[} Content Sources [| new-repo ECT SUCCESS
[} Repositories
CREATE NEW IMPORT DELETE SELECTED SYNC SELECTED Total: 2

4. Scroll to the bottom of the page, to the Upload Packages section.

5. Click the Upload File button to upload the package.

6. In the pop-up window, click the Add button to browse to the package, then click the Upload button.

70

10. Managing Resource-Level Content Updates

Package File Upload

& Upload

my -package.rpm Cancel

7. Some information about the package is automatically filled in, including the name and a default Ul
version number. Set the package type, architecture, and any other necessary information.

Upload Hew Package

L UPLOAD FILE... M Uploaded: myMewScript.sh

Type * Server-side CLI Script -
Name * myMewScript.sh

Version * 1.0

Architecture * inoarch P

CREATE PACKAGE

If a version number is set, then this value is displayed in the UL. If not, then a version number is
calculated, based on the spec version and implementation version in MANIFEST . MF (for EARs and
WARS) or the calculated SHA-256 value for the package itself. Internally, the package is identified by
the SHA value.

SPEC(IMPLEMENTATION) [sha256=abcd1234]

For exploded content for EARs and WARS, the calculated SHA-256 version number is written
into the MANIFEST . MF file.

8. Click the CREATE PACKAGE button to finish adding the package to the repository.

10.5. Synchronizing Content Sources or Repositories

The original source of content is external to JBoss ON, and the content packages are pulled into JBoss ON
and stored. Any changes that are made at the original content source need to be pulled into JBoss ON by
synchronizing the two sources.

71

Deploying Applications and Content

Likewise, any changes in the content source are carried over to the repository when the source and
repository are synchronized.

10.5.1. Scheduling Synchronization

Synchronization is already scheduled in the content source entry in JBoss ON. This schedule has the
standard cron format.

* * * * * [sync-command]

I I I I I

| | | | +o---- Day of Week (©0=Sunday ... 6=Saturday)
| | | R Month (1 - 12)

| | e Date (1 - 31)

| Lt Hour (0 - 23)

LT Minute (0@ - 59)

For example, to synchronize the source with JBoss ON on Tuesday and Friday at 3am:

03 * *2,5

To edit the schedule synchronization times for a source:
1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select either the Content Sources orRepositories item.

3. Click the name of the item to edit.

Lo . ’
‘. JBoss Dashboard Inventory Reports Bundles m Help rhgadmin | Legout
(Y

[F 0 |Favorites | | Message Center

A Security Content Sources
“ Topolo
- s |:| Name Date Created Date Modified Lazy Load? Download Mode Description
4 Configuration A7 A7
[| yumge g,\ll.lﬂéD-? araT gl‘%'lﬂElD‘ﬁ 4rL7 true FILESYSTEM
¥ Content] '
O Content Sources CREATE NEW DELETE SELECTED SYNC SELECTED Total: 1

[Repositories

4. Reset the cron schedule in the Sync Schedule field.

I I

Sync Schedule: [00 3%+ ? |

5. Click Save.

10.5.2. Manually Synchronizing Content Sources or Resources

If a major change happens to the content source, then the changes can be manually sent over to the JBoss
ON server by initiating a synchronization manually.

72

http://www.opensymphony.com/quartz/wikidocs/CronTriggers Tutorial.html

10. Managing Resource-Level Content Updates

1. In the top menu, click the Administration tab.
2. In the Content menu table on the left, select the Content Sources or Repositories item.

3. Click the name of the item to edit.

= .)
‘. JBoss Dashboard Inventory Reports Bundles Help rhgadmin | Legout
O @ e

[F 0 |Favorites | | Message Center

A Security Content Sources
“ Topolo
- s |:| Name Date Created Date Modified Lazy Load? Download Mode Description
4 Configuration A7 A7
[| yum-ge gl\l..lﬂéD-? araT g;'lﬂElD'? 4rL7 true FILESYSTEM
¥ Content] '
@ Content Sources CREATE NEW DELETE SELECTED SYNC SELECTED Total: 1

@ Repositories

4. Click the Synchronize button. All of the synchronization attempts, with the outcome of the
operation, are listed at the bottom of the screen.

