
Red Hat JBoss Enterprise Application
Platform 7.2

Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 7.2

Last Updated: 2019-09-26

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 7.2

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions and information for quickly developing secure and scalable
Java EE applications. You will learn about setting up the development environment, using the
Maven repository, and class loading in deployments. The document also has detailed information
about: Logging Remote JNDI lookup Clustering in web applications Contexts and dependency
injection Java APIs such as Java Transaction API and Java Persistence API

. .

. .

. .

Table of Contents

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS
1.1. BECOME FAMILIAR WITH JAVA ENTERPRISE EDITION 8

1.1.1. Overview of Java EE 8 Profiles
1.2. SETTING UP THE DEVELOPMENT ENVIRONMENT
1.3. CONFIGURE ANNOTATION PROCESSING IN RED HAT CODEREADY STUDIO

Enable Annotation Processing for an Individual Project
Enable Annotation Processing Globally in Red Hat CodeReady Studio

1.4. CONFIGURE THE DEFAULT WELCOME WEB APPLICATION
Change the welcome-content File Handler
Change the default-web-module
Disable the Default Welcome Web Application

CHAPTER 2. USING MAVEN WITH JBOSS EAP
2.1. LEARN ABOUT MAVEN

2.1.1. About the Maven Repository
2.1.2. About the Maven POM File

Minimum Requirements of a Maven POM File
2.1.3. About the Maven Settings File
2.1.4. About Maven Repository Managers

Commonly used Maven repository managers
2.2. INSTALL MAVEN AND THE JBOSS EAP MAVEN REPOSITORY

2.2.1. Download and Install Maven
2.2.2. Download the JBoss EAP Maven Repository

2.2.2.1. Download the JBoss EAP Maven Repository ZIP File
2.2.2.2. Download the JBoss EAP Maven Repository with the Offliner Application

2.2.3. Install the JBoss EAP Maven Repository
2.2.3.1. Install the JBoss EAP Maven Repository Locally
2.2.3.2. Install the JBoss EAP Maven Repository for Use with Apache httpd

2.3. USE THE MAVEN REPOSITORY
2.3.1. Configure the JBoss EAP Maven Repository

Configure the JBoss EAP Maven Repository Using the Maven Settings
Configure the JBoss EAP Maven Repository Using the Project POM
Determine the URL of the JBoss EAP Repository

2.3.2. Configure Maven for Use with Red Hat CodeReady Studio
2.3.3. Manage Project Dependencies

Supported Maven Artifacts
Dependency Management
JBoss EAP Java EE Specs BOM
JBoss EAP BOMs Available for Application Development
JBoss EAP Client BOMs

CHAPTER 3. CLASS LOADING AND MODULES
3.1. INTRODUCTION

3.1.1. Overview of Class Loading and Modules
3.1.2. Class Loading in Deployments
3.1.3. Class Loading Precedence
3.1.4. jboss-deployment-structure.xml

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT
Prerequisites
Add a Dependency Configuration to MANIFEST.MF
Add a Dependency Configuration to the jboss-deployment-structure.xml

10
10
10
10
10
10
11
11
11

12
12

13
13
13
13
13
14
15
15
15
15
16
16
16
17
17
18
18
18
18

20
22
22
24
25
25
26
27
28

29
29
29
29
29
30
30
30
31
31

Table of Contents

1

. .

Creating a Jandex Index
3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN

Generate a MANIFEST.MF File Containing Module Dependencies
3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT
3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A DEPLOYMENT

3.6.1. Programmatically Load Classes and Resources in a Deployment
3.6.2. Programmatically Iterate Resources in a Deployment

3.7. CLASS LOADING AND SUBDEPLOYMENTS
3.7.1. Modules and Class Loading in Enterprise Archives
3.7.2. Subdeployment Class Loader Isolation
3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR
3.7.4. Configuring Session Sharing between Subdeployments in Enterprise Archives

3.7.4.1. Reference of Shared Session Configuration Options
3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM MODULE

Deploy TLDs in a Custom Module
3.9. CLASS LOADING REFERENCE

3.9.1. Implicit Module Dependencies
3.9.2. Included Modules

CHAPTER 4. LOGGING
4.1. ABOUT LOGGING

4.1.1. Supported Application Logging Frameworks
4.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

4.2.1. About JBoss Logging
4.2.2. Add Logging to an Application with JBoss Logging

4.3. PER-DEPLOYMENT LOGGING
4.3.1. Add Per-deployment Logging to an Application

Configuring logging.properties
JBoss Log Manager Configuration Options

4.4. LOGGING PROFILES
4.4.1. Specify a Logging Profile in an Application

4.5. INTERNATIONALIZATION AND LOCALIZATION
4.5.1. Introduction

4.5.1.1. About Internationalization
4.5.1.2. About Localization

4.5.2. JBoss Logging Tools Internationalization and Localization
4.5.3. Creating Internationalized Loggers, Messages and Exceptions

4.5.3.1. Create Internationalized Log Messages
4.5.3.2. Create and Use Internationalized Messages
4.5.3.3. Create Internationalized Exceptions

4.5.4. Localizing Internationalized Loggers, Messages and Exceptions
4.5.4.1. Generate New Translation Properties Files with Maven
4.5.4.2. Translate an Internationalized Logger, Exception, or Message

4.5.5. Customizing Internationalized Log Messages
4.5.5.1. Add Message IDs and Project Codes to Log Messages
4.5.5.2. Specify the Log Level for a Message
4.5.5.3. Customize Log Messages with Parameters
4.5.5.4. Specify an Exception as the Cause of a Log Message

4.5.6. Customizing Internationalized Exceptions
4.5.6.1. Add Message IDs and Project Codes to Exception Messages
4.5.6.2. Customize Exception Messages with Parameters
4.5.6.3. Specify One Exception as the Cause of Another Exception

33
34
34
35
36
37
37
39
41
41

42
42
43
43
45
45
47
47
54

55
55
55
55
55
56
57
58
58
58
61
61

62
62
62
62
62
64
64
66
67
68
68
69
70
70
71
72
72
73
73
75
75

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

2

. .

. .

. .

4.5.7. JBoss Logging Tools References
4.5.7.1. JBoss Logging Tools Maven Configuration
4.5.7.2. Translation Property File Format
4.5.7.3. JBoss Logging Tools Annotations Reference
4.5.7.4. Project Codes Used in JBoss EAP

CHAPTER 5. REMOTE JNDI LOOKUP
5.1. REGISTERING OBJECTS TO JNDI
5.2. CONFIGURING REMOTE JNDI
5.3. JNDI INVOCATION OVER HTTP

5.3.1. Client-side Implementation
5.3.2. Server-side Implementation

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS
6.1. SESSION REPLICATION

6.1.1. About HTTP Session Replication
6.1.2. Enable Session Replication in Your Application

Make your Application Distributable
Immutable Session Attributes

6.2. HTTP SESSION PASSIVATION AND ACTIVATION
6.2.1. About HTTP Session Passivation and Activation
6.2.2. Configure HTTP Session Passivation in Your Application

6.3. PUBLIC API FOR CLUSTERING SERVICES
6.4. HA SINGLETON SERVICE

HA Singleton ServiceBuilder API
HA Singleton Service Election Policies
HA Singleton Service Preferences
Quorum
Create an HA Singleton Service Application

6.5. HA SINGLETON DEPLOYMENTS
Defining or Choosing a Singleton Deployment
Creating a Singleton Deployment

Preferences
Define a Quorum

6.6. APACHE MOD_CLUSTER-MANAGER APPLICATION
6.6.1. About mod_cluster-manager Application

Exploring mod_cluster-manager Application

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)
7.1. INTRODUCTION TO CDI

7.1.1. About Contexts and Dependency Injection (CDI)
Benefits of CDI

7.1.2. Relationship Between Weld, Seam 2, and JavaServer Faces
7.2. USE CDI TO DEVELOP AN APPLICATION

7.2.1. Default Bean Discovery Mode
Bean Defining Annotations

7.2.2. Exclude Beans From the Scanning Process
7.2.3. Use an Injection to Extend an Implementation

7.3. AMBIGUOUS OR UNSATISFIED DEPENDENCIES
7.3.1. Qualifiers

'@Any'
7.3.2. Use a Qualifier to Resolve an Ambiguous Injection

Resolve an Ambiguous Injection with a Qualifier
7.4. MANAGED BEANS

77
77
78
79
79

83
83
83
83
83
84

85
85
85
85
85
86
87
87
87
88
89
89
89
89
89
90
92
92
93
94
95
96
96
96

98
98
98
98
98
98
99

100
100
101
102
102
103
104
104
105

Table of Contents

3

. .

. .

. .

. .

7.4.1. Types of Classes That are Beans
@Vetoed

7.4.2. Use CDI to Inject an Object Into a Bean
Inject Objects into Other Objects

7.5. CONTEXTS AND SCOPES
7.6. NAMED BEANS

7.6.1. Use Named Beans
Configure Bean Names Using the @Named Annotation

7.7. BEAN LIFECYCLE
Manage Bean Lifecycles
7.7.1. Use a Producer Method

7.8. ALTERNATIVE BEANS
Declaring Selected Alternatives
7.8.1. Override an Injection with an Alternative

Override an Injection
7.9. STEREOTYPES

7.9.1. Use Stereotypes
Define and Use Stereotypes

7.10. OBSERVER METHODS
7.10.1. Fire and Observe Events
7.10.2. Transactional Observers

7.11. INTERCEPTORS
Enabling Interceptors
7.11.1. Use Interceptors with CDI

Using Interceptors with CDI
7.12. DECORATORS
7.13. PORTABLE EXTENSIONS
7.14. BEAN PROXIES
7.15. USE A PROXY IN AN INJECTION

CHAPTER 8. JBOSS EAP MBEAN SERVICES
8.1. WRITING JBOSS MBEAN SERVICES

8.1.1. A Standard MBean Example
8.2. DEPLOYING JBOSS MBEAN SERVICES

CHAPTER 9. CONCURRENCY UTILITIES
9.1. CONTEXT SERVICE
9.2. MANAGED THREAD FACTORY
9.3. MANAGED EXECUTOR SERVICE
9.4. MANAGED SCHEDULED EXECUTOR SERVICE

CHAPTER 10. UNDERTOW
10.1. INTRODUCTION TO UNDERTOW HANDLER

Request Lifecycle
Ending the Exchange

10.2. USING EXISTING UNDERTOW HANDLERS WITH A DEPLOYMENT
Undertow Handler Default Parameter

10.3. CREATING CUSTOM HANDLERS
Defining Custom Handlers Using the WEB-INF/jboss-web.xml File
Defining Custom Handlers in the WEB-INF/undertow-handlers.conf File

10.4. DEVELOPING A CUSTOM HTTP MECHANISM
Using a Custom HTTP Mechanism

CHAPTER 11. JAVA TRANSACTION API (JTA)

105
105
106
106
107
107
107
107
108
108
109
110
111
111
111
111

112
112
113
113
114
115
116
116
116
117
118
119
119

121
121
121
123

124
124
125
126
127

129
129
129
130
130
130
131
131
132
133
134

136

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

4

11.1. OVERVIEW
11.1.1. Overview of Java Transaction API (JTA)

11.2. TRANSACTION CONCEPTS
11.2.1. About Transactions
11.2.2. About ACID Properties for Transactions
11.2.3. About the Transaction Coordinator or Transaction Manager
11.2.4. About Transaction Participants
11.2.5. About Java Transaction API (JTA)
11.2.6. About Java Transaction Service (JTS)
11.2.7. About XML Transaction Service

11.2.7.1. Overview of Protocols Used by XTS
11.2.7.2. Web Services-Atomic Transaction Process

11.2.7.2.1. Atomic Transaction Process
11.2.7.2.2. WS-AT Interoperability with Microsoft .NET Clients

11.2.7.3. Web Services-Business Activity Process
11.2.7.3.1. WS-BA Process

11.2.7.4. Transaction Bridging Overview
11.2.8. About XA Resources and XA Transactions
11.2.9. About XA Recovery
11.2.10. Limitations of the XA Recovery Process
11.2.11. About the 2-Phase Commit Protocol

Phase 1: Prepare
Phase 2: Commit

11.2.12. About Transaction Timeouts
11.2.13. About Distributed Transactions
11.2.14. About the ORB Portability API

11.3. TRANSACTION OPTIMIZATIONS
11.3.1. Overview of Transaction Optimizations
11.3.2. About the LRCO Optimization for Single-phase Commit (1PC)

Single-phase Commit (1PC)
Last Resource Commit Optimization (LRCO)
11.3.2.1. Commit Markable Resource

Summary
Create Tables in Database
Enabling Datasource to be Connectable
Updating an Existing Resource to Use the New CMR Feature
Add a Reference to the Transactions Subsystem

11.3.3. About the Presumed-Abort Optimization
11.3.4. About the Read-Only Optimization

11.4. TRANSACTION OUTCOMES
11.4.1. About Transaction Outcomes
11.4.2. About Transaction Commit
11.4.3. About Transaction Rollback
11.4.4. About Heuristic Outcomes

Heuristic rollback
Heuristic commit
Heuristic mixed
Heuristic hazard

11.4.5. JBoss Transactions Errors and Exceptions
11.5. OVERVIEW OF THE TRANSACTION LIFECYCLE

11.5.1. Transaction Lifecycle
11.6. TRANSACTION SUBSYSTEM CONFIGURATION
11.7. TRANSACTIONS USAGE IN PRACTICE

136
136
136
136
136
137
137
137
138
138
138
138
138
139
139
140
140
140
140
141

142
142
142
142
142
143
143
143
144
144
144
145
145
145
146
147
147
147
148
148
148
148
148
148
149
149
149
149
149
149
149
150
150

Table of Contents

5

. .

. .

. .

. .

. .

. .

11.7.1. Transactions Usage Overview
11.7.2. Control Transactions

11.7.2.1. Begin a Transaction
11.7.2.1.1. Nested Transactions

11.7.2.2. Commit a Transaction
11.7.2.3. Roll Back a Transaction

11.7.3. Handle a Heuristic Outcome in a Transaction
11.7.4. JTA Transaction Error Handling

11.7.4.1. Handle Transaction Errors
11.8. TRANSACTION REFERENCES

11.8.1. JTA Transaction Example
11.8.2. Transaction API Documentation

CHAPTER 12. JAVA PERSISTENCE API (JPA)
12.1. ABOUT JAVA PERSISTENCE API (JPA)
12.2. CREATE A SIMPLE JPA APPLICATION
12.3. JPA ENTITIES
12.4. PERSISTENCE CONTEXT

12.4.1. Transaction-Scoped Persistence Context
12.4.2. Extended Persistence Context

12.5. JPA ENTITYMANAGER
12.5.1. Application-Managed EntityManager
12.5.2. Container-Managed EntityManager

12.6. WORKING WITH THE ENTITYMANAGER
12.6.1. Binding the EntityManager to JNDI

12.7. DEPLOYING THE PERSISTENCE UNIT
12.8. SECOND-LEVEL CACHES

12.8.1. About Second-level Caches
12.8.1.1. Default Second-level Cache Provider

12.8.1.1.1. Configuring a Second-level Cache in the Persistence Unit

CHAPTER 13. BEAN VALIDATION
13.1. ABOUT BEAN VALIDATION

Features of Hibernate Validator 6.0.x
13.2. VALIDATION CONSTRAINTS

13.2.1. About Validation Constraints
13.2.2. Hibernate Validator Constraints
13.2.3. Bean Validation Using Custom Constraints

13.2.3.1. Creating A Constraint Annotation
13.2.3.2. Implementing A Constraint Validator

13.3. VALIDATION CONFIGURATION

CHAPTER 14. CREATING WEBSOCKET APPLICATIONS
Create the WebSocket Application

CHAPTER 15. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
15.1. ABOUT JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
15.2. CONFIGURE JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC) SECURITY

Enabling JACC Using the elytron Subsystem

CHAPTER 16. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
16.1. ABOUT JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI) SECURITY
16.2. CONFIGURE JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI) SECURITY

CHAPTER 17. JAVA BATCH APPLICATION DEVELOPMENT

150
151
151
152
152
153
154
155
155
156
156
158

159
159
159
163
163
163
164
164
164
165
165
165
166
167
167
168
168

169
169
169
169
169
169
172
172
175
176

177
177

181
181
181

182

185
185
185

186

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

6

. .

. .

. .

17.1. REQUIRED BATCH DEPENDENCIES
17.2. JOB SPECIFICATION LANGUAGE (JSL) INHERITANCE

Inherit Step and Flow Within the Same Job XML File
Inherit a Step from a Different Job XML File

17.3. BATCH PROPERTY INJECTIONS
Injecting a Number into a Batchlet Class as Various Types
Injecting a Number Sequence into a Batchlet Class as Various Arrays
Injecting a Class Property into a Batchlet Class
Assigning a Default Value to a Field Annotated for Property Injection

CHAPTER 18. CONFIGURING CLIENTS
18.1. CLIENT CONFIGURATION USING THE WILDFLY-CONFIG.XML FILE

18.1.1. Client Authentication Configuration Using the wildfly-config.xml File
authentication-client Elements and Attributes

18.1.2. EJB Client Configuration Using the wildfly-config.xml File
jboss-ejb-client Elements and Attributes
Example EJB Client Configuration in the wildfly-config.xml File

18.1.3. HTTP Client Configuration Using the wildfly-config.xml File
18.1.4. Remoting Client Configuration Using the wildfly-config.xml File

endpoint Elements and Attributes
Example Remoting Client Configuration in the wildfly-config.xml File

18.1.5. Default XNIO Worker Configuration Using the wildfly-config.xml File
worker Elements and Attributes
Example XNIO Worker Configuration in the wildfly-config.xml File

CHAPTER 19. ECLIPSE MICROPROFILE
19.1. USING ECLIPSE MICROPROFILE OPENTRACING TO TRACE REQUESTS

19.1.1. Enable or Disable Tracing for CDI Beans
19.1.2. Enable or Disable Tracing for JAX-RS Endpoints
19.1.3. Implement a Custom Tracer

19.2. USING ECLIPSE MICROPROFILE HEALTH TO MONITOR SERVER HEALTH
19.2.1. Implement a Custom Health Check

APPENDIX A. REFERENCE MATERIAL
A.1. PROVIDED UNDERTOW HANDLERS

AccessControlListHandler
AccessLogHandler
AllowedMethodsHandler
BlockingHandler
ByteRangeHandler
CanonicalPathHandler
DisableCacheHandler
DisallowedMethodsHandler
EncodingHandler
FileErrorPageHandler
HttpTraceHandler
IPAddressAccessControlHandler
JDBCLogHandler
LearningPushHandler
LocalNameResolvingHandler
PathSeparatorHandler
PeerNameResolvingHandler
ProxyPeerAddressHandler
RedirectHandler

186
186
186
187
188
190
190
191

192

193
193
194
194
215
215
217
217
218
218
219

220
220
222

223
223
223
224
224
224
225

226
226
226
226
228
228
228
229
229
229
229
230
230
230
230
231

232
232
232
232
232

Table of Contents

7

RequestBufferingHandler
RequestDumpingHandler
RequestLimitingHandler
ResourceHandler
ResponseRateLimitingHandler
SetHeaderHandler
SSLHeaderHandler
StuckThreadDetectionHandler
URLDecodingHandler

A.2. PERSISTENCE UNIT PROPERTIES
A.3. POLICY PROVIDER PROPERTIES
A.4. JAVA EE 8 PROFILES AND TECHNOLOGIES REFERENCE

233
233
233
233
234
234
234
235
235
235
237
237

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

8

Table of Contents

9

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1.1. BECOME FAMILIAR WITH JAVA ENTERPRISE EDITION 8

1.1.1. Overview of Java EE 8 Profiles

Java Enterprise Edition (Java EE) 8, as defined in JSR 366, includes support for profiles, which are
subsets of APIs that represent configurations that are suited to specific classes of applications.

Java EE 8 defines specifications for the Web and the Full Platform profiles. A product can choose to
implement the Full Platform, the Web Profile, or one or more custom profiles, in any combination.

The Web Profile includes a selected subset of APIs that are designed to be useful for web
application development.

The Full Platform profile includes the APIs defined by the Java EE 8 Web Profile, plus the
complete set of Java EE 8 APIs that are useful for enterprise application development.

JBoss EAP 7.2 is a certified implementation of the Java EE 8 Full Platform and the Web Profile
specifications. See Java EE 8 Profiles and Technologies Reference for the list of Java EE 8
technologies, JSRs, and whether they are inluded in the Web and Full Platform profiles.

See Java™ EE 8 Technologies for the complete list of Java EE 8 APIs.

NOTE

Java EE also includes support for JSR 375, which defines portable, plug-in interfaces for
authentication and identity stores, and a new injectable-type SecurityContext interface
that provides an access point for programmatic security. You can use the built-in
implementations of these APIs, or define custom implementations.

1.2. SETTING UP THE DEVELOPMENT ENVIRONMENT

1. Download and install Red Hat CodeReady Studio.
For instructions, see Installing CodeReady Studio stand-alone using the Installer in the Red Hat
CodeReady Studio Installation Guide.

2. Set up the JBoss EAP server in Red Hat CodeReady Studio.
For instructions, see Downloading, Installing, and Setting Up JBoss EAP from within the IDE in
the Getting Started with CodeReady Studio Tools guide.

1.3. CONFIGURE ANNOTATION PROCESSING IN RED HAT
CODEREADY STUDIO

Annotation Processing (AP) is turned off by default in Eclipse. If your project generates implementation
classes, this can result in java.lang.ExceptionInInitializerError exceptions, followed by CLASS_NAME
(implementation not found) error messages when you deploy your project.

You can resolve these issues in one of the following ways. You can enable annotation processing for the
individual project or you can enable annotation processing globally for all Red Hat CodeReady Studio
projects.

Enable Annotation Processing for an Individual Project

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

10

http://www.jcp.org/en/jsr/detail?id=366
https://www.oracle.com/technetwork/java/javaee/tech/index.html
https://javaee.github.io/security-spec/
https://access.redhat.com/documentation/en-us/red_hat_codeready_studio/12.11/html-single/installation_guide/#proc_installing-devstudio-stand-alone-using-the-installer
https://access.redhat.com/documentation/en-us/red_hat_codeready_studio/12.11/html-single/getting_started_with_codeready_studio_tools/#proc_downloading-installing-and-setting-up-eap-from-within-the-ide

To enable annotation processing for a specific project, you must add the m2e.apt.activation property
with a value of jdt_apt to the project’s pom.xml file.

You can find examples of this technique in the pom.xml files for the logging-tools and kitchensink-ml
quickstarts that ship with JBoss EAP.

Enable Annotation Processing Globally in Red Hat CodeReady Studio

1. Select Window → Preferences.

2. Expand Maven, and select Annotation Processing.

3. Under Select Annotation Processing Mode, select Automatically configure JDT APT (builds
faster , but outcome may differ from Maven builds), then click Apply and Close.

1.4. CONFIGURE THE DEFAULT WELCOME WEB APPLICATION

JBoss EAP includes a default Welcome application, which displays at the root context on port 8080 by
default.

This default Welcome application can be replaced with your own web application. This can be
configured in one of two ways:

Change the welcome-content file handler

Change the default-web-module

You can also disable the welcome content .

Change the welcome-content File Handler

1. Modify the existing welcome-content file handler’s path to point to the new deployment.

/subsystem=undertow/configuration=handler/file=welcome-content:write-
attribute(name=path,value="/path/to/content")

NOTE

Alternatively, you could create a different file handler to be used by the server’s
root.

/subsystem=undertow/configuration=handler/file=NEW_FILE_HANDLER:add(
path="/path/to/content")
/subsystem=undertow/server=default-server/host=default-
host/location=\/:write-attribute(name=handler,value=NEW_FILE_HANDLER)

2. Reload the server for the changes to take effect.

reload

<properties>
 <m2e.apt.activation>jdt_apt</m2e.apt.activation>
</properties>

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

11

Change the default-web-module

1. Map a deployed web application to the server’s root.

/subsystem=undertow/server=default-server/host=default-host:write-attribute(name=default-
web-module,value=hello.war)

2. Reload the server for the changes to take effect.

reload

Disable the Default Welcome Web Application

1. Disable the welcome application by removing the location entry / for the default-host.

/subsystem=undertow/server=default-server/host=default-host/location=\/:remove

2. Reload the server for the changes to take effect.

reload

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

12

CHAPTER 2. USING MAVEN WITH JBOSS EAP

2.1. LEARN ABOUT MAVEN

2.1.1. About the Maven Repository

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model, or POM, files to define projects and manage the build process. POMs describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven achieves this by using a repository. A Maven repository stores Java libraries, plug-ins, and other
build artifacts. The default public repository is the Maven 2 Central Repository, but repositories can be
private and internal within a company with a goal to share common artifacts among development teams.
Repositories are also available from third-parties. JBoss EAP includes a Maven repository that contains
many of the requirements that Java EE developers typically use to build applications on JBoss EAP. To
configure your project to use this repository, see Configure the JBoss EAP Maven Repository.

For more information about Maven, see Welcome to Apache Maven .

For more information about Maven repositories, see Apache Maven Project - Introduction to
Repositories.

2.1.2. About the Maven POM File

The Project Object Model, or POM, file is a configuration file used by Maven to build projects. It is an
XML file that contains information about the project and how to build it, including the location of the
source, test, and target directories, the project dependencies, plug-in repositories, and goals it can
execute. It can also include additional details about the project including the version, description,
developers, mailing list, license, and more. A pom.xml file requires some configuration options and will
default all others.

The schema for the pom.xml file can be found at http://maven.apache.org/maven-v4_0_0.xsd.

For more information about POM files, see the Apache Maven Project POM Reference .

Minimum Requirements of a Maven POM File
The minimum requirements of a pom.xml file are as follows:

project root

modelVersion

groupId - the ID of the project’s group

artifactId - the ID of the artifact (project)

version - the version of the artifact under the specified group

Example: Basic pom.xml File

A basic pom.xml file might look like this:

<project>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

13

http://search.maven.org/#browse
http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/pom.html

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.jboss.app</groupId>
 <artifactId>my-app</artifactId>
 <version>1</version>
</project>

2.1.3. About the Maven Settings File

The Maven settings.xml file contains user-specific configuration information for Maven. It contains
information that must not be distributed with the pom.xml file, such as developer identity, proxy
information, local repository location, and other settings specific to a user.

There are two locations where the settings.xml can be found:

In the Maven installation: The settings file can be found in the $M2_HOME/conf/ directory.
These settings are referred to as global settings. The default Maven settings file is a template
that can be copied and used as a starting point for the user settings file.

In the user’s installation: The settings file can be found in the ${user.home}/.m2/ directory. If
both the Maven and user settings.xml files exist, the contents are merged. Where there are
overlaps, the user’s settings.xml file takes precedence.

Example: Maven Settings File

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <profiles>
 <!-- Configure the JBoss EAP Maven repository -->
 <profile>
 <id>jboss-eap-maven-repository</id>
 <repositories>
 <repository>
 <id>jboss-eap</id>
 <url>file:///path/to/repo/jboss-eap-7.2.0.GA-maven-repository/maven-repository</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-eap-maven-plugin-repository</id>
 <url>file:///path/to/repo/jboss-eap-7.2.0.GA-maven-repository/maven-repository</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

14

The schema for the settings.xml file can be found at http://maven.apache.org/xsd/settings-1.0.0.xsd.

2.1.4. About Maven Repository Managers

A repository manager is a tool that allows you to easily manage Maven repositories. Repository
managers are useful in multiple ways:

They provide the ability to configure proxies between your organization and remote Maven
repositories. This provides a number of benefits, including faster and more efficient
deployments and a better level of control over what is downloaded by Maven.

They provide deployment destinations for your own generated artifacts, allowing collaboration
between different development teams across an organization.

For more information about Maven repository managers, see Best Practice - Using a Repository
Manager.

Commonly used Maven repository managers

Sonatype Nexus

See Sonatype Nexus documentation for more information about Nexus.

Artifactory

See JFrog Artifactory documentation for more information about Artifactory.

Apache Archiva

See Apache Archiva: The Build Artifact Repository Manager for more information about Apache
Archiva.

NOTE

In an enterprise environment, where a repository manager is usually used, Maven should
query all artifacts for all projects using this manager. Because Maven uses all declared
repositories to find missing artifacts, if it can not find what it is looking for, it will try and
look for it in the repository central (defined in the built-in parent POM). To override this
central location, you can add a definition with central so that the default repository
central is now your repository manager as well. This works well for established projects,
but for clean or 'new' projects it causes a problem as it creates a cyclic dependency.

2.2. INSTALL MAVEN AND THE JBOSS EAP MAVEN REPOSITORY

2.2.1. Download and Install Maven

Follow these steps to download and install Maven:

If you are using Red Hat CodeReady Studio to build and deploy your applications, skip this

 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
 <activeProfiles>
 <!-- Optionally, make the repository active by default -->
 <activeProfile>jboss-eap-maven-repository</activeProfile>
 </activeProfiles>
</settings>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

15

http://maven.apache.org/xsd/settings-1.0.0.xsd
http://maven.apache.org/repository-management.html
http://www.sonatype.org/nexus/
https://www.jfrog.com/artifactory/
http://archiva.apache.org/

If you are using Red Hat CodeReady Studio to build and deploy your applications, skip this
procedure. Maven is distributed with Red Hat CodeReady Studio.

If you are using the Maven command line to build and deploy your applications to JBoss EAP,
you must download and install Maven.

1. Go to Apache Maven Project - Download Maven and download the latest distribution for
your operating system.

2. See the Maven documentation for information on how to download and install Apache
Maven for your operating system.

2.2.2. Download the JBoss EAP Maven Repository

You can use either method to download the JBoss EAP Maven repository:

Download the JBoss EAP Maven repository ZIP file .

Download the JBoss EAP Maven repository using the Offliner application .

2.2.2.1. Download the JBoss EAP Maven Repository ZIP File

Follow these steps to download the JBoss EAP Maven repository.

1. Log in to the JBoss EAP download page on the Red Hat Customer Portal.

2. Select 7.2 in the Version drop-down menu.

3. Find the Red Hat JBoss Enterprise Application Platform 7.2 Maven Repository entry in the
list and click Download to download a ZIP file containing the repository.

4. Save the ZIP file to the desired directory.

5. Extract the ZIP file.

2.2.2.2. Download the JBoss EAP Maven Repository with the Offliner Application

The Offliner application is available as an alternative option to download the Maven artifacts for
developing JBoss EAP applications using the Red Hat Maven repository.

IMPORTANT

The process of downloading the JBoss EAP Maven repository using the Offliner
application is provided as Technology Preview only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

1. Log in to the JBoss EAP download page on the Red Hat Customer Portal.

2. Select 7.2 in the Version drop-down menu.

3. Find the Red Hat JBoss Enterprise Application Platform Red Hat JBoss Enterprise

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

16

http://maven.apache.org/download.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform&downloadType=distributions
https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform&downloadType=distributions

3. Find the Red Hat JBoss Enterprise Application Platform Red Hat JBoss Enterprise
Application Platform 7.2 Maven Repository Offliner Content List entry in the list and click
Download.

4. Save the text file to the desired directory.

NOTE

This file does not contain license information. The artifacts downloaded by the
Offliner application have the same licenses as specified in the Maven repository
ZIP file that is distributed with JBoss EAP.

5. Download the Offliner application from the Maven Central Repository.

6. Run the Offliner application using the following command:

$ java -jar offliner.jar -r http://repository.redhat.com/ga/ -d DOWNLOAD_FOLDER jboss-eap-
7.2.0-maven-repository-content-with-sha256-checksums.txt

The artifacts from the JBoss EAP Maven repository are downloaded into the
DOWNLOAD_FOLDER directory.

See the Offliner documentation for more information on running the Offliner application.

NOTE

The generated JBoss EAP Maven repository will have the same content that is currently
available in the JBoss EAP Maven repository ZIP file. It will not contain artifacts available
in Maven Central repository.

2.2.3. Install the JBoss EAP Maven Repository

You can use the JBoss EAP Maven repository available online, or download and install it locally using any
one of the three listed methods:

Install the JBoss EAP Maven repository on your local file system. For detailed instructions, see
Install the JBoss EAP Maven Repository Locally .

Install the JBoss EAP Maven repository on the Apache Web Server. For more information, see
Install the JBoss EAP Maven Repository for Use with Apache httpd .

Install the JBoss EAP Maven repository using the Nexus Maven Repository Manager. For more
information, see Repository Management Using Nexus Maven Repository Manager .

2.2.3.1. Install the JBoss EAP Maven Repository Locally

Use this option to install the JBoss EAP Maven Repository to the local file system. This is easy to
configure and allows you to get up and running quickly on your local machine.

IMPORTANT

This method can help you become familiar with using Maven for development but is not
recommended for team production environments.

CHAPTER 2. USING MAVEN WITH JBOSS EAP

17

http://repo.maven.apache.org/maven2/com/redhat/red/offliner/offliner/1.3/offliner-1.3.jar
http://release-engineering.github.io/offliner/
http://books.sonatype.com/nexus-book/3.0/reference/admin.html#admin-repositories

Before downloading a new Maven repository, remove the cached repository/ subdirectory located
under the .m2/ directory before attempting to use it.

To install the JBoss EAP Maven repository to the local file system:

1. Make sure you have downloaded the JBoss EAP Maven repository ZIP file to your local file
system.

2. Unzip the file on the local file system of your choosing.
This creates a new jboss-eap-7.2.0.GA-maven-repository/ directory, which contains the Maven
repository in a subdirectory named maven-repository/.

IMPORTANT

If you want to use an older local repository, you must configure it separately in the Maven
settings.xml configuration file. Each local repository must be configured within its own
<repository> tag.

2.2.3.2. Install the JBoss EAP Maven Repository for Use with Apache httpd

Installing the JBoss EAP Maven Repository for use with Apache httpd is a good option for multi-user
and cross-team development environments because any developer that can access the web server can
also access the Maven repository.

Before installing the JBoss EAP Maven Repository, you must first configure Apache httpd. See Apache
HTTP Server Project documentation for instructions.

1. Ensure that you have the JBoss EAP Maven repository ZIP file downloaded to your local file
system.

2. Unzip the file in a directory that is web accessible on the Apache server.

3. Configure Apache to allow read access and directory browsing in the created directory.
This configuration allows a multi-user environment to access the Maven repository on Apache
httpd.

2.3. USE THE MAVEN REPOSITORY

2.3.1. Configure the JBoss EAP Maven Repository

Overview

There are two approaches to direct Maven to use the JBoss EAP Maven Repository in your project:

You can configure the repositories in the Maven global or user settings.

You can configure the repositories in the project’s POM file.

Configure the JBoss EAP Maven Repository Using the Maven Settings
This is the recommended approach. Maven settings used with a repository manager or repository on a
shared server provide better control and manageability of projects. Settings also provide the ability to
use an alternative mirror to redirect all lookup requests for a specific repository to your repository
manager without changing the project files. For more information about mirrors, see
http://maven.apache.org/guides/mini/guide-mirror-settings.html.

This method of configuration applies across all Maven projects, as long as the project POM file does not

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

18

http://httpd.apache.org/
http://maven.apache.org/guides/mini/guide-mirror-settings.html

This method of configuration applies across all Maven projects, as long as the project POM file does not
contain repository configuration.

This section describes how to configure the Maven settings. You can configure the Maven install global
settings or the user’s install settings.

Configure the Maven Settings File

1. Locate the Maven settings.xml file for your operating system. It is usually located in the
${user.home}/.m2/ directory.

For Linux or Mac, this is ~/.m2/

For Windows, this is \Documents and Settings\.m2\ or \Users\.m2\

2. If you do not find a settings.xml file, copy the settings.xml file from the
${user.home}/.m2/conf/ directory into the ${user.home}/.m2/ directory.

3. Copy the following XML into the <profiles> element of the settings.xml file. Determine the
URL of the JBoss EAP repository and replace JBOSS_EAP_REPOSITORY_URL with it.

The following is an example configuration that accesses the online JBoss EAP Maven
repository.

<!-- Configure the JBoss Enterprise Maven repository -->
<profile>
 <id>jboss-enterprise-maven-repository</id>
 <repositories>
 <repository>
 <id>jboss-enterprise-maven-repository</id>
 <url>JBOSS_EAP_REPOSITORY_URL</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-enterprise-maven-repository</id>
 <url>JBOSS_EAP_REPOSITORY_URL</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<!-- Configure the JBoss Enterprise Maven repository -->
<profile>
 <id>jboss-enterprise-maven-repository</id>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

19

4. Copy the following XML into the <activeProfiles> element of the settings.xml file.

5. If you modify the settings.xml file while Red Hat CodeReady Studio is running, you must
refresh the user settings.

a. From the menu, choose Window → Preferences.

b. In the Preferences window, expand Maven and choose User Settings.

c. Click the Update Settings button to refresh the Maven user settings in Red Hat
CodeReady Studio.

IMPORTANT

If your Maven repository contains outdated artifacts, you might encounter one of the
following Maven error messages when you build or deploy your project:

Missing artifact ARTIFACT_NAME

[ERROR] Failed to execute goal on project PROJECT_NAME; Could not resolve
dependencies for PROJECT_NAME

To resolve the issue, delete the cached version of your local repository to force a
download of the latest Maven artifacts. The cached repository is located here:
${user.home}/.m2/repository/

Configure the JBoss EAP Maven Repository Using the Project POM

 <repositories>
 <repository>
 <id>jboss-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<activeProfile>jboss-enterprise-maven-repository</activeProfile>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

20

WARNING

You should avoid this method of configuration as it overrides the global and user
Maven settings for the configured project.

You must plan carefully if you decide to configure repositories using project POM file. Transitively
included POMs are an issue with this type of configuration since Maven has to query the external
repositories for missing artifacts and this slows the build process. It can also cause you to lose control
over where your artifacts are coming from.

NOTE

The URL of the repository will depend on where the repository is located: on the file
system, or web server. For information on how to install the repository, see: Install the
JBoss EAP Maven Repository. The following are examples for each of the installation
options:

File System

file:///path/to/repo/jboss-eap-maven-repository

Apache Web Server

http://intranet.acme.com/jboss-eap-maven-repository/

Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jboss-eap-maven-repository

Configuring the Project’s POM File

1. Open your project’s pom.xml file in a text editor.

2. Add the following repository configuration. If there is already a <repositories> configuration in
the file, then add the <repository> element to it. Be sure to change the <url> to the actual
repository location.

<repositories>
 <repository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>JBOSS_EAP_REPOSITORY_URL</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
</repositories>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

21

3. Add the following plug-in repository configuration. If there is already a <pluginRepositories>
configuration in the file, then add the <pluginRepository> element to it.

Determine the URL of the JBoss EAP Repository
The repository URL depends on where the repository is located. You can configure Maven to use any of
the following repository locations.

To use the online JBoss EAP Maven repository, specify the following URL:
https://maven.repository.redhat.com/ga/

To use a JBoss EAP Maven repository installed on the local file system, you must download the
repository and then use the local file path for the URL. For example: file:///path/to/repo/jboss-
eap-7.2.0.GA-maven-repository/maven-repository/

If you install the repository on an Apache Web Server, the repository URL will be similar to the
following: http://intranet.acme.com/jboss-eap-7.2.0.GA-maven-repository/maven-repository/

If you install the JBoss EAP Maven repository using the Nexus Repository Manager, the URL will
look something like the following: https://intranet.acme.com/nexus/content/repositories/jboss-
eap-7.2.0.GA-maven-repository/maven-repository/

NOTE

Remote repositories are accessed using common protocols such as http:// for a
repository on an HTTP server or file:// for a repository on a file server.

2.3.2. Configure Maven for Use with Red Hat CodeReady Studio

The artifacts and dependencies needed to build and deploy applications to Red Hat JBoss Enterprise
Application Platform are hosted on a public repository. You must direct Maven to use this repository
when you build your applications. This section covers the steps to configure Maven if you plan to build
and deploy applications using Red Hat CodeReady Studio.

Maven is distributed with Red Hat CodeReady Studio, so it is not necessary to install it separately.
However, you must configure Maven for use by the Java EE Web Project wizard for deployments to
JBoss EAP. The procedure below demonstrates how to configure Maven for use with JBoss EAP by
editing the Maven configuration file from within Red Hat CodeReady Studio.

Configure Maven in Red Hat CodeReady Studio

1. Click Window → Preferences, expand JBoss Tools and select JBoss Maven Integration.

Figure 2.1. JBoss Maven Integration Pane in the Preferences Window

<pluginRepositories>
 <pluginRepository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>JBOSS_EAP_REPOSITORY_URL</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

22

https://maven.repository.redhat.com/ga/

Figure 2.1. JBoss Maven Integration Pane in the Preferences Window

2. Click Configure Maven Repositories.

3. Click Add Repository to configure the JBoss Enterprise Maven repository. Complete the Add
Maven Repository dialog as follows:

a. Set the Profile ID, Repository ID, and Repository Name values to jboss-ga-repository.

b. Set the Repository URL value to http://maven.repository.redhat.com/ga.

c. Click the Active by default checkbox to enable the Maven repository.

d. Click OK.

Figure 2.2. Add Maven Repository

CHAPTER 2. USING MAVEN WITH JBOSS EAP

23

http://maven.repository.redhat.com/ga

Figure 2.2. Add Maven Repository

4. Review the repositories and click Finish.

5. You are prompted with the message "Are you sure you want to update the file
MAVEN_HOME/settings.xml?". Click Yes to update the settings. Click OK to close the dialog.

The JBoss EAP Maven repository is now configured for use with Red Hat CodeReady Studio.

2.3.3. Manage Project Dependencies

This section describes the usage of Bill of Materials (BOM) POMs for Red Hat JBoss Enterprise
Application Platform.

A BOM is a Maven pom.xml (POM) file that specifies the versions of all runtime dependencies for a
given module. Version dependencies are listed in the dependency management section of the file.

A project uses a BOM by adding its groupId:artifactId:version (GAV) to the dependency management
section of the project pom.xml file and specifying the <scope>import</scope> and
<type>pom</type> element values.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

24

NOTE

In many cases, dependencies in project POM files use the provided scope. This is
because these classes are provided by the application server at runtime and it is not
necessary to package them with the user application.

Supported Maven Artifacts
As part of the product build process, all runtime components of JBoss EAP are built from source in a
controlled environment. This helps to ensure that the binary artifacts do not contain any malicious code,
and that they can be supported for the life of the product. These artifacts can be easily identified by the
-redhat version qualifier, for example 1.0.0-redhat-1.

Adding a supported artifact to the build configuration pom.xml file ensures that the build is using the
correct binary artifact for local building and testing. Note that an artifact with a -redhat version is not
necessarily part of the supported public API, and might change in future revisions. For information about
the public supported API, see the Javadoc documentation included in the release.

For example, to use the supported version of Hibernate, add something similar to the following to your
build configuration.

Notice that the above example includes a value for the <version/> field. However, it is recommended to
use Maven dependency management for configuring dependency versions.

Dependency Management
Maven includes a mechanism for managing the versions of direct and transitive dependencies
throughout the build. For general information about using dependency management, see the Apache
Maven Project: Introduction to the Dependency Mechanism .

Using one or more supported Red Hat dependencies directly in your build does not guarantee that all
transitive dependencies of the build will be fully supported Red Hat artifacts. It is common for Maven
builds to use a mix of artifact sources from the Maven central repository and other Maven repositories.

There is a dependency management BOM included in the JBoss EAP Maven repository, which specifies
all the supported JBoss EAP binary artifacts. This BOM can be used in a build to ensure that Maven will
prioritize supported JBoss EAP dependencies for all direct and transitive dependencies in the build. In
other words, transitive dependencies will be managed to the correct supported dependency version
where applicable. The version of this BOM matches the version of the JBoss EAP release.

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>5.3.1.Final-redhat-1</version>
 <scope>provided</scope>
</dependency>

<dependencyManagement>
 <dependencies>
 ...
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>eap-runtime-artifacts</artifactId>
 <version>7.2.0.GA</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

25

https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/7.2/javadocs/
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

NOTE

In JBoss EAP 7 the name of this BOM was changed from eap6-supported-artifacts to
eap-runtime-artifacts. The purpose of this change is to make it more clear that the
artifacts in this POM are part of the JBoss EAP runtime, but are not necessarily part of
the supported public API. Some of the JARs contain internal API and functionality, which
might change between releases.

JBoss EAP Java EE Specs BOM
The jboss-javaee-8.0 BOM contains the Java EE Specification API JARs used by JBoss EAP.

To use this BOM in a project, first add a dependency for the jboss-javaee-8.0 BOM in the
dependencyManagement section of the POM file, specifying org.jboss.spec for its groupId, and then
add the dependencies for the specific APIs needed by the application. These dependencies do not
require a version and use a scope of provided because the APIs are included in the jboss-javaee-8.0
BOM.

The following example uses the 1.0.0.Alpha1 version of the jboss-javaee-8.0 BOM, to add
dependencies for the Servlet and JSP APIs.

NOTE

 ...
 </dependencies>
</dependencyManagement>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-javaee-8.0</artifactId>
 <version>1.0.0.Alpha1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.jboss.spec.javax.servlet</groupId>
 <artifactId>jboss-servlet-api_4.0_spec</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.spec.javax.servlet.jsp</groupId>
 <artifactId>jboss-jsp-api_2.3_spec</artifactId>
 <scope>provided</scope>
 </dependency>
 ...
</dependencies>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

26

NOTE

JBoss EAP packages and provides BOMs for the APIs of most of the product
components. Many of these BOMs are conveniently packaged into one larger jboss-eap-
javaee8 BOM with a groupId of org.jboss.bom. The jboss-javaee-8.0 BOM, whose
groupId is org.jboss.spec, is included in this larger BOM. This means that if you are using
additional JBoss EAP dependencies that are packaged in this BOM, you can just add the
one jboss-eap-javaee8 BOM to your project’s POM file rather than separately adding
the jboss-javaee-8.0 and other BOM dependencies.

JBoss EAP BOMs Available for Application Development
The following table lists the Maven BOMs that are available for application development.

Table 2.1. JBoss BOMs

BOM Artifact ID Use Case

jboss-eap-javaee8 Supported JBoss EAP Java EE 8 APIs plus additional JBoss EAP API
JARs.

jboss-eap-javaee8-with-spring4 jboss-eap-javaee8 plus recommended Spring 4 versions.

jboss-eap-javaee8-with-tools jboss-eap-javaee8 plus development tools such as Arquillian.

NOTE

These BOMs from JBoss EAP 6 have been consolidated into fewer BOMs to make usage
simpler for most use cases. The Hibernate, logging, transactions, messaging, and other
public API JARs are now included in the jboss-eap-javaee8 BOM instead of a requiring a
separate BOM for each case.

The following example uses the 7.2.0.GA version of the jboss-eap-javaee8 BOM.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-javaee8</artifactId>
 <version>7.2.0.GA</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <scope>provided</scope>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

27

JBoss EAP Client BOMs
The client BOMs do not create a dependency management section or define dependencies. Instead,
they are an aggregate of other BOMs and are used to package the set of dependencies necessary for a
remote client use case.

The wildfly-ejb-client-bom and wildfly-jms-client-bom BOMs are managed by the jboss-eap-javaee8
BOM, so there is no need to manage the versions in your project dependencies.

The following is an example of how to add the wildfly-ejb-client-bom and wildfly-jms-client-bom client
BOM dependencies to your project.

For more information about Maven Dependencies and BOM POM files, see Apache Maven Project -
Introduction to the Dependency Mechanism.

