
Red Hat JBoss Developer Studio 11.2

Getting Started with JBoss Developer Studio
Tools

Introduction to Using Red Hat JBoss Developer Studio Tools

Last Updated: 2018-03-09

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss
Developer Studio Tools

Introduction to Using Red Hat JBoss Developer Studio Tools

Misha Husnain Ali
mhusnain@redhat.com

Supriya Takkhi
sbharadw@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This compilation of topics contains information on how to start using Red Hat JBoss Developer
Studio Tools for efficient development.

. .

. .

. .

Table of Contents

CHAPTER 1. SETTING UP AND MANAGING A REPOSITORY FOR YOUR PROJECTS
1.1. USING GIT WITH RED HAT JBOSS DEVELOPER STUDIO

1.1.1. Setting Up the Git Perspective
1.1.2. Setting up a Repository in the Git Perspective

1.1.2.1. Creating a New Git Repository
1.1.2.2. Cloning an Existing Git Repository
1.1.2.3. Adding an Existing Local Git Repository

Prerequisites
1.1.3. Adding a Remote for the Repository
1.1.4. Creating and Working With a New Branch

1.1.4.1. Creating a New Branch
1.1.4.2. Working in the New Branch
1.1.4.3. Updating the Branch Before Implementing the Changes

1.1.5. Committing and Merging the Changes
1.1.5.1. Committing and Pushing the Changes
1.1.5.2. Committing Without Pushing the Changes
Additional Resources

CHAPTER 2. CONFIGURING MAVEN BASICS
2.1. CREATING A NEW MAVEN PROJECT
2.2. CREATING A NEW MAVEN MODULE

Prerequisites
2.3. ADDING MAVEN SUPPORT TO AN EXISTING NON-MAVEN PROJECT
2.4. TROUBLESHOOTING

2.4.1. Unidentifiable Dependency
2.4.2. Some selected dependencies can not be resolved. Click here to configure repositories in your
settings.xml.
Additional Resources

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS
3.1. CONFIGURING JBOSS DEVELOPER STUDIO FOR USE WITH JBOSS EAP AND JBOSS WEB
FRAMEWORK KIT

3.1.1. Setting up JBoss EAP
3.1.1.1. Downloading, Installing, and Setting Up the IDE and JBoss EAP using the DevSuite Installer
3.1.1.2. Downloading, Installing, and Setting Up JBoss EAP from within the IDE
3.1.1.3. Using Runtime Detection to Set Up JBoss EAP from within the IDE

3.1.2. Configuring Maven for JBoss EAP and JBoss Web Framework Kit Maven Repositories
3.1.2.1. Specifying Maven settings.xml File Location

3.1.3. Using JBoss EAP and JBoss Web Framework Kit Maven Repositories
3.1.3.1. Using the Offline Maven Repositories
3.1.3.2. Using the Online Maven Repositories

3.2. CREATING AND IMPORTING NODE.JS APPLICATIONS
Prerequisites
3.2.1. Creating a new JavaScript Application
3.2.2. Importing an Existing JavaScript Project
3.2.3. Debugging a Node.js Application

3.3. DEVELOPING APPLICATIONS USING THE FORGE TOOL
3.3.1. Creating a Forge Project
3.3.2. Setting up Persistence
3.3.3. Adding Fields to the Entity
3.3.4. Creating a Scaffold
3.3.5. Running and Testing the Application

6
6
6
6
6
7
9
9

11
12
12
13
14
15
15
16
16

17
17
19
19
23
25
25

26
26

28

28
28
28
29
31
32
32
32
33
34
35
35
36
39
39
40
40
41
42
43
44

Table of Contents

1

3.3.6. Creating Extensions or Add-ons
Prerequisites
Additional Resources

3.4. DEVELOPING APPLICATIONS USING THE HIBERNATE TOOLS
Prerequisites
3.4.1. Creating a JPA Project
3.4.2. Generating DDL and Entities
3.4.3. Creating a Hibernate Mapping File
3.4.4. Creating a Hibernate Configuration File
3.4.5. Creating a Hibernate Console Configuration File
3.4.6. Modifying the Hibernate Configurations
3.4.7. Generating Code and Reverse Engineering
3.4.8. Troubleshooting

3.4.8.1. Problems While Loading Database Driverclass
Additional Resources

Adding Libraries
Setting up the Property File
Setting up the Configuration File
Creating, Managing, and Running the Configurations Window, Main tab, Check Boxes
Exporter Property and Values
Exporter

3.5. CREATING YOUR FIRST MOBILE WEB APPLICATION
Prerequisites
3.5.1. Creating an HTML5 Project
3.5.2. Building and Deploying the Application
3.5.3. Viewing the Application with BrowserSim
3.5.4. Enabling LiveReload for BrowserSim
3.5.5. Editing the Application

Additional Resources
3.6. GENERATING AN HTML5 WEB APPLICATION USING THE MOBILE WEB PALETTE

3.6.1. Adding a New HTML5 jQuery Mobile File to a Project
3.6.2. Adding New Pages to the Web Application
3.6.3. Customizing the Home Page of the Web Application

3.6.3.1. Adding a Panel to the Page
3.6.3.2. Adding a List to the Panel
3.6.3.3. Adding a Button in the Header of the Page to Display the List

3.6.4. Running and Testing the HTML5 Mobile Application Using BrowserSim
Additional Resources

3.7. CREATING YOUR FIRST HYBRID MOBILE APPLICATION
Prerequisites
3.7.1. Enabling the JBoss Hybrid Mobile Tools + CordovaSim Feature
3.7.2. Installing Android SDK

Procedure
3.7.3. Creating a Hybrid Mobile Project
3.7.4. Customizing the Hybrid Mobile Project
3.7.5. Testing the Hybrid Mobile Application using CordovaSim
3.7.6. Deploying the Hybrid Mobile Project on the FeedHenry Server

3.7.6.1. Connecting the Cordova Application to the FeedHenry Server
3.7.6.2. Pushing the Cordova Application to the FeedHenry Server

3.7.7. Modifying the Icon for a Mobile Application
3.7.8. Editing an Application Splash Screen

Additional Resources
3.8. IMPORTING AND DEVELOPING AN EXISTING FEEDHENRY APPLICATION

44
44
47
48
48
48
51
52
53
54
56
57
59
59
61
61
61
62
63
63
64
65
65
65
65
67
69
69
69
70
70
71
72
73
73
75
76
78
78
79
79
79
80
80
81
82
83
84
84
86
88
89
90

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

2

Prerequisites
3.8.1. Enabling the FeedHenry Feature
3.8.2. Installing Android SDK

3.8.2.1. Setting the Preferences for Your Application Import
Procedure

3.8.3. Importing your FeedHenry Application
3.8.3.1. Testing the Application Import

3.8.4. Modifying the FeedHenry Application
3.8.4.1. Testing the Application

3.8.5. Pushing the Changes Back to the FeedHenry Server
Additional Resources

3.9. IMPORTING PROJECTS IN JBOSS DEVELOPER STUDIO USING GIT IMPORT
Procedure
3.9.1. Importing Projects from Git with Smart Import
3.9.2. Importing Projects from Git

Procedure
3.9.2.1. Importing Existing Eclipse Projects
3.9.2.2. Importing Using the New Project Wizard
3.9.2.3. Importing as a General Project

3.9.3. Importing Projects from the Remote Git Repository
3.10. GETTING STARTED WITH JAVASCRIPT DEVELOPMENT FOR NEON 3

Prerequisites
3.10.1. Installing node.js
3.10.2. Installing the Package Managers (Bower and npm)

Procedure
3.10.3. Using the Package Managers

Procedure
3.10.3.1. Creating a New Project

Procedure
3.10.3.2. Enabling Bower Init

Procedure
3.10.3.3. Enabling npm Init

Procedure
3.10.3.4. Creating a New index.html File

Procedure
3.10.3.5. Using the Bower Tool

Procedure
3.10.4. Using the Build Systems

Prerequisites
Procedure
3.10.4.1. Adding Dependencies to the package.json File

Procedure
3.10.4.2. Enabling the Gulp Plugin

Procedure
3.10.4.3. Creating the gulpfile.js File

Procedure
3.10.4.4. Using the Gulp Plugin

Procedure
3.10.5. Working with the Node.js Application

Prerequisites
Procedure
3.10.5.1. Importing the jsdt-node-test-project

Procedure

90
90
91
91
92
92
93
95
95
97
98
98
98
99
99
99
99

100
101
102
104
104
104
104
105
105
105
105
105
105
105
106
106
106
106
107
107
109
110
110
110
110
111
111
112
112
113
113
113
113
113
113
113

Table of Contents

3

. .

3.10.5.2. Running the index.js File
Procedure

3.10.5.3. Debugging the Node.js Application
Procedure
Additional Resources

CHAPTER 4. DEPLOYING YOUR APPLICATIONS
4.1. DEPLOYING APPLICATIONS TO A LOCAL SERVER

Procedure
4.1.1. Configuring the IDE for a Local Runtime Server

Procedure
4.1.2. Deploying an Application

Procedure
4.1.3. Changing and Republishing the Application

Procedure
Additional Resources

4.2. CONFIGURING A REMOTE SERVER
Procedure
4.2.1. Setting up a Remote Server

Procedure

114
114
114
114
114

116
116
116
116
116
116
116
117
117
117
117
117
117
117

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

4

Table of Contents

5

CHAPTER 1. SETTING UP AND MANAGING A REPOSITORY
FOR YOUR PROJECTS

1.1. USING GIT WITH RED HAT JBOSS DEVELOPER STUDIO

The IDE includes the Git Perspective to allow developers to create, add, and manage their Git
repositories quickly and easily with a graphical interface. This article introduces the basic workflow of a
Git project and how to accomplish the most common Git-related tasks via the Git perspective.

1.1.1. Setting Up the Git Perspective

To locate the Git Perspective in the IDE:

1. In the IDE, click Window > Perspective > Open Perspective > Other.

2. In the Open Perspective window, click Git and click Open. The Git Repositories view appears.

1.1.2. Setting up a Repository in the Git Perspective

The first step to using the Git Perspective in the IDE is to set up a Git repository.

1.1.2.1. Creating a New Git Repository

If a repository is not already created and available, use the following steps to create a new repository:

1. Click the Create a new Git Repository and add it to this view icon.

Figure 1.1. Click the Create a New Git Repository Button

2. In the Create a Git Repository window:

a. Ensure that the automatically populated default value for the Repository directory field is
correct.

b. Optionally, click the Create a bare repository checkbox to create a new bare repository. For
details about bare repositories and how they differ from a normal repository, see the
Additional Resources section.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

6

Figure 1.2. Create a New Git Repository

A new git repository is created on your local machine and is listed in the Git Repositories
view.

1.1.2.2. Cloning an Existing Git Repository

If your repository already exists online (for example, in GitHub), use the following steps to create a local
clone:

1. Ensure that you have forked the repository online. This option is available in the repository host’s
website.

2. Click the Clone a Git Repository and add the clone to this view icon.

Figure 1.3. Click the Clone a Git Repository Icon

3. Click the Clone a Git Repository icon.

4. Enter the details of the source repository as follows:

a. Add the URI for the repository’s online source. This automatically populates the Host and
Repository path fields.

b. In the Authentication pane, add your username and password for the source repository.

c. Click Next to continue.

CHAPTER 1. SETTING UP AND MANAGING A REPOSITORY FOR YOUR PROJECTS

7

Figure 1.4. Enter the Source Repository Details

5. In the Clone Git Repository window, select the branches that you want to clone and click Next.

6. Customize the local version of your Git repository as follows:

a. Confirm that the automatically populated information for the destination Directory and Initial
Branch are correctly populated.

b. Optionally, set a non-default name for the Remote name field.

c. Optionally, select the Add project to working sets check box and use the drop down menu
and the Select button to select the appropriate working sets for this repository.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

8

Figure 1.5. Customize the Local Version of the Git Repository

7. Click Finish to conclude cloning an existing Git repository. The new cloned repository is listed in
the Git Repositories view.

1.1.2.3. Adding an Existing Local Git Repository

If you have already cloned a Git repository locally, the following instructions are necessary to add your
Git repository to the IDE. If you have not yet cloned your repository, follow the instructions in the following
prerequisites section.

Prerequisites

1. Ensure that you have forked the repository online.

CHAPTER 1. SETTING UP AND MANAGING A REPOSITORY FOR YOUR PROJECTS

9

2. On the command line on your local system, navigate to the location where you want to store the
local copy of the repository and enter the following command to clone the repository:

$ git clone _<repository URL>_

Use the following instructions to add your existing local Git Repository to JBoss Developer Studio’s Git
Perspective:

1. Click the Add an existing local Git Repository to this view icon.

Figure 1.6. Click the Add an Existing Local Git Repository Icon

2. Select the local Git Repository as follows:

a. Click Browse to navigate to the local directory that contains the Git repository.

b. Optionally, select the Look for nested repositories checkbox to search for nested
repositories.

c. In the Search results pane, ensure that the appropriate .git file is selected and click Finish.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

10

Figure 1.7. Find and Add Local Repository

The local repository now appears in the Git Repositories view.

1.1.3. Adding a Remote for the Repository

After setting up your repository for the first time, set up a remote for repository. This is a one-time set up
step for newly created or added repository.

To set up the remote for your repository:

1. In the Git Repositories view, expand the target repository.

2. From the expanded options, right-click Remotes and then Create Remote.

3. In the New Remote dialog box:

a. Add a name in the Remote name field.

CHAPTER 1. SETTING UP AND MANAGING A REPOSITORY FOR YOUR PROJECTS

11

b. Ensure that Configure push is selected.

c. Click OK to continue.

4. In the Configure Push dialog box:

a. Click Change to view the Select a URI dialog box.

b. In the URI field, add the URI to your repository . This automatically populates the Host and
Repository path fields.

c. In the Authentication pane, add your repository username and password and click Finish to
continue.

5. Click Save to save your push configuration settings. Expand the Remotes folder in the
repository view to see the newly added remote.

1.1.4. Creating and Working With a New Branch

This section provides instructions for creating a new branch and common tasks that you can perfrom
with the new branch.

1.1.4.1. Creating a New Branch

If your repository is already set up in the IDE, create a new branch to make changes to the files.

To create a new branch:

1. In the Git Repositories view:

a. Expand the name of your Git Repository.

b. Click Branches to expand the branch view.

c. Click Remote Tracking to view all remote branches for the repository.

d. A branch displays with a name that begins with origin/master. Right-click this branch and
click Create Branch.

Figure 1.8. Create a Branch from Origin/Master

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

12

2. Add the required details about the new branch:

a. In the Branch name field, add the desired new branch name.

b. Ensure that the Configure upstream for push and pull checkbox is selected.

c. In the When pulling options, select the option that suits your requirement.

d. Ensure that the Checkout new branch check box is selected and click Finish.

Figure 1.9. Add Details for a New Branch

The new branch appears under {Repository_Name} > Branches > Local.

1.1.4.2. Working in the New Branch

After creating a new branch, you can implement changes in the new branch as follows:

1. Expand {Repository_Name} > Branches > Local and find the new branch where changes are
to be implemented.

2. Confirm that the target branch is checked out. The currently checked-out branch displays a small
check mark.

Figure 1.10. An Example of a Checked-out Branch

3. Right-click on the checked-out branch name and click Show In > Terminal.

CHAPTER 1. SETTING UP AND MANAGING A REPOSITORY FOR YOUR PROJECTS

13

Figure 1.11. The Show Branch in Terminal Option

4. Next to the Terminal tab that has just opened, click the Open a Terminal icon to view the
command line prompt in this view.

Figure 1.12. The Open a Terminal Icon

5. In the Launch Terminal dialog box:

a. In the Choose a Terminal list, ensure that Local Terminal is selected.

b. In the Encoding list, click Default (ISO-8859-1). Click OK. Note that as a default, the
terminal window is at the /home/YourCurrentUser/ directory.

The Terminal tab now displays a command line terminal. Use the terminal view to make the required
changes to your checked-out files.

1.1.4.3. Updating the Branch Before Implementing the Changes

When working locally on a branch, it is better to ensure the local branch is up to date before creating a
pull request (PR). As an example, if someone else has checked out the same repository and created a
new branch, made changes, and merged the changes, use the following procedure to update your
repository and branch before committing your own changes.

In the example below, a new branch called TrackingID-1234 is created using the IDE. Assuming that

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

14

someone else is working on the same repository and has created a new branch called NEWBRANCH,
made changes to it, and then merged the changes back into the repository. The local branch
(TrackingID-1234) is now out of date because it does not include the changes from NEWBRANCH. Use
the following instructions to update the branch:

1. Right-click the name of the repository to update and click Pull. A status menu appears that
displays the progress of the pull request. When the pull is complete, the Pull Result for
{Repository_Name} window appears showing the results of the fetch and update operations.

