
Red Hat JBoss Enterprise
Application Platform 7.1

How To Set Up SSO with SAML v2

For Use with Red Hat JBoss Enterprise Application Platform 7.1

Last Updated: 2018-10-11

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up
SSO with SAML v2
For Use with Red Hat JBoss Enterprise Application Platform 7.1

Legal Notice
Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative
Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of
CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it,
you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
The intent of this guide is to provide a deeper dive into what SSO with SAML v2 is, as
well as how to set up and configure it within Red Hat JBoss Enterprise Application
Platform (JBoss EAP). Before reading this guide, users should read through the JBoss
EAP Security Architecture guide and have a solid understanding of the SSO and SAML
v2 information presented in that guide. When completing this guide, you should have a
solid, working understanding of SSO and SAML v2, how it relates to JBoss EAP, and how
to configure it.

. .

. .

Table of Contents
CHAPTER 1. SSO WITH SAML V2 DEEPER DIVE

1.1. WHAT IS SAML V2?
1.1.1. Building Blocks

1.1.1.1. Entities
1.1.1.2. Security Assertions
1.1.1.3. Protocols
1.1.1.4. Bindings
1.1.1.5. Profiles

1.2. HOW DOES SAML V2 WORK WITH SSO
1.2.1. Web Browser SSO Profile
1.2.2. Global Logout Profile
1.2.3. Multiple IDPs and the Identity Discovery Profile

1.3. FURTHER READING

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2
2.1. COMPONENTS
2.2. IDP AND SP SETUP AND CONFIGURATION

2.2.1. Setting up an IDP
2.2.2. Setting up an SP
2.2.3. Using SP-initiated Flow
2.2.4. Using IDP-Initiated Flow

2.2.4.1. Walkthrough
2.2.4.2. Hosted Section
2.2.4.3. Linking to SPs

2.2.5. Configuring the Global Logout Profile
2.2.6. Using Local Logout

2.3. CONFIGURING IDPS AND SPS VIA THE FEDERATION SUBSYSTEM
2.3.1. Configuring the Subsystem
2.3.2. Setting up a Federation

2.3.2.1. Preparing the SP and IDP Applications
2.3.2.2. Creating a Federation Using the Management Console
2.3.2.3. Creating a Federation Using the Management CLI
2.3.2.4. Reference of Attributes for the Federation Subsystem

2.4. CONFIGURING IDENTITY STORES FOR IDPS
2.5. CONFIGURING SSL/TLS WITH SPS AND IDPS

2.5.1. Enable One-way SSL/TLS for Applications Using Legacy Security Realms
2.6. CONFIGURING AN IDENTITY PROVIDER TO USE CERTIFICATE-BASED AUTHENTICATION
2.7. CONFIGURING AN IDENTITY PROVIDER TO USE KERBEROS AUTHENTICATION
2.8. CHANGES FROM PREVIOUS VERSIONS OF JBOSS EAP

2.8.1. Valve and Valve Configuration Changes
2.8.2. Dependency Declaration Changes
2.8.3. Authenticator Changes
2.8.4. Dynamic Account Chooser Changes

2.9. ADDITIONAL FEATURES
2.9.1. SAML Assertion Encryption
2.9.2. Digital Signatures in Assertions
2.9.3. Configuring a Dynamic Account Chooser
2.9.4. Handling AJAX Requests

3
3
3
3
3
4
4
4
4
5
6
7
7

8
8
8
8

14
19
20
20
20
20
21
21
22
22
23
23
24
25
25
31
35
35
36
37
41
41
42
42
43
43
43
46
49
51

Table of Contents

1

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

2

CHAPTER 1. SSO WITH SAML V2 DEEPER DIVE
The basics of SSO and SAML are covered in the JBoss EAP Security Architecture guide. This
section takes a deeper dive into the components involved in SAML v2 and SSO.

1.1. WHAT IS SAML V2?
Security Assertion Markup Language, or SAML, is a data format and protocol that allows two
parties, usually an identity provider and a service provider, to exchange authentication and
authorization information. This information is exchanged in the form of SAML tokens that
contain assertions, and are issued by Identity Providers to subjects for authenticating with
Service Providers. The ability for subjects to use and reuse SAML tokens issued from an
identity provider with multiple service providers allow SAML v2 to facilitate browser-based
SSO.

1.1.1. Building Blocks
The most important concept to keep in mind with SAML is that its all about passing security
assertions between entities. SAML has several components it uses to accomplish this task.

1.1.1.1. Entities

Entities are all parties involved in creating and passing assertions. SAML has the concept of
three distinct entities:

subject
The subject, also referred to as the principal, which is the user in most cases, is
requesting access to a resource on a service provider, which is secured by SAML.

service provider
The service provider, or SP, requires proof, as an assertion, of the subject 's identity,
which it needs from the identity provider.

identity provider
The identity provider, or IDP, provides a set of assertions, in the form of a token
about a subject, that can be used in authentication and authorization decisions by
service providers.

In summary, subjects get issued assertions, identity providers issue those assertions,
and service providers use those assertions to authenticate and authorize subjects.

1.1.1.2. Security Assertions

A security assertion is a set of statements issued by an identity provider about a subject.
Service providers use these assertions to make access-control decisions about a subject.
Statements can take the following forms:

Authentication
Authentication assertions assert that a subject successfully authenticated using a
specified method at a specific point in time. An authentication context containing other
information about the authenticated subject can also be specified in an authentication
statement.

Attribute
Attribute assertions assert that a subject has certain attributes.

CHAPTER 1. SSO WITH SAML V2 DEEPER DIVE

3

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#single_sign_on

Authorization Decision
Authorization Decision assertions assert a response, accept or deny, to an
authorization request for a subject on a resource.

Example

This user logged in as Sarah at 9:30 using a username and password. Sarah
is a member of the Managers group. Sarah is accepted to access the
Employee Information resource.

The statement This user logged in as Sarah at 9:30 using a username and
password is an Authentication assertion.

The statement Sarah is a member of the Managers group is an Attribute
assertion.

The statement Sarah is accepted to access the Employee Information
resource is an Authorization Decision assertion.

Assertions are packaged as SAML tokens and transported using SAML protocols.

1.1.1.3. Protocols

A SAML protocol describes how assertions are packaged, usually in the form of a request
and response, as well as the rules on the correct way to process them. These rules must be
followed by both the producers and consumers of the requests and responses. A request
can ask for specific, known assertions or query identity providers for authentication,
attribute, or authorization decisions. The request and response messages, which include
security assertions, are formatted in XML and adhere to a specified schema.

1.1.1.4. Bindings

SAML bindings specify how SAML protocols map to other standard protocols used for
transport and messaging. Some examples include:

A SAML binding that maps to an HTTP redirect.

A SAML binding that maps to an HTTP POST.

A SAML binding that maps SAML requests/responses to SOAP requests and
responses.

1.1.1.5. Profiles

SAML profiles use assertions, protocols, and bindings to support specific use cases, such as
Web Browser SSO, Single Logout, and Assertion Query.

1.2. HOW DOES SAML V2 WORK WITH SSO
The basics of browser-based SSO with SAML v2 are covered in the JBoss EAP Security
Architecture guide, specifically in the Browser-Based SSO Using SAML and Multiple Red Hat
JBoss Enterprise Application Platform Instances and Multiple Applications Using Browser-
Based SSO with SAML sections. This section gives a more in-depth explanation regarding
the SAML profiles and bindings related to browser-based SSO with SAML v2.

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

4

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#browser_based_sso_using_saml
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#multiple_red_hat_jboss_enterprise_application_platform_instances_and_multiple_applications_using_browser_based_sso_with_saml

1.2.1. Web Browser SSO Profile
The Web Browser SSO profile specifies the way an IDP, SP, and principal, in the form of a
browser agent, handle browser-based SSO. Both the SP and IDP have several bindings that
each can be used in the Web Browser SSO profile, allowing many possible flows.
Additionally, this profile supports message flows initiated from either the IDP or SP. This
profile also supports the IDP pushing the SAML assertion to the SP, or the SP pulling the
assertion from the IDP. Flows initiated from either the SP or IDP are explained at a high
level in the JBoss EAP Security Architecture guide. SAML assertions pushed from the IDP
utilize HTTP POST messages or HTTP redirects. SAML assertions that are pulled by SPs
involve sending an artifact to the receiver, which is then dereferenced to obtain the
assertions.

The basic flow of the Web Browser SSO profile is as follows:

1. Principal HTTP request to SP.
The principal first attempts to access a secured resource at the SP using an HTTP
User Agent, for example a browser. If the principal has already been issued a SAML
token with a valid security context, the SP will allow or decline the principal. This is
the last step. Otherwise, the SP will attempt to locate the IDP for the authentication
request.

2. SP determines IDP.
The SP locates the IDP and its endpoint that supports the SP’s preferred binding.
This allows the SP to send an authentication request to the IDP. The specific means
of this process can vary between implementations.

3. Authentication Request issued from SP to IDP using the principal.
Once the SP determines the IDP location and endpoint, the SP issues an
Authentication Request in the form of an <AuthnRequest> message, which will be
delivered by the user agent, principal to the IDP. The HTTP Redirect, HTTP POST, or
HTTP Artifact SAML bindings can be used to transfer the message to the IDP using
the user agent.

4. IDP identifies principal.
Once the Authentication Request is delivered to the IDP by the principal, the
principal will be identified by the IDP. The identification method is not specifically
defined by the Web Browser SSO profile and may be accomplished in a number of
ways, for example authentication using FORM, using existing session information,
kerberos authentication, etc.

5. IDP issues Response to SP.
Once the principal is identified, the IDP issues a Response in the form of a
<Response> message, to be delivered back to the SP for granting or declining
access by the principal using the user agent. This message will contain at least one
authentication assertion and can also be used to indicate errors. HTTP POST or HTTP
Artifacts can be used to transfer this message, but HTTP Redirect cannot be used
due to URL length constraints with most user agents. If the user agent initiated an
IDP-based flow, for example by attempting to access the IDP directly instead of an
SP, the process would begin at this step. If successful, the HTTP POST or HTTP
Artifact will be sent to a location, which is pre-configured in the IDP.

6. SP allows or declines access to principal.
Once the SP receives the Response, it may grant access for the requested resource
to the principal by creating a security context, or it may deny access, or do its own
error handling.

CHAPTER 1. SSO WITH SAML V2 DEEPER DIVE

5

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#browser_based_sso_using_saml

NOTE

JBoss EAP does not support the SAML artifact binding.