Basic Details

Type: YumSource
Name: yurm-ge
Description:
Synchronization Schedule: 0 0 3 **7?
Lazy Load: true

Download Mode: FILESYSTEM
Creation Date: 6/1/11, 6:47:17 PM, EDT
Last Modified Date: 6/1/11, 6:47:17 PM, EDT

Last Download Error: Nong

Name Unset | Value Description
Location

|http:ﬂdownload.fedoraproject.org!pub!epel!testing15!$basea| ;rgpeogitp\ol_r;r path to theYum

EDIT TEST CONNECTION SYNCHRONIZE

Repositories
D Name Date Created Date Modified D& scription
1 | new-repo G711, 6:48:23 PM, EOT GL/11, 7:47:47 PM, EOT
Total: 1
Synchronization Results History
D 1=} Start Time End Time Status Results
[10021 G/3/11, 3:00:00 AM, EDT G/3/11, 3:00:00 AM, EDT SUCCESS Click here to view_..
[1oo11 G2/11, 10:15:16 AM, EDT &2/11, 10:15:16 AM, ECT SUCCESS Click here to view...
[] | 10001 61711, 6:47:17 PM, EDT &1/11, 6:47:17 PM, EOT SUCCESS Click here to view_..
DELETE SELECTED Total: 3

73

Deploying Applications and Content

You can test the connection to a source or repository by clicking the Test Connection button. This

ensures that the JBoss ON server can connect to the content source before attempting to pull down
the packages.

Test passed - the remote repository for [yurm-ge] is available.
Basic Details

To synchronize multiple sources, stay on the main content sources or repositories page, select the checkbox
by each of the content sources to synchronize, and click the Sync Selected button.

10.6. Tracking Content Versions for a Resource

Every time a package is installed on a resource through a repository, the resource shows the operation. This
includes even installation failures. The content package history for a resource is viewable in the Content
tab, under the History subtab.

, Crsample.war (//localhost/sample) v g
Q Summary Inventory F" Alerts Monitaring '&;' Operations -‘-‘-,_:,'7 Drift ﬂ Content
Deployed Mew Subscriptions History

Currently Executing Requests

»

There are no currently executing content requests

Completed Requests
Request Started Hotes Request Status Request Type Details User
;E szeb WIFSEMEST | ckages: sample.war Success Deploy VIEW rhgadmin
EU'TZFED ANIZDEST |y ckages: sample.war 2.0 Success Deploy VIEW rhgadmin

Totak 2
Full Package Audit Trail

The following is a complete listing of all of the package operations that have occurred on this resource. By default, they are ordered from newest to oldest. In other words, for
packages that are referenced more than one time in this list, the most recent item indicates the current status of the package.

m

Package Name Version Architecture Status Timestamp | Details
Currenthy 228M2, 1:56:24
sample.war nearch Inetalied PM, EST VIEWV
sample.war) nearch Discovered CIE Py (BT WVIEWY
pg. [=ha256=67a253b1 fod4f1 22dc5815cT7 Bcfdbcd3c14030aa30chebl5f68calBeah1828h] PM, EST
- 2/28M2, 1:58:24
sample.war 20 naarch Miszing PI, EST VIEW
b M oA = IV S

Figure 10. Package History for a Resource

The package history shows both the time the operation was initiated and completed and the user who

initiated it. This is valuable for auditing changes, correlating incidents and response, and tracking resource
configuration.

11. Deploying Applications on Application Servers

74

11. Deploying Applications on Application Servers
Applications such as EAR and WAR files that are deployed on an application server are cross between a
child resource (of the application server) and content that is managed in a repository.

For these content-backed resources, the child resource is created first, by uploading a package to the JBoss
server. After that, they are managed like content, with updated packages added to a content repo and then
applied to the application server.

11.1. Setting Permissions for Agent and Resource Users

The assumption is that the JBoss ON agent and resources like a JBoss server or Tomcat server run as the
same system user. This allows the agent and the application server itself to manage resource content and
configuration simultaneously.

However, if the agent user is different than the resource user, then there can be problems when one entity
makes a configuration change and the other attempts a change later.

For example, when deploying an application, the deployment operation is initiated by the agent and the
content is supplied through the agent, and then the application server completes the actual deployment.
When deleting an application, the application server handles the undeployment by itself.

If a WAR file is deployed exploded without a MANIFEST . MF file, the agent creates one when it writes the
SHA-256 value for the package. When the JBoss AS server tries to remove the WAR application later (and
the JBoss AS user is different than the agent user), then the removal fails. The JBoss AS server cannot
delete the MANIFEST . MF file. The agent then rediscovers the application directory and re-initiates the
deployment operation for the removed WAR.

