
Red Hat JBoss Fuse 6.0

Using the Apache CXF Binding Component

Implementing Web services

Last Updated: 2017-10-13





Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

Implementing Web services

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com



Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides an overview of the JBI CXF binding component; describes how to define
endpoints in WSDL, how to configure and package endpoints, and how to configure the CXF
runtime; describes the properties of consumer and provider endpoints; and describes how to use
the Maven tooling.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT
OVERVIEW
KEY FEATURES
STEPS FOR WORKING WITH THE APACHE CXF BINDING COMPONENT
MORE INFORMATION

PART I. DEFINING AN ENDPOINT IN WSDL

CHAPTER 2. INTRODUCING WSDL CONTRACTS
2.1. STRUCTURE OF A WSDL DOCUMENT
2.2. WSDL ELEMENTS
2.3. DESIGNING A CONTRACT

CHAPTER 3. DEFINING LOGICAL DATA UNITS
3.1. MAPPING DATA INTO LOGICAL DATA UNITS
3.2. ADDING DATA UNITS TO A CONTRACT
3.3. XML SCHEMA SIMPLE TYPES
3.4. DEFINING COMPLEX DATA TYPES
3.5. DEFINING ELEMENTS

CHAPTER 4. DEFINING LOGICAL MESSAGES USED BY A SERVICE
MESSAGES AND PARAMETER LISTS
MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS
MESSAGE DESIGN FOR SOAP SERVICES
MESSAGE NAMING
MESSAGE PARTS
EXAMPLE

CHAPTER 5. DEFINING YOUR LOGICAL INTERFACES
PROCESS
PORT TYPES
OPERATIONS
OPERATION MESSAGES
RETURN VALUES
EXAMPLE

CHAPTER 6. USING HTTP
6.1. ADDING A BASIC HTTP ENDPOINT
6.2. CONSUMER CONFIGURATION
6.3. PROVIDER CONFIGURATION
6.4. USING THE HTTP TRANSPORT IN DECOUPLED MODE

CHAPTER 7. USING JMS
7.1. USING SOAP/JMS
7.2. USING WSDL TO CONFIGURE JMS
7.3. USING A NAMED REPLY DESTINATION

PART II. CONFIGURING AND PACKAGING ENDPOINTS

CHAPTER 8. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT
CONTENTS OF A FILE COMPONENT SERVICE UNIT
OSGI PACKAGING
NAMESPACE

5
5
5
6
6

7

8
8
8
9

10
10
11
12
13
21

22
22
22
23
23
23
24

26
26
26
26
27
28
28

29
29
30
36
39

44
44
52
57

59

60
60
61
61

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 9. CONSUMER ENDPOINTS
OVERVIEW
PROCEDURE
SPECIFYING THE WSDL
SPECIFYING THE ENDPOINT DETAILS
SPECIFYING THE TARGET ENDPOINT

CHAPTER 10. PROVIDER ENDPOINTS
OVERVIEW
PROCEDURE
SPECIFYING THE WSDL
SPECIFYING THE ENDPOINT DETAILS

CHAPTER 11. USING MTOM TO PROCESS BINARY CONTENT
OVERVIEW
CONFIGURING AN ENDPOINT TO SUPPORT MTOM

CHAPTER 12. WORKING WITH THE JBI WRAPPER
OVERVIEW
TURNING OF JBI WRAPPER PROCESSING
EXAMPLE

CHAPTER 13. USING MESSAGE INTERCEPTORS
OVERVIEW
CONFIGURING AN ENDPOINT'S INTERCEPTOR CHAIN
IMPLEMENTING AN INTERCEPTOR
MORE INFORMATION

PART III. CONFIGURING THE CXF RUNTIME

CHAPTER 14. CONFIGURING THE ENDPOINTS TO LOAD APACHE CXF RUNTIME CONFIGURATION
SPECIFYING THE CONFIGURATION TO LOAD
EXAMPLE

CHAPTER 15. TRANSPORT CONFIGURATION
15.1. USING THE JMS CONFIGURATION BEAN
15.2. CONFIGURING THE JETTY RUNTIME

CHAPTER 16. DEPLOYING WS-ADDRESSING
16.1. INTRODUCTION TO WS-ADDRESSING
16.2. WS-ADDRESSING INTERCEPTORS
16.3. ENABLING WS-ADDRESSING
16.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

CHAPTER 17. ENABLING RELIABLE MESSAGING
17.1. INTRODUCTION TO WS-RM
17.2. WS-RM INTERCEPTORS
17.3. ENABLING WS-RM
17.4. CONFIGURING WS-RM
17.5. CONFIGURING WS-RM PERSISTENCE

APPENDIX A. CONSUMER ENDPOINT PROPERTIES

APPENDIX B. PROVIDER ENDPOINT PROPERTIES

APPENDIX C. USING THE MAVEN JBI TOOLING
C.1. SETTING UP A RED HAT JBOSS FUSE JBI PROJECT

62
62
63
63
64
66

67
67
68
68
69

71
71
71

72
72
72
72

73
73
73
74
74

75

76
76
76

77
77
82

87
87
87
88
89

91
91
92
93
96

104

107

109

110
110

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.2. A SERVICE UNIT PROJECT
C.3. A SERVICE ASSEMBLY PROJECT

APPENDIX D. USING THE MAVEN OSGI TOOLING
D.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT
D.2. CONFIGURING THE BUNDLE PLUG-IN

INDEX

114
119

122
122
125

129

Table of Contents

3



Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

4



CHAPTER 1. INTRODUCTION TO THE APACHE CXF BINDING
COMPONENT

Abstract

The Apache CXF binding component allows you to create SOAP/HTTP and SOAP/JMS endpoints.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The Apache CXF binding component provides connectivity to external endpoints using either
SOAP/HTTP or SOAP/JMS. The endpoints are defined using WSDl files that contain Apache CXF
specific extensions for defining the transport. In addition, you can add Apache CXF-based Spring
configuration to use the advanced features.

It allows for the creation of two types of endpoint:

consumer endpoint

A consumer endpoint listens for messages on a specified address. When it receives a message it
sends it to the NMR for delivery to the appropriate endpoint. If the message is part of a two-way
exchange, then the consumer endpoint is also responsible for returning the response to the
external endpoint.

For information about configuring consumer endpoints see Chapter 9, Consumer Endpoints.

provider endpoint

A provider endpoint receives messages from the NMR. It then packages the message as a SOAP
message and sends it to the specified external address. If the message is part of a two-way message
exchange, the provider endpoint waits for the response from the external endpoint. The provider
endpoint will then direct the response back to the NMR.

For information about configuring provider endpoints see Chapter 10, Provider Endpoints.

KEY FEATURES

The Apache CXF binding component has the following features:

HTTP support

JMS 1.1 support

SOAP 1.1 support

SOAP 1.2 support

MTOM support

CHAPTER 1. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT

5



Support for all MEPs as consumers or providers

SSL support

WS-Security support

WS-Policy support

WS-RM support

WS-Addressing support

STEPS FOR WORKING WITH THE APACHE CXF BINDING COMPONENT

Using the Apache CXF binding component to expose SOAP endpoints usually involves the following
steps:

1. Defining the contract for your endpoint in WSDL.

See Part I, “Defining an Endpoint in WSDL” .

2. Configuring the endpoint and packaging it into a service unit.

See Part II, “Configuring and Packaging Endpoints” .

3. Bundling the service unit into a service assembly for deployment into the Red Hat JBoss Fuse
container.

MORE INFORMATION

For more information about using Apache CXF to create SOAP endpoints see the Apache CXF
documentation.

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

6

http://cxf.apache.org/docs/index.html


PART I. DEFINING AN ENDPOINT IN WSDL

Abstract

Endpoints are defined in WSDL 1.1 documents. The WSDL contract specifies the messages, operations,
and the interfaces exposed by the endpoint. It also defines the transport used by the endpoint.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

PART I. DEFINING AN ENDPOINT IN WSDL

7



CHAPTER 2. INTRODUCING WSDL CONTRACTS

Abstract

WSDL documents define services using Web Service Description Language and a number of possible
extensions. The documents have a logical part and a concrete part. The abstract part of the contract
defines the service in terms of implementation neutral data types and messages. The concrete part of
the document defines how an endpoint implementing a service will interact with the outside world.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

The recommended approach to design services is to define your services in WSDL and XML Schema
before writing any code. When hand-editing WSDL documents you must make sure that the document
is valid, as well as correct. To do this you must have some familiarity with WSDL. You can find the
standard on the W3C web site, www.w3.org.

2.1. STRUCTURE OF A WSDL DOCUMENT

A WSDL document is, at its simplest, a collection of elements contained within a root definition
element. These elements describe a service and how an endpoint implementing that service is
accessed.

A WSDL document has two distinct parts:

A logical part  that defines the service in implementation neutral terms

A concrete part  that defines how an endpoint implementing the service is exposed on a
network

The logical part

The logical part of a WSDL document contains the types, the message, and the portType elements.
It describes the service’s interface and the messages exchanged by the service. Within the types
element, XML Schema is used to define the structure of the data that makes up the messages. A
number of message elements are used to define the structure of the messages used by the service.
The portType element contains one or more operation elements that define the messages sent by
the operations exposed by the service.

The concrete part

The concrete part of a WSDL document contains the binding and the service elements. It describes
how an endpoint that implements the service connects to the outside world. The binding elements
describe how the data units described by the message elements are mapped into a concrete, on-the-
wire data format, such as SOAP. The service elements contain one or more port elements which
define the endpoints implementing the service.

2.2. WSDL ELEMENTS

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

8

http://www.w3.org/TR/wsdl


A WSDL document is made up of the following elements:

definitions — The root element of a WSDL document. The attributes of this element specify
the name of the WSDL document, the document’s target namespace, and the shorthand
definitions for the namespaces referenced in the WSDL document.

types — The XML Schema definitions for the data units that form the building blocks of the
messages used by a service. For information about defining data types see Chapter 3, Defining
Logical Data Units.

message — The description of the messages exchanged during invocation of a services
operations. These elements define the arguments of the operations making up your service.
For information on defining messages see Chapter 4, Defining Logical Messages Used by a
Service.

portType — A collection of operation elements describing the logical interface of a service.
For information about defining port types see Chapter 5, Defining Your Logical Interfaces.

operation — The description of an action performed by a service. Operations are defined by
the messages passed between two endpoints when the operation is invoked. For information
on defining operations see the section called “Operations” .

binding — The concrete data format specification for an endpoint. A binding element
defines how the abstract messages are mapped into the concrete data format used by an
endpoint. This element is where specifics such as parameter order and return values are
specified.

service — A collection of related port elements. These elements are repositories for
organizing endpoint definitions.

port — The endpoint defined by a binding and a physical address. These elements bring all of
the abstract definitions together, combined with the definition of transport details, and they
define the physical endpoint on which a service is exposed.

2.3. DESIGNING A CONTRACT

To design a WSDL contract for your services you must perform the following steps:

1. Define the data types used by your services.

2. Define the messages used by your services.

3. Define the interfaces for your services.

4. Define the bindings between the messages used by each interface and the concrete
representation of the data on the wire.

5. Define the transport details for each of the services.

CHAPTER 2. INTRODUCING WSDL CONTRACTS

9



CHAPTER 3. DEFINING LOGICAL DATA UNITS

Abstract

When describing a service in a WSDL contract complex data types are defined as logical units using
XML Schema.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

When defining a service, the first thing you must consider is how the data used as parameters for the
exposed operations is going to be represented. Unlike applications that are written in a programming
language that uses fixed data structures, services must define their data in logical units that can be
consumed by any number of applications. This involves two steps:

1. Breaking the data into logical units that can be mapped into the data types used by the
physical implementations of the service

2. Combining the logical units into messages that are passed between endpoints to carry out the
operations

This chapter discusses the first step. Chapter 4, Defining Logical Messages Used by a Service discusses
the second step.

3.1. MAPPING DATA INTO LOGICAL DATA UNITS

The interfaces used to implement a service define the data representing operation parameters as XML
documents. If you are defining an interface for a service that is already implemented, you must
translate the data types of the implemented operations into discreet XML elements that can be
assembled into messages. If you are starting from scratch, you must determine the building blocks
from which your messages are built, so that they make sense from an implementation standpoint.

Available type systems for defining service data units

According to the WSDL specification, you can use any type system you choose to define data types in a
WSDL contract. However, the W3C specification states that XML Schema is the preferred canonical
type system for a WSDL document. Therefore, XML Schema is the intrinsic type system in Apache CXF.

XML Schema as a type system

XML Schema is used to define how an XML document is structured. This is done by defining the
elements that make up the document. These elements can use native XML Schema types, like xsd:int,
or they can use types that are defined by the user. User defined types are either built up using
combinations of XML elements or they are defined by restricting existing types. By combining type
definitions and element definitions you can create intricate XML documents that can contain complex
data.

When used in WSDL XML Schema defines the structure of the XML document that holds the data used
to interact with a service. When defining the data units used by your service, you can define them as
types that specify the structure of the message parts. You can also define your data units as elements
that make up the message parts.

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

10



Considerations for creating your data units

You might consider simply creating logical data units that map directly to the types you envision using
when implementing the service. While this approach works, and closely follows the model of building
RPC-style applications, it is not necessarily ideal for building a piece of a service-oriented architecture.

The Web Services Interoperability Organization’s WS-I basic profile provides a number of guidelines for
defining data units and can be accessed at http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-
24.html#WSDLTYPES. In addition, the W3C also provides the following guidelines for using XML
Schema to represent data types in WSDL documents:

Use elements, not attributes.

Do not use protocol-specific types as base types.

3.2. ADDING DATA UNITS TO A CONTRACT

Depending on how you choose to create your WSDL contract, creating new data definitions requires
varying amounts of knowledge. The Apache CXF GUI tools provide a number of aids for describing data
types using XML Schema. Other XML editors offer different levels of assistance. Regardless of the
editor you choose, it is a good idea to have some knowledge about what the resulting contract should
look like.

Procedure

Defining the data used in a WSDL contract involves the following steps:

1. Determine all the data units used in the interface described by the contract.

2. Create a types element in your contract.

3. Create a schema element, shown in Example 3.1, “Schema entry for a WSDL contract” , as a
child of the type element.

The targetNamespace attribute specifies the namespace under which new data types are
defined. The remaining entries should not be changed.

Example 3.1. Schema entry for a WSDL contract

4. For each complex type that is a collection of elements, define the data type using a 
complexType element. See Section 3.4.1, “Defining data structures” .

5. For each array, define the data type using a complexType element. See Section 3.4.2,
“Defining arrays”.

6. For each complex type that is derived from a simple type, define the data type using a 
simpleType element. See Section 3.4.4, “Defining types by restriction”.

7. For each enumerated type, define the data type using a simpleType element. See
Section 3.4.5, “Defining enumerated types”.

<schema targetNamespace="http://schemas.iona.com/bank.idl"
        xmlns="http://www.w3.org/2001/XMLSchema"
        xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

CHAPTER 3. DEFINING LOGICAL DATA UNITS

11

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES


8. For each element, define it using an element element. See Section 3.5, “Defining elements”.

3.3. XML SCHEMA SIMPLE TYPES

If a message part is going to be of a simple type it is not necessary to create a type definition for it.
However, the complex types used by the interfaces defined in the contract are defined using simple
types.

Entering simple types

XML Schema simple types are mainly placed in the element elements used in the types section of
your contract. They are also used in the base attribute of restriction elements and extension
elements.

Simple types are always entered using the xsd prefix. For example, to specify that an element is of
type int, you would enter xsd:int in its type attribute as shown in Example 3.2, “Defining an element
with a simple type”.

Example 3.2. Defining an element with a simple type

Supported XSD simple types

Apache CXF supports the following XML Schema simple types:

xsd:string

xsd:normalizedString

xsd:int

xsd:unsignedInt

xsd:long

xsd:unsignedLong

xsd:short

xsd:unsignedShort

xsd:float

xsd:double

xsd:boolean

xsd:byte

xsd:unsignedByte

xsd:integer

<element name="simpleInt" type="xsd:int" />

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

12



xsd:positiveInteger

xsd:negativeInteger

xsd:nonPositiveInteger

xsd:nonNegativeInteger

xsd:decimal

xsd:dateTime

xsd:time

xsd:date

xsd:QName

xsd:base64Binary

xsd:hexBinary

xsd:ID

xsd:token

xsd:language

xsd:Name

xsd:NCName

xsd:NMTOKEN

xsd:anySimpleType

xsd:anyURI

xsd:gYear

xsd:gMonth

xsd:gDay

xsd:gYearMonth

xsd:gMonthDay

3.4. DEFINING COMPLEX DATA TYPES

XML Schema provides a flexible and powerful mechanism for building complex data structures from its
simple data types. You can create data structures by creating a sequence of elements and attributes.
You can also extend your defined types to create even more complex types.

In addition to building complex data structures, you can also describe specialized types such as
enumerated types, data types that have a specific range of values, or data types that need to follow
certain patterns by either extending or restricting the primitive types.

CHAPTER 3. DEFINING LOGICAL DATA UNITS

13



3.4.1. Defining data structures

In XML Schema, data units that are a collection of data fields are defined using complexType
elements. Specifying a complex type requires three pieces of information:

1. The name of the defined type is specified in the name attribute of the complexType element.

2. The first child element of the complexType describes the behavior of the structure’s fields
when it is put on the wire. See the section called “Complex type varieties” .

3. Each of the fields of the defined structure are defined in element elements that are
grandchildren of the complexType element. See the section called “Defining the parts of a
structure”.

For example, the structure shown in Example 3.3, “Simple Structure” is be defined in XML Schema as a
complex type with two elements.

Example 3.3. Simple Structure

Example 3.4, “A complex type”  shows one possible XML Schema mapping for the structure shown in
Example 3.3, “Simple Structure”.

Example 3.4. A complex type

Complex type varieties

XML Schema has three ways of describing how the fields of a complex type are organized when
represented as an XML document and passed on the wire. The first child element of the complexType
element determines which variety of complex type is being used. Table 3.1, “Complex type descriptor
elements” shows the elements used to define complex type behavior.

Table 3.1. Complex type descriptor elements

Element Complex Type Behavior

sequence All the complex type’s fields must be present and
they must be in the exact order they are specified in
the type definition.

struct personalInfo
{
  string name;
  int age;
};

<complexType name="personalInfo">
  <sequence>
    <element name="name" type="xsd:string" />
    <element name="age" type="xsd:int" />
  </sequence>
</complexType>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

14



all All of the complex type’s fields must be present but
they can be in any order.

choice Only one of the elements in the structure can be
placed in the message.

Element Complex Type Behavior

If a sequence element, an all element, or a choice is not specified, then a sequence is assumed.
For example, the structure defined in Example 3.4, “A complex type”  generates a message containing
two elements: name and age.

If the structure is defined using a choice element, as shown in Example 3.5, “Simple complex choice
type”, it generates a message with either a name element or an age element.

Example 3.5. Simple complex choice type

Defining the parts of a structure

You define the data fields that make up a structure using element elements. Every complexType
element should contain at least one element element. Each element element in the complexType
element represents a field in the defined data structure.

To fully describe a field in a data structure, element elements have two required attributes:

The name  attribute specifies the name of the data field and it must be unique within the
defined complex type.

The type attribute specifies the type of the data stored in the field. The type can be either one
of the XML Schema simple types, or any named complex type that is defined in the contract.

In addition to name and type, element elements have two other commonly used optional attributes: 
minOcurrs and maxOccurs. These attributes place bounds on the number of times the field occurs in
the structure. By default, each field occurs only once in a complex type. Using these attributes, you can
change how many times a field must or can appear in a structure. For example, you can define a field, 
previousJobs, that must occur at least three times, and no more than seven times, as shown in
Example 3.6, “Simple complex type with occurrence constraints” .

Example 3.6. Simple complex type with occurrence constraints

<complexType name="personalInfo">
  <choice>
    <element name="name" type="xsd:string"/>
    <element name="age" type="xsd:int"/>
  </choice>
</complexType>

<complexType name="personalInfo>
  <all>
    <element name="name" type="xsd:string"/>
    <element name="age" type="xsd:int"/>

CHAPTER 3. DEFINING LOGICAL DATA UNITS

15



You can also use the minOccurs to make the age field optional by setting the minOccurs to zero as
shown in Example 3.7, “Simple complex type with minOccurs set to zero” . In this case age can be
omitted and the data will still be valid.

Example 3.7. Simple complex type with minOccurs set to zero

Defining attributes

In XML documents attributes are contained in the element’s tag. For example, in the complexType
element name is an attribute. They are specified using the attribute element. It comes after the 
all, sequence, or choice element and are a direct child of the complexType element. Example 3.8,
“Complex type with an attribute” shows a complex type with an attribute.

Example 3.8. Complex type with an attribute

The attribute element has three attributes:

name — A required attribute that specifies the string identifying the attribute.

type — Specifies the type of the data stored in the field. The type can be one of the XML
Schema simple types.

use — Specifies if the attribute is required or optional. Valid values are required or 
optional.

If you specify that the attribute is optional you can add the optional attribute default. The default
attribute allows you to specify a default value for the attribute.

    <element name="previousJobs" type="xsd:string:
             minOccurs="3" maxOccurs="7"/>
  </all>
</complexType>

<complexType name="personalInfo>
  <choice>
    <element name="name" type="xsd:string"/>
    <element name="age" type="xsd:int" minOccurs="0"/>
  </choice>
</complexType>

<complexType name="personalInfo>
  <all>
    <element name="name" type="xsd:string"/>
    <element name="previousJobs" type="xsd:string"
             minOccurs="3" maxOccurs="7"/>
  </all>
  <attribute name="age" type="xsd:int" use="optional" />
</complexType>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

16



3.4.2. Defining arrays

Apache CXF supports two methods for defining arrays in a contract. The first is define a complex type
with a single element whose maxOccurs attribute has a value greater than one. The second is to use
SOAP arrays. SOAP arrays provide added functionality such as the ability to easily define multi-
dimensional arrays and to transmit sparsely populated arrays.

Complex type arrays

Complex type arrays are a special case of a sequence complex type. You simply define a complex type
with a single element and specify a value for the maxOccurs attribute. For example, to define an array
of twenty floating point numbers you use a complex type similar to the one shown in Example 3.9,
“Complex type array”.

Example 3.9. Complex type array

You can also specify a value for the minOccurs attribute.

SOAP arrays

SOAP arrays are defined by deriving from the SOAP-ENC:Array base type using the wsdl:arrayType
element. The syntax for this is shown in Example 3.10, “Syntax for a SOAP array derived using
wsdl:arrayType”.

Example 3.10. Syntax for a SOAP array derived using wsdl:arrayType

Using this syntax, TypeName specifies the name of the newly-defined array type. ElementType specifies
the type of the elements in the array. ArrayBounds specifies the number of dimensions in the array. To
specify a single dimension array use []; to specify a two-dimensional array use either [][] or [,].

For example, the SOAP Array, SOAPStrings, shown in Example 3.11, “Definition of a SOAP array” ,
defines a one-dimensional array of strings. The wsdl:arrayType attribute specifies the type of the
array elements, xsd:string, and the number of dimensions, with [] implying one dimension.

Example 3.11. Definition of a SOAP array

<complexType name="personalInfo">
  <element name="averages" type="xsd:float" maxOccurs="20"/>
</complexType>

<complexType name="TypeName">
  <complexContent>
    <restriction base="SOAP-ENC:Array">
      <attribute ref="SOAP-ENC:arrayType" 
                 wsdl:arrayType="ElementType<ArrayBounds>"/>
    </restriction>
  </complexContent>
</complexType>

<complexType name="SOAPStrings">
  <complexContent>

CHAPTER 3. DEFINING LOGICAL DATA UNITS

17



You can also describe a SOAP Array using a simple element as described in the SOAP 1.1 specification.
The syntax for this is shown in Example 3.12, “Syntax for a SOAP array derived using an element” .

Example 3.12. Syntax for a SOAP array derived using an element

When using this syntax, the element's maxOccurs attribute must always be set to unbounded.

3.4.3. Defining types by extension

Like most major coding languages, XML Schema allows you to create data types that inherit some of
their elements from other data types. This is called defining a type by extension. For example, you
could create a new type called alienInfo, that extends the personalInfo structure defined in
Example 3.4, “A complex type”  by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the complexType element.