HTTP REDIRECT VS. POST BINDINGS

HTTP Redirect bindings make use of HTTP GET requests and the URL query
parameters to transmit protocol messages. Messages sent in this manner are
also URL and Base-64 encoded before being sent and decoded by the receiver.
HTTP POST bindings send messages using form data, and also do a base-64
encode/decode on the message. Both SPs and IDPs can transmit and receive
messages using redirect or POST bindings. Due to the limitation of URL lengths
in certain scenarios, HTTP Redirect is usually used when passing short
messages, and HTTP POST is used when passing longer messages.

1.2.2. Global Logout Profile
The Global Logout Profile allows a principal, who has authenticated with a set of IDPs and
SPs, to log out and have that assertion be propagated to one or more associated IDPs and
SPs.

When a principal authenticates with an IDP, the principal and IDP have established an
authentication session. The IDP may then issue assertions to various SPs, or relying parties,
based on that authentication. From there if the principal attempts to access a secured
resource within those SPs, the SPs may choose to establish additional sessions with the
principal based on that assertion issued from the IDP, hence relying on the IDP.

Once a session or set of sessions is created, a principal might be logged out of sessions
individually using various means, or they can use the Global Logout Profile to logout of all
sessions and from all SPs and IDPs at once. The Global Logout Profile can use the HTTP
Redirect, HTTP POST or HTTP Artifact bindings in its flow. It can also use SOAP binding in
certain cases which are not in the scope of this document.

NOTE

Single Logout Profile can be used as a synonym to Global Logout Profile.

NOTE

JBoss EAP does not support the SAML artifact binding.

As with the Web Browser SSO profile flow, the Global Logout Profile flow may be initiated
either at the IDP or the SP.

The basic flow of the Global Logout Profile is as follows:

1. Logout issued to IDP by Session Participant.
A session participant, such as Service Providers or other relying parties, terminates
its own session with the principal and sends a Logout Request, in the form of a
<LogoutRequest> message, to the IDP that initially issued the security assertion for
the principal. This request can be sent directly between the IDP and relying party, or
indirectly by using the principal’s user agent as a pass through.

2. IDP identifies Session Participant.
Once the IDP receives the Logout Request, it uses that request to determine what

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

6

sessions to terminate with which relying parties, including any sessions the IDP
owns as a session authority or session participant. For each session, the IDP issues a
Logout Request to the relying party and waits for a Logout Response from each
party before issuing a new Logout Response back to the original session participant.
In cases where the Global Logout Profile flow was initiated at the IDP, the flow
begins at this step, and some other mechanism is used to determine the sessions
and SPs.

3. Logout issued by IDP.
Once the IDP determines all of the sessions and associated relying parties, it sends a
Logout Request, in the form of a <LogoutRequest> message, to each relying party
and awaits a Logout Response. These requests may be sent directly between the IDP
and the relying parties, or indirectly through the principal’s user agent.

4. Logout response issued by Session Participant or Authority.
Each relying party, including the IDP itself in some cases, attempts to terminate the
session as directed by the IDP in the Logout Request, and returns a Logout
Response in the form of a <LogoutResponse> message, back to the IDP. As with the
Logout Request, the response can be issued directly between the relying party and
the IDP, or indirectly through the principal’s user agent.

5. IDP issues Logout response to original Session Participant.
Once all the Logout Responses has been received from the relying parties, the IDP
sends a new Logout Response, in the form of a <LogoutResponse> message, back to
original session participant who requested the logout. As with the other parts of this
flow, this response can be passed directly between the IDP and the session
participant, or indirectly through the principal’s user agent. In cases where the
Logout Request was initiated at the IDP, this step is omitted.

NOTE

The direct communication between the IDP and SP portion of the Global
Logout Profile is not supported in JBoss EAP.

1.2.3. Multiple IDPs and the Identity Discovery Profile
Browser-based SSO using SAML v2 also supports having multiple IDPs, and can be used in
both the Web Browser SSO profile as well as the Global Logout profile. In cases where
multiple IDPs are configured, the Identity Discovery SAML profile is used to determine
which IDP a principal uses. This is accomplished by reading and writing cookies with domain
information and a list of IDPs.

1.3. FURTHER READING
For full details on the SAML v2, see the official SAML 2.0 specification.

CHAPTER 1. SSO WITH SAML V2 DEEPER DIVE

7

https://www.oasis-open.org/standards#samlv2.0

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

IMPORTANT

Setting up SSO with SAML v2 using Picketlink is deprecated. Going forward,
you should use Red Hat Single Sign-On, which supports OAuth and OpenID
Connect as well as SAML. You can find more information on how to configure
SSO with Red Hat Single Sign-On in the Securing Applications and Services
Guide.

This section details the actual steps for setting up SSO with SAML v2 using JBoss EAP.

2.1. COMPONENTS
As covered in the Entities section as well as in the JBoss EAP Security Architecture guide,
there are three entities, or parties, involved in browser-based SSO using SAML v2:

A principal using a user agent (browser) to request access to a secured resource.

A service provider housing the secured resource.

An identity provider which issues security assertions to principals, allowing them to
access secured resources on service providers.

In addition, the following is needed to support browser-based SSO using SAML v2:

Separate web applications serving as SPs and IDPs

JBoss EAP instances to host the SPs and IDPs

Security Domains to support the SPs and IDPs

2.2. IDP AND SP SETUP AND CONFIGURATION
This section covers setting up an application to be either an SP or IDP, as well as setting up
a JBoss EAP instance to host those applications.

2.2.1. Setting up an IDP
To set up an application to serve as an IDP, the following steps must be performed:

NOTE

The security domain should be created and configured before creating and
deploying the application.

1. Create a security domain for an IDP.
The IDP handles challenging a principal for their credentials, handling the
authentication and authorization of that principal, and issuing the proper SAML v2
security assertions based on the result. This requires that an identity store be
configured using a security domain. The only requirement around creating this
security domain and identity store is that it has authentication and authorization
mechanisms properly defined. This means that many different identity stores — for

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

8

https://access.redhat.com/documentation/en/red-hat-single-sign-on/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html-single/securing_applications_and_services_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#single_sign_on_sso

example, properties file, database, or LDAP — and their associated login modules,
could be used to support an IDP application. For more information on security
domains, see the Security Domains section of the JBoss EAP Security Architecture
guide.

The following example uses a simple UsersRoles login module using properties files.

Management CLI Commands for Creating a Security Domain

/subsystem=security/security-domain=idp:add(cache-type=default)

/subsystem=security/security-domain=idp/authentication=classic:add

/subsystem=security/security-
domain=idp/authentication=classic/login-
module=UsersRoles:add(code=UsersRoles,flag=required,module-options=
[usersProperties=${jboss.server.config.dir}/idp-
users.properties,rolesProperties=${jboss.server.config.dir}/idp-
roles.properties])

reload

The UsersRoles login module utilizes properties files to store the user/password and
user/role information. For more information on the UsersRoles module, see the
JBoss EAP Login Module Reference. In this example, the properties files contain the
following:

idp-users.properties

idp-roles.properties

2. Configure the web.xml file for an IDP.
The web.xml file for an IDP must contain the following:

A <security-constraint> with a <web-resource-collection> containing a
<url-pattern> that maps to the URL pattern of the secured area. Optionally,
<security-constraint> can also contain an <auth-constraint> stipulating the
allowed roles.

A <login-config> configured for FORM authentication.

If any roles were specified in <auth-constraint>, those roles should be defined
in a <security-role>.

Optionally, resources used by the login form, for example images and styles, can
be specified by an additional security constraint to be unsecured so they can be
accessed prior to authentication, for example on the login page.

Eric=samplePass
Alan=samplePass

Eric=All
Alan=

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

9

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#security_domains
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/login_module_reference/#userroles_login_module

The <security-constraint> and <security-role> elements enable administrators
to setup restricted or unrestricted areas based on URL patterns and roles. This
allows resources to be secured or unsecured.

The <login-config> tag defines the login and error pages used by the IDP when
authenticating users.

Example web.xml file:

NOTE

It is recommended that a welcome page is defined in the application.
By default, JBoss EAP will look for a file named index.jsp, but this can
be configured using <welcome-file-list> in web.xml.

Example login.jsp file:

<web-app>
 <display-name>IDP</display-name>
 <description>IDP</description>
 <!-- Define a security constraint that gives unlimited access to
images -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Images</web-resource-name>
 <url-pattern>/images/*</url-pattern>
 </web-resource-collection>
 </security-constraint>
 <!-- Define a security constraint that requires the All role to
access resources -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>IDP</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>All</role-name>
 </auth-constraint>
 </security-constraint>
 <!-- Define the Login Configuration for this Application -->
 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>IDP Application</realm-name>
 <form-login-config>
 <form-login-page>/jsp/login.jsp</form-login-page>
 <form-error-page>/jsp/error.jsp</form-error-page>
 </form-login-config>
 </login-config>
 <!-- Security roles referenced by this web application -->
 <security-role>
 <description>The role that is required to log in to the IDP
Application</description>
 <role-name>All</role-name>
 </security-role>
</web-app>

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

10

Example error.jsp file:

3. Configure the authenticator for an IDP.
The authenticator is responsible for the authentication of users and for issuing and
validating SAML v2 security assertions. Part of the authenticator is configured in the
jboss-web.xml file by defining the security domain to be used in authenticating and
authorizing principals (see Step 1). You also must ensure that a <login-config> is
specified in the web.xml and the necessary dependencies have been declared.

The jboss-web.xml file must have the following:

A <security-domain> to specify which security domain to use for authentication
and authorization.

Example jboss-web.xml File

4. Declare the necessary dependencies for an IDP.
The web application serving as the IDP requires a dependency to be defined in
jboss-deployment-structure.xml, so that the org.picketlink classes can be
located. JBoss EAP provides all necessary org.picketlink and related classes, and
the application only needs to declare them as dependencies to use them.

<html>
 <head></head>
 <body>
 <form id="login_form" name="login_form" method="post"
action="j_security_check" enctype="application/x-www-form-
urlencoded">
 <center> <p>Welcome to the IDP</p> <p>Please login to
proceed.</p> </center>
 <div style="margin-left: 15px;">
 <p> <label for="username">Username</label>
 <input
id="username" type="text" name="j_username"/> </p>
 <p> <label for="password">Password</label>
 <input
id="password" type="password" name="j_password" value=""/> </p>
 <center> <input id="submit" type="submit" name="submit"
value="Login"/> </center>
 </div>
 </form>
 </body>
</html>

<html>
 <head></head>
 <body>
 <p>Login failed, please go back and try again.</p>
 </body>
</html>

<jboss-web>
 <security-domain>idp</security-domain>
 <context-root>identity</context-root>
</jboss-web>

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

11

Using jboss-deployment-structure.xml to Declare Dependencies

NOTE

In previous versions of JBoss EAP, you would have declared this same
dependency, but would have declared a valve to install the SAML
authenticators. With the introduction of Undertow in JBoss EAP 7, you
now use services="import" to install the SAML authenticators.