 </dependency>
 ...
</dependencies>

<dependencyManagement>
 <dependencies>
 <!-- JBoss stack of the Java EE APIs and related components. -->
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-javaee8</artifactId>
 <version>7.2.0.GA</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 ...
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.jboss.eap</groupId>
 <artifactId>wildfly-ejb-client-bom</artifactId>
 <type>pom</type>
 </dependency>
 <dependency>
 <groupId>org.jboss.eap</groupId>
 <artifactId>wildfly-jms-client-bom</artifactId>
 <type>pom</type>
 </dependency>
 ...
</dependencies>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

28

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

CHAPTER 3. CLASS LOADING AND MODULES

3.1. INTRODUCTION

3.1.1. Overview of Class Loading and Modules

JBoss EAP uses a modular class loading system for controlling the class paths of deployed applications.
This system provides more flexibility and control than the traditional system of hierarchical class loaders.
Developers have fine-grained control of the classes available to their applications, and can configure a
deployment to ignore classes provided by the application server in favor of their own.

The modular class loader separates all Java classes into logical groups called modules. Each module can
define dependencies on other modules in order to have the classes from that module added to its own
class path. Because each deployed JAR and WAR file is treated as a module, developers can control the
contents of their application’s class path by adding module configuration to their application.

3.1.2. Class Loading in Deployments

For the purposes of class loading, JBoss EAP treats all deployments as modules. These are called
dynamic modules. Class loading behavior varies according to the deployment type.

WAR Deployment

A WAR deployment is considered to be a single module. Classes in the WEB-INF/lib directory are
treated the same as classes in the WEB-INF/classes directory. All classes packaged in the WAR will
be loaded with the same class loader.

EAR Deployment

EAR deployments are made up of more than one module, and are defined by the following rules:

1. The lib/ directory of the EAR is a single module called the parent module.

2. Each WAR deployment within the EAR is a single module.

3. Each EJB JAR deployment within the EAR is a single module.

Subdeployment modules, for example the WAR and JAR deployments within the EAR, have an
automatic dependency on the parent module. However, they do not have automatic dependencies on
each other. This is called subdeployment isolation and can be disabled per deployment or for the entire
application server.

Explicit dependencies between subdeployment modules can be added by the same means as any other
module.

3.1.3. Class Loading Precedence

The JBoss EAP modular class loader uses a precedence system to prevent class loading conflicts.

During deployment, a complete list of packages and classes is created for each deployment and each of
its dependencies. The list is ordered according to the class loading precedence rules. When loading
classes at runtime, the class loader searches this list, and loads the first match. This prevents multiple
copies of the same classes and packages within the deployments class path from conflicting with each
other.

CHAPTER 3. CLASS LOADING AND MODULES

29

The class loader loads classes in the following order, from highest to lowest:

1. Implicit dependencies: These dependencies are automatically added by JBoss EAP, such as the
JAVA EE APIs. These dependencies have the highest class loader precedence because they
contain common functionality and APIs that are supplied by JBoss EAP.
See Implicit Module Dependencies for complete details about each implicit dependency.

2. Explicit dependencies: These dependencies are manually added to the application
configuration using the application’s MANIFEST.MF file or the new optional JBoss deployment
descriptor jboss-deployment-structure.xml file.
See Add an Explicit Module Dependency to a Deployment to learn how to add explicit
dependencies.

3. Local resources: These are class files packaged up inside the deployment itself, for example in
the WEB-INF/classes or WEB-INF/lib directories of a WAR file.

4. Inter-deployment dependencies: These are dependencies on other deployments in a EAR
deployment. This can include classes in the lib directory of the EAR or classes defined in other
EJB jars.

3.1.4. jboss-deployment-structure.xml

The jboss-deployment-structure.xml file is an optional deployment descriptor for JBoss EAP. This
deployment descriptor provides control over class loading in the deployment.

The XML schema for this deployment descriptor is located in the product install directory under
EAP_HOME/docs/schema/jboss-deployment-structure-1_2.xsd.

The key tasks that can be performed using this deployment descriptor are:

Defining explicit module dependencies.

Preventing specific implicit dependencies from loading.

Defining additional modules from the resources of that deployment.

Changing the subdeployment isolation behavior in that EAR deployment.

Adding additional resource roots to a module in an EAR.

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT

Explicit module dependencies can be added to applications to add the classes of those modules to the
class path of the application at deployment.

NOTE

JBoss EAP automatically adds some dependencies to deployments. See Implicit Module
Dependencies for details.

Prerequisites

1. A working software project that you want to add a module dependency to.

2. You must know the name of the module being added as a dependency. See Included Modules

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

30

for the list of static modules included with JBoss EAP. If the module is another deployment,
then see Dynamic Module Naming in the JBoss EAP Configuration Guide to determine the
module name.

Dependencies can be configured using two methods:

Adding entries to the MANIFEST.MF file of the deployment.

Adding entries to the jboss-deployment-structure.xml deployment descriptor.

Add a Dependency Configuration to MANIFEST.MF
Maven projects can be configured to create the required dependency entries in the MANIFEST.MF file.

1. If the project does not have one, create a file called MANIFEST.MF. For a web application
(WAR), add this file to the META-INF/ directory. For an EJB archive (JAR), add it to the META-
INF/ directory.

2. Add a dependencies entry to the MANIFEST.MF file with a comma-separated list of
dependency module names:

Dependencies: org.javassist, org.apache.velocity, org.antlr

To make a dependency optional, append optional to the module name in the dependency
entry:

Dependencies: org.javassist optional, org.apache.velocity

A dependency can be exported by appending export to the module name in the
dependency entry:

Dependencies: org.javassist, org.apache.velocity export

The annotations flag is needed when the module dependency contains annotations that
need to be processed during annotation scanning, such as when declaring EJB interceptors.
Without this, an EJB interceptor declared in a module cannot be used in a deployment.
There are other situations involving annotation scanning when this is needed too.

Dependencies: org.javassist, test.module annotations

By default items in the META-INF of a dependency are not accessible. The services
dependency makes items from META-INF/services accessible so that services in the
modules can be loaded.

Dependencies: org.javassist, org.hibernate services

To scan a beans.xml file and make its resulting beans available to the application, the meta-
inf dependency can be used.

Dependencies: org.javassist, test.module meta-inf

Add a Dependency Configuration to the jboss-deployment-structure.xml

1. If the application does not have one, create a new file called jboss-deployment-structure.xml

CHAPTER 3. CLASS LOADING AND MODULES

31

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#dynamic_module_naming

1. If the application does not have one, create a new file called jboss-deployment-structure.xml
and add it to the project. This file is an XML file with the root element of <jboss-deployment-
structure>.

For a web application (WAR), add this file to the WEB-INF/ directory. For an EJB archive (JAR),
add it to the META-INF/ directory.

2. Create a <deployment> element within the document root and a <dependencies> element
within that.

3. Within the <dependencies> node, add a module element for each module dependency. Set the
name attribute to the name of the module.

A dependency can be made optional by adding the optional attribute to the module entry
with the value of true. The default value for this attribute is false.

A dependency can be exported by adding the export attribute to the module entry with the
value of true. The default value for this attribute is false.

When the module dependency contains annotations that need to be processed during
annotation scanning, the annotations flag is used.

The services dependency specifies whether and how services found in this dependency
are used. The default is none. Specifying a value of import for this attribute is equivalent to
adding a filter at the end of the import filter list which includes the META-INF/services
path from the dependency module. Setting a value of export for this attribute is equivalent
to the same action on the export filter list.

The META-INF dependency specifies whether and how META-INF entries in this
dependency are used. The default is none. Specifying a value of import for this attribute is
equivalent to adding a filter at the end of the import filter list which includes the META-
INF/** path from the dependency module. Setting a value of export for this attribute is
equivalent to the same action on the export filter list.

Example: jboss-deployment-structure.xml File with Two Dependencies

<jboss-deployment-structure>

</jboss-deployment-structure>

<module name="org.javassist" />

<module name="org.javassist" optional="true" />

<module name="org.javassist" export="true" />

<module name="test.module" annotations="true" />

<module name="org.hibernate" services="import" />

<module name="test.module" meta-inf="import" />

<jboss-deployment-structure>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

32

JBoss EAP adds the classes from the specified modules to the class path of the application when it is
deployed.

Creating a Jandex Index
The annotations flag requires that the module contain a Jandex index. In JBoss EAP 7.2, this is
generated automatically. However, adding the index manually is still recommended for performance
reasons because automatic scanning can be a long process that consumes the CPU and increases the
deployment time.

To add the index manually, create a new "index JAR" to add to the module. Use the Jandex JAR to build
the index, and then insert it into a new JAR file. In the current implementation, when an index is added to
a JAR file inside a module, no scanning at all is executed.

Creating a Jandex index::

1. Create the index:

java -jar modules/system/layers/base/org/jboss/jandex/main/jandex-jandex-2.0.0.Final-
redhat-1.jar $JAR_FILE

2. Create a temporary working space:

mkdir /tmp/META-INF

3. Move the index file to the working directory

mv $JAR_FILE.ifx /tmp/META-INF/jandex.idx

a. Option 1: Include the index in a new JAR file

jar cf index.jar -C /tmp META-INF/jandex.idx

Then place the JAR in the module directory and edit module.xml to add it to the resource
roots.

b. Option 2: Add the index to an existing JAR

java -jar /modules/org/jboss/jandex/main/jandex-1.0.3.Final-redhat-1.jar -m $JAR_FILE

4. Tell the module import to utilize the annotation index, so that annotation scanning can find the
annotations.

a. Option 1: If you are adding a module dependency using MANIFEST.MF, add annotations
after the module name. For example change:

Dependencies: test.module, other.module

 <deployment>
 <dependencies>
 <module name="org.javassist" />
 <module name="org.apache.velocity" export="true" />
 </dependencies>
 </deployment>
</jboss-deployment-structure>

CHAPTER 3. CLASS LOADING AND MODULES

33

to

Dependencies: test.module annotations, other.module

b. Option 2: If you are adding a module dependency using jboss-deployment-structure.xml
add annotations="true" on the module dependency.

NOTE

An annotation index is required when an application wants to use annotated
Java EE components defined in classes within the static module. In JBoss
EAP 7.2, annotation indexes for static modules are automatically generated,
so you do not need to create them. However, you must tell the module import
to use the annotations by adding the dependencies to either the
MANIFEST.MF or the jboss-deployment-structure.xml file.

3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN

Maven projects using the Maven JAR, EJB, or WAR packaging plug-ins can generate a MANIFEST.MF
file with a Dependencies entry. This does not automatically generate the list of dependencies, but only
creates the MANIFEST.MF file with the details specified in the pom.xml.

Before generating the MANIFEST.MF entries using Maven, you will require:

A working Maven project, which is using one of the JAR, EJB, or WAR plug-ins (maven-jar-
plugin, maven-ejb-plugin, or maven-war-plugin).

You must know the name of the project’s module dependencies. Refer to Included Modules for
the list of static modules included with JBoss EAP. If the module is another deployment, then
refer to Dynamic Module Naming in the JBoss EAP Configuration Guide to determine the
module name.

Generate a MANIFEST.MF File Containing Module Dependencies

1. Add the following configuration to the packaging plug-in configuration in the project’s pom.xml
file.

2. Add the list of module dependencies to the <Dependencies> element. Use the same format
that is used when adding the dependencies to the MANIFEST.MF file:

The optional and export attributes can also be used here:

<configuration>
 <archive>
 <manifestEntries>
 <Dependencies></Dependencies>
 </manifestEntries>
 </archive>
</configuration>

<Dependencies>org.javassist, org.apache.velocity</Dependencies>

<Dependencies>org.javassist optional, org.apache.velocity export</Dependencies>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

34

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#dynamic_module_naming

3. Build the project using the Maven assembly goal:

When the project is built using the assembly goal, the final archive contains a MANIFEST.MF file
with the specified module dependencies.

Example: Configured Module Dependencies in pom.xml

NOTE

The example here shows the WAR plug-in but it also works with the JAR and EJB
plug-ins (maven-jar-plugin and maven-ejb-plugin).

3.4. PREVENT A MODULE BEING IMPLICITLY LOADED

You can configure a deployable application to prevent implicit dependencies from being loaded. This
can be useful when an application includes a different version of a library or framework than the one that
will be provided by the application server as an implicit dependency.

Prerequisites

A working software project that you want to exclude an implicit dependency from.

You must know the name of the module to exclude. Refer to Implicit Module Dependencies for
a list of implicit dependencies and their conditions.

Add dependency exclusion configuration to jboss-deployment-structure.xml

1. If the application does not have one, create a new file called jboss-deployment-structure.xml
and add it to the project. This is an XML file with the root element of <jboss-deployment-
structure>.

For a web application (WAR), add this file to the WEB-INF/ directory. For an EJB archive (JAR),
add it to the META-INF/ directory.

[Localhost]$ mvn assembly:single

<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <archive>
 <manifestEntries>
 <Dependencies>org.javassist, org.apache.velocity</Dependencies>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
</plugins>

<jboss-deployment-structure>

</jboss-deployment-structure>

CHAPTER 3. CLASS LOADING AND MODULES

35

2. Create a <deployment> element within the document root and an <exclusions> element
within that.

3. Within the exclusions element, add a <module> element for each module to be excluded. Set
the name attribute to the name of the module.

Example: Excluding Two Modules

3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT

Excluding a subsystem provides the same effect as removing the subsystem, but it applies only to a
single deployment. You can exclude a subsystem from a deployment by editing the jboss-deployment-
structure.xml configuration file.

Exclude a Subsystem

1. Edit the jboss-deployment-structure.xml file.

2. Add the following XML inside the <deployment> tags:

3. Save the jboss-deployment-structure.xml file.

The subsystem’s deployment unit processors will no longer run on the deployment.

Example: jboss-deployment-structure.xml File

<deployment>
 <exclusions>

 </exclusions>
</deployment>

<module name="org.javassist" />

<jboss-deployment-structure>
 <deployment>
 <exclusions>
 <module name="org.javassist" />
 <module name="org.dom4j" />
 </exclusions>
 </deployment>
</jboss-deployment-structure>

<exclude-subsystems>
 <subsystem name="SUBSYSTEM_NAME" />
</exclude-subsystems>

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>
 <deployment>
 <exclude-subsystems>
 <subsystem name="jaxrs" />
 </exclude-subsystems>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

36

3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A
DEPLOYMENT

3.6.1. Programmatically Load Classes and Resources in a Deployment

You can programmatically find or load classes and resources in your application code. The method you
choose depends on a number of factors. This section describes the methods available and provides
guidelines for when to use them.

Load a Class Using the Class.forName() Method

You can use the Class.forName() method to programmatically load and initialize classes. This method
has two signatures:

Class.forName(String className):

This signature takes only one parameter, the name of the class you need to load. With this

 <exclusions>
 <module name="org.javassist" />
 </exclusions>
 <dependencies>
 <module name="deployment.javassist.proxy" />
 <module name="deployment.myjavassist" />
 <module name="myservicemodule" services="import"/>
 </dependencies>
 <resources>
 <resource-root path="my-library.jar" />
 </resources>
 </deployment>
 <sub-deployment name="myapp.war">
 <dependencies>
 <module name="deployment.myear.ear.myejbjar.jar" />
 </dependencies>
 <local-last value="true" />
 </sub-deployment>
 <module name="deployment.myjavassist" >
 <resources>
 <resource-root path="javassist.jar" >
 <filter>
 <exclude path="javassist/util/proxy" />
 </filter>
 </resource-root>
 </resources>
 </module>
 <module name="deployment.javassist.proxy" >
 <dependencies>
 <module name="org.javassist" >
 <imports>
 <include path="javassist/util/proxy" />
 <exclude path="/**" />
 </imports>
 </module>
 </dependencies>
 </module>
</jboss-deployment-structure>

CHAPTER 3. CLASS LOADING AND MODULES

37

This signature takes only one parameter, the name of the class you need to load. With this
method signature, the class is loaded by the class loader of the current class and initializes the
newly loaded class by default.

Class.forName(String className, boolean initialize, ClassLoader loader):
This signature expects three parameters: the class name, a boolean value that specifies whether
to initialize the class, and the ClassLoader that should load the class.

The three argument signature is the recommended way to programmatically load a class. This signature
allows you to control whether you want the target class to be initialized upon load. It is also more efficient
to obtain and provide the class loader because the JVM does not need to examine the call stack to
determine which class loader to use. Assuming the class containing the code is named CurrentClass,
you can obtain the class’s class loader using CurrentClass.class.getClassLoader() method.

The following example provides the class loader to load and initialize the TargetClass class:

Find All Resources with a Given Name

If you know the name and path of a resource, the best way to load it directly is to use the standard Java
Development Kit (JDK) Class or ClassLoader API.

Load a single resource.
To load a single resource located in the same directory as your class or another class in your
deployment, you can use the Class.getResourceAsStream() method.

Load all instances of a single resource.
To load all instances of a single resource that are visible to your deployment’s class loader, use
the Class.getClassLoader().getResources(String resourceName) method, where
resourceName is the fully qualified path of the resource. This method returns an Enumeration
of all URL objects for resources accessible by the class loader with the given name. You can
then iterate through the array of URLs to open each stream using the openStream() method.

The following example loads all instances of a resource and iterates through the results.

Class<?> targetClass = Class.forName("com.myorg.util.TargetClass", true,
CurrentClass.class.getClassLoader());

InputStream inputStream =
CurrentClass.class.getResourceAsStream("targetResourceName");

Enumeration<URL> urls =
CurrentClass.class.getClassLoader().getResources("full/path/to/resource");
while (urls.hasMoreElements()) {
 URL url = urls.nextElement();
 InputStream inputStream = null;
 try {
 inputStream = url.openStream();
 // Process the inputStream
 ...
 } catch(IOException ioException) {
 // Handle the error
 } finally {
 if (inputStream != null) {
 try {
 inputStream.close();

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

38

NOTE

Because the URL instances are loaded from local storage, it is not necessary to
use the openConnection() or other related methods. Streams are much simpler
to use and minimize the complexity of the code.

Load a class file from the class loader.
If a class has already been loaded, you can load the class file that corresponds to that class using
the following syntax:

If the class is not yet loaded, you must use the class loader and translate the path:

3.6.2. Programmatically Iterate Resources in a Deployment

The JBoss Modules library provides several APIs for iterating all deployment resources. The JavaDoc for
the JBoss Modules API is located here: http://docs.jboss.org/jbossmodules/1.3.0.Final/api/. To use
these APIs, you must add the following dependency to the MANIFEST.MF:

Dependencies: org.jboss.modules

It is important to note that while these APIs provide increased flexibility, they also run much more slowly
than a direct path lookup.

This section describes some of the ways you can programmatically iterate through resources in your
application code.

List resources within a deployment and within all imports.
There are times when it is not possible to look up resources by the exact path. For example, the
exact path might not be known or you might need to examine more than one file in a given path.
In this case, the JBoss Modules library provides several APIs for iterating all deployment
resources. You can iterate through resources in a deployment by utilizing one of two methods.

Iterate all resources found in a single module.
The ModuleClassLoader.iterateResources() method iterates all the resources within this
module class loader. This method takes two arguments: the starting directory name to
search and a boolean that specifies whether it should recurse into subdirectories.

The following example demonstrates how to obtain the ModuleClassLoader and obtain the

 } catch (Exception e) {
 // ignore
 }
 }
 }
}

InputStream inputStream =
CurrentClass.class.getResourceAsStream(TargetClass.class.getSimpleName() + ".class");

String className = "com.myorg.util.TargetClass"
InputStream inputStream =
CurrentClass.class.getClassLoader().getResourceAsStream(className.replace('.', '/') +
".class");

CHAPTER 3. CLASS LOADING AND MODULES

39

http://docs.jboss.org/jbossmodules/1.3.0.Final/api/

The following example demonstrates how to obtain the ModuleClassLoader and obtain the
iterator for resources in the bin/ directory, recursing into subdirectories.

The resultant iterator can be used to examine each matching resource and query its name
and size (if available), open a readable stream, or acquire a URL for the resource.

Iterate all resources found in a single module and imported resources.
The Module.iterateResources() method iterates all the resources within this module class
loader, including the resources that are imported into the module. This method returns a
much larger set than the previous method. This method requires an argument, which is a
filter that narrows the result to a specific pattern. Alternatively, PathFilters.acceptAll() can
be supplied to return the entire set.

The following example demonstrates how to find the entire set of resources in this module,
including imports.

Find all resources that match a pattern.
If you need to find only specific resources within your deployment or within your deployment’s
full import set, you need to filter the resource iteration. The JBoss Modules filtering APIs give
you several tools to accomplish this.

Examine the full set of dependencies.
If you need to examine the full set of dependencies, you can use the
Module.iterateResources() method’s PathFilter parameter to check the name of each
resource for a match.

Examine deployment dependencies.
If you need to look only within the deployment, use the
ModuleClassLoader.iterateResources() method. However, you must use additional
methods to filter the resultant iterator. The PathFilters.filtered() method can provide a
filtered view of a resource iterator this case. The PathFilters class includes many static
methods to create and compose filters that perform various functions, including finding
child paths or exact matches, or matching an Ant-style "glob" pattern.

Additional code examples for filtering resources.
The following examples demonstrate how to filter resources based on different criteria.

Example: Find All Files Named messages.properties in Your Deployment

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources = moduleClassLoader.iterateResources("bin",true);

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.acceptAll());

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
PathFilters.filtered(PathFilters.match("**/messages.properties"),
moduleClassLoader.iterateResources("", true));

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

40

Example: Find All Files Named messages.properties in Your Deployment and Imports

Example: Find All Files Inside Any Directory Named my-resources in Your
Deployment

Example: Find All Files Named messages or errors in Your Deployment and Imports

Example: Find All Files in a Specific Package in Your Deployment

3.7. CLASS LOADING AND SUBDEPLOYMENTS

3.7.1. Modules and Class Loading in Enterprise Archives

Enterprise Archives (EAR) are not loaded as a single module like JAR or WAR deployments. They are
loaded as multiple unique modules.

The following rules determine what modules exist in an EAR:

The contents of the lib/ directory in the root of the EAR archive is a module. This is called the
parent module.

Each WAR and EJB JAR subdeployment is a module. These modules have the same behavior as
any other module as well as implicit dependencies on the parent module.

Subdeployments have implicit dependencies on the parent module and any other non-WAR
subdeployments.

The implicit dependencies on non-WAR subdeployments occur because JBoss EAP has subdeployment

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.match("**/message.properties"));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources = PathFilters.filtered(PathFilters.match("**/my-
resources/**"), moduleClassLoader.iterateResources("", true));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.any(PathFilters.match("**/messages"),
PathFilters.match("**/errors"));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
moduleClassLoader.iterateResources("path/form/of/packagename", false);

CHAPTER 3. CLASS LOADING AND MODULES

41

The implicit dependencies on non-WAR subdeployments occur because JBoss EAP has subdeployment
class loader isolation disabled by default. Dependencies on the parent module persist, regardless of
subdeployment class loader isolation.

IMPORTANT

No subdeployment ever gains an implicit dependency on a WAR subdeployment. Any
subdeployment can be configured with explicit dependencies on another subdeployment
as would be done for any other module.

Subdeployment class loader isolation can be enabled if strict compatibility is required. This can be
enabled for a single EAR deployment or for all EAR deployments. The Java EE specification
recommends that portable applications should not rely on subdeployments being able to access each
other unless dependencies are explicitly declared as Class-Path entries in the MANIFEST.MF file of
each subdeployment.

3.7.2. Subdeployment Class Loader Isolation

Each subdeployment in an Enterprise Archive (EAR) is a dynamic module with its own class loader. By
default, a subdeployment can access the resources of other subdeployments.

If a subdeployment is not to be allowed to access the resources of other subdeployments, strict
subdeployment isolation can be enabled.

3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR

This task shows you how to enable subdeployment class loader isolation in an EAR deployment by using
a special deployment descriptor in the EAR. This does not require any changes to be made to the
application server and does not affect any other deployments.

IMPORTANT

Even when subdeployment class loader isolation is disabled, it is not possible to add a
WAR deployment as a dependency.

1. Add the deployment descriptor file.
Add the jboss-deployment-structure.xml deployment descriptor file to the META-INF
directory of the EAR if it doesn’t already exist and add the following content:

<jboss-deployment-structure>

</jboss-deployment-structure>

2. Add the <ear-subdeployments-isolated> element.
Add the <ear-subdeployments-isolated> element to the jboss-deployment-structure.xml
file if it doesn’t already exist with the content of true.

<ear-subdeployments-isolated>true</ear-subdeployments-isolated>

Subdeployment class loader isolation is now enabled for this EAR deployment. This means that the
subdeployments of the EAR will not have automatic dependencies on each of the non-WAR
subdeployments.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

42

3.7.4. Configuring Session Sharing between Subdeployments in Enterprise Archives

JBoss EAP provides the ability to configure enterprise archives (EARs) to share sessions between WAR
module subdeployments contained in the EAR. This functionality is disabled by default and must be
explicitly enabled in the META-INF/jboss-all.xml file in the EAR.

IMPORTANT

Since this feature is not a standard servlet feature, your applications might not be
portable if this functionality is enabled.

To enable session sharing between WARs within an EAR, you need to declare a shared-session-config
element in the META-INF/jboss-all.xml of the EAR:

Example: META-INF/jboss-all.xml

The shared-session-config element is used to configure the shared session manager for all WARs
within the EAR. If the shared-session-config element is present, all WARs within the EAR will share the
same session manager. Changes made here will affect all the WARs contained within the EAR.

3.7.4.1. Reference of Shared Session Configuration Options

Example: META-INF/jboss-all.xml

<jboss xmlns="urn:jboss:1.0">
 ...
 <shared-session-config xmlns="urn:jboss:shared-session-config:1.0">
 </shared-session-config>
 ...
</jboss>

<jboss xmlns="urn:jboss:1.0">
 <shared-session-config xmlns="urn:jboss:shared-session-config:1.0">
 <max-active-sessions>10</max-active-sessions>
 <session-config>
 <session-timeout>0</session-timeout>
 <cookie-config>
 <name>JSESSIONID</name>
 <domain>domainName</domain>
 <path>/cookiePath</path>
 <comment>cookie comment</comment>
 <http-only>true</http-only>
 <secure>true</secure>
 <max-age>-1</max-age>
 </cookie-config>
 <tracking-mode>COOKIE</tracking-mode>
 </session-config>
 <replication-config>
 <cache-name>web</cache-name>
 <replication-granularity>SESSION</replication-granularity>
 </replication-config>
 </shared-session-config>
</jboss>

CHAPTER 3. CLASS LOADING AND MODULES

43

Element Description

shared-session-config Root element for the shared session configuration. If this is
present in the META-INF/jboss-all.xml, then all deployed
WARs contained in the EAR will share a single session manager.

max-active-sessions Number of maximum sessions allowed.

session-config Contains the session configuration parameters for all deployed
WARs contained in the EAR.

session-timeout Defines the default session timeout interval for all sessions
created in the deployed WARs contained in the EAR. The
specified timeout must be expressed in a whole number of
minutes. If the timeout is 0 or less, the container ensures the
default behavior of sessions is to never time out. If this element
is not specified, the container must set its default timeout
period.

cookie-config Contains the configuration of the session tracking cookies
created by the deployed WARs contained in the EAR.

name The name that will be assigned to any session tracking cookies
created by the deployed WARs contained in the EAR. The
default is JSESSIONID.

domain The domain name that will be assigned to any session tracking
cookies created by the deployed WARs contained in the EAR.

path The path that will be assigned to any session tracking cookies
created by the deployed WARs contained in the EAR.

comment The comment that will be assigned to any session tracking
cookies created by the deployed WARs contained in the EAR.

http-only Specifies whether any session tracking cookies created by the
deployed WARs contained in the EAR will be marked as
HttpOnly.

secure Specifies whether any session tracking cookies created by the
deployed WARs contained in the EAR will be marked as secure
even if the request that initiated the corresponding session is
using plain HTTP instead of HTTPS.

max-age The lifetime (in seconds) that will be assigned to any session
tracking cookies created by the deployed WARs contained in the
EAR. Default is -1.

tracking-mode Defines the tracking modes for sessions created by the deployed
WARs contained in the EAR.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

44

replication-config Contains the HTTP session clustering configuration.

cache-name This option is for use in clustering only. It specifies the name of
the Infinispan container and cache in which to store session
data. The default value, if not explicitly set, is determined by the
application server. To use a specific cache within a cache
container, use the form container.cache, for example
web.dist. If name is unqualified, the default cache of the
specified container is used.

replication-granularity This option is for use in clustering only. It determines the session
replication granularity level. The possible values are SESSION
and ATTRIBUTE with SESSION being the default.

If SESSION granularity is used, all session attributes are
replicated if any were modified within the scope of a request.
This policy is required if an object reference is shared by multiple
session attributes. However, this can be inefficient if session
attributes are sufficiently large and/or are modified infrequently,
since all attributes must be replicated regardless of whether
they were modified or not.

If ATTRIBUTE granularity is used, only those attributes that
were modified within the scope of a request are replicated. This
policy is not appropriate if an object reference is shared by
multiple session attributes. This can be more efficient than
SESSION granularity if the session attributes are sufficiently
large and/or are modified infrequently.

Element Description

3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM
MODULE

If you have multiple applications that use common Tag Library Descriptors (TLDs), it might be useful to
separate the TLDs from the applications so that they are located in one central and unique location. This
enables easier additions and updates to TLDs without necessarily having to update each individual
application that uses them.

This can be done by creating a custom JBoss EAP module that contains the TLD JARs, and declaring a
dependency on that module in the applications.

NOTE

Ensure that at least one JAR contains TLDs and that the TLDs are packed in META-INF.

Deploy TLDs in a Custom Module

1. Using the management CLI, connect to your JBoss EAP instance and execute the following
command to create the custom module containing the TLD JAR:

module add --name=MyTagLibs --resources=/path/to/TLDarchive.jar

CHAPTER 3. CLASS LOADING AND MODULES

45

IMPORTANT

Using the module management CLI command to add and remove modules is
provided as Technology Preview only. This command is not appropriate for use in
a managed domain or when connecting to the management CLI remotely.
Modules should be added and removed manually in a production environment.
For more information, see the Create a Custom Module Manually and Remove a
Custom Module Manually sections of the JBoss EAP Configuration Guide.

Technology Preview features are not supported with Red Hat production service
level agreements (SLAs), might not be functionally complete, and Red Hat does
not recommend to use them for production. These features provide early access
to upcoming product features, enabling customers to test functionality and
provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer
Portal for information about the support scope for Technology Preview features.

If the TLDs are packaged with classes that require dependencies, use the --dependencies
option to ensure that you specify those dependencies when creating the custom module.

When creating the module, you can specify multiple JAR resources by separating each one with
the file system-specific separator for your system.

For linux - :. Example, --resources=<path-to-jar>:<path-to-another-jar>

For Windows - ;. Example, --resources=<path-to-jar>;<path-to-another-jar>

NOTE

--resources

It is required unless --module-xml is used. It lists file system paths, usually
JAR files, separated by a file system-specific path separator, for example
java.io.File.pathSeparatorChar. The files specified will be copied to the
created module’s directory.

--resource-delimiter

It is an optional user-defined path separator for the resources argument.
If this argument is present, the command parser will use the value here
instead of the file system-specific path separator. This allows the
modules command to be used in cross-platform scripts.

2. In your applications, declare a dependency on the new MyTagLibs custom module using one of
the methods described in Add an Explicit Module Dependency to a Deployment .

IMPORTANT

Ensure that you also import META-INF when declaring the dependency. For example, for
MANIFEST.MF:

Dependencies: com.MyTagLibs meta-inf

Or, for jboss-deployment-structure.xml, use the meta-inf attribute.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

46

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#create_module_manually
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#remove_module_manually
https://access.redhat.com/support/offerings/techpreview

3.9. CLASS LOADING REFERENCE

3.9.1. Implicit Module Dependencies

The following table lists the modules that are automatically added to deployments as dependencies and
the conditions that trigger the dependency.

Table 3.1. Implicit Module Dependencies

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

Application
Client org.omg.api

org.jboss.xnio

Batch
javax.batch.api

org.jberet.jberet-
core

org.wildfly.jberet

Bean
Validation org.hibernate.valid

ator

javax.validation.api

Core Server
javax.api

sun.jdk

org.jboss.vfs

ibm.jdk

DriverDepend
enciesProcess
or

javax.transaction.a
pi

CHAPTER 3. CLASS LOADING AND MODULES

47

EE
org.jboss.invocatio
n (except
org.jboss.invocatio
n.proxy.classloadin
g)

org.jboss.as.ee
(except
org.jboss.as.ee.co
mponent.serializati
on,
org.jboss.as.ee.con
current,
org.jboss.as.ee.con
current.handle)

org.wildfly.naming

javax.annotation.a
pi

javax.enterprise.co
ncurrent.api

javax.interceptor.a
pi

javax.json.api

javax.resource.api

javax.rmi.api

javax.xml.bind.api

javax.api

org.glassfish.javax.
el

org.glassfish.javax.
enterprise.concurr
ent

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

48

EJB 3
javax.ejb.api

javax.xml.rpc.api

org.jboss.ejb-client

org.jboss.iiop-
client

org.jboss.as.ejb3

org.wildfly.iiop-
openjdk

IIOP
org.omg.api

javax.rmi.api

javax.orb.api

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

CHAPTER 3. CLASS LOADING AND MODULES

49

JAX-RS
(RESTEasy) javax.xml.bind.api

javax.ws.rs.api

javax.json.api

org.jboss.resteasy.
resteasy-atom-
provider

org.jboss.resteasy.
resteasy-crypto

org.jboss.resteasy.
resteasy-validator-
provider-11

org.jboss.resteasy.
resteasy-jaxrs

org.jboss.resteasy.
resteasy-jaxb-
provider

org.jboss.resteasy.
resteasy-jackson2-
provider

org.jboss.resteasy.
resteasy-jsapi

org.jboss.resteasy.
resteasy-json-p-
provider

org.jboss.resteasy.
resteasy-
multipart-provider

org.jboss.resteasy.
resteasy-yaml-
provider

org.codehaus.jacks
on.jackson-core-
asl

org.jboss.resteasy.
resteasy-cdi

The presence of JAX-RS
annotations in the
deployment.

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

50

JCA
javax.resource.api javax.jms.api

javax.validation.api

org.jboss.ironjaca
mar.api

org.jboss.ironjaca
mar.impl

org.hibernate.valid
ator

The deployment of a
resource adapter (RAR)
archive.

JPA
(Hibernate) javax.persistence.a

pi
org.jboss.as.jpa

org.jboss.as.jpa.spi

org.javassist

The presence of an
@PersistenceUnit or
@PersistenceContext
annotation, or a
<persistence-unit-ref>
or <persistence-context-
ref> element in a
deployment descriptor.

JBoss EAP maps
persistence provider names
to module names. If you
name a specific provider in
the persistence.xml file,
a dependency is added for
the appropriate module. If
this not the desired
behavior, you can exclude it
using a jboss-
deployment-
structure.xml file.

JSF (Java
Server Faces)

javax.faces.api

com.sun.jsf-impl

org.jboss.as.jsf

org.jboss.as.jsf-
injection

Added to EAR applications.

Added to WAR applications
only if the web.xml file
does NOT specify a
context-param of
org.jboss.jbossfaces.W
AR_BUNDLES_JSF_IM
PL with a value of true.

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

CHAPTER 3. CLASS LOADING AND MODULES

51

JSR-77
javax.management
.j2ee.api

Logging
org.jboss.logging

org.apache.comm
ons.logging

org.apache.log4j

org.slf4j

org.jboss.logging.ju
l-to-slf4j-stub

Mail
javax.mail.api

javax.activation.api

Messaging
javax.jms.api org.wildfly.extensio

n.messaging-
activemq

PicketLink
Federation

org.picketlink

Pojo
org.jboss.as.pojo

SAR
org.jboss.modules

org.jboss.as.syste
m-jmx

org.jboss.common
-beans

The deployment of a SAR
archive that has a jboss-
service.xml.

Seam2
org.jboss.vfs

.

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

52

Security
org.picketbox

org.jboss.as.securit
y

javax.security.jacc.
api

javax.security.auth.
message.api

ServiceActivat
or

org.jboss.msc

Transactions
javax.transaction.a
pi

org.jboss.xts

org.jboss.jts

org.jboss.narayana.
compensations

Undertow
javax.servlet.jstl.api

javax.servlet.api

javax.servlet.jsp.api

javax.websocket.a
pi

io.undertow.core

io.undertow.servlet

io.undertow.jsp

io.undertow.webso
cket

io.undertow.js

org.wildfly.clusteri
ng.web.api

Web Services
javax.jws.api

javax.xml.soap.api

javax.xml.ws.api

org.jboss.ws.api

org.jboss.ws.spi

If it is not application client
type, then it will add the
conditional dependencies.

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

CHAPTER 3. CLASS LOADING AND MODULES

53

Weld (CDI)
javax.enterprise.ap
i

javax.inject.api

javax.persistence.a
pi

org.javassist

org.jboss.as.weld

org.jboss.weld.core

org.jboss.weld.pro
be

org.jboss.weld.api

org.jboss.weld.spi

org.hibernate.valid
ator.cdi

The presence of a
beans.xml file in the
deployment.

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

3.9.2. Included Modules

For the complete listing of the included modules and whether they are supported, see Red Hat JBoss
Enterprise Application Platform 7 Included Modules on the Red Hat Customer Portal.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

54

https://access.redhat.com/articles/2158031

CHAPTER 4. LOGGING

4.1. ABOUT LOGGING

Logging is the practice of recording a series of messages from an application that provides a record, or
log, of the application’s activities.

Log messages provide important information for developers when debugging an application and for
system administrators maintaining applications in production.

Most modern Java logging frameworks also include details such as the exact time and the origin of the
message.

4.1.1. Supported Application Logging Frameworks

JBoss LogManager supports the following logging frameworks:

JBoss Logging (included with JBoss EAP)

Apache Commons Logging

Simple Logging Facade for Java (SLF4J)

Apache log4j

Java SE Logging (java.util.logging)

JBoss LogManager supports the following APIs:

JBoss Logging

commons-logging

SLF4J

Log4j

java.util.logging

JBoss LogManager also supports the following SPIs:

java.util.logging Handler

Log4j Appender

NOTE

If you are using the Log4j API and a Log4J Appender, then Objects will be converted to
string before being passed.

4.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

4.2.1. About JBoss Logging

JBoss Logging is the application logging framework that is included in JBoss EAP. It provides an easy

CHAPTER 4. LOGGING

55

http://commons.apache.org/logging/
http://www.slf4j.org/
http://logging.apache.org/log4j/1.2/
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html

JBoss Logging is the application logging framework that is included in JBoss EAP. It provides an easy
way to add logging to an application. You add code to your application that uses the framework to send
log messages in a defined format. When the application is deployed to an application server, these
messages can be captured by the server and displayed or written to file according to the server’s
configuration.

JBoss Logging provides the following features:

An innovative, easy-to-use typed logger. A typed logger is a logger interface annotated with
org.jboss.logging.annotations.MessageLogger. For examples, see Creating Internationalized
Loggers, Messages and Exceptions.

Full support for internationalization and localization. Translators work with message bundles in
properties files while developers work with interfaces and annotations. For details, see
Internationalization and Localization.

Build-time tooling to generate typed loggers for production and runtime generation of typed
loggers for development.

4.2.2. Add Logging to an Application with JBoss Logging

This procedure demonstrates how to add logging to an application using JBoss Logging.

IMPORTANT

If you use Maven to build your project, you must configure Maven to use the JBoss EAP
Maven repository. For more information, see Configure the JBoss EAP Maven
Repository.

1. The JBoss Logging JAR files must be in the build path for your application.

If you build using Red Hat CodeReady Studio, select Properties from the Project menu,
then select Targeted Runtimes and ensure the runtime for JBoss EAP is checked.

If you use Maven to build your project, make sure you add the jboss-logging dependency
to your project’s pom.xml file for access to the JBoss Logging framework:

The jboss-eap-javaee8 BOM manages the version of jboss-logging. For more details, see
Manage Project Dependencies . See the logging quickstart that ships with JBoss EAP for a
working example of logging in an application.

You do not need to include the JARs in your built application because JBoss EAP provides them
to deployed applications.

2. For each class to which you want to add logging:

a. Add the import statements for the JBoss Logging class namespaces that you will be using.
At a minimum you will need the following import:

<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging</artifactId>
 <version>3.3.0.Final-redhat-1</version>
 <scope>provided</scope>
</dependency>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

56

b. Create an instance of org.jboss.logging.Logger and initialize it by calling the static
method Logger.getLogger(Class). It is recommended to create this as a single instance
variable for each class.

3. Call the Logger object methods in your code where you want to send log messages.
The Logger has many different methods with different parameters for different types of
messages. Use the following methods to send a log message with the corresponding log level
and the message parameter as a string:

For the complete list of JBoss Logging methods, see the Logging API documentation.

The following example loads customized configuration for an application from a properties file. If the
specified file is not found, an ERROR level log message is recorded.

Example: Application Logging with JBoss Logging

4.3. PER-DEPLOYMENT LOGGING

Per-deployment logging allows a developer to configure the logging configuration for their application

import org.jboss.logging.Logger;

private static final Logger LOGGER = Logger.getLogger(HelloWorld.class);

LOGGER.debug("This is a debugging message.");
LOGGER.info("This is an informational message.");
LOGGER.error("Configuration file not found.");
LOGGER.trace("This is a trace message.");
LOGGER.fatal("A fatal error occurred.");

import org.jboss.logging.Logger;
public class LocalSystemConfig
{
 private static final Logger LOGGER = Logger.getLogger(LocalSystemConfig.class);

 public Properties openCustomProperties(String configname) throws
CustomConfigFileNotFoundException
 {
 Properties props = new Properties();
 try
 {
 LOGGER.info("Loading custom configuration from "+configname);
 props.load(new FileInputStream(configname));
 }
 catch(IOException e) //catch exception in case properties file does not exist
 {
 LOGGER.error("Custom configuration file ("+configname+") not found. Using defaults.");
 throw new CustomConfigFileNotFoundException(configname);
 }

 return props;
 }
}

CHAPTER 4. LOGGING

57

https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/7.2/javadocs/org/jboss/logging/package-summary.html

in advance. When the application is deployed, logging begins according to the defined configuration.
The log files created through this configuration contain information only about the behavior of the
application.

NOTE

If the per-deployment logging configuration is not done, the configuration from logging
subsystem is used for all the applications as well as the server.

This approach has advantages and disadvantages over using system-wide logging. An advantage is that
the administrator of the JBoss EAP instance does not need to configure any other logging than the
server logging. A disadvantage is that the per-deployment logging configuration is read only on server
startup, and so cannot be changed at runtime.

4.3.1. Add Per-deployment Logging to an Application

To configure per-deployment logging for an application, add the logging.properties configuration file
to your deployment. This configuration file is recommended because it can be used with any logging
facade where JBoss Log Manager is the underlying log manager.

The directory into which the configuration file is added depends on the deployment method.

For EAR deployments, copy the logging configuration file to the META-INF/ directory.

For WAR or JAR deployments, copy the logging configuration file to the WEB-INF/classes/
directory.

NOTE

If you are using Simple Logging Facade for Java (SLF4J) or Apache log4j, the
logging.properties configuration file is suitable. If you are using Apache log4j appenders
then the configuration file log4j.properties is required. The configuration file jboss-
logging.properties is supported only for legacy deployments.

Configuring logging.properties
The logging.properties file is used when the server boots, until the logging subsystem is started. If the
logging subsystem is not included in your configuration, then the server uses the configuration in this
file as the logging configuration for the entire server.

JBoss Log Manager Configuration Options

Logger options

loggers=<category>[,<category>,…] - Specify a comma-separated list of logger categories
to be configured. Any categories not listed here will not be configured from the following
properties.

logger.<category>.level=<level> - Specify the level for a category. The level can be one of the
valid levels. If unspecified, the level of the nearest parent will be inherited.

logger.<category>.handlers=<handler>[,<handler>,…] - Specify a comma-separated list of
the handler names to be attached to this logger. The handlers must be configured in the same
properties file.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

58

logger.<category>.filter=<filter> - Specify a filter for a category.

logger.<category>.useParentHandlers=(true|false) - Specify whether log messages should
cascade up to parent handlers. The default value is true.

Handler options

handler.<name>=<className> - Specify the class name of the handler to instantiate. This
option is mandatory.

NOTE

Table 4.1. Possible Class Names:

Name Associated Class

Console org.jboss.logmanager.handlers.ConsoleH
andler

File org.jboss.logmanager.handlers.FileHandl
er

Periodic org.jboss.logmanager.handlers.PeriodicR
otatingFileHandler

Size org.jboss.logmanager.handlers.SizeRotati
ngFileHandler

Periodic Size org.jboss.logmanager.handlers.PeriodicSi
zeRotatingFileHandler

Syslog org.jboss.logmanager.handlers.SyslogHa
ndler

Async org.jboss.logmanager.handlers.AsyncHan
dler

The Custom handler can have any associated class or module. It is available in
the logging subsystem for users to define their own log handlers.

For further information, see Log Handlers in the JBoss EAP Configuration Guide.

handler.<name>.level=<level> - Restrict the level of this handler. If unspecified, the default
value of ALL is retained.

handler.<name>.encoding=<encoding> - Specify the character encoding, if it is supported by
this handler type. If not specified, a handler-specific default is used.

handler.<name>.errorManager=<name> - Specify the name of the error manager to use. The
error manager must be configured in the same properties file. If unspecified, no error manager is
configured.

CHAPTER 4. LOGGING

59

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#log_handlers

handler.<name>.filter=<name> - Specify a filter for a category. See the filter expressions for
details on defining a filter.

handler.<name>.formatter=<name> - Specify the name of the formatter to use, if it is
supported by this handler type. The formatter must be configured in the same properties file. If
not specified, messages will not be logged for most handler types.

handler.<name>.properties=<property>[,<property>,…] - Specify a list of JavaBean-style
properties to additionally configure. A rudimentary type introspection is done to ascertain the
appropriate conversion for the given property.
In case of all file handlers in JBoss Log Manager, append needs to be set before the fileName.
The order in which the properties appear in handler.<name>.properties, is the order in which
the properties will be set.

handler.<name>.constructorProperties=<property>[,<property>,…] - Specify a list of
properties that should be used as construction parameters. A rudimentary type introspection is
done to ascertain the appropriate conversion for the given property.

handler.<name>.<property>=<value> - Set the value of the named property.

handler.<name>.module=<name> - Specify the name of the module the handler resides in.

For further information, see Log Handler Attributes in the JBoss EAP Configuration Guide.

Error manager options

errorManager.<name>=<className> - Specify the class name of the error manager to
instantiate. This option is mandatory.

errorManager.<name>.properties=<property>[,<property>,…] - Specify a list of JavaBean-
style properties to additionally configure. A rudimentary type introspection is done to ascertain
the appropriate conversion for the given property.

errorManager.<name>.<property>=<value> - Set the value of the named property.

Formatter options

formatter.<name>=<className> - Specify the class name of the formatter to instantiate. This
option is mandatory.

formatter.<name>.properties=<property>[,<property>,…] - Specify a list of JavaBean-style
properties to additionally configure. A rudimentary type introspection is done to ascertain the
appropriate conversion for the given property.

formatter.<name>.constructorProperties=<property>[,<property>,…] - Specify a list of
properties that should be used as construction parameters. A rudimentary type introspection is
done to ascertain the appropriate conversion for the given property.

formatter.<name>.<property>=<value> - Set the value of the named property.

The following example shows the minimal configuration for logging.properties file that will log to the
console.