2. The complexContent element specifies that the new type will have more than one element.

NOTE

If you are only adding new attributes to the complex type, you can use a 
simpleContent element.

3. The type from which the new type is derived, called the base type, is specified in the base
attribute of the extension element.

4. The new type’s elements and attributes are defined in the extension element, the same as
they are for a regular complex type.

For example, alienInfo is defined as shown in Example 3.13, “Type defined by extension” .

    <restriction base="SOAP-ENC:Array">
      <attribute ref="SOAP-ENC:arrayType"
                 wsdl:arrayType="xsd:string[]"/>
    </restriction>
  </complexContent>
</complexType>

<complexType name="TypeName">
  <complexContent>
    <restriction base="SOAP-ENC:Array">
      <sequence>
        <element name="ElementName" type="ElementType"
                 maxOccurs="unbounded"/>
      </sequence>
    </restriction>
  </complexContent>
</complexType>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

18



Example 3.13. Type defined by extension

3.4.4. Defining types by restriction

XML Schema allows you to create new types by restricting the possible values of an XML Schema
simple type. For example, you can define a simple type, SSN, which is a string of exactly nine
characters. New types defined by restricting simple types are defined using a simpleType element.

The definition of a type by restriction requires three things:

1. The name of the new type is specified by the name attribute of the simpleType element.

2. The simple type from which the new type is derived, called the base type, is specified in the 
restriction element. See the section called “Specifying the base type” .

3. The rules, called facets, defining the restrictions placed on the base type are defined as
children of the restriction element. See the section called “Defining the restrictions” .

Specifying the base type

The base type is the type that is being restricted to define the new type. It is specified using a 
restriction element. The restriction element is the only child of a simpleType element and
has one attribute, base, that specifies the base type. The base type can be any of the XML Schema
simple types.

For example, to define a new type by restricting the values of an xsd:int you use a definition like the
one shown in Example 3.14, “Using int as the base type” .

Example 3.14. Using int as the base type

Defining the restrictions

The rules defining the restrictions placed on the base type are called facets. Facets are elements with
one attribute, value, that defines how the facet is enforced. The available facets and their valid value
settings depend on the base type. For example, xsd:string supports six facets, including:

<complexType name="alienInfo">
  <complexContent>
    <extension base="personalInfo">
      <sequence>
        <element name="planet" type="xsd:string"/>
      </sequence>
    </extension>
  </complexContent>
</complexType>

<simpleType name="restrictedInt">
  <restriction base="xsd:int">
    ...
  </restriction>
</simpleType>

CHAPTER 3. DEFINING LOGICAL DATA UNITS

19



length

minLength

maxLength

pattern

whitespace

enumeration

Each facet element is a child of the restriction element.

Example

Example 3.15, “SSN simple type description”  shows an example of a simple type, SSN, which represents
a social security number. The resulting type is a string of the form xxx-xx-xxxx. <SSN>032-43-
9876<SSN> is a valid value for an element of this type, but <SSN>032439876</SSN> is not.

Example 3.15. SSN simple type description

3.4.5. Defining enumerated types

Enumerated types in XML Schema are a special case of definition by restriction. They are described by
using the enumeration facet which is supported by all XML Schema primitive types. As with
enumerated types in most modern programming languages, a variable of this type can only have one of
the specified values.

Defining an enumeration in XML Schema

The syntax for defining an enumeration is shown in Example 3.16, “Syntax for an enumeration”.

Example 3.16. Syntax for an enumeration

EnumName specifies the name of the enumeration type. EnumType specifies the type of the case

<simpleType name="SSN">
  <restriction base="xsd:string">
    <pattern value="\d{3}-\d{2}-\d{4}"/>
  </restriction>
</simpleType>

<simpleType name="EnumName">
  <restriction base="EnumType">
    <enumeration value="Case1Value"/>
    <enumeration value="Case2Value"/>
    ...
    <enumeration value="CaseNValue"/>
  </restriction>
</simpleType>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

20



values. CaseNValue, where N is any number one or greater, specifies the value for each specific case of
the enumeration. An enumerated type can have any number of case values, but because it is derived
from a simple type, only one of the case values is valid at a time.

Example

For example, an XML document with an element defined by the enumeration widgetSize, shown in
Example 3.17, “widgetSize enumeration”, would be valid if it contained <widgetSize>big</widgetSize>,
but it would not be valid if it contained <widgetSize>big,mungo</widgetSize>.

Example 3.17. widgetSize enumeration

3.5. DEFINING ELEMENTS

Elements in XML Schema represent an instance of an element in an XML document generated from
the schema. The most basic element consists of a single element element. Like the element element
used to define the members of a complex type, they have three attributes:

name — A required attribute that specifies the name of the element as it appears in an XML
document.

type — Specifies the type of the element. The type can be any XML Schema primitive type or
any named complex type defined in the contract. This attribute can be omitted if the type has
an in-line definition.

nillable — Specifies whether an element can be omitted from a document entirely. If 
nillable is set to true, the element can be omitted from any document generated using the
schema.

An element can also have an in-line type definition. In-line types are specified using either a 
complexType element or a simpleType element. Once you specify if the type of data is complex or
simple, you can define any type of data needed using the tools available for each type of data. In-line
type definitions are discouraged because they are not reusable.

<simpleType name="widgetSize">
  <restriction base="xsd:string">
    <enumeration value="big"/>
    <enumeration value="large"/>
    <enumeration value="mungo"/>
  </restriction>
</simpleType>

CHAPTER 3. DEFINING LOGICAL DATA UNITS

21



CHAPTER 4. DEFINING LOGICAL MESSAGES USED BY A
SERVICE

Abstract

A service is defined by the messages exchanged when its operations are invoked. In a WSDL contract
these messages are defined using message element. The messages are made up of one or more parts
that are defined using part elements.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

A service’s operations are defined by specifying the logical messages that are exchanged when an
operation is invoked. These logical messages define the data that is passed over a network as an XML
document. They contain all of the parameters that are a part of a method invocation.

Logical messages are defined using the message element in your contracts. Each logical message
consists of one or more parts, defined in part elements.

TIP

While your messages can list each parameter as a separate part, the recommended practice is to use
only a single part that encapsulates the data needed for the operation.

MESSAGES AND PARAMETER LISTS

Each operation exposed by a service can have only one input message and one output message. The
input message defines all of the information the service receives when the operation is invoked. The
output message defines all of the data that the service returns when the operation is completed. Fault
messages define the data that the service returns when an error occurs.

In addition, each operation can have any number of fault messages. The fault messages define the data
that is returned when the service encounters an error. These messages usually have only one part that
provides enough information for the consumer to understand the error.

MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS

If you are defining an existing application as a service, you must ensure that each parameter used by
the method implementing the operation is represented in a message. You must also ensure that the
return value is included in the operation’s output message.

One approach to defining your messages is RPC style. When using RPC style, you define the messages
using one part for each parameter in the method’s parameter list. Each message part is based on a
type defined in the types element of the contract. Your input message contains one part for each
input parameter in the method. Your output message contains one part for each output parameter,
plus a part to represent the return value, if needed. If a parameter is both an input and an output
parameter, it is listed as a part for both the input message and the output message.

RPC style message definition is useful when service enabling legacy systems that use transports such
as Tibco or CORBA. These systems are designed around procedures and methods. As such, they are

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

22



easiest to model using messages that resemble the parameter lists for the operation being invoked.
RPC style also makes a cleaner mapping between the service and the application it is exposing.

MESSAGE DESIGN FOR SOAP SERVICES

While RPC style is useful for modeling existing systems, the service’s community strongly favors the
wrapped document style. In wrapped document style, each message has a single part. The message’s
part references a wrapper element defined in the types element of the contract. The wrapper element
has the following characteristics:

It is a complex type containing a sequence of elements. For more information see Section 3.4,
“Defining complex data types”.

If it is a wrapper for an input message:

It has one element for each of the method’s input parameters.

Its name is the same as the name of the operation with which it is associated.

If it is a wrapper for an output message:

It has one element for each of the method’s output parameters and one element for each of
the method’s inout parameters.

Its first element represents the method’s return parameter.

Its name would be generated by appending Response to the name of the operation with
which the wrapper is associated.

MESSAGE NAMING

Each message in a contract must have a unique name within its namespace. It is recommended that
you use the following naming conventions:

Messages should only be used by a single operation.

Input message names are formed by appending Request to the name of the operation.

Output message names are formed by appending Response to the name of the operation.

Fault message names should represent the reason for the fault.

MESSAGE PARTS

Message parts are the formal data units of the logical message. Each part is defined using a part
element, and is identified by a name attribute and either a type attribute or an element attribute that
specifies its data type. The data type attributes are listed in Table 4.1, “Part data type attributes”.

Table 4.1. Part data type attributes

Attribute Description

element="elem_name" The data type of the part is defined by an element
called elem_name.

CHAPTER 4. DEFINING LOGICAL MESSAGES USED BY A SERVICE

23



type="type_name" The data type of the part is defined by a type called
type_name.

Attribute Description

Messages are allowed to reuse part names. For instance, if a method has a parameter, foo, that is
passed by reference or is an in/out, it can be a part in both the request message and the response
message, as shown in Example 4.1, “Reused part” .

Example 4.1. Reused part

EXAMPLE

For example, imagine you had a server that stored personal information and provided a method that
returned an employee’s data based on the employee's ID number. The method signature for looking up
the data is similar to Example 4.2, “personalInfo lookup method” .

Example 4.2. personalInfo lookup method

This method signature can be mapped to the RPC style WSDL fragment shown in Example 4.3, “RPC
WSDL message definitions”.

Example 4.3. RPC WSDL message definitions

It can also be mapped to the wrapped document style WSDL fragment shown in Example 4.4, “Wrapped
document WSDL message definitions”.

Example 4.4. Wrapped document WSDL message definitions

<message name="fooRequest">
  <part name="foo" type="xsd:int"/>
<message>
<message name="fooReply">
  <part name="foo" type="xsd:int"/>
<message>

personalInfo lookup(long empId)

<message name="personalLookupRequest">
  <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse>
  <part name="return" element="xsd1:personalInfo"/>
<message/>

<types>
  <schema ... >

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

24



  ...
  <element name="personalLookup">
    <complexType>
      <sequence>
        <element name="empID" type="xsd:int" />
      </sequence>
    </complexType>
  </element>
  <element name="personalLookupResponse">
    <complexType>
      <sequence>
        <element name="return" type="personalInfo" />
      </sequence>
    </complexType>
  </element>
  </schema>
</types>
<message name="personalLookupRequest">
  <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
  <part name="return" element="xsd1:personalLookupResponse"/>
<message/>

CHAPTER 4. DEFINING LOGICAL MESSAGES USED BY A SERVICE

25



CHAPTER 5. DEFINING YOUR LOGICAL INTERFACES

Abstract

Logical service interfaces are defined using the portType element.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

Logical service interfaces are defined using the WSDL portType element. The portType element is a
collection of abstract operation definitions. Each operation is defined by the input, output, and fault
messages used to complete the transaction the operation represents. When code is generated to
implement the service interface defined by a portType element, each operation is converted into a
method containing the parameters defined by the input, output, and fault messages specified in the
contract.

PROCESS

To define a logical interface in a WSDL contract you must do the following:

1. Create a portType element to contain the interface definition and give it a unique name. See
the section called “Port types” .

2. Create an operation element for each operation defined in the interface. See the section
called “Operations”.

3. For each operation, specify the messages used to represent the operation’s parameter list,
return type, and exceptions. See the section called “Operation messages” .

PORT TYPES

A WSDL portType element is the root element in a logical interface definition. While many Web
service implementations map portType elements directly to generated implementation objects, a
logical interface definition does not specify the exact functionality provided by the the implemented
service. For example, a logical interface named ticketSystem can result in an implementation that
either sells concert tickets or issues parking tickets.

The portType element is the unit of a WSDL document that is mapped into a binding to define the
physical data used by an endpoint exposing the defined service.

Each portType element in a WSDL document must have a unique name, which is specified using the 
name attribute, and is made up of a collection of operations, which are described in operation
elements. A WSDL document can describe any number of port types.

OPERATIONS

Logical operations, defined using WSDL operation elements, define the interaction between two
endpoints. For example, a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

26



Each operation defined within a portType element must have a unique name, specified using the name
attribute. The name attribute is required to define an operation.

OPERATION MESSAGES

Logical operations are made up of a set of elements representing the logical messages communicated
between the endpoints to execute the operation. The elements that can describe an operation are
listed in Table 5.1, “Operation message elements” .

Table 5.1. Operation message elements

Element Description

input Specifies the message the client endpoint sends to
the service provider when a request is made. The
parts of this message correspond to the input
parameters of the operation.

output Specifies the message that the service provider
sends to the client endpoint in response to a
request. The parts of this message correspond to
any operation parameters that can be changed by
the service provider, such as values passed by
reference. This includes the return value of the
operation.

fault Specifies a message used to communicate an error
condition between the endpoints.

An operation is required to have at least one input or one output element. An operation can have
both input and output elements, but it can only have one of each. Operations are not required to
have any fault elements, but can, if required, have any number of fault elements.

The elements have the two attributes listed in Table 5.2, “Attributes of the input and output elements” .

Table 5.2. Attributes of the input and output elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format.
The name must be unique within the enclosing port
type.

message Specifies the abstract message that describes the
data being sent or received. The value of the 
message attribute must correspond to the name
attribute of one of the abstract messages defined in
the WSDL document.

It is not necessary to specify the name attribute for all input and output elements; WSDL provides a

CHAPTER 5. DEFINING YOUR LOGICAL INTERFACES

27



default naming scheme based on the enclosing operation’s name. If only one element is used in the
operation, the element name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation with either Request or 
Response respectively appended to the name.

RETURN VALUES

Because the operation element is an abstract definition of the data passed during an operation,
WSDL does not provide for return values to be specified for an operation. If a method returns a value it
will be mapped into the output element as the last part of that message.

EXAMPLE

For example, you might have an interface similar to the one shown in Example 5.1, “personalInfo lookup
interface”.

Example 5.1. personalInfo lookup interface

This interface can be mapped to the port type in Example 5.2, “personalInfo lookup port type” .

Example 5.2. personalInfo lookup port type

interface personalInfoLookup
{
  personalInfo lookup(in int empID)
  raises(idNotFound);
}

<message name="personalLookupRequest">
  <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
  <part name="return" element="xsd1:personalLookupResponse"/>
<message/>
<message name="idNotFoundException">
  <part name="exception" element="xsd1:idNotFound"/>
<message/>
<portType name="personalInfoLookup">
  <operation name="lookup">
    <input name="empID" message="personalLookupRequest"/>
    <output name="return" message="personalLookupResponse"/>
    <fault name="exception" message="idNotFoundException"/>
  </operation>
</portType>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

28



CHAPTER 6. USING HTTP

Abstract

HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform
for communicating between endpoints. Because of these factors it is the assumed transport for most
WS-* specifications and is integral to RESTful architectures.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

6.1. ADDING A BASIC HTTP ENDPOINT

Overview

There are three ways of specifying an HTTP endpoint’s address depending on the payload format you
are using.

SOAP 1.1 uses the standardized soap:address element.

SOAP 1.2 uses the soap12:address element.

All other payload formats use the http:address element.

SOAP 1.1

When you are sending SOAP 1.1 messages over HTTP you must use the SOAP 1.1 address element to
specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as
a URL. The SOAP 1.1 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap/.

Example 6.1, “SOAP 1.1 Port Element”  shows a port element used to send SOAP 1.1 messages over
HTTP.

Example 6.1. SOAP 1.1 Port Element

SOAP 1.2

<definitions ...
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>
  ...
  <service name="SOAP11Service">
    <port binding="SOAP11Binding" name="SOAP11Port">
      <soap:address location="http://artie.com/index.xml">
    </port>
  </service>
  ...
<definitions>

CHAPTER 6. USING HTTP

29



When you are sending SOAP 1.2 messages over HTTP you must use the SOAP 1.2 address element to
specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as
a URL. The SOAP 1.2 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap12/.

Example 6.2, “SOAP 1.2 Port Element”  shows a port element used to send SOAP 1.2 messages over
HTTP.

Example 6.2. SOAP 1.2 Port Element

Other messages types

When your messages are mapped to any payload format other than SOAP you must use the HTTP 
address element to specify the endpoint’s address. It has one attribute, location, that specifies the
endpoint’s address as a URL. The HTTP address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/http/.

Example 6.3, “HTTP Port Element”  shows a port element used to send an XML message.

Example 6.3. HTTP Port Element

6.2. CONSUMER CONFIGURATION

Namespace

The WSDL extension elements used to configure an HTTP consumer endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the
prefix http-conf. In order to use the HTTP configuration elements you must add the line shown in

<definitions ...
             xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" ... 
>
  <service name="SOAP12Service">
    <port binding="SOAP12Binding" name="SOAP12Port">
      <soap12:address location="http://artie.com/index.xml">
    </port>
  </service>
  ...
</definitions>

<definitions ...
             xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" ... >
  <service name="HTTPService">
    <port binding="HTTPBinding" name="HTTPPort">
      <http:address location="http://artie.com/index.xml">
    </port>
  </service>
  ...
</definitions>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

30



Example 6.4, “HTTP Consumer WSDL Element's Namespace”  to the definitions element of your
endpoint's WSDL document.

Example 6.4. HTTP Consumer WSDL Element's Namespace

Configuring the endpoint

The http-conf:client element is used to specify the connection properties of an HTTP consumer
in a WSDL document. The http-conf:client element is a child of the WSDL port element. The
attributes are described in Table 6.1, “HTTP Consumer Configuration Attributes” .

Table 6.1. HTTP Consumer Configuration Attributes

Attribute Description

ConnectionTimeout Specifies the amount of time, in milliseconds, that
the consumer attempts to establish a connection
before it times out. The default is 30000.

0 specifies that the consumer will continue to send
the request indefinitely.

ReceiveTimeout Specifies the amount of time, in milliseconds, that
the consumer will wait for a response before it times
out. The default is 30000.

0 specifies that the consumer will wait indefinitely.

AutoRedirect Specifies if the consumer will automatically follow a
server issued redirection. The default is false.

MaxRetransmits Specifies the maximum number of times a consumer
will retransmit a request to satisfy a redirect. The
default is -1 which specifies that unlimited
retransmissions are allowed.

<definitions ...
       xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

CHAPTER 6. USING HTTP

31



AllowChunking Specifies whether the consumer will send requests
using chunking. The default is true which specifies
that the consumer will use chunking when sending
requests.

Chunking cannot be used if either of the following
are true:

http-conf:basicAuthSupplier is
configured to provide credentials
preemptively.

AutoRedirect is set to true.

In both cases the value of AllowChunking is
ignored and chunking is disallowed.

Accept Specifies what media types the consumer is
prepared to handle. The value is used as the value of
the HTTP Accept property. The value of the attribute
is specified using multipurpose internet mail
extensions (MIME) types.

AcceptLanguage Specifies what language (for example, American
English) the consumer prefers for the purpose of
receiving a response. The value is used as the value
of the HTTP AcceptLanguage property.

Language tags are regulated by the International
Organization for Standards (ISO) and are typically
formed by combining a language code, determined
by the ISO-639 standard, and country code,
determined by the ISO-3166 standard, separated by
a hyphen. For example, en-US represents American
English.

AcceptEncoding Specifies what content encodings the consumer is
prepared to handle. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). The value is used as the value of
the HTTP AcceptEncoding property.

ContentType Specifies the media type of the data being sent in the
body of a message. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType property. The default is text/xml.

For web services, this should be set to text/xml. If
the client is sending HTML form data to a CGI script,
this should be set to application/x-www-
form-urlencoded. If the HTTP POST request is
bound to a fixed payload format (as opposed to
SOAP), the content type is typically set to 
application/octet-stream.

Attribute Description

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

32



Host Specifies the Internet host and port number of the
resource on which the request is being invoked. The
value is used as the value of the HTTP Host property.

This attribute is typically not required. It is only
required by certain DNS scenarios or application
designs. For example, it indicates what host the
client prefers for clusters (that is, for virtual servers
mapping to the same Internet protocol (IP) address).

Connection Specifies whether a particular connection is to be
kept open or closed after each request/response
dialog. There are two valid values:

Keep-Alive — Specifies that the
consumer wants the connection kept open
after the initial request/response sequence.
If the server honors it, the connection is
kept open until the consumer closes it.

close(default) — Specifies that the
connection to the server is closed after
each request/response sequence.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a request from a consumer to a service
provider. See the section called “Consumer Cache
Control Directives”.

Cookie Specifies a static cookie to be sent with all requests.

BrowserType Specifies information about the browser from which
the request originates. In the HTTP specification
from the World Wide Web consortium (W3C) this is
also known as the user-agent. Some servers optimize
based on the client that is sending the request.

Attribute Description

CHAPTER 6. USING HTTP

33



Referer Specifies the URL of the resource that directed the
consumer to make requests on a particular service.
The value is used as the value of the HTTP Referer
property.

This HTTP property is used when a request is the
result of a browser user clicking on a hyperlink
rather than typing a URL. This can allow the server
to optimize processing based upon previous task
flow, and to generate lists of back-links to resources
for the purposes of logging, optimized caching,
tracing of obsolete or mistyped links, and so on.
However, it is typically not used in web services
applications.

If the AutoRedirect attribute is set to true and
the request is redirected, any value specified in the 
Referer attribute is overridden. The value of the
HTTP Referer property is set to the URL of the
service that redirected the consumer’s original
request.

DecoupledEndpoint Specifies the URL of a decoupled endpoint for the
receipt of responses over a separate provider-
>consumer connection. For more information on
using decoupled endpoints see, Section 6.4, “Using
the HTTP Transport in Decoupled Mode”.

You must configure both the consumer endpoint and
the service provider endpoint to use WS-Addressing
for the decoupled endpoint to work.

ProxyServer Specifies the URL of the proxy server through which
requests are routed.

ProxyServerPort Specifies the port number of the proxy server
through which requests are routed.

ProxyServerType Specifies the type of proxy server used to route
requests. Valid values are:

HTTP(default)

SOCKS

Attribute Description

Consumer Cache Control Directives

Table 6.2, “http-conf:client Cache Control Directives” lists the cache control directives supported
by an HTTP consumer.

Table 6.2. http-conf:client Cache Control Directives

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

34



Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

no-store Caches must not store either any part of a response
or any part of the request that invoked it.

max-age The consumer can accept a response whose age is
no greater than the specified time in seconds.

max-stale The consumer can accept a response that has
exceeded its expiration time. If a value is assigned
to max-stale, it represents the number of seconds
beyond the expiration time of a response up to
which the consumer can still accept that response. If
no value is assigned, the consumer can accept a
stale response of any age.

min-fresh The consumer wants a response that is still fresh for
at least the specified number of seconds indicated.

no-transform Caches must not modify media type or location of
the content in a response between a provider and a
consumer.

only-if-cached Caches should return only responses that are
currently stored in the cache, and not responses that
need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can
adhere to the behavior mandated by the standard
directive.

Example

Example 6.5, “WSDL to Configure an HTTP Consumer Endpoint”  shows a WSDL fragment that
configures an HTTP consumer endpoint to specify that it does not interact with caches.

Example 6.5. WSDL to Configure an HTTP Consumer Endpoint

<service ... >
  <port ... >
    <soap:address ... />
    <http-conf:client CacheControl="no-cache" />
  </port>
</service>

CHAPTER 6. USING HTTP

35



6.3. PROVIDER CONFIGURATION

Namespace

The WSDL extension elements used to configure an HTTP provider endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the
prefix http-conf. To use the HTTP configuration elements you must add the line shown in
Example 6.6, “HTTP Provider WSDL Element's Namespace”  to the definitions element of your
endpoint's WSDL document.

Example 6.6. HTTP Provider WSDL Element's Namespace

Configuring the endpoint

The http-conf:server element is used to specify the connection properties of an HTTP service
provider in a WSDL document. The http-conf:server element is a child of the WSDL port element.
The attributes are described in Table 6.3, “HTTP Service Provider Configuration Attributes” .

Table 6.3. HTTP Service Provider Configuration Attributes

Attribute Description

ReceiveTimeout Sets the length of time, in milliseconds, the service
provider attempts to receive a request before the
connection times out. The default is 30000.