5. Create and configure a picketlink.xml file for an IDP.
The picketlink.xml file is responsible for the behavior of the Authenticator and is
loaded at the application’s startup.

The file must contain at least the following elements:

<PicketLinkIDP> defining the URL of the IDP, using <IdentityURL>, and any
hosts trusted by the IDP.

<Handlers> defining the set of handlers needed for processing the SAML
requests and responses.

Example picketlink.xml File

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.picketlink" services="import"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkIDP xmlns="urn:picketlink:identity-
federation:config:2.1">

<IdentityURL>${idp.url::http://localhost:8080/identity/}</IdentityUR
L>
 <Trust>
 <Domains>localhost,example.com</Domains>
 </Trust>
 </PicketLinkIDP>
 <Handlers xmlns="urn:picketlink:identity-
federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Is
suerTrustHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Lo
gOutHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Au
thenticationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGe

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

12

WARNING

Handlers are implemented using a Chain of Responsibility, with
each individual handler performing logic on request and responses
in the order defined in picketlink.xml. It is very important to
pay attention to the order in which the handlers are configured.

By default, picketlink.xml is located in the WEB-INF directory of the IDP web
application. However, a custom path to picketlink.xml that is external to the
application can be configured. This is useful in cases where multiple applications
across one or more JBoss EAP instances share the same picketlink.xml
configuration.

6. Optional: Setting a custom location for picketlink.xml
You can specify a custom location for the picketlink.xml using the CONFIG_FILE
parameter. This is done by adding a <context-param> element to the web.xml.

Using the CONFIG_FILE Parameter

You can also use the org.picketlink.federation.saml.CONFIG_PROVIDER
parameter to specify a custom configuration provider. This allows you to create a
custom implementation that extends
org.picketlink.identity.federation.web.util.SAMLConfigurationProvider
to provide your own configuration logic.

Using the org.picketlink.federation.saml.CONFIG_PROVIDER Parameter

NOTE

The management CLI commands shown assume that you are running a
JBoss EAP standalone server. For more details on using the
management CLI for a JBoss EAP managed domain, see the JBoss EAP
Management CLI Guide.

nerationHandler" />
 </Handlers>
</PicketLink>

<context-param>
 <param-name>CONFIG_FILE</param-name>
 <param-value>/path/to/picketlink.xml</param-value>
</context-param>

<context-param>
 <param-name>org.picketlink.federation.saml.CONFIG_PROVIDER</param-
name>
 <param-value>MyConfigurationProvider</param-value>
</context-param>

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

13

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/management_cli_guide/

2.2.2. Setting up an SP
To set up an application to serve as an SP, the following steps must be performed:

NOTE

The security domain must be created and configured before creating and
deploying the application.

1. Configure a security domain for an SP.
Since the IDP handles challenging the user for their credentials and issuing SAML v2
security assertions, the SP is in charge of validating those assertions. A security
domain is still needed to perform this validation, but an identity store is not. In this
case, the security domain for the SP must use SAML2LoginModule.

Management CLI Commands for Adding Security Domain

/subsystem=security/security-domain=sp:add(cache-type=default)

/subsystem=security/security-domain=sp/authentication=classic:add

/subsystem=security/security-domain=sp/authentication=classic/login-
module=org.picketlink.identity.federation.bindings.jboss.auth.SAML2L
oginModule:add(code=org.picketlink.identity.federation.bindings.jbos
s.auth.SAML2LoginModule,flag=required)

reload

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

14

WARNING

The SAML2LoginModule is intended for use only with applications
using PicketLink with SAML, and should not be used without the
PicketLink Service Provider Undertow ServletExtension
(org.picketlink.identity.federation.bindings.wildfly.sp.
SPServletExtension). Doing so presents a possible security risk,
as SAML2LoginModule or SAML2CommonLoginModule will always
accept the default password of EMPTY_STR. For example, this can
also occur if the PicketLink Service Provider Undertow
ServletExtension is not installed in the SP application. The
PicketLink Service Provider Undertow ServletExtension is installed
automatically when configuring the SP application for JBoss EAP.
This can also occur if SAML2LoginModule is stacked with other
login modules:

SAML2LoginModule is used to build a security context for a user based on assertions.
The PicketLink SAML Authenticator, which is installed by the PicketLink Service
Provider Undertow ServletExtension
(org.picketlink.identity.federation.bindings.wildfly.sp.SPServletExtens
ion), uses SAML2LoginModule and allows for authentication decisions to be deferred
to an IDP, which is configured in the SP’s picketlink.xml.

The authenticator is responsible for the authentication of principals based on the
security assertions, in this case SAML assertions, issued by the IDP. They intercept
each request made to the application, check if a SAML assertion is present in the
request, validate the assertions, execute principal’s SAML specific validations, and
create a security context for the principal in the requested application.

Part of the authenticator is configured in the jboss-web.xml file by defining the
security domain to be used in authenticating and authorizing principals. You also
must ensure that a <login-config> is specified in the web.xml and the necessary

<security-domain name="sp" cache-type="default">
 <authentication>
 <login-module
code="org.picketlink.identity.federation.bindings.jbo
ss.auth.SAML2LoginModule" flag="optional">
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 <login-module code="UsersRoles" flag="required">
 <module-option name="usersProperties"
value="users.properties"/>
 <module-option name="rolesProperties"
value="roles.properties"/>
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 </authentication>
</security-domain>

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

15

dependencies have been declared, which are done in later steps.

The jboss-web.xml file for an SP must have the following:

A <security-domain> to specify which security domain to use for authentication
and authorization.

Example jboss-web.xml File

2. Configure the web.xml file for an SP.
The web.xml file for an SP must contain the following:

A <security-constraint> with a <web-resource-collection> containing a
<url-pattern> that maps to the URL pattern of the secured area. Optionally,
<security-constraint> can also contain an <auth-constraint> stipulating the
allowed roles.

If any roles were specified in the <auth-constraint>, those roles should be
defined in a <security-role>.

A <login-config> with an <auth-method> specifying FORM authentication. This is
required for the SAML authenticators.

Example web.xml File

<jboss-web>
 <security-domain>sp</security-domain>
 <context-root>sales-post</context-root>
</jboss-web>

<web-app>
 <display-name>SP</display-name>
 <description>SP</description>
 <!-- Define a Security Constraint on this Application -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>SP</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>All</role-name>
 </auth-constraint>
 </security-constraint>
 <!-- Security roles referenced by this web application -->
 <security-role>
 <description> The role that is required to log in to the SP
Application </description>
 <role-name>All</role-name>
 </security-role>
 <!-- Define the Login Configuration for this Application -->
 <login-config>
 <auth-method>FORM</auth-method>
 </login-config>
</web-app>

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

16

NOTE

It is recommended that you define a welcome page in the application.
By default, JBoss EAP looks for a file named index.jsp but this can be
configured using the <welcome-file-list> in web.xml.

The logout process attempts to redirect principals to logout.jsp on
successful logout. Ensure this file is defined at the root directory of the
application.

3. Declare the necessary dependencies for an SP.
The web application serving as the SP requires a dependency to be defined in
jboss-deployment-structure.xml, so that the org.picketlink classes can be
located. JBoss EAP provides all necessary org.picketlink and related classes, and
the application only needs to declare them as dependencies to use them.

Using jboss-deployment-structure.xml to Declare Dependencies

NOTE

In previous versions of JBoss EAP, you would have declared this same
dependency, but would have declared a valve to install the SAML
authenticators. With the introduction of Undertow in JBoss EAP 7, you
do not need to manually configure your deployments with the
PicketLink SAML Authenticators. Now, they are configured
automatically when you define use services="import" with the
org.picketlink dependency. You must declare this configuration to
enable SAML to your deployment.

4. Create and Configure a picketlink.xml File for an SP.
The picketlink.xml file is responsible for the behavior of the Authenticator, and is
loaded at the application’s startup.

The file must contain at least the following elements:

<PicketLinkSP> defining the URL of the IDP (<IdentityURL>) and the URL the
SP (<ServiceURL>).

<Handlers> defining the set of handlers needed for processing the SAML
requests and responses.

Example picketlink.xml File

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.picketlink" services="import"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkSP xmlns="urn:picketlink:identity-
federation:config:2.1" BindingType="POST">

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

17

NOTE

While not recommended, the SP may also be configured to use
HTTP/REDIRECT by changing BindingType="POST" to
BindingType="REDIRECT".

WARNING

Handlers are implemented using a Chain of Responsibility, with
each individual handler performing logic on request and responses
in the order defined in picketlink.xml. It is very important to
pay attention to the order in which the handlers are configured.

By default, picketlink.xml is located in the WEB-INF directory of the SP web
application; however, a custom path to picketlink.xml that is external to the
application can be configured. This is useful in cases where multiple applications
across one or more JBoss EAP instances share the same picketlink.xml
configuration.

5. Optional: Setting a custom location for picketlink.xml.
You can specify a custom location for picketlink.xml using the CONFIG_FILE
parameter. This is done by adding a <context-param> element to web.xml.

Using the CONFIG_FILE Parameter

<IdentityURL>${idp.url::http://localhost:8080/identity/}</IdentityUR
L>
 <ServiceURL>${sales-post.url::http://localhost:8080/sales-
post/}</ServiceURL>
 </PicketLinkSP>
 <Handlers xmlns="urn:picketlink:identity-
federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Lo
gOutHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Au
thenticationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGe
nerationHandler" />
 </Handlers>
</PicketLink>

<context-param>
 <param-name>CONFIG_FILE</param-name>
 <param-value>/path/to/picketlink.xml</param-value>
</context-param>

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

18

You can also use the org.picketlink.federation.saml.CONFIG_PROVIDER
parameter to specify a custom configuration provider. This allows you to create a
custom implementation that extends
org.picketlink.identity.federation.web.util.SAMLConfigurationProvider
to provide your own configuration logic.

Using the org.picketlink.federation.saml.CONFIG_PROVIDER Parameter

NOTE

The management CLI commands shown assume that you are running a
JBoss EAP standalone server. For more details on using the
management CLI for a JBoss EAP managed domain, see the JBoss EAP
Management CLI Guide.