Example: Minimal logging.properties Configuration

Additional logger names to configure (root logger is always configured)

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

60

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#log_handler_attributes

loggers=

Root logger level
logger.level=INFO

Root logger handlers
logger.handlers=CONSOLE

Console handler configuration
handler.CONSOLE=org.jboss.logmanager.handlers.ConsoleHandler
handler.CONSOLE.properties=autoFlush
handler.CONSOLE.autoFlush=true
handler.CONSOLE.formatter=PATTERN

Formatter pattern configuration
formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern
formatter.PATTERN.pattern=%K{level}%d{HH:mm:ss,SSS} %-5p %C.%M(%L) [%c] %s%e%n

4.4. LOGGING PROFILES

Logging profiles are independent sets of logging configurations that can be assigned to deployed
applications. As with the regular logging subsystem, a logging profile can define handlers, categories,
and a root logger, but it cannot refer to configurations in other profiles or the main logging subsystem.
The design of logging profiles mimics the logging subsystem for ease of configuration.

Logging profiles allow administrators to create logging configurations that are specific to one or more
applications without affecting any other logging configurations. Because each profile is defined in the
server configuration, the logging configuration can be changed without requiring that the affected
applications be redeployed.

For more information, see Configure a Logging Profile in the JBoss EAP Configuration Guide.

Each logging profile can have:

A unique name. This value is required.

Any number of log handlers.

Any number of log categories.

Up to one root logger.

An application can specify a logging profile to use in its MANIFEST.MF file, using the Logging-Profile
attribute.

4.4.1. Specify a Logging Profile in an Application

An application specifies the logging profile to use in its MANIFEST.MF file.

NOTE

You must know the name of the logging profile that has been set up on the server for this
application to use.

CHAPTER 4. LOGGING

61

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#configure_logging_profile

To add a logging profile configuration to an application, edit the MANIFEST.MF file.

If your application does not have a MANIFEST.MF file, create one with the following content to
specify the logging profile name.

Manifest-Version: 1.0
Logging-Profile: LOGGING_PROFILE_NAME

If your application already has a MANIFEST.MF file, add the following line to specify the logging
profile name.

Logging-Profile: LOGGING_PROFILE_NAME

NOTE

If you are using Maven and the maven-war-plugin, put your MANIFEST.MF file in
src/main/resources/META-INF/ and add the following configuration to your pom.xml
file:

When the application is deployed, it will use the configuration in the specified logging profile for its log
messages.

For an example of how to configure a logging profile and the application using it, see Example Logging
Profile Configuration in the JBoss EAP Configuration Guide.

4.5. INTERNATIONALIZATION AND LOCALIZATION

4.5.1. Introduction

4.5.1.1. About Internationalization

Internationalization is the process of designing software so that it can be adapted to different
languages and regions without engineering changes.

4.5.1.2. About Localization

Localization is the process of adapting internationalized software for a specific region or language by
adding locale-specific components and translations of text.

4.5.2. JBoss Logging Tools Internationalization and Localization

JBoss Logging Tools is a Java API that provides support for the internationalization and localization of

<plugin>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <archive>
 <manifestFile>src/main/resources/META-INF/MANIFEST.MF</manifestFile>
 </archive>
 </configuration>
</plugin>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

62

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#example_logging_profile_configuration

JBoss Logging Tools is a Java API that provides support for the internationalization and localization of
log messages, exception messages, and generic strings. In addition to providing a mechanism for
translation, JBoss Logging Tools also provides support for unique identifiers for each log message.

Internationalized messages and exceptions are created as method definitions inside of interfaces
annotated using org.jboss.logging.annotations annotations. Implementing the interfaces is not
necessary; JBoss Logging Tools does this at compile time. Once defined, you can use these methods to
log messages or obtain exception objects in your code.

Internationalized logging and exception interfaces created with JBoss Logging Tools can be localized by
creating a properties file for each bundle containing the translations for a specific language and region.
JBoss Logging Tools can generate template property files for each bundle that can then be edited by a
translator.

JBoss Logging Tools creates an implementation of each bundle for each corresponding translations
property file in your project. All you have to do is use the methods defined in the bundles and JBoss
Logging Tools ensures that the correct implementation is invoked for your current regional settings.

Message IDs and project codes are unique identifiers that are prepended to each log message. These
unique identifiers can be used in documentation to make it easy to find information about log messages.
With adequate documentation, the meaning of a log message can be determined from the identifiers
regardless of the language that the message was written in.

The JBoss Logging Tools includes support for the following features:

MessageLogger

This interface in the org.jboss.logging.annotations package is used to define internationalized log
messages. A message logger interface is annotated with @MessageLogger.

MessageBundle

This interface can be used to define generic translatable messages and Exception objects with
internationalized messages. A message bundle is not used for creating log messages. A message
bundle interface is annotated with @MessageBundle.

Internationalized Log Messages

These log messages are created by defining a method in a MessageLogger. The method must be
annotated with the @LogMessage and @Message annotations and must specify the log message
using the value attribute of @Message. Internationalized log messages are localized by providing
translations in a properties file.
JBoss Logging Tools generates the required logging classes for each translation at compile time and
invokes the correct methods for the current locale at runtime.

Internationalized Exceptions

An internationalized exception is an exception object returned from a method defined in a
MessageBundle. These message bundles can be annotated to define a default exception message.
The default message is replaced with a translation if one is found in a matching properties file for the
current locale. Internationalized exceptions can also have project codes and message IDs assigned to
them.

Internationalized Messages

An internationalized message is a string returned from a method defined in a MessageBundle.
Message bundle methods that return Java String objects can be annotated to define the default
content of that string, known as the message. The default message is replaced with a translation if
one is found in a matching properties file for the current locale.

Translation Properties Files

Translation properties files are Java properties files that contain the translations of messages from

CHAPTER 4. LOGGING

63

Translation properties files are Java properties files that contain the translations of messages from
one interface for one locale, country, and variant. Translation properties files are used by the JBoss
Logging Tools to generate the classes that return the messages.

JBoss Logging Tools Project Codes

Project codes are strings of characters that identify groups of messages. They are displayed at the
beginning of each log message, prepended to the message ID. Project codes are defined with the
projectCode attribute of the @MessageLogger annotation.

NOTE

For a complete list of the new log message project code prefixes, see the Project
Codes used in JBoss EAP 7.2.

JBoss Logging Tools Message IDs

Message IDs are numbers that uniquely identify a log message when combined with a project code.
Message IDs are displayed at the beginning of each log message, appended to the project code for
the message. Message IDs are defined with the ID attribute of the @Message annotation.

The logging-tools quickstart that ships with JBoss EAP is a simple Maven project that provides a
working example of many of the features of JBoss Logging Tools. The code examples that follow are
taken from the logging-tools quickstart.

4.5.3. Creating Internationalized Loggers, Messages and Exceptions

4.5.3.1. Create Internationalized Log Messages

You can use JBoss Logging Tools to create internationalized log messages by creating
MessageLogger interfaces.

NOTE

This section does not cover all optional features or the localization of the log messages.

1. If you have not yet done so, configure your Maven settings to use the JBoss EAP Maven
repository.
For more information, see Configure the JBoss EAP Maven Repository Using the Maven
Settings.

2. Configure the project’s pom.xml file to use JBoss Logging Tools.
For details, see JBoss Logging Tools Maven Configuration .

3. Create a message logger interface by adding a Java interface to your project to contain the log
message definitions.
Name the interface to describe the log messages it will define. The log message interface has
the following requirements:

It must be annotated with @org.jboss.logging.annotations.MessageLogger.

Optionally, it can extend org.jboss.logging.BasicLogger.

The interface must define a field that is a message logger of the same type as the interface.
Do this with the getMessageLogger() method of @org.jboss.logging.Logger.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

64

Example: Creating a Message Logger

4. Add a method definition to the interface for each log message.
Name each method descriptively for the log message that it represents. Each method has the
following requirements:

The method must return void.

It must be annotated with the @org.jboss.logging.annotation.LogMessage annotation.

It must be annotated with the @org.jboss.logging.annotations.Message annotation.

The default log level is INFO.

The value attribute of @org.jboss.logging.annotations.Message contains the default log
message, which is used if no translation is available.

5. Invoke the methods by adding the calls to the interface methods in your code where the
messages must be logged from.
Creating implementations of the interfaces is not necessary, the annotation processor does this
for you when the project is compiled.

The custom loggers are subclassed from BasicLogger, so the logging methods of
BasicLogger can also be used. It is not necessary to create other loggers to log non-
internationalized messages.

6. The project now supports one or more internationalized loggers that can be localized.

NOTE

The logging-tools quickstart that ships with JBoss EAP is a simple Maven project that
provides a working example of how to use JBoss Logging Tools.

package com.company.accounts.loggers;

import org.jboss.logging.BasicLogger;
import org.jboss.logging.Logger;
import org.jboss.logging.annotations.MessageLogger;

@MessageLogger(projectCode="")
interface AccountsLogger extends BasicLogger {
 AccountsLogger LOGGER = Logger.getMessageLogger(
 AccountsLogger.class,
 AccountsLogger.class.getPackage().getName());
}

@LogMessage
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

AccountsLogger.LOGGER.customerQueryFailDBClosed();

AccountsLogger.LOGGER.error("Invalid query syntax.");

CHAPTER 4. LOGGING

65

4.5.3.2. Create and Use Internationalized Messages

This procedure demonstrates how to create and use internationalized messages.

NOTE

This section does not cover all optional features or the process of localizing those
messages.

1. If you have not yet done so, configure your Maven settings to use the JBoss EAP Maven
repository. For more information, see Configure the JBoss EAP Maven Repository Using the
Maven Settings.

2. Configure the project’s pom.xml file to use JBoss Logging Tools. For details, see JBoss
Logging Tools Maven Configuration.

3. Create an interface for the exceptions. JBoss Logging Tools defines internationalized
messages in interfaces. Name each interface descriptively for the messages that it contains.
The interface has the following requirements:

It must be declared as public.

It must be annotated with @org.jboss.logging.annotations.MessageBundle.

The interface must define a field that is a message bundle of the same type as the interface.

Example: Create a MessageBundle Interface

NOTE

Calling Messages.getBundle(GreetingMessagesBundle.class) is
equivalent to calling
Messages.getBundle(GreetingMessagesBundle.class,
Locale.getDefault()).

Locale.getDefault() gets the current value of the default locale for this
instance of the Java Virtual Machine. The Java Virtual Machine sets the
default locale during startup, based on the host environment. It is used by
many locale-sensitive methods if no locale is explicitly specified. It can be
changed using the setDefault method.

See Set the Default Locale of the Server in the JBoss EAP Configuration
Guide for more information.

4. Add a method definition to the interface for each message. Name each method descriptively for
the message that it represents. Each method has the following requirements:

It must return an object of type String.

@MessageBundle(projectCode="")
public interface GreetingMessageBundle {
 GreetingMessageBundle MESSAGES =
Messages.getBundle(GreetingMessageBundle.class);
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

66

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#default_locale_server

It must be annotated with the @org.jboss.logging.annotations.Message annotation.

The value attribute of @org.jboss.logging.annotations.Message must be set to the
default message. This is the message that is used if no translation is available.

5. Invoke the interface methods in your application where you need to obtain the message:

The project now supports internationalized message strings that can be localized.

NOTE

See the logging-tools quickstart that ships with JBoss EAP for a complete working
example.

4.5.3.3. Create Internationalized Exceptions

You can use JBoss Logging Tools to create and use internationalized exceptions.

The following instructions assume that you want to add internationalized exceptions to an existing
software project that is built using either Red Hat CodeReady Studio or Maven.

NOTE

This section does not cover all optional features or the process of localization of those
exceptions.

1. Configure the project’s pom.xml file to use JBoss Logging Tools. For details, see JBoss
Logging Tools Maven Configuration.

2. Create an interface for the exceptions. JBoss Logging Tools defines internationalized
exceptions in interfaces. Name each interface descriptively for the exceptions that it defines.
The interface has the following requirements:

It must be declared as public.

It must be annotated with @MessageBundle.

The interface must define a field that is a message bundle of the same type as the interface.

Example: Create an ExceptionBundle Interface

3. Add a method definition to the interface for each exception. Name each method descriptively
for the exception that it represents. Each method has the following requirements:

It must return an Exception object, or a sub-type of Exception.

@Message(value = "Hello world.")
String helloworldString();

System.out.println(helloworldString());

@MessageBundle(projectCode="")
public interface ExceptionBundle {
 ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);
}

CHAPTER 4. LOGGING

67

It must return an Exception object, or a sub-type of Exception.

It must be annotated with the @org.jboss.logging.annotations.Message annotation.

The value attribute of @org.jboss.logging.annotations.Message must be set to the
default exception message. This is the message that is used if no translation is available.

If the exception being returned has a constructor that requires parameters in addition to a
message string, then those parameters must be supplied in the method definition using the
@Param annotation. The parameters must be the same type and order as they are in the
constructor of the exception.

4. Invoke the interface methods in your code where you need to obtain one of the exceptions. The
methods do not throw the exceptions, they return the exception object, which you can then
throw.

The project now supports internationalized exceptions that can be localized.

NOTE

See the logging-tools quickstart that ships with JBoss EAP for a complete working
example.

4.5.4. Localizing Internationalized Loggers, Messages and Exceptions

4.5.4.1. Generate New Translation Properties Files with Maven

Projects that are built using Maven can generate empty translation property files for each
MessageLogger and MessageBundle it contains. These files can then be used as new translation
property files.

The following procedure demonstrates how to configure a Maven project to generate new translation
property files.

Prerequisites

You must already have a working Maven project.

The project must already be configured for JBoss Logging Tools.

The project must contain one or more interfaces that define internationalized log messages or

@Message(value = "The config file could not be opened.")
IOException configFileAccessError();

@Message(id = 13230, value = "Date string '%s' was invalid.")
ParseException dateWasInvalid(String dateString, @Param int errorOffset);

try {
 propsInFile=new File(configname);
 props.load(new FileInputStream(propsInFile));
}
catch(IOException ioex) {
 //in case props file does not exist
 throw ExceptionBundle.EXCEPTIONS.configFileAccessError();
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

68

The project must contain one or more interfaces that define internationalized log messages or
exceptions.

Generate the Translation Properties Files

1. Add the Maven configuration by adding the -AgenereatedTranslationFilePath compiler
argument to the Maven compiler plug-in configuration, and assign it the path where the new
files will be created.
This configuration creates the new files in the target/generated-translation-files directory of
your Maven project.

Example: Define the Translation File Path

2. Build the project using Maven:

$ mvn compile

One properties file is created for each interface annotated with @MessageBundle or
@MessageLogger.

The new files are created in a subdirectory corresponding to the Java package in which each
interface is declared.

Each new file is named using the following pattern where INTERFACE_NAME is the name
of the interface used to generated the file.

INTERFACE_NAME.i18n_locale_COUNTRY_VARIANT.properties

The resulting files can now be copied into your project as the basis for new translations.

NOTE

See the logging-tools quickstart that ships with JBoss EAP for a complete working
example.

4.5.4.2. Translate an Internationalized Logger, Exception, or Message

Properties files can be used to provide translations for logging and exception messages defined in
interfaces using JBoss Logging Tools.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 <compilerArgument>
 -AgeneratedTranslationFilesPath=${project.basedir}/target/generated-translation-files
 </compilerArgument>
 <showDeprecation>true</showDeprecation>
 </configuration>
</plugin>

CHAPTER 4. LOGGING

69

The following procedure shows how to create and use a translation properties file, and assumes that you
already have a project with one or more interfaces defined for internationalized exceptions or log
messages.

Prerequisites

You must already have a working Maven project.

The project must already be configured for JBoss Logging Tools.

The project must contain one or more interfaces that define internationalized log messages or
exceptions.

The project must be configured to generate template translation property files.

Translate an Internationalized Logger, Exception, or Message

1. Run the following command to create the template translation properties files:

$ mvn compile

2. Copy the template for the interfaces that you want to translate from the directory where they
were created into the src/main/resources directory of your project. The properties files must
be in the same package as the interfaces they are translating.

3. Rename the copied template file to indicate the language it will contain. For example:
GreeterLogger.i18n_fr_FR.properties.

4. Edit the contents of the new translation properties file to contain the appropriate translation:

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

5. Repeat the process of copying the template and modifying it for each translation in the bundle.

The project now contains translations for one or more message or logger bundles. Building the project
generates the appropriate classes to log messages with the supplied translations. It is not necessary to
explicitly invoke methods or supply parameters for specific languages, JBoss Logging Tools
automatically uses the correct class for the current locale of the application server.

The source code of the generated classes can be viewed under target/generated-
sources/annotations/.

4.5.5. Customizing Internationalized Log Messages

4.5.5.1. Add Message IDs and Project Codes to Log Messages

This procedure demonstrates how to add message IDs and project codes to internationalized log
messages created using JBoss Logging Tools. A log message must have both a project code and
message ID to be displayed in the log. If a message does not have both a project code and a message ID,
then neither is displayed.

Prerequisites

1. You must already have a project with internationalized log messages. For details, see Create

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

70

1. You must already have a project with internationalized log messages. For details, see Create
Internationalized Log Messages.

2. You need to know the project code you will be using. You can use a single project code, or
define different ones for each interface.

Add Message IDs and Project Codes to Log Messages

1. Specify the project code for the interface by using the projectCode attribute of the
@MessageLogger annotation attached to a custom logger interface. All messages that are
defined in the interface will use that project code.

2. Specify a message ID for each message using the id attribute of the @Message annotation
attached to the method that defines the message.

3. The log messages that have both a message ID and project code associated with them will
prepend these to the logged message.

10:55:50,638 INFO [com.company.accounts.ejb] (MSC service thread 1-4) ACCNTS000043:
Customer query failed, Database not available.

4.5.5.2. Specify the Log Level for a Message

The default log level of a message defined by an interface by JBoss Logging Tools is INFO. A different
log level can be specified with the level attribute of the @LogMessage annotation attached to the
logging method. Use the following procedure to specify a different log level.

1. Add the level attribute to the @LogMessage annotation of the log message method definition.

2. Assign the log level for this message using the level attribute. The valid values for level are the
six enumerated constants defined in org.jboss.logging.Logger.Level: DEBUG, ERROR,
FATAL, INFO, TRACE, and WARN.

Invoking the logging method in the above example will produce a log message at the level of ERROR.

10:55:50,638 ERROR [com.company.app.Main] (MSC service thread 1-4)
 Customer query failed, Database not available.

@MessageLogger(projectCode="ACCNTS")
interface AccountsLogger extends BasicLogger {

}

@LogMessage
@Message(id=43, value = "Customer query failed, Database not available.") void
customerQueryFailDBClosed();

import org.jboss.logging.Logger.Level;

@LogMessage(level=Level.ERROR)
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

CHAPTER 4. LOGGING

71

4.5.5.3. Customize Log Messages with Parameters

Custom logging methods can define parameters. These parameters are used to pass additional
information to be displayed in the log message. Where the parameters appear in the log message is
specified in the message itself using either explicit or ordinary indexing.

Customize Log Messages with Parameters

1. Add parameters of any type to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the log message. References can use explicit or ordinary indexes.

To use ordinary indexes, insert %s characters in the message string where you want each
parameter to appear. The first instance of %s will insert the first parameter, the second
instance will insert the second parameter, and so on.

To use explicit indexes, insert %#$s characters in the message, where # indicates the
number of the parameter that you wish to appear.

Using explicit indexes allows the parameter references in the message to be in a different order than
they are defined in the method. This is important for translated messages that might require different
ordering of parameters.

IMPORTANT

The number of parameters must match the number of references to the parameters in
the specified message or the code will not compile. A parameter marked with the
@Cause annotation is not included in the number of parameters.

The following is an example of message parameters using ordinary indexes:

The following is an example of message parameters using explicit indexes:

4.5.5.4. Specify an Exception as the Cause of a Log Message

JBoss Logging Tools allows one parameter of a custom logging method to be defined as the cause of
the message. This parameter must be the Throwable type or any of its sub-classes, and is marked with
the @Cause annotation. This parameter cannot be referenced in the log message like other
parameters, and is displayed after the log message.

The following procedure shows how to update a logging method using the @Cause parameter to
indicate the "causing" exception. It is assumed that you have already created internationalized logging
messages to which you want to add this functionality.

Specify an Exception as the Cause of a Log Message

@LogMessage(level=Logger.Level.DEBUG)
@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
void customerLookupFailed(Long customerid, String username);

@LogMessage(level=Logger.Level.DEBUG)
@Message(id=2, value="Customer query failed, user:%2$s, customerid:%1$s")
void customerLookupFailed(Long customerid, String username);

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

72

1. Add a parameter of the type Throwable or its subclass to the method.

2. Add the @Cause annotation to the parameter.

3. Invoke the method. When the method is invoked in your code, an object of the correct type
must be passed and will be displayed after the log message.

The following is the output of the above code example if the code throws an exception of type
FileNotFoundException:

10:50:14,675 INFO [com.company.app.Main] (MSC service thread 1-3) Loading configuration failed.
Config file: customised.properties
java.io.FileNotFoundException: customised.properties (No such file or directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:120)
 at com.company.app.demo.Main.openCustomProperties(Main.java:70)
 at com.company.app.Main.go(Main.java:53)
 at com.company.app.Main.main(Main.java:43)

4.5.6. Customizing Internationalized Exceptions

4.5.6.1. Add Message IDs and Project Codes to Exception Messages

Message IDs and project codes are unique identifiers that are prepended to each message displayed by
internationalized exceptions. These identifying codes make it possible to create a reference for all the
exception messages in an application. This allows someone to look up the meaning of an exception
message written in language that they do not understand.

The following procedure demonstrates how to add message IDs and project codes to internationalized
exception messages created using JBoss Logging Tools.

Prerequisites

1. You must already have a project with internationalized exceptions. For details, see Create

@LogMessage
@Message(id=404, value="Loading configuration failed. Config file:%s")
void loadConfigFailed(Exception ex, File file);

import org.jboss.logging.annotations.Cause

@LogMessage
@Message(value = "Loading configuration failed. Config file: %s")
void loadConfigFailed(@Cause Exception ex, File file);

try
{
 confFile=new File(filename);
 props.load(new FileInputStream(confFile));
}
catch(Exception ex) //in case properties file cannot be read
{
 ConfigLogger.LOGGER.loadConfigFailed(ex, filename);
}

CHAPTER 4. LOGGING

73

1. You must already have a project with internationalized exceptions. For details, see Create
Internationalized Exceptions.

2. You need to know the project code you will be using. You can use a single project code, or
define different ones for each interface.

Add Message IDs and Project Codes to Exception Messages

1. Specify the project code using the projectCode attribute of the @MessageBundle annotation
attached to a exception bundle interface. All messages that are defined in the interface will use
that project code.

2. Specify message IDs for each exception using the id attribute of the @Message annotation
attached to the method that defines the exception.

IMPORTANT

A message that has both a project code and message ID displays them prepended to the
message. If a message does not have both a project code and a message ID, neither is
displayed.

Example: Internationalized Exception

This exception bundle interface example uses the project code of "ACCTS". It contains a single
exception method with the ID of "143".

The exception object can be obtained and thrown using the following code:

This would display an exception message like the following:

Exception in thread "main" java.io.IOException: ACCTS000143: The config file could not be opened.
at com.company.accounts.Main.openCustomProperties(Main.java:78)
at com.company.accounts.Main.go(Main.java:53)
at com.company.accounts.Main.main(Main.java:43)

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle
{
 ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);
}

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle
{
 ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);

 @Message(id=143, value = "The config file could not be opened.")
 IOException configFileAccessError();
}

throw ExceptionBundle.EXCEPTIONS.configFileAccessError();

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

74

4.5.6.2. Customize Exception Messages with Parameters

Exception bundle methods that define exceptions can specify parameters to pass additional information
to be displayed in the exception message. The exact position of the parameters in the exception
message is specified in the message itself using either explicit or ordinary indexing.

Customize Exception Messages with Parameters

1. Add parameters of any type to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the exception message. References can use explicit or ordinary
indexes.

To use ordinary indexes, insert %s characters in the message string where you want each
parameter to appear. The first instance of %s will insert the first parameter, the second
instance will insert the second parameter, and so on.

To use explicit indexes, insert %#$s characters in the message, where # indicates the
number of the parameter that you wish to appear.

Using explicit indexes allows the parameter references in the message to be in a different order than
they are defined in the method. This is important for translated messages that might require different
ordering of parameters.

IMPORTANT

The number of parameters must match the number of references to the parameters in
the specified message, or the code will not compile. A parameter marked with the
@Cause annotation is not included in the number of parameters.

Example: Using Ordinary Indexes

Example: Using Explicit Indexes

4.5.6.3. Specify One Exception as the Cause of Another Exception

Exceptions returned by exception bundle methods can have another exception specified as the
underlying cause. This is done by adding a parameter to the method and annotating the parameter with
@Cause. This parameter is used to pass the causing exception, and cannot be referenced in the
exception message.

The following procedure shows how to update a method from an exception bundle using the @Cause
parameter to indicate the causing exception. It is assumed that you have already created an exception
bundle to which you want to add this functionality.

1. Add a parameter of the type Throwable or its subclass to the method.

@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
void customerLookupFailed(Long customerid, String username);

@Message(id=2, value="Customer query failed, user:%2$s, customerid:%1$s")
void customerLookupFailed(Long customerid, String username);

CHAPTER 4. LOGGING

75

2. Add the @Cause annotation to the parameter.

3. Invoke the interface method to obtain an exception object. The most common use case is to
throw a new exception from a catch block, specifying the caught exception as the cause.

The following is an example of specifying an exception as the cause of another exception. This
exception bundle defines a single method that returns an exception of type ArithmeticException.

The following example demonstrates an operation that throws an exception because it attempts to
divide an integer by zero. The exception is caught, and a new exception is created using the first one as
the cause.

The following is the exception message generated from the previous example:

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(Throwable cause, String msg);

import org.jboss.logging.annotations.Cause

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(@Cause Throwable cause, String msg);

try
{
 ...
}
catch(Exception ex)
{
 throw ExceptionBundle.EXCEPTIONS.calculationError(
 ex, "calculating payment due per day");
}

@MessageBundle(projectCode = "TPS")
interface CalcExceptionBundle
{
 CalcExceptionBundle EXCEPTIONS = Messages.getBundle(CalcExceptionBundle.class);

 @Message(id=328, value = "Error calculating: %s.")
 ArithmeticException calcError(@Cause Throwable cause, String value);
}

int totalDue = 5;
int daysToPay = 0;
int amountPerDay;

try
{
 amountPerDay = totalDue/daysToPay;
}
catch (Exception ex)
{
 throw CalcExceptionBundle.EXCEPTIONS.calcError(ex, "payments per day");
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

76

Exception in thread "main" java.lang.ArithmeticException: TPS000328: Error calculating: payments
per day.
 at com.company.accounts.Main.go(Main.java:58)
 at com.company.accounts.Main.main(Main.java:43)
Caused by: java.lang.ArithmeticException: / by zero
 at com.company.accounts.Main.go(Main.java:54)
 ... 1 more

4.5.7. JBoss Logging Tools References

4.5.7.1. JBoss Logging Tools Maven Configuration

The following procedure configures a Maven project to use JBoss Logging and JBoss Logging Tools for
internationalization.

1. If you have not yet done so, configure your Maven settings to use the JBoss EAP repository.
For more information, see Configure the JBoss EAP Maven Repository Using the Maven
Settings.
Include the jboss-eap-javaee8 BOM in the <dependencyManagement> section of the
project’s pom.xml file.

2. Add the Maven dependencies to the project’s pom.xml file:

a. Add the jboss-logging dependency for access to JBoss Logging framework.

b. If you plan to use the JBoss Logging Tools, also add the jboss-logging-processor
dependency.
Both of these dependencies are available in JBoss EAP BOM that was added in the previous
step, so the scope element of each can be set to provided as shown.

<dependencyManagement>
 <dependencies>
 <!-- JBoss distributes a complete set of Java EE APIs including
 a Bill of Materials (BOM). A BOM specifies the versions of a "stack" (or
 a collection) of artifacts. We use this here so that we always get the correct versions of
artifacts.
 Here we use the jboss-javaee-7.0 stack (you can
 read this as the JBoss stack of the Java EE APIs). You can actually
 use this stack with any version of JBoss EAP that implements Java EE. -->
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-javaee8</artifactId>
 <version>7.2.0.GA</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependencies>
<dependencyManagement>

<!-- Add the JBoss Logging Tools dependencies -->
<!-- The jboss-logging API -->
<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging</artifactId>

CHAPTER 4. LOGGING

77

3. The maven-compiler-plugin must be at least version 3.1 and configured for target and
generated sources of 1.8.

NOTE

For a complete working example of a pom.xml file that is configured to use JBoss
Logging Tools, see the logging-tools quickstart that ships with JBoss EAP.

4.5.7.2. Translation Property File Format

The property files used for the translation of messages in JBoss Logging Tools are standard Java
property files. The format of the file is the simple line-oriented, key=value pair format described in the
java.util.Properties class documentation .

The file name format has the following format:

InterfaceName.i18n_locale_COUNTRY_VARIANT.properties

InterfaceName is the name of the interface that the translations apply to.

locale, COUNTRY, and VARIANT identify the regional settings that the translation applies to.

locale and COUNTRY specify the language and country using the ISO-639 and ISO-3166
Language and Country codes respectively. COUNTRY is optional.

VARIANT is an optional identifier that can be used to identify translations that only apply to a
specific operating system or browser.

The properties contained in the translation file are the names of the methods from the interface being
translated. The assigned value of the property is the translation. If a method is overloaded, then this is
indicated by appending a dot and then the number of parameters to the name. Methods for translation
can only be overloaded by supplying a different number of parameters.

Example: Translation Properties File

File name: GreeterService.i18n_fr_FR_POSIX.properties.

 <scope>provided</scope>
</dependency>
<!-- Add the jboss-logging-tools processor if you are using JBoss Tools -->
<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging-processor</artifactId>
 <scope>provided</scope>
</dependency>

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
</plugin>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

78

https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

4.5.7.3. JBoss Logging Tools Annotations Reference

The following annotations are defined in JBoss Logging for use with internationalization and localization
of log messages, strings, and exceptions.

Table 4.2. JBoss Logging Tools Annotations

Annotation Target Description Attributes

@MessageBundle Interface Defines the interface as a
message bundle.

projectCode

@MessageLogger Interface Defines the interface as a
message logger.

projectCode

@Message Method Can be used in message bundles
and message loggers. In a
message bundle it defines the
method as being one that returns
a localized String or Exception
object. In a message logger it
defines a method as being a
localized logger.

value, id

@LogMessage Method Defines a method in a message
logger as being a logging
method.

level (default
INFO)

@Cause Parameter Defines a parameter as being one
that passes an Exception as the
cause of either a Log message or
another Exception.

-

@Param Parameter Defines a parameter as being one
that is passed to the constructor
of the Exception.

-

4.5.7.4. Project Codes Used in JBoss EAP

The following table lists all the project codes used in JBoss EAP 7.2, along with the Maven modules they
belong to.

Table 4.3. Project Codes Used in JBoss EAP

Maven Module Project Code

appclient WFLYAC

CHAPTER 4. LOGGING

79

batch/extension-jberet WFLYBATCH

batch/extension WFLYBATCH-DEPRECATED

batch/jberet WFLYBAT

bean-validation WFLYBV

controller-client WFLYCC

controller WFLYCTL

clustering/common WFLYCLCOM

clustering/ejb/infinispan WFLYCLEJBINF

clustering/infinispan/extension WFLYCLINF

clustering/jgroups/extension WFLYCLJG

clustering/server WFLYCLSV

clustering/web/infinispan WFLYCLWEBINF

connector WFLYJCA

deployment-repository WFLYDR

deployment-scanner WFLYDS

domain-http WFLYDMHTTP

domain-management WFLYDM

ee WFLYEE

ejb3 WFLYEJB

embedded WFLYEMB

host-controller WFLYDC

host-controller WFLYHC

iiop-openjdk WFLYIIOP

Maven Module Project Code

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

80

io/subsystem WFLYIO

jaxrs WFLYRS

jdr WFLYJDR

jmx WFLYJMX

jpa/hibernate5 JIPI

jpa/spi/src/main/java/org/jipijapa/JipiLogger.java JIPI

jpa/subsystem WFLYJPA

jsf/subsystem WFLYJSF

jsr77 WFLYEEMGMT

launcher WFLYLNCHR

legacy/jacorb WFLYORB

legacy/messaging WFLYMSG

legacy/web WFLYWEB

logging WFLYLOG

mail WFLYMAIL

management-client-content WFLYCNT

messaging-activemq WFLYMSGAMQ

mod_cluster/extension WFLYMODCLS

naming WFLYNAM

network WFLYNET

patching WFLYPAT

picketlink WFLYPL

platform-mbean WFLYPMB

Maven Module Project Code

CHAPTER 4. LOGGING

81

pojo WFLYPOJO

process-controller WFLYPC

protocol WFLYPRT

remoting WFLYRMT

request-controller WFLYREQCON

rts WFLYRTS

sar WFLYSAR

security-manager WFLYSM

security WFLYSEC

server WFLYSRV

system-jmx WFLYSYSJMX

threads WFLYTHR

transactions WFLYTX

undertow WFLYUT

webservices/server-integration WFLYWS

weld WFLYWELD

xts WFLYXTS

Maven Module Project Code

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

82

CHAPTER 5. REMOTE JNDI LOOKUP

5.1. REGISTERING OBJECTS TO JNDI

The Java Naming and Directory Interface (JNDI) is a Java API for a directory service that allows Java
software clients to discover and look up objects using a name.

If an object registered to JNDI needs to be looked up by remote JNDI clients, for example clients that
run in a separate JVM, then it must be registered under the java:jboss/exported context.

For example, if a JMS queue in the messaging-activemq subsystem must be exposed for remote JNDI
clients, then it must be registered to JNDI using java:jboss/exported/jms/queue/myTestQueue. The
remote JNDI client can then look it up by the name jms/queue/myTestQueue.

Example: Configuration of the Queue in standalone-full(-ha).xml

5.2. CONFIGURING REMOTE JNDI

A remote JNDI client can connect and look up objects by name from JNDI. To use a remote JNDI client
to look up objects, it must have the jboss-client.jar in its class path. The jboss-client.jar is available at
EAP_HOME/bin/client/jboss-client.jar.

The following example shows how to look up the myTestQueue queue from JNDI in a remote JNDI
client:

Example: Configuration for an MDB Resource Adapter

5.3. JNDI INVOCATION OVER HTTP

JNDI invocation over HTTP includes two distinct parts: the client-side and the server-side
implementations.

5.3.1. Client-side Implementation

The client-side implementation is similar to the remote naming implementation, but based on HTTP
using the Undertow HTTP client.

Connection management is implicit rather than direct, using a caching approach similar to the one used

<subsystem xmlns="urn:jboss:domain:messaging-activemq:4.0">
 <server name="default">
 ...
 <jms-queue name="myTestQueue" entries="java:jboss/exported/jms/queue/myTestQueue"/>
 ...
 </server>
</subsystem>

Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.wildfly.naming.client.WildFlyInitialContextFactory");
properties.put(Context.PROVIDER_URL, "remote+http://HOST_NAME:8080");
context = new InitialContext(properties);
Queue myTestQueue = (Queue) context.lookup("jms/queue/myTestQueue");

CHAPTER 5. REMOTE JNDI LOOKUP

83

Connection management is implicit rather than direct, using a caching approach similar to the one used
in the existing remote naming implementation. Connection pools are cached based on connection
parameters. If they are not used in the specified timeout period, they are discarded.

In order to configure a remote JNDI client application to use HTTP transport, you must add the
following dependency on the HTTP transport implementation:

<dependency>
 <groupId>org.wildfly.wildfly-http-client</groupId>
 <artifactId>wildfly-http-naming-client</artifactId>
</dependency>

To perform the HTTP invocation, you must use the http URL scheme and include the context name of
the HTTP invoker, wildfly-services. For example, if you are using remote+http://localhost:8080 as the
target URL, in order to use HTTP transport, you must update this to http://localhost:8080/wildfly-
services.

5.3.2. Server-side Implementation

The server-side implementation is similar to the existing remote naming implementation but with an
HTTP transport.

In order to configure the server, you must enable the http-invoker on each of the virtual hosts that you
wish to use in the undertow subsystem. This is enabled by default in the standard configurations. If it is
disabled, you can re-enable it using the following management CLI command:

/subsystem=undertow/server=default-server/host=default-host/setting=http-invoker:add(http-
authentication-factory=myfactory, path="/wildfly-services")

The http-invoker attribute takes two parameters: a path that defaults to /wildfly-services and an http-
authentication-factory that must be a reference to an Elytron http-authentication-factory.

NOTE

Any deployment that aims to use the http-authentication-factory must use Elytron
security with the same security domain corresponding to the specified HTTP
authentication factory.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

84

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

6.1. SESSION REPLICATION

6.1.1. About HTTP Session Replication

Session replication ensures that client sessions of distributable applications are not disrupted by
failovers of nodes in a cluster. Each node in the cluster shares information about ongoing sessions, and
can take over sessions if a node disappears.

Session replication is the mechanism by which mod_cluster, mod_jk, mod_proxy, ISAPI, and NSAPI
clusters provide high availability.

6.1.2. Enable Session Replication in Your Application

To take advantage of JBoss EAP High Availability (HA) features and enable clustering of your web
application, you must configure your application to be distributable. If your application is not marked as
distributable, its sessions will never be distributed.

Make your Application Distributable

1. Add the <distributable/> element inside the <web-app> tag of your application’s web.xml
descriptor file:

Example: Minimum Configuration for a Distributable Application

2. Next, if desired, modify the default replication behavior. If you want to change any of the values
affecting session replication, you can override them inside a <replication-config> element
inside <jboss-web> in an application’s WEB-INF/jboss-web.xml file. For a given element, only
include it if you want to override the defaults.

Example: <replication-config> Values

The <replication-granularity> parameter determines the granularity of data that is replicated. It

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_3_0.xsd"
 version="3.0">

 <distributable/>

</web-app>

<jboss-web xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-web_10_0.xsd">
 <replication-config>
 <replication-granularity>SESSION</replication-granularity>
 </replication-config>
</jboss-web>

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

85

The <replication-granularity> parameter determines the granularity of data that is replicated. It
defaults to SESSION, but can be set to ATTRIBUTE to increase performance on sessions where most
attributes remain unchanged.

Valid values for <replication-granularity> can be :

SESSION: The default value. The entire session object is replicated if any attribute is dirty. This
policy is required if an object reference is shared by multiple session attributes. The shared
object references are maintained on remote nodes since the entire session is serialized in one
unit.

ATTRIBUTE: This is only for dirty attributes in the session and for some session data, such as
the last-accessed timestamp.

Immutable Session Attributes
For JBoss EAP 7, session replication is triggered when the session is mutated or when any mutable
attribute of the session is accessed. Session attributes are assumed to be mutable unless one of the
following is true:

The value is a known immutable value:

null

java.util.Collections.EMPTY_LIST, EMPTY_MAP, EMPTY_SET

The value type is or implements a known immutable type:

java.lang.Boolean, Character, Byte, Short, Integer, Long, Float, Double

java.lang.Class, Enum, StackTraceElement, String

java.io.File, java.nio.file.Path

java.math.BigDecimal, BigInteger, MathContext

java.net.Inet4Address, Inet6Address, InetSocketAddress, URI, URL

java.security.Permission

java.util.Currency, Locale, TimeZone, UUID

java.time.Clock, Duration, Instant, LocalDate, LocalDateTime, LocalTime, MonthDay,
Period, Year, YearMonth, ZoneId, ZoneOffset, ZonedDateTime

java.time.chrono.ChronoLocalDate, Chronology, Era

java.time.format.DateTimeFormatter, DecimalStyle

java.time.temporal.TemporalField, TemporalUnit, ValueRange, WeekFields

java.time.zone.ZoneOffsetTransition, ZoneOffsetTransitionRule, ZoneRules

The value type is annotated with:

@org.wildfly.clustering.web.annotation.Immutable

@net.jcip.annotations.Immutable

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

86

6.2. HTTP SESSION PASSIVATION AND ACTIVATION

6.2.1. About HTTP Session Passivation and Activation

Passivation is the process of controlling memory usage by removing relatively unused sessions from
memory while storing them in persistent storage.

Activation is when passivated data is retrieved from persisted storage and put back into memory.

Passivation occurs at different times in an HTTP session’s lifetime:

When the container requests the creation of a new session, if the number of currently active
sessions exceeds a configurable limit, the server attempts to passivate some sessions to make
room for the new one.

When a web application is deployed and a backup copy of sessions active on other servers is
acquired by the newly deploying web application’s session manager, sessions might be
passivated.

A session is passivated if the number of active sessions exceeds a configurable maximum.

Sessions are always passivated using a Least Recently Used (LRU) algorithm.

6.2.2. Configure HTTP Session Passivation in Your Application

HTTP session passivation is configured in your application’s WEB-INF/jboss-web.xml and META-
INF/jboss-web.xml file.

Example: jboss-web.xml File

The <max-active-sessions> element dictates the maximum number of active sessions allowed, and is
used to enable session passivation. If session creation would cause the number of active sessions to
exceed <max-active-sessions>, then the oldest session known to the session manager will passivate to
make room for the new session.

NOTE

<jboss-web xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-web_10_0.xsd">

 <max-active-sessions>20</max-active-sessions>
</jboss-web>

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

87

NOTE

The total number of sessions in memory includes sessions replicated from other cluster
nodes that are not being accessed on this node. Take this into account when setting
<max-active-sessions>. The number of sessions replicated from other nodes also
depends on whether REPL or DIST cache mode is enabled. In REPL cache mode, each
session is replicated to each node. In DIST cache mode, each session is replicated only to
the number of nodes specified by the owners parameter. See Configure the Cache Mode
in the JBoss EAP Configuration Guide for information on configuring session cache
modes. For example, consider an eight node cluster, where each node handles requests
from 100 users. With REPL cache mode, each node would store 800 sessions in memory.
With DIST cache mode enabled, and the default owners setting of 2, each node stores
200 sessions in memory.

6.3. PUBLIC API FOR CLUSTERING SERVICES

JBoss EAP 7 introduced a refined public clustering API for use by applications. The new services are
designed to be lightweight, easily injectable, with no external dependencies.

org.wildfly.clustering.group.Group

The group service provides a mechanism to view the cluster topology for a JGroups channel, and to
be notified when the topology changes.

org.wildfly.clustering.dispatcher.CommandDispatcher

The CommandDispatcherFactory service provides a mechanism to create a dispatcher for
executing commands on nodes in the cluster. The resulting CommandDispatcher is a command-
pattern analog to the reflection-based GroupRpcDispatcher from previous JBoss EAP releases.

@Resource(lookup = "java:jboss/clustering/group/channel-name")
private Group channelGroup;

@Resource(lookup = "java:jboss/clustering/dispatcher/channel-name")
private CommandDispatcherFactory factory;

public void foo() {
 String context = "Hello world!";
 // Exclude node1 and node3 from the executeOnCluster
 try (CommandDispatcher<String> dispatcher = this.factory.createCommandDispatcher(context))
{
 dispatcher.executeOnGroup(new StdOutCommand(), node1, node3);

 }
}

public static class StdOutCommand implements Command<Void, String> {
 @Override
 public Void execute(String context) {
 System.out.println(context);
 return null;
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

88

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#configure_the_cache_mode

6.4. HA SINGLETON SERVICE

A clustered singleton service, also known as a high-availability (HA) singleton, is a service deployed on
multiple nodes in a cluster. The service is provided on only one of the nodes. The node running the
singleton service is usually called the master node.

When the master node either fails or shuts down, another master is selected from the remaining nodes
and the service is restarted on the new master. Other than a brief interval when one master has stopped
and another has yet to take over, the service is provided by one, and only one, node.

HA Singleton ServiceBuilder API
JBoss EAP 7 introduced a new public API for building singleton services that simplifies the process
significantly.

The SingletonServiceBuilder implementation installs its services so they will start asynchronously,
preventing deadlocking of the Modular Service Container (MSC).

HA Singleton Service Election Policies
If there is a preference for which node should start the HA singleton, you can set the election policy in
the ServiceActivator class.

JBoss EAP provides two election policies:

Simple election policy
The simple election policy selects a master node based on the relative age. The required age is
configured in the position property, which is the index in the list of available nodes, where:

position = 0 – refers to the oldest node. This is the default.

position = 1 – refers to the 2nd oldest, and so on.

Position can also be negative to indicate the youngest nodes.

position = -1 – refers to the youngest node.

position = -2 – refers to the 2nd youngest node, and so on.

Random election policy
The random election policy elects a random member to be the provider of a singleton service.

HA Singleton Service Preferences
An HA singleton service election policy may optionally specify one or more preferred servers. This
preferred server, when available, will be the master for all singleton applications under that policy.

You can define the preferences either through the node name or through the outbound socket binding
name.

NOTE

Node preferences always take precedence over the results of an election policy.

By default, JBoss EAP high availability configurations provide a simple election policy named default
with no preferred server. You can set the preference by creating a custom policy and defining the
preferred server.

Quorum
A potential issue with a singleton service arises when there is a network partition. In this situation, also

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

89

https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/7.2/javadocs/org/wildfly/clustering/singleton/SingletonServiceBuilder.html
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/7.2/javadocs/org/jboss/msc/service/ServiceActivator.html

A potential issue with a singleton service arises when there is a network partition. In this situation, also
known as the split-brain scenario, subsets of nodes cannot communicate with each other. Each set of
servers consider all servers from the other set failed and continue to work as the surviving cluster. This
might result in data consistency issues.

JBoss EAP allows you to specify a quorum in the election policy to prevent the split-brain scenario. The
quorum specifies a minimum number of nodes to be present before a singleton provider election can
take place.

A typical deployment scenario uses a quorum of N/2 + 1, where N is the anticipated cluster size. This
value can be updated at runtime, and will immediately affect any active singleton services.

Create an HA Singleton Service Application
The following is an abbreviated example of the steps required to create and deploy an application as a
cluster-wide singleton service. This example demonstrates a querying service that regularly queries a
singleton service to get the name of the node on which it is running.

To see the singleton behavior, you must deploy the application to at least two servers. It is transparent
whether the singleton service is running on the same node or whether the value is obtained remotely.

1. Create the SingletonService class. The getValue() method, which is called by the querying
service, provides information about the node on which it is running.