2. Click Close to conclude the operation. The repository now contains the most updated version of
the contents.

1.1.5. Committing and Merging the Changes

After all the required changes are complete, commit the changes and then create a PR. PRs are then
evaluated by the repository owner and either merged into the repository or rejected.

To commit and merge the changes:

1. Expand {Repository_Name} > Branches > Local. Ensure that the check mark that indicates the
current branch appears at the correct working branch.

2. Right-click the name of the repository and click Commit.

3. In the Git Staging view:

a. In the Commit message field, add a commit message describing the changes.

b. Confirm that the automatically populated Author and Committer fields display the correct
name and email address.

Figure 1.13. Add details in the Commit Changes Field

c. Click Commit to create a new commit (without creating a Pull Request) or click Commit
and Push to commit the changes and create a Pull Request at the same time.

1.1.5.1. Committing and Pushing the Changes

If you selected Commit and Push in Section 1.1.5, “Committing and Merging the Changes”, use the
following instructions:

CHAPTER 1. SETTING UP AND MANAGING A REPOSITORY FOR YOUR PROJECTS

15

1. In the Login dialog box, enter your repository access username and password and click OK.

2. When the operation completes, the repository is now ahead by one commit. This is represented
with an arrow and the number one:

Figure 1.14. Git Repository Status

3. After the Pull Request is evaluated and merged, right-click the repository and click Pull to
manually update the repository. A Pull Request is generating and ready for the repository owner
to review.

1.1.5.2. Committing Without Pushing the Changes

If you selected Commit in Section 1.1.5, “Committing and Merging the Changes” to commit changes but
not push them, use the following instructions:

1. When the operation completes, the repository is now ahead by one commit. This is represented
with an arrow and the number one.

Figure 1.15. Git Repository Status

2. When you are ready to create a Pull Request, right click the current branch name and click Push
Branch {branch_name}.

3. An automatically populated `Push Branch {Branch_Name}* dialog box appears. Confirm that the
settings are correct. The settings selected when creating this branch are used for this step. Click
Next to continue.

4. In the Login dialog box, enter your repository access username and password and click OK.

5. In the Push Confirmation dialog box, click Finish to create the Pull Request. If requested,
supply the username and password for the repository once again.

6. When the operation completes, a Push summary dialog box appears. Click OK to dismiss this
dialog box. The included changes are now committed and a Pull Request is generated for the
repository owner to review.

Additional Resources

Bare repositories are recommended for central repositories, but not for development
environments. Bare repositories differ from normal repositories because they do not contain a
working or checked out copy of any source files. This prevents editing files and committing
changes in the repository. Additionally, they store the git revision history for your repository in the
repository’s root folder instead of in a .git sub-folder.

If you need to add a change ID to each commit message, in the Comming Changes dialog box,
click the rightmost icon at the top right corner to add a change ID to the commit message.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

16

CHAPTER 2. CONFIGURING MAVEN BASICS
In the context of application development, Maven provides a standardized build system for projects. One
of the main benefits of using Maven with your project is that it facilitates fetching dependencies from one
or more repositories. This article serves as an introduction to using Maven with the IDE.

Root Maven projects can serve as aggregators for multiple Maven modules, also known as sub-projects.
For each module that is part of a maven project, a <module> entry is added to the project’s pom.xml file.
A pom.xml that contains <module> entries is often referred to as an aggregator pom.

When modules are included into a project it is possible to execute Maven goals across all of the modules
by a single command issued from the parent project directory.

NOTE

The provided instructions pertain to the creation of a parent+module project structure. If
you prefer to create a simple project, simply start with an archetype or don’t use the pom
packaging in step 2.i of the Section 2.1, “Creating a New Maven Project” section.

2.1. CREATING A NEW MAVEN PROJECT

Use the following instructions to create the parent project of a multi-module Maven project. The
instructions provided ensure that the packaging option is set to pom, which is a requirement for multi-
module Maven projects. Alternately, to create a standalone Maven project instead, set the packaging
option to an option other than pom.

To create a new Maven project:

1. In the workspace, click File > New > Other.

2. In the Filter field, type maven and then click Maven Project from the search results.

3. Click Next to continue.

4. Enter the initial project details:

a. Click the Create a simple project (skip archetype selection) check box. If this check box
is selected, the Select an Archetype step of the wizard is skipped and the project type is
set to pom, which is required to create a Maven Module based on this Maven project.
Alternately, to create a standalone project, clear the Create a simple project (skip
archetype selection) check box and follow the instructions in the wizard.

b. Ensure that the Use default Workspace location check box is clear and specify a non-
default location for your workspace files using the Browse button. Using a non-default
workspace location is recommended because this allows other tools to access the
workspace location easily.

c. Optional, click the Add project(s) to working set check box to add the newly created
projects to a working set.

d. Optional, click Advanced to view additional optional advanced configuration for the new
Maven project, such as:

i. Resolve Workspace projects: Dependencies opened as workspace projects will be
resolved without having to install them to your local Maven repository first. This way, any
changes made to one of these dependencies will have an immediate effect on other

CHAPTER 2. CONFIGURING MAVEN BASICS

17

projects consuming it (compilation, refactoring, etc.). When Resolve Workspace
projects is disabled, dependencies existing in the workspace must be installed to your
local Maven repository after any change (by running mvn install), in order to see
effects in projects consuming them.

ii. Profiles: Select a set of Maven profiles to activate or deactivate in the workspace.
Profiles are defined in the project pom.xml, or inherited from a parent pom.xml, or
defined in the relevant settings.xml.

iii. Name templates: Allows you to disambiguate project names in the workspace by
prepending or appending the group ID or SCM branch names to the default artifact ID.

Figure 2.1. Create a New Maven Project

e. When the configuration is complete, click Next to continue.

5. To configure the project details:

a. In the Group Id field, enter the desired group ID, which is similar to an organization
namespace (for example, com.company.businessunit.project).

b. In the Artifact Id field, enter the desired artifact ID value, which is the name for your project.
This value must not include any spaces and the only special characters allowed are periods
('.'), underscores ('_'), and dashes ('-').

c. In the Version list, click 0.0.1-SNAPSHOT or a similar value. For details about the
appropriate version build numbers, see Project Versions

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

18

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html

d. In the Packaging list, click pom.

e. Optionally, in the Name field, add a name for your project.

f. Optionally, in the Description field, add a description for your project.

Figure 2.2. Configure Project Details

g. Click Finish to conclude the new Maven project creation. Your new Maven project is created
and appears in the Project Explorer view.

2.2. CREATING A NEW MAVEN MODULE

Each Maven project with a packaging pom can include multiple Maven modules. Follow the instructions
here to create your first Maven module.

Prerequisites

You must have an existing Maven project available with the packaging type pom. See
Section 2.1, “Creating a New Maven Project” for instructions to create a new Maven project.

To create a new Maven module:

1. In the Project Explorer view, right-click the recently created pom project and click New >
Project.

2. In the New Project wizard, expand Maven and click Maven Module.

3. Click Next to continue.

CHAPTER 2. CONFIGURING MAVEN BASICS

19

4. To enter the initial module details:

a. Ensure that the Create a simple project (skip archetype selection) check box is clear. If
this check box is clicked, the Select an Archetype step of the wizard is skipped.

b. In the Module Name field, enter the desired module name. This value corresponds to the
Maven project’s Project ID.

c. Use the Browse button to locate the desired parent project and select it.

d. Optionally, clikc the Add project(s) to working set check box to add the newly created
projects to a working set.

e. Optionally, click Advanced to view additional optional advanced configuration for the new
Maven project, such as:

i. Resolve Workspace projects: Dependencies opened as workspace projects will be
resolved without having to install them to your local Maven repository first. This way, any
changes made to one of these dependencies will have an immediate effect on other
projects consuming it (compilation, refactoring, etc.). When Resolve Workspace
projects is disabled, dependencies existing in the workspace must be installed to your
local Maven repository after any change (by running mvn install), in order to see
effects in projects consuming them.

ii. Profiles: Select a set of Maven profiles to activate or deactivate in the workspace.
Profiles are defined in the project pom.xml, or inherited from a parent pom.xml, or
defined in the relevant settings.xml.

iii. Name templates: Allows you to disambiguate projects names in the workspace by
prepending or appending the group ID or SCM branch names to the default artifact ID.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

20

Figure 2.3. Set the Module Name and Parent

f. When the configuration is complete, click Next to continue.

5. To enter the module archetype information:

a. Ensure that the Show the last version of Archetype only check box is clicked. This
ensures that only the latest version of each archetype displays.

b. Select an archetype based on the purpose of the project you are creating. Use the keyword
maven-archetype-quickstart in the Filter field to locate a sample Maven project archetype.

CHAPTER 2. CONFIGURING MAVEN BASICS

21

Figure 2.4. Select a Module Archetype

c. Click Next to continue.

6. To enter the module details:

a. In the Group Id field, add the same group ID value that was used for the Maven project.

b. In the Version field, add the desired version number. For details about the appropriate
version build numbers, see Project Versions

c. The Artefact Id and Package fields are automatically populated based on the parent project
details. Click Finish to conclude setting up the Maven module.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

22

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html

Figure 2.5. Configure the Module Archetype Parameters

7. Optionally, to change the settings for the created Maven module, expand the module name in
the Project Explorer view and double click pom.xml from the expanded list. An Overview tab
appears for you to chnage the settings if you wish to.

Figure 2.6. Change the Module Settings from the Overview View

Your new Maven module is created and appears in the Project Explorer view. Additionally, a
hierarchical view of the nested projects is now available in the Project Explorer view as well
(see Nested/Hierarchical view of projects).

2.3. ADDING MAVEN SUPPORT TO AN EXISTING NON-MAVEN
PROJECT

CHAPTER 2. CONFIGURING MAVEN BASICS

23

https://www.eclipse.org/eclipse/news/4.5/M5/#nested-projects

For an existing application that was not created with Maven support, use the following instructions to add
Maven support to the non-Maven project:

1. In the Project Explorer view, right-click the project name and click Configure > Convert to
Maven Project.

2. To configure details for the new pom file:

a. The basic fields for the new pom file are prepopulated based on the project details. If
required, edit the existing values:

b. Optionally, in the Name field, add a name for the new project.

c. Optionally, in the Description field, add a brief description for the project.

Figure 2.7. Create a New Pom Descriptor

d. Click Finish to finalize the pom information.

3. If the project references java dependencies, a wizard appears displaying all these dependencies
and a green check mark when each dependency is identified. Learn more about dependency
identification in the Troubleshooting section.

4. Check the Delete original references from project check box to avoid retaining duplicate or
stale dependencies in your project.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

24

Figure 2.8. Identify Maven Dependencies

5. Click Finish when all dependencies are converted. The existing project is now configured for
Maven support.

2.4. TROUBLESHOOTING

2.4.1. Unidentifiable Dependency

CHAPTER 2. CONFIGURING MAVEN BASICS

25

Figure 2.9. Unidentifiable Dependency

Issue:

Either:

1. The jar file is corrupted/invalid.

2. The jar file is valid but does not contain any metadata used for identification.

Resolution:

1. Ensure that jar exists as a Maven artifact. If needed, you can install it to your local repository and
then click Identify dependencies.

2. Double-click the dependency, or click Edit and set the expected maven coordinates.

2.4.2. Some selected dependencies can not be resolved. Click here to configure
repositories in your settings.xml.

Figure 2.10. Dependencies Can Not Be Resolved Error

Issue: This error displays when a dependency can be identified (that is, whether it contains the pom
properties or other metadata) but the dependency is not available in any repository defined in your
settings.xml file.

Resolution: Click the here link in the error message and compare the old and new settings for the
dependency and add a new and correct repository. Users may choose to use one of the predefined
repositories from Red Hat.

Additional Resources

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

26

https://maven.apache.org/guides/mini/guide-3rd-party-jars-local.html

The wizard used to convert a non-Maven project to a Maven project attempts to identify all the
project’s classpath entries and their equivalent Maven dependencies. From the list of identified
dependencies, users can select which ones will be added to the generated Maven pom.xml file.
When identifying dependencies, one of several strategies may be used:

Checking if the jar contains the relevant maven metadata.

Identify the dependency using the Nexus indexer.

Identify the dependency using the JBoss Nexus instance REST API (if we are online) via a
SHA1 search.

Identify the dependency using the search.maven.org REST API (if we are online) via a
SHA1 search.

All unchecked dependencies will be ignored and are not added to the generated pom.xml.
However, some of these can be added as transitive dependencies to your project. For instance,
if you add jsp-api but remove servlet-api, the latter appears in the project classpath, as it
is a dependency of jsp-api.

You can double-click on a dependency from a list (or click the Edit button) to edit its Maven
coordinates or scope. Selecting several dependencies (ctrl+click) and clicking the Edit button
allows batch editing of their scope.

CHAPTER 2. CONFIGURING MAVEN BASICS

27

http://search.maven.org/#api

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH
JBOSS DEVELOPER STUDIO TOOLS

3.1. CONFIGURING JBOSS DEVELOPER STUDIO FOR USE WITH
JBOSS EAP AND JBOSS WEB FRAMEWORK KIT

This article provides details for new and existing users who need to configure a fresh install of the IDE or
upgrade the versions of Red Hat JBoss Enterprise Application Platform or JBoss Web Framework Kit in
use.

The IDE supports application development and deployment with JBoss EAP and JBoss Web Framework
Kit only after you configure the IDE for use with JBoss EAP and JBoss Web Framework Kit. This
configuration is essential for using the enterprise versions of the example Maven projects provided in
Red Hat Central. These projects are intended for deployment to JBoss EAP and necessitate IDE access
to the JBoss EAP and JBoss Web Framework Kit Maven repositories.

3.1.1. Setting up JBoss EAP

To set up JBoss EAP for use in the IDE, you must direct the IDE to the local or remote runtime servers.
This establishes a communication channel between the IDE and the JBoss EAP server for efficient
deployment and server management workflows.

3.1.1.1. Downloading, Installing, and Setting Up the IDE and JBoss EAP using the
DevSuite Installer

If you are installing a new instance of the IDE, you can use the Red Hat Development Suite Installer to
download, install, and set up the IDE and JBoss EAP. A specific JBoss EAP version is packaged in the
installer. For details of the components installed through Red Hat Development Suite, see Component
Details in the Red Hat Development Suite Installation Guide.

NOTE

If you want to install a different version of JBoss EAP, you can either download it from
within the IDE (see Section 3.1.1.2, “Downloading, Installing, and Setting Up JBoss EAP
from within the IDE”) or install it separately and then follow the instructions in
Section 3.1.1.3, “Using Runtime Detection to Set Up JBoss EAP from within the IDE”.

For detailed instructions on installing Red Hat Development Suite, see the Red Hat Development Suite
Installation Guide.

To download, install and set up the IDE and JBoss EAP using the DevSuite Installer:

1. Log in and download Red Hat Development Suite from the Red Hat Developers Portal product
download page at Red Hat Developers Download. Note that you must unzip macOS installers
before the next step. If using the Safari browser to download, the macOS installer is
automatically unzipped.

2. Run the downloaded installation file (Online or Bundled).

3. In the Red Hat Development Suite window, click Next to continue.

4. In the Target Folder window, in the Select the installation folder field, type the location where
you wish to install Red Hat Development Suite and then click Next to continue. The

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

28

https://access.redhat.com/documentation/en-us/red_hat_development_suite/2.0/html/installation_guide/red_hat_development_suite_component_details
https://access.redhat.com/documentation/en-us/red_hat_development_suite/2.2/html-single/installation_guide/
https://developers.redhat.com/products/devsuite/download/

Confirmation window lists the components that are available for download and installation
through Red Hat Development Suite.

NOTE

This use case requires you to only download JBoss Developer Studio and Red
Hat JBoss Enterprise Application Platform. However, you may choose to
download any additional or all the components available through Red Hat
Development Suite.

5. Click the Red Hat JBoss Developer Studio and Red Hat JBoss Enterprise Application
Platform checkboxes and click Next.

6. In the Account window, enter your existing Red Hat Developer login credentials.

7. Click Download & Install to continue. The Download & Install window shows the progress of
the installation.

8. In the Get Started window, click Open Red Hat JBoss Developer Studio.

9. In the Eclipse Launcher window, select the workspace location where you want to store the
project data and click Launch.