2.2.3. Using SP-initiated Flow
The SP-inited Flow is a common use case citied when describing browser-based SSO, and is
covered in the Browser-Based SSO Using SAML and Multiple Red Hat JBoss Enterprise
Application Platform Instances and Multiple Applications Using Browser-Based SSO with
SAML sections of the JBoss EAP Security Architecture guide. In summary, a principal
attempts to access a secured resource in a SP. The SP starts the flow by checking for a
principal’s security assertions and redirecting any unauthenticated principal to the IDP.
Upon successful authentication with the IDP, the principal is then redirected back to the
initial SP with their security assertions for the SP to validate and permit/deny access to the
original resource requested.

Walkthrough

1. A principal attempts to access secured resource on a SP.

2. SP performs a check on the principal. If the principal has not yet authenticated, they
need to be redirected to the IDP. If they have already authenticated, then all other
steps are skipped and the final step is performed.

3. The SP locates the IDP and issues an authentication request to the IDP using the
principal’s browser.

4. The IDP attempts to authenticate the principal, for example challenging them with a
login page, using the configured identity store.

5. After the principal is identified by the IDP, for example after a successful login, the
IDP issues a response, containing SAML v2 assertions with the principal’s security-
related information, to the SP using the principal’s browser.

6. The SP performs a check on the principal’s security assertions, and based on the
information contained in those assertions, the SP allows or denies access to the
requested resource.

<context-param>
 <param-name>org.picketlink.federation.saml.CONFIG_PROVIDER</param-
name>
 <param-value>MyConfigurationProvider</param-value>
</context-param>

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

19

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/management_cli_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#browser_based_sso_using_saml
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#multiple_red_hat_jboss_enterprise_application_platform_instances_and_multiple_applications_using_browser_based_sso_with_saml

This flow requires no additional steps or configuration for setup. All redirects are handled by
the configured SPs and IDPs, and links to both secured and unsecured resources require no
additional changes.

2.2.4. Using IDP-Initiated Flow
Most examples of browser-based SSO with SAML v2 use a SP-initiated flow, as covered in
the previous section. However, SAML v2 supports an additional flow: the IDP-initiated or
Unsolicited Response flow. In this scenario, the SP does not initiate the authentication flow
and receive a SAML response from the IDP. Instead, the flow starts on the IDP-side, and
once authenticated, the principal can choose a specific SP from a list and then get
redirected to its URL.

2.2.4.1. Walkthrough

1. Principal accesses the IDP.

2. The IDP, seeing that there is neither SAML request nor response, assumes an IDP-
first scenario using SAML.

3. The IDP challenges the principal to authenticate.

4. Upon authentication, the IDP shows the hosted section, where the principal is shown
a page that links to all the SP applications.

5. The principal chooses an SP application.

6. The IDP redirects the principal to the SP with a SAML assertion in the query
parameter. In the cases where the POST binding is used, the IDP sends the SAML
assertion to the service provider using an HTTP POST.

7. The SP checks the SAML assertion and provides access.

2.2.4.2. Hosted Section

The hosted section is a location to direct users after a successful authentication in the
IDP-initiated flow, or if a principal, who has already authenticated, attempts to access the
root of the IDP directly. By default, the hosted section is located at /hosted/, but may be
changed in the picketlink.xml file by adding the HostedURI attribute to the
<PicketLinkIDP> element:

2.2.4.3. Linking to SPs

When the user is authenticated, the IDP shows a page with links to all service provider
applications. A link will usually look like this:

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkIDP xmlns="urn:picketlink:identity-federation:config:2.1"
HostedURI="/hosted/">
 ...
 </PicketLinkIDP>
</Picketlink>

<a href="http://localhost:8080/identity?
SAML_VERSION=2.0&TARGET=http://localhost:8080/sales-post/">Sales

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

20

Note that the link above redirects the user to the IDP passing the TARGET query parameter,
whose value is the URL to the target SP application. When the user clicks the link above,
the IDP extracts the TARGET parameter from the request, builds a SAML v2 response, and
redirects the user to the target URL. When the user hits the SP, they are automatically
authenticated. The SAML_VERSION query parameter is used to specify the SAML version that
must be used by the IDP to create the SAML response.

2.2.5. Configuring the Global Logout Profile
A Global Logout Profile initiated at one service provider, logs out the user from the Identity
Provider (IDP) and all the service providers.

NOTE

For a Global Logout Profile to function appropriately, ensure that only up to
five SPs are configured per IDP.

1. Configure picketlink.xml.
Add the SAML2LogOutHandler in the picketlink.xml.

2. Create a logout.jsp page.
As part of the logout process, the user is redirected to a logout.jsp page located in
the root directory of the service provider application. Ensure that this page is
created.

Example logout.jsp

3. Configure Global Logout Profile links for the SPs.
Use GLO=true as a URL parameter in a link to an SP resource to initiate the Global
Logout Profile process.

Example Logout Link

2.2.6. Using Local Logout
In addition to Global Logout Profile, Local Logout can also be used. Local Logout, in contrast
to Global Logout Profile, logs a principal out of a single SP while leaving the session at the
IDP and other SPs intact. Essentially, Local Logout allows principals to be "locally logged
out" at a single SP.

The process for using Local Logout is essentially the same as Global Logout Profile, with the
URL parameter in the logout link taking the form of LLO=true.

<html>
 <head></head>
 <body>
 <p>You have successfully logged out.</p>
 </body>
</html>

Click to log out

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

21

Example Logout Link

When a principal clicks on the Local Logout link at the SP, the SP will invalidate their
session and forward the principal to the configured logout page.

WARNING

When a principal is only disconnected from one service provider, they still
have an active session with the IDP and other SPs that might allow them
to still access secured resources. While this behavior may be desired in
certain circumstances, it is strongly recommended to use Global Logout
in most scenarios.

2.3. CONFIGURING IDPS AND SPS VIA THE FEDERATION
SUBSYSTEM
In addition to configuring IDPs and SPs manually, SSO using SAML v2 may also be
configured using a JBoss EAP subsystem. This method of configuration is known as the
Domain Model, and allows all the configuration to reside centrally on the JBoss EAP instance
and not with the individual applications. This also enables the SSO configuration to be
created and updated using the JBoss EAP management interfaces, such as the
management console and management CLI.

Federations
When using the JBoss EAP subsystem to configure and deploy IDPs and SPs, they are
grouped together in a Federation. A Federation can be understood as a Circle of Trust.
A Circle of trust contains applications that share common configurations, including
certificates and SAML-specific configurations. It also contains domains that trust each other
to accurately document the processes used to identify a user, the type of authentication
system used, and any policies associated with the resulting authentication credentials.
Each federation has one IDP and many SPs. The federation also defines trust relationship
between SPs and IDPs, removing the need for each SP to individual track and maintain that
information.

2.3.1. Configuring the Subsystem
Before the subsystem can be used to setup federations, it needs to be enabled and
configured in JBoss EAP. The following steps are needed to enable and configure the
subsystem:

NOTE

It is recommended that you shut down the JBoss EAP instance before
performing these steps.

1. Update the extensions.

Click to log out

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

22

In the JBoss EAP configuration file, standalone.xml for standalone instances or
domain.xml for domains, add the org.wildfly.extension.picketlink extension:

2. Add the subsystems.
In the JBoss EAP configuration file, standalone.xml for standalone instances or
domain.xml for domains, add the jboss:domain:picketlink-federation:2.0
subsystem:

NOTE

Examples of configuration can also be found in
EAP_HOME/docs/examples/configs/standalone-picketlink.xml.

2.3.2. Setting up a Federation
Once the subsystem has been setup and configured, you can use the management
interfaces to configure federations. Before you can set up a federation using the subsystem,
you must prepare both the IDP and SP applications.

2.3.2.1. Preparing the SP and IDP Applications

As covered in the previous section, when configuring SSO using SAML v2 manually, the
following files are required to be created or updated:

web.xml

jboss-web.xml

picketlink.xml

jboss-deployment-structure.xml

When using the subsystem to set up federations for SSO using SAML v2, the vast majority
of the configuration happens from the management interfaces without having to update
any of those files. The only configuration that must be done to the application is to
configure the <security-constraint> and associated <security-role> in the web.xml file
of the IDPs and SPs. In addition, <login-config> in web.xml, as well as the login and error
pages must also be present in the IDP.

If an IDP or SP has already been configured as outlined in the previous section, the
following files will need to be removed:

jboss-web.xml

<extensions>
 ...
 <extension module="org.wildfly.extension.picketlink"/>
 ...
</extensions>

<profile>
 ...
 <subsystem xmlns="urn:jboss:domain:picketlink-federation:2.0"/>
 ...
</profile>

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

23

picketlink.xml

jboss-deployment-structure.xml

When the applications have been prepared, they must be deployed to the JBoss EAP
instance.

2.3.2.2. Creating a Federation Using the Management Console

When you have configured and deployed the applications, you can create a federation
using the JBoss EAP management console. To create a federation using the management
console:

1. Navigate to the management console using a web browser.

2. Click on the Configuration tab.

3. Click on Subsystems → PicketLink in the menu on the left side.

4. Click on the Add button in the Federation column to create a new federation.

a. Enter a name, identity provider, security domain, and URL for the federation, and
click Save. Ensure that Identity Provider matches the deployment name of
your application, and that you provide the full URL for the Url field.
For example, if you want IDP.war running at
http://localhost:8080/identity/ to be your identity provider, you must
enter IDP.war for Idenity Provider and http://localhost:8080/identity/
for Url.

5. Click on the federation you just created and click on the Add button in the Service
Provider column.

a. Enter a name, security domain, and URL for the service provider, and click Save.
Ensure that the Name matches the deployment name of the service provider,
and that you provide the full URL for the Url field.
For example, if you want SP.war running at http://localhost:8080/sales-
post/ to be your service provider, you must enter SP.war for Name and
http://localhost:8080/sales-post/ for Url.

6. Click on the View button in the federation.

7. Click on Trusted Domains on the left side.

8. Click on the Add button above the table.

a. Enter in the name of all the domains running service providers and identity
providers. For example, if you have a service provider running at
http://localhost:8080/sales-post/ and an identity provider running at
http://localhost:8080/identity/, you would add localhost:8080 as a
trusted domain.

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

24

http://localhost:8080/identity/
http://localhost:8080/identity/
http://localhost:8080/sales-post/
http://localhost:8080/sales-post/
http://localhost:8080/sales-post/
http://localhost:8080/identity/

NOTE

You can view the details of either the federation, including the IDP, or the SP,
by clicking on the View button next to the appropriate row in the Federation
or Service Provider column. The details section can be used to configure
additional details or make updates to an existing IDP or SP.