This situation only occurs when the application is exploded and does not contain the MANIFEST . MF
file — meaning, a situation where the agent creates a file within the deployment directory. Even if the
agent and JBoss AS users are different, this situation does not occur if the application is not exploded
or where the agent does not write any files.

This situation can be avoided. If the agent user and resource user are different, then change the system
settings:

1. Add the agent user and the resource user to the same primary group.

2. Set the umask value for the agent user to give read and write permissions, such as660. For
example:

vim /home/rhgagent/.bashrc

umask 660

11.2. Deploying EAR and WAR Files
1. Search for the JBoss server instance to which to deploy the EAR or WAR.
2. On the details page for the selected JBoss server instance, open the Inventory tab.

3. Inthe Create New menu at the bottom, select the item for - Web Application (WAR) or -
Enterprise Application (EAR), as appropriate.

75

Deploying Applications and Content

Server Factory
= twan-

Datasource

Enterprise Application (EAR)
ConnectionFactory

Web Application (WAR)

Delete | |Impﬂrt4| Create Child A| | Ininventary | | Refresh

4. Enter the version number.

Resource Create Wizard

Create New Resource of Type [Web Application (WAR)]

Resource Information

Package Version :

0|11

This is not used for the resource. The actual version number is calculated based on the spec version
and implementation version in MANIFEST . MF, if any are given, or the calculated SHA-256 value for
the package itself:

SPEC(IMPLEMENTATION) [sha256=abcd1234]

If no version numbers are defined in MANIFEST . MF, then the SHA value is used. The SHA value is
always used to identify the package version internally.

When the EAR or WAR file is exploded after it is deployed, the MANIFEST . MF file is updated
to include the calculated SHA version number. For example:

Manifest-Version: 1.0
Created-By: Apache Maven
RHQ-Sha256: 570f196c4a1025a717269d16d11d6f37

For more information on package versioning, see "Deploying Applications and Content".

76

../../html/Deploying_Applications_and_Content/managing-packages.html#pkg-versions

11. Deploying Applications on Application Servers

5. Upload the EAR/WAR file.

=
Resource Create Wizard

Create New Resource of Type [Web Application (WARY)]

Upload Resource Content File

Web Application (WAR) : 3-INFihello.war| Browse... [Upload | "

6. Enter the information for the application to be deployed.

Resource Create Wizard =3

Create New Resource of Type [Web Application (WAR)] Step 30f 3

Deployment Options

Jump to Section

* Deployment Options

Property Unset? WValue Description

Deploy Zipped) Yes @ Mo Indicates if the WAR iz deployed either zipped or exploded.
N Path to deploy the file. This must be a path relative to the AS

d
Derloyllhiieciony eploy configuration zet in use.
Create Backup @ Yes @ No Shn_uh:l _an existing file with thiz name moved to a backup file
- - ending in .bak.

Timeout: 35 seconds v i@

Previous Finish

Cancel

= Whether the file should be exploded (unzipped) when it is deployed.

The path to the directory to which to deploy the EAR or WAR package. The destination directory
is relative to the JBoss server instance installation directory; this cannot contain an absolute path

or go up a parent directory.
= Whether to back up any existing file with the same name in the target directory.

7. At the bottom of the wizard, set an optional timeout period. This is how long the JBoss ON server will
wait during the deployment process before determining that the deployment has failed.

77

Deploying Applications and Content

The timeout period only applies to the server's reporting a result. If the operation continues
running, it can still complete successfully, and the web application is deployed.

Particularly for large application files, do not set a low timeout period, or the server will mark
the deployment as having failed. If the deployment completes later, the web application must
be imported into the inventory manually; it will not be discovered by the agent.

8. Click Finish.

Once the EAR/WAR file is confirmed, the new child resource is listed in the Child History subtab of the
Inventory tab.

ID: 10021
Type : [Created Chid
Date Created : Monday, February 27, 2012 8:02:28 PM Etc/GMT+6
Last Updated : Monday, February 27, 2012 8:02:28 PM Etc/GMT+6
User : rhgadmin
Resource Name :
Resource Key : jboss.management. local JZEEApplication=null JZEEServer=Local [feeType=\WebModule name=sample.

Resource Type : Web Application WAR)

Status : Success

Figure 11. WAR Child Resource

11.3. Updating Applications

After the EAR or WAR resource is created, changes are treated like updated content packages. Updating the
EAR/WAR resource is the same as uploading and applying new packages to that EAR/WAR resource entry.

