
Red Hat JBoss Fuse 6.1

Getting Started

Learn to solve problems with Red Hat JBoss Fuse

Last Updated: 2017-10-12

Red Hat JBoss Fuse 6.1 Getting Started

Learn to solve problems with Red Hat JBoss Fuse

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provide an introduction to developing applications with Red Hat JBoss Fuse.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. BASIC CONCEPTS FOR DEVELOPERS
1.1. DEVELOPMENT ENVIRONMENT
1.2. DEVELOPMENT MODEL
1.3. MAVEN ESSENTIALS
1.4. DEPENDENCY INJECTION FRAMEWORKS

CHAPTER 2. GETTING STARTED WITH DEVELOPING
2.1. CREATE A WEB SERVICES PROJECT
2.2. CREATE A ROUTER PROJECT
2.3. CREATE AN AGGREGATE MAVEN PROJECT
2.4. DEFINE A FEATURE FOR THE APPLICATION
2.5. CONFIGURE THE APPLICATION
2.6. TROUBLESHOOTING

CHAPTER 3. GETTING STARTED WITH DEPLOYING
3.1. SCALABLE DEPLOYMENT WITH FUSE FABRIC
3.2. DEPLOYING TO A FABRIC

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR
A.1. EDITING AGENT PROPERTIES
A.2. EDITING OSGI CONFIG ADMIN PROPERTIES
A.3. EDITING OTHER RESOURCES
A.4. PROFILE ATTRIBUTES

3
3
3
5

10

14
14
20
24
25
28
31

33
33
35

42
42
45
46
48

Table of Contents

1

Red Hat JBoss Fuse 6.1 Getting Started

2

CHAPTER 1. BASIC CONCEPTS FOR DEVELOPERS

Abstract

A typical Red Hat JBoss Fuse application is based on a specific development model, which is based
around the Java language, Spring or Blueprint dependency injection frameworks, and the Apache Maven
build system.

1.1. DEVELOPMENT ENVIRONMENT

JDK 1.6

The basic requirement for development with Red Hat JBoss Fuse is the Java Development Kit (JDK)
from Oracle. Generally, the recommended version is J2SE 1.6—for more platform-specific details, see
the Red Hat JBoss Fuse Supported Configurations page.

Apache Maven

The recommended build system for developing JBoss Fuse applications is Apache Maven version 3.0.x.
See the Installation Guide for more details.

Maven is more than a build system, however. Just as importantly, Maven also provides an infrastructure
for distributing application components (typically JAR files; formally called artifacts). When you build an
application, Maven automatically searches repositories on the Internet to find the JAR dependencies
needed by your application, and then downloads the needed dependencies. See Section 1.3, “Maven
Essentials” for more details.

Red Hat JBoss Fuse Tooling

The JBoss Fuse Tooling provides a set of developer tools for developing Red Hat JBoss Fuse
applications within Red Hat JBoss Development Studio. Using JBoss Fuse Tooling, you can connect and
configure Enterprise Integration Patterns to build routes, browse endpoints and routes, drag and drop
messages onto running routes, trace message flows, edit running routes, browse and visualize runtime
processes via JMX, and deploy your project's code to Red Hat JBoss Fuse and Fabric8 containers, to
Apache ServiceMix, and to Apache Karaf. You can download the Red Hat JBoss Fuse Tooling from
within Red Hat JBoss Development Studio. For details, see the Red Hat JBoss Fuse Tooling Installation
Guide.

1.2. DEVELOPMENT MODEL

Overview

Figure 1.1, “Developing a Red Hat JBoss Fuse Project” shows an overview of the development model for
building an OSGi bundle or a Fuse Application Bundle that will be deployed into the Red Hat JBoss Fuse
container.

CHAPTER 1. BASIC CONCEPTS FOR DEVELOPERS

3

https://access.redhat.com/articles/310603
http://maven.apache.org/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Tooling_Installation_Guide/files/front.html

Figure 1.1. Developing a Red Hat JBoss Fuse Project

Maven

Apache Maven, which is the recommended build system for JBoss Fuse, affects the development model
in the following important ways:

Maven directory layout—Maven has a standard directory layout that determines where you put
your Java code, associated resources, XML configuration files, unit test code, and so on.

Accessing dependencies through the Internet—Maven has the ability to download dependencies
automatically through the Internet, by searching through known Maven repositories. This implies
that you must have either access to the Internet or local copies of the required Maven
repositories, when building with Maven. See the section called “Maven repositories”.

Maven archetypes

An easy way to get started with development is by using a Maven archetype, which is analogous to using
the new project wizard (except that it must be invoked from the command line). A Maven archetype
typically creates a completely new Maven project, with the correct directory layout and some sample
code. For example, see Section 2.1, “Create a Web Services Project” and Section 2.2, “Create a Router
Project”.

Maven POM files

The Maven Project Object Model (POM) file, pom.xml, provides the description of how to build your
project. The initial version of a POM is typically generated by a Maven archetype. You can then
customise the POM as needed.

For larger Maven projects, there are two special kinds of POM files that you might also need:

Aggregator POM—a complete application is typically composed of multiple Maven projects,
which must be built in a certain order. To simplify building multi-project applications, Maven
enables you to define an aggregator POM, which can build all of the sub-projects in a single
step. For more details, see Section 2.3, “Create an Aggregate Maven Project”.

Parent POM—in a multi-project application, the POMs for the sub-projects typically contain a lot
of the same information. Over the long term, maintaining this information, which is spread across
multiple POM files, would time-consuming and error-prone. To make the POMs more
manageable, you can define a parent POM, which encapsulates all of the shared information.

Java code and resources

Red Hat JBoss Fuse 6.1 Getting Started

4

Maven reserves a standard location, src/main/java, for your Java code, and for the associated
resource files, src/main/resources. When Maven builds a JAR file, it automatically compiles all of
the Java code and adds it to the JAR package. Likewise, all of the resource files found under
src/main/resources are copied into the JAR package.

Dependency injection frameworks

JBoss Fuse has built-in support for two dependency injection frameworks: Spring XML and Blueprint
XML. You can use one or the other, or both at the same time. The projects underlying JBoss Fuse
(Apache Camel, Apache CXF, Apache ActiveMQ, and Apache ServiceMix) all strongly support XML
configuration. In fact, in many cases, it is possible to develop a complete application written in XML,
without any Java code whatsoever.

For more details, see Section 1.4, “Dependency Injection Frameworks”.

Deployment metadata

Depending on how a project is packaged and deployed (as an OSGi bundle, a Fuse Application
Bundle(FAB), or a WAR), there are a few different files embedded in the JAR package that can be
interpreted as deployment metadata, for example:

META-INF/MANIFEST.MF

The JAR manifest can be used to provide deployment metadata either for an OSGi bundle (in bundle
headers) or for a FAB.

META-INF/maven/groupId/artifactId/pom.xml

The POM file—which is normally embedded in any Maven-built JAR file—is the main source of
deployment metadata for a FAB.

WEB-INF/web.xml

The web.xml file is the standard descriptor for an application packaged as a Web ARchive (WAR).

Administrative metadata

The following kinds of metadata are accessible to administrators, who can use them to customize or
change the behavior of bundles at run time:

Apache Karaf features—a feature specifies a related collection of packages that can be
deployed together. By selecting which features to install (or uninstall), an administrator can
easily control which blocks of functionality are deployed in the container.

OSGi Config Admin properties—the OSGi Config Admin service exposes configuration
properties to the administrator at run time, making it easy to customize application behavior (for
example, by customizing the IP port numbers on a server).

1.3. MAVEN ESSENTIALS

Overview

This section provides a quick introduction to some essential Maven concepts, enabling you to
understand the fundamental ideas of the Maven build system.

CHAPTER 1. BASIC CONCEPTS FOR DEVELOPERS

5

Build lifecycle phases

Maven defines a standard set of phases in the build lifecycle, where the precise sequence of phases
depends on what type of package you are building. For example, a JAR package includes the phases
(amongst others): compile, test, package, and install.

When running Maven, you normally specify the phase as an argument to the mvn command, in order to
indicate how far you want the build to proceed. To get started, the following are the most commonly used
Maven commands:

Build the project, run the unit tests, and install the resulting package in the local Maven
repository:

Clean the project (deleting temporary and intermediate files):

Build the project and run the unit tests:

Build and install the project, skipping the unit tests:

Build the project in offline mode:

Offline mode (selected by the -o option) is useful in cases where you know that you already
have all of the required dependencies in your local repository. It prevents Maven from
(unnecessarily) checking for updates to SNAPSHOT dependencies, enabling the build to
proceed more quickly.

Maven directory structure

Example 1.1, “Standard Maven Directory Layout” shows the standard Maven directory layout. Most
important is the Maven POM file, pom.xml, which configures the build for this Maven project.

Example 1.1. Standard Maven Directory Layout

mvn install

mvn clean

mvn test

mvn install -Dmaven.test.skip=true

mvn -o install

ProjectDir/
 pom.xml
 src/
 main/
 java/
 ...
 resources/
 META-INF/
 spring/
 *.xml

Red Hat JBoss Fuse 6.1 Getting Started

6

The project's Java source files must be stored under ProjectDir/src/main/java/ and any
resource files should be stored under ProjectDir/src/main/resources/. In particular, Spring XML
files (matching the pattern *.xml) should be stored under the following directory:

Blueprint XML files (matching the pattern *.xml) should be stored under the following directory:

Convention over configuration

An important principle of Maven is that of convention over configuration. What this means is that Maven's
features and plug-ins are initialized with sensible default conventions, so that the basic functionality of
Maven requires little or no configuration.

In particular, the location of the files within Maven's standard directory layout effectively determines how
they are processed. For example, if you have a Maven project for building a JAR, all of the Java files
under the src/main/java directory are automatically compiled and added to the JAR. All of the
resource files under the src/main/resources directory are also added to the JAR.

NOTE

Although it is possible to alter the default Maven conventions, this practice is strongly
discouraged. Using non-standard Maven conventions makes your projects more difficult to
configure and more difficult to understand.

Maven packaging type

Maven defines a variety of packaging types, which determine the basic build behavior. The most
common packaging types are as follows:

jar

(Default) This packaging type is used for Fuse Application Bundles (FABs).

bundle

This packaging type is used for OSGi bundles. To use this packaging type, you must also configure
the maven-bundle-plugin in the POM file.

war

 OSGI-INF/
 blueprint/
 *.xml
 test/
 java/
 resources/
 target/
 ...

