
Red Hat JBoss BPM Suite 6.4

Development Guide

Red Hat JBoss BPM Suite Development Guide for Red Hat JBoss Developers

Last Updated: 2019-05-13

Red Hat JBoss BPM Suite 6.4 Development Guide

Red Hat JBoss BPM Suite Development Guide for Red Hat JBoss Developers

Red Customer Content Services
brms-docs@redhat.com

Emily Murphy

Gemma Sheldon

Michele Haglund

Mikhail Ramendik

Stetson Robinson

Vidya Iyengar

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A guide to using API's in Red Hat JBoss BPM Suite for developers.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. OVERVIEW

CHAPTER 1. ABOUT THIS GUIDE
1.1. AUDIENCE
1.2. PREREQUISITES

CHAPTER 2. RED HAT JBOSS BRMS AND RED HAT JBOSS BPM SUITE ARCHITECTURE
2.1. RED HAT JBOSS BUSINESS RULES MANAGEMENT SYSTEM

2.1.1. Red Hat JBoss BRMS Key Components
2.1.2. Red Hat JBoss BRMS Features

2.2. RED HAT JBOSS BUSINESS PROCESS MANAGEMENT SUITE
2.2.1. Red Hat JBoss BPM Suite Key Components
2.2.2. Red Hat JBoss BPM Suite Features

2.3. SUPPORTED PLATFORMS AND APIS
2.4. USE CASES

2.4.1. Use Case: Business Decision Management in Insurance Industry with Red Hat JBoss BRMS
2.4.2. Use Case: Process-Based Solution in Loan Industry

CHAPTER 3. APACHE MAVEN
3.1. MAVEN REPOSITORIES
3.2. USING THE MAVEN REPOSITORY IN YOUR PROJECT
3.3. MAVEN PROJECT CONFIGURATION FILE
3.4. MAVEN SETTINGS FILE
3.5. DEPENDENCY MANAGEMENT
3.6. INTEGRATED MAVEN DEPENDENCIES
3.7. UPLOADING ARTIFACTS TO MAVEN REPOSITORY

Alternative Maven Approach
3.8. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO RED HAT JBOSS FUSE

Separating Assets and Code

CHAPTER 4. INSTALL AND SET UP RED HAT JBOSS DEVELOPER STUDIO
4.1. INSTALLING RED HAT JBOSS DEVELOPER STUDIO PLUG-INS
4.2. CONFIGURING RED HAT JBOSS BRMS/BPM SUITE SERVER
4.3. IMPORTING PROJECTS FROM GIT REPOSITORY INTO RED HAT JBOSS DEVELOPER STUDIO
4.4. KIE NAVIGATOR

PART II. ALL ABOUT RULES

CHAPTER 5. RULE ALGORITHMS
5.1. PHREAK ALGORITHM
5.2. RULE EVALUATION WITH PHREAK ALGORITHM

PHREAK and Sequential Mode
5.3. RETE ALGORITHM

5.3.1. ReteOO
Rete Root Node
ObjectTypeNode
AlphaNodes
Hashing
BetaNodes
Alpha Memory and Beta Memory
Lookups with BetaNodes
LeftInputNodeAdapters
Terminal Nodes

15

16
16
16

18
18
18
19
19
19

20
21
21
21
22

24
24
24
24
25
25
30
31

33
33
34

35
35
35
36
37

38

39
39
39
40
41
41
41
41
41
41
41

42
42
42
42

Table of Contents

1

. .

. .

Node Sharing
5.4. SWITCHING BETWEEN PHREAK AND RETEOO

Switching Between PHREAK and ReteOO in System Properties
Switching Between PHREAK and ReteOO in KieBaseConfiguration

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS
Rules Processing Steps
6.1. CREATING AND EXECUTING RULES

6.1.1. Creating and Executing Rules Using Plain Java
6.1.2. Creating and Executing Rules Using Maven
6.1.3. Creating and Executing Rules Using Red Hat JBoss Developer Studio
6.1.4. Creating and Executing Rules Using Business Central

6.2. EXECUTION OF RULES
6.2.1. Agenda
6.2.2. Agenda Processing
6.2.3. Conflict Resolution
6.2.4. AgendaGroup
6.2.5. setFocus()
6.2.6. ActivationGroup

6.3. INFERENCE
6.3.1. The Inference Engine
6.3.2. Inference Example

6.4. TRUTH MAINTENANCE
6.5. USING DECISION TABLES IN SPREADSHEETS

6.5.1. OpenOffice Example
6.5.2. Rules and Spreadsheets
6.5.3. The RuleTable Keyword
6.5.4. The RuleSet Keyword
6.5.5. Data-Defining Cells
6.5.6. Rule Table Columns
6.5.7. Rule Set Entries
6.5.8. Rule Attribute Entries in Rule Set Area
6.5.9. The RuleTable Cell
6.5.10. Column Types
6.5.11. Conditional Elements
6.5.12. Action Statements
6.5.13. Metadata Statements
6.5.14. Interpolating Cell Data Example
6.5.15. Tips for Working Within Cells
6.5.16. The SpreadsheetCompiler Class
6.5.17. Using Spreadsheet-Based Decision Tables
6.5.18. Lists
6.5.19. Revision Control
6.5.20. Tabular Data Sources

6.6. DEPENDENCY MANAGEMENT FOR GUIDED DECISION TABLES, SCORECARDS, AND RULE TEMPLATES

6.7. LOGGING
6.7.1. Configuring Logging Level

CHAPTER 7. COMPLEX EVENT PROCESSING
7.1. INTRODUCTION TO COMPLEX EVENT PROCESSING
7.2. EVENTS

7.2.1. Event Declaration

42
44
44
44

46
46
46
46
49
53
56
59
59
60
60
60
60
60
61
61
61
61

66
66
67
67
67
67
67
68
69
70
70
70
71
72
72
72
73
73
73
73
73

73
74
74

76
76
77
78

Red Hat JBoss BPM Suite 6.4 Development Guide

2

. .

7.2.2. Event Metadata
7.3. CLOCK IMPLEMENTATION IN COMPLEX EVENT PROCESSING

7.3.1. Session Clock
7.3.2. Available Clock Implementations

7.4. EVENT PROCESSING MODES
7.4.1. Cloud Mode
7.4.2. Stream Mode

7.5. EVENT STREAMS
7.5.1. Declaring and Using Entry Points
7.5.2. Negative Pattern in Stream Mode

7.6. TEMPORAL OPERATIONS
7.6.1. Temporal Reasoning
7.6.2. Temporal Operations
7.6.3. After
7.6.4. Before
7.6.5. Coincides
7.6.6. During
7.6.7. Finishes
7.6.8. Finishes By
7.6.9. Includes
7.6.10. Meets
7.6.11. Met By
7.6.12. Overlaps
7.6.13. Overlapped By
7.6.14. Starts
7.6.15. Started By

7.7. SLIDING WINDOWS
7.7.1. Sliding Time Windows
7.7.2. Sliding Length Windows

7.8. MEMORY MANAGEMENT FOR EVENTS
7.8.1. Explicit Expiration
7.8.2. Inferred Expiration

CHAPTER 8. WORKING WITH RULES
8.1. ABOUT RULE FILES

8.1.1. Rule File
8.1.2. Structure of Rule Files

8.2. OPERATING ON FACTS
8.2.1. Accessing Working Memory

8.3. USING RULE KEYWORDS
8.3.1. Hard Keywords
8.3.2. Soft Keywords
8.3.3. List of Soft Keywords

8.4. ADDING COMMENTS TO RULE FILE
8.4.1. Single Line Comment Example
8.4.2. Multi-Line Comment Example

8.5. ERROR MESSAGES IN RULES
8.5.1. Error Message Format
8.5.2. Error Message Description

8.6. PACKAGING
8.6.1. Import Statements
8.6.2. Using Globals
8.6.3. From Element

78
81
81
81

82
82
83
84
84
86
87
87
87
88
88
89
90
91
91

92
93
93
94
95
95
96
97
97
97
98
98
99

100
100
100
100
100
100
101
101
101
101

104
104
104
105
105
105
107
107
107
108

Table of Contents

3

8.6.4. Using Globals with E-Mail Service
8.7. FUNCTIONS IN RULES

8.7.1. Importing Static Method Example
8.7.2. Calling Function Declaration Example
8.7.3. Type Declarations
8.7.4. Declaring New Types
8.7.5. Declaring New Fact Type Example
8.7.6. Declaring New Fact Type Additional Example
8.7.7. Using Import Example
8.7.8. Generated Java Classes
8.7.9. Generated Java Class Example
8.7.10. Using Declared Types in Rules Example
8.7.11. Declaring Metadata
8.7.12. Working with Metadata Attributes
8.7.13. Declaring Metadata Attribute with Fact Types Example
8.7.14. @position Attribute
8.7.15. @position Example
8.7.16. Predefined Class Level Annotations
8.7.17. @key Attribute Functions
8.7.18. @key Declaration Example
8.7.19. Creating Instance with Key Constructor Example
8.7.20. Positional Arguments
8.7.21. Positional Argument Example
8.7.22. @position Annotation
8.7.23. Example Patterns

8.8. BACKWARD-CHAINING
8.8.1. Backward-Chaining Systems
8.8.2. Cloning Transitive Closures
8.8.3. Defining Query
8.8.4. Transitive Closure Example
8.8.5. Reactive Transitive Queries
8.8.6. Queries with Unbound Arguments
8.8.7. Multiple Unbound Arguments

8.9. TYPE DECLARATION
8.9.1. Declaring Metadata for Existing Types
8.9.2. Declaring Metadata for Existing Types Example
8.9.3. Declaring Metadata Using Fully Qualified Class Name Example
8.9.4. Parametrized Constructors for Declared Types Example
8.9.5. Non-Typesafe Classes
8.9.6. Accessing Declared Types from Application Code
8.9.7. Declaring Type
8.9.8. Handling Declared Fact Types Through API Example
8.9.9. Type Declaration Extends
8.9.10. Type Declaration Extends Example
8.9.11. Traits
8.9.12. Traits Example
8.9.13. Core Objects and Traits
8.9.14. @traitable Example
8.9.15. Writing Rules with Traits
8.9.16. Rules with Traits Example
8.9.17. Hidden Fields
8.9.18. Two-Part Proxy
8.9.19. Wrappers

108
108
109
109
109
109
110
110
110
110
110
111
111
111
111

112
112
112
112
113
113
113
113
114
114
114
114
114
116
117
119

120
121
122
122
122
122
122
122
123
123
123
124
124
124
124
125
125
125
125
126
126
126

Red Hat JBoss BPM Suite 6.4 Development Guide

4

8.9.20. Wrapper Example
8.9.21. Wrapper with isA Annotation Example
8.9.22. Removing Traits

8.10. RULE ATTRIBUTES
8.10.1. Timer Attribute Example
8.10.2. Timers
8.10.3. Cron Timer Example
8.10.4. Calendars
8.10.5. Quartz Calendar Example
8.10.6. Registering Calendar
8.10.7. Left Hand Side
8.10.8. Conditional Elements
8.10.9. Rule Without Conditional Element Example

8.11. PATTERNS
8.11.1. Pattern Example
8.11.2. Pattern Matching
8.11.3. Pattern Binding
8.11.4. Pattern Binding with Variable Example
8.11.5. Constraints

8.12. ELEMENTS AND VARIABLES
8.12.1. Property Access on Java Beans (POJOs)
8.12.2. POJO Example
8.12.3. Working with POJOs
8.12.4. POJO Fallbacks
8.12.5. Fallback Example
8.12.6. Java Expressions
8.12.7. Comma-Separated Operators
8.12.8. Comma-Separated Operator Example
8.12.9. Binding Variables
8.12.10. Binding Variable Examples
8.12.11. Unification
8.12.12. Unification Example
8.12.13. Options and Operators in Red Hat JBoss BRMS
8.12.14. Operator Precedence
8.12.15. Fine Grained Property Change Listeners
8.12.16. Fine Grained Property Change Listener Example
8.12.17. Working with Fine Grained Property Change Listeners
8.12.18. Using Patterns with @watch
8.12.19. @watch Example
8.12.20. Using @PropertySpecificOption
8.12.21. Basic Conditional Elements
8.12.22. Conditional Element forall
8.12.23. forall Examples
8.12.24. Conditional Element from
8.12.25. from Examples
8.12.26. Conditional Element collect
8.12.27. Conditional Element accumulate

Top-Level accumulate Syntax
Built-in accumulate Functions
Accumulate Functions Pluggability
Alternative Syntax
accumulate with Inline Custom Code
Custom Objects

126
126
126
127
127
127
128
128
128
128
129
129
129
129
129
130
130
130
130
130
130
131
131
131
131
132
133
133
134
134
134
134
134
137
138
138
138
138
139
139
139
141
141

142
143
144
144
144
145
145
147
148
149

Table of Contents

5

. .

. .

. .

8.12.28. Conditional Element eval
8.12.29. eval Conditional Element Examples
8.12.30. Right Hand Side
8.12.31. RHS Convenience Methods
8.12.32. Convenience Methods Using Drools Variable
8.12.33. Convenience Methods Using kcontext Variable
8.12.34. Modify Statement
8.12.35. Query Examples
8.12.36. QueryResults Example
8.12.37. Queries Calling Other Queries
8.12.38. Queries Calling Other Queries Example
8.12.39. Unification for Derivation Queries

8.13. SEARCHING WORKING MEMORY USING QUERY
8.13.1. Queries
8.13.2. Live Queries
8.13.3. ViewChangedEventListener Implementation Example

8.14. DOMAIN SPECIFIC LANGUAGES (DSLS)
8.14.1. DSL Editor
8.14.2. Using DSLs
8.14.3. DSL Example
8.14.4. About DSL Parser
8.14.5. About DSL Compiler
8.14.6. DSL Syntax Examples
8.14.7. Chaining DSL Expressions
8.14.8. Adding Constraints to Facts
8.14.9. Tips for Developing DSLs
8.14.10. DSL and DSLR Reference
8.14.11. DSL Entry Description
8.14.12. Debug Options for DSL Expansion
8.14.13. DSL Definition Example
8.14.14. Transformation of DSLR File
8.14.15. String Transformation Functions
8.14.16. Stringing DSL Transformation Functions

CHAPTER 9. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST RULES
9.1. RED HAT JBOSS DEVELOPER STUDIO DROOLS PERSPECTIVE
9.2. RED HAT JBOSS BRMS RUNTIMES

9.2.1. Defining a Red Hat JBoss BRMS Runtime
9.2.2. Selecting a Runtime for Your Red Hat JBoss BRMS Project
9.2.3. Changing the Runtime of Your Red Hat JBoss BRMS Project
9.2.4. Configuring the Red Hat JBoss BRMS Server

9.3. EXPLORING RED HAT JBOSS BRMS APPLICATION
9.4. CREATING A RED HAT JBOSS BRMS PROJECT
9.5. USING TEXTUAL RULE EDITOR
9.6. RED HAT JBOSS BRMS VIEWS
9.7. DEBUGGING RULES

9.7.1. Creating Breakpoints

PART III. ALL ABOUT PROCESSES

CHAPTER 10. GETTING STARTED WITH PROCESSES
10.1. THE RED HAT JBOSS BPM SUITE ENGINE
10.2. INTEGRATING BPM SUITE ENGINE WITH OTHER SERVICES

150
150
150
150
151
151
151
152
152
153
153
153
154
154
154
154
155
155
155
155
156
156
156
157
157
158
159
159
160
160
160
161
161

163
163
163
163
164
164
164
165
165
166
166
167
168

169

170
170
170

Red Hat JBoss BPM Suite 6.4 Development Guide

6

. .CHAPTER 11. WORKING WITH PROCESSES
11.1. BPMN 2.0 NOTATION

11.1.1. Business Process Model and Notation (BPMN) 2.0 Specification
BPMN 2.0 Supported Elements and Attributes (Events)
BPMN 2.0 Supported Elements and Attributes (Activities)
BPMN 2.0 Supported Elements and Attributes (Gateways)
BPMN 2.0 Supported Elements and Attributes (Data)
BPMN 2.0 Supported Elements and Attributes (BPMNDI)

11.1.2. BPMN 2.0 Process Example
11.1.3. Supported Elements and Attributes in BPMN 2.0 Specification

Flow Objects
Data
Connecting Objects

11.1.4. Loading and Executing a BPMN2 Process Into Repository
11.2. WHAT COMPRISES A BUSINESS PROCESS

11.2.1. Process Nodes
11.2.2. Process Properties
11.2.3. Defining Processes Using XML

11.3. ACTIVITIES
11.3.1. Tasks
11.3.2. Subprocesses

11.4. DATA
11.5. EVENTS

11.5.1. Start Events
11.5.2. End Events
11.5.3. Intermediate Events

11.5.3.1. Catching Intermediate Events
11.5.3.2. Throwing Intermediate Events

11.6. GATEWAYS
11.6.1. Gateway Types

11.6.1.1. Event-Based Gateway
11.6.1.2. Parallel Gateway
11.6.1.3. Inclusive Gateway

Attributes
11.6.1.4. Data-Based Exclusive Gateway

Attributes
11.7. VARIABLES
11.8. ASSIGNMENT
11.9. ACTION SCRIPTS

Process Instance Action Scripts
11.10. CONSTRAINTS
11.11. TIMERS

Configuring Timer with Delay and Period
Configuring Timer ISO-8601 Date Format
Configuring Timer with Process Variables
Updating Timer Within a Running Process Instance
Troubleshooting

11.12. MULTI-THREADING
11.12.1. Multi-Threading
11.12.2. Engine Execution
11.12.3. Job Executor for Asynchronous Execution
11.12.4. Using Job Executor in Embedded Mode
11.12.5. Hello World Example with Embedded Job Executor

172
172
172
173
176
178
179
181

182
183
183
184
184
185
185
186
186
186
188
188
191

192
193
194
196
197
197
198
198
198
198
199
199
199
199

200
200
200
201
201

202
203
203
203
203
203
204
205
205
205
206
207

211

Table of Contents

7

. .

11.12.6. Using Job Executor in Business Central
Executor Configuration

11.12.7. Multiple Sessions and persistence
11.12.8. Asynchronous Events
11.12.9. Technical exceptions

Code in Element properties
Code in WorkItemHandlers
11.12.9.1. Technical exception examples

11.12.9.1.1. Service Task handlers
11.12.9.1.2. Exception handling classes
11.12.9.1.3. Exception service
11.12.9.1.4. Handling errors with Signals
11.12.9.1.5. Extracting information from WorkflowRuntimeException

11.13. PROCESS FLUENT API
11.13.1. Using the Process Fluent API to Create Business Process
11.13.2. Process Fluent API Example

11.14. TESTING BUSINESS PROCESSES
11.14.1. JbpmJUnitBaseTestCase
11.14.2. Configuring Persistence
11.14.3. Testing Integration with External Services

CHAPTER 12. HUMAN TASKS MANAGEMENT
12.1. HUMAN TASKS
12.2. USING USER TASKS IN PROCESSES
12.3. DATA MAPPING
12.4. TASK LIFECYCLE
12.5. TASK PERMISSIONS

12.5.1. Task Permissions Matrix
Permissions Matrices

12.6. TASK SERVICE
12.6.1. Task Service and Process Engine
12.6.2. Task Service API
12.6.3. Interacting with the Task Service
12.6.4. Accessing Task Variables Using TaskEventListener
12.6.5. Task Service Data Model

Tasks
Entities and People Assignments
Reassignments
Notifications
Attachments
Delegations

12.6.6. Connecting to Custom Directory Information Services
12.6.7. LDAP Connection

12.6.7.1. Connecting to LDAP
12.7. TASK ESCALATION AND NOTIFICATIONS

12.7.1. Configuring a Custom Implementation of Email Notification Events
12.8. RETRIEVING PROCESS AND TASK INFORMATION
12.9. ADVANCED QUERIES WITH QUERYSERVICE

12.9.1. QueryResultMapper
12.9.2. QueryParamBuilder
12.9.3. Implementing QueryParamBuilder
12.9.4. QueryService in Embedded Mode
12.9.5. Advanced Queries Through Intelligent Process Server

214
217
217
218
218
218
219

220
220
221

223
224
225
227
227
227
228
229
234
235

237
237
237
238
238
240
240
241
241
241
242
243
244
246
247
250
250
251
251

252
252
253
254
255
258
259
261
261
262
263
264
265

Red Hat JBoss BPM Suite 6.4 Development Guide

8

. .

. .

. .

. .

. .

12.10. PROCESS INSTANCE MIGRATION
Known Limitations

CHAPTER 13. PERSISTENCE AND TRANSACTIONS
13.1. PROCESS INSTANCE STATE

13.1.1. Runtime State
13.1.2. Binary Persistence
13.1.3. Data Model Description
13.1.4. Safe Points

13.2. AUDIT LOG
13.2.1. Audit Data Model
13.2.2. Audit Data Model Description
13.2.3. Storing Process Events in a Database
13.2.4. Storing Process Events in a JMS Queue
13.2.5. Auditing Variables
13.2.6. Building and Registering Custom Indexers

13.3. TRANSACTIONS
13.4. IMPLEMENTING CONTAINER MANAGED TRANSACTION
13.5. USING PERSISTENCE

13.5.1. Adding Dependencies
13.5.2. Manually Configuring Red Hat JBoss BPM Suite Engine to Use Persistence

CHAPTER 14. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST PROCESSES
14.1. RED HAT JBOSS BPM SUITE RUNTIME

14.1.1. Red Hat JBoss BPM Suite Runtime
14.1.2. Setting the Red Hat JBoss BPM Suite Runtime
14.1.3. Configuring Red Hat JBoss BPM Suite Server

14.2. IMPORTING AND CLONING PROJECTS FROM GIT REPOSITORY INTO RED HAT JBOSS DEVELOPER
STUDIO
14.3. COMPONENTS OF RED HAT JBOSS BPM SUITE APPLICATION
14.4. CREATING RED HAT JBOSS BPM SUITE PROJECT
14.5. CONVERTING EXISTING JAVA PROJECT TO RED HAT JBOSS BPM SUITE PROJECT
14.6. CREATING PROCESSES IN RED HAT JBOSS DEVELOPER STUDIO
14.7. MODELING AND VALIDATING PROCESSES IN RED HAT JBOSS DEVELOPER STUDIO
14.8. AUDIT VIEW

14.8.1. File Logger
14.9. SYNCHRONIZING RED HAT JBOSS DEVELOPER STUDIO WORKSPACE WITH BUSINESS CENTRAL
REPOSITORIES

14.9.1. Importing Business Central Repository
14.9.2. Committing Changes to Business Central
14.9.3. Retrieving Changes from Business Central Repository
14.9.4. Importing Individual Projects from Repository
14.9.5. Adding Red Hat JBoss BPM Suite Libraries to Project Class Path

CHAPTER 15. CASE MANAGEMENT
15.1. INTRODUCTION
15.2. USE CASES
15.3. CASE MANAGEMENT IN RED HAT JBOSS BPM SUITE
15.4. STARTING A CASE
15.5. EXAMPLE CASE MODEL

PART IV. INTELLIGENT PROCESS SERVER AND REALTIME DECISION SERVER

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

271
275

276
276
276
276
276
280
280
280
281
285
286
287
289
290
291
292
292
293

295
295
295
295
295

298
299
299
300
300
300
301
301

302
302
303
303
303
304

305
305
305
306
307
307

310

311

Table of Contents

9

. .

. .

. .

. .

. .

16.1. BRMS COMMANDS
16.2. MANAGING PROCESSES
16.3. MANAGING PROCESS DEFINITIONS
16.4. MANAGING USER TASKS

16.4.1. Managing Task Instances
16.4.2. Managing Task Instance Data

16.5. QUERYING PROCESS INSTANCES
16.6. QUERYING TASKS
16.7. ADVANCED QUERIES FOR THE INTELLIGENT PROCESS SERVER
16.8. MANAGING JOB EXECUTION

Job Execution Endpoints

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION
17.1. MANAGED INTELLIGENT PROCESS SERVER ENVIRONMENT
17.2. UNMANAGED INTELLIGENT PROCESS SERVER ENVIRONMENT

CHAPTER 18. INTELLIGENT PROCESS SERVER UI EXTENSION
18.1. USING THE INTELLIGENT PROCESS SERVER UI EXTENSION

CHAPTER 19. INTELLIGENT PROCESS SERVER JAVA CLIENT API OVERVIEW
19.1. CLIENT CONFIGURATION

19.1.1. JMS Interaction Patterns
19.2. SERVER RESPONSE
19.3. INSERTING AND EXECUTING COMMANDS
19.4. LISTING SERVER CAPABILITIES
19.5. LISTING CONTAINERS
19.6. HANDLING CONTAINERS
19.7. AVAILABLE INTELLIGENT PROCESS SERVER CLIENTS
19.8. LISTING AVAILABLE BUSINESS PROCESSES
19.9. STARTING A BUSINESS PROCESSES
19.10. QUERYDEFINITION FOR INTELLIGENT PROCESS SERVER USING JAVA CLIENT API

PART V. KIE

CHAPTER 20. JAVA APIS
20.1. KIE API

20.1.1. KIE Framework
20.1.2. KIE Base
20.1.3. KIE Session

20.1.3.1. Process Runtime Interface
20.1.3.2. Event Listeners

20.1.3.2.1. Process Event Listeners
20.1.3.2.2. Rule Event Listeners

20.1.3.3. Loggers
20.1.3.4. Correlation Keys
20.1.3.5. Threads
20.1.3.6. Globals

20.1.4. KIE File System
20.1.5. KIE Module
20.1.6. KIE Container

20.1.6.1. KIE Base Configuration
20.1.7. KIE Maven Plug-in
20.1.8. KIE Repository
20.1.9. KIE Scanner

311
313
316
319
319
322
326
332
336
339
340

342
342
347

367
367

372
372
374
375
375
377
377
378
379
379
380
381

383

384
384
384
385
388
389
391

392
392
393
394
396
397
398
399
402
403
404
405
406

Red Hat JBoss BPM Suite 6.4 Development Guide

10

20.1.10. Command Executor
20.1.10.1. Marshalling

20.1.10.1.1. XStream
JSON
JAXB
XSD File
Using POJO Model

20.1.10.2. Supported Commands
20.1.10.2.1. BatchExecutionCommand
20.1.10.2.2. InsertObjectCommand
20.1.10.2.3. RetractCommand
20.1.10.2.4. ModifyCommand
20.1.10.2.5. GetObjectCommand
20.1.10.2.6. InsertElementsCommand
20.1.10.2.7. FireAllRulesCommand
20.1.10.2.8. StartProcessCommand
20.1.10.2.9. SignalEventCommand
20.1.10.2.10. CompleteWorkItemCommand
20.1.10.2.11. AbortWorkItemCommand
20.1.10.2.12. QueryCommand
20.1.10.2.13. SetGlobalCommand
20.1.10.2.14. GetGlobalCommand
20.1.10.2.15. GetObjectsCommand

20.1.11. KIE Configuration
20.1.11.1. Build Result Severity
20.1.11.2. StatelessKieSession

20.1.11.2.1. Sequential Mode
20.1.11.3. Marshalling
20.1.11.4. KIE Persistence

20.1.12. KIE Sessions
20.1.12.1. Stateless KIE Sessions

20.1.12.1.1. Configuring Rules in Stateless Session
20.1.12.1.2. Configuring Rules with Multiple Objects

20.1.12.2. Stateful KIE Sessions
20.1.12.2.1. Common Use Cases for Stateful Sessions
20.1.12.2.2. Stateful Session Monitoring Example

20.2. RUNTIME MANAGER
20.2.1. Usage

20.2.1.1. Usage Scenario
20.2.1.2. Building Runtime Manager

Runtime Manager Identifier
20.2.2. Runtime Environment
20.2.3. Strategies

20.2.3.1. Singleton Strategy
20.2.3.2. Per Request Strategy
20.2.3.3. Per Process Instance Strategy

20.2.4. Handlers and Listeners
20.2.4.1. Registering Through Registerable Items Factory
20.2.4.2. Registering Through Configuration Files
20.2.4.3. Registering in CDI Environment

20.2.5. Control Parameters
20.2.6. Variable Persistence Strategy

JPA Placeholder Resolver Strategy

407
408
408
409
409
409
409
410
411

412
413
414
415
415
417
418
419

420
421
421
422
423
424
425
425
425
427
429
430
432
432
432
434
435
435
436
436
438
438
438
439
439
440
440
441

442
442
442
443
444
445
450
450

Table of Contents

11

. .

Creating Custom Strategy
20.3. KIE SERVICES

20.3.1. Deployment Service
20.3.2. Definition Service
20.3.3. Process Service
20.3.4. Runtime Data Service
20.3.5. User Task Service
20.3.6. Query Service

20.3.6.1. Terminology
20.3.6.2. Query Result Mapper
20.3.6.3. Query Parameter Builder
20.3.6.4. Typical usage scenario

20.3.7. Process Instance Migration Service
20.3.7.1. Migration report
20.3.7.2. Known limitations
20.3.7.3. Example

20.3.8. Form Provider Service
20.3.9. Executor Service

20.4. CDI INTEGRATION
20.4.1. Configuring CDI Integration
20.4.2. Deployment Service as CDI Bean

20.4.2.1. Saving and Removing Deployments from Database
20.4.2.2. Available Deployment Services

20.4.3. Runtime Manager as CDI Bean

CHAPTER 21. REMOTE API
21.1. REST API

21.1.1. Knowledge Store REST API
21.1.1.1. Job Calls
21.1.1.2. Organizational Unit Calls
21.1.1.3. Repository Calls
21.1.1.4. Maven Calls

21.1.2. Deployment REST API
21.1.2.1. Deployment Calls
21.1.2.2. Asynchronous Calls

21.1.3. Process Image REST API
21.1.4. Runtime REST API

21.1.4.1. Query Parameters
21.1.4.1.1. Map Parameters
21.1.4.1.2. Pagination
21.1.4.1.3. Object Data Type Parameters

21.1.4.2. Runtime Calls
21.1.4.2.1. Process Calls
21.1.4.2.2. Signal Calls
21.1.4.2.3. Work Item Calls
21.1.4.2.4. History Calls

History Variable Calls
21.1.4.3. Task Calls

21.1.4.3.1. Task Operations
21.1.4.3.2. Content Operations

21.1.5. REST Query API
21.1.5.1. URL Layout
21.1.5.2. Query Parameters

451
451
452
453
453
454
454
455
455
456
456
458
459
460
460
460
461

462
462
462
464
464
464
465

468
468
469
469
470
471

473
474
474
477
477
478
478
478
479
479
480
480
480
481

482
483
483
484
484
485
485
485

Red Hat JBoss BPM Suite 6.4 Development Guide

12

. .

21.1.5.2.1. Range and Regular Expression Parameters
21.1.5.2.2. Range Query Parameters
21.1.5.2.3. Regular Expression Query Parameters

21.1.5.3. List of Query Parameters
21.1.5.4. Query Output Format

21.1.6. Execute Operations
21.1.6.1. Execute Operation Commands

Simple Call Example
Custom Data Type Call Example

21.1.7. REST API Summary
21.1.8. Control of REST API

21.2. JMS
21.2.1. JMS Queue Setup
21.2.2. Example JMS Usage

21.3. SOAP API
21.3.1. CommandWebService

21.4. EJB INTERFACE
Deployment of EJB Client
21.4.1. EJB Interface Artifacts
21.4.2. Generating EJB Services WAR File

21.5. REMOTE JAVA API
Remote Java API Methods
Starting Project: Adding Dependencies
21.5.1. Common Configuration
21.5.2. REST Client

21.5.2.1. Retrieving Potential Owners of Human Task
21.5.2.2. Calling Tasks Without Deployment ID
21.5.2.3. Custom Model Objects and Remote API

21.5.3. JMS Client
Configuration Using InitialContext Instance

21.5.4. Supported Methods
Available Process-Related KieSession Methods
Available Rules-Related KieSession Methods
Available WorkItemManager Methods
Available Task Operation TaskService Methods
Available Task Retrieval and Query TaskService Methods
Available AuditService Methods

21.6. TROUBLESHOOTING
21.6.1. Serialization Issues
21.6.2. Insecure Task Operations

APPENDIX A. VERSIONING INFORMATION

486
486
486
487
492
492
496
498
499
500
506
507
507
508
513
514
514
515
515
516
517
518
519
519

520
522
522
523
524
526
527
527
527
528
528
529
530
530
530
531

533

Table of Contents

13

Red Hat JBoss BPM Suite 6.4 Development Guide

14

PART I. OVERVIEW

PART I. OVERVIEW

15

CHAPTER 1. ABOUT THIS GUIDE
This guide is intended for users who are implementing a standalone Red Hat JBoss BRMS solution or
the complete Red Hat JBoss BPM Suite solution. It discusses the following topics:

Detailed Architecture of Red Hat JBoss BRMS and Red Hat JBoss BPM Suite.

Detailed description of how to author, test, debug, and package simple and complex business
rules and processes using Integrated Development environment (IDE).

Red Hat JBoss BRMS runtime environment.

Domain specific languages (DSLs) and how to use them in a rule.

Complex event processing.

This guide comprises the following sections:

1. Overview
This section provides detailed information on Red Hat JBoss BRMS and Red Hat JBoss BPM
suite, their architecture, key components. It also discusses the role of Maven in project building
and deploying.

2. All About Rules
This section provides details on all you have to know to author rules with Red Hat JBoss
Developer Studio. It describes the rule algorithms, rule structure, components, advanced
conditions, constraints, commands, Domain Specific Languages and Complex Event Processing.
It provides details on how to use the various views, editors, and perspectives that Red Hat
JBoss Developer Studio offers.

3. All About Processes
This section describes what comprises a business process and how you can author and test
them using Red Hat JBoss Developer Studio.

4. KIE
This section highlights the KIE API with detailed description of how to create, build, deploy, and
run KIE projects.

5. Appendix
This section comprises important reference material such as key knowledge terms, and
examples.

1.1. AUDIENCE

This book has been designed to be understood by:

Author of rules and processes who are responsible for authoring and testing business rules and
processes using Red Hat JBoss Developer Studio.

Java application developers responsible for developing and integrating business rules and
processes into Java and Java EE enterprise applications.

1.2. PREREQUISITES

Users of this guide must meet one or more of the following prerequisites:

Red Hat JBoss BPM Suite 6.4 Development Guide

16

Basic Java/Java EE programming experience

Knowledge of the Eclipse IDE, Maven, and GIT

CHAPTER 1. ABOUT THIS GUIDE

17

CHAPTER 2. RED HAT JBOSS BRMS AND RED HAT JBOSS
BPM SUITE ARCHITECTURE

2.1. RED HAT JBOSS BUSINESS RULES MANAGEMENT SYSTEM

Red Hat JBoss BRMS is an open source business rule management system that provides rules
development, access, change, and management capabilities. In today’s world, when IT organizations
consistently face changes in terms of policies, new products, government imposed regulations, a system
like JBoss BRMS makes it easy by separating business logic from the underlying code. It includes a rule
engine, a rules development environment, a management system, and a repository. It allows both
developers and business analysts to view, manage, and verify business rules as they are executed within
an IT application infrastructure.

Red Hat JBoss BRMS can be executed in any Java EE-compliant container. It supports an open choice
of authoring and management consoles and language and decision table inputs.

2.1.1. Red Hat JBoss BRMS Key Components

Red Hat JBoss BRMS comprises the following components:

Drools Expert
Drools Expert is a pattern matching based rule engine that runs on Java EE application servers,
Red Hat JBoss BRMS platform, or bundled with Java applications. It comprises an inference
engine, a production memory, and a working memory. Rules are stored in the production
memory and the facts that the inference engine matches the rules against, are stored in the
working memory.

Business Central
Business Central is a web-based application intended for business analysts for creation and
maintenance of business rules and rule artifacts. It is designed to ease creation, testing, and
packaging of rules for business users.

Drools Flow
Drools flow provides business process capabilities to the Red Hat JBoss BRMS platform. This
framework can be embedded into any Java application or can even run standalone on a server.
A business process provides stepwise tasks using a flow chart, for the Rule Engine to execute.

Drools Fusion
Drools Fusion provides event processing capabilities to the Red Hat JBoss BRMS platform.
Drools Fusion defines a set of goals to be achieved such as:

Support events as first class citizens.

Support detection, correlation, aggregation and composition of events.

Support processing streams of events.

Support temporal constraints in order to model the temporal relationships between events.

Drools Integrated Development Environment (IDE)
We encourage you to use Red Hat JBoss Developer Studio (JBDS) with Red Hat JBoss BRMS
plug-ins to develop and test business rules. The Red Hat JBoss Developer Studio builds upon an
extensible, open source Java-based IDE Eclipse providing platform and framework capabilities,
making it ideal for Red Hat JBoss BRMS rules development.

Red Hat JBoss BPM Suite 6.4 Development Guide

18

2.1.2. Red Hat JBoss BRMS Features

The Red Hat JBoss BRMS provides the following key features:

Centralized repository of business assets (JBoss BRMS artifacts).

IDE tools to define and govern decision logic.

Building, deploying, and testing the decision logic.

Packages of business assets.

Categorization of business assets.

Integration with development tools.

Business logic and data separation.

Business logic open to reuse and changes.

Easy to maintain business logic.

Enables several stakeholders (business analysts, developer, administrators) to contribute in
defining the business logic.

2.2. RED HAT JBOSS BUSINESS PROCESS MANAGEMENT SUITE

Red Hat JBoss BPM Suite is an open source business process management system that combines
business process management and business rules management. Red Hat JBoss BRMS offers tools to
author rules and business processes, but does not provide tools to start or manage the business
processes. Red Hat JBoss BPM Suite includes all the Red Hat JBoss BRMS functionality, with additional
capabilities of business activity monitoring, starting business processes, and managing tasks using
Business Central. Red Hat JBoss BPM Suite also provides a central repository to store rules and
processes.

2.2.1. Red Hat JBoss BPM Suite Key Components

The Red Hat JBoss BPM Suite comprises the following components:

JBoss BPM Central (Business Central)
Business Central is a web-based application for creating, editing, building, managing, and
monitoring Red Hat JBoss BPM Suite business assets. It also allows execution of business
processes and management of tasks created by those processes.

Business Activity Monitoring Dashboards
The Business Activity Monitor (BAM) dashboard provides report generation capabilities. It
enables you to use a pre-defined dashboard and even create your own customized dashboard.

Maven Artifact Repository
Red Hat JBoss BPM Suite projects are built as Apache Maven projects and the default location
of the Maven repository is WORKING_DIRECTORY/repositories/kie. You can specify an
alternate repository location by changing the org.guvnor.m2repo.dir property.

Each project builds a JAR artifact file called a KJAR. You can store your project artifacts and
dependent JAR files in this repository.

CHAPTER 2. RED HAT JBOSS BRMS AND RED HAT JBOSS BPM SUITE ARCHITECTURE

19

Execution Engine
The Red Hat JBoss BPM Suite execution engine is responsible for executing business
processes and managing the tasks, which result from these processes. Business Central
provides a user interface for executing processes and managing tasks.

NOTE

To execute your business processes, you can use Business Central web
application that bundles the execution engine, enabling a ready-to-use process
execution environment. Alternatively, you can create your own execution server
and embed the Red Hat JBoss BPM Suite and Red Hat JBoss BRMS libraries
with your application using Java EE.

For example, if you are developing a web application, include the Red Hat JBoss
BPM Suite or Red Hat JBoss BRMS libraries in the WEB-INF/lib folder of your
application.

Business Central Repository
The business artifacts of a Red Hat JBoss BPM Suite project, such as process models, rules, and
forms, are stored in Git repositories managed through the Business Central. You can also access
these repositories outside of Business Central through the Git or SSH protocols.

2.2.2. Red Hat JBoss BPM Suite Features

Red Hat JBoss BPM Suite provides the following features:

Pluggable human task service for including tasks that need to be performed by human actors
(based on the WS-HumanTask specification).

Pluggable persistence and transactions (based on JPA/JTA).

Web-based process designer to support the graphical creation and simulation of your business
processes (drag and drop).

Web-based data modeler and form modeler to support the creation of data models and process
and task forms.

Web-based, customizable dashboards and reporting.

A web-based workbench called Business Central, supporting the complete BPM life cycle:

Modeling and deployment : to author your processes, rules, data models, forms and other
assets.

Execution: to execute processes, tasks, rules and events on the core runtime engine.

Runtime Management: to work on assigned task, manage process instances.

Reporting: to monitor the execution using Business Activity Monitoring capabilities.

Eclipse-based developer tools to support the modeling, testing and debugging of processes.

Remote API to process engine as a service (REST, JMS, Remote Java API).

Integration with Maven, Spring, and OSGi.

Red Hat JBoss BPM Suite 6.4 Development Guide

20

2.3. SUPPORTED PLATFORMS AND APIS

For a list of supported containers and configurations, see section Supported Platforms of Red Hat
JBoss BPM Suite Installation Guide.

The kie-api is a fully supported API and it is the recommended way to interact with your project. For
further information about API supportability, see Knowledgebase article What Are the Public and
Internal APIs for BPM Suite and BRMS 6?.

2.4. USE CASES

2.4.1. Use Case: Business Decision Management in Insurance Industry with Red Hat
JBoss BRMS

Red Hat JBoss BRMS comprises a high performance rule engine, a rule repository, easy to use rule
authoring tools, and complex event processing rule engine extensions. The following use case describes
how these features of Red Hat JBoss BRMS are implemented in insurance industry.

The consumer insurance market is extremely competitive, and it is imperative that customers receive
efficient, competitive, and comprehensive services when visiting an online insurance quotation solution.
An insurance provider increased revenue from their online quotation solution by upselling relevant,
additional products during the quotation process to the visitors of the solution.

The diagram below shows integration of Red Hat JBoss BRMS with the insurance provider’s
infrastructure. This integration is fruitful in such a way that when a request for insurance is processed,
Red Hat JBoss BRMS is consulted and appropriate additional products are presented with the insurance
quotation.

Figure 2.1. JBoss BRMS Use Case: Insurance Industry Decision Making

CHAPTER 2. RED HAT JBOSS BRMS AND RED HAT JBOSS BPM SUITE ARCHITECTURE

21

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_platforms
https://access.redhat.com/solutions/1344003

Figure 2.1. JBoss BRMS Use Case: Insurance Industry Decision Making

Red Hat JBoss BRMS provides the decision management functionality, that automatically determines
the products to present to the applicant based on the rules defined by the business analysts. The rules
are implemented as decision tables, so they can be easily understood and modified without requiring
additional support from IT.

2.4.2. Use Case: Process-Based Solution in Loan Industry

This section describes a use case of deploying Red Hat JBoss BPM Suite to automate business
processes (such as loan approval process) at a retail bank. This use case is a typical process-based
specific deployment that might be the first step in a wider adoption of Red Hat JBoss BPM Suite
throughout an enterprise. It leverages features of both business rules and processes of Red Hat JBoss
BPM Suite.

A retail bank offers several types of loan products each with varying terms and eligibility requirements.
Customers requiring a loan must file a loan application with the bank. The bank then processes the
application in several steps, such as verifying eligibility, determining terms, checking for fraudulent
activity, and determining the most appropriate loan product. Once approved, the bank creates and
funds a loan account for the applicant, who can then access funds. The bank must be sure to comply
with all relevant banking regulations at each step of the process, and has to manage its loan portfolio to
maximize profitability. Policies are in place to aid in decision making at each step, and those policies are
actively managed to optimize outcomes for the bank.

Business analysts at the bank model the loan application processes using the BPMN2 authoring tools
(Process Designer) in Red Hat JBoss BPM Suite. Here is the process flow:

Red Hat JBoss BPM Suite 6.4 Development Guide

22

High-Level Loan Application Process Flow

Business rules are developed with the rule authoring tools in Red Hat JBoss BPM Suite to enforce
policies and make decisions. Rules are linked with the process models to enforce the correct policies at
each process step.

The bank’s IT organization deploys the Red Hat JBoss BPM Suite so that the entire loan application
process can be automated.

Figure 2.2. Loan Application Process Automation

The entire loan process and rules can be modified at any time by the bank’s business analysts. The bank
is able to maintain constant compliance with changing regulations, and is able to quickly introduce new
loan products and improve loan policies in order to compete effectively and drive profitability.

CHAPTER 2. RED HAT JBOSS BRMS AND RED HAT JBOSS BPM SUITE ARCHITECTURE

23

CHAPTER 3. APACHE MAVEN
Apache Maven is a distributed build automation tool used in Java application development to build and
manage software projects. Apart from building, publishing, and deploying capabilities, using Maven for
your Red Hat JBoss BRMS and Red Hat JBoss BPM suite projects ensures the following:

The build process is easy and a uniform build system is implemented across projects.

All of the required JAR files for a project are made available at compile time.

A proper project structure is configured.

Dependencies and versions are well managed.

No need for additional build processing, as Maven builds output into a number of predefined
types, such as JAR and WAR.

3.1. MAVEN REPOSITORIES

Maven uses repositories to store Java libraries, plug-ins, and other build artifacts. These repositories
can be local or remote. Red Hat JBoss BRMS and Red Hat JBoss BPM Suite products maintain local and
remote maven repositories that you can add to your project for accessing the rules, processes, events,
and other project dependencies. You must configure Maven to use these repositories and the Maven
Central Repository to provide correct build functionality.

When building projects and archetypes, Maven dynamically retrieves Java libraries and Maven plug-ins
from local or remote repositories. Doing so promotes sharing and reuse of dependencies across
projects.

3.2. USING THE MAVEN REPOSITORY IN YOUR PROJECT

You can direct Maven to use the Red Hat JBoss Enterprise Application Platform Maven repository in
your project in one of the following ways:

Configure the Project Object Model (POM) file (pom.xml).

Modify the Maven settings file (settings.xml).

The recommended approach is to direct Maven to use the Red Hat JBoss Enterprise Application
Platform Maven repository across all projects by using the Maven global or user settings.

From version 6.1.0 onwards, Red Hat JBoss BPM Suite and Red Hat JBoss BRMS are designed to be
used in combination with Red Hat JBoss Middleware Maven Repository and Maven Central repository
as dependency sources. Ensure that both repositories are available for project builds.

3.3. MAVEN PROJECT CONFIGURATION FILE

To use Maven for building and managing your Red Hat JBoss BRMS and Red Hat JBoss BPM Suite
projects, you must configure your projects to be built with Maven. To do so, Maven provides the POM
file (pom.xml) that holds configuration details for your project.

pom.xml is an XML file that contains information about the project (such as project name, version,
description, developers, mailing list, and license), and build details (such as dependencies, location of the
source, test, target directories, repositories, and plug-ins).

Red Hat JBoss BPM Suite 6.4 Development Guide

24

http://maven.apache.org/
https://maven.repository.redhat.com/ga/

When you generate a Maven project, a pom.xml file is automatically generated. You can edit pom.xml
to add more dependencies and new repositories. Maven downloads all of the JAR files and the
dependent JAR files from the Maven repository when you compile and package your project.

Find the schema for the pom.xml file at http://maven.apache.org/maven-v4_0_0.xsd.

For more information about POM files, see Apache Maven Project POM Reference .

3.4. MAVEN SETTINGS FILE

The Maven settings file (settings.xml) is used to configure Maven execution. You can locate this file in
the following locations:

In the Maven install directory at $M2_HOME/conf/settings.xml. These settings are called global
settings.

In the user’s install directory at $USER_HOME/.m2/settings.xml. These settings are called user
settings.

A custom location specified by the system property kie.maven.settings.custom.

NOTE

The settings used is a merge of the files located in these locations.

The following is an example of a Maven settings.xml file. Note the activeByDefault tag, which specifies
the default profile. In the following example, it is a profile with a remote Maven repository.

3.5. DEPENDENCY MANAGEMENT

<settings>
 <profiles>
 <profile>
 <id>my-profile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>fusesource</id>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 ...
 </repositories>
 </profile>
 </profiles>
 ...
</settings>

CHAPTER 3. APACHE MAVEN

25

http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/pom.html

In order to use the correct Maven dependencies in your Red Hat JBoss BPM Suite project, you must add
relevant Bill Of Materials (BOM) files to the project’s pom.xml file. Adding the BOM files ensures that
the correct versions of transitive dependencies from the provided Maven repositories are included in the
project.

See the Supported Component Versions chapter of Red Hat JBoss BPM Suite Installation Guide to view
the supported BOM components.

Declare the BOM in pom.xml. For example:

Example 3.1. BOM for Red Hat JBoss BPM Suite 6.4.0

To check the current BOM version, see the Supported Component Versions chapter of Red Hat JBoss
BPM Suite Installation Guide.

Furthermore, declare dependencies needed for your project in the dependencies tag.

For a basic Red Hat JBoss BPM Suite project, declare the following dependencies:

Embedded jBPM Engine Dependencies

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom.brms</groupId>
 <artifactId>jboss-brms-bpmsuite-platform-bom</artifactId>
 <version>6.4.2.GA-redhat-2</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependencies>
<!-- Your dependencies -->
</dependencies>

<dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-kie-services</artifactId>
</dependency>

<!-- Dependency needed for default WorkItemHandler implementations. -->
<dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-workitems</artifactId>
</dependency>

<!-- Logging dependency. You can use any logging framework compatible with slf4j. -->
<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
</dependency>

Red Hat JBoss BPM Suite 6.4 Development Guide

26

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps
https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps

For a Red Hat JBoss BPM Suite project that uses CDI, declare the following dependencies:

CDI-Enabled jBPM Engine dependencies

For a basic Red Hat JBoss BRMS project, declare the following dependencies:

Embedded Drools Engine Dependencies

<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
</dependency>

<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
</dependency>

<dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-kie-services</artifactId>
</dependency>

<dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-services-cdi</artifactId>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
</dependency>

<!-- Dependency for persistence support. -->
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-persistence-jpa</artifactId>
</dependency>

<!-- Dependencies for decision tables, templates, and scorecards.
For other assets, declare org.drools:drools-workbench-models-* dependencies. -->
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-decisiontables</artifactId>
</dependency>
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-templates</artifactId>
</dependency>
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-scorecards</artifactId>
</dependency>

<!-- Dependency for loading KJARs from a Maven repository using KieScanner. -->

CHAPTER 3. APACHE MAVEN

27

Do not use both kie-ci and kie-ci-osgi in one pom.xml file.

To use the Intelligent Process Server, declare the following dependencies:

Client Application Intelligent Process Server Dependencies

To create a remote client for Red Hat JBoss BPM Suite or Red Hat JBoss BRMS, declare the
following dependencies:

Client Dependencies

To use assets in KJAR packaging, the preferred way is to include kie-maven-plugin:

Kie Maven Plugin

<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
</dependency>

<!-- Dependency for loading KJARs from a Maven repository using KieScanner in an OSGi
environment. -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci-osgi</artifactId>
</dependency>

<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
</dependency>

<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
</dependency>
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-api</artifactId>
</dependency>

<!-- Dependency for Red Hat JBoss BRMS functionality. -->
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-core</artifactId>
</dependency>

<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
</dependency>

<dependency>
 <groupId>org.kie.remote</groupId>
 <artifactId>kie-remote-client</artifactId>
</dependency>

Red Hat JBoss BPM Suite 6.4 Development Guide

28

Kie Maven Plugin

For testing purposes, declare the following dependencies:

Testing Dependencies

<!-- BOM does not resolve plugin versioning. Consult section Supported Components of Red
Hat JBoss BPM Suite Installation Guide for newest version number. -->

<packaging>kjar</packaging>
<build>
 <plugins>
 <plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <version>6.5.0.Final-redhat-7</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

<!-- JUnit dependency -->
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>${junit.version}</version>
 <scope>test</scope>
</dependency>

<!-- Red Hat JBoss BPM Suite integration services dependency -->
<dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-shared-services</artifactId>
 <classifier>btm</classifier>
 <scope>test</scope>
</dependency>

<!-- Logging dependency -->
<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
 <scope>test</scope>
</dependency>

<!-- Persistence tests dependencies -->
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>${hibernate.version}</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>${hibernate.core.version}</version>

CHAPTER 3. APACHE MAVEN

29

Alternatively, for extensive testing of Red Hat JBoss BPM Suite, include the jbpm-test
dependency. Note that jbpm-test includes some of the previous dependencies, for example the
junit dependency, dependencies required for persistence tests, and others.

Declaring jbpm-test Dependency

To include the jbpm-test dependency as part of your KJAR, set the dependency scope to
provided. Doing so ensures that the dependency is available at runtime, thereby avoiding
unresolved dependency errors. The recommended practice is to use only business resources in
your KJAR and not include jbpm-test dependency in it. It is a best practice to keep the test
suite for the KJAR in a separate project.

NOTE

If you are deploying Red Hat JBoss BRMS or Red Hat JBoss BPM Suite on Red
Hat JBoss EAP 7, you must make changes to the project BOM files. For more
information on the BOM changes, see the Red Hat JBoss EAP Migration chapter
in the Red Hat JBoss BPM Suite Migration Guide .

For more information on BOM usage in Red Hat JBoss EAP 7, see the Using
Maven with JBoss EAP chapter in the Red Hat JBoss EAP Development Guide .

3.6. INTEGRATED MAVEN DEPENDENCIES

Throughout the Red Hat JBoss BRMS and BPM Suite documentation, various code samples are
presented with KIE API for the 6.1.x releases. These code samples will require Maven dependencies in
the various pom.xml file and should be included like the following example:

 <scope>test</scope>
</dependency>
<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>${h2.version}</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.codehaus.btm</groupId>
 <artifactId>btm</artifactId>
 <version>${btm.version}</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
</dependency>

<dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-test</artifactId>
</dependency>

<dependency>
 <groupId>commons-logging</groupId>

Red Hat JBoss BPM Suite 6.4 Development Guide

30

https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/migration_guide/#chap_eap_migration
https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/7.0/paged/development-guide/chapter-2-using-maven-with-jboss-eap

All the Red Hat JBoss related product dependencies can be found at the following location: Red Hat
Maven Repository.

3.7. UPLOADING ARTIFACTS TO MAVEN REPOSITORY

There may be scenarios when your project may fail to fetch dependencies from a remote repository
configured in its pom.xml. In such cases, you can programmatically upload dependencies to Red Hat
JBoss BPM Suite by uploading artifacts to the embedded maven repository through Business Central.
Red Hat JBoss BPM Suite uses a servlet for the maven repository interactions. This servlet processes a
GET request to download an artifact and a POST request to upload one. You can leverage the servlet’s
POST request to upload an artifact to the repository using REST. To do this, implement the Http basic
authentication and issue an HTTP POST request in the following format:

PROTOCOL://HOST_NAME:PORT/CONTEXT_ROOT/maven2/[GROUP_ID replacing '.' with
'/']/ARTIFACT_ID/VERSION/ARTIFACT_ID-VERSION.jar

For example, to upload the org.slf4j:slf4j-api:1.7.7.jar, where ARTIFACT_ID is slf4j-api, GROUP_ID is
slf4j, and VERSION is 1.7.7, the URI must be:

http://localhost:8080/business-central/maven2/org/slf4j/slf4j-api/1.7.7/slf4j-api-1.7.7.jar

The following example illustrates uploading a JAR located at /tmp directory as a user bpmsAdmin with
the password abcd1234!, to an instance of Red Hat JBoss BPM Suite running locally:

 <artifactId>commons-logging</artifactId>
 <version>1.1.1-redhat-2</version>
 <scope>compile</scope>
</dependency>

package com.rhc.example;

import java.io.File;
import java.io.IOException;

import org.apache.http.HttpEntity;
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.AuthCache;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.protocol.HttpClientContext;
import org.apache.http.entity.mime.HttpMultipartMode;
import org.apache.http.entity.mime.MultipartEntityBuilder;
import org.apache.http.entity.mime.content.FileBody;
import org.apache.http.impl.auth.BasicScheme;
import org.apache.http.impl.client.BasicAuthCache;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

CHAPTER 3. APACHE MAVEN

31

https://maven.repository.redhat.com/ga/

public class UploadMavenArtifact {
 private static final Logger LOG = LoggerFactory.getLogger(UploadMavenArtifact.class);

 public static void main(String[] args) {

 // Maven coordinates:
 String groupId = "com.rhc.example";
 String artifactId = "bpms-upload-jar";
 String version = "1.0.0-SNAPSHOT";

 // File to upload:
 File file = new File("/tmp/" + artifactId + "-" + version + ".jar");

 // Server properties:
 String protocol = "http";
 String hostname = "localhost";
 Integer port = 8080;
 String username = "bpmsAdmin";
 String password = "abcd1234!";

 // Create the HttpEntity (body of our POST):
 FileBody fileBody = new FileBody(file);
 MultipartEntityBuilder builder = MultipartEntityBuilder.create();
 builder.setMode(HttpMultipartMode.BROWSER_COMPATIBLE);
 builder.addPart("upfile", fileBody);
 HttpEntity entity = builder.build();

 // Calculate the endpoint from the Maven coordinates:
 String resource = "/business-central/maven2/" + groupId.replace('.', '/') + "/" + artifactId +"/" +
version + "/" + artifactId + "-" + version + ".jar";

 LOG.info("POST " + hostname + ":" + port + resource);

 // Set up HttpClient to use Basic pre-emptive authentication with the provided credentials:
 HttpHost target = new HttpHost(hostname, port, protocol);
 CredentialsProvider credsProvider = new BasicCredentialsProvider();
 credsProvider.setCredentials(
 new AuthScope(target.getHostName(), target.getPort()),
 new UsernamePasswordCredentials(username,password));
 CloseableHttpClient httpclient =
HttpClients.custom().setDefaultCredentialsProvider(credsProvider).build();
 HttpPost httpPost = new HttpPost(resource);
 httpPost.setEntity(entity);
 AuthCache authCache = new BasicAuthCache();
 BasicScheme basicAuth = new BasicScheme();
 authCache.put(target, basicAuth);
 HttpClientContext localContext = HttpClientContext.create();
 localContext.setAuthCache(authCache);

 try {
 // Perform the HTTP POST:
 CloseableHttpResponse response = httpclient.execute(target, httpPost, localContext);
 LOG.info(response.toString());
 // Now check your artifact repository!
 } catch (ClientProtocolException e) {

Red Hat JBoss BPM Suite 6.4 Development Guide

32

Alternative Maven Approach
An alternative Maven approach is to configure your projects pom.xml by adding the repository as
shown below:

Once you specify the repository information in the pom.xml, add the corresponding configuration in
settings.xml as shown below:

Now when you run the mvn deploy command, the JAR file gets uploaded.

3.8. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO RED
HAT JBOSS FUSE

Red Hat JBoss Fuse is an open source Enterprise Service Bus (ESB) with an elastic footprint and is
based on Apache Karaf. The 6.4 version of Red Hat JBoss BPM Suite supports deployment of runtime
artifacts to Fuse.

With the 6.1 release, Red Hat JBoss BPM Suite runtime components (in the form of JARs) are OSGi
enabled. The runtime engines JARs MANIFEST.MF files describe their dependencies, amongst other
things. You can plug these JARs directly into an OSGi environment, like Fuse.

 LOG.error("Protocol Error", e);
 throw new RuntimeException(e);
 } catch (IOException e) {
 LOG.error("IOException while getting response", e);
 throw new RuntimeException(e);
 }
 }
}

<distributionManagement>
 <repository>
 <id>guvnor-m2-repo</id>
 <name>maven repo</name>
 <url>http://localhost:8080/business-central/maven2/</url>
 <layout>default</layout>
 </repository>
</distributionManagement>

<server>
 <id>guvnor-m2-repo</id>
 <username>bpmsAdmin</username>
 <password>abcd1234!</password>
 <configuration>
 <wagonProvider>httpclient</wagonProvider>
 <httpConfiguration>
 <all>
 <usePreemptive>true</usePreemptive>
 </all>
 </httpConfiguration>
 </configuration>
</server>

CHAPTER 3. APACHE MAVEN

33

POM PARSER LIMITATIONS IN OSGI ENVIRONMENTS

Red Hat JBoss BPM Suite uses a scanner to enable continuous integration,
resolution, and fetching of artifacts from remote Maven repositories. This scanner,
called KIE-CI, uses a native Maven parser called Plexus to parse Maven POMs.
However, this parser is not OSGi compatible and fails to instantiate in an OSGi
environment. KIE-CI automatically switches to a simpler POM parser called
MinimalPomParser.

The MinimalPomParser is a very simple POM parser implementation provided by
Drools and is limited in what it can parse. It ignores some POM file parts, such as the
parent POM of a KJAR. This means that users must not rely on those POM features
(such as dependencies declared in the parent POM in their KJARs) when using KIE-
CI in an OSGi environment.

Separating Assets and Code
One of the main advantage of deploying Red Hat JBoss BPM Suite artifacts on Red Hat JBoss Fuse is
that each bundle is isolated, running in its own classloader. This allows you to separate the logic (code)
from the assets. Business users can produce and change the rules and processes (assets) and package
them in their own bundle, keeping them separate from the project bundle (code), created by the
developer team. Assets can be updated without needing to change the project code.

Red Hat JBoss BPM Suite 6.4 Development Guide

34

CHAPTER 4. INSTALL AND SET UP RED HAT JBOSS
DEVELOPER STUDIO

Red Hat JBoss Developer Studio is the JBoss Integrated Development Environment (IDE) based on
Eclipse. Get the latest Red Hat JBoss Developer Studio from the Red Hat Customer Portal . Red Hat
JBoss Developer Studio provides plug-ins with tools and interfaces for Red Hat JBoss BRMS and Red
Hat JBoss BPM Suite. These plugins are based on the community version of these products. So, the Red
Hat JBoss BRMS plug-in is called the Drools plug-in and the Red Hat JBoss BPM Suite plug-in is called
the jBPM plug-in.

See the Red Hat JBoss Developer Studio documentation for installation and setup instructions.

WARNING

Due to an issue in the way multi-byte rule names are handled, you must ensure that
the instance of Red Hat JBoss Developer Studio is started with the file encoding
set to UTF-8. You can do this by editing the $JBDS_HOME/studio/jbdevstudio.ini
file and adding the following property: "-Dfile.encoding=UTF-8".

4.1. INSTALLING RED HAT JBOSS DEVELOPER STUDIO PLUG-INS

Get the latest Red Hat JBoss Developer Studio from the Red Hat Customer Portal . The Red Hat JBoss
BRMS and Red Hat JBoss BPM Suite plug-ins for Red Hat JBoss Developer Studio are available using
the update site.

Installing Red Hat JBoss BRMS and Red Hat JBoss BPM Suite Plug-ins in Red Hat JBoss Developer
Studio

1. Start Red Hat JBoss Developer Studio.

2. Click Help → Install New Software.

3. Click Add to enter the Add Repository menu.

4. Provide a name next to the Name field and add the following URL in the Location field:
https://devstudio.jboss.com/10.0/stable/updates/integration-stack/.

5. Click OK.

6. Select the JBoss Business Process and Rule Development feature from the available options,
click Next and then Next again.

7. Read the license and accept it by selecting the appropriate radio button, and click Finish.

8. Restart Red Hat JBoss Developer Studio after the installation process finishes.

4.2. CONFIGURING RED HAT JBOSS BRMS/BPM SUITE SERVER

Red Hat JBoss Developer Studio can be configured to run the Red Hat JBoss BRMS and Red Hat
JBoss BPM Suite server.

CHAPTER 4. INSTALL AND SET UP RED HAT JBOSS DEVELOPER STUDIO

35

https://access.redhat.com
https://access.redhat.com
https://devstudio.jboss.com/10.0/stable/updates/integration-stack/

Configuring Red Hat JBoss BRMS and Red Hat JBoss BPM Suite Server

1. Open the Drools view: click Window → Open Perspective → Other, select Drools and click OK.
To open the Red Hat JBoss BPM Suite view, go to Window → Open Perspective → Other,
select jBPM and click OK.

2. Click Window → Show View → Other… and select Server → Servers to add the server view.

3. Right click the Servers panel and select New → Server to open the server menu.

4. Click JBoss Enterprise Middleware → JBoss Enterprise Application Platform 6.1+ and click
Next to define the server.

5. Set the home directory by clicking Browse button. Navigate to the Red Hat JBoss EAP
directory which has Red Hat JBoss BRMS installed.
For configuring Red Hat JBoss BPM Suite server, select the Red Hat JBoss EAP directory which
has Red Hat JBoss BPM Suite installed.

6. Provide a name for the server in the Name field, ensure that the configuration file is set, and
click Finish.

4.3. IMPORTING PROJECTS FROM GIT REPOSITORY INTO RED HAT
JBOSS DEVELOPER STUDIO

You can configure Red Hat JBoss Developer Studio to connect to a central Git asset repository. The
repository stores rules, models, functions, and processes.

You can either clone a remote Git repository or import a local Git repository.

Cloning Remote Git Repository

1. Select the server from the Server tab and click the start icon to start your server.

2. Start the Secure Shell server, if not running already, by using the following command. The
command is Linux and Mac specific only. On these platforms, if sshd has already been started,
this command fails. In that case, you may safely ignore this step.

/sbin/service sshd start

3. In Red Hat JBoss Developer Studio , select File → Import… and navigate to the Git folder.
Open the Git folder to select Projects from Git and click Next.

4. Select the repository source as Clone URI and click Next.

5. Enter the details of the Git repository in the next window and click Next.

6. Select the branch you wish to import in the following window and click Next.

7. To define the local storage for this project, enter (or select) a non-empty directory, make any
configuration changes and click Next.

8. Import the project as a general project in the following window and click Next.

9. Name the project and click Finish.

Red Hat JBoss BPM Suite 6.4 Development Guide

36

Importing Local Git Repository

1. Select your server from the Server tab and click the start icon to start the server.

2. In Red Hat JBoss Developer Studio, select File → Import… and navigate to the Git folder. Open
the Git folder to select Projects from Git and click Next.

3. Select the repository source as Existing local repository and click Next.

4. Select the repository that is to be configured from the list of available repositories and click
Next.

5. In the dialog window that opens, select the Import as general project radio button from the
Wizard for project import group and click Next.

6. Name the project and click Finish.

4.4. KIE NAVIGATOR

Kie Navigator enables you to browse, change, and deploy the content of your Red Hat JBoss BPM Suite
server. As a result, you can integrate Red Hat JBoss Developer Studio with Red Hat JBoss BPM Suite.
For further information about Kie Navigator, see chapter Kie Navigator of the Red Hat JBoss BPM Suite
Getting Started Guide.

CHAPTER 4. INSTALL AND SET UP RED HAT JBOSS DEVELOPER STUDIO

37

https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/getting_started_guide/#kie_navigator

PART II. ALL ABOUT RULES

Red Hat JBoss BPM Suite 6.4 Development Guide

38

CHAPTER 5. RULE ALGORITHMS

5.1. PHREAK ALGORITHM

The new PHREAK algorithm is evolved from the RETE algorithm. While RETE is considered eager and
data oriented, PHREAK on the other hand follows lazy and goal oriented approach. The RETE algorithm
does a lot of work during the insert, update and delete actions in order to find partial matches for all
rules. In case of PHREAK, this partial matching of rule is delayed deliberately.