1. Browse to the EAR or WAR resource in the JBoss ON UI.

2. In the EAR or WAR resource details page, open the Content tab, and click the New subtab.

78

11. Deploying Applications on Application Servers

, Crsample.war (//localhost/sample) v g

=5

i orift | £) Content

i

3 Summary Inventory F Alerts Manitoring *) Operations
e

Deployed Hew Subscriptions History

The following packages were found from the repositories currently subscribed to by this resource. In order to enable mare
existing packages for deployment, use the subscriptions sub-tab to subscribe this resource to more repositories,

|:| Package Name Version Type |Architecture Description
|:| example.war | 1.0 WAR noarch
File
DEPLOY SELECTED Totak 1
Upload New Package

The following option will begin the workflow to upload a new package into the system. Once the package information has been
spedified and the file uploaded, the workflow to deploy the newly created package to this resource will resume.

UPLOAD NEW PACKAGE

3. Click the UPLOAD NEW PACKAGE button.

4. Click the UPLOAD FILE button.

, Lrsample.war (/llocalhost/sample) v 8
:Qr Sumrmary Inventory r' Alerts Monitoring 'L'_':'_'," Operations E Drift ﬂ Content
Deployed MNew Subscriptions History

Package File

LUV S | N File Uploaded: sample2.war

Package Update Details

Version 2.0|
Repository

Select one of the following options describing in which repository the new package should be created.

& Currently Subscribed Repository El
@ Existing Repository | exampleRepo El
) New Repository

) None

5. In the pop-up window, click the Add button, and browse the local filesystem to the updated WAR or
EAR file to be uploaded.

79

Deploying Applications and Content

80

Package File Upload

> Upload

CAfakepath\sample2.war Cancel |

[

6. Click the UPLOAD button to load the file and dismiss the window.

7. In the main form, select the repository where the WAR or EAR file package should be stored. If one
exists, select an existing repository or a subscribed repository for the resource. Otherwise, create a
new repository.

8. Optionally, set the version number for the EAR/WAR package.

If this is set, then this value is displayed in the UL. If not, then a version number is calculated, based
on the spec version and implementation version in MANIFEST . MF, if any are given, or the calculated
SHA-256 value for the package itself. Internally, the package is identified by the SHA value.

SPEC(IMPLEMENTATION)[sha256=abcd1234]

9. Confirm the details for the new package, then click CONTINUE.

../../html/Deploying_Applications_and_Content/managing-packages.html#pkg-versions

11. Deploying Applications on Application Servers

> {rsample.war (//llocalhost/sample) v @

‘ﬁ Sumrmary Inventory r"' Alerts Monitoring RE‘) Operations @ Drift ﬂ Content

Deployed New Subscriptions History

Review Packages

The following packages will be deployed.

Package Mame Version Type Architecture Description

sample.war 2.0 file noarch

Totak 1

Packages Deployment Notes

Motes spedfied below will be displayed when tracking the status of this request in order to help further identify the purpose of this
request. They are not sent to the plugin for use during the installation.

Packages: sample.war 2.0 -

When the package is successfully uploaded, the Ul redirects to the history page on the Content tab.

81

Deploying Applications and Content

> {rsample.war (//localhost/sample) v &
LY Summary Inventory P Alerts (22| Monitoring | |\ ®) Operations T—:__'T Drrift ﬁ Content
Deployed MNew Subscriptions History

Currently Executing Requests

There are no currenlly executing content requests

Completed Requests
Request Started Notes Request Status Request Type Details User
Mon Feb 27 Packages: .
21:52:22 EST 2012 | sample.war 2.0 = Deploy LLE] L
Totak 1

Full Package Audit Trail

The following is a complete listing of all of the padkage operations that have occurred on this resource. By default, they are
ordered from newest to oldest. In other words, for packages that are referenced more than one time in this list, the most recent
item indicates the current status of the package.

Package Name Version Architecture Status Timestamp | Details

sample.war 2.0 noarch ﬁ;;?lgfjw ﬁﬁ??é ZiT VIEW

sample.war 2.0 naarch Dizcovered ﬁ'ﬁl??;‘_ SEE VIEW

sample.war [sha256=570196c4a1025a717260d16d11d6137] | noarch Miz=ing ﬁﬁf?; 95222 VIEW

sample.war 2.0 naarch ::Sptf!:trizgs ﬁﬁ?&i’ SETE VIEW

sample.war [sha256=570f19%6c4a1025a717260d16d11d6137] | noarch Dizcoverad ﬁﬁf?sz_f 0248 VIEW
Totak 5

Figure 12. Deployment History for a Resource

11.4. Deleting an Application

Deleting an EAR/WAR application is the same as deleting the currently deployed package associated with
that EAR/WAR resource entry.