0 specifies that the provider will not timeout.

SuppressClientSendErrors Specifies whether exceptions are to be thrown when
an error is encountered on receiving a request. The
default is false; exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to be thrown when
an error is encountered on sending a response to a
consumer. The default is false; exceptions are
thrown on encountering errors.

HonorKeepAlive Specifies whether the service provider honors
requests for a connection to remain open after a
response has been sent. The default is false; keep-
alive requests are ignored.

<definitions ...
       xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

36



RedirectURL Specifies the URL to which the client request should
be redirected if the URL specified in the client
request is no longer appropriate for the requested
resource. In this case, if a status code is not
automatically set in the first line of the server
response, the status code is set to 302 and the
status description is set to Object Moved. The
value is used as the value of the HTTP RedirectURL
property.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a response from a service provider to a
consumer. See the section called “Service Provider
Cache Control Directives”.

ContentLocation Sets the URL where the resource being sent in a
response is located.

ContentType Specifies the media type of the information being
sent in a response. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType location.

ContentEncoding Specifies any additional content encodings that have
been applied to the information being sent by the
service provider. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). Possible content encoding values
include zip, gzip, compress, deflate, and 
identity. This value is used as the value of the
HTTP ContentEncoding property.

The primary use of content encodings is to allow
documents to be compressed using some encoding
mechanism, such as zip or gzip. Apache CXF
performs no validation on content codings. It is the
user’s responsibility to ensure that a specified
content coding is supported at application level.

ServerType Specifies what type of server is sending the
response. Values take the form program-
name/version; for example, Apache/1.2.5.

Attribute Description

Service Provider Cache Control Directives

Table 6.4, “http-conf:server Cache Control Directives” lists the cache control directives
supported by an HTTP service provider.

Table 6.4. http-conf:server Cache Control Directives

CHAPTER 6. USING HTTP

37



Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single user. If
specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies to
the entire response.

no-store Caches must not store any part of the response or
any part of the request that invoked it.

no-transform Caches must not modify the media type or location
of the content in a response between a server and a
client.

must-revalidate Caches must revalidate expired entries that relate
to a response before that entry can be used in a
subsequent response.

proxy-revalidate Does the same as must-revalidate, except that it can
only be enforced on shared caches and is ignored by
private unshared caches. When using this directive,
the public cache directive must also be used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.

s-max-age Does the same as max-age, except that it can only
be enforced on shared caches and is ignored by
private unshared caches. The age specified by s-
max-age overrides the age specified by max-age.
When using this directive, the proxy-revalidate
directive must also be used.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can
adhere to the behavior mandated by the standard
directive.

Example

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

38



Example 6.7, “WSDL to Configure an HTTP Service Provider Endpoint”  shows a WSDL fragment that
configures an HTTP service provider endpoint specifying that it will not interact with caches.

Example 6.7. WSDL to Configure an HTTP Service Provider Endpoint

6.4. USING THE HTTP TRANSPORT IN DECOUPLED MODE

Overview

In normal HTTP request/response scenarios, the request and the response are sent using the same
HTTP connection. The service provider processes the request and responds with a response containing
the appropriate HTTP status code and the contents of the response. In the case of a successful request,
the HTTP status code is set to 200.

In some instances, such as when using WS-RM or when requests take an extended period of time to
execute, it makes sense to decouple the request and response message. In this case the service
providers sends the consumer a 202 Accepted response to the consumer over the back-channel of
the HTTP connection on which the request was received. It then processes the request and sends the
response back to the consumer using a new decoupled server->client HTTP connection. The consumer
runtime receives the incoming response and correlates it with the appropriate request before
returning to the application code.

Configuring decoupled interactions

Using the HTTP transport in decoupled mode requires that you do the following:

1. Configure the consumer to use WS-Addressing.

See the section called “Configuring an endpoint to use WS-Addressing” .

2. Configure the consumer to use a decoupled endpoint.

See the section called “Configuring the consumer” .

3. Configure any service providers that the consumer interacts with to use WS-Addressing.

See the section called “Configuring an endpoint to use WS-Addressing” .

Configuring an endpoint to use WS-Addressing

Specify that the consumer and any service provider with which the consumer interacts use WS-
Addressing.

You can specify that an endpoint uses WS-Addressing in one of two ways:

<service ... >
  <port ... >
    <soap:address ... />
    <http-conf:server CacheControl="no-cache" />
  </port>
</service>

CHAPTER 6. USING HTTP

39



Adding the wswa:UsingAddressing element to the endpoint's WSDL port element as
shown in Example 6.8, “Activating WS-Addressing using WSDL” .

Example 6.8. Activating WS-Addressing using WSDL

Adding the WS-Addressing policy to the endpoint's WSDL port element as shown in
Example 6.9, “Activating WS-Addressing using a Policy” .

Example 6.9. Activating WS-Addressing using a Policy

NOTE

The WS-Addressing policy supersedes the wswa:UsingAddressing WSDL element.

Configuring the consumer

Configure the consumer endpoint to use a decoupled endpoint using the DecoupledEndpoint
attribute of the http-conf:conduit element.

Example 6.10, “Configuring a Consumer to Use a Decoupled HTTP Endpoint”  shows the configuration
for setting up the endpoint defined in Example 6.8, “Activating WS-Addressing using WSDL”  to use use
a decoupled endpoint. The consumer now receives all responses at
http://widgetvendor.net/widgetSellerInbox.

Example 6.10. Configuring a Consumer to Use a Decoupled HTTP Endpoint

...
<service name="WidgetSOAPService">
  <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
    <soap:address="http://widgetvendor.net/widgetSeller" />
    <wswa:UsingAddressing 
xmlns:wswa="http://www.w3.org/2005/02/addressing/wsdl"/>
  </port>
</service>
...

...
<service name="WidgetSOAPService">
  <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
    <soap:address="http://widgetvendor.net/widgetSeller" />
    <wsp:Policy xmlns:wsp="http://www.w3.org/2006/07/ws-policy">
      <wsam:Addressing 
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
        <wsp:Policy/>
      </wsam:Addressing>
    </wsp:Policy>
  </port>
</service>
...

<beans xmlns="http://www.springframework.org/schema/beans"

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

40



How messages are processed

Using the HTTP transport in decoupled mode adds extra layers of complexity to the processing of
HTTP messages. While the added complexity is transparent to the implementation level code in an
application, it might be important to understand what happens for debugging reasons.

Figure 6.1, “Message Flow in for a Decoupled HTTP Transport”  shows the flow of messages when using
HTTP in decoupled mode.

       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:http="http://cxf.apache.org/transports/http/configuration"
       
xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
                             
http://cxf.apache.org/schemas/configuration/http-conf.xsd
                           http://www.springframework.org/schema/beans
                             
http://www.springframework.org/schema/beans/spring-beans.xsd">
  
  <http:conduit name="
{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
    <http:client 
DecoupledEndpoint="http://widgetvendor.net:9999/decoupled_endpoint" />
  </http:conduit>
</beans>

CHAPTER 6. USING HTTP

41



Figure 6.1. Message Flow in for a Decoupled HTTP Transport

A request starts the following process:

1. The consumer implementation invokes an operation and a request message is generated.

2. The WS-Addressing layer adds the WS-A headers to the message.

When a decoupled endpoint is specified in the consumer's configuration, the address of the
decoupled endpoint is placed in the WS-A ReplyTo header.

3. The message is sent to the service provider.

4. The service provider receives the message.

5. The request message from the consumer is dispatched to the provider's WS-A layer.

6. Because the WS-A ReplyTo header is not set to anonymous, the provider sends back a
message with the HTTP status code set to 202, acknowledging that the request has been
received.

7. The HTTP layer sends a 202 Accepted message back to the consumer using the original
connection's back-channel.

8. The consumer receives the 202 Accepted reply on the back-channel of the HTTP connection
used to send the original message.

When the consumer receives the 202 Accepted reply, the HTTP connection closes.

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

42



9. The request is passed to the service provider's implementation where the request is
processed.

10. When the response is ready, it is dispatched to the WS-A layer.

11. The WS-A layer adds the WS-Addressing headers to the response message.

12. The HTTP transport sends the response to the consumer's decoupled endpoint.

13. The consumer's decoupled endpoint receives the response from the service provider.

14. The response is dispatched to the consumer's WS-A layer where it is correlated to the proper
request using the WS-A RelatesTo header.

15. The correlated response is returned to the client implementation and the invoking call is
unblocked.

CHAPTER 6. USING HTTP

43



CHAPTER 7. USING JMS

Abstract

HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform
for communicating between endpoints. Because of these factors it is the assumed transport for most
WS-* specifications and is integral to RESTful architectures.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

7.1. USING SOAP/JMS

Apache CXF implements the W3C standard SOAP/JMS transport. This standard is intended to provide
a more robust alternative to SOAP/HTTP services. Apache CXF applications using this transport
should be able to interoperate with applications that also implement the SOAP/JMS standard. The
transport is configured directly in an endpoint's WSDL.

7.1.1. Basic configuration

Overview

The SOAP over JMS protocol is defined by the World Wide Web Consortium(W3C) as a way of providing
a more reliable transport layer to the customary SOAP/HTTP protocol used by most services. The
Apache CXF implementation is fully compliant with the specification and should be compatible with
any framework that is also compliant.

This transport uses JNDI to find the JMS destinations. When an operation is invoked, the request is
packaged as a SOAP message and sent in the body of a JMS message to the specified destination.

To use the SOAP/JMS transport:

1. Specify that the transport type is SOAP/JMS.

2. Specify the target destination using a JMS URI.

3. Optionally, configure the JNDI connection.

4. Optionally, add additional JMS configuration.

Specifying the JMS transport type

You configure a SOAP binding to use the JMS transport when specifying the WSDL binding. You set the
soap:binding element's transport attribute to http://www.w3.org/2010/soapjms/.
Example 7.1, “SOAP over JMS binding specification”  shows a WSDL binding that uses SOAP/JMS.

Example 7.1. SOAP over JMS binding specification

<wsdl:binding ... >
  <soap:binding style="document"

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

44

http://www.w3.org/TR/soapjms/


Specifying the target destination

You specify the address of the JMS target destination when specifying the WSDL port for the endpoint.
The address specification for a SOAP/JMS endpoint uses the same soap:address element and
attribute as a SOAP/HTTP endpoint. The difference is the address specification. JMS endpoints use a
JMS URI as defined in the URI Scheme for JMS 1.0 . Example 7.2, “JMS URI syntax”  shows the syntax
for a JMS URI.

Example 7.2. JMS URI syntax

Table 7.1, “JMS URI variants”  describes the available variants for the JMS URI.

Table 7.1. JMS URI variants

Variant Description

jndi Specifies that the destination is a JNDI name for the
target destination. When using this variant, you must
provide the configuration for accessing the JNDI
provider.

topic Specifies that the destination is the name of the
topic to be used as the target destination. The string
provided is passed into 
Session.createTopic() to create a
representation of the destination.

queue Specifies that the destination is the name of the
queue to be used as the target destination. The
string provided is passed into 
Session.createQueue() to create a
representation of the destination.

The options portion of a JMS URI are used to configure the transport and are discussed in Section 7.1.2,
“JMS URIs”.

Example 7.3, “SOAP/JMS endpoint address”  shows the WSDL port entry for a SOAP/JMS endpoint
whose target destination is looked up using JNDI.

Example 7.3. SOAP/JMS endpoint address

                transport="http://www.w3.org/2010/soapjms/" />
  ...
</wsdl:binding>

jms:variant:destination?options

<wsdl:port ... >
  ...
  <soap:address 

CHAPTER 7. USING JMS

45

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt


For working with SOAP/JMS services in Java see chapter "Using SOAP over JMS" in "Developing
Applications Using JAX-WS".

Configuring JNDI and the JMS transport

The SOAP/JMS provides several ways to configure the JNDI connection and the JMS transport:

Using the JMS URI

Using WSDL extensions

7.1.2. JMS URIs

Overview

When using SOAP/JMS, a JMS URI is used to specify the endpoint's target destination. The JMS URI
can also be used to configure JMS connection by appending one or more options to the URI. These
options are detailed in the IETF standard, URI Scheme for Java Message Service 1.0 . They can be used
to configure the JNDI system, the reply destination, the delivery mode to use, and other JMS
properties.

Syntax

As shown in Example 7.2, “JMS URI syntax” , you can append one or more options to the end of a JMS
URI by separating them from the destination's address with a question mark(?). Multiple options are
separated by an ampersand(&). Example 7.4, “Syntax for JMS URI options”  shows the syntax for using
multiple options in a JMS URI.

Example 7.4. Syntax for JMS URI options

JMS properties

Table 7.2, “JMS properties settable as URI options”  shows the URI options that affect the JMS
transport layer.

Table 7.2. JMS properties settable as URI options

Property Default Description

location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
</wsdl:port>

jmsAddress?option1=value1&option2=value2&...optionN=valueN

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

46

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Applications_Using_JAX-WS/SoapOverJmsJava.html
http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt


deliveryMode PERSISTENT Specifies whether to use JMS 
PERSISTENT or 
NON_PERSISTENT message
semantics. In the case of 
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas 
NON_PERSISTENT messages
are kept in memory only.

replyToName  Explicitly specifies the reply
destination to appear in the 
JMSReplyTo header. Setting
this property is recommended for
applications that have request-
reply semantics because the JMS
provider will assign a temporary
reply queue if one is not explicitly
set.

The value of this property has an
interpretation that depends on
the variant specified in the JMS
URI:

jndi variant—the JNDI
name of the destination

queue or topic
variants—the actual
name of the destination

priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

timeToLive 0 Time (in milliseconds) after which
the message will be discarded by
the JMS provider. A value of 0
represents an infinite lifetime
(the default).

Property Default Description

JNDI properties

Table 7.3, “JNDI properties settable as URI options”  shows the URI options that can be used to
configure JNDI for this endpoint.

Table 7.3. JNDI properties settable as URI options

CHAPTER 7. USING JMS

47



Property Description

jndiConnectionFactoryName Specifies the JNDI name of the JMS connection
factory.

jndiInitialContextFactory Specifies the fully qualified Java class name of the
JNDI provider (which must be of 
javax.jms.InitialContextFactory type).
Equivalent to setting the 
java.naming.factory.initial Java system
property.

jndiURL Specifies the URL that initializes the JNDI provider.
Equivalent to setting the 
java.naming.provider.url Java system
property.

Additional JNDI properties

The properties, java.naming.factory.initial and java.naming.provider.url, are standard
properties, which are required to initialize any JNDI provider. Sometimes, however, a JNDI provider
might support custom properties in addition to the standard ones. In this case, you can set an arbitrary
JNDI property by setting a URI option of the form jndi-PropertyName.

For example, if you were using SUN's LDAP implementation of JNDI, you could set the JNDI property, 
java.naming.factory.control, in a JMS URI as shown in Example 7.5, “Setting a JNDI property in
a JMS URI”.

Example 7.5. Setting a JNDI property in a JMS URI

Example

If the JMS provider is not already configured, it is possible to provide the requisite JNDI configuration
details in the URI using options (see Table 7.3, “JNDI properties settable as URI options” ). For example,
to configure an endpoint to use the Apache ActiveMQ JMS provider and connect to the queue called 
test.cxf.jmstransport.queue, use the URI shown in Example 7.6, “JMS URI that configures a
JNDI connection”.

Example 7.6. JMS URI that configures a JNDI connection

jms:queue:FOO.BAR?jndi-
java.naming.factory.control=com.sun.jndi.ldap.ResponseControlFactory

jms:jndi:dynamicQueues/test.cxf.jmstransport.queue
?
jndiInitialContextFactory=org.apache.activemq.jndi.ActiveMQInitialContex
tFactory
&jndiConnectionFactoryName=ConnectionFactory
&jndiURL=tcp://localhost:61616

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

48



7.1.3. WSDL extensions

Overview

You can specify the basic configuration of the JMS transport by inserting WSDL extension elements
into the contract, either at binding scope, service scope, or port scope. The WSDL extensions enable
you to specify the properties for bootstrapping a JNDI InitialContext, which can then be used to
look up JMS destinations. You can also set some properties that affect the behavior of the JMS
transport layer.

SOAP/JMS namespace

the SOAP/JMS WSDL extensions are defined in the http://www.w3.org/2010/soapjms/
namespace. To use them in your WSDL contracts add the following setting to the wsdl:definitions
element:

WSDL extension elements

Table 7.4, “SOAP/JMS WSDL extension elements”  shows all of the WSDL extension elements you can
use to configure the JMS transport.

Table 7.4. SOAP/JMS WSDL extension elements

Element Default Description

soapjms:jndiInitialCont
extFactory

 Specifies the fully qualified Java
class name of the JNDI provider.
Equivalent to setting the 
java.naming.factory.ini
tial Java system property.

soapjms:jndiURL  Specifies the URL that initializes
the JNDI provider. Equivalent to
setting the 
java.naming.provider.ur
l Java system property.

soapjms:jndiContextPara
meter

 Enables you to specify an
additional property for creating
the JNDI InitialContext.
Use the name and value
attributes to specify the property.

soapjms:jndiConnectionF
actoryName

 Specifies the JNDI name of the
JMS connection factory.

<wsdl:definitions ...
    xmlns:soapjms="http://www.w3.org/2010/soapjms/"
  ... >

CHAPTER 7. USING JMS

49



soapjms:deliveryMode PERSISTENT Specifies whether to use JMS 
PERSISTENT or 
NON_PERSISTENT message
semantics. In the case of 
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas 
NON_PERSISTENT messages
are kept in memory only.

soapjms:replyToName  Explicitly specifies the reply
destination to appear in the 
JMSReplyTo header. Setting
this property is recommended for
SOAP invocations that have
request-reply semantics. If this
property is not set the JMS
provider allocates a temporary
queue with an automatically
generated name.

The value of this property has an
interpretation that depends on
the variant specified in the JMS
URI, as follows:

jndi variant—the JNDI
name of the destination.

queue or topic
variants—the actual
name of the destination.

soapjms:priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

soapjms:timeToLive 0 Time, in milliseconds, after which
the message will be discarded by
the JMS provider. A value of 0
represents an infinite lifetime.

Element Default Description

Configuration scopes

The WSDL elements placement in the WSDL contract effect the scope of the configuration changes on
the endpoints defined in the contract. The SOAP/JMS WSDL elements can be placed as children of
either the wsdl:binding element, the wsdl:service element, or the wsdl:port element. The
parent of the SOAP/JMS elements determine which of the following scopes the configuration is placed
into.

Binding scope

You can configure the JMS transport at the binding scope by placing extension elements inside the 

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

50



wsdl:binding element. Elements in this scope define the default configuration for all endpoints
that use this binding. Any settings in the binding scope can be overridden at the service scope or
the port scope.

Service scope

You can configure the JMS transport at the service scope by placing extension elements inside a 
wsdl:service element. Elements in this scope define the default configuration for all endpoints in
this service. Any settings in the service scope can be overridden at the port scope.

Port scope

You can configure the JMS transport at the port scope by placing extension elements inside a 
wsdl:port element. Elements in the port scope define the configuration for this port. They
override any defaults defined at the service scope or at the binding scope.

Example

Example 7.7, “WSDL contract with SOAP/JMS configuration”  shows a WSDL contract for a SOAP/JMS
service. It configures the JNDI layer in the binding scope, the message delivery details in the service
scope, and the reply destination in the port scope.

Example 7.7. WSDL contract with SOAP/JMS configuration

1

2

3

4

5

<wsd;definitions ...
    xmlns:soapjms="http://www.w3.org/2010/soapjms/"
  ... >

  ...
  <wsdl:binding name="JMSGreeterPortBinding" 
type="tns:JMSGreeterPortType">
    ...

    <soapjms:jndiInitialContextFactory>
      org.apache.activemq.jndi.ActiveMQInitialContextFactory

    </soapjms:jndiInitialContextFactory>
    <soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>
    <soapjms:jndiConnectionFactoryName>
      ConnectionFactory
    </soapjms:jndiConnectionFactoryName>
    ...
  </wsdl:binding>
  ...
  <wsdl:service name="JMSGreeterService">
    ...

    <soapjms:deliveryMode>NON_PERSISTENT</soapjms:deliveryMode>
    <soapjms:timeToLive>60000</soapjms:timeToLive>

    ...
    <wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">

      <soap:address 
location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
      <soapjms:replyToName>
        dynamicQueues/greeterReply.queue

      </soapjms:replyToName>
      ...
    </wsdl:port>
    ...

CHAPTER 7. USING JMS

51



1

2

3

4

5

The WSDL in Example 7.7, “WSDL contract with SOAP/JMS configuration”  does the following:

Declare the namespace for the SOAP/JMS extensions.

Configure the JNDI connections in the binding scope.

Configure the JMS delivery style to non-persistent and each message to live for one minute.

Specify the target destination.

Configure the JMS transport so that reply messages are delivered on the greeterReply.queue
queue.

7.2. USING WSDL TO CONFIGURE JMS

The WSDL extensions for defining a JMS endpoint are defined in the namespace
http://cxf.apache.org/transports/jms. In order to use the JMS extensions you will need to add the line
shown in Example 7.8, “JMS WSDL extension namespace”  to the definitions element of your contract.

Example 7.8. JMS WSDL extension namespace

7.2.1. Basic JMS configuration

Overview

The JMS address information is provided using the jms:address element and its child, the 
jms:JMSNamingProperties element. The jms:address element’s attributes specify the
information needed to identify the JMS broker and the destination. The jms:JMSNamingProperties
element specifies the Java properties used to connect to the JNDI service.

IMPORTANT

Information specified using the JMS feature will override the information in the
endpoint's WSDL file.

Specifying the JMS address

The basic configuration for a JMS endpoint is done by using a jms:address element as the child of
your service’s port element. The jms:address element used in WSDL is identical to the one used in
the configuration file. Its attributes are listed in Table 7.5, “JMS endpoint attributes” .

Table 7.5. JMS endpoint attributes

  </wsdl:service>
  ...
</wsdl:definitions>

xmlns:jms="http://cxf.apache.org/transports/jms"

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

52



Attribute Description

destinationStyle Specifies if the JMS destination is a JMS queue or a
JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS
connection factory to use when connecting to the
JMS destination.

jmsDestinationName Specifies the JMS name of the JMS destination to
which requests are sent.

jmsReplyDestinationName Specifies the JMS name of the JMS destinations
where replies are sent. This attribute allows you to
use a user defined destination for replies. For more
details see Section 7.3, “Using a Named Reply
Destination”.

jndiDestinationName Specifies the JNDI name bound to the JMS
destination to which requests are sent.

jndiReplyDestinationName Specifies the JNDI name bound to the JMS
destinations where replies are sent. This attribute
allows you to use a user defined destination for
replies. For more details see Section 7.3, “Using a
Named Reply Destination”.

connectionUserName Specifies the user name to use when connecting to a
JMS broker.

connectionPassword Specifies the password to use when connecting to a
JMS broker.

The jms:address WSDL element uses a jms:JMSNamingProperties child element to specify
additional information needed to connect to a JNDI provider.

Specifying JNDI properties

To increase interoperability with JMS and JNDI providers, the jms:address element has a child
element, jms:JMSNamingProperties, that allows you to specify the values used to populate the
properties used when connecting to the JNDI provider. The jms:JMSNamingProperties element
has two attributes: name and value. name specifies the name of the property to set. value attribute
specifies the value for the specified property. jms:JMSNamingProperties element can also be used
for specification of provider specific properties.

The following is a list of common JNDI properties that can be set:

1. java.naming.factory.initial

2. java.naming.provider.url

CHAPTER 7. USING JMS

53



3. java.naming.factory.object

4. java.naming.factory.state

5. java.naming.factory.url.pkgs

6. java.naming.dns.url

7. java.naming.authoritative

8. java.naming.batchsize

9. java.naming.referral

10. java.naming.security.protocol

11. java.naming.security.authentication

12. java.naming.security.principal

13. java.naming.security.credentials

14. java.naming.language

15. java.naming.applet

For more details on what information to use in these attributes, check your JNDI provider’s
documentation and consult the Java API reference material.

Example

Example 7.9, “JMS WSDL port specification”  shows an example of a JMS WSDL port specification.