The eagerness of RETE algorithm during rule matching wastes a lot of time in case of large systems as it
does result in a rule firing eventually. PHREAK algorithm addresses this issue and therefore is able to
handle large data more efficiently.

PHREAK is derived from a number of algorithms including the following LEAPS, RETE/UL and
Collection-Oriented Match algorithms.

In addition to the enhancements listed in the Rete00 algorithm, PHREAK algorithm adds the following
set of enhancements:

Three layers of contextual memory: Node, Segment, and Rule memories.

Rule, segment, and node based linking.

Lazy (delayed) rule evaluation.

Stack-based evaluations with pause and resume.

Isolated rule evaluation.

Set-oriented propagations.

5.2. RULE EVALUATION WITH PHREAK ALGORITHM

When the rule engine starts, all the rules are unlinked. At this stage, there is no rule evaluation. The
insert, update, and delete actions are queued before entering the beta network. The rule engine uses a
simple heuristic—based on the rule most likely to result in firings—to calculate and select the next rule
for evaluation. This delays the evaluation and firing of the other rules. When a rule has all the right input
values populated, it gets linked in—a goal representing this rule is created and placed into a priority
queue, which is ordered by salience. Each queue is associated with an AgendaGroup. The engine only
evaluates rules for the active AgendaGroup by inspecting the queue and popping the goal for the rule
with the highest salience. This means the work done shifts from the insert, update, delete phase to the
fireAllRules phase. Only the rule for which the goal was created is evaluated, and other potential rule
evaluations are delayed. While individual rules are evaluated, node sharing is still achieved through the
process of segmentation.

Unlike the tuple-oriented RETE, the PHREAK propagation is collection-oriented. For the rule that is
being evaluated, the engine accesses the first node and processes all queued insert, update, and delete
actions. The results are added to a set, and the set is propagated to the child node. In the child node, all
queued insert, update, and delete actions are processed, adding the results to the same set. Once
finished, this set is propagated to the next child node and the same process repeats until it reaches the
terminal node. This creates a batch process effect, which can provide performance advantages for
certain rule constructs.

This linking and unlinking of rules happens through a layered bit mask system, based on network
segmentation. When the rule network is built, segments are created for nodes that are shared by the

CHAPTER 5. RULE ALGORITHMS

39

same set of rules. A rule itself is made up from a path of segments. In case a rule does not share any
node with any other rule, it becomes a single segment.

A bit-mask offset is assigned to each node in the segment. Furthermore, another bit mask is assigned to
each segment in the rule’s path according to these rules:

If there is at least one input, the node’s bit is set to the on state.

If each node in a segment has its bit set to the on state, the segment’s bit is also set to the on
state.

If any node’s bit is set to the off state, the segment is also set to the off state.

If each segment in the rule’s path is set to the on state, the rule is said to be linked in, and a goal
is created to schedule the rule for evaluation.

The same bit-mask technique is used to also track dirty nodes, segments, and rules. This allows for an
already linked rule to be scheduled for evaluation if it has been considered dirty since it was last
evaluated. This ensures that no rule will ever evaluate partial matches.

As opposed to a single unit of memory in RETE, PHREAK has three levels of memory. This allows for
much more contextual understanding during the evaluation of a rule.

PHREAK and Sequential Mode
The sequential mode is supported for the PHREAK algorithm: the modify and update rule statements
are now allowed. Any rule that has not yet been evaluated will have access to data modified by the
previous rules that used modify or update. This results in a more intuitive behavior of the sequential
mode.

For example, consider the following rule:

rule "Rule1"
salience 100
when
 $fact : MyFact(field1 == false)
then
 System.out.println("Rule1 : " + $fact);
 $fact.setField1(true);
 update($fact);
end

rule "Rule2"
salience 95
when
 $fact : MyFact(field1 == true)
then
 System.out.println("Rule2 : " + $fact);
 update($fact);
end

When you insert a MyFact with the value field1==false:

The ReteOO algorithm executes only Rule1.

The PHREAK algorithm executes both Rule1 and Rule2.

Red Hat JBoss BPM Suite 6.4 Development Guide

40

For more information about the sequential mode, see Section 20.1.11.2.1, “Sequential Mode” .

5.3. RETE ALGORITHM

5.3.1. ReteOO

The Rete implementation used in BRMS is called ReteOO. It is an enhanced and optimized
implementation of the Rete algorithm specifically for object-oriented systems. The Rete Algorithm has
now been deprecated, and PHREAK is an enhancement of Rete. However, Rete can still be used by
developers. This section describes how the Rete Algorithm functions.

Rete Root Node
When using ReteOO, the root node is where all objects enter the network. From there, it immediately
goes to the ObjectTypeNode.

Figure 5.1. ReteNode

ObjectTypeNode
The ObjectTypeNode helps to reduce the workload of the rules engine. If there are several objects, the
rule engine wastes a lot of cycles trying to evaluate every node against every object. To make things
efficient, the ObjectTypeNode is used so that the engine only passes objects to the nodes that match
the object’s type. This way, if an application asserts a new Account, it does not propagate to the nodes
for the Order object.

In Red Hat JBoss BRMS, an inserted object retrieves a list of valid ObjectTypesNodes through a
lookup in a HashMap from the object’s class. If this list does not exist, it scans all the ObjectTypeNodes
to find valid matches. It then caches these matched nodes in the list. This enables Red Hat JBoss BRMS
to match against any class type that matches with an instanceof check.

AlphaNodes
AlphaNodes are used to evaluate literal conditions. When a rule has multiple literal conditions for a
single object type, they are linked together. This means that if an application asserts an Account object, it
must first satisfy the first literal condition before it can proceed to the next AlphaNode.

AlphaNodes are propagated using ObjectTypeNodes.

Hashing
Red Hat JBoss BRMS uses hashing to extend Rete by optimizing the propagation from
ObjectTypeNode to AlphaNode. Each time an AlphaNode is added to an ObjectTypeNode, it adds the
literal value as a key to the HashMap with the AlphaNode as the value. When a new instance enters the
ObjectType node, rather than propagating to each AlphaNode, it retrieves the correct AlphaNode
from the HashMap. This avoids unnecessary literal checks.

When facts enter from one side, you may do a hash lookup returning potentially valid candidates
(referred to as indexing). At any point a valid join is found, the Tuple joins with the Object (referred to as
a partial match) and then propagates to the next node.

BetaNodes

BetaNodes are used to compare two objects and their fields. The objects may be of the same or

CHAPTER 5. RULE ALGORITHMS

41

BetaNodes are used to compare two objects and their fields. The objects may be of the same or
different types.

Alpha Memory and Beta Memory
Alpha memory refers to the left input on a BetaNode. In Red Hat JBoss BRMS, this input remembers all
incoming objects.

Beta memory is the term used to refer to the right input of a BetaNode. It remembers all incoming
tuples.

Lookups with BetaNodes
When facts enter from one side, you can do a hash lookup returning potentially valid candidates
(referred to as indexing). If a valid join is found, the Tuple joins with the Object (referred to as a partial
match) and then propagates to the next node.

LeftInputNodeAdapters
A LeftInputNodeAdapter takes an Object as an input and propagates a single Object Tuple.

Terminal Nodes
Terminal nodes are used to indicate when a single rule matches all its conditions (that is, the rule has a
full match). A rule with an OR conditional disjunctive connective results in a sub-rule generation for each
possible logical branch. Because of this, one rule can have multiple terminal nodes.

Node Sharing
Node sharing is used to prevent redundancy. As many rules repeat the same patterns, node sharing
allows users to collapse those patterns so that the patterns need not be reevaluated for every single
instance.

The following rules share the first pattern but not the last:

rule
when
 Cheese($cheddar : name == "cheddar")
 $person: Person(favouriteCheese == $cheddar)
then
 System.out.println($person.getName() + "likes cheddar");
end

rule
when
 Cheese($cheddar : name == "cheddar")
 $person : Person(favouriteCheese != $cheddar)
then
 System.out.println($person.getName() + " does not like cheddar");
end

The Rete network displayed below denotes that the alpha node is shared but the beta nodes are not.
Each beta node has its own TerminalNode.

Figure 5.2. Node Sharing

Red Hat JBoss BPM Suite 6.4 Development Guide

42

Figure 5.2. Node Sharing

CHAPTER 5. RULE ALGORITHMS

43

5.4. SWITCHING BETWEEN PHREAK AND RETEOO

It is possible to switch between PHREAK and ReteOO either by setting system properties, or in KieBase
configuration. PHREAK is the default algorithm in both cases.

Switching to ReteOO requires the drools-reteoo-VERSION.jar file to be available on the class path. To
include the file, add the following ReteOO Maven dependency to the pom.xml file in your project:

For the supported Maven artifact version, see the Supported Component Versions section of the Red
Hat JBoss BPM Suite Installation Guide.

NOTE

If the ReteOO Maven dependency is not specified in the pom.xml file in your project, the
BRMS engine uses PHREAK instead and issues a warning.

Switching Between PHREAK and ReteOO in System Properties
To switch between the PHREAK and ReteOO algorithms, edit the drools.ruleEngine system property
to contain one the following values:

drools.ruleEngine=phreak

drools.ruleEngine=reteoo

The default value is phreak.

Switching Between PHREAK and ReteOO in KieBaseConfiguration
When creating a KieBase, specify the rule engine algorithm in KieBaseConfiguration. See the following
example:

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-reteoo</artifactId>
 <version>DROOLS_VERSION</version>
</dependency>

import org.kie.api.KieBase;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.internal.builder.conf.RuleEngineOption;
...

KieServices kservices = KieServices.Factory.get();
KieBaseConfiguration kconfig = kieServices.Factory.get().newKieBaseConfiguration();

// You can either specify PHREAK (default):
kconfig.setOption(RuleEngineOption.PHREAK);

// or legacy ReteOO:
kconfig.setOption(RuleEngineOption.RETEOO);

// ... and then create a KieBase for the selected algorithm

Red Hat JBoss BPM Suite 6.4 Development Guide

44

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies. If you use Red
Hat JBoss BRMS, see example Embedded Drools Engine Dependencies.

Additionally, if you want to switch to ReteOO, use the drools-reteoo dependency:

For the current Maven artifact version, see chapter Supported Component Versions of the Red Hat
JBoss BPM Suite Installation Guide.

NOTE

Switching to ReteOO requires drools-reteoo-(version).jar to exist on the classpath. If
not present, the BRMS Engine reverts back to PHREAK and issues a warning. This applies
for switching with KieBaseConfiguration and system properties.

// (getKieClasspathContainer() is just an example):
KieContainer container = kservices.getKieClasspathContainer();
KieBase kbase = container.newKieBase(kieBaseName, kconfig);

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-reteoo</artifactId>
 <version>6.5.0.Final-redhat-2</version>
</dependency>

CHAPTER 5. RULE ALGORITHMS

45

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS
To create business rules, an appropriate fact model on which the business rules operate must be
present. A fact is an instance of an application object represented as POJO. Rules that contain the
business logic can then be authored by using either the Business Central web user interface or Red Hat
JBoss Developer Studio.

The structure of a rule is as follows:

rule "NAME"
when
 RULE CONDITIONS
then
 RULE CONSEQUENCES
end

Conditions inside the when clause of a rule query for fact combinations that match the criteria. If such a
fact combination is found, consequences specified in the then clause are executed. These actions can
assert a fact, retract a fact, or update a fact within the rule engine. As a result, other rules can be fired as
well.

Rules Processing Steps

1. BRMS parses all .drl rule files into the knowledge base.

2. Each fact is asserted into the working memory. As the facts are being asserted, BRMS uses the
PHREAK or ReteOO algorithm to infer how the facts relate to the rules. After that, the working
memory contains copies of the parsed rules and a reference to the facts.

3. The fireAllRules() method is called. All rules and facts are evaluated by the rule engine and
rule-facts pairs are created, based on which rules match against which set of facts.

4. All the rule-facts combinations are queued within a data construct called an agenda.

5. Finally, activations are processed one by one from the agenda, calling the rule consequences on
the facts. Note that executing an activation can modify the contents of the agenda before the
next activation is performed. The PHREAK and ReteOO algorithms handle such situations
efficiently.

6.1. CREATING AND EXECUTING RULES

In this section, procedures describing how to create and execute rules using plain Java, Maven, Red Hat
JBoss Developer Studio, and Business Central in Red Hat JBoss BPM Suite are provided.

6.1.1. Creating and Executing Rules Using Plain Java

1. Create a fact model.
Create a Plain old Java object (POJO) on which a rule will operate. In this example, a
Person.java file in a directory my-project is created. The Person class contains getter and
setter methods to set and retrieve the first name, last name, hourly rate, and the wage of a
person:

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

Red Hat JBoss BPM Suite 6.4 Development Guide

46

2. Create a rule.
Create a rule file in the .drl format under the my-project directory. The following Person.drl
rule calculates the wage and hourly rate values and displays a message based on the result
afterwards.

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

 public class Person {
 private String firstName;
 private String lastName;
 private Integer hourlyRate;
 private Integer wage;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Integer getHourlyRate() {
 return hourlyRate;
 }

 public void setHourlyRate(Integer hourlyRate) {
 this.hourlyRate = hourlyRate;
 }

 public Integer getWage(){
 return wage;
 }

 public void setWage(Integer wage){
 this.wage = wage;
 }
 }

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

47

3. Create a main class.
Create a main class and save it to the same directory as the POJO created earlier. The main
class will load the knowledge base and fire rules. In the following example, a main class
DroolsTest.java is created.

In the main class:

a. Add the following import statements to import KIE services, a KIE container, and a KIE
session:

b. Load the knowledge base, insert facts, and fire the rule from the main() method which
passes the fact model to the rule:

4. Download the Red Hat JBoss BRMS 6.4 Core Engine ZIP file from the Red Hat Customer
Portal and extract it under my-project/BRMS-engine-jars/.

5. In the my-project/META-INF directory, create a kmodule.xml metadata file with the following
content:

6. Build the example.
To compile and build your Java files, navigate to the my-project directory on the command line
and run the following command:

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class DroolsTest {
 public static final void main(String[] args) {
 try {
 // Load the knowledge base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession();

 // Go!
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 kSession.insert(p);
 kSession.fireAllRules();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

Red Hat JBoss BPM Suite 6.4 Development Guide

48

https://access.redhat.com

javac -classpath "./BRMS-engine-jars/*:." DroolsTest.java

7. Run the example.
If there are no compilation errors, run the following command to execute the rule:

java -classpath "./BRMS-engine-jars/*:." DroolsTest

The expected output looks similar to the following:

Hello Tom Summers!
You are rich!

6.1.2. Creating and Executing Rules Using Maven

1. Create a basic Maven archetype.
Navigate to a directory where you want to create a Maven archetype and run the following
command:

mvn archetype:generate -DgroupId=com.sample.app -DartifactId=my-app -
DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

This creates a directory my-app with the following structure:

my-app
|-- pom.xml
`-- src
 |-- main
 | `-- java
 | `-- com
 | `-- mycompany
 | `-- app
 | `-- App.java
 `-- test
 `-- java
 `-- com
 `-- mycompany
 `-- app
 `-- AppTest.java

The my-app directory contains:

A src/main directory for storing the application’s sources.

A src/test directory for storing the test sources.

A pom.xml file with the project’s configuration.

2. Create a fact model.
A fact model is a POJO, based on which a rule will operate. Create a Person.java file under the
my-app/src/main/java/com/mycompany/app directory. The Person class contains getter and
setter methods to set and retrieve the first name, last name, hourly rate, and the wage of a
person.

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

49

3. Create a rule.
Create a rule file in the .drl format under the my-app/src/main/resources/rules directory. See
the following example with a simple rule Person.drl which imports the Person class:

package com.mycompany.app;
import com.mycompany.app.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)

package com.mycompany.app;

 public class Person {

 private String firstName;
 private String lastName;
 private Integer hourlyRate;
 private Integer wage;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Integer getHourlyRate() {
 return hourlyRate;
 }

 public void setHourlyRate(Integer hourlyRate) {
 this.hourlyRate = hourlyRate;
 }

 public Integer getWage(){
 return wage;
 }

 public void setWage(Integer wage){
 this.wage = wage;
 }
 }

Red Hat JBoss BPM Suite 6.4 Development Guide

50

 then
 System.out.println("Hello " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

The rule above calculates the wage and hourly rate values and displays a message based on the
result afterwards.

4. In the my-app/src/main/resources/META-INF directory, create a metadata file kmodule.xml
with the following content:

5. Set project dependencies.
Specify the libraries your application requires in the my-app/pom.xml configuration file. Provide
the Red Hat JBoss BRMS dependencies as well as the group ID, artifact ID, and version (GAV)
of your application as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.mycompany.app</groupId>
<artifactId>my-app</artifactId>
<version>1.0.0</version>
<repositories>
 <repository>
 <id>jboss-ga-repository</id>
 <url>http://maven.repository.redhat.com/ga/</url>
 </repository>
</repositories>
<dependencies>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>VERSION</version>
 </dependency>
 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>VERSION</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
</dependencies>
</project>

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

51

For the supported Maven artifact version, see section Supported Component Versions of the
Red Hat JBoss BPM Suite Installation Guide .

6. Test the example.
Use the testApp method in my-app/src/test/java/com/mycompany/app/AppTest.java to test
the rule. The AppTest.java file is created by Maven by default.

In the AppTest.java file:

a. Add the following import statements to import KIE services, a KIE container, and a KIE
session:

b. Load the knowledge base, insert facts, and fire the rule from the testApp() method which
passes the fact model to the rule:

7. Build the example.
On the command line, navigate to the my-app directory and run the following command:

mvn clean install

Note that executing this command for the first time may take a while.

The expected output looks similar to the following:

Hello Tom Summers!
You are rich!
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.194 sec

Results :

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public void testApp() {

 // Load the knowledge base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
}

Red Hat JBoss BPM Suite 6.4 Development Guide

52

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]
...
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 6.393 s
...
[INFO] --

6.1.3. Creating and Executing Rules Using Red Hat JBoss Developer Studio

NOTE

Make sure you have Red Hat JBoss Developer Studio properly set before proceeding
further. See chapter Red Hat JBoss Developer Studio of Red Hat JBoss BPM Suite
Installation Guide for more information.

1. Create a BRMS project.
To create a BRMS project in Red Hat JBoss Developer Studio:

a. Start Red Hat JBoss Developer Studio and click File → New → Project.

b. In the New Project dialog window that opens, select Drools → Drools Project and click
Next.

c. Click on the second icon to create a project and populate it with some example files to help
you get started quickly. Click Next.

d. Enter a name of the project a select the Maven radio button as the project building option.
Specify the GAV values which form the project’s fully qualified name, for example:

Group ID: com.mycompany.app

Artifact ID: my-app

Version: 1.0.0

e. Click Finish.

This configuration sets up a basic project structure, class path, and sample rules. The project
structure is as follows:

My-Project
 `-- src/main/java
 | `-- com.sample
 | `-- DecisionTable.java
 | `-- DroolsTest.java
 | `-- ProcessTest.java
 |
 `-- src/main/resources
 | `-- dtables
 | `-- Sample.xls
 | `-- process

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

53

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#chap_red_hat_jboss_developer_studio

 | `-- sample.bpmn
 | `-- rules
 | `-- Sample.drl
 | `-- META-INF
 |
 `-- JRE System Library
 |
 `-- Maven Dependencies
 |
 `-- Drools Library
 |
 `-- src
 |
 `-- target
 |
 `-- pom.xml

Notice the following:

A Sample.drl rule file in the src/main/resources directory, containing an example Hello
World and GoodBye rules.

A DroolsTest.java file under the src/main/java directory in the com.sample package. The
DroolsTest class can be used to execute rules.

The Drools Library directory which acts as a custom class path containing JAR files
necessary for execution.

2. Create a fact model.
The DroolsTest.java file contains a sample POJO Message with getter and setter methods.
You can edit this class or create a different POJO. In this example, a class Person containing
methods to set and retrieve the first name, last name, hourly rate, and wage of a person is used.

public static class Person {

 private String firstName;
 private String lastName;
 private Integer hourlyRate;
 private Integer wage;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

Red Hat JBoss BPM Suite 6.4 Development Guide

54

3. Update the main() method.
The DroolsTest.java file contains a main() method that loads the knowledge base, inserts
facts, and fires rules. Update the method to pass the object Person to a rule:

To load the knowledge base, get a KieServices instance and a class-path-based KieContainer
and build the KieSession with the KieContainer. In the example above, a session ksession-
rules matching the one defined in kmodule.xml file is passed.

4. Create a rule.
The rule file Sample.drl contains an example of two rules. Edit this file or create a new one. In
your rule file:

a. Specify the package name:

package com.sample

 public Integer getHourlyRate() {
 return hourlyRate;
 }

 public void setHourlyRate(Integer hourlyRate) {
 this.hourlyRate = hourlyRate;
 }

 public Integer getWage(){
 return wage;
 }

 public void setWage(Integer wage){
 this.wage = wage;
 }
}

public static final void main(String[] args) {
 try {
 // Load the knowledge base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession("ksession-rules");

 // Go!
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 kSession.insert(p);
 kSession.fireAllRules();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
}

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

55

b. Import facts:

import com.sample.DroolsTest.Person;

c. Write the rule:

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

5. Test the rule.
Right-click the DroolsTest.java file and select Run As → Java Application.

The expected output looks similar to the following:

Hello Tom Summers!
You are rich!

6.1.4. Creating and Executing Rules Using Business Central

NOTE

Make sure you have Red Hat JBoss BPM Suite successfully installed before proceeding
further.

1. Start the server and log in to Business Central. For more information how to do so, see sections
Starting Server and Logging into Business Central of Red Hat JBoss BPM Suite Installation
Guide.

2. Create a repository structure and a project.

a. In Business Central, click Authoring → Administration.

b. Click Organizational Units → Manage Organizational Units.

c. In the displayed Organizational Unit Manager, click Add.

d. In the Add New Organizational Unit dialog window, define the unit properties. For example:

Name: EmployeeWage

Owner: Employee

e. Click Ok.

f. Click Repositories → New repository.

Red Hat JBoss BPM Suite 6.4 Development Guide

56

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#starting_the_server2
https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#logging_on

g. In the New Repository dialog window, define the repository properties. For example:

Repository Name: EmployeeRepo

In Organizational Unit: EmployeeWage

h. Click Finish.

i. In the main menu, click Authoring → Project Authoring.

j. In Project Explorer, navigate to the EmployeeWage organizational unit and the
EmployeeRepo repository.

k. Click New Item → Project.

l. In the New Project dialog window, enter a name of the project, for example MyProject, and
specify project’s Maven properties. For example:

Group ID: org.bpms

Artifact ID: MyProject

Version: 1.0.0

m. Click Finish.

3. Create a fact model.

a. Click New Item → Data Object.

b. In the Create new Data Object dialog window, enter the object’s name and specify a
package. For example:

Data Object: Person

Package: org.bpms.myproject

c. Click Ok.

d. In the Editor than opens, click Add field and create four fields with the following values by
clicking Create and continue:

Id: firstName, Type: String

Id: lastName, Type: String

Id: hourlyRate, Type: Integer

Id: wage, Type: Integer

e. Save the project.

4. Create a rule.

a. Click New Item → DRL file.

b. In the Create new DRL file dialog window, enter a name of the rule and specify a package.
For example:

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

57

DRL file: MyRule

Package: org.bpms.myproject

c. Click Ok.

d. Paste the definition of a rule shown below into the DRL Editor or create your own rule.

package org.bpms.myproject;

rule "MyRule"
ruleflow-group "MyProjectGroup"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

e. Click Save.

5. Create a business process with a business rule task.

a. Click New Item → Business Process.

b. In the Create new Business Process dialog window, enter a name of the business process
and specify a package. For example:

Business Process: MyProcess

Package: org.bpms.myproject

c. Click Ok. The Business Process Editor opens with a Start Event element on the canvas.

d. Expand the Object Library palette on the left and drag and drop a Business Rule task
(Tasks → Business Rule) on the canvas.

e. Click on an empty space on the canvas and open the Properties panel on the right. Click on
the Value text field of the Variable Definitions property. Click on the arrow that appears on
the right to open the Editor for Variable Definitions dialog window.

f. Click Add Variable and define the following variable:

Name: person

Defined Types: Person [org.bpms.myproject]

g. Click Ok.

h. Click on the Business Rule task on the canvas and in the Properties panel on the right, set
the Name of the task, for example My_Rule.

i. Click on the Value text field of the Ruleflow Group property. Click on the arrow that
appears on the right to open the Editor for RuleFlow Groups dialog window. Select
MyProjectGroup and click Save.

j. Click on the Value text field of the Assignments property. Click on the arrow that appears

Red Hat JBoss BPM Suite 6.4 Development Guide

58

j. Click on the Value text field of the Assignments property. Click on the arrow that appears
on the right to open the My_Rule Data I/O dialog window and click Add next to the Data
Inputs and Assignments option to add the following:

Name: Person

Data Type: Person [org.bpms.myproject]

Source: person

k. Click Save.
You have now successfully created an object that maps to the variables you set before in
your fact model. Your business process passes this object as an input to the rule.

l. Add an End Event and connect all events on the canvas to complete the process.

m. Click and select Generate all Forms.

n. Save the process.

6. Build and deploy the rule.

a. Click Open Project Editor on the left, change the version of the project and click Build →
Build & Deploy.
A notification appears in the upper part of the screen informing you that the project has
been built successfully.

b. Click Process Management → Process Definitions.

c. Click Start next to the newly built process.

d. In the opened MyProcess dialog window, provide the following values of the variables
defined in your fact model and click Submit:

firstName: Tom

lastName: Summers

hourlyRate: 12

wage: 10

As these values satisfy the rule condition, the expected output looks similar to the following:

16:19:58,479 INFO [org.jbpm.kie.services.impl.store.DeploymentSynchronizer] (http-
/127.0.0.1:8080-1) Deployment unit org.bpms:MyProject:1.0 stored successfully
16:26:56,119 INFO [stdout] (http-/127.0.0.1:8080-5) Hello Tom Summers!
16:26:56,119 INFO [stdout] (http-/127.0.0.1:8080-5) You are rich!

6.2. EXECUTION OF RULES

6.2.1. Agenda

The Agenda is a Rete feature. During actions on the WorkingMemory, rules may become fully matched
and eligible for execution. A single Working Memory Action can result in multiple eligible rules. When a
rule is fully matched an Activation is created, referencing the rule and the matched facts, and placed

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

59

onto the Agenda. The Agenda controls the execution order of these Activations using a Conflict
Resolution strategy.

6.2.2. Agenda Processing

The engine cycles repeatedly through two phases:

1. Working Memory Actions. This is where most of the work takes place, either in the Consequence
(the RHS itself) or the main Java application process. Once the Consequence has finished or
the main Java application process calls fireAllRules() the engine switches to the Agenda
Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it
fires the found rule, switching the phase back to Working Memory Actions.

The process repeats until the agenda is clear, in which case control returns to the calling application.
When Working Memory Actions are taking place, no rules are being fired.

6.2.3. Conflict Resolution

Conflict resolution is required when there are multiple rules on the agenda. As firing a rule may have side
effects on the working memory, the rule engine needs to know in what order the rules should fire (for
instance, firing ruleA may cause ruleB to be removed from the agenda).

6.2.4. AgendaGroup

Agenda groups are a way to partition rules on the agenda. At any one time, only one group has "focus"
which means that activations for rules in that group only will take effect. You can also have rules with
"auto focus" which means that the focus is taken for its agenda group when that rule’s conditions are
true.

Agenda groups are known as "modules" in CLIPS terminology. Agenda groups provide a way to create a
"flow" between grouped rules. You can switch the group which has focus either from within the rule
engine, or via the API. If your rules have a clear need for multiple "phases" or "sequences" of processing,
consider using agenda-groups for this purpose.

6.2.5. setFocus()

Each time setFocus() is called it pushes the specified Agenda Group onto a stack. When the focus
group is empty it is popped from the stack and the focus group that is now on top evaluates. An Agenda
Group can appear in multiple locations on the stack. The default Agenda Group is "MAIN", with all rules
which do not specify an Agenda Group being in this group. It is also always the first group on the stack,
given focus initially, by default.

The setFocus() method call looks like follows:

ksession.getAgenda().getAgendaGroup("Group A").setFocus();

6.2.6. ActivationGroup

An activation group is a set of rules bound together by the same activation-group rule attribute. In this
group only one rule can fire, and after that rule has fired all the other rules are cancelled from the
agenda. The clear() method can be called at any time, which cancels all of the activations before one
has had a chance to fire.

Red Hat JBoss BPM Suite 6.4 Development Guide

60

An activation group looks like follows:

ksession.getAgenda().getActivationGroup("Group B").clear();

6.3. INFERENCE

6.3.1. The Inference Engine

The inference engine is the part of the Red Hat JBoss BRMS engine which matches production facts
and data to rules. It is often called the brain of a Production Rules System as it is able to scale to a large
number of rules and facts. It makes inferences based on its existing knowledge and performs the actions
based on what it infers from the information.

The rules are stored in the production memory and the facts that the inference engine matches against,
are stored in the working memory. Facts are asserted into the working memory where they may get
modified or retracted. A system with a large number of rules and facts may result in many rules being
true for the same fact assertion. Such conflicting rules are managed using a conflict resolution strategy.
This strategy determines the order of execution of the rules by assigning a priority level to each rule.

Inferences can be forward chaining or backward chaining. In a forward chaining inference mechanism,
when some data gets inserted into the working memory, the related rules are triggered and if the data
satisfies the rule conditions, corresponding actions are taken. These actions may insert new data into
the working memory and therefore trigger more rules and so on. Thus, the forward chaining inference is
data driven. On the contrary, the backward chaining inference is goal driven. In this case, the system
looks for a particular goal, which the engine tries to satisfy. If it cannot do so it searches for sub-goals,
that is, conclusions that will complete part of the current goal. It continues this process until either the
initial conclusion is satisfied or there are no more unsatisfied sub-goals. Correct use of inference can
create agile and less error prone business rules, which are easier to maintain.

6.3.2. Inference Example

The following example illustrates how an inference is made about whether a person is eligible to have a
bus pass based on the rule conditions. Here is a rule that provides the age policy for a person to hold a
bus pass:

rule "Infer Adult"
when
 $p : Person(age >= 18)
then
 insert(new IsAdult($p))
end

Based on this rule, a rule engine infers whether a person is an adult or a child and act on it. Every person
who is 18 years or above will have an instance of IsAdult inserted for them in the working memory. This
inferred relation of age and bus pass can be inferred in any rule, such as:

$p : Person()
IsAdult(person == $p)

6.4. TRUTH MAINTENANCE

The inference engine is responsible for logical decisions on assertions and retractions of facts. After

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

61

regular insertions, facts are generally retracted explicitly. However, in case of logical assertions, the facts
that were asserted are automatically retracted when the conditions that asserted the facts in the first
place are no longer true. In other words, the facts are retracted when there is no single condition that
supports the logical assertion.

The inference engine uses a mechanism of truth maintenance to efficiently handle the inferred
information from rules. A Truth Maintenance System (TMS) refers to an inference engine’s ability to
enforce truthfulness when applying rules. It provides justified reasoning for each and every action taken
by the inference engine and validates the conclusions of the engine. If the inference engine asserts data
as a result of firing a rule, the engine uses the truth maintenance to justify the assertion.

A Truth Maintenance System also helps to identify inconsistencies and handle contradictions. For
example, if there are two rules to be fired, each resulting in a contradictory action, the Truth
Maintenance System enables the inference engine to decide its actions based on assumptions and
derivations of previously calculated conclusions.

The usual insertion of facts, referred to as stated insertions, are straightforward and do not need a
reasoning. However, the logical assertions need to be justified. If the inference engine tries to logically
insert an object when there is an equal stated object, it fails as it cannot justify a stated fact. If the
inference engine tries for a stated insertion of an existing equal object that is justified, then it overrides
the justified insertion, and removes the justifications.

The following flowcharts illustrate the lifecycle of stated and logical insertions:

Figure 6.1. Stated Assertion

Red Hat JBoss BPM Suite 6.4 Development Guide

62

Figure 6.1. Stated Assertion

Figure 6.2. Logical Assertion

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

63

Figure 6.2. Logical Assertion

IMPORTANT

For the Truth Maintenance System and logical assertions to work, your fact objects
(POJOs) must override the equals and hashCode methods from java.lang.Object as
per the Java standard. Two objects are equal if and only if their equals methods return
true for each other and if their hashCode methods return the same values. For more
information, see the Java API documentation.

The following example illustrates how the Truth Maintenance System helps in the inference mechanism.
The rules in the example provide information on basic policies on issuing child and adult bus passes.

rule "Issue Child Bus Pass"
when
 $p : Person(age < 16)
then
 insert(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass"
when
 $p : Person(age >= 16)
then
 insert(new AdultBusPass($p));
end

Red Hat JBoss BPM Suite 6.4 Development Guide

64

These rules are monolithic and provide poor separation of concerns. The truth maintenance mechanism
in an inference engine makes the system become more robust and have a clear separation of concerns.
For example, the following rule uses logical insertion of facts, which makes the fact dependent on the
truth of the when clause:

rule "Infer Child"
when
 $p : Person(age < 16)
then
 insertLogical(new IsChild($p))
end

rule "Infer Adult"
when
 $p : Person(age >= 16)
then
 insertLogical(new IsAdult($p))
end

When the condition in the rule is false, the fact is automatically retracted. This works particularly well as
the two rules are mutually exclusive. In the above rules, if the person is under 16 years, it inserts an
IsChild fact. Once the person is 16 years or above, the IsChild fact is automatically retracted and the
IsAdult fact inserted.

Now the two rules for issuing child and adult bus pass can logically insert the ChildBusPass and
AdultBusPass facts, as the Truth Maintenance System supports chaining of logical insertions for a
cascading set of retracts.

rule "Issue Child Bus Pass"
when
 $p : Person()
 IsChild(person == $p)
then
 insertLogical(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass"
when
 $p : Person(age >= 16)
 IsAdult(person =$p)
then
 insertLogical(new AdultBusPass($p));
end

When a person turns 16 years old, the IsChild fact as well as the person’s ChildBusPass fact is
retracted. To these set of conditions, you can relate another rule which states that a person must return
the child pass after turning 16 years old. When the Truth Maintenance System automatically retracts the
ChildBusPass object, this rule triggers and sends a request to the person:

rule "Return ChildBusPass Request"
when
 $p : Person()
 not(ChildBusPass(person == $p))

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

65

then
 requestChildBusPass($p);
end

6.5. USING DECISION TABLES IN SPREADSHEETS

Decision tables are a way of representing conditional logic in a precise manner, and are well suited to
business-level rules.

Red Hat JBoss BRMS supports managing rules in a spreadsheet format. Since two formats are currently
supported, XLS and CSV, a variety of spreadsheet programs, such as Microsoft Excel, Apache
OpenOffice Calc, and LibreOffice Calc, can be utilized.

NOTE

Use the XLS format if you are building and uploading decision tables using Business
Central. Business Central does not support decision tables in the CSV format.

6.5.1. OpenOffice Example

Figure 6.3. OpenOffice Screenshot

In the above examples, the technical aspects of the decision table have been collapsed away (using a
standard spreadsheet feature).

The rules start from row 17, with each row resulting in a rule. The conditions are in columns C, D, E, and

Red Hat JBoss BPM Suite 6.4 Development Guide

66

The rules start from row 17, with each row resulting in a rule. The conditions are in columns C, D, E, and
the actions are off-screen. The values' meanings are indicated by the headers in Row 16. Column B is just
a description.

NOTE

Although the decision tables look like they process top down, this is not necessarily the
case. Ideally, rules are authored without regard for the order of rows. This makes
maintenance easier, as rows will not need to be shifted around all the time.

6.5.2. Rules and Spreadsheets

Rules Inserted into Rows

As each row is a rule, the same principles apply as with written code. As the rule engine processes the
facts, any rules that match may fire.

Agendas

It is possible to clear the agenda when a rule fires and simulate a very simple decision table where
only the first match effects an action.

Multiple Tables

You can have multiple tables on one spreadsheet. This way, rules can be grouped where they share
common templates, but are still all combined into one rule package.

6.5.3. The RuleTable Keyword

When using decision tables, the spreadsheet searches for the RuleTable keyword to indicate the start
of a rule table (both the starting row and column).

IMPORTANT

Keywords should all be in the same column.

6.5.4. The RuleSet Keyword

The RuleSet keyword indicates the name to be used in the rule package that will encompass all the
rules. This name is optional, using a default, but it must have the RuleSet keyword in the cell immediately
to the right.

6.5.5. Data-Defining Cells

There are two types of rectangular areas defining data that is used for generating a DRL file. One,
marked by a cell labelled RuleSet, defines all DRL items except rules. The other one may occur
repeatedly and is to the right and below a cell whose contents begin with RuleTable. These areas
represent the actual decision tables, each area resulting in a set of rules of similar structure.

A Rule Set area may contain cell pairs, one below the RuleSet cell and containing a keyword designating
the kind of value contained in the other one that follows in the same row.

6.5.6. Rule Table Columns

The columns of a Rule Table area define patterns and constraints for the left hand sides of the rules
derived from it, actions for the consequences of the rules, and the values of individual rule attributes. A
Rule Table area should contain one or more columns, both for conditions and actions, and an arbitrary

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

67

selection of columns for rule attributes, at most one column for each of these. The first four rows
following the row with the cell marked with RuleTable are earmarked as header area, mostly used for the
definition of code to construct the rules. It is any additional row below these four header rows that
spawns another rule, with its data providing for variations in the code defined in the Rule Table header.

NOTE

All keywords are case insensitive.

Only the first worksheet is examined for decision tables.

6.5.7. Rule Set Entries

Entries in a Rule Set area may define DRL constructs (except rules), and specify rule attributes. While
entries for constructs may be used repeatedly, each rule attribute may be given at most once, and it
applies to all rules unless it is overruled by the same attribute being defined within the Rule Table area.

Entries must be given in a vertically stacked sequence of cell pairs. The first one contains a keyword and
the one to its right the value. This sequence of cell pairs may be interrupted by blank rows or even a Rule
Table, as long as the column marked by RuleSet is upheld as the one containing the keyword.

Table 6.1. Entries in the Rule Set area

Keyword Value Usage

RuleSet The package name for the generated DRL file.
Optional, the default is rule_table.

Must be the first entry.

Sequential true or false. If true, then salience is used to
ensure that rules fire from the top down.

Optional, at most once. If
omitted, no firing order is
imposed.

EscapeQuotes true or false. If true, then quotation marks are
escaped so that they appear literally in the
DRL.

Optional, at most once. If
omitted, quotation marks are
escaped.

Import A comma-separated list of Java classes to
import.

Optional, may be used
repeatedly.

Variables Declarations of DRL globals, for example a type
followed by a variable name. Multiple global
definitions must be separated with a comma.

Optional, may be used
repeatedly.

Functions One or more function definitions, according to
DRL syntax.

Optional, may be used
repeatedly.

Queries One or more query definitions, according to
DRL syntax.

Optional, may be used
repeatedly.

Declare One or more declarative types, according to
DRL syntax.

Optional, may be used
repeatedly.

Red Hat JBoss BPM Suite 6.4 Development Guide

68

6.5.8. Rule Attribute Entries in Rule Set Area

IMPORTANT

Rule attributes specified in a Rule Set area will affect all rule assets in the same package
(not only in the spreadsheet). Unless you are sure that the spreadsheet is the only one
rule asset in the package, the recommendation is to specify rule attributes not in a Rule
Set area but in a Rule Table columns for each rule instead.

Table 6.2. Rule Attribute Entries in Rule Set Area

Keyword Initial Value

PRIORITY P An integer defining the "salience" value for the rule.
Overridden by the "Sequential" flag.

DURATION D A long integer value defining the "duration" value for the
rule.

TIMER T A timer definition. See Section 8.10.2, “Timers”.

CALENDARS E A calendars definition. See Section 8.10.4, “Calendars”.

NO-LOOP U A Boolean value. true inhibits looping of rules due to
changes made by its consequence.

LOCK-ON-ACTIVE L A Boolean value. true inhibits additional activations of all
rules with this flag set within the same ruleflow or agenda
group.

AUTO-FOCUS F A Boolean value. true for a rule within an agenda group
causes activations of the rule to automatically give the
focus to the group.

ACTIVATION-GROUP X A string identifying an activation (or XOR) group. Only one
rule within an activation group will fire, for example the first
one to fire cancels any existing activations of other rules
within the same group.

AGENDA-GROUP G A string identifying an agenda group, which has to be
activated by giving it the "focus", which is one way of
controlling the flow between groups of rules.

RULEFLOW-GROUP R A string identifying a rule-flow group.

DATE-EFFECTIVE V A string containing a date and time definition. A rule can
only activate if the current date and time is after DATE-
EFFECTIVE attribute.

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

69

DATE-EXPIRES Z A string containing a date and time definition. A rule
cannot activate if the current date and time is after the
DATE-EXPIRES attribute.

Keyword Initial Value

6.5.9. The RuleTable Cell

All Rule Tables begin with a cell containing RuleTable, optionally followed by a string within the same
cell. The string is used as the initial part of the name for all rules derived from this Rule Table, with the
row number appended for distinction. This automatic naming can be overridden by using a NAME
column. All other cells defining rules of this Rule Table are below and to the right of this cell.

6.5.10. Column Types

The next row after the RuleTable cell defines the column type. Each column results in a part of the
condition or the consequence, or provides some rule attribute, the rule name or a comment. Each
attribute column may be used at most once.

Table 6.3. Column Headers in the Rule Table

Keyword Initial Value Usage

NAME N Provides the name for the rule
generated from that row. The
default is constructed from the text
following the RuleTable tag and the
row number.

At most one column.

DESCRIPTION I A text, resulting in a comment
within the generated rule.

At most one column.

CONDITION C Code snippet and interpolated
values for constructing a constraint
within a pattern in a condition.

At least one per rule
table.

ACTION A Code snippet and interpolated
values for constructing an action for
the consequence of the rule.

At least one per rule
table.

METADATA @ Code snippet and interpolated
values for constructing a metadata
entry for the rule.

Optional, any number of
columns.

6.5.11. Conditional Elements

Given a column headed CONDITION, the cells in successive lines result in a conditional element.

Text in the first cell below CONDITION develops into a pattern for the rule condition, with the

Red Hat JBoss BPM Suite 6.4 Development Guide

70

Text in the first cell below CONDITION develops into a pattern for the rule condition, with the
snippet in the next line becoming a constraint. If the cell is merged with one or more neighbours,
a single pattern with multiple constraints is formed: all constraints are combined into a
parenthesized list and appended to the text in this cell. The cell may be left blank, which means
that the code snippet in the next row must result in a valid conditional element on its own.
To include a pattern without constraints, you can write the pattern in front of the text for
another pattern.

The pattern may be written with or without an empty pair of parentheses. A "from" clause may
be appended to the pattern.

If the pattern ends with "eval", code snippets are supposed to produce boolean expressions for
inclusion into a pair of parentheses after "eval".

Text in the second cell below CONDITION is processed in two steps.

The code snippet in this cell is modified by interpolating values from cells farther down in the
column. If you want to create a constraint consisting of a comparison using "==" with the
value from the cells below, the field selector alone is sufficient. Any other comparison
operator must be specified as the last item within the snippet, and the value from the cells
below is appended. For all other constraint forms, you must mark the position for including
the contents of a cell with the symbol $param. Multiple insertions are possible by using the
symbols $1, $2, etc., and a comma-separated list of values in the cells below.
A text according to the pattern forall(DELIMITER){SNIPPET} is expanded by repeating the
SNIPPET once for each of the values of the comma-separated list of values in each of the
cells below, inserting the value in place of the symbol $ and by joining these expansions by
the given DELIMITER. Note that the forall construct may be surrounded by other text.

If the cell in the preceding row is not empty, the completed code snippet is added to the
conditional element from that cell. A pair of parentheses is provided automatically, as well as
a separating comma if multiple constraints are added to a pattern in a merged cell.
If the cell above is empty, the interpolated result is used as is.

Text in the third cell below CONDITION is for documentation only. It should be used to indicate
the column’s purpose to a human reader.

From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the conditional element or constraint for this rule.

6.5.12. Action Statements

Given a column headed ACTION, the cells in successive lines result in an action statement:

Text in the first cell below ACTION is optional. If present, it is interpreted as an object reference.

Text in the second cell below ACTION is processed in two steps.

The code snippet in this cell is modified by interpolating values from cells farther down in the
column. For a singular insertion, mark the position for including the contents of a cell with
the symbol $param. Multiple insertions are possible by using the symbols $1, $2, etc., and a
comma-separated list of values in the cells below.
A method call without interpolation can be achieved by a text without any marker symbols.
In this case, use any non-blank entry in a row below to include the statement.

The forall construct is available here, too.

If the first cell is not empty, its text, followed by a period, the text in the second cell and a

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

71

If the first cell is not empty, its text, followed by a period, the text in the second cell and a
terminating semicolon are stringed together, resulting in a method call which is added as an
action statement for the consequence.
If the cell above is empty, the interpolated result is used as is.

Text in the third cell below ACTION is for documentation only. It should be used to indicate the
column’s purpose to a human reader.

From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the action statement for this rule.

NOTE

Using $1 instead of $param will fail if the replacement text contains a comma.

6.5.13. Metadata Statements

Given a column headed METADATA, the cells in successive lines result in a metadata annotation for the
generated rules:

Text in the first cell below METADATA is ignored.

Text in the second cell below METADATA is subject to interpolation, as described above, using
values from the cells in the rule rows. The metadata marker character @ is prefixed
automatically, and should not be included in the text for this cell.

Text in the third cell below METADATA is for documentation only. It should be used to indicate
the column’s purpose to a human reader.

From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the metadata annotation for this rule.

6.5.14. Interpolating Cell Data Example

If the template is Foo(bar == $param) and the cell is 42, then the result is Foo(bar == 42).

If the template is Foo(bar < $1, baz == $2) and the cell contains 42,43, the result will be
Foo(bar < 42, baz ==43).

The template forall(&&){bar != $} with a cell containing 42,43 results in bar != 42 && bar != 43.

6.5.15. Tips for Working Within Cells

Multiple package names within the same cell must be comma-separated.

Pairs of type and variable names must be comma-separated.

Functions must be written as they appear in a DRL file. This should appear in the same column as
the RuleSet keyword. It can be above, between or below all the rule rows.

You can use Import, Variables, Functions and Queries repeatedly instead of packing several
definitions into a single cell.

Trailing insertion markers can be omitted.

You can provide the definition of a binding variable.

Red Hat JBoss BPM Suite 6.4 Development Guide

72

Anything can be placed in the object type row. Apart from the definition of a binding variable, it
could also be an additional pattern that is to be inserted literally.

The cell below the ACTION header can be left blank. Using this style, anything can be placed in
the consequence, not just a single method call. The same technique is applicable within a
CONDITION column.

6.5.16. The SpreadsheetCompiler Class

The SpreadsheetCompiler class is the main class used with API spreadsheet-based decision tables in
the drools-decisiontables module. This class takes spreadsheets in various formats and generates rules
in DRL.

The SpreadsheetCompiler can be used to generate partial rule files and assemble them into a
complete rule package after the fact. This allows the separation of technical and non-technical aspects
of the rules if needed.

6.5.17. Using Spreadsheet-Based Decision Tables

Procedure: Task

1. Generate a sample spreadsheet that you can use as the base.

2. If the Red Hat JBoss BRMS plug-in is being used, use the wizard to generate a spreadsheet
from a template.

3. Use an XSL-compatible spreadsheet editor to modify the XSL.

6.5.18. Lists

In Excel, you can create lists of values. These can be stored in other worksheets to provide valid lists of
values for cells.

6.5.19. Revision Control

When changes are being made to rules over time, older versions are archived. Some applications in Red
Hat JBoss BRMS provide a limited ability to keep a history of changes, but it is recommended to use an
alternative means of revision control.

6.5.20. Tabular Data Sources

A tabular data source can be used as a source of rule data. It can populate a template to generate many
rules. This can allow both for more flexible spreadsheets, but also rules in existing databases for instance
(at the cost of developing the template up front to generate the rules).

6.6. DEPENDENCY MANAGEMENT FOR GUIDED DECISION TABLES,
SCORECARDS, AND RULE TEMPLATES

When you build your own application with the embedded Drools or jBPM engine, that uses guided
decision tables, guided scorecards, or guided templates, you need to add the drools-workbench-
models-guided-dtable, drools-workbench-models-guided-scorecard, and drools-workbench-
models-guided-template dependencies respectively, on the class path.

If you want to use a kJAR in the Intelligent Process server, you do not need to add these dependencies,

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

73

If you want to use a kJAR in the Intelligent Process server, you do not need to add these dependencies,
as the server already has them.

When using Maven, declare the dependencies in the pom.xml file as shown below:

6.7. LOGGING

The logging feature enables you to investigate what the Rule Engine does at the back-end. The rule
engine uses Java logging API SLF4J for logging. The underlying logging back-end can be Logback,
Apache Commons Logging, Log4j, or java.util.logging. You can add a dependency to the logging
adaptor for your logging framework of choice.

Here is an example of how to use Logback by adding a Maven dependency:

NOTE

If you are developing for an ultra light environment, use slf4j-nop or slf4j-simple.

6.7.1. Configuring Logging Level

Here is an example of how you can configure the logging level on the package org.drools in your
logback.xml file when you are using Logback:

Here is an example of how you can configure the logging level in your log4j.xml file when you are using
Log4J:

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-workbench-models-guided-dtable</artifactId>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-workbench-models-guided-scorecard</artifactId>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-workbench-models-guided-template</artifactId>
</dependency>

<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.x</version>
</dependency>

<configuration>
 <logger name="org.drools" level="debug"/>
 ...
 ...
<configuration>

Red Hat JBoss BPM Suite 6.4 Development Guide

74

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">
 <category name="org.drools">
 <priority value="debug" />
 </category>
 ...
</log4j:configuration>

CHAPTER 6. GETTING STARTED WITH RULES AND FACTS

75

CHAPTER 7. COMPLEX EVENT PROCESSING

7.1. INTRODUCTION TO COMPLEX EVENT PROCESSING

JBoss BRMS Complex Event Processing provides the JBoss Enterprise BRMS Platform with complex
event processing capabilities.

For the purpose of this guide, Complex Event Processing , or CEP, refers to the ability to process
multiple events and detect interesting events from within a collection of events, uncover relationships
that exist between events, and infer new data from the events and their relationships.

An event can best be described as a record of a significant change of state in the application domain.
Depending on how the domain is modeled, the change of state may be represented by a single event,
multiple atomic events, or even hierarchies of correlated events. Using a stock broker application as an
example, a change in security prices, a change in ownership from seller to buyer, or a change in an
account holder’s balance are all considered to be events as a change has occurred in the state of the
application domain.

Event processing use cases , in general, share several requirements and goals with business rules use
cases.

From a business perspective, business rule definitions are often defined based on the occurrence of
scenarios triggered by events. For example:

On an algorithmic trading application: Take an action if the security price increases X% above
the day’s opening price.
The price increases are denoted by events on a stock trade application.

On a monitoring application: Take an action if the temperature in the server room increases X
degrees in Y minutes.
The sensor readings are denoted by events.

Both business rules and event processing queries change frequently and require an immediate response
for the business to adapt to new market conditions, regulations, and corporate policies.

From a technical perspective:

Both business rules and event processing require seamless integration with the enterprise
infrastructure and applications. This is particularly important with regard to life-cycle
management, auditing, and security.

Both business rules and event processing have functional requirements like pattern matching
and non-functional requirements like response time limits and query/rule explanations.

NOTE

JBoss BRMS Complex Event Processing provides the complex event processing
capabilities of JBoss Business Rules Management System. The Business Rules
Management and Business Process Management capabilities are provided by other
modules.

Complex event processing scenarios share these distinguishing characteristics:

They usually process large numbers of events, but only a small percentage of the events are of
interest.

Red Hat JBoss BPM Suite 6.4 Development Guide

76

The events are usually immutable, as they represent a record of change in state.

The rules and queries run against events and must react to detected event patterns.

There are usually strong temporal relationships between related events.

Individual events are not important. The system is concerned with patterns of related events
and the relationships between them.

It is often necessary to perform composition and aggregation of events.

As such, JBoss BRMS Complex Event Processing supports the following behaviors:

Support events, with their proper semantics, as first class citizens.

Allow detection, correlation, aggregation, and composition of events.

Support processing streams of events.

Support temporal constraints in order to model the temporal relationships between events.

Support sliding windows of interesting events.

Support a session-scoped unified clock.

Support the required volumes of events for complex event processing use cases.

Support reactive rules.

Support adapters for event input into the engine (pipeline).

7.2. EVENTS

Events are a record of significant change of state in the application domain. From a complex event
processing perspective, an event is a special type of fact or object. A fact is a known piece of data. For
instance, a fact could be a stock’s opening price. A rule is a definition of how to react to the data. For
instance, if a stock price reaches $X, sell the stock.

The defining characteristics of events are the following:

Events are immutable

An event is a record of change which has occurred at some time in the past, and as such it cannot be
changed.

NOTE

The rules engine does not enforce immutability on the Java objects representing
events; this makes event data enrichment possible.

The application should be able to populate un-populated event attributes, which can
be used to enrich the event with inferred data; however, event attributes that have
already been populated should not be changed.

Events have strong temporal constraints

Rules involving events usually require the correlation of multiple events that occur at different points

CHAPTER 7. COMPLEX EVENT PROCESSING

77

Rules involving events usually require the correlation of multiple events that occur at different points
in time relative to each other.

Events have managed life-cycles

Because events are immutable and have temporal constraints, they are usually only of interest for a
specified period of time. This means the engine can automatically manage the life-cycle of events.

Events can use sliding windows

It is possible to define and use sliding windows with events since all events have timestamps
associated with them. Therefore, sliding windows allow the creation of rules on aggregations of
values over a time period.

Events can be declared as either interval-based events or point-in-time events. Interval-based events
have a duration time and persist in working memory until their duration time has lapsed. Point-in-time
events have no duration and can be thought of as interval-based events with a duration of zero.

7.2.1. Event Declaration

To declare a fact type as an event, assign the @role metadata tag to the fact with the event parameter.
The @role metadata tag can accept two possible values:

fact: assigning the fact role declares the type is to be handled as a regular fact. Fact is the
default role.

event: assigning the event role declares the type is to be handled as an event.

This example declares that a stock broker application’s StockTick fact type will be handled as an event:

Example 7.1. Declaring Fact Type as Event

import some.package.StockTick

declare StockTick
 @role(event)
end

Facts can also be declared inline. If StockTick was a fact type declared in the DRL instead of in a pre-
existing class, the code would be as follows:

Example 7.2. Declaring Fact Type and Assigning it to Event Role

declare StockTick
 @role(event)

 datetime : java.util.Date
 symbol : String
 price : double
end

For more information about type declarations, see Section 8.9, “Type Declaration” .

7.2.2. Event Metadata

Red Hat JBoss BPM Suite 6.4 Development Guide

78

Every event has associated metadata. Typically, the metadata is automatically added as each event is
inserted into working memory. The metadata defaults can be changed on an event-type basis using the
metadata tags:

@role

@timestamp

@duration

@expires

The following examples assume the application domain model includes the following class:

Example 7.3. The VoiceCall Fact Class

@role

The @role metadata tag indicates whether a given fact type is either a regular fact or an event. It
accepts either fact or event as a parameter. The default is fact.

@role(<fact|event>)

Example 7.4. Declaring VoiceCall as Event Type

declare VoiceCall
 @role(event)
end

@timestamp

A timestamp is automatically assigned to every event. By default, the time is provided by the session
clock and assigned to the event at insertion into the working memory. Events can have their own
timestamp attribute, which can be included by telling the engine to use the attribute’s timestamp
instead of the session clock.
To use the attribute’s timestamp, use the attribute name as the parameter for the @timestamp tag.

@timestamp(<attributeName>)

Example 7.5. Declaring VoiceCall Timestamp Attribute

/**
 * A class that represents a voice call in a Telecom domain model.
 */
public class VoiceCall {
 private String originNumber;
 private String destinationNumber;
 private Date callDateTime;
 private long callDuration; // in milliseconds

 // Constructors, getters, and setters.
}

CHAPTER 7. COMPLEX EVENT PROCESSING

79

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
end

@duration

JBoss BRMS Complex Event Processing supports both point-in-time and interval-based events. A
point-in-time event is represented as an interval-based event with a duration of zero time units. By
default, every event has a duration of zero. To assign a different duration to an event, use the
attribute name as the parameter for the @duration tag.

@duration(<attributeName>)

Example 7.6. Declaring VoiceCall Duration Attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
end

@expires

Events may be set to expire automatically after a specific duration in the working memory. By
default, this happens when the event can no longer match and activate any of the current rules. You
can also explicitly define when an event should expire. The @expires tag is only used when the
engine is running in stream mode.

@expires(<timeOffset>)

The value of timeOffset is a temporal interval that sets the relative duration of the event.

[#d][#h][#m][#s][#[ms]]

All parameters are optional and the # parameter should be replaced by the appropriate value.

To declare that the VoiceCall facts should expire one hour and thirty-five minutes after insertion
into the working memory, use the following:

Example 7.7. Declaring Expiration Offset for VoiceCall Events

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
 @expires(1h35m)
end

Red Hat JBoss BPM Suite 6.4 Development Guide

80

7.3. CLOCK IMPLEMENTATION IN COMPLEX EVENT PROCESSING

7.3.1. Session Clock

Events have strong temporal constraints making it is necessary to use a reference clock. If a rule needs
to determine the average price of a given stock over the last sixty minutes, it is necessary to compare
the stock price event’s timestamp with the current time. The reference clock provides the current time.

Because the rules engine can simultaneously run an array of different scenarios that require different
clocks, multiple clock implementations can be used by the engine.

Scenarios that require different clocks include the following:

Rules testing : Testing always requires a controlled environment, and when the tests include rules
with temporal constraints, it is necessary to control the input rules, facts, and the flow of time.

Regular execution: A rules engine that reacts to events in real time needs a real-time clock.

Special environments : Specific environments may have specific time control requirements. For
instance, clustered environments may require clock synchronization or JEE environments may
require you to use an application server-provided clock.

Rules replay or simulation: In order to replay or simulate scenarios, it is necessary that the
application controls the flow of time.

7.3.2. Available Clock Implementations

JBoss BRMS Complex Event Processing comes equipped with two clock implementations:

Real-Time Clock

The real-time clock is the default implementation based on the system clock. The real-time clock
uses the system clock to determine the current time for timestamps.
To explicitly configure the engine to use the real-time clock, set the session configuration parameter
to realtime:

Pseudo-Clock

The pseudo-clock is useful for testing temporal rules since it can be controlled by the application.
To explicitly configure the engine to use the pseudo-clock, set the session configuration parameter
to pseudo:

import org.kie.api.KieServices.Factory;
import org.kie.api.runtime.conf.ClockTypeOption;
import org.kie.api.runtime.KieSessionConfiguration;

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("realtime"));

import org.kie.api.runtime.conf.ClockTypeOption;
import org.kie.api.runtime.KieSessionConfiguration;
import org.kie.api.KieServices.Factory;

CHAPTER 7. COMPLEX EVENT PROCESSING

81

This example shows how to control the pseudo-clock:

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies. If you use Red
Hat JBoss BRMS, see Embedded Drools Engine Dependencies.

7.4. EVENT PROCESSING MODES

Rules engines process facts and rules to provide applications with results. Regular facts (facts with no
temporal constraints) are processed independent of time and in no particular order. Red Hat JBoss
BRMS processes facts of this type in cloud mode. Events (facts which have strong temporal constraints)
must be processed in real-time or near real-time. Red Hat JBoss BRMS processes these events in
stream mode. Stream mode deals with synchronization and makes it possible for Red Hat JBoss BRMS
to process events.

7.4.1. Cloud Mode

Cloud mode is the default operating mode of Red Hat JBoss Business Rules Management System.

Running in Cloud mode, the engine applies a many-to-many pattern matching algorithm, which treats
the events as an unordered cloud. Events still have timestamps, but there is no way for the rules engine
running in Cloud mode to draw relevance from the timestamp because Cloud mode is unaware of the
present time.

This mode uses the rules constraints to find the matching tuples, activate, and fire rules.

Cloud mode does not impose any kind of additional requirements on facts; however, because it has no

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("pseudo"));

import java.util.concurrent.TimeUnit;

import org.kie.api.runtime.KieSessionConfiguration;
import org.kie.api.KieServices.Factory;
import org.kie.api.runtime.KieSession;
import org.drools.core.time.SessionPseudoClock;
import org.kie.api.runtime.rule.FactHandle;
import org.kie.api.runtime.conf.ClockTypeOption;

KieSessionConfiguration conf = KieServices.Factory.get().newKieSessionConfiguration();

conf.setOption(ClockTypeOption.get("pseudo"));
KieSession session = kbase.newKieSession(conf, null);

SessionPseudoClock clock = session.getSessionClock();

// Then, while inserting facts, advance the clock as necessary:
FactHandle handle1 = session.insert(tick1);
clock.advanceTime(10, TimeUnit.SECONDS);

FactHandle handle2 = session.insert(tick2);
clock.advanceTime(30, TimeUnit.SECONDS);

FactHandle handle3 = session.insert(tick3);

Red Hat JBoss BPM Suite 6.4 Development Guide

82

Cloud mode does not impose any kind of additional requirements on facts; however, because it has no
concept of time, it cannot take advantage of temporal features such as sliding windows or automatic
life-cycle management. In Cloud mode, it is necessary to explicitly retract events when they are no longer
needed.

Certain requirements that are not imposed include the following:

No need for clock synchronization since there is no notion of time.

No requirement on ordering events since the engine looks at the events as an unordered cloud
against which the engine tries to match rules.

Cloud mode can be specified either by setting a system property, using configuration property files, or
using the API.

The API call follows:

The equivalent property follows:

drools.eventProcessingMode = cloud

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies. If you use Red
Hat JBoss BRMS, see Embedded Drools Engine Dependencies.

7.4.2. Stream Mode

Stream mode processes events chronologically as they are inserted into the rules engine. Stream mode
uses a session clock that enables the rules engine to process events as they occur in time. The session
clock enables processing events as they occur based on the age of the events. Stream mode also
synchronizes streams of events (so events in different streams can be processed in chronological
order), implements sliding windows of interest, and enables automatic life-cycle management.

The requirements for using stream mode are the following:

Events in each stream must be ordered chronologically.

A session clock must be present to synchronize event streams.

NOTE

The application does not need to enforce ordering events between streams, but the use
of event streams that have not been synchronized may cause unexpected results.

Stream mode can be enabled by setting a system property, using configuration property files, or using
the API.

The API call follows:

import org.kie.api.conf.EventProcessingOption;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieServices.Factory;

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.CLOUD);

CHAPTER 7. COMPLEX EVENT PROCESSING

83

The equivalent property follows:

drools.eventProcessingMode = stream

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies. If you use Red
Hat JBoss BRMS, see Embedded Drools Engine Dependencies.

7.5. EVENT STREAMS

Complex event processing use cases deal with streams of events. The streams can be provided to the
application using JMS queues, flat text files, database tables, raw sockets, or even web service calls.

Streams share a common set of characteristics:

Events in the stream are ordered by timestamp. The timestamps may have different semantics
for different streams, but they are always ordered internally.

There is usually a high volume of events in the stream.

Atomic events contained in the streams are rarely useful by themselves.

Streams are either homogeneous (they contain a single type of event) or heterogeneous (they
contain events of different types).

A stream is also known as an entry point.

Facts from one entry point, or stream, may join with facts from any other entry point in addition to facts
already in working memory. Facts always remain associated with the entry point through which they
entered the engine. Facts of the same type may enter the engine through several entry points, but facts
that enter the engine through entry point A will never match a pattern from entry point B.

7.5.1. Declaring and Using Entry Points

Entry points are declared implicitly by making direct use of them in rules. Referencing an entry point in a
rule will make the engine, at compile time, identify and create the proper internal structures to support
that entry point.

For example, a banking application that has transactions fed into the engine using streams could have
one stream for all of the transactions executed at ATMs. A rule for this scenario could state, "A
withdrawal is only allowed if the account balance is greater than the withdrawal amount the customer has
requested."

Example 7.8. ATM Rule

rule "Authorize Withdraw"
when

import org.kie.api.conf.EventProcessingOption;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieServices.Factory;

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.STREAM);

Red Hat JBoss BPM Suite 6.4 Development Guide

84

 WithdrawRequest($ai : accountId, $am : amount) from entry-point "ATM Stream"
 CheckingAccount(accountId == $ai, balance > $am)
then
 // authorize withdraw
end

When the engine compiles this rule, it will identify that the pattern is tied to the entry point ATM Stream.
The engine will create all the necessary structures for the rule-base to support the ATM Stream, and this
rule will only match WithdrawRequest events coming from the ATM Stream.

Note the ATM example rule joins the event (WithdrawalRequest) from the stream with a fact from the
main working memory (CheckingAccount).

The banking application may have a second rule that states, "A fee of $2 must be applied to a withdraw
request made using a branch teller."

Example 7.9. Using Multiple Streams

rule "Apply Fee on Withdraws on Branches"
when
 WithdrawRequest($ai : accountId, processed == true) from entry-point "Branch Stream"
 CheckingAccount(accountId == $ai)
then
 // apply a $2 fee on the account
end

This rule matches events of the same type (WithdrawRequest) as the example ATM rule but from a
different stream. Events inserted into the ATM Stream will never match the pattern on the second rule,
which is tied to the Branch Stream; accordingly, events inserted into the Branch Stream will never match
the pattern on the example ATM rule, which is tied to the ATM Stream.

Declaring the stream in a rule states that the rule is only interested in events coming from that stream.

Events can be inserted manually into an entry point instead of directly into the working memory.

Example 7.10. Inserting Facts into Entry Point

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies. If you use Red
Hat JBoss BRMS, see Embedded Drools Engine Dependencies.

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.rule.EntryPoint;

// Create your rulebase and your session as usual:
KieSession session = ...

// Get a reference to the entry point:
EntryPoint atmStream = session.getEntryPoint("ATM Stream");

// ...and start inserting your facts into the entry point:
atmStream.insert(aWithdrawRequest);

CHAPTER 7. COMPLEX EVENT PROCESSING

85

7.5.2. Negative Pattern in Stream Mode

A negative pattern is concerned with conditions that are not met. Negative patterns make reasoning in
the absence of events possible. For instance, a safety system could have a rule that states "If a fire is
detected and the sprinkler is not activated, sound the alarm."

In Cloud mode, the engine assumes all facts (regular facts and events) are known in advance and
evaluates negative patterns immediately.