10. The Searching for runtimes window, automatically searches and detects the available
runtimes.

11. From the table, click Red Hat JBoss EAP 7.0 and click OK.

Figure 3.1. Searching for runtimes Window Listing Red Hat JBoss EAP 7.0

12. Open the Servers view, to see the Red Hat JBoss EAP 7.0 server listed in the Stopped mode.

3.1.1.2. Downloading, Installing, and Setting Up JBoss EAP from within the IDE

If you have the IDE already installed but not JBoss EAP, you can download, install, and set up JBoss
EAP from within the IDE. With this option, you can choose from a range of supported JBoss EAP
versions; for details of supported JBoss EAP versions, see https://access.redhat.com/documentation/en-

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

29

https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.2/html/supported_configurations_and_components/

us/red_hat_jboss_developer_studio/11.2/html/supported_configurations_and_components/.

To download, install, and set up JBoss EAP from within the IDE:

1. Start the IDE.

2. Click Window > Preferences, expand JBoss Tools, and then click JBoss Runtime
Detection.

3. In the Paths pane, click Download.

4. In the Download Runtimes window, from the Download Runtimes table select the JBoss
EAP version that you want to download and click Next.

NOTE

For JBoss EAP 6.1.x and later, continue to follow the steps given here. For JBoss
EAP 6.0.x and earlier, follow the on-screen instructions for downloading JBoss
EAP from the Red Hat Customer Portal and after JBoss EAP is installed continue
to Section 3.1.1.3, “Using Runtime Detection to Set Up JBoss EAP from within the
IDE”.

Figure 3.2. Download Runtimes Window Listing Available JBoss EAP Versions

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

30

5. In the JBoss.org Credentials window, enter your credentials and click Next.

6. In the Runtime JBoss EAP_version window, read the terms and conditions, and then click I
accept the terms of the license agreement and then click Next. Note that if you
have previously accepted the terms and conditions in the IDE or through the jboss.org website,
this window is skipped.

7. In the Download Runtime window, in the Install Folder field, click Browse and choose a
location in which to install JBoss EAP and click Finish. The Download 'JBoss EAP 1
window shows the progress of the downlaod.

8. Click Apply and Close to close the Preferences window. The server is listed in the
Servers view in stopped mode.

3.1.1.3. Using Runtime Detection to Set Up JBoss EAP from within the IDE

If the IDE and JBoss EAP are already installed, you can use runtime detection to set up JBoss EAP from
within the IDE. The runtime detection feature automatically identifies the JBoss EAP instance installed on
your local system and generates a corresponding default server setup for use in the IDE. This feature
makes getting started with a default JBoss EAP server very quick.

NOTE

Specific JBoss EAP versions are supported by each IDE release; for details of supported
JBoss EAP versions, see https://access.redhat.com/documentation/en-
us/red_hat_jboss_developer_studio/11.2/html/supported_configurations_and_components/.

To use runtime detection to set up JBoss EAP for use in the IDE:

1. Start the IDE.

2. Click Window → Preferences, expand JBoss Tools, and then select JBoss Runtime
Detection.

3. Click Add.

4. Navigate to path/to/jboss-eap and click OK. JBoss Server Tools recursively scans the path
searching for installed servers and displays a list of those it finds.

5. Ensure the jboss-eap-version check box is selected, where version denotes the JBoss EAP
version, and click OK.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

31

https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.2/html/supported_configurations_and_components/

Figure 3.3. Selecting a Runtime

6. Click Apply and Close to close the Preferences window. The server is listed in the
Servers view in stopped mode.

3.1.2. Configuring Maven for JBoss EAP and JBoss Web Framework Kit Maven
Repositories

To configure Maven to use the JBoss EAP and JBoss Web Framework Kit Maven repositories when
working inside the IDE, you must ensure that the IDE knows the location of your Maven configuration
settings.xml file and that the necessary profiles for the JBoss EAP and JBoss Web Framework Kit
Maven repositories are contained in that file. This ensures that Maven knows where to search for project
dependencies when it is called to build Maven projects from within the IDE.

3.1.2.1. Specifying Maven settings.xml File Location

If you have multiple Maven settings.xml files or you are using a shared settings.xml file, then
this file may not be in the default location expected by the IDE. In this case, you must inform the IDE of
the file location.

To specify the Maven settings.xml file location:

1. Start the IDE.

2. Click Window → Preferences, expand Maven, and then click User Settings.

3. For the User Settings field, click Browse and locate the settings.xml file.

4. Click Update Settings.

5. Click Apply and then click OK.

3.1.3. Using JBoss EAP and JBoss Web Framework Kit Maven Repositories

You can either download the JBoss EAP and JBoss Web Framework Kit Maven repositories from the
Red Hat Customer Portal or use the online Maven repository located at
https://maven.repository.redhat.com/ga.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

32

https://maven.repository.redhat.com/ga

3.1.3.1. Using the Offline Maven Repositories

If you have not previously used these versions of JBoss EAP and JBoss Web Framework Kit, you must
configure your Maven settings.xml file to use the associated product Maven repositories. You can
manually edit your settings.xml file in a text editor or use the JBoss Developer Studio Maven
integration feature to automatically detect the JBoss repositories and appropriately edit your
settings.xml file.

NOTE

The JBoss EAP and JBoss Web Framework Kit Maven repositories must be already
obtained from the Red Hat Customer Portal and located on a system that you can access.

To specify the JBoss EAP and JBoss Web Framework Kit Maven repositories locations using the IDE:

1. Start the IDE.

2. Click Window → Preferences, expand JBoss Tools, and then click JBoss Maven
Integration.

3. Click Configure Maven Repositories.

4. Click Add Repository.

5. Click Recognize JBoss Maven Enterprise Repositories.

6. Navigate to path/to/jboss-eap-maven-repository and click OK. JBoss Maven Tools
recursively scans the path searching for a Maven repository.

7. Modify the information in the ID and Name fields as desired, ensure the Active by default
check box is selected, and then click OK.

Figure 3.4. Details of the Selected Maven Repository

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

33

8. Click Add Repository.

9. Click Recognize JBoss Maven Enterprise Repositories.

10. Navigate to path/to/jboss-wfk-maven-repository and click OK. JBoss Maven Tools
recursively scans the path searching for a Maven repository.

11. Modify the information in the ID and Name fields as desired, ensure the Active by default
check box is selected, and then click OK.

12. Click Finish and at the prompt asking if you are sure you want to update the Maven
configuration file click Yes. If the specified configuration file does not exist, JBoss Maven Tools
creates it.

13. Click Apply and click OK to close the Preferences window.

3.1.3.2. Using the Online Maven Repositories

Adding the online repository to the IDE, adds https://maven.repository.redhat.com/ga to your
settings.xml , which takes care of all the dependencies.

To use the online Maven repositories:

1. Start the IDE.

2. Click Window → Preferences, expand JBoss Tools, and then click JBoss Maven
Integration.

3. Click Configure Maven Repositories.

4. Click Add Repository.

5. In the Profile ID drop-down list, select redhat-ga-repository.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

34

https://maven.repository.redhat.com/ga

Figure 3.5. Add a Maven Repository

6. Click OK.

7. In the Configure Maven Repositories window, click Finish.

8. Click Apply and then click OK to close the Preferences window.

3.2. CREATING AND IMPORTING NODE.JS APPLICATIONS

Node.js is an event-based, asynchronous I/O framework and is used to develop applications that run
JavaScript on the client and server side. This allows the application to re-use parts of the code and to
avoid switching contexts. Node.js is commonly used to create applications such as static file servers,
messaging middleware, HTML5 game servers, web application framework, and others.

JBoss Developer Studio supports node.js application development using the npm package installer and
offers a built-in debugging tool to identify and fix issues with applications.

Prerequisites
Ensure that the following prerequisites are met to start developing node.js applications in
JBoss Developer Studio:

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

35

1. Install npm. On Red Hat Enterprise Linux and Fedora, use the sudo dnf install npm
command. See the npm documentation (https://docs.npmjs.com/getting-started/installing-node)
for installation information about other operating systems.

2. Install JBoss Developer Studio. You are now ready to start developing Node.js applications with
JBoss Developer Studio.

3.2.1. Creating a new JavaScript Application

To create a new JavaScript project and application in JBoss Developer Studio:

1. To create a new JavaScript project:

a. Click File → New → Other and type JavaScript in the search text box.

b. Select JavaScript Project and click Next.

c. In the Project Name field, add a name for your new project.

d. Ensure that the rest of the fields, which are set to the default settings, are as required, and
then click Finish to create the new project.

e. If asked to view the JavaScript perspective, click Yes. Your new project is listed in the
Project Explorer view.

2. To interactively create a package.json file:

a. Click File → New → Other and then type npm in the search box.

b. From the search results, click npm Init.

c. Set the Base directory to your JavaScript project folder in your JBoss Developer Studio
workspace.

d. Optionally, clear the Use default configuration check box to supply non-default
values for these fields.

e. Click Finish to continue with the default values for the package.json file or to continue
after changing the default values.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

36

https://docs.npmjs.com/getting-started/installing-node

Figure 3.6. Generate a New package.json File

f. The new package.json file is generated and displayed for editing. If required, manually
edit the file in the displayed pane and save the changes.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

37

Figure 3.7. Manually Edit the Generated package.json File

3. Manually edit the package.json file to add dependencies. Dependencies are modules which
provide extended functionality, such as libraries and frameworks. See the following screen
capture for an example of the required format for dependencies and developer dependencies.

Figure 3.8. Adding Dependencies to the package.json File

For further details about dependencies, see the NPM documentation:
https://docs.npmjs.com/files/package.json#dependencies

4. Create a new JavaScript file with the required business logic:

a. In the Project Explorer view, right-click the name of your project, and select New →
File.

b. In the dialog box, add a name for the new file, for example index.js, and click Finish to
create the new file.

c. The new file displays for editing in a new tab. Add the required business logic to the your
JavaScript files and save the changes.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

38

https://docs.npmjs.com/files/package.json#dependencies

5. Run the project files by right-clicking the index.js file in your project and select Run As →
Node.js Application. The Console view appears and displays details about the application as
it runs, or errors if it is unable to run the application. You have created a new JavaScript project
and application.

3.2.2. Importing an Existing JavaScript Project

You can import an existing JavaScript project directly into JBoss Developer Studio and then make
changes and run the project as follows:

1. Click File → Import.

2. In the Import dialog box, expand the General option.

3. Click Existing Projects into Workspace and then click Next.

4. In the Import Projects dialog box:

a. Click either the Select root directory or Select archive file options based on
your project format.

b. Click Browse to add the path to the project root directory or archive file.

c. In the Projects box, select one or more projects to import into the workspace.

d. If required, click the Search for nested projects option to locate nested projects in
the root directory or archive file.

e. Click the Copy projects into workspace option to save a copy of the imported project
in the workspace directory specified for JBoss Developer Studio.

f. If required, select the Add project to working sets checkbox and add the details for
a new or existing working set.

g. Click Finish to add the project to the workspace. The Project Explorer view now
contains your imported project.

5. If required, expand the project in the Project Explorer view and either double-click the
project files to edit them, or right-click and select New → File to add a new JavaScript file for
your project.

6. Run the project files by right-clicking the index.js file in your project and click Run As →
Node.js Application. The Console view appears and displays details about the application as
it runs, or errors if it is unable to run the application. You have imported an existing JavaScript
project into JBoss Developer Studio.

3.2.3. Debugging a Node.js Application

After either creating a new Node.js project or importing an existing one and then running the project,
some errors may appear. JBoss Developer Studio includes a debugger to help identify and resolve these
issues.

To use the debugging feature:

1. Start the debugger for your project:

a. In the Project Explorer view, expand your project.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

39

a. In the Project Explorer view, expand your project.

b. Right-click the index.js file for your project and click Debug As → Node.js Project.

c. Select the Remember my decision check box in the dialog box to apply your selection to
subsequent perspective shifts and then click Yes or No to continue.

2. Review the elements of your project’s JavaScript files to locate errors in one of two ways:

a. Expand any variable listed in the Variables tab to view additional objects and edit the
details for each item.

b. Hover the mouse cursor over any variables in the index.js tab to view and edit its property
details.

3. Make changes to the files to address the errors:

a. Edit the index.js file in the appropriate view.

b. Save the changes. The Console view runs the updated file and displays changes.

4. After debugging the errors, use the Resume, Suspend, and Terminate buttons (

) as follows to test your changes:

a. The Resume button (green triangle) continues running the project files.

b. The Suspend button (two yellow rectangles) temporarily stops running the project files to
allow users to make changes.

c. The Terminate button (red square) ends the running of the project files.

5. Repeat steps 4 through 6 as necessary to locate and fix errors found by the debugger.

6. When debugging is concluded, click Window → Show View → Other and select Project
Explorer from the options. This displays the list of projects again. You have debugged your
application and returned to the Project Explorer view.

3.3. DEVELOPING APPLICATIONS USING THE FORGE TOOL

Red Hat JBoss Developer Studio offers Forge Tools for developing Java EE applications and to extend
the IDE functionality in Eclipse. Start developing Java EE applications using either the Forge context
menu or the command line from the IDE.

3.3.1. Creating a Forge Project

After you have created a Forge project you can set up persistence, add entities and fields, and create
scaffold for the project.

To create a new project:

1. Press Ctrl+4 to start Forge and open the JBoss Forge context menu.

2. Click Project:New to open the Create a new project window.

3. In the Create a new project window:

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

40

a. In the Project name field, type a project name.

b. In the Top level package field, type {com.example} as the top package.

c. In the Project location field, enter a target location for the Forge project.

d. In the Stack list, click Java EE 7.

4. Click Finish.

Figure 3.9. Create a New Forge Project

The project is listed in the Project Explorer view.

3.3.2. Setting up Persistence

Setting up the JPA prerequisites, creates the persistence.xml file in the project and adds the required
dependencies to the pom.xml file.

NOTE

While creating the JPA entity, the Forge console automatically detects any prerequisites
that must be set up and prompts you to create those at runtime.

To set up persistence:

1. Press Ctrl+4 to open the JBoss Forge context menu.

2. Click JPA: New Entity. The window is populated with default values.

3. Click Next to continue using the default values or edit the fields to change the values.

4. In the Configure your connection settings window, ensure that the fields display the
appropriate values and then click Next.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

41

5. In the Create a new JPA entity window:

a. The Package Name field shows the system defined name of the package, example:
{your_Forge_project_name}.model. Edit the package name if desired.

b. In the Type Name field, type a name for the new entity. Example: Customer.

6. Click Finish. The new entity appears in the JBoss editor and is also listed in the Project
Explorer view with the name: .java.

Figure 3.10. .java Displayed in the JBoss Editor

3.3.3. Adding Fields to the Entity

To add fields to the entity:

1. Press Ctrl+4 to open the JBoss Forge context menu.

2. Click JPA: New Field.

3. In the Create a new field window:

a. In the Target Entity field, select {package_name.model.entity}.

b. In the Field Name field, type FirstName.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

42

4. Click Finish.

Figure 3.11. Add Field to the Entity

5. Repeat steps 1 through 4 to add more fields to the entity.

The fields are added to the Customer.java file.

3.3.4. Creating a Scaffold

Scaffolding is automatic code generation by a program, using available information, usually a database
to generate a basic CRUD (create, read, update, delete) admin interface. The Scaffold Generate
command is used to create the scaffold.

To create the scaffold:

1. Press Ctrl+4 to open the JBoss Forge context menu.

2. Click Scaffold Generate.

3. In the Scaffold Type list, click Angular JS and then click Next.

4. If your project is not configured to use all the technologies that you want to use, Forge prompts
you to set up the dependencies. Click Next.

5. In the Select JPA entities window:

a. Click the check box in the Targets field.

b. Click the Generate REST resources check box.

6. Click Finish.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

43

Figure 3.12. Select JPA Entities to Create the Scaffold

The entities are created and listed in the Project Explorer view.

3.3.5. Running and Testing the Application

In this example we use the JBoss EAP server to run the application.

To run the application:

1. In the Project Explorer view, right-click the application and click Run As > Run on Server.
Alternatively, drag and drop the application from the Project Explorer view to the JBoss EAP 1
server in the Servers view. The application opens in the default browser.

2. Click Customers and then click Create to create a new customer.

3. In the FirstName and the LastName fields, enter the first and last names and click Save. The
customer is added to the application.

4. Optionally, use the Search for Customers section to search for customers by their first and/or
last names.

3.3.6. Creating Extensions or Add-ons

The add-ons/extensions run inside the IDE. After adding commands and features to the add-on, no
further changes are required for the extensions or add-ons to run in another IDE.

Prerequisites

Sentence or a bulleted list of pre-requisites that must be in place or done before the user starts
this task.

Delete section title and bullets if the task has no required pre-requisites.

Text can be a link to a pre-requisite task that the user must do before starting this task.