2. Create the querying service. It calls the getValue() method of the singleton service to get the
name of the node on which it is running, and then writes the result to the server log.

class SingletonService implements Service<Node> {
 private Logger LOG = Logger.getLogger(this.getClass());
 private InjectedValue<Group> group;

 SingletonService(InjectedValue<Group> group) {
 this.group = group;
 }

 @Override
 public void start(StartContext context) throws StartException {
 LOG.infof("Singleton service is starting on node '%s'.",
this.group.getValue().getLocalNode());
 }

 @Override
 public void stop(StopContext context) {
 LOG.infof("Singleton service is stopping on node '%s'.",
this.group.getValue().getLocalNode());
 }

 @Override
 public Node getValue() throws IllegalStateException, IllegalArgumentException {
 return this.group.getValue().getLocalNode();
 }
}

class QueryingService implements Service<Void> {

 private Logger LOG = Logger.getLogger(this.getClass());
 private ScheduledExecutorService executor;

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

90

3. Implement the ServiceActivator class to build and install both the singleton service and the
querying service.

 @Override
 public void start(StartContext context) throws StartException {
 LOG.info("Querying service is starting.");

 executor = Executors.newSingleThreadScheduledExecutor();
 executor.scheduleAtFixedRate(() -> {

 @SuppressWarnings("unchecked")
 ServiceController<Node> service = (ServiceController<Node>)
context.getController().getServiceContainer()
 .getService(ServiceActivator.SINGLETON_SERVICE_NAME);
 try {
 Node node = service.awaitValue(5, TimeUnit.SECONDS);
 LOG.infof("Singleton service is running on node '%s'.", node);
 } catch (InterruptedException | TimeoutException | IllegalStateException e) {
 LOG.warn("Failed to query singleton service.");
 }

 }, 5, 5, TimeUnit.SECONDS);
 }

 @Override
 public void stop(StopContext context) {
 LOG.info("Querying service is stopping.");

 executor.shutdown();
 }

 @Override
 public Void getValue() throws IllegalStateException, IllegalArgumentException {
 return null;
 }

}

public class ServiceActivator implements org.jboss.msc.service.ServiceActivator {

 private final Logger LOG = Logger.getLogger(ServiceActivator.class);
 static final ServiceName SINGLETON_SERVICE_NAME =
 ServiceName.parse("org.jboss.as.quickstarts.ha.singleton.service.primary-only");
 private static final ServiceName QUERYING_SERVICE_NAME =
 ServiceName.parse("org.jboss.as.quickstarts.ha.singleton.service.primary-
only.querying");

 @Override
 public void activate(ServiceActivatorContext serviceActivatorContext) {
 try {
 SingletonPolicy policy = (SingletonPolicy) serviceActivatorContext
 .getServiceRegistry()

.getRequiredService(ServiceName.parse(SingletonDefaultRequirement.SINGLETON_POLICY
.getName()))

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

91

4. Create a file in the META-INF/services/ directory named
org.jboss.msc.service.ServiceActivator that contains the name of the ServiceActivator
class, for example, org.jboss.as.quickstarts.ha.singleton.service.primary.ServiceActivator.

See the ha-singleton-service quickstart that ships with JBoss EAP for the complete working example.
This quickstart also provides a second example that demonstrates a singleton service that is installed
with a backup service. The backup service is running on all nodes that are not elected to be running the
singleton service. Finally, this quickstart also demonstrates how to configure a few different election
policies.

6.5. HA SINGLETON DEPLOYMENTS

JBoss EAP 7 adds the ability to deploy a given application as a singleton deployment.

When deployed to a group of clustered servers, a singleton deployment will only deploy on a single node
at any given time. If the node on which the deployment is active stops or fails, the deployment will
automatically start on another node.

The policies for controlling HA singleton behavior are managed by a new singleton subsystem. A
deployment can either specify a specific singleton policy or use the default subsystem policy. A
deployment identifies itself as a singleton deployment by using a META-INF/singleton-deployment.xml
deployment descriptor, which is most easily applied to an existing deployment as a deployment overlay.
Alternatively, the requisite singleton configuration can be embedded within an existing jboss-all.xml file.

Defining or Choosing a Singleton Deployment

To define a deployment as a singleton deployment, include a META-INF/singleton-
deployment.xml descriptor in your application archive.

Example: Singleton Deployment Descriptor

 .awaitValue();

 InjectedValue<Group> group = new InjectedValue<>();

 Service<Node> service = new SingletonService(group);

 policy.createSingletonServiceBuilder(SINGLETON_SERVICE_NAME, service)
 .build(serviceActivatorContext.getServiceTarget())
 .addDependency(ServiceName.parse("org.wildfly.clustering.default-group"),
Group.class, group)
 .install();

 serviceActivatorContext.getServiceTarget()
 .addService(QUERYING_SERVICE_NAME, new QueryingService())
 .setInitialMode(ServiceController.Mode.ACTIVE)
 .install();

 LOG.info("Singleton and querying services activated.");
 } catch (InterruptedException e) {
 throw new ServiceRegistryException(e);
 }
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

92

Example: Singleton Deployment Descriptor with a Specific Singleton Policy

Alternatively, you can also add a singleton-deployment element to your jboss-all.xml
descriptor file.

Example: Defining singleton-deployment in jboss-all.xml

Example: Defining singleton-deployment in jboss-all.xml with a Specific Singleton
Policy

Creating a Singleton Deployment
JBoss EAP provides two election policies:

Simple election policy
The simple-election-policy chooses a specific member, indicated by the position attribute, on
which a given application will be deployed. The position attribute determines the index of the
node to be elected from a list of candidates sorted by descending age, where 0 indicates the
oldest node, 1 indicates the second oldest node, -1 indicates the youngest node, -2 indicates
the second youngest node, and so on. If the specified position exceeds the number of
candidates, a modulus operation is applied.

Example: Create a New Singleton Policy with a simple-election-policy and Position
Set to -1, Using the Management CLI

batch
/subsystem=singleton/singleton-policy=my-new-policy:add(cache-container=server)
/subsystem=singleton/singleton-policy=my-new-policy/election-
policy=simple:add(position=-1)
run-batch

NOTE

To set the newly created policy my-new-policy as the default, run this command:

/subsystem=singleton:write-attribute(name=default, value=my-new-policy)

<?xml version="1.0" encoding="UTF-8"?>
<singleton-deployment xmlns="urn:jboss:singleton-deployment:1.0"/>

<?xml version="1.0" encoding="UTF-8"?>
<singleton-deployment policy="my-new-policy" xmlns="urn:jboss:singleton-deployment:1.0"/>

<?xml version="1.0" encoding="UTF-8"?>
<jboss xmlns="urn:jboss:1.0">
 <singleton-deployment xmlns="urn:jboss:singleton-deployment:1.0"/>
</jboss>

<?xml version="1.0" encoding="UTF-8"?>
<jboss xmlns="urn:jboss:1.0">
 <singleton-deployment policy="my-new-policy" xmlns="urn:jboss:singleton-
deployment:1.0"/>
</jboss>

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

93

Example: Configure a simple-election-policy with Position Set to -1 Using standalone-
ha.xml

Random election policy
The random-election-policy chooses a random member on which a given application will be
deployed.

Example: Creating a New Singleton Policy with a random-election-policy, Using the
Management CLI

batch
/subsystem=singleton/singleton-policy=my-other-new-policy:add(cache-container=server)
/subsystem=singleton/singleton-policy=my-other-new-policy/election-policy=random:add()
run-batch

Example: Configure a random-election-policy Using standalone-ha.xml

NOTE

The default-cache attribute of the cache-container needs to be defined before
trying to add the policy. Without this, if you are using a custom cache container,
you might end up getting error messages.

Preferences
Additionally, any singleton election policy can indicate a preference for one or more members of a
cluster. Preferences can be defined either by using the node name or by using the outbound socket
binding name. Node preferences always take precedent over the results of an election policy.

Example: Indicate Preference in the Existing Singleton Policy Using the Management CLI

/subsystem=singleton/singleton-policy=foo/election-policy=simple:list-add(name=name-preferences,
value=nodeA)

/subsystem=singleton/singleton-policy=bar/election-policy=random:list-add(name=socket-binding-
preferences, value=binding1)

<subsystem xmlns="urn:jboss:domain:singleton:1.0">
 <singleton-policies default="my-new-policy">
 <singleton-policy name="my-new-policy" cache-container="server">
 <simple-election-policy position="-1"/>
 </singleton-policy>
 </singleton-policies>
</subsystem>

<subsystem xmlns="urn:jboss:domain:singleton:1.0">
 <singleton-policies default="my-other-new-policy">
 <singleton-policy name="my-other-new-policy" cache-container="server">
 <random-election-policy/>
 </singleton-policy>
 </singleton-policies>
</subsystem>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

94

Example: Create a New Singleton Policy with a simple-election-policy and name-preferences,
Using the Management CLI

batch
/subsystem=singleton/singleton-policy=my-new-policy:add(cache-container=server)
/subsystem=singleton/singleton-policy=my-new-policy/election-policy=simple:add(name-preferences=
[node1, node2, node3, node4])
run-batch

NOTE

To set the newly created policy my-new-policy as the default, run this command:

/subsystem=singleton:write-attribute(name=default, value=my-new-policy)

Example: Configure a random-election-policy with socket-binding-preferences Using
standalone-ha.xml

Define a Quorum
Network partitions are particularly problematic for singleton deployments, since they can trigger
multiple singleton providers for the same deployment to run at the same time. To defend against this
scenario, a singleton policy can define a quorum that requires a minimum number of nodes to be present
before a singleton provider election can take place. A typical deployment scenario uses a quorum of N/2
+ 1, where N is the anticipated cluster size. This value can be updated at runtime, and will immediately
affect any singleton deployments using the respective singleton policy.

Example: Quorum Declaration in the standalone-ha.xml File

Example: Quorum Declaration Using the Management CLI

/subsystem=singleton/singleton-policy=foo:write-attribute(name=quorum, value=3)

See the ha-singleton-deployment quickstart that ships with JBoss EAP for a complete working

<subsystem xmlns="urn:jboss:domain:singleton:1.0">
 <singleton-policies default="my-other-new-policy">
 <singleton-policy name="my-other-new-policy" cache-container="server">
 <random-election-policy>
 <socket-binding-preferences>binding1 binding2 binding3 binding4</socket-binding-
preferences>
 </random-election-policy>
 </singleton-policy>
 </singleton-policies>
</subsystem>

<subsystem xmlns="urn:jboss:domain:singleton:1.0">
 <singleton-policies default="default">
 <singleton-policy name="default" cache-container="server" quorum="4">
 <simple-election-policy/>
 </singleton-policy>
 </singleton-policies>
</subsystem>

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

95

See the ha-singleton-deployment quickstart that ships with JBoss EAP for a complete working
example of a service packaged in an application as a cluster-wide singleton using singleton deployments.

6.6. APACHE MOD_CLUSTER-MANAGER APPLICATION

6.6.1. About mod_cluster-manager Application

The mod_cluster-manager application is an administration web page, which is available on Apache HTTP
Server. It is used for monitoring the connected worker nodes and performing various administration
tasks, such as enabling or disabling contexts, and configuring the load-balancing properties of worker
nodes in a cluster.

Exploring mod_cluster-manager Application
The mod_cluster-manager application can be used for performing various administration tasks on
worker nodes.

Figure - mod_cluster Administration Web Page

[1] mod_cluster/1.3.1.Final: The version of the mod_cluster native library.

[2] ajp://192.168.122.204:8099: The protocol used (either AJP, HTTP, or HTTPS), hostname or
IP address of the worker node, and the port.

[3] jboss-eap-7.0-2: The worker node’s JVMRoute.

[4] Virtual Host 1: The virtual host(s) configured on the worker node.

[5] Disable: An administration option that can be used to disable the creation of new sessions on
the particular context. However, the ongoing sessions do not get disabled and remain intact.

[6] Stop: An administration option that can be used to stop the routing of session requests to
the context. The remaining sessions will fail over to another node unless the sticky-session-
force property is set to true.

[7] Enable Contexts Disable Contexts Stop Contexts: The operations that can be performed

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

96

[7] Enable Contexts Disable Contexts Stop Contexts: The operations that can be performed
on the whole node. Selecting one of these options affects all the contexts of a node in all its
virtual hosts.

[8] Load balancing group (LBGroup): The load-balancing-group property is set in the
modcluster subsystem in JBoss EAP configuration to group all worker nodes into custom load
balancing groups. Load balancing group (LBGroup) is an informational field that gives
information about all set load balancing groups. If this field is not set, then all worker nodes are
grouped into a single default load balancing group.

NOTE

This is only an informational field and thus cannot be used to set load-balancing-
group property. The property has to be set in modcluster subsystem in JBoss
EAP configuration.

[9] Load (value): The load factor on the worker node. The load factors are evaluated as below:

-load > 0 : A load factor with value 1 indicates that the worker node is overloaded. A load
factor of 100 denotes a free and not-loaded node.
-load = 0 : A load factor of value 0 indicates that the worker node is in standby mode. This
means that no session requests will be routed to this node until and unless the other worker
nodes are unavailable.
-load = -1 : A load factor of value -1 indicates that the worker node is in an error state.
-load = -2 : A load factor of value -2 indicates that the worker node is undergoing
CPing/CPong and is in a transition state.

NOTE

For JBoss EAP 7.2, it is also possible to use Undertow as load balancer.

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

97

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

7.1. INTRODUCTION TO CDI

7.1.1. About Contexts and Dependency Injection (CDI)

Contexts and Dependency Injection (CDI) 2.0 is a specification designed to enable Enterprise Java
Beans (EJB) 3 components to be used as Java Server Faces (JSF) managed beans. CDI unifies the two
component models and enables a considerable simplification to the programming model for web-based
applications in Java. Details about CDI 2.0 can be found in JSR 365: Contexts and Dependency
Injection for Java 2.0.

JBoss EAP includes Weld, which is the reference implementation of JSR-365.

Benefits of CDI
The benefits of CDI include:

Simplifying and shrinking your code base by replacing big chunks of code with annotations.

Flexibility, allowing you to disable and enable injections and events, use alternative beans, and
inject non-CDI objects easily.

Optionally, allowing you to include a beans.xml file in your META-INF/ or WEB-INF/ directory if
you need to customize the configuration to differ from the default. The file can be empty.

Simplifying packaging and deployments and reducing the amount of XML you need to add to
your deployments.

Providing lifecycle management via contexts. You can tie injections to requests, sessions,
conversations, or custom contexts.

Providing type-safe dependency injection, which is safer and easier to debug than string-based
injection.

Decoupling interceptors from beans.

Providing complex event notification.

7.1.2. Relationship Between Weld, Seam 2, and JavaServer Faces

Weld is the reference implementation of CDI, which is defined in JSR 346: Contexts and Dependency
Injection for Java™ EE 1.1. Weld was inspired by Seam 2 and other dependency injection frameworks, and
is included in JBoss EAP.

The goal of Seam 2 was to unify Enterprise Java Beans and JavaServer Faces managed beans.

JavaServer Faces 2.2 implements JSR-344: JavaServer™ Faces 2.2. It is an API for building server-side
user interfaces.

7.2. USE CDI TO DEVELOP AN APPLICATION

Contexts and Dependency Injection (CDI) gives you tremendous flexibility in developing applications,
reusing code, adapting your code at deployment or runtime, and unit testing. JBoss EAP includes Weld,
the reference implementation of CDI. These tasks show you how to use CDI in your enterprise

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

98

http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
https://www.jcp.org/en/jsr/detail?id=346
https://www.jcp.org/en/jsr/detail?id=344

applications.

Weld comes with a special mode for application development. When enabled, certain built-in tools,
which facilitate the development of CDI applications, are available.

NOTE

The development mode should not be used in production as it can have a negative impact
on the performance of the application. Make sure to disable the development mode
before deploying to production.

Enabling the Development Mode for a Web Application:

For a web application, set the servlet initialization parameter org.jboss.weld.development to true:

Enabling Development Mode for JBoss EAP Using the Management CLI:

It is possible to enable the Weld development mode globally for all the applications deployed by setting
development-mode attribute to true:

/subsystem=weld:write-attribute(name=development-mode,value=true)

7.2.1. Default Bean Discovery Mode

The default bean discovery mode for a bean archive is annotated. Such a bean archive is said to be an
implicit bean archive.

If the bean discovery mode is annotated, then:

Bean classes that do not have bean defining annotation and are not bean classes of sessions
beans are not discovered.

Producer methods that are not on a session bean and whose bean class does not have a bean
defining annotation are not discovered.

Producer fields that are not on a session bean and whose bean class does not have a bean
defining annotation are not discovered.

Disposer methods that are not on a session bean and whose bean class does not have a bean
defining annotation are not discovered.

Observer methods that are not on a session bean and whose bean class does not have a bean
defining annotation are not discovered.

IMPORTANT

All examples in the CDI section are valid only when you have a discovery mode set to all.

<web-app>
 <context-param>
 <param-name>org.jboss.weld.development</param-name>
 <param-value>true</param-value>
 </context-param>
</web-app>

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

99

Bean Defining Annotations
A bean class can have a bean defining annotation, allowing it to be placed anywhere in an application,
as defined in bean archives. A bean class with a bean defining annotation is said to be an implicit bean.

The set of bean defining annotations contains:

@ApplicationScoped, @SessionScoped, @ConversationScoped and @RequestScoped
annotations.

All other normal scope types.

@Interceptor and @Decorator annotations.

All stereotype annotations, i.e. annotations annotated with @Stereotype.

The @Dependent scope annotation.

If one of these annotations is declared on a bean class, then the bean class is said to have a bean
defining annotation.

Example: Bean Defining Annotation

NOTE

To ensure compatibility with other JSR-330 implementations, all pseudo-scope
annotations, except @Dependent, are not bean defining annotations. However, a
stereotype annotation, including a pseudo-scope annotation, is a bean defining
annotation.

7.2.2. Exclude Beans From the Scanning Process

Exclude filters are defined by <exclude> elements in the beans.xml file for the bean archive as children
of the <scan> element. By default an exclude filter is active. The exclude filter becomes inactive, if its
definition contains:

A child element named <if-class-available> with a name attribute, and the class loader for the
bean archive can not load a class for that name, or

A child element named <if-class-not-available> with a name attribute, and the class loader for
the bean archive can load a class for that name, or

A child element named <if-system-property> with a name attribute, and there is no system
property defined for that name, or

A child element named <if-system-property> with a name attribute and a value attribute, and
there is no system property defined for that name with that value.

The type is excluded from discovery, if the filter is active, and:

The fully qualified name of the type being discovered matches the value of the name attribute

@Dependent
public class BookShop
 extends Business
 implements Shop<Book> {
 ...
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

100

https://jcp.org/en/jsr/detail?id=330

1

2

3

4

The fully qualified name of the type being discovered matches the value of the name attribute
of the exclude filter, or

The package name of the type being discovered matches the value of the name attribute with a
suffix ".*" of the exclude filter, or

The package name of the type being discovered starts with the value of the name attribute with
a suffix ".**" of the exclude filter

Example 7.1. Example: beans.xml File

The first exclude filter will exclude all classes in com.acme.rest package.

The second exclude filter will exclude all classes in the com.acme.faces package, and any
subpackages, but only if JSF is not available.

The third exclude filter will exclude all classes in the com.acme.verbose package if the system
property verbosity has the value low.

The fourth exclude filter will exclude all classes in the com.acme.ejb package, and any
subpackages, if the system property exclude-ejbs is set with any value and if at the same time,
the javax.enterprise.inject.Model class is also available to the classloader.

NOTE

It is safe to annotate Java EE components with @Vetoed to prevent them being
considered beans. An event is not fired for any type annotated with @Vetoed, or in a
package annotated with @Vetoed. For more information, see @Vetoed.

7.2.3. Use an Injection to Extend an Implementation

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee">

 <scan>
 <exclude name="com.acme.rest.*" /> 1

 <exclude name="com.acme.faces.**"> 2
 <if-class-not-available name="javax.faces.context.FacesContext"/>
 </exclude>

 <exclude name="com.acme.verbose.*"> 3
 <if-system-property name="verbosity" value="low"/>
 </exclude>

 <exclude name="com.acme.ejb.**"> 4
 <if-class-available name="javax.enterprise.inject.Model"/>
 <if-system-property name="exclude-ejbs"/>
 </exclude>
 </scan>

</beans>

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

101

You can use an injection to add or change a feature of your existing code.

The following example adds a translation ability to an existing class, and assumes you already have a
Welcome class, which has a method buildPhrase. The buildPhrase method takes as an argument the
name of a city, and outputs a phrase like "Welcome to Boston!".

This example injects a hypothetical Translator object into the Welcome class. The Translator object
can be an EJB stateless bean or another type of bean, which can translate sentences from one language
to another. In this instance, the Translator is used to translate the entire greeting, without modifying the
original Welcome class. The Translator is injected before the buildPhrase method is called.

Example: Inject a Translator Bean into the Welcome Class

7.3. AMBIGUOUS OR UNSATISFIED DEPENDENCIES

Ambiguous dependencies exist when the container is unable to resolve an injection to exactly one bean.

Unsatisfied dependencies exist when the container is unable to resolve an injection to any bean at all.

The container takes the following steps to try to resolve dependencies:

1. It resolves the qualifier annotations on all beans that implement the bean type of an injection
point.

2. It filters out disabled beans. Disabled beans are @Alternative beans which are not explicitly
enabled.

In the event of an ambiguous or unsatisfied dependency, the container aborts deployment and throws
an exception.

To fix an ambiguous dependency, see Use a Qualifier to Resolve an Ambiguous Injection .

7.3.1. Qualifiers

Qualifiers are annotations used to avoid ambiguous dependencies when the container can resolve
multiple beans, which fit into an injection point. A qualifier declared at an injection point provides the set
of eligible beans, which declare the same qualifier.

Qualifiers must be declared with a retention and target as shown in the example below.

Example: Define the @Synchronous and @Asynchronous Qualifiers

public class TranslatingWelcome extends Welcome {

 @Inject Translator translator;

 public String buildPhrase(String city) {
 return translator.translate("Welcome to " + city + "!");
 }
 ...
}

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

102

Example: Use the @Synchronous and @Asynchronous Qualifiers

'@Any'
Whenever a bean or injection point does not explicitly declare a qualifier, the container assumes the
qualifier @Default. From time to time, you will need to declare an injection point without specifying a
qualifier. There is a qualifier for that too. All beans have the qualifier @Any. Therefore, by explicitly
specifying @Any at an injection point, you suppress the default qualifier, without otherwise restricting
the beans that are eligible for injection.

This is especially useful if you want to iterate over all beans of a certain bean type.

Every bean has the qualifier @Any, even if it does not explicitly declare this qualifier.

Every event also has the qualifier @Any, even if it was raised without explicit declaration of this qualifier.

The @Any qualifier allows an injection point to refer to all beans or all events of a certain bean type.

public @interface Synchronous {}

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Asynchronous {}

@Synchronous
public class SynchronousPaymentProcessor implements PaymentProcessor {
 public void process(Payment payment) { ... }
}

@Asynchronous
public class AsynchronousPaymentProcessor implements PaymentProcessor {
 public void process(Payment payment) { ... }
}

import javax.enterprise.inject.Instance;
...

@Inject

void initServices(@Any Instance<Service> services) {

 for (Service service: services) {

 service.init();

 }

}

@Inject @Any Event<User> anyUserEvent;

@Inject @Delegate @Any Logger logger;

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

103

7.3.2. Use a Qualifier to Resolve an Ambiguous Injection

You can resolve an ambiguous injection using a qualifier. Read more about ambiguous injections at
Ambiguous or Unsatisfied Dependencies.

The following example is ambiguous and features two implementations of Welcome, one which
translates and one which does not. The injection needs to be specified to use the translating Welcome.

Example: Ambiguous Injection

Resolve an Ambiguous Injection with a Qualifier

1. To resolve the ambiguous injection, create a qualifier annotation called @Translating:

2. Annotate your translating Welcome with the @Translating annotation:

3. Request the translating Welcome in your injection. You must request a qualified
implementation explicitly, similar to the factory method pattern. The ambiguity is resolved at
the injection point.

public class Greeter {
 private Welcome welcome;

 @Inject
 void init(Welcome welcome) {
 this.welcome = welcome;
 }
 ...
}

@Qualifier
@Retention(RUNTIME)
@Target({TYPE,METHOD,FIELD,PARAMETERS})
public @interface Translating{}

@Translating
public class TranslatingWelcome extends Welcome {
 @Inject Translator translator;
 public String buildPhrase(String city) {
 return translator.translate("Welcome to " + city + "!");
 }
 ...
}

public class Greeter {
 private Welcome welcome;
 @Inject
 void init(@Translating Welcome welcome) {
 this.welcome = welcome;
 }
 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase("San Francisco"));
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

104

7.4. MANAGED BEANS

Java EE establishes a common definition in the Managed Beans specification. Managed beans are
defined as container-managed objects with minimal programming restrictions, otherwise known by the
acronym POJO (Plain Old Java Object). They support a small set of basic services, such as resource
injection, lifecycle callbacks, and interceptors. Companion specifications, such as EJB and CDI, build on
this basic model.

With very few exceptions, almost every concrete Java class that has a constructor with no parameters,
or a constructor designated with the annotation @Inject, is a bean. This includes every JavaBean and
every EJB session bean.

7.4.1. Types of Classes That are Beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by the
Managed Beans specification. You can explicitly declare a managed bean by annotating the bean class
@ManagedBean, but in CDI you do not need to. According to the specification, the CDI container treats
any class that satisfies the following conditions as a managed bean:

It is not a non-static inner class.

It is a concrete class or is annotated with @Decorator.

It is not annotated with an EJB component-defining annotation or declared as an EJB bean
class in the ejb-jar.xml file.

It does not implement the interface javax.enterprise.inject.spi.Extension.

It has either a constructor with no parameters, or a constructor annotated with @Inject.

It is not annotated with @Vetoed or in a package annotated with @Vetoed .

The unrestricted set of bean types for a managed bean contains the bean class, every superclass, and all
interfaces it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @Dependent.

@Vetoed
The @Vetoed annotation was introduced in CDI 1.1. You can prevent a bean from injection by adding this
annotation:

In this code, the SimpleGreeting bean is not considered for injection.

All beans in a package can be prevented from injection:

This code in package-info.java in the org.sample.beans package will prevent all beans inside this

@Vetoed
public class SimpleGreeting implements Greeting {
 ...
}

@Vetoed
package org.sample.beans;

import javax.enterprise.inject.Vetoed;

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

105

This code in package-info.java in the org.sample.beans package will prevent all beans inside this
package from injection.

Java EE components, such as stateless EJBs or JAX-RS resource endpoints, can be marked with
@Vetoed to prevent them from being considered beans. Adding the @Vetoed annotation to all
persistent entities prevents the BeanManager from managing an entity as a CDI Bean. When an entity is
annotated with @Vetoed, no injections take place. The reasoning behind this is to prevent the
BeanManager from performing the operations that might cause the JPA provider to break.

7.4.2. Use CDI to Inject an Object Into a Bean

CDI is activated automatically if CDI components are detected in an application. If you want to
customize your configuration to differ from the default, you can include a META-INF/beans.xml file or a
WEB-INF/beans.xml file in your deployment archive.

Inject Objects into Other Objects

1. To obtain an instance of a class, annotate the field with @Inject within your bean:

2. Use your injected object’s methods directly. Assume that TextTranslator has a method
translate:

3. Use an injection in the constructor of a bean. You can inject objects into the constructor of a
bean as an alternative to using a factory or service locator to create them:

4. Use the Instance(<T>) interface to get instances programmatically. The Instance interface can
return an instance of TextTranslator when parameterized with the bean type.

public class TranslateController {
 @Inject TextTranslator textTranslator;
 ...

// in TranslateController class

public void translate() {
 translation = textTranslator.translate(inputText);
}

public class TextTranslator {

 private SentenceParser sentenceParser;
 private Translator sentenceTranslator;

 @Inject
 TextTranslator(SentenceParser sentenceParser, Translator sentenceTranslator) {
 this.sentenceParser = sentenceParser;
 this.sentenceTranslator = sentenceTranslator;
 }

 // Methods of the TextTranslator class
 ...
}

@Inject Instance<TextTranslator> textTranslatorInstance;
...

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

106

When you inject an object into a bean, all of the object’s methods and properties are available to your
bean. If you inject into your bean’s constructor, instances of the injected objects are created when your
bean’s constructor is called, unless the injection refers to an instance that already exists. For instance, a
new instance would not be created if you inject a session-scoped bean during the lifetime of the session.

7.5. CONTEXTS AND SCOPES

A context, in terms of CDI, is a storage area that holds instances of beans associated with a specific
scope.

A scope is the link between a bean and a context. A scope/context combination can have a specific
lifecycle. Several predefined scopes exist, and you can create your own. Examples of predefined scopes
are @RequestScoped, @SessionScoped, and @ConversationScope.

Table 7.1. Available Scopes

Scope Description

@Dependent The bean is bound to the lifecycle of the bean holding the reference. The
default scope for an injected bean is @Dependent.

@ApplicationScoped The bean is bound to the lifecycle of the application.

@RequestScoped The bean is bound to the lifecycle of the request.

@SessionScoped The bean is bound to the lifecycle of the session.

@ConversationScoped The bean is bound to the lifecycle of the conversation. The conversation
scope is between the lengths of the request and the session, and is
controlled by the application.

Custom scopes If the above contexts do not meet your needs, you can define custom
scopes.

7.6. NAMED BEANS

You can name a bean by using the @Named annotation. Naming a bean allows you to use it directly in
Java Server Faces (JSF) and Expression Language (EL).

The @Named annotation takes an optional parameter, which is the bean name. If this parameter is
omitted, the bean name defaults to the class name of the bean with its first letter converted to
lowercase.

7.6.1. Use Named Beans

Configure Bean Names Using the @Named Annotation

1. Use the @Named annotation to assign a name to a bean.

public void translate() {
 textTranslatorInstance.get().translate(inputText);
}

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

107

In the example above, the default name would be greeterBean if no name had been specified.

2. Use the named bean in a JSF view.

<h:form>
 <h:commandButton value="Welcome visitors" action="#{greeter.welcomeVisitors}"/>
</h:form>

7.7. BEAN LIFECYCLE

This task shows you how to save a bean for the life of a request.

The default scope for an injected bean is @Dependent. This means that the bean’s lifecycle is
dependent upon the lifecycle of the bean that holds the reference. Several other scopes exist, and you
can define your own scopes. For more information, see Contexts and Scopes.

Manage Bean Lifecycles

1. Annotate the bean with the desired scope.

2. When your bean is used in the JSF view, it holds state.

Your bean is saved in the context relating to the scope that you specify, and lasts as long as the scope

@Named("greeter")
public class GreeterBean {
 private Welcome welcome;

 @Inject
 void init (Welcome welcome) {
 this.welcome = welcome;
 }

 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase("San Francisco"));
 }
}

@RequestScoped
@Named("greeter")
public class GreeterBean {
 private Welcome welcome;
 private String city; // getter & setter not shown
 @Inject void init(Welcome welcome) {
 this.welcome = welcome;
 }
 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase(city));
 }
}

<h:form>
 <h:inputText value="#{greeter.city}"/>
 <h:commandButton value="Welcome visitors" action="#{greeter.welcomeVisitors}"/>
</h:form>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

108

Your bean is saved in the context relating to the scope that you specify, and lasts as long as the scope
applies.

7.7.1. Use a Producer Method

A producer method is a method that acts as a source of bean instances. When no instance exists in the
specified context, the method declaration itself describes the bean, and the container invokes the
method to obtain an instance of the bean. A producer method lets the application take full control of the
bean instantiation process.

This section shows how to use producer methods to produce a variety of different objects that are not
beans for injection.

Example: Use a Producer Method

By using a producer method instead of an alternative, polymorphism after deployment is allowed.

The @Preferred annotation in the example is a qualifier annotation. For more information about
qualifiers, see Qualifiers.

The following injection point has the same type and qualifier annotations as the producer method, so it
resolves to the producer method using the usual CDI injection rules. The producer method is called by
the container to obtain an instance to service this injection point.

Example: Assign a Scope to a Producer Method

The default scope of a producer method is @Dependent. If you assign a scope to a bean, it is bound to
the appropriate context. The producer method in this example is only called once per session.

Example: Use an Injection Inside a Producer Method

Objects instantiated directly by an application cannot take advantage of dependency injection and do
not have interceptors. However, you can use dependency injection into the producer method to obtain
bean instances.

@SessionScoped
public class Preferences implements Serializable {
 private PaymentStrategyType paymentStrategy;
 ...
 @Produces @Preferred
 public PaymentStrategy getPaymentStrategy() {
 switch (paymentStrategy) {
 case CREDIT_CARD: return new CreditCardPaymentStrategy();
 case CHECK: return new CheckPaymentStrategy();
 default: return null;
 }
 }
}

@Inject @Preferred PaymentStrategy paymentStrategy;

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy() {
 ...
}

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

109

If you inject a request-scoped bean into a session-scoped producer, the producer method promotes the
current request-scoped instance into session scope. This is almost certainly not the desired behavior, so
use caution when you use a producer method in this way.

NOTE

The scope of the producer method is not inherited from the bean that declares the
producer method.

Producer methods allow you to inject non-bean objects and change your code dynamically.

7.8. ALTERNATIVE BEANS

Alternatives are beans whose implementation is specific to a particular client module or deployment
scenario.

By default, @Alternative beans are disabled. They are enabled for a specific bean archive by editing its
beans.xml file. However, this activation only applies to the beans in that archive. From CDI 1.1 onwards,
the alternative can be enabled for the entire application using the @Priority annotation.

Example: Defining Alternatives

This alternative defines an implementation of the PaymentProcessor class using both @Synchronous
and @Asynchronous alternatives:

Example: Enabling @Alternative Using beans.xml

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy ccps,
 CheckPaymentStrategy cps) {
 switch (paymentStrategy) {
 case CREDIT_CARD: return ccps;
 case CHEQUE: return cps;
 default: return null;
 }
}

@Alternative @Synchronous @Asynchronous

public class MockPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

<beans
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_2_0.xsd">
 <alternatives>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

110

Declaring Selected Alternatives
The @Priority annotation allows an alternative to be enabled for an entire application. An alternative
can be given a priority for the application:

by placing the @Priority annotation on the bean class of a managed bean or session bean, or

by placing the @Priority annotation on the bean class that declares the producer method, field
or resource.

7.8.1. Override an Injection with an Alternative

You can use alternative beans to override existing beans. They can be thought of as a way to plug in a
class which fills the same role, but functions differently. They are disabled by default.

This task shows you how to specify and enable an alternative.

Override an Injection
This task assumes that you already have a TranslatingWelcome class in your project, but you want to
override it with a "mock" TranslatingWelcome class. This would be the case for a test deployment,
where the true Translator bean cannot be used.

1. Define the alternative.

2. Activate the substitute implementation by adding the fully-qualified class name to your META-
INF/beans.xml or WEB-INF/beans.xml file.

The alternative implementation is now used instead of the original one.

7.9. STEREOTYPES

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype
allows you to identify such a role and declare some common metadata for beans with that role in a
central place.

A stereotype encapsulates any combination of:

A default scope.

 <class>org.mycompany.mock.MockPaymentProcessor</class>
 </alternatives>
</beans>

@Alternative
@Translating
public class MockTranslatingWelcome extends Welcome {
 public String buildPhrase(string city) {
 return "Bienvenue Ã " + city + "!");
 }
}

<beans>
 <alternatives>
 <class>com.acme.MockTranslatingWelcome</class>
 </alternatives>
</beans>

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

111

A set of interceptor bindings.

A stereotype can also specify either:

All beans where the stereotypes are defaulted bean EL names.

All beans where the stereotypes are alternatives.

A bean can declare zero, one, or multiple stereotypes. A stereotype is an @Stereotype annotation that
packages several other annotations. Stereotype annotations can be applied to a bean class, producer
method, or field.

A class that inherits a scope from a stereotype can override that stereotype and specify a scope directly
on the bean.

In addition, if a stereotype has a @Named annotation, any bean it is placed on has a default bean name.
The bean can override this name if the @Named annotation is specified directly on the bean. For more
information about named beans, see Named Beans.

7.9.1. Use Stereotypes

Without stereotypes, annotations can become cluttered. This task shows you how to use stereotypes to
reduce the clutter and streamline your code.

Example: Annotation Clutter

Define and Use Stereotypes

1. Define the stereotype.

2. Use the stereotype.

@Secure
@Transactional
@RequestScoped
@Named
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

@Secure
@Transactional
@RequestScoped
@Named
@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
public @interface BusinessComponent {
 ...
}

@BusinessComponent
public class AccountManager {

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

112

7.10. OBSERVER METHODS

Observer methods receive notifications when events occur.

CDI also provides transactional observer methods, which receive event notifications during the before
completion or after completion phase of the transaction in which the event was fired.

7.10.1. Fire and Observe Events

Example: Fire an Event

The following code shows an event being injected and used in a method.

Example: Fire an Event with a Qualifier

You can annotate your event injection with a qualifier, to make it more specific. For more information
about qualifiers, see Qualifiers.

Example: Observe an Event

To observe an event, use the @Observes annotation.

You can use qualifiers to observe only specific types of events.

 public boolean transfer(Account a, Account b) {
 ...
 }
}

public class AccountManager {
 @Inject Event<Withdrawal> event;

 public boolean transfer(Account a, Account b) {
 ...
 event.fire(new Withdrawal(a));
 }
}

public class AccountManager {
 @Inject @Suspicious Event <Withdrawal> event;

 public boolean transfer(Account a, Account b) {
 ...
 event.fire(new Withdrawal(a));
 }
}

public class AccountObserver {
 void checkTran(@Observes Withdrawal w) {
 ...
 }
}

public class AccountObserver {

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

113

7.10.2. Transactional Observers

Transactional observers receive the event notifications before or after the completion phase of the
transaction in which the event was raised. Transactional observers are important in a stateful object
model because state is often held for longer than a single atomic transaction.

There are five kinds of transactional observers:

IN_PROGRESS: By default, observers are invoked immediately.

AFTER_SUCCESS: Observers are invoked after the completion phase of the transaction, but
only if the transaction completes successfully.

AFTER_FAILURE: Observers are invoked after the completion phase of the transaction, but
only if the transaction fails to complete successfully.

AFTER_COMPLETION: Observers are invoked after the completion phase of the transaction.

BEFORE_COMPLETION: Observers are invoked before the completion phase of the
transaction.

The following observer method refreshes a query result set cached in the application context, but only
when transactions that update the Category tree are successful:

Assume you have cached a JPA query result set in the application scope as shown in the following
example:

Occasionally a Product is created or deleted. When this occurs, you need to refresh the Product
catalog. But you must wait for the transaction to complete successfully before performing this refresh.

 void checkTran(@Observes @Suspicious Withdrawal w) {
 ...
 }
}

public void refreshCategoryTree(@Observes(during = AFTER_SUCCESS) CategoryUpdateEvent
event) { ... }

import javax.ejb.Singleton;
import javax.enterprise.inject.Produces;

@ApplicationScoped @Singleton

public class Catalog {
 @PersistenceContext EntityManager em;
 List<Product> products;
 @Produces @Catalog
 List<Product> getCatalog() {
 if (products==null) {
 products = em.createQuery("select p from Product p where p.deleted = false")
 .getResultList();
 }
 return products;
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

114

The following is an example of a bean that creates and deletes Products triggers events:

The Catalog can now observe the events after successful completion of the transaction:

7.11. INTERCEPTORS

Interceptors allow you to add functionality to the business methods of a bean without modifying the
bean’s method directly. The interceptor is executed before any of the business methods of the bean.
Interceptors are defined as part of the JSR 345: Enterprise JavaBeans™ 3.2 specification.

CDI enhances this functionality by allowing you to use annotations to bind interceptors to beans.

Interception points

Business method interception: A business method interceptor applies to invocations of
methods of the bean by clients of the bean.

Lifecycle callback interception: A lifecycle callback interceptor applies to invocations of lifecycle
callbacks by the container.

Timeout method interception: A timeout method interceptor applies to invocations of the EJB

import javax.enterprise.event.Event;

@Stateless

public class ProductManager {
 @PersistenceContext EntityManager em;
 @Inject @Any Event<Product> productEvent;
 public void delete(Product product) {
 em.delete(product);
 productEvent.select(new AnnotationLiteral<Deleted>(){}).fire(product);
 }

 public void persist(Product product) {
 em.persist(product);
 productEvent.select(new AnnotationLiteral<Created>(){}).fire(product);
 }
 ...
}

import javax.ejb.Singleton;

@ApplicationScoped @Singleton
public class Catalog {
 ...
 void addProduct(@Observes(during = AFTER_SUCCESS) @Created Product product) {
 products.add(product);
 }

 void removeProduct(@Observes(during = AFTER_SUCCESS) @Deleted Product product) {
 products.remove(product);
 }

}

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

115

https://jcp.org/en/jsr/detail?id=345

Timeout method interception: A timeout method interceptor applies to invocations of the EJB
timeout methods by the container.

Enabling Interceptors
By default, all interceptors are disabled. You can enable the interceptor by using the beans.xml
descriptor of a bean archive. However, this activation only applies to the beans in that archive. From CDI
1.1 onwards the interceptor can be enabled for the whole application using the @Priority annotation.

Example: Enabling Interceptors in beans.xml

Having the XML declaration solves two problems:

It enables you to specify an ordering for the interceptors in your system, ensuring deterministic
behavior.

It lets you enable or disable interceptor classes at deployment time.

Interceptors enabled using @Priority are called before interceptors enabled using the beans.xml file.

NOTE

Having an interceptor enabled by @Priority and at the same time invoked by the
beans.xml file leads to a nonportable behavior. This combination of enablement should
therefore be avoided in order to maintain consistent behavior across different CDI
implementations.

7.11.1. Use Interceptors with CDI

CDI can simplify your interceptor code and make it easier to apply to your business code.

Without CDI, interceptors have two problems:

The bean must specify the interceptor implementation directly.

Every bean in the application must specify the full set of interceptors in the correct order. This
makes adding or removing interceptors on an application-wide basis time-consuming and error-
prone.

Using Interceptors with CDI

1. Define the interceptor binding type.

<beans
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_2.0.xsd">
 <interceptors>
 <class>org.mycompany.myapp.TransactionInterceptor</class>
 </interceptors>
</beans>

@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

116

2. Mark the interceptor implementation.

3. Use the interceptor in your development environment.

4. Enable the interceptor in your deployment, by adding it to the META-INF/beans.xml or WEB-
INF/beans.xml file.

The interceptors are applied in the order listed.

7.12. DECORATORS

A decorator intercepts invocations from a specific Java interface, and is aware of all the semantics
attached to that interface. Decorators are useful for modeling some kinds of business concerns, but do
not have the generality of interceptors. A decorator is a bean, or even an abstract class, that implements
the type it decorates, and is annotated with @Decorator. To invoke a decorator in a CDI application, it
must be specified in the beans.xml file.

Example: Invoke a Decorator Through beans.xml

public @interface Secure {}

@Secure
@Interceptor
public class SecurityInterceptor {
 @AroundInvoke
 public Object aroundInvoke(InvocationContext ctx) throws Exception {
 // enforce security ...
 return ctx.proceed();
 }
}

@Secure
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

<beans>
 <interceptors>
 <class>com.acme.SecurityInterceptor</class>
 <class>com.acme.TransactionInterceptor</class>
 </interceptors>
</beans>

<beans
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_2_0.xsd">
 <decorators>

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

117

This declaration serves two main purposes:

It enables you to specify an ordering for decorators in your system, ensuring deterministic
behavior.

It lets you enable or disable decorator classes at deployment time.

A decorator must have exactly one @Delegate injection point to obtain a reference to the decorated
object.

Example: Decorator Class

From CDI 1.1 onwards, the decorator can be enabled for the whole application using @Priority
annotation.

Decorators enabled using @Priority are called before decorators enabled using the beans.xml file. The
lower priority values are called first.

NOTE

Having a decorator enabled by @Priority and at the same time invoked by beans.xml,
leads to a nonportable behavior. This combination of enablement should therefore be
avoided in order to maintain consistent behavior across different CDI implementations.

7.13. PORTABLE EXTENSIONS

CDI is intended to be a foundation for frameworks, extensions, and for integration with other
technologies. Therefore, CDI exposes a set of SPIs for the use of developers of portable extensions to
CDI.

Extensions can provide the following types of functionality:

Integration with Business Process Management engines.

Integration with third-party frameworks, such as Spring, Seam, GWT, or Wicket.

 <class>org.mycompany.myapp.LargeTransactionDecorator</class>
 </decorators>
</beans>

@Decorator
public abstract class LargeTransactionDecorator implements Account {

 @Inject @Delegate @Any Account account;
 @PersistenceContext EntityManager em;

 public void withdraw(BigDecimal amount) {
 ...
 }

 public void deposit(BigDecimal amount);
 ...
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

118

New technology based upon the CDI programming model.

According to the JSR-346 specification, a portable extension can integrate with the container in the
following ways:

Providing its own beans, interceptors, and decorators to the container.

Injecting dependencies into its own objects using the dependency. injection service.

Providing a context implementation for a custom scope.

Augmenting or overriding the annotation-based metadata with metadata from another source.

For more information, see Portable extensions in the Weld documentation.

7.14. BEAN PROXIES

Clients of an injected bean do not usually hold a direct reference to a bean instance. Unless the bean is a
dependent object, scope @Dependent, the container must redirect all injected references to the bean
using a proxy object.

A bean proxy, which can be referred to as client proxy, is responsible for ensuring the bean instance that
receives a method invocation is the instance associated with the current context. The client proxy also
allows beans bound to contexts, such as the session context, to be serialized to disk without recursively
serializing other injected beans.

Due to Java limitations, some Java types cannot be proxied by the container. If an injection point
declared with one of these types resolves to a bean with a scope other than @Dependent, the container
aborts the deployment.

Certain Java types cannot be proxied by the container. These include:

Classes that do not have a non-private constructor with no parameters.

Classes that are declared final or have a final method.

Arrays and primitive types.

7.15. USE A PROXY IN AN INJECTION

A proxy is used for injection when the lifecycles of the beans are different from each other. The proxy is
a subclass of the bean that is created at runtime, and overrides all the non-private methods of the bean
class. The proxy forwards the invocation onto the actual bean instance.

In this example, the PaymentProcessor instance is not injected directly into Shop. Instead, a proxy is
injected, and when the processPayment() method is called, the proxy looks up the current
PaymentProcessor bean instance and calls the processPayment() method on it.

Example: Proxy Injection

@ConversationScoped
class PaymentProcessor
{
 public void processPayment(int amount)
 {
 System.out.println("I'm taking $" + amount);

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

119

https://jcp.org/en/jsr/detail?id=346
http://docs.jboss.org/weld/reference/3.0.5.Final/en-US/html_single/#extend

 }
}

@ApplicationScoped
public class Shop
{

 @Inject
 PaymentProcessor paymentProcessor;

 public void buyStuff()
 {
 paymentProcessor.processPayment(100);
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

120

CHAPTER 8. JBOSS EAP MBEAN SERVICES
A managed bean, sometimes simply referred to as an MBean, is a type of JavaBean that is created with
dependency injection. MBean services are the core building blocks of the JBoss EAP server.

8.1. WRITING JBOSS MBEAN SERVICES

Writing a custom MBean service that relies on a JBoss service requires the service interface method
pattern. A JBoss MBean service interface method pattern consists of a set of life cycle operations that
inform an MBean service when it can create, start, stop, and destroy itself.

You can manage the dependency state using any of the following approaches:

If you want specific methods to be called on your MBean, declare those methods in your MBean
interface. This approach allows your MBean implementation to avoid dependencies on JBoss
specific classes.

If you are not bothered about dependencies on JBoss specific classes, then you can have your
MBean interface extend the ServiceMBean interface and ServiceMBeanSupport class. The
ServiceMBeanSupport class provides implementations of the service lifecycle methods like
create, start, and stop. To handle a specific event like the start() event, you need to override
startService() method provided by the ServiceMBeanSupport class.

8.1.1. A Standard MBean Example

This section develops two example MBean services packaged together in a service archive (.sar).

ConfigServiceMBean interface declares specific methods like the start, getTimeout, and stop
methods to start, hold, and stop the MBean correctly without using any JBoss specific classes.
ConfigService class implements ConfigServiceMBean interface and consequently implements the
methods used within that interface.

The PlainThread class extends the ServiceMBeanSupport class and implements the
PlainThreadMBean interface. PlainThread starts a thread and uses
ConfigServiceMBean.getTimeout() to determine how long the thread should sleep.

Example: MBean Services Class

package org.jboss.example.mbean.support;
public interface ConfigServiceMBean {
 int getTimeout();
 void start();
 void stop();
}
package org.jboss.example.mbean.support;
public class ConfigService implements ConfigServiceMBean {
 int timeout;
 @Override
 public int getTimeout() {
 return timeout;
 }
 @Override
 public void start() {
 //Create a random number between 3000 and 6000 milliseconds
 timeout = (int)Math.round(Math.random() * 3000) + 3000;

CHAPTER 8. JBOSS EAP MBEAN SERVICES

121

The jboss-service.xml descriptor shows how the ConfigService class is injected into the PlainThread
class using the inject tag. The inject tag establishes a dependency between PlainThreadMBean and
ConfigServiceMBean, and thus allows PlainThreadMBean to use ConfigServiceMBean easily.