ProjectDir/src/main/resources/META-INF/spring/

ProjectDir/src/main/resources/OSGI-INF/blueprint/

CHAPTER 1. BASIC CONCEPTS FOR DEVELOPERS

7

This packaging type is used for WAR files. To use this packaging type, you must also configure the
maven-war-plugin in the POM file.

pom

When you build with this packaging type, the POM file itself gets installed into the local Maven
repository. This packaging type is typically used for parent POM files.

Maven artifacts

The end product of a Maven build is a Maven artifact (for example, a JAR file). Maven artifacts are
normally installed into a Maven repository, from where they can be accessed and used as building
blocks for other Maven projects (by declaring them as dependencies).

Maven coordinates

Artifacts are uniquely identified by a tuple of Maven coordinates, usually consisting of
groupId:artifactId:version. For example, when deploying a Maven artifact into the Red Hat
JBoss Fuse container, you can reference it using a Maven URI of the form,
mvn:groupId/artifactId/version.

For more details about Maven coordinates, see Deploying into the Container.

Maven dependencies

The most common modification you will need to make to your project's POM file is adding or removing
Maven dependencies. A dependency is simply a reference to a Maven artifact (typically a JAR file) that is
needed to build and run your project. In fact, in the context of a Maven build, managing the collection of
dependencies in the POM effectively takes the place of managing the collection of JAR files in a
Classpath.

The following snippet from a POM file shows how to specify a dependency on the camel-blueprint
artifact:

dependency element

The dependency element declares a dependency on the Maven artifact with coordinates (for example,
onorg.apache.camel:camel-blueprint:6.1.0.redhat-379). You can add as many
dependency elements as you like inside the dependencies element.

<project ...>
 ...
 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-blueprint</artifactId>
 <version>2.12.0.redhat-610379</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 ...
</project>

Red Hat JBoss Fuse 6.1 Getting Started

8

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/index.html

dependency/scope element

The scope element is optional and provides some additional information about when this dependency is
needed. By default (with the scope element omitted), it is assumed that the dependency is needed at
build time, at unit test time, and at run time. With scope set to the value, provided, the effect depends
on what kind of artifact you are building:

OSGi bundle—(when the POM's packaging element is specified as bundle) the provided
scope setting has no effect.

Fuse Application Bundle (FAB)—(when the POM's packaging element is specified as jar) the
provided scope setting implies that this dependency is deployed as a separate bundle in the
container and is thus shared with other applications at run time.

Transitive dependencies

To simplify the list of dependencies in your POM and to avoid having to list every single dependency
explicitly, Maven employs a recursive algorithm to figure out the dependencies needed for your project.

For example, if your project, A, depends on B1 and B2; B1 depends on C1, C2, and C3; and B2 depends
on D1 and D2; Maven will automatically pull in all of the explicitly and implicitly required dependencies at
build time, constructing a classpath that includes the dependencies, B1, B2, C1, C2, C3, D1, and D2. Of
these dependencies, only B1 and B2 appear explicitly in A's POM file. The rest of the dependencies—
which are figured out by Maven—are known as transitive dependencies.

Maven repositories

A Maven repository is a place where Maven can go to search for artifacts. Because Maven repositories
can be anywhere—and that includes anywhere on the Internet—the Maven build system is inherently
distributed. The following are the main categories of Maven repository:

Local repository—the local repository (by default, located at ~/.m2/repository on *NIX or
C:\Documents and Settings\UserName\.m2\repository on Windows) is used by
Maven as follows:

First search location—the local repository is the first place that Maven looks when searching
for a dependency.

Cache of downloaded dependencies—any artifacts that have ever been downloaded from a
remote repository are stored permanently in the local repository, so that they can be
retrieved quickly next time they are needed.

Store of locally-built artifacts—any time that you build a local project (using mvn install),
the resulting artifact gets stored in your local repository.

Remote repository—Maven can also search for and download artifacts from remote repositories.
By default, Maven automatically tries to download an artifact from remote repositories, if it
cannot find the artifact in the local repository (you can suppress this behavior by specifying the -
o flag—for example, mvn -o install).

System repository—(Red Hat JBoss Fuse container only; not used by the mvn command-line
tool) at run time, the Red Hat JBoss Fuse container can access artifacts from the JBoss Fuse
system repository, which is located at InstallDir/system/.

For more details about Maven repositories, see Deploying into the Container.

CHAPTER 1. BASIC CONCEPTS FOR DEVELOPERS

9

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/index.html

Specifying remote repositories

If you need to customise the remote repositories accessible to Maven, you must separately configure the
build-time and runtime repository locations, as follows:

Build time—to customize the remote repositories accessible at build time (when running the mvn
command), edit the Maven settings.xml file, at the following location:

*Nix: default location is ~/.m2/settings.xml.

Windows: default location is C:\Documents and
Settings\UserName\.m2\settings.xml.

Run time—to customize the remote repositories accessible at run time (from within Red Hat
JBoss Fuse container), edit the relevant property settings in the
InstallDir/etc/org.ops4j.pax.url.mvn.cfg.

1.4. DEPENDENCY INJECTION FRAMEWORKS

Overview

Red Hat JBoss Fuse offers a choice between the following built-in dependency injection frameworks:

the section called “Spring XML”.

the section called “Blueprint XML”.

Blueprint or Spring?

When trying to decide between the Blueprint and Spring dependency injection frameworks, bear in mind
that Blueprint offers one major advantage over Spring: when new dependencies are introduced in
Blueprint through XML schema namespaces, Blueprint has the capability to resolve these dependencies
automatically at run time. In contrast, when packaging your project as an OSGi bundle, Spring requires
you to add new dependencies explicitly to the maven-bundle-plugin configuration.

Bean registries

A fundamental capability of the dependency injection frameworks is the ability to create Java bean
instances. Every Java bean created in a dependency injection framework is added to a bean registry by
default. The bean registry is a map that enables you to look up a bean's object reference using the bean
ID. This makes it possible to reference bean instances within the framework's XML configuration file and
to reference bean instances from your Java code.

For example, when defining Apache Camel routes, you can use the bean() and beanRef() DSL
commands to access the bean registry of the underlying dependency injection framework (or
frameworks).

Spring XML

Spring is fundamentally a dependency injection framework, but it also includes a suite of services and
APIs that enable it to act as a fully-fledged container. A Spring XML configuration file can be used in the
following ways:

Red Hat JBoss Fuse 6.1 Getting Started

10

http://www.springsource.org/

An injection framework—Spring is a classic injection framework, enabling you to instantiate Java
objects using the bean element and to wire beans together, either explicitly or automatically. For
details, see The IoC Container from the Spring Reference Manual.

A generic XML configuration file—Spring has an extensibility mechanism that makes it possible
to use third-party XML configuration schemas in a Spring XML file. Spring uses the schema
namespace as a hook for finding an extension: it searches the classpath for a JAR file that
implements that particular namespace extension. In this way, it is possible to embed the
following XML configurations inside a Spring XML file:

Apache Camel configuration—usually introduced by the camelContext element in the
schema namespace, http://camel.apache.org/schema/spring.

Apache CXF configuration—uses several different schema namespaces, depending on
whether you are configuring the Bus, http://cxf.apache.org/core, a JAX-WS
binding, http://cxf.apache.org/jaxws, a JAX-RS binding,
http://cxf.apache.org/jaxrs, or a Simple binding,
http://cxf.apache.org/simple.

Apache ActiveMQ configuration—usually introduced by the broker element in the schema
namespace, http://activemq.apache.org/schema/core.

NOTE

When packaging your project as an OSGi bundle, the Spring XML extensibility
mechanism can introduce additional dependencies. Because the Maven bundle
plug-in does not have the ability to scan the Spring XML file and automatically
discover the dependencies introduced by schema namespaces, it is generally
necessary to add the additional dependencies explicitly to the maven-bundle-
plugin configuration (by specifying the required Java packages).

An OSGi toolkit—Spring also has features (provided by Spring Dynamic Modules) to simplify
integrating your application with the OSGi container. In particular, Spring DM provides XML
elements that make it easy to export and consume OSGi services. For details, see The Service
Registry from the Spring DM Reference Manual.

A provider of container services—Spring also supports typical container services, such as
security, persistence, and transactions. Before using such services, however, you should
compare what is available from the JBoss Fuse container itself. In some cases, the JBoss Fuse
container already layers a service on top of Spring (as with the transaction service, for example).
In other cases, the JBoss Fuse container might provide an alternative implementation of the
same service.

Spring XML file location

In your Maven project, Spring XML files must be placed in the following location:

Spring XML sample

The following example shows the bare outline of a Spring XML file:

InstallDir/src/main/resources/META-INF/spring/*.xml

CHAPTER 1. BASIC CONCEPTS FOR DEVELOPERS

11

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html
http://www.springsource.org/osgi
http://static.springsource.org/osgi/docs/1.2.1/reference/html/service-registry.html

You can use a Spring XML file like this to configure Apache ActiveMQ, Apache CXF, and Apache Camel
applications. For example, the preceding example includes a camelContext element, which could be
used to define Apache Camel routes. For a more detailed example of Spring XML, see the section
called “Blueprint XML configuration”.

Blueprint XML

Blueprint is a dependency injection framework defined in the OSGi specification. Historically, Blueprint
was originally sponsored by Spring and was based loosely on Spring DM. Consequently, the functionality
offered by Blueprint is quite similar to Spring XML, but Blueprint is a more lightweight framework and it
has been specially tailored for the OSGi container.

An injection framework—Blueprint is a classic injection framework, enabling you to instantiate
Java objects using the bean element and to wire beans together, either explicitly or
automatically. For details, see Deploying into the Container.

A generic XML configuration file—Blueprint has an extensibility mechanism that makes it
possible to use third-party XML configuration schemas in a Blueprint XML file. Blueprint uses the
schema namespace as a hook for finding an extension: it searches the classpath for a JAR file
that implements that particular namespace extension. In this way, it is possible to embed the
following XML configurations inside a Blueprint XML file:

Apache Camel configuration—usually introduced by the camelContext element in the
schema namespace, http://camel.apache.org/schema/blueprint.

Apache CXF configuration—uses several different schema namespaces, depending on
whether you are configuring the Bus, http://cxf.apache.org/blueprint/core, a
JAX-WS binding, http://cxf.apache.org/blueprint/jaxws, a JAX-RS binding,
http://cxf.apache.org/blueprint/jaxrs, or a Simple binding,
http://cxf.apache.org/blueprint/simple.