Example 7.11. Rule with Negative Pattern

rule "Sound the Alarm"
when
 $f : FireDetected()
 not(SprinklerActivated())
then
 // sound the alarm
end

An example in stream mode is displayed below. This rule keeps consistency when dealing with negative
patterns and temporal constraints at the same time interval.

Example 7.12. Rule with Negative Pattern, Temporal Constraints, and Explicit Duration
Parameter

rule "Sound the Alarm"
 duration(10s)
when
 $f : FireDetected()
 not(SprinklerActivated(this after[0s,10s] $f))
then
 // sound the alarm
end

In stream mode, negative patterns with temporal constraints may force the engine to wait for a set time
before activating a rule. A rule may be written for an alarm system that states, "If a fire is detected and
the sprinkler is not activated after 10 seconds, sound the alarm. " Unlike the previous stream mode
example, this one does not require the user to calculate and write the duration parameter.

Example 7.13. Rule with Negative Pattern with Temporal Constraints

rule "Sound the Alarm"
when
 $f : FireDetected()
 not(SprinklerActivated(this after[0s,10s] $f))
then
 // sound the alarm
end

The rule depicted below expects one "Heartbeat" event to occur every 10 seconds; if not, the rule fires.

Red Hat JBoss BPM Suite 6.4 Development Guide

86

What is special about this rule is that it uses the same type of object in the first pattern and in the
negative pattern. The negative pattern has the temporal constraint to wait between 0 to 10 seconds
before firing, and it excludes the Heartbeat bound to $h. Excluding the bound Heartbeat is important
since the temporal constraint [0s, …] does not exclude by itself the bound event $h from being matched
again, thus preventing the rule to fire.

Example 7.14. Excluding Bound Events in Negative Patterns

rule "Sound the Alarm"
when
 $h: Heartbeat() from entry-point "MonitoringStream"
 not(Heartbeat(this != $h, this after[0s,10s] $h) from entry-point "MonitoringStream")
then
 // sound the alarm
end

7.6. TEMPORAL OPERATIONS

7.6.1. Temporal Reasoning

Complex Event Processing requires the rules engine to engage in temporal reasoning. Events have
strong temporal constraints so it is vital the rules engine can determine and interpret an event’s
temporal attributes, both as they relate to other events and the 'flow of time' as it appears to the rules
engine. This makes it possible for rules to take time into account; for instance, a rule could state
"Calculate the average price of a stock over the last 60 minutes. "

NOTE

JBoss BRMS Complex Event Processing implements interval-based time events, which
have a duration attribute that is used to indicate how long an event is of interest. Point-
in-time events are also supported and treated as interval-based events with a duration of
0 (zero).

7.6.2. Temporal Operations

JBoss BRMS Complex Event Processing implements the following temporal operators and their logical
complements (negation):

after

before

coincides

during

finishes

finishes by

includes

meets

CHAPTER 7. COMPLEX EVENT PROCESSING

87

met by

overlaps

overlapped by

starts

started by

7.6.3. After

The after operator correlates two events and matches when the temporal distance (the time between
the two events) from the current event to the event being correlated falls into the distance range
declared for the operator.

For example:

$eventA : EventA(this after[3m30s, 4m] $eventB)

This pattern only matches if the temporal distance between the time when $eventB finished and the
time when $eventA started is between the lower limit of three minutes and thirty seconds and the upper
limit of four minutes.

This can also be represented as follows:

3m30s <= $eventA.startTimestamp - $eventB.endTimeStamp <= 4m

The after operator accepts one or two optional parameters:

If two values are defined, the interval starts on the first value (3 minutes and 30 seconds in the
example) and ends on the second value (4 minutes in the example).

If only one value is defined, the interval starts on the provided value and runs indefinitely with no
end time.

If no value is defined, the interval starts at one millisecond and runs indefinitely with no end
time.

The after operator also accepts negative temporal distances.

For example:

$eventA : EventA(this after[-3m30s, -2m] $eventB)

If the first value is greater than the second value, the engine will automatically reverse them.

The following two patterns are equivalent to each other:

$eventA : EventA(this after[-3m30s, -2m] $eventB)
$eventA : EventA(this after[-2m, -3m30s] $eventB)

7.6.4. Before

The before operator correlates two events and matches when the temporal distance (time between the

Red Hat JBoss BPM Suite 6.4 Development Guide

88

The before operator correlates two events and matches when the temporal distance (time between the
two events) from the event being correlated to the current event falls within the distance range
declared for the operator.

For example:

$eventA : EventA(this before[3m30s, 4m] $eventB)

This pattern only matches if the temporal distance between the time when $eventA finished and the
time when $eventB started is between the lower limit of three minutes and thirty seconds and the upper
limit of four minutes.

This can also be represented as follows:

3m30s <= $eventB.startTimestamp - $eventA.endTimeStamp <= 4m

The before operator accepts one or two optional parameters:

If two values are defined, the interval starts on the first value (3 minutes and 30 seconds in the
example) and ends on the second value (4 minutes in the example).

If only one value is defined, the interval starts on the provided value and runs indefinitely with no
end time.

If no value is defined, the interval starts at one millisecond and runs indefinitely with no end
time.

The before operator also accepts negative temporal distances.

For example:

$eventA : EventA(this before[-3m30s, -2m] $eventB)

If the first value is greater than the second value, the engine will automatically reverse them.

The following two patterns are equivalent to each other:

$eventA : EventA(this before[-3m30s, -2m] $eventB)
$eventA : EventA(this before[-2m, -3m30s] $eventB)

7.6.5. Coincides

The coincides operator correlates two events and matches when both events happen at the same
time.

For example:

$eventA : EventA(this coincides $eventB)

This pattern only matches if both the start timestamps of $eventA and $eventB are identical and the
end timestamps of both $eventA and $eventB are also identical.

The coincides operator accepts optional thresholds for the distance between the events' start times

CHAPTER 7. COMPLEX EVENT PROCESSING

89

The coincides operator accepts optional thresholds for the distance between the events' start times
and the events' end times, so the events do not have to start at exactly the same time or end at exactly
the same time, but they need to be within the provided thresholds.

The following rules apply when defining thresholds for the coincides operator:

If only one parameter is given, it is used to set the threshold for both the start and end times of
both events.

If two parameters are given, the first is used as a threshold for the start time and the second one
is used as a threshold for the end time.

For example:

$eventA : EventA(this coincides[15s, 10s] $eventB)

This pattern will only match if the following conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 15s
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 10s

WARNING

The coincides operator does not accept negative intervals, and the rules engine
will throw an exception if an attempt is made to use negative distance internals.

7.6.6. During

The during operator correlates two events and matches when the current event happens during the
event being correlated.

For example:

$eventA : EventA(this during $eventB)

This pattern only matches if $eventA starts after $eventB and ends before $eventB ends.

This can also be represented as follows:

$eventB.startTimestamp < $eventA.startTimestamp <= $eventA.endTimestamp <
$eventB.endTimestamp

The during operator accepts one, two, or four optional parameters:

The following rules apply when providing parameters for the during operator:

If one value is defined, this value will represent the maximum distance between the start times
of the two events and the maximum distance between the end times of the two events.

Red Hat JBoss BPM Suite 6.4 Development Guide

90

If two values are defined, these values represent a threshold that the current event’s start time
and end time must occur between in relation to the correlated event’s start and end times.
If the values 5s and 10s are provided, the current event must start between 5 and 10 seconds
after the correlated event, and similarly the current event must end between 5 and 10 seconds
before the correlated event.

If four values are defined, the first and second values will be used as the minimum and maximum
distances between the starting times of the events, and the third and fourth values will be used
as the minimum and maximum distances between the end times of the two events.

7.6.7. Finishes

The finishes operator correlates two events and matches when the current event’s start timestamp
post-dates the correlated event’s start timestamp and both events end simultaneously.

For example:

$eventA : EventA(this finishes $eventB)

This pattern only matches if $eventA starts after $eventB starts and ends at the same time as $eventB
ends.

This can be represented as follows:

$eventB.startTimestamp < $eventA.startTimestamp
&&
$eventA.endTimestamp == $eventB.endTimestamp

The finishes operator accepts one optional parameter. If defined, the optional parameter sets the
maximum time allowed between the end times of the two events.

For example:

$eventA : EventA(this finishes[5s] $eventB)

This pattern matches if these conditions are met:

$eventB.startTimestamp < $eventA.startTimestamp
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s

WARNING

The finishes operator does not accept negative intervals, and the rules engine will
throw an exception if an attempt is made to use negative distance intervals.

7.6.8. Finishes By

The finishedby operator correlates two events and matches when the current event’s start time

CHAPTER 7. COMPLEX EVENT PROCESSING

91

The finishedby operator correlates two events and matches when the current event’s start time
predates the correlated event’s start time but both events end simultaneously. finishedby is the
symmetrical opposite of the finishes operator.

For example:

$eventA : EventA(this finishedby $eventB)

This pattern only matches if $eventA starts before $eventB starts and ends at the same time as
$eventB ends.

This can be represented as follows:

$eventA.startTimestamp < $eventB.startTimestamp
&&
$eventA.endTimestamp == $eventB.endTimestamp

The finishedby operator accepts one optional parameter. If defined, the optional parameter sets the
maximum time allowed between the end times of the two events.

$eventA : EventA(this finishedby[5s] $eventB)

This pattern matches if these conditions are met:

$eventA.startTimestamp < $eventB.startTimestamp
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s

WARNING

The finishedby operator does not accept negative intervals, and the rules engine
will throw an exception if an attempt is made to use negative distance intervals.

7.6.9. Includes

The includes operator examines two events and matches when the event being correlated happens
during the current event. It is the symmetrical opposite of the during operator.

For example:

$eventA : EventA(this includes $eventB)

This pattern only matches if $eventB starts after $eventA and ends before $eventA ends.

This can be represented as follows:

$eventA.startTimestamp < $eventB.startTimestamp <= $eventB.endTimestamp <
$eventA.endTimestamp

Red Hat JBoss BPM Suite 6.4 Development Guide

92

The includes operator accepts 1, 2 or 4 optional parameters:

If one value is defined, this value will represent the maximum distance between the start times
of the two events and the maximum distance between the end times of the two events.

If two values are defined, these values represent a threshold that the current event’s start time
and end time must occur between in relation to the correlated event’s start and end times.
If the values 5s and 10s are provided, the current event must start between 5 and 10 seconds
after the correlated event, and similarly the current event must end between 5 and 10 seconds
before the correlated event.

If four values are defined, the first and second values will be used as the minimum and maximum
distances between the starting times of the events, and the third and fourth values will be used
as the minimum and maximum distances between the end times of the two events.

7.6.10. Meets

The meets operator correlates two events and matches when the current event ends at the same time
as the correlated event starts.

For example:

$eventA : EventA(this meets $eventB)

This pattern matches if $eventA ends at the same time as $eventB starts.

This can be represented as follows:

abs($eventB.startTimestamp - $eventA.endTimestamp) == 0

The meets operator accepts one optional parameter. If defined, it determines the maximum time
allowed between the end time of the current event and the start time of the correlated event.

For example:

$eventA : EventA(this meets[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventB.startTimestamp - $eventA.endTimestamp) <= 5s

WARNING

The meets operator does not accept negative intervals, and the rules engine will
throw an exception if an attempt is made to use negative distance intervals.

7.6.11. Met By

The metby operator correlates two events and matches when the current event starts at the same time

CHAPTER 7. COMPLEX EVENT PROCESSING

93

The metby operator correlates two events and matches when the current event starts at the same time
as the correlated event ends.

For example:

$eventA : EventA(this metby $eventB)

This pattern matches if $eventA starts at the same time as $eventB ends.

This can be represented as follows:

abs($eventA.startTimestamp - $eventB.endTimestamp) == 0

The metby operator accepts one optional parameter. If defined, it sets the maximum distance between
the end time of the correlated event and the start time of the current event.

For example:

$eventA : EventA(this metby[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.endTimestamp) <= 5s

WARNING

The metby operator does not accept negative intervals, and the rules engine will
throw an exception if an attempt is made to use negative distance intervals.

7.6.12. Overlaps

The overlaps operator correlates two events and matches when the current event starts before the
correlated event starts and ends after the correlated event starts, but it ends before the correlated
event ends.

For example:

$eventA : EventA(this overlaps $eventB)

This pattern matches if these conditions are met:

$eventA.startTimestamp < $eventB.startTimestamp < $eventA.endTimestamp <
$eventB.endTimestamp

The overlaps operator accepts one or two optional parameters:

If one parameter is defined, it will define the maximum distance between the start time of the
correlated event and the end time of the current event.

Red Hat JBoss BPM Suite 6.4 Development Guide

94

If two values are defined, the first value will be the minimum distance, and the second value will
be the maximum distance between the start time of the correlated event and the end time of
the current event.

7.6.13. Overlapped By

The overlappedby operator correlates two events and matches when the correlated event starts
before the current event, and the correlated event ends after the current event starts but before the
current event ends.

For example:

$eventA : EventA(this overlappedby $eventB)

This pattern matches if these conditions are met:

$eventB.startTimestamp < $eventA.startTimestamp < $eventB.endTimestamp <
$eventA.endTimestamp

The overlappedby operator accepts one or two optional parameters:

If one parameter is defined, it sets the maximum distance between the start time of the
correlated event and the end time of the current event.

If two values are defined, the first value will be the minimum distance, and the second value will
be the maximum distance between the start time of the correlated event and the end time of
the current event.

7.6.14. Starts

The starts operator correlates two events and matches when they start at the same time, but the
current event ends before the correlated event ends.

For example:

$eventA : EventA(this starts $eventB)

This pattern matches if $eventA and $eventB start at the same time, and $eventA ends before
$eventB ends.

This can be represented as follows:

$eventA.startTimestamp == $eventB.startTimestamp
&&
$eventA.endTimestamp < $eventB.endTimestamp

The starts operator accepts one optional parameter. If defined, it determines the maximum distance
between the start times of events in order for the operator to still match:

$eventA : EventA(this starts[5s] $eventB)

This pattern matches if these conditions are met:

CHAPTER 7. COMPLEX EVENT PROCESSING

95

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s
&&
$eventA.endTimestamp < $eventB.endTimestamp

WARNING

The starts operator does not accept negative intervals, and the rules engine will
throw an exception if an attempt is made to use negative distance intervals.

7.6.15. Started By

The startedby operator correlates two events. It matches when both events start at the same time and
the correlating event ends before the current event.

For example:

$eventA : EventA(this startedby $eventB)

This pattern matches if $eventA and $eventB start at the same time, and $eventB ends before
$eventA ends.

This can be represented as follows:

$eventA.startTimestamp == $eventB.startTimestamp
&&
$eventA.endTimestamp > $eventB.endTimestamp

The startedby operator accepts one optional parameter. If defined, it sets the maximum distance
between the start time of the two events in order for the operator to still match:

$eventA : EventA(this starts[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s
&&
$eventA.endTimestamp > $eventB.endTimestamp

WARNING

The startedby operator does not accept negative intervals, and the rules engine will
throw an exception if an attempt is made to use negative distance intervals.

Red Hat JBoss BPM Suite 6.4 Development Guide

96

7.7. SLIDING WINDOWS

7.7.1. Sliding Time Windows

Stream mode allows events to be matched over a sliding time window. A sliding window is a time period
that stretches back in time from the present. For instance, a sliding window of two minutes includes any
events that have occurred in the past two minutes. As events fall out of the sliding time window (in this
case because they occurred more than two minutes ago), they will no longer match against rules using
this particular sliding window.

For example:

StockTick() over window:time(2m)

JBoss BRMS Complex Event Processing uses the over keyword to associate windows with patterns.

Sliding time windows can also be used to calculate averages and over time. For instance, a rule could be
written that states "If the average temperature reading for the last ten minutes goes above a certain
point, sound the alarm."

Example 7.15. Average Value over Time

rule "Sound the Alarm in Case Temperature Rises Above Threshold"
when
 TemperatureThreshold($max : max)
 Number(doubleValue > $max) from accumulate(
 SensorReading($temp : temperature) over window:time(10m),
 average($temp))
then
 // sound the alarm
end

The engine will automatically discard any SensorReading more than ten minutes old and keep re-
calculating the average.

7.7.2. Sliding Length Windows

Similar to Time Windows, Sliding Length Windows work in the same manner; however, they consider
events based on order of their insertion into the session instead of flow of time.

The pattern below demonstrates this order by only considering the last 10 RHT Stock Ticks independent
of how old they are. Unlike the previous StockTick from the Sliding Time Windows pattern, this pattern
uses window:length.

StockTick(company == "RHT") over window:length(10)

The example below portrays window length instead of window time; that is, it allows the user to sound an
alarm in case the average temperature over the last 100 readings from a sensor is above the threshold
value.

Example 7.16. Average Value over Length

CHAPTER 7. COMPLEX EVENT PROCESSING

97

rule "Sound the Alarm in Case Temperature Rises Above Threshold"
when
 TemperatureThreshold($max : max)
 Number(doubleValue > $max) from accumulate(
 SensorReading($temp : temperature) over window:length(100),
 average($temp))
then
 // sound the alarm
end

NOTE

The engine disregards events that fall off a window when calculating that window, but it
does not remove the event from the session based on that condition alone as there might
be other rules that depend on that event.

NOTE

Length based windows do not define temporal constraints for event expiration from the
session, and the engine will not consider them. If events have no other rules defining
temporal constraints and no explicit expiration policy, the engine will keep them in the
session indefinitely.

7.8. MEMORY MANAGEMENT FOR EVENTS

Automatic memory management for events is available when running the rules engine in Stream mode.
Events that no longer match any rule due to their temporal constraints can be safely retracted from the
session by the rules engine without any side effects, releasing any resources held by the retracted
events.

The rules engine has two ways of determining if an event is still of interest:

Explicitly

Event expiration can be explicitly set with the @expires.

Implicitly

The rules engine can analyze the temporal constraints in rules to determine the window of interest
for events.

7.8.1. Explicit Expiration

Explicit expiration is set with a declare statement and the metadata @expires tag.

For example:

Example 7.17. Declaring Explicit Expiration

declare StockTick
 @expires(30m)
end

Red Hat JBoss BPM Suite 6.4 Development Guide

98

Declaring expiration against an event-type will, in the above example StockTick events, remove any
StockTick events from the session automatically after the defined expiration time if no rules still need
the events.

7.8.2. Inferred Expiration

The rules engine can calculate the expiration offset for a given event implicitly by analyzing the
temporal constraints in the rules.

For example:

Example 7.18. Rule with Temporal Constraints

rule "correlate orders"
when
 $bo : BuyOrder($id : id)
 $ae : AckOrder(id == $id, this after[0,10s] $bo)
then
 // do something
end

For the example rule, the rules engine automatically calculates that whenever a BuyOrder event occurs
it needs to store the event for up to ten seconds to wait for the matching AckOrder event, making the
implicit expiration offset for BuyOrder events ten seconds. An AckOrder event can only match an
existing BuyOrder event making its implicit expiration offset zero seconds.

The engine analyzes the entire rule-base to find the offset for every event-type. Whenever an implicit
expiration clashes with an explicit expiration the engine uses the greater value of the two.

CHAPTER 7. COMPLEX EVENT PROCESSING

99

CHAPTER 8. WORKING WITH RULES

8.1. ABOUT RULE FILES

8.1.1. Rule File

A rule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries and
functions, as well as some resource declarations like imports, globals, and attributes that are assigned
and used by your rules and queries. However, you are also able to spread your rules across multiple rule
files (in that case, the extension .rule is suggested, but not required) - spreading rules across files can
help with managing large numbers of rules. A DRL file is simply a text file.

8.1.2. Structure of Rule Files

The overall structure of a rule file is the following:

Example 8.1. Rule File

package package-name

imports

globals

functions

queries

rules

The order in which the elements are declared is not important, except for the package name that, if
declared, must be the first element in the rules file. All elements are optional, so you will use only those
you need.

8.2. OPERATING ON FACTS

Facts are domain model objects that BRMS uses to evaluate conditions and execute consequences. A
rule specifies that when a particular set of conditions occur, then the specified list of actions must be
executed. The inference engine matches facts against rules, and when matches are found, rule actions
are placed on the agenda. The agenda is the place where rules are queued ready to have their actions
fired. The rule engine then determines which eligible rules on the agenda must fire.

8.2.1. Accessing Working Memory

The working memory is a stateful object that provides temporary storage and enables manipulation of
facts. The working memory includes an API that contains methods which enable access to the working
memory from rule files. The available methods are:

update(OBJECT, HANDLE)
Used to inform the engine that an object has changed and rules can need to be reconsidered.

Red Hat JBoss BPM Suite 6.4 Development Guide

100

update(OBJECT)
This method causes KieSession to search for a fact handle of the passed object using an
identity check. You do not have to call this method when the object changes if property change
listeners are provided. For more infomartion, see Section 8.12.15, “Fine Grained Property
Change Listeners”.

If field values of a fact have changed, call this method or use the modify keyword before
changing another fact to avoid issues with indexing within the engine.

insert(OBJECT)
Used to place a new object into the working memory.

insertLogical(OBJECT)
This method is similar to the insert method. The newly inserted object is automatically retracted
from the working memory if there are no more facts supporting the truth of the rule that
inserted the fact.

retract(HANDLE)
Used to remove an object from the working memory. This method is mapped to the delete
method in KieSession.

halt()
Used to terminate a rule execution immediately. Calling fireUntilHalt() causes continuous firing
of the rules. To stop the firing, call halt().

getKieRuntime()
The whole KIE API is exposed through a predefined kcontext variable of type RuleContext. The
inherited getKieRuntime() method returns a KieRuntime object that provides access to
various methods, many of which are useful for coding the rule logic.

For example, calling kcontext.getKieRuntime().halt() terminates a rule execution immediately.

8.3. USING RULE KEYWORDS

8.3.1. Hard Keywords

Hard keywords are words which you cannot use when naming your domain objects, properties, methods,
functions, and other elements that are used in the rule text. The hard keywords are true, false, and null.

8.3.2. Soft Keywords

Soft keywords can be used for naming domain objects, properties, methods, functions, and other
elements. The rules engine recognizes their context and processes them accordingly.

8.3.3. List of Soft Keywords

Rule attributes can be both simple and complex properties that provide a way to influence the behavior
of the rule. They are usually written as one attribute per line and can be optional to the rule. Listed below
are various rule attributes:

Figure 8.1. Rule Attributes

CHAPTER 8. WORKING WITH RULES

101

Figure 8.1. Rule Attributes

no-loop BOOLEAN

When a rule’s consequence modifies a fact, it may cause the rule to activate again, causing an infinite
loop. Setting no-loop to true will skip the creation of another activation for the rule with the current
set of facts.
Default value: false.

lock-on-active BOOLEAN

Whenever a ruleflow-group becomes active or an agenda-group receives the focus, any rule within
that group that has lock-on-active set to true will not be activated any more. Regardless of the
origin of the update, the activation of a matching rule is discarded. This is a stronger version of no-
loop because the change is not only caused by the rule itself. It is ideal for calculation rules where you
have a number of rules that modify a fact, and you do not want any rule re-matching and firing again.
Only when the ruleflow-group is no longer active or the agenda-group loses the focus, those rules
with lock-on-active set to true become eligible again for their activations to be placed onto the
agenda.
Default value: false.

salience INTEGER

Each rule has an integer salience attribute which defaults to zero and can be negative or positive.
Salience is a form of priority where rules with higher salience values are given higher priority when
ordered in the activation queue.
Default value: 0.

Red Hat JBoss BRMS also supports dynamic salience where you can use an expression involving

Red Hat JBoss BPM Suite 6.4 Development Guide

102

Red Hat JBoss BRMS also supports dynamic salience where you can use an expression involving
bound variables like the following:

ruleflow-group STRING

Ruleflow is a BRMS feature that lets you exercise control over the firing of rules. Rules that are
assembled by the same ruleflow-group identifier fire only when their group is active. This attribute
has been merged with agenda-group and the behaviours are basically the same.

agenda-group STRING

Agenda groups enable you to partition the agenda, which provides more execution control. Only
rules in the agenda group that have acquired the focus are allowed to fire. This attribute has been
merged with ruleflow-group and the behaviours are basically the same.
Default value: MAIN.

auto-focus BOOLEAN

When a rule is activated where the auto-focus value is true and the rule’s agenda group does not
have focus yet, it is automatically given focus, allowing the rule to potentially fire.
Default value: false.

activation-group STRING

Rules that belong to the same activation-group identified by this attribute’s String value, will only
fire exclusively. More precisely, the first rule in an activation-group to fire will cancel all pending
activations of all rules in the group, for example stop them from firing.

dialect STRING

Java and MVEL are the possible values of the dialect attribute. This attribute specifies the language
to be used for any code expressions in the LHS or the RHS code block. While the dialect can be
specified at the package level, this attribute allows the package definition to be overridden for a rule.
Default value: specified by the package.

date-effective STRING

A rule can only activate if the current date and time is after the date-effective attribute. Note that
STRING is a date and time definition. An example date-effective attribute is displayed below:

date-expires STRING

A rule cannot activate if the current date and time is after the date-expires attribute. Note that

rule "Fire in rank order 1,2,.."
salience(-$rank)
when
 Element($rank : rank,...)
then
 ...
end

rule "Start Exercising"
date-effective "4-Sep-2014"
when
 $m : org.drools.compiler.Message()
then
 $m.setFired(true);
end

CHAPTER 8. WORKING WITH RULES

103

A rule cannot activate if the current date and time is after the date-expires attribute. Note that
STRING is a date and time definition. An example date-expires attribute is displayed below:

duration LONG

If a rule is still true, the duration attribute will dictate that the rule will fire after a specified duration.

NOTE

The attributes ruleflow-group and agenda-group have been merged and now behave
the same. The GET methods have been left the same, for deprecations reasons, but both
attributes return the same underlying data.

8.4. ADDING COMMENTS TO RULE FILE

Comments are sections of text that are ignored by the rule engine. They are stripped out when they are
encountered, except inside semantic code blocks (like a rule’s RHS).

8.4.1. Single Line Comment Example

This is what a single line comment looks like. To create single line comments, you can use //. The parser
will ignore anything in the line after the comment symbol:

rule "Testing Comments"
when
 // this is a single line comment
 eval(true) // this is a comment in the same line of a pattern
then
 // this is a comment inside a semantic code block
end

8.4.2. Multi-Line Comment Example

This is what a multi-line comment looks like. This configuration comments out blocks of text, both in and
outside semantic code blocks:

rule "Test Multi-Line Comments"
when
 /* this is a multi-line comment
 in the left hand side of a rule */
 eval(true)
then
 /* and this is a multi-line comment
 in the right hand side of a rule */
end

rule "Run 4km"
date-effective "4-Sep-2014"
date-expires "9-Sep-2014"
when
 $m : org.drools.compiler.Message()
then
 $m.setFired(true);
end

Red Hat JBoss BPM Suite 6.4 Development Guide

104

8.5. ERROR MESSAGES IN RULES

Red Hat JBoss BRMS provides standardized error messages. This standardization aims to help users to
find and resolve problems in a easier and faster way.

8.5.1. Error Message Format

This is the standard error message format.

Figure 8.2. Error Message Format Example

1st Block: This area identifies the error code.

2nd Block: Line and column information.

3rd Block: Some text describing the problem.

4th Block: This is the first context. Usually indicates the rule, function, template, or query where the error
occurred. This block is not mandatory.

5th Block: Identifies the pattern where the error occurred. This block is not mandatory.

8.5.2. Error Message Description

[ERR 101] Line 4:4 no viable alternative at input 'exits' in rule one

Indicates when the parser came to a decision point but couldn’t identify an alternative. For example:

[ERR 101] Line 3:2 no viable alternative at input 'WHEN

This message means the parser has encountered the token WHEN (a hard keyword) which is in the
wrong place, since the rule name is missing. For example:

[ERR 101] Line 0:-1 no viable alternative at input '<eof>' in rule simple_rule in pattern [name]

Indicates an open quote, apostrophe or parentheses. For example:

1: rule one
2: when
3: exists Foo()
4: exits Bar()
5: then
6: end

1: package org.drools;
2: rule
3: when
4: Object()
5: then
6: System.out.println("A RHS");
7: end

CHAPTER 8. WORKING WITH RULES

105

[ERR 102] Line 0:-1 mismatched input '<eof>' expecting ')' in rule simple_rule in pattern Bar

Indicates that the parser was looking for a particular symbol that it didn’t end at the current input
position.

[ERR 102] Line 0:-1 mismatched input '<eof>' expecting ')' in rule simple_rule in pattern [name]

This error is the result of an incomplete rule statement. Usually when you get a 0:-1 position, it means
that parser reached the end of source. To fix this problem, it is necessary to complete the rule
statement.

[ERR 103] Line 7:0 rule 'rule_key' failed predicate: {(validateIdentifierKey(
DroolsSoftKeywords.RULE))}? in rule

A validating semantic predicate evaluated to false. Usually these semantic predicates are used to
identify soft keywords.

[ERR 104] Line 3:4 trailing semi-colon not allowed in rule simple_rule

This error is associated with the eval clause, where its expression may not be terminated with a
semicolon. This problem is simple to fix: just remove the semi-colon.

1: rule simple_rule
2: when
3: Student(name == "Andy)
4: then
5: end

1: rule simple_rule
2: when
3: foo3 : Bar(

1: package org.drools;
2:
3: rule "Avoid NPE on wrong syntax"
4: when
5: not(Cheese((type == "stilton", price == 10) \|\| (type == "brie", price == 15)) from $cheeseList)
6: then
7: System.out.println("OK");
8: end

 1: package nesting;
 2: dialect "mvel"
 3:
 4: import org.drools.Person
 5: import org.drools.Address
 6:
 7: fdsfdsfds
 8:
 9: rule "test something"
10: when
11: p: Person(name=="Michael")
12: then
13: p.name = "other";
14: System.out.println(p.name);
15: end

Red Hat JBoss BPM Suite 6.4 Development Guide

106

[ERR 105] Line 2:2 required (…)+ loop did not match anything at input 'aa' in template test_error

The recognizer came to a subrule in the grammar that must match an alternative at least once, but
the subrule did not match anything. To fix this problem it is necessary to remove the numeric value as
it is neither a valid data type which might begin a new template slot nor a possible start for any other
rule file construct.

8.6. PACKAGING

A package is a collection of rules and other related constructs, such as imports and globals. The package
members are typically related to each other, such as HR rules. A package represents a namespace, which
ideally is kept unique for a given grouping of rules. The package name itself is the namespace, and is not
related to files or folders in any way.

It is possible to assemble rules from multiple rule sources, and have one top-level package configuration
that all the rules are kept under (when the rules are assembled). It is not possible to merge into the same
package resources declared under different names. A single Rulebase may, however, contain multiple
packages built on it. A common structure is to have all the rules for a package in the same file as the
package declaration (so that is it entirely self-contained).

8.6.1. Import Statements

Import statements work like import statements in Java. You need to specify the fully qualified paths and
type names for any objects you want to use in the rules. Red Hat JBoss BRMS automatically imports
classes from the Java package of the same name, and also from the package java.lang.

8.6.2. Using Globals

In DRL files, globals represent global variables. To use globals in rules:

1. Declare the global variable:

global java.util.List myGlobalList;

rule "Using a Global"
when
 eval(true)
then
 myGlobalList.add("Hello World");
end

2. Set the global value in the working memory. The best practice is to set all global values before
asserting any fact into the working memory. For example:

1: rule simple_rule
2: when
3: eval(abc();)
4: then
5: end

1: template test_error
2: aa s 11;
3: end

CHAPTER 8. WORKING WITH RULES

107

List list = new ArrayList();
KieSession kieSession = kieBase.newKieSession();
kieSession.setGlobal("myGlobalList", list);

8.6.3. From Element

The from element allows you to pass a Hibernate session as a global. It also lets you pull data from a
named Hibernate query.

8.6.4. Using Globals with E-Mail Service

Procedure: Task

1. Open the integration code that is calling the rule engine.

2. Obtain your emailService object and then set it in the working memory.

3. In the DRL, declare that you have a global of type emailService and give it the name email.

4. In your rule consequences, you can use things like email.sendSMS(number, message).

WARNING

Globals are not designed to share data between rules and they should never
be used for that purpose. Rules always reason and react to the working
memory state, so if you want to pass data from rule to rule, assert the data
as facts into the working memory.

IMPORTANT

Do not set or change a global value from inside the rules. We recommend to you
always set the value from your application using the working memory interface.

8.7. FUNCTIONS IN RULES

Functions are a way to put semantic code in a rule source file, as opposed to in normal Java classes. The
main advantage of using functions in a rule is that you can keep the logic all in one place. You can
change the functions as needed.

Functions are most useful for invoking actions on the consequence (then) part of a rule, especially if that
particular action is used repeatedly.

A typical function declaration looks like the following:

function String hello(String name) {
 return "Hello " + name + "!";
}

NOTE

Red Hat JBoss BPM Suite 6.4 Development Guide

108

NOTE

Note that the function keyword is used, even though it is not technically part of Java.
Parameters to the function are defined as for a method. You do not have to have
parameters if they are not needed. The return type is defined just like in a regular method.

8.7.1. Importing Static Method Example

In the following example, a static method Foo.hello() from a helper class is imported as a function. To
import a method, enter the following into your DRL file:

import function my.package.Foo.hello

8.7.2. Calling Function Declaration Example

Irrespective of the way the function is defined or imported, you use a function by calling it by its name, in
the consequence or inside a semantic code block. This is shown below:

rule "Using a Static Function"
when
 eval(true)
then
 System.out.println(hello("Bob"));
end

8.7.3. Type Declarations

Type declarations have two main goals in the rules engine: to allow the declaration of new types, and to
allow the declaration of metadata for types.

Table 8.1. Type Declaration Roles

Role Description

Declaring new types Red Hat JBoss BRMS uses plain Java objects as facts out of the box. However, if
you wish to define the model directly to the rules engine, you can do so by
declaring a new type. You can also declare a new type when there is a domain
model already built and you want to complement this model with additional
entities that are used mainly during the reasoning process.

Declaring metadata Facts may have meta information associated to them. Examples of meta
information include any kind of data that is not represented by the fact attributes
and is consistent among all instances of that fact type. This meta information may
be queried at runtime by the engine and used in the reasoning process.

8.7.4. Declaring New Types

To declare a new type, the keyword declare is used, followed by the list of fields and the keyword end. A
new fact must have a list of fields, otherwise the engine will look for an existing fact class in the classpath
and raise an error if not found.

CHAPTER 8. WORKING WITH RULES

109

8.7.5. Declaring New Fact Type Example

In this example, a new fact type called Address is used. This fact type will have three attributes:
number, streetName and city. Each attribute has a type that can be any valid Java type, including any
other class created by the user or other fact types previously declared:

declare Address
 number : int
 streetName : String
 city : String
end

8.7.6. Declaring New Fact Type Additional Example

This fact type declaration uses a Person example. dateOfBirth is of the type java.util.Date (from the
Java API) and address is of the fact type Address.

declare Person
 name : String
 dateOfBirth : java.util.Date
 address : Address
end

8.7.7. Using Import Example

To avoid using fully qualified class names, use the import statement:

import java.util.Date

declare Person
 name : String
 dateOfBirth : Date
 address : Address
end

8.7.8. Generated Java Classes

When you declare a new fact type, Red Hat JBoss BRMS generates bytecode that implements a Java
class representing the fact type. The generated Java class is a one-to-one Java Bean mapping of the
type definition.

8.7.9. Generated Java Class Example

This is an example of a generated Java class using the Person fact type:

public class Person implements Serializable {
 private String name;
 private java.util.Date dateOfBirth;
 private Address address;

 // empty constructor
 public Person() {...}

Red Hat JBoss BPM Suite 6.4 Development Guide

110

8.7.10. Using Declared Types in Rules Example

Since the generated class is a simple Java class, it can be used transparently in the rules like any other
fact:

rule "Using a declared Type"
when
 $p : Person(name == "Bob")
then
 // Insert Mark, who is Bob's manager.
 Person mark = new Person();
 mark.setName("Mark");
 insert(mark);
end

8.7.11. Declaring Metadata

Metadata may be assigned to several different constructions in Red Hat JBoss BRMS, such as fact
types, fact attributes and rules. Red Hat JBoss BRMS uses the at sign (@) to introduce metadata and it
always uses the form:

@metadata_key(metadata_value)

The parenthesized metadata_value is optional.

8.7.12. Working with Metadata Attributes

Red Hat JBoss BRMS allows the declaration of any arbitrary metadata attribute. Some have special
meaning to the engine, while others are available for querying at runtime. Red Hat JBoss BRMS allows
the declaration of metadata both for fact types and for fact attributes. Any metadata that is declared
before the attributes of a fact type are assigned to the fact type, while metadata declared after an
attribute are assigned to that particular attribute.

8.7.13. Declaring Metadata Attribute with Fact Types Example

This is an example of declaring metadata attributes for fact types and attributes. There are two
metadata items declared for the fact type (@author and @dateOfCreation) and two more defined for
the name attribute (@key and @maxLength). The @key metadata has no required value, and so the
parentheses and the value were omitted:

import java.util.Date

 // constructor with all fields
 public Person(String name, Date dateOfBirth, Address address) {...}

 // if keys are defined, constructor with keys
 public Person(...keys...) {...}

 // getters and setters
 // equals/hashCode
 // toString
}

CHAPTER 8. WORKING WITH RULES

111

declare Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)

 name : String @key @maxLength(30)
 dateOfBirth : Date
 address : Address
end

8.7.14. @position Attribute

The @position attribute can be used to declare the position of a field, overriding the default declared
order. This is used for positional constraints in patterns.

8.7.15. @position Example

This is what the @position attribute looks like in use:

declare Cheese
 name : String @position(1)
 shop : String @position(2)
 price : int @position(0)
end

8.7.16. Predefined Class Level Annotations

@role(<fact\|event>)

This attribute can be used to assign roles to facts and events.

@typesafe(<boolean>)

By default, all type declarations are compiled with type safety enabled. @typesafe(false) provides a
means to override this behavior by permitting a fall-back, to type unsafe evaluation where all
constraints are generated as MVEL constraints and executed dynamically. This is useful when dealing
with collections that do not have any generics or mixed type collections.

@timestamp(<attribute name>)

Creates a timestamp.

@duration(<attribute name>)

Sets a duration for the implementation of an attribute.

@expires(<time interval>)

Allows you to define when the attribute should expire.

@propertyChangeSupport

Facts that implement support for property changes as defined in the Javabean spec can now be
annotated so that the engine register itself to listen for changes on fact properties.

@propertyReactive

Makes the type property reactive.

8.7.17. @key Attribute Functions

Declaring an attribute as a key attribute has two major effects on generated types:

1. The attribute is used as a key identifier for the type, and thus the generated class implements

Red Hat JBoss BPM Suite 6.4 Development Guide

112

1. The attribute is used as a key identifier for the type, and thus the generated class implements
the equals() and hashCode() methods taking the attribute into account when comparing
instances of this type.

2. Red Hat JBoss BRMS generates a constructor using all the key attributes as parameters.

8.7.18. @key Declaration Example

This is an example of @key declarations for a type. Red Hat JBoss BRMS generates equals() and
hashCode() methods that checks the firstName and lastName attributes to determine if two instances
of Person are equal to each other. It does not check the age attribute. It also generates a constructor
taking firstName and lastName as parameters:

declare Person
 firstName : String @key
 lastName : String @key
 age : int
end

8.7.19. Creating Instance with Key Constructor Example

This is what creating an instance using the key constructor looks like:

Person person = new Person("John", "Doe");

8.7.20. Positional Arguments

Patterns support positional arguments on type declarations and are defined by the @position attribute.

Positional arguments are when you do not need to specify the field name, as the position maps to a
known named field. That is, Person(name == "mark") can be rewritten as Person("mark";). The
semicolon ; is important so that the engine knows that everything before it is a positional argument. You
can mix positional and named arguments on a pattern by using the semicolon ; to separate them. Any
variables used in a positional that have not yet been bound will be bound to the field that maps to that
position.

8.7.21. Positional Argument Example

Observe the example below:

declare Cheese
 name : String
 shop : String
 price : int
end

The default order is the declared order, but this can be overridden using @position.

declare Cheese
 name : String @position(1)
 shop : String @position(2)
 price : int @position(0)
end

CHAPTER 8. WORKING WITH RULES

113

8.7.22. @position Annotation

The @position annotation can be used to annotate original pojos on the classpath. Currently only fields
on classes can be annotated. Inheritance of classes is supported, but not interfaces of methods.

8.7.23. Example Patterns

These example patterns have two constraints and a binding. The semicolon ; is used to differentiate the
positional section from the named argument section. Variables and literals and expressions using just
literals are supported in positional arguments, but not variables:

Cheese("stilton", "Cheese Shop", p;)
Cheese("stilton", "Cheese Shop"; p : price)
Cheese("stilton"; shop == "Cheese Shop", p : price)
Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

8.8. BACKWARD-CHAINING

8.8.1. Backward-Chaining Systems

Backward-Chaining is a feature recently added to the BRMS Engine. This process is often referred to as
derivation queries, and it is not as common compared to reactive systems since BRMS is primarily
reactive forward chaining. That is, it responds to changes in your data. The backward-chaining added to
the engine is for product-like derivations.

8.8.2. Cloning Transitive Closures

Figure 8.3. Reasoning Graph

Red Hat JBoss BPM Suite 6.4 Development Guide

114

Figure 8.3. Reasoning Graph

The previous chart demonstrates a House example of transitive items. A similar reasoning chart can be
created by implementing the following rules:

Configuring Transitive Closures

1. First, create some java rules to develop reasoning for transitive items. It inserts each of the
locations.

2. Next, create the Location class; it has the item and where it is located.

3. Type the rules for the House example as depicted below:

ksession.insert(new Location("office", "house"));
ksession.insert(new Location("kitchen", "house"));
ksession.insert(new Location("knife", "kitchen"));
ksession.insert(new Location("cheese", "kitchen"));
ksession.insert(new Location("desk", "office"));
ksession.insert(new Location("chair", "office"));
ksession.insert(new Location("computer", "desk"));
ksession.insert(new Location("drawer", "desk"));

4. A transitive design is created in which the item is in its designated location such as a "desk"
located in an "office."

Figure 8.4. Transitive Reasoning Graph of House

CHAPTER 8. WORKING WITH RULES

115

Figure 8.4. Transitive Reasoning Graph of House

NOTE

Notice compared to the previous graph, there is no "key" item in a "drawer" location. This
will become evident in a later topic.

8.8.3. Defining Query

1. Create a query to search for data inserted into the rule engine:

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

Note that the query in the example above is recursive, calling isContainedIn.

2. To see implementation details, create a rule similar to the following for printing each string
inserted into the system:

rule "go" salience 10
when
 $s : String()
then
 System.out.println($s);
end

3. Create a rule that uses the isContainedIn query from the first step.

rule "go1"
when
 String(this == "go1")
 isContainedIn("office", "house";)

Red Hat JBoss BPM Suite 6.4 Development Guide

116

then
 System.out.println("office is in the house");
end

The rule checks whether the item office is in the location house. The query created in the first
step is triggered when the string go1 is inserted.

4. Insert a fact into the engine and call fireAllRules().

ksession.insert("go1");
ksession.fireAllRules();

The output of the engine should look like the following:

go1
office is in the house

The following holds:

The salience ensures that the go rule is fired first and the message output is printed.

The go1 rule matches the query and office is in the house is printed.

8.8.4. Transitive Closure Example

Creating Transitive Closure

1. Create a transitive closure by implementing the following rule:

rule "go2"
when
 String(this == "go2")
 isContainedIn("drawer", "house";)
then
 System.out.println("Drawer in the House");
end

2. Recall from the cloning transitive closure topic, there was no instance of "drawer" in "house."
"Drawer" was located in "desk."

Figure 8.5. Transitive Reasoning Graph of a Drawer.

CHAPTER 8. WORKING WITH RULES

117

Figure 8.5. Transitive Reasoning Graph of a Drawer.

3. Use the previous query for this recursive information.

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

4. Create the go2, insert it into the engine, and call the fireAllRules.

ksession.insert("go2");
ksession.fireAllRules();

go2
Drawer in the House

When the rule is fired, it correctly tells you go2 has been inserted and that the "drawer" is in the
"house."

5. Check how the engine determined this outcome.

The query has to recurse down several levels to determine this.

Instead of using Location(x, y;), the query uses the value of (z, y;) since "drawer" is not in
"house."

The z is currently unbound which means it has no value and will return everything that is in
the argument.

y is currently bound to "house," so z will return "office" and "kitchen."

Information is gathered from "office" and checks recursively if the "drawer" is in the "office."
The following query line is being called for these parameters: isContainedIn(x ,z;)
There is no instance of "drawer" in "office"; therefore, it does not match. With z being
unbound, it will return data that is within the "office", and it will gather that z == desk.

Red Hat JBoss BPM Suite 6.4 Development Guide

118

isContainedIn(x==drawer, z==desk)

isContainedIn recurses three times. On the final recurse, an instance triggers of "drawer" in
the "desk".

Location(x==drawer, y==desk)

This matches on the first location and recurses back up, so we know that "drawer" is in the
"desk", the "desk" is in the "office", and the "office" is in the "house"; therefore, the "drawer"
is in the "house" and returns true.

8.8.5. Reactive Transitive Queries

Creating a Reactive Transitive Query

1. Create a reactive transitive query by implementing the following rule:

rule "go3"
when
 String(this == "go3")
 isContainedIn("key", "office";)
then
 System.out.println("Key in the Office");
end

Reactive transitive queries can ask a question even if the answer can not be satisfied. Later, if it
is satisfied, it will return an answer.

NOTE

Recall from the cloning transitive closures example that there was no key item in
the system.

2. Use the same query for this reactive information.

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

3. Create the go3, insert it into the engine, and call the fireAllRules.

ksession.insert("go3");
ksession.fireAllRules();

go3

go3 is inserted

fireAllRules(); is called

The first rule that matches any String returns go3 but nothing else is returned because there is

CHAPTER 8. WORKING WITH RULES

119

The first rule that matches any String returns go3 but nothing else is returned because there is
no answer; however, while go3 is inserted in the system, it will continuously wait until it is
satisfied.

4. Insert a new location of "key" in the "drawer":

ksession.insert(new Location("key", "drawer"));
ksession.fireAllRules();

Key in the Office

This new location satisfies the transitive closure because it is monitoring the entire graph. In
addition, this process now has four recursive levels in which it goes through to match and fire the
rule.

8.8.6. Queries with Unbound Arguments

Creating Unbound Argument Query

1. Create a query with unbound arguments by implementing the following rule:

rule "go4"
when
 String(this == "go4")
 isContainedIn(thing, "office";)
then
 System.out.println("thing" + thing + "is in the office");
end

This rule is asking for everything in the "office", and it will tell everything in all the rows below.
The unbound argument (out variable thing) in this example will return every possible value;
accordingly, it is very similar to the z value used in the reactive transitive query example.

2. Use the query for the unbound arguments.

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

3. Create the go4, insert it into the engine, and call the fireAllRules.

ksession.insert("go4");
ksession.fireAllRules();

go4
thing Key is in the Office
thing Computer is in the Office
thing Drawer is in the Office
thing Desk is in the Office
thing Chair is in the Office

When go4 is inserted, it returns all the previous information that is transitively below "office."

Red Hat JBoss BPM Suite 6.4 Development Guide

120

8.8.7. Multiple Unbound Arguments

Creating Multiple Unbound Arguments

1. Create a query with multiple unbound arguments by implementing the following rule:

rule "go5"
when
 String(this == "go5")
 isContainedIn(thing, location;)
then
 System.out.println("thing" + thing + "is in" + location);
end

Both thing and location are unbound out variables, and without bound arguments, everything is
called upon.

2. Use the query for multiple unbound arguments.

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

3. Create the go5, insert it into the engine, and call the fireAllRules.

ksession.insert("go5");
ksession.fireAllRules();

go5
thing Knife is in House
thing Cheese is in House
thing Key is in House
thing Computer is in House
thing Drawer is in House
thing Desk is in House
thing Chair is in House
thing Key is in Office
thing Computer is in Office
thing Drawer is in Office
thing Key is in Desk
thing Office is in House
thing Computer is in Desk
thing Knife is in Kitchen
thing Cheese is in Kitchen
thing Kitchen is in House
thing Key is in Drawer
thing Drawer is in Desk
thing Desk is in Office
thing Chair is in Office

When go5 is called, it returns everything within everything.

CHAPTER 8. WORKING WITH RULES

121

8.9. TYPE DECLARATION

8.9.1. Declaring Metadata for Existing Types

Red Hat JBoss BRMS allows the declaration of metadata attributes for existing types in the same way
as when declaring metadata attributes for new fact types. The only difference is that there are no fields
in that declaration.

8.9.2. Declaring Metadata for Existing Types Example

This example shows how to declare metadata for an existing type:

import org.drools.examples.Person

declare Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)
end

8.9.3. Declaring Metadata Using Fully Qualified Class Name Example

This example shows how you can declare metadata using the fully qualified class name instead of using
the import annotation:

declare org.drools.examples.Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)
end

8.9.4. Parametrized Constructors for Declared Types Example

For a declared type like the following:

declare Person
 firstName : String @key
 lastName : String @key
 age : int
end

The compiler will implicitly generate 3 constructors: one without parameters, one with the @key fields
and one with all fields.

Person() // parameterless constructor
Person(String firstName, String lastName)
Person(String firstName, String lastName, int age)

8.9.5. Non-Typesafe Classes

The @typesafe(BOOLEAN) annotation has been added to type declarations. By default all type
declarations are compiled with type safety enabled. @typesafe(false) provides a means to override this
behaviour by permitting a fall-back, to type unsafe evaluation where all constraints are generated as

Red Hat JBoss BPM Suite 6.4 Development Guide

122

MVEL constraints and executed dynamically. This is useful when dealing with collections that do not
have any generics or mixed type collections.

8.9.6. Accessing Declared Types from Application Code

Sometimes applications need to access and handle facts from the declared types. In such cases, Red Hat
JBoss BRMS provides a simplified API for the most common fact handling the application wishes to do.
A declared fact belongs to the package where it is declared.

8.9.7. Declaring Type

This illustrates the process of declaring a type:

package org.drools.examples

import java.util.Date

declare Address
 street : String
 city : String
 code : String
end

declare Person
 name : String
 dateOfBirth : Date
 address : Address
end

8.9.8. Handling Declared Fact Types Through API Example

This example illustrates the handling of declared fact types through the API:

import java.util.Date;

import org.kie.api.definition.type.FactType;
import org.kie.api.KieBase;
import org.kie.api.runtime.KieSession;

...

// Get a reference to a knowledge base with a declared type:
KieBase kbase = ...

// Get the declared FactType:
FactType personType = kbase.getFactType("org.drools.examples", "Person");

// Handle the type as necessary:
// Create instances:
Object bob = personType.newInstance();

// Set attributes values:
personType.set(bob, "name", "Bob");
personType.set(bob, "dateOfBirth", new Date());

CHAPTER 8. WORKING WITH RULES

123

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies. If you use Red
Hat JBoss BRMS, see Embedded Drools Engine Dependencies.

The API also includes other helpful methods, like setting all the attributes at once, reading values from a
Map, or reading all attributes at once, into a Map.

8.9.9. Type Declaration Extends

Type declarations support the extends keyword for inheritance. To extend a type declared in Java by a
DRL declared subtype, repeat the supertype in a declare statement without any fields.

8.9.10. Type Declaration Extends Example

This illustrates the use of the extends annotation:

import org.people.Person

declare Person
end

declare Student extends Person
 school : String
end

declare LongTermStudent extends Student
 years : int
 course : String
end

8.9.11. Traits

Traits allow you to model multiple dynamic types which do not fit naturally in a class hierarchy. A trait is
an interface that can be applied (and eventually removed) to an individual object at runtime. To create a
trait out of an interface, a @format(trait) annotation is added to its declaration in DRL.

8.9.12. Traits Example

declare GoldenCustomer
 @format(trait)
 // fields will map to getters/setters
 code : String
 balance : long

personType.set(bob, "address", new Address("King's Road","London","404"));

// Insert fact into a session:
KieSession ksession = ...
ksession.insert(bob);
ksession.fireAllRules();

// Read attributes:
String name = (String) personType.get(bob, "name");
Date date = (Date) personType.get(bob, "dateOfBirth");

Red Hat JBoss BPM Suite 6.4 Development Guide

124

 discount : int
 maxExpense : long
end

In order to apply a trait to an object, the new don keyword is added:

when
 $c : Customer()
then
 GoldenCustomer gc = don($c, Customer.class);
end

8.9.13. Core Objects and Traits

When a core object dons a trait, a proxy class is created on the fly (one such class will be generated lazily
for each core/trait class combination). The proxy instance, which wraps the core object and implements
the trait interface, is inserted automatically and will possibly activate other rules. An immediate
advantage of declaring and using interfaces, getting the implementation proxy for free from the engine,
is that multiple inheritance hierarchies can be exploited when writing rules. The core classes, however,
need not implement any of those interfaces statically, also facilitating the use of legacy classes as cores.
Any object can don a trait. For efficiency reasons, however, you can add the @traitable annotation to a
declared bean class to reduce the amount of glue code that the compiler will have to generate. This is
optional and will not change the behavior of the engine.

8.9.14. @traitable Example

This illustrates the use of the @traitable annotation:

declare Customer
 @traitable
 code : String
 balance : long
end

8.9.15. Writing Rules with Traits

The only connection between core classes and trait interfaces is at the proxy level. (That is, a trait is not
specifically tied to a core class.) This means that the same trait can be applied to totally different
objects. For this reason, the trait does not transparently expose the fields of its core object. When
writing a rule using a trait interface, only the fields of the interface will be available, as usual. However,
any field in the interface that corresponds to a core object field, will be mapped by the proxy class.

8.9.16. Rules with Traits Example

This example illustrates the trait interface being mapped to a field:

when
 $o: OrderItem($p : price, $code : custCode)
 $c: GoldenCustomer(code == $code, $a : balance, $d: discount)
then
 $c.setBalance($a - $p*$d);
end

CHAPTER 8. WORKING WITH RULES

125

8.9.17. Hidden Fields

Hidden fields are fields in the core class not exposed by the interface.

8.9.18. Two-Part Proxy

The two-part proxy has been developed to deal with soft and hidden fields which are not processed
intuitively. Internally, proxies are formed by a proper proxy and a wrapper. The former implements the
interface, while the latter manages the core object fields, implementing a name/value map to supports
soft fields. The proxy uses both the core object and the map wrapper to implement the interface, as
needed.

8.9.19. Wrappers

The wrapper provides a looser form of typing when writing rules. However, it has also other uses. The
wrapper is specific to the object it wraps, regardless of how many traits have been attached to an object.
All the proxies on the same object will share the same wrapper. Additionally, the wrapper contains a
back-reference to all proxies attached to the wrapped object, effectively allowing traits to see each
other.

8.9.20. Wrapper Example

This is an example of using the wrapper:

when
 $sc : GoldenCustomer($c : code, // hard getter
 $maxExpense : maxExpense > 1000 // soft getter)
then
 $sc.setDiscount(...); // soft setter
end

8.9.21. Wrapper with isA Annotation Example

This illustrates a wrapper in use with the isA annotation:

$sc : GoldenCustomer($maxExpense : maxExpense > 1000, this isA "SeniorCustomer")

8.9.22. Removing Traits

The business logic may require that a trait is removed from a wrapped object. There are two ways to do
so:

Logical don

Results in a logical insertion of the proxy resulting from the traiting operation.

then
 don($x, // core object
 Customer.class, // trait class
 true // optional flag for logical insertion)

The shed keyword

The shed keyword causes the retraction of the proxy corresponding to the given argument type.

Red Hat JBoss BPM Suite 6.4 Development Guide

126

then
 Thing t = shed($x, GoldenCustomer.class)

This operation returns another proxy implementing the org.drools.factmodel.traits.Thing interface,
where the getFields() and getCore() methods are defined. Internally, all declared traits are
generated to extend this interface (in addition to any others specified). This allows to preserve the
wrapper with the soft fields which would otherwise be lost.

8.10. RULE ATTRIBUTES

For the list of all rule attributes and their description, see Section 8.3.2, “Soft Keywords” .

See an example of rule attributes below:

rule "my rule"
 salience 42
 agenda-group "number-1"
when
 ...

8.10.1. Timer Attribute Example

This is what the timer attribute looks like:

timer(int: INITIAL_DELAY REPEAT_INTERVAL?)
timer(int: 30s)
timer(int: 30s 5m)

timer(cron: CRON_EXPRESSION)
timer(cron:* 0/15 * * * ?)

8.10.2. Timers

The following timers are available in Red Hat JBoss BRMS:

Interval

Interval (indicated by int:) timers follow the semantics of java.util.Timer objects, with an initial delay
and an optional repeat interval.

Cron

Cron (indicated by cron:) timers follow standard Unix cron expressions.

A rule controlled by a timer becomes active when it matches, and once for each individual match. Its
consequence is executed repeatedly, according to the timer’s settings. This stops as soon as the
condition doesn’t match any more.

Consequences are executed even after control returns from a call to fireUntilHalt. Moreover, the Engine
remains reactive to any changes made to the Working Memory. For instance, removing a fact that was
involved in triggering the timer rule’s execution causes the repeated execution to terminate, or inserting
a fact so that some rule matches will cause that rule to fire. But the Engine is not continually active, only
after a rule fires, for whatever reason. Thus, reactions to an insertion done asynchronously will not
happen until the next execution of a timer-controlled rule.

CHAPTER 8. WORKING WITH RULES

127

Disposing a session puts an end to all timer activity.

8.10.3. Cron Timer Example

This is what the Cron timer looks like:

rule "Send SMS every 15 minutes"
 timer (cron:* 0/15 * * * ?)
when
 $a : Alarm(on == true)
then
 channels["sms"].insert(new Sms($a.mobileNumber, "The alarm is still on");
end

8.10.4. Calendars

Calendars are used to control when rules can fire. Red Hat JBoss BRMS uses the Quartz calendar.

8.10.5. Quartz Calendar Example

This is what the Quartz calendar looks like:

Calendar weekDayCal = QuartzHelper.quartzCalendarAdapter(org.quartz.Calendar quartzCal)

8.10.6. Registering Calendar

Procedure: Task

1. Start a StatefulKnowledgeSession.

2. Use the following code to register the calendar:

ksession.getCalendars().set("weekday", weekDayCal);

3. If you wish to utilize the calendar and a timer together, use the following code:

rule "Weekdays are high priority"
 calendars "weekday"
 timer (int:0 1h)
when
 Alarm()
then
 send("priority high - we have an alarm”);
end

rule "Weekend are low priority"
 calendars "weekend"
 timer (int:0 4h)
when
 Alarm()

Red Hat JBoss BPM Suite 6.4 Development Guide

128

then
 send("priority low - we have an alarm”);
end

8.10.7. Left Hand Side

The Left Hand Side (LHS) is a common name for the conditional part of the rule. It consists of zero or
more conditional elements. If the LHS is empty, it will be considered as a condition element that is
always true and it will be activated once, when a new WorkingMemory session is created.

8.10.8. Conditional Elements

Conditional elements work on one or more patterns. The most common conditional element is and. It is
implicit when you have multiple patterns in the LHS of a rule that is not connected in any way.

8.10.9. Rule Without Conditional Element Example

This is what a rule without a conditional element looks like:

rule "no CEs"
when
 // empty
then
 ... // actions (executed once)
end

// The above rule is internally rewritten as:

rule "eval(true)"
when
 eval(true)
then
 ... // actions (executed once)
end

8.11. PATTERNS

A pattern element is the most important conditional element. It can potentially match on each fact that
is inserted in the working memory. A pattern contains constraints and has an optional pattern binding.

8.11.1. Pattern Example

This is what a pattern looks like:

rule "Two unconnected patterns"
when
 Pattern1()
 Pattern2()
then
 ... // actions
end

// The above rule is internally rewritten as:

CHAPTER 8. WORKING WITH RULES

129

rule "Two and connected patterns"
when
 Pattern1()
 and Pattern2()
then
 ... // actions
end

NOTE

An and cannot have a leading declaration binding. This is because a declaration can only
reference a single fact at a time, and when the and is satisfied it matches both facts.

8.11.2. Pattern Matching

A pattern matches against a fact of the given type. The type need not be the actual class of some fact
object. Patterns may refer to superclasses or even interfaces, thereby potentially matching facts from
many different classes. The constraints are defined inside parentheses.

8.11.3. Pattern Binding

Patterns can be bound to a matching object. This is accomplished using a pattern binding variable such
as $p.

8.11.4. Pattern Binding with Variable Example

This is what pattern binding using a variable looks like:

rule ...
when
 $p : Person()
then
 System.out.println("Person " + $p);
end

NOTE

The prefixed dollar symbol ($) is not mandatory.

8.11.5. Constraints

A constraint is an expression that returns true or false. For example, you can have a constraint that
states "five is smaller than six ".

8.12. ELEMENTS AND VARIABLES

8.12.1. Property Access on Java Beans (POJOs)

Any bean property can be used directly. A bean property is exposed using a standard Java bean getter: a
method getMyProperty() (or isMyProperty() for a primitive boolean) which takes no arguments and
return something.

Red Hat JBoss BPM Suite 6.4 Development Guide

130

Red Hat JBoss BRMS uses the standard JDK Introspector class to do this mapping, so it follows the
standard Java bean specification.

WARNING

Property accessors must not change the state of the object in a way that may
effect the rules. The rule engine effectively caches the results of its matching in
between invocations to make it faster.

8.12.2. POJO Example

This is what the bean property looks like:

Person(age == 50)

// this is the same as:
Person(getAge() == 50)

The age property

The age property is written as age in DRL instead of the getter getAge().

Property accessors

You can use property access (age) instead of getters explicitly (getAge()) because of performance
enhancements through field indexing.

8.12.3. Working with POJOs

Procedure: Task

1. Observe the example below:

2. To solve this, insert a fact that wraps the current date into working memory and update that fact
between fireAllRules as needed.

8.12.4. POJO Fallbacks

When working with POJOs, a fallback method is applied. If the getter of a property cannot be found, the
compiler will resort to using the property name as a method name and without arguments. Nested
properties are also indexed.

8.12.5. Fallback Example

This is what happens when a fallback is implemented:

public int getAge() {
 Date now = DateUtil.now(); // Do NOT do this.
 return DateUtil.differenceInYears(now, birthday);
}

CHAPTER 8. WORKING WITH RULES

131

Person(age == 50)

// If Person.getAge() does not exists, this falls back to:
Person(age() == 50)

This is what it looks like as a nested property:

Person(address.houseNumber == 50)

// this is the same as:
Person(getAddress().getHouseNumber() == 50)

WARNING

In a stateful session, care should be taken when using nested accessors as the
Working Memory is not aware of any of the nested values and does not know when
they change. Consider them immutable while any of their parent references are
inserted into the Working Memory. If you wish to modify a nested value you should
mark all of the outer facts as updated. In the above example, when the
houseNumber changes, any Person with that Address must be marked as
updated.

8.12.6. Java Expressions

Table 8.2. Java Expressions

Capability Example

You can use any Java expression that returns a
boolean as a constraint inside the parentheses of a
pattern. Java expressions can be mixed with other
expression enhancements, such as property access.

Person(age == 50)

You can change the evaluation priority by using
parentheses, as in any logic or mathematical
expression.

Person(age > 100 && (age % 10 == 0))

You can reuse Java methods.
Person(Math.round(weight / (height * height))
< 25.0)

Type coercion is always attempted if the field and
the value are of different types; exceptions will be
thrown if a bad coercion is attempted.

Person(age == "10") // "10" is coerced to 10

Red Hat JBoss BPM Suite 6.4 Development Guide

132

WARNING

Methods must not change the state of the object in a way that may affect the rules.
Any method executed on a fact in the LHS should be a read only method.

WARNING

The state of a fact should not change between rule invocations (unless those facts
are marked as updated to the working memory on every change):

Person(System.currentTimeMillis() % 1000 == 0) // Do NOT do this.

IMPORTANT

All operators have normal Java semantics except for == and !=.

The == operator has null-safe equals() semantics:

The != operator has null-safe !equals() semantics:

// Similar to: !java.util.Objects.equals(person.getFirstName(), "John")
Person(firstName != "John")

8.12.7. Comma-Separated Operators

The comma character (,) is used to separate constraint groups. It has implicit and connective semantics.

The comma operator is used at the top-level constraint as it makes them easier to read and the engine
will be able to optimize them.

8.12.8. Comma-Separated Operator Example

The following illustrates comma-separated scenarios in implicit and connective semantics:

// Person is at least 50 and weighs at least 80 kg.
Person(age > 50, weight > 80)

// Similar to: java.util.Objects.equals(person.getFirstName(), "John")
// so (because "John" is not null) similar to:
// "John".equals(person.getFirstName())
Person(firstName == "John")

CHAPTER 8. WORKING WITH RULES

133

// Person is at least 50, weighs at least 80 kg and is taller than 2 meter.
Person(age > 50, weight > 80, height > 2)

NOTE

The comma (,) operator cannot be embedded in a composite constraint expression, such
as parentheses.

8.12.9. Binding Variables

You can bind properties to variables in Red Hat JBoss BRMS. It allows for faster execution and
performance.

8.12.10. Binding Variable Examples

This is an example of a property bound to a variable:

// Two people of the same age:
Person($firstAge : age) // binding
Person(age == $firstAge) // constraint expression

NOTE

For backwards compatibility reasons, it’s allowed (but not recommended) to mix a
constraint binding and constraint expressions as such:

// Not recommended:
Person($age : age * 2 < 100)

// Recommended (separates bindings and constraint expressions):
Person(age * 2 < 100, $age : age)

8.12.11. Unification

You can unify arguments across several properties. While positional arguments are always processed
with unification, the unification symbol, :=, exists for named arguments.

8.12.12. Unification Example

This is what unifying two arguments looks like:

Person($age := age)
Person($age := age)

8.12.13. Options and Operators in Red Hat JBoss BRMS

Date literal

The date format dd-mmm-yyyy is supported by default. You can customize this by providing an
alternative date format mask as the System property named drools.dateformat. If more control is
required, use a restriction.

Red Hat JBoss BPM Suite 6.4 Development Guide

134

List and Map access

You can directly access a List value by index.

Value key

You can directly access a Map value by key.

// Same as credentialMap.get("jsmith").isValid()
Person(credentialMap["jsmith"].valid)

Abbreviated combined relation condition

This allows you to place more than one restriction on a field using the restriction connectives && or
\|\|. Grouping via parentheses is permitted, resulting in a recursive syntax pattern.

// Simple abbreviated combined relation condition using a single &&
Person(age > 30 && < 40)

// Complex abbreviated combined relation using groupings
Person(age ((> 30 && < 40) \|\| (> 20 && < 25)))

// Mixing abbreviated combined relation with constraint connectives
Person(age > 30 && < 40 \|\| location == "london")

Operators

Operators can be used on properties with natural ordering. For example, for Date fields, < means
before, for String fields, it means alphabetically lower.