NOTE

When you make configuration changes to any IDPs or SPs within a federation,
including any security domains used by the IDPs or SPs, you should restart the
affected IDPs and/or SPs.

2.3.2.3. Creating a Federation Using the Management CLI

The following commands show how an example federation called new-federation can be
added with the following information:

The identity provider IDP.war is deployed to the JBoss EAP instance at
http://localhost:8080/identity/

The service provider SP.war is deployed to the JBoss EAP instance at
http://localhost:8080/sales-post/

The security domains idp and sp have been configured correctly for the identity
provider and service provider respectively

To configure a federation using the management CLI, you must:

1. Add a new federation.

/subsystem=picketlink-federation/federation=new-federation:add

2. Add an identity provider to the federation.

/subsystem=picketlink-federation/federation=new-federation/identity-
provider=IDP.war:add(url="http://localhost:8080/identity/",security-
domain=idp)

3. Add a service provider to the federation.

/subsystem=picketlink-federation/federation=new-federation/service-
provider=SP.war:add(url="http://localhost:8080/sales-
post/",security-domain=sp)

4. Add a trust domain to the federation.

/subsystem=picketlink-federation/federation=new-federation/identity-
provider=IDP.war/trust-domain="localhost:8080":add

2.3.2.4. Reference of Attributes for the Federation Subsystem

The picketlink-federation subsystem has the following structure:

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

25

http://localhost:8080/identity/
http://localhost:8080/sales-post/

federation

saml

key-store

keys

key

identity-provider

trust

trust-domain

role-generator

attribute-manager

handlers

handler

handler-parameter

service-providers

service-provider

handlers

handler

handler-parameter

Example Federation Subsystem

<subsystem xmlns="urn:jboss:domain:picketlink-federation:2.0">
 <federation name="federation-redirect-with-signatures">
 <key-store file="/jbid_test_keystore.jks" password="store123" sign-
key-alias="servercert" sign-key-password="test123">
 <keys>
 <key name="servercert"
host="${jboss.bind.address:localhost},127.0.0.1"/>
 </keys>
 </key-store>
 <identity-provider name="idp-redirect-sig.war"
url="http://${jboss.bind.address:127.0.0.1}:8080/idp-redirect-sig/"
security-domain="idp" support-signatures="true" strict-post-
binding="false">
 <trust>
 <trust-domain name="${jboss.bind.address:127.0.0.1}"/>
 </trust>
 <handlers>
 <handler class-name="com.mycompany.CustomHandler">
 <handler-parameter name="param1" value="paramValue1"/>
 <handler-parameter name="param2" value="paramValue2"/>
 <handler-parameter name="param3" value="paramValue3"/>

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

26

Table 2.1. federation

Attribute Default Description

name The federation name.

saml
Defines the SAML type. This type defines all configurations about how SAML assertions are
processed and created.

Attribute Default Description

clock-skew 0 Defines the clock skew for SAML assertions.
The value must be specified in milliseconds.

token-timeout 5000 Defines the timeout for SAML assertions. The
value must be specified in milliseconds.

key-store
Defines the KeyStore type. This type defines how keystores are configured.

Attribute Default Description

password Defines the password for the keystore.

sign-key-alias Defines the alias to be used when signing
documents.

 </handler>
 </handlers>
 </identity-provider>
 <service-providers>
 <service-provider name="sp-redirect-sig1.war" security-domain="sp"
url="http://${jboss.bind.address:127.0.0.1}:8080/sp-redirect-sig1/" post-
binding="false" support-signatures="true">
 <handlers>
 <handler class-name="com.mycompany.CustomHandler">
 <handler-parameter name="param1" value="paramValue1"/>
 <handler-parameter name="param2" value="paramValue2"/>
 <handler-parameter name="param3" value="paramValue3"/>
 </handler>
 </handlers>
 </service-provider>
 <service-provider name="sp-redirect-sig2.war" security-domain="sp"
url="http://${jboss.bind.address:127.0.0.1}:8080/sp-redirect-sig2/" post-
binding="false" support-signatures="true"/>
 </service-providers>
 </federation>
</subsystem>

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

27

sign-key-password Defines the password for the sign-key-alias.

file Defines the file location.

relative-to One of the system-provided named paths,
such as jboss.home.dir, user.home,
user.dir, relative to which the absolute path
will be calculated for the path specified in the
file attribute.

Attribute Default Description

keys
Keys Configuration.

key
Defines a Key.

Attribute Default Description

name Defines the name or alias of a key in a given
keystore.

host A single or a comma separated list of strings
representing the host names validated by the
given key.

identity-provider
Defines the Identity Provider type.

Attribute Default Description

name A unique name for the Identity Provider. The
name must be the deployment unit name. For
example, idp.war.

url URL for this Identity Provider.

support-signatures false Indicates if signature is supported.

encrypt false Indicates if encryption is supported.

security-domain The name of a security-domain that will be
used to authenticate and authorize users. This
attribute is required if the IDP is not external.
See the external attribute for more details.

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

28

strict-post-binding true Indicates if the IDP should always respond
using HTTP POST binding.

external false Indicates if the configuration is a reference to a
external IDP.

support-metadata false Enable/Disable SAML Metadata Support.

ssl-authentication false Indicates if the identity provider should also
support HTTP CLIENT_CERT authentication.

Attribute Default Description

trust
Groups Trusted Domain Types.

trust-domain
Defines the Trusted Domain Type.

Attribute Default Description

name Defines the domain name.

cert-alias Defines the certificate alias for this domain.

role-generator
The RoleGenerator implementation that will be used to load roles and push them to SAML
assertions.

Attribute Default Description

name Defines the role generator name.

class-name The fully qualified name of the
RoleGenerator type.

code Defines an alias which maps to a built-in type.

module Defines the module to be used when loading
class-name.

attribute-manager
The AttributeManager implementation that will be used to load roles and push them to
SAML assertions.

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

29

Attribute Default Description

name Defines the attribute manager name.

class-name The fully qualified name of the
AttributeManager type.

code Defines an alias which maps to a built-in type.

module Defines the module to be used when loading
class-name.

handlers
Groups Handler Types.

handler
Defines the Handler Type.

Attribute Default Description

name Defines the handler name.

class-name Defines the handler class name.

code Defines an alias which maps to a built-in type.

handler-parameter
Defines the Handler Parameter Type.

Attribute Default Description

name Defines the parameter name.

value Defines the parameter value.

service-providers
Groups Service Provider types.

service-provider
Defines the Service Provider type.

Attribute Default Description

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

30

name Name for this instance. This name must be the
deployment unit name.

url URL for this Service Provider.

post-binding true Indicates which SAML Binding to use. If it is
true, HTTP POST binding will be used.
Otherwise HTTP REDIRECT binding will be
used.

strict-post-binding true Indicates which SAML Binding to use. If it is
true, HTTP POST binding will be used.
Otherwise HTTP REDIRECT binding will be
used.

support-signatures false Indicates if signature is supported.

support-metadata false Enable/Disable SAML Metadata Support.

security-domain Security Domain name used to authenticate
users.

error-page /error.jsp Defines a custom error page location.

logout-page /logout.js
p

Defines a custom logout page location.

Attribute Default Description

2.4. CONFIGURING IDENTITY STORES FOR IDPS
Since IDPs use security domains, the functionality of an IDP is independent from the actual
identity store that backs it. As a result, administrators have many options when configuring
security domains for IDPs. The specifics around security domains and login modules can be
found in the Security Subsystem section of the JBoss EAP Security Architecture guide. Just
as with setting up any login module for a security domain, please keep in mind that
different identity stores offer different functionality and performance tradeoffs.

The following steps are needed for setting up a security domain that uses an identity store:

NOTE

For the purposes of this document, the Database login module and LDAP login
module are shown as examples, but other identity stores and login modules
can also be configured for use with IDPs.

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

31

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#security_subsystem

NOTE

The management CLI commands shown assume that you are running a JBoss
EAP standalone server. For more details on using the management CLI for a
JBoss EAP managed domain, see the JBoss EAP Management CLI Guide.

1. Set up the identity store.
Before a security domain and login module can be configured to use an identity
provider, the identity provider, and sometimes a connection to that identity
provider, must be setup.

a. Configure the identity store for the Database Login Module.
The first item needed for a Database-backed identity store is a database for the
login module to use.

The following data points are needed:

Usernames

Passwords

Roles

Role Groups

The Database Login module requires the ability to create a query that maps
usernames to passwords, and a query that maps usernames to roles and role
groups. This information can be stored within the database in a variety of ways,
but creating a database with tables is not in the scope of this guide. For the
purposes of this example, it is assumed the following tables have been created:

Table 2.2. sso-users

username passwd

Sarah Testing123!

Table 2.3. sso-roles

username role

role-group Sarah

Sample SSO-Users

Creating datasources is not in the scope of this guide. For details on setting up a
datasource, see the Datasource Management section of the JBoss EAP
Configuration Guide.

For the purposes of this example, it is assumed that a datasource named idpDS
has been created, properly configured, and deployed to the JBoss EAP instance.
This datasource has a connection to the database storing the sso-users and
sso-roles tables.

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

32

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/management_cli_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/configuration_guide/#datasource_management

b. Configure the identity store for the LDAP login module.
A properly configured LDAP server is required prior to setting up the LDAP login
module. Unlike the Database login module, a datasource is not needed for
setting up the LDAP login module. The basics of LDAP and how it relates to JBoss
EAP security are covered in the JBoss EAP Security Architecture guide.

i. Set up an LDAP server.
Setting up an LDAP server is not in the scope of this guide. For the purposes
of this example, the LDAP server can be reached at
http://ldaphost.example.com:1389/.

ii. Example directory information.
The directory structure and organization of an LDAP server can vary greatly
depending on the use case and organizational needs. For the purposes of
this example, the below entries have been created, shown in LDIF format:

dn: dc=example,dc=com
objectclass: top
objectclass: dcObject
objectclass: organization
dc: example
o: Example
#=============================
dn: ou=People,dc=example,dc=com
objectclass: top
objectclass: organizationalUnit
ou: People
#=============================
dn: uid=jsmith,ou=People,dc=example,dc=com
objectclass: top
objectclass: uidObject
objectclass: person
uid: jsmith
cn: John
sn: Smith
userPassword: theduke
#=============================
dn: ou=Roles,dc=example,dc=com
objectclass: top
objectclass: organizationalUnit
ou: Roles
#=============================
dn: cn=Sample,ou=Roles,dc=example,dc=com
objectclass: top
objectclass: groupOfNames
cn: Sample
member: uid=jsmith,ou=People,dc=example,dc=com
description: the Sample group

2. Add the security domain.
Once the identity store itself has been setup, and the connection between the JBoss
EAP instance and the identity store has been configured, the security domain can be
created and configured. The following command shows how to create an empty
security domain. Replace MY-DOMAIN with the desired name of the security domain.