Apache ActiveMQ configuration—usually introduced by the broker element in the schema
namespace, http://activemq.apache.org/schema/core.

NOTE

When packaging your project as an OSGi bundle, the Blueprint XML extensibility
mechanism can introduce additional dependencies, through the schema
namespaces. Blueprint automatically resolves the dependencies implied by the
schema namespaces at run time.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 >

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <!-- Define Camel routes here -->
 ...
 </camelContext>

</beans>

Red Hat JBoss Fuse 6.1 Getting Started

12

http://www.osgi.org
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/index.html

An OSGi toolkit—Blueprint also has features to simplify integrating your application with the
OSGi container. In particular, Blueprint provides XML elements that make it easy to export and
consume OSGi services. For details, see Deploying into the Container.

Blueprint XML file location

In your Maven project, Blueprint XML files must be placed in the following location:

Blueprint XML sample

The following example shows the bare outline of a Blueprint XML file:

You can use a Blueprint XML file like this to configure Apache ActiveMQ, Apache CXF, and Apache
Camel applications. For example, the preceding example includes a camelContext element, which
could be used to define Apache Camel routes. For a more detailed example of Blueprint XML, see
Example 2.2, “Configuring the Port Number in Blueprint XML”.

NOTE

The schema namespace used for Apache Camel in Blueprint,
http://camel.apache.org/schema/blueprint, is different from the namespace
used for Apache Camel in Spring XML. The two schemas are almost identical, however.

InstallDir/src/main/resources/OSGI-INF/blueprint/*.xml

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 >

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">
 <!-- Define Camel routes here -->
 ...
 </camelContext>

</blueprint>

CHAPTER 1. BASIC CONCEPTS FOR DEVELOPERS

13

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/index.html

CHAPTER 2. GETTING STARTED WITH DEVELOPING

Abstract

This chapter explains how to get started with Maven-based development, with a two-part project that
illustrates how to develop applications using Apache CXF and Apache Camel.

2.1. CREATE A WEB SERVICES PROJECT

Overview

This section describes how to generate a simple Web services project, which includes complete
demonstration code for a server and a test client. The starting point for this project is the servicemix-
cxf-code-first-osgi-bundle Maven archetype, which is a command-line wizard that creates the
entire project from scratch. Instructions are then given to build the project, deploy the server to the Red
Hat JBoss Fuse container, and run the test client.

Prerequisites

In order to access artifacts from the Maven repository, you need to add the fusesource repository to
Maven's settings.xml file. Maven looks for your settings.xml file in the following standard
location:

UNIX: home/User/.m2/settings.xml

Windows: Documents and Settings\User\.m2\settings.xml

If there is currently no settings.xml file at this location, you need to create a new settings.xml file.
Modify the settings.xml file by adding the repository element for fusesource, as highlighted in
the following example:

<settings>
 <profiles>
 <profile>
 <id>my-profile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>fusesource</id>

<url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 ...
 </repositories>

Red Hat JBoss Fuse 6.1 Getting Started

14

Create project from the command line

You can create a Maven project directly from the command line, by invoking the archetype:generate
goal. First of all, create a directory to hold your getting started projects. Open a command prompt,
navigate to a convenient location in your file system, and create the get-started directory, as follows:

You can now use the archetype:generate goal to invoke the servicemix-cxf-code-first-
osgi-bundle archetype, which generates a simple Apache CXF demonstration, as follows:

NOTE

The arguments of the preceding command are shown on separate lines for readability, but
when you are actually entering the command, the entire command must be entered on a
single line.

You will be prompted to confirm the project settings, with a message similar to this one:

Press the Return key to accept the settings and generate the project. When the command finishes, you
should find a new Maven project in the get-started/cxf-basic directory.

Customize the POM file

Because this project will be configured using Blueprint XML, it is necessary to edit the project's pom.xml
file, to declare the Blueprint dependency. Edit the cxf-basic/pom.xml file and modify the Import-
Package element of the maven-bundle-plugin by adding the lines highlighted in the following

 </profile>
 </profiles>
 ...
</settings>

mkdir get-started
cd get-started

mvn archetype:generate
-DarchetypeGroupId=org.apache.servicemix.tooling
-DarchetypeArtifactId=servicemix-cxf-code-first-osgi-bundle
-DarchetypeVersion=2013.01.0.redhat-610379
-DgroupId=org.fusesource.example
-DartifactId=cxf-basic
-Dversion=1.0-SNAPSHOT

[INFO] Using property: groupId = org.fusesource.example
[INFO] Using property: artifactId = cxf-basic
[INFO] Using property: version = 1.0-SNAPSHOT
[INFO] Using property: package = org.fusesource.example
Confirm properties configuration:
groupId: org.fusesource.example
artifactId: cxf-basic
version: 1.0-SNAPSHOT
package: org.fusesource.example
Y: :

CHAPTER 2. GETTING STARTED WITH DEVELOPING

15

extract:

Blueprint XML configuration

We are going to use Blueprint XML to configure this project (Spring XML is not ideal in the context of
OSGi, because it relies on the deprecated Spring-DM component to access OSGi services). Create the
Blueprint XML file, as follows:

1. Delete the redundant Spring XML file and its parent directories:

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.6</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}
</Bundle-SymbolicName>
 <Import-Package>
 javax.jws,
 javax.wsdl,
 javax.xml.bind,
 javax.xml.bind.annotation,
 javax.xml.namespace,
 javax.xml.ws,
 META-INF.cxf,
 META-INF.cxf.osgi,
 org.apache.cxf.bus,
 org.apache.cxf.bus.spring,
 org.apache.cxf.bus.resource,
 org.apache.cxf.configuration.spring,
 org.apache.cxf.resource,
 org.apache.cxf.jaxws,
 org.apache.cxf.transport.http,
 org.osgi.service.blueprint,
 *
 </Import-Package>
 ...
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
</project>

Red Hat JBoss Fuse 6.1 Getting Started

16

2. Create a new directory to hold the Blueprint configuration files:

3. Create a new Blueprint XML file. Using your favourite text editor, create the file, cxf-
basic/src/main/resources/OSGI-INF/blueprint/beans.xml, and add the following
content to it:

Example 2.1. Blueprint XML for Web Services Endpoint

The purpose of this Blueprint XML file is to create a WS endpoint (that is, an instance of a Web
service). The jaxws:endpoint element creates the WS endpoint and, in this example, it
requires two attributes, as follows:

implementor

Specifies the class that implements the Service Endpoint Interface (SEI).

address

Specifies the WS endpoint address. In this example, instead of a HTTP URL, the address is
specified as a relative path. In the context of JBoss Fuse, this is taken to mean that the Web
service should be installed into the JBoss Fuse container's default Jetty container. By default,
the specified path gets prefixed by http://localhost:8181/cxf/, so the actual address
of the Web service becomes:

Build the Web services project

Build the Web services project and install the generated JAR file into your local Maven repository. From
a command prompt, enter the following commands:

cd cxf-basic
rm -rf src/main/resources/META-INF

mkdir -p src/main/resources/OSGI-INF/blueprint

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/blueprint/jaxws"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 xsi:schemaLocation="
 http://cxf.apache.org/blueprint/core
http://cxf.apache.org/schemas/blueprint/core.xsd
 http://cxf.apache.org/blueprint/jaxws
http://cxf.apache.org/schemas/blueprint/jaxws.xsd">

 <jaxws:endpoint id="HTTPEndpoint"
 implementor="org.fusesource.example.PersonImpl"
 address="/PersonServiceCF"/>

</blueprint>

http://localhost:8181/cxf/PersonServiceCF

CHAPTER 2. GETTING STARTED WITH DEVELOPING

17

Initialize container security

If you have not already done so, create one (or more users) by adding a line of the following form to the
InstallDir/etc/users.properties file:

At least one of the users must have the admin role, to enable administration of the fabric. For example:

Start up the container

Start up the JBoss Fuse container. Open a new command prompt and enter the following commands:

You will see a welcome screen similar to this:

Install prerequisite features

If you are using the Red Hat JBoss Fuse 6.1.0 Medium Install package or the Red Hat JBoss Fuse 6.1.0
Minimal Install package, you need to install additional Karaf features, as follows:

cd cxf-basic
mvn install

Username=Password[,RoleA][,RoleB]...

admin=secretpassword,admin

cd InstallDir/bin
fuse

 _ ____ ______
 | | _ \ | ____|
 | | |_) | ___ ___ ___ | |__ _ _ ___ ___
 _ | | _ < / _ \/ __/ __| | __| | | / __|/ _ \
| |__| | |_) | (_) __ __ \ | | | |_| __ \ __/
 ____/|____/ ___/|___/___/ |_| __,_|___/___|

 JBoss Fuse (6.1.0.redhat-379)
 http://www.redhat.com/products/jbossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.

Open a browser to http://localhost:8181 to access the management console

Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss Fuse.

JBossFuse:karaf@root

JBossFuse:karaf@root> features:install cxf
JBossFuse:karaf@root> features:install cxf-http-jetty
JBossFuse:karaf@root> features:install cxf-jaxws

Red Hat JBoss Fuse 6.1 Getting Started

18

NOTE

These features are pre-installed in the Red Hat JBoss Fuse 6.1.0 Full Install package.

Deploy and start the WS server

To install the cxf-basic Web service as an OSGi bundle, enter the following console command:

NOTE

If your local Maven repository is stored in a non-standard location, you might need to
customize the value of the org.ops4j.pax.url.mvn.localRepository property in
the InstallDir/etc/org.ops4j.pax.url.mvn.cfg file, before you can use the
mvn: scheme to access Maven artifacts.

If the bundle is successfully resolved and installed, the container responds by giving you the ID of the
newly created bundle—for example:

You can now start up the Web service using the start console command, specifying the bundle ID, as
follows:

Check that the bundle has started

To check that the bundle has started, enter the list console command, which gives the status of all the
bundles installed in the container:

Near the end of the listing, you should see a status line like the following:

NOTE

Actually, to avoid clutter, the list command only shows the bundles with a start level of
50 or greater (which excludes most of the system bundles).