Example 7.9. JMS WSDL port specification

7.2.2. JMS client configuration

Overview

<service name="JMSService">
  <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
    <jms:address jndiConnectionFactoryName="ConnectionFactory"
                 
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
      <jms:JMSNamingProperty name="java.naming.factory.initial"
                             
value="org.activemq.jndi.ActiveMQInitialContextFactory" />
      <jms:JMSNamingProperty name="java.naming.provider.url"
                             value="tcp://localhost:61616" />
    </jms:address>
  </port>
</service>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

54



JMS consumer endpoints specify the type of messages they use. JMS consumer endpoint can use
either a JMS ByteMessage or a JMS TextMessage.

When using an ByteMessage the consumer endpoint uses a byte[] as the method for storing data into
and retrieving data from the JMS message body. When messages are sent, the message data, including
any formating information, is packaged into a byte[] and placed into the message body before it is
placed on the wire. When messages are received, the consumer endpoint will attempt to unmarshall
the data stored in the message body as if it were packed in a byte[].

When using a TextMessage, the consumer endpoint uses a string as the method for storing and
retrieving data from the message body. When messages are sent, the message information, including
any format-specific information, is converted into a string and placed into the JMS message body.
When messages are received the consumer endpoint will attempt to unmarshall the data stored in the
JMS message body as if it were packed into a string.

When native JMS applications interact with Apache CXF consumers, the JMS application is responsible
for interpreting the message and the formatting information. For example, if the Apache CXF contract
specifies that the binding used for a JMS endpoint is SOAP, and the messages are packaged as 
TextMessage, the receiving JMS application will get a text message containing all of the SOAP
envelope information.

Specifying the message type

The type of messages accepted by a JMS consumer endpoint is configured using the optional 
jms:client element. The jms:client element is a child of the WSDL port element and has one
attribute:

Table 7.6. JMS Client WSDL Extensions

messageType Specifies how the message data will be packaged as
a JMS message. text specifies that the data will be
packaged as a TextMessage. binary specifies
that the data will be packaged as an ByteMessage.

Example

Example 7.10, “WSDL for a JMS consumer endpoint”  shows the WSDL for configuring a JMS consumer
endpoint.

Example 7.10. WSDL for a JMS consumer endpoint

<service name="JMSService">
  <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
    <jms:address jndiConnectionFactoryName="ConnectionFactory"
                 
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
      <jms:JMSNamingProperty name="java.naming.factory.initial"
                             
value="org.activemq.jndi.ActiveMQInitialContextFactory" />
      <jms:JMSNamingProperty name="java.naming.provider.url"
                             value="tcp://localhost:61616" />
    </jms:address>

CHAPTER 7. USING JMS

55



7.2.3. JMS provider configuration

Overview

JMS provider endpoints have a number of behaviors that are configurable. These include:

how messages are correlated

the use of durable subscriptions

if the service uses local JMS transactions

the message selectors used by the endpoint

Specifying the configuration

Provider endpoint behaviors are configured using the optional jms:server element. The 
jms:server element is a child of the WSDL wsdl:port element and has the following attributes:

Table 7.7. JMS provider endpoint WSDL extensions

Attribute Description

useMessageIDAsCorrealationID Specifies whether JMS will use the message ID to
correlate messages. The default is false.

durableSubscriberName Specifies the name used to register a durable
subscription.

messageSelector Specifies the string value of a message selector to
use. For more information on the syntax used to
specify message selectors, see the JMS 1.1
specification.

transactional Specifies whether the local JMS broker will create
transactions around message processing. The
default is false. [a]

[a] Currently, setting the transactional attribute to true is not supported by the runtime.

Example

Example 7.11, “WSDL for a JMS provider endpoint”  shows the WSDL for configuring a JMS provider
endpoint.

Example 7.11. WSDL for a JMS provider endpoint

    <jms:client messageType="binary" />
  </port>
</service>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

56



7.3. USING A NAMED REPLY DESTINATION

Overview

By default, Apache CXF endpoints using JMS create a temporary queue for sending replies back and
forth. If you prefer to use named queues, you can configure the queue used to send replies as part of an
endpoint's JMS configuration.

Setting the reply destination name

You specify the reply destination using either the jmsReplyDestinationName attribute or the 
jndiReplyDestinationName attribute in the endpoint's JMS configuration. A client endpoint will
listen for replies on the specified destination and it will specify the value of the attribute in the 
ReplyTo field of all outgoing requests. A service endpoint will use the value of the 
jndiReplyDestinationName attribute as the location for placing replies if there is no destination
specified in the request’s ReplyTo field.

Example

Example 7.12, “JMS Consumer Specification Using a Named Reply Queue”  shows the configuration for
a JMS client endpoint.

Example 7.12. JMS Consumer Specification Using a Named Reply Queue

<service name="JMSService">
  <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
    <jms:address jndiConnectionFactoryName="ConnectionFactory"
                 
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
      <jms:JMSNamingProperty name="java.naming.factory.initial"
                             
value="org.activemq.jndi.ActiveMQInitialContextFactory" />
      <jms:JMSNamingProperty name="java.naming.provider.url"
                             value="tcp://localhost:61616" />
    </jms:address>
    <jms:server messageSelector="cxf_message_selector"
                useMessageIDAsCorrelationID="true"
                transactional="true"
                durableSubscriberName="cxf_subscriber" />
  </port>
</service>

<jms:conduit name="
{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
    <jms:address destinationStyle="queue"
                 jndiConnectionFactoryName="myConnectionFactory"
                 jndiDestinationName="myDestination"
                 jndiReplyDestinationName="myReplyDestination" >
      <jms:JMSNamingProperty name="java.naming.factory.initial"
                             
value="org.apache.cxf.transport.jms.MyInitialContextFactory" />
      <jms:JMSNamingProperty name="java.naming.provider.url"

CHAPTER 7. USING JMS

57



                             value="tcp://localhost:61616" />
    </jms:address>
  </jms:conduit>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

58



PART II. CONFIGURING AND PACKAGING ENDPOINTS

Abstract

Endpoints exposed by the Apache CXF binding component are configured in a service unit's 
xbean.xml file. The endpoints are then packaged into a service unit that can be deployed to Red Hat
JBoss Fuse.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

PART II. CONFIGURING AND PACKAGING ENDPOINTS

59



CHAPTER 8. INTRODUCTION TO THE APACHE CXF BINDING
COMPONENT

Abstract

Endpoints being deployed using the Apache CXF binding component are packaged into a service unit.
The service unit will container the WSDL document defining the endpoint's interface and a
configuration file that sets-up the endpoint's runtime behavior.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

CONTENTS OF A FILE COMPONENT SERVICE UNIT

A service unit that configures the Apache CXF binding component will contain the following artifacts:

xbean.xml

The xbean.xml file contains the XML configuration for the endpoint defined by the service unit.
The contents of this file are the focus of this guide.

NOTE

The service unit can define more than one endpoint.

WSDL file

The WSDL file defines the endpoint the interface exposes.

Spring configuration file

The Spring configuration file contains configuration for the Apache CXF runtime.

meta-inf/jbi.xml

The jbi.xml file is the JBI descriptor for the service unit. Example 8.1, “JBI Descriptor for a
Apache CXF Binding Component Service Unit” shows a JBI descriptor for a Apache CXF binding
component service unit.

Example 8.1. JBI Descriptor for a Apache CXF Binding Component Service Unit

For information on using the Maven tooling to package endpoints into a JBI service unit see
Appendix C, Using the Maven JBI Tooling.

<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
  <services binding-component="false" />
</jbi>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

60



OSGI PACKAGING

You can package Apache CXF binding component endpoints in an OSGi bundle. To do so you need to
make two minor changes:

you will need to include an OSGi bundle manifest in the META-INF folder of the bundle.

You need to add the following to your service unit's configuration file:

IMPORTANT

When you deploy Apache CXF binding component endpoints in an OSGi bundle, the
resulting endpoints are deployed as a JBI service unit.

For more information on using the OSGi packaging see Appendix D, Using the Maven OSGi Tooling.

NAMESPACE

The elements used to configure Apache CXF binding component endpoints are defined in the 
http://servicemix.apache.org/cxfbc/1.0 namespace. You will need to add a namespace
declaration similar to the one in Example 8.2, “Namespace Declaration for Using Apache CXF Binding
Component Endpoints” to your xbeans.xml file's beans element.

Example 8.2. Namespace Declaration for Using Apache CXF Binding Component Endpoints

In addition, you need to add the schema location to the Spring beans element's 
xsi:schemaLocation as shown in Example 8.3, “Schema Location for Using Apache CXF Binding
Component Endpoints”.

Example 8.3. Schema Location for Using Apache CXF Binding Component Endpoints

<bean class="org.apache.servicemix.common.osgi.EndpointExporter" />

<beans ...
       xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       ... >
  ...
</beans>

<beans ...
       xsi:schemaLocation="...
http://servicemix.apache.org/cxfbc/1.0 
http://servicemix.apache.org/cxfbc/1.0/servicemix-cxfbc.xsd
...">
  ...
</beans>

CHAPTER 8. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT

61



CHAPTER 9. CONSUMER ENDPOINTS

Abstract

A consumer endpoint listens for requests from external endpoints and delivers responses back to the
requesting endpoint. It is configured using a single XML element that specifies the WSDL document
defining the endpoint.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Consumer endpoints play the role of consumer from the vantage point of other endpoints running
inside of the ESB. However, from outside of the ESB a consumer endpoint plays the role of a service
provider. As shown in Figure 9.1, “Consumer Endpoint”, consumer endpoints listen from incoming
requests from external endpoints. When it receives a request, the consumer passes it off to the NMR fro
delivery to endpoint that will process the request. If a response is generated, the consumer endpoint
delivers the response back to the external endpoint.

Figure 9.1. Consumer Endpoint

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

62



IMPORTANT

Because consumer endpoint's behave like service providers to external endpoints, you
configure the runtime behavior of the transport using the provider-specific WSDL
entries.

PROCEDURE

To configure a consumer endpoint do the following:

1. Add a consumer element to your xbean.xml file.

2. Add a wsdl attribute to the consumer element.

See the section called “Specifying the WSDL” .

3. If your WSDL defines more than one service, you will need to specify a value for the service
attribute.

See the section called “Specifying the endpoint details” .

4. If the service you choose defines more than one endpoint, you will need to specify a value for
the endpoint attribute.

See the section called “Specifying the endpoint details” .

5. Specify the details for the target of the requests received by the endpoint.

See the section called “Specifying the target endpoint” .

6. If your endpoint is going to be receiving binary attachments set its mtomEnabled attribute to 
true.

See Chapter 11, Using MTOM to Process Binary Content.

7. If your endpoint does not need to process the JBI wrapper set its useJbiWrapper attribute to
false.

See Chapter 12, Working with the JBI Wrapper.

8. If you are using any of the advanced features, such as WS-Addressing or WS-Policy, specify a
value for the busCfg attribute.

See Part III, “Configuring the CXF Runtime”.

SPECIFYING THE WSDL

The wsdl attribute is the only required attribute to configure a consumer endpoint. It specifies the
location of the WSDL document that defines the endpoint being exposed. The path used is relative to
the top-level of the exploded service unit.

TIP

If the WSDL document defines a single service with a single endpoint, then you do not require any
additional information to expose a consumer endpoint.

CHAPTER 9. CONSUMER ENDPOINTS

63



Example 9.1, “Minimal Consumer Endpoint Configuration”  shows the minimal configuration for a
consumer endpoint.

Example 9.1. Minimal Consumer Endpoint Configuration

For information on creating a WSDL document see Part I, “Defining an Endpoint in WSDL” .

SPECIFYING THE ENDPOINT DETAILS

If the endpoint's WSDL document defines a single service with a single endpoint, the ESB can easily
determine which endpoint to use. It will use the values from the WSDL document to specify the service
name, endpoint name and interface name for the instantiated endpoint.

However, if the endpoint's WSDL document defines multiple services or if it defines multiple endpoints
for a service, you will need to provide the consumer endpoint with additional information so that it can
determine the proper definition to use. What information you need to provide depends on the
complexity of the WSDL document. You may need to supply values for both the service name and the
endpoint name, or you may only have to supply one of these values.

If the WSDL document contains more than one service element you will need to specify a value for
the consumer's service attribute. The value of the consumer's service attribute is the QName of the
WSDL service element that defines the desired service in the WSDL document. For example, if you
wanted your endpoint to use the WidgetSalesService in the WSDL shown in Example 9.2, “WSDL with
Two Services” you would use the configuration shown in Example 9.3, “Consumer Endpoint with a
Defined Service Name”.

Example 9.2. WSDL with Two Services

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       ... >
  ...
  <cxfbc:consumer wsdl="/wsdl/widget.wsdl" />

  ...
</beans>

<definitions ...
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
             targetNamespace="http://demos.widgetVendor.com" ...>
  ...
  <service name="WidgetSalesService">
    <port binding="WidgetSalesBinding" name="WidgetSalesPort">
      <soap:address location="http://widget.sales.com/index.xml">
    </port>
  </service>

  <service name="WidgetInventoryService">
    <port binding="WidgetInventoryBinding" name="WidgetInventoryPort">
      <soap:address location="http://widget.inventory.com/index.xml">
    </port>
  </service>
  ...
<definitions>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

64



Example 9.3. Consumer Endpoint with a Defined Service Name

If the WSDL document's service definition contains more than one endpoint, then you will need to
provide a value for the consumer's endpoint attribute. The value of the endpoint attribute
corresponds to the value of the WSDL port element's name attribute. For example, if you wanted your
endpoint to use the WidgetEasternSalesPort in the WSDL shown in Example 9.4, “Service with Two
Endpoints” you would use the configuration shown in Example 9.5, “Consumer Endpoint with a Defined
Endpoint Name”.

Example 9.4. Service with Two Endpoints

Example 9.5. Consumer Endpoint with a Defined Endpoint Name

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       xmlns:widgets="http://demos.widgetVendor.com"
       ... >
  ...
  <cxfbc:consumer wsdl="/wsdl/widget.wsdl"
                  service="widgets:WidgetSalesService" />

  ...
</beans>

<definitions ...
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
             targetNamespace="http://demos.widgetVendor.com" ...>
  ...
  <service name="WidgetSalesService">
    <port binding="WidgetSalesBinding" name="WidgetWesternSalesPort">
      <soap:address location="http://widget.sales.com/index.xml">
    </port>
    <port binding="WidgetSalesBinding" name="WidgetEasternSalesPort">
      <jms:address jndiConnectionFactoryName="ConnectionFactory"
                   
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
        <jms:JMSNamingProperty name="java.naming.factory.initial"
                               
value="org.activemq.jndi.ActiveMQInitialContextFactory" />
        <jms:JMSNamingProperty name="java.naming.provider.url"
                               value="tcp://localhost:61616" />
      </jms:address>
    </port>
  </service>
  ...
<definitions>

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       xmlns:widgets="http://demos.widgetVendor.com"
       ... >
  ...

CHAPTER 9. CONSUMER ENDPOINTS

65



SPECIFYING THE TARGET ENDPOINT

The consumer endpoint will determine the target endpoint in the following manner:

1. If you explicitly specify an endpoint using both the targetService attribute and the 
targetEndpoint attribute, the ESB will use that endpoint.

2. If you only specify a value for the targetService attribute, the ESB will attempt to find an
appropriate endpoint on the specified service.

3. If you specify an the name of an interface that can accept the message using the 
targetInterface attribute, the ESB will attempt to locate an endpoint that implements the
specified interface and direct the messages to it.

4. If you do not use any of the target attributes, the ESB will use the values used in configuring
the endpoint's service name and endpoint name to determine the target endpoint.

Example 9.6, “Consumer Endpoint Configuration Specifying a Target Endpoint”  shows the
configuration for a consumer endpoint that specifies the target endpoint to use.

Example 9.6. Consumer Endpoint Configuration Specifying a Target Endpoint

IMPORTANT

If you specify values for more than one of the target attributes, the consumer endpoint
will use the most specific information.

  <cxfbc:consumer wsdl="/wsdl/widget.wsdl"
                  endpoint="WidgetEasternSalesService" />
  ...
</beans>

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       xmlns:widgets="http://demos.widgetVendor.com"
       ... >
  ...
  <cxfbc:consumer wsdl="/wsdl/widget.wsdl"
                  targetEndpoint="WidgetSalesTargetPort"
                  targetService="widgets:WidgetSalesTargetService" />

  ...
</beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

66



CHAPTER 10. PROVIDER ENDPOINTS

Abstract

A provider endpoint sends requests to external endpoints and waits for the response. It is configured
using a single XML element that specifies the WSDL document defining the endpoint.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Provider endpoints play the role of service provider from the vantage point of other endpoints running
inside of the ESB. However, from outside of the ESB a provider endpoint plays the role of a consumer.
As shown in Figure 10.1, “Provider Endpoint”, provider endpoints make requests on external endpoints.
When it receives the response, the provider endpoint returns it back to the NMR.

Figure 10.1. Provider Endpoint

IMPORTANT

Because provider endpoint's behave like consumers to external endpoints, you
configure the runtime behavior of the transport using the consumer-specific WSDL
entries.

CHAPTER 10. PROVIDER ENDPOINTS

67



PROCEDURE

To configure a provider endpoint do the following:

1. Add a provider element to your xbean.xml file.

2. Add a wsdl attribute to the provider element.

See the section called “Specifying the WSDL” .

3. If your WSDL defines more than one service, you will need to specify a value for the service
attribute.

See the section called “Specifying the endpoint details” .

4. If the service you choose defines more than one endpoint, you will need to specify a value for
the endpoint attribute.

See the section called “Specifying the endpoint details” .

5. If your endpoint is going to be receiving binary attachments set its mtomEnabled attribute to 
true.

See Chapter 11, Using MTOM to Process Binary Content.

6. If your endpoint does not need to process the JBI wrapper set its useJbiWrapper attribute to
false.

See Chapter 12, Working with the JBI Wrapper.

7. If you are using any of the advanced features, such as WS-Addressing or WS-Policy, specify a
value for the busCfg attribute.

See Part III, “Configuring the CXF Runtime”.

SPECIFYING THE WSDL

The wsdl attribute is the only required attribute to configure a provider endpoint. It specifies the
location of the WSDL document that defines the endpoint being exposed. The path used is relative to
the top-level of the exploded service unit.

TIP

If the WSDL document defines a single service with a single endpoint, then you do not require any
additional information to expose a provider endpoint.

Example 10.1, “Minimal Provider Endpoint Configuration”  shows the minimal configuration for a
provider endpoint.

Example 10.1. Minimal Provider Endpoint Configuration

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       ... >
  ...
  <cxfbc:provider wsdl="/wsdl/widget.wsdl" />

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

68



For information on creating a WSDL document see Part I, “Defining an Endpoint in WSDL” .

SPECIFYING THE ENDPOINT DETAILS

If the endpoint's WSDL document defines a single service with a single endpoint, the ESB can easily
determine which endpoint to use. It will use the values from the WSDL document to specify the service
name, endpoint name and interface name for the instantiated endpoint.

However, if the endpoint's WSDL document defines multiple services or if it defines multiple endpoints
for a service, you will need to provide the provider endpoint with additional information so that it can
determine the proper definition to use. What information you need to provide depends on the
complexity of the WSDL document. You may need to supply values for both the service name and the
endpoint name, or you may only have to supply one of these values.

If the WSDL document contains more than one service element you will need to specify a value for
the provider's service attribute. The value of the provider's service attribute is the QName of the
WSDL service element that defines the desired service in the WSDL document. For example, if you
wanted your endpoint to use the WidgetInventoryService in the WSDL shown in Example 10.2, “WSDL
with Two Services” you would use the configuration shown in Example 10.3, “Provider Endpoint with a
Defined Service Name”.

Example 10.2. WSDL with Two Services

Example 10.3. Provider Endpoint with a Defined Service Name

  ...
</beans>

<definitions ...
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
             targetNamespace="http://demos.widgetVendor.com" ...>
  ...
  <service name="WidgetSalesService">
    <port binding="WidgetSalesBinding" name="WidgetSalesPort">
      <soap:address location="http://widget.sales.com/index.xml">
    </port>
  </service>

  <service name="WidgetInventoryService">
    <port binding="WidgetInventoryBinding" name="WidgetInventoryPort">
      <soap:address location="http://widget.inventory.com/index.xml">
    </port>
  </service>
  ...
<definitions>

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       xmlns:widgets="http://demos.widgetVendor.com"
       ... >
  ...
  <cxfbc:provider wsdl="/wsdl/widget.wsdl"

CHAPTER 10. PROVIDER ENDPOINTS

69



If the WSDL document's service definition contains more than one endpoint, then you will need to
provide a value for the provider's endpoint attribute. The value of the endpoint attribute
corresponds to the value of the WSDL port element's name attribute. For example, if you wanted your
endpoint to use the WidgetWesternSalesPort in the WSDL shown in Example 10.4, “Service with Two
Endpoints” you would use the configuration shown in Example 10.5, “Provider Endpoint with a Defined
Endpoint Name”.

Example 10.4. Service with Two Endpoints

Example 10.5. Provider Endpoint with a Defined Endpoint Name

                  service="widgets:WidgetInventoryService" />

  ...
</beans>

<definitions ...
             xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
             targetNamespace="http://demos.widgetVendor.com" ...>
  ...
  <service name="WidgetSalesService">
    <port binding="WidgetSalesBinding" name="WidgetWesternSalesPort">
      <soap:address location="http://widget.sales.com/index.xml">
    </port>
    <port binding="WidgetSalesBinding" name="WidgetEasternSalesPort">
      <jms:address jndiConnectionFactoryName="ConnectionFactory"
                   
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
        <jms:JMSNamingProperty name="java.naming.factory.initial"
                               
value="org.activemq.jndi.ActiveMQInitialContextFactory" />
        <jms:JMSNamingProperty name="java.naming.provider.url"
                               value="tcp://localhost:61616" />
      </jms:address>
    </port>
  </service>
  ...
<definitions>

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       xmlns:widgets="http://demos.widgetVendor.com"
       ... >
  ...
  <cxfbc:provider wsdl="/wsdl/widget.wsdl"
                  endpoint="WidgetWesternSalesService" />
  ...
</beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

70



CHAPTER 11. USING MTOM TO PROCESS BINARY CONTENT

Abstract

Enabling MTOM support allows your endpoints to consume and produce messages that contain binary
data.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

SOAP Message Transmission Optimization Mechanism (MTOM) specifies an optimized method for
sending binary data as part of a SOAP message using the XML-binary Optimized Packaging (XOP)
packages for transmitting binary data. The Apache CXF binding supports the use of MTOM to send and
receive binary data. MTOM support is enabled on an endpoint by endpoint basis.

CONFIGURING AN ENDPOINT TO SUPPORT MTOM

As shown in Example 11.1, “Configuring an Endpoint to Use MTOM” , you configure an endpoint to
support MTOM by setting its mtomEnabled attribute to true.

Example 11.1. Configuring an Endpoint to Use MTOM

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       ...>

  <cxfbc:consumer wsdl="/wsdl/widget.wsdl"
                  mtomEnabled="true" />

  ...
</beans>

CHAPTER 11. USING MTOM TO PROCESS BINARY CONTENT

71



CHAPTER 12. WORKING WITH THE JBI WRAPPER

Abstract

By default, all Apache CXF binding component endpoints expect SOAP messages to be inside of the
JBI wrapper. You can turn off the extra processing if it is not required.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

There are instances when a JBI component cannot consume a native SOAP message. For instance,
SOAP headers pose difficulty for JBI components. The JBI specification defines a JBI wrapper that can
be used to make SOAP messages, or any message defined in WSDL 1.1, conform to the expectations of a
JBI component.

For the sake of compatibility, all endpoints exposed by the Apache CXF binding component will check
for the JBI wrapper. If it is present the endpoint will unwrap the messages. If you are positive that your
endpoints will never receive messages that use the JBI wrapper, you can turn off the extra processing.

TURNING OF JBI WRAPPER PROCESSING

If you are sure your endpoint will not receive messages using the JBI wrapper you can set its 
useJbiWrapper attribute to false. This instructs the endpoint to disable the processing of the JBI
wrapper. If the endpoint does receive a message that uses the JBI wrapper, it will fail to process the
message and generate an error.

EXAMPLE

Example 12.1, “Configuring a Consumer to Not Use the JBI Wrapper”  shows a configuration fragment
for configuring a consumer that does not process the JBI wrapper.