To create an add-on:

1. Press Ctrl+4 to open the JBoss Forge context menu.

2. Click Project:New.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

44

3. In the Create a new project window:

a. In the Project name field, type a name for the add-on (example_addon, in this case).

b. In the Project type list, click Forge Addon (JAR).

4. Click Next.

5. In the Furnace Addon Setup window, Depend on these addons section, Forge automatically
selects the prerequisites. Review the dependencies and click Finish. The setting up of these
dependencies may take some time to complete. The add-on is listed in the Project Explorer
view.

6. Press Ctrl+4 to open the Forge context menu.

7. Select Java: New Class to open the Java: New Class window.

8. In the Type Name field, type CustomCommand and click Finish. The CustomCommand.java
file opens in the JBoss editor.

9. To change this Java class into a Forge command:

a. Press Ctrl+4 to open the Forge context menu.

b. Select Addon: New UI Command to open the Generates a UICommand implementation
window.

c. In the Generates a UICommand implementation window:

i. In the Type Name field, type CustomCommand.

ii. In the Command name field, type custom.

d. Click Finish.

Figure 3.13. Add a Command

The command is listed in the CustomerCommand.java file.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

45

10. In the Project Explorer view, click the CustomerCommand.java file to select the file.

11. Press Ctrl+4 to open the Forge context menu.

12. Select Build and Install an Addon to open the Build and install a Forge addon window. The
Project directory field, by deafult, shows the path to the addon.

13. Click Finish to install the add-on into the IDE.

14. To execute the installed command:

a. Press Ctrl+4 to open the Forge context menu.

b. Select custom.

c. Add parameters to the method in order to add user input to the command. Copy and paste
the following command in the CustomCommand.java file and save the file.

 package org.example_addon.commands;

 import org.jboss.forge.addon.configuration.Configuration;
 import org.jboss.forge.addon.resource.URLResource;
 import
org.jboss.forge.addon.ui.command.AbstractUICommand;
 import org.jboss.forge.addon.ui.context.UIBuilder;
 import org.jboss.forge.addon.ui.context.UIContext;
 import
org.jboss.forge.addon.ui.context.UIExecutionContext;
 import org.jboss.forge.addon.ui.input.UIInput;
 import
org.jboss.forge.addon.ui.metadata.UICommandMetadata;
 import org.jboss.forge.addon.ui.metadata.WithAttributes;
 import org.jboss.forge.addon.ui.util.Metadata;
 import org.jboss.forge.addon.ui.util.Categories;
 import org.jboss.forge.addon.ui.result.Result;
 import org.jboss.forge.addon.ui.result.Results;

 import java.lang.Override;
 import java.lang.Exception;

 import javax.inject.Inject;

 public class CustomCommand extends AbstractUICommand
 {
 @Inject
 @WithAttributes(label = "JIRA URL", required =
true)
 private UIInput<URLResource> url;

 @Inject
 private Configuration config;

 @Override
 public UICommandMetadata getMetadata(UIContext context)
 {

 return Metadata.forCommand(getClass())

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

46

15. To rebuild and install:

a. In the Project Explorer view, click the created add-on (example_addon, in this case).

b. Press Ctrl+4 to open the Forge context menu.

c. Select Build and Install an Addon. The Project directory field, by deafult, shows the path
to the addon.

d. Click Finish to install the add-on into the IDE.

e. Press Ctrl+4 to open the Forge context menu.

f. Click JIRA: Setup.

Figure 3.14. Add-on Listed in the Forge Context Menu

The add-on is created and listed in the Forge context menu.

Additional Resources

 .name("JIRA: Setup")
 .description("Setup the JIRA Addon")
 .category(Categories.create("JIRA",
"Setup"));
 }

 @Override
 public void initializeUI(UIBuilder builder) throws
Exception

 {
 builder.add(url);
 }

 @Override
 public Result execute(UIExecutionContext context)
 {
 String targetUrl =
url.getValue().getFullyQualifiedName();
 Configuration subset = config.subset("jira");
 subset.setProperty("url", targetUrl);
 return Results.success("JIRA URL set to:
"+targetUrl);
 }
 }

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

47

You can launch the Forge Console by clicking Window > Show view > Forge Console. The
Forge Console view opens in an inactive state.

You can start JBoss Forge by clicking the Start {JBoss Forge_version} button).

To link the Forge Console output with the open editor, click the Link with Editor button (
).

3.4. DEVELOPING APPLICATIONS USING THE HIBERNATE TOOLS

Hibernate Tools is a collection of tools for projects related to Hibernate version 5 and earlier. The tools
provide Eclipse plugins for reverse engineering, code generation, visualization and interaction with
Hibernate.

Prerequisites
Connect to the sakila-h2 databass:

1. Download the sakila-h2 database from the h2 version of the Sakila database.

2. On the terminal, navigate to the directory where you have saved the sakila-h2.jar file and
run the following command to start the database: $./runh2.sh.

3.4.1. Creating a JPA Project

To create a JPA project and connect to the database:

1. In the workspace, click File > New > Other and then search for JPA Project and double-click it
to open the New JPA Project wizard.

2. In the New JPA Project wizard:

a. In the Project name field, type a name for the project.

b. In the Target runtime field, click a runtime server that you wish to use.

c. In the JPA version list, click 2.1.

3. Click Next.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

48

https://github.com/maxandersen/sakila-h2

Figure 3.15. Create a New JPA Project

4. In the New JPA Project - Java window, select the source folder on the build path and click Next.

5. In the JPA Facet window, click Add connection.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

49

6. In the New Connection Profile window:

a. Click Generic JDBC.

b. In the Name field, type sakila.

7. Click Next.

8. In the New Connection Profile window:

a. Click the New Driver Definition icon () located next to the Drivers field to open the
New Driver Definition window.

9. In the Name/Type tab, click Generic JBDC Driver and then click the JAR list tab.

10. Click Add JAR/Zip and then select the previously downloaded .jar file in the sakila-h2-master
folder.

Figure 3.16. Select the JAR File

11. Click the Properties tab and enter the following details in the Properties table:

a. Click Connection URL and type jdbc:h2:tcp://localhost/sakila.

b. Click Driver Class, and then click the ellipsis icon .

c. In the Available Classes from Jar List window, click Browse for class. Click OK when the
required driver is found (org.h2.Driver, in this case).

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

50

d. Click User ID, type sa.

12. In the New Driver Definition window, click OK.

13. In the New Connection Profile window, click Finish to return to the JPA Facet window.

14. In the Platform list, click Hibernate (JPA 2.1).

15. In the JPA implementation pane, Type list, either click User Library and to add the libraries in
the Preferences (Filtered) window see, the Additional Resources, Adding Libraries section for
detailed steps, OR click Disable Library Configuration.

16. Click Finish.

17. If you see the Open Associated Perspective window asking if you want to open the JPA
perspective, click Open Perspective. The project is created and is listed in the Project
Explorer view.

3.4.2. Generating DDL and Entities

DDL, Data Definition Language, is a syntax to define data structures. Generate DDL and entities to
enable Hibernate runtime support in an Eclipse JPA project.

To generate DDL and Entities:

1. In the Project Explorer view, right-click the .

2. Click JPA Tools > Generate Tables from Entities or Generate Entities from Tables. The
Generate Entities window (or the Generate Tables from Entities window) appears.

3. In the Generate Entities window:

a. In the Output directory field, change the default directory, if required.

b. Ensure that the Use Console Configuration check box is clicked.

c. In the Console Configuration list, ensure that the relevant configuration is shown.

4. Click Finish.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

51

Figure 3.17. Generate Entities

3.4.3. Creating a Hibernate Mapping File

Hibernate mapping files specify how your objects relate to the database tables.

To create basic mappings for properties and associations, meaning, to generate the`.hbm.xml` files:

1. Create a new Hibernate Mapping file:

a. Click File > New > Other.

b. In the New wizard, locate Hibernate and expand it. Click Hibernate XML Mapping file
(hbm.xml).

2. Click Next.

3. In the New Hibernate XML Mapping files (hbm.xml) window:

a. Click Add Class to add classes or click Add Packages to add packages. You can create an
empty .hbm file by not selecting any packages or classes. An empty .hbm file is created in
the specified location.

b. Click the depth control check box to define the dependency depth used when choosing
classes.

c. Click Next.

d. Select the parent folder location.

e. In the File name field, type a name for the file (example: hibernate.hbm.xml) and click
Finish. The hibernate.hbm.xml file opens in the default editor.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

52

3.4.4. Creating a Hibernate Configuration File

For reverse engineering, prototype queries, or to simply use Hibernate Core, a
hibernate.properties or a hibernate.cfg.xml file is needed. Hibernate Tools provides a
wizard to generate the hibernate.cfg.xml file if required.

To create a Hibernate Configuration file:

1. Create a new cfg.xml file:

a. Click File > New > Other.

b. In the New wizard, locate Hibernate and then click Hibernate Configuration File (cfg.xml).

2. Click Next.

3. In the Create Hibernate Configuration File (cfg.xml) window, select the target folder for the
file and then click Next.

4. In the Hibernate Configuration File (cfg.xml) window:

a. The Container field, by default, shows the container folder.

b. The File name field, by default, shows the configuration file name (hibernate.cfg.xml, in
this case).

c. In the Database dialect list, click the relevant database (H2, in this case).

d. In the Driver class list, click the driver class depending on the database dialect that you just
selected (org.h2.Driver, in this case).

e. In the Connection URL list, click the relevant URL (jdbc:h2:tcp://<server>[:
<port>]/<databaseName>, in this case).

f. Click the Create a console configuration check box to use the hibernate.cfg.xml file
as the basis of the console configuration.

5. Click Finish.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

53

Figure 3.18. Create a New cfg.xml File

The new hibernate.cfg.xml file opens in the default editor.

3.4.5. Creating a Hibernate Console Configuration File

A Console configuration file describes how the Hibernate plugin configures Hibernate. It also
describes the configuration files and classpaths needed to load the POJOs, JDBC drivers, etc. It is
required to make use of query prototyping, reverse engineering and code generation. You can have
multiple console configurations per project, but for most requirements, one configuration is sufficient.

To create a Hibernate console configuration file:

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

54

1. Create a cfg.xml file:

a. Click File > New > Other.

b. In the New wizard, locate Hibernate and then click Hibernate Console Configuration.

2. Click Next.

3. In the Main tab:

a. In the Name field, if required, edit the generated name provided by default.

b. In the Type pane, click Core.

c. In the Hibernate Version list, select the relevant version.

d. In the Project field, type a project name or click Browse to locate an existing project
(my_JPA_project, in this case).

e. In the Database connection list, click New to configure a new database connection or leave
as is to use the default connection.

f. In the Property file field, click Setup to set the path to the first hibernate.properties
file found in the selected project (see, the Additional Resources, Setting up the Property
File section for detailed steps). Once created the path of the .properties file displays in
the Property file field.

g. In the Configuration file field, click Setup to set the path to the first hibernate.cfg.xml
file found in the selected project (see, the Additional Resources, Setting up the
Configuration File section for detailed steps). Once created, the path of the
hibernate.cfg.xml file displays in the Configuration file field.

4. Click Finish.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

55

Figure 3.19. Create Hibernate Console

3.4.6. Modifying the Hibernate Configurations

You can edit the Hibernate Configurations from the Hibernate Configurations view.

To modify the Hibernate Configurations:

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

56

1. Click Window > Show View > Other. Click Hibernate Configurations and then click Open.

2. In the Hibernate Configurations view, right-click the and click Edit Configuration.

3. The Edit Configuration window displays. Edit the fields. Click Apply and then click OK.

3.4.7. Generating Code and Reverse Engineering

Hibernate tools’ reverse engineering and code generation features allow you to generate a range of
artifacts based on a database or an existing Hibernate configuration, like mapping files or annotated
classes. Among others, these generated artifacts can be POJO Java source files,
hibernate.hbm.xml files, hibernate.cfg.xml generation and schema documentation.

To generate code:

1. Configure Hibernate:

a. Click Window > Perspective > Open Perspective > Other.

b. Search for Hibernate and double-click it. The Hibernate Configurations view appears.

2. View the Hibernate Code Generation Configurations:

a. In the toolbar, next to the Run icon, click the down arrow.

b. Click Hibernate Code Generation Configurations.

3. Expand Hibernate Code Generation and then click New_configuration.

4. In the Create, manage, and run configurations window, in the Name field, type a logical name
for the code generation launcher. If you do not specify a name, the default name,
New_Generation, is used.

5. In the Main tab, enter the following details:

NOTE

The At least one exporter option must be selected warning indicates that for
the launcher to work you must select an exporter on the Exporter tab. The
warning disappears after you select an exporter.

a. In the Console Configuration list, click the name of the console configuration to be used
when generating code.

b. In the Output directory field, click Browse and select an output directory. This is the default
location where all output will be written. You can enter absolute directory paths, for example:
d:/temp. Note that existing files will be overwritten/ if the correct directory is not specified.

c. To reverse engineer the database defined in the connection information, click the Reverse
engineering from JDBC connection check box. JBoss Developer Studio generates code
based on the database schema when this option is used.If this option is not enabled, the
code generation is based on the existing mappings specified in the Hibernate Console
configuration.

d. In the Package field, add a default package name for any entities found when reverse
engineering.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

57

e. In the reveng.xml field, click Setup to select an existing reveng.xml file, or create a new
one. This file controls certain aspects of the reverse engineering process, such as:

how JDBC types are mapped to Hibernate types

which tables are included or excluded from the process

f. In the reveng. strategy field, click Browse and provide an implementation of a
ReverseEngineeringStrategy. this must be done if the reveng.xml file does not provide
enough customization; the class must be in the classpath of the Console Configuration
because if not, you will get a class not found exception.

NOTE

Refer to the Additional Resources, Creating, Managing, and Running
Configurations Window, Main tab, Check Boxes section for details of the
selected check boxes.

g. The Exporter tab specifies the type of code that is generated. Each selection represents an
Exporter that generates the code. In the Exporter tab:

h. Click the Use Java 5 syntax check box to use a Java 5 syntax for the Exporter

i. Click the Generate EJB3 annotations check box to generate EJB 3 annotations

ii. Select the Exporters from the Exporters table. Refer to the Additional Resources,
Exporter section for details about the exporters.
Each Exporter selected in the preceding step uses certain properties that can be set up
in the Properties section. In the Properties section, you can add and remove
predefined or custom properties for each of the exporters.

6. Click Add next to the Properties table to add a property to the chosen Exporter. In the resulting
dialog box, select the property from the proposed list and the appropriate value for it. For an
explanation of the property and its value, refer to the Additional Resources, Exporter Property
and its Values section.

7. Click the Refresh tab and enter the following:

a. Click the Refresh resources upon completion check box to refresh the resources and
click one of the following:

The entire workspace: To refresh the entire workspace.

The selected resource: To only refresh the selected resource

The project containing the selected resource: To refresh the project containing the
selected resource

The folder containing the selected resource: To refresh the folder containing the
selected resource

Specific resources: To refresh specific resources; then click Specify Resources to
open the Edit Working Set window and select the working set.

b. Click the Recursively include sub-folders check box to refresh the sub-folders.

8. Click the Common tab and enter the following:

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

58

a. In the Save as pane, click Local file to save the configuration as a local file, OR click
Shared file and then select a shared file location.

b. In the Display in favourites menu pane, click the menu to display the configuration.

c. In the Encoding pane, click the format that you want the configuration to be encoded to.

d. In the Standard Input and Output pane, click the Allocate console check box and
optionally click the Input File and Output File check boxes and select the relevant options.

e. Click the Launch in background check box to show the configuration launch progress in
the background.

9. Click Apply and then click Run.

3.4.8. Troubleshooting

3.4.8.1. Problems While Loading Database Driverclass

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

59

Error message: Problems while loading database driverclass (org.h2.Driver)

Resolution: To avoid this error, you must select a predefined DTP connection profile in the Database
Connection dropdown. Also, the jar can be added on the Classpath page of the Console
Configuration wizard if you don’t want to have it on the project classpath.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

60

1. Right-click {project_name} → Properties → Java Build Path.

2. Click the Libraries tab and then click Add External JARs.

3. Navigate to the downloaded database JAR file and click OK.

4. In the Properties for {project_name} window, click Apply and then click OK.

Additional Resources
Adding Libraries
To add libraries:

1. Download Hibernate ORM from http://hibernate.org/orm/.

2. Extract the file to locate the libraries in the lib/required folder.

3. In the JPA Facet window, Platform list, click * User Library*.

4. Click the Manage libraries icon ().

5. In the Preferences (Filtered) window, click New.

6. In the New User Library window, User library name field, type a name for the user library and
click OK (user_library, in this case).

7. Click the System library (added to the boot class path) check box and click OK.

8. In the Preferences (Filtered), click Add External JARs and locate the extracted hibernate-
release-1/lib/required folder.