Run the WS client

The cxf-basic project also includes a simple WS client, which you can use to test the deployed Web
service. In a command prompt, navigate to the cxf-basic directory and run the simple WS client as
follows:

JBossFuse:karaf@root> install mvn:org.fusesource.example/cxf-basic/1.0-
SNAPSHOT

Bundle ID: 229

JBossFuse:karaf@root> start 229

JBossFuse:karaf@root> list

[229] [Active] [] [Started] [60]
Apache ServiceMix :: CXF Code First OSGi Bundle (1.0.0.SNAPSHOT)

CHAPTER 2. GETTING STARTED WITH DEVELOPING

19

If the client runs successfully, you should see output like the following:

Troubleshooting

If you have trouble running the client, there is an even simpler way to connect to the Web serivice. Open
your favorite Web browser and navigate to the following URL to contact the JBoss Fuse Jetty container:

To query the WSDL directly from the PersonService Web service, navigate to the following URL:

2.2. CREATE A ROUTER PROJECT

Overview

This section describes how to generate a router project, which acts as a proxy for the WS server
described in Section 2.1, “Create a Web Services Project”. The starting point for this project is the
camel-archetype-blueprint Maven archetype.

Prerequisites

This project depends on the cxf-basic project and requires that you have already generated and built
the cxf-basic project, as described in Section 2.1, “Create a Web Services Project”.

Create project from the command line

Open a command prompt and change directory to the get-started directory. You can now use the
archetype:generate goal to invoke the camel-archetype-blueprint archetype, which
generates a simple Apache Camel demonstration, as follows:

cd get-started/cxf-basic
mvn -Pclient

INFO: Creating Service {http://example.fusesource.org/}PersonService from
class org.fusesource.example.Person
Invoking getPerson...
getPerson._getPerson_personId=Guillaume
getPerson._getPerson_ssn=000-000-0000
getPerson._getPerson_name=Guillaume

http://localhost:8181/cxf?wsdl

http://localhost:8181/cxf/PersonServiceCF?wsdl

mvn archetype:generate
-DarchetypeGroupId=org.apache.camel.archetypes
-DarchetypeArtifactId=camel-archetype-blueprint
-DarchetypeVersion=2.12.0.redhat-610379
-DgroupId=org.fusesource.example
-DartifactId=camel-basic
-Dversion=1.0-SNAPSHOT

Red Hat JBoss Fuse 6.1 Getting Started

20

NOTE

The arguments of the preceding command are shown on separate lines for readability, but
when you are actually entering the command, the entire command must be entered on a
single line.

You will be prompted to confirm the project settings, with a message similar to this one:

Type Return to accept the settings and generate the project. When the command finishes, you should
find a new Maven project in the get-started/camel-basic directory.

Modify the route

You are going to modify the default route generated by the archetype and change it into a route that
implements a HTTP bridge. This bridge will be interposed between the WS client and Web service,
enabling us to apply some routing logic to the WSDL messages that pass through the route.

Using your favorite text editor, open camel-basic/src/main/resources/OSGI-
INF/blueprint/blueprint.xml. Remove the existing bean element and the camelContext
element and replace them with the camelContext element highlighted in the following example:

[INFO] Using property: groupId = org.fusesource.example
[INFO] Using property: artifactId = camel-basic
[INFO] Using property: version = 1.0-SNAPSHOT
[INFO] Using property: package = org.fusesource.example
[INFO] Using property: camel-version = 2.9.0.fuse-7-032
[INFO] Using property: log4j-version = 1.2.16
[INFO] Using property: maven-bundle-plugin-version = 2.3.4
[INFO] Using property: maven-compiler-plugin-version = 2.3.2
[INFO] Using property: maven-surefire-plugin-version = 2.11
[INFO] Using property: slf4j-version = 1.6.1
Confirm properties configuration:
groupId: org.fusesource.example
artifactId: camel-basic
version: 1.0-SNAPSHOT
package: org.fusesource.example
camel-version: 2.9.0.fuse-7-032
log4j-version: 1.2.16
maven-bundle-plugin-version: 2.3.4
maven-compiler-plugin-version: 2.3.2
maven-surefire-plugin-version: 2.11
slf4j-version: 1.6.1
Y: :

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext id="blueprintContext"

CHAPTER 2. GETTING STARTED WITH DEVELOPING

21

The from element defines a new HTTP server port, which listens on IP port 8282. The to element
defines a HTTP client endpoint that attempts to connect to the real Web service, which is listening on IP
port 8181. To make the route a little more interesting, we add a delay element, which imposes a five
second (5000 millisecond) delay on all requests passing through the route.

For a detailed discussion and explanation of the HTTP bridge, see Proxying with HTTP.

Disable the test

The generated project includes a built-in unit test, which employs the camel-test testing toolkit. The
Apache Camel testing toolkit is a useful and powerful testing library, but it will not be used in this
example.

To disable the test, open the RouteTest.java file from the
src/test/java/org/fusesource/example directory using a text editor and look for the @Test
annotation, as shown in the following snippet:

Now comment out the @Test annotation, as shown in the following snippet, and save the modified
RouteTest.java file.

Add the required Maven dependency

Because the route uses the Apache Camel Jetty component, you must add a Maven dependency on the
camel-jetty artifact, so that the requisite JAR files are added to the classpath. To add the
dependency, edit the camel-basic/pom.xml file and add the following highlighted dependency as a

 trace="false"
 xmlns="http://camel.apache.org/schema/blueprint">
 <route id="httpBridge">
 <from uri="jetty:http://0.0.0.0:8282/cxf/PersonServiceCF?
matchOnUriPrefix=true"/>
 <delay><constant>5000</constant></delay>
 <to uri="jetty:http://localhost:8181/cxf/PersonServiceCF?
bridgeEndpoint=true&throwExceptionOnFailure=false"/>
 </route>
 </camelContext>

</blueprint>

// Java
...
public class RouteTest extends CamelBlueprintTestSupport {
 ...
 @Test
 public void testRoute() throws Exception {
 ...

...
public class RouteTest extends CamelBlueprintTestSupport {
 ...
 // @Test
 // Disable test!
 public void testRoute() throws Exception {
 ...

Red Hat JBoss Fuse 6.1 Getting Started

22

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/Proxying.html#Proxying-HTTP

child of the dependencies element:

Build the router project

Build the router project and install the generated JAR file into your local Maven repository. From a
command prompt, enter the following commands:

Deploy and start the route

If you have not already started the Red Hat JBoss Fuse container and deployed the Web services
bundle, you should do so now—see the section called “Deploy and start the WS server”.

To install the camel-basic route as an OSGi bundle, enter the following console command:

If the bundle is successfully resolved and installed, the container responds by giving you the ID of the
newly created bundle—for example:

You can now start up the Web service using the start console command, specifying the bundle ID, as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <version>2.12.0.redhat-610379</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-blueprint</artifactId>
 <version>2.12.0.redhat-610379</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jetty</artifactId>
 <version>2.12.0.redhat-610379</version> </dependency>
 ...
 </dependencies>
 ...
</project>

cd camel-basic
mvn install

JBossFuse:karaf@root> install mvn:org.fusesource.example/camel-basic/1.0-
SNAPSHOT

Bundle ID: 230

JBossFuse:karaf@root> start 230

CHAPTER 2. GETTING STARTED WITH DEVELOPING

23

Test the route with the WS client

The cxf-basic project includes a simple WS client, which you can use to test the deployed route and
Web service. In a command prompt, navigate to the cxf-basic directory and run the simple WS client
as follows:

If the client runs successfully, you should see output like the following:

After a five second delay, you will see the following response:

2.3. CREATE AN AGGREGATE MAVEN PROJECT

Aggregate POM

A complete application typically consists of multiple Maven projects. As the number of projects grows
larger, however, it becomes a nuisance to build each project separately. Moreover, it is usually
necessary to build the projects in a certain order and the developer must remember to observe the
correct build order.

To simplify building multiple projects, you can optionally create an aggregate Maven project. This
consists of a single POM file (the aggregate POM), usually in the parent directory of the individual
projects. The POM file specifies which sub-projects (or modules) to build and builds them in the specified
order.

Parent POM

Maven also supports the notion of a parent POM. A parent POM enables you to define an inheritance
style relationship between POMs. POM files at the bottom of the hierarchy declare that they inherit from
a specific parent POM. The parent POM can then be used to share certain properties and details of
configuration.

IMPORTANT

The details of how to define and use a parent POM are beyond the scope of this guide,
but it is important to be aware that a parent POM and an aggregate POM are not the
same thing.

Best practice

cd ../cxf-basic
mvn -Pclient -Dexec.args="http://localhost:8282/cxf/PersonServiceCF"

INFO: Creating Service {http://example.fusesource.org/}PersonService from
class org.fusesource.example.Person
Invoking getPerson...

getPerson._getPerson_personId=Guillaume
getPerson._getPerson_ssn=000-000-0000
getPerson._getPerson_name=Guillaume

Red Hat JBoss Fuse 6.1 Getting Started

24

Quite often, you will see examples where a POM is used both as a parent POM and an aggregate POM.
This is acceptable for small, relatively simple applications, but is not recommended as best practice.
Best practice is to define separate POM files for the parent POM and the aggregate POM.

Create an aggregate POM

To create an aggregate POM for your getting started application, use a text editor to create a pom.xml
file in the get-started directory and add the following contents to the file:

As with any other POM, the groupId, artifactId, and version must be defined, in order to identify
this artifact uniquely. But the packaging must be set to pom. The key portion of the aggregate POM is
the modules element, which defines the list of Maven sub-projects to build and defines the order in which
the projects are built. The content of each module element is the relative path of a directory containing a
Maven project.

Building with the aggregate POM

Using the aggregate POM you can build all of sub-projects in one go, by entering the following at a
command prompt:

2.4. DEFINE A FEATURE FOR THE APPLICATION

Why do you need a feature?

An OSGi bundle is not a convenient unit of deployment to use with the Red Hat JBoss Fuse container.
Applications typically consist of multiple OSGi bundles and complex applications may consist of a very

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <groupId>org.fusesource.example</groupId>
 <artifactId>get-started</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <modelVersion>4.0.0</modelVersion>

 <name>Getting Started :: Aggregate POM</name>
 <description>Getting Started example</description>

 <modules>
 <module>cxf-basic</module>
 <module>camel-basic</module>
 </modules>

</project>

cd get-started
mvn install

CHAPTER 2. GETTING STARTED WITH DEVELOPING

25

large number of bundles. Usually, you want to deploy or undeploy multiple OSGi bundles at the same
time and you need a deployment mechanism that supports this.