Example 12.1. Configuring a Consumer to Not Use the JBI Wrapper

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       ... >
  ...
  <cxfbc:consumer wsdl="/wsdl/widget.wsdl"
                  useJbiWrapper="false" />
  ...
</beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

72



CHAPTER 13. USING MESSAGE INTERCEPTORS

Abstract

You can use low-level message interceptors to process messages before they are delivered to your
endpoint's service implementation.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Interceptors are a low-level pieces of code that process messages as they are passed between the
message channel and service's implementation. They have access to the raw message data and can be
used to process SOAP action entries, process security tokens, or correlate messages. Interceptors are
called in a chain and you can configure what interceptors are used at a number of points along the
chain.

CONFIGURING AN ENDPOINT'S INTERCEPTOR CHAIN

A Apache CXF binding component endpoint's interceptor chain has four points at which you can insert
an interceptor:

in interceptors

On consumer endpoints the in interceptors process messages when they are received from the
external endpoint.

On provider endpoints the in interceptors process messages when they are received from the NMR.

in fault interceptors

The in fault interceptors process fault messages that are generated before the service
implementation gets called.

out interceptors

On consumer endpoints the out interceptors process messages as they pass from the service
implementation to the external endpoint.

On provider endpoints the out interceptors process messages as they pass from the service
implementation to the NMR.

out fault interceptors

The out fault interceptors process fault messages that are generated by the service implementation
or by an out interceptor.

An endpoint's interceptor chain is configured using children of its consumer element or provider
element. Table 13.1, “Elements Used to Configure an Endpoint's Interceptor Chain”  lists the elements
used to configure an endpoint's interceptor chain.

CHAPTER 13. USING MESSAGE INTERCEPTORS

73



Table 13.1. Elements Used to Configure an Endpoint's Interceptor Chain

Name Description

inInterceptors Specifies a list of interceptors that process incoming
messages.

inFaultInterceptors Specifies a list of interceptors that process incoming
fault messages.

outInterceptors Specifies a list of interceptors that process outgoing
messages.

outFaultInterceptors Specifies a list of interceptors that process outgoing
fault messages.

Example 13.1, “Configuring an Interceptor Chain”  shows a consumer endpoint configured to use the
Apache CXF logging interceptors.

Example 13.1. Configuring an Interceptor Chain

IMPLEMENTING AN INTERCEPTOR

You can implement a custom interceptor by extending the 
org.apache.cxf.phase.AbstractPhaseInterceptor class or one of its sub-classes. Extending 
AbstractPhaseInterceptor provides you with access to the generic message handling APIs used
by Apache CXF. Extending one of the sub-classes provides you with more specific APIs. For example,
extending the AbstractSoapInterceptor class allows your interceptor to work directly with the
SOAP APIs.

MORE INFORMATION

For more information about writing Apache CXF interceptors see the Apache CXF documentation.

<cxfbc:consumer ...>
  ...
  <cxfbc:inInterceptors>
    <bean class="org.apache.cxf.interceptor.LoggingInInterceptor" />
  </cxfbc:inInterceptors>
  <cxfbc:outInterceptors>
    <bean class="org.apache.cxf.interceptor.LoggingOutInterceptor" />
  </cxfbc:outInterceptors>
  <cxfbc:inFaultInterceptors>
    <bean class="org.apache.cxf.interceptor.LoggingInInterceptor" />
  </cxfbc:inFaultInterceptors>
  <cxfbc:outFaultInterceptors>
    <bean class="org.apache.cxf.interceptor.LoggingOutInterceptor" />
  </cxfbc:outFaultInterceptors>
</cxfbc:consumer>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

74

http://cwiki.apache.org/CXF20DOC/interceptors.html


PART III. CONFIGURING THE CXF RUNTIME

Abstract

To take advantage of some of the features of the Apache CXF transports you need to configure the
Apache CXF's runtime. You do this by configuring your endpoint to pass configuration information to
the runtime using the busCfg attribute.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

PART III. CONFIGURING THE CXF RUNTIME

75



CHAPTER 14. CONFIGURING THE ENDPOINTS TO LOAD
APACHE CXF RUNTIME CONFIGURATION

Abstract

Both consumers and providers use the busCfg attribute to configure the endpoint to load Apache CXF
runtime configuration. Its value points to a Apache CXF configuration file.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

SPECIFYING THE CONFIGURATION TO LOAD

You instruct an endpoint to load Apache CXF runtime configuration using the busCfg attribute. Both
the provider element and the consumer element accept this attribute. The attribute's value is the
path to a file containing configuration information used by the Apache CXF runtime. This path is
relative to the location of the endpoint's xbean.xml file.

TIP

The Apache CXF configuration file should be stored in the endpoint's service unit.

Each endpoint uses a separate Apache CXF runtime. If your service unit creates multiple endpoints,
each endpoint can load its own Apache CXF runtime configuration.

EXAMPLE

Example 14.1, “Provider Endpoint that Loads Apache CXF Runtime Configuration”  shows the
configuraiton for a provider endpoint that loads a Apache CXF configuration file called jms-
config.xml.

Example 14.1. Provider Endpoint that Loads Apache CXF Runtime Configuration

<beans xmlns:cxfbc="http://servicemix.apache.org/cxfbc/1.0"
       xmlns:greeter="http://cxf.apache.org/jms_greeter"
       xmlns:test="http://test">

  <cxfbc:provider wsdl="classpath:jms_greeter.wsdl"
                  service="greeter:JMSGreeterService"
                  endpoint="GreeterPort"
                  interfaceName="greeter:JMSGreeterPortType"
                  useJBIWrapper="false"
                  busCfg="./jms-config.xml" />

</beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

76



CHAPTER 15. TRANSPORT CONFIGURATION

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

15.1. USING THE JMS CONFIGURATION BEAN

Overview

To simplify JMS configuration and make it more powerful, Apache CXF uses a single JMS configuration
bean to configure JMS endpoints. The bean is implemented by the 
org.apache.cxf.transport.jms.JMSConfiguration class. It can be used to either configure
endpoint's directly or to configure the JMS conduits and destinations.

Configuration namespace

The JMS configuration bean uses the Spring p-namespace to make the configuration as simple as
possible. To use this namespace you need to declare it in the configuration's root element as shown in
Example 15.1, “Declaring the Spring p-namespace” .

Example 15.1. Declaring the Spring p-namespace

Specifying the configuration

You specify the JMS configuration by defining a bean of class 
org.apache.cxf.transport.jms.JMSConfiguration. The properties of the bean provide the
configuration settings for the transport.

Table 15.1, “General JMS Configuration Properties”  lists properties that are common to both providers
and consumers.

Table 15.1. General JMS Configuration Properties

Property Default Description

connectionFactory-ref  Specifies a reference to a bean
that defines a JMS 
ConnectionFactory.

<beans ...
  xmlns:p="http://www.springframework.org/schema/p"
  ... >
  ...
</beans>

CHAPTER 15. TRANSPORT CONFIGURATION

77

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-p-namespace


wrapInSingleConnectionF
actory

true Specifies whether to wrap the 
ConnectionFactory with a
Spring 
SingleConnectionFactory
. Doing so can improve the
performance of the JMS transport
when the specified connection
factory does not pool
connections.

reconnectOnException false Specifies whether to create a
new connection in the case of an
exception. This property is only
used when wrapping the
connection factory with a Spring 
SingleConnectionFactory
.

targetDestination  Specifies the JNDI name or
provider specific name of a
destination.

replyDestination  Specifies the JMS name of the
JMS destinations where replies
are sent. This attribute allows you
to use a user defined destination
for replies. For more details see
Section 7.3, “Using a Named
Reply Destination”.

destinationResolver  Specifies a reference to a Spring 
DestinationResolver. This
allows you to define how
destination names are resolved.
By default a 
DynamicDestinationResol
ver is used. It resolves
destinations using the JMS
providers features. If you
reference a 
JndiDestinationResolver
you can resolve the destination
names using JNDI.

transactionManager  Specifies a reference to a Spring
transaction manager. This allows
the service to participate in JTA
Transactions.

Property Default Description

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

78



taskExecutor  Specifies a reference to a Spring 
TaskExecutor. This is used in
listeners to decide how to handle
incoming messages. By default
the transport uses the Spring 
SimpleAsyncTaskExecutor
.

useJms11 false Specifies whether JMS 1.1
features are available.

messageIdEnabled true Specifies whether the JMS
transport wants the JMS broker
to provide message IDs. Setting
this to false causes the
endpoint to call its message
producer's 
setDisableMessageID()
method with a value of true. The
JMS broker is then given a hint
that it does not need to generate
message IDs or add them to the
messages from the endpoint. The
JMS broker can choose to accept
the hint or ignore it.

messageTimestampEnabled true Specifies whether the JMS
transport wants the JMS broker
to provide message time stamps.
Setting this to false causes the
endpoint to call its message
producer's 
setDisableMessageTimest
amp() method with a value of 
true. The JMS broker is then
given a hint that it does not need
to generate time stamps or add
them to the messages from the
endpoint. The JMS broker can
choose to accept the hint or
ignore it.

cacheLevel 3 Specifies the level of caching
allowed by the listener. Valid
values are 0(CACHE_NONE), 
1(CACHE_CONNECTION), 
2(CACHE_SESSION), 
3(CACHE_CONSUMER), 
4(CACHE_AUTO).

Property Default Description

CHAPTER 15. TRANSPORT CONFIGURATION

79



pubSubNoLocal false Specifies whether to receive
messages produced from the
same connection.

receiveTimeout 0 Specifies, in milliseconds, the
amount of time to wait for
response messages. 0 means wait
indefinitely.

explicitQosEnabled false Specifies whether the QoS
settings like priority, persistence,
and time to live are explicitly set
for each message or if they are
allowed to use default values.

deliveryMode 1 Specifies if a message is
persistent. The two values are:

1(NON_PERSISTENT)—
messages will be kept
memory

2(PERSISTENT)—
messages will be
persisted to disk

priority 4 Specifies the message's priority
for the messages. JMS priority
values can range from 0 to 9. The
lowest priority is 0 and the
highest priority is 9.

timeToLive 0 Specifies, in milliseconds, the
message will be available after it
is sent. 0 specifies an infinite time
to live.

sessionTransacted false Specifies if JMS transactions are
used.

concurrentConsumers 1 Specifies the minimum number of
concurrent consumers created by
the listener.

maxConcurrentConsumers 1 Specifies the maximum number of
concurrent consumers by
listener.

Property Default Description

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

80



messageSelector  Specifies the string value of the
selector. For more information on
the syntax used to specify
message selectors, see the JMS
1.1 specification.

subscriptionDurable false Specifies whether the server uses
durrable subscriptions.

durableSubscriptionName  Specifies the string used to
register the durable subscription.

messageType text Specifies how the message data
will be packaged as a JMS
message. text specifies that the
data will be packaged as a 
TextMessage. binary
specifies that the data will be
packaged as an ByteMessage.

pubSubDomain false Specifies whether the target
destination is a topic.

jmsProviderTibcoEms false Specifies if your JMS provider is
Tibco EMS. This causes the
principal in the security context
to be populated from the 
JMS_TIBCO_SENDER header.

useMessageIDAsCorrelati
onID

false Specifies whether JMS will use
the message ID to correlate
messages. If not, the client will
set a generated correlation ID.

Property Default Description

As shown in Example 15.2, “JMS configuration bean” , the bean's properties are specified as attributes
to the bean element. They are all declared in the Spring p namespace.

Example 15.2. JMS configuration bean

Applying the configuration to an endpoint

The JMSConfiguration bean can be applied directly to both server and client endpoints using the

<bean id="jmsConfig"
      class="org.apache.cxf.transport.jms.JMSConfiguration"
      p:connectionFactory-ref="connectionFactory"
      p:targetDestination="dynamicQueues/greeter.request.queue"
      p:pubSubDomain="false" />

CHAPTER 15. TRANSPORT CONFIGURATION

81



Apache CXF features mechanism. To do so:

1. Set the endpoint's address attribute to jms://.

2. Add a jaxws:feature element to the endpoint's configuration.

3. Add a bean of type org.apache.cxf.transport.jms.JMSConfigFeature to the feature.

4. Set the bean element's p:jmsConfig-ref attribute to the ID of the JMSConfiguration
bean.

Example 15.3, “Adding JMS configuration to a JAX-WS client”  shows a JAX-WS client that uses the
JMS configuration from Example 15.2, “JMS configuration bean” .

Example 15.3. Adding JMS configuration to a JAX-WS client

Applying the configuration to the transport

The JMSConfiguration bean can be applied to JMS conduits and JMS destinations using the 
jms:jmsConfig-ref element. The jms:jmsConfig-ref element's value is the ID of the 
JMSConfiguration bean.

Example 15.4, “Adding JMS configuration to a JMS conduit”  shows a JMS conduit that uses the JMS
configuration from Example 15.2, “JMS configuration bean” .

Example 15.4. Adding JMS configuration to a JMS conduit

15.2. CONFIGURING THE JETTY RUNTIME

Overview

<jaxws:client id="CustomerService"
              xmlns:customer="http://customerservice.example.com/"
              serviceName="customer:CustomerServiceService"
              endpointName="customer:CustomerServiceEndpoint"
              address="jms://"
              
serviceClass="com.example.customerservice.CustomerService">
  <jaxws:features>
    <bean class="org.apache.cxf.transport.jms.JMSConfigFeature"
          p:jmsConfig-ref="jmsConfig"/>
  </jaxws:features>
</jaxws:client>

<jms:conduit name="
{http://cxf.apache.org/jms_conf_test}HelloWorldQueueBinMsgPort.jms-
conduit">
  ...
  <jms:jmsConfig-ref>jmsConf</jms:jmsConfig-ref>
</jms:conduit>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

82



The Jetty runtime is used by HTTP service providers and HTTP consumers using a decoupled endpoint.
The runtime's thread pool can be configured, and you can also set a number of the security settings for
an HTTP service provider through the Jetty runtime.

Namespace

The elements used to configure the Jetty runtime are defined in the namespace
http://cxf.apache.org/transports/http-jetty/configuration. It is commonly referred to using the prefix 
httpj. In order to use the Jetty configuration elements you must add the lines shown in Example 15.5,
“Jetty Runtime Configuration Namespace” to the beans element of your endpoint's configuration file.
In addition, you must add the configuration elements' namespace to the xsi:schemaLocation
attribute.

Example 15.5. Jetty Runtime Configuration Namespace

The engine-factory element

The httpj:engine-factory element is the root element used to configure the Jetty runtime used
by an application. It has a single required attribute, bus, whose value is the name of the Bus that
manages the Jetty instances being configured.

TIP

The value is typically cxf which is the name of the default Bus instance.

The httpj:engine-factory element has three children that contain the information used to
configure the HTTP ports instantiated by the Jetty runtime factory. The children are described in
Table 15.2, “Elements for Configuring a Jetty Runtime Factory” .

Table 15.2. Elements for Configuring a Jetty Runtime Factory

Element Description

httpj:engine Specifies the configuration for a particular Jetty
runtime instance. See the section called “The 
engine element”.

<beans ...
       xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
       ...
       xsi:schemaLocation="...
                           http://cxf.apache.org/transports/http-
jetty/configuration
                              
http://cxf.apache.org/schemas/configuration/http-jetty.xsd
                          ...">

CHAPTER 15. TRANSPORT CONFIGURATION

83



httpj:identifiedTLSServerParameters Specifies a reusable set of properties for securing an
HTTP service provider. It has a single attribute, id,
that specifies a unique identifier by which the
property set can be referred.

httpj:identifiedThreadingParameters Specifies a reusable set of properties for controlling
a Jetty instance's thread pool. It has a single
attribute, id, that specifies a unique identifier by
which the property set can be referred.

See the section called “Configuring the thread pool”.

Element Description

The engine element

The httpj:engine element is used to configure specific instances of the Jetty runtime. It has a single
attribute, port, that specifies the number of the port being managed by the Jetty instance.

TIP

You can specify a value of 0 for the port attribute. Any threading properties specified in an 
httpj:engine element with its port attribute set to 0 are used as the configuration for all Jetty
listeners that are not explicitly configured.

Each httpj:engine element can have two children: one for configuring security properties and one
for configuring the Jetty instance's thread pool. For each type of configuration you can either directly
provide the configuration information or you can provide a reference to a set of configuration
properties defined in the parent httpj:engine-factory element.

The child elements used to provide the configuration properties are described in Table 15.3, “Elements
for Configuring a Jetty Runtime Instance”.

Table 15.3. Elements for Configuring a Jetty Runtime Instance

Element Description

httpj:tlsServerParameters Specifies a set of properties for configuring the
security used for the specific Jetty instance.

httpj:tlsServerParametersRef Refers to a set of security properties defined by a 
identifiedTLSServerParameters element.
The id attribute provides the id of the referred 
identifiedTLSServerParameters element.

httpj:threadingParameters Specifies the size of the thread pool used by the
specific Jetty instance. See the section called
“Configuring the thread pool”.

httpj:threadingParametersRef Refers to a set of properties defined by a 
identifiedThreadingParameters element.
The id attribute provides the id of the referred 
identifiedThreadingParameters element.

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

84



Configuring the thread pool

You can configure the size of a Jetty instance's thread pool by either:

Specifying the size of the thread pool using a identifiedThreadingParameters element in
the engine-factory element. You then refer to the element using a 
threadingParametersRef element.

Specifying the size of the of the thread pool directly using a threadingParameters element.

The threadingParameters has two attributes to specify the size of a thread pool. The attributes are
described in Table 15.4, “Attributes for Configuring a Jetty Thread Pool” .

NOTE

The httpj:identifiedThreadingParameters element has a single child 
threadingParameters element.

Table 15.4. Attributes for Configuring a Jetty Thread Pool

Attribute Description

minThreads Specifies the minimum number of threads available
to the Jetty instance for processing requests.

maxThreads Specifies the maximum number of threads available
to the Jetty instance for processing requests.

Example

Example 15.6, “Configuring a Jetty Instance”  shows a configuration fragment that configures a Jetty
instance on port number 9001.

Example 15.6. Configuring a Jetty Instance

<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:sec="http://cxf.apache.org/configuration/security"
  xmlns:http="http://cxf.apache.org/transports/http/configuration"
  xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
  xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
  xsi:schemaLocation="http://cxf.apache.org/configuration/security
          http://cxf.apache.org/schemas/configuration/security.xsd
            http://cxf.apache.org/transports/http/configuration
            http://cxf.apache.org/schemas/configuration/http-conf.xsd
            http://cxf.apache.org/transports/http-jetty/configuration
            http://cxf.apache.org/schemas/configuration/http-jetty.xsd
            http://www.springframework.org/schema/beans
            http://www.springframework.org/schema/beans/spring-beans-
2.0.xsd">
  ...

CHAPTER 15. TRANSPORT CONFIGURATION

85



  <httpj:engine-factory bus="cxf">
    <httpj:identifiedTLSServerParameters id="secure">
      <sec:keyManagers keyPassword="password">
        <sec:keyStore type="JKS" password="password" 
                      file="certs/cherry.jks"/>
      </sec:keyManagers>
    </httpj:identifiedTLSServerParameters>

    <httpj:engine port="9001">
      <httpj:tlsServerParametersRef id="secure" />
      <httpj:threadingParameters minThreads="5"
                                 maxThreads="15" />
    </httpj:engine>
  </httpj:engine-factory>
 </beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

86



CHAPTER 16. DEPLOYING WS-ADDRESSING

Abstract

Apache CXF supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy
WS-Addressing in the Apache CXF runtime environment.

16.1. INTRODUCTION TO WS-ADDRESSING

Overview

WS-Addressing is a specification that allows services to communicate addressing information in a
transport neutral way. It consists of two parts:

A structure for communicating a reference to a Web service endpoint

A set of Message Addressing Properties (MAP) that associate addressing information with a
particular message

Supported specifications

Apache CXF supports both the WS-Addressing 2004/08 specification and the WS-Addressing
2005/03 specification.

Further information

For detailed information on WS-Addressing, see the 2004/08 submission at
http://www.w3.org/Submission/ws-addressing/.

16.2. WS-ADDRESSING INTERCEPTORS

Overview

In Apache CXF, WS-Addressing functionality is implemented as interceptors. The Apache CXF runtime
uses interceptors to intercept and work with the raw messages that are being sent and received. When
a transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the WS-Addressing interceptors are added to the application's interceptor chain,
any WS-Addressing information included with a message is processed.

WS-Addressing Interceptors

The WS-Addressing implementation consists of two interceptors, as described in Table 16.1, “WS-
Addressing Interceptors”.

Table 16.1. WS-Addressing Interceptors

Interceptor Description

CHAPTER 16. DEPLOYING WS-ADDRESSING

87

http://www.w3.org/Submission/ws-addressing/


org.apache.cxf.ws.addressing.MAPAggr
egator

A logical interceptor responsible for aggregating the
Message Addressing Properties (MAPs) for outgoing
messages.

org.apache.cxf.ws.addressing.soap.MA
PCodec

A protocol-specific interceptor responsible for
encoding and decoding the Message Addressing
Properties (MAPs) as SOAP headers.

Interceptor Description

16.3. ENABLING WS-ADDRESSING

Overview

To enable WS-Addressing the WS-Addressing interceptors must be added to the inbound and
outbound interceptor chains. This is done in one of the following ways:

Apache CXF Features

RMAssertion and WS-Policy Framework

Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a Feature

WS-Addressing can be enabled by adding the WS-Addressing feature to the client and the server
configuration as shown in Example 16.1, “client.xml—Adding WS-Addressing Feature to Client
Configuration” and Example 16.2, “server.xml—Adding WS-Addressing Feature to Server
Configuration” respectively.

Example 16.1. client.xml—Adding WS-Addressing Feature to Client Configuration

Example 16.2. server.xml—Adding WS-Addressing Feature to Server Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:jaxws="http://cxf.apache.org/jaxws"
       xmlns:wsa="http://cxf.apache.org/ws/addressing"
       xsi:schemaLocation="
       http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans.xsd">

    <jaxws:client ...>
        <jaxws:features>
            <wsa:addressing/>
        </jaxws:features>
    </jaxws:client>
</beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

88



16.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

Overview

The Apache CXF WS-Addressing feature element is defined in the namespace 
http://cxf.apache.org/ws/addressing. It supports the two attributes described in Table 16.2,
“WS-Addressing Attributes”.

Table 16.2. WS-Addressing Attributes

Attribute Name Value

allowDuplicates A boolean that determines if duplicate MessageIDs
are tolerated. The default setting is true.

usingAddressingAdvisory A boolean that indicates if the presence of the 
UsingAddressing element in the WSDL is
advisory only; that is, its absence does not prevent
the encoding of WS-Addressing headers.

Configuring WS-Addressing attributes

Configure WS-Addressing attributes by adding the attribute and the value you want to set it to the WS-
Addressing feature in your server or client configuration file. For example, the following configuration
extract sets the allowDublicates attribute to false on the server endpoint:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:jaxws="http://cxf.apache.org/jaxws"
       xmlns:wsa="http://cxf.apache.org/ws/addressing"
       xsi:schemaLocation="
http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans.xsd">

    <jaxws:endpoint ...>
        <jaxws:features>
            <wsa:addressing/>
        </jaxws:features>
    </jaxws:endpoint>
</beans>

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing" ...>
    <jaxws:endpoint ...>
        <jaxws:features>
            <wsa:addressing allowDuplicates="false"/>
        </jaxws:features>
    </jaxws:endpoint>
</beans>

CHAPTER 16. DEPLOYING WS-ADDRESSING

89



Using a WS-Policy assertion embedded in a feature

In Example 16.3, “Using the Policies to Configure WS-Addressing”  an addressing policy assertion to
enable non-anonymous responses is embedded in the policies element.

Example 16.3. Using the Policies to Configure WS-Addressing

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:wsa="http://cxf.apache.org/ws/addressing"
        xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
        xmlns:policy="http://cxf.apache.org/policy-config"
        xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
        xmlns:jaxws="http://cxf.apache.org/jaxws"
        xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-
policy.xsd
http://cxf.apache.org/ws/addressing 
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans.xsd">

    <jaxws:endpoint name="
{http://cxf.apache.org/greeter_control}GreeterPort"
                    createdFromAPI="true">
        <jaxws:features>
            <policy:policies>
                <wsp:Policy 
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
                    <wsam:Addressing>
                        <wsp:Policy>
                            <wsam:NonAnonymousResponses/>
                        </wsp:Policy>
                    </wsam:Addressing>
                </wsp:Policy>
            <policy:policies>
        </jaxws:features>
    </jaxws:endpoint>
</beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

90



CHAPTER 17. ENABLING RELIABLE MESSAGING

Abstract

Apache CXF supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and
configure WS-RM in Apache CXF.