Management CLI Command for Adding a Security Domain

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

33

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#ldap
http://ldaphost.example.com:1389/

/subsystem=security/security-domain=MY-DOMAIN:add(cache-
type=default)

3. Add the authentication section and login module to the security domain. After the
empty security domain has been created, the authentication section must be
created with a login module added to it. The below command shows how to add an
empty authentication section to an existing security domain.

Management CLI Command for Adding an Authentication Section to
a Security Domain

/subsystem=security/security-domain=MY-
DOMAIN/authentication=classic:add

Once the empty authentication section has been created, a login module can be
added to it and configured to use the desired identity store. After adding a login
module to a security domain, a configuration reload is usually required.

Below is the general command structure for adding a login module and reloading
the configuration. Replace MY-DOMAIN, MY-LOGIN-MODULE, and MY-CONFIGURATION
with the appropriate values:

/subsystem=security/security-domain=MY-
DOMAIN/authentication=classic/login-module=MY-LOGIN-MODULE:add(MY-
CONFIGURATION)

reload

Add a Database login module.

NOTE

This example assumes a datasource named idpDS has been
created in Step 1 and a security domain named idp-db-domain was
created in Step 2.

Management CLI Command for Configuring the Authentication
Section to use the Database Login Module

/subsystem=security/security-domain=idp-db-
domain/authentication=classic/login-
module=Database:add(code=Database,flag=required,module-options=
[("dsJndiName"=>"java:/idpDS"),("principalsQuery"=>"select passwd
from 'sso-users' where username=?"),("rolesQuery"=>"select role,
role-group from 'sso-roles' where username=?")])

reload

Add an LDAP login module.
The steps necessary for configuring the LdapExtended login module can be
found in How to Configure Identity Management.

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

34

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/how_to_configure_identity_management/#configure_a_security_domain_to_use_ldap

2.5. CONFIGURING SSL/TLS WITH SPS AND IDPS
The basics of SSL/TLS are covered in the JBoss EAP Security Architecture guide. Adding
SSL/TLS support to a browser-based SSO environment is not much different from adding it
to non-SSO environment. Both the IDPs and SPs can have an HTTPS connector added to
allow for traffic to be secured.

If one has not already been created, a security realm with an SSL/TLS server identity must
be created. It must also be configured with an SSL/TLS certificate.

2.5.1. Enable One-way SSL/TLS for Applications Using Legacy
Security Realms
This example assumes that the keystore, identity.jks, has been copied to the server
configuration directory and configured with the given properties. Administrators should
substitute their own values for the example ones.

NOTE

The management CLI commands shown assume that you are running a JBoss
EAP standalone server. For more details on using the management CLI for a
JBoss EAP managed domain, see the JBoss EAP Management CLI Guide.

1. Add and configure an HTTPS security realm first. Once the HTTPS security realm has
been configured, configure an https-listener in the undertow subsystem that
references the security realm:

batch

/core-service=management/security-realm=HTTPSRealm:add

/core-service=management/security-realm=HTTPSRealm/server-
identity=ssl:add(keystore-path=identity.jks, keystore-relative-
to=jboss.server.config.dir, keystore-password=password1,
alias=appserver)

/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=security-realm,
value=HTTPSRealm)

run-batch

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly
disabled in favor of TLSv1.1 or TLSv1.2 in all affected packages.

2. Restart the JBoss EAP instance for the changes to take effect.

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

35

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/security_architecture/#ssl_tls_and_certificates
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/management_cli_guide/

2.6. CONFIGURING AN IDENTITY PROVIDER TO USE
CERTIFICATE-BASED AUTHENTICATION
In addition to configuring SPs and IDPs to use SSL/TLS, you can also configure an IDP to use
certificate-based authentication. Before setting up an IDP to use certificate-based
authentication you will need to configure the IDPs and SPs to use SSL/TLS.

1. Create a client certificate and truststore.
You must create a certificate and truststore for clients to use to authenticate. You
will need to use these in the server configuration as well as with the client’s
browser.

Example Client Certificate and Truststore

2. Creating a Security Domain for the IDP.
You need to create a security domain that uses a certificate-based login module for
the IDP to use for authentication. For more details on certificate-based login
modules, see the Login Module Reference.

Example Security Domain with a CertificateRoles Login Module

/subsystem=security/security-domain=idp-cert:add

/subsystem=security/security-domain=idp-
cert/authentication=classic:add

/subsystem=security/security-domain=idp-
cert/authentication=classic/login-
module=CertificateRoles:add(code=CertificateRoles,flag=optional,modu
le-options=[("password-stacking"=>"useFirstPass"),
("securityDomain"=>"idp-cert"),
("verifier"=>"org.jboss.security.auth.certs.AnyCertVerifier")])

/subsystem=security/security-domain=idp-
cert/jsse=classic:add(truststore=
{url=>"/path/to/client.jks",password=>change_it})

reload

You also need to configure your IDP to use this security domain. For more details on
configuring the IDP, see the Setting up an IDP section.

$ keytool -genkeypair -alias client -storetype jks -keyalg RSA -
keysize 2048 -keypass change_it -keystore client.jks -storepass
change_it -dname "CN=client,OU=Sales,O=Systems
Inc,L=Raleigh,ST=NC,C=US" -validity 730 -v

$ keytool -export -alias client -keystore client.jks -storepass
change_it -file client.cer

$ keytool -import -file client.cer -alias client -keystore
client.truststore

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

36

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/login_module_reference/#certificate_login_module

NOTE

You can also use the RegExUserNameLoginModule in conjunction with
Certificate login modules to extract a username, UID, or other
information from the principal name. For more details on the
RegExUserNameLoginModule, see the JBoss EAP Login Module
Reference.

3. Import the client certificate into the client’s browser. Once the IDP and server
configuration is complete, you must configure the client’s browser to use the client
certificate. This configuration varies between browsers. Once the client’s browser is
configured to use the client certificate, the client will be able to authenticate with
the IDP using the certificate.

2.7. CONFIGURING AN IDENTITY PROVIDER TO USE
KERBEROS AUTHENTICATION
In addition to other identity stores, an IDP can also use Kerberos as its authentication
mechanism. To setup an IDP to use Kerberos, you will need to do the following:

NOTE

It is assumed you have a working Kerberos environment.

1. Configure the security domains for Kerberos authentication.
You can use the following commands to configure the security domains required by
the IDP. For additional information, see the JBoss EAP Configure the Legacy Security
Subsystem section of the How to Set Up SSO with Kerberos guide.

/subsystem=security/security-domain=host:add(cache-type=default)

/subsystem=security/security-domain=host/authentication=classic:add

/subsystem=security/security-
domain=host/authentication=classic/login-
module=Kerberos:add(code=Kerberos, flag=required, module-options=
[debug=false, storeKey=true, refreshKrb5Config=true, useKeyTab=true,
doNotPrompt=true, keyTab=/home/username/service.keytab,
principal=host/SERVER_NAME@REALM_NAME])

/subsystem=security/security-domain=app-spnego:add(cache-
type=default)

/subsystem=security/security-domain=app-
spnego/authentication=classic:add

/subsystem=security/security-domain=app-
spnego/authentication=classic/login-module=SPNEGO:add(code=SPNEGO,
flag=required, module-options=[serverSecurityDomain=host])

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

37

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/login_module_reference/#regex-user-name-login-module
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/how_to_set_up_sso_with_kerberos/#configure_legacy_security_subsystem

IMPORTANT

You should also ensure that all relevant system properties are enabled
as well.

For more information on login modules, see Kerberos Login Module and SPNEGO
Login Module sections of the JBoss EAP Login Module Reference reference.

2. Configure the security domain for the SPs.
You can use the following commands to configure the security domains required by
the SP. For additional information, see the full documentation at Setting up an SP.

/subsystem=security/security-domain=sp:add(cache-type=default)

/subsystem=security/security-domain=sp/authentication=classic:add

/subsystem=security/security-domain=sp/authentication=classic/login-
module=org.picketlink.identity.federation.bindings.jboss.auth.SAML2L
oginModule:add(code=org.picketlink.identity.federation.bindings.jbos
s.auth.SAML2LoginModule,flag=required)

3. Reload the server for the changes to take effect.

reload

4. After completing the above steps the following configuration is created.

Example: Security Domains for the IDP and SPs

<security-domain name="host" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="debug" value="false"/>
 <module-option name="storeKey" value="true"/>
 <module-option name="refreshKrb5Config" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="doNotPrompt" value="true"/>
 <module-option name="keyTab"
value="/home/username/service.keytab"/>
 <module-option name="principal"
value="HTTP/testserver@MY_REALM"/>
 </login-module>
 </authentication>
</security-domain>
<security-domain name="app-spnego" cache-type="default">
 <authentication>
 <login-module code="SPNEGO" flag="required">
 <module-option name="serverSecurityDomain"
value="host"/>
 </login-module>
 </authentication>
 <mapping>
 ...
 </mapping>
</security-domain>

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

38

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/how_to_set_up_sso_with_kerberos/#configure_relevant_system_properties
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/login_module_reference/#kerberos_login_module
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/login_module_reference/#spnego_login_module

5. Configure the IDP application.
The process of configuring the IDP is the same as covered in the Setting up an IDP
section, but with the following changes:

Declaring an additional dependency for JBoss Negotiation

Configure the IDP application to use the security domain with the SPNEGO login
module

NOTE

When configuring the IDP, you do not need to specify the
PicketLinkSTS element in the configuration. If it is ommited
PicketLink will load the default configurations from a file named
core-sts inside picketlink-core-VERSION.jar.

Override this configuration only if you need to. For example, change
the token timeout or specify a custom Security Token Provider for
SAML assertions.