Apache Karaf features are designed to address this problem. A feature is essentially a way of
aggregating multiple OSGi bundles into a single unit of deployment. When defined as a feature, you can
simultaneously deploy or undeploy a whole collection of bundles.

What to put in a feature

At a minimum, a feature should contain the basic collection of OSGi bundles that make up the core of
your application. In addition, you might need to specify some of the dependencies of your application
bundles, in case those bundles are not predeployed in the container.

Ultimately, the decision about what to include in your custom feature depends on what bundles and
features are predeployed in your container. Using a standardised container like Red Hat JBoss Fuse
makes it easier to decide what to include in your custom feature.

NOTE

If you decide to use Fuse Application Bundles (FABs) instead of OSGi bundles, your
feature definitions can typically be much simpler. FABs are capable of finding and
installing most of the dependencies that they need.

Deployment options

You have a few different options for deploying features, as follows:

Hot deploy—the simplest deployment option; just drop the XML features file straight into the hot
deploy directory, InstallDir/deploy.

Add a repository URL—you can tell the Red Hat JBoss Fuse container where to find your
features repository file using the features:addUrl console command (see Add the local
repository URL to the features service). You can then install the feature at any time using the
features:install console command.

Through a Fuse Fabric profile—you can use the management console to deploy a feature inside
a Fuse Fabric profile.

For more details about the feature deployment options, see Deploying a Feature.

Features and Fuse Fabric

It turns out that a feature is a particularly convenient unit of deployment to use with Fuse Fabric. A Fuse
Fabric profile typically consists of a list of features and a collection of related configuration settings.
Hence, a Fuse Fabric profile makes it possible to deploy a completely configured application to any
container in a single atomic operation.

Create a custom features repository

Create a sub-directory to hold the features repository. Under the get-started project directory, create
all of the directories in the following path:

get-started/features/src/main/resources/

Red Hat JBoss Fuse 6.1 Getting Started

26

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeployFeatures.html#DeployFeatures-Create-AddUrl
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeployFeatures-Deploy.html

Under the get-started/features/src/main/resources directory, use a text editor to create the
get-started.xml file and add the following contents:

Under the get-started/features/ directory, use a text editor to create the Maven POM file,
pom.xml, and add the following contents to it:

<?xml version="1.0" encoding="UTF-8"?>
<features name="get-started">
 <feature name="get-started-basic">
 <bundle>mvn:org.fusesource.example/cxf-basic/1.0-SNAPSHOT</bundle>
 <bundle>mvn:org.fusesource.example/camel-basic/1.0-SNAPSHOT</bundle>
 </feature>
 <feature name="get-started-cxf">
 <bundle>mvn:org.fusesource.example/cxf-basic/1.0-SNAPSHOT</bundle>
 </feature>
</features>

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.fusesource.example</groupId>
 <artifactId>get-started</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>

 <name>Getting Started Feature Repository</name>

 <build>
 <plugins>
 <!-- Attach the generated features file as an artifact,
 and publish to the maven repository -->
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.5</version>
 <executions>
 <execution>
 <id>attach-artifacts</id>
 <phase>package</phase>
 <goals>
 <goal>attach-artifact</goal>
 </goals>
 <configuration>
 <artifacts>
 <artifact>
 <file>target/classes/get-started.xml</file>
 <type>xml</type>
 <classifier>features</classifier>
 </artifact>

CHAPTER 2. GETTING STARTED WITH DEVELOPING

27

Install the features repository

You need to install the features repository into your local Maven repository, so that it can be located by
the Red Hat JBoss Fuse container. To install the features repository, open a command prompt, change
directory to get-started/features, and enter the following command:

Deploy the custom feature

To deploy the get-started-basic feature into the container, perform the following steps:

1. If the cxf-basic and camel-basic bundles are already installed in the JBoss Fuse container,
you must first uninstall them. At the console prompt, use the list command to discover the
bundle IDs for the cxf-basic and camel-basic bundles, and then uninstall them both using
the console command, uninstall BundleID.

2. Before you can access features from a features repository, you must tell the container where to
find the features repository. Add the features repository URL to the container, by entering the
following console command:

You can check whether the container knows about the new features by entering the console
command features:list. If necessary, you can use the features:refreshurl console
command, which forces the container to re-read its features repositories.

3. To install the get-started-basic feature, enter the following console command:

4. After waiting a few seconds for the bundles to start up, you can test the application as described
in the section called “Test the route with the WS client”.

5. To uninstall the feature, enter the following console command:

2.5. CONFIGURE THE APPLICATION

 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

</project>

cd features
mvn install

JBossFuse:karaf@root> features:addurl
mvn:org.fusesource.example/get-started/1.0-SNAPSHOT/xml/features

JBossFuse:karaf@root> features:install get-started-basic

JBossFuse:karaf@root> features:uninstall get-started-basic

Red Hat JBoss Fuse 6.1 Getting Started

28

OSGi Config Admin service

The OSGi Config Admin service is a standard OSGi configuration mechanism that enables
administrators to modify application configuration at deployment time and at run time. This contrasts the
with settings made directly in a Blueprint XML file, because these XML files are accessible only to the
developer.

The OSGi Config Admin service relies on the following basic concepts:

Persistent ID

A persistent ID (PID) identifies a group of related properties. Conventionally, a PID is normally written
in the same format as a Java package name. For example, the org.ops4j.pax.web PID
configures the Red Hat JBoss Fuse container's default Jetty Web server.

Properties

A property is a name-value pair, which always belongs to a specific PID.

Setting configuration properties

There are two main ways to customise the properties in the OSGi Config Admin service, as follows:

For a given a PID, PersistentID, you can create a text file under the InstallDir/etc directory,
which obeys the following naming convention:

You can then set the properties belonging to this PID by editing this file and adding entries of the
form:

Fuse Fabric supports another mechanism for customising OSGi Config Admin properties. In
Fuse Fabric, you set OSGi Config Admin properties in a fabric profile (where a profile
encapsulates the data required to deploy an application). There are two alternative ways of
modifying configuration settings in a profile:

Using the management console

Using the fabric:profile-edit command in a container console (see Section 3.2.2,
“Create Fabric Profiles”).

Replace IP port with a property placeholder

As an example of how the OSGi Config Admin service might be used in practice, consider the IP port
used by the PersonService Web service from the cxf-basic project. By modifying the Spring XML
file that defines this Web service, you can make the Web service's IP port customisable through the
OSGi Config Admin service.

The IP port number in the Spring XML file is replaced by a property placeholder, which resolves the port
number at run time by looking up the property in the OSGi Config Admin service.

Blueprint XML example

InstallDir/etc/PersistentID.cfg

Property=Value

CHAPTER 2. GETTING STARTED WITH DEVELOPING

29

In the cxf-basic project, any XML files from the following location are treated as Blueprint XML files
(the standard Maven location for Blueprint XML files):

Edit the beans.xml file from the preceding directory and add the XML contents shown in Example 2.2,
“Configuring the Port Number in Blueprint XML”.

Example 2.2. Configuring the Port Number in Blueprint XML

The highlighted text shows the parts of the Blueprint configuration that are relevant to the OSGi Config
Admin service. Apart from defining the cm namespace, the main changes are as follows:

1. The cm:property-placeholder bean contacts the OSGi Config Admin service and retrieves
all of the property settings from the org.fusesource.example.get.started PID. The key-
value pairs in the cm:default-properties/cm:property elements specify default values
for the properties (which are overridden, if corresponding settings can be retrieved from the
OSGi Config Admin service).

2. The ${portNumber} placeholder is used to specify the IP port number used by the
PersonService Web service.

NOTE

For the Blueprint XML configuration, you must ensure that the instructions for the maven-
bundle-plugin in the project's pom.xml file include the wildcard, *, in the packages
listed in the Import-Package element (if the Import-Package element is not present,
the wildcard is implied by default). Otherwise, you will get the error: Unresolved
references to [org.osgi.service.blueprint] by class(es) on the
Bundle-Classpath[Jar:dot]: [].

cxf-basic/src/main/resources/OSGI-INF/blueprint/*.xml

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/blueprint/jaxws"
 xmlns:cxf="http://camel.apache.org/schema/blueprint/cxf"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-
cm/v1.1.0">

 <!-- osgi blueprint property placeholder -->
 <cm:property-placeholder id="placeholder"
 persistent-
id="org.fusesource.example.get.started">
 <cm:default-properties>
 <cm:property name="portNumber" value="8181"/>
 </cm:default-properties>
 </cm:property-placeholder>

 <jaxws:endpoint id="HTTPEndpoint"
 implementor="org.fusesource.example.PersonImpl"
 address="http://0.0.0.0:${portNumber}/PersonServiceCF"/>

</blueprint>

Red Hat JBoss Fuse 6.1 Getting Started

30

Deploying the configurable application

To deploy the configurable Web service from the cxf-basic project, perform the following steps:

1. Edit the Blueprint XML file, beans.xml, to integrate the OSGi Config Admin service, as
described in Example 2.2, “Configuring the Port Number in Blueprint XML”.

2. Rebuild the cxf-basic project with Maven. Open a command prompt, change directory to the
get-started/cxf-basic directory, and enter the following Maven command:

3. Create the following configuration file in the etc/ directory of your Red Hat JBoss Fuse
installation:

Edit the org.fusesource.example.get.started.cfg file with a text editor and add the
following contents:

4. If you have previously deployed the get-started-basic feature (as described in Section 2.4,
“Define a Feature for the Application”), uninstall it now:

5. Deploy the get-started-cxf feature, by entering the following console command:

6. After waiting a few seconds for the bundles to start up, you can test the application by opening a
command prompt, changing directory to get-started/cxf-basic, and entering the following
command:

IMPORTANT

The URL in this command has a slightly different format from the URLs used in
the previous client commands: the path part of the URL is /PersonServiceCF,
instead of /cxf/PersonServiceCF.