Example: jboss-service.xml Service Descriptor

 System.out.println("Random timeout set to " + timeout + " seconds");
 }
 @Override
 public void stop() {
 timeout = 0;
 }
}

package org.jboss.example.mbean.support;
import org.jboss.system.ServiceMBean;
public interface PlainThreadMBean extends ServiceMBean {
 void setConfigService(ConfigServiceMBean configServiceMBean);
}

package org.jboss.example.mbean.support;
import org.jboss.system.ServiceMBeanSupport;
public class PlainThread extends ServiceMBeanSupport implements PlainThreadMBean {
 private ConfigServiceMBean configService;
 private Thread thread;
 private volatile boolean done;
 @Override
 public void setConfigService(ConfigServiceMBean configService) {
 this.configService = configService;
 }
 @Override
 protected void startService() throws Exception {
 System.out.println("Starting Plain Thread MBean");
 done = false;
 thread = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 while (!done) {
 System.out.println("Sleeping....");
 Thread.sleep(configService.getTimeout());
 System.out.println("Slept!");
 }
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 });
 thread.start();
 }
 @Override
 protected void stopService() throws Exception {
 System.out.println("Stopping Plain Thread MBean");
 done = true;
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

122

After writing the MBeans example, you can package the classes and the jboss-service.xml descriptor in
the META-INF/ folder of a service archive (.sar).

8.2. DEPLOYING JBOSS MBEAN SERVICES

Example: Deploy and Test MBeans in a Managed Domain

Use the following command to deploy the example MBeans (ServiceMBeanTest.sar) in a managed
domain:

deploy ~/Desktop/ServiceMBeanTest.sar --all-server-groups

Example: Deploy and Test MBeans on a Standalone Server

Use the following command to build and deploy the example MBeans (ServiceMBeanTest.sar) on a
standalone server:

deploy ~/Desktop/ServiceMBeanTest.sar

Example: Undeploy the MBeans Archive

Use the following command to undeploy the MBeans example:

undeploy ServiceMBeanTest.sar

<server xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:jboss:service:7.0 jboss-service_7_0.xsd"
 xmlns="urn:jboss:service:7.0">
 <mbean code="org.jboss.example.mbean.support.ConfigService"
name="jboss.support:name=ConfigBean"/>
 <mbean code="org.jboss.example.mbean.support.PlainThread"
name="jboss.support:name=ThreadBean">
 <attribute name="configService">
 <inject bean="jboss.support:name=ConfigBean"/>
 </attribute>
 </mbean>
</server>

CHAPTER 8. JBOSS EAP MBEAN SERVICES

123

CHAPTER 9. CONCURRENCY UTILITIES
Concurrency Utilities is an API that accommodates Java SE concurrency utilities into the Java EE
application environment specifications. It is defined in JSR 236: Concurrency Utilities for Java™ EE .
JBoss EAP allows you to create, edit, and delete instances of EE concurrency utilities, thus making these
instances readily available for applications to use.

Concurrency Utilities help to extend the invocation context by pulling in the existing context’s
application threads and using these in its own threads. This extending of invocation context includes
class loading, JNDI, and security contexts, by default.

Types of Concurrency Utilities include:

Context Service

Managed Thread Factory

Managed Executor Service

Managed Scheduled Executor Service

Example: Concurrency Utilities in standalone.xml

9.1. CONTEXT SERVICE

The context service (javax.enterprise.concurrent.ContextService) allows you to build contextual

<subsystem xmlns="urn:jboss:domain:ee:4.0">
 <spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>
 <concurrent>
 <context-services>
 <context-service name="default" jndi-name="java:jboss/ee/concurrency/context/default"
use-transaction-setup-provider="true"/>
 </context-services>
 <managed-thread-factories>
 <managed-thread-factory name="default" jndi-
name="java:jboss/ee/concurrency/factory/default" context-service="default"/>
 </managed-thread-factories>
 <managed-executor-services>
 <managed-executor-service name="default" jndi-
name="java:jboss/ee/concurrency/executor/default" context-service="default" hung-task-
threshold="60000" keepalive-time="5000"/>
 </managed-executor-services>
 <managed-scheduled-executor-services>
 <managed-scheduled-executor-service name="default" jndi-
name="java:jboss/ee/concurrency/scheduler/default" context-service="default" hung-task-
threshold="60000" keepalive-time="3000"/>
 </managed-scheduled-executor-services>
 </concurrent>
 <default-bindings context-service="java:jboss/ee/concurrency/context/default"
datasource="java:jboss/datasources/ExampleDS" managed-executor-
service="java:jboss/ee/concurrency/executor/default" managed-scheduled-executor-
service="java:jboss/ee/concurrency/scheduler/default" managed-thread-
factory="java:jboss/ee/concurrency/factory/default"/>
</subsystem>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

124

https://jcp.org/ja/jsr/detail?id=236

proxies from existing objects. Contextual proxy prepares the invocation context, which is used by other
concurrency utilities when the context is created or invoked, before transferring the invocation to the
original object.

Attributes of the context service concurrency utility include:

name: A unique name within all the context services.

jndi-name: Defines where the context service should be placed in JNDI.

use-transaction-setup-provider: Optional. Indicates if the contextual proxies built by the
context service should suspend transactions in context when invoking the proxy objects. Its
value defaults to false, but the default context service has the value true.

See the example above for the usage of the context service concurrency utility.

Example: Add a New Context Service

Example: Change a Context Service

This operation requires reload.

Example: Remove a Context Service

This operation requires reload.

9.2. MANAGED THREAD FACTORY

The managed thread factory (javax.enterprise.concurrent.ManagedThreadFactory) concurrency
utility allows Java EE applications to create Java threads. JBoss EAP handles the managed thread
factory instances, hence Java EE applications cannot invoke any lifecycle related method.

Attributes of managed thread factory concurrency utility include:

context-service: A unique name within all managed thread factories.

jndi-name: Defines where in JNDI the managed thread factory should be placed.

priority: Optional. Indicates the priority for new threads created by the factory, and defaults to
5.

Example: Add a New Managed Thread Factory

/subsystem=ee/context-service=newContextService:add(jndi-
name=java:jboss/ee/concurrency/contextservice/newContextService)

/subsystem=ee/context-service=newContextService:write-attribute(name=jndi-name,
value=java:jboss/ee/concurrency/contextservice/changedContextService)

/subsystem=ee/context-service=newContextService:remove()

/subsystem=ee/managed-thread-factory=newManagedTF:add(context-service=newContextService,
jndi-name=java:jboss/ee/concurrency/threadfactory/newManagedTF, priority=2)

CHAPTER 9. CONCURRENCY UTILITIES

125

Example: Change a Managed Thread Factory

This operation requires reload. Similarly, you can change other attributes as well.

Example: Remove a Managed Thread Factory

This operation requires reload.

9.3. MANAGED EXECUTOR SERVICE

Managed executor service (javax.enterprise.concurrent.ManagedExecutorService) allows Java EE
applications to submit tasks for asynchronous execution. JBoss EAP handles managed executor service
instances, hence Java EE applications cannot invoke any lifecycle related method.

Attributes of managed executor service concurrency utility include:

context-service: Optional. References an existing context service by its name. If specified, then
the referenced context service will capture the invocation context present when submitting a
task to the executor, which will then be used when executing the task.

jndi-name: Defines where the managed thread factory should be placed in JNDI.

max-threads: Defines the maximum number of threads used by the executor. If undefined, the
value from core-threads is used.

thread-factory: References an existing managed thread factory by its name, to handle the
creation of internal threads. If not specified, then a managed thread factory with default
configuration will be created and used internally.

core-threads: Defines the minimum number of threads to be used by the executor. If this
attribute is undefined, the default is calculated based on the number of processors. A value of 0
is not recommended. See the queue-length attribute for details on how this value is used to
determine the queuing strategy.

keepalive-time: Defines the time, in milliseconds, that an internal thread can be idle. The
attribute default value is 60000.

queue-length: Indicates the executor’s task queue capacity. A value of 0 means direct hand-off
and possible rejection will occur. If this attribute is undefined or set to Integer.MAX_VALUE,
this indicates that an unbounded queue should be used. All other values specify an exact queue
size. If an unbounded queue or direct hand-off is used, a core-threads value greater than 0 is
required.

hung-task-threshold: Defines the time, in milliseconds, after which tasks are considered hung
by the managed executor service and forcefully aborted. If the value is 0, which is the default,
tasks are never considered hung.

long-running-tasks: Suggests optimizing the execution of long running tasks, and defaults to
false.

reject-policy: Defines the policy to use when a task is rejected by the executor. The attribute

/subsystem=ee/managed-thread-factory=newManagedTF:write-attribute(name=jndi-name,
value=java:jboss/ee/concurrency/threadfactory/changedManagedTF)

/subsystem=ee/managed-thread-factory=newManagedTF:remove()

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

126

reject-policy: Defines the policy to use when a task is rejected by the executor. The attribute
value can be the default ABORT, which means an exception should be thrown, or
RETRY_ABORT, which means the executor will try to submit it once more, before throwing an
exception

Example: Add a New Managed Executor Service

Example: Change a Managed Executor Service

This operation requires reload. Similarly, you can change other attributes too.

Example: Remove a Managed Executor Service

This operation requires reload.

9.4. MANAGED SCHEDULED EXECUTOR SERVICE

Managed scheduled executor service
(javax.enterprise.concurrent.ManagedScheduledExecutorService) allows Java EE applications to
schedule tasks for asynchronous execution. JBoss EAP handles managed scheduled executor service
instances, hence Java EE applications cannot invoke any lifecycle related method.

Attributes of managed executor service concurrency utility include:

context-service: References an existing context service by its name. If specified then the
referenced context service will capture the invocation context present when submitting a task to
the executor, which will then be used when executing the task.

hung-task-threshold: Defines the time, in milliseconds, after which tasks are considered hung
by the managed scheduled executor service and forcefully aborted. If the value is 0, which is the
default, tasks are never considered hung.

keepalive-time: Defines the time, in milliseconds, that an internal thread can be idle. The
attribute default value is 60000.

reject-policy: Defines the policy to use when a task is rejected by the executor. The attribute
value might be the default ABORT, which means an exception should be thrown, or
RETRY_ABORT, which means the executor will try to submit it once more, before throwing an
exception.

core-threads: Defines the minimum number of threads to be used by the scheduled executor.

jndi-name: Defines where the managed scheduled executor service should be placed in JNDI .

long-running-tasks: Suggests optimizing the execution of long running tasks, and defaults to

/subsystem=ee/managed-executor-service=newManagedExecutorService:add(jndi-
name=java:jboss/ee/concurrency/executor/newManagedExecutorService, core-threads=7, thread-
factory=default)

/subsystem=ee/managed-executor-service=newManagedExecutorService:write-attribute(name=core-
threads,value=10)

/subsystem=ee/managed-executor-service=newManagedExecutorService:remove()

CHAPTER 9. CONCURRENCY UTILITIES

127

long-running-tasks: Suggests optimizing the execution of long running tasks, and defaults to
false.

thread-factory: References an existing managed thread factory by its name, to handle the
creation of internal threads. If not specified, then a managed thread factory with default
configuration will be created and used internally.

Example: Add a New Managed Scheduled Executor Service

This operation requires reload.

Example: Changed a Managed Scheduled Executor Service

This operation requires reload. Similarly, you can change other attributes.

Example: Remove a Managed Scheduled Executor Service

This operation requires reload.

/subsystem=ee/managed-scheduled-executor-
service=newManagedScheduledExecutorService:add(jndi-
name=java:jboss/ee/concurrency/scheduledexecutor/newManagedScheduledExecutorService, core-
threads=7, context-service=default)

/subsystem=ee/managed-scheduled-executor-
service=newManagedScheduledExecutorService:write-attribute(name=core-threads, value=10)

/subsystem=ee/managed-scheduled-executor-
service=newManagedScheduledExecutorService:remove()

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

128

CHAPTER 10. UNDERTOW

10.1. INTRODUCTION TO UNDERTOW HANDLER

Undertow is a web server designed to be used for both blocking and non-blocking tasks. It replaces
JBoss Web in JBoss EAP 7. Some of its main features are:

High Performance

Embeddable

Servlet 4.0

Web Sockets

Reverse Proxy

Request Lifecycle
When a client connects to the server, Undertow creates a io.undertow.server.HttpServerConnection.
When the client sends a request, it is parsed by the Undertow parser, and then the resulting
io.undertow.server.HttpServerExchange is passed to the root handler. When the root handler finishes,
one of four things can happen:

The exchange is completed.
An exchange is considered complete if both request and response channels have been fully read
or written. For requests with no content, such as GET and HEAD, the request side is
automatically considered fully read. The read side is considered complete when a handler has
written out the full response and has closed and fully flushed the response channel. If an
exchange is already complete, then no action is taken.

The root handler returns normally without completing the exchange.
In this case the exchange is completed by calling HttpServerExchange.endExchange().

The root handler returns with an Exception.
In this case a response code of 500 is set and the exchange is ended using
HttpServerExchange.endExchange().

The root handler can return after HttpServerExchange.dispatch() has been called, or after
async IO has been started.
In this case the dispatched task will be submitted to the dispatch executor, or if async IO has
been started on either the request or response channels, then this will be started. In both of
these cases, the exchange will not be finished. It is up to your async task to finish the exchange
when it is done processing.

By far the most common use of HttpServerExchange.dispatch() is to move execution from an IO
thread, where blocking is not allowed, into a worker thread, which does allow for blocking operations.

Example: Dispatching to a Worker Thread

public void handleRequest(final HttpServerExchange exchange) throws Exception {
 if (exchange.isInIoThread()) {
 exchange.dispatch(this);
 return;

CHAPTER 10. UNDERTOW

129

Because the exchange is not actually dispatched until the call stack returns, you can be sure that more
than one thread is never active in an exchange at once. The exchange is not thread safe. However, it can
be passed between multiple threads as long as both threads do not attempt to modify it at once.

Ending the Exchange
There are two ways to end an exchange, either by fully reading the request channel and calling
shutdownWrites() on the response channel and then flushing it, or by calling
HttpServerExchange.endExchange(). When endExchange() is called, Undertow will check if the
content has been generated yet. If it has, then it will simply drain the request channel and close and flush
the response channel. If not and there are any default response listeners registered on the exchange,
then Undertow will give each of them a chance to generate a default response. This mechanism is how
default error pages are generated.

For more information on configuring Undertow, see Configuring the Web Server in the JBoss EAP
Configuration Guide.

10.2. USING EXISTING UNDERTOW HANDLERS WITH A DEPLOYMENT

Undertow provides a default set of handlers that you can use with any application deployed to JBoss
EAP.

To use a handler with a deployment, you need to add a WEB-INF/undertow-handlers.conf file.

Example: WEB-INF/undertow-handlers.conf File

allowed-methods(methods='GET')

All handlers can also take an optional predicate to apply that handler in specific cases.

Example: WEB-INF/undertow-handlers.conf File with Optional Predicate

path('/my-path') -> allowed-methods(methods='GET')

The above example will only apply the allowed-methods handler to the path /my-path.

Undertow Handler Default Parameter
Some handlers have a default parameter, which allows you to specify the value of that parameter in the
handler definition without using the name.

Example: WEB-INF/undertow-handlers.conf File Using the Default Parameter

path('/a') -> redirect('/b')

You can also update the WEB-INF/jboss-web.xml file to include the definition of one or more handlers,
but using WEB-INF/undertow-handlers.conf is preferred.

Example: WEB-INF/jboss-web.xml File

 }
 //handler code
}

<jboss-web>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

130

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#configuring_the_web_server_undertow

A full list of the provided Undertow handlers can be found in the Provided Undertow Handlers reference.

10.3. CREATING CUSTOM HANDLERS

There are two ways to define custom handlers:

1. Using WEB-INF/jboss-web.xml file

2. In the WEB-INF/undertow-handlers.conf

Defining Custom Handlers Using the WEB-INF/jboss-web.xml File
A custom handler can be defined in the WEB-INF/jboss-web.xml file.

Example: Define Custom Handler in WEB-INF/jboss-web.xml

Example: HttpHandler Class

Parameters can also be set for the custom handler using the WEB-INF/jboss-web.xml file.

Example: Defining Parameters in WEB-INF/jboss-web.xml

 <http-handler>
 <class-name>io.undertow.server.handlers.AllowedMethodsHandler</class-name>
 <param>
 <param-name>methods</param-name>
 <param-value>GET</param-value>
 </param>
 </http-handler>
</jboss-web>

<jboss-web>
 <http-handler>
 <class-name>org.jboss.example.MyHttpHandler</class-name>
 </http-handler>
</jboss-web>

package org.jboss.example;

import io.undertow.server.HttpHandler;
import io.undertow.server.HttpServerExchange;

public class MyHttpHandler implements HttpHandler {
 private HttpHandler next;

 public MyHttpHandler(HttpHandler next) {
 this.next = next;
 }

 public void handleRequest(HttpServerExchange exchange) throws Exception {
 // do something
 next.handleRequest(exchange);
 }
}

CHAPTER 10. UNDERTOW

131

For these parameters to work, the handler class needs to have corresponding setters.

Example: Defining Setter Methods in Handler

Defining Custom Handlers in the WEB-INF/undertow-handlers.conf File
Instead of using the WEB-INF/jboss-web.xml for defining the handler, it could also be defined in the
WEB-INF/undertow-handlers.conf file.

myHttpHandler(myParam='foobar')

For the handler defined in WEB-INF/undertow-handlers.conf to work, two things need to be created:

1. An implementation of HandlerBuilder, which defines the corresponding syntax bits for
undertow-handlers.conf and is responsible for creating the HttpHandler, wrapped in a
HandlerWrapper.

Example: HandlerBuilder Class

<jboss-web>
 <http-handler>
 <class-name>org.jboss.example.MyHttpHandler</class-name>
 <param>
 <param-name>myParam</param-name>
 <param-value>foobar</param-value>
 </param>
 </http-handler>
</jboss-web>

package org.jboss.example;

import io.undertow.server.HttpHandler;
import io.undertow.server.HttpServerExchange;

public class MyHttpHandler implements HttpHandler {
 private HttpHandler next;
 private String myParam;

 public MyHttpHandler(HttpHandler next) {
 this.next = next;
 }

 public void setMyParam(String myParam) {
 this.myParam = myParam;
 }

 public void handleRequest(HttpServerExchange exchange) throws Exception {
 // do something, use myParam
 next.handleRequest(exchange);
 }
}

package org.jboss.example;

import io.undertow.server.HandlerWrapper;

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

132

2. An entry in the file. META-INF/services/io.undertow.server.handlers.builder.HandlerBuilder.
This file must be on the class path, for example, in WEB-INF/classes.

org.jboss.example.MyHandlerBuilder

10.4. DEVELOPING A CUSTOM HTTP MECHANISM

When Elytron is used to secure a web application, it is possible to implement custom HTTP
authentication mechanisms that can be registered using the elytron subsystem. It is then also possible
to override the configuration within the deployment to make use of this mechanism without requiring
modifications to the deployment.

IMPORTANT

All custom HTTP mechanisms are required to implement the
HttpServerAuthenticationMechanism interface.

In general, for an HTTP mechanism, the evaluateRequest method is called to handle the request

import io.undertow.server.HttpHandler;
import io.undertow.server.handlers.builder.HandlerBuilder;

import java.util.Collections;
import java.util.Map;
import java.util.Set;

public class MyHandlerBuilder implements HandlerBuilder {
 public String name() {
 return "myHttpHandler";
 }

 public Map<String, Class<?>> parameters() {
 return Collections.<String, Class<?>>singletonMap("myParam", String.class);
 }

 public Set<String> requiredParameters() {
 return Collections.emptySet();

 }

 public String defaultParameter() {
 return null;

 }

 public HandlerWrapper build(final Map<String, Object> config) {
 return new HandlerWrapper() {
 public HttpHandler wrap(HttpHandler handler) {
 MyHttpHandler result = new MyHttpHandler(handler);
 result.setMyParam((String) config.get("myParam"));
 return result;
 }
 };
 }
}

CHAPTER 10. UNDERTOW

133

In general, for an HTTP mechanism, the evaluateRequest method is called to handle the request
passing in the HTTPServerRequest object. The mechanism processes the request and uses one of the
following callback methods on the request to indicate the outcome:

authenticationComplete - The mechanism successfully authenticated the request.

authenticationFailed - Authentication was attempted but failed.

authenticationInProgress - Authentication started but an additional round trip is needed.

badRequest - The authentication for this mechanism failed validation of the request.

noAuthenticationInProgress - The mechanism did not attempt any stage of authentication.

After creating a custom HTTP mechanism that implements the HttpServerAuthenticationMechanism
interface, the next step is to create a factory that returns instances of this mechanism. The factory must
implement the HttpAuthenticationFactory interface. The most important step in the factory
implementation is to double check the name of the mechanism requested. It is important for the factory
to return null if it cannot create the required mechanism. The mechanism factory can also take into
account properties in the map passed in to decide if it can create the requested mechanism.

There are two different approaches that can be used to advertise the availability of a mechanism
factory.

The first approach is to implement a java.security.Provider with the
HttpAuthenticationFactory registered as an available service once for each mechanism it
supports.

The second approach is to use a java.util.ServiceLoader to discover the factory instead. To
achieve this, a file named
org.wildfly.security.http.HttpServerAuthenticationMechanismFactory should be added
under META-INF/services. The only content required in this file is the fully qualified class name
of the factory implementation.

The mechanism can then be installed in the application server, as a module ready to be used:

module add --name=org.wildfly.security.examples.custom-http --resources=/path/to/custom-http-
mechanism.jar --dependencies=org.wildfly.security.elytron,javax.api

Using a Custom HTTP Mechanism

1. Add a custom module.

/subsystem=elytron/service-loader-http-server-mechanism-factory=custom-
factory:add(module=org.wildfly.security.examples.custom-http)

2. Add an http-authentication-factory to tie the mechanism factory to a security-domain that
will be used for the authentication.

/subsystem=elytron/http-authentication-factory=custom-mechanism:add(http-server-
mechanism-factory=custom-factory,security-domain=ApplicationDomain,mechanism-
configurations=[{mechanism-name=custom-mechanism}])

3. Update the application-security-domain resource to use the new http-authentication-
factory.

NOTE

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

134

NOTE

When an application is deployed, it by default uses the other security domain.
Thus, you need to add a mapping to the application to map it to an Elytron HTTP
authentication factory.

/subsystem=undertow/application-security-domain=other:add(http-
authentication-factory=application-http-authentication)

The application-security-domain resource can now be updated to use the new http-
authentication-factory.

/subsystem=undertow/application-security-domain=other:write-attribute(name=http-
authentication-factory,value=custom-mechanism)

/subsystem=undertow/application-security-domain=other:write-attribute(name=override-
deployment-config,value=true)

Notice that the command above overrides the deployment configuration. This means that the
mechanisms from the http-authentication-factory will be used even if the deployment was
configured to use a different mechanism. It is thus possible to override the configuration within a
deployment to make use of a custom mechanism, without requiring modifications to the
deployment itself.

4. Reload the server

reload

CHAPTER 10. UNDERTOW

135

CHAPTER 11. JAVA TRANSACTION API (JTA)

11.1. OVERVIEW

11.1.1. Overview of Java Transaction API (JTA)

Introduction

This section provides a foundational understanding of the Java Transaction API (JTA).

About Java Transaction API (JTA)

Transaction Lifecycle

JTA Transaction Example

11.2. TRANSACTION CONCEPTS

11.2.1. About Transactions

A transaction consists of two or more actions, which must either all succeed or all fail. A successful
outcome is a commit, and a failed outcome is a rollback. In a rollback, each member’s state is reverted to
its state before the transaction attempted to commit.

The typical standard for a well-designed transaction is that it is Atomic, Consistent, Isolated, and
Durable (ACID).

11.2.2. About ACID Properties for Transactions

ACID is an acronym which stands for Atomicity, Consistency, Isolation, and Durability. This
terminology is usually used in the context of databases or transactional operations.

Atomicity

For a transaction to be atomic, all transaction members must make the same decision. Either they all
commit, or they all roll back. If atomicity is broken, what results is termed a heuristic outcome.

Consistency

Consistency means that data written to the database is guaranteed to be valid data, in terms of the
database schema. The database or other data source must always be in a consistent state. One
example of an inconsistent state would be a field in which half of the data is written before an
operation aborts. A consistent state would be if all the data were written, or the write were rolled
back when it could not be completed.

Isolation

Isolation means that data being operated on by a transaction must be locked before modification, to
prevent processes outside the scope of the transaction from modifying the data.

Durability

Durability means that in the event of an external failure after transaction members have been
instructed to commit, all members will be able to continue committing the transaction when the
failure is resolved. This failure can be related to hardware, software, network, or any other involved
system.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

136

11.2.3. About the Transaction Coordinator or Transaction Manager

The terms Transaction Coordinator and Transaction Manager (TM) are mostly interchangeable in terms
of transactions with JBoss EAP. The term Transaction Coordinator is usually used in the context of
distributed JTS transactions.

In JTA transactions, the TM runs within JBoss EAP and communicates with transaction participants
during the two-phase commit protocol.

The TM tells transaction participants whether to commit or roll back their data, depending on the
outcome of other transaction participants. In this way, it ensures that transactions adhere to the ACID
standard.

About Transaction Participants

About ACID Properties for Transactions

About the 2-Phase Commit Protocol

11.2.4. About Transaction Participants

A transaction participant is any resource within a transaction that has the ability to commit or to roll
back state. It is generally a database or a JMS broker, but by implementing the transaction interface,
application code could also act as a transaction participant. Each participant of a transaction
independently decides whether it is able to commit or roll back its state, and only if all participants can
commit does the transaction as a whole succeed. Otherwise, each participant rolls back its state, and the
transaction as a whole fails. The TM coordinates the commit or rollback operations and determines the
outcome of the transaction.

11.2.5. About Java Transaction API (JTA)

Java Transaction API (JTA) is part of Java Enterprise Edition specification. It is defined in JSR 907:
Java™ Transaction API (JTA).

Implementation of JTA is done using the TM, which is covered by project Narayana for JBoss EAP
application server. The TM allows applications to assign various resources, for example, database or JMS
brokers, through a single global transaction. The global transaction is referred as an XA transaction.
Generally resources with XA capabilities are included in such transactions, but non-XA resources could
also be part of global transactions. There are several optimizations which help non-XA resources to
behave as XA capable resources. For more information, see LRCO Optimization for Single-phase
Commit.

In this document, the term JTA refers to two things:

1. The Java Transaction API, which is defined by Java EE specification.

2. It indicates how the TM processes the transactions.

The TM works in JTA transactions mode, the data is shared in memory, and the transaction context is
transferred by remote EJB calls. In JTS mode, the data is shared by sending Common Object Request
Broker Architecture (CORBA) messages and the transaction context is transferred by IIOP calls. Both
modes support distribution of transactions over multiple JBoss EAP servers.

About Distributed Transactions

About XA Datasources and XA Transactions

CHAPTER 11. JAVA TRANSACTION API (JTA)

137

https://jcp.org/en/jsr/detail?id=907

11.2.6. About Java Transaction Service (JTS)

Java Transaction Service (JTS) is a mapping of the Object Transaction Service (OTS) to Java. Java EE
applications use the JTA API to manage transactions. JTA API then interacts with a JTS transaction
implementation when the transaction manager is switched to JTS mode. JTS works over the IIOP
protocol. Transaction managers that use JTS communicate with each other using a process called an
Object Request Broker (ORB), using a communication standard called Common Object Request Broker
Architecture (CORBA). For more information, see ORB Configuration in the JBoss EAP Configuration
Guide.

Using the JTA API from an application standpoint, a JTS transaction behaves in the same way as a JTA
transaction.

NOTE

The implementation of JTS included in JBoss EAP supports distributed transactions. The
difference from fully-compliant JTS transactions is interoperability with external third-
party ORBs. This feature is unsupported with JBoss EAP. Supported configurations
distribute transactions across multiple JBoss EAP containers only.

11.2.7. About XML Transaction Service

The XML Transaction Service (XTS) component supports the coordination of private and public web
services in a business transaction. Using XTS, you can coordinate complex business transactions in a
controlled and reliable manner. The XTS API supports a transactional coordination model based on the
WS-Coordination, WS-Atomic Transaction, and WS-Business Activity protocols.

11.2.7.1. Overview of Protocols Used by XTS

The WS-Coordination (WS-C) specification defines a framework that allows different coordination
protocols to be plugged in to coordinate work between clients, services, and participants.

The WS-Transaction (WS-T) protocol comprises the pair of transaction coordination protocols, WS-
Atomic Transaction (WS-AT) and WS-Business Activity (WS-BA), which utilize the coordination
framework provided by WS-C. WS-T is developed to unify existing traditional transaction processing
systems, allowing them to communicate reliably with one another.

11.2.7.2. Web Services-Atomic Transaction Process

An atomic transaction (AT) is designed to support short duration interactions where ACID semantics are
appropriate. Within the scope of an AT, web services typically employ bridging to access XA resources,
such as databases and message queues, under the control of the WS-T. When the transaction
terminates, the participant propagates the outcome decision of the AT to the XA resources, and the
appropriate commit or rollback actions are taken by each participant.

11.2.7.2.1. Atomic Transaction Process

1. To initiate an AT, the client application first locates a WS-C Activation Coordinator web service
that supports WS-T.

2. The client sends a WS-C CreateCoordinationContext message to the service, specifying
http://schemas.xmlsoap.org/ws/2004/10/wsat as its coordination type.

3. The client receives an appropriate WS-T context from the activation service.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

138

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#orb_configuration
http://schemas.xmlsoap.org/ws/2004/10/wsat

4. The response to the CreateCoordinationContext message, the transaction context, has its
CoordinationType element set to the WS-AT namespace,
http://schemas.xmlsoap.org/ws/2004/10/wsat. It also contains a reference to the atomic
transaction coordinator endpoint, the WS-C Registration Service, where participants can be
enlisted.

5. The client normally proceeds to invoke web services and complete the transaction, either
committing all the changes made by the web services, or rolling them back. In order to be able to
drive this completion, the client must register itself as a participant for the completion protocol,
by sending a register message to the registration service whose endpoint was returned in the
coordination context.

6. Once registered for completion, the client application then interacts with web services to
accomplish its business-level work. With each invocation of a business web service, the client
inserts the transaction context into a SOAP header block, such that each invocation is implicitly
scoped by the transaction. The toolkits that support WS-AT aware web services provide
facilities to correlate contexts found in SOAP header blocks with back-end operations. This
ensures that modifications made by the web service are done within the scope of the same
transaction as the client and subject to commit or rollback by the Transaction Coordinator.

7. Once all the necessary application work is complete, the client can terminate the transaction,
with the intent of making any changes to the service state permanent. The completion
participant instructs the coordinator to try to commit or roll back the transaction. When the
commit or rollback operation completes, a status is returned to the participant to indicate the
outcome of the transaction.

For more details, see WS-Coordination in the Naryana Project Documentation.

11.2.7.2.2. WS-AT Interoperability with Microsoft .NET Clients

The xts subsystem can have issues communicating with Microsoft .NET clients because of differences in
the .NET implementation of the WS-AT specification. The .NET implementation of the WS-AT
specification forces any call to be asynchronous.

To enable interoperability with .NET clients, an asynchronous registration option is available in the JBoss
EAP xts subsystem. XTS asynchronous registration is disabled by default, and you should only enable it
if necessary.

To enable asynchronous registration for WS-AT interoperability with .NET clients, use the following
management CLI command:

/subsystem=xts:write-attribute(name=async-registration, value=true)

11.2.7.3. Web Services-Business Activity Process

Web Services-Business Activity (WS-BA) defines a protocol for web service applications to enable
existing business processing and workflow systems to wrap their proprietary mechanisms and
interoperate across implementations and business boundaries.

Unlike the WS-AT protocol model, where participants inform the transaction coordinator of their state
only when asked, a child activity within a WS-BA can specify its outcome to the coordinator directly,
without waiting for a request. A participant can choose to exit the activity or notify the coordinator of a
failure at any point. This feature is useful when tasks fail because the notification can be used to modify
the goals and drive processing forward, without waiting until the end of the transaction to identify
failures.

CHAPTER 11. JAVA TRANSACTION API (JTA)

139

http://schemas.xmlsoap.org/ws/2004/10/wsat
http://narayana.io//docs/project/index.html#d0e14935

11.2.7.3.1. WS-BA Process

1. Services are requested to do work.

2. Wherever these services have the ability to undo any work, they inform the WS-BA, in case the
WS-BA later decides the cancel the work. If the WS-BA suffers a failure. it can instruct the
service to execute its undo behavior.

The WS-BA protocols employ a compensation-based transaction model. When a participant in a
business activity completes its work, it can choose to exit the activity. This choice does not allow any
subsequent rollback. Alternatively, the participant can complete its activity, signaling to the coordinator
that the work it has done can be compensated if, at some later point, another participant notifies a
failure to the coordinator. In this latter case, the coordinator asks each non-exited participant to
compensate for the failure, giving them the opportunity to execute whatever compensating action they
consider appropriate. If all participants exit or complete without failure, the coordinator notifies each
completed participant that the activity has been closed.

For more details, see WS-Coordination in the Naryana Project Documentation.

11.2.7.4. Transaction Bridging Overview

Transaction Bridging describes the process of linking the Java EE and WS-T domains. The transaction
bridge component, txbridge, provides bi-directional linkage, such that either type of transaction can
encompass business logic designed for use with the other type. The technique used by the bridge is a
combination of interposition and protocol mapping.

In the transaction bridge, an interposed coordinator is registered into the existing transaction and
performs the additional task of protocol mapping; that is, it appears to its parent coordinator to be a
resource of its native transaction type, while appearing to its children to be a coordinator of their native
transaction type, even though these transaction types differ.

The transaction bridge resides in the package org.jboss.jbossts.txbridge and its subpackages. It
consists of two distinct sets of classes, one for bridging in each direction.

For more details, see TXBridge Guide in the Naryana Project Documentation.

11.2.8. About XA Resources and XA Transactions

XA stands for eXtended Architecture, which was developed by the X/Open Group to define a
transaction that uses more than one back-end data store. The XA standard describes the interface
between a global TM and a local resource manager. XA allows multiple resources, such as application
servers, databases, caches, and message queues, to participate in the same transaction, while preserving
all four ACID properties. One of the four ACID properties is atomicity, which means that if one of the
participants fails to commit its changes, the other participants abort the transaction, and restore their
state to the same status as before the transaction occurred. An XA resource is a resource that can
participate in an XA global transaction.

An XA transaction is a transaction that can span multiple resources. It involves a coordinating TM, with
one or more databases or other transactional resources, all involved in a single global XA transaction.

11.2.9. About XA Recovery

TM implements X/Open XA specification and supports XA transactions across multiple XA resources.

XA Recovery is the process of ensuring that all resources affected by a transaction are updated or rolled
back, even if any of the resources that are transaction participants crash or become unavailable. Within

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

140

http://narayana.io//docs/project/index.html#d0e14935
http://narayana.io//docs/project/index.html#d0e14935

the scope of JBoss EAP, the transactions subsystem provides the mechanisms for XA Recovery to any
XA resources or subsystems that use them, such as XA datasources, JMS message queues, and JCA
resource adapters.

XA Recovery happens without user intervention. In the event of an XA Recovery failure, errors are
recorded in the log output. Contact Red Hat Global Support Services if you need assistance. The XA
recovery process is driven by a periodic recovery thread which is launched by default every two minutes.
The periodic recovery thread processes all unfinished transactions.

NOTE

It can take four to eight minutes to complete the recovery for an in-doubt transaction
because it might require multiple runs of the recovery process.

11.2.10. Limitations of the XA Recovery Process

XA recovery has the following limitations:

The transaction log might not be cleared from a successfully committed transaction.
If the JBoss EAP server crashes after an XAResource commit method successfully completes
and commits the transaction, but before the coordinator can update the log, you might see the
following warning message in the log when you restart the server:

ARJUNA016037: Could not find new XAResource to use for recovering non-serializable
XAResource XAResourceRecord

This is because upon recovery, the JBoss Transaction Manager (TM) sees the transaction
participants in the log and attempts to retry the commit. Eventually the JBoss TM assumes the
resources are committed and no longer retries the commit. In this situation, you can safely
ignore this warning as the transaction is committed and there is no loss of data.

To prevent the warning, set the com.arjuna.ats.jta.xaAssumeRecoveryComplete property
value to true . This property is checked whenever a new XAResource instance cannot be
located from any registered XAResourceRecovery instance. When set to true, the recovery
assumes that a previous commit attempt succeeded and the instance can be removed from the
log with no further recovery attempts. This property must be used with care because it is global
and when used incorrectly could result in XAResource instances remaining in an uncommitted
state.

NOTE

JBoss EAP 7.2 has an implemented enhancement to clear transaction logs after a
successfully committed transaction and the above situation should not occur
frequently.

Rollback is not called for JTS transaction when a server crashes at the end of
XAResource.prepare().
If the JBoss EAP server crashes after the completion of an XAResource.prepare() method call,
all of the participating XAResource instances are locked in the prepared state and remain that
way upon server restart. The transaction is not rolled back and the resources remain locked until
the transaction times out or a database administrator manually rolls back the resources and
clears the transaction log. For more information, see https://issues.jboss.org/browse/JBTM-
2124

CHAPTER 11. JAVA TRANSACTION API (JTA)

141

https://issues.jboss.org/browse/JBTM-2124

Periodic recovery can occur on committed transactions.
When the server is under excessive load, the server log might contain the following warning
message, followed by a stacktrace:

ARJUNA016027: Local XARecoveryModule.xaRecovery got XA exception
XAException.XAER_NOTA: javax.transaction.xa.XAException

Under heavy load, the processing time taken by a transaction can overlap with the timing of the
periodic recovery process’s activity. The periodic recovery process detects the transaction still
in progress and attempts to initiate a rollback but in fact the transaction continues to
completion. At the time the periodic recovery attempts but fails the rollback, it records the
rollback failure in the server log. The underlying cause of this issue will be addressed in a future
release, but in the meantime a workaround is available.

Increase the interval between the two phases of the recovery process by setting the
com.arjuna.ats.jta.orphanSafetyInterval property to a value higher than the default value of
10000 milliseconds. A value of 40000 milliseconds is recommended. Note that this does not
solve the issue. Instead it decreases the probability that it will occur and that the warning
message will be shown in the log. For more information, see
https://developer.jboss.org/thread/266729

11.2.11. About the 2-Phase Commit Protocol

The two-phase commit (2PC) protocol refers to an algorithm to determine the outcome of a
transaction. 2PC is driven by the Transaction Manager (TM) as a process of finishing XA transactions.

Phase 1: Prepare
In the first phase, the transaction participants notify the transaction coordinator whether they are able
to commit the transaction or must roll back.

Phase 2: Commit
In the second phase, the transaction coordinator makes the decision about whether the overall
transaction should commit or roll back. If any one of the participants cannot commit, the transaction
must roll back. Otherwise, the transaction can commit. The coordinator directs the resources about what
to do, and they notify the coordinator when they have done it. At that point, the transaction is finished.

11.2.12. About Transaction Timeouts

In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a
transaction can be long-running. Transaction participants need to lock an XA resource that is part of
database table or message in a queue when they commit. The TM needs to wait to hear back from each
transaction participant before it can direct them all whether to commit or roll back. Hardware or network
failures can cause resources to be locked indefinitely.

Transaction timeouts can be associated with transactions in order to control their lifecycle. If a timeout
threshold passes before the transaction commits or rolls back, the timeout causes the transaction to be
rolled back automatically.

You can configure default timeout values for the entire transaction subsystem, or you can disable
default timeout values and specify timeouts on a per-transaction basis.

11.2.13. About Distributed Transactions

A distributed transaction is a transaction with participants on multiple JBoss EAP servers. The Java
Transaction Service (JTS) specification mandates that JTS transactions be able to be distributed

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

142

https://developer.jboss.org/thread/266729

across application servers from different vendors. The Java Transaction API (JTA) does not define that
but JBoss EAP supports distributed JTA transactions among JBoss EAP servers.

NOTE

Transaction distribution among servers from different vendors is not supported.

NOTE

In other application server vendor documentation, you might find that the term
distributed transaction means XA transaction. In the context of JBoss EAP
documentation, the distributed transaction refers to transactions distributed among
several JBoss EAP application servers. Transactions that consist of different resources,
for example, database resources and JMS resources, are referred as XA transactions in
this document. For more information, see About Java Transaction Service (JTS) and
About XA Datasources and XA Transactions .

11.2.14. About the ORB Portability API

The Object Request Broker (ORB) is a process that sends and receives messages to transaction
participants, coordinators, resources, and other services distributed across multiple application servers.
An ORB uses a standardized Interface Description Language (IDL) to communicate and interpret
messages. Common Object Request Broker Architecture (CORBA) is the IDL used by the ORB in JBoss
EAP.

The main type of service that uses an ORB is a system of distributed Java Transactions, using the Java
Transaction Service (JTS) specification. Other systems, especially legacy systems, can choose to use an
ORB for communication rather than other mechanisms such as remote Enterprise JavaBeans or JAX-
WS or JAX-RS web services.

The ORB Portability API provides mechanisms to interact with an ORB. This API provides methods for
obtaining a reference to the ORB, as well as placing an application into a mode where it listens for
incoming connections from an ORB. Some of the methods in the API are not supported by all ORBs. In
those cases, an exception is thrown.

The API consists of two different classes:

com.arjuna.orbportability.orb

com.arjuna.orbportability.oa

See the JBoss EAP Javadocs bundle available on the Red Hat Customer Portal for specific details
about the methods and properties included in the ORB Portability API.

11.3. TRANSACTION OPTIMIZATIONS

11.3.1. Overview of Transaction Optimizations

The Transaction Manager (TM) of JBoss EAP includes several optimizations that your application can
take advantage of.

Optimizations serve to enhance the 2-phase commit protocol in particular cases. Generally, the TM
starts a global transaction, which passes through the 2-phase commit. But when you optimize these
transactions, in certain cases, the TM does not need to proceed with full 2-phased commits and thus the

CHAPTER 11. JAVA TRANSACTION API (JTA)

143

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

process gets faster.

Different optimizations used by the TM are described in detail below.

About the LRCO Optimization for Single-phase Commit (1PC)

About the Presumed-Abort Optimization

About the Read-Only Optimization

11.3.2. About the LRCO Optimization for Single-phase Commit (1PC)

Single-phase Commit (1PC)
Although the 2-phase commit protocol (2PC) is more commonly encountered with transactions, some
situations do not require, or cannot accommodate, both phases. In these cases, you can use the single
phase commit (1PC) protocol. The single phase commnit protocol is used when only one XA or non-XA
resource is a part of the global transaction.

The prepare phase generally locks the resource until the second phase is processed. Single-phase
commit means that the prepare phase is skipped and only the commit is processed on the resource. If
not specified, the single-phase commit optimization is used automatically when the global transaction
contains only one participant.

Last Resource Commit Optimization (LRCO)
In situations where non-XA datasource participate in XA transaction, an optimization known as the Last
Resource Commit Optimization (LRCO) is employed. While this protocol allows for most transactions to
complete normally, certain types of error can cause an inconsistent transaction outcome. Therefore, use
this approach only as a last resort.

The non-XA resource is processed at the end of the prepare phase, and an attempt is made to commit
it. If the commit succeeds, the transaction log is written and the remaining resources go through the
commit phase. If the last resource fails to commit, the transaction is rolled back.

Where a single local TX datasource is used in a transaction, the LRCO is automatically applied to it.

Previously, adding non-XA resources to an XA transaction was achieved via the LRCO method.
However, there is a window of failure in LRCO. The procedure for adding non-XA resources to an XA
transaction using the LRCO method is as follows:

1. Prepare the XA transaction.

2. Commit LRCO.

3. Write the transaction log.

4. Commit the XA transaction.

If the procedure crashes between step 2 and step 3, this could lead to data inconsistency and you
cannot commit the XA transaction. The data inconsistency is because the LRCO non-XA resource is
committed but information about preparation of XA resource was not recorded. The recovery manager
will rollback the resource after the server is up. Commit Markable Resource (CMR) eliminates this
restriction and allows a non-XA resource to be reliably enlisted in an XA transaction.

NOTE

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

144

NOTE

CMR is a special case of LRCO optimization that should only be used for datasources. It is
not suitable for all non-XA resources.

About the 2-Phase Commit Protocol

11.3.2.1. Commit Markable Resource

Summary
Configuring access to a resource manager using the Commit Markable Resource (CMR) interface
ensures that a non-XA datasource can be reliably enlisted in an XA (2PC) transaction. It is an
implementation of the LRCO algorithm, which makes non-XA resource fully recoverable.

To configure the CMR, you must:

1. Create tables in a database.

2. Enable the datasource to be connectable.

3. Add a reference to transactions subsystem.

Create Tables in Database
A transaction can contain only one CMR resource. You can create a table using SQL similar to the
following example.

SELECT xid,actionuid FROM _tableName_ WHERE transactionManagerID IN (String[])
DELETE FROM _tableName_ WHERE xid IN (byte[[]])
INSERT INTO _tableName_ (xid, transactionManagerID, actionuid) VALUES (byte[],String,byte[])

The following are examples of the SQL syntax to create tables for various database management
systems.

Example: Sybase Create Table Syntax

CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64), actionuid
varbinary(28))

Example: Oracle Create Table Syntax

CREATE TABLE xids (xid RAW(144), transactionManagerID varchar(64), actionuid RAW(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: IBM Create Table Syntax

CREATE TABLE xids (xid VARCHAR(255) for bit data not null, transactionManagerID
varchar(64), actionuid VARCHAR(255) for bit data not null)
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: SQL Server Create Table Syntax

CHAPTER 11. JAVA TRANSACTION API (JTA)

145

CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64), actionuid
varbinary(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: PostgreSQL Create Table Syntax

CREATE TABLE xids (xid bytea, transactionManagerID varchar(64), actionuid bytea)
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: MariaDB Create Table Syntax

CREATE TABLE xids (xid BINARY(144), transactionManagerID varchar(64), actionuid BINARY(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: MySQL Create Table Syntax

CREATE TABLE xids (xid VARCHAR(255), transactionManagerID varchar(64), actionuid
VARCHAR(255))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Enabling Datasource to be Connectable
By default, the CMR feature is disabled for datasources. To enable it, you must create or modify the
datasource configuration and ensure that the connectable attribute is set to true. The following is an
example of the datasources section of a server XML configuration file:

<datasource enabled="true" jndi-name="java:jboss/datasources/ConnectableDS" pool-
name="ConnectableDS" jta="true" use-java-context="true" connectable="true"/>

NOTE

This feature is not applicable to XA datasources.

You can also enable a resource manager as a CMR, using the management CLI, as follows:

/subsystem=datasources/data-source=ConnectableDS:add(enabled="true", jndi-
name="java:jboss/datasources/ConnectableDS", jta="true", use-java-context="true",
connectable="true", connection-url="validConnectionURL", exception-sorter-class-
name="org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLExceptionSorter", driver-name="mssql")

This command generates the following XML in the datasources section of the server configuration file.