17.1. INTRODUCTION TO WS-RM

Overview

WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery of messages in a
distributed environment. It enables messages to be delivered reliably between distributed applications
in the presence of software, system, or network failures.

For example, WS-RM can be used to ensure that the correct messages have been delivered across a
network exactly once, and in the correct order.

How WS-RM works

WS-RM ensures the reliable delivery of messages between a source and a destination endpoint. The
source is the initial sender of the message and the destination is the ultimate receiver, as shown in
Figure 17.1, “Web Services Reliable Messaging” .

Figure 17.1. Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM destination. This
contains a reference for the endpoint that receives acknowledgements (the wsrm:AcksTo
endpoint).

2. The RM destination sends a CreateSequenceResponse protocol message back to the RM
source. This message contains the sequence ID for the RM sequence session.

CHAPTER 17. ENABLING RELIABLE MESSAGING

91



3. The RM source adds an RM Sequence header to each message sent by the application source.
This header contains the sequence ID and a unique message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the RM source by sending
messages that contain the RM SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination in an exactly-once-in-
order fashion.

7. The RM source retransmits a message that it has not yet received an acknowledgement.

The first retransmission attempt is made after a base retransmission interval. Successive
retransmission attempts are made, by default, at exponential back-off intervals or,
alternatively, at fixed intervals. For more details, see Section 17.4, “Configuring WS-RM”.

This entire process occurs symmetrically for both the request and the response message; that is, in
the case of the response message, the server acts as the RM source and the client acts as the RM
destination.

WS-RM delivery assurances

WS-RM guarantees reliable message delivery in a distributed environment, regardless of the transport
protocol used. Either the source or the destination endpoint logs an error if reliable delivery can not be
assured.

Supported specifications

Apache CXF supports the 2005/02 version of the WS-RM specification, which is based on the WS-
Addressing 2004/08 specification.

Further information

For detailed information on WS-RM, see the specification at
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf.

17.2. WS-RM INTERCEPTORS

Overview

In Apache CXF, WS-RM functionality is implemented as interceptors. The Apache CXF runtime uses
interceptors to intercept and work with the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the application's interceptor chain includes the WS-RM interceptors, the
application can participate in reliable messaging sessions. The WS-RM interceptors handle the
collection and aggregation of the message chunks. They also handle all of the acknowledgement and
retransmission logic.

Apache CXF WS-RM Interceptors

The Apache CXF WS-RM implementation consists of four interceptors, which are described in
Table 17.1, “Apache CXF WS-ReliableMessaging Interceptors” .

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

92

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf


Table 17.1. Apache CXF WS-ReliableMessaging Interceptors

Interceptor Description

org.apache.cxf.ws.rm.RMOutIntercepto
r

Deals with the logical aspects of providing reliability
guarantees for outgoing messages.

Responsible for sending the CreateSequence
requests and waiting for their 
CreateSequenceResponse responses.

Also responsible for aggregating the sequence
properties—ID and message number—for an
application message.

org.apache.cxf.ws.rm.RMInInterceptor Responsible for intercepting and processing RM
protocol messages and 
SequenceAcknowledgement messages that are
piggybacked on application messages.

org.apache.cxf.ws.rm.soap.RMSoapInte
rceptor

Responsible for encoding and decoding the
reliability properties as SOAP headers.

org.apache.cxf.ws.rm.RetransmissionI
nterceptor

Responsible for creating copies of application
messages for future resending.

Enabling WS-RM

The presence of the WS-RM interceptors on the interceptor chains ensures that WS-RM protocol
messages are exchanged when necessary. For example, when intercepting the first application
message on the outbound interceptor chain, the RMOutInterceptor sends a CreateSequence
request and waits to process the original application message until it receives the 
CreateSequenceResponse response. In addition, the WS-RM interceptors add the sequence headers
to the application messages and, on the destination side, extract them from the messages. It is not
necessary to make any changes to your application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see Section 17.3, “Enabling WS-RM”.

Configuring WS-RM Attributes

You control sequence demarcation and other aspects of the reliable exchange through configuration.
For example, by default Apache CXF attempts to maximize the lifetime of a sequence, thus reducing
the overhead incurred by the out-of-band WS-RM protocol messages. To enforce the use of a separate
sequence per application message configure the WS-RM source’s sequence termination policy (setting
the maximum sequence length to 1).

For more information on configuring WS-RM behavior, see Section 17.4, “Configuring WS-RM”.

17.3. ENABLING WS-RM

Overview

CHAPTER 17. ENABLING RELIABLE MESSAGING

93



To enable reliable messaging, the WS-RM interceptors must be added to the interceptor chains for
both inbound and outbound messages and faults. Because the WS-RM interceptors use WS-
Addressing, the WS-Addressing interceptors must also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

Explicitly, by adding them to the dispatch chains using Spring beans

Implicitly, using WS-Policy assertions, which cause the Apache CXF runtime to transparently
add the interceptors on your behalf.

Spring beans—explicitly adding interceptors

To enable WS-RM add the WS-RM and WS-Addressing interceptors to the Apache CXF bus, or to a
consumer or service endpoint using Spring bean configuration. This is the approach taken in the WS-
RM sample that is found in the InstallDir/samples/ws_rm directory. The configuration file, ws-
rm.cxf, shows the WS-RM and WS-Addressing interceptors being added one-by-one as Spring beans
(see Example 17.1, “Enabling WS-RM Using Spring Beans”).

Example 17.1. Enabling WS-RM Using Spring Beans

1

2

3

4

5

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

       xsi:schemaLocation="http://www.springframework.org/schema/
   beans http://www.springframework.org/schema/beans/spring-beans.xsd">

   <bean id="mapAggregator" 
class="org.apache.cxf.ws.addressing.MAPAggregator"/>

   <bean id="mapCodec" 
class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>

   <bean id="rmLogicalOut" 
class="org.apache.cxf.ws.rm.RMOutInterceptor">

        <property name="bus" ref="cxf"/>
   </bean>
   <bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">
        <property name="bus" ref="cxf"/>
   </bean>
   <bean id="rmCodec" 
class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
   <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">

        <property name="inInterceptors">
            <list>

                <ref bean="mapAggregator"/>
                <ref bean="mapCodec"/>
                <ref bean="rmLogicalIn"/>
                <ref bean="rmCodec"/>
            </list>
        </property>

        <property name="inFaultInterceptors">
            <list>

                <ref bean="mapAggregator"/>
                <ref bean="mapCodec"/>
                <ref bean="rmLogicalIn"/>
                <ref bean="rmCodec"/>
            </list>
        </property>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

94



1

2

3

4

5

6

7

The code shown in Example 17.1, “Enabling WS-RM Using Spring Beans”  can be explained as follows:

A Apache CXF configuration file is a Spring XML file. You must include an opening Spring beans
element that declares the namespaces and schema files for the child elements that are
encapsulated by the beans element.

Configures each of the WS-Addressing interceptors—MAPAggregator and MAPCodec. For more
information on WS-Addressing, see Chapter 16, Deploying WS-Addressing.

Configures each of the WS-RM interceptors—RMOutInterceptor, RMInInterceptor, and 
RMSoapInterceptor.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound faults.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound
messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound faults.

WS-Policy framework—implicitly adding interceptors

The WS-Policy framework provides the infrastructure and APIs that allow you to use WS-Policy. It is
compliant with the November 2006 draft publications of the Web Services Policy 1.5—Framework  and
Web Services Policy 1.5—Attachment  specifications.

To enable WS-RM using the Apache CXF WS-Policy framework, do the following:

1. Add the policy feature to your client and server endpoint. Example 17.2, “Configuring WS-RM
using WS-Policy” shows a reference bean nested within a jaxws:feature element. The
reference bean specifies the AddressingPolicy, which is defined as a separate element
within the same configuration file.

6

7

        <property name="outInterceptors">
            <list>

                <ref bean="mapAggregator"/>
                <ref bean="mapCodec"/>
                <ref bean="rmLogicalOut"/>
                <ref bean="rmCodec"/>
            </list>
        </property>

        <property name="outFaultInterceptors">
            <list>

                <ref bean="mapAggregator">
                <ref bean="mapCodec"/>
                <ref bean="rmLogicalOut"/>
                <ref bean="rmCodec"/>
            </list>
        </property>
    </bean>
</beans>

CHAPTER 17. ENABLING RELIABLE MESSAGING

95

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/


Example 17.2. Configuring WS-RM using WS-Policy

2. Add a reliable messaging policy to the wsdl:service element—or any other WSDL element
that can be used as an attachment point for policy or policy reference elements—to your WSDL
file, as shown in Example 17.3, “Adding an RM Policy to Your WSDL File” .

Example 17.3. Adding an RM Policy to Your WSDL File

17.4. CONFIGURING WS-RM

You can configure WS-RM by:

Setting Apache CXF-specific attributes that are defined in the Apache CXF WS-RM manager
namespace, http://cxf.apache.org/ws/rm/manager.

<jaxws:client>
    <jaxws:features>
      <ref bean="AddressingPolicy"/>
    </jaxws:features>
</jaxws:client>
<wsp:Policy wsu:Id="AddressingPolicy" 
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
    <wsam:Addressing>
      <wsp:Policy>
        <wsam:NonAnonymousResponses/>
      </wsp:Policy>
    </wsam:Addressing>
</wsp:Policy>

<wsp:Policy wsu:Id="RM"
   xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
   xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">
    <wsam:Addressing 
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
        <wsp:Policy/>
    </wsam:Addressing>
    <wsrmp:RMAssertion 
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
        <wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
    </wsrmp:RMAssertion>
</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">
    <wsdl:port binding="tns:GreeterSOAPBinding" 
name="GreeterPort">
        <soap:address 
location="http://localhost:9020/SoapContext/GreeterPort"/>
        <wsp:PolicyReference URI="#RM" 
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>
    </wsdl:port>
</wsdl:service>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

96



Setting standard WS-RM policy attributes that are defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace.

17.4.1. Configuring Apache CXF-Specific WS-RM Attributes

Overview

To configure the Apache CXF-specific attributes, use the rmManager Spring bean. Add the following to
your configuration file:

The http://cxf.apache.org/ws/rm/manager namespace to your list of namespaces.

An rmManager Spring bean for the specific attribute that your want to configure.

Example 17.4, “Configuring Apache CXF-Specific WS-RM Attributes”  shows a simple example.

Example 17.4. Configuring Apache CXF-Specific WS-RM Attributes

Children of the rmManager Spring bean

Table 17.2, “Children of the rmManager Spring Bean”  shows the child elements of the rmManager
Spring bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.

Table 17.2. Children of the rmManager Spring Bean

Element Description

RMAssertion An element of type RMAssertion

deliveryAssurance An element of type DeliveryAssuranceType that
describes the delivery assurance that should apply

sourcePolicy An element of type SourcePolicyType that allows
you to configure details of the RM source

<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
      xsi:schemaLocation="http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/ws/rm/manager 
http://cxf.apache.org/schemas/configuration/wsrm-manager.xsd">
...
<wsrm-mgr:rmManager>
<!--
  ...Your configuration goes here
-->
</wsrm-mgr:rmManager>

CHAPTER 17. ENABLING RELIABLE MESSAGING

97



destinationPolicy An element of type DestinationPolicyType that
allows you to configure details of the RM destination

Element Description

Example

For an example, see the section called “Maximum unacknowledged messages threshold” .

17.4.2. Configuring Standard WS-RM Policy Attributes

Overview

You can configure standard WS-RM policy attributes in one of the following ways:

RMAssertion in rmManager Spring bean

Policy within a feature

WSDL file

External attachment

WS-Policy RMAssertion Children

Table 17.3, “Children of the WS-Policy RMAssertion Element”  shows the elements defined in the 
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 17.3. Children of the WS-Policy RMAssertion Element

Name Description

InactivityTimeout Specifies the amount of time that must pass without
receiving a message before an endpoint can
consider an RM sequence to have been terminated
due to inactivity.

BaseRetransmissionInterval Sets the interval within which an acknowledgement
must be received by the RM Source for a given
message. If an acknowledgement is not received
within the time set by the 
BaseRetransmissionInterval, the RM
Source will retransmit the message.

ExponentialBackoff Indicates the retransmission interval will be adjusted
using the commonly known exponential backoff
algorithm (Tanenbaum).

For more information, see Computer Networks ,
Andrew S. Tanenbaum, Prentice Hall PTR, 2003.

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

98



AcknowledgementInterval In WS-RM, acknowledgements are sent on return
messages or sent stand-alone. If a return message is
not available to send an acknowledgement, an RM
Destination can wait for up to the acknowledgement
interval before sending a stand-alone
acknowledgement. If there are no unacknowledged
messages, the RM Destination can choose not to
send an acknowledgement.

Name Description

More detailed reference information

For more detailed reference information, including descriptions of each element’s sub-elements and
attributes, please refer to http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager Spring bean

You can configure standard WS-RM policy attributes by adding an RMAssertion within a Apache CXF 
rmManager Spring bean. This is the best approach if you want to keep all of your WS-RM configuration
in the same configuration file; that is, if you want to configure Apache CXF-specific attributes and
standard WS-RM policy attributes in the same file.

For example, the configuration in Example 17.5, “Configuring WS-RM Attributes Using an RMAssertion
in an rmManager Spring Bean” shows:

A standard WS-RM policy attribute, BaseRetransmissionInterval, configured using an 
RMAssertion within an rmManager Spring bean.

An Apache CXF-specific RM attribute, intraMessageThreshold, configured in the same
configuration file.

Example 17.5. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring
Bean

Policy within a feature

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
       xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
    <wsrm-policy:RMAssertion>
        <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
    </wsrm-policy:RMAssertion>
    <wsrm-mgr:destinationPolicy>
        <wsrm-mgr:acksPolicy intraMessageThreshold="0" />
    </wsrm-mgr:destinationPolicy>
</wsrm-mgr:rmManager>
</beans>

CHAPTER 17. ENABLING RELIABLE MESSAGING

99

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd


You can configure standard WS-RM policy attributes within features, as shown in Example 17.6,
“Configuring WS-RM Attributes as a Policy within a Feature”.

Example 17.6. Configuring WS-RM Attributes as a Policy within a Feature

WSDL file

If you use the WS-Policy framework to enable WS-RM, you can configure standard WS-RM policy
attributes in a WSDL file. This is a good approach if you want your service to interoperate and use WS-
RM seamlessly with consumers deployed to other policy-aware Web services stacks.

For an example, see the section called “WS-Policy framework—implicitly adding interceptors”  where
the base retransmission interval is configured in the WSDL file.

External attachment

<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:wsa="http://cxf.apache.org/ws/addressing"
        xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
        xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
        xmlns:jaxws="http://cxf.apache.org/jaxws"
        xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-
policy.xsd
http://cxf.apache.org/ws/addressing 
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans.xsd">
    <jaxws:endpoint name="
{http://cxf.apache.org/greeter_control}GreeterPort" 
createdFromAPI="true">
        <jaxws:features>
               <wsp:Policy>
                   <wsrm:RMAssertion 
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
                     <wsrm:AcknowledgementInterval Milliseconds="200" 
/>
                   </wsrm:RMAssertion>
                   <wsam:Addressing 
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
                       <wsp:Policy>
                            <wsam:NonAnonymousResponses/>
                       </wsp:Policy>
                   </wsam:Addressing>
              </wsp:Policy>
        </jaxws:features>
    </jaxws:endpoint>
</beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

100



You can configure standard WS-RM policy attributes in an external attachment file. This is a good
approach if you cannot, or do not want to, change your WSDL file.

Example 17.7, “Configuring WS-RM in an External Attachment”  shows an external attachment that
enables both WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific EPR.

Example 17.7. Configuring WS-RM in an External Attachment

17.4.3. WS-RM Configuration Use Cases

Overview

This subsection focuses on configuring WS-RM attributes from a use case point of view. Where an
attribute is a standard WS-RM policy attribute, defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace, only the example of setting it in an 
RMAssertion within an rmManager Spring bean is shown. For details of how to set such attributes as
a policy within a feature; in a WSDL file, or in an external attachment, see Section 17.4.2, “Configuring
Standard WS-RM Policy Attributes”.

The following use cases are covered:

Base retransmission interval

Exponential backoff for retransmission

Acknowledgement interval

Maximum unacknowledged messages threshold

Maximum length of an RM sequence

<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy" 
xmlns:wsa="http://www.w3.org/2005/08/addressing">
    <wsp:PolicyAttachment>
        <wsp:AppliesTo>
           <wsa:EndpointReference>
                
<wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>
            </wsa:EndpointReference>
        </wsp:AppliesTo>
        <wsp:Policy>
            <wsam:Addressing 
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
                <wsp:Policy/>
            </wsam:Addressing>
            <wsrmp:RMAssertion 
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
                <wsrmp:BaseRetransmissionInterval 
Milliseconds="30000"/>
            </wsrmp:RMAssertion>
        </wsp:Policy>
    </wsp:PolicyAttachment>
</attachments>/

CHAPTER 17. ENABLING RELIABLE MESSAGING

101

http://schemas.xmlsoap.org/ws/2005/02/rm/policy


Message delivery assurance policies

Base retransmission interval

The BaseRetransmissionInterval element specifies the interval at which an RM source
retransmits a message that has not yet been acknowledged. It is defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd schema file. The default value is 3000
milliseconds.

Example 17.8, “Setting the WS-RM Base Retransmission Interval” shows how to set the WS-RM base
retransmission interval.

Example 17.8. Setting the WS-RM Base Retransmission Interval

Exponential backoff for retransmission

The ExponentialBackoff element determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals.

The presence of the ExponentialBackoff element enables this feature. An exponential backoff ratio
of 2 is used by default.

Example 17.9, “Setting the WS-RM Exponential Backoff Property”  shows how to set the WS-RM
exponential backoff for retransmission.

Example 17.9. Setting the WS-RM Exponential Backoff Property

Acknowledgement interval

The AcknowledgementInterval element specifies the interval at which the WS-RM destination
sends asynchronous acknowledgements. These are in addition to the synchronous acknowledgements

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
    <wsrm-policy:RMAssertion>
        <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
    </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
    <wsrm-policy:RMAssertion>
        <wsrm-policy:ExponentialBackoff="4"/>
    </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

102

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd


that it sends on receipt of an incoming message. The default asynchronous acknowledgement interval
is 0 milliseconds. This means that if the AcknowledgementInterval is not configured to a specific
value, acknowledgements are sent immediately (that is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if both of the following
conditions are met:

The RM destination is using a non-anonymous wsrm:acksTo endpoint.

The opportunity to piggyback an acknowledgement on a response message does not occur
before the expiry of the acknowledgement interval.

Example 17.10, “Setting the WS-RM Acknowledgement Interval”  shows how to set the WS-RM
acknowledgement interval.

Example 17.10. Setting the WS-RM Acknowledgement Interval

Maximum unacknowledged messages threshold

The maxUnacknowledged attribute sets the maximum number of unacknowledged messages that can
accrue per sequence before the sequence is terminated.

Example 17.11, “Setting the WS-RM Maximum Unacknowledged Message Threshold”  shows how to set
the WS-RM maximum unacknowledged messages threshold.

Example 17.11. Setting the WS-RM Maximum Unacknowledged Message Threshold

Maximum length of an RM sequence

The maxLength attribute sets the maximum length of a WS-RM sequence. The default value is 0, which
means that the length of a WS-RM sequence is unbound.

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
    <wsrm-policy:RMAssertion>
        <wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>
    </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
    <wsrm-mgr:sourcePolicy>
        <wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />
    </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

CHAPTER 17. ENABLING RELIABLE MESSAGING

103



When this attribute is set, the RM endpoint creates a new RM sequence when the limit is reached, and
after receiving all of the acknowledgements for the previously sent messages. The new message is sent
using a newsequence.

Example 17.12, “Setting the Maximum Length of a WS-RM Message Sequence”  shows how to set the
maximum length of an RM sequence.

Example 17.12. Setting the Maximum Length of a WS-RM Message Sequence

Message delivery assurance policies

You can configure the RM destination to use the following delivery assurance policies:

AtMostOnce — The RM destination delivers the messages to the application destination only
once. If a message is delivered more than once an error is raised. It is possible that some
messages in a sequence may not be delivered.

AtLeastOnce — The RM destination delivers the messages to the application destination at
least once. Every message sent will be delivered or an error will be raised. Some messages
might be delivered more than once.

InOrder — The RM destination delivers the messages to the application destination in the
order that they are sent. This delivery assurance can be combined with the AtMostOnce or 
AtLeastOnce assurances.

Example 17.13, “Setting the WS-RM Message Delivery Assurance Policy”  shows how to set the WS-RM
message delivery assurance.

Example 17.13. Setting the WS-RM Message Delivery Assurance Policy

17.5. CONFIGURING WS-RM PERSISTENCE

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
    <wsrm-mgr:sourcePolicy>
        <wsrm-mgr:sequenceTerminationPolicy maxLength="100" />
    </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
    <wsrm-mgr:deliveryAssurance>
        <wsrm-mgr:AtLeastOnce />
    </wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

104



Overview

The Apache CXF WS-RM features already described in this chapter provide reliability for cases such as
network failures. WS-RM persistence provides reliability across other types of failure such as an RM
source or an RM destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in persistent storage. This
enables the endpoints to continue sending and receiving messages when they are reincarnated.

Apache CXF enables WS-RM persistence in a configuration file. The default WS-RM persistence store is
JDBC-based. For convenience, Apache CXF includes Derby for out-of-the-box deployment. In addition,
the persistent store is also exposed using a Java API.

IMPORTANT

WS-RM persistence is supported for oneway calls only, and it is disabled by default.

How it works

Apache CXF WS-RM persistence works as follows:

At the RM source endpoint, an outgoing message is persisted before transmission. It is evicted
from the persistent store after the acknowledgement is received.

After a recovery from crash, it recovers the persisted messages and retransmits until all the
messages have been acknowledged. At that point, the RM sequence is closed.

At the RM destination endpoint, an incoming message is persisted, and upon a successful
store, the acknowledgement is sent. When a message is successfully dispatched, it is evicted
from the persistent store.

After a recovery from a crash, it recovers the persisted messages and dispatches them. It also
brings the RM sequence to a state where new messages are accepted, acknowledged, and
delivered.

Enabling WS-persistence

To enable WS-RM persistence, you must specify the object implementing the persistent store for WS-
RM. You can develop your own or you can use the JDBC based store that comes with Apache CXF.

The configuration shown in Example 17.14, “Configuration for the Default WS-RM Persistence Store”
enables the JDBC-based store that comes with Apache CXF.

Example 17.14. Configuration for the Default WS-RM Persistence Store

Configuring WS-persistence

<bean id="RMTxStore" 
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
    <property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

CHAPTER 17. ENABLING RELIABLE MESSAGING

105



The JDBC-based store that comes with Apache CXF supports the properties shown in Table 17.4,
“JDBC Store Properties”.

Table 17.4. JDBC Store Properties

Attribute Name Type Default Setting

driverClassName String org.apache.derby.jdbc.E
mbeddedDriver

userName String null

passWord String null

url String jdbc:derby:rmdb;create=true

The configuration shown in Example 17.15, “Configuring the JDBC Store for WS-RM Persistence”
enables the JDBC-based store that comes with Apache CXF, while setting the driverClassName and url
to non-default values.

Example 17.15. Configuring the JDBC Store for WS-RM Persistence

<bean id="RMTxStore" 
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
    <property name="driverClassName" value="com.acme.jdbc.Driver"/>
    <property name="url" value="jdbc:acme:rmdb;create=true"/>
</bean>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

106



APPENDIX A. CONSUMER ENDPOINT PROPERTIES
The attributes described in Table A.1, “Consumer Endpoint Attributes”  are used to configure a
consumer endpoint.