7. To uninstall the feature, enter the following console command:

2.6. TROUBLESHOOTING

mvn clean install

InstallDir/etc/org.fusesource.example.get.started.cfg

portNumber=8182

JBossFuse:karaf@root> features:uninstall get-started-basic

JBossFuse:karaf@root> features:install get-started-cxf

mvn -Pclient -Dexec.args="http://localhost:8182/PersonServiceCF"

features:uninstall get-started-cxf

CHAPTER 2. GETTING STARTED WITH DEVELOPING

31

Check the status of a deployed bundle

After deploying an OSGi bundle, you can check its status using the osgi:list console command. For
example:

The most recently deployed bundles appear at the bottom of the listing. For example, a successfully
deployed cxf-basic bundle has a status line like the following:

The second column indicates the status of the OSGi bundle lifecycle (usually Installed, Resolved, or
Active). A bundle that is successfully installed and started has the status Active. If the bundle
contains a Blueprint XML file, the third column indicates whether the Blueprint context has been
successfully Created or not. If the bundle contains a Spring XML file, the fourth column indicates
whether the Spring context has been successfully Started or not.

Logging

If a bundle fails to start up properly, an error message is usually sent to the log. To view the most recent
messages from the log, enter the log:display console command. Usually, you will be able to find a
stack trace for the failed bundle in the log.

You can easily change the logging level using the log:set console command. For example:

Redeploying bundles with dev:watch

If there is an error in one of your bundles and you need to redeploy it, the best approach is to use the
dev:watch command. For example, given that you have already deployed the cxf-basic bundle and
it has the bundle ID, 232, you can tell the runtime to watch the bundle by entering the following console
command:

Now, whenever you rebuild the bundle using Maven:

The runtime automatically redeploys the bundle, as soon as it notices that the corresponding JAR in the
local Maven repository has been updated. In the console window, the following message appears:

JBossFuse:karaf@root> osgi:list

[232] [Active] [] [Started] [60]
 Apache ServiceMix :: CXF Code First OSGi Bundle (1.0.0.SNAPSHOT)

JBossFuse:karaf@root> log:set DEBUG

JBossFuse:karaf@root> dev:watch 232
Watched URLs/IDs:
232

cd cxf-basic
mvn clean install

[Watch] Updating watched bundle: cxf-basic (1.0.0.SNAPSHOT)

Red Hat JBoss Fuse 6.1 Getting Started

32

CHAPTER 3. GETTING STARTED WITH DEPLOYING

Abstract

This chapter introduces the Fuse Fabric technology layer and provides a detailed example of how to
deploy an application in a fabric, based on the application developed in Chapter 2, Getting Started with
Developing.

3.1. SCALABLE DEPLOYMENT WITH FUSE FABRIC

Why Fuse Fabric?

A single Red Hat JBoss Fuse container deployed on one host provides a flexible and sophisticated
environment for deploying your applications, with support for versioning, deployment of various package
types (OSGi bundle, FAB, WAR), container services and so on. But when you start to roll out a large-
scale deployment of a product based on JBoss Fuse, where multiple containers are deployed on
multiple hosts across a network, you are faced with an entire new set of challenges. Some of the
capabilities typically needed for managing a large-scale deployment are:

Monitoring the state of all the containers in the network

Starting and stopping remote containers

Provisioning remote containers to run particular applications

Upgrading applications and rolling out patches in a live system

Starting up and provisioning new containers quickly—for example, to cope with an increased
load on the system

The Fuse Fabric technology layer handles these kinds of challenges in a large-scale production system.

A sample fabric

Figure 3.1, “Containers in a Fabric” shows an example of a distributed collection of containers that
belong to a single fabric.

CHAPTER 3. GETTING STARTED WITH DEPLOYING

33

Figure 3.1. Containers in a Fabric

Fabric

The Fuse Fabric technology layer supports the scalable deployment of JBoss Fuse containers across a
network. It enables a variety of advanced features, such as remote installation and provisioning of
containers; phased rollout of new versions of libraries and applications; load-balancing and failover of
deployed endpoints.

A fabric is a collection of containers that share a fabric registry, where the fabric registry is a replicated
database that stores all information related to provisioning and managing the containers. A fabric is
intended to manage a distributed network of containers, where the containers are deployed across
multiple hosts.

Fabric Ensemble

A Fabric Ensemble is a collection of Fabric Servers that collectively maintain the state of the fabric
registry. The Fabric Ensemble implements a replicated database and uses a quorum-based voting
system to ensure that data in the fabric registry remains consistent across all of the fabric's containers.
To guard against network splits in a quorum-based system, it is a requirement that the number of Fabric
Servers in a Fabric Ensemble is always an odd number.

The number of Fabric Servers in a fabric is typically 1, 3, or 5. A fabric with just one Fabric Server is
suitable for experimentation only. A live production system should have at least 3 or 5 Fabric Servers,
installed on separate hosts, to provide fault tolerance.

Fabric Server

A Fabric Server has a special status in the fabric, because it is responsible for maintaining a replica of

Red Hat JBoss Fuse 6.1 Getting Started

34

http://en.wikipedia.org/wiki/Quorum_(distributed_computing)

the fabric registry. In each Fabric Server, a registry service is installed (labeled R in Figure 3.1,
“Containers in a Fabric”). The registry service (based on Apache ZooKeeper) maintains a replica of the
registry database and provides a ZooKeeper server, which ordinary agents can connect to in order to
retrieve registry data.

Fabric Container

A Fabric Container is aware of the locations of all of the Fabric Servers, and it can retrieve registry data
from any Fabric Server in the Fabric Ensemble. A Fabric Agent (labeled A in Figure 3.1, “Containers in a
Fabric”) is installed in each Fabric Container. The Fabric Agent actively monitors the fabric registry, and
whenever a relevant modification is made to the registry, it immediately updates its container to keep the
container consistent with the registry settings.

Profile

A Fabric profile is an abstract unit of deployment, which is capable of holding all of the data required for
deploying an application into a Fabric Container. Profiles are used exclusively in the context of fabrics.
Features or bundles deployed directly to Fabric Containers are short lived.

IMPORTANT

The presence of a Fabric Agent in a container completely changes the deployment
model, requiring you to use profiles exclusively as the unit of deployment. Although it is
still possible to deploy an individual bundle or feature (using osgi:install or
features:install, respectively), these modifications are impermanent. As soon as
you restart the container or refresh its contents, the Fabric Agent replaces the container's
existing contents with whatever is specified by the deployed profiles.

3.2. DEPLOYING TO A FABRIC

3.2.1. Create a Fabric

Overview

Figure 3.2 shows an overview of a sample fabric that you will create. The Fabric Ensemble consists of
just one Fabric Server (making this fabric suitable only for experimental use) and two managed child
containers.

CHAPTER 3. GETTING STARTED WITH DEPLOYING

35

Figure 3.2. A Sample Fabric with Child Containers

Fabric server

A Fabric Server (or servers) forms the backbone of a fabric. It hosts a registry service, which maintains a
replicable database of information about the state of the fabric. Initially, when you create the fabric, there
is just a single Fabric Server.

Child containers

Creating one or more child containers is the simplest way to extend a fabric. As shown in Figure 3.2, “A
Sample Fabric with Child Containers”, the first container in the fabric is a root container, and both child
containers are descended from it.

Each child container is an independent Red Hat JBoss Fuse container instance, which runs in its own
JVM instance. The data files for the child containers are stored under the InstallDir/instances
directory.

Steps to create the fabric

To create the simple fabric shown in Figure 3.2, “A Sample Fabric with Child Containers” , follow these
steps:

1. (Optional) Customise the name of the root container by editing the
InstallDir/etc/system.properties file and specifying a different name for this property:

karaf.name=root

Red Hat JBoss Fuse 6.1 Getting Started

36

NOTE

For the first container in your fabric, this step is optional. But at some later stage,
if you want to join a root container to the fabric, you must customise the new
container's name to prevent it from clashing with any existing root containers in
the fabric.

2. To create the first fabric container, which acts as the seed for the new fabric, enter this console
command:

The current container, named root by default, becomes a Fabric Server with a registry service
installed. Initially, this is the only container in the fabric. The --new-user and --new-user-
password options specify the credentials for a new administrator user. The Zookeeper
password is used to protect sensitive data in the Fabric registry service (all of the nodes under
/fabric).

NOTE

Most of the time, you are not prompted to enter the Zookeeper password when
accessing the registry service, because it is cached in the current session. When
you join a container to a fabric, however, you must provide the fabric's Zookeeper
password.

NOTE

If you use a VPN (virtual private network) on your local machine, it is advisable to
log off VPN before you create the fabric and to stay logged off while you are using
the local container. A local Fabric Server is permanently associated with a fixed
IP address or hostname. If VPN is enabled when you create the fabric, the
underlying Java runtime is liable to detect and use the VPN hostname instead of
your permanent local hostname. This can also be an issue with multi-homed
machines. To be absolutely sure about the hostname, you could specify the IP
address explicitly—see chapter "Creating a New Fabric" in "Fabric Guide".

3. Create two child containers. Assuming that your root container is named root, enter this
console command:

You are prompted to enter a JMX username and password (the JMX port is integrated with the
JAAS authentication service). Enter one of the username/password combinations that you
defined in step 2.

JBossFuse:karaf@root> fabric:create --new-user AdminUser --new-user-
password AdminPass
 --zookeeper-password ZooPass --wait-for-provisioning

JBossFuse:karaf@root> fabric:container-create-child root child 2
Jmx Login for root: admin
Jmx Password for root:
The following containers have been created successfully:
 Container: child1.
 Container: child2.

CHAPTER 3. GETTING STARTED WITH DEPLOYING

37

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/ESBRuntimeFabricCreate.html

4. Invoke the fabric:container-list command to see a list of all containers in your new
fabric. You should see a listing something like this:

Shutting down the containers

Because the child containers run in their own JVMs, they do not automatically stop when you shut down
the root container. To shut down a container and its children, first stop its children using the
fabric:container-stop command. For example, to shut down the current fabric completely, enter
these console commands:

After you restart the root container, you must explicitly restart the children using the
fabric:container-start console command.

3.2.2. Create Fabric Profiles

Overview

A profile is the basic unit of deployment in a fabric. You can deploy one or more profiles to a container,
and the content of those deployed profiles determines what is installed in the container.