Person(firstName < $otherFirstName)

Person(birthDate < $otherBirthDate)

Operator matches

Matches a field against any valid Java regular expression. Typically that regexp is a string literal, but
variables that resolve to a valid regexp are also allowed. It only applies on String properties. Using
matches against a null value always evaluates to false.

Cheese(type matches "(Buffalo)?\\S*Mozarella")

Operator not matches

The operator returns true if the String does not match the regular expression. The same rules apply
as for the matches operator. It only applies on String properties.

Cheese(type not matches "(Buffulo)?\\S*Mozarella")

Cheese(bestBefore < "27-Oct-2009")

// Same as childList(0).getAge() == 18
Person(childList[0].age == 18)

CHAPTER 8. WORKING WITH RULES

135

The operator contains

The operator contains is used to check whether a field that is a Collection or array and contains the
specified value. It only applies on Collection properties.

CheeseCounter(cheeses contains "stilton") // contains with a String literal
CheeseCounter(cheeses contains $var) // contains with a variable

The operator not contains

The operator not contains is used to check whether a field that is a Collection or array and does not
contain the specified value. It only applies on Collection properties.

CheeseCounter(cheeses not contains "cheddar") // not contains with a String literal
CheeseCounter(cheeses not contains $var) // not contains with a variable

The operator memberOf

The operator memberOf is used to check whether a field is a member of a collection or array; that
collection must be a variable.

CheeseCounter(cheese memberOf $matureCheeses)

The operator not memberOf

The operator not memberOf is used to check whether a field is not a member of a collection or array.
That collection must be a variable.

CheeseCounter(cheese not memberOf $matureCheeses)

The operator soundslike

This operator is similar to matches, but it checks whether a word has almost the same sound (using
English pronunciation) as the given value.

// match cheese "fubar" or "foobar"
Cheese(name soundslike 'foobar')

The operator str

The operator str is used to check whether a field that is a String starts with or ends with a certain
value. It can also be used to check the length of the String.

Message(routingValue str[startsWith] "R1")

Message(routingValue str[endsWith] "R2")

Message(routingValue str[length] 17)

Compound Value Restriction

Compound value restriction is used where there is more than one possible value to match. Currently
only the in and not in evaluators support this. The second operand of this operator must be a
comma-separated list of values, enclosed in parentheses. Values may be given as variables, literals,
return values or qualified identifiers. Both evaluators are actually syntactic sugar, internally rewritten
as a list of multiple restrictions using the operators != and ==.

Red Hat JBoss BPM Suite 6.4 Development Guide

136

Person($cheese : favouriteCheese)
Cheese(type in ("stilton", "cheddar", $cheese))

Inline Eval Operator (deprecated)

An inline eval constraint can use any valid dialect expression as long as it results to a primitive
boolean. The expression must be constant over time. Any previously bound variable, from the current
or previous pattern, can be used; autovivification is also used to auto-create field binding variables.
When an identifier is found that is not a current variable, the builder looks to see if the identifier is a
field on the current object type, if it is, the field binding is auto-created as a variable of the same
name. This is called autovivification of field variables inside of inline eval’s.

Person(girlAge : age, sex = "F")
Person(eval(age == girlAge + 2), sex = 'M') // eval() is actually obsolete in this example

8.12.14. Operator Precedence

Table 8.3. Operator Precedence

Operator Type Operators Notes

(nested) property access . Not normal Java semantics.

List/Map access [] Not normal Java semantics.

constraint binding : Not normal Java semantics.

multiplicative * /%

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == != Does not use normal Java (not) same
semantics: uses (not) equals semantics
instead.

non-short circuiting AND &

non-short circuiting
exclusive OR

^

non-short circuiting inclusive
OR

|

logical AND &&

CHAPTER 8. WORKING WITH RULES

137

logical OR ||

ternary ? :

comma-separated AND , Not normal Java semantics.

Operator Type Operators Notes

8.12.15. Fine Grained Property Change Listeners

This feature allows the pattern matching to only react to modification of properties actually constrained
or bound inside of a given pattern. This helps with performance and recursion and avoid artificial object
splitting.

NOTE

By default this feature is off in order to make the behavior of the rule engine backward
compatible with the former releases. When you want to activate it on a specific bean you
have to annotate it with @propertyReactive.

8.12.16. Fine Grained Property Change Listener Example

DRL example

declare Person
 @propertyReactive
 firstName : String
 lastName : String
end

Java class example

@PropertyReactive
 public static class Person {
 private String firstName;
 private String lastName;
 }

8.12.17. Working with Fine Grained Property Change Listeners

Using these listeners means you do not need to implement the no-loop attribute to avoid an infinite
recursion. The engine recognizes that the pattern matching is done on the property while the RHS of
the rule modifies other the properties. On Java classes, you can also annotate any method to say that its
invocation actually modifies other properties.

8.12.18. Using Patterns with @watch

Annotating a pattern with @watch allows you to modify the inferred set of properties for which that
pattern will react. The properties named in the @watch annotation are added to the ones automatically
inferred. You can explicitly exclude one or more of them by beginning their name with a ! and to make

Red Hat JBoss BPM Suite 6.4 Development Guide

138

the pattern to listen for all or none of the properties of the type used in the pattern respectively with the
wildcards * and !*.

8.12.19. @watch Example

This is the @watch annotation in a rule’s LHS:

// Listens for changes on both firstName (inferred) and lastName:
Person(firstName == $expectedFirstName) @watch(lastName)

// Listens for all the properties of the Person bean:
Person(firstName == $expectedFirstName) @watch(*)

// Listens for changes on lastName and explicitly exclude firstName:
Person(firstName == $expectedFirstName) @watch(lastName, !firstName)

// Listens for changes on all the properties except the age one:
Person(firstName == $expectedFirstName) @watch(*, !age)

NOTE

Since it does not make sense to use this annotation on a pattern using a type not
annotated with @PropertyReactive the rule compiler will raise a compilation error if you
try to do so. Also the duplicated usage of the same property in @watch (for example like
in: @watch(firstName, ! firstName)) will end up in a compilation error.

8.12.20. Using @PropertySpecificOption

You can enable @watch by default or completely disallow it using the on option of the
KnowledgeBuilderConfiguration. This new PropertySpecificOption can have one of the following 3
values:

DISABLED: the feature is turned off and all the other related annotations are just ignored.

ALLOWED: this is the default behavior: types are not property reactive unless they are not
annotated with @PropertySpecific.

ALWAYS: all types are property reactive by default.

Alternatively, you can use the drools.propertySpecific system property. For example, if you use Red
Hat JBoss EAP, add the property into EAP_HOME/standalone/configuration/standalone.xml:

8.12.21. Basic Conditional Elements

and

The conditional element and is used to group other conditional elements into a logical conjunction.

<system-properties>
 ...
 <property name="drools.propertySpecific" value="DISABLED"/>
 ...
</system-properties>

CHAPTER 8. WORKING WITH RULES

139

The conditional element and is used to group other conditional elements into a logical conjunction.
Red Hat JBoss BRMS supports both prefix and and infix and. It supports explicit grouping with
parentheses. You can also use traditional infix and prefix and.

//infixAnd
Cheese(cheeseType : type) and Person(favouriteCheese == cheeseType)

//infixAnd with grouping
(Cheese(cheeseType : type) and (Person(favouriteCheese == cheeseType) or
Person(favouriteCheese == cheeseType))

Prefix and is also supported:

(and Cheese(cheeseType : type) Person(favouriteCheese == cheeseType))

The root element of the LHS is an implicit prefix and and does not need to be specified:

when
 Cheese(cheeseType : type)
 Person(favouriteCheese == cheeseType)
then
 ...

or

This is a shortcut for generating two or more similar rules. Red Hat JBoss BRMS supports both prefix
or and infix or. You can use traditional infix, prefix and explicit grouping parentheses.

//infixOr
Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)

//infixOr with grouping
(Cheese(cheeseType : type) or
 (Person(favouriteCheese == cheeseType) and
 Person(favouriteCheese == cheeseType))

(or Person(sex == "f", age > 60)
 Person(sex == "m", age > 65)

Allows for optional pattern binding. Each pattern must be bound separately.

pensioner : (Person(sex == "f", age > 60) or Person(sex == "m", age > 65))

(or pensioner : Person(sex == "f", age > 60)
 pensioner : Person(sex == "m", age > 65))

not

This checks to ensure an object specified as absent is not included in the Working Memory. It may be
followed by parentheses around the condition elements it applies to. In a single pattern you can omit
the parentheses.

// Brackets are optional:

Red Hat JBoss BPM Suite 6.4 Development Guide

140

not Bus(color == "red")
// Brackets are optional:
not (Bus(color == "red", number == 42))
// "not" with nested infix and - two patterns,
// brackets are requires:
not (Bus(color == "red") and
 Bus(color == "blue"))

exists

This checks the working memory to see if a specified item exists. The keyword exists must be
followed by parentheses around the CEs that it applies to. In a single pattern you can omit the
parentheses.

exists Bus(color == "red")
// brackets are optional:
exists (Bus(color == "red", number == 42))
// "exists" with nested infix and,
// brackets are required:
exists (Bus(color == "red") and
 Bus(color == "blue"))

NOTE

The behavior of the Conditional Element or is different from the connective || for
constraints and restrictions in field constraints. The engine cannot interpret the
Conditional Element or. Instead, a rule with or is rewritten as a number of subrules. This
process ultimately results in a rule that has a single or as the root node and one subrule
for each of its CEs. Each subrule can activate and fire like any normal rule; there is no
special behavior or interaction between these subrules.

8.12.22. Conditional Element forall

This element evaluates to true when all facts that match the first pattern match all the remaining
patterns. It is a scope delimiter. Therefore, it can use any previously bound variable, but no variable
bound inside it will be available for use outside of it.

forall can be nested inside other CEs. For instance, forall can be used inside a not CE. Only single
patterns have optional parentheses, so with a nested forall parentheses must be used.

8.12.23. forall Examples

Evaluating to true

rule "All English buses are red"
when
 forall($bus : Bus(type == 'english')
 Bus(this == $bus, color = 'red'))
then
 // all English buses are red
end

Single pattern forall

CHAPTER 8. WORKING WITH RULES

141

rule "All buses are red"
when
 forall(Bus(color == 'red'))
then
 // all Bus facts are red
end

Multi-pattern forall

rule "All employees have health and dental care programs"
when
 forall($emp : Employee()
 HealthCare(employee == $emp)
 DentalCare(employee == $emp))
then
 // all employees have health and dental care
end

Nested forall

rule "Not all employees have health and dental care"
when
 not (forall($emp : Employee()
 HealthCare(employee == $emp)
 DentalCare(employee == $emp)))
then
 // not all employees have health and dental care
end

8.12.24. Conditional Element from

The conditional element from enables users to specify an arbitrary source for data to be matched by
LHS patterns. This allows the engine to reason over data not in the Working Memory. The data source
could be a sub-field on a bound variable or the results of a method call. It is a powerful construction that
allows out of the box integration with other application components and frameworks. One common
example is the integration with data retrieved on-demand from databases using hibernate named
queries.

The expression used to define the object source is any expression that follows regular MVEL syntax.
Therefore, it allows you to easily use object property navigation, execute method calls and access maps
and collections elements.

IMPORTANT

Red Hat JBoss BPM Suite 6.4 Development Guide

142

IMPORTANT

Using from with lock-on-active rule attribute can result in rules not being fired.

There are several ways to address this issue:

Avoid the use of from when you can assert all facts into working memory or use
nested object references in your constraint expressions (shown below).

Place the variable assigned used in the modify block as the last sentence in your
condition (LHS).

Avoid the use of lock-on-active when you can explicitly manage how rules within
the same rule-flow group place activations on one another.

8.12.25. from Examples

Reasoning and binding on patterns

rule "Validate zipcode"
when
 Person($personAddress : address)
 Address(zipcode == "23920W") from $personAddress
then
 // zip code is ok
end

Using a graph notation

rule "Validate zipcode"
when
 $p : Person()
 $a : Address(zipcode == "23920W") from $p.address
then
 // zip code is ok
end

Iterating over all objects

rule "Apply 10% discount to all items over US$ 100,00 in an order"
when
 $order : Order()
 $item : OrderItem(value > 100) from $order.items
then
 // apply discount to $item
end

Use with lock-on-active

rule "Assign people in North Carolina (NC) to sales region 1"
ruleflow-group "test"
lock-on-active true
when
 $p : Person(address.state == "NC")

CHAPTER 8. WORKING WITH RULES

143

then
 modify ($p) {} // Assign person to sales region 1 in a modify block
end

rule "Apply a discount to people in the city of Raleigh"
ruleflow-group "test"
lock-on-active true
when
 $p : Person(address.city == "Raleigh")
then
 modify ($p) {} //Apply discount to person in a modify block
end

8.12.26. Conditional Element collect

The conditional element collect allows rules to reason over a collection of objects obtained from the
given source or from the working memory. In First Oder Logic terms this is the cardinality quantifier.

The result pattern of collect can be any concrete class that implements the java.util.Collection
interface and provides a default no-arg public constructor. You can use Java collections like ArrayList,
LinkedList and HashSet or your own class, as long as it implements the java.util.Collection interface
and provide a default no-arg public constructor.

Variables bound before the collect CE are in the scope of both source and result patterns and therefore
you can use them to constrain both your source and result patterns. Any binding made inside collect is
not available for use outside of it.

8.12.27. Conditional Element accumulate

The conditional element accumulate is a more flexible and powerful form of the collect element and
allows a rule to iterate over a collection of objects while executing custom actions for each of the
elements. The accumulate element returns a result object.

The element accumulate supports the use of predefined accumulate functions, as well as the use of
inline custom code. However, using inline custom code is not recommended, as it is harder to maintain
and might lead to code duplication. On the other hand, accumulate functions are easier to test and
reuse.

The conditional element accumulate supports multiple different syntaxes. The preferred is the top-
level syntax (as noted below), but all other syntaxes are supported as well for backward compatibility.

Top-Level accumulate Syntax
The top-level accumulate syntax is the most compact and flexible. The simplified syntax is as follows:

accumulate(SOURCE_PATTERN ; FUNCTIONS [;CONSTRAINTS])

Example 8.2. Top-Level accumulate Syntax Example

rule "Raise Alarm"
when
 $s : Sensor()
 accumulate(Reading(sensor == $s, $temp : temperature);
 $min : min($temp),
 $max : max($temp),

Red Hat JBoss BPM Suite 6.4 Development Guide

144

 $avg : average($temp);
 $min < 20, $avg > 70)
then
 // raise the alarm
end

In the example above, min, max, and average are accumulate functions that calculate the minimum,
maximum, and average temperature values over all the readings for each sensor.

Built-in accumulate Functions
Only user-defined custom accumulate functions have to be explicitly imported. The following
accumulate functions are imported automatically by the engine:

average

min

max

count

sum

collectList

collectSet

These common functions accept any expression as an input. For instance, if you want to calculate an
average profit on all items of an order, you can write a rule using the average function as follows:

rule "Average Profit"
when
 $order : Order()
 accumulate(
 OrderItem(order == $order, $cost : cost, $price : price);
 $avgProfit : average(1 - $cost / $price))
then
 // average profit for $order is $avgProfit
end

Accumulate Functions Pluggability
Accumulate functions are all pluggable; if needed, custom and domain-specific functions can be easily
added to the engine and rules can start to use them without any restrictions.

To implement a new accumulate function, create a Java class that implements the
org.kie.api.runtime.rule.AccumulateFunction interface. To use the function in the rules, import it
using the import accumulate statement:

import accumulate CLASS_NAME FUNCTION_NAME

Example 8.3. Importing and Using Custom Accumulate Function

import accumulate some.package.VarianceFunction variance

CHAPTER 8. WORKING WITH RULES

145

rule "Calculate Variance"
when
 accumulate(Test($s : score), $v : variance($s))
then
 // variance of the test scores is $v
end

Example 8.4. Implementation of average Function

As an example of an accumulate function, see the following implementation of the average function:

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.io.Serializable;

import org.kie.api.runtime.rule.AccumulateFunction;

/**
 * Implementation of an accumulator capable of calculating average values.
 */
public class AverageAccumulateFunction implements AccumulateFunction {

 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {}

 public void writeExternal(ObjectOutput out) throws IOException {}

 public static class AverageData implements Externalizable {
 public int count = 0;
 public double total = 0;

 public AverageData() {}

 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
 count = in.readInt();
 total = in.readDouble();
 }

 public void writeExternal(ObjectOutput out) throws IOException {
 out.writeInt(count);
 out.writeDouble(total);
 }
 }

 /* (non-Javadoc)
 * @see org.kie.base.accumulators.AccumulateFunction#createContext()
 */
 public Serializable createContext() {
 return new AverageData();
 }

 /* (non-Javadoc)
 * @see org.kie.base.accumulators.AccumulateFunction#init(java.lang.Object)

Red Hat JBoss BPM Suite 6.4 Development Guide

146

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies. If you use
Red Hat JBoss BRMS, see Embedded Drools Engine Dependencies.

Alternative Syntax
Previous accumulate syntaxes are still supported for backward compatibility.

 */
 public void init(Serializable context) throws Exception {
 AverageData data = (AverageData) context;
 data.count = 0;
 data.total = 0;
 }

 /* (non-Javadoc)
 * @see org.kie.base.accumulators.AccumulateFunction#accumulate(java.lang.Object,
 * java.lang.Object)
 */
 public void accumulate(Serializable context, Object value) {
 AverageData data = (AverageData) context;
 data.count++;
 data.total += ((Number) value).doubleValue();
 }

 /* (non-Javadoc)
 * @see org.kie.base.accumulators.AccumulateFunction#reverse(java.lang.Object,
 * java.lang.Object)
 */
 public void reverse(Serializable context, Object value) throws Exception {
 AverageData data = (AverageData) context;
 data.count--;
 data.total -= ((Number) value).doubleValue();
 }

 /* (non-Javadoc)
 * @see org.kie.base.accumulators.AccumulateFunction#getResult(java.lang.Object)
 */
 public Object getResult(Serializable context) throws Exception {
 AverageData data = (AverageData) context;
 return new Double(data.count == 0 ? 0 : data.total / data.count);
 }

 /* (non-Javadoc)
 * @see org.kie.base.accumulators.AccumulateFunction#supportsReverse()
 */
 public boolean supportsReverse() {
 return true;
 }

 /**
 * {@inheritDoc}
 */
 public Class< ? > getResultType() {
 return Number.class;
 }
}

CHAPTER 8. WORKING WITH RULES

147

In case the rule uses a single accumulate function on a given accumulate element, you can add a pattern
for the result object and use the from keyword to link it to the accumulate result. See the following
example:

Example 8.5. Rule with Alternative Syntax

rule "Apply 10% Discount on Orders over US $100.00"
when
 $order : Order()
 $total : Number(doubleValue > 100)
 from accumulate(OrderItem(order == $order, $value : value), sum($value))
then
 # apply discount on $order
end

In this example, the element accumulate uses only one function – sum. In this case, it is possible to write
a pattern for the result type of the accumulate function with the constraints inside.

IMPORTANT

Note that it is not possible to use both the return type and the function binding in the
same accumulate statement.

accumulate with Inline Custom Code
Instead of using the accumulate functions, you can define inline custom code.

WARNING

The use of accumulate with inline custom code is not recommended. It is difficult to
maintain and test the rules, as well as reuse the code. Implementing your own
accumulate functions allows you to test and use them easily.

The general syntax of the accumulate with inline custom code is as follows:

RESULT_PATTERN from accumulate(
 SOURCE_PATTERN,
 init(INIT_CODE),
 action(ACTION_CODE),
 reverse(REVERSE_CODE),
 result(RESULT_EXPRESSION))

RESULT_PATTERN

A regular pattern that the engine tries to match against the object returned from the
RESULT_EXPRESSION.
If the attempt succeeds, the accumulate conditional element returns true and the engine proceeds
with an evaluation of the next conditional element in the rule. In the second case, accumulate returns
false and the engine stops evaluating conditional elements for this rule.

Red Hat JBoss BPM Suite 6.4 Development Guide

148

SOURCE_PATTERN

A regular pattern that the engine tries to match against each of the source objects.

INIT_CODE

A semantic block of code in the selected dialect that is executed once for each tuple before iterating
over the source objects.

ACTION_CODE

A semantic block of code in the selected dialect that is executed for each of the source objects.

REVERSE_CODE

An optional semantic block of code in the selected dialect that is executed for each source object
that no longer matches the source pattern.
The objective of this code block is to undo any calculation done in the ACTION_CODE block, so that
the engine can do decremental calculation when a source object is modified or retracted. This
significantly improves the performance of these operations.

RESULT_EXPRESSION

A semantic expression in the selected dialect that is executed after all source objects are iterated.

Example 8.6. Example of Inline Custom Code

rule "Apply 10% Discount on Orders over US $100.00"
when
 $order : Order()
 $total : Number(doubleValue > 100)
 from accumulate(OrderItem(order == $order, $value : value),
 init(double total = 0;),
 action(total += $value;),
 reverse(total -= $value;),
 result(total))
then
 # apply discount on $order
end

In this example, the engine executes the INIT_CODE for each Order in the working memory, initializing
the total variable to zero. The engine then iterates over all OrderItem objects for that Order, executing
the action for each one. After the iteration, the engine returns the value corresponding to the
RESULT_EXPRESSION (in this case, a value of the total variable). Finally, the engine tries to match the
result with the Number pattern. If the doubleValue is greater than 100, the rule fires.

The example is using Java programming language as a semantic dialect. In this case, a semicolon as a
statement delimiter is mandatory in the init, action, and reverse code blocks. However, since the result
is an expression, it does not require a semicolon. If you want to use any other dialect, note that you have
to observe the principles of its specific syntax.

Custom Objects
The accumulate conditional element can be used to execute any action on source objects. The
following example instantiates and populates a custom object:

Example 8.7. Instantiating Custom Objects

rule "accumulate Using Custom Objects"
when

CHAPTER 8. WORKING WITH RULES

149

 $person : Person($likes : likes)
 $cheesery : Cheesery(totalAmount > 100)
 from accumulate($cheese : Cheese(type == $likes),
 init(Cheesery cheesery = new Cheesery();),
 action(cheesery.addCheese($cheese);),
 reverse(cheesery.removeCheese($cheese);),
 result(cheesery));
then
 // do something
end

8.12.28. Conditional Element eval

The conditional element eval is essentially a catch-all which allows any semantic code (that returns a
primitive boolean) to be executed. This code can refer to variables that were bound in the LHS of the
rule, and functions in the rule package. Overuse of eval reduces the declarativeness of your rules and
can result in a poorly performing engine. While eval can be used anywhere in the patterns, the best
practice is to add it as the last conditional element in the LHS of a rule.

Evals cannot be indexed and thus are not as efficient as field constraints. However this makes them ideal
for being used when functions return values that change over time, which is not allowed within field
constraints.

8.12.29. eval Conditional Element Examples

This is what eval looks like in use:

p1 : Parameter()
p2 : Parameter()
eval(p1.getList().containsKey(p2.getItem()))

p1 : Parameter()
p2 : Parameter()
// call function isValid in the LHS
eval(isValid(p1, p2))

8.12.30. Right Hand Side

The Right Hand Side (RHS) is a common name for the consequence part of a rule. The main purpose of
the RHS is to insert, retract (delete), or modify working memory data. The RHS usually contains a list of
actions to be executed and should be kept small, thus keeping it declarative and readable.

NOTE

In case you need imperative or conditional code in the RHS, divide the rule into more
rules.

8.12.31. RHS Convenience Methods

See the following list of the RHS convenience methods:

update(OBJECT, HANDLE);

Red Hat JBoss BPM Suite 6.4 Development Guide

150

update(OBJECT);

insert(OBJECT);

insertLogical(OBJECT);

retract(HANDLE);

For more information, see Section 8.2.1, “Accessing Working Memory” .

8.12.32. Convenience Methods Using Drools Variable

The call drools.halt() terminates rule execution immediately. This is required for returning
control to the point whence the current session was put to work with fireUntilHalt().

Methods insert(Object o), update(Object o) and retract(Object o) can be called on drools as
well, but due to their frequent use they can be called without the object reference.

drools.getWorkingMemory() returns the WorkingMemory object.

drools.setFocus(String s) sets the focus to the specified agenda group.

drools.getRule().getName(), called from a rule’s RHS, returns the name of the rule.

drools.getTuple() returns the Tuple that matches the currently executing rule, and
drools.getActivation() delivers the corresponding Activation. (These calls are useful for logging
and debugging purposes.)

8.12.33. Convenience Methods Using kcontext Variable

The call kcontext.getKieRuntime().halt() terminates rule execution immediately.

The accessor getAgenda() returns a reference to the session’s Agenda, which in turn provides
access to the various rule groups: activation groups, agenda groups, and rule flow groups. A
fairly common paradigm is the activation of some agenda group, which could be done with the
lengthy call:

You can achieve the same using drools.setFocus("CleanUp").

To run a query, you call getQueryResults(String query), whereupon you may process the
results.

A set of methods dealing with event management lets you add and remove event listeners for
the Working Memory and the Agenda.

Method getKieBase() returns the KieBase object, the backbone of all the Knowledge in your
system, and the originator of the current session.

You can manage globals with setGlobal(…), getGlobal(…) and getGlobals().

Method getEnvironment() returns the runtime’s Environment.

8.12.34. Modify Statement

// Give focus to the agenda group CleanUp:
kcontext.getKieRuntime().getAgenda().getAgendaGroup("CleanUp").setFocus();

CHAPTER 8. WORKING WITH RULES

151

modify

This provides a structured approach to fact updates. It combines the update operation with a number
of setter calls to change the object’s fields.

modify (FACT_EXPRESSION)
{
 EXPRESSION [, EXPRESSION]*
}

The parenthesized FACT_EXPRESSION must yield a fact object reference. The expression list in the
block should consist of setter calls for the given object, to be written without the usual object
reference, which is automatically prepended by the compiler.

rule "Modify stilton"
when
 $stilton : Cheese(type == "stilton")
then
 modify($stilton){
 setPrice(20),
 setAge("overripe")
 }
end

8.12.35. Query Examples

NOTE

To return the results use ksession.getQueryResults("name"), where "name" is the
query’s name. This returns a list of query results, which allow you to retrieve the objects
that matched the query.

Query for people over the age of 30

query "People over the age of 30"
 person : Person(age > 30)
end

Query for people over the age of X, and who live in Y

query "People over the age of x" (int x, String y)
 person : Person(age > x, location == y)
end

8.12.36. QueryResults Example

We iterate over the returned QueryResults using a standard for loop. Each element is a
QueryResultsRow which we can use to access each of the columns in the tuple. These columns can be
accessed by bound declaration name or index position:

QueryResults results = ksession.getQueryResults("people over the age of 30");

Red Hat JBoss BPM Suite 6.4 Development Guide

152

8.12.37. Queries Calling Other Queries

Queries can call other queries. This combined with optional query arguments provides derivation query
style backward chaining. Positional and named syntax is supported for arguments. It is also possible to
mix both positional and named, but positional must come first, separated by a semi colon. Literal
expressions can be passed as query arguments, but you cannot mix expressions with variables.

NOTE

Using the ? symbol in this process means the query is pull only and once the results are
returned you will not receive further results as the underlying data changes.

8.12.38. Queries Calling Other Queries Example

Query calling another query

declare Location
 thing : String
 location : String
end

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and ?isContainedIn(x, z;))
end

Using live queries to reactively receive changes over time from query results

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

rule look when
 Person($l : likes)
 isContainedIn($l, 'office';)
then
 insertLogical($l 'is in the office');
end

8.12.39. Unification for Derivation Queries

System.out.println("we have " + results.size() + " people over the age of 30");

System.out.println("These people are are over 30:");

for (QueryResultsRow row : results) {
 Person person = (Person) row.get("person");
 System.out.println(person.getName() + "\n");
}

CHAPTER 8. WORKING WITH RULES

153

Red Hat JBoss BRMS supports unification for derivation queries. This means that arguments are
optional. It is possible to call queries from Java leaving arguments unspecified using the static field
org.drools.runtime.rule.Variable.v. You must use v and not an alternative instance of Variable. These
are referred to as out arguments.

NOTE

The query itself does not declare at compile time whether an argument is in or an out.
This can be defined purely at runtime on each use.

8.13. SEARCHING WORKING MEMORY USING QUERY

8.13.1. Queries

Queries are used to retrieve fact sets based on patterns, as they are used in rules. Patterns may make
use of optional parameters. Queries can be defined in the Knowledge Base, from where they are called
up to return the matching results. While iterating over the result collection, any identifier bound in the
query can be used to access the corresponding fact or fact field by calling the get method with the
binding variable’s name as its argument. If the binding refers to a fact object, its FactHandle can be
retrieved by calling getFactHandle, again with the variable’s name as the parameter. Illustrated below is
a query example:

8.13.2. Live Queries

Invoking queries and processing the results by iterating over the returned set is not a good way to
monitor changes over time.

To alleviate this, Red Hat JBoss BRMS provides live queries, which have a listener attached instead of
returning an iterable result set. These live queries stay open by creating a view and publishing change
events for the contents of this view. To activate, start your query with parameters and listen to changes
in the resulting view. The dispose method terminates the query and discontinues this reactive scenario.

8.13.3. ViewChangedEventListener Implementation Example

QueryResults results = ksession.getQueryResults("my query", new Object[] {"string"});
for (QueryResultsRow row : results) {
 System.out.println(row.get("varName"));
}

final List updated = new ArrayList();
final List removed = new ArrayList();
final List added = new ArrayList();

ViewChangedEventListener listener = new ViewChangedEventListener() {
 public void rowUpdated(Row row) {
 updated.add(row.get("$price"));
 }

 public void rowRemoved(Row row) {
 removed.add(row.get("$price"));
 }

 public void rowAdded(Row row) {

Red Hat JBoss BPM Suite 6.4 Development Guide

154

NOTE

For an example of Glazed Lists integration for live queries, read the Glazed Lists
examples for Drools Live Querries article.

8.14. DOMAIN SPECIFIC LANGUAGES (DSLS)

Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to your
problem domain. A set of DSL definitions consists of transformations from DSL "sentences" to DRL
constructs, which lets you use of all the underlying rule language and engine features. You can write
rules in DSL rule (or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files and you can use any text editor to create and modify them. There
are also DSL and DSLR editors you can use, both in the IDE as well as in the web based BRMS, although
they may not provide you with the full DSL functionality.

8.14.1. DSL Editor

The DSL editor provides a tabular view of the mapping of Language to Rule Expressions. The Language
Expression feeds the content assistance for the rule editor so that it can suggest Language Expressions
from the DSL configuration. The rule editor loads the DSL configuration when the rule resource is
loaded for editing.

NOTE

DSL feature is useful for simple use cases for non technical users to easily define rules
based on sentence snippets. For more complex use cases, we recommend you to use
other advanced features like decision tables and DRL rules, that are more expressive and
flexible.

8.14.2. Using DSLs

DSLs can serve as a layer of separation between rule authoring (and rule authors) and the technical
intricacies resulting from the modeling of domain object and the rule engine’s native language and
methods. A DSL hides implementation details and focuses on the rule logic proper. DSL sentences can
also act as "templates" for conditional elements and consequence actions that are used repeatedly in
your rules, possibly with minor variations. You may define DSL sentences as being mapped to these
repeated phrases, with parameters providing a means for accommodating those variations.

8.14.3. DSL Example

[when]Something is {colour}=Something(colour=="{colour}")

[when] indicates the scope of the expression (that is, whether it is valid for the LHS or the RHS of a

 added.add(row.get("$price"));
 }
}

// Open the LiveQuery:
LiveQuery query = ksession.openLiveQuery("cars", new Object[] {"sedan", "hatchback"}, listener);
...
query.dispose() // calling dispose to terminate the live query

CHAPTER 8. WORKING WITH RULES

155

http://blog.athico.com/2010/07/glazed-lists-examples-for-drools-live.html

[when] indicates the scope of the expression (that is, whether it is valid for the LHS or the RHS of a
rule).

The part after the bracketed keyword is the expression that you use in the rule.

The part to the right of the equal sign (=) is the mapping of the expression into the rule language. The
form of this string depends on its destination, RHS or LHS. If it is for the LHS, then it ought to be a term
according to the regular LHS syntax; if it is for the RHS then it might be a Java statement.

8.14.4. About DSL Parser

Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in the
DSL definition, it performs three steps of string manipulation:

The DSL extracts the string values appearing where the expression contains variable names in
brackets.

The values obtained from these captures are interpolated wherever that name occurs on the
right hand side of the mapping.

The interpolated string replaces whatever was matched by the entire expression in the line of
the DSL rule file.

NOTE

You can use (for instance) a ? to indicate that the preceding character is optional. One
good reason to use this is to overcome variations in natural language phrases of your
DSL. But, given that these expressions are regular expression patterns, this means that all
wildcard characters in Java’s pattern syntax have to be escaped with a preceding
backslash (\).

8.14.5. About DSL Compiler

The DSL compiler transforms DSL rule files line by line. If you do not wish for this to occur, ensure that
the captures are surrounded by characteristic text (words or single characters). As a result, the matching
operation done by the parser plucks out a substring from somewhere within the line. In the example
below, quotes are used as distinctive characters. The characters that surround the capture are not
included during interpolation, just the contents between them.

8.14.6. DSL Syntax Examples

Quotes

Use quotes for textual data that a rule editor may want to enter. You can also enclose the capture
with words to ensure that the text is correctly matched.

[when]something is "{color}"=Something(color=="{color}")
[when]another {state} thing=OtherThing(state=="{state}"

Braces

In a DSL mapping, the braces "{" and "}" should only be used to enclose a variable definition or
reference, resulting in a capture. If they should occur literally, either in the expression or within the
replacement text on the right hand side, they must be escaped with a preceding backslash (\).

[then]do something= if (foo) \{ doSomething(); \}

Red Hat JBoss BPM Suite 6.4 Development Guide

156

Mapping with correct syntax example

This is a comment to be ignored.
[when]There is a person with name of "{name}"=Person(name=="{name}")
[when]Person is at least {age} years old and lives in "{location}"=Person(age >= {age}, location=="
{location}")
[then]Log "{message}"=System.out.println("{message}");
[when]And = and

Expanded DSL example

There is a person with name of "Kitty"
 ==> Person(name="Kitty")
Person is at least 42 years old and lives in "Atlanta"
 ==> Person(age >= 42, location="Atlanta")
Log "boo"
 ==> System.out.println("boo");
There is a person with name of "Bob" and Person is at least 30 years old and lives in "Utah"
 ==> Person(name="Bob") and Person(age >= 30, location="Utah")

NOTE

If you are capturing plain text from a DSL rule line and want to use it as a string literal in
the expansion, you must provide the quotes on the right hand side of the mapping.

8.14.7. Chaining DSL Expressions

DSL expressions can be chained together one one line to be used at once. It must be clear where one
ends and the next one begins and where the text representing a parameter ends. Otherwise you risk
getting all the text until the end of the line as a parameter value. The DSL expressions are tried, one
after the other, according to their order in the DSL definition file. After any match, all remaining DSL
expressions are investigated, too.

8.14.8. Adding Constraints to Facts

Expressing LHS conditions

The DSL facility allows you to add constraints to a pattern by a simple convention: if your DSL
expression starts with a hyphen (minus character, -) it is assumed to be a field constraint and,
consequently, is is added to the last pattern line preceding it.
In the example, the class Cheese, has these fields: type, price, age, and country. You can express
some LHS condition in normal DRL.

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

DSL definitions

The DSL definitions given in this example result in three DSL phrases which may be used to create
any combination of constraint involving these fields.

[when]There is a Cheese with=Cheese()
[when]- age is less than {age}=age<{age}

CHAPTER 8. WORKING WITH RULES

157

[when]- type is '{type}'=type=='{type}'
[when]- country equal to '{country}'=country=='{country}'

-

The parser will pick up a line beginning with - and add it as a constraint to the preceding pattern,
inserting a comma when it is required.

There is a Cheese with
 - age is less than 42
 - type is 'stilton'

Cheese(age<42, type=='stilton')

Defining DSL phrases

Defining DSL phrases for various operators and even a generic expression that handles any field
constraint reduces the amount of DSL entries.

[when][]is less than or equal to=<=
[when][]is less than=<
[when][]is greater than or equal to=>=
[when][]is greater than=>
[when][]is equal to===
[when][]equals===
[when][]There is a Cheese with=Cheese()

DSL definition rule

There is a Cheese with
 - age is less than 42
 - rating is greater than 50
 - type equals 'stilton'

In this specific case, a phrase such as "is less than" is replaced by <, and then the line matches the last
DSL entry. This removes the hyphen, but the final result is still added as a constraint to the preceding
pattern. After processing all of the lines, the resulting DRL text is:

Cheese(age<42, rating > 50, type=='stilton')

NOTE

The order of the entries in the DSL is important if separate DSL expressions are intended
to match the same line, one after the other.

8.14.9. Tips for Developing DSLs

Write representative samples of the rules your application requires and test them as you
develop.

Rules, both in DRL and in DSLR, refer to entities according to the data model representing the
application data that should be subject to the reasoning process defined in rules.

Red Hat JBoss BPM Suite 6.4 Development Guide

158

Writing rules is easier if most of the data model’s types are facts.

Mark variable parts as parameters. This provides reliable leads for useful DSL entries.

You may postpone implementation decisions concerning conditions and actions during this first
design phase by leaving certain conditional elements and actions in their DRL form by prefixing
a line with a greater sign (">"). (This is also handy for inserting debugging statements.)

New rules can be written by reusing the existing DSL definitions, or by adding a parameter to an
existing condition or consequence entry.

Keep the number of DSL entries small. Using parameters lets you apply the same DSL sentence
for similar rule patterns or constraints.

8.14.10. DSL and DSLR Reference

A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file into a
file according to DRL syntax:

A line starting with # or // (with or without preceding white space) is treated as a comment. A
comment line starting with #/ is scanned for words requesting a debug option, see below.

Any line starting with an opening bracket ([) is assumed to be the first line of a DSL entry
definition.

Any other line is appended to the preceding DSL entry definition, with the line end replaced by a
space.

8.14.11. DSL Entry Description

A DSL entry consists of the following four parts:

1. A scope definition, written as one of the keywords when or condition, then or consequence, *
and keyword, enclosed in brackets ([and]). This indicates whether the DSL entry is valid for
the condition or the consequence of a rule, or both. A scope indication of keyword means that
the entry has global significance, that is, it is recognized anywhere in a DSLR file.

2. A type definition, written as a Java class name, enclosed in brackets. This part is optional unless
the next part begins with an opening bracket. An empty pair of brackets is valid, too.

3. A DSL expression consists of a (Java) regular expression, with any number of embedded
variable definitions, terminated by an equal sign (=). A variable definition is enclosed in braces ({
and }). It consists of a variable name and two optional attachments, separated by colons (:). If
there is one attachment, it is a regular expression for matching text that is to be assigned to the
variable. If there are two attachments, the first one is a hint for the GUI editor and the second
one the regular expression.
Note that all characters that are "magic" in regular expressions must be escaped with a
preceding backslash (\) if they should occur literally within the expression.

4. The remaining part of the line after the delimiting equal sign is the replacement text for any
DSLR text matching the regular expression. It may contain variable references, for example a
variable name enclosed in braces. Optionally, the variable name may be followed by an
exclamation mark (!) and a transformation function, see below.
Note that braces ({ and }) must be escaped with a preceding backslash (\) if they should occur
literally within the replacement string.

CHAPTER 8. WORKING WITH RULES

159

8.14.12. Debug Options for DSL Expansion

Table 8.4. Debug Options for DSL Expansion

Word Description

result Prints the resulting DRL text, with line numbers.

steps Prints each expansion step of condition and consequence lines.

keyword Dumps the internal representation of all DSL entries with scope keyword.

when Dumps the internal representation of all DSL entries with scope when or *.

then Dumps the internal representation of all DSL entries with scope then or *.

usage Displays a usage statistic of all DSL entries.

8.14.13. DSL Definition Example

This is what a DSL definition looks like:

Comment: DSL examples

#/ debug: display result and usage

keyword definition: replaces "regula" by "rule"
[keyword][]regula=rule

conditional element: "T" or "t", "a" or "an", convert matched word
[when][][Tt]here is an? {entity:\w+}=${entity!lc}: {entity!ucfirst} ()

consequence statement: convert matched word, literal braces
[then][]update {entity:\w+}=modify(${entity!lc})\{ \}

8.14.14. Transformation of DSLR File

The transformation of a DSLR file proceeds as follows:

1. The text is read into memory.

2. Each of the keyword entries is applied to the entire text. The regular expression from the
keyword definition is modified by replacing white space sequences with a pattern matching any
number of white space characters, and by replacing variable definitions with a capture made
from the regular expression provided with the definition, or with the default (.*?). Then, the
DSLR text is searched exhaustively for occurrences of strings matching the modified regular
expression. Substrings of a matching string corresponding to variable captures are extracted
and replace variable references in the corresponding replacement text, and this text replaces
the matching string in the DSLR text.

3. Sections of the DSLR text between when and then, and then and end, respectively, are located
and processed in a uniform manner, line by line, as described below.

For a line, each DSL entry pertaining to the line’s section is taken in turn, in the order it appears

Red Hat JBoss BPM Suite 6.4 Development Guide

160

For a line, each DSL entry pertaining to the line’s section is taken in turn, in the order it appears
in the DSL file. Its regular expression part is modified: white space is replaced by a pattern
matching any number of white space characters; variable definitions with a regular expression
are replaced by a capture with this regular expression, its default being .*?. If the resulting
regular expression matches all or part of the line, the matched part is replaced by the suitably
modified replacement text.

Modification of the replacement text is done by replacing variable references with the text
corresponding to the regular expression capture. This text may be modified according to the
string transformation function given in the variable reference; see below for details.

If there is a variable reference naming a variable that is not defined in the same entry, the
expander substitutes a value bound to a variable of that name, provided it was defined in one of
the preceding lines of the current rule.

4. If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted into
the last line, which should contain a pattern CE, that is, a type name followed by a pair of
parentheses. if this pair is empty, the expanded line (which should contain a valid constraint) is
simply inserted, otherwise a comma (,) is inserted beforehand.
If a DSLR line in a consequence is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a modify statement, ending in a pair of braces ({ and }). If
this pair is empty, the expanded line (which should contain a valid method call) is simply
inserted, otherwise a comma (,) is inserted beforehand.

NOTE

It is currently not possible to use a line with a leading hyphen to insert text into other
conditional element forms (for example accumulate) or it may only work for the first
insertion (for example eval).

8.14.15. String Transformation Functions

Table 8.5. String Transformation Functions

Name Description

uc Converts all letters to upper case.

lc Converts all letters to lower case.

ucfirst Converts the first letter to upper case, and all other letters to lower case.

num Extracts all digits and - from the string. If the last two digits in the original string
are preceded by . or ,, a decimal period is inserted in the corresponding position.

a?b/c Compares the string with string a, and if they are equal, replaces it with b,
otherwise with c. But c can be another triplet a, b, c, so that the entire structure is,
in fact, a translation table.

8.14.16. Stringing DSL Transformation Functions

.dsl

CHAPTER 8. WORKING WITH RULES

161

A file containing a DSL definition is customarily given the extension .dsl. It is passed to the
Knowledge Builder with ResourceType.DSL. For a file using DSL definition, the extension .dslr
should be used. The Knowledge Builder expects ResourceType.DSLR. The IDE, however, relies on
file extensions to correctly recognize and work with your rules file.

definitions for conditions
[when][]There is an? {entity}=${entity!lc}: {entity!ucfirst}()
[when][]- with an? {attr} greater than {amount}={attr} <= {amount!num}
[when][]- with a {what} {attr}={attr} {what!positive?>0/negative?%lt;0/zero?==0/ERROR}

DSL passing

The DSL must be passed to the Knowledge Builder ahead of any rules file using the DSL.
For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser.
Thus, the parser can "recognize" the DSL expressions and transform them into native rule language
expressions.

KnowledgeBuilder kBuilder = new KnowledgeBuilder();
Resource dsl = ResourceFactory.newClassPathResource(dslPath, getClass());
kBuilder.add(dsl, ResourceType.DSL);
Resource dslr = ResourceFactory.newClassPathResource(dslrPath, getClass());
kBuilder.add(dslr, ResourceType.DSLR);

Red Hat JBoss BPM Suite 6.4 Development Guide

162

CHAPTER 9. USING RED HAT JBOSS DEVELOPER STUDIO TO
CREATE AND TEST RULES

There are many ways to author rules in BRMS, however as a developer you would prefer an Integrated
Development Environment (IDE) such as Red Hat JBoss Developer Studio that offers you advanced
tooling and content assistance. Red Hat JBoss BRMS and Red Hat JBoss BPM Suite tooling are
compatible with Red Hat JBoss Developer Studio version 7 and above. The Red Hat JBoss Developer
Studio with Red Hat JBoss BPM Suite/BRMS plug-ins simplify your development tasks. These plug-ins
provide the following features:

Simple wizards for rule and project creation.

Content assistance for generating the basic rule structure. For example, If you open a .drl file in
the Red Hat JBoss Developer Studio editor and type ru, and press Ctrl+Space , the template
rule structure is created.

Syntax coloring.

Error highlighting.

IntelliSense code completion.

Outline view to display an outline of your structured rule project.

Debug perspective for rules and process debugging.

Rete tree view to display Rete network.

Editor for modifying business process diagram.

Support for unit testing using JUnit and TestNG.

9.1. RED HAT JBOSS DEVELOPER STUDIO DROOLS PERSPECTIVE

Red Hat JBoss Developer Studio comes with all the BRMS and BPM Suite plug-in requirements pre-
packaged with it. It offers the following perspectives:

Drools: allows you to work with Red Hat JBoss BRMS specific resources.

Business Central Repository Exploring.

jBPM: allows you to work with Red Hat JBoss BPM Suite resources.

9.2. RED HAT JBOSS BRMS RUNTIMES

A Drools runtime is a collection of JAR files on your file system that represent one specific release of
the Drools project JARs. While creating a new runtime, you must either point to the release of your
choice or create a new runtime on your file system from the jars included in the Drools plug-in. For
creating a new runtime, you need to specify a default Drools runtime for your Eclipse workspace, but
each individual project can override the default and select the appropriate runtime for that project
specifically. You can add as many Drools runtimes as you need. In order to use the Red Hat JBoss BRMS
plug-in with Red Hat JBoss Developer Studio, it is necessary to set up the runtime.

9.2.1. Defining a Red Hat JBoss BRMS Runtime

1. Extract the runtime JAR files located in the jboss-brms-engine.zip archive of the Red Hat

CHAPTER 9. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST RULES

163

1. Extract the runtime JAR files located in the jboss-brms-engine.zip archive of the Red Hat
JBoss BRMS 6.4.0 Core Engine ZIP archive available on the Red Hat Customer Portal.

2. From the Red Hat JBoss Developer Studio menu, click Window → Preferences.

3. Select Drools → Installed Drools Runtimes.

4. Click Add…, provide a name for the new runtime, and click Browse to navigate to the directory
where you extracted the runtime files in the first step. Click OK to register the selected runtime
in Red Hat JBoss Developer Studio.

5. Mark the runtime you have created as the default Drools runtime by clicking on the check box
next to it.

6. Click OK. If you already have projects in Red Hat JBoss Developer Studio, a dialog box will
indicate that you have to restart Red Hat JBoss Developer Studio to update the runtime.

9.2.2. Selecting a Runtime for Your Red Hat JBoss BRMS Project

Whenever you create a Drools project either by using the New Drools Project wizard or by converting an
existing Java project to a Drools project, the Drools plug-in automatically adds all the required JAR files
to the classpath of your project.

If you are creating a new Drools project, the plug-in uses the default Drools runtime for that project,
unless you specify a project-specific one.

To define a project-specific runtime, create a new Drools project and choose the desired runtime in the
final step of the New Drools Project wizard. Alternatively, you can create a new runtime by clicking
Manage Runtime Definitions.

9.2.3. Changing the Runtime of Your Red Hat JBoss BRMS Project

To change the runtime of a Drools project:

1. In the Drools perspective, right-click the project and select Properties.
The project properties dialog opens.

2. Navigate and select the Drools category.

3. Check the Enable project specific settings checkbox and select the appropriate runtime from
the drop-down box.
If you click the Configure workspace settings… link, the workspace preferences showing the
currently installed Drools runtimes opens. You can add new runtimes there if required. If you
uncheck the Enable project specific settings checkbox, it uses the default runtime as defined
in your global preferences.

4. Click OK.

9.2.4. Configuring the Red Hat JBoss BRMS Server

Red Hat JBoss Developer Studio can be configured to run the Red Hat JBoss BRMS\BPM Suite Server.

Configuring the Server

1. Open the Drools view by clicking Window → Open Perspective → Other and then Drools. Click
OK.

Red Hat JBoss BPM Suite 6.4 Development Guide

164

http://access.redhat.com

2. Add the Server view by clicking Window → Show View → Other… and then Server → Servers.

3. Open the server menu by right clicking the Servers panel. Click New → Server to add a new
server.

4. Define the server by selecting JBoss Enterprise Middleware → JBoss Enterprise Application
Platform 6.1+, and click Next.

5. Click JBoss EAP 6.4 Runtime and select Create new runtime (next page). Click Next.

6. Set the home directory by clicking Browse. Navigate to and select the installation directory for
Red Hat JBoss EAP 6.4 that has Red Hat JBoss BPM Suite installed.

7. Provide a name for the server in the Name field, make sure that the configuration file is set, and
click Finish.

9.3. EXPLORING RED HAT JBOSS BRMS APPLICATION

A BRMS project typically comprises the following:

Facts, which are a set of java class files, often POJOs.

Rules, which operate on the facts.

Drools library (JAR files) for executing the rules.

Red Hat JBoss Developer Studio helps you generate the getter and setter methods for attributes
automatically. When you create a BRMS or a BPM Suite project, the following directories are generated:

src/main/java that stores the class files (facts).

src/main/resources/rules that stores the .drl files (rules).

src/main/resources/process that stores the .bpmn files (processes).

9.4. CREATING A RED HAT JBOSS BRMS PROJECT

To create a new Red Hat JBoss BRMS project in the Drools perspective, do the following:

Procedure: Creating New Red Hat JBoss Developer Studio Project

1. In the main menu, click File → New → Project.

2. Click Drools → Drools Project and click Next.

3. For now, choose the second option. Red Hat JBoss Developer Studio will create a project with a
Red Hat JBoss BPM Suite example. Click Next.

4. Enter a name for the project into the Project name: text box and click Finish.

To test the project:

1. Navigate to the src/main/java directory and expand the com.sample package.

2. Right click the desired Java class and click Run As → Java Application.
The output will be displayed on the console tab.

CHAPTER 9. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST RULES

165

If you checked the default artifacts checkboxes in the Drools Project wizard, you can see the newly
created Drools project in the Package Explorer accordingly containing:

A sample rule Sample.drl in the src/main/resources/rules directory.

A sample process Sample.bpmn in the src/main/resources/process directory.

A sample decision table Sample.xls in the src/main/resources/dtables directory.

An example DroolsTest.java Java class in the src/main/java directory to execute the rules in
the Drools engine in the com.sample package.

An example ProcessTest.java Java class in the src/main/java directory to execute the rules in
the Drools engine in the com.sample package.

An example DecisionTableTest.java Java class in the src/main/java directory to execute the
rules in the Drools engine in the com.sample package.

9.5. USING TEXTUAL RULE EDITOR

In the Package Explorer, you can double-click your existing rule file to open it on a textual rule editor or
choose File → New → Rule Resource to create a new rule on the textual editor. The textual rule editor
has a pattern of a normal text editor and this is where you modify and manage your rules.

The textual rule editor works on files that have a .drl (or .rule) extension. Usually these contain related
rules, but it is also possible to have rules in individual files, grouped by being in the same package
namespace. These DRL files are plain text files. Even if your rule group is using a domain specific
language (DSL), the rules are still stored as plain text. This allows easy management of rules and
versions.

Textual editor provides features like:

Content assistance: The pop-up content assistance helps you quickly create rule attributes such
as functions, import statements, and package declarations. You can invoke pop-up content
assistance by pressing Ctrl+Space.

Code folding: Code Folding allows you to hide and show sections of a file use the icons with
minus and plus on the left vertical line of the editor.

Sysnchronization with outline view : The text editor is in sync with the structure of the rules in the
outline view as soon as you save your rules. The outline view provides a quick way of navigating
around rules by name, or even in a file containing hundreds of rules. The items are sorted
alphabetically by default.

9.6. RED HAT JBOSS BRMS VIEWS

You can alternate between these views when modifying rules:

Working Memory View

Shows all elements in the Red Hat JBoss BRMS working memory.

Agenda View

Shows all elements on the agenda. For each rule on the agenda, the rule name and bound variables
are shown.

Global Data View

Red Hat JBoss BPM Suite 6.4 Development Guide

166

Shows all global data currently defined in the Red Hat JBoss BRMS working memory.

Audit View

Can be used to display audit logs containing events that were logged during the execution of a rules
engine, in tree form.

Rete View

This shows you the current Rete Network for your DRL file. You display it by clicking on the tab "Rete
Tree" at the bottom of the DRL Editor window. With the Rete Network visualization being open, you
can use drag-and-drop on individual nodes to arrange optimal network overview. You may also select
multiple nodes by dragging a rectangle over them so the entire group can be moved around.

NOTE

The Rete view works only in projects where the rule builder is set in the project´s
properties. For other projects, you can use a workaround. Set up a Red Hat JBoss
BRMS project next to your current project and transfer the libraries and the DRLs you
want to inspect with the Rete view. Click on the right tab below in the DRL Editor, then
click Generate Rete View.

Kie Navigator View

Shows you the contents of your Red Hat JBoss BPM Suite projects on your container. See chapter
Kie Navigator of the Red Hat JBoss BPM Suite Getting Started Guide for more information.

9.7. DEBUGGING RULES

Drools breakpoints are only enabled if you debug your application as a Drools Application. To do this you
should perform one of two actions:

Select the main class of your application. Right-click on it and select Debug As → Drools
Application.

Alternatively, select Debug As → Debug Configuration to open a new dialog window for
creating, managing and running debug configurations.
Select the Drools Application item in the left tree and click New launch configuration
(leftmost icon in the toolbar above the tree). This will create a new configuration with a number
of the properties already filled in based on main class you selected in the beginning. All
properties shown here are the same as any standard Java program.

NOTE

Remember to change the name of your debug configuration to something
meaningful.

1. Click the Debug button on the bottom to start debugging your application.

2. After enabling the debugging, the application starts executing and will halt if any breakpoint
is encountered. This can be a Drools rule breakpoint, or any other standard Java breakpoint.
Whenever a Drools rule breakpoint is encountered, the corresponding .drl file is opened
and the active line is highlighted. The Variables view also contains all rule parameters and
their value. You can then use the default Java debug actions to decide what to do next
(resume, terminate, step over, and others). The debug views can also be used to determine
the contents of the working memory and agenda at that time as well (the current executing
working memory is automatically shown).

CHAPTER 9. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST RULES

167

https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/getting_started_guide/#kie_navigator

9.7.1. Creating Breakpoints

Create breakpoints to help monitor rules that have been executed. Instead of waiting for the result to
appear at the end of the process, you can inspect the details of the execution at each breakpoint you
set. This is useful for debugging and ensuring rules are executed as expected.

1. To create breakpoints in the Package Explorer view or Navigator view of the Red Hat JBoss
BRMS perspective, double-click the selected .drl file to open it in the editor.

2. You can add and remove rule breakpoints in the .drl files in two ways:

Double-click the rule in the Rule editor at the line where you want to add a breakpoint. A
breakpoint can be removed by double-clicking the rule once more.

NOTE

Rule breakpoints can only be created in the consequence of a rule. Double-
clicking on a line where no breakpoint is allowed does nothing.

Right-click the ruler. Select the Toggle Breakpoint action in the context menu. Choosing
this action adds a breakpoint at the selected line or remove it if there is one already.

3. The Debug perspective contains a Breakpoints view which can be used to see all defined
breakpoints, get their properties, enable/disable and remove them. You can switch to it by
clicking Window → Perspective → Others → Debug.

Red Hat JBoss BPM Suite 6.4 Development Guide

168

PART III. ALL ABOUT PROCESSES

PART III. ALL ABOUT PROCESSES

169

CHAPTER 10. GETTING STARTED WITH PROCESSES
JBoss Business Process Management System is a light-weight, open-source, flexible Business Process
Management (BPM) Suite that allows you to create, execute, and monitor business processes
throughout their life cycle. The business processes allow you to model your business goals. They
describe the steps that need to be executed to achieve those goals. It depicts the order of these goals in
a flow chart. The business processes greatly improve the visibility and agility of your business logic.

Red Hat JBoss BPM Suite creates the bridge between business analysts, developers and end users by
offering process management features and tools in a way that both business users and developers like.
The life cycle of Business processes includes authoring, deployment, process management and task
lists, and dashboards and reporting.

10.1. THE RED HAT JBOSS BPM SUITE ENGINE

The core of Red Hat JBoss BPM Suite is a light-weight, extensible workflow engine called the BPM
Suite engine in BPMN 2.0 format, written in pure Java that allows you to execute business processes. It
can run in any Java environment, embedded in your application or as a service. It has the following
features:

Solid, stable core engine for executing your process instances.

Native support for the latest BPMN 2.0 specification for modeling and executing business
processes.

Strong focus on performance and scalability.

Light-weight. You can deploy it on almost any device that supports a simple Java Runtime
Environment. It does not require any web container at all.

Pluggable persistence with a default JPA implementation (Optional).

Pluggable transaction support with a default JTA implementation.

Implemented as a generic process engine, so it can be extended to support new node types or
other process languages.

Listeners to be notified of various events.

Ability to migrate running process instances to a new version of their process definition.

10.2. INTEGRATING BPM SUITE ENGINE WITH OTHER SERVICES

The Red Hat JBoss BPM Suite engine can be integrated with a few independent core services such as:

The human task service

The human task service helps manage human tasks when human actors need to participate in the
process. It is fully pluggable and the default implementation is based on the WS-HumanTask
specification and manages the life cycle of the tasks, task lists, task forms, and some more advanced
features like escalation, delegation, and rule-based assignments.

The history log

The history log stores all information about the execution of all the processes in the engine. This is
necessary if you need access to historic information as runtime persistence only stores the current
state of all active process instances. The history log can be used to store all current and historic

Red Hat JBoss BPM Suite 6.4 Development Guide

170

states of active and completed process instances. It can be used to query for any information related
to the execution of process instances, for monitoring, and analysis.

CHAPTER 10. GETTING STARTED WITH PROCESSES

171

CHAPTER 11. WORKING WITH PROCESSES

11.1. BPMN 2.0 NOTATION

11.1.1. Business Process Model and Notation (BPMN) 2.0 Specification

The Business Process Model and Notation (BPMN) 2.0 specification defines a standard for graphically
representing a business process; it includes execution semantics for the defined elements and an XML
format to store and share process definitions.

The table below shows the supported elements of the BPMN 2.0 specification and includes some
additional elements and attributes.

definitions

Supported attributes Supported elements Extension attributes Extension elements

 BPMNDiagram,
itemDefinition, signal,
process, relationship*

process

Supported attributes Supported elements Extension attributes Extension elements

processType,
isExecutable, name, id

property, laneSet,
flowElement

packageName, adHoc,
version

import, global

sequenceFlow

Supported attributes Supported elements Extension attributes Extension elements

sourceRef, targetRef,
isImmediate, name, id

conditionExpression priority

interface

Supported attributes Supported elements Extension attributes Extension elements

name, id operation

operation

Supported attributes Supported elements Extension attributes Extension elements

name, id inMessageRef

Red Hat JBoss BPM Suite 6.4 Development Guide

172

laneSet

Supported attributes Supported elements Extension attributes Extension elements

 lane

lane

Supported attributes Supported elements Extension attributes Extension elements

name, id flowNodeRef

import

Supported attributes Supported elements Extension attributes Extension elements

 name

global

Supported attributes Supported elements Extension attributes Extension elements

 identifier, type

* Used for extension elements for BPMN2, such as simulation data.

BPMN 2.0 Supported Elements and Attributes (Events)

startEvent

Supported attributes Supported elements Extension attributes Extension elements

name, id dataOutput,
dataOutputAssociation,
outputSet,
eventDefinition

x, y, width, height

endEvent

Supported attributes Supported elements Extension attributes Extension elements

name, id dataInput,
dataInputAssociation,
inputSet,
eventDefinition

x, y, width, height

CHAPTER 11. WORKING WITH PROCESSES

173

intermediateCatchEvent

Supported attributes Supported elements Extension attributes Extension elements

name, id dataOutput,
dataOutputAssociation,
outputSet,
eventDefinition

x, y, width, height

intermediateThrowEvent

Supported attributes Supported elements Extension attributes Extension elements

name, id dataInput,
dataInputAssociation,
inputSet,
eventDefinition

x, y, width, height

boundaryEvent

Supported attributes Supported elements Extension attributes Extension elements

cancelActivity,
attachedToRef, name,
id

eventDefinition x, y, width, height

terminateEventDefinition

Supported attributes Supported elements Extension attributes Extension elements

compensateEventDefinition

Supported attributes Supported elements Extension attributes Extension elements

activityRef documentation,
extensionElements

conditionalEventDefinition

Supported attributes Supported elements Extension attributes Extension elements

 condition

errorEventDefinition

Red Hat JBoss BPM Suite 6.4 Development Guide

174

Supported attributes Supported elements Extension attributes Extension elements

errorRef

error

Supported attributes Supported elements Extension attributes Extension elements

errorCode, id

escalationEventDefinition

Supported attributes Supported elements Extension attributes Extension elements

escalationRef

escalation

Supported attributes Supported elements Extension attributes Extension elements

escalationCode, id

messageEventDefinition

Supported attributes Supported elements Extension attributes Extension elements

messageRef

message

Supported attributes Supported elements Extension attributes Extension elements

itemRef, id

signalEventDefinition

Supported attributes Supported elements Extension attributes Extension elements

signalRef

timerEventDefinition

CHAPTER 11. WORKING WITH PROCESSES

175

Supported attributes Supported elements Extension attributes Extension elements

 timeCycle,
timeDuration

BPMN 2.0 Supported Elements and Attributes (Activities)

task

Supported attributes Supported elements Extension attributes Extension elements

name, id ioSpecification,
dataInputAssociation,
dataOutputAssociation

taskName, x, y, width,
height

scriptTask

Supported attributes Supported elements Extension attributes Extension elements

scriptFormat, name, id script x, y, width, height

script

Supported attributes Supported elements Extension attributes Extension elements

 text[mixed content]

userTask

Supported attributes Supported elements Extension attributes Extension elements

name, id ioSpecification,
dataInputAssociation,
dataOutputAssociation,
resourceRole

x, y, width, height onEntry-script, onExit-
script

potentialOwner

Supported attributes Supported elements Extension attributes Extension elements

 resourceAssignmentEx
pression

resourceAssignmentExpression

Red Hat JBoss BPM Suite 6.4 Development Guide

176

Supported attributes Supported elements Extension attributes Extension elements

 expression

businessRuleTask

Supported attributes Supported elements Extension attributes Extension elements

name, id x, y, width, height,
ruleFlowGroup

onEntry-script, onExit-
script

manualTask

Supported attributes Supported elements Extension attributes Extension elements

name, id x, y, width, height onEntry-script, onExit-
script

sendTask

Supported attributes Supported elements Extension attributes Extension elements

messageRef, name, id ioSpecification,
dataInputAssociation

x, y, width, height onEntry-script, onExit-
script

receiveTask

Supported attributes Supported elements Extension attributes Extension elements

messageRef, name, id ioSpecification,
dataOutputAssociation

x, y, width, height onEntry-script, onExit-
script

serviceTask

Supported attributes Supported elements Extension attributes Extension elements

operationRef, name, id ioSpecification,
dataInputAssociation,
dataOutputAssociation

x, y, width, height onEntry-script, onExit-
script

subProcess

CHAPTER 11. WORKING WITH PROCESSES

177

Supported attributes Supported elements Extension attributes Extension elements

name, id flowElement, property,
loopCharacteristics

x, y, width, height

adHocSubProcess

Supported attributes Supported elements Extension attributes Extension elements

cancelRemainingInstan
ces, name, id

completionCondition,
flowElement, property

x, y, width, height

callActivity

Supported attributes Supported elements Extension attributes Extension elements

calledElement, name, id ioSpecification,
dataInputAssociation,
dataOutputAssociation

x, y, width, height,
waitForCompletion,
independent

onEntry-script, onExit-
script

multiInstanceLoopCharacteristics

Supported attributes Supported elements Extension attributes Extension elements

 loopDataInputRef,
inputDataItem

onEntry-script

Supported attributes Supported elements Extension attributes Extension elements

scriptFormat script

onExit-script

Supported attributes Supported elements Extension attributes Extension elements

scriptFormat script

BPMN 2.0 Supported Elements and Attributes (Gateways)

parallelGateway

Red Hat JBoss BPM Suite 6.4 Development Guide

178

Supported attributes Supported elements Extension attributes Extension elements

gatewayDirection,
name, id

 x, y, width, height

eventBasedGateway

Supported attributes Supported elements Extension attributes Extension elements

gatewayDirection,
name, id

 x, y, width, height

exclusiveGateway

Supported attributes Supported elements Extension attributes Extension elements

default,
gatewayDirection,
name, id

 x, y, width, height

inclusiveGateway

Supported attributes Supported elements Extension attributes Extension elements

default,
gatewayDirection,
name, id

 x, y, width, height

BPMN 2.0 Supported Elements and Attributes (Data)

property

Supported attributes Supported elements Extension attributes Extension elements

itemSubjectRef, id

dataObject

Supported attributes Supported elements Extension attributes Extension elements

itemSubjectRef, id

itemDefinition

CHAPTER 11. WORKING WITH PROCESSES

179

Supported attributes Supported elements Extension attributes Extension elements

structureRef, id

signal

Supported attributes Supported elements Extension attributes Extension elements

name, id

ioSpecification

Supported attributes Supported elements Extension attributes Extension elements

 dataInput, dataOutput,
inputSet, outputSet

dataInput

Supported attributes Supported elements Extension attributes Extension elements

name, id

dataInputAssociation

Supported attributes Supported elements Extension attributes Extension elements

 sourceRef, targetRef,
assignment

dataOutput

Supported attributes Supported elements Extension attributes Extension elements

name, id

dataOutputAssociation

Supported attributes Supported elements Extension attributes Extension elements

 sourceRef, targetRef,
assignment

inputSet

Red Hat JBoss BPM Suite 6.4 Development Guide

180

Supported attributes Supported elements Extension attributes Extension elements

 dataInputRefs

outputSet

Supported attributes Supported elements Extension attributes Extension elements

 dataOutputRefs

assignment

Supported attributes Supported elements Extension attributes Extension elements

 from, to

formalExpression

Supported attributes Supported elements Extension attributes Extension elements

language text[mixed content]

BPMN 2.0 Supported Elements and Attributes (BPMNDI)

BPMNDiagram

Supported attributes Supported elements Extension attributes Extension elements

 BPMNPlane

BPMNPlane

Supported attributes Supported elements Extension attributes Extension elements

bpmnElement BPMNEdge,
BPMNShape

BPMNShape

Supported attributes Supported elements Extension attributes Extension elements

bpmnElement Bounds

CHAPTER 11. WORKING WITH PROCESSES

181

BPMNEdge

Supported attributes Supported elements Extension attributes Extension elements

bpmnElement waypoint

Bounds

Supported attributes Supported elements Extension attributes Extension elements

x, y, width, height

waypoint

Supported attributes Supported elements Extension attributes Extension elements

x, y

11.1.2. BPMN 2.0 Process Example

Here is a BPMN 2.0 process that prints out a "Hello World" statement when the process is started:

<?xml version="1.0" encoding="UTF-8"?>
<definitions id="Definition"
 targetNamespace="http://www.jboss.org/drools"
 typeLanguage="http://www.java.com/javaTypes"
 expressionLanguage="http://www.mvel.org/2.0"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true" id="com.sample.bpmn.hello" name="Hello
World" >

 <!-- nodes -->
 <scriptTask id="_2" name="Hello" >
 <script>System.out.println("Hello World");</script>
 </scriptTask>
 <startEvent id="_1" />
 <endEvent id="_3" >
 <terminateEventDefinition/>
 </endEvent>

 <!-- connections -->
 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />
 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

Red Hat JBoss BPM Suite 6.4 Development Guide

182

11.1.3. Supported Elements and Attributes in BPMN 2.0 Specification

Red Hat JBoss BPM Suite 6 does not implement all elements and attributes as defined in the BPMN 2.0
specification. However, we do support significant node types that you can use inside executable
processes. This includes almost all elements and attributes as defined in the Common Executable
subclass of the BPMN 2.0 specification, extended with some additional elements and attributes we
believe are valuable in that context as well. The full set of elements and attributes that are supported
can be found below, but it includes elements like:

Flow Objects

Events

Start Event (None, Conditional, Signal, Message, Timer)

End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)

Intermediate Catch Event (Signal, Timer, Conditional, Message)

Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

Non-interrupting Boundary Event (Escalation, Signal, Timer, Conditional, Message)

Interrupting Boundary Event (Escalation, Error, Signal, Timer, Conditional, Message,
Compensation)

Activities

Script Task

 </process>

 <bpmndi:BPMNDiagram>
 <bpmndi:BPMNPlane bpmnElement="com.sample.bpmn.hello" >
 <bpmndi:BPMNShape bpmnElement="_2" >
 <dc:Bounds x="96" y="16" width="80" height="48" />
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="_1" >
 <dc:Bounds x="30" y="22" width="36" height="36" />
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="_3" >
 <dc:Bounds x="210" y="22" width="36" height="36" />
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge bpmnElement="_1-_2" >
 <di:waypoint x="66" y="40" />
 <di:waypoint x="96" y="40" />
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge bpmnElement="_2-_3" >
 <di:waypoint x="176" y="40" />
 <di:waypoint x="210" y="40" />
 </bpmndi:BPMNEdge>
 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>

</definitions>

CHAPTER 11. WORKING WITH PROCESSES

183

Task

Service Task

User Task

Business Rule Task

Manual Task

Send Task

Receive Task

Reusable Sub-Process (Call Activity)

Embedded Sub-Process

Event Sub-Process

Ad-Hoc Sub-Process

Data-Object

Gateways

Diverging

Exclusive

Inclusive

Parallel

Event-Based

Converging

Exclusive

Inclusive

Parallel

Lanes

Data

Java type language

Process properties

Embedded Sub-Process properties

Activity properties

Connecting Objects

Sequence flow

Red Hat JBoss BPM Suite 6.4 Development Guide

184

11.1.4. Loading and Executing a BPMN2 Process Into Repository

The following example shows how you can load a BPMN2 process into your knowledge base:

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies.