1. Browse to the EAR or WAR resource in the JBoss ON UL.
2. In the EAR or WAR resource details page, open the Content tab, and click the Deployed subtab.

3. Select the checkbox by the EAR/WAR package, and click the DELETE SELECTED button.

82

> {Fsample.war (//localhost/sample)

3 Summary Inventory F Alerts Manitoring '3;'_';3' Operations

12. Document Information

v R

{.‘- Drift ﬂ Content

Deployed Mew Subscriptions History
Filter: Package Type Filter: Package Version Filter:
Al |l Al v
[l Hame Version Type Installation Date
sample.war [sha255=570f195c4a1025a7172659d16d11d6737] WAR File 09:02 PM EST
DELETE SELECTED Totak 1

12. Document Information

This guide is part of the overall set of guides for users and administrators of JBoss ON. Our goal is clarity,

completeness, and ease of use.

12.1. Document History

Revision 3.1.2-2.400 2013-10-31
Rebuild with publican 4.0.0

Revision 3.1.2-2 January 23, 2013

Adding note that symlinks are not supported in bundle recipes.

Reorganizing the bundles sections slightly.

Revision 3.1.1-1 October 3, 2012
Bug fixing for JBoss ON 3.1.1.

Revision 3.1-0 June 12, 2012
Initial release of JBoss ON 3.1.

Index

access controls

Ant
recipe example, Breakdown of an Ant Recipe
upgrading bundles, Upgrading Ant Bundles
authorization

Riudiger Landmann

Ella Deon Lackey

Ella Deon Lackey

Ella Deon Lackey

83

Deploying Applications and Content

84

bundles
and the CLI, Managing and Deploying Bundles with the JBoss ON CLI
Ant recipe, Breakdown of an Ant Recipe
creating, Creating Ant Bundles
creating associated archive files, The Workflow for Creating and Deploying a Bundle
deleting a bundle from a resource, Purging a Bundle from a Resource
deleting from the server, Deleting a Bundle from the JBoss ON Server
deploying to a clean destination, Deploying a Bundle to a Clean Destination
deploying to a resource, Deploying Bundles to a Resource
destinations, Destinations (and Bundle Deployments)
reverting deployed bundles, Reverting a Deployed Bundle
template configuration, Using Templatized Configuration Files
testing deployment, Testing Bundle Packages
upgrading, Upgrading Ant Bundles
uploading, Uploading Bundles to JBoss ON
viewing deployment history, Viewing the Bundle Deployment History

CLI, Managing and Deploying Bundles with the JBoss ON CLI

content, Summary: Using JBoss ON to Deploy Applications and Update Content
authorization, Authorization to Repositories and Packages

content sources
and passwords, Creating a Content Source (General)
associating with repositories, Associating Content Sources with a Repository
creating, Creating a Content Source
importing, Linking Content Sources to Repositories
importing multiple content sources into multiple repositories, Importing a Content Source
into Repositories
manually synchronizing, Manually Synchronizing Content Sources or Resources
scheduling synchronization, Scheduling Synchronization
synchronization, Synchronizing Content Sources or Repositories

deploying apps
timeout, Deploying EAR and WAR Files
troubleshooting, Deploying EAR and WAR Files

deployment
bundles on resources, Deploying Bundles to a Resource
bundles to clean destinations, Deploying a Bundle to a Clean Destination
testing bundles, Testing Bundle Packages
view bundle history, Viewing the Bundle Deployment History

importing
content sources, Linking Content Sources to Repositories
content sources into multiple repositories, Importing a Content Source into Repositories

JBoss

12. Document Information

default patch content source, Enabling the Default JBoss Patch Content Source

packages
authorization, Authorization to Repositories and Packages

repositories
associating with content sources, Associating Content Sources with a Repository
associating with resources, Associating Resources with the Repository
authorization, Authorization to Repositories and Packages
creating, Creating a Repository
importing content sources into multiple repositories, Importing a Content Source into

managing repositories on resources, Managing the Repositories for a Resource
synchronizing and content sources, Synchronizing Content Sources or Repositories

resources
and managing repositories, Managing the Repositories for a Resource
associating with repositories, Associating Resources with the Repository
child

EAR and WAR, Deploying EAR and WAR Files

child types, Deploying Applications on Application Servers

synchronization
content sources, Synchronizing Content Sources or Repositories
repositories and content sources, Synchronizing Content Sources or Repositories
scheduling and content sources, Scheduling Synchronization

timeout
manually discover app, Deploying EAR and WAR Files

[1] There is no defined deployment directory for servers in an EAP 6 domain. Deployments are handled centrally,
through other mechanisms.