NOTE

<datasource jta="true" jndi-name="java:jboss/datasources/ConnectableDS" pool-
name="ConnectableDS" enabled="true" use-java-context="true" connectable="true">
 <connection-url>validConnectionURL</connection-url>
 <driver>mssql</driver>
 <validation>
 <exception-sorter class-
name="org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLExceptionSorter"/>
 </validation>
</datasource>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

146

NOTE

The datasource must have a valid driver defined. The example above uses mssql as the
driver-name; however the mssql driver does not exist. For details, see Example MySQL
Datasource in the JBoss EAP Configuration Guide.

NOTE

Use the exception-sorter-class-name parameter in the datasource configuration. For
details, see Example Datasource Configurations in the JBoss EAP Configuration Guide.

Updating an Existing Resource to Use the New CMR Feature
If you only need to update an existing datasource to use the CMR feature, then simply modify the
connectable attribute:

/subsystem=datasources/data-source=ConnectableDS:write-attribute(name=connectable,value=true)

Add a Reference to the Transactions Subsystem
The transactions subsystem identifies the datasources that are CMR capable through an entry to the
transactions subsystem configuration section as shown below:

The same result can be achieved using the management CLI:

/subsystem=transactions/commit-markable-
resource=java\:jboss\/datasources\/ConnectableDS/:add(batch-size=100,immediate-
cleanup=false,name=xids)

NOTE

You must restart the server after adding the CMR reference under the transactions
subsystem.

11.3.3. About the Presumed-Abort Optimization

If a transaction is going to roll back, it can record this information locally and notify all enlisted
participants. This notification is only a courtesy, and has no effect on the transaction outcome. After all
participants have been contacted, the information about the transaction can be removed.

If a subsequent request for the status of the transaction occurs there will be no information available. In
this case, the requester assumes that the transaction has aborted and rolled back. This presumed-abort
optimization means that no information about participants needs to be made persistent until the
transaction has decided to commit, since any failure prior to this point will be assumed to be an abort of
the transaction.

<subsystem xmlns="urn:jboss:domain:transactions:5.0">
 ...
 <commit-markable-resources>
 <commit-markable-resource jndi-name="java:jboss/datasources/ConnectableDS">
 <xid-location name="xids" batch-size="100" immediate-cleanup="false"/>
 </commit-markable-resource>
 ...
 </commit-markable-resources>
</subsystem>

CHAPTER 11. JAVA TRANSACTION API (JTA)

147

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#example_mysql_datasource
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#example_datasource_configurations

11.3.4. About the Read-Only Optimization

When a participant is asked to prepare, it can indicate to the coordinator that it has not modified any
data during the transaction. Such a participant does not need to be informed about the outcome of the
transaction, since the fate of the participant has no affect on the transaction. This read-only participant
can be omitted from the second phase of the commit protocol.

11.4. TRANSACTION OUTCOMES

11.4.1. About Transaction Outcomes

There are three possible outcomes for a transaction.

Commit

If every transaction participant can commit, the transaction coordinator directs them to do so. See
About Transaction Commit for more information.

Rollback

If any transaction participant cannot commit, or if the transaction coordinator cannot direct
participants to commit, the transaction is rolled back. See About Transaction Rollback for more
information.

Heuristic outcome

If some transaction participants commit and others roll back, it is termed a heuristic outcome.
Heuristic outcomes require human intervention. See About Heuristic Outcomes for more
information.

11.4.2. About Transaction Commit

When a transaction participant commits, it makes its new state durable. The new state is created by the
participant doing the work involved in the transaction. The most common example is when a transaction
member writes records to a database.

After a commit, information about the transaction is removed from the transaction coordinator, and the
newly-written state is now the durable state.

11.4.3. About Transaction Rollback

A transaction participant rolls back by restoring its state to reflect the state before the transaction
began. After a rollback, the state is the same as if the transaction had never been started.

11.4.4. About Heuristic Outcomes

A heuristic outcome, or non-atomic outcome, is a situation where the decisions of the participants in a
transaction differ from that of the transaction manager. Heuristic outcomes can cause loss of integrity
to the system, and usually require human intervention to resolve them. Do not write code which relies on
them.

Heuristic outcomes typically occur during the second phase of the 2-phase commit (2PC) protocol. In
rare cases, this outcome might occur in a 1PC. They are often caused by failures to the underlying
hardware or communications subsystems of the underlying servers.

Heuristic outcomes are possible due to timeouts in various subsystems or resources even with

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

148

Heuristic outcomes are possible due to timeouts in various subsystems or resources even with
transaction manager and full crash recovery. In any system that requires some form of distributed
agreement, situations can arise where some parts of the system diverge in terms of the global outcome.

There are four different types of heuristic outcomes:

Heuristic rollback
The commit operation was not able to commit the resources but all of the participants were able to be
rolled back and so an atomic outcome was still achieved.

Heuristic commit
An attempted rollback operation failed because all of the participants unilaterally committed. This can
happen if, for example, the coordinator is able to successfully prepare the transaction but then decides
to roll it back because of a failure on its side, such as a failure to update its log. In the interim, the
participants might decide to commit.

Heuristic mixed
Some participants committed and others rolled back.

Heuristic hazard
The disposition of some of the updates is unknown. For those that are known, they have either all been
committed or all rolled back.

About the 2-Phase Commit Protocol

11.4.5. JBoss Transactions Errors and Exceptions

For details about exceptions thrown by methods of the UserTransaction class, see the
UserTransaction API Javadoc.

11.5. OVERVIEW OF THE TRANSACTION LIFECYCLE

11.5.1. Transaction Lifecycle

See About Java Transaction API (JTA) for more information on Java Transaction API (JTA).

When a resource asks to participate in a transaction, a chain of events is set in motion. The Transaction
Manager (TM) is a process that lives within the application server and manages transactions. Transaction
participants are objects which participate in a transaction. Resources are datasources, JMS connection
factories, or other JCA connections.

1. The application starts a new transaction.
To begin a transaction, the application obtains an instance of class UserTransaction from JNDI
or, if it is an EJB, from an annotation. The UserTransaction interface includes methods for
beginning, committing, and rolling back top-level transactions. Newly created transactions are
automatically associated with their invoking thread. Nested transactions are not supported in
JTA, so all transactions are top-level transactions.

An EJB starts a transaction when the UserTransaction.begin() method is called. The default
behavior of this transaction could be affected by use of the TransactionAttribute annotation or
the ejb.xml descriptor. Any resource that is used after that point is associated with the
transaction. If more than one resource is enlisted, the transaction becomes an XA transaction,
and participates in the two-phase commit protocol at commit time.

NOTE

CHAPTER 11. JAVA TRANSACTION API (JTA)

149

http://docs.oracle.com/javaee/7/api/javax/transaction/UserTransaction.html

NOTE

By default, transactions are driven by application containers in EJBs. This is called
Container Managed Transaction (CMT) . To make the transaction user driven,
change the Transaction Management to Bean Managed Transaction (BMT) . In
BMT, the UserTransaction object is available for the user to manage the
transaction.

2. The application modifies its state.
In the next step, the application performs its work and makes changes to its state, only on
enlisted resources.

3. The application decides to commit or roll back.
When the application has finished changing its state, it decides whether to commit or roll back. It
calls the appropriate method, either UserTransaction.commit() or
UserTransaction.rollback(). For a CMT, this process is driven automatically, whereas for a
BMT, a method commit or rollback of the UserTransaction has to be explicitly called.

4. The TM removes the transaction from its records.
After the commit or rollback completes, the TM cleans up its records and removes information
about the transaction from the transaction log.

Failure Recovery

If a resource, transaction participant, or the application server crashes or become unavailable, the
Transaction Manager handles recovery when the underlying failure is resolved and the resource is
available again. This process happens automatically. For more information, see XA Recovery.

11.6. TRANSACTION SUBSYSTEM CONFIGURATION

The transactions subsystem allows you to configure transaction manager options such as statistics,
timeout values, and transaction logging. You can also manage transactions and view transaction
statistics.

For more information, see Configuring Transactions in the JBoss EAP Configuration Guide.

11.7. TRANSACTIONS USAGE IN PRACTICE

11.7.1. Transactions Usage Overview

The following procedures are useful when you need to use transactions in your application.

Control Transactions

Begin a Transaction

Commit a Transaction

Roll Back a Transaction

Handle a Heuristic Outcome in a Transaction

Handle Transaction Errors

Transaction References

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

150

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#configuring_transactions

11.7.2. Control Transactions

Introduction

This list of procedures outlines the different ways to control transactions in your applications which use
JTA APIs.

Begin a Transaction

Commit a Transaction

Roll Back a Transaction

11.7.2.1. Begin a Transaction

This procedure shows how to begin a new transaction. The API is the same whether you run the
Transaction Manager (TM) configured with JTA or JTS.

1. Get an instance of UserTransaction.
You can get the instance using JNDI, injection, or an EJB’s context if the EJB uses bean-
managed transactions by means of a
@TransactionManagement(TransactionManagementType.BEAN) annotation.

Get the instance using JNDI.

Get the instance using injection.

Get the instance using the EJB context.

In a stateless/stateful bean:

In a message-driven bean:

2. Call UserTransaction.begin() after you connect to your datasource.

new InitialContext().lookup("java:comp/UserTransaction")

@Resource UserTransaction userTransaction;

@Resource SessionContext ctx;
ctx.getUserTransaction();

@Resource MessageDrivenContext ctx;
ctx.getUserTransaction()

try {
 System.out.println("\nCreating connection to database: "+url);
 stmt = conn.createStatement(); // non-tx statement
 try {
 System.out.println("Starting top-level transaction.");
 userTransaction.begin();
 stmtx = conn.createStatement(); // will be a tx-statement
 ...
 }
}

CHAPTER 11. JAVA TRANSACTION API (JTA)

151

Result

The transaction begins. All uses of your datasource are transactional until you commit or roll back the
transaction.

For a full example, see JTA Transaction Example .

NOTE

One of the benefits of EJBs (either used with CMT or BMT) is that the container
manages all the internals of the transactional processing, that is, you are free from taking
care of transaction being part of XA transaction or transaction distribution amongst
JBoss EAP containers.

11.7.2.1.1. Nested Transactions

Nested transactions allow an application to create a transaction that is embedded in an existing
transaction. In this model, multiple subtransactions can be embedded recursively in a transaction.
Subtransactions can be committed or rolled back without committing or rolling back the parent
transaction. However, the results of a commit operation are contingent upon the commitment of all the
transaction’s ancestors.

For implementation specific information, see the Narayana Project Documentation .

Nested transactions are available only when used with the JTS specification. Nested transactions are not
a supported feature of JBoss EAP application server. In addition, many database vendors do not support
nested transactions, so consult your database vendor before you add nested transactions to your
application.

11.7.2.2. Commit a Transaction

This procedure shows how to commit a transaction using the Java Transaction API (JTA).

Prerequisites

You must begin a transaction before you can commit it. For information on how to begin a transaction,
see Begin a Transaction.

1. Call the commit() method on the UserTransaction.
When you call the commit() method on the UserTransaction, the TM attempts to commit the
transaction.

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value) {
 EntityManager entityManager = entityManagerFactory.createEntityManager();
 try {
 userTransaction.begin();
 <!-- Perform some data manipulation using entityManager -->
 ...
 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

152

http://narayana.io//docs/project/index.html

2. If you use Container Managed Transactions (CMT), you do not need to manually commit.
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

Result

Your datasource commits and your transaction ends, or an exception is thrown.

NOTE

For a full example, see JTA Transaction Example .

11.7.2.3. Roll Back a Transaction

This procedure shows how to roll back a transaction using the Java Transaction API (JTA).

Prerequisites

You must begin a transaction before you can roll it back. For information on how to begin a transaction,
see Begin a Transaction.

1. Call the rollback() method on the UserTransaction.
When you call the rollback() method on the UserTransaction, the TM attempts to roll back the
transaction and return the data to its previous state.

 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(ex);
 } finally {
 entityManager.close();
 }
}

@PersistenceContext
private EntityManager em;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void updateTable(String key, String value)
 <!-- Perform some data manipulation using entityManager -->
 ...
}

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
 EntityManager entityManager = entityManagerFactory.createEntityManager();
 try {
 userTransaction.begin():
 <!-- Perform some data manipulation using entityManager -->
 ...

CHAPTER 11. JAVA TRANSACTION API (JTA)

153

2. If you use Container Managed Transactions (CMT), you do not need to manually roll back the
transaction.
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

NOTE

Rollback for CMT occurs if RuntimeException is thrown. You can also explicitly call the
setRollbackOnly method to gain the rollback. Or, use the
@ApplicationException(rollback=true) for application exception to rollback.

Result

Your transaction is rolled back by the TM.

NOTE

For a full example, see JTA Transaction Example .

11.7.3. Handle a Heuristic Outcome in a Transaction

Heuristic transaction outcomes are uncommon and usually have exceptional causes. The word heuristic
means "by hand", and that is the way that these outcomes usually have to be handled. See About
Heuristic Outcomes for more information about heuristic transaction outcomes.

This procedure shows how to handle a heuristic outcome of a transaction using the Java Transaction API
(JTA).

1. The cause of a heuristic outcome in a transaction is that a resource manager promised it could
commit or rollback, and then failed to fulfill the promise. This could be due to a problem with a
third-party component, the integration layer between the third-party component and JBoss
EAP, or JBoss EAP itself.
By far, the most common two causes of heuristic errors are transient failures in the environment
and coding errors dealing with resource managers.

2. Usually, if there is a transient failure in your environment, you will know about it before you find
out about the heuristic error. This could be due to a network outage, hardware failure, database
failure, power outage, or a host of other things.

If you come across a heuristic outcome in a test environment during stress testing, it implies

 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->
 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(e);
 } finally {
 entityManager.close();
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

154

If you come across a heuristic outcome in a test environment during stress testing, it implies
weaknesses in your test environment.

WARNING

JBoss EAP automatically recovers transactions that were in a non-heuristic
state at the time of failure, but it does not attempt to recover the heuristic
transactions.

3. If you have no obvious failure in your environment, or if the heuristic outcome is easily
reproducible, it is probably due to a coding error. You must contact the third-party vendors to
find out if a solution is available.
If you suspect the problem is in the transaction manager of JBoss EAP itself, you must raise a
support ticket.

4. You can attempt to recover the transaction manually using the management CLI. For more
information, see the Recovering a Transaction Participant section of Managing Transactions on
JBoss EAP.

5. The process of resolving the transaction outcome manually is dependent on the exact
circumstance of the failure. Perform the following steps, as applicable to your environment:

a. Identify which resource managers were involved.

b. Examine the state of the transaction manager and the resource managers.

c. Manually force log cleanup and data reconciliation in one or more of the involved
components.

6. In a test environment, or if you do not care about the integrity of the data, deleting the
transaction logs and restarting JBoss EAP gets rid of the heuristic outcome. By default, the
transaction logs are located in the EAP_HOME/standalone/data/tx-object-store/ directory for
a standalone server, or the EAP_HOME/domain/servers/SERVER_NAME/data/tx-object-
store/ directory in a managed domain. In the case of a managed domain, SERVER_NAME refers
to the name of the individual server participating in a server group.

NOTE

The location of the transaction log also depends on the object store in use and
the values set for the object-store-relative-to and object-store-path
parameters. For file system logs, such as a standard shadow and Apache
ActiveMQ Artemis logs, the default directory location is used, but when using a
JDBC object store, the transaction logs are stored in a database.

11.7.4. JTA Transaction Error Handling

11.7.4.1. Handle Transaction Errors

Transaction errors are challenging to solve because they are often dependent on timing. Here are some
common errors and ideas for troubleshooting them.

CHAPTER 11. JAVA TRANSACTION API (JTA)

155

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/managing_transactions_on_jboss_eap/#recover_a_transaction

NOTE

These guidelines do not apply to heuristic errors. If you experience heuristic errors, refer
to Handle a Heuristic Outcome in a Transaction and contact Red Hat Global Support
Services for assistance.

The transaction timed out but the business logic thread did not notice

This type of error often manifests itself when Hibernate is unable to obtain a database connection for
lazy loading. If it happens frequently, you can lengthen the timeout value. See the JBoss EAP
Configuration Guide for information on configuring the transaction manager.
If that is not feasible, you might be able to tune your external environment to perform more quickly,
or restructure your code to be more efficient. Contact Red Hat Global Support Services if you still
have trouble with timeouts.

The transaction is already running on a thread, or you receive a NotSupportedException exception

The NotSupportedException exception usually indicates that you attempted to nest a JTA
transaction, and this is not supported. If you were not attempting to nest a transaction, it is likely that
another transaction was started in a thread pool task, but finished the task without suspending or
ending the transaction.
Applications typically use UserTransaction, which handles this automatically. If so, there might be a
problem with a framework.

If your code does use TransactionManager or Transaction methods directly, be aware of the
following behavior when committing or rolling back a transaction. If your code uses
TransactionManager methods to control your transactions, committing or rolling back a transaction
disassociates the transaction from the current thread. However, if your code uses Transaction
methods, the transaction might not be associated with the running thread, and you need to
disassociate it from its threads manually, before returning it to the thread pool.

You are unable to enlist a second local resource

This error happens if you try to enlist a second non-XA resource into a transaction. If you need
multiple resources in a transaction, they must be XA.

11.8. TRANSACTION REFERENCES

11.8.1. JTA Transaction Example

This example illustrates how to begin, commit, and roll back a JTA transaction. You need to adjust the
connection and datasource parameters to suit your environment, and set up two test tables in your
database.

public class JDBCExample {
 public static void main (String[] args) {
 Context ctx = new InitialContext();
 // Change these two lines to suit your environment.
 DataSource ds = (DataSource)ctx.lookup("jdbc/ExampleDS");
 Connection conn = ds.getConnection("testuser", "testpwd");
 Statement stmt = null; // Non-transactional statement
 Statement stmtx = null; // Transactional statement
 Properties dbProperties = new Properties();

 // Get a UserTransaction
 UserTransaction txn = new InitialContext().lookup("java:comp/UserTransaction");

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

156

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#configuring_the_transaction_manager

 try {
 stmt = conn.createStatement(); // non-tx statement

 // Check the database connection.
 try {
 stmt.executeUpdate("DROP TABLE test_table");
 stmt.executeUpdate("DROP TABLE test_table2");
 }
 catch (Exception e) {
 throw new RuntimeException(e);
 // assume not in database.
 }

 try {
 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b INTEGER)");
 stmt.executeUpdate("CREATE TABLE test_table2 (a INTEGER,b INTEGER)");
 }
 catch (Exception e) {
 throw new RuntimeException(e);
 }

 try {
 System.out.println("Starting top-level transaction.");

 txn.begin();

 stmtx = conn.createStatement(); // will be a tx-statement

 // First, we try to roll back changes

 System.out.println("\nAdding entries to table 1.");

 stmtx.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");

 ResultSet res1 = null;

 System.out.println("\nInspecting table 1.");

 res1 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res1.next()) {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }
 System.out.println("\nAdding entries to table 2.");

 stmtx.executeUpdate("INSERT INTO test_table2 (a, b) VALUES (3,4)");
 res1 = stmtx.executeQuery("SELECT * FROM test_table2");

 System.out.println("\nInspecting table 2.");

 while (res1.next()) {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }

CHAPTER 11. JAVA TRANSACTION API (JTA)

157

11.8.2. Transaction API Documentation

The transaction JTA API documentation is available as Javadoc at the following location:

UserTransaction -
http://docs.oracle.com/javaee/7/api/javax/transaction/UserTransaction.html

If you use Red Hat CodeReady Studio to develop your applications, the API documentation is included in
the Help menu.

 System.out.print("\nNow attempting to rollback changes.");

 txn.rollback();

 // Next, we try to commit changes
 txn.begin();
 stmtx = conn.createStatement();
 System.out.println("\nAdding entries to table 1.");
 stmtx.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");
 ResultSet res2 = null;

 System.out.println("\nNow checking state of table 1.");

 res2 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res2.next()) {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 System.out.println("\nNow checking state of table 2.");

 stmtx = conn.createStatement();

 res2 = stmtx.executeQuery("SELECT * FROM test_table2");

 while (res2.next()) {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 txn.commit();
 }
 catch (Exception ex) {
 throw new RuntimeException(ex);

 }
 }
 catch (Exception sysEx) {
 sysEx.printStackTrace();
 System.exit(0);
 }
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

158

http://docs.oracle.com/javaee/7/api/javax/transaction/UserTransaction.html

CHAPTER 12. JAVA PERSISTENCE API (JPA)

12.1. ABOUT JAVA PERSISTENCE API (JPA)

The Java Persistence API (JPA) is a Java specification for accessing, persisting, and managing data
between Java objects or classes and a relational database. The JPA specification recognizes the
interest and the success of the transparent object or relational mapping paradigm. It standardizes the
basic APIs and the metadata needed for any object or relational persistence mechanism.

NOTE

JPA itself is just a specification, not a product; it cannot perform persistence or anything
else by itself. JPA is just a set of interfaces, and requires an implementation.

12.2. CREATE A SIMPLE JPA APPLICATION

Follow the procedure below to create a simple JPA application in Red Hat CodeReady Studio.

1. Create a JPA project in Red Hat CodeReady Studio.

a. In Red Hat CodeReady Studio, click File → New → Project. Find JPA in the list, expand it,
and select JPA Project. You are presented with the following dialog.

Figure 12.1. New JPA Project Dialog

CHAPTER 12. JAVA PERSISTENCE API (JPA)

159

Figure 12.1. New JPA Project Dialog

b. Enter a Project name.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

160

c. Select a Target runtime. If no target runtime is available, follow these instructions to define
a new server and runtime: Downloading, Installing, and Setting Up JBoss EAP from within
the IDE in the Getting Started with CodeReady Studio Tools guide.

d. Under JPA version, ensure 2.1 is selected.

e. Under Configuration, choose Basic JPA Configuration.

f. Click Finish.

g. If prompted, choose whether you wish to associate this type of project with the JPA
perspective window.

2. Create and configure a new persistence settings file.

a. Open an EJB 3.x project in Red Hat CodeReady Studio.

b. Right click the project root directory in the Project Explorer panel.

c. Select New → Other….

d. Select XML File from the XML folder and click Next.

e. Select the ejbModule/META-INF/ folder as the parent directory.

f. Name the file persistence.xml and click Next.

g. Select Create XML file from an XML schema file and click Next.

h. Select http://java.sun.com/xml/ns/persistence/persistence_2.0.xsd from the Select
XML Catalog entry list and click Next.

Figure 12.2. Persistence XML Schema

CHAPTER 12. JAVA PERSISTENCE API (JPA)

161

https://access.redhat.com/documentation/en-us/red_hat_codeready_studio/12.11/html-single/getting_started_with_codeready_studio_tools/#proc_downloading-installing-and-setting-up-eap-from-within-the-ide

Figure 12.2. Persistence XML Schema

i. Click Finish to create the file. The persistence.xml has been created in the META-INF/
folder and is ready to be configured.

Example: Persistence Settings File

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

162

12.3. JPA ENTITIES

Once you have established the connection from your application to the database, you can start mapping
the data in the database to Java objects. Java objects that are used to map against database tables are
called entity objects.

Entities have relationships with other entities, which are expressed through object-relational metadata.
The object-relational metadata can be specified either directly in the entity class file by using
annotations, or in an XML descriptor file called persistence.xml included with the application.

The high-level mapping of Java objects to the database is as follows:

Java classes map to the database tables.

Java instances map to the database rows.

Java fields map to the database columns.

12.4. PERSISTENCE CONTEXT

The JPA persistence context contains the entities managed by the persistence provider. The
persistence context acts like a first level transactional cache for interacting with the datasource. It
manages the entity instances and their lifecycle. Loaded entities are placed into the persistence context
before being returned to the application. Entity changes are also placed into the persistence context to
be saved in the database when the transaction commits.

The lifetime of a container-managed persistence context can either be scoped to a transaction, which is
referred to as a transaction-scoped persistence context, or have a lifetime scope that extends beyond
that of a single transaction, which is referred to as an extended persistence context. The
PersistenceContextType property, which has the enum datatype, is used to define the persistence
context lifetime scope for container-managed entity managers. The persistence context lifetime scope
is defined when the EntityManager instance is created.

12.4.1. Transaction-Scoped Persistence Context

The transaction-scoped persistence context works with the active JTA transaction. When the
transaction commits, the persistence context is flushed to the datasource; the entity objects are

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_2.xsd"
 version="2.2">
 <persistence-unit name="example" transaction-type="JTA">
 <provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <mapping-file>ormap.xml</mapping-file>
 <jar-file>TestApp.jar</jar-file>
 <class>org.test.Test</class>
 <shared-cache-mode>NONE</shared-cache-mode>
 <validation-mode>CALLBACK</validation-mode>
 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>
</persistence>

CHAPTER 12. JAVA PERSISTENCE API (JPA)

163

detached but might still be referenced by the application code. All the entity changes that are expected
to be saved to the datasource must be made during a transaction. Entities that are read outside the
transaction are detached when the EntityManager invocation completes.

12.4.2. Extended Persistence Context

The extended persistence context spans multiple transactions and allows data modifications to be
queued without an active JTA transaction. The container-managed extended persistence context can
only be injected into a stateful session bean.

12.5. JPA ENTITYMANAGER

JPA entity manager represents a connection to the persistence context. You can read from and write to
the database defined by the persistence context using the entity manager.

Persistence context is provided through the Java annotation @PersistenceContext in the
javax.persistence package. The entity manager is provided through the Java class
javax.persistence.EntityManager. In any managed bean, the EntityManager instance can be injected
as shown below:

Example: Entity Manager Injection

12.5.1. Application-Managed EntityManager

Application-managed entity managers provide direct access to the underlying persistence provider,
org.hibernate.jpa.HibernatePersistenceProvider. The scope of the application-managed entity
manager is from when the application creates it and lasts until the application closes it. You can use the
@PersistenceUnit annotation to inject a persistence unit into the
javax.persistence.EntityManagerFactory interface, which returns an application-managed entity
manager.

Application-managed entity managers can be used when your application needs to access a persistence
context that is not propagated with the JTA transaction across EntityManager instances in a particular
persistence unit. In this case, each EntityManager instance creates a new, isolated persistence context.
The EntityManager instance and its associated PersistenceContext is created and destroyed explicitly
by your application. Application-managed entity managers can also be used when you cannot inject
EntityManager instances directly, because the EntityManager instances are not thread-safe.
EntityManagerFactory instances are thread-safe.

Example: Application-Managed Entity Manager

@Stateless
public class UserBean {
 @PersistenceContext
 EntityManager entitymanager;
 ...
}

@PersistenceUnit
EntityManagerFactory emf;
EntityManager em;
@Resource
UserTransaction utx;
...

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

164

12.5.2. Container-Managed EntityManager

Container-managed entity managers manage the underlying persistence provider for the application.
They can use the transaction-scoped persistence contexts or the extended persistence contexts. The
container-managed entity manager creates instances of the underlying persistence provider as needed.
Every time a new underlying persistence provider org.hibernate.jpa.HibernatePersistenceProvider
instance is created, a new persistence context is also created.

12.6. WORKING WITH THE ENTITYMANAGER

When you have the persistence.xml file located in the /META-INF directory, the entity manager is
loaded and has an active connection to the database. The EntityManager property can be used to bind
the entity manager to JNDI and to add, update, remove and query entities.

IMPORTANT

If you plan to use a security manager with Hibernate, be aware that Hibernate supports it
only when EntityManagerFactory is bootstrapped by the JBoss EAP server. It is not
supported when the EntityManagerFactory or SessionFactory is bootstrapped by the
application. See Java Security Manager in How to Configure Server Security for more
information about security managers.

12.6.1. Binding the EntityManager to JNDI

By default, JBoss EAP does not bind the EntityManagerFactory to JNDI. You can explicitly configure
this in the persistence.xml file of your application by setting the
jboss.entity.manager.factory.jndi.name property. The value of this property should be the JNDI name
to which you want to bind the EntityManagerFactory.

You can also bind a container-managed transaction-scoped entity manager to JNDI by using the
jboss.entity.manager.jndi.name property.

Example: Binding the EntityManager and the EntityManagerFactory to JNDI

Example: Storing an Entity using the EntityManager

em = emf.createEntityManager();
try {
 utx.begin();
 em.persist(SomeEntity);
 em.merge(AnotherEntity);
 em.remove(ThirdEntity);
 utx.commit();
}
catch (Exception e) {
 utx.rollback();
}

<property name="jboss.entity.manager.jndi.name" value="java:/MyEntityManager"/>
<property name="jboss.entity.manager.factory.jndi.name" value="java:/MyEntityManagerFactory"/>

public User createUser(User user) {
 entityManager.persist(user);

CHAPTER 12. JAVA PERSISTENCE API (JPA)

165

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_server_security/#java_security_manager

Example: Updating an Entity using the EntityManager

Example: Removing an Entity using the EntityManager

Example: Querying an Entity using the EntityManager

12.7. DEPLOYING THE PERSISTENCE UNIT

A persistence unit is a logical grouping that includes:

Configuration information for an entity manager factory and its entity managers.

Classes managed by the entity managers.

Mapping metadata specifying the mapping of the classes to the database.

The persistence.xml file contains persistence unit configuration, including the datasource name. The
JAR file or the directory whose /META-INF/ directory contains the persistence.xml file is termed as the
root of the persistence unit.

In Java EE environments, the root of the persistence unit must be one of the following:

An EJB-JAR file

The /WEB-INF/classes/ directory of a WAR file

 return user;
}

public void updateUser(User user) {
 entityManager.merge(user);
}

public void deleteUser(String user) {
 User user = findUser(username);
 if (user != null)
 entityManager.remove(user);
}

public User findUser(String username) {
 CriteriaBuilder builder = entityManager.getCriteriaBuilder();
 CriteriaQuery<User> criteria = builder.createQuery(User.class);
 Root<User> root = criteria.from(User.class);
 TypedQuery<User> query = entityManager
 .createQuery(criteria.select(root).where(
 builder.equal(root.<String> get("username"), username)));
 try {
 return query.getSingleResult();
 }
 catch (NoResultException e) {
 return null;
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

166

A JAR file in the /WEB-INF/lib/ directory of a WAR file

A JAR file in the EAR library directory

An application client JAR file

Example: Persistence Settings File

12.8. SECOND-LEVEL CACHES

12.8.1. About Second-level Caches

A second-level cache is a local data store that holds information persisted outside the application
session. The cache is managed by the persistence provider, improving runtime by keeping the data
separate from the application.

JBoss EAP supports caching for the following purposes:

Web Session Clustering

Stateful Session Bean Clustering

SSO Clustering

Hibernate/JPA Second-level Cache

WARNING

Each cache container defines a repl and a dist cache. These caches should not be
used directly by user applications.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_2.xsd"
 version="2.2">
 <persistence-unit name="example" transaction-type="JTA">
 <provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <mapping-file>ormap.xml</mapping-file>
 <jar-file>TestApp.jar</jar-file>
 <class>org.test.Test</class>
 <shared-cache-mode>NONE</shared-cache-mode>
 <validation-mode>CALLBACK</validation-mode>
 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>
</persistence>

CHAPTER 12. JAVA PERSISTENCE API (JPA)

167

12.8.1.1. Default Second-level Cache Provider

Infinispan is the default second-level cache provider for JBoss EAP. Infinispan is a distributed in-
memory key/value data store with optional schema, available under the Apache License 2.0.

12.8.1.1.1. Configuring a Second-level Cache in the Persistence Unit

You can use the shared-cache-mode element of the persistence unit to configure the second-level
cache.

1. See Create a Simple JPA Application to create the persistence.xml file in Red Hat CodeReady
Studio.

2. Add the following to the persistence.xml file:

The SHARED_CACHE_MODE element can take the following values:

ALL: All entities should be considered cacheable.

NONE: No entities should be considered cacheable.

ENABLE_SELECTIVE: Only entities marked as cacheable should be considered cacheable.

DISABLE_SELECTIVE: All entities except the ones explicitly marked as not cacheable
should be considered cacheable.

UNSPECIFIED: Behavior is not defined. Provider-specific defaults are applicable.

<persistence-unit name="...">
 (...) <!-- other configuration -->
 <shared-cache-mode>SHARED_CACHE_MODE</shared-cache-mode>
 <properties>
 <property name="hibernate.cache.use_second_level_cache" value="true" />
 <property name="hibernate.cache.use_query_cache" value="true" />
 </properties>
</persistence-unit>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

168

CHAPTER 13. BEAN VALIDATION

13.1. ABOUT BEAN VALIDATION

Bean Validation, or JavaBeans Validation, is a model for validating data in Java objects. The model uses
built-in and custom annotation constraints to ensure the integrity of application data. It also offers
method and constructor validation to ensure constraints on parameters and return values. The
specification is documented in JSR 380: Bean Validation 2.0 .

Hibernate Validator is the JBoss EAP implementation of Bean Validation. It is also the reference
implementation of the JSR.

JBoss EAP is 100% compliant with JSR 380 Bean Validation 2.0 specification. Hibernate Validator also
provides additional features to the specification.

To get started with Bean Validation, see the bean-validation quickstart that ships with JBoss EAP. For
information about how to download and run the quickstarts, see Using the Quickstart Examples in the
JBoss EAP Getting Started Guide .

JBoss EAP 7.2 includes Hibernate Validator 6.0.x.

Features of Hibernate Validator 6.0.x

Bean Validation 2.0 defines a metadata model and API for entity and method validation.
The default source for the metadata is annotations, with the ability to override and extend the
metadata through the use of XML.

The API is not tied to any specific application tier or programming model. It is available for both
server-side application programming and rich client Swing application development.

In addition to bug fixes, this release of Hibernate Validator contains many performance
improvements for the most common use cases.

As of version 1.1, Bean Validation constraints can also be applied to the parameters and return
values of methods of arbitrary Java types using the Bean Validation API.

Hibernate Validator 6.0.x and Bean Validation 2.0 require Java 8 or later.
For more information, see Hibernate Validator 6.0.9.Final released and the Hibernate Validator
6.0.13.Final - JSR 380 Reference Implementation: Reference Guide.

13.2. VALIDATION CONSTRAINTS

13.2.1. About Validation Constraints

Validation constraints are rules applied to a Java element, such as a field, property or bean. A constraint
will usually have a set of attributes used to set its limits. There are predefined constraints, and custom
ones can be created. Each constraint is expressed in the form of an annotation.

The built-in validation constraints for Hibernate Validator are listed here: Hibernate Validator
Constraints.

13.2.2. Hibernate Validator Constraints

NOTE

CHAPTER 13. BEAN VALIDATION

169

https://jcp.org/en/jsr/detail?id=380
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/getting_started_guide/#using_the_quickstart_examples
http://in.relation.to/2018/03/27/hibernate-validator-609-final-out/
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/

NOTE

When applicable, the application-level constraints lead to creation of database-level
constraints that are described in the Hibernate Metadata Impact column in the table
below.

Java-specific Validation Constraints

The following table includes validation constraints defined in the Java specifications, which are included
in the javax.validation.constraints package.

Annotation Property type Runtime checking Hibernate Metadata
impact

@AssertFalse Boolean Check that the method
evaluates to false.
Useful for constraints
expressed in code rather
than annotations.

None.

@AssertTrue Boolean Check that the method
evaluates to true. Useful
for constraints
expressed in code rather
than annotations.

None.

@Digits(integerDigits=1) Numeric or string
representation of a
numeric

Check whether the
property is a number
having up to
integerDigits integer
digits and
fractionalDigits
fractional digits.

Define column precision
and scale.

@Future Date or calendar Check if the date is in
the future.

None.

@Max(value=) Numeric or string
representation of a
numeric

Check if the value is less
than or equal to max.

Add a check constraint
on the column.

@Min(value=) Numeric or string
representation of a
numeric

Check if the value is
more than or equal to
Min.

Add a check constraint
on the column.

@NotNull Check if the value is not
null.

Column(s) are not null.

@Past Date or calendar Check if the date is in
the past.

Add a check constraint
on the column.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

170

@Pattern(regexp="rege
xp", flag=) or @Patterns(
{@Pattern(…)})

String Check if the property
matches the regular
expression given a
match flag. See
java.util.regex.Patter
n.

None.

@Size(min=, max=) Array, collection, map Check if the element
size is between min and
max, both values
included.

None.

@Valid Object Perform validation
recursively on the
associated object. If the
object is a Collection or
an array, the elements
are validated recursively.
If the object is a Map,
the value elements are
validated recursively.

None.

Annotation Property type Runtime checking Hibernate Metadata
impact

NOTE

The parameter @Valid is a part of the Bean Validation specification, even though it is
located in the javax.validation.constraints package.

Hibernate Validator-specific Validation Constraints

The following table includes vendor-specific validation constraints, which are a part of the
org.hibernate.validator.constraints package.

Annotation Property type Runtime checking Hibernate Metadata
impact

@Length(min=, max=) String Check if the string
length matches the
range.

Column length will be
set to max.

@CreditCardNumber String Check whether the
string is a well formatted
credit card number,
derivative of the Luhn
algorithm.

None.

CHAPTER 13. BEAN VALIDATION

171

@EAN String Check whether the
string is a properly
formatted EAN or UPC-
A code.

None.

@Email String Check whether the
string is conform to the
e-mail address
specification.

None.

@NotEmpty Check if the string is not
null nor empty. Check if
the connection is not
null nor empty.

Columns are not null for
String.

@Range(min=, max=) Numeric or string
representation of a
numeric

Check if the value is
between min and max,
both values included.

Add a check constraint
on the column.

Annotation Property type Runtime checking Hibernate Metadata
impact

13.2.3. Bean Validation Using Custom Constraints

Bean Validation API defines a set of standard constraint annotations, such as @NotNull, @Size, and so
on. However, in cases where these predefined constraints are not sufficient, you can easily create
custom constraints tailored to your specific validation requirements.

Creating a Bean Validation custom constraint requires that you create a constraint annotation and
implement a constraint validator. The following abbreviated code examples are taken from the bean-
validation-custom-constraint quickstart that ships with JBoss EAP. See that quickstart for a complete
working example.

13.2.3.1. Creating A Constraint Annotation

The following example shows the personAddress field of entity Person is validated using a set of
custom constraints defined in the class AddressValidator.

1. Create the entity Person.

Example: Person Class

package org.jboss.as.quickstarts.bean_validation_custom_constraint;

@Entity
@Table(name = "person")
public class Person implements Serializable {

 private static final long serialVersionUID = 1L;

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

172

2. Create the constraint validator files.

Example: Address Interface

 @Id
 @GeneratedValue
 @Column(name = "person_id")
 private Long personId;

 @NotNull

 @Size(min = 4)
 private String firstName;

 @NotNull
 @Size(min = 4)
 private String lastName;

 // Custom Constraint @Address for bean validation
 @NotNull
 @Address
 @OneToOne(mappedBy = "person", cascade = CascadeType.ALL)
 private PersonAddress personAddress;

 public Person() {

 }

 public Person(String firstName, String lastName, PersonAddress address) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.personAddress = address;
 }

 /* getters and setters omitted for brevity*/
}

package org.jboss.as.quickstarts.bean_validation_custom_constraint;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import javax.validation.Constraint;
import javax.validation.Payload;

// Linking the AddressValidator class with @Address annotation.
@Constraint(validatedBy = { AddressValidator.class })
// This constraint annotation can be used only on fields and method parameters.
@Target({ ElementType.FIELD, ElementType.PARAMETER })
@Retention(value = RetentionPolicy.RUNTIME)
@Documented
public @interface Address {

 // The message to return when the instance of MyAddress fails the validation.

CHAPTER 13. BEAN VALIDATION

173

Example: PersonAddress Class

 String message() default "Address Fields must not be null/empty and obey character limit
constraints";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};
}

package org.jboss.as.quickstarts.bean_validation_custom_constraint;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.OneToOne;
import javax.persistence.PrimaryKeyJoinColumn;
import javax.persistence.Table;

@Entity
@Table(name = "person_address")
public class PersonAddress implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @Column(name = "person_id", unique = true, nullable = false)
 @GeneratedValue(strategy = GenerationType.SEQUENCE)
 private Long personId;

 private String streetAddress;
 private String locality;
 private String city;
 private String state;
 private String country;
 private String pinCode;

 @OneToOne
 @PrimaryKeyJoinColumn
 private Person person;

 public PersonAddress() {

 }

 public PersonAddress(String streetAddress, String locality, String city, String state, String
country, String pinCode) {
 this.streetAddress = streetAddress;
 this.locality = locality;
 this.city = city;
 this.state = state;
 this.country = country;

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

174

13.2.3.2. Implementing A Constraint Validator

Having defined the annotation, you need to create a constraint validator that is able to validate elements
with an @Address annotation. To do so, implement the interface ConstraintValidator as shown below:

Example: AddressValidator Class

 this.pinCode = pinCode;
 }

 /* getters and setters omitted for brevity*/
}

package org.jboss.as.quickstarts.bean_validation_custom_constraint;

import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;
import org.jboss.as.quickstarts.bean_validation_custom_constraint.PersonAddress;

public class AddressValidator implements ConstraintValidator<Address, PersonAddress> {

 public void initialize(Address constraintAnnotation) {
 }

 /**
 * 1. A null address is handled by the @NotNull constraint on the @Address.
 * 2. The address should have all the data values specified.
 * 3. Pin code in the address should be of at least 6 characters.
 * 4. The country in the address should be of at least 4 characters.
 */
 public boolean isValid(PersonAddress value, ConstraintValidatorContext context) {
 if (value == null) {
 return true;
 }

 if (value.getCity() == null || value.getCountry() == null || value.getLocality() == null
 || value.getPinCode() == null || value.getState() == null || value.getStreetAddress() == null) {
 return false;
 }

 if (value.getCity().isEmpty()
 || value.getCountry().isEmpty() || value.getLocality().isEmpty()
 || value.getPinCode().isEmpty() || value.getState().isEmpty() ||
value.getStreetAddress().isEmpty()) {
 return false;
 }

 if (value.getPinCode().length() < 6) {
 return false;
 }

 if (value.getCountry().length() < 4) {
 return false;
 }

CHAPTER 13. BEAN VALIDATION

175

13.3. VALIDATION CONFIGURATION

You can configure bean validation using XML descriptors in the validation.xml file located in the
/META-INF directory. If this file exists in the class path, its configuration is applied when the
ValidatorFactory gets created.

Example: Validation Configuration File

The following example shows several configuration options of the validation.xml file. All the settings are
optional. These options can also be configured using the javax.validation package.

The node default-provider allows to choose the bean validation provider. This is useful if there is more
than one provider on the classpath. The message-interpolator and constraint-validator-factory
properties are used to customize the used implementations for the interfaces MessageInterpolator
and ConstraintValidatorFactory, which are defined in the javax.validation package. The constraint-
mapping element lists additional XML files containing the actual constraint configuration.

 return true;
 }
}

<validation-config xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration">

 <default-provider>
 org.hibernate.validator.HibernateValidator
 </default-provider>
 <message-interpolator>
 org.hibernate.validator.messageinterpolation.ResourceBundleMessageInterpolator
 </message-interpolator>
 <constraint-validator-factory>
 org.hibernate.validator.engine.ConstraintValidatorFactoryImpl
 </constraint-validator-factory>

 <constraint-mapping>
 /constraints-example.xml
 </constraint-mapping>

 <property name="prop1">value1</property>
 <property name="prop2">value2</property>
</validation-config>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

176

CHAPTER 14. CREATING WEBSOCKET APPLICATIONS
The WebSocket protocol provides two-way communication between web clients and servers.
Communications between clients and the server are event-based, allowing for faster processing and
smaller bandwidth compared with polling-based methods. WebSocket is available for use in web
applications using a JavaScript API and by client WebSocket endpoints using the Java Websocket API.

A connection is first established between client and server as an HTTP connection. The client then
requests a WebSocket connection using the Upgrade header. All communications are then full-duplex
over the same TCP/IP connection, with minimal data overhead. Because each message does not include
unnecessary HTTP header content, Websocket communications require smaller bandwidth. The result is
a low latency communications path suited to applications, which require real-time responsiveness.

The JBoss EAP WebSocket implementation provides full dependency injection support for server
endpoints, however, it does not provide CDI services for client endpoints.

A WebSocket application requires the following components and configuration changes:

A Java client or a WebSocket enabled HTML client. You can verify HTML client browser support
at this location: http://caniuse.com/#feat=websockets

A WebSocket server endpoint class.

Project dependencies configured to declare a dependency on the WebSocket API.

Create the WebSocket Application
The code examples that follow are taken from the websocket-hello quickstart that ships with JBoss
EAP. It is a simple example of a WebSocket application that opens a connection, sends a message, and
closes a connection. It does not implement any other functions or include any error handling, which
would be required for a real world application.

1. Create the JavaScript HTML client.
The following is an example of a WebSocket client. It contains these JavaScript functions:

connect(): This function creates the WebSocket connection passing the WebSocket URI.
The resource location matches the resource defined in the server endpoint class. This
function also intercepts and handles the WebSocket onopen, onmessage, onerror, and
onclose.

sendMessage(): This function gets the name entered in the form, creates a message, and
sends it using a WebSocket.send() command.

disconnect(): This function issues the WebSocket.close() command.

displayMessage(): This function sets the display message on the page to the value
returned by the WebSocket endpoint method.

displayStatus(): This function displays the WebSocket connection status.

Example: Application index.html Code

<html>
 <head>
 <title>WebSocket: Say Hello</title>
 <link rel="stylesheet" type="text/css" href="resources/css/hello.css" />
 <script type="text/javascript">

CHAPTER 14. CREATING WEBSOCKET APPLICATIONS

177

https://docs.oracle.com/javaee/7/api/javax/websocket/package-summary.html
http://caniuse.com/#feat=websockets

 var websocket = null;
 function connect() {
 var wsURI = 'ws://' + window.location.host + '/websocket-
hello/websocket/helloName';
 websocket = new WebSocket(wsURI);
 websocket.onopen = function() {
 displayStatus('Open');
 document.getElementById('sayHello').disabled = false;
 displayMessage('Connection is now open. Type a name and click Say Hello to
send a message.');
 };
 websocket.onmessage = function(event) {
 // log the event
 displayMessage('The response was received! ' + event.data, 'success');
 };
 websocket.onerror = function(event) {
 // log the event
 displayMessage('Error! ' + event.data, 'error');
 };
 websocket.onclose = function() {
 displayStatus('Closed');
 displayMessage('The connection was closed or timed out. Please click the Open
Connection button to reconnect.');
 document.getElementById('sayHello').disabled = true;
 };
 }
 function disconnect() {
 if (websocket !== null) {
 websocket.close();
 websocket = null;
 }
 message.setAttribute("class", "message");
 message.value = 'WebSocket closed.';
 // log the event
 }
 function sendMessage() {
 if (websocket !== null) {
 var content = document.getElementById('name').value;
 websocket.send(content);
 } else {
 displayMessage('WebSocket connection is not established. Please click the Open
Connection button.', 'error');
 }
 }
 function displayMessage(data, style) {
 var message = document.getElementById('hellomessage');
 message.setAttribute("class", style);
 message.value = data;
 }
 function displayStatus(status) {
 var currentStatus = document.getElementById('currentstatus');
 currentStatus.value = status;
 }
 </script>
 </head>
 <body>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

178

2. Create the WebSocket server endpoint.
You can create a WebSocket server endpoint using either of the following methods.

Programmatic Endpoint: The endpoint extends the Endpoint class.

Annotated Endpoint: The endpoint class uses annotations to interact with the WebSocket
events. It is simpler to code than the programmatic endpoint.

The code example below uses the annotated endpoint approach and handles the following
events.

The @ServerEndpoint annotation identifies this class as a WebSocket server endpoint and
specifies the path.

The @OnOpen annotation is triggered when the WebSocket connection is opened.

The @OnMessage annotation is triggered when a message is received.

The @OnClose annotation is triggered when the WebSocket connection is closed.