9. Click the first library and click OK. Repeat the above step to add all the libraries from the
hibernate-release-1/lib/required` folder.

10. In the Preferences (Filtered), click Apply and Close .

Setting up the Property File
To set up the property file:

1. In the Create Hibernate Configuration window, Main tab, click Setup.

2. In the Setup property file window, click Create new to create a new property file (or click Use
existing to choose an existing file as a property file).

3. In the Create Hibernate Properties file (.properties) window, click the parent folder name and
then click Finish.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

61

http://hibernate.org/orm/

Setting up the Configuration File
To set up the configuration file:

1. In the Create Hibernate Configuration window, Main tab, click Setup.

2. In the Setup configuration file window, click Use existing to choose an existing file as a
property file (or click Create new to create a new property file).

3. In the Select hibernate.cfg.xml file window, expand the parent folder, choose the file to use as
the hibernate.cfg.xml file, and then click OK.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

62

Creating, Managing, and Running the Configurations Window, Main tab, Check
Boxes
The following check boxes are selected by default in the Create, manage, and run configurations
window, in the Main tab:

Generate basic typed composite ids: When a table has a multi-column primary key, a
<composite-id> mapping will always be created. If this option is enabled and there are
matching foreign-keys, each key column is still considered a 'basic' scalar (string, long, etc.)
instead of a reference to an entity. If you disable this option a <key-many-to-one> property is
created instead. Note that a <many-to-one> property is still created, but is simply marked as
non-updatable and non-insertable.

Detect optimistic lock columns: Automatically detects optimistic lock columns. Controllable via
reveng. strategy; the current default is to use columns named VERSION or TIMESTAMP.

Detect many-to-many tables: Automatically detects many-to-many tables. Controllable via
reveng. Strategy.

Detect one-to-one associations : Reverse engineering detects one-to-one associations via
primary key and both the hbm.xml file and annotation generation generates the proper code for
it. The detection is enabled by default (except for Seam 1.2 and Seam 2.0) reverse engineering.
For Hibernate Tools generation there is a check box to disable this feature if it is not required.

Exporter Property and Values

jdj5: Generates Java 5 syntax

ejb3: Generates EJB 3 annotations

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

63

for_each: Specifies for which type of model elements the exporter should create a file and run
through the templates. Possible values are: entity, component, configuration.

template_path: Creates a custom template directory for this specific exporter. You can use
Eclipse variables.

template_name: Name for template relative to the template path.

outputdir: Custom output directory for the specific exporter. You can use Eclipse variables.

file_pattern: Pattern to use for the generated files, with a path relative to the output dir.
Example: /.java.

Dot.executable: Executable to run GraphViz (only relevant, but optional for Schema
documentation).

Drop: Output will contain drop statements for the tables, indices, and constraints.

delimiter: Is used in the output file.

create: Output will contain create statements for the tables, indices, and constraints.

scriptToConsole: The script will be output to Console.

exportToDatabase: Executes the generated statements against the database.

outputFileName: If specified the statements will be dumped to this file.

haltOnError: Halts the build process if an error occurs.

Format: Applies basic formatting to the statements.

schemaUpdate: Updates a schema.

query: HQL Query template

Exporter

Domain code (.java): Generates POJOs for all the persistent classes and components found in
the given Hibernate configuration.

Hibernate XML Mappings (.hbm.xml): Generate mapping (hbm.xml) files for each entity.

DAO code (.java): Generates a set of DAOs for each entity found.

Generic Exporter (<hbmtemplate>): Generates a fully customizable exporter that can be used
to perform custom generation.

Hibernate XML Configuration (.cfg.xml): Generates a hibernate.cfg.xml file; used to keep the
hibernate.cfg.xml file updated with any newly discovered mapping files.

Schema Documentation (.html): Generates a set of HTML pages that document the database
schema and some of the mappings.

Schema Export (.ddl): Generates the appropriate SQL DDL and allows you to store the result in
a file or export it directly to the database.

HQL Query Execution Exporter: Generates HQL Query according to given properties.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

64

3.5. CREATING YOUR FIRST MOBILE WEB APPLICATION

Mobile Web Tools provides an HTML5 Project wizard that enables you to create web applications
optimized for mobile devices. The HTML5 Project wizard is a useful starting point for creating all new
HTML5 web applications in the IDE. The wizard generates a sample ready-to-deploy HTML5 mobile
application with REST resources from a Maven archetype.

As demonstrated in this article, you can customize the application using the JBoss Tools HTML
Editor, deploy and view the application with the mobile browser simulator BrowserSim, and use
LiveReload to refresh BrowserSim as the application source code is modified and saved in the IDE.

Prerequisites
Configuring the IDE for an Available Server

The instructions in this article show you how to deploy your HTML5 web application to a server. The IDE
must be configured for any servers to which you want to deploy applications, including the location and
type of application server and any custom configuration or management settings. You can complete this
configuration at the time of deploying the application but in this article it is assumed that you have
completed the configuration beforehand.

For information on configuring a local runtime server and deploying applications to it, see Deploying
Applications to a Local Server.

3.5.1. Creating an HTML5 Project

The HTML5 Project wizard generates a sample project based on a Maven archetype and the project and
application identifiers provided by you. The Maven archetype version is indicated in the Description field
in the first page of the wizard and you can change the version, and therefore the project look and
dependencies, by selecting either an enterprise or non-enterprise target runtime within the wizard.

To create a HTML5 project:

1. In Red Hat Central, in the Getting Started tab, click HTML5 Project.

2. In the Target Runtime list, click an IDE-ready server and click Next.

3. In the New Project Example window, complete the fields about the HTML5 project as follows:

a. In the Project name field, type a name for the project.

b. In the Package field, type an alpha-numeric package for the project.

4. Click Finish.

5. When prompted with 'HTML5 Project' Project is now ready, click Finish. The project is
generated and listed in the Project Explorer view.

3.5.2. Building and Deploying the Application

After the HTML5 project is generated, it can immediately be built and deployed to an application server.

To build and deploy the application:

1. In the Project Explorer view, right-click {project name} and click Run As > Run on Server.

2. In the Run On Server window, ensure that Choose an existing server is selected.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

65

https://access.redhat.com/documentation/en-us/red_hat_jboss_developer_studio/11.2/html/getting_started_with_jboss_developer_studio_tools/deploying_your_applications#deploying_applications_to_a_local_server

3. From the table of servers, expand localhost, select the server on which to deploy the application
and click Finish.

Figure 3.20. Selecting the Server to Run the Application

The Console view shows output from the server starting and deploying the application. When
deployment is complete, an IDE default web browser opens and shows the deployed web application.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

66

Figure 3.21. Enterprise HTML5 web application Viewed in Browser

3.5.3. Viewing the Application with BrowserSim

The HTML5 web application has an interface optimized for mobile devices. You can view and test such
web pages as they would be on mobile devices using BrowserSim. This mobile device web browser
simulator provides skins for different mobile devices, making it easy to test and debug web applications
for mobile devices.

To view the application with BrowserSim:

1. Ensure JBoss is the perspective in use. To open the JBoss perspective, click Window >
Perspective > Open Perspective > Other and double-click JBoss (default).

2. In the Servers view, expand the server adapter to list the application.

3. Right-click {application name} and click Show In > BrowserSim.

Figure 3.22. HTML5 Web Application Viewed with BrowserSim

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

67

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

68

3.5.4. Enabling LiveReload for BrowserSim

Mobile Web Tools supports the LiveReload protocol for automatic reloading of web pages in enabled
browsers as the application source is modified and saved. LiveReload can be enabled for your system
browsers and, as demonstrated here, BrowserSim. This provides an interactive web development
experience.

To enable LiveReload for BrowserSim, complete the following steps:

1. Close any open BrowserSim simulated devices.

2. In the Servers view, right-click an existing server to display the context menu and click New >
Server.

3. From the list, expand Basic, click LiveReload Server and click Finish.

4. In the Servers view, right-click LiveReload Server and click Start.

5. In the Servers view, right-click {application name} and click Show In > BrowserSim.

LiveReload is automatically enabled for this BrowserSim simulated device and all subsequent devices
opened while the LiveReload server is running.

3.5.5. Editing the Application

With LiveReload enabled for BrowserSim, you can make changes to your application source code and
BrowserSim automatically reloads the application when changes are saved. This is demonstrated here
by making a simple change to the project index.html file, specifically changing the text in the
application title banner.

To change your application:

1. In the Project Explorer view, expand {project name} > src > main > webapp.

2. Double-click index.html to open it for editing with the JBoss Tools HTML Editor.

3. Locate the following line of code inside the <body> tags:

and replace it with

4. Save the file by pressing Ctrl+S (or Cmd+S).

This code change modifies the heading displayed on the main application page. Notice that BrowserSim
automatically reloads the web page when you save the changed file and the application modifications are
immediately visible.

Additional Resources

<title>HTML5 Quickstart</title>

<title>My Quickstart</title>

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

69

You can also launch the HTML5 Project wizard from the JBoss perspective by clicking File >
New > HTML5 Project.

You can test an undeployed .html file with BrowserSim by right-clicking the .html file in the
Project Explorer view and clicking Open With > BrowserSim.

To set BrowserSim as the IDE default web browser, in the JBoss perspective click Window >
Web Browser > BrowserSim or click Window > Preferences > General > Web Browser and
from the External web browsers list select BrowserSim.

You can also enable LiveReload for already opened BrowserSim simulated devices. After
starting the LiveReload server, right-click the BrowserSim simulated device frame and click
Enable LiveReload.

3.6. GENERATING AN HTML5 WEB APPLICATION USING THE MOBILE
WEB PALETTE

The IDE provides the Mobile Web palette that allows the user to make interactive web applications. This
palette offers a wide range of features including drag-and-drop widgets for adding common web interface
framework features such as HTML5, jQuery Mobile, and Ionic tags to html files. It also contains widgets
like Panels, Pages, Lists, Buttons to make the applications more user friendly and efficient.

3.6.1. Adding a New HTML5 jQuery Mobile File to a Project

The HTML5 jQuery Mobile file template consists of JavaScript and CSS library references that are
inserted in the file’s HTML header. The template also inserts a skeleton of the jQuery Mobile page and
listview widgets in the file’s HTML body. The following procedure details the steps to insert the template
into your project.

To create a new HTML5 jQuery Mobile file in an existing project:

1. In the Project Explorer view, expand [project name] > src > main.

2. Right-click webapp and click New > HTML File.

3. Complete the fields about the html file as follows:

a. Ensure the parent folder field shows [project name]/src/main/webapp.

b. In the File name field, type a name for the HTML5 file.

4. Click Next.

5. From the Templates table, select HTML5 jQuery Mobile Page (1.4) and click Finish.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

70

Figure 3.23. Selecting the HTML5 jQuery Mobile Page (1.4) Option

The new file is listed in the Project Explorer view under the project webapp directory and the file
opens in the editor.

3.6.2. Adding New Pages to the Web Application

Use the jQuery Mobile Page widget to add pages to your mobile web application:

1. In the Project Explorer view, expand [project name] > src > main > webapp.

2. Right-click the new html file and click Open With > JBoss Tools HTML Editor.

3. In the Palette view, click the jQuery Mobile tab to view the available widgets and click Page.

4. Complete the fields about the page as follows:

a. In the Header field, type a name for the page header.

b. In the Footer field, type a name for the page footer.

5. Click Finish.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

71

Figure 3.24. Adding a New Page

6. Save the changes to the file by clicking the Save icon.

A page is added to the html file. JS and CSS references are also automatically added to the file by the
Page widget wizard.

Figure 3.25. New Page Added to the HTML File

3.6.3. Customizing the Home Page of the Web Application

Use the widgets in the jQuery Mobile palette to customize the page. Use the instructions to add a menu
to the page. This menu links to three other pages: Home, Search, and the Add Contacts page.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

72

3.6.3.1. Adding a Panel to the Page

To add a panel:

1. In the html file, place the cursor where you want the panel.

2. In the Palette view, in the jQuery Mobile tab, click Panel.

3. Complete the fields about the Panel as follows:

a. In the ID field, type my panel ID.

b. Clear the Add Menu check box.

4. Click Finish.

5. Save the html file.

Figure 3.26. Adding a New Panel

A corresponding code snippet, for the newly added panel, is added to the html file where you had
placed the cursor.

3.6.3.2. Adding a List to the Panel

To add a list:

1. Within the panel’s code snippet, place your cursor at the desired location for the new list.

2. In the Palette view, in the jQuery Mobile tab, click ListView.

3. Complete the fields about the ListView as follows:

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

73

a. In the Items section, 1 tab, in the Label field, type the name for the first list item on the
page.

b. In the URL (href) field, type a URL identifier for the label.

Figure 3.27. New Listitem Added to the Panel

4. Click Finish.

5. Save the html file.

The new list item name appears in the code snippet.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

74

Figure 3.28. Code for the New Listitem in the Panel Added

3.6.3.3. Adding a Button in the Header of the Page to Display the List

To add a button:

1. Place the cursor within the header at the desired location for the new button.

2. In the Palette view, in the jQuery Mobile tab, click Button.

3. Complete the fields about the button as follows:

a. In the Label field, type Menu.

b. In the URL (href) field, type # followed by the panel ID (#my panel ID, in this case).

c. In the Icon list, select an icon.

d. In the Icon position list, select a desired value.

e. Click the Icon only check-box.

4. Click Finish.

5. Save the html file.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

75

Figure 3.29. Adding a Button

The following code is added to the body of the html file.

3.6.4. Running and Testing the HTML5 Mobile Application Using BrowserSim

<div data-role="page" id="page-1">
 <div data-role="panel" id="my_panel_ID">
 <ul data-role="listview" id="listview-1">
 1st_item
 Item 2
 Item 3

 </div>

 <div data-role="header">
 <h1>This is the Page Header</h1>
 <a href="#my_panel_ID" id="button-1" class="ui-btn ui-icon-plus
ui-btn-icon-notext ui-corner-all">Menu
 </div>

 <div data-role="content">
 <p>Page content goes here.</p>
 </div>

 <div data-role="footer">
 <h4>This is the Page Footer</h4>
 </div>
</div>

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

76

Test the newly added elements to the application by navigating to the interface on BrowserSim as
follows:

1. In the Project Explore view, expand [project name] > src > main > webapp.

2. Right-click the changed html file and click Open With > BrowserSim.

A simulated device appears and displays the application.

Figure 3.30. The Changes Made to the HTML File Displayed on BrowserSim

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

77

Additional Resources

To access the jQuery Mobile palette when the Palette view is not visible, click Window > Show
View > Other, expand General and select Palette.

To add BrowserSim in the toolbar by clicking Window > Customize Perspective and select
BrowserSim under Command Groups Availability. It appears as a Phone icon in the toolbar.

Use the Panel widget to create menus, collapsible columns, drawers, and more. The List View
widget is an unordered list containing links to list items. jQuery Mobile applies the necessary
styles to make the listview mobile friendly.

Add contacts to the Add Contacts page by following the above listed procedure. You can add
Name, Email, Phone Number fields to the Add Contacts page by using the Text Input icon in
the Mobile Web palette.

3.7. CREATING YOUR FIRST HYBRID MOBILE APPLICATION

Mobile Hybrid Tools enables you to quickly create Cordova-based hybrid mobile applications using the
Hybrid Mobile Project wizard. This wizard is a useful starting point for creating all new Cordova-based
mobile applications in the IDE.

As illustrated in this article, from this foundation you can customize the application by adding a range of
Cordova plug-ins for accessing device hardware with the Cordova Plug-in Discovery wizard. You can
also test your Cordova-based hybrid mobile applications without leaving the IDE using CordovaSim, a
mobile application simulator. The IDE also allows you to deploy your Hybrid Mobile project on the
FeedHenry server.

The Hybrid Mobile Project wizard is also an ideal starting point for new users of Hybrid Mobile Tools
and CordovaSim, guiding you through the necessary steps to set up the IDE and your system for
developing Cordova applications before generating a basic Cordova project.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

78

NOTE

Before attempting to install or create a hybrid mobile project with JBoss Tools, ensure that
the Android SDK is installed and up to date. Creating or installing hybrid mobile projects
without a working and updated installation of Android SDK can result in unexpected
errors.

Prerequisites

3.7.1. Enabling the JBoss Hybrid Mobile Tools + CordovaSim Feature

To enable the JBoss Hybrid Mobile Tools + CordovaSim feature:

1. In JBoss Central, click the Software/Update tab.

2. In the Features Available list, select the JBoss Hybrid Mobile Tools +
CordovaSim check box and then click Install/Update.