Example: jboss-deployment-structure.xml with Kerberos and
Picketlink Dependencies

Example: jboss-web.xml in the IDP

Example: picketlink.xml with the PicketLinkSTS Element

<security-domain name="sp" cache-type="default">
 <authentication>
 <login-module
code="org.picketlink.identity.federation.bindings.jboss.auth.SAML2Lo
ginModule" flag="required"/>
 </authentication>
</security-domain>

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.picketlink" services="import"/>
 <module name="org.jboss.security.negotiation"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

<jboss-web>
 <security-domain>app-spnego</security-domain>
 <context-root>identity</context-root>
</jboss-web>

<PicketLink xmlns="urn:picketlink:identity-
federation:config:2.1">
 <PicketLinkIDP xmlns="urn:picketlink:identity-
federation:config:2.1">

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

39

IMPORTANT

You must ensure that any roles configured in the IDP’s web.xml
match up with the roles configured in your Kerberos environment.
This can be accomplished by configuring a second login module in
the IDP’s security domain to map the appropriate roles to after the
SPNEGO authentication, or by using a mapping provider in the IDP’s
security domain.

<IdentityURL>${idp.url::http://localhost:8080/idp/}</IdentityURL>
 <Trust>
 <Domains>redhat.com,localhost,amazonaws.com</Domains>
 </Trust>
 </PicketLinkIDP>
 <Handlers xmlns="urn:picketlink:identity-
federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML
2IssuerTrustHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML
2LogOutHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML
2AuthenticationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.Role
sGenerationHandler" />
 </Handlers>
 <!-- The configuration bellow defines a token timeout and a
clock skew. Both configurations will be used during the SAML
Assertion creation. This configuration is optional. It is defined
only to show you how to set the token timeout and clock skew
configuration. -->
 <PicketLinkSTS xmlns="urn:picketlink:identity-
federation:config:1.0" TokenTimeout="5000" ClockSkew="0">
 <TokenProviders>
 <TokenProvider

ProviderClass="org.picketlink.identity.federation.core.saml.v1.pr
oviders.SAML11AssertionTokenProvider"
 TokenType="urn:oasis:names:tc:SAML:1.0:assertion"
 TokenElement="Assertion"
TokenElementNS="urn:oasis:names:tc:SAML:1.0:assertion" />
 <TokenProvider

ProviderClass="org.picketlink.identity.federation.core.saml.v2.pr
oviders.SAML20AssertionTokenProvider"
 TokenType="urn:oasis:names:tc:SAML:2.0:assertion"
 TokenElement="Assertion"
TokenElementNS="urn:oasis:names:tc:SAML:2.0:assertion" />
 </TokenProviders>
 </PicketLinkSTS>
</PicketLink>

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

40

2.8. CHANGES FROM PREVIOUS VERSIONS OF JBOSS EAP
The addition of the Undertow server in JBoss EAP 7 has introduced some changes to how
SAML SSO is configured. You will have to account for these changes when setting up IDPs
and SPs on JBoss EAP 7, as well as when migrating IDPs and SPs running on previous
versions of JBoss EAP.

Valves are no longer used and their parameters are now configured using context-
param.

The dependency declaration has changed.

SAML authenticators now require FORM authentication to be configured in web.xml.

The dynamic account chooser configuration has changed.

2.8.1. Valve and Valve Configuration Changes
In JBoss EAP 7, valves are no longer used, but similar functionality is available in Undertow
handlers. The net result is that you no longer need to add the valve declaration in jboss-
web.xml. For details on this change and how it affects migration in general, see the Migrate
Custom Application Valves section of the JBoss EAP Migration Guide.

NOTE

Other configuration, such as specifying a security domain, is still configured in
jboss-web.xml.

Since valves are no longer used, the following items are now configured using <context-
param> in web.xml.

Configuration Provider

Audit Helper

Configuration Refresh Internval

<context-param>
 <param-name>org.picketlink.federation.saml.CONFIG_PROVIDER</param-name>
 <param-value>MyConfigurationProvider</param-value>
</context-param>

<context-param>
 <param-name>org.picketlink.federation.saml.AUDIT_HELPER</param-name>
 <param-value>MyAuditHelper</param-value>
</context-param>

<context-param>
 <param-
name>org.picketlink.federation.saml.REFRESH_CONFIG_TIMER_INTERVAL</param-
name>
 <param-value>1000</param-value>
</context-param>

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

41

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/migration_guide/#migrate_custom_application_valves

Character Encoding

Pass User Principal to Attribute Manager

Custom Location for picketlink.xml

2.8.2. Dependency Declaration Changes
As with previous versions of JBoss EAP, you will still need to declare the proper
dependencies using the jboss-deployment-structure.xml file, but you will now also need
to include services="import" in the module. In previous versions of JBoss EAP, you would
have declared this same dependency, but would have declared a valve to install the SAML
authenticators and excluded services="import". With the introduction of Undertow in
JBoss EAP 7, you now use services="import" to install the SAML authenticators.

Using jboss-deployment-structure.xml to Declare Dependencies

2.8.3. Authenticator Changes
The SAML authenticators extend the FORM authenticator in JBoss EAP. In order to enable the
SAML authenticators, you must define a <login-config> configured for FORM authentication
in web.xml.

Example web.xml File

<context-param>
 <param-name>org.picketlink.federation.saml.CHARACTER_ENCODING</param-
name>
 <param-value>UTF-8</param-value>
</context-param>

<context-param>
 <param-
name>org.picketlink.federation.saml.PASS_USER_PRINCIPAL_TO_ATTRIBUTE_MANAG
ER</param-name>
 <param-value>true</param-value>
</context-param>

<context-param>
 <param-name>CONFIG_FILE</param-name>
 <param-value>/path/to/picketlink.xml</param-value>
</context-param>

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.picketlink" services="import"/>
 </dependencies>
 </deployment>
</jboss>

<web-app>
 ...

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

42

2.8.4. Dynamic Account Chooser Changes
In previous versions of JBoss EAP, certain parts of the dynamic account chooser were
configured using parameters passed to the valve. Since valves are no longer used in JBoss
EAP 7, this configuration has been moved into the Provider element contained in
picketlink.xml. For more details on those configuration options, see the Configuring a
Dynamic Account Chooser section.

Previous versions of JBoss EAP also defined the
org.picketlink.identity.federation.bindings.tomcat.sp.AbstractAccountChooserV
alve.AccountIDPMapProvider interface, which was implemented when creating a custom
IDPMapProvider. In JBoss EAP 7, this interface no longer exists, and you must now
implement the
org.picketlink.identity.federation.web.config.IdentityURLConfigurationProvide
r interface. The contract on this new interface is the same.

2.9. ADDITIONAL FEATURES

2.9.1. SAML Assertion Encryption
In addition to offering SSL/TLS encryption between IDPs and SPs, the SAML assertions
themselves may also be encrypted. This is useful in securing SAML v2 assertions that are
transmitted in an unsecured manner, for example not using SSL/TLS.

To enable encryption of security assertions directly in IDPs and SPs, the following steps
must be performed to both the IDP and SP picketlink.xml files:

1. Enable Encrypt and SupportsSignatures.
To enable encryption, the <PicketLinkIDP> and <PicketLinkSP> must be updated.

For the IDP, add or update the Encrypt and SupportsSignatures attributes in
<PicketLinkIDP> to be true:

For the SP, add or update the SupportsSignatures attribute in <PicketLinkSP> to
be true:

 <login-config>
 <auth-method>FORM</auth-method>
 ...
 </login-config>
</web-app>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkIDP xmlns="urn:picketlink:identity-
federation:config:2.1" Encrypt="true" SupportsSignatures="true">
 ...
 </PicketLinkIDP>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkSP xmlns="urn:picketlink:identity-
federation:config:2.1" SupportsSignatures="true">

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

43

2. Add handlers.
In addition, handlers must be added to <Handlers>.

For the IDP add SAML2EncryptionHandler and SAML2SignatureValidationHandler
to the picketlink.xml file:

For the SP add SAML2SignatureGenerationHandler and
SAML2SignatureValidationHandler to the picketlink.xml file:

 ...
 </PicketLinkSP>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <Handlers xmlns="urn:picketlink:identity-
federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Is
suerTrustHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Lo
gOutHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Au
thenticationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGe
nerationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2En
cryptionHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Si
gnatureValidationHandler" />
 </Handlers>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <Handlers xmlns="urn:picketlink:identity-
federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Lo
gOutHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Au
thenticationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGe
nerationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Si
gnatureGenerationHandler" />
 <Handler

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

44

WARNING

Handlers are implemented using a Chain of Responsibility, with
each individual handler performing logic on request and responses
in the order defined in picketlink.xml. It is very important to
pay attention to the order in which the handlers are configured.

The SAML2SignatureGenerationHandler must not be configured
in the same chain as the SAML2EncryptoinHandler. This will
cause SAML messages will be signed several times.

3. Configure key provider.
Lastly, a <KeyProvider> element must be added to BOTH picketlink.xml files.
This element provides the location and credentials for accessing the Java keystore
used for encrypting and decrypting security assertions. An example of generating a
Java keystore can be found in the JBoss EAP How to Configure Server Security guide.

For the IDP, the element should be added to <PicketLinkIDP>:

For the SP the element should be added to <PicketLinkSP>:

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...

class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Si
gnatureValidationHandler" />
 </Handlers>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkIDP xmlns="urn:picketlink:identity-
federation:config:2.1" Encrypt="true" SupportsSignatures="true">
 ...
 <KeyProvider
ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyM
anager">
 <Auth Key="KeyStoreURL" Value="/my_keystore.jks" />
 <Auth Key="KeyStorePass" Value="store123" />
 <Auth Key="SigningKeyPass" Value="test123" />
 <Auth Key="SigningKeyAlias" Value="servercert" />
 <ValidatingAlias Key="idp.example.com" Value="servercert" />
 <ValidatingAlias Key="localhost" Value="servercert" />
 <ValidatingAlias Key="sp1.example.com" Value="servercert" />
 <ValidatingAlias Key="sp2.example.com" Value="servercert" />
 </KeyProvider>
 ...
 </PicketLinkIDP>
 ...
<PicketLink>

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

45

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/how_to_configure_server_security/#create_a_keystore_to_secure_the_management_interfaces

 <PicketLinkSP xmlns="urn:picketlink:identity-
federation:config:2.1" SupportsSignatures="true">
 ...
 <KeyProvider
ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyM
anager">
 <Auth Key="KeyStoreURL" Value="/my_keystore.jks" />
 <Auth Key="KeyStorePass" Value="store123" />
 <Auth Key="SigningKeyPass" Value="test123" />
 <Auth Key="SigningKeyAlias" Value="servercert" />
 <ValidatingAlias Key="idp.example.com" Value="servercert" />
 <ValidatingAlias Key="localhost" Value="servercert" />
 </KeyProvider>
 ...
 </PicketLinkSP>
</PicketLink>

NOTE

In order to properly encrypt and decrypt assertions, the IDP needs to
generate signatures and the SP needs to verify those signatures as well
as identify where they came from. This is accomplished using the
<ValidatingAlias> element. IDPs need to have a <ValidatingAlias>
for each trusted server/domain that is trusted, which is every entry in
the <Trust> element. SPs need to have a <ValidatingAlias> for each
server/domain containing an IDP.