Table A.1. Consumer Endpoint Attributes

Name Type Description Required

wsdl String Specifies the location of
the WSDL defining the
endpoint.

yes

service QName Specifies the service
name of the proxied
endpoint. This
corresponds to WSDL 
service element's 
name attribute.

no[a]

endpoint String Specifies the endpoint
name of the proxied
endpoint. This
corresponds to WSDL 
port element's name
attribute.

no[b]

interfaceName QName Specifies the interface
name of the proxied
endpoint. This
corresponds to WSDL 
portType element's 
name attribute.

no

targetService QName Specifies the service
name of the target
endpoint.

no (defaults to the value
of the service
attribute)

targetEndpoint String Specifies the endpoint
name of the target
endpoint.

no (defaults to the value
of the endpoint
attribute)

targetInterfaceN
ame

QName Specifies the interface
name of the target
endpoint.

no

busCfg String Specifies the location of
a spring configuration
file used for Apache CXF
bus initialization.

no

APPENDIX A. CONSUMER ENDPOINT PROPERTIES

107



mtomEnabled boolean Specifies if MTOM /
attachment support is
enabled.

no (defaults to false)

useJbiWrapper boolean Specifies if the JBI
wrapper is sent in the
body of the message.

no (defaults to true)

timeout int Specifies the number of
seconds to wait for a
response.

no (defaults to 10

[a] If the WSDL defining the service has more than one service element, this attribute is required.

[b] If the service being used defines more than one endpoint, this attribute is required.

Name Type Description Required

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

108



APPENDIX B. PROVIDER ENDPOINT PROPERTIES
The attributes described in Table B.1, “Provider Endpoint Attributes”  are used to configure a provider
endpoint.

Table B.1. Provider Endpoint Attributes

Attribute Type Description Required

wsdl String Specifies the location of
the WSDL defining the
endpoint.

yes

service QName Specifies the service
name of the exposed
endpoint.

no[a]

endpoint String Specifies the endpoint
name of the exposed
endpoint.

no[b]

locationURI URI Specifies the URL of the
target service.

no[c][d]

interfaceName QName Specifies the interface
name of the exposed jbi
endpoint.

no

busCfg String Specifies the location of
the spring configuration
file used for Apache CXF
bus initialization.

no

mtomEnabled boolean Specifies if MTOM /
attachment support is
enabled.

no (defaults to false)

useJbiWrapper boolean Specifies if the JBI
wrapper is sent in the
body of the message.

no (defaults to true)

[a] If the WSDL defining the service has more than one service element, this attribute is required.

[b] If the service being used defines more than one endpoint, this attribute is required.

[c] If specified, the value of this attribute overrides the HTTP address specified in the WSDL contract.

[d] This attribute is ignored if the endpoint uses a JMS address in the WSDL.

APPENDIX B. PROVIDER ENDPOINT PROPERTIES

109



APPENDIX C. USING THE MAVEN JBI TOOLING

Abstract

Packaging application components so that they conform the JBI specification is a cumbersome job.
Red Hat JBoss Fuse includes tooling that automates the process of packaging you applications and
creating the required JBI descriptors.

Red Hat JBoss Fuse provides a Maven plug-in and a number of Maven archetypes that make
developing, packaging, and deploying JBI artifacts easier. The tooling provides you with a number of
benefits including:

automatic generation of JBI descriptors

dependency checking

Because Red Hat JBoss Fuse only allows you to deploy service assemblies, you will need to do the
following when using the Maven JBI tooling:

1. Set up a top-level project  to build all of the service units and the final service assembly.

2. Create a project for each of your service units..

3. Create a project for the service assembly.

C.1. SETTING UP A RED HAT JBOSS FUSE JBI PROJECT

Overview

When working with the Red Hat JBoss Fuse JBI Maven tooling, you create a top-level project that can
build all of the service units and then package them into a service assembly. Using a top-level project
for this purpose has several advantages:

It allows you to control the dependencies for all of the parts of an application in a central
location.

It limits the number of times you need to specify the proper repositories to load.

It provides you a central location from which to build and deploy the application.

The top-level project is responsible for assembling the application. It uses the Maven assembly plug-in
and lists your service units and the service assembly as modules of the project.

Directory structure

Your top-level project contains the following directories:

A source directory containing the information required for the Maven assembly plug-in

A directory to store the service assembly project

At least one directory containing a service unit project

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

110



TIP

You will need a project folder for each service unit that is to be included in the generated
service assembly.

Setting up the Maven tools

To use the JBoss Fuse JBI Maven tooling, add the elements shown in Example C.1 to your top-level
POM file.

Example C.1. POM elements for using Red Hat JBoss Fuse Maven tooling

...
<pluginRepositories>
  <pluginRepository>
    <id>fusesource.m2</id>
    <name>FuseSource Open Source Community Release Repository</name>
    <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
    <snapshots>
      <enabled>false</enabled>
    </snapshots>
    <releases>
      <enabled>true</enabled>
    </releases>
  </pluginRepository>
</pluginRepositories>
<repositories>
  <repository>
    <id>fusesource.m2</id>
    <name>FuseSource Open Source Community Release Repository</name>
    <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
    <snapshots>
       <enabled>false</enabled>
    </snapshots>
    <releases>
      <enabled>true</enabled>
    </releases>
  </repository>
  <repository>
    <id>fusesource.m2-snapshot</id>
    <name>FuseSource Open Source Community Snapshot Repository</name>
    <url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
    <snapshots>
      <enabled>true</enabled>
    </snapshots>
    <releases>
      <enabled>false</enabled>
    </releases>
  </repository>
</repositories>
  ...
<build>
  <plugins>
    <plugin>
      <groupId>org.apache.servicemix.tooling</groupId>

APPENDIX C. USING THE MAVEN JBI TOOLING

111



These elements point Maven to the correct repositories to download the JBoss Fuse Maven tooling and
to load the plug-in that implements the tooling.

Listing the sub-projects

The top-level POM lists all of the service units and the service assembly that is generated as modules.
The modules are contained in a modules element. The modules element contains one module
element for each service unit in the assembly. You also need a module element for the service
assembly.

The modules are listed in the order in which they are built. This means that the service assembly
module is listed after all of the service unit modules.

Example JBI project pOM

Example C.2 shows a top-level POM for a project that contains a single service unit.

Example C.2. Top-level POM for a Red Hat JBoss Fuse JBI project

      <artifactId>jbi-maven-plugin</artifactId>
      <version>servicemix-version</version> 
      <extensions>true</extensions>
    </plugin>
  </plugins>
</build>
  ...

1

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
                             http://maven.apache.org/maven-
v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <parent>
    <groupId>com.widgets</groupId>
    <artifactId>demos</artifactId>
    <version>1.0</version>
  </parent>

  <groupId>com.widgets.demo</groupId>
  <artifactId>cxf-wsdl-first</artifactId>
  <name>CXF WSDL Fisrt Demo</name>
  <packaging>pom</packaging>
    

  <pluginRepositories> 
    <pluginRepository>

      <id>fusesource.m2</id>
      <name>FuseSource Open Source Community Release Repository</name>
      <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
      <snapshots>
        <enabled>false</enabled>
      </snapshots>
      <releases>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

112



2

3

        <enabled>true</enabled>
      </releases>
    </pluginRepository>
  </pluginRepositories>
  <repositories>
    <repository>
      <id>fusesource.m2</id>
      <name>FuseSource Open Source Community Release Repository</name>
      <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
      <snapshots>
         <enabled>false</enabled>
      </snapshots>
      <releases>
        <enabled>true</enabled>
      </releases>
    </repository>
    <repository>
      <id>fusesource.m2-snapshot</id>
      <name>FuseSource Open Source Community Snapshot Repository</name>
      <url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
      <snapshots>
        <enabled>true</enabled>
      </snapshots>
      <releases>
        <enabled>false</enabled>
      </releases>
    </repository>
  </repositories>
    

  <modules> 
    <module>wsdl-first-cxfse-su</module>

     <module>wsdl-first-cxf-sa</module>
  </modules>
    
  <build>
    <plugins>

      <plugin> 
        <groupId>org.apache.maven.plugins</groupId>

        <artifactId>maven-assembly-plugin</artifactId>
         <version>2.1</version>
         <inherited>false</inherited>
           <executions>
             <execution>
                <id>src</id>
                <phase>package</phase>
                <goals>
                  <goal>single</goal>
                </goals>
                <configuration>
                  <descriptors>
                    <descriptor>src/main/assembly/src.xml</descriptor>
                  </descriptors>
                 </configuration>
               </execution>
             </executions>

APPENDIX C. USING THE MAVEN JBI TOOLING

113



1

2

3

4

The top-level POM shown in Example C.2, “Top-level POM for a Red Hat JBoss Fuse JBI project”  does
the following:

Configures Maven to use the FuseSource repositories for loading the JBoss Fuse plug-ins.

Lists the sub-projects used for this application. The wsdl-first-cxfse-su module is the
module for the service unit. The wsdl-first-cxf-sa module is the module for the service
assembly

Configures the Maven assembly plug-in.

Loads the JBoss Fuse JBI plug-in.

C.2. A SERVICE UNIT PROJECT

Overview

Each service unit in the service assembly must be its own project. These projects are placed at the
same level as the service assembly project. The contents of a service unit's project depends on the
component at which the service unit is targeted. At the minimum, a service unit project contains a POM
and an XML configuration file.

Seeding a project using a Maven artifact

Red Hat JBoss Fuse provides Maven artifacts for a number of service unit types. They can be used to
seed a project with the smx-arch command. As shown in Example C.3, the smx-arch command takes
three arguments. The groupId value and the artifactId values correspond to the project's group
ID and artifact ID.

Example C.3. Maven archetype command for service units

smx-arch su suArchetypeName [ "-DgroupId=my.group.id" ] [ "-DartifactId=my.artifact.id" ]

IMPORTANT

The double quotes(") are required when using the -DgroupId argument and the -
DartifactId argument.

The suArchetypeName specifies the type of service unit to seed. Table C.1 lists the possible values and
describes what type of project is seeded.

4

           </plugin>
           <plugin> 
             <groupId>org.apache.servicemix.tooling</groupId>

             <artifactId>jbi-maven-plugin</artifactId>
             <extensions>true</extensions>
           </plugin>
    </plugins>
  </build>
</project>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

114



Table C.1. Service unit archetypes

Name Description

camel Creates a project for using the Apache Camel
service engine

cxf-se Creates a project for developing a Java-first service
using the Apache CXF service engine

cxf-se-wsdl-first Creates a project for developing a WSDL-first
service using the Apache CXF service engine

cxf-bc Creates an endpoint project targeted at the Apache
CXF binding component

http-consumer Creates a consumer endpoint project targeted at the
HTTP binding component

http-provider Creates a provider endpoint project targeted at the
HTTP binding component

jms-consumer Creates a consumer endpoint project targeted at the
JMS binding component (see "Using the JMS
Binding Component")

jms-provider Creates a provider endpoint project targeted at the
JMS binding component (see "Using the JMS
Binding Component")

file-poller Creates a polling (consumer) endpoint project
targeted at the file binding component (see chapter
"Using Poller Endpoints" in "Using the File Binding
Component")

file-sender Creates a sender (provider) endpoint project
targeted at the file binding component (see chapter
"Using Sender Endpoints" in "Using the File Binding
Component")

ftp-poller Creates a polling (consumer) endpoint project
targeted at the FTP binding component

ftp-sender Creates a sender (provider) endpoint project
targeted at the FTP binding component

jsr181-annotated Creates a project for developing an annotated Java
service to be run by the JSR181 service engine [a]

APPENDIX C. USING THE MAVEN JBI TOOLING

115

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Using_the_JMS_Binding_Component/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Using_the_JMS_Binding_Component/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Using_the_File_Binding_Component/ESBFilePoller.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Using_the_File_Binding_Component/ESBFileSender.html


jsr181-wsdl-first Creates a project for developing a WSDL generated
Java service to be run by the JSR181 service engine
[a]

saxon-xquery Creates a project for executing xquery statements
using the Saxon service engine

saxon-xslt Creates a project for executing XSLT scripts using
the Saxon service engine

eip Creates a project for using the EIP service engine.
[b]

lwcontainer Creates a project for deploying functionality into the
lightweight container [c]

bean Creates a project for deploying a POJO to be
executed by the bean service engine

ode Create a project for deploying a BPEL process into
the ODE service engine

[a] The JSR181 has been deprecated. The Apache CXF service engine has superseded it.

[b] The EIP service engine has been deprecated. The Apache Camel service engine has superseded it.

[c] The lightweight container has been deprecated.

Name Description

Contents of a project

The contents of your service unit project change from service unit to service unit. Different
components require different configuration. Some components, such as the Apache CXF service
engine, require that you include Java classes.

At a minimum, a service unit project will contain two things:

a POM file that configures the JBI plug-in to create a service unit

an XML configuration file stored in src/main/resources

For many of the components, the XML configuration file is called xbean.xml. The Apache
Camel component uses a file called camel-context.xml.

Configuring the Maven plug-in

You configure the Maven plug-in to package the results of the project build as a service unit by
changing the value of the project's packaging element to jbi-service-unit as shown in
Example C.4.

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

116



Example C.4. Configuring the maven plug-in to build a service unit

Specifying the target components

To correctly fill in the metadata required for packaging a service unit, the Maven plug-in must be told
what component (or components) the service unit is targeting. If your service unit only has a single
component dependency, you can specify it in one of two ways:

List the targeted component as a dependency

Add a componentName property specifying the targeted component

If your service unit has more than one component dependency, you must configure the project as
follows:

1. Add a componentName property specifying the targeted component.

2. Add the remaining components to the list dependencies.

Example C.5 shows the configuration for a service unit targeting the Apache CXF binding component.

Example C.5. Specifying the target components for a service unit

The advantage of using the Maven dependency mechanism is that it allows Maven to verify if the
targeted component is deployed in the container. If one of the components is not deployed, Red Hat
JBoss Fuse will not hold off deploying the service unit until all of the required components are
deployed.

<project ...>
  <modelVersion>4.0.0</modelVersion>

  ...
  <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
  <artifactId>cxfse-wsdl-first-su</artifactId>
  <name>CXF WSDL Fisrt Demo :: SE Service Unit</name>
  <packaging>jbi-service-unit</packaging>
  ...
</project>

...
<dependencies>
  <dependency>
    <groupId>org.apache.servicemix</groupId>
    <artifactId>servicemix-cxf-bc</artifactId>

    <version>3.3.1.0-fuse</version>[1]

  </dependency>
>/dependencies>
...

APPENDIX C. USING THE MAVEN JBI TOOLING

117



TIP

Typically, a message identifying the missing component(s) is written to the log.

If your service unit's targeted component is not available as a Maven artifact, you can specify the
targeted component using the componentName element. This element is added to the standard Maven
properties block and it specifies the name of a targeted component, as specified in Example C.6.

Example C.6. Specifying a target component for a service unit

When you use the componentName element, Maven does not check to see if the component is
installed, nor does it download the required component.

Example

Example C.7 shows the POM file for a project that is building a service unit targeted to the Apache CXF
binding component.

Example C.7. POM file for a service unit project

...
<properties>
  <componentName>servicemix-bean</componentName>
</properties>
...

1

2

3

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
                             http://maven.apache.org/maven-
v4_0_0.xsd">

    <modelVersion>4.0.0</modelVersion>

    <parent> 
        <groupId>com.widgets.demo</groupId>

        <artifactId>cxf-wsdl-first</artifactId>
        <version>1.0</version>
    </parent>

  <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
  <artifactId>cxfse-wsdl-first-su</artifactId>
  <name>CXF WSDL Fisrt Demo :: SE Service Unit</name>

  <packaging>jbi-service-unit</packaging> 

  <dependencies> 
    <dependency>

      <groupId>org.apache.servicemix</groupId>
      <artifactId>servicemix-cxf-bc</artifactId>
      <version>3.3.1.0-fuse</version>
    </dependency>
  >/dependencies>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

118



1

2

3

4

The POM file in Example C.7, “POM file for a service unit project”  does the following:

Specifies that it is a part of the top-level project shown in Example C.2, “Top-level POM for a Red
Hat JBoss Fuse JBI project”

Specifies that this project builds a service unit

Specifies that the service unit targets the Apache CXF binding component

Specifies to use the Red Hat JBoss Fuse Maven plug-in

C.3. A SERVICE ASSEMBLY PROJECT

Overview

Red Hat JBoss Fuse requires that all service units are bundled into a service assembly before they can
be deployed to a container. The JBoss Fuse Maven plug-in collects all of the service units to be bundled
and the metadata necessary for packaging. It will then build a service assembly containing the service
units.

Seeding a project using a Maven artifact

Red Hat JBoss Fuse provides a Maven artifact for seeding a service assembly project. You can seed a
project with the smx-arch command. As shown in Example C.8, the smx-arch command takes two
arguments: the groupId value and the artifactId values, which correspond to the project's group
ID and artifact ID.

Example C.8. Maven archetype command for service assemblies

smx-arch sa [ "-DgroupId=my.group.id" ] [ "-DartifactId=my.artifact.id" ]

IMPORTANT

The double quotes(") are required when using the -DgroupId argument and the -
DartifactId argument.

Contents of a project

A service assembly project typically only contains the POM file used by Maven.

4

  <build>
    <plugins>

      <plugin> 
        <groupId>org.apache.servicemix.tooling</groupId>

        <artifactId>jbi-maven-plugin</artifactId>
        <extensions>true</extensions>
      </plugin>
    </plugins>
  </build>
</project>

APPENDIX C. USING THE MAVEN JBI TOOLING

119



Configuring the Maven plug-in

T configure the Maven plug-in to package the results of the project build as a service assembly, change
the value of the project's packaging element to jbi-service-assembly, as shown in Example C.9.

Example C.9. Configuring the Maven plug-in to build a service assembly

Specifying the target components

The Maven plug-in must know what service units are being bundled into the service assembly. This is
done by specifying the service units as dependencies, using the standard Maven dependencies
element. Add a dependency child element for each service unit. Example C.10 shows the configuration
for a service assembly that bundles two service units.

Example C.10. Specifying the target components for a service unit

Example

Example C.11 shows a POM file for a project that is building a service assembly.

Example C.11. POM for a service assembly project

<project ...>
  <modelVersion>4.0.0</modelVersion>

  ...
  <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
  <artifactId>cxf-wsdl-first-sa</artifactId>
  <name>CXF WSDL Fisrt Demo :: Service Assembly</name>
  <packaging>jbi-service-assembly</packaging>
  ...
</project>

...
<dependencies>
  <dependency>
    <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
    <artifactId>cxfse-wsdl-first-su</artifactId>
    <version>1.0</version>
  </dependency>
  <dependency>
    <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
    <artifactId>cxfbc-wsdl-first-su</artifactId>
    <version>1.0</version>
  </dependency>
</dependencies>
...

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

120



1

2

3

4

The POM in Example C.11, “POM for a service assembly project”  does the following:

Specifies that it is a part of the top-level project shown in Example C.2, “Top-level POM for a Red
Hat JBoss Fuse JBI project”

Specifies that this project builds a service assembly

Specifies the service units being bundled by the service assembly

Specifies to use the JBoss Fuse Maven plug-in

[1] You replace this with the version of Apache CXF you are using.

1

2

3

4

                             http://maven.apache.org/maven-
v4_0_0.xsd">

    <modelVersion>4.0.0</modelVersion>

    <parent> 
        <groupId>com.widgets.demo</groupId>

        <artifactId>cxf-wsdl-first</artifactId>
        <version>1.0</version>
    </parent>

  <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
  <artifactId>cxf-wsdl-first-sa</artifactId>
  <name>CXF WSDL Fisrt Demo ::  Service Assemby</name>

  <packaging>jbi-service-assembly</packaging> 

  <dependencies> 
    <dependency>

      <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
      <artifactId>cxfse-wsdl-first-su</artifactId>
      <version>1.0</version>
    </dependency>
    <dependency>
      <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
      <artifactId>cxfbc-wsdl-first-su</artifactId>
      <version>1.0</version>
    </dependency>
  </dependencies>

  <build>
    <plugins>

      <plugin> 
        <groupId>org.apache.servicemix.tooling</groupId>

        <artifactId>jbi-maven-plugin</artifactId>
        <extensions>true</extensions>
      </plugin>
    </plugins>
  </build>
</project>

APPENDIX C. USING THE MAVEN JBI TOOLING

121



APPENDIX D. USING THE MAVEN OSGI TOOLING

Abstract

Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The
Maven bundle plug-in makes the job easier by automating the process and providing a number of
shortcuts for specifying the contents of the bundle manifest.

The Red Hat JBoss Fuse OSGi tooling uses the Maven bundle plug-in  from Apache Felix. The bundle
plug-in is based on the bnd tool from Peter Kriens. It automates the construction of OSGi bundle
manifests by introspecting the contents of the classes being packaged in the bundle. Using the
knowledge of the classes contained in the bundle, the plug-in can calculate the proper values to
populate the Import-Packages and the Export-Package properties in the bundle manifest. The plug-in
also has default values that are used for other required properties in the bundle manifest.

To use the bundle plug-in, do the following:

1. Add the bundle plug-in to your project's POM file.

2. Configure the plug-in to correctly populate your bundle's manifest.

D.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT

Overview

A Maven project for building an OSGi bundle can be a simple single level project. It does not require any
sub-projects. However, it does require that you do the following:

1. Add the bundle plug-in to your POM.

2. Instruct Maven to package the results as an OSGi bundle.

NOTE

There are several Maven archetypes you can use to set up your project with the
appropriate settings.

Directory structure

A project that constructs an OSGi bundle can be a single level project. It only requires that you have a
top-level POM file and a src folder. As in all Maven projects, you place all Java source code in the 
src/java folder, and you place any non-Java resources in the src/resources folder.

Non-Java resources include Spring configuration files, JBI endpoint configuration files, and WSDL
contracts.

NOTE

Red Hat JBoss Fuse OSGi projects that use Apache CXF, Apache Camel, or another
Spring configured bean also include a beans.xml file located in the 
src/resources/META-INF/spring folder.

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

122

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd


1

2

3

4

5

Adding a bundle plug-in

Before you can use the bundle plug-in you must add a dependency on Apache Felix. After you add the
dependency, you can add the bundle plug-in to the plug-in portion of the POM.

Example D.1, “Adding an OSGi bundle plug-in to a POM”  shows the POM entries required to add the
bundle plug-in to your project.

Example D.1. Adding an OSGi bundle plug-in to a POM

The entries in Example D.1, “Adding an OSGi bundle plug-in to a POM”  do the following:

Adds the dependency on Apache Felix

Adds the bundle plug-in to your project

Configures the plug-in to use the project's artifact ID as the bundle's symbolic name

Configures the plug-in to include all Java packages imported by the bundled classes; also imports
the org.apache.camel.osgi package

Configures the plug-in to bundle the listed class, but not to include them in the list of exported
packages

1

2

3
4

5

...
<dependencies>

  <dependency> 
    <groupId>org.apache.felix</groupId>

    <artifactId>org.osgi.core</artifactId>
    <version>1.0.0</version>
  </dependency>
...
</dependencies>
...
<build>
  <plugins>

    <plugin> 
      <groupId>org.apache.felix</groupId>

      <artifactId>maven-bundle-plugin</artifactId>
      <configuration>
        <instructions>
          <Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName> 

          <Import-Package>*,org.apache.camel.osgi</Import-Package> 
          <Private-

Package>org.apache.servicemix.examples.camel</Private-Package> 
        </instructions>

      </configuration> 
    </plugin>
  </plugins>
</build>
...

APPENDIX D. USING THE MAVEN OSGI TOOLING

123



NOTE

Edit the configuration to meet the requirements of your project.

For more information on configuring the bundle plug-in, see Section D.2, “Configuring the Bundle Plug-
In”.

Activating a bundle plug-in

To have Maven use the bundle plug-in, instruct it to package the results of the project as a bundle. Do
this by setting the POM file's packaging element to bundle.