Figure 3.31. Hybrid Mobile Tools + CordovaSim Check Box Selected

3. Follow the on-screen instructions to complete the installation.

During the installation process you may receive warnings about installing unsigned content. If this is the
case, review the details of the content and if satisfied click OK to continue with the installation.

Once installation is complete, you are prompted to restart Eclipse. Click Yes to restart immediately and
No if you need to save any unsaved changes to open projects. Note that IDE changes do not take effect
until the IDE is restarted.

3.7.2. Installing Android SDK

To install Android SDK:

1. Download Android SDK and then unzip the file at the desired location.

2. In the IDE, click Window > Preferences.

3. In the Preferences window, in the type filter text field, type Hybrid Mobile.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

79

4. In the Hybrid Mobile category, click Android.

5. Click Browse to locate and select the Android SDK directory on your machine.

6. Click Apply and Close .

Procedure

3.7.3. Creating a Hybrid Mobile Project

After the project wizard requirements are installed, you can restart the Hybrid Mobile Project wizard and
follow it through to completion to create a template-based project. Within the wizard you must specify
identifiers for the project and application and select the Cordova engine version to be used for building
the project.

To create a Hybrid Mobile project, complete the following steps:

1. In JBoss Central, under Start from scratch, click Hybrid Mobile Project.

2. Complete the fields about the project and application as follows:

a. In the Project name field, type a name for the project.

b. In the Name field, type a name for the application

c. In the ID field, type an alpha-numeric package name for the application; IDs are akin to
Java package names and must begin with an alpha character and contain at least one dot.

Figure 3.32. Provide the Project and Application Information

3. Click Next.

4. From the Available Engines table, select the latest Apache Cordova version. If the
Available Engines table is empty, first click Download and follow the instructions to install
the latest Cordova engine version on your system.

5. Click Finish. The project is created and listed in the Project Explorer view.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

80

3.7.4. Customizing the Hybrid Mobile Project

Before building and running the Hybrid Mobile application, instructions are given here for customizing the
project by adding the Cordova Device Motion plug-in and modifying the source code to make use of it.
The plug-in gives access to the mobile device accelerometer and the code snippets added to this project
check for data every one second and display the X, Y, Z acceleration values on the front page of the
application. This plug-in is just one of a catalog of plug-ins available to add to your Hybrid Mobile project.

To customize the Hybrid Mobile project with the Cordova Device Motion plug-in, complete the following
steps:

1. In the Project Explorer view, right-click {project name} and click Install Cordova
Plug-in.

2. In the Find field, enter motion.

3. From the filtered list of plug-ins, select org.apache.cordova.device-motion and click
Finish.

4. In the Project Explorer view, expand {project name} → www.

5. Double-click index.html to open it in the JBoss Tools HTML Editor.

6. Edit index.html as follows:

a. Before the closing </head> tag, add the following lines

b. Replace the code inside the <body></body> tags with the following lines

Figure 3.33. The Modified index.html File

7. Save the index.html file by pressing Ctrl+S (or Cmd+S).

<script type="text/javascript" charset="utf-8"
src="cordova.js"></script>
<script type="text/javascript" charset="utf-8"
src="js/index.js"></script>

<div class="app">
 <h1>My Cordova Accelerometer App</h1>
 <div id="accelerometer">Waiting for accelerometer...</div>
</div>

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

81

8. In the Project Explorer view, expand {project name} → www → js.

9. Double-click index.js to open it in the IDE JavaScript Editor.

10. Replace the code in index.js with the following lines

11. Save the index.js file. Your Hybrid Mobile Project is now customized and saved.

3.7.5. Testing the Hybrid Mobile Application using CordovaSim

// The watch id references the current `watchAcceleration`
 var watchID = null;

 // Wait for device API libraries to load
 document.addEventListener("deviceready", onDeviceReady, false);

 // device APIs are available
 function onDeviceReady() {
 console.log("deviceready");
 startWatch();
 }

 // Start watching the acceleration
 function startWatch() {

 // Update acceleration every 1 seconds
 var options = { frequency: 1000 };
 watchID =
navigator.accelerometer.watchAcceleration(onSuccess, onError,
options);
 }

 // Stop watching the acceleration
 function stopWatch() {
 if (watchID) {
 navigator.accelerometer.clearWatch(watchID);
 watchID = null;
 }
 }

 // onSuccess: Get a snapshot of the current acceleration
 function onSuccess(acceleration) {
 var element = document.getElementById('accelerometer');
 element.innerHTML = 'Acceleration X: ' + acceleration.x +
'
' +
 'Acceleration Y: ' + acceleration.y +
'
' +
 'Acceleration Z: ' + acceleration.z;
 }

 // onError: Failed to get the acceleration
 function onError() {
 alert('onError!');
 }

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

82

You can build and test the Hybrid Mobile application within the IDE using CordovaSim. CordovaSim is a
mobile device simulator specifically for testing Cordova-based hybrid mobile applications. Using the
CordovaSim control panel you can input sample data for mobile device hardware, as illustrated here for
a device accelerometer.

To run and test your Hybrid Mobile application using CordovaSim, complete the following steps:

1. In the Project Explorer view, right-click {project name} and click Run → Run with
CordovaSim.

2. In the CordovaSim control panel, expand Accelerometer and drag the 3D device
representation to generate device accelerometer data.

Figure 3.34. Generated Device Accelerometer Data Displayed in Application

Your Hybrid Mobile application is running for testing.

3.7.6. Deploying the Hybrid Mobile Project on the FeedHenry Server

The IDE allows users to quickly and easily publish a Mobile Hybrid (Cordova) application, developed in
the IDE, on the FeedHenry server.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

83

3.7.6.1. Connecting the Cordova Application to the FeedHenry Server

To connect the Cordova application to the FeedHenry server:

1. In the Project Explorer view, right-click the {project name} and New → Other.

NOTE

Refer to the Create a Hybrid Mobile Project section to create the Hybrid Mobile
(Cordova) application.

2. In the search field, type FeedHenry and then select New FeedHenry Application and click
Next.

3. In the Create FeedHenry Application window, enter the following details:

a. Ensure that the Source project field displays the name of the master Cordova project

b. In the Select FeedHenry project field, select the FeedHenry project name

c. In the Git remote name field, type a Git remote name for the FeedHenry repository

4. Click Finish. The Almost Done window confirms that the project is created on the platform.
The project structure in the Project Explorer view, shows the feedhenry.js and the
fhconfig.json files.

Figure 3.35. Almost done Window Confirms the Application Creation

3.7.6.2. Pushing the Cordova Application to the FeedHenry Server

To push the application to the FeedHenry server:

1. In the Project Explorer view, right-click the {project name} and click Team → Push
Branch “master”.

2. If you are prompted for a confirmation to connect, click Yes.

3. In the Push Branch master window, enter the following details:

a. In the Remote field, enter the location for the remote Git repository.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

84

b. In the Branch field, type master.

4. Click Next.

Figure 3.36. Details of the Push Added in the Push Branch master Window

5. Confirm the details in the Push Confirmation window and click Finish.

6. The Pushed to git window confirms the push. Click OK.

7. Log into FeedHenry at https://[your-studio-domain].feedhenry.com.

8. Click Projects and then click the relevant application. The Cordova application is visible in the
FeedHenry instance.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

85

Figure 3.37. Cordova Application Published on the FeedHenry Server

3.7.7. Modifying the Icon for a Mobile Application

Define the icons for the Mobile Hybrid application using the icon tag in the config.xml file. If an icon is
not specified, the Apache Cordova logo is used as the default icon.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

86

To change the application icon:

1. Save the icon in the <workspace> /www/res/icon directory of your project.

2. In the IDE, in the Project Explorer view, locate the config.xml file.

NOTE

If you are using Cordova 4.0.0 or lower, the config.xml file is located in the →
www directory. For Cordova versions higher than 4.0.0 the config.xml file is
located, a level higher, in the project directory.

3. Double-click config.xml to open it in the config.xml editor.

4. Click the config.xml tab to edit the file.

5. To define a single default icon for all platforms, add the following code anywhere withing the
widget tag in the config.xml file:

Figure 3.38. Icon Tag Added to the config.xml File

Alternatively,

To define a pixel-perfect icon for Android, add the following code in the config.xml file:

<icon src="www/res/icon[image name].png" />

<platform name="android">
<icon src="www/res/android/[image name].png" density="ldpi" />
<icon src="www/res/android/[image name].png" density="mdpi" />
<icon src="www/res/android/[image name].png"density="hdpi" />
<icon src="www/res/android/[image name].png" density="xhdpi" />
</platform>

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

87

To define a pixel-perfect icon for iOS, add the following code in the config.xml file:

6. Save the config.xml file.

7. Right-click the application and click Run As → Run on Android Emulator.

8. On the emulator, click the Home button and then click the Applications button to view the
modified icon for the application. The icon for the application is modified.

Figure 3.39. Modified Icon for the Application Displayed on the Android Emulator

3.7.8. Editing an Application Splash Screen

You can edit the splash screen associated with your application using the splash tag within the platform
tag in the config.xml file. If you are using Cordova 4.0.0 or higher, you must first install the new

<platform name="ios">
<icon src="www/res/ios/[image name].png" width="180" height="180" >
</platform>

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

88

cordova-plugin-splashscreen to continue to use the splash screen and then use the steps below to edit
the splash screen. For Cordova versions lower than 4.0.0, simply follow the steps below to edit the
splash screen.

To change the application splash screen:

1. Save the image for the splash screen in the <workspace> /www/res directory of your project.

2. In the IDE, in the Project Explorer view, locate the config.xml file.

NOTE

If you are using Cordova 4.0.0 or lower, the config.xml file is located in the >
www directory. For Cordova versions higher than 4.0.0, the config.xml file is
located, a level higher, in the project directory.

3. Double-click config.xml to open it in the config.xml editor.

4. Click the config.xml tab to edit the file.

5. To define the splash screen add the following code within the widget tag in the config.xml file:

NOTE

You can use any density that exists in the Android project.

6. Save the config.xml file.

7. Right-click the application and click Run As → Run on Android Emulator. The edited splash
screen appears while the application is starting.

Additional Resources

You can manually initiate installation of JBoss Hybrid Mobile Tools and CordovaSim by locating
them in the JBoss Central Software/Update tab or by dragging the following link into JBoss
Central: https://devstudio.jboss.com/central/install?connectors=org.jboss.tools.aerogear.hybrid

You can change the Cordova engine associated with the project after it is created. In the
Project Explorer view, right-click the project and click Properties. Click Hybrid Mobile
Engine and select the engine you want to use. Click OK to save the engine change and close
the Properties window.

<platform name="android">
<splash src="www/res/[image name].png" density="land-hdpi"/>
<splash src="www/res/[image name].png" density="land-ldpi"/>
<splash src="www/res/[image name].png" density="land-mdpi"/>
<splash src="www/res/[image name].png" density="land-xhdpi"/>

<splash src="www/res/[image name].png" density="port-hdpi"/>
<splash src="www/res/[image name].png" density="port-ldpi"/>
<splash src="www/res/[image name].png" density="port-mdpi"/>
<splash src="www/res/[image name].png" density="port-xhdpi"/>
</platform>
<preference name="SplashScreenDelay" value="10000" />

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

89

https://devstudio.jboss.com/central/install?connectors=org.jboss.tools.aerogear.hybrid

You can download multiple Cordova engines to your system with which to build your projects.
The Download wizard can be accessed from the Hybrid Mobile Engine pane in the project
Properties window, in addition to the Hybrid Mobile Project wizard.

From the IDE you can also initiate testing of Cordova projects with a connected Android device,
system Android Emulator, and system iOS Simulator. The project is built in the necessary native
format during the process.

With the CordovaSim control panel, you can generate simulated data for a range of device
hardware, including geolocation and battery status. CordovaSim also manages camera actions,
enabling you to upload system images to simulate receiving camera data.

A Shake button under Accelerometer in the CordovaSim control panel enables you to
simulate a hardware-shake gesture and test the impact on your application.

3.8. IMPORTING AND DEVELOPING AN EXISTING FEEDHENRY
APPLICATION

The IDE includes an Import wizard to allow users to quickly and easily import previously created
FeedHenry applications. Once the application is imported, you can change or enhance the application,
test the changes, and then push it back to the FeedHenry server.

NOTE

Before attempting to install or create a hybrid mobile project with JBoss Tools, ensure that
the Android SDK is installed and up to date. Creating or installing hybrid mobile projects
without a working and updated installation of Android SDK can result in unexpected
errors.

Prerequisites

3.8.1. Enabling the FeedHenry Feature

To enable the FeedHenry feature:

1. In JBoss Central, click the Software/Update tab.

2. In the Features Available list, locate and click the Hybrid Mobile Tools + CordovaSim check
box and then click Install/Update.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

90

Figure 3.40. Hybrid Mobile Tools + CordovaSim Check Box Selected

3. Follow the on-screen instructions to complete the installation.

3.8.2. Installing Android SDK

To install Android SDK:

1. Download Android SDK and then unzip the file at the desired location.

2. In the IDE, click Window > Preferences.

3. In the Preferences window, in the type filter text field, type Hybrid Mobile.

4. In the Hybrid Mobile category, click Android.

5. Click Browse to locate and select the Android SDK directory on your machine.

6. Click Apply and Close .

3.8.2.1. Setting the Preferences for Your Application Import

To set the preferences:

1. Click Window > Preferences.

2. In the Preferences window, in the search field type, FeedHenry and press Enter.

3. Complete the following fields in the Preferences window:

a. Ensure that the Target URL field displays the URL to your FeedHenry server. The URL to
your FeedHenry server should be something like: https://[your-studio-
domain].feedhenry.com.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

91

b. In the API Key field, copy and paste the API key from the FeedHenry website.

Figure 3.41. Setting Preferences for FeedHenry

NOTE

The user can either use an existing API key or generate a new one to set the
preferences. To obtain the API key from the FeedHenry website click
Settings > API Key Management. To generate a new API key, click Settings
> API Key Management, and then click Add New Key.

4. Click Apply and Close to close the Preferences window.

Procedure

3.8.3. Importing your FeedHenry Application

Ensure that your Preferences are set before importing a FeedHenry application. If not set yet, you are
prompted to set the preferences. These preferences are set once when importing an application for the
first time and the configured preferences are used for all imports in the future.

To import your FeedHenry application:

1. Click File > Import.

2. Expand FeedHenry, click Import Cordova Application, and click Next. The Import wizard
displays the projects that you can import.

NOTE

In case the Invalid Preferences window appears, click Yes to correct the
preferences.

3. Expand the project to import an application from and select the FeedHenry application to be
imported.

4. In the Directory field, enter the location where you want to clone the application locally.

5. Click Finish.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

92

Figure 3.42. Selecting an Application to be Imported

If you have set a password for the SSH keys, you are prompted to enter the password so that it can
import the application. The FeedHenry project is successfully imported and appears in the Project
Explorer view. The Cordova config.xml file for this project opens in the Editor.

3.8.3.1. Testing the Application Import

To test the application import:

1. In the Project Explorer view, right-click the application and then click Run As → Run
w/remote FeedHenry server. A CordovaSim simulated device displaying the application
appears.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

93

Figure 3.43. Simulated Device Displaying the Imported Application

2. In the Enter Your Name Here field on the simulated device, type your name.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

94

3. Click Say Hello From The Cloud. The simulated device displays the “Hello [Your
Name]” string.

3.8.4. Modifying the FeedHenry Application

After successfully importing the FeedHenry application, follow the instructions to change the application:

1. In the Project Explorer view, expand [application name] → www and then double-click
index.html to open it using the Editor.

2. In the code, locate and delete the following line:

This is a basic Cordova App that can take in your name, send it to a
cloud app and display the response.

3. Replace the deleted text with the following line:

Hello from Hybrid Mobile Tools!

4. Save the index.html file by pressing Ctrl+S. Alternatively, to save click File → Save or click
the Save icon.

Figure 3.44. The Edited index.html File

3.8.4.1. Testing the Application

To test the imported application, right-click the application and then click Run As → Run w/remote
FeedHenry server.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

95

Figure 3.45. The Edited FeedHenry Application

The changes made to the index.html file are reflected on the simulated device. Click a corner of the
displayed device to rotate it in that direction. Alternatively, right-click the simulated device and click

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

96

Rotate Right or Rotate Left as to rotate it in the desired direction. To view the application on a
different CordovaSim simulated device, right-click the device and click Skin. From the list of skins, select
a skin to view the application.

3.8.5. Pushing the Changes Back to the FeedHenry Server

Use the following instructions to push changes to the application back to the FeedHenry server:

1. In the Project Explorer view, right-click the application name.

2. Click Team → Commit.

3. In the Commit Changes window, Commit message field, type a message for the commit.

4. In the Files field, select the files that you have edited and want to push to the server and then
click Commit and Push.