2.9.2. Digital Signatures in Assertions
Digital Signatures allow IDPs to sign their SAML v2 security assertions and have those
signatures and assertions validated by the SPs. This is useful for validating the authenticity
of assertions, especially for assertions that are transmitted in an unsecured manner, for
example not using SSL/TLS.

To enable digital signatures in security assertions directly in IDPs and SPs, the following
steps must be performed to both the IDP and SP picketlink.xml files:

1. Enable SupportsSignatures.
To enable digital signatures, the <PicketLinkIDP> and <PicketLinkSP> elements
must be updated.

For the IDP and SP, add or update the SupportsSignatures attribute in
<PicketLinkSP> to be true:

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkIDP xmlns="urn:picketlink:identity-
federation:config:2.1" SupportsSignatures="true">
 ...
 </PicketLinkIDP>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkSP xmlns="urn:picketlink:identity-

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

46

2. Add handlers.
In addition, handlers must be added to <Handlers>.

For the IDP and SP, add SAML2SignatureGenerationHandler and
SAML2SignatureValidationHandler to the picketlink.xml file:

IDP picketlink.xml

SP picketlink.xml

federation:config:2.1" SupportsSignatures="true">
 ...
 </PicketLinkSP>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <Handlers xmlns="urn:picketlink:identity-
federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Is
suerTrustHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Lo
gOutHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Au
thenticationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGe
nerationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Si
gnatureGenerationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Si
gnatureValidationHandler" />
 </Handlers>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <Handlers xmlns="urn:picketlink:identity-
federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Lo
gOutHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Au
thenticationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGe
nerationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Si

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

47

WARNING

Handlers are implemented using a Chain of Responsibility, with
each individual handler performing logic on request and responses
in the order defined in picketlink.xml. It is very important to
pay attention to the order in which the handlers are configured.

The SAML2SignatureGenerationHandler must not be configured
in the same chain as the SAML2EncryptionHandler. This will
cause SAML messages will be signed several times.

3. Configure key provider.
Lastly, a <KeyProvider> element must be added to BOTH picketlink.xml files.
This element provides the location and credentials for accessing the Java keystore
used for signing security assertions. An example of generating a Java keystore can
be found in the JBoss EAP How to Configure Server Security guide.

For the IDP, the element should be added to <PicketLinkIDP>:

For the SP the element should be added to <PicketLinkSP>:

gnatureGenerationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2Si
gnatureValidationHandler" />
 </Handlers>
</PicketLink>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkIDP xmlns="urn:picketlink:identity-
federation:config:2.1" SupportsSignatures="true">
 ...
 <KeyProvider
ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyM
anager">
 <Auth Key="KeyStoreURL" Value="/my_keystore.jks" />
 <Auth Key="KeyStorePass" Value="store123" />
 <Auth Key="SigningKeyPass" Value="test123" />
 <Auth Key="SigningKeyAlias" Value="servercert" />
 <ValidatingAlias Key="idp.example.com" Value="servercert" />
 <ValidatingAlias Key="localhost" Value="servercert" />
 <ValidatingAlias Key="sp1.example.com" Value="servercert" />
 <ValidatingAlias Key="sp2.example.com" Value="servercert" />
 </KeyProvider>
 ...
 </PicketLinkIDP>
 ...
<PicketLink>

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

48

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/how_to_configure_server_security/#create_a_keystore_to_secure_the_management_interfaces

NOTE

In order to properly encrypt and decrypt assertions, the IDP needs to
generate signatures and the SP needs to verify those signatures as well
as identify where they came from. This is accomplished using the
<ValidatingAlias> element. IDPs need to have a <ValidatingAlias>
for each trusted server/domain that is trusted, which is every entry in
the <Trust> element. SPs need to have a <ValidatingAlias> for each
server/domain containing an IDP.

2.9.3. Configuring a Dynamic Account Chooser
If a service provider is configured with multiple identity providers, you can configure that
service provider to prompt the user to choose which IDP to use to authenticate their
credentials. To configure a service provider with a dynamic account chooser, must to do the
following:

1. Configure all identity providers.
For more details on setting up identity providers, see the Setting up an IDP section.

2. Configure a WEB-INF/idpmap.properties file.
You need to create a WEB-INF/idpmap.properties file that lists all available identity
providers using the format name=url.

Example WEB-INF/idpmap.properties

Domain=http://localhost:8080/idp/
Domain-Alt=http://localhost:8080/idp-alt/

3. Create an account chooser landing page.
In order for the user to select an identity provider to authenticate against, you must
create an account chooser landing page to present to them, and include it in your
service provider. This page should contain links to all identity providers that you
want to allow them to authenticate against.

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 ...
 <PicketLinkSP xmlns="urn:picketlink:identity-
federation:config:2.1" SupportsSignatures="true">
 ...
 <KeyProvider
ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyM
anager">
 <Auth Key="KeyStoreURL" Value="/my_keystore.jks" />
 <Auth Key="KeyStorePass" Value="store123" />
 <Auth Key="SigningKeyPass" Value="test123" />
 <Auth Key="SigningKeyAlias" Value="servercert" />
 <ValidatingAlias Key="idp.example.com" Value="servercert" />
 <ValidatingAlias Key="localhost" Value="servercert" />
 </KeyProvider>
 ...
 </PicketLinkSP>
</PicketLink>

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

49

Example accountChooser.html

4. Configure the IdentityURL element in picketlink.xml.
You will also need to configure the IdentityURL element in picketlink.xml to
reference the account chooser landing page. For more details on configuring the
rest of picketlink.xml for the service provider, please see the Setting up an SP
section.

Example picketlink.xml

You can configure additional options for the dynamic account chooser using the
attributes available in the Provider element.

Table 2.4. Provider Element Attributes

Option Type Default Description

Page String /accountChooser.html The name of the HTML/JSP page for
listing the different IDP accounts.

Expiratio
n

Integer -1 The cookie expiry in seconds.
Default is -1, which means the
cookie expires when the browser is
closed.

DefaultU
RL

String URL of the default IDP.

<html>
 <head>...</head>
 <body>
 <h1>Account Chooser</h1>

 Domain
 Domain Alt

 </body>
</html>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkSP xmlns="urn:picketlink:identity-
federation:config:2.1" BindingType="REDIRECT">
 <IdentityURL>
 <Provider Page="/accountChooser.html"/>
 </IdentityURL>
 ...
 </PicketLinkSP>
 <Handlers xmlns="urn:picketlink:identity-
federation:handler:config:2.1">
 ...
 </Handlers>
</PicketLink>

Red Hat JBoss Enterprise Application Platform 7.1 How To Set Up SSO with SAML v2

50

Domain String The domain name to be used for
the cookie that is sent to the user’s
browser.

Type String The fully qualified name of the
implementation for IDP Mapping to
replace the default implementation.
This implementation must
implement
org.picketlink.identity.fed
eration.web.config.Identity
URLConfigurationProvider. The
default implementation uses the
WEB-INF/idpmap.properties file
in your SP web application.

Option Type Default Description

IMPORTANT

Configuring a dynamic account chooser using the picketlink-
federation subsystem is not supported.

2.9.4. Handling AJAX Requests
In certain instances, SPs may need to receive AJAX requests to secured resources. This is
handled automatically without the need of any additional configuration, and enables
authenticated and authorized users to make AJAX calls.

This is accomplished by checking for the existence of the X-Requested-With header in the
request. AJAX requests are identified by the value XMLHttpRequest in the X-Requested-
With header. In addition, in cases where a user is not authenticated and sends a request to
both the IDP and SP using AJAX, PicketLink will respond with a 403 HTTP status code instead
of the login page.

Revised on 2018-10-11 12:32:15 UTC

CHAPTER 2. HOW TO SET UP SSO WITH SAML V2

51

	Table of Contents
	CHAPTER 1. SSO WITH SAML V2 DEEPER DIVE
	1.1. WHAT IS SAML V2?
	1.1.1. Building Blocks
	1.1.1.1. Entities
	1.1.1.2. Security Assertions
	1.1.1.3. Protocols
	1.1.1.4. Bindings
	1.1.1.5. Profiles

	1.2. HOW DOES SAML V2 WORK WITH SSO
	1.2.1. Web Browser SSO Profile
	1.2.2. Global Logout Profile
	1.2.3. Multiple IDPs and the Identity Discovery Profile

	1.3. FURTHER READING

	CHAPTER 2. HOW TO SET UP SSO WITH SAML V2
	2.1. COMPONENTS
	2.2. IDP AND SP SETUP AND CONFIGURATION
	2.2.1. Setting up an IDP
	2.2.2. Setting up an SP
	2.2.3. Using SP-initiated Flow
	2.2.4. Using IDP-Initiated Flow
	2.2.4.1. Walkthrough
	2.2.4.2. Hosted Section
	2.2.4.3. Linking to SPs

	2.2.5. Configuring the Global Logout Profile
	2.2.6. Using Local Logout

	2.3. CONFIGURING IDPS AND SPS VIA THE FEDERATION SUBSYSTEM
	2.3.1. Configuring the Subsystem
	2.3.2. Setting up a Federation
	2.3.2.1. Preparing the SP and IDP Applications
	2.3.2.2. Creating a Federation Using the Management Console
	2.3.2.3. Creating a Federation Using the Management CLI
	2.3.2.4. Reference of Attributes for the Federation Subsystem

	2.4. CONFIGURING IDENTITY STORES FOR IDPS
	2.5. CONFIGURING SSL/TLS WITH SPS AND IDPS
	2.5.1. Enable One-way SSL/TLS for Applications Using Legacy Security Realms

	2.6. CONFIGURING AN IDENTITY PROVIDER TO USE CERTIFICATE-BASED AUTHENTICATION
	2.7. CONFIGURING AN IDENTITY PROVIDER TO USE KERBEROS AUTHENTICATION
	2.8. CHANGES FROM PREVIOUS VERSIONS OF JBOSS EAP
	2.8.1. Valve and Valve Configuration Changes
	2.8.2. Dependency Declaration Changes
	2.8.3. Authenticator Changes
	2.8.4. Dynamic Account Chooser Changes

	2.9. ADDITIONAL FEATURES
	2.9.1. SAML Assertion Encryption
	2.9.2. Digital Signatures in Assertions
	2.9.3. Configuring a Dynamic Account Chooser
	2.9.4. Handling AJAX Requests