11.2. WHAT COMPRISES A BUSINESS PROCESS

A business process is a graph that describes the order in which a series of steps need to be executed
using a flow chart. A process consists of a collection of nodes that are linked to each other using
connections. Each of the nodes represents one step in the overall process, while the connections specify
how to transition from one node to the other. A large selection of predefined node types have been
defined.

A typical process consists of the following parts:

The header part that comprises global elements such as the name of the process, imports, and
variables.

The nodes section that contains all the different nodes that are part of the process.

The connections section that links these nodes to each other to create a flow chart.

Figure 11.1. A Business Process

Processes can be created with the following methods:

Using the Business Central or Red Hat JBoss Developer Studio with BPMN2 modeler.

import org.kie.api.KieServices;
import org.kie.api.builder.KieRepository;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;
import org.kie.internal.io.ResourceFactory;
import org.kie.api.runtime.KieContainer;
import org.kie.api.KieBase;
...
KieServices kServices = KieServices.Factory.get();
KieRepository kRepository = kServices.getRepository();
KieFileSystem kFileSystem = kServices.newKieFileSystem();

kFileSystem.write(ResourceFactory.newClassPathResource("MyProcess.bpmn"));

KieBuilder kBuilder = kServices.newKieBuilder(kFileSystem);
kBuilder.buildAll();

KieContainer kContainer = kServices.newKieContainer(kRepository.getDefaultReleaseId());
KieBase kBase = kContainer.getKieBase();

CHAPTER 11. WORKING WITH PROCESSES

185

As an XML file, according to the XML process format as defined in the XML Schema Definition
in the BPMN 2.0 specification.

By directly creating a process using the Process API.

NOTE

The Red Hat JBoss Developer Studio Process editor has been deprecated in favor of
BPMN2 Modeler for process modeling as it is not being developed any more. However,
you can still use it for limited number of supported elements.

11.2.1. Process Nodes

Executable processes consist of different types of nodes which are connected to each other. The
BPMN 2.0 specification defines three main types of nodes:

Events

Event elements represent a particular event that occurs or can occur during process runtime.

Activities

Activities represent relatively atomic pieces of work that need to be performed as part of the process
execution.

Gateways

Gateways represent forking or merging of workflows during process execution.

11.2.2. Process Properties

Every process has the following properties:

ID: The unique ID of the process.

Name: The display name of the process.

Version: The version number of the process.

Package: The package (namespace) the process is defined in.

Variables (optional): Variables to store data during the execution of your process.

Swimlanes: Swimlanes used in the process for assigning human tasks.

11.2.3. Defining Processes Using XML

You can create processes directly in XML format using the BPMN 2.0 specifications. The syntax of these
XML processes is defined using the BPMN 2.0 XML Schema Definition.

The process XML file consists of:

The process element

This is the top part of the process XML that contains the definition of the different nodes and their
properties. The process XML consist of exactly one <process> element. This element contains
parameters related to the process (its type, name, ID, and package name), and consists of three

Red Hat JBoss BPM Suite 6.4 Development Guide

186

subsections: a header section (where process-level information like variables, globals, imports, and
lanes can be defined), a nodes section that defines each of the nodes in the process, and a
connections section that contains the connections between all the nodes in the process.

The BPMNDiagram element

This is the lower part of the process XML that contains all graphical information, like the location of
the nodes. In the nodes section, there is a specific element for each node, defining the various
parameters and, possibly, sub-elements for that node type.

The following XML fragment shows a simple process that contains a sequence of a Start Event, a Script
Task that prints "Hello World" to the console, and an End Event:

<?xml version="1.0" encoding="UTF-8"?>

<definitions
 id="Definition"
 targetNamespace="http://www.jboss.org/drools"
 typeLanguage="http://www.java.com/javaTypes"
 expressionLanguage="http://www.mvel.org/2.0"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"
 xmlns:g="http://www.jboss.org/drools/flow/gpd"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true" id="com.sample.hello" name="Hello Process">
 <!-- nodes -->
 <startEvent id="_1" name="Start" />

 <scriptTask id="_2" name="Hello">
 <script>System.out.println("Hello World");</script>
 </scriptTask>

 <endEvent id="_3" name="End" >
 <terminateEventDefinition/>
 </endEvent>

 <!-- connections -->

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />
 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />
 </process>

 <bpmndi:BPMNDiagram>
 <bpmndi:BPMNPlane bpmnElement="com.sample.hello" >

 <bpmndi:BPMNShape bpmnElement="_1" >
 <dc:Bounds x="16" y="16" width="48" height="48" />
 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_2" >
 <dc:Bounds x="96" y="16" width="80" height="48" />
 </bpmndi:BPMNShape>

CHAPTER 11. WORKING WITH PROCESSES

187

11.3. ACTIVITIES

An activity is an action performed inside a business process. Activities are classified based on the type of
tasks they do:

Task

Use this activity type in your business process to implement a single task which can not be further
broken into subtasks.

Subprocess

Use this activity type in your business process when you have a group of tasks to be processed in a
sequential order in order to achieve a single result.

Each activity has one incoming and one outgoing connection.

11.3.1. Tasks

A task is an action that is executed inside a business process. Tasks can be of the following types:

Table 11.1. Types of Tasks in Object Library

Task Icon Description

 <bpmndi:BPMNShape bpmnElement="_3" >
 <dc:Bounds x="208" y="16" width="48" height="48" />
 </bpmndi:BPMNShape>

 <bpmndi:BPMNEdge bpmnElement="_1-_2" >
 <di:waypoint x="40" y="40" />
 <di:waypoint x="136" y="40" />
 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_2-_3" >
 <di:waypoint x="136" y="40" />
 <di:waypoint x="232" y="40" />
 </bpmndi:BPMNEdge>

 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>

</definitions>

Red Hat JBoss BPM Suite 6.4 Development Guide

188

User Use the User task activity type in your business process when
you require a human actor to execute your task.

The User task defines within it, the type of task that
needs to be executed. You must pass the data that a
human actor may require to execute this task as the
content of the task.

The User task has one incoming and one outgoing
connection. You can use the User tasks in combination
with Swimlanes to assign multiple human tasks to
similar human actors.

Send Use the Send task to send a message.

A Send task has a message associated with it.

When a Send task is activated, the message data is
assigned to the data input property of the Send task. A
Send task completes when this message is sent.

Receive Use the Receive task in your process when your process is
relying on a specific message to continue.

When a Receive task receives the specified message,
the data from the message is transferred to the Data
Output property of the Receive task and the task
completes.

Manual Use the Manual task when you require a task to be executed by
a human actor that need not be managed by your process.

The difference between a Manual task and a User
task is that a User task is executed in the context of
the process, requires system interaction to accomplish
the task, and are assigned to specific human actors.
The Manual tasks on the other hand, execute without
the need to interact with the system and not managed
by the process.

Service Use the Service task in your business process for specifying the
tasks use a service (such as a web service) that must execute
outside the process engine.

The Service task may use any service such as email
server, message logger, or any other automated
service.

You can specify the required input parameters and
expected results of this task in its properties. When the
associated work is executed and specified result is
received, the Service task completes.

Task Icon Description

CHAPTER 11. WORKING WITH PROCESSES

189

Business Rule Use the Business Rule task when you want a set of rules to
be executed as a task in your business process flow.

During the execution of your process flow, when the
engine reaches the Business Rule task, all the rules
associated with this task are fired and evaluated.

The DataInputSet and DataOutputSet properties
define the input to the rule engine and the calculated
output received from the rule engine respectively.

The set of rules that this task runs are defined in .drl
format.

All the rules that belong to a Business Rule task
must belong to a specific ruleflow group. You can
assign a rule its ruleflow group using the ruleflow-
group attribute in the header of the rule. So when a
Business Rule task executes, all the rules that
belong to the ruleflow-group specified in the
ruleflow-group property of the task are executed.

Script Use the Script task in your business process when you want a
script to be executed within the task.

A Script task has an associated action that contains
the action code and the language that the action is
written in.

When a Script task is reached in the process, it
executes the action and then continues to the next
node.

Use a Script task in your process to for modeling low
level behavior such as manipulating variables. For a
complex model, use a Service task.

Ensure that the script associated with a Script task is
executed as soon as the task is reached in a business
process. If that is not possible, use an asynchronous
Service task instead.

Ensure that your script does not contact an external
service as the process engine has no visibility of the
external services that a script may call.

Ensure that any exception that your script may throw
must be caught within the script itself.

None A None task type is an abstract undefined task type.

Task Icon Description

Red Hat JBoss BPM Suite 6.4 Development Guide

190

11.3.2. Subprocesses

A subprocess is a process within another process. When a parent process calls a child process
(subprocess), the child process executes in a sequential manner and once complete, the execution
control then transfers to the main parent process. Subprocess can be of the following types:

Table 11.2. Types of Subprocesses in Object Library

Subprocess Icon Description

Reusable Use the Reusable subprocess to invoke another process from
the parent process.

The Reusable subprocess is independent from its parent
process.

Multiple Instances Use the Multiple Instances subprocess when you want to
execute the contained subprocess elements multiple number of
times.

When the engine reaches a Multiple Instance subprocess in
your process flow, the subprocess instances are executed in a
sequential manner.

A Multiple Instances subprocess is completed when the
condition specified in the MI completion condition property
is satisfied.

Embedded Use the Embedded subprocess if you want a decomposable
activity inside your process flow that encapsulates a part of your
main process.

When you expand an Embedded subprocess, you can see a
valid BPMN diagram inside that comprises a Start Event and at
least one End Event.

An Embedded subprocess allows you to define local
subprocess variables that are accessible to all elements inside
this subprocess.

Ad-Hoc Use the Ad-Hoc subprocess when you want to execute
activities inside your process, for which the execution order is
irrelevant. An Ad-Hoc subprocess is a group of activities that
have no required sequence relationships.

You can define a set of activities for this subprocess, but the
sequence and number of performances for the activities is
determined by the performers of the activities.

Use an Ad-Hoc subprocesses for example when executing a list
of tasks that have no dependencies between them and can be
executed in any order.

CHAPTER 11. WORKING WITH PROCESSES

191

Event Use the Event subprocess in your process flow when you want
to handle events that occur within the boundary of a
subprocess. This subprocess becomes active when its start
event gets triggered.

The Event subprocess differs from the other subprocess as they
are not a part of the regular process flow and occur only in the
context of a subprocess.

An Event subprocess can be interrupting or non-interrupting.
The interrupting Event subprocess interrupts the parent
process unlike the non-interrupting Event subprocess.

Subprocess Icon Description

NOTE

Only the Reusable subprocess can contain Swimlanes.

11.4. DATA

Throughout the execution of a process, data can be retrieved, stored, passed on, and used. To store
runtime data during the execution of the process, process variables are used. A variable is defined with a
name and a data type. A basic data type could include the following: boolean, int, String, or any kind of
object subclass.

Variables can be defined inside a variable scope. The top-level scope is the variable scope of the
process itself. Sub-scopes can be defined using a sub-process. Variables that are defined in a sub-scope
are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that defines
the variable. Nesting variable scopes are allowed. A node will always search for a variable in its parent
container; if the variable cannot be found, the node will look in the parent’s parent container, and so on,
until the process instance itself is reached. If the variable cannot be found, a read access yields null, and
a write access produces an error message. All of this occurs with the process continuing execution.

Variables can be used in the following ways:

Process-level variables can be set when starting a process by providing a map of parameters to
the invocation of the startProcess method. These parameters will be set as variables on the
process scope.

Script actions can access variables directly simply by using the name of the variable as a local
parameter in their script. For example, if the process defines a variable of type
"org.jbpm.Person" in the process, a script in the process could access this directly:

Changing the value of a variable in a script can be done through the knowledge context:

// call method on the process variable "person"

person.setAge(10);

Red Hat JBoss BPM Suite 6.4 Development Guide

192

WARNING

Do not create a script variable with the same name as a process variable.
Otherwise, an error similar to the following error is thrown during the
deployment of your application. In the following case, the variable person
has been declared both in a script task and as a process variable.

ERROR [org.drools.compiler.kie.builder.impl.AbstractKieModule] (default
task-16) Unable to build KieBaseModel:defaultKieBase
Process Compilation error : Process
com.myteam.scripttask.ScriptTaskBP(ScriptTask.ScriptTaskBP)

com/myteam/scripttask/Process_com$u46$myteam$u46$scripttask$u46$S
criptTaskBP95786628.java (9:437) : Duplicate local variable person

Service tasks (and reusable sub-processes) can pass the value of process variables to the
outside world (or another process instance) by mapping the variable to an outgoing parameter.
For example, the parameter mapping of a service task could define that the value of the process
variable x should be mapped to a task parameter y just before the service is invoked. You can
also inject the value of the process variable into a hard-coded parameter String using #
{expression}. For example, the description of a human task could be defined as the following:

You need to contact person #{person.getName()}

Where person is a process variable. This will replace this expression with the actual name of the
person when the service needs to be invoked. Similar results of a service (or reusable sub-
process) can also be copied back to a variable using result mapping.

Various other nodes can also access data. Event nodes, for example, can store the data
associated to the event in a variable. Check the properties of the different node types for more
information.

Finally, processes (and rules) have access to globals, for example, globally defined variables and data in
the Knowledge Session. Globals are directly accessible in actions like variables. Globals need to be
defined as part of the process before they can be used. Globals can be set using the following:

Globals can also be set from inside process scripts using:

11.5. EVENTS

Events are triggers, which when occur, impact a business process. Events are classified as start events,
end events, and intermediate events. A start event indicates the beginning of a business process. An

kcontext.setVariable(variableName, value);

ksession.setGlobal(name, value)

kcontext.getKieRuntime().setGlobal(name,value);.

CHAPTER 11. WORKING WITH PROCESSES

193

end event indicates the completion of a business process. And intermediate events drive the flow of a
business process. Every event has an event ID and a name. You can implement triggers for each of these
event types to identify the conditions under which an event is triggered. If the conditions of the triggers
are not met, the events are not initialized, and hence the process flow does not complete.

11.5.1. Start Events

A start event is a flow element in a business process that indicates the beginning of a business process
flow. The execution of a business process starts at this node, so a process flow can only have one start
event. A start event can have only one outgoing connection which connects to another node to take the
process flow ahead. Start events are of the following types:

Table 11.3. Types of Start Events in Object Library

Event Icon Description

None Use the None start events when your processes do not need a trigger
to be initialized.

You can use the start event if your process does not depend
on any condition to begin.

The start event is mostly used to initialize a subprocess or a
process that needs to trigger by default or the trigger for the
process is irrelevant.

Message Use the Message start event when you require your process to start,
on receiving a particular message.

You can have multiple Message start events in your process.

A single message can trigger multiple Message start events
that instantiates multiple processes.

Timer Use the Timer start event when you require your process to initialize
at a specific time, specific points in time, or after a specific time span.

The Timer start event is mostly used in cases where a waiting
state is required, for example, in cases involving a Human
Task.

Red Hat JBoss BPM Suite 6.4 Development Guide

194

Escalation Use the Escalation start event in your subprocesses when you
require your subprocess to initialize as a response to an escalation.

An escalation is identified by an escalation object in the main
process, which is inserted into the main process by an
Escalation Intermediate event or/and Escalation end event.
An Escalation Intermediate event or/and Escalation end
event produce an escalation object, which can be consumed
by an Escalation Start event or an Escalation intermediate
catch event.

A process flow can have one or more Escalation start
events and the process flow does not complete until all the
escalation objects are caught and handled in subprocesses.

Conditional Use the Conditional start event to start a process instance based on
a business condition.

A condition output is a Boolean value and when a condition is
evaluated as true, the process flow is initialized.

You can have one or more Conditional start events in your
business process.

Error Use the Error start event in a subprocess when you require your
subprocess to trigger as a response to a specific error object.

An error object indicates an incorrect process ending and
must be handled for the process flow to complete.

An error object is inserted into a business process by an
Error end event and can be handled by a Error intermediate
catch event, or Error start event depending on the scope of
the error in a process flow.

Compensation Use the Compensation start event in a subprocess when you require
to handle a compensation.

A compensation means undoing the results of an already
completed action. Note that this is different than an error. An
error suspends a process at the location where it occurs,
however, a compensation compensates the results of an
action the process has already committed and needs to be
undone.

A Compensation start event starts a subprocess and is the
target Activity of a Compensation intermediate event.

Event Icon Description

CHAPTER 11. WORKING WITH PROCESSES

195

Signal Use the Signal start event to start a process instance based on
specific signals received from other processes.

A signal is identified by a signal object. A signal object
defines a unique reference ID that is unique in a session.

A signal object is inserted in a process by a throw signal
intermediate event as an action of an activity.

Event Icon Description

11.5.2. End Events

An end event marks the end of a business process. Your business process may have more than one end
event. An end event has one incoming connection and no outgoing connections. End events are of the
following types:

Table 11.4. Types of End Events in Object Library

Event Icon Description

None Use the None error end event to mark the end of your process or a
subprocess flow. Note that this does not influence the workflow of any
parallel subprocesses.

Message Use the Message end event to end your process flow with a message
to an element in another process. An intermediate catch message
event or a start message event in another process can catch this
message to further process the flow.

Escalation Use the Escalation end event to mark the end of a process as a
result of which the case in hand is escalated. This event creates an
escalation signal that further triggers the escalation process.

Error Use the Error end event in your process or subprocess to end the
process in an error state and throw a named error, which can be
caught by a Catching Intermediate event.

Cancel Use the Cancel end event to end your process as canceled. Note that
if your process comprises any compensations, it completes them and
then marks the process as canceled.

Compensation Use the Compensation end event to end the current process and
trigger compensation as the final step.

Signal Use the Signal end event to end a process with a signal thrown to an
element in one or more other processes. Another process can catch
this signal using Catch intermediate events.

Red Hat JBoss BPM Suite 6.4 Development Guide

196

Terminate Use the Terminate end event to terminate the entire process
instance immediately. Note that this terminates all the other parallel
execution flows and cancels any running activities.

Event Icon Description

11.5.3. Intermediate Events

Intermediate events occur during the execution of a process flow, and they drive the flow of the
process. Some specific situations in a process may trigger these intermediate events. Intermediate
events can occur in a process with one or no incoming flow and an outgoing flow. Intermediate events
can further be classified as:

Catching Intermediate Events ;

Throwing Intermediate Events .

11.5.3.1. Catching Intermediate Events

Catching intermediate events comprises intermediate events which implement a response to specific
indication of a situation from the main process workflow. Catching intermediate events are of the
following types:

Message: Use the Message catching intermediate events in your process to implement a
reaction to an arriving message. The message that this event is expected to react to, is
specified in its properties. It executes the flow only when it receives the specific message.

Timer: Use the Timer intermediate event to delay the workflow execution until a specified point
or duration. A Timer intermediate event has one incoming flow and one outgoing flow and its
execution starts when the incoming flow transfers to the event. When placed on an activity
boundary, the execution is triggered at the same time as the activity execution.

Escalation: Use the Escalation catching intermediate event in your process to consume an
Escalation object. An Escalation catching intermediate event awaits a specific escalation object
defined in its properties. Once it receives the object, it triggers execution of its outgoing flow.

Conditional: Use the Conditional intermediate event to execute a workflow when a specific
business Boolean condition that it defines, evaluates to true. When placed in the process
workflow, a Conditional intermediate event has one incoming flow and one outgoing flow and
its execution starts when the incoming flow transfers to the event. When placed on an activity
boundary, the execution is triggered at the same time as the activity execution. Note that if the
event is non-interrupting, it triggers continuously while the condition is true.

Error: Use the Error catching intermediate event in your process to execute a workflow when it
received a specific error object defined in its properties.

Compensation: Use the Compensation intermediate event to handle compensation in case of
partially failed operations. A Compensation intermediate event is a boundary event that is
attached to an activity in a transaction subprocess that may finish with a Compensation end
event or a Cancel end event. The Compensation intermediate event must have one outgoing
flow that connects to an activity that defines the compensation action needed to compensate
for the action performed by the activity.

CHAPTER 11. WORKING WITH PROCESSES

197

Signal: Use the Signal catching intermediate event to execute a workflow once a specified
signal object defined in its properties is received from the main process or any other process.

11.5.3.2. Throwing Intermediate Events

Throwing intermediate events comprises events which produce a specified trigger in the form of a
message, escalation, or signal, to drive the flow of a process. Throwing intermediate events are of the
following types:

Message: Use the Message throw intermediate event to produce and send a message to a
communication partner (such as an element in another process). Once it sends a message, the
process execution continues.

Escalation: Use the Escalation throw intermediate event to produce an escalation object.
Once it creates an escalation object, the process execution continues. The escalation object can
be consumed by an Escalation start event or an Escalation intermediate catch event, which is
looking for this specific escalation object.

Signal: Use the Signal throwing intermediate events to produces a signal object. Once it
creates a signal object, the process execution continues. The signal object is consumed by a
Signal start event or a Signal catching intermediate event, which is looking for this specific
signal object.

11.6. GATEWAYS

"Gateways are used to control how Sequence Flows interact as they converge and diverge within a
Process."[1]

Gateways are used to create or synchronize branches in the workflow using a set of conditions which is
called the gating mechanism. Gateways are either converging (multiple flows into one flow) or diverging
(one flow into multiple flows).

One Gateway cannot have multiple incoming and multiple outgoing flows.

Depending on the gating mechanism you want to apply, you can use the following types of gateways:

Parallel (AND): in a converging gateway, waits for all incoming flows. In a diverging gateway,
takes all outgoing flows simultaneously.

Inclusive (OR): in a converging gateway, waits for all incoming flows whose condition evaluates
to true. In a diverging gateway takes all outgoing flows whose condition evaluates to true.

Exclusive (XOR): in a converging gateway, only the first incoming flow whose condition evaluates
to true is chosen. In a diverging gateway only one outgoing flow is chosen.

Event-based: used only in diverging gateways for reacting to events. See Section 11.6.1.1, “Event-
Based Gateway”.

Data-based Exclusive: used in both diverging and converging gateways to make decisions based
on available data. See Section 11.6.1.4, “Data-Based Exclusive Gateway” .

11.6.1. Gateway Types

11.6.1.1. Event-Based Gateway

"The Event-Based Gateway has pass-through semantics for a set of incoming branches (merging

Red Hat JBoss BPM Suite 6.4 Development Guide

198

"The Event-Based Gateway has pass-through semantics for a set of incoming branches (merging
behavior). Exactly one of the outgoing branches is activated afterwards (branching behavior), depending
on which of events of the Gateway configuration is first triggered."[2]

The Gateway is only diverging and allows you to react to possible events as opposed to the Data-based
Exclusive Gateway, which reacts to the process data. It is the event that actually occurs that decides
which outgoing flow is taken. As it provides the mechanism to react to exactly one of the possible
events, it is exclusive, that is, only one outgoing flow is taken.

The Gateway might act as a start event, where the process is instantiated only if one the Intermediate
Events connected to the Event-Based Gateway occurs.

11.6.1.2. Parallel Gateway

"A Parallel Gateway is used to synchronize (combine) parallel flows and to create parallel flows ."[3]

Diverging

Once the incoming flow is taken, all outgoing flows are taken simultaneously.

Converging

The Gateway waits until all incoming flows have entered and only then triggers the outgoing flow.

11.6.1.3. Inclusive Gateway

Diverging

Once the incoming flow is taken, all outgoing flows whose condition evaluates to true are taken.
Connections with lower priority numbers are triggered before triggering higher priority ones;
priorities are evaluated but the BPMN2 specification doesn’t guarantee this. So for portability
reasons it is recommended that you do not depend on this.

IMPORTANT

Make sure that at least one of the outgoing flow evaluates to true at runtime;
otherwise, the process instance terminates with a runtime exception.

Converging

The Gateway merges all incoming flows previously created by a diverging Inclusive Gateway; that is, it
serves as a synchronizing entry point for the Inclusive Gateway branches.

Attributes

Default gate

The outgoing flow taken by default if no other flow can be taken.

11.6.1.4. Data-Based Exclusive Gateway

Diverging

The Gateway triggers exactly one outgoing flow: the flow with the constraint evaluated to true and
the lowest priority is taken. After evaluating the constraints that are linked to the outgoing flows: the
constraint with the lowest priority number that evaluates to true is selected.

POSSIBLE RUNTIME EXCEPTION

CHAPTER 11. WORKING WITH PROCESSES

199

POSSIBLE RUNTIME EXCEPTION

Make sure that at least one of the outgoing Flows evaluates to true at runtime: if no
Flow can be taken, the execution returns a runtime exception.

Converging

The Gateway allows a workflow branch to continue to its outgoing flow as soon as it reaches the
Gateway; that is, whenever one of the incoming flows triggers the Gateway, the workflow is sent to
the outgoing flow of the Gateway; if it is triggered from more than one incoming connection, it
triggers the next node for each trigger.

Attributes

Default gate

The outgoing flow taken by default if no other flow can be taken.

11.7. VARIABLES

Variables are elements that serve for storing a particular type of data during runtime. The type of data a
variable contains is defined by its data type.

Just like any context data, every variable has its scope that defines its "visibility". An element, such as a
process, subprocess, or task can only access variables in its own and parent contexts: variables defined
in the element’s child elements cannot be accessed. Therefore, when an elements requires access to a
variable on runtime, its own context is searched first. If the variable cannot be found directly in the
element’s context, the immediate parent context is searched. The search continues to "level up" until
the Process context is reached; in case of globals, the search is performed directly on the session
container. If the variable cannot be found, a read access request returns null and a write access
produces an error message, and the process continues its execution. Variables are searched for based
on their ID.

In Red Hat JBoss BPM Suite, variables can live in the following contexts:

Session context: Globals are visible to all process instances and assets in the given session and
are intended to be used primarily by business rules and by constrains. The are created
dynamically by the rules or constrains.

Process context: Process variables are defined as properties in the BPMN2 definition file and
are visible within the process instance. They are initialized at process creation and destroyed on
process finish.

Element context: Local variables are available within their process element, such as an activity.
They are initialized when the element context is initialized, that is, when the execution workflow
enters the node and execution of the OnEntry action finished if applicable. They are destroyed
when the element context is destroyed, that is, when the execution workflow leaves the
element.
Values of local variables can be mapped to global or process variables using the assignment
mechanism (see Section 11.8, “Assignment”). This allows you to maintain relative independence
of the parent element that accommodates the local variable. Such isolation may help prevent
technical exceptions.

11.8. ASSIGNMENT

The assignment mechanism allows you to assign a value to an object, such as a variable, before or after

Red Hat JBoss BPM Suite 6.4 Development Guide

200

The assignment mechanism allows you to assign a value to an object, such as a variable, before or after
the particular element is executed.

When defining assignment on an activity element, the value assignment is performed either before or
after activity execution. If the assignment defines mapping to a local variable, the time when the
assignment is performed depends on whether the local variable is defined as an DataInput or
DataOutput item.

For example, if you need to assign a task to a user whose ID is a process variable, use the assignment to
map the variable to the parameter ActorId.

Assignment is defined in the Assignments property in case of activity elements and in the
DataInputAssocations or DataOutputAssociations property in case of non-activity elements.

DATA TYPES IN ASSIGNMENT

As parameters of the type String can make use of the assignment mechanism by applying
the respective syntax directly in their value, #{userVariable}, assignment is rather
intended for mapping of properties that are not of type String.

11.9. ACTION SCRIPTS

Action scripts are pieces of code that define the Script property or an element’s interceptor action.
Action scripts have access to global variables, process variables, and the predefined variable kcontext.
Accordingly, kcontext is an instance of the ProcessContext interface. See the ProcessContext
Javadoc for more information.

Currently, Java and MVEL are supported as dialects for action scripts definitions. MVEL accepts any
valid Java code and additionally provides support for nested access to parameters. For example, the
MVEL equivalent of Java call person.getName() is person.name.

Example 11.1. Sample Action Script

The following action script prints out the name of the person:

// Java dialect
System.out.println(person.getName());

// MVEL dialect
System.out.println(person.name);

Process Instance Action Scripts
Additionally, you can use action scripts to view information about process instances.

Use the following commands to:

Return the ID of a process instance:

System.out.println(kcontext.getProcessInstance().getId());

Return the parent process instance ID if a process instance has a parent:

System.out.println(kcontext.getProcessInstance().getParentProcessInstanceId());

CHAPTER 11. WORKING WITH PROCESSES

201

http://docs.jboss.org/jbpm/v6.4/javadocs/org/kie/api/runtime/process/ProcessContext.html

Return the ID of a process definition that is related to a process instance:

System.out.println(kcontext.getProcessInstance().getProcessId());

Return the name of a process definition that is related to a process instance:

System.out.println(kcontext.getProcessInstance().getProcessName());

Return the state of a process instance:

System.out.println(kcontext.getProcessInstance().getState());

To set a process variable in an action script, use kcontext.setVariable("VARIABLE_NAME", "VALUE").

11.10. CONSTRAINTS

There are two types of constraints in business processes: code constraints and rule constraints.

Code constraints are boolean expressions evaluated directly whenever they are reached; these
constraints are written in either Java or MVEL. Both Java and MVEL code constraints have
direct access to the globals and variables defined in the process.
Here is an example of a valid Java code constraint, person being a variable in the process:

return person.getAge() > 20;

Here is an example of a valid MVEL code constraint, person being a variable in the process:

return person.age > 20;

Rule constraints are equal to normal Drools rule conditions. They use the Drools Rule Language
syntax to express complex constraints. These rules can, like any other rule, refer to data in the
working memory. They can also refer to globals directly. Here is an example of a valid rule
constraint:

Person(age > 20)

This tests for a person older than 20 in the working memory.

Rule constraints do not have direct access to variables defined inside the process. However, it is possible
to refer to the current process instance inside a rule constraint by adding the process instance to the
working memory and matching for the process instance in your rule constraint. Logic is included to make
sure that a variable processInstance of type WorkflowProcessInstance will only match the current
process instance and not other process instances in the working memory. Note, it is necessary to insert
the process instance into the session. If it is necessary to update the process instance, use Java code or
an on-entry, on-exit, or explicit action in the process. The following example of a rule constraint will
search for a person with the same name as the value stored in the variable name of the process:

processInstance : WorkflowProcessInstance()
Person(name == (processInstance.getVariable("name")))
add more constraints here ...

Red Hat JBoss BPM Suite 6.4 Development Guide

202

11.11. TIMERS

Timers wait for a predefined amount of time before triggering, once, or repeatedly. You can use timers
to trigger certain logic after a certain period, or to repeat some action at regular intervals.

Configuring Timer with Delay and Period
A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait after
node activation before triggering the timer for the first time. The period defines the time between
subsequent trigger activations. A period of 0 results in a one-shot timer. The (period and delay)
expression must be of the form [#d][#h][#m][#s][#[ms]]. You can specify the amount of days, hours,
minutes, seconds, and milliseconds. Milliseconds is the default value. For example, the expression 1h
waits one hour before triggering the timer again.

Configuring Timer ISO-8601 Date Format
Since version 6, you can configure timers with valid ISO8601 date format that supports both one shot
timers and repeatable timers. You can define timers as date and time representation, time duration or
repeating intervals. For example:

Date - 2013-12-24T20:00:00.000+02:00 - fires exactly at Christmas Eve at 8PM
Duration - PT1S - fires once after 1 second
Repeatable intervals - R/PT1S - fires every second, no limit.
 Alternatively R5/PT1S fires 5 times every second

Configuring Timer with Process Variables
In addition to the above mentioned configuration options, you can specify timers using process variable
that consists of string representation of either delay and period or ISO8601 date format. By specifying #
{variable}, the engine dynamically extracts process variable and uses it as timer expression. The timer
service is responsible for making sure that timers get triggered at the appropriate times. You can cancel
timers so that they are no longer triggered. You can use timers in the following ways inside a process:

You can add a timer event to a process flow. The process activation starts the timer, and when it
triggers, once or repeatedly, it activates the timer node’s successor. Subsequently, the outgoing
connection of a timer with a positive period is triggered multiple times. Canceling a Timer node
also cancels the associated timer, after which no more triggers occur.

You can associate timer with a sub-process or tasks as a boundary event.

Updating Timer Within a Running Process Instance
Sometimes a process requires the possibility to dynamically alter the timer period or delay without the
need to restart the entire process workflow. In that case, an already scheduled timer can be rescheduled
to meet the new requirements: for example to prolong or shorten the timer expiration time or change
the delay, period, and repeat limit.

For this reason, jBPM offers a corresponding UpdateTimerCommand class which allows you to perform
these several steps as an atomic operation. All of them are then done within the same transaction.

It is supported to update the boundary timer events as well as the intermediate timer events.

You can reschedule the timer by specifying the two mandatory parameters and one of the three
optional parameter sets of the UpdateTimerCommand class.

Both of the following two parameters are mandatory:

process instance ID (long);

org.jbpm.process.instance.command.UpdateTimerCommand

CHAPTER 11. WORKING WITH PROCESSES

203

timer node name (String).

Next, choose and configure one of the three following parameter sets:

delay (long);

period (long) and repeat limit (int);

delay, period, and repeat limit.

Example 11.2. Rescheduling Timer Event

As you can notice, the rescheduling is performed using the kieSession executor to ensure execution
within the same transaction.

Troubleshooting

Getting IllegalStateException Exception

The Intelligent Process Server uses EJB timer service by default for implementation of timer-based
nodes. Consequently, the limitations described in the warning message here about Singleton strategy
and CMT are valid for the out-of-the-box Intelligent Process Server setup. To resolve the issue:

Change the RuntimeManager strategy.

Disable the default EJB timer service for timer nodes by setting the system property
org.kie.timer.ejb.disabled to true.

The Intelligent Process Server Throws InactiveTransactionException When Using Timers

When you deploy the Intelligent Process Server on Red Hat JBoss EAP 7 and configure a database for
the EJB timer service, processes that require timers end in the InactiveTransactionException
exception similar to the following:

WFLYEJB0018: Ignoring exception during setRollbackOnly:
com.arjuna.ats.jta.exceptions.InactiveTransactionException: ARJUNA016102: The transaction is not
active! Uid is ...

To resolve this issue:

1. Update your Red Hat JBoss BPM Suite to version 6.4.2.

2. Set the property org.jbpm.ejb.timer.tx to true.
Note that the property is not available in previous versions of Red Hat JBoss BPM Suite. See
chapter System Properties of Red Hat JBoss BPM Suite Administration and Configuration Guide
for further information.

// Start the process instance and record its ID:
long id = kieSession.startProcess(BOUNDARY_PROCESS_NAME).getId();

// Set the timer delay to 3 seconds:
kieSession.execute(new UpdateTimerCommand(id,
BOUNDARY_TIMER_ATTACHED_TO_NAME, 3));

Red Hat JBoss BPM Suite 6.4 Development Guide

204

https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html/administration_and_configuration_guide/configuration_properties#system_properties

11.12. MULTI-THREADING

11.12.1. Multi-Threading

In the following text, we will refer to two types of "multi-threading": logical and technical. Technical
multi-threading is what happens when multiple threads or processes are started on a computer, for
example by a Java or C program. Logical multi-threading is what we see in a BPM process after the
process reaches a parallel gateway. From a functional standpoint, the original process will then split into
two processes that are executed in a parallel fashion.

The BPM engine supports logical multi-threading; for example, processes that include a parallel
gateway are supported. We’ve chosen to implement logical multi-threading using one thread;
accordingly, a BPM process that includes logical multi-threading will only be executed in one technical
thread. The main reason for doing this is that multiple (technical) threads need to be be able to
communicate state information with each other if they are working on the same process. This
requirement brings with it a number of complications. While it might seem that multi-threading would
bring performance benefits with it, the extra logic needed to make sure the different threads work
together well means that this is not guaranteed. There is also the extra overhead incurred because we
need to avoid race conditions and deadlocks.

11.12.2. Engine Execution

In general, the BPM engine executes actions in serial. For example, when the engine encounters a script
task in a process, it will synchronously execute that script and wait for it to complete before continuing
execution. Similarly, if a process encounters a parallel gateway, it will sequentially trigger each of the
outgoing branches, one after the other. This is possible since execution is almost always instantaneous,
meaning that it is extremely fast and produces almost no overhead. As a result, the user will usually not
even notice this. Similarly, action scripts in a process are also synchronously executed, and the engine
will wait for them to finish before continuing the process. For example, doing a Thread.sleep(…) as part
of a script will not make the engine continue execution elsewhere but will block the engine thread during
that period.

The same principle applies to service tasks. When a service task is reached in a process, the engine will
also invoke the handler of this service synchronously. The engine will wait for the completeWorkItem(…
) method to return before continuing execution. It is important that your service handler executes your
service asynchronously if its execution is not instantaneous.

To implement an asynchronous service handler, implement the service in a new thread using the
executeWorkItem() method in the work item handler that allows the process instance to continue its
execution.

package documentation.wih.async;

import java.util.concurrent.TimeUnit;
import org.kie.api.runtime.process.WorkItem;
import org.kie.api.runtime.process.WorkItemHandler;
import org.kie.api.runtime.process.WorkItemManager;

public class MyServiceTaskHandler implements WorkItemHandler {
 private Thread asyncThread;
 public void executeWorkItem(final WorkItem workItem, final WorkItemManager manager) {

 asyncThread = new Thread(new Runnable() {
 public void run() {
 for (int i = 0; i < 10; i++) {

CHAPTER 11. WORKING WITH PROCESSES

205

An example of this would be a service task that invokes an external service. Since the delay in invoking
this service remotely and waiting for the results might be too long, it might be a good idea to invoke this
service asynchronously. This means that the handler will only invoke the service and will notify the
engine later when the results are available. In the mean time, the process engine then continues
execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we don’t
want the engine to wait until a human actor has responded to the request. The human task handler will
only create a new task (on the task list of the assigned actor) when the human task node is triggered.
The engine will then be able to continue execution on the rest of the process (if necessary), and the
handler will notify the engine asynchronously when the user has completed the task.

11.12.3. Job Executor for Asynchronous Execution

In Red Hat JBoss BPM Suite, the Job Executor component integrates with the runtime engine for
processing asynchronous tasks. You can delegate asynchronous execution operations, such as error
handling, retry, cancellation, and history logging in a new thread (using custom implementation of
WorkItemHandler) and use the Job Executor to handle these operations for you. The Job Executor
provides an environment for background execution of commands, which are nothing but business logic
encapsulated within a simple interface.

The custom tasks that the process engine delegates to the Job Executor runs as asynchronous
WorkItemHandler. Red Hat JBoss BPM Suite provides AsyncWorkItemHandler that is backed by the
Red Hat JBoss BPM Suite Job Executor. During the execution, the AsyncWorkItemHandler sets
contextual data available inside the command. You can configure the AsyncWorkItemHandler class in
two ways:

As a generic handler where you provide the command name as part of the work item
parameters. In Business Central while modeling a process, if you need to execute some work
item asynchronously: specify async as the value for the TaskName property, create a data
input called CommandClass and assign the fully-qualified class name of this CommandClass
as the data input.

As a specific handler which is created to handle a given type of work item, thus allowing you to
register different instances of AsyncWorkItemHandler for different work items. Commands
are most likely to be dedicated to a particular work item, which allows you to specify the
CommandClass at registration time instead of requiring it at design time, as with the first

 System.out.println("Hello number + " + i + " from async!");
 waitASecond();
 }
 }
 });
 asyncThread.start();

 manager.completeWorkItem(workItem.getId(), null);
 }
 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {
 //asyncThread can't be aborted
 }
 private static void waitASecond() {
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException ignored) {}
 }
}

Red Hat JBoss BPM Suite 6.4 Development Guide

206

approach. But this means that an additional CDI bean that implements
WorkItemHandlerProducer interface needs to be provided and placed on the application
classpath so that the CDI container can find it. When you are ready to model your process, set
the value of the TaskName property to the one provided at registration time.

11.12.4. Using Job Executor in Embedded Mode

The Job Executor API is a public API and is available within kie-api (org.kie.api.executor). You can run
your background processes asynchronously using the Job Executor from Business Central or outside
the Business Central in embedded mode. To use the Job Executor in Business Central, see
Section 11.12.6, “Using Job Executor in Business Central” . Perform the following steps to use the Job
Executor in the embedded mode:

1. Implement the Command interface.

2. Transfer business data from the process engine to your Command implementation.

3. Configure the Job Executor.

4. Register the AsyncWorkItemHandler handler, which uses the Job Executor.

5. Provide the execution results to the process engine.

Wrapping Business Logic with the Command Interface

The Job Executor contains the business logic to be executed and does not have any process runtime
related information. The Job Executor works on instances of the Command interface. It receives data
through the CommandContext object and returns results of the execution with ExecutionResults
class:

Here, ctx is the contextual data given by the executor service.

Since the Job Executor is decoupled from the runtime process engine and provides only the logic that is
to be executed as a part of that command, it promotes reuse of already existing logic by wrapping it with
Command implementation.

Transferring Business Data from the Process Engine to the Command Interface

The input data is transferred from the process engine to the command using the data transfer object
CommandContext. It is important that the data CommandContext holds is serializable.

package org.kie.api.executor;

import org.kie.api.executor.ExecutionResults;

public interface Command {
 public ExecutionResults execute(CommandContext ctx) throws Exception;
}

package org.kie.api.executor;

import java.io.Serializable;

public class CommandContext implements Serializable {

 private static final long serialVersionUID = -1440017934399413860L;

CHAPTER 11. WORKING WITH PROCESSES

207

CommandContext should provide the following:

businessKey: a unique identifier of the caller.

callbacks: the fully qualified classname (FQCN) of the CommandCallback instance to be
called on command completion.

Configuring the Executor

The Job Executor API usage scenarios are identical when used from Business Central and when used
outside of Business Central. See example Job Executor configuration options:

1. In-memory Job Executor with optional configuration:

 private Map<String, Object> data;

 public CommandContext() {
 data = new HashMap<String, Object>();
 }

 public CommandContext(Map<String, Object> data) {
 this.data = data;
 }

 public void setData(Map<String, Object> data) {
 this.data = data;
 }

 public Map<String, Object> getData() {
 return data;
 }

 public Object getData(String key) {
 return data.get(key);
 }

 public void setData(String key, Object value) {
 data.put(key, value);
 }

 public Set<String> keySet() {
 return data.keySet();
 }

 @Override
 public String toString() {
 return "CommandContext{" + "data=" + data + '}';
 }
}

import org.jbpm.executor.ExecutorServiceFactory;

..

// Configuration of in-memory executor service.
executorService = ExecutorServiceFactory.newExecutorService();

Red Hat JBoss BPM Suite 6.4 Development Guide

208

2. Executor configuration using EntityManagerFactory to store jobs into a database:

Registering the AsyncWorkItemHandler Handler

The AsyncWorkItemHandler handler uses Job Executor for scheduling tasks. See the following code
sample to register the AsyncWorkItemHandler handler:

// Set number of threads which will be used by executor - default is 1.
executorService.setThreadPoolSize(1);

// Sets interval at which executor threads are running in seconds - default is 3.
executorService.setInterval(1);

// Sets time unit of interval - default is SECONDS.
executorService.setTimeunit(TimeUnit.SECONDS);

// Number of retries in case of excepting during execution of command - default is 3.
executorService.setRetries(1);

executorService.init();

emf = Persistence.createEntityManagerFactory("org.jbpm.executor");

// Configuration of database executor service.
executorService = ExecutorServiceFactory.newExecutorService(emf);

// Optional configuration is skipped.
executorService.init();

import java.util.List;
import java.util.Map;

import org.kie.api.event.process.ProcessEventListener;
import org.kie.api.io.ResourceType;
import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.manager.RuntimeEnvironment;
import org.kie.api.runtime.manager.RuntimeEnvironmentBuilder;
import org.kie.api.runtime.manager.RuntimeManagerFactory;
import org.kie.api.runtime.process.ProcessInstance;
import org.kie.api.runtime.process.WorkItemHandler;
import org.kie.internal.io.ResourceFactory;
import org.kie.internal.runtime.manager.context.EmptyContext;
import org.jbpm.runtime.manager.impl.DefaultRegisterableItemsFactory;

...

 RuntimeEnvironment environment = RuntimeEnvironmentBuilder
 .Factory.get().newDefaultBuilder()
 .userGroupCallback(userGroupCallback)
 .addAsset(ResourceFactory.newClassPathResource
 ("BPMN2-ScriptTask.bpmn2"), ResourceType.BPMN2)
 .registerableItemsFactory(new DefaultRegisterableItemsFactory() {

 @Override
 public Map<String, WorkItemHandler> getWorkItemHandlers(RuntimeEngine runtime) {

CHAPTER 11. WORKING WITH PROCESSES

209

Providing Execution Results to the Process Engine

The outcome of the command is provided to process engine using the ExecutionResults class.
ExecutionResults is a data transfer object. The data provided by this class must be serializable.

 Map<String, WorkItemHandler> handlers = super.getWorkItemHandlers(runtime);
 handlers.put("async", new AsyncWorkItemHandler
 (executorService, "org.jbpm.executor.commands.PrintOutCommand"));
 return handlers;
 }

 @Override
 public List<ProcessEventListener> getProcessEventListeners(RuntimeEngine runtime) {
 List<ProcessEventListener> listeners = super.getProcessEventListeners(runtime);
 listeners.add(countDownListener);
 return listeners;
 }
 })

 .get();

manager = RuntimeManagerFactory.Factory.get().newSingletonRuntimeManager(environment);
assertNotNull(manager);

RuntimeEngine runtime = manager.getRuntimeEngine(EmptyContext.get());
KieSession ksession = runtime.getKieSession();
assertNotNull(ksession);

ProcessInstance processInstance = ksession.startProcess("ScriptTask");
assertEquals(ProcessInstance.STATE_ACTIVE, processInstance.getState());

Thread.sleep(3000);

processInstance = runtime.getKieSession().getProcessInstance(processInstance.getId());
assertNull(processInstance);

package org.kie.api.executor;

import org.kie.api.executor.ExecutorService;
import java.io.Serializable;

public class ExecutionResults implements Serializable {

 private static final long serialVersionUID = -1738336024526084091L;
 private Map<String, Object> data = new HashMap<String, Object>();

 public ExecutionResults() {}

 public void setData(Map<String, Object> data) {
 this.data = data;
 }

 public Map<String, Object> getData() {
 return data;
 }

Red Hat JBoss BPM Suite 6.4 Development Guide

210

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies.

11.12.5. Hello World Example with Embedded Job Executor

The following example uses the Job Executor in embedded mode. If you are using Maven, see example
Embedded jBPM Engine Dependencies for a list of Maven dependencies. The following example uses
Red Hat JBoss Developer Studio to model and execute the project. To use the Job Executor in
embedded mode:

1. In your jBPM project, add the src/main/resources/META-INF/drools.rulebase.conf file with
the following content:

drools.workDefinitions = WorkDefinitions.wid

2. Add the src/main/resources/META-INF/WorkDefinitions.wid file with the following content:

import org.drools.core.process.core.datatype.impl.type.ObjectDataType;
import java.lang.Long;
import java.lang.Integer;
import java.lang.Boolean;
import java.lang.String;

[
 [
 "name" : "AsyncWIH",
 "results" : [
 "Result" : new ObjectDataType(),
],
 "displayName" : "AsyncWIH",
 "icon" : "async-16x15.png"
],
]

3. Add the following BPMN diagram in the src/main/resources directory:

 public Object getData(String key) {
 return data.get(key);
 }

 public void setData(String key, Object value) {
 data.put(key, value);
 }

 public Set<String> keySet() {
 return data.keySet();
 }

 @Override
 public String toString() {
 return "ExecutionResults{" + "data=" + data + '}';
 }
}

CHAPTER 11. WORKING WITH PROCESSES

211

In your diagram, create an org.kie.api.executor.ExecutionResults variable and map it to the
Output variable of the asynchronous work item.

4. Create a Command implementation in src/main/java:

5. Create the main class that will register the work item handler and execute the process:

package com.sample;

import org.kie.api.executor.Command;
import org.kie.api.executor.CommandContext;
import org.kie.api.executor.ExecutionResults;

public class HelloWorldCommand implements Command {

 @Override
 public ExecutionResults execute(CommandContext arg0) throws Exception {
 System.out.println("Hello World from Business Command!");
 return new ExecutionResults();
 }
}

package com.sample;

import java.util.Properties;

import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

import org.jbpm.test.JBPMHelper;
import org.kie.api.KieBase;
import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.manager.RuntimeEnvironmentBuilder;
import org.kie.api.runtime.manager.RuntimeManager;
import org.kie.api.runtime.manager.RuntimeManagerFactory;

import bitronix.tm.resource.jdbc.PoolingDataSource;

import org.kie.api.executor.ExecutorService;
import org.jbpm.executor.ExecutorServiceFactory;
import org.jbpm.executor.impl.wih.AsyncWorkItemHandler;

public class ProcessMain {

 static EntityManagerFactory emf;

Red Hat JBoss BPM Suite 6.4 Development Guide

212

 public static void main(String[] args) throws InterruptedException {
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieBase kbase = kContainer.getKieBase("kbase");

 RuntimeManager manager = createRuntimeManager(kbase);
 RuntimeEngine engine = manager.getRuntimeEngine(null);
 KieSession ksession = engine.getKieSession();

 //Register the work item handler and point it to the FQCN of the command implementation.
 ExecutorService executorService =
ExecutorServiceFactory.newExecutorService(ProcessMain.emf);
 ksession.getWorkItemManager().registerWorkItemHandler("AsyncWIH", new
AsyncWorkItemHandler(executorService,"com.sample.HelloWorldCommand"));
 executorService.init();

 ksession.startProcess("com.sample.bpmn.hello");
 manager.disposeRuntimeEngine(engine);

 //Wait for the executor to finish. Otherwise, the process finishes before the job executor is
checked.
 Thread.sleep(5000);
 System.exit(0);
 }

 private static RuntimeManager createRuntimeManager(KieBase kbase) {
 JBPMHelper.startH2Server();

 // Create a data source if no custom datasource is available
 Properties properties = JBPMHelper.getProperties();
 PoolingDataSource pds = new PoolingDataSource();

 //Note the JNDI name
 pds.setUniqueName("jndi:/example");
 pds.setClassName("bitronix.tm.resource.jdbc.lrc.LrcXADataSource");
 pds.setMaxPoolSize(5);
 pds.setAllowLocalTransactions(true);
 pds.getDriverProperties().put("user", properties.getProperty("persistence.datasource.user",
"sa"));
 pds.getDriverProperties().put("password",
properties.getProperty("persistence.datasource.password", ""));
 pds.getDriverProperties().put("url", properties.getProperty("persistence.datasource.url",
"jdbc:h2:tcp://localhost/~/jbpm-db;MVCC=TRUE"));
 pds.getDriverProperties().put("driverClassName",
properties.getProperty("persistence.datasource.driverClassName", "org.h2.Driver"));
 pds.init();

 //Note the persistence unit name
 ProcessMain.emf = Persistence.createEntityManagerFactory("org.jbpm.example");
 RuntimeEnvironmentBuilder builder = RuntimeEnvironmentBuilder.Factory.get()
 .newDefaultBuilder().entityManagerFactory(emf)
 .knowledgeBase(kbase);
 return RuntimeManagerFactory.Factory.get()
 .newSingletonRuntimeManager(builder.get(), "com.sample:example:1.0");

CHAPTER 11. WORKING WITH PROCESSES

213

6. Add the src/main/resource/persistence.xml file with the following content. If you have a
custom datasource, configure your custom persistence unit.

7. When you execute the main class, the expected output is:

[main] INFO org.jbpm.executor.impl.ExecutorImpl - Starting Executor Component ...
 - Thread Pool Size: 1
 - Interval: 3 SECONDS
 - Retries per Request: 3

[main] WARN org.jbpm.executor.impl.ExecutorImpl - Disabling JMS support in executor
because: unable to initialize JMS configuration for executor due to unable to find a bound
object at name 'java:/JmsXA'
Hello World from Business Command!

11.12.6. Using Job Executor in Business Central

AsyncWorkItemHandler accepts the following input parameters:

CommandClass: A fully-qualified class name (FQCN) of the command to be executed.
Mandatory unless the handler is configured with a default command class.

 }

}

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_2_0.xsd">

 <persistence-unit name="org.jbpm.example" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jndi:/example</jta-data-source>
 <mapping-file>META-INF/Executor-orm.xml</mapping-file>
 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect" />
 <property name="hibernate.max_fetch_depth" value="3" />
 <property name="hibernate.hbm2ddl.auto" value="update" />
 <property name="hibernate.show_sql" value="false" />

 <!-- BZ 841786: AS7/EAP 6/Hib 4 uses new (sequence) generators which seem to cause
problems -->
 <property name="hibernate.id.new_generator_mappings" value="false" />
 <property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.BitronixJtaPlatform" />
 </properties>
 </persistence-unit>
</persistence>

Red Hat JBoss BPM Suite 6.4 Development Guide

214

Retries: The number of retries for the command execution. This parameter is optional.

RetryDelay: A single value or a comma separated list of time expressions used in case of
multiple retries. For example: 5s, 2m, 4h. This parameter is optional.
If you provide a comma separated list of time expressions and if the number of retry delays is
smaller than number of retries, the executor uses the last available value from the list.

If you provide a single time expression for retry delay, the retries will be equally spaced.

Delay: A start delay for jobs. The value is a time expression: 5s, 2m, or 4h. The delay is
calculated from the current time. This parameter is optional.

AutoComplete: Allows to use the fire and forget execution style. Thus, the handler does not wait
for job completion. The default value is false.

Priority: Priority for the job execution. The value is a range from 0 (the lowest) to 9 (the
highest).

The following data are available inside of the command during execution:

businessKey: A String generated from the process instance ID and the work item ID in the
following format: [processInstanceId]:[workItemId].

workItem: A work item instance that is being executed, including all its parameters.

processInstanceId: The process instance ID that triggered this work item execution.

To register the Asynchronous Work Item handler in Business Central:

1. Implement the Command interface, for example:

Use the following pom.xml:

package docs.command;

import org.kie.api.executor.Command;
import org.kie.api.executor.CommandContext;
import org.kie.api.executor.ExecutionResults;

public class HelloWorldCommand implements Command {

 public ExecutionResults execute(CommandContext commandContext) throws Exception {
 System.out.println("Hello World from Business Command!");
 return new ExecutionResults();
 }

}

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.docs</groupId>
 <artifactId>hello-commandimpl</artifactId>
 <version>1.0</version>

CHAPTER 11. WORKING WITH PROCESSES

215

See the Supported Component Versions of the Red Hat JBoss BPM Suite Installation Guide for
the current version number. Also note that you must configure Maven to work with the Red Hat
middleware repository. See Chapter 3, Apache Maven for further information.

2. Build your Maven project, upload the JAR file to the Business Central, and add into your project
dependencies. See the Registering Work Item handler in Business Central chapter for further
information.

3. In your project, define a custom Work Item Definition that will trigger your Command
implementation:

a. Click Work Item Definitions → Work Definitions. The Work Item Definitions editor opens.

b. Add your definition, specifying all parameters you want to use, for example:

c. Click Save and Validate to ensure correctness of your Work Item Definition file.

4. Click New Item → Business Process to create a new Business Process.

5. On your canvas, click to open the Object Library pallet, expand Service Tasks and drag and
drop the Work Item you created on the canvas, for example the Async Hello World! Service
Task.

6. Connect the Work Item with the start and end event.

7. Click on the Work Item and click to open the Properties tab. Click the 1 data inputs, 0 data

outputs value and click to open the Data I/O window.

8. Set the CommandClass attribute to docs.command.HelloWorldCommand. Alternatively, if
you used a different package, enter the fully-qualified class name of your implementation.

9. Click Save to save the data input mappings.

10. Click Save to save your process.

 <name>commandImpl</name>
 <description>Hello world command implementation</description>

 <dependencies>
 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>6.4.0.Final-redhat-8</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

[
 "name" : "async",
 "displayName" : "Async Hello World!",
 "icon" : "defaultemailicon.gif",
 "parameters" : [
 "CommandClass" : new StringDataType()
]
]

Red Hat JBoss BPM Suite 6.4 Development Guide

216

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps
https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/user_guide/#registering_a_work_item_handler

11. Register AsyncWorkItemHandler in Business Central:

a. Click Open Project Editor and navigate to the Deployment Descriptor for your project.

b. Click Add under the Work Item handlers category.

c. Set the first Value field to async.

d. Set the second Value field to:

e. Set the resolver to mvel.

f. Click Save and Validate to ensure correctness of your deployment descriptor.

You can now build, deploy, and start your process. If you followed the example above, you will see similar
output in the in the command line:

09:46:03,473 INFO [stdout] (Thread-637 (HornetQ-client-global-threads-1573025029)) Hello World
from Business Command!

Executor Configuration
When you are not running the Executor Service in the embedded mode, you can use the following
properties:

1. org.kie.executor.disabled: true or false to enable or disable the executor.

2. org.kie.executor.pool.size: an Integer that specifies the thread pool size for the executor. The
default value is 1.

3. org.kie.executor.retry.count: an Integer that specifies the default number of retries in case of
an error executing a job. The default value is 3.

4. org.kie.executor.interval: an Integer that specifies the time to wait between checking for
waiting jobs. The default value is 3 seconds.

5. org.kie.executor.timeunit: NANOSECONDS, MICROSECONDS, MILLISECONDS, SECONDS,
MINUTES, HOURS, or DAYS. Specifies the unit for the interval property. The default is
SECONDS.

11.12.7. Multiple Sessions and persistence

The simplest way to run multiple process instances is to run them in one knowledge session. However, it
is possible to run multiple process instances in different knowledge sessions or in different technical
threads.

When using multiple knowledge session with multiple processes and adding persistence, use a database
that allows row-level as well as table-level locks: There could be a situation when there are 2 or more
threads running, each within its own knowledge session instance. On each thread, a process is being
started using the local knowledge session instance. In this use case, a race condition exists in which both
thread A and thread B have coincidentally simultaneously finished a process instance. At this point, both
thread A and B are committing changes to the database. If row-level locks are not possible, then the
following situation can occur:

new
org.jbpm.executor.impl.wih.AsyncWorkItemHandler(org.jbpm.executor.ExecutorServiceFact
ory.newExecutorService(null))

CHAPTER 11. WORKING WITH PROCESSES

217

Thread A has a lock on the ProcessInstanceInfo table, having just committed a change to that
table.

Thread A wants a lock on the SessionInfo table in order to commit a change.

Thread B has the opposite situation: It has a lock on the SessionInfo table, having just committed
a change.

Thread B wants a lock on the ProcessInstanceInfo table, even though Thread A already has a
lock on it.

This is a deadlock situation which the database and application are not be able to solve, unless row-level
locks are possible and enabled in the database and tables used.

11.12.8. Asynchronous Events

In cases where several process instances from different process definitions are waiting for the same
signal, they are generally executed sequentially in the same single thread. However, if one of those
process instances throws a runtime exception, all the other process instances are affected, usually
resulting in a rolled back transaction. To avoid this, Red Hat JBoss BPM Suite supports using
asynchronous signals events for:

Throwing Intermediate Signal Events

End Events

From the Business Central, set the Data Input value of the throw event to async to automatically set
the Executor Service on each ksession. This ensures that each process instance is signaled in a different
transaction.

11.12.9. Technical exceptions

Technical exceptions occur when a technical component of a Process acts in an unexpected way. When
using Java-based systems, this often results in a Java Exception. As these exceptions cannot be
handled using BPMN2, it is important to handle them in expected ways.

The following types of code might throw exceptions:

Code present directly in the process definition

Code that is not part of the product executed during a Process

Code that interacts with a technical component outside of the Process Engine

This includes the following:

Code in Element properties, such as the Script property of a Script Task element or in the
definitions of the interception actions, that is, the onEntry and onExit properties

Code in WorkItemHandlers associated with task and task-type nodes

Code in Element properties
Exceptions thrown by code defined in Element properties can cause the Process instance to fail in an
unrecoverable way. Often, it is the code that starts the Process that will end up throwing the exception
generated by a Process without returning a reference to the Process instance. Such code includes for
example the onEntry and onExit properties, Script defined for the Script Task, etc.

Red Hat JBoss BPM Suite 6.4 Development Guide

218

Therefore, it is important to limit the scope of the code in these Elements so that is operates only over
Process variables. Using a scriptTask to interact with a different technical component, such as a
database or web service has significant risks because any exceptions thrown will corrupt or abort the
Process instance.

To interact with other systems, use task Elements, serviceTask Elements and other task-type
Elements. Do not use the scriptTask nodes for these purposes.

NOTE

If the script defined in a scriptTask causes the problem, the Process Engine usually
throws the WorkflowRuntimeException with information on the Process (see
Section 11.12.9.1.5, “Extracting information from WorkflowRuntimeException”).

Code in WorkItemHandlers
WorkItemHandlers are used when your Process interacts with other technical systems.

You can either build exception handling into your own WorkItemhandler implementations or wrap your
implementation into the handler decorator classes (for examples and detailed information see
Section 11.12.9.1.2, “Exception handling classes”). These classes include the logic that is executed when
an exception is thrown during the execution or abortion of a work item:

SignallingTaskHandlerDecorator

catches the exception and signals it to the Process instance using a configurable event type when
the executeWorkItem() or abortWorkItem methods of the original WorkItemHandler instance
throw an exception. The exception thrown is passed as part of the event. This functionality can be
also used to signal to an Event SubProcess defined in the Process definition.

LoggingTaskHandlerDecorator

logs error about any exceptions thrown by the executeWorkItem() and abortWorkItem() methods. It
also saves any exceptions thrown to an internal list so that they can be retrieved later for inspection
or further logging. The content and format of the message logged are configurable.

While the classes described above covers most cases involving exception handling as it catches any
throwable objects, you might still want to write a custom WorkItemHandler that includes exception
handling logic. In such a case, consider the following:

Does the implementation catch all exceptions the code could return?

Does the implementation complete or abort the work item after an exception has been caught
or uses a mechanisms to retry the process later (in some cases, incomplete process instances
might be acceptable)?

Does the implementation define any other actions that need to be taken when an exception is
caught? Would it be beneficial to interact with other technical systems? Should a Sub-Process
be triggered to handle the exception?

IMPORTANT

If WorkItemManager signals that the work item has been completed or aborted, make
sure the signal is sent after any signals to the Process instance were sent. Depending on
how your Process definition, calling WorkItemManager.completeWorkItem() or
WorkItemManager.abortWorkItem() triggers the completion of the Process instance as
these methods trigger further execution of the Process execution flow.

CHAPTER 11. WORKING WITH PROCESSES

219

11.12.9.1. Technical exception examples

11.12.9.1.1. Service Task handlers

The following example uses a Throwing Error Intermediate Event to throw an error. An Error Event Sub-
Process then catches and handles the error.