85

	Table of Contents
	1. Summary: Using JBoss ON to Deploy Applications and Update Content
	2. An Introduction to Provisioning Content Bundles
	2.1. Bundles: Content and Recipes
	2.2. Destinations (and Bundle Deployments)
	2.3. File Handling During Provisioning
	2.4. Requirements and Resource Types
	2.5. Bundles and JBoss ON Servers and Agents
	2.5.1. Resource Support and the Agent Resource Plug-in
	2.5.2. Server-Side and Agent Plug-ins for Recipe Types

	3. Managing and Deploying Bundles with the JBoss ON CLI
	4. Extended Example: Common Provisioning Use Cases (and How They Handle Files)
	4.1. Deploying A Full Application Server
	4.2. Deploying A Web Application
	4.3. Deploying Configuration Files

	5. Extended Example: Provisioning Applications to a JBoss EAP Server (Planning)
	6. The Workflow for Creating and Deploying a Bundle
	7. Creating Ant Bundles
	7.1. Supported Ant Versions
	7.2. Additional Ant References
	7.3. Breakdown of an Ant Recipe
	7.4. Using Ant Tasks
	7.4.1. Supported Ant Tasks
	7.4.2. Using Default, Pre-Install, and Post-Install Targets
	7.4.3. Calling Ant Targets

	7.5. Using Templatized Configuration Files
	7.6. Limits and Considerations for Ant Recipes
	7.6.1. Unsupported Ant Tasks
	7.6.2. Symlinks
	7.6.3. WARNING: The Managed (Target) Directory and Overwriting or Saving Files

	7.7. A Reference of JBoss ON Ant Recipe Elements
	7.7.1. rhq:bundle
	7.7.2. rhq:input-property
	7.7.3. rhq:deployment-unit
	7.7.4. rhq:archive
	7.7.5. rhq:url-archive
	7.7.6. rhq:file
	7.7.7. rhq:url-file
	7.7.8. rhq:audit
	7.7.9. rhq:replace
	7.7.10. rhq:ignore
	7.7.11. rhq:fileset
	7.7.12. rhq:system-service

	8. Testing Bundle Packages
	8.1. Installing the Bundle Deployer Tool
	8.2. Using the Bundle Deployer Tool

	9. Provisioning Bundles
	9.1. Uploading Bundles to JBoss ON
	9.2. Deploying Bundles to a Resource
	9.3. Viewing the Bundle Deployment History
	9.4. Reverting a Deployed Bundle
	9.5. Deploying a Bundle to a Clean Destination
	9.6. Purging a Bundle from a Resource
	9.7. Upgrading Ant Bundles
	9.8. Deleting a Bundle from the JBoss ON Server

	10. Managing Resource-Level Content Updates
	10.1. About Content
	10.1.1. What Content Is: Packages
	10.1.2. Where Content Comes From: Providers and Repositories
	10.1.3. Package Versions and History
	10.1.4. Authorization to Repositories and Packages

	10.2. Creating a Content Source
	10.2.1. Creating a Content Source (General)
	10.2.2. Enabling the Default JBoss Patch Content Source
	10.2.3. Creating a Content Source (Local Disk)

	10.3. Managing Repositories
	10.3.1. Creating a Repository
	10.3.2. Linking Content Sources to Repositories
	10.3.2.1. Associating Content Sources with a Repository
	10.3.2.2. Importing a Content Source into Repositories

	10.3.3. Associating Resources with the Repository
	10.3.3.1. Adding Resources to a Repository
	10.3.3.2. Managing the Repositories for a Resource

	10.4. Uploading Packages
	10.5. Synchronizing Content Sources or Repositories
	10.5.1. Scheduling Synchronization
	10.5.2. Manually Synchronizing Content Sources or Resources

	10.6. Tracking Content Versions for a Resource

	11. Deploying Applications on Application Servers
	11.1. Setting Permissions for Agent and Resource Users
	11.2. Deploying EAR and WAR Files
	11.3. Updating Applications
	11.4. Deleting an Application

	12. Document Information
	12.1. Document History

	Index