5. In the Push Results [application name] window, ensure all the details are correct and
click OK.

6. Log into FeedHenry at https://[your-studio-domain].feedhenry.com.

7. Click Projects.

8. Click the Project Title under which your application is located and then click the application.
The simulated device in the App Preview section displays the change that you have just
pushed to the FeedHenry server.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

97

Figure 3.46. FeedHenry Application Edited and Displayed on the FeedHenry Server

Additional Resources

Add a new API key to your FeedHenry account by clicking Add New Key and then following the
on-screen instructions.

Set up your SSH key in the FeedHenry account by clicking Settings → SSH Key
Management and then following the on-screen instructions.

3.9. IMPORTING PROJECTS IN JBOSS DEVELOPER STUDIO USING
GIT IMPORT

The JBoss Developer Studio Git Import feature allows you to easily configure most of the settings
required to make a project workable immediately after it is imported in the IDE.

Procedure

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

98

3.9.1. Importing Projects from Git with Smart Import

Use the Project from Git (with smart import) option, if you are unaware of the type of the project that
you want to import.

NOTE

We recommend using the Projects from Git (with smart import) option because it is the
easiest and most efficient way to import projects into the IDE with minimal effort.

The Import wizard will automatically detect the type of project being imported and will configure the
project so that you have to put in minimal effort to make the project workable.

The Git Import feature detects the various modules of a project that is a set of other individual projects. It
detects markers such as pom.xml, MANIFEST.MF, etc. to determine the type of project that you are
importing.

To import projects from Git with smart import:

1. Click File > Import.

2. In the Import window, click Projects from Git (with smart import) and click Next.

3. In the Select Repository Source window, click Existing local repository or Clone URI.

4. Step through the wizard and click Finish for the wizard to analyze the content of the project
folder to find projects for import and import them in the IDE. The imported project is listed in the
Project Explorer view.

3.9.2. Importing Projects from Git

Use the Projects from Git option when you are aware of the type of project that you want to import into
the IDE. Use the Existing local repository option, if you have, at some point in time, cloned the remote
Git repository and the repository is present on your local system.

Procedure

3.9.2.1. Importing Existing Eclipse Projects

Use the Existing local repositories option to import Eclipse projects in the IDE. These projects
essentially have a .project file. This .project file contains the project description and settings
needed to configure and build project in Eclipse.

To import projects as existing Eclipse projects:

1. Click File > Import.

2. In the Import wizard:

a. Expand Git and then click Projects from Git. Click Next.

b. Click Existing local repository and then click Next.

c. Click Git to choose one of the recently used repositories from the list or click Add to browse
to any local repository. Click Next. In the Wizard for project import section, click Import
existing Eclipse project. Click Next.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

99

d. In the Import Projects window, select all the projects that you want to import.

e. Ensure that the Select nested projects check box is clicked to import the nested projects
under the parent project that you are importing.

f. Click Finish.

The imported project is listed in the Project Explorer view.

3.9.2.2. Importing Using the New Project Wizard

Use the Import using the New Project wizard option, if your repository is empty and you want to start
developing a new project from scratch and then push the code to the remote repository.

To import projects using the New Project wizard:

1. Click File > Import.

2. In the Import wizard:

a. Click Git > Projects from Git. Click Next.

b. Click Existing local repository and then click Next.

c. Click Git and then click Next.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

100

d. In the Wizard for project import section, click Import using the New Project wizard. Click
Finish.

e. In the New Project wizard, expand the category, and then click the project type that you
want to create and import. Click Next.

f. In the New <type_of_project> window, fill in the information for the new project and click
Next or Finish to create the new project. The imported project is listed in the Project
Explorer view.

3.9.2.3. Importing as a General Project

Use the Import as general project option if the project being imported does not have a .project file,
meaning it is not an Eclipse project. In this case Eclipse will create a clean .project file with default
settings.

To import a project as a general project:

1. Click File > Import.

2. In the Import wizard:

a. Click Git > Projects from Git. Click Next.

b. Click Existing local repository and then click Next.

c. Click Git and then click Next.

d. In the Wizard for project import section, click Import as general project.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

101

e. Select the project and click Next.

f. In the Import Projects from Git window, confirm or edit the default parameters and click
Finish.

The imported project is listed in the Project Explorer view.

3.9.3. Importing Projects from the Remote Git Repository

Use the Clone URI option to clone the repository on your system if you have never cloned the Git
repository; meaning, the repository does not exist on your local system.

NOTE

The three options, importing existing eclipse projects, importing using the New Project
wizard, and importing as a general project, are available under the Clone URI method,
too. For detailed steps, see the preceding sections: Section 3.9.2.1, “Importing Existing
Eclipse Projects”, Section 3.9.2.2, “Importing Using the New Project Wizard”, and
Section 3.9.2.3, “Importing as a General Project”.

To import projects in the Cloned URI:

1. Click File > Import.

2. In the Import wizard:

a. Click Git > Projects from Git and then click Next.

b. Click Clone URI and click Next.

c. In the Source Git Repository window, in the URI field, enter an existing Git repository URL,
either local or remote and click Next.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

102

d. In the Branch Selection window, click all the branches that you want to clone from the
remote repository and click Next.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

103

e. In the Local Destination window, ensure that the directory that you want to set as the local
storage location for the repository is selected in the Directory field. Or, click Browse to
select the location.
The Cloning from <GitHub_repository> window shows the progress of the cloning
process.

f. In the Select a wizard to use for importing projects window, Import as general project is
selected by default. Click Next.

g. In the Import Projects window, ensure that the Directory field shows the path to the
directory where you want to import the projects and click Finish. The imported project is
listed in the Project Explorer view. The cloned repository of the remote Git repository is now
located in the local file system.

3.10. GETTING STARTED WITH JAVASCRIPT DEVELOPMENT FOR
NEON 3

This article walks you through JavaScript Development for Neon 3. Neon 3 uses the new Esprima parser
that supports ECMAScript 2015 (JavaScript 6). The intuitive Esprima parser assists in the following
tasks:

Syntax coloration

Validation

Content assist

Templates for keywords

Class definition

Template literals

Integration with Outline View

Prerequisites

3.10.1. Installing node.js

To install node.js:

On Windows, macOS, and Linux, see https://nodejs.org/en/.

On RHEL, see https://www.softwarecollections.org/en/ .

3.10.2. Installing the Package Managers (Bower and npm)

You may choose to work with either npm or with Bower. However, if you are using npm you must use the
file package.json and if using Bower, use the file bower.json.

NOTE

If installing both npm and bower, ensure that you install npm before you install Bower.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

104

https://nodejs.org/en/
https://www.softwarecollections.org/en/

To install npm: When you install node.js, npm will be available for use because npm is
distributed with node.js.

To install Bower: Run the command npm install -g bower as the root user.

Procedure

3.10.3. Using the Package Managers

Bower and npm are Package Managers that allow you to install, in a single click, all the dependencies
required for the plugins to work. In this section, we list steps for enabling Bower Init and npm Init. You
may choose to work with any one of these Package Managers and follow the respective procedure.
However, if you are using npm you must use the file package.json and if using Bower, use the file
bower.json.

Procedure

3.10.3.1. Creating a New Project

In this section, you create a new project so that you can later enable the dependencies and see how the
Neon 3 features work with JBoss Developer Studio.

Procedure
To create a project:

1. Click File > Project.

2. In the New Project wizard, click General > Project. Click Next.

3. In the Project name field, type the name of the project (Neon3_features, in this example).

4. Edit the other fields if required and then click Finish. The new project is listed in the Project
Explorer view.

3.10.3.2. Enabling Bower Init

After you have enabled Bower Init the result will be a bower.json file listed under the project in the
Project Explorer view.

Procedure
To enable Bower Init:

1. In the Project Explorer view, right-click Neon3_features and then click New > Other.

2. In the New wizard, type filter text field, type bower. After Bower Init is selected, click Next.

3. Optionally, in the Bower Initialization Wizard:

a. Clear the Use default configuration check box.

b. In the Version field, type 0.0.1.

c. In the License field, type MIT.

4. Click Finish. The bower.json file opens in the default editor.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

105

Figure 3.47. Contents of the bower.json File

3.10.3.3. Enabling npm Init

Procedure
To enable npm Init:

1. In the Project Explorer view, right-click Neon3_features and then click New > Other.

2. In the New wizard, type filter text field, type npm. After npm Init is selected, click Next.

3. Optionally, in the npm Initialization Wizard:

a. Clear the Use default configuration check box.

b. In the Version field, type 0.0.1.

c. In the License field, type MIT.

4. Click Finish. The package.json file opens in the default editor.

3.10.3.4. Creating a New index.html File

In this section, you create an index.html file so that you can use it in Section 3.10.3.5, “Using the
Bower Tool”.

Procedure
To create an index.html file:

1. In the Project Explorer view, right-click Neon3_features and click New > File.

2. In the New File wizard:

a. Ensure that Neon3_features is selected as the parent folder.

b. In the File name field, type index.html.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

106

3. Click Finish. The empty index.html file opens in the default editor.

4. Copy the following code snippet and paste it in the index.html file.

5. Save the file.

3.10.3.5. Using the Bower Tool

Procedure
To use the Bower tool:

1. In the Project Explorer view, expand Neon3_features to view bower.json and index.html.

2. Double-click index.html to open it in the default editor, if not already open. The editor shows
the bootstrap template.

3. Right-click index.html and click Open With > Web Browser. Notice that the page does not
show any bootstrap theme or style applied to it.

<!DOCTYPE html>
<html>
<head>
<title>npm / bower / JSON editor</title>
<script type="text/javascript"
src="bower_components/jquery/dist/jquery.min.js"></script> <script
type="text/javascript"
src="bower_components/bootstrap/dist/js/bootstrap.min.js"></script>
<link rel="stylesheet"
href="bower_components/bootstrap/dist/css/bootstrap.min.css">
<link rel="stylesheet"
href="bower_components/bootstrap/dist/css/bootstrap-theme.min.css">
</head>
<body>
<div class="container">
<div class="jumbotron">
<h1>My First Bootstrap Page</h1>
<p>Resize this responsive page to see the effect!</p>
</div>
<div class="row">
<div class="col-sm-4">
<h3>Column 1</h3>
</div>
<div class="col-sm-4">
<h3>Column 2</h3>
</div>
<div class="col-sm-4">
<h3>Column 3</h3>
</div>
</div>
</div>
</body>
</html>

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

107

Figure 3.48. index.html Page without Theme and Style Applied to it

To be able to view the themes and styles applied to the page, you must edit the bower.json
file that contains the dependencies.

To edit the bower.json file:

4. In the Project Explorer view, double-click bower.json to open it in the default text editor. The
json editor Outline support:

Allows you to navigate through the json file

Allows you to validate syntax errors

5. To define the jquery and bootstrap dependencies:

a. After the closing square bracket], add a comma (,).

b. On the next line type:

6. Save the file. The contents of the file are as displayed in the following image.

 "dependencies" : {
 "jquery" : "*",
 "bootstrap" : "~3.3.6"
 }

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

108

Figure 3.49. bower.json File Edited

7. Right-click bower.json and then click Run As > Bower Install. You can see the progress of
installation of the dependencies in the Console view.

8. Expand the bower_components folder to ensure that it contains bootstrap and jquery.

9. Refresh the index.html web page. The page shows the bootstrap template with a responsive
design.

Figure 3.50. index.html Page with Responsive Design

3.10.4. Using the Build Systems

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

109

In this section, you will use the npm Package Manager and hence the package.json file.

You can either use the Grunt or the Gulp build systems to run your tasks directly from the IDE instead of
switching to the CLI every time you want to run a task.

Prerequisites

Ensure that Gulp or Grunt plugins are installed on your system by running the following
command:

For Gulp plugin, run the command: gulp -v

For the Grunt plugin, run the command: grunt -v

If not installed, use the following commands to install them:

To install the Gulp plugin, run the command npm install --global gulp-cli as the root
user.

To install the Grunt plugin, run the command npm install --global grunt-cli as the
root user.

NOTE

This section describes the workflow for Gulp. However, Grunt and Gulp are both
supported and they both have similar workflows.

Procedure

3.10.4.1. Adding Dependencies to the package.json File

NOTE

This section is applicable only if you are using the package.json file. Skip this section if
you are using the bower.json file.

You must add the dependencies to the package.json file to be able to use it in Section 3.10.4.2,
“Enabling the Gulp Plugin”.

Procedure
To add the dependencies:

1. In the Project Explorer view, expand neon3_features and double-click package.json to open
the file in the default editor.

2. After "license": "ISC", add a comma (,).

3. On the next line add the following code snippet:

 "devDependencies" : {
 "jquery" : "*",
 "angular" : "*",
 "bootstrap" : "~3.3.6"
 }

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

110

4. Save the file. The contents of the package.json file are as displayed in the following image.

Figure 3.51. package.json File as Edited

3.10.4.2. Enabling the Gulp Plugin

To be able to use the task runners Grunt or Gulp, you must first define the following dependencies
required for these plugins:

In the bower.json file, under dependencies you must have “gulp”:”” or “grunt”:”*”.

In the package.json file, under dependencies you must have “gulp”:”” or “grunt”:””.

NOTE

In this section, we elaborate steps to enable the Gulp plugin. Use the same steps to
enable the Grunt plugin.

Procedure
To enable the Gulp plugin:

1. In the Project Explorer view, expand neon3_features and double-click package.json to open it
in the default editor.

2. In the package.json file, under devDependencies, after the last dependency defined in the
file, type a comma (,).

3. On the next line, type "gulp": "*".

4. On the next line type "gulp-rename": "*" and save the file. The contents of the package.json
file are as displayed in the following image.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

111

Figure 3.52. package.json File with Gulp Enabled

5. In the package.json file, click Run As > npm Install. The Console view shows the progress
of the task. Overlook any warnings at this point of time. The node_modules folder displays
under the project in the Project Explorer view.

3.10.4.3. Creating the gulpfile.js File

In this section, you create the gulpfile.js file to be used in Section 3.10.4.4, “Using the Gulp Plugin”.

Procedure
To create the gulpfile.js:

1. Right-click neon3_features and then click New > Other.

2. In the New wizard, search field, type JavaScript.

3. Click JavaScript Source File and then click Next. In the New JavaScript file window:

a. Cick neon3_features.

b. In the File name field, type gulpfile.js.

4. Click Finish. The empty file opens in the default editor.

5. Copy the following content and paste it in the gulpfile.js file:

 var gulp = require('gulp')
, rename = require('gulp-rename');

// task
gulp.task('default', function () {
 gulp.src('./index.html') //path to file to be renamed
 .pipe(rename('renamed.html')) // rename index.html to

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

112

6. Save the file. The contents of the gulpfile.js file are as displayed in the following image.

Figure 3.53. gulpfile.js File

3.10.4.4. Using the Gulp Plugin

Procedure
To use the Gulp plugin:

1. In the Project Explorer view, expand neon3_features and double-click gulpfile.js to open the
file in the editor. The file has several Gulp tasks defined.

2. Right-click gulpfile.js and click Run As > Gulp Task. The Console view shows the progress of
the task.

3. You may also choose to expand gulpfile.js in the Project Explorer view and view all the tasks.
Right-click each task and click Run As > Gulp Task to view the task. A new directory named
renamed-html is created under neon3_features. Expand the renamed-html directory to see
the renamed.html file.

3.10.5. Working with the Node.js Application

In this section, you will use the project at: https://github.com/ibuziuk/jsdt-node-test-project.

Prerequisites

Ensure npm and node.js are installed. For details to install, see the Additional Resources
section.

Procedure

3.10.5.1. Importing the jsdt-node-test-project

Procedure
To import the jsdt-node-test-project:

1. Run the command git clone https://github.com/ibuziuk/jsdt-node-test-
project to clone the project on your local system: .

2. In the IDE, click File > Open Projects from File System.

renamed.html
 .pipe(gulp.dest('renamed-html')); // destination folder
});

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

113

https://github.com/ibuziuk/jsdt-node-test-project
https://github.com/ibuziuk/jsdt-node-test-project

3. In the Open Projects from File System or Archive window, click Directory next to the Open
Source field.

4. Locate the jsdt-node-test-project and click OK.

5. In the Open Projects from File System or Archive window, click Finish. The jsdt-node-test-
project is listed in the Project Explorer view.

3.10.5.2. Running the index.js File

Procedure
To work with the node.js application:

1. In the Project Explorer view, expand jsdt-node-test-project.

2. Right-click package.json and click Run As > npm Install. The Console view shows the
progress of the task.

3. Right-click index.js and click Run As > Node.js Application. The Console view shows the
Listening on port 3000 message. Open localhost:3000 to see the output on a web page.