When the Throwing Error Intermediate Event throws an error, the process instance is interrupted:

1. Execution of the process instance stops: no other parts of the process are executed.

2. The process instance finishes as ABORTED.

The process starts with a start event and continues to the Throw Exception service task. The task
produces an exception, which is propagated as a signal object through the process instance and caught
by the sub-process start event in the Exception Handler event sub-process. The workflow continues to
the Handle Exception task and the process instance finishes with the sub-process end event.

Figure 11.2. Process with an exception handling Event Sub-Process

The following XML is a representation of the process. It contains elements and IDs that are referenced in
Section 11.12.9.1.2, “Exception handling classes” .

 <itemDefinition id="_stringItem" structureRef="java.lang.String" /> (1)
 <message id="_message" itemRef="_stringItem"/> # (2)

 <interface id="_serviceInterface" name="org.jbpm.examples.exceptions.service.ExceptionService">
 <operation id="_serviceOperation" name="throwException">
 <inMessageRef>_message</inMessageRef> (2)
 </operation>
 </interface>

 <error id="_exception" errorCode="code" structureRef="_exceptionItem"/> (3)

 <itemDefinition id="_exceptionItem" structureRef="org.kie.api.runtime.process.WorkItem"/> (4)
 <message id="_exceptionMessage" itemRef="_exceptionItem"/> (4)

 <interface id="_handlingServiceInterface"
name="org.jbpm.examples.exceptions.service.ExceptionService">
 <operation id="_handlingServiceOperation" name="handleException">
 <inMessageRef>_exceptionMessage</inMessageRef> (4)
 </operation>
 </interface>

 <process id="ProcessWithExceptionHandlingError" name="Service Process" isExecutable="true"

Red Hat JBoss BPM Suite 6.4 Development Guide

220

1. This <itemDefinition> element defines a data structure that is used in the serviceInputItem
property in the process.

2. This <message> element (first reference) defines a message that has a String as its content, as
defined by the <itemDefintion> element on line above. The <interface> element below it
refers to it (second reference) in order to define what type of content the service (defined by
the <interface>) expects.

3. This <error> element (first reference) defines an error for use later in the process: an Event
SubProcess is defined that is triggered by this error (second reference). The content of the
error is defined by the <itemDefintion> element defined below the <error> element.

4. This <itemDefintion> element (first reference) defines an item that contains a WorkItem
instance. The <message> element (second reference) then defines a message that uses this
item definition to define its content. The <interface> element below that refers to the
<message> definition (third reference) in order to define the type of content that the service
expects.
In the process itself, a <property> element (fourth reference) is defined as having the content
defined by the initial <itemDefintion>. This is helpful because it means that the Event
SubProcess can then store the error it receives in that property (5th reference).

11.12.9.1.2. Exception handling classes

The BPMN process defined in Section 11.12.9.1.1, “Service Task handlers” contains two <serviceTask>
activities. The org.jbpm.bpmn2.handler.ServiceTaskHandler class is the default task handler class
used for <serviceTask> tasks. If you do not specify a Work Item Handler implementation for a
<serviceTask> activity, the ServiceTaskHandler class is used.

The example below decorates the ServiceTaskHandler class with a SignallingTaskHandlerDecorator

processType="Private">
 <!-- properties -->
 <property id="serviceInputItem" itemSubjectRef="_stringItem"/> (1)
 <property id="exceptionInputItem" itemSubjectRef="_exceptionItem"/> (4)

 <!-- main process -->
 <startEvent id="_1" name="Start" />
 <serviceTask id="_2" name="Throw Exception" implementation="Other"
operationRef="_serviceOperation">

 <!-- rest of the serviceTask element and process definition... -->

 <subProcess id="_X" name="Exception Handler" triggeredByEvent="true" >
 <startEvent id="_X-1" name="subStart">
 <dataOutput id="_X-1_Output" name="event"/>
 <dataOutputAssociation>
 <sourceRef>_X-1_Output</sourceRef>
 <targetRef>exceptionInputItem</targetRef> (4)
 </dataOutputAssociation>
 <errorEventDefinition id="_X-1_ED_1" errorRef="_exception" /> (3)
 </startEvent>

 <!-- rest of the subprocess definition... -->

 </subProcess>

 </process>

CHAPTER 11. WORKING WITH PROCESSES

221

The example below decorates the ServiceTaskHandler class with a SignallingTaskHandlerDecorator
instance in order to define behavior when the ServiceTaskHandler class throws an exception.

In the example, the ServiceTaskHandler throws an exception because it calls the
ExceptionService.throwException method, which throws an exception. (See the
_handlingServiceInterface <interface> element in the BPMN2 XML schema.)

The example also configures which (error) event is sent to the process instance by the
SignallingTaskHandlerDecorator instance. The SignallingTaskHandlerDecorator object does this
when an exception is thrown in a task. In this example, because of the <error> definition with the error
code code in the BPMN2 process, the signal is set to Error-code.

RULES FOR SENDING SIGNALS

When sending a signal of an event to the Process Engine, consider the rules for signaling
process events:

Error events are signaled by sending an Error-ERRORCODE ATTRIBUTE
VALUE value to the session.

Signal events are signaled by sending the name of the signal to the session.

If you wanted to send an error event to a Boundary Catch Error Event, the error
type should be of the format: "Error-" + $AttachedNodeID + "-" +
$ERROR_CODE. For example, Error-SubProcess_1-888 would be a valid error
type.
However, this is NOT a recommended practice because sending the signal this
way bypasses parts of the boundary error event functionality and it relies on
internal implementation details that might be changed in the future. For a way to
programmatically trigger a boundary error event when an Exception is thrown in
WorkItemHandler see this KnowledgeBase article.

Example 11.3. Using SignallingTaskHandlerDecorator

The ServiceTaskHandler calls the ExceptionService.throwException() method to throw an
exception (refer to the _handlingServiceInterface interface element in the BPMN2).

The SignallingTaskHandlerDecorator that wraps the ServiceTaskHandler sends to the Process
instance the error with the set error code .

import java.util.HashMap;
import java.util.Map;

import org.jbpm.bpmn2.handler.ServiceTaskHandler;
import org.jbpm.bpmn2.handler.SignallingTaskHandlerDecorator;
import org.jbpm.examples.exceptions.service.ExceptionService;
import org.kie.api.KieBase;
import org.kie.api.io.ResourceType;
import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.process.ProcessInstance;
import org.kie.internal.builder.KnowledgeBuilder;
import org.kie.internal.builder.KnowledgeBuilderFactory;
import org.kie.internal.io.ResourceFactory;

public class ExceptionHandlingErrorExample {

Red Hat JBoss BPM Suite 6.4 Development Guide

222

https://access.redhat.com/solutions/1213663

1

2

3

Definition of the Error-code event to be sent to the process instance when the wrapped
WorkItemHandler implementation throws an exception.

Construction of the SignallingTaskHandlerDecorator class instance with the
WorkItemHandler implementation and eventType as parameters: Note that a
SignallingTaskHandlerDecorator class constructor that takes an instance of a
WorkItemHandler implementation as its parameter is also available. This constructor is useful if
the WorkItemHandler implementation does not allow a no-argument constructor.

Registering the WorkItemHandler with the session: When an exception is thrown by the
wrapped WorkItemHandler, the SignallingTaskHandlerDecorator saves it as a parameter in
the WorkItem instance with a parameter name configured in the
SignallingTaskHandlerDecorator (see the code below for the ExceptionService).

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies in chapter
Dependency Management of the Red Hat JBoss BPM Suite Development Guide .

11.12.9.1.3. Exception service

In Section 11.12.9.1.1, “Service Task handlers” , the BPMN2 process definition defines the exception service
using the ExceptionService class as follows:

public static final void main(String[] args) {
runExample();
}

public static ProcessInstance runExample() {
KieSession ksession = createKieSession();

String eventType = "Error-code"; 1
SignallingTaskHandlerDecorator signallingTaskWrapper 2
= new SignallingTaskHandlerDecorator(ServiceTaskHandler.class, eventType);
signallingTaskWrapper.setWorkItemExceptionParameterName(ExceptionService.exceptionParamete
rName); 3
ksession.getWorkItemManager().registerWorkItemHandler("Service Task",
signallingTaskWrapper);

Map<String, Object> params = new HashMap<String, Object>();
params.put("serviceInputItem", "Input to Original Service");
ProcessInstance processInstance = ksession.startProcess("ProcessWithExceptionHandlingError",
params);
return processInstance;
}

private static KieSession createKieSession() {
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("exceptions/ExceptionHandlingWithError.bp
mn2"), ResourceType.BPMN2);
KieBase kbase = kbuilder.newKnowledgeBase();
return kbase.newKieSession();
}

CHAPTER 11. WORKING WITH PROCESSES

223

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#dependency_management

The exception service uses the ExceptionService class to provide the exception handling abilities. The
class is implemented as follows:

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies in chapter
Dependency Management of the Red Hat JBoss BPM Suite Development Guide .

You can specify any Java class with the default or another no-argument constructor as the class to
provide the exception service so that it is executed as part of a serviceTask.

11.12.9.1.4. Handling errors with Signals

In the example in Section 11.12.9.1.1, “Service Task handlers” , an Error event occurs during Process
execution and the execution is interrupted immediately: no other Flows or Activities are executed.

However, you might want to complete the execution. In such case you can use a Signal event as the
Process execution continues after the Signal is processed (that is, after the Signal Event SubProcess or
another Activities that the Signal triggered, finish their execution). Also, the Process execution finished
successfully, not in an aborted state, which is the case if an Error is used.

In the example process, we define the error element which is then used to throw the Error:

To use a Signal instead, do the following:

1. Remove the line defining the error element and define a <signal> element:

2. Change all references from the _exception value in the <error> XML tag to the exception-

<interface id="_handlingServiceInterface"
name="org.jbpm.examples.exceptions.service.ExceptionService">
<operation id="_handlingServiceOperation" name="handleException">

import org.kie.api.runtime.process.WorkItem;
...
public class ExceptionService {

 public static String exceptionParameterName = "my.exception.parameter.name";
 public void handleException(WorkItem workItem) {
 System.out.println("Handling exception caused by work item '" + workItem.getName() + "' (id: " +
workItem.getId() + ")");
 Map<String, Object> params = workItem.getParameters();
 Throwable throwable = (Throwable) params.get(exceptionParameterName);
 throwable.printStackTrace();
 }
 public String throwException(String message) {
 throw new RuntimeException("Service failed with input: " + message);
 }
 public static void setExceptionParameterName(String exceptionParam) {
 exceptionParameterName = exceptionParam;
 }

}

 <error id="_exception" errorCode="code" structureRef="_exceptionItem"/>

 <signal id="exception-signal" structureRef="_exceptionItem"/>

Red Hat JBoss BPM Suite 6.4 Development Guide

224

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#dependency_management

2. Change all references from the _exception value in the <error> XML tag to the exception-
signal value of the <signal> XML tag.
Change the <errorEventDefinition> element in the <startEvent>,

to a <signalEventDefinition>:

11.12.9.1.5. Extracting information from WorkflowRuntimeException

If a scripts in your Process definition may throw or threw an exception, you need to retrieve more
information about the exception and related information.

If it is a scriptTask element that causes an exception, you can extract the information from the
WorkflowRuntimeException as it is the wrapper of the scriptTask.

The WorkflowRuntimeException instance stores the information outlined in Table 11.5, “Information in
WorkflowRuntimeException instances”. Values of all fields listed can be obtained using the standard get*
methods.

Table 11.5. Information in WorkflowRuntimeException instances

Field name Type Description

processInstanc
eId

long The id of the ProcessInstance instance in which the exception
occurred

Note that the ProcessInstance may not exist anymore or be
available in the database if using persistence.

processId String The id of the process definition that was used to start the
process (that is, "ExceptionScriptTask" in

)

nodeId long The value of the (BPMN2) id attribute of the node that threw
the exception

nodeName String The value of the (BPMN2) name attribute of the node that
threw the exception

variables Map<String,
Object>

The map containing the variables in the process instance
(experimental)

message String The short message with information on the exception

cause Throwable The original exception that was thrown

 <errorEventDefinition id="_X-1_ED_1" errorRef="_exception" />

 <signalEventDefinition id="_X-1_ED_1" signalRef="exception-signal"/>

ksession.startProcess("ExceptionScriptTask");

CHAPTER 11. WORKING WITH PROCESSES

225

The following code illustrates how to extract extra information from a process instance that throws a
WorkflowRuntimeException exception instance.

Use the following Maven dependencies:

import org.jbpm.workflow.instance.WorkflowRuntimeException;
import org.kie.api.KieBase;
import org.kie.api.io.ResourceType;
import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.process.ProcessInstance;
import org.kie.internal.builder.KnowledgeBuilder;
import org.kie.internal.builder.KnowledgeBuilderFactory;
import org.kie.internal.io.ResourceFactory;

public class ScriptTaskExceptionExample {

 public static final void main(String[] args) {
 runExample();
 }

 public static void runExample() {
 KieSession ksession = createKieSession();
 Map < String, Object > params = new HashMap < String, Object > ();
 String varName = "var1";
 params.put(varName, "valueOne");
 try {
 ProcessInstance processInstance = ksession.startProcess("ExceptionScriptTask", params);
 } catch (WorkflowRuntimeException wfre) {
 String msg = "An exception happened in " + "process instance [" + wfre.getProcessInstanceId() + "]
of process [" + wfre.getProcessId() + "] in node [id: " + wfre.getNodeId() + ", name: " +
wfre.getNodeName() + "] and variable " + varName + " had the value [" +
wfre.getVariables().get(varName) + "]";
 System.out.println(msg);
 }
 }
 private static KieSession createKieSession() {
 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
 kbuilder.add(ResourceFactory.newClassPathResource("exceptions/ScriptTaskException.bpmn2"),
ResourceType.BPMN2);
 KieBase kbase = kbuilder.newKnowledgeBase();
 return kbase.newKieSession();
 }
}

<dependencies>
 ...
 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>6.5.0.Final-redhat-2</version>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-flow</artifactId>
 <version>6.5.0.Final-redhat-2</version>

Red Hat JBoss BPM Suite 6.4 Development Guide

226

For the current Maven artifact version, see chapter Supported Component Versions of the Red Hat
JBoss BPM Suite Installation Guide.

11.13. PROCESS FLUENT API

11.13.1. Using the Process Fluent API to Create Business Process

While it is recommended to define processes using the graphical editor or the underlying XML, you can
also create a business process using the Process API directly. The most important process model
elements are defined in the packages org.jbpm.workflow.core and org.jbpm.workflow.core.node.

Red Hat JBoss BPM Suite provides you a fluent API that allows you to easily construct processes in a
readable manner using factories. You can then validate the process that you were constructing manually.

11.13.2. Process Fluent API Example

Here is an example of a basic process with only a script task:

 </dependency>
 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-internal</artifactId>
 <version>6.5.0.Final-redhat-2</version>
</dependency>
 ...
</dependencies>

import org.kie.api.KieServices;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.ReleaseId;
import org.kie.api.io.Resource;
import org.jbpm.ruleflow.core.RuleFlowProcessFactory;
import org.jbpm.ruleflow.core.RuleFlowProcess;
import org.jbpm.bpmn2.xml.XmlBPMNProcessDumper;

...

RuleFlowProcessFactory factory = RuleFlowProcessFactory.createProcess("org.jbpm.HelloWorld");

factory
 // Header
 .name("HelloWorldProcess")
 .version("1.0")
 .packageName("org.jbpm")
 // Nodes
 .startNode(1).name("Start").done()
 .actionNode(2).name("Action")
 .action("java", "System.out.println(\"Hello World\");").done()
 .endNode(3).name("End").done()
 // Connections
 .connection(1, 2)
 .connection(2, 3);

RuleFlowProcess process = factory.validate().getProcess();

CHAPTER 11. WORKING WITH PROCESSES

227

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies.

In this example, we first call the static createProcess() method from the RuleFlowProcessFactory
class. This method creates a new process and returns the RuleFlowProcessFactory that can be used to
create the process.

A process consists of three parts:

Header: The header section comprises global elements such as the name of the process,
imports, and variables.
In the above example, the header contains the name and version of the process and the
package name.

Nodes: The nodes section comprises all the different nodes that are part of the process.
In the above example, nodes are added to the current process by calling the startNode(),
actionNode() and endNode() methods. These methods return a specific NodeFactory that
allows you to set the properties of that node. Once you have finished configuring that specific
node, the done() method returns you to the current RuleFlowProcessFactory so you can add
more nodes, if necessary.

Connections: The connections section links the nodes to create a flow chart.
In the above example, once you add all the nodes, you must connect them by creating
connections between them. This can be done by calling the method connection, which links the
nodes.

Finally, you can validate the generated process by calling the validate() method and retrieve the
created RuleFlowProcess object.

11.14. TESTING BUSINESS PROCESSES

Although business processes should not contain any implementation details and should be as high-level
as possible, they have a life cycle similar to other development artefacts. Because business processes
can be updated dynamically and modifying them can cause errors, testing a process definition is a part
of creating business processes.

Process unit tests ensure that the process behaves as expected in specific use cases. For example, an
output can be tested based on a particular input. To simplify unit testing, Red Hat JBoss BPM Suite
includes the org.jbpm.test.JbpmJUnitBaseTestCase class. The class provides the following:

Helper methods for creating a new knowledge base and a session for one or more given
processes, with the possibility of using persistence. For more information, see Section 11.14.2,
“Configuring Persistence”.

Assert statements to check:

KieServices ks = KieServices.Factory.get();
KieFileSystem kfs = ks.newKieFileSystem();
Resource resource = ks.getResources().newByteArrayResource(
 XmlBPMNProcessDumper.INSTANCE.dump(process).getBytes());

resource.setSourcePath("helloworld.bpmn2");
kfs.write(resource);
ReleaseId releaseId = ks.newReleaseId("org.jbpm", "helloworld", "1.0");
kfs.generateAndWritePomXML(releaseId);
ks.newKieBuilder(kfs).buildAll();
ks.newKieContainer(releaseId).newKieSession().startProcess("org.jbpm.HelloWorld");

Red Hat JBoss BPM Suite 6.4 Development Guide

228

The state of a process instance. A process instance can be active, completed, or aborted.

The node instances that are currently active.

Which nodes have been triggered. This enables to inspect the followed path.

The value of different variables.

Example 11.4. JUnit Test of hello.bpmn Process

The process below contains a start event, a script task, and an end event. The example JUnit test
creates a new session, starts the hello.bpmn process, verifies whether the process instance has
completed successfully, and whether the StartProcess, Hello, and EndProcess nodes were
executed.

For a list of Maven dependencies, see section Testing Dependencies.

11.14.1. JbpmJUnitBaseTestCase

import org.jbpm.test.JbpmJUnitBaseTestCase;
import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.process.ProcessInstance;

public class ProcessPersistenceTest extends JbpmJUnitBaseTestCase {
 public ProcessPersistenceTest() {
 // Set up a data source and enable persistence:
 super(true, true);
 }

 @Test
 public void testProcess() {
 // Create a runtime manager with the hello.bpmn process:
 createRuntimeManager("hello.bpmn");
 // Get a runtime engine:
 RuntimeEngine runtimeEngine = getRuntimeEngine();
 // Get an access to an instance of a session:
 KieSession ksession = runtimeEngine.getKieSession();
 // Start the process:
 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");
 // Check whether the process instance has completed successfully:
 assertProcessInstanceCompleted(processInstance.getId());
 // Check whether the given nodes were executed:
 assertNodeTriggered(processInstance.getId(), "StartProcess", "Hello", "EndProcess");
 }
}

CHAPTER 11. WORKING WITH PROCESSES

229

The JbpmJUnitBaseTestCase class acts as a base test case class that you can use for Red Hat JBoss
BPM Suite-related tests. It provides four usage areas:

JUnit life cycle methods

Knowledge base and knowledge session management methods

Assertions

Helper methods

For the complete list of all methods, see the JbpmJUnitBaseTestCase Javadoc.

Table 11.6. JUnit Life Cycle Methods

Method Description

setUp This method is annotated as @Before. It configures a data
source and EntityManagerFactory and deletes the session ID
of a Singleton.

tearDown This method is annotated as @After. It removes history, closes
EntityManagerFactory and a data source, and disposes
RuntimeManager and RuntimeEngines.

To create a session, create RuntimeManager and RuntimeEngine first. Use the following methods to
create and dispose of RuntimeManager:

Table 11.7. RuntimeManager Management Methods

Method Description

createRuntimeManager(String...
process)

Creates one RuntimeManager with the Singleton strategy for
one test. Each process is added to the knowledge base.

createRuntimeManager(Strategy
strategy, String identifier, String...
process)

Creates RuntimeManager with the given strategy and with all
processes added to the knowledge base. The identifier
parameter specifies a concrete RuntimeManager.

createRuntimeManager(Map<String
, ResourceType> resources)

Creates RuntimeManager with the Singleton strategy and
with all resources, such as processes and rules, added to the
knowledge base.

createRuntimeManager(Map<String
, ResourceType> resources, String
identifier)

Creates RuntimeManager with the Singleton strategy and
with all resources, such as processes and rules, added to the
knowledge base. The identifier parameter specifies a concrete
RuntimeManager.

createRuntimeManager(Strategy
strategy, Map<String,
ResourceType> resources)

Creates one RuntimeManager with the given strategy for one
test, with all resources, such as processes and rules, added to
the knowledge base.

Red Hat JBoss BPM Suite 6.4 Development Guide

230

https://maven.repository.redhat.com/nexus/content/unzip/unzip/org/jbpm/jbpm-test/6.5.0.Final/jbpm-test-6.5.0.Final-javadoc.jar-unzip/org/jbpm/test/JbpmJUnitBaseTestCase.html

createRuntimeManager(Strategy
strategy, Map<String,
ResourceType> resources, String
identifier)

Creates one RuntimeManager with the given strategy for one
test, with all resources, such as processes and rules, added to
the knowledge base. The identifier parameter specifies a
concrete RuntimeManager.

createRuntimeManager(Strategy
strategy, Map<String,
ResourceType> resources,
RuntimeEnvironment environment,
String identifier)

Creates the lowest level of RuntimeManager without any
particular configuration, which enables you to configure each of
its parts manually. Specify the following parameters:

strategy: one of the supported strategies.

resources: all the resources, such as rules and
processes, that are added to the knowledge base.

environment: the runtime environment used for
creating RuntimeManager.

identifier: the unique identifier of RuntimeManager.

disposeRuntimeManager Disposes of the currently active RuntimeManager in the test
scope.

Method Description

Table 11.8. RuntimeEngine Management Methods

Method Description

getRuntimeEngine() Returns a new RuntimeEngine built from the manager of a
test case. The method uses the EmptyContext context
suitable for the Singleton and Per Request strategies.

getRuntimeEngine(Context<?>
context)

Returns a new RuntimeEngine built from the manager of a
test case. The context parameter specifies an instance of the
context used to create RuntimeEngine. To maintain the same
session for process instances, use
ProcessInstanceIdContext.

To test the current state of various assets, the following methods are available:

Table 11.9. Assertions

Assertion Description

assertProcessInstanceActive(long
processInstanceId, KieSession
ksession)

Checks whether a process instance with the given ID is active.

CHAPTER 11. WORKING WITH PROCESSES

231

assertProcessInstanceCompleted(l
ong processInstanceId)

Checks whether a process instance with the given ID has
completed successfully. Use this method in case session
persistence is enabled. Otherwise, use
assertProcessInstanceNotActive(long
processInstanceId, KieSession ksession).

assertProcessInstanceAborted(lon
g processInstanceId)

Checks whether a process instance with the given ID was
aborted. Use this method in case session persistence is enabled.
Otherwise, use assertProcessInstanceNotActive(long
processInstanceId, KieSession ksession).

assertNodeExists(ProcessInstance
process, String... nodeNames)

Checks whether the given nodes exist within the specified
process.

assertNodeActive(long
processInstanceId, KieSession
ksession, String... name)

Checks whether a process instance with the given ID contains at
least one active node with the specified node names.

assertNodeTriggered(long
processInstanceId, String...
nodeNames)

For each given node name, checks whether a node instance was
triggered during the execution of the specified process instance.

getVariableValue(String name, long
processInstanceId, KieSession
ksession)

Retrieves the value of the given variable from the specified
process instance.

assertProcessVarExists(ProcessIns
tance process, String...
processVarNames)

Checks whether the given process contains the specified
process variables.

assertProcessNameEquals(Process
Instance process, String name)

Checks whether the given name matches the name of the
specified process.

assertVersionEquals(ProcessInstan
ce process, String version)

Checks whether the given process version matches the version
of the specified process.

Assertion Description

Table 11.10. Helper Methods

Method Description

setupPoolingDataSource Configures a data source.

getDs Returns the currently configured data source.

getEmf Returns the currently configured EntityManagerFactory.

Red Hat JBoss BPM Suite 6.4 Development Guide

232

getTestWorkItemHandler Returns a test work item handler that can be registered in
addition to what is registered by default.

clearHistory Clears a history log.

Method Description

JbpmJUnitBaseTestCase supports all the predefined RuntimeManager strategies as part of the unit
testing. Specify which strategy should be used whenever creating a runtime manager as part of a single
test. The following example uses the PerProcessInstance strategy:

import java.util.List;

import org.jbpm.test.JbpmJUnitBaseTestCase;
import org.junit.Test;
import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.manager.RuntimeManager;
import org.kie.api.runtime.process.ProcessInstance;
import org.kie.api.task.TaskService;
import org.kie.api.task.model.TaskSummary;
import org.kie.internal.runtime.manager.context.ProcessInstanceIdContext;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class ProcessHumanTaskTest extends JbpmJUnitBaseTestCase {
 private static final Logger logger = LoggerFactory.getLogger(ProcessHumanTaskTest.class);
 public ProcessHumanTaskTest() {
 super(true, false);
 }

 @Test
 public void testProcessProcessInstanceStrategy() {
 RuntimeManager manager = createRuntimeManager
 (Strategy.PROCESS_INSTANCE, "manager", "humantask.bpmn");
 RuntimeEngine runtimeEngine = getRuntimeEngine(ProcessInstanceIdContext.get());
 KieSession ksession = runtimeEngine.getKieSession();
 TaskService taskService = runtimeEngine.getTaskService();

 int ksessionID = ksession.getId();
 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

 assertProcessInstanceActive(processInstance.getId(), ksession);
 assertNodeTriggered(processInstance.getId(), "Start", "Task 1");

 manager.disposeRuntimeEngine(runtimeEngine);

 runtimeEngine = getRuntimeEngine(ProcessInstanceIdContext.get(processInstance.getId()));

 ksession = runtimeEngine.getKieSession();
 taskService = runtimeEngine.getTaskService();

CHAPTER 11. WORKING WITH PROCESSES

233

For a list of Maven dependencies, see section Testing Dependencies.

11.14.2. Configuring Persistence

Persistence allows to store states of all process instances in a database and uses a history log to check
assertions related to the execution history. When persistence is not used, process instances are stored in
the memory and an in-memory logger is used for history transactions.

By default, the performed JUnit tests do not use persistence. To change this behavior, invoke a
constructor of the superclass in one of the following ways:

default: This option uses a no-argument constructor; it does not initialize a data source and
does not configure session persistence. This option is usually used for in-memory process
management without any human task interaction.

super(boolean, boolean): This option allows to explicitly configure persistence and a data
source. This is the most common way of bootstrapping test cases for Red Hat JBoss BPM Suite.
Use

super(true, false) for execution with in-memory process management and human tasks
persistence.

super(true, true) for execution with persistent process management and human tasks
persistence.

super(boolean, boolean, string): This option is very similar to the last one, however, it enables
you to use a different persistence unit name than the default one, which is
org.jbpm.persistence.jpa.

 assertEquals(ksessionID, ksession.getId());

 // Let John execute Task 1:
 List<TaskSummary> list = taskService.getTasksAssignedAsPotentialOwner("john", "en-UK");
 TaskSummary task = list.get(0);
 logger.info("John is executing task {}", task.getName());

 taskService.start(task.getId(), "john");
 taskService.complete(task.getId(), "john", null);

 assertNodeTriggered(processInstance.getId(), "Task 2");

 // Let Mary execute Task 2:
 list = taskService.getTasksAssignedAsPotentialOwner("mary", "en-UK");
 task = list.get(0);

 logger.info("Mary is executing task {}", task.getName());

 taskService.start(task.getId(), "mary");
 taskService.complete(task.getId(), "mary", null);

 assertNodeTriggered(processInstance.getId(), "End");
 assertProcessInstanceCompleted(processInstance.getId());
 }
}

Red Hat JBoss BPM Suite 6.4 Development Guide

234

11.14.3. Testing Integration with External Services

Business processes often include the invocation of external services. Unit testing of a business process
allows you to register test handlers that verify whether the specific services are requested correctly, and
provide test responses for those services as well.

To test the interactions with external services, use the TestWorkItemHandler handler, which is provided
by default. TestWorkItemHandler can be registered to collect all the work items of a given type and
contains data related to a task. A work item represents one unit of work, such as sending one specific
email or invoking one specific service. This test handler then checks whether a specific work item was
actually requested during an execution of a process, and whether the data associcated with the work
item are correct.

Example 11.5. Testing Email Task

This example shows how to test a process that sends an email and whether an exception is raised if
the email cannot be sent. This is accomplished by notifying the engine about the email delivery
failure.

Further notes describing the following source code are below.

import org.jbpm.test.JbpmJUnitBaseTestCase;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class ProcessHumanTaskTest extends JbpmJUnitBaseTestCase {

 private static final Logger logger = LoggerFactory
 .getLogger(ProcessHumanTaskTest.class);

 public ProcessHumanTaskTest() {
 // Persistence will not be used for the
 // process engine but will be used for human tasks:
 super(true, false);
 }
}

// Not used in the snippet below but your class must extend JbpmJUnitBaseTestCase.
import org.jbpm.test.JbpmJUnitBaseTestCase;

CHAPTER 11. WORKING WITH PROCESSES

235

The unit test uses a test handler that is executed when an email is requested and allows you to test
the data related to the email, such as its sender and recipient. Once the abortWorkItem() method
notifies the engine about the email delivery failure, the unit test verifies that the process handles
such case by generating an error and logging the action. In this case, the process instance is
eventually aborted.

[1] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[2] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[3] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.process.ProcessInstance;
import org.kie.api.runtime.process.WorkItem;

...

public void testProcess2() {

 // Create a runtime manager with a single process:
 createRuntimeManager("sample-process.bpmn");
 // Get a runtime engine:
 RuntimeEngine runtimeEngine = getRuntimeEngine();
 // Get an access to an instance of a session:
 KieSession ksession = runtimeEngine.getKieSession();
 // Register a test handler for "Email":
 TestWorkItemHandler testHandler = getTestWorkItemHandler();
 ksession.getWorkItemManager().registerWorkItemHandler("Email", testHandler);

 // Start the process:
 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello2");

 assertProcessInstanceActive(processInstance.getId(), ksession);
 assertNodeTriggered(processInstance.getId(), "StartProcess", "Email");

 // Check whether the email has been requested:
 WorkItem workItem = testHandler.getWorkItem();

 assertNotNull(workItem);
 assertEquals("Email", workItem.getName());
 assertEquals("me@mail.com", workItem.getParameter("From"));
 assertEquals("you@mail.com", workItem.getParameter("To"));

 // Simulate a failure of sending the email:
 ksession.getWorkItemManager().abortWorkItem(workItem.getId());

 assertProcessInstanceAborted(processInstance.getId());
 assertNodeTriggered(processInstance.getId(), "Gateway", "Failed", "Error");
}

Red Hat JBoss BPM Suite 6.4 Development Guide

236

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0

CHAPTER 12. HUMAN TASKS MANAGEMENT

12.1. HUMAN TASKS

Human Tasks are tasks within a process that must be carried out by human actors. BRMS Business
Process Management supports a human task node inside processes for modeling the interaction with
human actors. The human task node allows process designers to define the properties related to the
task that the human actor needs to execute; for example, the type of task, the actor, and the data
associated with the task can be defined by the human task node. A back-end human task service
manages the lifecycle of the tasks at runtime. The implementation of the human task service is based on
the WS-HumanTask specification, and the implementation is fully pluggable; this means users can
integrate their own human task solution if necessary. Human tasks nodes must be included inside the
process model and the end users must interact with a human task client to request their tasks, claim and
complete tasks.

12.2. USING USER TASKS IN PROCESSES

Red Hat JBoss BPM Suite supports the use of human tasks inside processes using a special User Task
node defined by the BPMN2 Specification. A User Task node represents an atomic task that is executed
by a human actor.

Although Red Hat JBoss BPM Suite has a special user task node for including human tasks inside a
process, human tasks are considered the same as any other kind of external service that is invoked and
are therefore implemented as a domain-specific service.

You can edit the values of User Tasks variables in the Properties view of JBoss Developer Studio after
selecting the User Task node.

A User Task node contains the following core properties:

Actors: The actors that are responsible for executing the human task. A list of actor id’s can be
specified using a comma (,) as separator.

Group: The group id that is responsible for executing the human task. A list of group id’s can be
specified using a comma (,) as separator.

Name: The display name of the node.

TaskName: The name of the human task. This name is used to link the task to a Form. It also
represent the internal name of the Task that can be used for other purposes.

DataInputSet: all the input variables that the task will receive to work on. Usually you will be
interested in copying variables from the scope of the process to the scope of the task.

DataOutputSet: all the output variables that will be generated by the execution of the task.
Here you specify all the name of the variables in the context of the task that you are interested
to copy to the context of the process.

Assignments: here you specify which process variable will be linked to each Data Input and
Data Output mapping.

A User Task node contains the following extra properties:

Comment: A comment associated with the human task. Here you can use expressions.

CHAPTER 12. HUMAN TASKS MANAGEMENT

237

Content: The data associated with this task.

Priority: An integer indicating the priority of the human task.

Skippable: Specifies whether the human task can be skipped, that is, whether the actor may
decide not to execute the task.

On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

Apart from the above mentioned core and extra properties of user tasks, there are some additional
generic user properties that are not exposed through the user interface. These properties are:

ActorId: The performer of the task to whom the task is assigned.

GroupId: The group to which the task performer belongs.

BusinessAdministratorId: The default business administrator responsible for the progress and
the outcome of a task at the task definition level.

BusinessAdministratorGroupId : The group to which the administrator belongs.

ExcludedOwnerId: Anybody who has been excluded to perform the task and become an actual
or potential owner.

RecipientId: A person who is the recipient of notifications related to the task. A notification may
have more than one recipients.

To override the default values of these generic user properties, you must define a data input with the
name of the property, and then set the desired value in the assignment section.

12.3. DATA MAPPING

Human tasks typically present some data related to the task that needs to be performed to the actor
that is executing the task. Human tasks usually also request the actor to provide some result data
related to the execution of the task. Task forms are typically used to present this data to the actor and
request results.

You must specify the data that is used by the task when you define the user task in our process. In order
to do that, you need to define which data must be copied from the process context to the task context.
Notice that the data is copied, so it can be modified inside the task context but it will not affect the
process variables unless we decide to copy back the value from the task to the process context.

Most of the times forms are used to display data to the end user. This allows them to generate or create
new data to propagate to the process context to be used by future activities. In order to decide how the
information flow from the process to a particular task and from the task to the process, you need to
define which pieces of information must be automatically copied by the process engine.

12.4. TASK LIFECYCLE

A human task is created when a user task node is encountered during the execution. The process leaves
the user task node only when the associated human task is completed or aborted. The human task itself
has a complete life cycle as well. The following diagram describes the human task life cycle.

Figure 12.1. Human Task Life Cycle

Red Hat JBoss BPM Suite 6.4 Development Guide

238

Figure 12.1. Human Task Life Cycle

A newly created task starts in the Created stage. It then automatically comes into the Ready stage. The
task then shows up on the task list of all the actors that are allowed to execute the task. The task stays in
the Ready stage until one of these actors claims the task. When a user then eventually claims the task,
the status changes to Reserved. Note that a task that only has one potential (specific) actor is
automatically assigned to that actor upon creation of the task. When the user who has claimed the task
starts executing it, the task status changes from Reserved to InProgress.

Once the user has performed and completed the task, the task status changes to Completed. In this
step, the user can optionally specify the result data related to the task. If the task could not be
completed, the user may indicate this by using a fault response, possibly including fault data, in which
case the status changes to Failed.

While this life cycle explained above is the normal life cycle, the specification also describes a number of
other life cycle methods, including:

Delegating or forwarding a task, so that the task is assigned to another actor.

Revoking a task, so that it is no longer claimed by one specific actor but is (re)available to all
actors allowed to take it.

Temporarily suspending and resuming a task.

Stopping a task in progress.

Skipping a task (if the task has been marked as skippable), in which case the task will not be
executed.

CHAPTER 12. HUMAN TASKS MANAGEMENT

239

12.5. TASK PERMISSIONS

Only users associated with a specific task are allowed to modify or retrieve information about the task.
This allows users to create a Red Hat JBoss BPM Suite workflow with multiple tasks and yet still be
assured of both the confidentiality and integrity of the task status and information associated with a
task.

Some task operations end up throwing a
org.jbpm.services.task.exception.PermissionDeniedException when used with information about an
unauthorized user. For example, when a user is trying to directly modify the task (for example, by trying
to claim or complete the task), the PermissionDeniedException is thrown if that user does not have
the correct role for that operation. Also, users are not able to view or retrieve tasks in Business Central
that they are not involved with.

NOTE

It is possible to allow an authenticated user to execute task operations on behalf of an
unauthenticated user by setting the -Dorg.kie.task.insecure=true system property on
the server side. For example, if you have a bot that executes task operations on behalf of
other users, the bot can use a system account and does not need any credentials of the
real users.

If you are using a remote Java client, you need to turn on insecure task operations on the
client side as well. To do so, set the mentioned system property in your client or call the
disableTaskSecurity method of the client builder.

12.5.1. Task Permissions Matrix

The task permissions matrix below summarizes the actions that specific user roles are allowed to do. The
cells of the permissions matrix contain one of three possible characters, each of which indicate the user
role permissions for that operation:

+ indicates that the user role can do the specified operation.

- indicates that the user role may not do the specified operation, or it is not an operation that
matches the user’s role ("not applicable").

Table 12.1. Task Roles in Permissions Table

Role Description

Potential Owner The user who can claim the task before it has been claimed, or after it has been
released or forwarded. Only tasks that have the status Ready may be claimed. A
potential owner becomes the actual owner of a task by claiming the task.

Actual Owner The user who has claimed the task and will progress the task to completion or
failure.

Business Administrator A super user who may modify the status or progress of a task at any point in a
task’s lifecycle.

User roles are assigned to users by the definition of the task in the JBoss BPM Suite (BPMN2) process
definition.

Red Hat JBoss BPM Suite 6.4 Development Guide

240

Permissions Matrices
The following matrix describes the authorizations for all operations which modify a task:

Table 12.2. Main Operations Permissions Matrix

Operation/Role Potential Owner Actual Owner Business Administrator

activate - - +

claim + - +

complete - + +

delegate + + +

fail - + +

forward + + +

nominate - - +

release - + +

remove - - +

resume + + +

skip + + +

start + + +

stop - + +

suspend + + +

12.6. TASK SERVICE

12.6.1. Task Service and Process Engine

Human tasks are similar to any other external service that are invoked and implemented as a domain-
specific service. As a human task is an example of such a domain-specific service, the process itself only
contains a high-level, abstract description of the human task to be executed and a work item handler
that is responsible for binding this (abstract) task to a specific implementation.

You can plug in any human task service implementation, such as the one that is provided by JBoss BPM
Suite, or may register your own implementation. The Red Hat JBoss BPM Suite provides a default
implementation of a human task service based on the WS-HumanTask specification. If you do not need
to integrate JBoss BPM Suite with another existing implementation of a human task service, you can
use this service. The Red Hat JBoss BPM Suite implementation manages the life cycle of the tasks

CHAPTER 12. HUMAN TASKS MANAGEMENT

241

(such as creation, claiming, completion) and stores the state of all the tasks, task lists, and other
associated information. It also supports features like internationalization, calendar integration, different
types of assignments, delegation, escalation and deadlines. You can find the code for the
implementation in the jbpm-human-task module. The Red Hat JBoss BPM Suite task service
implementation is based on the WS-HumanTask (WS-HT) specification. This specification defines (in
detail) the model of the tasks, the life cycle, and many other features.

12.6.2. Task Service API

The human task service exposes a Java API for managing the life cycle of tasks. This allows clients to
integrate (at a low level) with the human task service. Note that, the end users should probably not
interact with this low-level API directly, but use one of the more user-friendly task clients instead. These
clients offer a graphical user interface to request task lists, claim and complete tasks, and manage tasks
in general. The task clients listed below use the Java API to internally interact with the human task
service. Of course, the low-level API is also available so that developers can use it in their code to
interact with the human task service directly.

A task service (interface org.kie.api.task.TaskService) offers the following methods for managing the
life cycle of human tasks:

The common arguments passed to these methods are:

taskId: The ID of the task that we are working with. This is usually extracted from the currently
selected task in the user task list in the user interface.

userId: The ID of the user that is executing the action. This is usually the id of the user that is
logged in into the application.

To make use of the methods provided by the internal interface InternalTaskService, you need to
manually cast to InternalTaskService. One method that can be useful from this interface is
getTaskContent():

This method saves you from the complexity of getting the ContentMarshallerContext to unmarshall the
serialized version of the task content. If you only want to use the stable or public API’s, you can use the
following method:

 ...
 void start(long taskId, String userId);
 void stop(long taskId, String userId);
 void release(long taskId, String userId);
 void suspend(long taskId, String userId);
 void resume(long taskId, String userId);
 void skip(long taskId, String userId);
 void delegate(long taskId, String userId, String targetUserId);
 void complete(long taskId, String userId, Map<String, Object> results);
 ...

Map<String, Object> getTaskContent(long taskId);

import java.util.Map;

import org.jbpm.services.task.utils.ContentMarshallerHelper;
import org.kie.api.task.model.Content;
import org.kie.api.task.model.Task;
import org.kie.internal.task.api.ContentMarshallerContext;

Red Hat JBoss BPM Suite 6.4 Development Guide

242

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies.

12.6.3. Interacting with the Task Service

In order to get access to the Task Service API, it is recommended to let the Runtime Manager ensure
that everything is setup correctly. From the API perspective, if you use the following approach, there is
no need to register the Task Service with the Process Engine:

import org.kie.internal.task.api.TaskContentService;
import org.kie.internal.task.api.TaskQueryService;

...

Task taskById = taskQueryService.getTaskInstanceById(taskId);
Content contentById = taskContentService.getContentById
 (taskById.getTaskData().getDocumentContentId());
ContentMarshallerContext context = getMarshallerContext(taskById);
Object unmarshalledObject = ContentMarshallerHelper.unmarshall
 (contentById.getContent(), context.getEnvironment(), context.getClassloader());

if (!(unmarshalledObject instanceof Map)) {
 throw new IllegalStateException
 (" The Task Content Needs to be a Map in order to use this method and it was: "
 + unmarshalledObject.getClass());
}

Map<String, Object> content = (Map<String, Object>) unmarshalledObject;

return content;

import java.util.List;

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.task.TaskService;
import org.kie.api.task.model.TaskSummary;
import org.kie.internal.runtime.manager.context.EmptyContext;

...
RuntimeEngine engine = runtimeManager.getRuntimeEngine(EmptyContext.get());
KieSession kieSession = engine.getKieSession();

// Start a process:
kieSession.startProcess("CustomersRelationship.customers", params);

// Do task operations:
TaskService taskService = engine.getTaskService();
List<TaskSummary> tasksAssignedAsPotentialOwner = taskService
 .getTasksAssignedAsPotentialOwner("mary", "en-UK");

// Claim task:
taskService.claim(taskSummary.getId(), "mary");

CHAPTER 12. HUMAN TASKS MANAGEMENT

243

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies.

The Runtime Manager registers the Task Service with the Process Engine automatically. If you do not
use the Runtime Manager, you have to set the LocalHTWorkItemHandler in the session to get the Task
Service notify the Process Engine once the task completes. In Red Hat JBoss BPM Suite, the Task
Service runs locally to the Process and Rule Engine. This enables you to create multiple light clients for
different Process and Rule Engine’s instances. All the clients can share the same database.

12.6.4. Accessing Task Variables Using TaskEventListener

Task variables can be accessed in the TaskEventListener for process instances.

1. Creating a CustomTaskEventListener
Create a CustomTaskEventListener class using your preferred IDE, such as Red Hat JBoss
Developer Studio.

2. Registering the CustomTaskEventListener
The listener can be registered at RuntimeManager level:

// Start task:
taskService.start(taskSummary.getId(), "mary");
...

import org.jboss.logging.Logger;
import org.jbpm.services.task.events.DefaultTaskEventListener;
import org.kie.api.task.TaskEvent;

public class CustomTaskEventListener extends DefaultTaskEventListener {

 private static final Logger LOGGER =
Logger.getLogger(CustomTaskEventListener.class.getName());

 @Override
 public void beforeTaskStartedEvent(TaskEvent event) {
 LOGGER.info("Starting task " + event.getTask().getId());
 }

}

import java.util.List;

import org.kie.internal.io.ResourceFactory;
import org.kie.api.io.ResourceType;
import org.kie.api.runtime.manager.RuntimeEnvironment;
import org.kie.api.runtime.manager.RuntimeManagerFactory;
import org.kie.api.task.TaskEvent;
import org.kie.api.task.TaskLifeCycleEventListener;
import org.jbpm.runtime.manager.impl.DefaultRegisterableItemsFactory;
import org.jbpm.runtime.manager.impl.RuntimeEnvironmentBuilder;
import org.jbpm.services.task.events.DefaultTaskEventListener;

...

RuntimeEnvironment environment = RuntimeEnvironmentBuilder.getDefault()
 .persistence(true)

Red Hat JBoss BPM Suite 6.4 Development Guide

244

Alternatively, it can be registered at Task Service level:

3. Loading Task Variables
The TaskEventListener can now obtain task variables using the loadTaskVariables method to
populate both input and output variables of a given task.

This populates both Input and Output tasks, which can be retrieved using the following:

Input

 .entityManagerFactory(emf)
 .userGroupCallback(userGroupCallback)
 .addAsset(ResourceFactory.newClassPathResource(process),
ResourceType.BPMN2)
 .registerableItemsFactory(new DefaultRegisterableItemsFactory() {
 @Override
 public List<TaskLifeCycleEventListener> getTaskListeners() {
 List<TaskLifeCycleEventListener> listeners = super.getTaskListeners();
 listeners.add(new DefaultTaskEventListener() {

 @Override
 public void afterTaskAddedEvent(TaskEvent event) {
 System.out.println("taskId = " + event.getTask().getId());
 }

 });
 return listeners;
 }
 })
 .get();
 return
RuntimeManagerFactory.Factory.get().newPerProcessInstanceRuntimeManager(environment)
;

import org.jbpm.services.task.events.DefaultTaskEventListener;
import org.kie.api.task.TaskEvent;
import org.kie.api.task.TaskLifeCycleEventListener;
import org.kie.api.task.TaskService;
import org.kie.internal.task.api.EventService;

...

TaskService taskService = runtime.getTaskService();
((EventService<TaskLifeCycleEventListener>)taskService).registerTaskEventListener(new
DefaultTaskEventListener() {
 @Override
 public void afterTaskAddedEvent(TaskEvent event) {
 System.out.println("taskId = " + event.getTask().getId());
 }
});

event.getTaskContext().loadTaskVariables(event.getTask())

task.getTaskData().getTaskInputVariables()

CHAPTER 12. HUMAN TASKS MANAGEMENT

245

Output

To improve performance, task variables are automatically set when they are available, and are
usually given by the caller on Task Service. The loadTaskVariables method is "no op" where
task variables are already set on a task. For example:

When created, a task usually has input variables, which are then set on Task instance. This
applies to beforeTaskAdded and afterTaskAdded events handling.

When Task is completed, it usually has output variables, which are set on a task.
The loadTaskVariables method should be used to populate task variables in all other
circumstances.

NOTE

Calling the loadTaskVariables method of the listener once (such as in
beforeTask) makes it available to both beforeTask and afterTask methods.

4. Configuring the TaskEventListener
At the project level, TaskEventListener can be configured using the kie-deployment-
descriptor.xml file. To configure TaskEventListener in Business Central, go to Deployment
Descriptor Editor and add an entry under Task event listeners with the classname
CustomProcessEventListener. The TaskEventListener appears in kie-deployment-
descriptor.xml as:

The TaskEventListener can also be registered in business-central.war/WEB-
INF/classes/META-INF/kie-wb-deployment-descriptor.xml. This TaskEventListener is
available for all projects that are deployed in Business Central.

5. Adding Maven Dependencies
If you are using a Maven project, see example Embedded jBPM Engine Dependencies for a list
of Maven dependencies.

12.6.5. Task Service Data Model

The task service data model is illustrated in the following image. In this section, each entity of the
database model is described in detail.

task.getTaskData().getTaskOutputVariables()

<task-event-listeners>
 <task-event-listener>
 <resolver>reflection</resolver>
 <identifier>com.redhat.gss.sample.CustomTaskEventListener</identifier>
 </task-event-listener>
</task-event-listeners>

Red Hat JBoss BPM Suite 6.4 Development Guide

246

NOTE

The I18NText table represents a text in a particular language. The language is stored in
the language attribute, the unique ID of a text in the id attribute, the short attribute
contains an abbreviated content and the text attribute contains the text itself.

Tasks
The Task table stores information about a particular task.

Table 12.3. Task Attributes

Attribute Description

id The unique ID of a task.

archived Determines whether a task is archived. The value can be 1 (the
task is archived) or 0 (the task is not archived).

allowedToDelegate Determines whether a task can be delegated (assigned to
another user). For more information about delegations, see the
section called “Delegations”.

description The description of a task. The maximum number of characters is
255.

formName The name of a form attached to a task.

CHAPTER 12. HUMAN TASKS MANAGEMENT

247

name The name of a task.

priority The priority of a task. The value ranges from 0 to 10, where 0
indicates the highest priority. The priority of a task can be set in
Business Central.

subTaskStrategy The default subtask strategy is NoAction. Other possible values
are:

EndParentOnAllSubTasksEnd: The parent task is
completed after all subtasks end.

SkipAllSubTasksOnParentSkip: If you skip a
parent task, all subtasks of this task are skipped as well.

subject The subject of a task.

activationTime The time when a task is assigned to a user or when a user claims
a task.

createdOn The time when a process reaches a task and an instance of the
task is created. The claim operation is either performed
automatically or the task waits until it is assigned to a particular
user.

deploymentId The ID of a kJAR deployment in which a task was created.

expirationTime The time until when a task is expected to be completed.

parentId The ID of a parent task. If a task does not have any parent (and
at the same time can be a parent of other tasks), the value is -1.

status The status of a task. Possible values are (in this order): Created,
Ready, Reserved, InProgress, Suspended, Completed,
Failed, Error, Exited, and Obsolete.

previousStatus The previous status of a task. The value is a number from 0 to
10, where the number corresponds with the order of possible
values listed in the previous field.

processId The ID of a process in which the task was created.

processInstanceId The ID of a process instance in which the task was created.

processSessionId The ID of a process session in which the task was created.

Attribute Description

Red Hat JBoss BPM Suite 6.4 Development Guide

248

skipable Determines whether a task can be skipped. Possible values are
true and false.

workItemId The ID of a task work item. Each task can be a certain type of a
work item.

actualOwner_Id The unique ID of the user who claimed a task.

createdBy_Id The unique ID of the user who created a task.

Attribute Description

The Task table stores also the information about an input and output task content in the following
attributes:

Table 12.4. Input and Output Task Content

INPUT OUTPUT Description

documentAccessType outputAccessType The content access type: can
be either inline (then the value
of the attribute is 0) or a URL
(1).

documentContentId outputContentId A content ID is the unique ID
of a content stored in the
Content table.

documentType outputType The type of a task content. If
the access type is inline, then
the content type is HashMap
and can be found in the
content column of the
Content table stored as
binary data.

The faultAccessType, faultContentId, faultName, and faultType attributes follow the same logic as
the attributes described in the previous table, with the difference that they are used by failed tasks.
While the completed tasks have an output document assigned (which can be for example a HashMap),
the failed tasks return a fail document.

Task comments are stored in the task_comment table. See a list of task_comment attributes below:

Table 12.5. Task Comment Attributes

Attribute Description

id The unique ID of a comment.

addedAt The time when a comment was added to a task.

CHAPTER 12. HUMAN TASKS MANAGEMENT

249

text The content of a comment.

addedBy_id The unique ID of a user who created a comment. Based on the ID, you can find the
user in the OrganizationalEntity table. See the section called “Entities and
People Assignments” for more information.

TaskData_Comment
s_Id

The unique ID of a task to which a comment was added.

Attribute Description

For more information about task data model, see Section 13.2, “Audit Log”.

Entities and People Assignments
Information about particular users and groups are stored in the OrganizationalEntity table. The
attribute DTYPE determines whether it is a user or a group and id is the name of a user (for example
bpmsAdmin) or a group (for example Administrators).

See a list of different types of people assignments below. All the assignments have the following
attributes: task_id, entity_id.

PeopleAssignments_PotOwners

Potential owners are users or groups who can claim a task and start the task. The attribute task_id is
a unique ID of an assigned task and entity_id determines the unique ID of a user or a group.

PeopleAssignments_ExclOwners

Excluded owners are users excluded from a group that has a specific task assigned. You can assign a
task to a group and specify excluded owners. These users then cannot claim the assigned task. The
attribute task_id is a unique ID of a task and entity_id determines the unique ID of an excluded user.

PeopleAssignments_BAs

Business administrators have the rights to manage tasks, delegate tasks and perform similar
operations. The attribute task_id is a unique ID of an assigned task and entity_id determines the
unique ID of a user or a group.

PeopleAssignments_Stakeholders

Not fully supported.

PeopleAssignments_Recipients

Not fully supported.

Reassignments
It is possible to set a reassignment time for each task. If the task has not started or has not been
completed before the set time, it is reassigned to a particular user or a group.

The reassignments are stored in the Reassignment_potentialOwners table, where task_id is a unique
ID of a task and entity_id is a user or a group to which a task is assigned after the deadline.

The Escalation table contains the unique ID of an escalation (id), the ID of a deadline
(Deadline_Escalation_Id), and the deadline name (name) which is generated by default and cannot be
changed.

The Deadline table stores deadline information: the unique ID of a deadline (id) and the time and date
of a deadline (deadline_date). The escalated attribute determines whether the reassignment have
been performed (the value can be either 1 or 0). If a task is reassigned after it has not started until the

Red Hat JBoss BPM Suite 6.4 Development Guide

250

set deadline, the Deadlines_StartDeadLine_Id attribute will be nonempty. If a task is reassigned after it
has not been completed until the set deadline, Deadlines_EndDeadLine_Id attribute will be nonempty.

The Reassignment table refers to the Escalation table: the Escalation_Reassignments_Id attribute
in Reassignments is equivalent to the id attribute in Escalation.

Notifications
If a task has not started or has not been completed before the deadline, a notification is sent to a
subscribed user or a group of users (recipients). These notification are stored in the Notification table:
id is the unique ID of a notification, DTYPE is the type of a notification (currently only an email
notifications are supported), priority is set to 0 by default, and Escalation_Notifications_Id refers to
the Escalation table, which then refers to the Deadline table. For example, if a task has not been
completed before the deadline, then the Deadlines_EndDeadLine_Id attribute is nonempty and a
notification is sent.

Recipients of a notification are stored in the Notification_Recipients table, where task_id is the unique
ID of a task and entity_id is the ID of a subscribed user or a group.

The Notification_email_header stores the ID of a notification in the Notification_id attribute and the
ID of an email that is sent in the emailHeader_id attribute. The email_header table contains the unique
ID of an email (id), content of an email (body), the name of a user who is sending an email
(fromAddress), the language of an email (language), the email address to which it is possible to reply
(replyToAddress), and the subject of an email (subject).

Attachments
You can attach an attachment with an arbitrary type and content to each task. These attachments are
stored in the Attachment table.

Table 12.6. Attachment Attributes

Attribute Description

id The unique ID of an attachment.

accessType The way you can access an attachment. Can be either inline or a
URL.

attachedAt The time when an attachment was added to a task.

attachmentContentId Refers to the Content table, which is described at the end of
this section.

contentType The type of an attachment (MIME).

name The name of an attachment. Different attachments can have the
same name.

attachment_size The size of an attachment.

attachedBy_id The unique ID of a user who attached an attachment to a task.

TaskData_Attachments_Id The unique ID of a task that contains the attachment.

CHAPTER 12. HUMAN TASKS MANAGEMENT

251

The Content table stores the actual binary content of an attachment. The content type is defined in the
Attachment table. The maximum size of an attachment is 2 GB.

Delegations
Each task defines whether it can be escalated to another user or a group in the allowedToDelegate
attribute of the Task table. The Delegation_delegates table stores the tasks that can be escalated (in
the task_id attribute) and the users to which the tasks are escalated (entity_id).

12.6.6. Connecting to Custom Directory Information Services

It is often necessary to establish a connection and transfer data from existing systems and services, such
as LDAP, to get data on actors and groups for User Tasks. To do so, implement the
UserGroupInfoProducer interface. This enables you to create your own implementation for user and
group management, and then configure it using CDI for Business Central.

To implement and activate the interface:

1. Implement the UserGroupInfoProducer interface and provide a custom callback (see chapter
Connecting to LDAP of the Red Hat JBoss BPM Suite User Guide) and user information
implementations according to the needs from the producer.
To enable Business Central to find the implementation, Annotate your implementation with the
@Selectable qualifier. See an example LDAP implementation:

2. Package your custom implementations, that is the LDAPUserGroupInfoProducer, the

import javax.enterprise.context.ApplicationScoped;
import javax.enterprise.inject.Alternative;
import javax.enterprise.inject.Produces;

import org.jbpm.services.task.identity.LDAPUserGroupCallbackImpl;
import org.jbpm.services.task.identity.LDAPUserInfoImpl;
import org.jbpm.shared.services.cdi.Selectable;
import org.kie.api.task.UserGroupCallback;
import org.kie.internal.task.api.UserInfo;

@ApplicationScoped
@Alternative
@Selectable
public class LDAPUserGroupInfoProducer implements UserGroupInfoProducer {

 private UserGroupCallback callback = new LDAPUserGroupCallbackImpl(true);
 private UserInfo userInfo = new LDAPUserInfoImpl(true);

 @Override
 @Produces
 public UserGroupCallback produceCallback() {
 return callback;
 }

 @Override
 @Produces
 public UserInfo produceUserInfo() {
 return userInfo;
 }

}

Red Hat JBoss BPM Suite 6.4 Development Guide

252

https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/user_guide/#connecting_to_ldap

2. Package your custom implementations, that is the LDAPUserGroupInfoProducer, the
LDAPUserGroupCallbackImpl and the LDAPUserInfoImpl classes from the example above,
into a JAR archive. Create the META-INF directory and in it, create the beans.xml file. This
makes your implementation CDI enabled. Add the resulting JAR file to business-
central.war/WEB-INF/lib/.

3. Modify business-central.war/WEB-INF/beans.xml and add the implementation,
LDAPUserGroupInfoProducer from the example above, as an alternative to be used by
Business Central.

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1_0.xsd">

 <alternatives>
 <class>com.test.services.producer.LDAPUserGroupInfoProducer</class>
 </alternatives>
</beans>

WARNING

The use of a custom UserGroupInfoProducer requires internal APIs, which
may change in future releases. Using a custom UserGroupInfoProducer is
not recommended or supported by Red Hat.

4. Restart your server. Your custom callback implementation should now be used by Business
Central.

12.6.7. LDAP Connection

A dedicated UserGroupCallback implementation for LDAP servers is provided with the product to
enable the User Task service to retrieve information about users, groups, and roles directly from an
LDAP service. See LDAP Callback Connection Example for example configuration.

The LDAP UserGroupCallback implementation takes the following properties:

ldap.bind.user: a username used to connect to the LDAP server. The property is optional if
LDAP server accepts anonymous access.

ldap.bind.pwd: a password used to connect to the LDAP server. The property is optional if
LDAP server accepts anonymous access.

ldap.user.ctx: an LDAP context with user information. The property is mandatory.

ldap.role.ctx: an LDAP context with group and role information. The property is mandatory.

ldap.user.roles.ctx: an LDAP context with user group and role membership information. The
property is optional; if not specified, ldap.role.ctx is used.

ldap.user.filter: a search filter used for user information; usually contains substitution keys {0},

CHAPTER 12. HUMAN TASKS MANAGEMENT

253

ldap.user.filter: a search filter used for user information; usually contains substitution keys {0},
which are replaced with parameters. The property is mandatory.

ldap.role.filter: a search filter used for group and role information; usually contains substitution
keys {0}, which are replaced with parameters. The property is mandatory.

ldap.user.roles.filter: a search filter used for user group and role membership information;
usually contains substitution keys {0}, which are replaced with parameters. The property is
mandatory.

ldap.user.attr.id: an attribute name of the user ID in LDAP. This property is optional; if not
specified, uid is used.

ldap.roles.attr.id: an attribute name of the group and role ID in LDAP. This property is optional;
if not specified, cn is used.

ldap.user.id.dn: a user ID in a DN, instructs the callback to query for user DN before searching
for roles. This property is optional, by default false.

java.naming.factory.initial: initial context factory class name (by default
com.sun.jndi.ldap.LdapCtxFactory)

java.naming.security.authentication: authentication type (possible values are none, simple,
strong; by default simple)

java.naming.security.protocol: security protocol to be used; for instance ssl

java.naming.provider.url: LDAP url (by default ldap://localhost:389; if the protocol is set to
ssl then ldap://localhost:636)

12.6.7.1. Connecting to LDAP

To use the LDAP UserGroupCallback implementation, configure the respective LDAP properties as
shown below. For more information, see Section 12.6.7, “LDAP Connection”.

Programatically: build a Properties object with the respective LDAP UserGroupCallbackImpl
properties and create LDAPUserGroupCallbackImpl with the Properties object as its
parameter.

import org.kie.api.PropertiesConfiguration;
import org.kie.api.task.UserGroupCallback;
...
Properties properties = new Properties();
properties.setProperty(LDAPUserGroupCallbackImpl.USER_CTX, "ou=People,dc=my-
domain,dc=com");
properties.setProperty(LDAPUserGroupCallbackImpl.ROLE_CTX, "ou=Roles,dc=my-
domain,dc=com");
properties.setProperty(LDAPUserGroupCallbackImpl.USER_ROLES_CTX,
"ou=Roles,dc=my-domain,dc=com");
properties.setProperty(LDAPUserGroupCallbackImpl.USER_FILTER, "(uid={0})");
properties.setProperty(LDAPUserGroupCallbackImpl.ROLE_FILTER, "(cn={0})");
properties.setProperty(LDAPUserGroupCallbackImpl.USER_ROLES_FILTER, "(member=
{0})");

UserGroupCallback ldapUserGroupCallback = new

Red Hat JBoss BPM Suite 6.4 Development Guide

254

Declaratively: create the jbpm.usergroup.callback.properties file in the root of your
application or specify the file location as a system property: -
Djbpm.usergroup.callback.properties=FILE_LOCATION_ON_CLASSPATH.
Make sure to register the LDAP callback when starting the User Task server.

LDAP Callback Connection Example

12.7. TASK ESCALATION AND NOTIFICATIONS

For human tasks in business processes, you can define automatic task escalation and notification
behavior if the tasks remain incomplete for a defined period of time. For example, if a user assigned to a
task is unable to complete that task within the defined period of time, the engine can automatically
reassign the task to another actor or group for completion and send an email notification to the relevant
users.

You can set up automatic escalations and notifications for tasks that are in the following states:

not-started (tasks in READY or RESERVED state)

not-completed (tasks in IN_PROGRESS state)

When an escalation occurs, users and groups defined in the task are assigned to the task as potential
owners, replacing those who were previously assigned. If an actual owner is assigned to the task, the
escalation is reset and the task is set to the READY state.

To define automatic task reassignment, follow these steps:

1. Select the human task in the process designer.

2. In the Properties panel on the right side of the window, select the Reassignment property and
add or edit the following reassignment details as needed:

Users: A comma-separated list of user IDs to which the task will be assigned after the
Expires At period lapses. This attribute supports string values and the variable expression #
{user-id}.

Groups: A comma-separated list of group IDs to which the task will be assigned after the
Expires At period lapses. This attribute supports string values and the variable expression #
{group-id}.

Expires At: The amount of time after which the task is reassigned to the defined users or

LDAPUserGroupCallbackImpl(properties);

UserGroupCallbackManager.getInstance().setCallback(ldapUserGroupCallback);

#ldap.bind.user=
#ldap.bind.pwd=
ldap.user.ctx=ou\=People,dc\=my-domain,dc\=com
ldap.role.ctx=ou\=Roles,dc\=my-domain,dc\=com
ldap.user.roles.ctx=ou\=Roles,dc\=my-domain,dc\=com
ldap.user.filter=(uid\={0})
ldap.role.filter=(cn\={0})
ldap.user.roles.filter=(member\={0})
#ldap.user.attr.id=
#ldap.roles.attr.id=

CHAPTER 12. HUMAN TASKS MANAGEMENT

255

Expires At: The amount of time after which the task is reassigned to the defined users or
groups (in the format 2m, 4h, 6d, and so on). This attribute supports string values and the
variable expression #{expiresAt}.

Type: The task state in which the task reassignment can occur (not-started or not-
completed).

Figure 12.2. Defining automatic task reassignment

In this example, this task that is assigned to John will be reassigned to Mary in Sales if the task is still in a
not-started state after two days.

To define automatic email notifications for a task escalation, follow these steps:

1. Select the human task in the process designer.

2. In the Properties panel on the right side of the window, select the Notifications property and
add or edit the following notification details as needed:

Type: The task state in which the notification can occur (not-started or not-completed).

Expires At: The amount of time after which the email notification is sent (in the format 2m,
4h, 6d, and so on). Set this value to a period of time equal to or greater than the period you
defined for the task Reassignment property. This attribute supports string values and the
variable expression #{expiresAt}.

From: An optional user or group ID that is used in the From field of the email notification.
This attribute supports string values and the variable expressions #{user-id} and #{group-
id}.

To Users: A comma-separated list of user IDs to which the email notification will be sent
after the Expires At period lapses. This attribute supports string values and the variable
expression #{user-id}.

To Groups: A comma-separated list of group IDs to which the email notification will be sent
after the Expires At period lapses. This attribute supports string values and the variable
expression #{group-id}.

Red Hat JBoss BPM Suite 6.4 Development Guide

256

Reply To: An optional user or group ID to which the recipients of the notification can reply.
This attribute supports string values and the variable expressions #{user-id} and #{group-
id}.

Subject: The subject of the email notification. The subject supports string values and the
variable expressions described in this list.

Body: The message body of the email notification. The body supports string values and the
variable expressions described in this list.

Figure 12.3. Defining automatic email notifications

In this example, Mary in Sales will receive an email notification along with the reassigned task if the task
is still in a not-started state after two days.