Contents of a profile

A profile encapsulates the following kinds of information:

The URL locations of features repositories

A list of features to install

A list of bundles to install (or, more generally, any suitable JAR package—including OSGi
bundles, Fuse Application Bundles, and WAR files)

A collection of configuration settings for the OSGi Config Admin service

Java system properties that affect the Apache Karaf container (analogous to editing
etc/config.properties)

Java system properties that affect installed bundles (analogous to editing
etc/system.properties)

JBossFuse:karaf@root> fabric:container-list
[id] [version] [alive] [profiles]
[provision status]
root 1.0 true fabric, fabric-
ensemble-0000-1, fuse-esb-full success
 child1 1.0 true default
success
 child2 1.0 true default
success

JBossFuse:karaf@root> fabric:container-stop child1
JBossFuse:karaf@root> fabric:container-stop child2
JBossFuse:karaf@root> shutdown -f

Red Hat JBoss Fuse 6.1 Getting Started

38

Base profile

Profiles support inheritance. This can be useful in cases where you want to deploy a cluster of similar
servers—for example, where the servers differ only in the choice of IP port number. For this, you would
typically define a base profile, which includes all of the deployment data that the servers have in
common. Each individual server profile would inherit from the common base profile, but add
configuration settings specific to its server instance.

Create a base profile

To create the gs-cxf-base profile, follow these steps:

1. Create the gs-cxf-base profile by entering this console command:

2. Add the get-started features repository (see Define a Feature for the Application) to the gs-
cxf-base profile by entering this console command:

3. Now add the get-started-cxf feature (which provides the Web service example server) to the gs-
cxf-base profile. Enter the following console command:

Create the derived profiles

You create two derived profiles, gs-cxf-01 and gs-cxf-02, which configure different IP ports for the
Web service. To do so, follow these steps:

1. Create the gs-cxf-01 profile—which derives from gs-cxf-base—by entering this console
command:

2. Create the gs-cxf-02 profile—which derives from gs-cxf-base—by entering this console
command:

3. In the gs-cxf-01 profile, set the portNumber configuration property to 8185, by entering this
console command:

JBossFuse:karaf@root> fabric:profile-create --parents feature-cxf
gs-cxf-base

JBossFuse:karaf@root> profile-edit -r
mvn:org.fusesource.example/get-started/1.0-SNAPSHOT/xml/features gs-
cxf-base

JBossFuse:karaf@root> profile-edit --features get-started-cxf gs-
cxf-base

JBossFuse:karaf@root> profile-create --parents gs-cxf-base gs-cxf-01

JBossFuse:karaf@root> profile-create --parents gs-cxf-base gs-cxf-02

JBossFuse:karaf@root> profile-edit -p
org.fusesource.example.get.started/portNumber=8185 gs-cxf-01

CHAPTER 3. GETTING STARTED WITH DEPLOYING

39

4. In the gs-cxf-02 profile, set the portNumber configuration property to 8186, by entering this
console command:

3.2.3. Deploy the Profiles

Deploy profiles to the child containers

Having created the child containers, as described in Section 3.2.1, “Create a Fabric”, and the profiles, as
described in Section 3.2.2, “Create Fabric Profiles”, you can now deploy the profiles. To do so, follow
these steps:

1. Deploy the gs-cxf-01 profile into the child1 container by entering this console command:

2. Deploy the gs-cxf-02 profile into the child2 container by entering this console command:

Test the deployed profiles

You can test the deployed profiles using the WS client from the cxf-basic Maven project described in
Create a Web Services Project. To do so, follow these steps:

1. Open a new command prompt and cd to get-started/cxf-basic.

2. Test the gs-cxf-01 profile (which deploys a Web service listening on port 8185) by entering
this command:

3. Test the gs-cxf-02 profile (which deploys a Web service listening on port 8186) by entering
this command:

3.2.4. Update a Profile

Atomic container upgrades

Normally, when you edit a profile that is already deployed in a container, the modification takes effect
immediately. This is so because the Fabric Agent in the affected container (or containers) actively
monitors the fabric registry in real time.

In practice, however, immediate propagation of profile modifications is often undesirable. In a production
system, you typically want to roll out changes incrementally: for example, initially trying out the change

JBossFuse:karaf@root> profile-edit -p
org.fusesource.example.get.started/portNumber=8186 gs-cxf-02

JBossFuse:karaf@root> fabric:container-change-profile child1 gs-cxf-
01

JBossFuse:karaf@root> fabric:container-change-profile child2 gs-cxf-
02

mvn -Pclient -Dexec.args="http://localhost:8185/PersonServiceCF"

mvn -Pclient -Dexec.args="http://localhost:8186/PersonServiceCF"

Red Hat JBoss Fuse 6.1 Getting Started

40

on just one container to check for problems, before you make changes globally to all containers.
Moreover, sometimes several edits must be made together to reconfigure an application in a consistent
way.

Profile versioning

For quality assurance and consistency, it is typically best to modify profiles atomically, where several
modifications are applied simultaneously. To support atomic updates, fabric implements profile
versioning. Initially, the container points at version 1.0 of a profile. When you create a new profile version
(for example, version 1.1), the changes are invisible to the container until you upgrade it. After you are
finished editing the new profile, you can apply all of the modifications simultaneously by upgrading the
container to use the new version 1.1 of the profile.

Upgrade to a new profile

For example, to modify the gs-cxf-01 profile, when it is deployed and running in a container, follow the
recommended procedure:

1. Create a new version, 1.1, to hold the pending changes by entering this console command:

The new version is initialised with a copy of all of the profiles from version 1.0.

2. Use the fabric:profile-edit command to change the portNumber of gs-cxf-01 to the
value 8187 by entering this console command:

Remember to specify version 1.1 to the fabric:profile-edit command, so that the
modifications are applied to version 1.1 of the gs-cxf-01 profile.

3. Upgrade the child1 container to version 1.1 by entering this console command:

Roll back to an old profile

You can easily roll back to the old version of the gs-cxf-01 profile, using the fabric:container-
rollback command like this:

JBossFuse:karaf@root> fabric:version-create
Created version: 1.1 as copy of: 1.0

JBossFuse:karaf@root> fabric:profile-edit -p
org.fusesource.example.get.started/portNumber=8187 gs-cxf-01 1.1

JBossFuse:karaf@root> fabric:container-upgrade 1.1 child1

JBossFuse:karaf@root> fabric:container-rollback 1.0 child1

CHAPTER 3. GETTING STARTED WITH DEPLOYING

41

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT
EDITOR

Abstract

When you have a lot of changes and additions to make to a profile's configuration, it is usually more
convenient to do this interactively, using the built-in text editor for profiles. The editor can be accessed by
entering the profile-edit command with no arguments except for the profile's name (and optionally,
version); or adding the --pid option for editing OSGi PID properties; or adding the --resource option
for editing general resources.

A.1. EDITING AGENT PROPERTIES

Overview

This section explains how to use the built-in text editor to modify a profile's agent properties, which are
mainly used to define what bundles and features are deployed by the profile.

Open the agent properties resource

To start editing a profile's agent properties using the built-in text editor, enter the following console
command:

Where Profile is the name of the profile to edit and you can optionally specify the profile version,
Version, as well. The text editor opens in the console window, showing the current profile name and
version in the top-left corner of the Window. The bottom row of the editor screen summarizes the
available editing commands and you can use the arrow keys to move about the screen.

Specifying feature repository locations

To specify the location of a feature repository, add a line in the following format:

Where ID is an arbitrary unique identifier and URL gives the location of a single feature repository (only
one repository URL can be specified on a line).

Specifying deployed features

To specify a feature to deploy (which must be available from one of the specified feature repositories),
add a line in the following format:

Where ID is an arbitrary unique identifier and FeatureName is the name of a feature.

Specifying deployed bundles

JBossFuse:karaf@root> profile-edit Profile [Version]

repository.ID=URL

feature.ID=FeatureName

Red Hat JBoss Fuse 6.1 Getting Started

42

To specify a bundle to deploy, add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the bundle's location.

NOTE

A bundle entry can be used in combination with a blueprint: (or spring:) URL
handler to deploy a Blueprint XML resource (or a Spring XML resource) as an OSGi
bundle.

Specifying bundle overrides

To specify a bundle override, add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the bundle's location.

NOTE

A bundle override is used to override a bundle installed by a feature, replacing it with a
different version of the bundle. For example, this functionality is used by the patching
system to install a patched bundle in a container.

Specifying deployed FABs

To specify a Fuse Application Bundle (FAB) to deploy, add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the FAB's location.

Specifying etc/config.properties properties

To specify Java system properties that affect the Apache Karaf container (analogous to editing
etc/config.properties in a standalone container), add a line in the following format:

Specifying etc/system.properties properties

To specify Java system properties that affect the bundles deployed in the container (analogous to editing
etc/system.properties in a standalone container), add a line in the following format:

If the system property, Property, is already set at the JVM level (for example, through the --jvm-
opts option to the fabric:container-create command), the preceding fabric:profile-edit
command will not override the JVM level setting. To override a JVM level setting, set the system property

bundle.ID=URL

override.ID=URL

fab.ID=URL

config.Property=Value

system.Property=Value

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR

43

as follows:

Specifying libraries to add to Java runtime lib/

To specify a Java library to deploy (equivalent to adding a library to the lib/ directory of the underlying
Java runtime), add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the library's location.

Specifying libraries to add to Java runtime lib/ext/

To specify a Java extension library to deploy (equivalent to adding a library to the lib/ext/ directory of
the underlying Java runtime), add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the extension library's location.

Specifying libraries to add to Java runtime lib/endorsed/

To specify a Java endorsed library to deploy (equivalent to adding a library to the lib/endorsed/
directory of the underlying Java runtime), add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the endorsed library's location.

Example

To open the mq-client profile's agent properties for editing, enter the following console command:

The text editor starts up, and you should see the following screen in the console window:

system.karaf.override.Property=Value

lib.ID=URL

ext.ID=URL

endorsed.ID=URL

JBossFuse:karaf@root> profile-edit mq-client

Profile:mq-client 1.0
L:1 C:1
#
Copyright (C) Red Hat, Inc.
http://redhat.com
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#

Red Hat JBoss Fuse 6.1 Getting Started

44

Type ̂ X to quit the text editor and get back to the console prompt.

A.2. EDITING OSGI CONFIG ADMIN PROPERTIES

Overview

This section explains how to use the built-in text editor to edit the property settings associated with a
specific persistent ID.

Persistent ID

In the context of the OSGi Config Admin service, a persistent ID (PID) refers to and identifies a set of
related properties. In particular, when defining PID property settings in a profile, the properties
associated with the PID persistent ID are defined in the PID.properties resource.

Open the Config Admin properties resource

To start editing the properties associated with the PID persistent ID, enter the following console
command:

NOTE

It is also possible to edit PID properties by specifying --resource PID.properties
in the profile-edit command, instead of using the --pid PID option.