Example: WebSocket Endpoint Code

 <div>
 <h1>Welcome to Red Hat JBoss Enterprise Application Platform!</h1>
 <div>This is a simple example of a WebSocket implementation.</div>
 <div id="connect-container">
 <div>
 <fieldset>
 <legend>Connect or disconnect using websocket :</legend>
 <input type="button" id="connect" onclick="connect();" value="Open Connection"
/>
 <input type="button" id="disconnect" onclick="disconnect();" value="Close
Connection" />
 </fieldset>
 </div>
 <div>
 <fieldset>
 <legend>Type your name below, then click the `Say Hello` button :</legend>
 <input id="name" type="text" size="40" style="width: 40%"/>
 <input type="button" id="sayHello" onclick="sendMessage();" value="Say Hello"
disabled="disabled"/>
 </fieldset>
 </div>
 <div>Current WebSocket Connection Status: <output id="currentstatus"
class="message">Closed</output></div>
 <div>
 <output id="hellomessage" />
 </div>
 </div>
 </div>
 </body>
</html>

package org.jboss.as.quickstarts.websocket_hello;

import javax.websocket.CloseReason;

CHAPTER 14. CREATING WEBSOCKET APPLICATIONS

179

3. Declare the WebSocket API dependency in your project POM file.
If you use Maven, you add the following dependency to the project pom.xml file.

Example: Maven Dependency

The quickstarts that ship with JBoss EAP include additional WebSocket client and endpoint code
examples.

import javax.websocket.OnClose;
import javax.websocket.OnMessage;
import javax.websocket.OnOpen;
import javax.websocket.Session;
import javax.websocket.server.ServerEndpoint;

@ServerEndpoint("/websocket/helloName")
public class HelloName {

 @OnMessage
 public String sayHello(String name) {
 System.out.println("Say hello to '" + name + "'");
 return ("Hello" + name);
 }

 @OnOpen
 public void helloOnOpen(Session session) {
 System.out.println("WebSocket opened: " + session.getId());
 }

 @OnClose
 public void helloOnClose(CloseReason reason) {
 System.out.println("WebSocket connection closed with CloseCode: " +
reason.getCloseCode());
 }
}

<dependency>
 <groupId>org.jboss.spec.javax.websocket</groupId>
 <artifactId>jboss-websocket-api_1.1_spec</artifactId>
 <scope>provided</scope>
</dependency>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

180

CHAPTER 15. JAVA AUTHORIZATION CONTRACT FOR
CONTAINERS (JACC)

15.1. ABOUT JAVA AUTHORIZATION CONTRACT FOR CONTAINERS
(JACC)

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between
containers and authorization service providers, which results in the implementation of providers for use
by containers. It is defined in JSR-115 of the Java Community Process. For details about the
specifications, see Java™ Authorization Contract for Containers .

JBoss EAP implements support for JACC within the security functionality of the security subsystem.

15.2. CONFIGURE JAVA AUTHORIZATION CONTRACT FOR
CONTAINERS (JACC) SECURITY

You can configure Java Authorization Contract for Containers (JACC) by configuring your security
domain with the correct module, and then modifying your jboss-web.xml to include the required
parameters.

Add JACC Support to the Security Domain

To add JACC support to the security domain, add the JACC authorization policy to the authorization
stack of the security domain, with the required flag set. The following is an example of a security domain
with JACC support. However, it is recommended to configure the security domain from the
management console or the management CLI, rather than directly modifying the XML.

Example: Security Domain with JACC Support

Configure a Web Application to Use JACC

The jboss-web.xml file is located in the WEB-INF/ directory of your deployment, and contains overrides
and additional JBoss-specific configuration for the web container. To use your JACC-enabled security
domain, you need to include the <security-domain> element, and also set the <use-jboss-
authorization> element to true. The following XML is configured to use the JACC security domain
above.

Example: Utilize the JACC Security Domain

<security-domain name="jacc" cache-type="default">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 </login-module>
 </authentication>
 <authorization>
 <policy-module code="JACC" flag="required"/>
 </authorization>
</security-domain>

<jboss-web>
 <security-domain>jacc</security-domain>
 <use-jboss-authorization>true</use-jboss-authorization>
</jboss-web>

CHAPTER 15. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)

181

http://jcp.org/en/jsr/detail?id=115

Configure an EJB Application to Use JACC

Configuring EJBs to use a security domain and to use JACC differs from web applications. For an EJB,
you can declare method permissions on a method or group of methods, in the ejb-jar.xml descriptor.
Within the <ejb-jar> element, any child <method-permission> elements contain information about
JACC roles. See the example configuration below for details. The EJBMethodPermission class is part
of the Java EE API, and is documented at
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/7.2/javadocs/javax/security/jacc/EJBMethodPermission.html

Example: JACC Method Permissions in an EJB

You can also constrain the authentication and authorization mechanisms for an EJB by using a security
domain, just as you can do for a web application. Security domains are declared in the jboss-ejb3.xml
descriptor, in the <security> child element. In addition to the security domain, you can also specify the
<run-as-principal>, which changes the principal that the EJB runs as.

Example: Security Domain Declaration in an EJB

Enabling JACC Using the elytron Subsystem

Disable JACC in the Legacy Security Subsystem

By default, the application server uses the legacy security subsystem to configure the JACC policy
provider and factory. The default configuration maps to implementations from PicketBox.

In order to use Elytron to manage JACC configuration, or any other policy you want to install to the
application server, you must first disable JACC in the legacy security subsystem. For that, you can use
the following management CLI command:

/subsystem=security:write-attribute(name=initialize-jacc, value=false)

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles can access any method of the
EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 </assembly-descriptor>
</ejb-jar>

<ejb-jar>
 <assembly-descriptor>
 <security>
 <ejb-name>*</ejb-name>
 <security-domain>myDomain</security-domain>
 <run-as-principal>myPrincipal</run-as-principal>
 </security>
 </assembly-descriptor>
</ejb-jar>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

182

https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/7.2/javadocs/javax/security/jacc/EJBMethodPermission.html

Failure to do so can result in the following error in the server log: MSC000004: Failure during stop of
service org.wildfly.security.policy: java.lang.StackOverflowError.

Define a JACC Policy Provider

The elytron subsystem provides a built-in policy provider based on JACC specification. To create the
policy provider you can execute the following management CLI command:

/subsystem=elytron/policy=jacc:add(jacc-policy={})

reload

Enable JACC to a Web Deployment

Once a JACC policy provider is defined, you can enable JACC for web deployments by executing the
following command:

/subsystem=undertow/application-security-domain=other:add(security-
domain=ApplicationDomain,enable-jacc=true)

The command above defines a default security domain for applications, if none is provided in the jboss-
web.xml file. In case you already have a application-security-domain defined and just want to enable
JACC you can execute the following command:

/subsystem=undertow/application-security-domain=my-security-domain:write-attribute(name=enable-
jacc,value=true)

Enable JACC to an EJB Deployment

Once a JACC policy provider is defined, you can enable JACC for EJB deployments by executing the
following command:

/subsystem=ejb3/application-security-domain=other:add(security-domain=ApplicationDomain,enable-
jacc=true)

The command above defines a default security domain for EJBs. In case you already have a application-
security-domain defined and just want to enable JACC you can execute a command as follows:

/subsystem=ejb3/application-security-domain=my-security-domain:write-attribute(name=enable-
jacc,value=true)

Creating a Custom Elytron Policy Provider

A custom policy provider is used when you need a custom java.security.Policy, like when you want to
integrate with some external authorization service in order to check permissions. To create a custom
policy provider, you will need to implement the java.security.Policy, create and plug in a custom
module with the implementation and use the implementation from the module in the elytron
subsystem.

/subsystem=elytron/policy=policy-provider-a:add(custom-policy={class-name=MyPolicyProviderA,
module=x.y.z})

For more information, see the Policy Provider Properties .

NOTE

CHAPTER 15. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)

183

NOTE

In most cases, you can use the JACC policy provider as it is expected to be part of any
Java EE compliant application server.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

184

CHAPTER 16. JAVA AUTHENTICATION SPI FOR CONTAINERS
(JASPI)

16.1. ABOUT JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
SECURITY

Java Authentication SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java
applications. It is defined in JSR-196 of the Java Community Process. Refer to
http://www.jcp.org/en/jsr/detail?id=196 for details about the specification.

16.2. CONFIGURE JAVA AUTHENTICATION SPI FOR CONTAINERS
(JASPI) SECURITY

You can authenticate a JASPI provider by adding <authentication-jaspi> element to your security
domain. The configuration is similar to that of a standard authentication module, but login module
elements are enclosed in a <login-module-stack> element. The structure of the configuration is:

Example: Structure of the authentication-jaspi Element

The login module itself is configured the same way as a standard authentication module.

The web-based management console does not expose the configuration of JASPI authentication
modules. You must stop the JBoss EAP running instance completely before adding the configuration
directly to the EAP_HOME/domain/configuration/domain.xml file or the
EAP_HOME/standalone/configuration/standalone.xml file.

<authentication-jaspi>
 <login-module-stack name="...">
 <login-module code="..." flag="...">
 <module-option name="..." value="..."/>
 </login-module>
 </login-module-stack>
 <auth-module code="..." login-module-stack-ref="...">
 <module-option name="..." value="..."/>
 </auth-module>
</authentication-jaspi>

CHAPTER 16. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)

185

http://www.jcp.org/en/jsr/detail?id=196

CHAPTER 17. JAVA BATCH APPLICATION DEVELOPMENT
Beginning with JBoss EAP 7, JBoss EAP supports Java batch applications as defined by JSR-352. The
batch-jberet subsystem in JBoss EAP facilitates batch configuration and monitoring.

To configure your application to use batch processing on JBoss EAP, you must specify the required
dependencies. Additional JBoss EAP features for batch processing include Job Specification Language
(JSL) inheritance, and batch property injections .

17.1. REQUIRED BATCH DEPENDENCIES

To deploy your batch application to JBoss EAP, some additional dependencies that are required for
batch processing need to be declared in your application’s pom.xml. An example of these required
dependencies is shown below. Most of the dependencies have the scope set to provided, as they are
already included in JBoss EAP.

Example: pom.xml Batch Dependencies

17.2. JOB SPECIFICATION LANGUAGE (JSL) INHERITANCE

A feature of the JBoss EAP batch-jberet subsystem is the ability to use Job Specification Language
(JSL) inheritance to abstract out some common parts of your job definition. Although JSL inheritance is
not included in the JSR-352 1.0 specification, the JBoss EAP batch-jberet subsystem implements JSL
inheritance based on the JSL Inheritance v1 draft.

Inherit Step and Flow Within the Same Job XML File
Parent elements, for example step and flow, are marked with the attribute abstract="true" to exclude
them from direct execution. Child elements contain a parent attribute, which points to the parent
element.

<dependencies>
 <dependency>
 <groupId>org.jboss.spec.javax.batch</groupId>
 <artifactId>jboss-batch-api_1.0_spec</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>javax.enterprise</groupId>
 <artifactId>cdi-api</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>org.jboss.spec.javax.annotation</groupId>
 <artifactId>jboss-annotations-api_1.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>

 <!-- Include your application's other dependencies. -->
 ...
</dependencies>

<job id="inheritance" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

186

https://www.jcp.org/en/jsr/detail?id=352

Inherit a Step from a Different Job XML File
Child elements, for example step and job, contain:

A jsl-name attribute, which specifies the job XML file name, without the .xml extension,
containing the parent element.

A parent attribute, which points to the parent element in the job XML file specified by jsl-name.

Parent elements are marked with the attribute abstract="true" to exclude them from direct execution.

Example: chunk-child.xml

Example: chunk-parent.xml

 <!-- abstract step and flow -->
 <step id="step0" abstract="true">
 <batchlet ref="batchlet0"/>
 </step>

 <flow id="flow0" abstract="true">
 <step id="flow0.step1" parent="step0"/>
 </flow>

 <!-- concrete step and flow -->
 <step id="step1" parent="step0" next="flow1"/>

 <flow id="flow1" parent="flow0"/>
</job>

<job id="chunk-child" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
 <step id="chunk-child-step" parent="chunk-parent-step" jsl-name="chunk-parent">
 </step>
</job>

<job id="chunk-parent" >
 <step id="chunk-parent-step" abstract="true">
 <chunk checkpoint-policy="item" skip-limit="5" retry-limit="5">
 <reader ref="R1"></reader>
 <processor ref="P1"></processor>
 <writer ref="W1"></writer>

 <checkpoint-algorithm ref="parent">
 <properties>
 <property name="parent" value="parent"></property>
 </properties>
 </checkpoint-algorithm>
 <skippable-exception-classes>
 <include class="java.lang.Exception"></include>
 <exclude class="java.io.IOException"></exclude>
 </skippable-exception-classes>
 <retryable-exception-classes>
 <include class="java.lang.Exception"></include>
 <exclude class="java.io.IOException"></exclude>
 </retryable-exception-classes>
 <no-rollback-exception-classes>

CHAPTER 17. JAVA BATCH APPLICATION DEVELOPMENT

187

17.3. BATCH PROPERTY INJECTIONS

A feature of the JBoss EAP batch-jberet subsystem is the ability to have properties defined in the job
XML file injected into fields in the batch artifact class. Properties defined in the job XML file can be
injected into fields using the @Inject and @BatchProperty annotations.

The injection field can be any of the following Java types:

java.lang.String

java.lang.StringBuilder

java.lang.StringBuffer

any primitive type, and its wrapper type:

boolean, Boolean

int, Integer

double, Double

long, Long

char, Character

float, Float

short, Short

byte, Byte

java.math.BigInteger

java.math.BigDecimal

java.net.URL

java.net.URI

java.io.File

java.util.jar.JarFile

java.util.Date

java.lang.Class

java.net.Inet4Address

 <include class="java.lang.Exception"></include>
 <exclude class="java.io.IOException"></exclude>
 </no-rollback-exception-classes>
 </chunk>
 </step>
</job>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

188

java.net.Inet6Address

java.util.List, List<?>, List<String>

java.util.Set, Set<?>, Set<String>

java.util.Map, Map<?, ?>, Map<String, String>, Map<String, ?>

java.util.logging.Logger

java.util.regex.Pattern

javax.management.ObjectName

The following array types are also supported:

java.lang.String[]

any primitive type, and its wrapper type:

boolean[], Boolean[]

int[], Integer[]

double[], Double[]

long[], Long[]

char[], Character[]

float[], Float[]

short[], Short[]

byte[], Byte[]

java.math.BigInteger[]

java.math.BigDecimal[]

java.net.URL[]

java.net.URI[]

java.io.File[]

java.util.jar.JarFile[]

java.util.zip.ZipFile[]

java.util.Date[]

java.lang.Class[]

Shown below are a few examples of using batch property injections:

Injecting a Number into a Batchlet Class as Various Types

CHAPTER 17. JAVA BATCH APPLICATION DEVELOPMENT

189

Injecting a Number Sequence into a Batchlet Class as Various Arrays

Injecting a Class Property into a Batchlet Class

Assigning a Default Value to a Field Annotated for Property Injection

Injecting a Number into a Batchlet Class as Various Types

Example: Job XML File

Example: Artifact Class

Injecting a Number Sequence into a Batchlet Class as Various Arrays

Example: Job XML File

<batchlet ref="myBatchlet">
 <properties>
 <property name="number" value="10"/>
 </properties>
</batchlet>

@Named
public class MyBatchlet extends AbstractBatchlet {
 @Inject
 @BatchProperty
 int number; // Field name is the same as batch property name.

 @Inject
 @BatchProperty (name = "number") // Use the name attribute to locate the batch property.
 long asLong; // Inject it as a specific data type.

 @Inject
 @BatchProperty (name = "number")
 Double asDouble;

 @Inject
 @BatchProperty (name = "number")
 private String asString;

 @Inject
 @BatchProperty (name = "number")
 BigInteger asBigInteger;

 @Inject
 @BatchProperty (name = "number")
 BigDecimal asBigDecimal;
}

<batchlet ref="myBatchlet">
 <properties>
 <property name="weekDays" value="1,2,3,4,5,6,7"/>
 </properties>
</batchlet>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

190

Example: Artifact Class

Injecting a Class Property into a Batchlet Class

Example: Job XML File

@Named
public class MyBatchlet extends AbstractBatchlet {
 @Inject
 @BatchProperty
 int[] weekDays; // Array name is the same as batch property name.

 @Inject
 @BatchProperty (name = "weekDays") // Use the name attribute to locate the batch property.
 Integer[] asIntegers; // Inject it as a specific array type.

 @Inject
 @BatchProperty (name = "weekDays")
 String[] asStrings;

 @Inject
 @BatchProperty (name = "weekDays")
 byte[] asBytes;

 @Inject
 @BatchProperty (name = "weekDays")
 BigInteger[] asBigIntegers;

 @Inject
 @BatchProperty (name = "weekDays")
 BigDecimal[] asBigDecimals;

 @Inject
 @BatchProperty (name = "weekDays")
 List asList;

 @Inject
 @BatchProperty (name = "weekDays")
 List<String> asListString;

 @Inject
 @BatchProperty (name = "weekDays")
 Set asSet;

 @Inject
 @BatchProperty (name = "weekDays")
 Set<String> asSetString;
}

<batchlet ref="myBatchlet">
 <properties>
 <property name="myClass" value="org.jberet.support.io.Person"/>
 </properties>
</batchlet>

CHAPTER 17. JAVA BATCH APPLICATION DEVELOPMENT

191

Example: Artifact Class

Assigning a Default Value to a Field Annotated for Property Injection
You can assign a default value to a field in an artifact Java class in the case where the target batch
property is not defined in the job XML file. If the target property is resolved to a valid value, it is injected
into that field; otherwise, no value is injected and the default field value is used.

Example: Artifact Class

@Named
public class MyBatchlet extends AbstractBatchlet {
 @Inject
 @BatchProperty
 private Class myClass;
}

/**
 Comment character. If commentChar batch property is not specified in job XML file, use the default
value '#'.
 */
@Inject
@BatchProperty
private char commentChar = '#';

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

192

CHAPTER 18. CONFIGURING CLIENTS

18.1. CLIENT CONFIGURATION USING THE WILDFLY-CONFIG.XML
FILE

Prior to release 7.1, JBoss EAP client libraries, such as EJB and naming, used different configuration
strategies. JBoss EAP 7.1 introduced the wildfly-config.xml file with the purpose of unifying all client
configurations into one single configuration file, in a similar manner to the way the server configuration is
handled.

The following table describes the clients and types of configuration that can be done using the wildfly-
config.xml file in JBoss EAP and a link to the reference schema link for each.

Client Configuration Schema Location / Configuration Information

Authentication client The schema reference is provided in the product installation at
EAP_HOME/docs/schema/elytron-client-1_2.xsd.

The schema is also published at
http://www.jboss.org/schema/jbossas/elytron-client-1_2.xsd.

See Client Authentication Configuration Using the wildfly-config.xml File
for more information and for an example configuration.

Additional information can be found in Configure Client Authentication with
Elytron Client in How to Configure Identity Management for JBoss EAP.

EJB client The schema reference is provided in the product installation at
EAP_HOME/docs/schema/wildfly-client-ejb_3_0.xsd.

The schema is also published at
http://www.jboss.org/schema/jbossas/wildfly-client-ejb_3_0.xsd.

See EJB Client Configuration Using the wildfly-config.xml File for more
information and for an example configuration.

Another simple example is located in in the Migrate an EJB Client to Elytron
section of the Migration Guide for JBoss EAP.

HTTP client The schema reference is provided in the product installation at
EAP_HOME/docs/schema/wildfly-http-client_1_0.xsd.

The schema is also published at
http://www.jboss.org/schema/jbossas/wildfly-http-client_1_0.xsd.

CHAPTER 18. CONFIGURING CLIENTS

193

http://www.jboss.org/schema/jbossas/elytron-client-1_2.xsd
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_client_authentication
http://www.jboss.org/schema/jbossas/wildfly-client-ejb_3_0.xsd
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/migration_guide/#migrate_security_ejb_client_to_elytron
http://www.jboss.org/schema/jbossas/wildfly-http-client_1_0.xsd

NOTE

This feature is provided as a Technology Preview only.

See HTTP Client Configuration Using the wildfly-config.xml File for more
information and for an example configuration.

Remoting client The schema reference is provided in the product installation at
EAP_HOME/docs/schema/jboss-remoting_5_0.xsd.

The schema is also published at
http://www.jboss.org/schema/jbossas/jboss-remoting_5_0.xsd.

See Remoting Client Configuration Using the wildfly-config.xml File for
more information and for an example configuration.

XNIO worker client The schema reference is provided in the product installation at
EAP_HOME/docs/schema/xnio_3_5.xsd.

The schema is also published at
http://www.jboss.org/schema/jbossas/xnio_3_5.xsd.

See Default XNIO Worker Configuration Using the wildfly-config.xml File
for more information and for an example configuration.

Client Configuration Schema Location / Configuration Information

18.1.1. Client Authentication Configuration Using the wildfly-config.xml File

You can use the authentication-client element, which is in the urn:elytron:client:1.2 namespace, to
configure client authentication information using the wildfly-config.xml file. This section describes how
to configure client authentication using this element.

authentication-client Elements and Attributes
The authentication-client element can optionally contain the following top level child elements, along
with their child elements:

credential-stores

credential-store

providers

global

use-service-loader

attributes

protection-parameter-credentials

key-store-reference

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

194

https://access.redhat.com/support/offerings/techpreview
http://www.jboss.org/schema/jbossas/jboss-remoting_5_0.xsd
http://www.jboss.org/schema/jbossas/xnio_3_5.xsd

credential-store-reference

clear-password

key-pair

public-key-pem

private-key-pem

certificate

public-key-pem

bearer-token

oauth2-bearer-token

client-credentials

resource-owner-credentials

key-stores

key-store

file

load-from

resource

key-store-clear-password

key-store-credential

authentication-rules

rule

match-no-user

match-user

match-protocol

match-host

match-path

match-port

match-urn

match-domain-name

match-abstract-type

authentication-configurations

CHAPTER 18. CONFIGURING CLIENTS

195

configuration

set-host-name

set-port-number

set-protocol

set-user-name

set-anonymous

set-mechanism-realm-name

rewrite-user-name-regex

sasl-mechanism-selector

set-mechanism-properties

property

credentials

key-store-reference

credential-store-reference

clear-password

key-pair

certificate

public-key-pem

bearer-token

oauth2-bearer-token

set-authorization-name

providers

global

use-service-loader

use-provider-sasl-factory

use-service-loader-sasl-factory

net-authenticator

ssl-context-rules

rule

match-no-user

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

196

match-user

match-protocol

match-host

match-path

match-port

match-urn

match-domain-name

match-abstract-type

ssl-contexts

default-ssl-context

ssl-context

key-store-ssl-certificate

trust-store

cipher-suite

protocol

provider-name

certificate-revocation-list

providers

global

use-service-loader

providers

global

use-service-loader

credential-stores

This optional element defines credential stores that are referenced from elsewhere in the
configuration as an alternative to embedding credentials within the configuration.
It can contain any number of credential-store elements.

Example: credential-stores Configuration

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <credential-stores>
 <credential-store name="..." type="..." provider="..." >
 <attributes>

CHAPTER 18. CONFIGURING CLIENTS

197

credential-store

This element defines a credential store that is referenced from elsewhere in the configuration.
It has the following attributes.

Attribute Name Attribute Description

name The name of the credential store. This attribute is required.

type The type of credential store. This attribute is optional.

provider The name of the java.security.Provider to use to load the credential store.
This attribute is optional.

It can contain one and only one of each of the following child elements.

providers

attributes

protection-parameter-credentials

attributes

This element defines the configuration attributes used to initialize the credential store and can be
repeated as many times as is required for the configuration.

Example: attributes Configuration

protection-parameter-credentials

This element contains one or more credentials to be assembled into a protection parameter to be
used when initializing the credential store.
It can contain one or more of the following child elements, which are dependent on the credential
store implementation:

key-store-reference

credential-store-reference

 <attribute name="..." value="..." />
 </attributes>
 <protection-parameter-credentials>...</protection-parameter-credentials>
 </credential-store>
 </credential-stores>
 </authentication-client>
</configuration>

<attributes>
 <attribute name="..." value="..." />
</attributes>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

198

clear-password

key-pair

certificate

public-key-pem

bearer-token

oauth2-bearer-token

Example: protection-parameter-credentials Configuration

key-store-reference

This element, which is not currently used by any authentication mechanisms in JBoss EAP, defines a
reference to a keystore.
It has the following attributes.

Attribute Name Attribute Description

key-store-name The keystore name. This attribute is required.

alias The alias of the entry to load from the referenced keystore. This can be
omitted only for keystores that contain just a single entry.

It can contain one and only one of the following child elements.

key-store-clear-password

credential-store-reference

key-store-credential

Example: key-store-reference Configuration

<protection-parameter-credentials>
 <key-store-reference>...</key-store-reference>
 <credential-store-reference store="..." alias="..." clear-text="..." />
 <clear-password password="..." />
 <key-pair public-key-pem="..." private-key-pem="..." />
 <certificate private-key-pem="..." pem="..." />
 <public-key-pem>...</public-key-pem>
 <bearer-token value="..." />
 <oauth2-bearer-token token-endpoint-uri="...">...</oauth2-bearer-token>
</protection-parameter-credentials>

<key-store-reference key-store-name="..." alias="...">
 <key-store-clear-password password="..." />
 <key-store-credential>...</key-store-credential>
</key-store-reference>

CHAPTER 18. CONFIGURING CLIENTS

199

credential-store-reference

This element defines a reference to a credential store.
It has the following attributes.

Attribute Name Attribute Description

store The credential store name.

alias The alias of the entry to load from the referenced credential store. This can be
omitted only for keystores that contain just a single entry.

clear-text The clear text password.

clear-password

This element defines a clear text password.

key-pair

This element, which is not currently used by any authentication mechanisms in JBoss EAP, defines a
public and private key pair.
It can contain the following child elements.

public-key-pem

private-key-pem

public-key-pem

This element, which is not currently used by any authentication mechanisms in JBoss EAP, defines
the PEM-encoded public key.

private-key-pem

This element defines the PEM-encoded private key.

certificate

This element, which is not currently used by any authentication mechanisms in JBoss EAP, specifies a
certificate.
It has the following attributes.

Attribute Name Attribute Description

private-key-pem A PEM-encoded private key.

pem The corresponding certificate.

bearer-token

This element defines a bearer token.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

200

oauth2-bearer-token

This element defines an OAuth 2 bearer token.
It has the following attribute.

Attribute Name Attribute Description

token-endpoint-uri The URI of the token endpoint.

It can contain one and only one of each of the following child elements.

client-credentials

resource-owner-credentials

client-credentials

This element defines the client credentials.
It has the following attributes.

Attribute Name Attribute Description

client-id The client ID. This attribute is required.

client-secret The client secret. This attribute is required.

resource-owner-credentials

This element defines the resource owner credentials.
It has the following attributes.

Attribute Name Attribute Description

name The resource name. This attribute is required.

pasword The password. This attribute is required.

key-stores

This optional element defines keystores that are referenced from elsewhere in the configuration.

Example: key-stores Configuration

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>
 <key-store name="...">
 <!-- The following 3 elements specify where to load the keystore from. -->
 <file name="..." />

CHAPTER 18. CONFIGURING CLIENTS

201

key-store

This optional element defines a keystore that is referenced from elsewhere in the configuration.
The key-store has the following attributes.

Attribute Name Attribute Description

name The name of the keystore. This attribute is required.

type The keystore type, for example, JCEKS. This attribute is required.

provider The name of the java.security.Provider to use to load the credential store.
This attribute is optional.

wrap-passwords If true, passwords will wrap. The passwords are stored by taking the clear
password contents, encoding them in UTF-8, and storing the resultant bytes as
a secret key. Defaults to false.

It must contain exactly one of the following elements, which define where to load the keystore from.

file

load-from

resource

It must also contain one of the following elements, which specifies the protection parameter to use
when initializing the keystore.

key-store-clear-password

key-store-credential

file

This element specifies the name of the keystore file.
It has the following attribute.

 <load-from uri="..." />
 <resource name="..." />
 <!-- One of the following to specify the protection parameter to unlock the keystore. -->
 <key-store-clear-password password="..." />
 <key-store-credential>...</key-store-credential>
 </key-store>
 </key-stores>
 ...
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

202

Attribute Name Attribute Description

name The fully qualified file path and name of the file.

load-from

This element specifies the URI of the keystore file.
It has the following attribute.

Attribute Name Attribute Description

uri The URI for the keystore file.

resource

This element specifies the name of the resource to load from the Thread context class loader.
It has the following attribute.

Attribute Name Attribute Description

name The name of the resource.

key-store-clear-password

This element specifies the clear text password.
It has the following attribute.

Attribute Name Attribute Description

password The clear text password.

key-store-credential

This element specifies a reference to another keystore that obtains an entry to use as the protection
parameter to access this keystore.
The key-store-credential element has the following attributes.

Attribute Name Attribute Description

key-store-name The keystore name. This attribute is required.

alias The alias of the entry to load from the referenced keystore. This can be
omitted only for keystores that contain just a single entry.

It can contain one and only one of the following child elements.

CHAPTER 18. CONFIGURING CLIENTS

203

key-store-clear-password

credential-store-reference

key-store-credential

Example: key-store-credential Configuration

authentication-rules

This element defines the rules to match against the outbound connection to apply the appropriate
authentication configuration. When an authentication-configuration is required, the URI of the
accessed resources as well as an optional abstract type and abstract type authority are matched
against the rules defined in the configuration to identify which authentication-configuration should
be used.
This element can contain one or more child rule elements.

Example: authentication-rules Configuration

rule

This element defines the rules to match against the outbound connection to apply the appropriate
authentication configuration.
It has the following attribute.

Attribute Name Attribute Description

use-configuration The authentication configuration that is chosen when rules match.

Authentication configuration rule matching is independent of SSL context rule matching. The
authentication rule structure is identical to the SSL context rule structure, except that it references
an authentication configuration, while the SSL context rule references an SSL context.

It can contain the following child elements.

<key-store-credential key-store-name="..." alias="...">
 <key-store-clear-password password="..." />
 <key-store-credential>...</key-store-credential>
</key-store-credential>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 ...
 <authentication-rules>
 <rule use-configuration="...">
 ...
 </rule>
 </authentication-rules>
 ...
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

204

match-no-user

match-user

match-protocol

match-host

match-path

match-port

match-urn

match-domain-name

match-abstract-type

Example: rule Configuration for Authentication

match-no-user

This rule matches when there is no user-info embedded within the URI.

match-user

This rule matches when the user-info embedded in the URI matches the name attribute specified in
this element.

match-protocol

This rule matches when the protocol within the URI matches the protocol name attribute specified in
this element.

match-host

This rule matches when the host name specified within the URI matches the host name attribute
specified in this element.

match-path

This rule matches when the path specified within the URI matches the path name attribute specified
in this element.

match-port

<rule use-configuration="...">
 <!-- At most one of the following two can be defined. -->
 <match-no-user />
 <match-user name="..." />
 <!-- Each of the following can be defined at most once. -->
 <match-protocol name="..." />
 <match-host name="..." />
 <match-path name="..." />
 <match-port number="..." />
 <match-urn name="..." />
 <match-domain name="..." />
 <match-abstract-type name="..." authority="..." />
</rule>

CHAPTER 18. CONFIGURING CLIENTS

205

This rule matches when the port number specified within the URI matches the port number attribute
specified in this element. This only matches against the number specified within the URI and not
against any default port number derived from the protocol.

match-urn

This rule matches when the scheme specific part of the URI matches the name attribute specified in
this element.

match-domain-name

This rule matches when the protocol of the URI is domain and the scheme specific part of the URI
matches the name attribute specified in this element.

match-abstract-type

This rule matches when the abstract type matches the name attribute and the authority matches
the authority attribute specified in this element.

authentication-configurations

This element defines named authentication configurations that are to be chosen by the
authentication rules.
It can contain one or more configuration elements.

Example: authentication-configurations Configuration

configuration

This element defines named authentication configurations that are to be chosen by the

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <authentication-configurations>
 <configuration name="...">
 <!-- Destination Overrides. -->
 <set-host name="..." />
 <set-port number="..." />
 <set-protocol name="..." />
 <!-- At most one of the following two elements. -->
 <set-user-name name="..." />
 <set-anonymous />
 <set-mechanism-realm name="..." />
 <rewrite-user-name-regex pattern="..." replacement="..." />
 <sasl-mechanism-selector selector="..." />
 <set-mechanism-properties>
 <property key="..." value="..." />
 </set-mechanism-properties>
 <credentials>...</credentials>
 <set-authorization-name name="..." />
 <providers>...</providers>
 <!-- At most one of the following two elements. -->
 <use-provider-sasl-factory />
 <use-service-loader-sasl-factory module-name="..." />
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

206

This element defines named authentication configurations that are to be chosen by the
authentication rules.
It can contain the following child elements.

The optional set-host-name, set-port-number, and set-protocol elements can override the
destination.

The optional set-user-name and set-anonymous elements are mutually exclusive and can
be used to set the name for authentication or switch to anonymous authentication.

Next are the set-mechanism-realm-name, rewrite-user-name-regex, sasl-mechanism-
selector, set-mechanism-properties, credentials, set-authorization-name, and providers
optional elements.

The final two optional use-provider-sasl-factory and use-service-loader-sasl-factory
elements are mutually exclusive and define how the SASL mechanism factories are
discovered for authentication.

set-host-name

This element overrides the host name for the authenticated call.
It has the following attribute.

Attribute Name Attribute Description

name The host name.

set-port-number

This element overrides the port number for the authenticated call.
It has the following attribute.

Attribute Name Attribute Description

number The port number.

set-protocol

This element overrides the protocol for the authenticated call.
It has the following attribute.

Attribute Name Attribute Description

name The protocol.

set-user-name

This element sets the user name to use for the authentication. It should not be used with the set-
anonymous element.

CHAPTER 18. CONFIGURING CLIENTS

207

It has the following attribute.

Attribute Name Attribute Description

name The user name to use for authentication.

set-anonymous

The element is used to switch to anonymous authentication. It should not be used with the set-user-
name element.

set-mechanism-realm-name

This element specifies the name of the realm that will be selected by the SASL mechanism if
required.
It has the following attribute.

Attribute Name Attribute Description

name The name of the realm.

rewrite-user-name-regex

This element defines a regular expression pattern and replacement to rewrite the user name used for
authentication.
It has the following attributes.

Attribute Name Attribute Description

pattern A regular expression pattern.

replacement The replacement to use to rewrite the user name used for authentication.

sasl-mechanism-selector

This element specifies a SASL mechanism selector using the syntax from the
org.wildfly.security.sasl.SaslMechanismSelector.fromString(string) method.
It has the following attribute.

Attribute Name Attribute Description

selector The SASL mechanism selector.

For more information about the grammar required for the sasl-mechanism-selector, see sasl-
mechanism-selector Grammar in How to Configure Server Security for JBoss EAP.

set-mechanism-properties

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

208

http://wildfly-security.github.io/wildfly-elytron/1.1.x/org/wildfly/security/sasl/SaslMechanismSelector.html#fromString-java.lang.String-
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_server_security/#sasl_mechanism_selector_grammar

This element can contain one or more property elements that are to be passed to the authentication
mechanisms.

property

This element defines a property to be passed to the authentication mechanisms.
It has the following attributes.

Attribute Name Attribute Description

key The property name.

value The property value.

credentials

This element defines one or more credentials available for use during authentication.
It can contain one or more of the following child elements, which are dependent on the credential
store implementation:

key-store-reference

credential-store-reference

clear-password

key-pair

certificate

public-key-pem

bearer-token

oauth2-bearer-token.

These are the same child elements as those contained in the protection-parameter-credentials
element. See the protection-parameter-credentials element for details and an example
configuration.

set-authorization-name

This element specifies the name that should be used for authorization if it is different from the
authentication identity.
It has the following attributes.

Attribute Name Attribute Description

name The name that should be used for authorization.

use-provider-sasl-factory

CHAPTER 18. CONFIGURING CLIENTS

209

This element specifies the java.security.Provider instances that are either inherited or defined in
this configuration and that are to be used to locate the available SASL client factories. This element
should not be used with the use-service-loader-sasl-factory element.

use-service-loader-sasl-factory

This element specifies the module that is to be used to discover the SASL client factories using the
service loader discovery mechanism. If no module is specified, the class loader that loaded the
configuration is used. This element should not be used with the use-provider-sasl-factory element.
It has the following attribute.

Attribute Name Attribute Description

module-name The name of the module.

net-authenticator

This element contains no configuration. If present, the
org.wildfly.security.auth.util.ElytronAuthenticator is registered with
java.net.Authenticator.setDefault(Authenticator). This allows the Elytron authentication client
configuration to be used for authentication when JDK APIs are used for HTTP calls that require
authentication.

NOTE

Because the JDK caches the authentication on the first call across the JVM, it is
better to use this approach only on standalone processes that do not require different
credentials for different calls to the same URI.

ssl-context-rules

This optional element defines the SSL context rules. When an ssl-context is required, the URI of the
accessed resources as well as an optional abstract type and abstract type authority are matched
against the rules defined in the configuration to identify which ssl-context should be used.
This element can contain one or more child rule elements.

Example: ssl-context-rules Configuration

rule

This element defines the rule to match on the SSL context definitions.

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <ssl-context-rules>
 <rule use-ssl-context="...">
 ...
 </rule>
 </ssl-context-rules>
 ...
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

210

It has the following attribute.

Attribute Name Attribute Description

use-ssl-context The SSL context definition that is chosen when rules match.

SSL context rule matching is independent of authentication rule matching. The SSL context rule
structure is identical to the authentication configuration rule structure, except that it references an
SSL context, while the authentication rule references an authentication configuration.

It can contain the following child elements.

match-no-user

match-user

match-protocol

match-host

match-path

match-port

match-urn

match-domain-name

match-abstract-type

Example: rule Configuration for SSL Context

ssl-contexts

This optional element defines SSL context definitions that are to be chosen by the SSL context rules.

Example: ssl-contexts Configuration

<rule use-ssl-context="...">
 <!-- At most one of the following two can be defined. -->
 <match-no-user />
 <match-user name="..." />
 <!-- Each of the following can be defined at most once. -->
 <match-protocol name="..." />
 <match-host name="..." />
 <match-path name="..." />
 <match-port number="..." />
 <match-urn name="..." />
 <match-domain name="..." />
 <match-abstract-type name="..." authority="..." />
</rule>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">

CHAPTER 18. CONFIGURING CLIENTS

211

default-ssl-context

This element takes the SSLContext returned by javax.net.ssl.SSLContext.getDefault() and assigns
it a name so it can referenced from the ssl-context-rules. This element can be repeated, meaning
the default SSL context can be referenced using different names.

ssl-context

This element defines an SSL context to use for connections.
It can optionally contain one of each of the following child elements.

key-store-ssl-certificate

trust-store

cipher-suite

protocol

provider-name

providers

certificate-revocation-list

key-store-ssl-certificate

This element defines a reference to an entry within a keystore for the key and certificate to use for
this SSL context.
It has the following attributes.

Attribute Name Attribute Description

key-store-name The keystore name. This attribute is required.

alias The alias of the entry to load from the referenced keystore. This can be
omitted only for keystores that contain just a single entry.

It can contain the following child elements:

 <ssl-contexts>
 <default-ssl-context name="..."/>
 <ssl-context name="...">
 <key-store-ssl-certificate>...</key-store-ssl-certificate>
 <trust-store key-store-name="..." />
 <cipher-suite selector="..." />
 <protocol names="... ..." />
 <provider-name name="..." />
 <providers>...</providers>
 <certificate-revocation-list path="..." maximum-cert-path="..." />
 </ssl-context>
 </ssl-contexts>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

212

key-store-clear-password

credential-store-reference

key-store-credential

This structure is nearly identical to the structure used in the key-store-credential configuration with
the exception that here it obtains the entry for the key and for the certificate. However, the nested
key-store-clear-password and key-store-credential elements still provide the protection
parameter to unlock the entry.

Example: key-store-ssl-certificate Configuration

trust-store

This element is a reference to the keystore that is to be used to initialize the TrustManager.
It has the following attribute.

Attribute Name Attribute Description

key-store-name The keystore name. This attribute is required.

cipher-suite

This element configures the filter for the enabled cipher suites.
It has the following attribute.

Attribute Name Attribute Description

selector The selector to filter the cipher suites. The selector uses the format of the
OpenSSL-style cipher list string created by the
org.wildfly.security.ssl.CipherSuiteSelector.fromString(selector)
method.

Example: cipher-suite Configuration Using Default Filtering

protocol

This element defines a space separated list of the protocols to be supported. See the client-ssl-
context Attributes table in How to Configure Server Security for JBoss EAP for the list of available
protocols. Red Hat recommends that you use TLSv1.2.

provider-name

<key-store-ssl-certificate key-store-name="..." alias="...">
 <key-store-clear-password password="..." />
 <key-store-credential>...</key-store-credential>
</key-store-ssl-certificate>

<cipher-suite selector="DEFAULT" />

CHAPTER 18. CONFIGURING CLIENTS

213

http://wildfly-security.github.io/wildfly-elytron/1.1.x/org/wildfly/security/ssl/CipherSuiteSelector.html#fromString-java.lang.String-
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_server_security/#client_ssl_context_attributes

Once the available providers have been identified, only the provider with the name defined on this
element is used.

certificate-revocation-list

This element defines both the path to the certificate revocation list and the maximum number of
non-self-issued intermediate certificates that can exist in a certification path. The presence of this
element enables checking the peer’s certificate against the certificate revocation list.
It has the following attributes.

Attribute Name Attribute Description

path The path to the certification list. This attribute is optional.

maximum-cert-path The maximum number of non-self-issued intermediate certificates that can
exist in a certification path. This attribute is optional.

providers

This element defines how java.security.Provider instances are located when required.
It can contain the following child elements.

global

use-service-loader

Because the configuration sections of authentication-client are independent of each other, this
element can be configured in the following locations.

Example: Locations of providers Configuration

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <providers />
 ...
 <credential-stores>
 <credential-store name="...">
 ...
 <providers />
 </credential-store>
 </credential-stores>
 ...
 <authentication-configurations>
 <authentication-configuration name="...">
 ...
 <providers />
 </authentication-configuration>
 </authentication-configurations>
 ...
 <ssl-contexts>
 <ssl-context name="...">
 ...
 <providers />
 </ssl-context>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

214

The providers configuration applies to the element in which it is defined and to any of its child
elements unless it is overridden. The specification of a providers in a child element overrides a
providers specified in any of its parent elements. If no providers configuration is specified, the
default behavior is the equivalent of the following, which gives the Elytron provider priority over any
globally registered providers, but also allows for the use of globally registered providers.

Example: providers Configuration

global

This empty element specifies to use the global providers loaded by the
java.security.Security.getProviders() method call.

use-service-loader

This empty element specifies to use the providers that are loaded by the specified module. If no
module is specified, the class loader that loaded the authentication client is used.

IMPORTANT

Elements Not Currently Used By Any JBoss EAP Authentication Mechanisms

The following child elements of the credentials element in the Elytron client
configuration are not currently used by any authentication mechanisms in JBoss EAP.
They can be used in your own custom implementations of authentication mechanism;
however, they are not supported.

1. key-pair

2. public-key-pem

3. key-store-reference

4. certificate

18.1.2. EJB Client Configuration Using the wildfly-config.xml File

You can use the jboss-ejb-client element, which is in the urn:jboss:wildfly-client-ejb:3.0 namespace,
to configure EJB client connections, global interceptors, and invocation timeouts using the wildfly-
config.xml file. This section describes how to configure an EJB client using this element.

jboss-ejb-client Elements and Attributes
The jboss-ejb-client element can optionally contain the following three top level child elements, along
with their child elements:

invocation-timeout

 </ssl-contexts>
 </authentication-client>
</configuration>

<providers>
 <use-service-loader />
 <global />
</providers>

CHAPTER 18. CONFIGURING CLIENTS

215

https://docs.oracle.com/javase/8/docs/api/java/security/Security.html

global-interceptors

interceptor

connections

connection

interceptors

interceptor

invocation-timeout

This optional element specifies the EJB invocation timeout. It has the following attribute.

Attribute Name Attribute Description

seconds The timeout, in seconds, for the EJB handshake or the method invocation
request/response cycle. This attribute is required.

If the execution of a method takes longer than the timeout period, the
invocation throws a java.util.concurrent.TimeoutException; however, the
server side will not be interrupted.

global-interceptors

This optional element specifies the global EJB client interceptors. It can contain any number of
interceptor elements.

interceptor

This element is used to specify an EJB client interceptor. It has the following attributes.

Attribute Name Attribute Description

class The name of a class that implements the
org.jboss.ejb.client.EJBClientInterceptor interface. This attribute is
required.

module The name of the module that should be used to load the interceptor class. This
attribute is optional.

connections

This element is used to specify EJB client connections. It can contain any number of connection
elements.

connection

This element is used to specify an EJB client connection. It can optionally contain an interceptors
element. It has the following attribute.

Attribute Name Attribute Description

uri The destination URI for the connection. This attribute is required.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

216

Attribute Name Attribute Description

interceptors

This element is used to specify EJB client interceptors and can contain any number of interceptor
elements.

Example EJB Client Configuration in the wildfly-config.xml File
The following is an example that configures the EJB client connections, global interceptors, and
invocation timeout using the jboss-ejb-client element in the wildfly-config.xml file.

18.1.3. HTTP Client Configuration Using the wildfly-config.xml File

The following is an example of how to configure HTTP clients using the wildfly-config.xml file.

IMPORTANT

<configuration>
...
 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">
 <invocation-timeout seconds="10"/>
 <connections>
 <connection uri="remote+http://10.20.30.40:8080"/>
 </connections>
 <global-interceptors>
 <interceptor class="org.jboss.example.ExampleInterceptor"/>
 </global-interceptors>
 </jboss-ejb-client>
...
</configuration>

<configuration>
...
 <http-client xmlns="urn:wildfly-http-client:1.0">
 <defaults>
 <eagerly-acquire-session value="true" />
 <buffer-pool buffer-size="2000" max-size="10" direct="true" thread-local-size="1" />
 </defaults>
 </http-client>
...
</configuration>

CHAPTER 18. CONFIGURING CLIENTS

217

IMPORTANT

HTTP client configuration using the wildfly-config.xml file is provided as Technology
Preview only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs), might not be functionally complete, and Red Hat does
not recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

18.1.4. Remoting Client Configuration Using the wildfly-config.xml File

You can use the endpoint element, which is in the urn:jboss-remoting:5.0 namespace, to configure a
remoting client using the wildfly-config.xml file. This section describes how to configure a remoting
client using this element.

endpoint Elements and Attributes
The endpoint element can optionally contain the following two top level child elements, along with their
child elements.

providers

provider

connections

connection

It also has the following attribute:

Attribute Name Attribute Description

name The endpoint name. This attribute is optional. If not provided, an endpoint name is
derived from the system’s host name, if possible.

providers

This optional element specifies transport providers for the remote endpoint. It can contain any
number of provider elements.

provider

This element defines a remote transport provider. It has the following attributes.

Attribute Name Attribute Description

scheme The primary URI scheme that corresponds to this provider. This attribute is
required.

aliases The space-separated list of of other URI scheme names that are also
recognized for this provider. This attribute is optional.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

218

https://access.redhat.com/support/offerings/techpreview

module The name of the module that contains the provider implementation. This
attribute is optional. If not provided, the class loader that loads JBoss
Remoting searches for the provider class.

class The name of the class that implements the transport provider. This attribute is
optional. If not provided, the java.util.ServiceLoader facility is used to
search for the provider class.