Notification messages also support process and task variables in the format ${variable}. Process
variables resolve when the task is created and task variables resolve when the task notification is sent.

The following list contains several process and task variables that you can use in task notifications:

taskId: An internal ID of a task instance

processInstanceId: An internal ID of a process instance that the task belongs to

workItemId: An internal ID of a work item that created the task

processSessionId: An internal ID of a runtime engine

owners: A list of users or groups that are potential owners of the task

doc: A map that contains regular task variables

The following example notification message illustrates how you can use process and task variables:

<html>
 <body>
 ${owners[0].id} you have been assigned to a task (task-id ${taskId})

CHAPTER 12. HUMAN TASKS MANAGEMENT

257

12.7.1. Configuring a Custom Implementation of Email Notification Events

You can use the NotificationListener interface to configure a custom implementation of the Email
Notification Events in the Task Escalation service. A custom notification implementation provides
greater flexibility for your existing task escalation configurations.

To configure a custom implementation of Email Notification Events, follow these steps:

1. Implement the NotificationListener interface.

2. Create an org.jbpm.services.task.deadlines.NotificationListener text file in the META-
INF/services/ directory.

3. Add a Fully Qualified Name (FQN) for your custom listener implementation to the
org.jbpm.services.task.deadlines.NotificationListener text file.

4. Package all classes and files from the META-
INF/services/org.jbpm.services.task.deadlines.NotificationListener text file into a JAR file.

5. Deploy your JAR package by copying it and any required external dependencies into the
$SERVER_HOME/standalone/kie-server.war/WEB-INF/lib or
$SERVER_HOME/standalone/business-central.war/WEB-INF/lib directory.

6. Restart your server.

After you restart your server, the Task Escalation Service triggers your custom Email Notification Event.
This feature is based on notification broadcasting, which enables all the notification handlers to handle
the event. You can specify the following identifying information in any calls that your application makes
to the desired handlers:

 You can access it in your task
 <a href="http://localhost:8080/jbpm-
console/app.html#errai_ToolSet_Tasks;Group_Tasks.3">inbox

 Important technical information that can be of use when working on it

 - process instance id - ${processInstanceId}

 - work item id - ${workItemId}

 <hr/>

 Here are some task variables available:

 ActorId = ${doc['ActorId']}
 GroupId = ${doc['GroupId']}
 Comment = ${doc['Comment']}

 <hr/>
 Here are all potential owners for this task:

 $foreach{orgEntity : owners}
 Potential owner = ${orgEntity.id}
 $end{}

 <i>Regards</i>
 </body>
</html>

Red Hat JBoss BPM Suite 6.4 Development Guide

258

Task information, such as task ID, name, and description

Process information, such as process instance ID, process ID, and deployment ID

12.8. RETRIEVING PROCESS AND TASK INFORMATION

There are two services which can be used when building list-based user interfaces: the
RuntimeDataService and TaskQueryService.

The RuntimeDataService interface can be used as the main source of information, as it provides an
interface for retrieving data associated with the runtime. It can list process definitions, process
instances, tasks for given users, node instance information and other. The service should provide all
required information and still be as efficient as possible.

See the following examples:

Example 12.1. Get All Process Definitions

Returns every available process definition.

Example 12.2. Get Active Process Instances

Returns a list of all active process instance descriptions.

Example 12.3. Get Active Nodes for Given Process Instance

Returns a trace of all active nodes for given process instance ID.

import java.util.Collection;

import org.kie.api.runtime.query.QueryContext;
import org.jbpm.services.api.RuntimeDataService;

...

Collection definitions = runtimeDataService.getProcesses(new QueryContext());

import java.util.Collection;

import org.kie.api.runtime.query.QueryContext;
import org.jbpm.services.api.RuntimeDataService;

...

Collection<processInstanceDesc> activeInstances = runtimeDataService
 .getProcessInstances(new QueryContext());

import java.util.Collection;

import org.kie.api.runtime.query.QueryContext;
import org.jbpm.services.api.RuntimeDataService;

CHAPTER 12. HUMAN TASKS MANAGEMENT

259

Example 12.4. Get Tasks Assigned to Given User

Returns a list of tasks the given user is eligible for.

Example 12.5. Get Tasks Assigned to Business Administrator

Returns a list of tasks assigned to the given business administrator user.

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies.

The RuntimeDataService is mentioned also in Section 20.4, “CDI Integration”.

As you can notice, operations of the RuntimeDataService then support two important arguments:

QueryContext

QueryFilter (which is an extension of QueryContext)

These two classes provide capabilities for an efficient management and search results. The
QueryContext allows you to set an offset (by using the offset argument), number of results (count),
their order (orderBy) and ascending order (asc) as well.

Since the QueryFilter inherits all of the mentioned attributes, it provides the same features, as well as
some others: for example, it is possible to set the language, single result, maximum number of results, or
paging.

Moreover, additional filtering can be applied to the queries to provide more advanced options when

...

Collection<nodeInstanceDesc> activeNodes = runtimeDataService
 .getProcessInstanceHistoryActive(processInstanceId, new QueryContext());

import java.util.List;

import org.jbpm.services.api.RuntimeDataService;
import org.kie.api.task.model.TaskSummary;
import org.kie.internal.query.QueryFilter;
...

List<TaskSummary> TaskSummaries = runtimeDataService
 .getTasksAssignedAsPotentialOwner("john", new QueryFilter(0, 10));

import java.util.List;

import org.jbpm.services.api.RuntimeDataService;
import org.kie.internal.query.QueryFilter;

List<TaskSummary> taskSummaries = runtimeDataService
 .getTasksAssignedAsBusinessAdministrator("john", new QueryFilter(0, 10));

Red Hat JBoss BPM Suite 6.4 Development Guide

260

Moreover, additional filtering can be applied to the queries to provide more advanced options when
searching for user tasks and processes.

12.9. ADVANCED QUERIES WITH QUERYSERVICE

QueryService provides advanced search capabilities based on JBoss BPM Suite Dashbuilder datasets.
You can retrieve data from the underlying data store by means of, for example, JPA entity tables, or
custom database tables.

QueryService consists of two main parts:

Management operations, such as:

Register query definition.

Replace query definition.

Remove query definition.

Get query definition.

Get all registered query definitions.

Runtime operations:

Simple, with QueryParam as the filter provider.

Advanced, with QueryParamBuilder as the filter provider.

Following services are a part of QueryService:

QueryDefinition: represents dataset which consists of a unique name, SQL expression (the
query), and source.

QueryParam: represents the condition query parameter that consists of:

Column name

Operator

Expected value(s)

QueryResultMapper: responsible for mapping raw datasets (rows and columns) to objects.

QueryParamBuilder: responsible for building query filters for the query invocation of the given
query definition.

12.9.1. QueryResultMapper

QueryResultMapper maps data to an object. It is similar to other object-relational mapping (ORM)
providers, such as hibernate, which maps tables to entities. Red Hat JBoss BPM Suite provides a number
of mappers for various object types:

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceQueryMapper

Registered with name ProcessInstances.

CHAPTER 12. HUMAN TASKS MANAGEMENT

261

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithVarsQueryMapper

Registered with name ProcessInstancesWithVariables.

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithCustomVarsQueryMapper

Registered with name ProcessInstancesWithCustomVariables.

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceQueryMapper

Registered with name UserTasks.

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithVarsQueryMapper

Registered with name UserTasksWithVariables.

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithCustomVarsQueryMappe
r

Registered with name UserTasksWithCustomVariables.

org.jbpm.kie.services.impl.query.mapper.TaskSummaryQueryMapper

Registered with name TaskSummaries.

org.jbpm.kie.services.impl.query.mapper.RawListQueryMapper

Registered with name RawList.

Alternatively, you can build custom mappers. The name for each mapper serves as a reference that you
can use instead of the class name. It is useful, for example, when you want to reduce the number of
dependencies and you do not want to rely on implementation on the client side. To reference
QueryResultMapper, use the mapper’s name, which is a part of jbpm-services-api. It acts as a (lazy)
delegate as it will search for the mapper when the query is performed.

Following example references ProcessInstanceQueryMapper by name:

12.9.2. QueryParamBuilder

When you use the QueryService query method which accepts QueryParam instances, all of the
parameters are joined by logical conjunction (AND) by default. Alternatively, use QueryParamBuilder to
create custom builder which provides filters when the query is issued.

You can use a predefined builder, which includes a number of QueryParam methods based on core
functions. Core functions are SQL-based conditions and include following conditions:

IS_NULL

NOT_NULL

EQUALS_TO

NOT_EQUALS_TO

LIKE_TO

queryService.query("my query def", new NamedQueryMapper<Collection<ProcessInstanceDesc>>
("ProcessInstances"), new QueryContext());

Red Hat JBoss BPM Suite 6.4 Development Guide

262

GREATER_THAN

GREATER_OR_EQUALS_TO

LOWER_THAN

LOWER_OR_EQUALS_TO

BETWEEN

IN

NOT_IN

12.9.3. Implementing QueryParamBuilder

QueryParamBuilder is an interface that is invoked when its build method returns a non-null value
before the query is performed. It allows you to build complex filter options that a QueryParam list
cannot express.

Example 12.6. QueryParamBuilder Implementation Using DashBuilder Dataset API

import java.util.Map;

import org.dashbuilder.dataset.filter.ColumnFilter;
import org.dashbuilder.dataset.filter.FilterFactory;
import org.jbpm.services.api.query.QueryParamBuilder;

public class TestQueryParamBuilder implements QueryParamBuilder<ColumnFilter> {

 private Map<String, Object> parameters;
 private boolean built = false;

 public TestQueryParamBuilder(Map<String, Object> parameters) {
 this.parameters = parameters;
 }

 @Override
 public ColumnFilter build() {

 // Return NULL if it was already invoked:
 if (built) {
 return null;
 }

 String columnName = "processInstanceId";

 ColumnFilter filter = FilterFactory.OR(
 FilterFactory.greaterOrEqualsTo((Long)parameters.get("min")),
 FilterFactory.lowerOrEqualsTo((Long)parameters.get("max")));

 filter.setColumnId(columnName);

 built = true;

CHAPTER 12. HUMAN TASKS MANAGEMENT

263

For a list of Maven dependencies, see Embedded jBPM Engine Dependencies.

When you implement QueryParamBuilder, use its instance through QueryService:

12.9.4. QueryService in Embedded Mode

QueryService is a part of the jBPM Services API, a cross-framework API built to simplify embedding Red
Hat JBoss BPM Suite. You can also use advanced querying through the Intelligent Process Server,
described in Section 12.9.5, “Advanced Queries Through Intelligent Process Server” . When you use
QueryService in embedded mode, follow these steps:

1. Define the dataset you want to work with:

The constructor of this query definition requires:

A unique name that serves as ID during runtime.

JDNI name of a data source for the query.

The expression is an SQL statement that creates a view that will be filtered when performing
queries.

2. Register the query definition:

You can now use the query definition. The following example does not use filtering:

 return filter;
 }
}

import org.jbpm.services.api.query.QueryService;

...

queryService.query("my query def", ProcessInstanceQueryMapper.get(), new QueryContext(),
paramBuilder);

import org.jbpm.kie.services.impl.query.SqlQueryDefinition;

...

SqlQueryDefinition query = new SqlQueryDefinition
 ("getAllProcessInstances", "java:jboss/datasources/ExampleDS");

query.setExpression("select * from processinstancelog");

import org.jbpm.services.api.query.QueryService;

...

queryService.registerQuery(query);

import java.util.Collection;

Red Hat JBoss BPM Suite 6.4 Development Guide

264

You can change the query context, that is paging and sorting of the query:

You can also use filtering:

For a list of Maven dependencies, see Embedded jBPM Engine Dependencies.

12.9.5. Advanced Queries Through Intelligent Process Server

import org.jbpm.services.api.model.ProcessInstanceDesc;
import org.kie.api.runtime.query.QueryContext;
import org.jbpm.services.api.query.QueryService;
import org.jbpm.kie.services.impl.query.mapper.ProcessInstanceQueryMapper;

...

Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",
ProcessInstanceQueryMapper.get(), new QueryContext());

import java.util.Collection;

import org.kie.api.runtime.query.QueryContext;
import org.jbpm.services.api.model.ProcessInstanceDesc;
import org.jbpm.services.api.query.QueryService;
import org.jbpm.kie.services.impl.query.mapper.ProcessInstanceQueryMapper;

...

QueryContext ctx = new QueryContext(0, 100, "start_date", true);

Collection<ProcessInstanceDesc> instances = queryService.query
 ("getAllProcessInstances", ProcessInstanceQueryMapper.get(), ctx);

import java.util.Collection;

import org.jbpm.kie.services.impl.model.ProcessInstanceDesc;
import org.jbpm.services.api.query.QueryService;
import org.jbpm.kie.services.impl.query.mapper.ProcessInstanceQueryMapper;
import org.kie.api.runtime.query.QueryContext;
import org.jbpm.services.api.query.model.QueryParam;

...

// Single filter parameter:
Collection<ProcessInstanceDesc> instances = queryService.query
 ("getAllProcessInstances", ProcessInstanceQueryMapper.get(), new QueryContext(),
 QueryParam.likeTo(COLUMN_PROCESSID, true, "org.jbpm%"));

// Multiple filter parameters (AND):
Collection<ProcessInstanceDesc> instances = queryService.query
 ("getAllProcessInstances", ProcessInstanceQueryMapper.get(), new QueryContext(),

QueryParam.likeTo(COLUMN_PROCESSID, true, "org.jbpm%"),
QueryParam.in(COLUMN_STATUS, 1, 3));

CHAPTER 12. HUMAN TASKS MANAGEMENT

265

To use advanced queries, you need to deploy the Intelligent Process Server. See chapter The Intelligent
Process Server from Red Hat JBoss BPM Suite User Guide to learn more about the Intelligent Process
Server. Also, for a list of endpoints you can use, view chapter Advanced Queries for the Intelligent
Process Server from the Red Hat JBoss BPM Suite User Guide.

Through the Intelligent Process Server, users can:

Register query definitions.

Replace query definitions.

Remove query definitions.

Get a query or a list of queries.

Execute queries with:

Paging and sorting.

Filter parameters.

Custom parameter builders and mappers.

To use advanced queries through the Intelligent Process Server, you need to build your Intelligent
Process Server to use query services. For Maven projects, see Embedded jBPM Engine Dependencies.
To build your Intelligent Process Server:

You can now list available queries on your system:

import java.util.Date;
import java.util.HashSet;
import java.util.Set;

import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.QueryServicesClient;

...

KieServicesConfiguration configuration = KieServicesFactory
 .newRestConfiguration(serverUrl, user, password);

Set<Class<?>> extraClasses = new HashSet<Class<?>>();
extraClasses.add(Date.class); // for JSON only to properly map dates

configuration.setMarshallingFormat(MarshallingFormat.JSON);
configuration.addJaxbClasses(extraClasses);

KieServicesClient kieServicesClient = KieServicesFactory
 .newKieServicesClient(configuration);

QueryServicesClient queryClient = kieServicesClient
 .getServicesClient(QueryServicesClient.class);

// Maven dependency list shown above

Red Hat JBoss BPM Suite 6.4 Development Guide

266

To use advanced queries, register a new query definition:

Note that Target instructs QueryService to apply default filters. Alternatively, you can set filter
parameters manually. Target has the following values:

Once registered, you can start with queries:

List<QueryDefinition> queryDefs = queryClient.getQueries(0, 10);
System.out.println(queryDefs);

import org.jbpm.services.api.query.model.QueryDefinition;

...

QueryDefinition query = new QueryDefinition();
query.setName("getAllTaskInstancesWithCustomVariables");
query.setSource("java:jboss/datasources/ExampleDS");

query.setExpression("select ti.*,c.country,c.productCode,c.quantity,c.price,c.saleDate " +
 "from AuditTaskImpl ti " +
 "inner join (select mv.map_var_id, mv.taskid from MappedVariable mv) mv " +
 "on (mv.taskid = ti.taskId) " +
 "inner join ProductSale c " +
 "on (c.id = mv.map_var_id)");

query.setTarget("Task");

queryClient.registerQuery(query);

// Maven dependency list shown above

public enum Target {
 PROCESS,
 TASK,
 BA_TASK,
 PO_TASK,
 JOBS,
 CUSTOM;
}

import java.util.List;

import org.kie.server.api.model.instance.TaskInstance;

//necessary for the queryClient object
import org.kie.server.client.QueryServicesClient;

List<TaskInstance> tasks = queryClient.query
 ("getAllTaskInstancesWithCustomVariables", "UserTasks", 0, 10, TaskInstance.class);

System.out.println(tasks);

// Maven dependency list shown above

CHAPTER 12. HUMAN TASKS MANAGEMENT

267

This query returns task instances from the defined dataset, and does not use filtering or UserTasks
mapper.

Following example uses advanced querying:

It searches for tasks which have following attributes:

The processInstanceId is between 1000 and 2000.

Price is greater than 800.

Sale date is between 2016-02-01 and 2016-03-01.

Sold product is in groups EAP or Wildfly.

The results will be ordered by sale date and country in descending order.

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
import java.util.List;

import org.kie.server.api.model.definition.QueryFilterSpec;
import org.kie.server.api.model.instance.TaskInstance;
import org.kie.server.api.util.QueryFilterSpecBuilder;

//necessary for the queryClient object
import org.kie.server.client.QueryServicesClient;
...

SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");

Date from = sdf.parse("2016-02-01");
Date to = sdf.parse("2016-03-01");

QueryFilterSpec spec = new QueryFilterSpecBuilder()
 .between("processInstanceId", 1000, 2000)
 .greaterThan("price", 800)
 .between("saleDate", from, to)
 .in("productCode", Arrays.asList("EAP", "WILDFLY"))
 .oderBy("saleDate, country", false)
 .addColumnMapping("COUNTRY", "string")
 .addColumnMapping("PRODUCTCODE", "string")
 .addColumnMapping("QUANTITY", "integer")
 .addColumnMapping("PRICE", "double")
 .addColumnMapping("SALEDATE", "date")
 .get();

List<TaskInstance> tasks = queryClient.query
 ("getAllTaskInstancesWithCustomVariables", "UserTasksWithCustomVariables",
 spec, 0, 10, TaskInstance.class);

System.out.println(tasks);

// Maven dependency list shown above

Red Hat JBoss BPM Suite 6.4 Development Guide

268

The query example uses QueryFilterSpec to specify query parameters and sorting options. It also allows
to specify column mapping for custom elements to be set as variables, and combine it with default
column mapping for task details. In the example, the UserTasksWithCustomVariables mapper was
used.

When you use QueryFilterSpec, all the conditions are connected by logical conjunction (AND). You can
build custom advanced filters with different behavior by implementing QueryParamBuilder. You need
to include it in one of the following:

The Intelligent Process Server (for example, in WEB-INF/lib).

Inside a project, that is in a project kJAR.

As a project dependency.

To use QueryParamBuilder, you need to:

1. Implement QueryParamBuilder by an object that produces a new instance every time you
request it with a map of parameters:

import java.util.Map;

import org.dashbuilder.dataset.filter.ColumnFilter;
import org.dashbuilder.dataset.filter.FilterFactory;
import org.jbpm.services.api.query.QueryParamBuilder;

...

public class TestQueryParamBuilder implements QueryParamBuilder<ColumnFilter> {

 private Map<String, Object> parameters;
 private boolean built = false;

 public TestQueryParamBuilder(Map<String, Object> parameters) {
 this.parameters = parameters;
 }

 @Override
 public ColumnFilter build() {
 // Return NULL if it was already invoked:
 if (built) {
 return null;
 }

 String columnName = "processInstanceId";

 ColumnFilter filter = FilterFactory.OR(
 FilterFactory.greaterOrEqualsTo(((Number)parameters.get("min")).longValue()),
 FilterFactory.lowerOrEqualsTo(((Number)parameters.get("max")).longValue()));
 filter.setColumnId(columnName);

 built = true;

 return filter;

CHAPTER 12. HUMAN TASKS MANAGEMENT

269

This example will accept processInstanceId values that are either grater than min value or lower
than max value.

2. Implement QueryParamBuilderFactory:

The factory interface returns new instances of the QueryParamBuilder only if the given
identifier is accepted by the factory. The Identifier is a part of the query request. Only one query
builder factory can be selected based on the identifier. In the example, use test identifier to use
this factory, and the QueryParamBuilder.

3. Add a service file into META-INF/services/ of the JAR that will package these implementations.
In the service file, specify fully qualified class name of the factory, for example:

org.jbpm.services.api.query.QueryParamBuilderFactory

You can now request your query builder:

 }
}
// Maven dependency list shown above

import java.util.Map;

import org.jbpm.services.api.query.QueryParamBuilder;
import org.jbpm.services.api.query.QueryParamBuilderFactory;
import org.jbpm.kie.services.test.objects.TestQueryParamBuilder;

...

public class TestQueryParamBuilderFactory implements QueryParamBuilderFactory {

 @Override
 public boolean accept(String identifier) {
 if ("test".equalsIgnoreCase(identifier)) {
 return true;
 }

 return false;
 }

 @Override
 public QueryParamBuilder newInstance(Map<String, Object> parameters) {
 return new TestQueryParamBuilder(parameters);
 }
}
// Maven dependency list shown above

import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.kie.server.api.model.instance.TaskInstance;

...

Red Hat JBoss BPM Suite 6.4 Development Guide

270

Similarly, to create a custom mapper, follow these steps:

1. Implement the mapper interface:

2. Add appropriate service file into META-INF/services/:

org.jbpm.services.api.query.QueryResultMapper

3. Reference it by the name, for example:

12.10. PROCESS INSTANCE MIGRATION

NOTE

Map<String, Object> params = new HashMap<String, Object>();
params.put("min", 10);
params.put("max", 20);

List<TaskInstance> instances = queryClient.query
 ("getAllTaskInstancesWithCustomVariables", "UserTasksWithCustomVariables", "test",
 params, 0, 10, TaskInstance.class);

// Maven dependencies shown above

public class ProductSaleQueryMapper extends
UserTaskInstanceWithCustomVarsQueryMapper {

 private static final long serialVersionUID = 3299692663640707607L;

 public ProductSaleQueryMapper() {
 super(getVariableMapping());
 }

 protected static Map<String, String> getVariableMapping() {
 Map<String, String> variablesMap = new HashMap<String, String>();

 variablesMap.put("COUNTRY", "string");
 variablesMap.put("PRODUCTCODE", "string");
 variablesMap.put("QUANTITY", "integer");
 variablesMap.put("PRICE", "double");
 variablesMap.put("SALEDATE", "date");

 return variablesMap;
 }

 @Override
 public String getName() {
 return "ProductSale";
 }
}

List<TaskInstance> tasks = queryClient.query
 ("getAllTaskInstancesWithCustomVariables", "ProductSale", 0, 10, TaskInstance.class);

System.out.println(tasks);

CHAPTER 12. HUMAN TASKS MANAGEMENT

271

NOTE

Process instance migration is available only with Red Hat JBoss BPM Suite 6.4 and
higher.

The ProcessInstanceMigrationService service is a utility used to migrate given process instances from
one deployment to another. Process or task variables are not affected by the migration. The
ProcessInstanceMigrationService service enables you to change the process definition for the
process engine.

For process instance migrations, let active process instances finish and start new process instances in
the new deployment. If this approach is not suitable to your needs, consider the following before starting
process instance migration:

Backward compatibility

Data change

Need for node mapping

You should create backward compatible processes whenever possible, such as extending process
definitions. For example, removing specific nodes from the process definition breaks compatibility. In
such case, you must provide new node mapping in case an active process instance is in a node that has
been removed.

A node map contains source node IDs from the old process definition mapped to target node IDs in the
new process definition. You can map nodes of the same type only, such as a user task to a user task.

Red Hat JBoss BPM Suite offers several implementations of the migration service:

public interface ProcessInstanceMigrationService {
 /**
 * Migrates given process instance that belongs to source deployment, into target process id that
belongs to target deployment.
 * Following rules are enforced:
 *
 * source deployment id must be there
 * process instance id must point to existing and active process instance
 * target deployment must exist
 * target process id must exist in target deployment
 *
 * Migration returns migration report regardless of migration being successful or not that needs to be
examined for migration outcome.
 * @param sourceDeploymentId deployment that process instance to be migrated belongs to
 * @param processInstanceId id of the process instance to be migrated
 * @param targetDeploymentId id of deployment that target process belongs to
 * @param targetProcessId id of the process process instance should be migrated to
 * @return returns complete migration report
 */
 MigrationReport migrate(String sourceDeploymentId, Long processInstanceId, String
targetDeploymentId, String targetProcessId);
 /**
 * Migrates given process instance (with node mapping) that belongs to source deployment, into
target process id that belongs to target deployment.
 * Following rules are enforced:
 *

Red Hat JBoss BPM Suite 6.4 Development Guide

272

 * source deployment id must be there
 * process instance id must point to existing and active process instance
 * target deployment must exist
 * target process id must exist in target deployment
 *
 * Migration returns migration report regardless of migration being successful or not that needs to be
examined for migration outcome.
 * @param sourceDeploymentId deployment that process instance to be migrated belongs to
 * @param processInstanceId id of the process instance to be migrated
 * @param targetDeploymentId id of deployment that target process belongs to
 * @param targetProcessId id of the process process instance should be migrated to
 * @param nodeMapping node mapping - source and target unique ids of nodes to be mapped - from
process instance active nodes to new process nodes
 * @return returns complete migration report
 */
 MigrationReport migrate(String sourceDeploymentId, Long processInstanceId, String
targetDeploymentId, String targetProcessId, Map<String, String> nodeMapping);
 /**
 * Migrates given process instances that belong to source deployment, into target process id that
belongs to target deployment.
 * Following rules are enforced:
 *
 * source deployment id must be there
 * process instance id must point to existing and active process instance
 * target deployment must exist
 * target process id must exist in target deployment
 *
 * Migration returns list of migration report - one per process instance, regardless of migration being
successful or not that needs to be examined for migration outcome.
 * @param sourceDeploymentId deployment that process instance to be migrated belongs to
 * @param processInstanceIds list of process instance id to be migrated
 * @param targetDeploymentId id of deployment that target process belongs to
 * @param targetProcessId id of the process process instance should be migrated to
 * @return returns complete migration report
 */
 List<MigrationReport> migrate(String sourceDeploymentId, List<Long> processInstanceIds, String
targetDeploymentId, String targetProcessId);
 /**
 * Migrates given process instances (with node mapping) that belong to source deployment, into target
process id that belongs to target deployment.
 * Following rules are enforced:
 *
 * source deployment id must be there
 * process instance id must point to existing and active process instance
 * target deployment must exist
 * target process id must exist in target deployment
 *
 * Migration returns list of migration report - one per process instance, regardless of migration being
successful or not that needs to be examined for migration outcome.
 * @param sourceDeploymentId deployment that process instance to be migrated belongs to
 * @param processInstanceIds list of process instance id to be migrated
 * @param targetDeploymentId id of deployment that target process belongs to
 * @param targetProcessId id of the process process instance should be migrated to
 * @param nodeMapping node mapping - source and target unique ids of nodes to be mapped - from
process instance active nodes to new process nodes
 * @return returns list of migration reports one per each process instance

CHAPTER 12. HUMAN TASKS MANAGEMENT

273

To migrate process instances on the KIE Server, use the following implementations. These correspond
with the implementations described in the previous code sample.

You can migrate a single process instance, or multiple process instances at once. If you migrate multiple
process instances, each instance will be migrated in a separate transaction to ensure that the migrations
do not affect each other.

After migration is done, the migrate method returns a MigrationReport object that contains the
following information:

Start and end dates of the migration.

Migration outcome (success or failure).

Log entry as INFO, WARN, or ERROR type. The ERROR message terminates the migration.

The following is an example process instance migration:

Example Process Instance Migration

 */
 List<MigrationReport> migrate(String sourceDeploymentId, List<Long> processInstanceIds, String
targetDeploymentId, String targetProcessId, Map<String, String> nodeMapping);
}

public interface ProcessAdminServicesClient {

 MigrationReportInstance migrateProcessInstance(String containerId, Long processInstanceId,
String targetContainerId, String targetProcessId);

 MigrationReportInstance migrateProcessInstance(String containerId, Long processInstanceId,
String targetContainerId, String targetProcessId, Map<String, String> nodeMapping);

 List<MigrationReportInstance> migrateProcessInstances(String containerId, List<Long>
processInstancesId, String targetContainerId, String targetProcessId);

 List<MigrationReportInstance> migrateProcessInstances(String containerId, List<Long>
processInstancesId, String targetContainerId, String targetProcessId, Map<String, String>
nodeMapping);
}

import org.kie.server.api.model.admin.MigrationReportInstance;
import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;

public class ProcessInstanceMigrationTest{

 private static final String SOURCE_CONTAINER = "com.redhat:MigrateMe:1.0";
 private static final String SOURCE_PROCESS_ID = "MigrateMe.MigrateMev1";
 private static final String TARGET_CONTAINER = "com.redhat:MigrateMe:2";
 private static final String TARGET_PROCESS_ID = "MigrateMe.MigrateMeV2";

 public static void main(String[] args) {

 KieServicesConfiguration config =

Red Hat JBoss BPM Suite 6.4 Development Guide

274

Known Limitations
There are several limitations to the migration service:

You can migrate process instances only, not their data.

If you modify a task that is preceding the active task, the active task will not be affected by the
change.

You cannot remove a currently active human task. You can replace a human task by mapping it
onto a different human task.

You cannot add new branches parallel to the current active task. In such case, the new branch
will not be activated and the workflow will not pass the AND gateway.

Changes in the active recurring timer events will not be persisted in the database.

You cannot update task inputs and outputs.

Node mapping updates task node name and description only. Other task fields will not be
mapped and migrated.

KieServicesFactory.newRestConfiguration("http://HOST:PORT/kie-server/services/rest/server",
"USERNAME", "PASSWORD");
 config.setMarshallingFormat(MarshallingFormat.JSON);
 KieServicesClient client = KieServicesFactory.newKieServicesClient(config);

 long sourcePid = client.getProcessClient().startProcess(SOURCE_CONTAINER,
SOURCE_PROCESS_ID);

 // Use the 'report' object to return migration results.
 MigrationReportInstance report =
client.getAdminClient().migrateProcessInstance(SOURCE_CONTAINER,
sourcePid,TARGET_CONTAINER, TARGET_PROCESS_ID);

 System.out.println("Was migration successful:" + report.isSuccessful());

 client.getProcessClient().abortProcessInstance(TARGET_CONTAINER, sourcePid);

 }
}

CHAPTER 12. HUMAN TASKS MANAGEMENT

275

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

13.1. PROCESS INSTANCE STATE

Red Hat JBoss BPM Suite allows persistent storage of information. For example, you can persistently
store process runtime state to ensure that you will be able to resume your process instance in case of
failure. While logs of current and previous process states are stored by default, you can store process
definitions and logging information as well.

13.1.1. Runtime State

When you start a process, Red Hat JBoss BPM Suite creates a process instance, which represents the
execution of the process in the specific context. For example, when you start a process that specifies
how to process a sales order, Red Hat JBoss BPM Suite creates a process instance for each order.
Process instances contain all the related information and minimal runtime state required to continue the
execution at any time. However, it does not include process instance logs unless needed for execution
of the process instance.

You can make the runtime state of an executing process persistent, for example, in a database. This
allows you to restore the state of execution of all running processes in case of failure, or to temporarily
remove running instances from memory and restore them later. Red Hat JBoss BPM Suite allows you to
plug in different persistence strategies. Note that process instances are not persistent by default.

When you configure the Red Hat JBoss BPM Suite engine to use persistence, it automatically stores the
runtime state in a database without further prompting. When you invoke the engine, it ensures that all
changes are stored at the end of that invocation. If you encounter a failure and restore the engine from
the database, do not manually resume the execution. Process instances automatically resume execution
if they are triggered.

Inexperienced users should not directly access and modify database tables containing runtime
persistence data. Changes in the runtime state of process instances which are not done by the engine
may have unexpected results. If you require information about the current execution state of a process
instance, use the history log.

13.1.2. Binary Persistence

Binary persistence, or marshaling, converts the state of the process instance into a binary dataset.
Binary persistence is a mechanism used to store and retrieve information persistently. The same
mechanism is also applied to the session state and work item states.

When you enable persistence of a process instance:

Red Hat JBoss BPM Suite transforms the process instance information into binary data.
Custom serialization is used instead of Java serialization for performance reasons.

The binary data is stored together with other process instance metadata, such as process
instance ID, process ID, and the process start date.

The session can also store other forms of state, such as the state of timer jobs, or data required for
business rules evaluation. Session state is stored separately as a binary dataset along with the ID of the
session and metadata. You can restore the session state by reloading a session with given ID. Use
ksession.getId() to get the session ID.

13.1.3. Data Model Description

Red Hat JBoss BPM Suite 6.4 Development Guide

276

Each entity of the data model is described below.

Figure 13.1. Data Model

The SessionInfo entity contains the state of the (knowledge) session in which the process instance is
running.

Table 13.1. SessionInfo

Field Description Nullable

id The primary key. NOT NULL

lastModificationDate The last time that entity was saved
to a database.

rulesByteArray The state of a session. NOT NULL

startDate The session start time.

OPTLOCK A version field containing a lock
value.

The ProcessInstanceInfo entity contains the state of the process instance.

Table 13.2. ProcessInstanceInfo

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

277

Field Description Nullable

instanceId The primary key. NOT NULL

lastModificationDate The last time that the entity was
saved to a database.

lastReadDate The last time that the entity was
retrieved from the database.

processId The ID of the process.

processInstanceByteArray The state of a process instance in
form of a binary dataset.

NOT NULL

startDate The start time of the process.

state An integer representing the state of
a process instance.

NOT NULL

OPTLOCK A version field containing a lock
value.

The EventTypes entity contains information about events that a process instance will undergo or has
undergone.

Table 13.3. EventTypes

Field Description Nullable

instanceId A reference to the
ProcessInstanceInfo primary key
and foreign key constraint on this
column.

NOT NULL

element A finished event in the process.

The WorkItemInfo entity contains the state of a work item.

Table 13.4. WorkItemInfo

Field Description Nullable

workItemId The primary key. NOT NULL

name The name of the work item.

Red Hat JBoss BPM Suite 6.4 Development Guide

278

processInstanceId The (primary key) ID of the process.
There is no foreign key constraint
on this field.

NOT NULL

state The state of a work item. NOT NULL

OPTLOCK A version field containing a lock
value.

workitembytearay The work item state in as a binary
dataset.

NOT NULL

Field Description Nullable

The CorrelationKeyInfo entity contains information about correlation keys assigned to the given
process instance. This table is optional. Use it only when you require correlation capabilities.

Table 13.5. CorrelationKeyInfo

Field Description Nullable

keyId The primary key. NOT NULL

name The assigned name of the
correlation key.

processInstanceId The ID of the process instance
which is assigned to the correlation
key.

NOT NULL

OPTLOCK A version field containing a lock
value.

The CorrelationPropertyInfo entity contains information about correlation properties for a correlation
key assigned the process instance.

Table 13.6. CorrelationPropertyInfo

Field Description Nullable

propertyId The primary key. NOT NULL

name The name of the property.

value The value of the property. NOT NULL

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

279

OPTLOCK A version field containing a lock
value.

correlationKey_keyId A foreign key mapped to the
correlation key.

NOT NULL

Field Description Nullable

The ContextMappingInfo entity contains information about the contextual information mapped to a
KieSession. This is an internal part of RuntimeManager and can be considered optional when
RuntimeManager is not used.

Table 13.7. ContextMappingInfo

Field Description Nullable

mappingId The primary key. NOT NULL

CONTEXT_ID The context identifier. NOT NULL

KSESSION_ID The KieSession identifier. NOT NULL

OPTLOCK A version field containing a lock
value.

13.1.4. Safe Points

During the process engine execution, the state of a process instance is stored in safe points. When you
execute a process instance, the engine continues the execution until there are no more actions to be
performed. That is, the process instance has been completed, aborted, or is in the wait state in all of its
paths. At that point, the engine has reached the next safe state, and the state of the process instance
(and all other process instances that it affected) is stored persistently.

13.2. AUDIT LOG

Storing information about the execution of process instances can be useful when you need to, for
example:

Verify which actions have been executed in a particular process instance.

Monitor and analyze the efficiency of a particular process.

However, storing history information in the runtime database can result in the database rapidly
increasing in size. Additionally, monitoring and analysis queries might influence the performance of your
runtime engine. This is why process execution history logs are stored separately.

13.2.1. Audit Data Model

The jbpm-audit module contains an event listener that stores process-related information in a database

Red Hat JBoss BPM Suite 6.4 Development Guide

280

The jbpm-audit module contains an event listener that stores process-related information in a database
using Java Persistence API (JPA). The data model contains the following entities:

The ProcessInstanceLog table contains the basic log information about a process instance.

The NodeInstanceLog table contains information about which nodes were actually executed
inside each process instance. Whenever a node instance is entered from one of its incoming
connections or is exited through one of its outgoing connections, that information is stored in
this table.

The VariableInstanceLog table contains information about changes in variable instances. The
execution engine generates log entries after a variable changes, by default. Alternatively, you
can log entries before the variable value changes.

The AuditTaskImpl table contains information about tasks that can be used for queries.

The BAMTaskSummary table collects information about tasks. The Business Activity Monitor
engine then uses the information to build charts and dashboards.

The TaskVariableImpl table contains information about task variable instances.

The TaskEvent table contains information about changes in task instances. It contains a timeline
view of events (for example claim, start, or stop) for the given task.

13.2.2. Audit Data Model Description

All audit data model entities contain following elements:

Table 13.8. ProcessInstanceLog

Field Description

id The primary key and ID of the log entity. Cannot have the null
value.

duration The duration of a process instance since its start date.

end_date The end date of a process instance when applicable.

externalId An optional external identifier used to correlate various
elements, for example deployment ID.

user_identity An optional identifier of the user who started the process
instance.

outcome The outcome of a process instance, for example the error code.

parentProcessInstanceId The process instance ID of the parent process instance.

processId The ID of the executed process.

processInstanceId The process instance ID. Cannot have the NULL value.

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

281

processname The name of the process.

processversion The version of the process.

start_date The start date of the process instance.

status The status of process instance that maps to process instance
state.

Field Description

Table 13.9. NodeInstanceLog

Field Description

id The primary key and ID of the log entity. Cannot have the NULL
value.

connection The identifier of the sequence flow that led to this node
instance.

log_date The event date.

externalId An optional external identifier used to correlate various
elements, for example deployment ID.

nodeid The node ID of the corresponding node in the process definition.

nodeinstanceId The instance ID of the node.

nodename The name of the node.

nodetype The type of the node.

processId The ID of the executed process.

processInstanceId The process instance ID.

type The type of the event (0 = enter, 1 = exit). Cannot have the
NULL value.

workItemId An optional identifier of work items available only for certain
node types.

Table 13.10. VariableInstanceLog

Red Hat JBoss BPM Suite 6.4 Development Guide

282

Field Description

id The primary key and ID of the log entity. Cannot have the NULL
value.

externalId An optional external identifier used to correlate various
elements, for example deployment ID.

log_date The date of the event.

processId The ID of the executed process.

processInstanceId The process instance ID.

oldvalue The previous value of the variable at the time of recording of the
log.

value The value of the variable at the time of recording of the log.

variableid The variable ID in the process definition.

variableinstanceId The ID of the variable instance.

Table 13.11. AuditTaskImpl

Field Description

id The primary key and ID of the log entity.

activationTime The time of the task activation.

actualOwner The actual owner assigned to this task. This field is set only when
a user claims the task.

createdBy The user who created the task.

createdOn The date of the task creation.

deploymentId The deployment ID to which this task belongs.

description The task description.

dueDate The due date set on this task.

name The name of the task.

parentId The parent task ID.

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

283

priority The priority of the task.

processId The process definition ID to which this task belongs.

processInstanceId The process instance ID with which this task is associated.

processSessionId The KieSession ID used to create this task.

status The current status of the task.

taskId The identifier of task.

workItemId The work item ID assigned to this task ID (on process side).

Field Description

Table 13.12. BAMTaskSummary

Field Description

id The primary key and ID of the log entity. Cannot have the null
value.

createdDate The date of the task creation.

duration Duration since the task was created.

endDate The date when the task reached an end state (that is: complete,
exit, fail, or skip).

processInstanceId The process instance ID.

startDate The date when the task was started.

status The current status of the task.

taskId The identifier of the task.

taskName The name of the task.

userId The user ID assigned to the task.

Table 13.13. TaskVariableImpl

Red Hat JBoss BPM Suite 6.4 Development Guide

284

Field Description

id The primary key and ID of the log entity. Cannot have the null
value.

modificationDate The last time when the variable was modified.

name The name of the task.

processId The ID of the process that the process instance is executing.

processInstanceId The process instance ID.

taskId The identifier of the task.

type The type of the variable, that is input or output of the task.

value The value of a variable.

Table 13.14. TaskEvent

Field Description

id The primary key and ID of the log entity. Cannot have the null
value.

logTime The date when this event was saved.

message The log event message.

processInstanceId The process instance ID.

taskId The identifier of the task.

type The type of the event, which corresponds to the life cycle
phases of the task.

userId The user ID assigned to the task.

workItemId The identifier of the work item to which the task is assigned.

13.2.3. Storing Process Events in a Database

To log process history in a database, register a logger in your session:

EntityManagerFactory emf = ...;

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

285

Modify persistence.xml to specify a database. You need to include audit log classes as well
(ProcessInstanceLog, NodeInstanceLog, and VariableInstanceLog). See the example:

13.2.4. Storing Process Events in a JMS Queue

Synchronous storing of history logs and runtime data in one database may be undesirable due to
performance reasons. In that case, you can use JMS logger to send data into a JMS queue instead of
directly storing it in a database. You can also configure it to be transactional in order to avoid issues with
inconsistent data, for example when the process engine transaction is reversed.

StatefulKnowledgeSession ksession = ...;
AbstractAuditLogger auditLogger = AuditLoggerFactory.newJPAInstance(emf);
ksession.addProcessEventListener(auditLogger);

// Invoke methods on your session here.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <persistence
 version="2.0"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_2_0.xsd"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <persistence-unit name="org.jbpm.persistence.jpa" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/jbpm-ds</jta-data-source>
 <mapping-file>META-INF/JBPMorm.xml</mapping-file>

 <class>org.drools.persistence.info.SessionInfo</class>
 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>
 <class>org.drools.persistence.info.WorkItemInfo</class>
 <class>org.jbpm.persistence.correlation.CorrelationKeyInfo</class>
 <class>org.jbpm.persistence.correlation.CorrelationPropertyInfo</class>
 <class>org.jbpm.runtime.manager.impl.jpa.ContextMappingInfo</class>
 <class>org.jbpm.process.audit.ProcessInstanceLog</class>
 <class>org.jbpm.process.audit.NodeInstanceLog</class>
 <class>org.jbpm.process.audit.VariableInstanceLog</class>

 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.BitronixJtaPlatform"/>
 </properties>
 </persistence-unit>
 </persistence>

Red Hat JBoss BPM Suite 6.4 Development Guide

286

Example configuration of JMS queue:

13.2.5. Auditing Variables

Process and task variables are stored as string (similar to variable.toString()) in audit tables by default.
This is not always efficient, for example, when you need to query by the process or task instance
variables:

ConnectionFactory factory = ...;
Queue queue = ...;
StatefulKnowledgeSession ksession = ...;
Map<String, Object> jmsProps = new HashMap<String, Object>();

jmsProps.put("jbpm.audit.jms.transacted", true);
jmsProps.put("jbpm.audit.jms.connection.factory", factory);
jmsProps.put("jbpm.audit.jms.queue", queue);

AbstractAuditLogger auditLogger =
 AuditLoggerFactory.newInstance(Type.JMS, session, jmsProps);
ksession.addProcessEventListener(auditLogger);

// Invoke methods of your session here.

public class Person implements Serializable {

 private static final long serialVersionUID = -5172443495317321032L;
 private String name;
 private int age;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 @Override
 public String toString() {
 return "Person [name=" + name + ", age=" + age + "]";
 }
}

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

287

In this example, when you want to query all the people with certain age, querying becomes inefficient.

Thus, variable audit is based on VariableIndexer, which extracts relevant parts of the variables that will
be stored in audit log:

The default indexer (that is indexer accepting toString()) produces a single audit entry for a single
variable. However, you can create a custom indexer which indexes variables into separate audit entries:

/**
* Variable indexer that allows to transform variable instance
* into other representation (usually String) to be able to use it for queries.
*
* @param <V> type of the object that will represent indexed variable
*/

public interface VariableIndexer<V> {

 /**
 * Tests if given variable shall be indexed by this indexer.
 *
 * NOTE: Only one indexer can be used for given variable.
 *
 * @param variable variable to be indexed
 * @return true if variable should be indexed with this indexer
 */

 boolean accept(Object variable);

 /**
 * Performs index/transform operation of the variable.
 * Result of this operation can be either single value
 * or list of values to support complex type separation.
 * For example, when variable is of type Person that has name,
 * address, and phone, indexer could build three entries
 * out of it to represent individual fields:
 *
 * person = person.name
 * address = person.address.street
 * phone = person.phone
 *
 * That will allow more advanced queries to be used to find
 * relevant entries.
 *
 * @param name name of the variable
 * @param variable actual variable value
 * @return
 */

 List<V> index(String name, Object variable);
}

public class PersonTaskVariablesIndexer implements TaskVariableIndexer {

 @Override
 public boolean accept(Object variable) {

Red Hat JBoss BPM Suite 6.4 Development Guide

288

This allows you to search all the process instances or tasks that contain the person instance of age 34 by
querying for:

Variable name: person.age

Variable value: 34

13.2.6. Building and Registering Custom Indexers

You can build indexers for both process and task variables. They are supported by different interfaces
because they produce different type of objects representing audit view of the variable. To create a
custom indexer, follow these steps:

1. Implement following interfaces to build custom indexers:

Process variables: org.kie.internal.process.ProcessVariableIndexer.

Task variables: org.kie.internal.task.api.TaskVariableIndexer.

2. Implement the following methods:

accept: indicates what types are handled by given indexer. Only one indexer can index any
given variable. The first that accepts the variable will index it.

index: the method for indexing the variable.

3. Package the implementation into a jar file, including following files:

For process variables: META-

 if (variable instanceof Person) {
 return true;
 }

 return false;
 }

 @Override
 public List<TaskVariable> index(String name, Object variable) {
 Person person = (Person) variable;
 List<TaskVariable> indexed = new ArrayList<TaskVariable>();

 TaskVariableImpl personNameVar = new TaskVariableImpl();
 personNameVar.setName("person.name");
 personNameVar.setValue(person.getName());

 indexed.add(personNameVar);

 TaskVariableImpl personAgeVar = new TaskVariableImpl();
 personAgeVar.setName("person.age");
 personAgeVar.setValue(person.getAge()+"");

 indexed.add(personAgeVar);

 return indexed;
 }
}

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

289

For process variables: META-
INF/services/org.kie.internal.process.ProcessVariableIndexer with list of fully qualified
class names that represent the process variable indexers (single class name per line).

For task variables: META-INF/services/org.kie.internal.task.api.TaskVariableIndexer with
list of fully qualified class names that represent the task variable indexers (single class name
per line).

The ServiceLoader service registers indexers. When you start indexing, all the registered indexers are
examined. If no applicable indexer is found, the default indexer (toString() based) is used.

13.3. TRANSACTIONS

Red Hat JBoss BPM Suite engine supports Java Transaction API (JTA). The engine executes any
method you invoke in a separate transaction unless you set transaction boundaries. Transaction
boundaries allow you to combine multiple commands into one transaction.

Register a transaction manager before using user-defined transactions. The following sample code uses
Bitronix transaction manager. It also uses JTA to specify transaction boundaries:

If you use Bitronix as the transaction manager, you must provide jndi.properties in your root classpath
to register the Bitronix transaction manager in JNDI.

If you use the jbpm-test module, jndi.properties is included by default.

If you are not using jbpm-test module, create jndi.properties manually with the following
content:

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContextFactory

If you use a different JTA transaction manager, modify the transaction manager property in

// Create the entity manager factory and register it in the environment:
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
env.set(EnvironmentName.TRANSACTION_MANAGER,
 TransactionManagerServices.getTransactionManager());

// Create a new knowledge session that uses JPA to store the runtime state:
StatefulKnowledgeSession ksession =
 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

// Start the transaction:
UserTransaction ut =
 (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");
ut.begin();

// Perform multiple commands inside one transaction:
ksession.insert(new Person("John Doe"));
ksession.startProcess("MyProcess");

// Commit the transaction:
ut.commit();

Red Hat JBoss BPM Suite 6.4 Development Guide

290

If you use a different JTA transaction manager, modify the transaction manager property in
persistence.xml:

<property
 name = "hibernate.transaction.jta.platform"
 value = "org.hibernate.transaction.JBossTransactionManagerLookup"
/>

WARNING

Using the (runtime manager) Singleton strategy with JTA transactions
(UserTransaction or CMT) is not recommended because of a race condition. It can
result in an IllegalStateException with a message similar to " Process instance X is
disconnected".

Avoid this condition by explicitly synchronizing around the KieSession instance
when invoking the transaction in the user application code:

13.4. IMPLEMENTING CONTAINER MANAGED TRANSACTION

You can embed Red Hat JBoss BPM Suite inside an application that executes in Container Managed
Transaction (CMT) mode, such as Enterprise Java Beans (EJB).

To configure the transaction manager, follow these steps:

1. Implement the dedicated transaction manager:

2. Insert the transaction manager and persistence context manager into the environment before
you create or load your session:

synchronized (ksession) {
 try {
 tx.begin();

 // use ksession application logic

 tx.commit();
 } catch (Exception e) {
 ...
 }
}

org.jbpm.persistence.jta.ContainerManagedTransactionManager

Environment env = EnvironmentFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
env.set(EnvironmentName.TRANSACTION_MANAGER,
 new ContainerManagedTransactionManager());

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

291

3. Configure JPA provider (example Hibernate and WebSphere):

NOTE

To ensure that the container is aware of process instance execution exceptions, make
sure that exceptions thrown by the engine are sent to the container to properly reverse
the transaction.

Using the CMT Dispose KieSession Command

If you dispose of your KieSession directly when running in the CMT mode, you may generate
exceptions, because Red Hat JBoss BPM Suite requires transaction synchronization. Use
org.jbpm.persistence.jta.ContainerManagedTransactionDisposeCommand to dispose of your
session.

13.5. USING PERSISTENCE

Red Hat JBoss BPM Suite engine does not save runtime data persistently by default. To use
persistence, you need to:

Add necessary dependencies.

Configure a datasource.

Configure the Red Hat JBoss BPM Suite engine.

13.5.1. Adding Dependencies

To use persistence, add necessary dependencies to the classpath of your application. If you are using
Red Hat JBoss Development Studio with Red Hat JBoss BPM Suite runtime default configuration, all
necessary dependencies are already present for the default persistence configuration. Otherwise,
ensure that the necessary JAR files are added to your Red Hat JBoss BPM Suite runtime directory.

Following is a list of dependencies for the default combination with Hibernate as the JPA persistence
provider, an H2 in-memory database, and Bitronix for JTA-based transaction management.
Dependencies needed for your project will vary depending on your solution configuration.

jbpm-persistence-jpa.jar file is necessary for saving the runtime state. Therefore, always make sure it is
available in your project.

jbpm-persistence-jpa (org.jbpm)

drools-persistence-jpa (org.drools)

persistence-api (javax.persistence)

env.set(EnvironmentName.PERSISTENCE_CONTEXT_MANAGER,
 new JpaProcessPersistenceContextManager(env));
env.set(EnvironmentName.TASK_PERSISTENCE_CONTEXT_MANAGER,
 new JPATaskPersistenceContextManager(env));

<property name="hibernate.transaction.factory_class"
 value="org.hibernate.transaction.CMTTransactionFactory"/>
<property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.WebSphereJtaPlatform"/>

Red Hat JBoss BPM Suite 6.4 Development Guide

292

hibernate-entitymanager (org.hibernate)

hibernate-annotations (org.hibernate)

hibernate-commons-annotations (org.hibernate)

hibernate-core (org.hibernate)

commons-collections (commons-collections)

dom4j (dom4j)

jta (javax.transaction)

btm (org.codehaus.btm)

javassist (javassist)

slf4j-api (org.slf4j)

slf4j-jdk14 (org.slf4j)

h2 (com.h2database)

13.5.2. Manually Configuring Red Hat JBoss BPM Suite Engine to Use Persistence

Use JPAKnowledgeService to create a knowledge session based on a knowledge base, a knowledge
session configuration (if necessary), and the environment. Ensure that the environment contains a
reference to your Entity Manager Factory. For example:

Additionally, you can use JPAKnowledgeService to recreate a session based on a specific session ID.
For example:

Note that only the minimal state that is required to continue execution of the process instance is saved.
You cannot retrieve information related to already executed nodes if that information is no longer
necessary. To search for history-related information, use the history log.

// Create the entity manager factory and register it in the environment:
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

// Create a new knowledge session that uses JPA to store the runtime state:
StatefulKnowledgeSession ksession =
 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);
int sessionId = ksession.getId();

// Invoke methods on your session here:
ksession.startProcess("MyProcess");
ksession.dispose();

// Recreate the session from database using the sessionId:

ksession = JPAKnowledgeService.loadStatefulKnowledgeSession(sessionId, kbase, null, env);

CHAPTER 13. PERSISTENCE AND TRANSACTIONS

293

Add persistence.xml to META-INF to configure JPA. Following example uses Hibernate and H2
database:

In this example, persistence.xml refers to a data source called jdbc/jbpm-ds. If you run your application
in an application server, these containers typically allow you to use custom configure file for the data
sources. See your application server documentation for further details.

Following example shows you how to set up a data source:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence
 version="2.0"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_2_0.xsd"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <persistence-unit name="org.jbpm.persistence.jpa" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/jbpm-ds</jta-data-source>
 <mapping-file>META-INF/JBPMorm.xml</mapping-file>

 <class>org.drools.persistence.info.SessionInfo</class>
 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>
 <class>org.drools.persistence.info.WorkItemInfo</class>
 <class>org.jbpm.persistence.correlation.CorrelationKeyInfo</class>
 <class>org.jbpm.persistence.correlation.CorrelationPropertyInfo</class>
 <class>org.jbpm.runtime.manager.impl.jpa.ContextMappingInfo</class>

 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.BitronixJtaPlatform"/>
 </properties>
 </persistence-unit>
</persistence>

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/jbpm-ds");
ds.setClassName("bitronix.tm.resource.jdbc.lrc.LrcXADataSource");
ds.setMaxPoolSize(3);
ds.setAllowLocalTransactions(true);
ds.getDriverProperties().put("user", "sa");
ds.getDriverProperties().put("password", "sasa");
ds.getDriverProperties().put("URL", "jdbc:h2:mem:jbpm-db");
ds.getDriverProperties().put("driverClassName", "org.h2.Driver");
ds.init();

Red Hat JBoss BPM Suite 6.4 Development Guide

294

CHAPTER 14. USING RED HAT JBOSS DEVELOPER STUDIO
TO CREATE AND TEST PROCESSES

The Red Hat JBoss BPM Suite plug-in provides an environment for editing and testing processes, and
enables integration with your application. The following features are provided:

Wizards for creating Red Hat JBoss BPM Suite projects and BPMN2 processes.

A Red Hat JBoss BPM Suite perspective showing the most commonly used views in a
predefined layout.

14.1. RED HAT JBOSS BPM SUITE RUNTIME

14.1.1. Red Hat JBoss BPM Suite Runtime

A Red Hat JBoss BPM Suite runtime is a collection of JAR files that represent one specific release of
the Red Hat JBoss BPM Suite project. Follow the steps described in the next section to create and
configure a runtime. It is required to specify a default runtime for your Red Hat JBoss Developer Studio
workspace, however, each project can override the default setting and therefore can have a specific
runtime.

14.1.2. Setting the Red Hat JBoss BPM Suite Runtime

To use the Red Hat JBoss BPM Suite plug-in with Red Hat JBoss Developer Studio, it is necessary to
set up the runtime.

Download the Red Hat JBoss BPM Suite 6.4.0 Core Engine archive from the Red Hat Customer Portal .
The JAR files that form the runtime are located in the jboss-bpmsuite-VERSION-engine.zip archive.

NOTE

Make sure you have the JBoss Business Process and Rule Development feature
installed before configuring the Red Hat JBoss BPM Suite runtime. See chapter Red Hat
JBoss Developer Studio of Red Hat JBoss BPM Suite Getting Started Guide for more
information.

Procedure: Configuring jBPM Runtime

1. In the Red Hat JBoss Developer Studio, click Window → Preferences.

2. Click jBPM → Installed jBPM Runtimes.

3. Click Add….

4. Provide a name for the new runtime and click Browse to navigate to the directory where the
runtime is located. Click OK.

5. Select the new runtime and click OK.
Red Hat JBoss Developer Studio prompts you to update the runtime if you have any existing
projects.

14.1.3. Configuring Red Hat JBoss BPM Suite Server

CHAPTER 14. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST PROCESSES

295

https://access.redhat.com

Red Hat JBoss Developer Studio can be configured to run the Red Hat JBoss BPM Suite server.

Procedure: Configuring Red Hat JBoss BPM Suite Server

1. Click Window → Perspective → Open Perspective → Other… and select jBPM.

2. To add the Servers view, click Window → Show View → Other… and select Server → Servers.

3. Right click the empty space in the Servers view at the bottom of the Red Hat JBoss Developer
Studio and choose New → Server.

4. Select the server type. Find Red Hat JBoss Middleware → Red Hat JBoss Enterprise
Application Platform 7 and provide a name for the server and a server’s host name. Click Next.

Figure 14.1. Setting Server Type

5. In the Create a new Server Adapter step, choose Create new runtime (next page) and click
Next.

Figure 14.2. Creating New Server Adapter

Red Hat JBoss BPM Suite 6.4 Development Guide

296

Figure 14.2. Creating New Server Adapter

6. In the next step, set the Home Directory: click Browse… and select the Red Hat JBoss EAP
directory which has Red Hat JBoss BPM Suite installed. Also, make sure that correct JRE is set.
Red Hat JBoss EAP 7 requires Java 8, while earlier versions can use Java 7. Click Next.

Figure 14.3. Referencing JBoss Installation Directory

CHAPTER 14. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST PROCESSES

297

Figure 14.3. Referencing JBoss Installation Directory

7. Click Finish.

14.2. IMPORTING AND CLONING PROJECTS FROM GIT REPOSITORY
INTO RED HAT JBOSS DEVELOPER STUDIO

Red Hat JBoss Developer Studio can be configured to connect to a central Git repository, which stores
rules, models, functions, and processes.

You can either clone a remote Git repository or import a local Git repository.

Procedure: Cloning Remote Git Repository

1. In Red Hat JBoss Developer Studio, click File → Import… and select Git → Projects from Git.
Click Next.

2. Select Clone URI to connect to a remote repository. Click Next.

3. Enter the details of the Git repository. You can use both the HTTPS or SSH protocol. Click
Next.

4. In the Branch Selection step, select the branch you want to import and click Next.

Red Hat JBoss BPM Suite 6.4 Development Guide

298

5. To define a local storage for this project, enter an empty directory, make any configuration
changes necessary, and click Next.

6. Select Import as general project and click Next.

7. Name the project and click Finish.

Procedure: Importing Local Git Repository

1. In Red Hat JBoss Developer Studio, click File → Import… and select Git → Projects from Git.
Click Next.

2. Select the repository source as Existing local repository and click Next.

3. From the list of available repositories, select the repository you want to import and click Next.

4. In the Select a wizard to use for importing projects step, select Import as general project
and click Next.

5. Name the project and click Finish.

14.3. COMPONENTS OF RED HAT JBOSS BPM SUITE APPLICATION

A Red Hat JBoss BPM Suite application consists of the following components:

A set of Java classes that become process variables or facts in rules.

A set of services accessed from service tasks in a business process model.

A business process model definition file in BPMN2 format.

Rules assets (optional).

A Java class that drives the application, including creation of a knowledge session, starting
processes, and firing rules.

When you create a BPM Suite project in Red Hat JBoss Developer Studio, the following directories are
generated:

src/main/java: stores class files (facts).

src/main/resources: stores .drl files (rules) and .bpmn2 files (processes).

14.4. CREATING RED HAT JBOSS BPM SUITE PROJECT

To create a Red Hat JBoss BPM Suite project in Red Hat JBoss Developer Studio:

1. Click File → New → Project and select jBPM → jBPM Project. Click Next.

2. Select the initial project contents: an empty project, a project populated with examples to help
you get started quickly, or an example project from an online repository. Click Next.

3. Specify the name of the project and select one of the two building options, Java and jBPM
Runtime classes or Maven.
Furthermore, if you decided in the second step to create a project populated with examples,
Red Hat JBoss Developer Studio enables you to add either a sample Hello World process, or a

CHAPTER 14. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST PROCESSES

299

more advanced process including Human Tasks and persistence. Select the corresponding radio
button to choose between these two options.

4. Click Finish.

To test a non-empty project:

1. Right-click the file that contains the main method: by default the ProcessMain.java file located
at PROJECT_NAME/src/main/java/ in the com.sample package.

2. Select Run As → Java Application.
The output is displayed in the Console tab.

The project contains the kmodule.xml configuration file under the src/main/resources/META-INF
directory. The file defines which resources, such as processes and rules, will be loaded as a part of your
project. By default, the file defines a knowledge base, called kbase, that loads resources located in the
com.sample package. The default kmodule.xml file looks like follows:

If you selected Maven as a building option, the project contains the pom.xml file. By default, two
dependencies are specified: kie-api and jbpm-test. Add more dependencies as required by your project.

14.5. CONVERTING EXISTING JAVA PROJECT TO RED HAT JBOSS
BPM SUITE PROJECT

To convert an existing Java project to a BPM Suite project:

1. Open the Java project in Red Hat JBoss Developer Studio.

2. Right-click the project and under the Configure category, select Convert to jBPM Project.

This converts your Java project to BPM Suite project and adds the jBPM Library to your project’s
classpath.

14.6. CREATING PROCESSES IN RED HAT JBOSS DEVELOPER STUDIO

To create a new process:

1. Click File → New → Other and select jBPM → jBPM Process Diagram. Click Next.

2. Specify the name and the package of the process, the file name, and the container. The
container is the parent folder of the process.

3. Click Finish.
Process Editor with the newly created process opens and a start node appears on the canvas.
Add more nodes and connections to further model the process.

14.7. MODELING AND VALIDATING PROCESSES IN RED HAT JBOSS
DEVELOPER STUDIO

To model a process:

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule">
 <kbase name="kbase" packages="com.sample"/>
</kmodule>

Red Hat JBoss BPM Suite 6.4 Development Guide

300

1. Follow the steps described in Section 14.6, “Creating Processes in Red Hat JBoss Developer
Studio” to create a process.

2. In the Project Explorer panel on the left, double-click the corresponding .bpmn2 file to open
the process in the BPMN2 Diagram Editor. To open the process in a different editor, right-click
the .bpmn2 file, click Open With, and select an editor.

3. By default, a newly created process contains a start node. To add more nodes to the process,
drag and drop them on the canvas from the Palette panel on the right. Add an end node to
finish the process.

4. Connect the nodes: in the Palette panel, select Connections → Sequence Flow and then click
the nodes you want to connect.

5. To edit properties of a node, click the node to open the corresponding Properties tab at the
lower right corner of Red Hat JBoss Developer Studio. In case the Properties tab does not
open, click Window → Show View → Properties.
Alternatively, double-click a node to open the Edit Task dialog window.

6. Save the process.

To validate a process, right-click the process .bpmn2 file and select Validate.

If the validation completes successfully, a dialogue window that states The validation completed with no
errors or warnings opens. If the validation is unsuccessful, the found errors display in the Problems tab.
Fix the errors and rerun the validation.

14.8. AUDIT VIEW

The audit view in Red Hat JBoss Developer Studio shows the audit log, which is a log of all events that
were logged from a session. To open the audit view, click Window → Show View → Other and select
Drools → Audit.

To open an audit tree in the audit view, click and select the log file from the file system, or drag the
file into the audit view. A tree-based view is generated based on the audit log. An event is shown as a
subnode of another event if the child event is directly caused by the parent event.

For more information about log files, see the following Section 14.8.1, “File Logger” .

14.8.1. File Logger

A file logger logs events from a session into a file. To create a logger, use
KnowledgeRuntimeLoggerFactory and add it to a session.

NOTE

CHAPTER 14. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST PROCESSES

301

NOTE

Using a threaded file logger causes the audit log to be saved to the file system in regular
intervals. The audit viewer is then able to show the latest state.

See the following example of a threaded file logger with a specified audit log file and interval in
milliseconds:

Example 14.1. Threaded File Logger

14.9. SYNCHRONIZING RED HAT JBOSS DEVELOPER STUDIO
WORKSPACE WITH BUSINESS CENTRAL REPOSITORIES

Red Hat JBoss BPM Suite allows you to synchronize your local workspace with one or more repositories
that are managed inside Business Central with the help of Eclipse tooling for Git. Git is a popular
distributed source code version control system. You can use any Git tool of your choice.

When you create and execute processes inside Red Hat JBoss Developer Studio, they get created on
your local file system. Alternatively, you can import an existing repository from Business Central, apply
changes and push these changes back into the Business Central repositories. This synchronization
enables collaboration between developers using Red Hat JBoss Developer Studio and business analysts
or end users using Business Central.

14.9.1. Importing Business Central Repository

1. In Red Hat JBoss Developer Studio, click File → Import and select Git → Projects from Git.
Click Next.

2. Select Clone URI to connect to a repository managed by Business Central. Click Next.

3. In the URI field, provide the URI of the repository to be imported in the following format:

ssh://HOST_NAME:8001/REPOSITORY_NAME

For example, if you are running Business Central on localhost, use the following URI to import
the jbpm-playground repository:

ssh://localhost:8001/jbpm-playground

You can change the port used by the server to provide SSH access to the Git repository if
necessary, using the system property org.uberfire.nio.git.ssh.port.

4. Enter the user name and the password used for logging in to Business Central. Click Next.

5. Select branches to be cloned from the remote repository and click Next.

KnowledgeRuntimeLogger logger = KnowledgeRuntimeLoggerFactory
 .newThreadedFileLogger(ksession, "logdir/mylogfile", 1000);

// Work with the session here.

logger.close();

Red Hat JBoss BPM Suite 6.4 Development Guide

302

6. To define a local storage for this project, enter a path to an empty directory, make any
configuration changes necessary, and click Next.

7. Select Import as general project and click Next.

8. Provide a name for the repository and click Finish.

14.9.2. Committing Changes to Business Central

To commit and push your local changes back to the Business Central repositories:

1. Open your repository project in Red Hat JBoss Developer Studio.

2. Right-click on your repository project and select Team → Commit ….
A new dialog box open showing all the changes you have on your local file system.