Useful Maven archetypes

There are several Maven archetypes to generate a project that is preconfigured to use the bundle plug-
in:

the section called “Spring OSGi archetype”

the section called “Apache CXF code-first archetype”

the section called “Apache CXF wsdl-first archetype”

the section called “Apache Camel archetype”

Spring OSGi archetype

The Spring OSGi archetype creates a generic project for building an OSGi project using Spring DM, as
shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.springframework.osgi -
DarchetypeArtifactId=spring-osgi-bundle-archetype -DarchetypeVersion=1.12 
-DgroupId=groupId -DartifactId=artifactId -Dversion=version

Apache CXF code-first archetype

The Apache CXF code-first archetype creates a project for building a service from Java, as shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=spring-osgi-bundle-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2

org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-
archetype/2008.01.0.3-fuse

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

124



Apache CXF wsdl-first archetype

The Apache CXF wsdl-first archetype creates a project for creating a service from WSDL, as shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-cxf-wsdl-first-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

Apache Camel archetype

The Apache Camel archetype creates a project for building a route that is deployed into JBoss Fuse, as
shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-camel-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version 

D.2. CONFIGURING THE BUNDLE PLUG-IN

Overview

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in's instructions element.

Configuration properties

Some of the commonly used configuration properties are:

Bundle-SymbolicName

Bundle-Name

Bundle-Version

Export-Package

Private-Package

org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-
archetype/2008.01.0.3-fuse

org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2008.01.0.3-
fuse

APPENDIX D. USING THE MAVEN OSGI TOOLING

125



Import-Package

Setting a bundle's symbolic name

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupId + "." 
+ artifactId, with the following exceptions:

If groupId has only one section (no dots), the first package name with classes is returned.

For example, if the group Id is commons-logging:commons-logging, the bundle's symbolic
name is org.apache.commons.logging.

If artifactId is equal to the last section of groupId, then groupId is used.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle's symbolic name is org.apache.maven.

If artifactId starts with the last section of groupId, that portion is removed.

For example, if the POM specifies the group ID and artifact ID as 
org.apache.maven:maven-core, the bundle's symbolic name is 
org.apache.maven.core.

To specify your own value for the bundle's symbolic name, add a Bundle-SymbolicName child in the
plug-in's instructions element, as shown in Example D.2.

Example D.2. Setting a bundle's symbolic name

Setting a bundle's name

By default, a bundle's name is set to ${project.name}.

To specify your own value for the bundle's name, add a Bundle-Name child to the plug-in's 
instructions element, as shown in Example D.3.

Example D.3. Setting a bundle's name

<plugin>
  <groupId>org.apache.felix</groupId>
  <artifactId>maven-bundle-plugin</artifactId>
  <configuration>
   <instructions>
     <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
     ...
    </instructions>
  </configuration> 
</plugin>

<plugin>
  <groupId>org.apache.felix</groupId>
  <artifactId>maven-bundle-plugin</artifactId>
  <configuration>
   <instructions>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

126



Setting a bundle's version

By default, a bundle's version is set to ${project.version}. Any dashes (-) are replaced with dots
(.) and the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes 
4.2.0.SNAPSHOT.

To specify your own value for the bundle's version, add a Bundle-Version child to the plug-in's 
instructions element, as shown in Example D.4.

Example D.4. Setting a bundle's version

Specifying exported packages

By default, the OSGi manifest's Export-Package list is populated by all of the packages in your local
Java source code (under src/main/java), except for the deault package, ., and any packages
containing .impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages
listed in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export-Package child to the plug-
in's instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and
that are to be exported. The package names can be specified using the * wildcard symbol. For example,
the entry com.fuse.demo.* includes all packages on the project's classpath that start with
com.fuse.demo.

     <Bundle-Name>JoeFred</Bundle-Name>
     ...
    </instructions>
  </configuration> 
</plugin>

<plugin>
  <groupId>org.apache.felix</groupId>
  <artifactId>maven-bundle-plugin</artifactId>
  <configuration>
   <instructions>
     <Bundle-Version>1.0.3.1</Bundle-Version>
     ...
    </instructions>
  </configuration> 
</plugin>

APPENDIX D. USING THE MAVEN OSGI TOOLING

127



You can specify packages to be excluded be prefixing the entry with !. For example, the entry 
!com.fuse.demo.private excludes the package com.fuse.demo.private.

When excluding packages, the order of entries in the list is important. The list is processed in order
from the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except the package
com.fuse.demo.private, list the packages using:

However, if you list the packages using com.fuse.demo.*,!com.fuse.demo.private, then
com.fuse.demo.private is included in the bundle because it matches the first pattern.

Specifying private packages

If you want to specify a list of packages to include in a bundle without exporting them, you can add a 
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a 
Private-Package instruction, all packages in your local Java source are included in the bundle.

IMPORTANT

If a package matches an entry in both the Private-Package element and the 
Export-Package element, the Export-Package element takes precedence. The
package is added to the bundle and exported.

The Private-Package element works similarly to the Export-Package element in that you specify
a list of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project's classpath that are to be included in the bundle. These packages are packaged in the bundle,
but not exported (unless they are also selected by the Export-Package instruction).

Example D.5 shows the configuration for including a private package in a bundle

Example D.5. Including a private package in a bundle

Specifying imported packages

By default, the bundle plug-in populates the OSGi manifest's Import-Package property with a list of
all the packages referred to by the contents of the bundle.

!com.fuse.demo.private,com.fuse.demo.*

<plugin>
  <groupId>org.apache.felix</groupId>
  <artifactId>maven-bundle-plugin</artifactId>
  <configuration>
   <instructions>
     <Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
     ...
    </instructions>
  </configuration> 
</plugin>

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

128



While the default behavior is typically sufficient for most projects, you might find instances where you
want to import packages that are not automatically added to the list. The default behavior can also
result in unwanted packages being imported.

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-
in's instructions element. The syntax for the package list is the same as for the Export-Package
element and the Private-Package element.

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan
the bundle's contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example D.6 shows the configuration for specifying the packages imported by a bundle

Example D.6. Specifying the packages imported by a bundle

More information

For more information on configuring a bundle plug-in, see:

"Managing OSGi Dependencies"

Apache Felix documentation

Peter Kriens' aQute Software Consultancy web site

INDEX

A

<plugin>
  <groupId>org.apache.felix</groupId>
  <artifactId>maven-bundle-plugin</artifactId>
  <configuration>
   <instructions>
     <Import-Package>javax.jws,
         javax.wsdl,
         org.apache.cxf.bus,
         org.apache.cxf.bus.spring,
         org.apache.cxf.bus.resource,
         org.apache.cxf.configuration.spring,
         org.apache.cxf.resource,
         org.springframework.beans.factory.config,
         *
     </Import-Package>
     ...
   </instructions>
  </configuration> 
</plugin>

INDEX

129

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Managing_OSGi_Dependencies/
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd


AcknowledgementInterval, Acknowledgement interval

all element, Complex type varieties

application source, How WS-RM works

AtLeastOnce, Message delivery assurance policies

AtMostOnce, Message delivery assurance policies

attribute element, Defining attributes

name attribute, Defining attributes

type attribute, Defining attributes

use attribute, Defining attributes

B

BaseRetransmissionInterval, Base retransmission interval

binding element, WSDL elements

Bundle-Name, Setting a bundle's name

Bundle-SymbolicName, Setting a bundle's symbolic name

Bundle-Version, Setting a bundle's version

bundles

exporting packages, Specifying exported packages

importing packages, Specifying imported packages

name, Setting a bundle's name

private packages, Specifying private packages

symbolic name, Setting a bundle's symbolic name

version, Setting a bundle's version

C

choice element, Complex type varieties

complex types

all type, Complex type varieties

choice type, Complex type varieties

elements, Defining the parts of a structure

occurrence constraints, Defining the parts of a structure

sequence type, Complex type varieties

complexType element, Defining data structures

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

130



componentName, Specifying the target components

concrete part, The concrete part

configuration

HTTP thread pool, Configuring the thread pool

Jetty engine, The engine-factory element

Jetty instance, The engine element

consumer

busCfg, Specifying the configuration to load

endpoint, Specifying the endpoint details , Specifying the endpoint details

mtomEnabled, Configuring an endpoint to support MTOM

service, Specifying the endpoint details , Specifying the endpoint details

targetEndpoint, Specifying the target endpoint

targetInterface, Specifying the target endpoint

targetService, Specifying the target endpoint

useJbiWrapper, Turning of JBI wrapper processing

wsdl, Specifying the WSDL

consumer endpoint, Overview

CreateSequence, How WS-RM works

CreateSequenceResponse, How WS-RM works

D

definitions element, WSDL elements

driverClassName, Configuring WS-persistence

E

element element, Defining the parts of a structure

maxOccurs attribute, Defining the parts of a structure

minOccurrs attribute, Defining the parts of a structure

name attribute, Defining the parts of a structure

type attribute, Defining the parts of a structure

ExponentialBackoff, Exponential backoff for retransmission

Export-Package, Specifying exported packages

H

INDEX

131



HTTP

endpoint address, Adding a Basic HTTP Endpoint

http-conf:client

Accept, Configuring the endpoint

AcceptEncoding, Configuring the endpoint

AcceptLanguage, Configuring the endpoint

AllowChunking, Configuring the endpoint

AutoRedirect, Configuring the endpoint

BrowserType, Configuring the endpoint

CacheControl, Configuring the endpoint, Consumer Cache Control Directives

Connection, Configuring the endpoint

ConnectionTimeout, Configuring the endpoint

ContentType, Configuring the endpoint

Cookie, Configuring the endpoint

DecoupledEndpoint, Configuring the endpoint, Configuring the consumer

Host, Configuring the endpoint

MaxRetransmits, Configuring the endpoint

ProxyServer, Configuring the endpoint

ProxyServerPort, Configuring the endpoint

ProxyServerType, Configuring the endpoint

ReceiveTimeout, Configuring the endpoint

Referer, Configuring the endpoint

http-conf:server

CacheControl, Configuring the endpoint

ContentEncoding, Configuring the endpoint

ContentLocation, Configuring the endpoint

ContentType, Configuring the endpoint

HonorKeepAlive, Configuring the endpoint

ReceiveTimeout, Configuring the endpoint

RedirectURL, Configuring the endpoint

ServerType, Configuring the endpoint

SuppressClientReceiveErrors, Configuring the endpoint

SuppressClientSendErrors, Configuring the endpoint

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

132



http:address, Other messages types

httpj:engine, The engine element

httpj:engine-factory, The engine-factory element

httpj:identifiedThreadingParameters, The engine-factory element , Configuring the thread pool

httpj:identifiedTLSServerParameters, The engine-factory element

httpj:threadingParameters, The engine element , Configuring the thread pool

maxThreads, Configuring the thread pool

minThreads, Configuring the thread pool

httpj:threadingParametersRef, The engine element

httpj:tlsServerParameters, The engine element

httpj:tlsServerParametersRef, The engine element

I

Import-Package, Specifying imported packages

inFaultInterceptors, Configuring an endpoint's interceptor chain

inInterceptors, Configuring an endpoint's interceptor chain

InOrder, Message delivery assurance policies

J

jbi.xml, Contents of a file component service unit

JMS

specifying the message type, Specifying the message type

JMS destination

specifying, Specifying the JMS address

jms:address, Specifying the JMS address

connectionPassword attribute, Specifying the JMS address

connectionUserName attribute, Specifying the JMS address

destinationStyle attribute, Specifying the JMS address

jmsDestinationName attribute, Specifying the JMS address

jmsiReplyDestinationName attribute, Using a Named Reply Destination

jmsReplyDestinationName attribute, Specifying the JMS address

jndiConnectionFactoryName attribute, Specifying the JMS address

jndiDestinationName attribute, Specifying the JMS address

INDEX

133



jndiReplyDestinationName attribute, Specifying the JMS address , Using a Named Reply
Destination

jms:client, Specifying the message type

messageType attribute, Specifying the message type

jms:JMSNamingProperties, Specifying JNDI properties

jms:server, Specifying the configuration

durableSubscriberName, Specifying the configuration

messageSelector, Specifying the configuration

transactional, Specifying the configuration

useMessageIDAsCorrealationID, Specifying the configuration

JMSConfiguration, Specifying the configuration

JNDI

specifying the connection factory, Specifying the JMS address

L

logical part, The logical part

M

Maven archetypes, Useful Maven archetypes

Maven tooling

adding the bundle plug-in, Adding a bundle plug-in

set up, Setting up the Maven tools

maxLength, Maximum length of an RM sequence

maxUnacknowledged, Maximum unacknowledged messages threshold

message element, WSDL elements, Defining Logical Messages Used by a Service

N

named reply destination

specifying in WSDL, Specifying the JMS address

using, Using a Named Reply Destination

namespace, Namespace

O

operation element, WSDL elements

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

134



outFaultInterceptors, Configuring an endpoint's interceptor chain

outInterceptors, Configuring an endpoint's interceptor chain

P

part element, Defining Logical Messages Used by a Service , Message parts

element attribute, Message parts

name attribute, Message parts

type attribute, Message parts

passWord, Configuring WS-persistence

port element, WSDL elements

portType element, WSDL elements, Port types

Private-Package, Specifying private packages

provider

busCfg, Specifying the configuration to load

mtomEnabled, Configuring an endpoint to support MTOM

useJbiWrapper, Turning of JBI wrapper processing

wsdl, Specifying the WSDL

provider endpoint, Overview

R

RMAssertion, WS-Policy RMAssertion Children

RPC style design, Message design for integrating with legacy systems

S

Sequence, How WS-RM works

sequence element, Complex type varieties

SequenceAcknowledgment, How WS-RM works

service assembly

seeding, Seeding a project using a Maven artifact

specifying the service units, Specifying the target components

service element, WSDL elements

service unit

seeding, Seeding a project using a Maven artifact

specifying the target component, Specifying the target components

INDEX

135



smx-arch, Seeding a project using a Maven artifact , Seeding a project using a Maven artifact

SOAP 1.1

endpoint address, SOAP 1.1

SOAP 1.2

endpoint address, SOAP 1.2

soap12:address, SOAP 1.2

soap:address, SOAP 1.1

T

types element, WSDL elements

U

userName, Configuring WS-persistence

W

wrapped document style, Message design for SOAP services

WS-Addressing

using, Configuring an endpoint to use WS-Addressing

WS-RM

AcknowledgementInterval, Acknowledgement interval

AtLeastOnce, Message delivery assurance policies

AtMostOnce, Message delivery assurance policies

BaseRetransmissionInterval, Base retransmission interval

configuring, Configuring WS-RM

destination, How WS-RM works

driverClassName, Configuring WS-persistence

enabling, Enabling WS-RM

ExponentialBackoff, Exponential backoff for retransmission

externaL attachment, External attachment

initial sender, How WS-RM works

InOrder, Message delivery assurance policies

interceptors, Apache CXF WS-RM Interceptors

maxLength, Maximum length of an RM sequence

maxUnacknowledged, Maximum unacknowledged messages threshold

Red Hat JBoss Fuse 6.0 Using the Apache CXF Binding Component

136



passWord, Configuring WS-persistence

rmManager, Children of the rmManager Spring bean

source, How WS-RM works

ultimate receiver, How WS-RM works

url, Configuring WS-persistence

userName, Configuring WS-persistence

wsam:Addressing, Configuring an endpoint to use WS-Addressing

WSDL design

RPC style, Message design for integrating with legacy systems

wrapped document style, Message design for SOAP services

WSDL extensors

jms:address (see jms:address)

jms:client (see jms:client)

jms:JMSNamingProperties (see jms:JMSNamingProperties)

jms:server (see jms:server)

wsrm:AcksTo, How WS-RM works

wswa:UsingAddressing, Configuring an endpoint to use WS-Addressing

X

xbean.xml, Contents of a file component service unit

INDEX

137


	Table of Contents
	CHAPTER 1. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT
	OVERVIEW
	KEY FEATURES
	STEPS FOR WORKING WITH THE APACHE CXF BINDING COMPONENT
	MORE INFORMATION

	PART I. DEFINING AN ENDPOINT IN WSDL
	CHAPTER 2. INTRODUCING WSDL CONTRACTS
	2.1. STRUCTURE OF A WSDL DOCUMENT
	The logical part
	The concrete part

	2.2. WSDL ELEMENTS
	2.3. DESIGNING A CONTRACT

	CHAPTER 3. DEFINING LOGICAL DATA UNITS
	3.1. MAPPING DATA INTO LOGICAL DATA UNITS
	Available type systems for defining service data units
	XML Schema as a type system
	Considerations for creating your data units

	3.2. ADDING DATA UNITS TO A CONTRACT
	Procedure

	3.3. XML SCHEMA SIMPLE TYPES
	Entering simple types
	Supported XSD simple types

	3.4. DEFINING COMPLEX DATA TYPES
	3.4.1. Defining data structures
	Complex type varieties
	Defining the parts of a structure
	Defining attributes

	3.4.2. Defining arrays
	Complex type arrays
	SOAP arrays

	3.4.3. Defining types by extension
	3.4.4. Defining types by restriction
	Specifying the base type
	Defining the restrictions
	Example

	3.4.5. Defining enumerated types
	Defining an enumeration in XML Schema
	Example


	3.5. DEFINING ELEMENTS

	CHAPTER 4. DEFINING LOGICAL MESSAGES USED BY A SERVICE
	MESSAGES AND PARAMETER LISTS
	MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS
	MESSAGE DESIGN FOR SOAP SERVICES
	MESSAGE NAMING
	MESSAGE PARTS
	EXAMPLE

	CHAPTER 5. DEFINING YOUR LOGICAL INTERFACES
	PROCESS
	PORT TYPES
	OPERATIONS
	OPERATION MESSAGES
	RETURN VALUES
	EXAMPLE

	CHAPTER 6. USING HTTP
	6.1. ADDING A BASIC HTTP ENDPOINT
	Overview
	SOAP 1.1
	SOAP 1.2
	Other messages types

	6.2. CONSUMER CONFIGURATION
	Namespace
	Configuring the endpoint
	Consumer Cache Control Directives
	Example

	6.3. PROVIDER CONFIGURATION
	Namespace
	Configuring the endpoint
	Service Provider Cache Control Directives
	Example

	6.4. USING THE HTTP TRANSPORT IN DECOUPLED MODE
	Overview
	Configuring decoupled interactions
	Configuring an endpoint to use WS-Addressing
	Configuring the consumer
	How messages are processed


	CHAPTER 7. USING JMS
	7.1. USING SOAP/JMS
	7.1.1. Basic configuration
	Overview
	Specifying the JMS transport type
	Specifying the target destination
	Configuring JNDI and the JMS transport

	7.1.2. JMS URIs
	Overview
	Syntax
	JMS properties
	JNDI properties
	Additional JNDI properties
	Example

	7.1.3. WSDL extensions
	Overview
	SOAP/JMS namespace
	WSDL extension elements
	Configuration scopes
	Example


	7.2. USING WSDL TO CONFIGURE JMS
	7.2.1. Basic JMS configuration
	Overview
	Specifying the JMS address
	Specifying JNDI properties
	Example

	7.2.2. JMS client configuration
	Overview
	Specifying the message type
	Example

	7.2.3. JMS provider configuration
	Overview
	Specifying the configuration
	Example


	7.3. USING A NAMED REPLY DESTINATION
	Overview
	Setting the reply destination name
	Example


	PART II. CONFIGURING AND PACKAGING ENDPOINTS
	CHAPTER 8. INTRODUCTION TO THE APACHE CXF BINDING COMPONENT
	CONTENTS OF A FILE COMPONENT SERVICE UNIT
	OSGI PACKAGING
	NAMESPACE

	CHAPTER 9. CONSUMER ENDPOINTS
	OVERVIEW
	PROCEDURE
	SPECIFYING THE WSDL
	SPECIFYING THE ENDPOINT DETAILS
	SPECIFYING THE TARGET ENDPOINT

	CHAPTER 10. PROVIDER ENDPOINTS
	OVERVIEW
	PROCEDURE
	SPECIFYING THE WSDL
	SPECIFYING THE ENDPOINT DETAILS

	CHAPTER 11. USING MTOM TO PROCESS BINARY CONTENT
	OVERVIEW
	CONFIGURING AN ENDPOINT TO SUPPORT MTOM

	CHAPTER 12. WORKING WITH THE JBI WRAPPER
	OVERVIEW
	TURNING OF JBI WRAPPER PROCESSING
	EXAMPLE

	CHAPTER 13. USING MESSAGE INTERCEPTORS
	OVERVIEW
	CONFIGURING AN ENDPOINT'S INTERCEPTOR CHAIN
	IMPLEMENTING AN INTERCEPTOR
	MORE INFORMATION

	PART III. CONFIGURING THE CXF RUNTIME
	CHAPTER 14. CONFIGURING THE ENDPOINTS TO LOAD APACHE CXF RUNTIME CONFIGURATION
	SPECIFYING THE CONFIGURATION TO LOAD
	EXAMPLE

	CHAPTER 15. TRANSPORT CONFIGURATION
	15.1. USING THE JMS CONFIGURATION BEAN
	Overview
	Configuration namespace
	Specifying the configuration
	Applying the configuration to an endpoint
	Applying the configuration to the transport

	15.2. CONFIGURING THE JETTY RUNTIME
	Overview
	Namespace
	The engine-factory element
	The engine element
	Configuring the thread pool
	Example


	CHAPTER 16. DEPLOYING WS-ADDRESSING
	16.1. INTRODUCTION TO WS-ADDRESSING
	Overview
	Supported specifications
	Further information

	16.2. WS-ADDRESSING INTERCEPTORS
	Overview
	WS-Addressing Interceptors

	16.3. ENABLING WS-ADDRESSING
	Overview
	Adding WS-Addressing as a Feature

	16.4. CONFIGURING WS-ADDRESSING ATTRIBUTES
	Overview
	Configuring WS-Addressing attributes
	Using a WS-Policy assertion embedded in a feature


	CHAPTER 17. ENABLING RELIABLE MESSAGING
	17.1. INTRODUCTION TO WS-RM
	Overview
	How WS-RM works
	WS-RM delivery assurances
	Supported specifications
	Further information

	17.2. WS-RM INTERCEPTORS
	Overview
	Apache CXF WS-RM Interceptors
	Enabling WS-RM
	Configuring WS-RM Attributes

	17.3. ENABLING WS-RM
	Overview
	Spring beans—explicitly adding interceptors
	WS-Policy framework—implicitly adding interceptors

	17.4. CONFIGURING WS-RM
	17.4.1. Configuring Apache CXF-Specific WS-RM Attributes
	Overview
	Children of the rmManager Spring bean
	Example

	17.4.2. Configuring Standard WS-RM Policy Attributes
	Overview
	WS-Policy RMAssertion Children
	More detailed reference information
	RMAssertion in rmManager Spring bean
	Policy within a feature
	WSDL file
	External attachment

	17.4.3. WS-RM Configuration Use Cases
	Overview
	Base retransmission interval
	Exponential backoff for retransmission
	Acknowledgement interval
	Maximum unacknowledged messages threshold
	Maximum length of an RM sequence
	Message delivery assurance policies


	17.5. CONFIGURING WS-RM PERSISTENCE
	Overview
	How it works
	Enabling WS-persistence
	Configuring WS-persistence


	APPENDIX A. CONSUMER ENDPOINT PROPERTIES
	APPENDIX B. PROVIDER ENDPOINT PROPERTIES
	APPENDIX C. USING THE MAVEN JBI TOOLING
	C.1. SETTING UP A RED HAT JBOSS FUSE JBI PROJECT
	Overview
	Directory structure
	Setting up the Maven tools
	Listing the sub-projects
	Example JBI project pOM

	C.2. A SERVICE UNIT PROJECT
	Overview
	Seeding a project using a Maven artifact
	Contents of a project
	Configuring the Maven plug-in
	Specifying the target components
	Example

	C.3. A SERVICE ASSEMBLY PROJECT
	Overview
	Seeding a project using a Maven artifact
	Contents of a project
	Configuring the Maven plug-in
	Specifying the target components
	Example


	APPENDIX D. USING THE MAVEN OSGI TOOLING
	D.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT
	Overview
	Directory structure
	Adding a bundle plug-in
	Activating a bundle plug-in
	Useful Maven archetypes
	Spring OSGi archetype
	Apache CXF code-first archetype
	Apache CXF wsdl-first archetype
	Apache Camel archetype

	D.2. CONFIGURING THE BUNDLE PLUG-IN
	Overview
	Configuration properties
	Setting a bundle's symbolic name
	Setting a bundle's name
	Setting a bundle's version
	Specifying exported packages
	Specifying private packages
	Specifying imported packages
	More information


	INDEX