Attribute Name Attribute Description

connections

This optional element specifies connections for the remote endpoint. It can contain any number of
connection elements.

connection

This element defines a connection for the remote endpoint. It has the following attributes.

Attribute Name Attribute Description

destination The destination URI for the endpoint. This attribute is required.

read-timeout The timeout, in seconds, for read operations on the corresponding socket. This
attribute is optional; however, it should be provided only if a heartbeat-
interval is defined.

write-timeout The timeout, in seconds, for a write operation. This attribute is optional;
however, it should be provided only if a heartbeat-interval is defined.

ip-traffic-class Defines the numeric IP traffic class to use for this connection’s traffic. This
attribute is optional.

tcp-keepalive Boolean setting that determines whether to use TCP keepalive. This attribute
is optional.

heartbeat-interval The interval, in milliseconds, to use when checking for a connection heartbeat.
This attribute is optional.

Example Remoting Client Configuration in the wildfly-config.xml File
The following is an example that configures a remoting client using the wildfly-config.xml file.

<configuration>
 ...
 <endpoint xmlns="urn:jboss-remoting:5.0">
 <connections>
 <connection destination="remote+http://10.20.30.40:8080" read-timeout="50" write-timeout="50"
heartbeat-interval="10000"/>
 </connections>

CHAPTER 18. CONFIGURING CLIENTS

219

18.1.5. Default XNIO Worker Configuration Using the wildfly-config.xml File

You can use the worker element, which is in the urn:xnio:3.5 namespace, to configure an XNIO worker
using the wildfly-config.xml file. This section describes how to configure an XNIO worker client using
this element.

worker Elements and Attributes
The worker element can optionally contain the following top level child elements, along with their child
elements:

daemon-threads

worker-name

pool-size

task-keepalive

io-threads

stack-size

outbound-bind-addresses

bind-address

daemon-threads

This optional element specifies whether worker and task threads should be daemon threads. This
element has no content. It has the following attribute.

Attribute Name Attribute Description

value A boolean value that specifies whether worker and task threads should be
daemon threads. A value of true indicates that worker and task threads should
be daemon threads. A value of false indicates that they should not be daemon
threads. This attribute is required.

If this element is not provided, a value of true is assumed.

worker-name

This element defines the name of the worker. The worker name appears in thread dumps and in JMX.
This element has no content. It has the following attribute.

Attribute Name Attribute Description

value The name of the worker. This attribute is required.

pool-size

 </endpoint>
 ...
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

220

This optional element defines the maximum size of the worker’s task thread pool. This element has
no content. It has the following attribute.

Attribute Name Attribute Description

max-threads A positive integer that specifies the maximum number of threads that should
be created. This attribute is required.

task-keepalive

This optional element establishes the keep-alive time of task threads before they can be expired. It
has the following attribute.

Attribute Name Attribute Description

value A positive integer that specifies the minimum number of seconds to keep idle
threads alive. This attribute is required.

io-threads

This optional element determines how many I/O selector threads should be maintained. Generally
this number should be a small constant that is a multiple of the number of available cores. It has the
following attribute.

Attribute Name Attribute Description

value A positive integer that specifies the number of I/O threads. This attribute is
required.

stack-size

This optional element establishes the desired minimum thread stack size for worker threads. This
element should only be defined in very specialized situations where density is at a premium. It has the
following attribute.

Attribute Name Attribute Description

value A positive integer that specifies the requested stack size, in bytes. This
attribute is required.

outbound-bind-addresses

This optional element specifies the bind addresses to use for outbound connections. Each bind
address mapping consists of a destination IP address block, and a bind address and optional port
number to use for connections to destinations within that block. It can contain any number of bind-
address elements.

bind-address

This optional element defines an individual bind address mapping. It has the following attributes.

CHAPTER 18. CONFIGURING CLIENTS

221

Attribute Name Attribute Description

match The IP address block, in CIDR notation, to match.

bind-address The IP address to bind to if the address block matches. This attribute is
required.

bind-port The port number to bind to if the address block matches. This value defauts to
0, meaning it binds to any port. This attribute is optional.

Example XNIO Worker Configuration in the wildfly-config.xml File
The following is an example of how to configure the default XNIO worker using the wildfly-config.xml
file.

<configuration>
 ...
 <worker xmlns="urn:xnio:3.5">
 <io-threads value="10"/>
 <task-keepalive value="100"/>
 </worker>
 ...
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

222

CHAPTER 19. ECLIPSE MICROPROFILE

19.1. USING ECLIPSE MICROPROFILE OPENTRACING TO TRACE
REQUESTS

IMPORTANT

Eclipse Microprofile OpenTracing is provided as Technology Preview only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs), might not be functionally complete, and Red Hat does not recommend to use
them for production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

Eclipse Microprofile OpenTracing functionality is provided by the microprofile-opentracing-smallrye
subsystem. This subsystem ships with the Jaeger Java Client as the default tracer and provides a set of
instrumentation libraries for components commonly used in Java EE applications, such as JAX-RS and
CDI. See Tracing Requests with the MicroProfile OpenTracing SmallRye Subsystem in the Configuration
Guide for more information about this subsystem.

The following sections describe how to customize tracing for CDI beans and other JAX-RS endpoints,
and how to implement a custom tracer.

19.1.1. Enable or Disable Tracing for CDI Beans

As defined by the Eclipse MicroProfile OpenTracing specification, CDI beans are traced if the
org.eclipse.microprofile.opentracing.Traced annotation is present, either at the class or at the
method level. Tracing can be disabled by setting the annotation value to false. Similarly, a custom
operation name can be set by specifying the parameter operationName for that annotation. The
semantics are defined by the MicroProfile OpenTracing specification.

The following example demonstrates how to configure tracing for a CDI bean. Note that tracing can be
specified at the method level.

The following example demonstrates how to specify an operation name for the OpenTracing Span for

import org.eclipse.microprofile.opentracing.Traced;

@Traced
public class TracedBean {
 public void doSomething() {
 }

 @Traced(true)
 public void doSomethingTraced() {
 }

 @Traced(false)
 public void doSomethingNotTraced() {
 }
}

CHAPTER 19. ECLIPSE MICROPROFILE

223

https://access.redhat.com/support/offerings/techpreview
https://github.com/jaegertracing/jaeger-client-java
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#eclipse_microprofile_opentracing
http://download.eclipse.org/microprofile/microprofile-2.0-javadocs-test/apidocs/org/eclipse/microprofile/opentracing/Traced.html
https://github.com/eclipse/microprofile-opentracing/blob/master/spec/src/main/asciidoc/microprofile-opentracing.asciidoc

The following example demonstrates how to specify an operation name for the OpenTracing Span for
this trace point.

19.1.2. Enable or Disable Tracing for JAX-RS Endpoints

JAX-RS endpoints are traced by default if the microprofile-opentracing-smallrye subsystem is
present in the server configuration.

To disable tracing for JAX-RS endpoints, add the @Traced(false) annotation to the JAX-RS endpoint
at the class or method level as described in Enable or Disable Tracing for CDI Beans above.

19.1.3. Implement a Custom Tracer

If you need something more complex than what is provided by the default Jaeger Java Client, you can
provide your own tracer by implementing a TracerResolver that returns the Tracer with the desired
state. In this case, the default tracer will not be used.

The following example demonstrates how to create a new implementation of TracerResolver that
returns a custom implementation of the Tracer class.

19.2. USING ECLIPSE MICROPROFILE HEALTH TO MONITOR SERVER
HEALTH

IMPORTANT

import org.eclipse.microprofile.opentracing.Traced;

@Traced(operationName = "my-custom-class-operation-name")
public class CustomOperationNameBean {

 @Traced(operationName = "my-custom-method-operation-name")
 public void doSomething() {
 }

 @Traced
 public void doSomethingElse() {
 }
}

import io.opentracing.Tracer;
import io.opentracing.contrib.tracerresolver.TracerResolver;
import org.myproject.opentracing.CustomTracer;

public static class MyTracerResolver extends TracerResolver {
 @Override
 protected Tracer resolve() {
 return new CustomTracer();
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

224

https://github.com/opentracing-contrib/java-tracerresolver
http://static.javadoc.io/io.opentracing/opentracing-api/0.32.0-RC1/io/opentracing/Tracer.html

IMPORTANT

Eclipse MicroProfile Health is provided as Technology Preview only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs),
might not be functionally complete, and Red Hat does not recommend to use them for
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

Eclipse Microprofile Health functionality is provided by the microprofile-health-smallrye subsystem.
See Monitor Server Health Using Eclipse MicroProfile Health in the Configuration Guide for more
information about this subsystem.

The following section describe how to implement a custom health check .

19.2.1. Implement a Custom Health Check

The default implementation provided by the microprofile-health-smallrye subsystem performs a basic
health check. For more detailed information, on either the server or application status, custom health
checks may be included. Any CDI beans that include the org.eclipse.microprofile.health.Health
annotation at the class level are automatically discovered and invoked at runtime.

The following example demonstrates how to create a new implementation of a health check that returns
an UP state.

Once deployed, any subsequent health check queries will include the custom checks, as seen below.

/subsystem=microprofile-health-smallrye:check
{
 "outcome" => "success",
 "result" => {
 "outcome" => "UP",
 "checks" => [{
 "name" => "health-test",
 "state" => "UP"
 }]
 }
}

import org.eclipse.microprofile.health.Health;
import org.eclipse.microprofile.health.HealthCheck;
import org.eclipse.microprofile.health.HealthCheckResponse;

@Health
public class HealthTest implements HealthCheck {

 @Override
 public HealthCheckResponse call() {
 return HealthCheckResponse.named("health-test").up().build();
 }
}

CHAPTER 19. ECLIPSE MICROPROFILE

225

https://access.redhat.com/support/offerings/techpreview
https://github.com/eclipse/microprofile-health/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#microprofile_health_check
https://openliberty.io/javadocs/microprofile-1.2-javadoc/org/eclipse/microprofile/health/Health.html

APPENDIX A. REFERENCE MATERIAL

A.1. PROVIDED UNDERTOW HANDLERS

NOTE

For the complete list of handlers, you must check the source JAR file of the Undertow
core in the version that matches the Undertow core in your JBoss EAP installation. You
can download the Undertow core source JAR file from the JBoss EAP Maven Repository,
and then refer to the available handlers in the /io/undertow/server/handlers/ directory.

You can verify the Undertow core version used in your current installation of JBoss EAP
by searching the server.log file for the INFO message that is printed during JBoss EAP
server startup, similar to the one shown in the example below:

INFO [org.wildfly.extension.undertow] (MSC service thread 1-1) WFLYUT0003:
Undertow 1.4.18.Final-redhat-1 starting

AccessControlListHandler
Class Name: io.undertow.server.handlers.AccessControlListHandler

Name: access-control

Handler that can accept or reject a request based on an attribute of the remote peer.

Table A.1. Parameters

Name Description

acl ACL rules. This parameter is required.

attribute Exchange attribute string. This parameter is required.

default-allow Boolean specifying whether handler accepts or
rejects a request by default. Defaults to false.

AccessLogHandler
Class Name: io.undertow.server.handlers.accesslog.AccessLogHandler

Name: access-log

Access log handler. This handler generates access log messages based on the provided format string
and pass these messages into the provided AccessLogReceiver.

This handler can log any attribute that is provides via the ExchangeAttribute mechanism.

This factory produces token handlers for the following patterns.

Table A.2. Patterns

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

226

https://maven.repository.redhat.com/ga/io/undertow/undertow-core/

Pattern Description

%a Remote IP address

%A Local IP address

%b Bytes sent, excluding HTTP headers or - if no bytes
were sent

%B Bytes sent, excluding HTTP headers

%h Remote host name

%H Request protocol

%l Remote logical username from identd (always
returns -)

%m Request method

%p Local port

%q Query string (excluding the ? character)

%r First line of the request

%s HTTP status code of the response

%t Date and time, in Common Log Format format

%u Remote user that was authenticated

%U Requested URL path

%v Local server name

%D Time taken to process the request, in milliseconds

%T Time taken to process the request, in seconds

%I Current Request thread name (can compare later
with stack traces)

common %h %l %u %t "%r" %s %b

combined %h %l %u %t "%r" %s %b "%{i,Referer}" "%
{i,User-Agent}"

APPENDIX A. REFERENCE MATERIAL

227

There is also support to write information from the cookie, incoming header, or the session.

It is modeled after the Apache syntax:

%{i,xxx} for incoming headers

%{o,xxx} for outgoing response headers

%{c,xxx} for a specific cookie

%{r,xxx} where xxx is an attribute in the ServletRequest

%{s,xxx} where xxx is an attribute in the HttpSession

Table A.3. Parameters

Name Description

format Format used to generate the log messages. This is
the default parameter.

AllowedMethodsHandler
Handler that whitelists certain HTTP methods. Only requests with a method in the allowed methods set
are allowed to continue.

Class Name: io.undertow.server.handlers.AllowedMethodsHandler

Name: allowed-methods

Table A.4. Parameters

Name Description

methods Methods to allow, for example GET, POST, PUT,
and so on. This is the default parameter.

BlockingHandler
An HttpHandler that initiates a blocking request. If the thread is currently running in the I/O thread it is
dispatched.

Class Name: io.undertow.server.handlers.BlockingHandler

Name: blocking

This handler has no parameters.

ByteRangeHandler
Handler for range requests. This is a generic handler that can handle range requests to any resource of a
fixed content length, for example, any resource where the content-length header has been set. This is
not necessarily the most efficient way to handle range requests, as the full content is generated and
then discarded. At present this handler can only handle simple, single range requests. If multiple ranges
are requested the Range header is ignored.

Class Name: io.undertow.server.handlers.ByteRangeHandler

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

228

Name: byte-range

Table A.5. Parameters

Name Description

send-accept-ranges Boolean value on whether or not to send accept
ranges. This is the default parameter.

CanonicalPathHandler
This handler transforms a relative path to a canonical path.

Class Name: io.undertow.server.handlers.CanonicalPathHandler

Name: canonical-path

This handler has no parameters.

DisableCacheHandler
Handler that disables response caching by browsers and proxies.

Class Name: io.undertow.server.handlers.DisableCacheHandler

Name: disable-cache

This handler has no parameters.

DisallowedMethodsHandler
Handler that blacklists certain HTTP methods.

Class Name: io.undertow.server.handlers.DisallowedMethodsHandler

Name: disallowed-methods

Table A.6. Parameters

Name Description

methods Methods to disallow, for example GET, POST, PUT,
and so on. This is the default parameter.

EncodingHandler
This handler serves as the basis for content encoding implementations. Encoding handlers are added as
delegates to this handler, with a specified server side priority.

The q value will be used to determine the correct handler. If a request comes in with no q value then the
server picks the handler with the highest priority as the encoding to use.

If no handler matches then the identity encoding is assumed. If the identity encoding has been
specifically disallowed due to a q value of 0 then the handler sets the response code 406 (Not
Acceptable) and returns.

Class Name: io.undertow.server.handlers.encoding.EncodingHandler

APPENDIX A. REFERENCE MATERIAL

229

Name: compress

This handler has no parameters.

FileErrorPageHandler
Handler that serves up a file from disk to serve as an error page. This handler does not serve up any
response codes by default, you must configure the response codes it responds to.

Class Name: io.undertow.server.handlers.error.FileErrorPageHandler

Name: error-file

Table A.7. Parameters

Name Description

file Location of file to serve up as an error page.

response-codes List of response codes that result in a redirect to the
defined error page file.

HttpTraceHandler
A handler that handles HTTP trace requests.

Class Name: io.undertow.server.handlers.HttpTraceHandler

Name: trace

This handler has no parameters.

IPAddressAccessControlHandler
Handler that can accept or reject a request based on the IP address of the remote peer.

Class Name: io.undertow.server.handlers.IPAddressAccessControlHandler

Name: ip-access-control

Table A.8. Parameters

Name Description

acl String representing the access control list. This is the
default parameter.

failure-status Integer representing the status code to return on
rejected requests.

default-allow Boolean representing whether or not to allow by
default.

JDBCLogHandler
Class Name: io.undertow.server.handlers.JDBCLogHandler

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

230

Name: jdbc-access-log

Table A.9. Parameters

Name Description

format Specifies the JDBC Log pattern. Default value is
common. You can also use combined, which adds
the VirtualHost, request method, referrer, and user
agent information to the log message.

datasource Name of the datasource to log. This parameter is
required and is the default parameter.

tableName Table name.

remoteHostField Remote Host address.

userField Username.

timestampField Timestamp.

virtualHostField VirtualHost.

methodField Method.

queryField Query.

statusField Status.

bytesField Bytes.

refererField Referrer.

userAgentField UserAgent.

LearningPushHandler
Handler that builds up a cache of resources that a browser requests, and uses server push to push them
when supported.

Class Name: io.undertow.server.handlers.LearningPushHandler

Name: learning-push

Table A.10. Parameters

Name Description

APPENDIX A. REFERENCE MATERIAL

231

max-age Integer representing the maximum time of a cache
entry.

max-entries Integer representing the maximum number of cache
entries

Name Description

LocalNameResolvingHandler
A handler that performs DNS lookup to resolve a local address. Unresolved local address can be created
when a front end server has sent a X-forwarded-host header or AJP is in use.

Class Name: io.undertow.server.handlers.LocalNameResolvingHandler

Name: resolve-local-name

This handler has no parameters.

PathSeparatorHandler
A handler that translates non-slash separator characters in the URL into a slash. In general this will
translate backslash into slash on Windows systems.

Class Name: io.undertow.server.handlers.PathSeparatorHandler

Name: path-separator

This handler has no parameters.

PeerNameResolvingHandler
A handler that performs reverse DNS lookup to resolve a peer address.

Class Name: io.undertow.server.handlers.PeerNameResolvingHandler

Name: resolve-peer-name

This handler has no parameters.

ProxyPeerAddressHandler
Handler that sets the peer address to the value of the X-Forwarded-For header. This should only be
used behind a proxy that always sets this header, otherwise it is possible for an attacker to forge their
peer address.

Class Name: io.undertow.server.handlers.ProxyPeerAddressHandler

Name: proxy-peer-address

This handler has no parameters.

RedirectHandler
A redirect handler that redirects to the specified location via a 302 redirect. The location is specified as
an exchange attribute string.

Class Name: io.undertow.server.handlers.RedirectHandler

Name: redirect

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

232

Table A.11. Parameters

Name Description

value Destination for the redirect. This is the default
parameter.

RequestBufferingHandler
Handler that buffers all request data.

Class Name: io.undertow.server.handlers.RequestBufferingHandler

Name: buffer-request

Table A.12. Parameters

Name Description

buffers Integer that defines the maximum number of buffers.
This is the default parameter.

RequestDumpingHandler
Handler that dumps an exchange to a log.

Class Name: io.undertow.server.handlers.RequestDumpingHandler

Name: dump-request

This handler has no parameters.

RequestLimitingHandler
A handler that limits the maximum number of concurrent requests. Requests beyond the limit will block
until the previous request is complete.

Class Name: io.undertow.server.handlers.RequestLimitingHandler

Name: request-limit

Table A.13. Parameters

Name Description

requests Integer that represents the maximum number of
concurrent requests. This is the default parameter
and is required.

ResourceHandler
A handler for serving resources.

Class Name: io.undertow.server.handlers.resource.ResourceHandler

Name: resource

APPENDIX A. REFERENCE MATERIAL

233

Table A.14. Parameters

Name Description

location Location of resources. This is the default parameter
and is required.

allow-listing Boolean value to determine whether or not to allow
directory listings.

ResponseRateLimitingHandler
Handler that limits the download rate to a set number of bytes/time.

Class Name: io.undertow.server.handlers.ResponseRateLimitingHandler

Name: response-rate-limit

Table A.15. Parameters

Name Description

bytes Number of bytes to limit the download rate. This
parameter is required.

time Time in seconds to limit the download rate. This
parameter is required.

SetHeaderHandler
A handler that sets a fixed response header.

Class Name: io.undertow.server.handlers.SetHeaderHandler

Name: header

Table A.16. Parameters

Name Description

header Name of header attribute. This parameter is
required.

value Value of header attribute. This parameter is required.

SSLHeaderHandler
Handler that sets SSL information on the connection based on the following headers:

SSL_CLIENT_CERT

SSL_CIPHER

SSL_SESSION_ID

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

234

If this handler is present in the chain it always overrides the SSL session information, even if these
headers are not present.

This handler must only be used on servers that are behind a reverse proxy, where the reverse proxy has
been configured to always set these headers for every request or to strip existing headers with these
names if no SSL information is present. Otherwise it might be possible for a malicious client to spoof an
SSL connection.

Class Name: io.undertow.server.handlers.SSLHeaderHandler

Name: ssl-headers

This handler has no parameters.

StuckThreadDetectionHandler
This handler detects requests that take a long time to process, which might indicate that the thread that
is processing it is stuck.

Class Name: io.undertow.server.handlers.StuckThreadDetectionHandler

Name: stuck-thread-detector

Table A.17. Parameters

Name Description

threshhold Integer value in seconds that determines the
threshold for how long a request should take to
process. Default value is 600 (10 minutes). This is the
default parameter.

URLDecodingHandler
A handler that decodes the URL and query parameters to the specified charset. If you are using this
handler you must set the UndertowOptions.DECODE_URL parameter to false.

This is not as efficient as using the parser’s built in UTF-8 decoder. Unless you need to decode to
something other than UTF-8 you should rely on the parsers decoding instead.

Class Name: io.undertow.server.handlers.URLDecodingHandler

Name: url-decoding

Table A.18. Parameters

Name Description

charset Charset to decode. This is the default parameter and
it is required.

A.2. PERSISTENCE UNIT PROPERTIES

Persistence unit definition supports the following properties, which can be configured from the
persistence.xml file.

APPENDIX A. REFERENCE MATERIAL

235

https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/7.2/javadocs/io/undertow/UndertowOptions.html#DECODE_URL

Property Description

jboss.as.jpa.providerModule Name of the persistence provider module. Default is org.hibernate.
Should be the application name if a persistence provider is packaged with
the application.

jboss.as.jpa.adapterModule Name of the integration classes that help JBoss EAP to work with the
persistence provider.

jboss.as.jpa.adapterClass Class name of the integration adapter.

jboss.as.jpa.managed Set to false to disable container-managed JPA access to the persistence
unit. The default is true.

jboss.as.jpa.classtransformer Set to false to disable class transformers for the persistence unit. The
default is true, which allows class transforming.

Hibernate also needs persistence unit property
hibernate.ejb.use_class_enhancer to be true for class transforming
to be enabled.

jboss.as.jpa.scopedname Specify the qualified application-scoped persistence unit name to be used.
By default, this is set to the application name and persistence unit name,
collectively. The hibernate.cache.region_prefix defaults to whatever
you set jboss.as.jpa.scopedname to. Make sure you set the
jboss.as.jpa.scopedname value to a value not already in use by other
applications deployed on the same application server instance.

jboss.as.jpa.deferdetach Controls whether transaction-scoped persistence context used in non-JTA
transaction thread, will detach loaded entities after each EntityManager
invocation or when the persistence context is closed. The default value is
false. If set to true, the detach is deferred until the context is closed.

wildfly.jpa.default-unit Set to true to choose the default persistence unit in an application. This is
useful if you inject a persistence context without specifying the unitName,
but have multiple persistence units specified in your persistence.xml file.

wildfly.jpa.twophasebootstrap Persistence providers allow a two-phase persistence unit bootstrap, which
improves JPA integration with CDI. Setting the
wildfly.jpa.twophasebootstrap value to false disables the two-phase
bootstrap for the persistence unit that contains the value.

wildfly.jpa.allowdefaultdatasou
rceuse

Set to false to prevent persistence unit from using the default datasource.
The default value is true. This is only important for persistence units that do
not specify a datasource.

wildfly.jpa.hibernate.search.m
odule

Controls which version of Hibernate Search to include on the classpath. The
default is auto; other valid values are none or a full module identifier to use
an alternative version.

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

236

A.3. POLICY PROVIDER PROPERTIES

Table A.19. policy-provider Attributes

Property Description

custom-policy A custom policy provider definition.

jacc-policy A policy provider definition that sets up JACC and related services.

Table A.20. custom-policy Attributes

Property Description

class-name The name of a java.security.Policy implementation referencing a policy
provider.

module The name of the module to load the provider from.

Table A.21. jacc-policy Attributes

Property Description

policy The name of a java.security.Policy implementation referencing a policy
provider.

configuration-factory The name of a javax.security.jacc.PolicyConfigurationFactory
implementation referencing a policy configuration factory provider.

module The name of the module to load the provider from.

A.4. JAVA EE 8 PROFILES AND TECHNOLOGIES REFERENCE

The following tables list the Java EE 8 technologies and JSRs by category and note whether they are
included in the Web Profile or Full Platform profiles.

Java EE 8 Web Application Technologies

Java EE 8 Enterprise Application Technologies

Java EE 8 Web Services Technologies

Java EE 8 Management and Security Technologies

Java SE Specifications Related to Java EE 8

See Java™ EE 8 Technologies for the complete list of Java EE 8 APIs.

Table A.22. Java EE 8 Web Application Technologies

APPENDIX A. REFERENCE MATERIAL

237

https://www.oracle.com/technetwork/java/javaee/tech/index.html

Technology JSR Web Profile Full Platform

Java API for WebSocket 1.1 JSR 356 ✔ ✔

Java API for JSON Binding 1.0 JSR 367 ✔ ✔

Java API for JSON Processing 1.1 JSR 374 ✔ ✔

Java Servlet 4.0 JSR 369 ✔ ✔

JavaServer Faces 2.3 JSR 372 ✔ ✔

Expression Language 3.0 JSR 341 ✔ ✔

JavaServer Pages 2.3 JSR 245 ✔ ✔

Standard Tag Library for JavaServer Pages (JSTL)

1.2 1
JSR 52 ✔ ✔

1 Additional Standard Tag Library (JSTL) information:

NOTE

A known security risk in JBoss EAP exists where the Java Standard Tag Library (JSTL)
allows the processing of external entity references in untrusted XML documents which
could access resources on the host system and, potentially, allow arbitrary code
execution.

To avoid this, the JBoss EAP server has to be run with system property
org.apache.taglibs.standard.xml.accessExternalEntity correctly set, usually with an
empty string as value. This can be done in two ways:

Configuring the system properties and restarting the server.

org.apache.taglibs.standard.xml.accessExternalEntity

Passing -Dorg.apache.taglibs.standard.xml.accessExternalEntity="" as an
argument to the standalone.sh or domain.sh scripts.

Table A.23. Java EE 8 Enterprise Application Technologies

Technology JSR Web Profile Full Platform

Batch Applications for the Java Platform 1.0 JSR 352 ✔

Concurrency Utilities for Java EE 1.0 JSR 236 ✔

Contexts and Dependency Injection for Java 2.0 JSR 365 ✔ ✔

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

238

https://jcp.org/en/jsr/detail?id=356
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=369
https://jcp.org/en/jsr/detail?id=372
https://jcp.org/en/jsr/detail?id=341
http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=52
http://jcp.org/en/jsr/detail?id=352
http://jcp.org/en/jsr/detail?id=236
http://jcp.org/en/jsr/detail?id=365

Dependency Injection for Java 1.0 JSR 330 ✔ ✔

Bean Validation 2.0 JSR 380 ✔ ✔

Managed Beans 1.0 N/A ✔ ✔

Enterprise JavaBeans 3.2 JSR 345 ✔

Interceptors 1.2 JSR 318 ✔ ✔

Java EE Connector Architecture 1.7 JSR 322 ✔

Java Persistence 2.2 JSR 338 ✔ ✔

Common Annotations for the Java Platform 1.3 JSR 250 ✔

Java Message Service API 2.0 JSR 343 ✔

Java Transaction API (JTA) 1.2 JSR 907 ✔ ✔

JavaMail 1.6 JSR 919 ✔

Technology JSR Web Profile Full Platform

Table A.24. Java EE 8 Web Services Technologies

Technology JSR Web Profile Full Platform

Java API for RESTful Web Services (JAX-RS) 2.1 JSR 370 ✔

Implementing Enterprise Web Services 1.3 JSR 109 ✔

Web Services Metadata for the Java Platform 2.1 JSR 181 ✔

Java API for XML-Based RPC (JAX-RPC) 1.1
(Optional)

JSR 101

Java API for XML Registries (JAXR) 1.0 (Optional) JSR 93

Table A.25. Java EE 8 Management and Security Technologies

Technology JSR Web Profile Full Platform

Java EE Security API 1.0 JSR 375 ✔ ✔

APPENDIX A. REFERENCE MATERIAL

239

http://jcp.org/en/jsr/detail?id=330
http://jcp.org/en/jsr/detail?id=380
http://jcp.org/en/jsr/detail?id=345
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=343
http://jcp.org/en/jsr/detail?id=907
http://jcp.org/en/jsr/detail?id=919
http://jcp.org/en/jsr/detail?id=370
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=101
http://jcp.org/en/jsr/detail?id=93
http://jcp.org/en/jsr/detail?id=375

Java Authentication Service Provider Interface for
Containers 1.1

JSR 196 ✔ ✔

Java Authorization Contract for Containers 1.5 JSR 115 ✔

Java EE Application Deployment 1.2 (Optional) JSR 88 ✔

J2EE Management 1.1 JSR 77 ✔

Debugging Support for Other Languages 1.0 JSR 45 ✔

Technology JSR Web Profile Full Platform

Table A.26. Java SE Specifications Related to Java EE 8

Technology JSR Web Profile Full Platform

Java Management Extensions (JMX) 2.0 JSR 3 ✔

SOAP with Attachments API for Java (SAAJ)
Specification 1.3

JSR 67 ✔

Streaming API for XML (StAX) 1.0 JSR 173 ✔

Java API for XML Processing (JAXP) 1.6 JSR 206 ✔

Java Database Connectivity 4.0 JSR 221 ✔

Java Architecture for XML Binding (JAXB) 2.2 JSR 222 ✔

Java API for XML-Based Web Services (JAX-WS) 2.2 JSR 224 ✔

JavaBeans Activation Framework (JAF) 1.1 JSR 925 ✔

Revised on 2019-09-26 10:38:51 UTC

Red Hat JBoss Enterprise Application Platform 7.2 Development Guide

240

http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=115
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=77
http://jcp.org/en/jsr/detail?id=45
http://jcp.org/en/jsr/detail?id=3
http://jcp.org/en/jsr/detail?id=67
http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=206
http://jcp.org/en/jsr/detail?id=221
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=925

	Table of Contents
	CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS
	1.1. BECOME FAMILIAR WITH JAVA ENTERPRISE EDITION 8
	1.1.1. Overview of Java EE 8 Profiles

	1.2. SETTING UP THE DEVELOPMENT ENVIRONMENT
	1.3. CONFIGURE ANNOTATION PROCESSING IN RED HAT CODEREADY STUDIO
	Enable Annotation Processing for an Individual Project
	Enable Annotation Processing Globally in Red Hat CodeReady Studio

	1.4. CONFIGURE THE DEFAULT WELCOME WEB APPLICATION
	Change the welcome-content File Handler
	Change the default-web-module
	Disable the Default Welcome Web Application

	CHAPTER 2. USING MAVEN WITH JBOSS EAP
	2.1. LEARN ABOUT MAVEN
	2.1.1. About the Maven Repository
	2.1.2. About the Maven POM File
	Minimum Requirements of a Maven POM File

	2.1.3. About the Maven Settings File
	2.1.4. About Maven Repository Managers
	Commonly used Maven repository managers

	2.2. INSTALL MAVEN AND THE JBOSS EAP MAVEN REPOSITORY
	2.2.1. Download and Install Maven
	2.2.2. Download the JBoss EAP Maven Repository
	2.2.2.1. Download the JBoss EAP Maven Repository ZIP File
	2.2.2.2. Download the JBoss EAP Maven Repository with the Offliner Application

	2.2.3. Install the JBoss EAP Maven Repository
	2.2.3.1. Install the JBoss EAP Maven Repository Locally
	2.2.3.2. Install the JBoss EAP Maven Repository for Use with Apache httpd

	2.3. USE THE MAVEN REPOSITORY
	2.3.1. Configure the JBoss EAP Maven Repository
	Configure the JBoss EAP Maven Repository Using the Maven Settings
	Configure the JBoss EAP Maven Repository Using the Project POM
	Determine the URL of the JBoss EAP Repository

	2.3.2. Configure Maven for Use with Red Hat CodeReady Studio
	2.3.3. Manage Project Dependencies
	Supported Maven Artifacts
	Dependency Management
	JBoss EAP Java EE Specs BOM
	JBoss EAP BOMs Available for Application Development
	JBoss EAP Client BOMs

	CHAPTER 3. CLASS LOADING AND MODULES
	3.1. INTRODUCTION
	3.1.1. Overview of Class Loading and Modules
	3.1.2. Class Loading in Deployments
	3.1.3. Class Loading Precedence
	3.1.4. jboss-deployment-structure.xml

	3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT
	Prerequisites
	Add a Dependency Configuration to MANIFEST.MF
	Add a Dependency Configuration to the jboss-deployment-structure.xml
	Creating a Jandex Index

	3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN
	Generate a MANIFEST.MF File Containing Module Dependencies

	3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
	3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT
	3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A DEPLOYMENT
	3.6.1. Programmatically Load Classes and Resources in a Deployment
	3.6.2. Programmatically Iterate Resources in a Deployment

	3.7. CLASS LOADING AND SUBDEPLOYMENTS
	3.7.1. Modules and Class Loading in Enterprise Archives
	3.7.2. Subdeployment Class Loader Isolation
	3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR
	3.7.4. Configuring Session Sharing between Subdeployments in Enterprise Archives
	3.7.4.1. Reference of Shared Session Configuration Options

	3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM MODULE
	Deploy TLDs in a Custom Module

	3.9. CLASS LOADING REFERENCE
	3.9.1. Implicit Module Dependencies
	3.9.2. Included Modules

	CHAPTER 4. LOGGING
	4.1. ABOUT LOGGING
	4.1.1. Supported Application Logging Frameworks

	4.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK
	4.2.1. About JBoss Logging
	4.2.2. Add Logging to an Application with JBoss Logging

	4.3. PER-DEPLOYMENT LOGGING
	4.3.1. Add Per-deployment Logging to an Application
	Configuring logging.properties

	4.4. LOGGING PROFILES
	4.4.1. Specify a Logging Profile in an Application

	4.5. INTERNATIONALIZATION AND LOCALIZATION
	4.5.1. Introduction
	4.5.1.1. About Internationalization
	4.5.1.2. About Localization

	4.5.2. JBoss Logging Tools Internationalization and Localization
	4.5.3. Creating Internationalized Loggers, Messages and Exceptions
	4.5.3.1. Create Internationalized Log Messages
	4.5.3.2. Create and Use Internationalized Messages
	4.5.3.3. Create Internationalized Exceptions

	4.5.4. Localizing Internationalized Loggers, Messages and Exceptions
	4.5.4.1. Generate New Translation Properties Files with Maven
	4.5.4.2. Translate an Internationalized Logger, Exception, or Message

	4.5.5. Customizing Internationalized Log Messages
	4.5.5.1. Add Message IDs and Project Codes to Log Messages
	4.5.5.2. Specify the Log Level for a Message
	4.5.5.3. Customize Log Messages with Parameters
	4.5.5.4. Specify an Exception as the Cause of a Log Message

	4.5.6. Customizing Internationalized Exceptions
	4.5.6.1. Add Message IDs and Project Codes to Exception Messages
	4.5.6.2. Customize Exception Messages with Parameters
	4.5.6.3. Specify One Exception as the Cause of Another Exception

	4.5.7. JBoss Logging Tools References
	4.5.7.1. JBoss Logging Tools Maven Configuration
	4.5.7.2. Translation Property File Format
	4.5.7.3. JBoss Logging Tools Annotations Reference
	4.5.7.4. Project Codes Used in JBoss EAP

	CHAPTER 5. REMOTE JNDI LOOKUP
	5.1. REGISTERING OBJECTS TO JNDI
	5.2. CONFIGURING REMOTE JNDI
	5.3. JNDI INVOCATION OVER HTTP
	5.3.1. Client-side Implementation
	5.3.2. Server-side Implementation

	CHAPTER 6. CLUSTERING IN WEB APPLICATIONS
	6.1. SESSION REPLICATION
	6.1.1. About HTTP Session Replication
	6.1.2. Enable Session Replication in Your Application
	Make your Application Distributable
	Immutable Session Attributes

	6.2. HTTP SESSION PASSIVATION AND ACTIVATION
	6.2.1. About HTTP Session Passivation and Activation
	6.2.2. Configure HTTP Session Passivation in Your Application

	6.3. PUBLIC API FOR CLUSTERING SERVICES
	6.4. HA SINGLETON SERVICE
	HA Singleton ServiceBuilder API
	HA Singleton Service Election Policies
	HA Singleton Service Preferences
	Quorum
	Create an HA Singleton Service Application

	6.5. HA SINGLETON DEPLOYMENTS
	Defining or Choosing a Singleton Deployment
	Creating a Singleton Deployment
	Preferences
	Define a Quorum

	6.6. APACHE MOD_CLUSTER-MANAGER APPLICATION
	6.6.1. About mod_cluster-manager Application
	Exploring mod_cluster-manager Application

	CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)
	7.1. INTRODUCTION TO CDI
	7.1.1. About Contexts and Dependency Injection (CDI)
	Benefits of CDI

	7.1.2. Relationship Between Weld, Seam 2, and JavaServer Faces

	7.2. USE CDI TO DEVELOP AN APPLICATION
	7.2.1. Default Bean Discovery Mode
	Bean Defining Annotations

	7.2.2. Exclude Beans From the Scanning Process
	7.2.3. Use an Injection to Extend an Implementation

	7.3. AMBIGUOUS OR UNSATISFIED DEPENDENCIES
	7.3.1. Qualifiers
	'@Any'

	7.3.2. Use a Qualifier to Resolve an Ambiguous Injection
	Resolve an Ambiguous Injection with a Qualifier

	7.4. MANAGED BEANS
	7.4.1. Types of Classes That are Beans
	@Vetoed

	7.4.2. Use CDI to Inject an Object Into a Bean
	Inject Objects into Other Objects

	7.5. CONTEXTS AND SCOPES
	7.6. NAMED BEANS
	7.6.1. Use Named Beans
	Configure Bean Names Using the @Named Annotation

	7.7. BEAN LIFECYCLE
	Manage Bean Lifecycles
	7.7.1. Use a Producer Method

	7.8. ALTERNATIVE BEANS
	Declaring Selected Alternatives
	7.8.1. Override an Injection with an Alternative
	Override an Injection

	7.9. STEREOTYPES
	7.9.1. Use Stereotypes
	Define and Use Stereotypes

	7.10. OBSERVER METHODS
	7.10.1. Fire and Observe Events
	7.10.2. Transactional Observers

	7.11. INTERCEPTORS
	Enabling Interceptors
	7.11.1. Use Interceptors with CDI
	Using Interceptors with CDI

	7.12. DECORATORS
	7.13. PORTABLE EXTENSIONS
	7.14. BEAN PROXIES
	7.15. USE A PROXY IN AN INJECTION

	CHAPTER 8. JBOSS EAP MBEAN SERVICES
	8.1. WRITING JBOSS MBEAN SERVICES
	8.1.1. A Standard MBean Example

	8.2. DEPLOYING JBOSS MBEAN SERVICES

	CHAPTER 9. CONCURRENCY UTILITIES
	9.1. CONTEXT SERVICE
	9.2. MANAGED THREAD FACTORY
	9.3. MANAGED EXECUTOR SERVICE
	9.4. MANAGED SCHEDULED EXECUTOR SERVICE

	CHAPTER 10. UNDERTOW
	10.1. INTRODUCTION TO UNDERTOW HANDLER
	Request Lifecycle
	Ending the Exchange

	10.2. USING EXISTING UNDERTOW HANDLERS WITH A DEPLOYMENT
	Undertow Handler Default Parameter

	10.3. CREATING CUSTOM HANDLERS
	Defining Custom Handlers Using the WEB-INF/jboss-web.xml File
	Defining Custom Handlers in the WEB-INF/undertow-handlers.conf File

	10.4. DEVELOPING A CUSTOM HTTP MECHANISM
	Using a Custom HTTP Mechanism

	CHAPTER 11. JAVA TRANSACTION API (JTA)
	11.1. OVERVIEW
	11.1.1. Overview of Java Transaction API (JTA)

	11.2. TRANSACTION CONCEPTS
	11.2.1. About Transactions
	11.2.2. About ACID Properties for Transactions
	11.2.3. About the Transaction Coordinator or Transaction Manager
	11.2.4. About Transaction Participants
	11.2.5. About Java Transaction API (JTA)
	11.2.6. About Java Transaction Service (JTS)
	11.2.7. About XML Transaction Service
	11.2.7.1. Overview of Protocols Used by XTS
	11.2.7.2. Web Services-Atomic Transaction Process
	11.2.7.3. Web Services-Business Activity Process
	11.2.7.4. Transaction Bridging Overview

	11.2.8. About XA Resources and XA Transactions
	11.2.9. About XA Recovery
	11.2.10. Limitations of the XA Recovery Process
	11.2.11. About the 2-Phase Commit Protocol
	Phase 1: Prepare
	Phase 2: Commit

	11.2.12. About Transaction Timeouts
	11.2.13. About Distributed Transactions
	11.2.14. About the ORB Portability API

	11.3. TRANSACTION OPTIMIZATIONS
	11.3.1. Overview of Transaction Optimizations
	11.3.2. About the LRCO Optimization for Single-phase Commit (1PC)
	Single-phase Commit (1PC)
	Last Resource Commit Optimization (LRCO)
	11.3.2.1. Commit Markable Resource

	11.3.3. About the Presumed-Abort Optimization
	11.3.4. About the Read-Only Optimization

	11.4. TRANSACTION OUTCOMES
	11.4.1. About Transaction Outcomes
	11.4.2. About Transaction Commit
	11.4.3. About Transaction Rollback
	11.4.4. About Heuristic Outcomes
	Heuristic rollback
	Heuristic commit
	Heuristic mixed
	Heuristic hazard

	11.4.5. JBoss Transactions Errors and Exceptions

	11.5. OVERVIEW OF THE TRANSACTION LIFECYCLE
	11.5.1. Transaction Lifecycle

	11.6. TRANSACTION SUBSYSTEM CONFIGURATION
	11.7. TRANSACTIONS USAGE IN PRACTICE
	11.7.1. Transactions Usage Overview
	11.7.2. Control Transactions
	11.7.2.1. Begin a Transaction
	11.7.2.2. Commit a Transaction
	11.7.2.3. Roll Back a Transaction

	11.7.3. Handle a Heuristic Outcome in a Transaction
	11.7.4. JTA Transaction Error Handling
	11.7.4.1. Handle Transaction Errors

	11.8. TRANSACTION REFERENCES
	11.8.1. JTA Transaction Example
	11.8.2. Transaction API Documentation

	CHAPTER 12. JAVA PERSISTENCE API (JPA)
	12.1. ABOUT JAVA PERSISTENCE API (JPA)
	12.2. CREATE A SIMPLE JPA APPLICATION
	12.3. JPA ENTITIES
	12.4. PERSISTENCE CONTEXT
	12.4.1. Transaction-Scoped Persistence Context
	12.4.2. Extended Persistence Context

	12.5. JPA ENTITYMANAGER
	12.5.1. Application-Managed EntityManager
	12.5.2. Container-Managed EntityManager

	12.6. WORKING WITH THE ENTITYMANAGER
	12.6.1. Binding the EntityManager to JNDI

	12.7. DEPLOYING THE PERSISTENCE UNIT
	12.8. SECOND-LEVEL CACHES
	12.8.1. About Second-level Caches
	12.8.1.1. Default Second-level Cache Provider

	CHAPTER 13. BEAN VALIDATION
	13.1. ABOUT BEAN VALIDATION
	Features of Hibernate Validator 6.0.x

	13.2. VALIDATION CONSTRAINTS
	13.2.1. About Validation Constraints
	13.2.2. Hibernate Validator Constraints
	13.2.3. Bean Validation Using Custom Constraints
	13.2.3.1. Creating A Constraint Annotation
	13.2.3.2. Implementing A Constraint Validator

	13.3. VALIDATION CONFIGURATION

	CHAPTER 14. CREATING WEBSOCKET APPLICATIONS
	Create the WebSocket Application

	CHAPTER 15. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
	15.1. ABOUT JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
	15.2. CONFIGURE JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC) SECURITY
	Enabling JACC Using the elytron Subsystem

	CHAPTER 16. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
	16.1. ABOUT JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI) SECURITY
	16.2. CONFIGURE JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI) SECURITY

	CHAPTER 17. JAVA BATCH APPLICATION DEVELOPMENT
	17.1. REQUIRED BATCH DEPENDENCIES
	17.2. JOB SPECIFICATION LANGUAGE (JSL) INHERITANCE
	Inherit Step and Flow Within the Same Job XML File
	Inherit a Step from a Different Job XML File

	17.3. BATCH PROPERTY INJECTIONS
	Injecting a Number into a Batchlet Class as Various Types
	Injecting a Number Sequence into a Batchlet Class as Various Arrays
	Injecting a Class Property into a Batchlet Class
	Assigning a Default Value to a Field Annotated for Property Injection

	CHAPTER 18. CONFIGURING CLIENTS
	18.1. CLIENT CONFIGURATION USING THE WILDFLY-CONFIG.XML FILE
	18.1.1. Client Authentication Configuration Using the wildfly-config.xml File
	authentication-client Elements and Attributes

	18.1.2. EJB Client Configuration Using the wildfly-config.xml File
	jboss-ejb-client Elements and Attributes
	Example EJB Client Configuration in the wildfly-config.xml File

	18.1.3. HTTP Client Configuration Using the wildfly-config.xml File
	18.1.4. Remoting Client Configuration Using the wildfly-config.xml File
	endpoint Elements and Attributes
	Example Remoting Client Configuration in the wildfly-config.xml File

	18.1.5. Default XNIO Worker Configuration Using the wildfly-config.xml File
	worker Elements and Attributes
	Example XNIO Worker Configuration in the wildfly-config.xml File

	CHAPTER 19. ECLIPSE MICROPROFILE
	19.1. USING ECLIPSE MICROPROFILE OPENTRACING TO TRACE REQUESTS
	19.1.1. Enable or Disable Tracing for CDI Beans
	19.1.2. Enable or Disable Tracing for JAX-RS Endpoints
	19.1.3. Implement a Custom Tracer

	19.2. USING ECLIPSE MICROPROFILE HEALTH TO MONITOR SERVER HEALTH
	19.2.1. Implement a Custom Health Check

	APPENDIX A. REFERENCE MATERIAL
	A.1. PROVIDED UNDERTOW HANDLERS
	AccessControlListHandler
	AccessLogHandler
	AllowedMethodsHandler
	BlockingHandler
	ByteRangeHandler
	CanonicalPathHandler
	DisableCacheHandler
	DisallowedMethodsHandler
	EncodingHandler
	FileErrorPageHandler
	HttpTraceHandler
	IPAddressAccessControlHandler
	JDBCLogHandler
	LearningPushHandler
	LocalNameResolvingHandler
	PathSeparatorHandler
	PeerNameResolvingHandler
	ProxyPeerAddressHandler
	RedirectHandler
	RequestBufferingHandler
	RequestDumpingHandler
	RequestLimitingHandler
	ResourceHandler
	ResponseRateLimitingHandler
	SetHeaderHandler
	SSLHeaderHandler
	StuckThreadDetectionHandler
	URLDecodingHandler

	A.2. PERSISTENCE UNIT PROPERTIES
	A.3. POLICY PROVIDER PROPERTIES
	A.4. JAVA EE 8 PROFILES AND TECHNOLOGIES REFERENCE