Specifying OSGi config admin properties

The text editor opens, showing the contents of the specified profile's PID.properties resource (which
is actually stored in the ZooKeeper registry). To edit the properties, add, modify, or delete lines of the
following form:

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

repository.activemq=mvn:org.apache.activemq/activemq-
karaf/${version:activemq}/xml/features
repository.karaf-
standard=mvn\:org.apache.karaf.assemblies.features/standard/${version:kara
f}/
xml/features

 ^X Quit ^S Save ^Z Undo ^R Redo ^G Go To ^F Find
^N Next ^P Previous

JBossFuse:karaf@root> profile-edit --pid PID Profile [Version]

Property=Value

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR

45

Example

To edit the properties for the io.fabric8.hadoop PID in the hadoop-base profile, enter the following
console command:

The text editor starts up, and you should see the following screen in the console window:

You might notice that colon characters are escaped in this example (as in \:). Strictly speaking, it is only
necessary to escape a colon if it appears as part of a property name (left hand side of the equals sign),
but the profile-edit command automatically escapes all colons when it writes to a resource. When
manually editing resources using the text editor, however, you do not need to escape colons in URLs
appearing on the right hand side of the equals sign.

Type ̂ X to quit the text editor and get back to the console prompt.

A.3. EDITING OTHER RESOURCES

Overview

In addition to agent properties and PID properties, the built-in text editor makes it possible for you edit
any resource associated with a profile. This is particularly useful, if you need to store additional

JBossFuse:karaf@root> profile-edit --resource io.fabric8.hadoop.properties
hadoop-base 1.0

Profile:hadoop-base 1.0
L:1 C:1
#
Copyright (C) Red Hat, Inc.
http://redhat.com
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

fs.default.name=hdfs\://localhost\:9000
dfs.replication=1
mapred.job.tracker=localhost\:9001
dfs.name.dir=${karaf.data}/hadoop/dfs/name
dfs.http.address=0.0.0.0\:9002
dfs.data.dir=${karaf.data}/hadoop/dfs/data
dfs.name.edits.dir=${karaf.data}/hadoop/dfs/name

 ^X Quit ^S Save ^Z Undo ^R Redo ^G Go To ^F Find
^N Next ^P Previous

Red Hat JBoss Fuse 6.1 Getting Started

46

configuration files in a profile. The extra configuration files can be stored as profile resources (which
actually correspond to ZooKeeper nodes) and then can be accessed by your applications at run time.

NOTE

The ZooKeeper registry is designed to work with small nodes only. If you try to store a
massive configuration file as a profile resource, it will severely degrade the performance
of the Fuse Fabric registry.

Creating and editing an arbitrary resource

You can create and edit arbitrary profile resources using the following command syntax:

Where Resource is the name of the profile resource you want to edit. If Resource does not already
exist, it will be created.

broker.xml example

For example, the mq-base profile has the broker.xml resource, which stores the contents of an
Apache ActiveMQ broker configuration file. To edit the broker.xml resource, enter the following
console command:

The text editor starts up, and you should see the following screen in the console window:

JBossFuse:karaf@root> profile-edit --resource Resource Profile [Version]

JBossFuse:karaf@root> profile-edit --resource broker.xml mq-base 1.0

Profile:mq-base 1.0
L:1 C:1
<!--
 Copyright (C) FuseSource, Inc.
 http://fusesource.com

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
 -->
<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:amq="http://activemq.apache.org/schema/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core.xsd">

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR

47

Any changes you make to this file will take effect whenever the broker restarts.

Type ̂ X to quit the text editor and get back to the console prompt.

Referencing a profile resource

In order to use an arbitrary profile resource, you must be able to reference it. Because a profile resource
is ultimately stored as a ZooKeeper node, you must reference it using a ZooKeeper URL. For example,
the broker.xml resource from the previous example is stored under the following ZooKeeper location:

In general, you can find version, Version, of the Profile profile's Resource resource at the following
location:

For example, the mq profile's org.fusesource.mq.fabric.server-broker PID defines the
following properties, where the config property references the broker.xml resource:

A.4. PROFILE ATTRIBUTES

Overview

In addition to the resources described in the other sections, a profile also has certain attributes that affect
its behavior. You cannot edit profile attributes directly using the text editor.

For completeness, this section describes what the profile attributes are and what console commands you
can use to modify them.

parents attribute

 <!-- Allows us to use system properties and fabric as variables in
this configuration file -->
 <bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigu
rer">
 <property name="properties">
 <bean
class="org.fusesource.mq.fabric.ConfigurationProperties"/>
 </property>

 ^X Quit ^S Save ^Z Undo ^R Redo ^G Go To ^F Find
^N Next ^P Previous

zk:/fabric/configs/versions/1.0/profiles/mq-base/broker.xml

zk:/fabric/configs/versions/Version/profiles/Profile/Resource

connectors=openwire
config=zk\:/fabric/configs/versions/1.0/profiles/mq-base/broker.xml
group=default
standby.pool=default

Red Hat JBoss Fuse 6.1 Getting Started

48

The parents attribute is a list of one or more parent profiles. This attribute can be set using the
profile-change-parents console command. For example, to assign the parent profiles camel and
cxf to the my-camel-cxf-profile profile, you would enter the following console command:

abstract attribute

When a profile's abstract attribute is set to true, the profile cannot be directly deployed to a
container. This is useful for profiles that are only intended to be the parents of other profiles—for
example, mq-base. You can set the abstract attribute from the Management Console.

locked attribute

A locked profile cannot be changed or edited until it is unlocked. You can lock or unlock a profile from
the Management Console.

hidden attribute

The hidden attribute is a flag that is typically set on profiles that Fuse Fabric creates automatically (for
example, to customize the setup of a registry server). By default, hidden profiles are not shown when you
run the profile-list command, but you can see them when you add the --hidden flag, as follows:

JBossFuse:karaf@root> profile-change-parents --version 1.0 my-camel-cxf-
profile camel cxf

JBossFuse:karaf@root> profile-list --hidden
...
fabric 1 karaf
fabric-ensemble-0000 0
fabric-ensemble-0000-1 1 fabric-ensemble-0000
fmc 0 default
...

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR

49

	Table of Contents
	CHAPTER 1. BASIC CONCEPTS FOR DEVELOPERS
	1.1. DEVELOPMENT ENVIRONMENT
	JDK 1.6
	Apache Maven
	Red Hat JBoss Fuse Tooling

	1.2. DEVELOPMENT MODEL
	Overview
	Maven
	Maven archetypes
	Maven POM files
	Java code and resources
	Dependency injection frameworks
	Deployment metadata
	Administrative metadata

	1.3. MAVEN ESSENTIALS
	Overview
	Build lifecycle phases
	Maven directory structure
	Convention over configuration
	Maven packaging type
	Maven artifacts
	Maven coordinates
	Maven dependencies
	dependency element
	dependency/scope element
	Transitive dependencies
	Maven repositories
	Specifying remote repositories

	1.4. DEPENDENCY INJECTION FRAMEWORKS
	Overview
	Blueprint or Spring?
	Bean registries
	Spring XML
	Spring XML file location
	Spring XML sample
	Blueprint XML
	Blueprint XML file location
	Blueprint XML sample

	CHAPTER 2. GETTING STARTED WITH DEVELOPING
	2.1. CREATE A WEB SERVICES PROJECT
	Overview
	Prerequisites
	Create project from the command line
	Customize the POM file
	Blueprint XML configuration
	Build the Web services project
	Initialize container security
	Start up the container
	Install prerequisite features
	Deploy and start the WS server
	Check that the bundle has started
	Run the WS client
	Troubleshooting

	2.2. CREATE A ROUTER PROJECT
	Overview
	Prerequisites
	Create project from the command line
	Modify the route
	Disable the test
	Add the required Maven dependency
	Build the router project
	Deploy and start the route
	Test the route with the WS client

	2.3. CREATE AN AGGREGATE MAVEN PROJECT
	Aggregate POM
	Parent POM
	Best practice
	Create an aggregate POM
	Building with the aggregate POM

	2.4. DEFINE A FEATURE FOR THE APPLICATION
	Why do you need a feature?
	What to put in a feature
	Deployment options
	Features and Fuse Fabric
	Create a custom features repository
	Install the features repository
	Deploy the custom feature

	2.5. CONFIGURE THE APPLICATION
	OSGi Config Admin service
	Setting configuration properties
	Replace IP port with a property placeholder
	Blueprint XML example
	Deploying the configurable application

	2.6. TROUBLESHOOTING
	Check the status of a deployed bundle
	Logging
	Redeploying bundles with dev:watch

	CHAPTER 3. GETTING STARTED WITH DEPLOYING
	3.1. SCALABLE DEPLOYMENT WITH FUSE FABRIC
	Why Fuse Fabric?
	A sample fabric
	Fabric
	Fabric Ensemble
	Fabric Server
	Fabric Container
	Profile

	3.2. DEPLOYING TO A FABRIC
	3.2.1. Create a Fabric
	Overview
	Fabric server
	Child containers
	Steps to create the fabric
	Shutting down the containers

	3.2.2. Create Fabric Profiles
	Overview
	Contents of a profile
	Base profile
	Create a base profile
	Create the derived profiles

	3.2.3. Deploy the Profiles
	Deploy profiles to the child containers
	Test the deployed profiles

	3.2.4. Update a Profile
	Atomic container upgrades
	Profile versioning
	Upgrade to a new profile
	Roll back to an old profile

	APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR
	A.1. EDITING AGENT PROPERTIES
	Overview
	Open the agent properties resource
	Specifying feature repository locations
	Specifying deployed features
	Specifying deployed bundles
	Specifying bundle overrides
	Specifying deployed FABs
	Specifying etc/config.properties properties
	Specifying etc/system.properties properties
	Specifying libraries to add to Java runtime lib/
	Specifying libraries to add to Java runtime lib/ext/
	Specifying libraries to add to Java runtime lib/endorsed/
	Example

	A.2. EDITING OSGI CONFIG ADMIN PROPERTIES
	Overview
	Persistent ID
	Open the Config Admin properties resource
	Specifying OSGi config admin properties
	Example

	A.3. EDITING OTHER RESOURCES
	Overview
	Creating and editing an arbitrary resource
	broker.xml example
	Referencing a profile resource

	A.4. PROFILE ATTRIBUTES
	Overview
	parents attribute
	abstract attribute
	locked attribute
	hidden attribute