Figure 3.54. Output of the index.js File

3.10.5.3. Debugging the Node.js Application

Procedure
To debug the node.js application:

1. In the Project Explorer view, expand jsdt-node-test-project and double-click index.js to open
it in the default editor.

2. To add a breakpoint, right-click on the line number where you want the execution of the code to
stop, and then click Toggle Breakpoint. Save the file.

3. Right-click index.js, click Debug As > Node.js Application. The Console view shows the
debugger listening on port <port_number> message.

Figure 3.55. Debugging the Node.js Application

Additional Resources
Use the following features to carry out different tasks:

Inspecting Variables: All the variables are listed in the Variables view. Use this view to search
for specific variables and inspect them.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

114

Inspecting the main node.js file: The main node.js file opens in the default editor
(index.js, in this case). You can hover the mouse over the variables to see the functions.

Editing the main node.js file: You can edit the main node.js file and save it to see the
changes automatically propagated to VM.

CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS

115

CHAPTER 4. DEPLOYING YOUR APPLICATIONS

4.1. DEPLOYING APPLICATIONS TO A LOCAL SERVER

In order to deploy applications to a server from within the IDE, you must configure the IDE with
information about the server. For a local server this information includes the following:

A server runtime environment with details about the server location, runtime JRE, and
configuration files

A server adapter with management settings for the server runtime environment, including
access parameters, launch arguments, and publishing options

JBoss Server Tools enables you to efficiently configure a local server ready for use with the IDE using
Runtime Detection. As demonstrated here, this feature is useful for quickly configuring a server for
deploying and testing an application.

Procedure

4.1.1. Configuring the IDE for a Local Runtime Server

Runtime Detection searches a given local system path to locate certain types of runtime servers. For any
servers found, Runtime Detection automatically generates both a default server runtime environment and
a default server adapter. These items can be used as they are for immediate application deployment or
customized to meet your requirements.

Procedure
To configure the IDE for a local runtime server:

1. Click Window > Preferences.

2. In the Preferences window, locate and click JBoss Tools > JBoss Runtime Detection.

3. Click Add.

4. Locate the directory containing the runtime server and click OK.

5. In the table of located runtimes, ensure the runtime is selected and click OK.

6. Click Apply and Close to close the Preferences window. A default runtime environment and
server adapter are generated for the server, with the server adapter listed in the Servers view.

4.1.2. Deploying an Application

When you have configured the IDE for the server, you can deploy applications to the server from the IDE
using the server adapter. The server adapter enables runtime communication between the server and
IDE for easy deployment of applications and server management.

Procedure
To deploy an application to the server:

1. In the Project Explorer view, right-click {project name} and click Run As > Run on Server.

2. Ensure Choose an existing server is selected.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

116

3. From the table of servers, expand localhost, select the server on which to deploy the application
and click Finish. The Console view shows output from the server starting and deploying the
application. When deployment is complete, an IDE default web browser opens and shows the
deployed web application.

4.1.3. Changing and Republishing the Application

By default, the server adapter configures the server for automatic publishing when changed resources
are saved. This automatic publishing action applies to application resources that can be interchanged in
the dedicated deployment location of the server without requiring the application to stop and restart, such
as .html files. For other changed resources, such as .java files, you need to republish the application
such that it forces a rebuild of the application.

Procedure
To republish the application to the server after changes that cannot be automatically published:

1. In the Servers view, expand the server adapter to list the applications allocated to the server.

2. Right-click {application name} and click Full Publish. The Console view shows the output from
the server replacing the deploying application. Unless LiveReload is enabled in the web
browser, you must manually reload the web browser to see the changed application.

Additional Resources

You can also configure servers by right-clicking the Servers view and selecting New > Server or
by clicking Manually define a new server in the Run on Server wizard.

Paths previously searched by Runtime Detection can be automatically searched on every
workspace start. Click Window > Preferences > JBoss Tools > JBoss Runtime Detection and
from the Paths table select the check boxes of the appropriate paths. Click Apply and click OK
to close the Preferences window.

You can customize the server adapter and server runtime environment with the Server Editor.
In the Servers view, double-click the server adapter to open the Server Editor.

You can initiate download and installation of runtime servers from the IDE. Click Window >
Preferences > JBoss Tools > JBoss Runtime Detection. Click Download and from the table
of runtime servers select the one to install and click Next. Follow the on-screen instructions to
complete the download and installation process.

4.2. CONFIGURING A REMOTE SERVER

Remote servers allow developers to access and deploy to a JBoss instance that is not a local machine.
Developers can use remote servers to set up multiple environments for development and testing
purposes and share them with other developers. Another reason to use a remote server with Red Hat
JBoss Developer Studio is to allow developers to share and deploy automated tests to run in a non-local
environment.

Procedure

4.2.1. Setting up a Remote Server

Procedure

CHAPTER 4. DEPLOYING YOUR APPLICATIONS

117

The following instructions are used to set up a remote server for JBoss Enterprise Middleware
application servers. A complete server definition requires a server adapter (or server) that allows the IDE
to communicate with and manage the remote server.

1. Click the Servers view. If the Servers view is not visible, click Window > Show View > Server.

2. Use the appropriate instructions depending on the number of existing servers listed in the
Servers tab:

a. If there are no existing servers, click No servers are available. Click this link to create a
new server.

b. If there are one or more existing servers, right-click an existing server and click New >
Server.

3. In the New Server wizard:

a. From the Select the server type list, select a JBoss Enterprise Middleware application
server.

b. The Server’s host name and Server name fields are completed by default. In the Server
name field, you can type a custom name to later identify the server in the Servers view.

c. Click Next to continue.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

118

Figure 4.1. Defining a New Remote Server

4. Configure the required Server Adapter details:

a. In The server is list, click Remote.

b. In the Controlled by list, click either Filesystem and shell operations or Management
Operations depending on your requirement.

NOTE

If you select Management Operations in the Controlled by list, you must
set up an administrator user on the server by using the
$SERVER_HOME/bin/add-users.sh script for Linux, or the
$SERVER_HOME\bin\add-users.bat file for Windows, and enter the same
credentials in the server editor or during the server start.

CHAPTER 4. DEPLOYING YOUR APPLICATIONS

119

c. Click the Server lifecycle is externally managed. check box to deploy the server but to not
expect the IDE to stop or start the server.

d. Clear the Assign a runtime to this server check box to create a remote server without
assigning a runtime to it.

NOTE

Creating a Remote Server without a runtime results in limitations. For
example, the JMX connection does not work because it requires libraries
from the runtime to connect via JMX. Additionally, automatic port detection
occurs using the standalone.xml file, which is not available if a runtime is
not specified. These and other minor issues related to hard-coded minor fixes
in maintenance releases may occur if no runtime is specified for the Remote
Server.

5. From the drop-down list, click the relevant runtime server and click Next.

Figure 4.2. Creating a New Server Adapter

6. Add the remote system integration details as follows:

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

120

a. In the Host field, the default host is Local. If required, click New Host to create a new host,
which may be remote or local. Supported connection types for remote hosts are FTP Only
or SSH Only.

b. In the Remote Server Home field, specify a path to the directory that contains the remote
server.

c. In the Remote Server Base Directory field, specify the remote server’s base directory (the
default value for this is the standalone directory within the server home directory).

d. In the Remote Server Configuration File field, specify the file to use for the remote server’s
configuration (the default value for this is the standalone.xml file). This location is within the
Remote Server Home directory (specifically in the
$SERVER_HOME/$BASE_DIRECTORY/configuration/ directory).

e. Either click Next to continue to the (optional) next step to add or remove server resources or
click Finish to conclude the new remote server configuration.

Figure 4.3. Connect to a Remote System

7. Optional: Add or remove resources configured on the server as follows:

a. To add a resource, select the appropriate resource in the Available pane and click Add. To
add all available resources, click Add All.

CHAPTER 4. DEPLOYING YOUR APPLICATIONS

121

add all available resources, click Add All.

b. To remove a resource, select the appropriate resource in the Configured pane and click
Remove. To remove all configured resources, click Remove All.

c. Click Finish to complete the server configuration.

Figure 4.4. Add and Remove Server Resources

Result: You have successfully configured a remote server. The new server is listed in the
Servers view. Right-click the server to view operations, including Start to start the server.

Red Hat JBoss Developer Studio 11.2 Getting Started with JBoss Developer Studio Tools

122

NOTE

If the Server lifecycle is externally managed. check box was selected in the steps
above, clicking Start does not start the server. Instead, it marks the server to indicate that
it has started and the web poller checks whether the server is running.

CHAPTER 4. DEPLOYING YOUR APPLICATIONS

123

	Table of Contents
	CHAPTER 1. SETTING UP AND MANAGING A REPOSITORY FOR YOUR PROJECTS
	1.1. USING GIT WITH RED HAT JBOSS DEVELOPER STUDIO
	1.1.1. Setting Up the Git Perspective
	1.1.2. Setting up a Repository in the Git Perspective
	1.1.2.1. Creating a New Git Repository
	1.1.2.2. Cloning an Existing Git Repository
	1.1.2.3. Adding an Existing Local Git Repository

	1.1.3. Adding a Remote for the Repository
	1.1.4. Creating and Working With a New Branch
	1.1.4.1. Creating a New Branch
	1.1.4.2. Working in the New Branch
	1.1.4.3. Updating the Branch Before Implementing the Changes

	1.1.5. Committing and Merging the Changes
	1.1.5.1. Committing and Pushing the Changes
	1.1.5.2. Committing Without Pushing the Changes
	Additional Resources

	CHAPTER 2. CONFIGURING MAVEN BASICS
	2.1. CREATING A NEW MAVEN PROJECT
	2.2. CREATING A NEW MAVEN MODULE
	Prerequisites

	2.3. ADDING MAVEN SUPPORT TO AN EXISTING NON-MAVEN PROJECT
	2.4. TROUBLESHOOTING
	2.4.1. Unidentifiable Dependency
	2.4.2. Some selected dependencies can not be resolved. Click here to configure repositories in your settings.xml.
	Additional Resources

	CHAPTER 3. DEVELOPING FIRST APPLICATIONS WITH JBOSS DEVELOPER STUDIO TOOLS
	3.1. CONFIGURING JBOSS DEVELOPER STUDIO FOR USE WITH JBOSS EAP AND JBOSS WEB FRAMEWORK KIT
	3.1.1. Setting up JBoss EAP
	3.1.1.1. Downloading, Installing, and Setting Up the IDE and JBoss EAP using the DevSuite Installer
	3.1.1.2. Downloading, Installing, and Setting Up JBoss EAP from within the IDE
	3.1.1.3. Using Runtime Detection to Set Up JBoss EAP from within the IDE

	3.1.2. Configuring Maven for JBoss EAP and JBoss Web Framework Kit Maven Repositories
	3.1.2.1. Specifying Maven settings.xml File Location

	3.1.3. Using JBoss EAP and JBoss Web Framework Kit Maven Repositories
	3.1.3.1. Using the Offline Maven Repositories
	3.1.3.2. Using the Online Maven Repositories

	3.2. CREATING AND IMPORTING NODE.JS APPLICATIONS
	Prerequisites
	3.2.1. Creating a new JavaScript Application
	3.2.2. Importing an Existing JavaScript Project
	3.2.3. Debugging a Node.js Application

	3.3. DEVELOPING APPLICATIONS USING THE FORGE TOOL
	3.3.1. Creating a Forge Project
	3.3.2. Setting up Persistence
	3.3.3. Adding Fields to the Entity
	3.3.4. Creating a Scaffold
	3.3.5. Running and Testing the Application
	3.3.6. Creating Extensions or Add-ons
	Prerequisites
	Additional Resources

	3.4. DEVELOPING APPLICATIONS USING THE HIBERNATE TOOLS
	Prerequisites
	3.4.1. Creating a JPA Project
	3.4.2. Generating DDL and Entities
	3.4.3. Creating a Hibernate Mapping File
	3.4.4. Creating a Hibernate Configuration File
	3.4.5. Creating a Hibernate Console Configuration File
	3.4.6. Modifying the Hibernate Configurations
	3.4.7. Generating Code and Reverse Engineering
	3.4.8. Troubleshooting
	3.4.8.1. Problems While Loading Database Driverclass
	Additional Resources

	Adding Libraries
	Setting up the Property File
	Setting up the Configuration File
	Creating, Managing, and Running the Configurations Window, Main tab, Check Boxes
	Exporter Property and Values
	Exporter

	3.5. CREATING YOUR FIRST MOBILE WEB APPLICATION
	Prerequisites
	3.5.1. Creating an HTML5 Project
	3.5.2. Building and Deploying the Application
	3.5.3. Viewing the Application with BrowserSim
	3.5.4. Enabling LiveReload for BrowserSim
	3.5.5. Editing the Application
	Additional Resources

	3.6. GENERATING AN HTML5 WEB APPLICATION USING THE MOBILE WEB PALETTE
	3.6.1. Adding a New HTML5 jQuery Mobile File to a Project
	3.6.2. Adding New Pages to the Web Application
	3.6.3. Customizing the Home Page of the Web Application
	3.6.3.1. Adding a Panel to the Page
	3.6.3.2. Adding a List to the Panel
	3.6.3.3. Adding a Button in the Header of the Page to Display the List

	3.6.4. Running and Testing the HTML5 Mobile Application Using BrowserSim
	Additional Resources

	3.7. CREATING YOUR FIRST HYBRID MOBILE APPLICATION
	Prerequisites
	3.7.1. Enabling the JBoss Hybrid Mobile Tools + CordovaSim Feature
	3.7.2. Installing Android SDK
	Procedure

	3.7.3. Creating a Hybrid Mobile Project
	3.7.4. Customizing the Hybrid Mobile Project
	3.7.5. Testing the Hybrid Mobile Application using CordovaSim
	3.7.6. Deploying the Hybrid Mobile Project on the FeedHenry Server
	3.7.6.1. Connecting the Cordova Application to the FeedHenry Server
	3.7.6.2. Pushing the Cordova Application to the FeedHenry Server

	3.7.7. Modifying the Icon for a Mobile Application
	3.7.8. Editing an Application Splash Screen
	Additional Resources

	3.8. IMPORTING AND DEVELOPING AN EXISTING FEEDHENRY APPLICATION
	Prerequisites
	3.8.1. Enabling the FeedHenry Feature
	3.8.2. Installing Android SDK
	3.8.2.1. Setting the Preferences for Your Application Import
	Procedure

	3.8.3. Importing your FeedHenry Application
	3.8.3.1. Testing the Application Import

	3.8.4. Modifying the FeedHenry Application
	3.8.4.1. Testing the Application

	3.8.5. Pushing the Changes Back to the FeedHenry Server
	Additional Resources

	3.9. IMPORTING PROJECTS IN JBOSS DEVELOPER STUDIO USING GIT IMPORT
	Procedure
	3.9.1. Importing Projects from Git with Smart Import
	3.9.2. Importing Projects from Git
	Procedure
	3.9.2.1. Importing Existing Eclipse Projects
	3.9.2.2. Importing Using the New Project Wizard
	3.9.2.3. Importing as a General Project

	3.9.3. Importing Projects from the Remote Git Repository

	3.10. GETTING STARTED WITH JAVASCRIPT DEVELOPMENT FOR NEON 3
	Prerequisites
	3.10.1. Installing node.js
	3.10.2. Installing the Package Managers (Bower and npm)
	Procedure

	3.10.3. Using the Package Managers
	Procedure
	3.10.3.1. Creating a New Project
	3.10.3.2. Enabling Bower Init
	3.10.3.3. Enabling npm Init
	3.10.3.4. Creating a New index.html File
	3.10.3.5. Using the Bower Tool

	3.10.4. Using the Build Systems
	Prerequisites
	Procedure
	3.10.4.1. Adding Dependencies to the package.json File
	3.10.4.2. Enabling the Gulp Plugin
	3.10.4.3. Creating the gulpfile.js File
	3.10.4.4. Using the Gulp Plugin

	3.10.5. Working with the Node.js Application
	Prerequisites
	Procedure
	3.10.5.1. Importing the jsdt-node-test-project
	3.10.5.2. Running the index.js File
	3.10.5.3. Debugging the Node.js Application

	CHAPTER 4. DEPLOYING YOUR APPLICATIONS
	4.1. DEPLOYING APPLICATIONS TO A LOCAL SERVER
	Procedure
	4.1.1. Configuring the IDE for a Local Runtime Server
	Procedure

	4.1.2. Deploying an Application
	Procedure

	4.1.3. Changing and Republishing the Application
	Procedure
	Additional Resources

	4.2. CONFIGURING A REMOTE SERVER
	Procedure
	4.2.1. Setting up a Remote Server
	Procedure