3. Select the files you want to commit, provide an appropriate commit message, and click Commit.
You can double-click each file to get an overview of the changes you did for that file.

4. Right-click your project again, and select Team → Push to Upstream.

14.9.3. Retrieving Changes from Business Central Repository

To retrieve the latest changes from the Business Central repository:

1. Open your repository project in Red Hat JBoss Developer Studio.

2. Right-click your repository project and select Team → Fetch from Upstream.
This action fetches all the changes from the Business Central repository.

3. Right-click your project again and select Team → Merge.
A Merge 'master' dialog appears.

4. In the Merge 'master' dialog box, select origin/master branch under Remote Tracking.

5. Click Merge.

This merges all the changes from the original repository in Business Central.

NOTE

It is possible that you have committed and/or conflicting changes in your local version,
you might have to resolve these conflicts and commit the merge results before you will
be able to complete the merge successfully. It is recommended to update regularly,
before you start updating a file locally, to avoid merge conflicts being detected when
trying to commit changes.

14.9.4. Importing Individual Projects from Repository

When you import a repository, all the projects inside that repository are downloaded. It is however useful
to mount one specific project as a separate Java project. Red Hat JBoss Developer Studio is then able
to:

Interpret the information in the project’s pom.xml file.

CHAPTER 14. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST PROCESSES

303

Download and include any specified dependencies.

Compile any Java class located in the project.

To import a project as a separate Java project:

1. In the Package Explorer on the right side of Red Hat JBoss Developer Studio, right-click on one
of the projects and click Import….

2. Select Maven → Existing Maven Projects and click Next.
The Import Maven Projects dialog window opens with the project’s pom.xml file displayed.

3. Click Finish.

14.9.5. Adding Red Hat JBoss BPM Suite Libraries to Project Class Path

To ensure your project compiles and executes correctly, add the Red Hat JBoss BPM Suite libraries to
the project’s class path. To do so, right-click the project and select Configure → Convert to jBPM
Project.

This converts the project into a Red Hat JBoss BPM Suite project and adds the Red Hat JBoss BPM
Suite library to the project’s class path.

Red Hat JBoss BPM Suite 6.4 Development Guide

304

CHAPTER 15. CASE MANAGEMENT

WARNING

In Red Hat JBoss BPM Suite 7.0, the Case Management API will be completely
redesigned.

15.1. INTRODUCTION

Business Process Management (BPM) is a management practice for automating tasks that are
repeatable and have a common pattern. However, many applications in the real world cannot be
described completely from start to finish and include multiple paths, deviations, and exceptions.
Moreover, using a process focused approach in certain cases can lead to complex solutions that are hard
to maintain. Sometimes business users need more flexible and adaptive business processes without the
overly complex solutions. In such cases, human actors play an important role in solving complex
problems. Case management is for collaborative and dynamic tasks that require human actions. Case
management focuses on problem resolution for unpredictable process instances as opposed to the
efficiency-oriented approach of Business Process Management for routine predictable tasks.

Instead of trying to model a process from start to finish, the case management approach supports giving
the end user the flexibility to decide what must happen at runtime. In its most extreme form for example,
case management does not require any process definition at all. Whenever a new case comes in, the end
user can decide what to do next based on all of the case data.

This does not necessarily mean that there is no role for BPM in case management. Even at its most
extreme form, where no process is modeled up front, you may still need a lot of the other features that
the BPM system provides. For example, BPM features like audit logs, monitoring, coordinating various
services, human interaction (such as using task forms), and analysis play a crucial role in case
management as well. There can also be cases where a more structured business process evolves from
case management. Thus, a flexible BPM system enables you to decide how and where you can apply it.

15.2. USE CASES

Here are some common use cases of case management:

Clinical decision support is a great use case for case management approach. Care plans are
used to describe how patients must be treated in specific circumstances, but people like general
practitioners still need to have the flexibility to add additional steps and deviate from the
proposed plan, as each case is unique. A care plan with tasks to be performed when a patient
who has high blood pressure can be designed with this approach. While a large part of the
process is still well-structured, the general practitioner can decide which tasks must be
performed as part of the sub-process. The practitioner also has the ability to add new tasks
during that period, tasks that were not defined as part of the process, or repeat tasks multiple
times. The process uses an ad hoc sub-process to model this kind of flexibility, possibly
augmented with rules or event processing to help in deciding which fragments to execute.

An internet provider can use this approach to handle internet connectivity cases. Instead of
having a set process from start to end, the case worker can choose from a number of actions
based on the problem at hand. The case worker is responsible for selecting what to do next and
can even add new tasks dynamically.

CHAPTER 15. CASE MANAGEMENT

305

15.3. CASE MANAGEMENT IN RED HAT JBOSS BPM SUITE

Red Hat JBoss BPM Suite provides a wrapper API called casemgmt that focuses on exposing the case
management concepts. The core process engine has always contained the flexibility to model adaptive
and flexible processes. These features are typically also required in the context of case management. To
simplify picking up some of these more advanced features, the wrapper API exposes some of these
features in a simple API. Note that this API simply relies on other existing features and APIs, and can
easily be extended. The API and implementation is added as part of the jbpm-case-mgmt module.

Process instance description

Each case can have a unique name, specific to that case.

Case roles

A case can keep track of who is participating by using case roles. These roles can be defined as part
of the case definition by giving them a name and (optionally) a cardinality. Case roles can also be
defined dynamically at runtime. For active case instances, specific users can be assigned to roles.
You can define roles for a case definition and keep track of which users participate with the case in
which role at runtime. Case roles are defined in the case definitions as below:

The number represents the maximum of users in this role. In the example above, only one user is
assigned to role responsible.

The case roles cannot be used as groups for Human Tasks. The Human Task has to be assigned to a
user with the case role, hence a user is selected in the case role based on random heuristics:

Ad hoc cases

One can start a new case without even having a case definition. Whatever happens inside this case is
completely determined at runtime.

<extensionElements>
 <tns:metaData name="customCaseRoles">
 <tns:metaValue>
 responsible:1,accountable,consulted,informed
 </tns:metaValue>
 </tns:metaData>
 <tns:metaData name="customDescription">
 <tns:metaValue>
 #{name}
 </tns:metaValue>
 </tns:metaData>
</extensionElements>

public String getRandomUserInTheRole(long pid, String role) {

 String[] users = caseMgmtService.getCaseRoleInstanceNames(pid).get(role);
 Random rand = new Random();
 int n = 0;

 if (users.length > 1) {
 n = rand.nextInt(users.length - 1);
 }

 return users[n];
}

Red Hat JBoss BPM Suite 6.4 Development Guide

306

Case file

A case can contain any kind of data, from simple key-value pairs to custom data objects or
documents. A case file contains all the information required for managing a case, and comprises
several case file items each representing a piece of information.

Ad hoc tasks

A case definition is a very flexible high level process synonymous to the ad hoc process in Red Hat
JBoss BPM Suite. You can define a default empty ad hoc process for maximum flexibility to use
when loaded in RuntimeManager. For a more complex case definition, you can define an ad hoc
process that may include milestones, predefined tasks to be accomplished, and case roles to specify
the roles of case participants
Using the ad hoc constructs available in BPMN2, you can model optional process fragments that can
be executed during runtime.

This could occur in the following ways:

End users selecting optional fragments for execution.

Automatically, for example:

Rules that trigger certain fragments under certain conditions.

Whenever triggered by external services.

Dynamic tasks

It is possible to add new tasks dynamically, even if they were not defined initially in the case definition.
This includes human tasks, service tasks and other processes.

Miliestones

You can define milestones as part of the case definition or dynamically, and keep track of which
milestones were reached for specific case instances. You can define milestones in a case definition
and track a cases progress at runtime. A number of events can be captured from processes and tasks
executions. Based on these events, you can define milestones in a case definition and track the
progress of a case at runtime. The getAchievedMilestones() is used to get all achieved milestones.
The task names of milestones must be Milestone.

15.4. STARTING A CASE

In an ad hoc process definition, a case instance is created that allows the involved roles to create new
tasks. You can create a new case instance for an empty case as below:

During the start of a new case, the parameter Case Name is set as a process variable name.

Alternatively, you can create a case instance the same way as new process instance:

15.5. EXAMPLE CASE MODEL

The following example of a user task demonstrates the ad hoc capabilities of case management in Red
Hat JBoss BPM Suite6.4.

Figure 15.1. User Task Case Management Example

ProcessInstance processInstance = caseMgmtService.startNewCase("CaseName");

ProcessInstance processInstance =
 runtimeEngine.getKieSession().startProcess("CaseUserTask", params);

CHAPTER 15. CASE MANAGEMENT

307

Figure 15.1. User Task Case Management Example

The provided case instance example can have the following work flow:

1. Start a case instance:

2. Set roles for users.

3. Assign Hello1 to someone with the role contactPerson.

4. Complete the task Hello1.

5. Trigger and complete Hello2.
Ad hoc tasks, such as Hello2, can be triggered and completed afterwards using the following:

6. Trigger the milestone called Milestone1 with a signal sent to the case instance:

7. Create a dynamic human task called Hello3 and complete it afterwards:

ProcessInstance processInstance =
 runtimeEngine.getKieSession().startProcess("CaseUserTask", params);

caseMgmtService.addUserToRole(processInstance.getId(), "contactPerson", "myuserid1");
caseMgmtService.addUserToRole(processInstance.getId(), "contactPerson", "myuserid2");

String userid = getRandomUserInTheRole(processInstanceId, "contactPerson");
taskService.claim(taskId, userid);

caseMgmtService.triggerAdHocFragment(processInstance.getId(), "Hello2");

runtimeEngine.getKieSession().signalEvent("Milestone1", null, processInstance.getId());

Red Hat JBoss BPM Suite 6.4 Development Guide

308

8. Add a case file summary document.

9. Trigger Milestone2:

caseMgmtService.createDynamicHumanTask(processInstance.getId(), "Hello3", "user1", null,
"Make XY done", null);

caseMgmtService.setCaseData(processInstanceId, "summary", mySummaryDocument);

runtimeEngine.getKieSession().signalEvent("Milestone2", null, processInstance.getId());

CHAPTER 15. CASE MANAGEMENT

309

PART IV. INTELLIGENT PROCESS SERVER AND REALTIME
DECISION SERVER

NOTE

For Red Hat JBoss BPM Suite, the server is called Intelligent Process Server . For Red Hat
JBoss BRMS, the server is called Realtime Decision Server . In the following text, only
Intelligent Process Server is used.

The Intelligent Process Server is a standalone, out-of-the-box component that can be used to
instantiate and execute rules and processes. The Realtime Decision Server and the Intelligent Process
Server are created as a WAR file that can be deployed on any web container. The current version of
these servers are shipped with default extensions for both JBoss BRMS and Business Resource Planner,
with Intelligent Process Server adding extensions for Red Hat JBoss BPM Suite.

This server has a low footprint with minimal memory consumption; therefore, it can be deployed easily on
a cloud instance. Each instance of this server can open and instantiate multiple KIE containers, which
allows you to execute multiple rules and processes in parallel.

NOTE

Red Hat JBoss BPM Suite supports two execution servers for processes: Intelligent
Process Server (kie-server) and Business Central (business-central), and has Remote
APIs for both. The process engine in Business Central and its Remote API are supported
for Red Hat JBoss BPMS 6.x releases only. However, the Intelligent Process Server is
being enhanced over releases. Hence, Intelligent Process Server is recommended to
instantiate and execute your processes.

This chapter describes the Intelligent Process Server APIs and extensions.

Red Hat JBoss BPM Suite 6.4 Development Guide

310

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS
SERVER EXECUTION

You can communicate with the Intelligent Process Server through the REST API.

The base URL for sending requests is the endpoint defined earlier, for example
http://SERVER:PORT/kie-server/services/rest/server/.

All requests require basic HTTP Authentication or token-based authentication for the role kie-
server.

Following methods support three formats of the requests: JSON, JAXB, and XSTREAM. You must
provide following HTTP headers:

Accept: set to application/json or application/xml.
When specifying more than one accepted content type in the Accept header, be sure to include
the qualifiers of preference (qvalues as defined in the HTML 1.1 standard). If you do not,
unexpected behaviour may occur. This is an example of a well-formed header with multiple
accepted content types:

Accept: application/xml; q=0.5, application/json; q=0.9

X-KIE-ContentType is required when using the XSTREAM marshaller. In such case, set the
header to XSTREAM. Values JSON and JAXB are allowed, but not required. When you set the
Content-type to application/xml, the JAXB value is used by default.

Content-type: set to application/json or application/xml. This header corresponds with the
format of your payload.

--data: your payload. If the payload is in a file, start the name with an ampersand @. For example:

--data @commandsRequest.json

To ensure both the request and the response are in the same format, always specify both the Content-
Type and Accept HTTP headers in your application’s requests. Otherwise, you can receive a
marshalling-related error from the server.

The examples use the Curl utility. You can use any REST client. Curl commands use the following
parameters:

-u: specifies username:password for the Intelligent Process Server authentication.

-H: specifies HTTP headers.

-X: specifies the HTTP method of the request, that is [GET], [POST], [PUT], or [DELETE].

NOTE

BRMS Commands endpoints will work only if your Intelligent Process Server has BRM
capability. The rest of the endpoints will work only if your Intelligent Process Server has
BPM capabilities. Check the following URI for capabilities of your Intelligent Process
Server : http://SERVER:PORT/kie-server/services/rest/server.

16.1. BRMS COMMANDS

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

311

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

[POST] /containers/instances/CONTAINER_ID

Request Type

A single org.kie.api.command.Command command or multiples commands in
BatchExecutionCommand wrapper.

Response Type

org.kie.server.api.model.ServiceResponse<String>

Description

Executes the commands sent to the specified CONTAINER_ID and returns the commands
execution results. For more information, See the supported commands below.

List of supported commands:

AgendaGroupSetFocusCommand

ClearActivationGroupCommand

ClearAgendaCommand

ClearAgendaGroupCommand

ClearRuleFlowGroupCommand

DeleteCommand

InsertObjectCommand

ModifyCommand

GetObjectCommand

InsertElementsCommand

FireAllRulesCommand

QueryCommand

SetGlobalCommand

GetGlobalCommand

GetObjectsCommand

BatchExecutionCommand

DisposeCommand

For more information about the commands, see the org.drools.core.command.runtime package.
Alternatively, see Supported Red Hat JBoss BRMS Commands from the Red Hat JBoss Development
Guide.

Example 16.1. [POST] Drools Commands Execution

1. Change into a directory of your choice and create commandsRequest.json :

Red Hat JBoss BPM Suite 6.4 Development Guide

312

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#sect_supported_jboss_brms_commands

2. Execute the following command:

$ curl -X POST -H 'X-KIE-ContentType: JSON' -H 'Content-type: application/json' -u
'kieserver:kieserver1!' --data @commandsRequest.json http://localhost:8080/kie-
server/services/rest/server/containers/instances/myContainer

The command generates a request that sends the InsertObject and FireAllRules
commands to the server. The lookup attribute sets the KIE session ID on which the
commands will be executed. For stateless KIE sessions, this attribute is required. For stateful
KIE sessions, this attribute is optional and if not specified, the default KIE session is used.

An example response:

16.2. MANAGING PROCESSES

Use the following entry point: http://SERVER:PORT/kie-
server/services/rest/server/containers/CONTAINER_ID/processes. See the list of endpoints:

[DELETE] /instances

Description

Aborts multiple process instances specified by the query parameter instanceId.

[GET] /instances/PROCESS_INSTANCE_ID/signals

Response Type

A list of Strings.

Description

Returns all the available signal names for PROCESS_INSTANCE_ID as a list of Strings.

{
 "lookup" : "ksession1",
 "commands" : [{
 "insert" : {
 "object" : "testing",
 "disconnected" : false,
 "out-identifier" : null,
 "return-object" : true,
 "entry-point" : "DEFAULT"
 }

 }, {
 "fire-all-rules" : { }
 }]
 }

 {
 "type" : "SUCCESS",
 "msg" : "Container hello successfully called.",
 "result" : "{\n \"results\" : [],\n \"facts\" : []\n}"
 }

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

313

[PUT] /instances/PROCESS_INSTANCE_ID/variable/VARIABLE_NAME

Request Type

The variable marshalled value.

Description

Sets the value of the VARIABLE_NAME variable for the PROCESS_INSTANCE_ID process
instance. If successful, the return value is HTTP code 201.

[GET] /instances/PROCESS_INSTANCE_ID/variable/VARIABLE_NAME

Response Type

The variable value.

Description

Returns the marshalled value of the VARIABLE_NAME variable for the
PROCESS_INSTANCE_ID process instance.

[POST] /instances/PROCESS_INSTANCE_ID/variables

Request Type

A map with variable names and values.

Description

Sets multiple variables that belong to a PROCESS_INSTANCE_ID process instance. The request
is a map, in which the key is the name of the variable and the value is the new value of the variable.

[GET] /instances/PROCESS_INSTANCE_ID/variables

Response Type

A map with the variable names and values.

Description

Gets all variables for the PROCESS_INSTANCE_ID process instance as a map, in which the key is
the name of the variable and the value is the value of the variable.

[GET] /instances/PROCESS_INSTANCE_ID/workitems

Response Type

A list of WorkItemInstance objects.

Description

Gets all the work items of the given PROCESS_INSTANCE_ID process instance.

[GET] /instances/PROCESS_INSTANCE_ID/workitems/WORK_ITEM_ID

Response Type

A WorkItemInstance object.

Description

Gets the WORK_ITEM_ID work item of the given PROCESS_INSTANCE_ID process instance.

[PUT] /instances/PROCESS_INSTANCE_ID/workitems/WORK_ITEM_ID/aborted

Description

Aborts the WORK_ITEM_ID work item of the given PROCESS_INSTANCE_ID process instance.
If successful, the return value is HTTP code 201.

Red Hat JBoss BPM Suite 6.4 Development Guide

314

https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/instance/WorkItemInstance.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/instance/WorkItemInstance.java

[PUT] /instances/PROCESS_INSTANCE_ID/workitems/WORK_ITEM_ID/completed

Description

Completes the WORK_ITEM_ID work item of the given PROCESS_INSTANCE_ID process
instance. If successful, the return value is HTTP code 201.

[POST] /PROCESS_ID/instances

Request Type

A map with variables used to start the process.

Response Type

Plain text with the process instance id.

Description

Creates a PROCESS_ID business process instance. Accepted input is a map with the process
variables and its values.

[POST] /instances/signal/SIGNAL_NAME

Request Type

A marshalled object.

Description

Signals multiple process instances of a query parameter instanceId with the SIGNAL_NAME
signal. You can provide the signal payload marshalled in the request body.

[DELETE] /instances/PROCESS_INSTANCE_ID

Description

Aborts the PROCESS_INSTANCE_ID process instance. If successful, the return value is HTTP
code 204.

[GET] /instances/PROCESS_INSTANCE_ID

Response Type

A Process Instance object.

Description

Returns the details of the PROCESS_INSTANCE_ID process instance. You can request variable
information by setting the withVars parameter as true.

[POST] /instances/PROCESS_INSTANCE_ID/signal/SIGNAL_NAME

Request Type

A marshalled object.

Description

Signals the PROCESS_INSTANCE_ID process instance with SIGNAL_NAME signal. You can
provide the signal payload marshalled in the request body.

[POST] /PROCESS_ID/instances/correlation/CORRELATION_KEY

Request Type

A map with variables used to start the process.

Response Type

Plain text with the process instance id.

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

315

https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/instance/ProcessInstance.java

Description

Creates the PROCESS_ID business process instance with the CORRELATION_KEY correlation
key. Accepted input is a map with the process variables and its values.

Example 16.2. Managing Processes

Create person.json:

Start a process using a custom object (Person) as a parameter:

$ curl -X POST -u 'kieserver:kieserver1!' -H 'Content-type: application/json' -H 'X-KIE-
ContentType: JSON' --data @person.json 'http://localhost:8080/kie-
server/services/rest/server/containers/person/processes/proc-with-pojo.p-proc/instances'

Create a new process instance of process definition com.sample.rewards-basic with
parameters:

$ curl -X POST -u 'kieserver:kieserver1!' -H 'Content-type: application/json' -H 'X-KIE-
ContentType: JSON' --data '{"employeeName": "William"}' 'http://localhost:8080/kie-
server/services/rest/server/containers/rewards/processes/com.sample.rewards-
basic/instances'

Returns process instance ID.

Get the variables of process instance 3

$ curl -u 'kieserver:kieserver1!' -H 'Accept: application/json' 'http://localhost:8080/kie-
server/services/rest/server/containers/rewards/processes/instances/3/variables'

Example response:

Send a TEST signal to the process instance with ID 5

$ curl -X POST -u 'kieserver:kieserver1!' -H 'Content-type: application/json' -H 'X-KIE-
ContentType: JSON' --data '"SIGNAL DATA"' 'http://localhost:8080/kie-
server/services/rest/server/containers/test/processes/instances/signal/TEST?
instanceId=5'

16.3. MANAGING PROCESS DEFINITIONS

Use the following entry point: http://SERVER:PORT/kie-

{
 "p" : { "org.kieserver.test.Person": { "id" : 13, "name": "William" } }
}

{
 "employeeName" : "William"
}

Red Hat JBoss BPM Suite 6.4 Development Guide

316

Use the following entry point: http://SERVER:PORT/kie-
server/services/rest/server/containers/CONTAINER_ID/processes/definitions. See table Process
Queries Endpoints for a list of endpoints. To use pagination, use the page and pageSize parameters.

[GET] /PROCESS_ID/variables

Response Type

A VariablesDefinition object.

Description

Returns a map of the variable definitions for the PROCESS_ID process. The map contains the
variable name and its type.

[GET] /PROCESS_ID/tasks/service

Response Type

A ServiceTaskDefinition object.

Description

Returns all service tasks for the PROCESS_ID process. The return value is a map with the names
and types of the service tasks. If no tasks are found, the return value is an empty list.

[GET] /PROCESS_ID/tasks/users

Response Type

A list of UserTaskDefinition objects.

Description

Returns all the user tasks for the PROCESS_ID process. The response also contains maps of the
input and output parameters. The key is the name and the value is the type of a parameter.

[GET] /PROCESS_ID/subprocesses

Response Type

A SubProcessDefinition object.

Description

Returns a list of reusable sub-process IDs for the PROCESS_ID process.

[GET] /PROCESS_ID/entities

Response Type

An AssociatedEntitiesDefinition object.

Description

Returns a map with the entities associated with the PROCESS_ID process.

[GET] /PROCESS_ID/tasks/users/TASK_NAME/inputs

Response Type

A TaskInputsDefinition object.

Description

Returns a map with all the task input parameter definitions for the TASK_NAME task of the
PROCESS_ID process. The key is the name of the input and the value is its type.

[GET] /PROCESS_ID/tasks/users/TASK_NAME/outputs

Response Type

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

317

https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/definition/VariablesDefinition.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/definition/ServiceTasksDefinition.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/definition/UserTaskDefinition.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/definition/SubProcessesDefinition.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/definition/AssociatedEntitiesDefinition.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/definition/TaskInputsDefinition.java

A TaskOutputsDefinition object.

Description

Returns a map with all the task output parameter definitions for the TASK_NAME task of the
PROCESS_ID process. The key is the name of the input and the value is its type.

Example 16.3. [GET] User Tasks for a Specified Process

The following command displays user tasks for the the com.sample.rewards-basic process in the
rewards container:

$ curl -u 'kieserver:kieserver1!' -H 'accept: application/json' 'http://localhost:8080/kie-
server/services/rest/server/containers/rewards/processes/definitions/com.sample.rewards-
basic/tasks/users'

An example response:

Example 16.4. [GET] Variable Definitions for Specified Process

The following command displays the variable definitions of the com.sample.rewards-basic process
in the rewards container:

{
 "task" : [{
 "task-name" : "Approval by PM",
 "task-priority" : 0,
 "task-skippable" : false,
 "associated-entities" : ["PM"],
 "task-inputs" : {
 "Skippable" : "Object",
 "TaskName" : "java.lang.String",
 "GroupId" : "Object"
 },
 "task-outputs" : {
 "_approval" : "Boolean"
 }
 }, {
 "task-name" : "Approval by HR",
 "task-priority" : 0,
 "task-skippable" : false,
 "associated-entities" : ["HR"],
 "task-inputs" : {
 "Skippable" : "Object",
 "TaskName" : "java.lang.String",
 "GroupId" : "Object"
 },
 "task-outputs" : {
 "_approval" : "Boolean"
 }
 }]
}

Red Hat JBoss BPM Suite 6.4 Development Guide

318

https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/definition/TaskOutputsDefinition.java

$ curl -u 'kieserver:kieserver1!' -H 'accept: application/json' 'http://localhost:8080/kie-
server/services/rest/server/containers/rewards/processes/definitions/com.sample.rewards-
basic/variables'

An example response:

16.4. MANAGING USER TASKS

16.4.1. Managing Task Instances

Use this base URI: http://SERVER:PORT/kie-
server/services/rest/server/containers/CONTAINER_ID/tasks/TASK_ID/states. If successful, the
return value is HTTP code 201. See the list of endpoints:

[PUT] /activated

Description

Activates the TASK_ID task.

[PUT] /claimed

Description

Claims the TASK_ID task.

[PUT] /started

Description

Starts the TASK_ID task.

[PUT] /stopped

Description

Stops the TASK_ID task.

[PUT] /completed

Request Type

A map with the output parameters name and value.

Description

Completes the TASK_ID task. You can provide the output parameters as a map, where the key is
the parameter name and the value is the value of the output parameter. You can also use the
auto-progress parameter. If set to true, it will claim, start, and complete a task at once.

{
 "variables" : {
 "result" : "String",
 "hrApproval" : "Boolean",
 "pmApproval" : "Boolean",
 "employeeName" : "String"
 }
}

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

319

[PUT] /delegated

Description

Delegates the TASK_ID task to a user provided by the targetUser query parameter.

[PUT] /exited

Description

Exits the TASK_ID task.

[PUT] /failed

Description

Fails the TASK_ID task.

[PUT] /forwarded

Description

Forwards the TASK_ID task to the user provided by the targetUser query parameter.

[PUT] /released

Description

Releases the TASK_ID task.

[PUT] /resumed

Description

Resumes the TASK_ID task.

[PUT] /skipped

Description

Skips the TASK_ID task.

[PUT] /suspended

Description

Suspends the TASK_ID task.

[PUT] /nominated

Description

Nominates the TASK_ID task to the potential owners by the potOwner query parameter. You can
use the parameter multiple times, for example: potOwner=usr1&potOwner=usr2.

Example 16.5. Task Instances

Start task with taskId 4 in the container test:

$ curl -X PUT -u 'kieserver:kieserver1!' http://localhost:8080/kie-
server/services/rest/server/containers/test/tasks/4/states/started

Complete the task 1 by passing an output parameter:

Red Hat JBoss BPM Suite 6.4 Development Guide

320

$ curl -X PUT -u 'kieserver:kieserver1!' -H 'Content-type: application/json' -H 'X-KIE-
ContentType: JSON' --data '{ "_approval" : true }' 'http://localhost:8080/kie-
server/services/rest/server/containers/test/tasks/1/states/completed'

Some operations are illegal, such as starting a completed task, or disallowed for security reasons, such as
claiming a task for another user. Having different sets of users for authentication and task management
can be a security concern. Making such requests will result in one of the following exceptions:

Unexpected error during processing User '[UserImpl:'{USER ID}']' does not have permissions to
execute operation OPERATION on task id {$TASK_ID}

Unexpected error during processing: User '[UserImpl:'{USER ID}']' was unable to execute operation
OPERATION on task id {$TASK_ID} due to a no 'current status' match

Ensure the operation you are executing is allowed for the current task status. You can disable the
security settings by using the org.kie.server.bypass.auth.user property.

For example, on Red Hat JBoss EAP, open EAP_HOME/standalone/configuration/standalone.xml
and enter the following:

Alternatively, use -Dorg.kie.server.bypass.auth.user=true to set the property. If you use the
Intelligent Process Server Java client API, set the property on your client as well:

When you turn on the security settings, you can provide a user with sufficient permissions to execute the
operation using the query parameter ?user=$USER_NAME. If you do not use the parameter, the
authenticated user will be used to perform the action.

If you disabled the security settings and still experience authentication issues, configure the Intelligent
Process Server callback:

Configuring UserGroupCallback

1. Override the default JAAS UserGroupCallback on the server side:

See the source code for other possible values.

2. For the props value, specify the location of the application-roles.properties file:

<system-properties>
 ...
 <property name="org.kie.server.bypass.auth.user" value="true"/>
 ...
</system-properties>

System.setProperty("org.kie.server.bypass.auth.user", "true");

<property name="org.jbpm.ht.callback" value="props"/>
<!-- If necessary, override the userinfo configuration as well. -->
<property name="org.jbpm.ht.userinfo" value="props"/>

<property name="jbpm.user.group.mapping"
value="file:///EAP_HOME/standalone/configuration/application-roles.properties"/>

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

321

https://github.com/droolsjbpm/jbpm/blob/6.5.x/jbpm-runtime-manager/src/main/java/org/jbpm/runtime/manager/impl/identity/UserDataServiceProvider.java#L42-L47

You can also use a different callback object. The Human Task callback is instantiated by a CDI producer
configured in EAP_HOME/standalone/business-central.war/WEB-INF/beans.xml:

Red Hat JBoss BPM Suite provides out-of-the-box producer and callback objects you can use. See the
source code for a list of additional setting required for each callback implementation:

DBUserGroupCallback:

DBUserGroupInfoProducer

DBUserGroupCallbackImpl

DBUserInfoImpl

LDAPUserGroupCallback:

LDAPUserGroupInfoProducer

LDAPUserGroupCallbackImpl

LDAPUserInfoImpl

MvelUserGroupCallbackImpl:

DefaultUserGroupInfoProducer

MvelUserGroupCallbackImpl

DefaultUserInfo

16.4.2. Managing Task Instance Data

Use this base URI: http://SERVER:PORT/kie-
server/services/rest/server/containers/CONTAINER_ID/tasks/TASK_ID. See table Task Instance
Data Management Endpoints for a list of endpoints.

[GET] /

Response Type

A TaskInstance object.

Description

Gets the TASK_ID task instance details.

<!-- If no other file is specified, the business-central.war/WEB-INF/classes/userinfo.properties
file is used.
You can specify a file with the following property:
<property name="jbpm.user.info.properties" value="file:///path" /> -->

<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1_0.xsd">
 <alternatives>
 <class>org.jbpm.services.cdi.producer.JAASUserGroupInfoProducer</class>
 </alternatives>
</beans>

Red Hat JBoss BPM Suite 6.4 Development Guide

322

https://github.com/droolsjbpm/jbpm/blob/6.5.x/jbpm-services/jbpm-services-cdi/src/main/java/org/jbpm/services/cdi/producer/DBUserGroupInfoProducer.java
https://github.com/droolsjbpm/jbpm/blob/6.5.x/jbpm-human-task/jbpm-human-task-core/src/main/java/org/jbpm/services/task/identity/DBUserGroupCallbackImpl.java
https://github.com/droolsjbpm/jbpm/blob/6.5.x/jbpm-human-task/jbpm-human-task-core/src/main/java/org/jbpm/services/task/identity/DBUserInfoImpl.java
https://github.com/droolsjbpm/jbpm/blob/6.5.x/jbpm-services/jbpm-services-cdi/src/main/java/org/jbpm/services/cdi/producer/LDAPUserGroupInfoProducer.java
https://github.com/droolsjbpm/jbpm/blob/6.5.x/jbpm-human-task/jbpm-human-task-core/src/main/java/org/jbpm/services/task/identity/LDAPUserGroupCallbackImpl.java
https://github.com/droolsjbpm/jbpm/blob/6.4.x/jbpm-human-task/jbpm-human-task-core/src/main/java/org/jbpm/services/task/identity/LDAPUserInfoImpl.java
https://github.com/droolsjbpm/jbpm/blob/6.5.x/jbpm-services/jbpm-services-cdi/src/main/java/org/jbpm/services/cdi/producer/DefaultUserGroupInfoProducer.java
https://github.com/droolsjbpm/jbpm/blob/6.5.x/jbpm-human-task/jbpm-human-task-core/src/main/java/org/jbpm/services/task/identity/MvelUserGroupCallbackImpl.java
https://github.com/droolsjbpm/jbpm/blob/6.5.x/jbpm-human-task/jbpm-human-task-core/src/main/java/org/jbpm/services/task/identity/DefaultUserInfo.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/instance/TaskInstance.java

[POST] /attachments

Request Type

The content of the attachment.

Response Type, Description

Adds a new attachment for the TASK_ID task. The ID of the created content is returned in the
response, which is HTTP code 201. The name of the attachment is set using the query parameter
name. If you make multiples request, you create multiple attachments.

[GET] /attachments

Response Type

A list of TaskAttachment objects.

Description

Gets all task attachments for the TASK_ID task.

[GET] /attachments/ATTACHMENT_ID

Response Type

A TaskAttachment object.

Description

Gets the ATTACHMENT_ID task attachment.

[DELETE] /attachments/ATTACHMENT_ID

Description

Removes the ATTACHMENT_ID task attachment.

[GET] /attachments/ATTACHMENT_ID/content

Response Type

An attachment-type object.

Description

Gets the ATTACHMENT_ID task attachment content.

[POST] /comments

Request Type

A TaskComment object.

Response Type

Long.

Description

Adds a new comment for the TASK_ID task. The ID of the created content is returned in the
response, which HTTP code is 201. If you make multiples request, you create multiple comments.

[GET] /comments

Response Type

A list of TaskComment objects.

Description

Gets all task comments for the TASK_ID task.

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

323

https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/instance/TaskAttachment.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/instance/TaskAttachment.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/instance/TaskComment.java
https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/instance/TaskComment.java

[GET] /comments/COMMENT_ID

Response Type

A TaskComment object.

Description

Gets the COMMENT_ID task comment of the TASK_ID task.

[DELETE] /comments/COMMENT_ID

Description

Deletes the COMMENT_ID task comment of the TASK_ID task.

[GET] /contents/input

Response Type

A map with the input parameters name and value.

Description

Gets the TASK_ID task input content in form of a map, where the key is the parameter name and
the value is the value of the output parameter.

[PUT] /contents/output

Request Type

A map with the output parameters name and value.

Description

Updates the TASK_ID task output parameters and returns HTTP 201 if successful. Provide the
output parameters as a map, where the key is the parameter name and the value is the value of
the output parameter.

[GET] /contents/output

Response Type

A map with the output parameters name and value.

Description

Gets the TASK_ID task output content in form of a map, where the key is the parameter name
and the value is the value of the output parameter.

[DELETE] /contents/CONTENT_ID

Description

Deletes the CONTENT_ID content and returns HTTP code 204.

[PUT] /description

Request Type

Marshalled String value.

Description

Updates the TASK_ID task description and returns HTTP code 201 if successful. Provide the new
value for description in the request body.

[PUT] /expiration

Request Type

Red Hat JBoss BPM Suite 6.4 Development Guide

324

https://github.com/kiegroup/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-api/src/main/java/org/kie/server/api/model/instance/TaskComment.java

Marshalled Date value.

Description

Updates the TASK_ID task expiration date and returns HTTP 201 if successful. Provide the new
value for the expiration date in the request body.

[PUT] /name

Request Type

Marshalled String value.

Description

Updates the TASK_ID task name and returns HTTP code 201 if successful. Provide the new value
for name in the request body.

[PUT] /priority

Request Type

Marshalled int value.

Description

Updates the TASK_ID task priority and returns HTTP code 201 if successful. Provide the new
value for priority in the request body.

[PUT] /skipable

Request Type

Marshalled Boolean value.

Description

Updates the TASK_ID task property skipable and returns HTTP code 201 if successful. Provide
the new value for priority in the request body.

Example 16.6. User Task Instance Data

Get a user task instance for container test:

$ curl -X GET -u 'kieserver:kieserver1!' 'http://localhost:8080/kie-
server/services/rest/server/containers/test/tasks/1'

Example response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task-instance>
 <task-id>1</task-id>
 <task-priority>0</task-priority>
 <task-name>Approval by PM</task-name>
 <task-subject></task-subject>
 <task-description></task-description>
 <task-form>ApprovalbyPM</task-form>
 <task-status>Ready</task-status>
 <task-actual-owner></task-actual-owner>
 <task-created-by></task-created-by>
 <task-created-on>2016-02-15T13:31:10.624-02:00</task-created-on>
 <task-activation-time>2016-02-15T13:31:10.624-02:00</task-activation-time>
 <task-skippable>false</task-skippable>

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

325

Set priority to 3 for task 1:

$ curl -X PUT -u 'kieserver:kieserver1!' -H 'Content-type: application/json' -H 'X-KIE-
ContentType: JSON' --data '3' 'http://localhost:8080/kie-
server/services/rest/server/containers/test/tasks/1/priority'

Add a comment to a task 2:

$ curl -X POST -u 'kieserver:kieserver1!' -H 'Content-type: application/json' -H 'X-KIE-
ContentType: JSON' --data '{ "comment" : "One last comment", "comment-added-by":
"kieserver"}' 'http://localhost:8080/kie-
server/services/rest/server/containers/test/tasks/2/comments'

Get all task comments:

$ curl -u 'kieserver:kieserver1!' -H 'Accept: application/json' 'http://localhost:8080/kie-
server/services/rest/server/containers/test/tasks/2/comments'

Example response:

16.5. QUERYING PROCESS INSTANCES

Use the following entry point: http://SERVER:PORT/kie-server/services/rest/server/queries/. To use
pagination, use the page and pageSize parameters.

[GET] processes/instances

Returns a list of process instances.
Additional parameters you can use: status, initiator, processName.

Server Response

 <task-workitem-id>1</task-workitem-id>
 <task-process-instance-id>1</task-process-instance-id>
 <task-parent-id>-1</task-parent-id>
 <task-process-id>com.sample.rewards-basic</task-process-id>
 <task-container-id>rewards</task-container-id>
</task-instance>

{
 "task-comment" : [{
 "comment-id" : 1,
 "comment" : "Some task comment",
 "comment-added-by" : "kieserver"
 }, {
 "comment-id" : 3,
 "comment" : "One last comment",
 "comment-added-by" : "kieserver"
 }]
}

<process-instance-list>
 <process-instance>

Red Hat JBoss BPM Suite 6.4 Development Guide

326

[GET] processes/PROCESS_ID/instances

Returns a list of process instances for the specified process.
Additional parameters you can use: status, initiator.

Server Response

[GET] containers/CONTAINER_ID/process/instances

Returns a list of process instances for the specified container.
Additional parameters you can use: status.

Server Response

 <process-instance-id>4</process-instance-id>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <process-instance-state>1</process-instance-state>
 <container-id>myContainer</container-id>
 <initiator>kiesu</initiator>
 <start-date>2016-04-05T09:23:29.428+02:00</start-date>
 <process-instance-desc>Evaluation</process-instance-desc>
 <correlation-key/>
 <parent-instance-id>-1</parent-instance-id>
 </process-instance>
 <process-instance>
 <process-instance-id>5</process-instance-id>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <process-instance-state>1</process-instance-state>
 <container-id>myContainer</container-id>
 <initiator>kiesu</initiator>
 <start-date>2016-04-05T09:40:39.772+02:00</start-date>
 <process-instance-desc>Evaluation</process-instance-desc>
 <correlation-key/>
 <parent-instance-id>-1</parent-instance-id>
 </process-instance>
</process-instance-list>

<process-instance-list>
 <process-instance>
 <process-instance-id>4</process-instance-id>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <process-instance-state>1</process-instance-state>
 <container-id>myContainer</container-id>
 <initiator>kiesu</initiator>
 <start-date>2016-04-05T09:23:29.428+02:00</start-date>
 <process-instance-desc>Evaluation</process-instance-desc>
 <correlation-key/>
 <parent-instance-id>-1</parent-instance-id>
 </process-instance>
 </process-instance-list>

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

327

[GET] processes/instance/correlation/CORRELATION_KEY

Returns an instance with the specified correlation key.

[GET] processes/instances/correlation/CORRELATION_KEY

Returns a list of instances with the specified correlation key.

[GET] processes/instances/PROCESS_INSTANCE_ID

Returns information about the specified process instance.
Additional parameters you can use: withVars.

Server Response

<process-instance-list>
 <process-instance>
 <process-instance-id>4</process-instance-id>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <process-instance-state>1</process-instance-state>
 <container-id>myContainer</container-id>
 <initiator>kiesu</initiator>
 <start-date>2016-04-05T09:23:29.428+02:00</start-date>
 <process-instance-desc>Evaluation</process-instance-desc>
 <correlation-key/>
 <parent-instance-id>-1</parent-instance-id>
 </process-instance>
 <process-instance>
 <process-instance-id>5</process-instance-id>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <process-instance-state>1</process-instance-state>
 <container-id>myContainer</container-id>
 <initiator>kiesu</initiator>
 <start-date>2016-04-05T09:40:39.772+02:00</start-date>
 <process-instance-desc>Evaluation</process-instance-desc>
 <correlation-key/>
 <parent-instance-id>-1</parent-instance-id>
 </process-instance>
</process-instance-list>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<process-instance>
 <process-instance-id>5</process-instance-id>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <process-instance-state>1</process-instance-state>
 <container-id>myContainer</container-id>
 <initiator>kiesu</initiator>
 <start-date>2016-04-05T09:40:39.772+02:00</start-date>
 <process-instance-desc>Evaluation</process-instance-desc>
 <correlation-key></correlation-key>
 <parent-instance-id>-1</parent-instance-id>
 <active-user-tasks>

Red Hat JBoss BPM Suite 6.4 Development Guide

328

[GET] processes/instances/variables/VARIABLE_NAME

Returns process instance with the specified variable.
Additional parameters you can use: status, varValue.

Note that you can use wildcard characters with varValue, for example varValue=waiting% to list all
the values that start with waiting.

Example Response

 <task-summary>
 <task-id>5</task-id>
 <task-name>Self Evaluation</task-name>
 <task-description>Please perform a self-evalutation.</task-description>
 <task-priority>0</task-priority>
 <task-actual-owner>Kartik</task-actual-owner>
 <task-created-by>Kartik</task-created-by>
 <task-created-on>2016-04-05T09:40:39.778+02:00</task-created-on>
 <task-activation-time>2016-04-05T09:40:39.778+02:00</task-activation-time>
 <task-proc-inst-id>5</task-proc-inst-id>
 <task-proc-def-id>evaluation</task-proc-def-id>
 <task-container-id>myContainer</task-container-id>
 </task-summary>
 </active-user-tasks>
</process-instance>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<process-instance-list>
 <process-instance>
 <process-instance-id>4</process-instance-id>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <process-instance-state>1</process-instance-state>
 <container-id>myContainer</container-id>
 <initiator>kiesu</initiator>
 <start-date>2016-04-05T09:23:29.428+02:00</start-date>
 <process-instance-desc>Evaluation</process-instance-desc>
 <correlation-key></correlation-key>
 <parent-instance-id>-1</parent-instance-id>
 </process-instance>
 <process-instance>
 <process-instance-id>5</process-instance-id>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <process-instance-state>1</process-instance-state>
 <container-id>myContainer</container-id>
 <initiator>kiesu</initiator>
 <start-date>2016-04-05T09:40:39.772+02:00</start-date>
 <process-instance-desc>Evaluation</process-instance-desc>
 <correlation-key></correlation-key>
 <parent-instance-id>-1</parent-instance-id>
 </process-instance>
</process-instance-list>

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

329

[GET] containers/CONTAINER_ID/processes/definitions

Returns a list of process definitions available for the container.

Server Response

[GET] processes/definitions

Returns list of process definitions.
Additional parameters you can use: filter.

Note that the filter parameter filters all the process definitions that contain the given substring.

Server Response

[GET] containers/CONTAINER_ID/processes/definitions/PROCESS_ID

Returns process definition of the specified process instance in the specified container.

Server Response

[GET] processes/definitions/PROCESS_ID

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<process-definitions>
 <processes>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <package>Evaluation.src.main.resources</package>
 <container-id>myContainer</container-id>
 </processes>
</process-definitions>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<process-definitions>
 <processes>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <package>Evaluation.src.main.resources</package>
 <container-id>myContainer</container-id>
 </processes>
</process-definitions>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<process-definitions>
 <processes>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <package>Evaluation.src.main.resources</package>
 <container-id>myContainer</container-id>
 </processes>
</process-definitions>

Red Hat JBoss BPM Suite 6.4 Development Guide

330

Returns a list of process definitions of the specified process.

Server Response

[GET] processes/instances/PROCESS_INSTANCE_ID/nodes/instances

Returns node instances for the specified process instance.
Additional parameters you can use: activeOnly, completedOnly.

Server Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<process-definitions>
 <processes>
 <process-id>evaluation</process-id>
 <process-name>Evaluation</process-name>
 <process-version>1</process-version>
 <package>Evaluation.src.main.resources</package>
 <container-id>myContainer</container-id>
 </processes>
</process-definitions>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<node-instance-list>
 <node-instance>
 <node-instance-id>0</node-instance-id>
 <node-name> </node-name>
 <process-instance-id>5</process-instance-id>
 <container-id>myContainer</container-id>
 <start-date>2016-04-05T09:40:39.797+02:00</start-date>
 <node-id>_ED165B85-E65D-42A6-B0EF-8A160356271E</node-id>
 <node-type>StartNode</node-type>
 <node-connection>_B8F3E49D-2C7A-4056-BF49-C61987044DB4</node-connection>
 <node-completed>true</node-completed>
 </node-instance>
 <node-instance>
 <node-instance-id>1</node-instance-id>
 <node-name>Self Evaluation</node-name>
 <process-instance-id>5</process-instance-id>
 <work-item-id>5</work-item-id>
 <container-id>myContainer</container-id>
 <start-date>2016-04-05T09:40:39.773+02:00</start-date>
 <node-id>_D3E17247-1D94-47D8-93AD-D645E317B736</node-id>
 <node-type>HumanTaskNode</node-type>
 <node-connection>_B8F3E49D-2C7A-4056-BF49-C61987044DB4</node-connection>
 <node-completed>false</node-completed>
 </node-instance>
 <node-instance>
 <node-instance-id>0</node-instance-id>
 <node-name> </node-name>
 <process-instance-id>5</process-instance-id>
 <container-id>myContainer</container-id>
 <start-date>2016-04-05T09:40:39.772+02:00</start-date>
 <node-id>_ED165B85-E65D-42A6-B0EF-8A160356271E</node-id>
 <node-type>StartNode</node-type>

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

331

[GET] processes/instances/PROCESS_INSTANCE_ID/wi-nodes/instances/WORK_ITEM_ID

Returns node instances for the specified work item in the specified process instance.

[GET] processes/instances/PROCESS_INSTANCE_ID/variables/instances

Returns current variable values of the specified process instance.

Server Response

[GET] processes/instances/PROCESS_INSTANCE_ID/variables/instances/VARIABLE_NAME

Returns the value of the given variable in the specified process instance.

Server Response

16.6. QUERYING TASKS

Use the following entry point: http://SERVER:PORT/kie-server/services/rest/server/queries/. To use
pagination, use the page and pageSize parameters. The following list of endpoints contains additional
parameters, if applicable:

 <node-completed>false</node-completed>
 </node-instance>
</node-instance-list>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<variable-instance-list>
 <variable-instance>
 <name>employee</name>
 <old-value></old-value>
 <value>Kartik</value>
 <process-instance-id>5</process-instance-id>
 <modification-date>2016-04-05T09:40:39.771+02:00</modification-date>
 </variable-instance>
 <variable-instance>
 <name>reason</name>
 <old-value></old-value>
 <value>Job Opening</value>
 <process-instance-id>5</process-instance-id>
 <modification-date>2016-04-05T09:40:39.771+02:00</modification-date>
 </variable-instance>
</variable-instance-list>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<variable-instance-list>
 <variable-instance>
 <name>employee</name>
 <old-value></old-value>
 <value>Kartik</value>
 <process-instance-id>5</process-instance-id>
 <modification-date>2016-04-05T09:40:39.771+02:00</modification-date>
 </variable-instance>
</variable-instance-list>

Red Hat JBoss BPM Suite 6.4 Development Guide

332

[GET] tasks/instances/pot-owners

Returns a list of tasks where the actual user is defined as a potential owner.
Additional parameters you can use: status, groups, user.

Note that the user filter is applicable only when the request is sent without authentication.

Server Response

[GET] tasks/instances/admins

Returns a list of tasks assigned to the Business Administrator.
Additional parameters you can use: status, user.

[GET] tasks/instances/owners

Returns a list of tasks that the querying user owns.
Additional parameters you can use: status, user.

Server Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task-summary-list>
 <task-summary>
 <task-id>2</task-id>
 <task-name>Self Evaluation</task-name>
 <task-subject></task-subject>
 <task-description>Please perform a self-evalutation.</task-description>
 <task-status>Ready</task-status>
 <task-priority>0</task-priority>
 <task-is-skipable>false</task-is-skipable>
 <task-created-by>Kartik</task-created-by>
 <task-created-on>2016-04-05T15:09:14.206+02:00</task-created-on>
 <task-activation-time>2016-04-05T15:09:14.206+02:00</task-activation-time>
 <task-proc-inst-id>2</task-proc-inst-id>
 <task-proc-def-id>evaluation</task-proc-def-id>
 <task-container-id>myContainer</task-container-id>
 <task-parent-id>-1</task-parent-id>
 </task-summary>
 <task-summary>
 <task-id>1</task-id>
 <task-name>Self Evaluation</task-name>
 <task-subject></task-subject>
 <task-description>Please perform a self-evalutation.</task-description>
 <task-status>InProgress</task-status>
 <task-priority>0</task-priority>
 <task-is-skipable>false</task-is-skipable>
 <task-actual-owner>kiesu</task-actual-owner>
 <task-created-by>Kartik</task-created-by>
 <task-created-on>2016-04-05T15:05:06.508+02:00</task-created-on>
 <task-activation-time>2016-04-05T15:05:06.508+02:00</task-activation-time>
 <task-proc-inst-id>1</task-proc-inst-id>
 <task-proc-def-id>evaluation</task-proc-def-id>
 <task-container-id>myContainer</task-container-id>
 <task-parent-id>-1</task-parent-id>
 </task-summary>
</task-summary-list>

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

333

[GET] tasks/instances

Returns a list of instances available for the querying user.
Additional parameters you can use: user.

[GET] tasks/instances/TASK_INSTANCE_ID/events

Returns a list of events for the specified task instance.

Server Response

[GET] tasks/instances/TASK_INSTANCE_ID

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task-summary-list>
 <task-summary>
 <task-id>1</task-id>
 <task-name>Self Evaluation</task-name>
 <task-subject></task-subject>
 <task-description>Please perform a self-evalutation.</task-description>
 <task-status>InProgress</task-status>
 <task-priority>0</task-priority>
 <task-is-skipable>false</task-is-skipable>
 <task-actual-owner>kiesu</task-actual-owner>
 <task-created-by>Kartik</task-created-by>
 <task-created-on>2016-04-05T15:05:06.508+02:00</task-created-on>
 <task-activation-time>2016-04-05T15:05:06.508+02:00</task-activation-time>
 <task-proc-inst-id>1</task-proc-inst-id>
 <task-proc-def-id>evaluation</task-proc-def-id>
 <task-container-id>myContainer</task-container-id>
 <task-parent-id>-1</task-parent-id>
 </task-summary>
</task-summary-list>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task-event-instance-list>
 <task-event-instance>
 <task-event-id>1</task-event-id>
 <task-id>1</task-id>
 <task-event-type>ADDED</task-event-type>
 <task-event-user>evaluation</task-event-user>
 <task-event-date>2016-04-05T15:05:06.655+02:00</task-event-date>
 <task-process-instance-id>1</task-process-instance-id>
 <task-work-item-id>1</task-work-item-id>
 </task-event-instance>
 <task-event-instance>
 <task-event-id>1</task-event-id>
 <task-id>1</task-id>
 <task-event-type>STARTED</task-event-type>
 <task-event-user>kiesu</task-event-user>
 <task-event-date>2016-04-05T15:13:35.062+02:00</task-event-date>
 <task-process-instance-id>1</task-process-instance-id>
 <task-work-item-id>1</task-work-item-id>
 </task-event-instance>
</task-event-instance-list>

Red Hat JBoss BPM Suite 6.4 Development Guide

334

Returns information about the specified task instance.

Server Response

[GET] tasks/instances/workitem/WORK_ITEM_ID

Returns a list of task instances that use the specified work item.

[GET] tasks/instances/process/PROCESS_INSTANCE_ID

Returns a list of tasks attached to the specified process instance.
Additional parameters you can use: status.

Server Response

[GET] tasks/instances/variables/VARIABLE_NAME

Returns a list of tasks that use the specified variable.
Aditional parameters you can use: varValue, status, user.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task-instance>
 <task-id>1</task-id>
 <task-priority>0</task-priority>
 <task-name>Self Evaluation</task-name>
 <task-description>Please perform a self-evalutation.</task-description>
 <task-status>InProgress</task-status>
 <task-actual-owner>kiesu</task-actual-owner>
 <task-created-by>Kartik</task-created-by>
 <task-created-on>2016-04-05T15:05:06.508+02:00</task-created-on>
 <task-activation-time>2016-04-05T15:05:06.508+02:00</task-activation-time>
 <task-process-instance-id>1</task-process-instance-id>
 <task-process-id>evaluation</task-process-id>
 <task-container-id>myContainer</task-container-id>
</task-instance>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task-summary-list>
 <task-summary>
 <task-id>1</task-id>
 <task-name>Self Evaluation</task-name>
 <task-subject></task-subject>
 <task-description>Please perform a self-evalutation.</task-description>
 <task-status>InProgress</task-status>
 <task-priority>0</task-priority>
 <task-is-skipable>false</task-is-skipable>
 <task-actual-owner>kiesu</task-actual-owner>
 <task-created-by>Kartik</task-created-by>
 <task-created-on>2016-04-05T15:05:06.508+02:00</task-created-on>
 <task-activation-time>2016-04-05T15:05:06.508+02:00</task-activation-time>
 <task-proc-inst-id>1</task-proc-inst-id>
 <task-proc-def-id>evaluation</task-proc-def-id>
 <task-container-id>myContainer</task-container-id>
 <task-parent-id>-1</task-parent-id>
 </task-summary>
</task-summary-list>

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

335

16.7. ADVANCED QUERIES FOR THE INTELLIGENT PROCESS SERVER

The Intelligent Process Server supports the following commands through the REST API. For more
information about advanced queries for the Intelligent Process Server, see Section 12.9, “Advanced
Queries with QueryService”. For more information about using advanced queries in the Java Client API,
see Section 19.10, “QueryDefinition for Intelligent Process Server Using Java Client API” .

Use the following entry point: http://SERVER:PORT/kie-
server/services/rest/server/queries/definitions.

For endpoints that include MAPPER_ID, you can use following default mappers:

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceQueryMapper

registered with name - ProcessInstances

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithVarsQueryMapper

registered with name - ProcessInstancesWithVariables

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithCustomVarsQueryMapper

registered with name - ProcessInstancesWithCustomVariables

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceQueryMapper

registered with name - UserTasks

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithVarsQueryMapper

registered with name - UserTasksWithVariables

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithCustomVarsQueryMappe
r

registered with name - UserTasksWithCustomVariables

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task-summary-list>
 <task-summary>
 <task-id>1</task-id>
 <task-name>Self Evaluation</task-name>
 <task-subject>Please perform a self-evalutation.</task-subject>
 <task-description>Please perform a self-evalutation.</task-description>
 <task-status>Ready</task-status>
 <task-priority>0</task-priority>
 <task-is-skipable>false</task-is-skipable>
 <task-created-by>Kartik</task-created-by>
 <task-created-on>2016-04-07T13:40:32.181+02:00</task-created-on>
 <task-activation-time>2016-04-07T13:40:32.181+02:00</task-activation-time>
 <task-proc-inst-id>1</task-proc-inst-id>
 <task-proc-def-id>evaluation</task-proc-def-id>
 <task-container-id>myContainer</task-container-id>
 <task-parent-id>-1</task-parent-id>
 </task-summary>
</task-summary-list>

Red Hat JBoss BPM Suite 6.4 Development Guide

336

org.jbpm.kie.services.impl.query.mapper.TaskSummaryQueryMapper

registered with name - TaskSummaries

org.jbpm.kie.services.impl.query.mapper.RawListQueryMapper

registered with name - RawList

Advanced Queries Endpoints

[GET] /

Returns query definitions.

[GET] /QUERY_NAME

Returns information about the specified query.

[POST] /QUERY_NAME

Registers a query definition.

Request Body

[PUT] /QUERY_NAME

This endpoint updates a query definition.

Request Body

[DELETE] /QUERY_NAME

This endpoint deletes a query.

[GET] /QUERY_NAME/data?mapper=MAPPER_ID

This endpoint queries tasks with no filtering. You can use either default or custom mappers.

[POST] /QUERY_NAME/filtered-data?mapper=MAPPER_ID

This endpoint queries tasks with filters specified in the request body.

Request Body

 {
 "query-name" : "getAllTaskInstancesWithCustomVariables1",
 "query-source" : "java:jboss/datasources/ExampleDS",
 "query-expression" : "select ti.*, c.country, c.productCode, c.quantity, c.price, c.saleDate from
AuditTaskImpl ti inner join (select mv.map_var_id, mv.taskid from MappedVariable mv) mv on
(mv.taskid = ti.taskId) inner join ProductSale c on (c.id = mv.map_var_id)",
 "query-target" : "CUSTOM"

 }

 {
 "query-name" : "getAllTaskInstancesWithCustomVariables1",
 "query-source" : "java:jboss/datasources/ExampleDS",
 "query-expression" : "select ti.*, c.country, c.productCode, c.quantity, c.price, c.saleDate from
AuditTaskImpl ti inner join (select mv.map_var_id, mv.taskid from MappedVariable mv) mv on
(mv.taskid = ti.taskId) inner join ProductSale c on (c.id = mv.map_var_id)",
 "query-target" : "CUSTOM"

 }

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

337

Request Body

[POST] /QUERY_NAME/filtered-data?mapper=MAPPER_ID&builder=BUILDER_ID

This endpoint queries tasks with QueryParamBuilder. Pass the QueryParamBuilder variables in the
request body.

Request Body

To use advanced queries through the REST API:

1. Change into a directory of your choice and create an XML file with your query definition. For
example:

 {
 "order-by" : "saleDate, country",
 "order-asc" : false,
 "query-params" : [{
 "cond-column" : "processInstanceId",
 "cond-operator" : "BETWEEN",
 "cond-values" : [1000, 2000]
 }, {
 "cond-column" : "price",
 "cond-operator" : "GREATER_THAN",
 "cond-values" : [800]
 }, {
 "cond-column" : "saleDate",
 "cond-operator" : "BETWEEN",
 "cond-values" : [{"java.util.Date":1454281200000}, {"java.util.Date":1456786800000}]
 }, {
 "cond-column" : "productCode",
 "cond-operator" : "IN",
 "cond-values" : ["EAP", "WILDFLY"]
 }],
 "result-column-mapping" : {
 "PRICE" : "double",
 "PRODUCTCODE" : "string",
 "COUNTRY" : "string",
 "SALEDATE" : "date",
 "QUANTITY" : "integer"
 }
 }

 {
 "min" : 10,
 "max" : 20
 }

<query-definition>
 <query-name>getAllTasks</query-name>
 <query-source>java:jboss/datasources/ExampleDS</query-source>
 <query-expression>select * from Task t</query-expression>
 <query-target>TASK</query-target>
</query-definition>

Red Hat JBoss BPM Suite 6.4 Development Guide

338

2. Send a POST request to register your query definition. For example:

3. To get the results of the query execution, send a GET request to
queries/definitions/getAllTasks/data. For example:

Server Response

16.8. MANAGING JOB EXECUTION

REST API allows you to access information about asynchronous jobs without using the Business Central
directly. The Intelligent Process Server exposes a component for executing asynchronous tasks through
REST and JMS. The exposed API then offers you an access to:

Schedule a new job.

Cancel an already scheduled job.

Add a failed job to the queue again by giving the relevant JOB_ID.

Get a particular job by its JOB_ID.

Query jobs scheduled to execute the same command (given as a parameter).

Query jobs scheduled with the same given BUSINESS_KEY.

Query jobs with the given status as a parameter.

To control job execution, use the URI http://SERVER_ADDRESS:PORT/kie-
server/services/rest/server/jobs.

For example http://localhost:8080/kie-server/services/rest/server/jobs.

$ curl -X POST -u 'kieserver:kieserver1!' -H 'Content-type: application/xml' --data
@queryDefinition.xml 'http://localhost:8080/kie-
server/services/rest/server/queries/definitions/getAllTasks'

 curl -u 'kieserver:kieserver1!' -H 'Accept: application/xml' 'http://localhost:8080/kie-
server/services/rest/server/queries/definitions/getAllTasks/data?
mapper=UserTasks&orderBy=&page=0&pageSize=100'

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task-instance-list>
 <task-instance>
 <task-priority>0</task-priority>
 <task-name>TEST_HT</task-name>
 <task-description></task-description>
 <task-status>Reserved</task-status>
 <task-created-on>2016-05-14T01:47:42.684-03:00</task-created-on>
 <task-activation-time>2016-05-14T01:47:42.684-03:00</task-activation-time>
 <task-process-instance-id>1</task-process-instance-id>
 <task-process-id>project1.proc_ht</task-process-id>
 <task-container-id>project1</task-container-id>
 </task-instance>
</task-instance-list>

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

339

Job Execution Endpoints
See the list of available endpoints:

[GET] /

Response type: list of RequestInfoInstance objects
Description: Use this endpoint to query jobs in the server. Moreover, you can specify the parameters
page, pageSize, and status; possible values for status are QUEUED, DONE, CANCELLED, ERROR,
RETRYING, and RUNNING. Note that these values must be capitalized.

[POST] /

Request type: RequestInfoInstance object
Response type: created JOB_ID

Description: Creates a new job request and returns its ID. It is possible to assign the job to a container
by setting CONTAINER_ID.

[GET] /commands/JOB_COMMAND_NAME

Response type: list of RequestInfoInstance objects
Description: Returns a list of jobs configured to run with the JOB_COMMAND_NAME command
class.

[GET] /JOB_ID

Response type: RequestInfoInstance object
Description: Returns details of a job request with the provided JOB_ID. You can specify the
parameters withErrors (boolean) to include errors of an execution and withData to include the data
associated with the job.

[DELETE] /JOB_ID

Description: Cancels a job with the given JOB_ID. If successful, returns HTTP code 204, otherwise
HTTP code 500.

[PUT] /JOB_ID

Request type: RequestInfoInstance object
Description: Requests unfinished or failed job request with the given JOB_ID and reassigns it into
the job queue.

[GET] /keys/BUSINESS_KEY

Response type: list of RequestInfoInstance objects
Description: Returns a list of jobs that match the given BUSINESS_KEY.

Example 16.7. [POST] New Job

1. Change into a directory of your choice and create a jobRequest.xml file with the following
content:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<job-request-instance>
 <job-command>org.jbpm.executor.commands.PrintOutCommand</job-command>
 <scheduled-date>2016-02-11T00:00:00-02:00</scheduled-date>
 <data />
</job-request-instance>

Red Hat JBoss BPM Suite 6.4 Development Guide

340

2. Execute the following command:

$ curl -X POST --data @jobRequest.xml -u 'kieserver:kieserver1!' -H 'content-type:
application/xml' 'http://localhost:8080/kie-server/services/rest/server/jobs/'

An example response:

Example 16.8. [GET] List All Jobs

To list all jobs in the JSON format, execute the following command:

$ curl -u 'kieserver:kieserver1!' -H 'Accept: application/json' 'http://localhost:8080/kie-
server/services/rest/server/jobs?
status=QUEUED&status=DONE&status=CANCELLED&status=ERROR&status=RETRYING&status
=RUNNING'

An example response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<long-type>
 <value>4</value>
</long-type>

{
 "request-info-instance" : [{
 "request-instance-id" : 3,
 "request-status" : "CANCELLED",
 "request-message" : "Ready to execute",
 "request-retries" : 3,
 "request-executions" : 0,
 "request-command" : "org.jbpm.executor.commands.PrintOutCommand",
 "request-scheduled-date" : 1455156000000
 }, {
 "request-instance-id" : 2,
 "request-status" : "QUEUED",
 "request-message" : "Ready to execute",
 "request-retries" : 3,
 "request-executions" : 0,
 "request-command" : "org.jbpm.executor.commands.PrintOutCommand",
 "request-scheduled-date" : 1454983200000
 }, {
 "request-instance-id" : 1,
 "request-status" : "DONE",
 "request-message" : "Ready to execute",
 "request-retries" : 3,
 "request-executions" : 0,
 "request-command" : "org.jbpm.executor.commands.PrintOutCommand",
 "request-scheduled-date" : 1454918401190
 }]
}

CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION

341

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS
SERVER ADMINISTRATION

This section provides information about the Rest API for both managed and unmanaged Intelligent
Process Server environments. You must set correct HTTP headers for the servers. See REST API for
Intelligent Process Server Execution section for further information about HTTP headers.

17.1. MANAGED INTELLIGENT PROCESS SERVER ENVIRONMENT

When you have a managed Intelligent Process Server setup, you need to manage Intelligent Process
Server and containers through a controller. Usually, it is done through Business Central, but you may also
use Controller REST API.

The controller base URL is provided by business-central war deployment, which is the same as
org.kie.server.controller property (for example http://localhost:8080/business-
central/rest/controller).

All requests require basic HTTP Authentication or token-based authentication for the role kie-
server.

[GET] /management/servers

Returns a list of Intelligent Process Server templates.

Example Server Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<server-template-list>
 <server-template>
 <server-id>local-server-123</server-id>
 <server-name>local-server-123</server-name>
 <container-specs>
 <container-id>hr</container-id>
 <container-name>hr</container-name>
 <server-template-key>
 <server-id>local-server-123</server-id>
 <server-name>local-server-123</server-name>
 </server-template-key>
 <release-id>
 <artifact-id>EmailProject</artifact-id>
 <group-id>org.redhat.gss</group-id>
 <version>1.0</version>
 </release-id>
 <configs>
 <entry>
 <key>RULE</key>
 <value xsi:type="ruleConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <pollInterval>500</pollInterval>
 <scannerStatus>STOPPED</scannerStatus>
 </value>
 </entry>
 <entry>
 <key>PROCESS</key>
 <value xsi:type="processConfig"

Red Hat JBoss BPM Suite 6.4 Development Guide

342

[GET] /management/servers/ID

Returns an Intelligent Process Server template.

Server Response

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <runtimeStrategy>SINGLETON</runtimeStrategy>
 <mergeMode>MERGE_COLLECTIONS</mergeMode>
 </value>
 </entry>
 </configs>
 <status>STARTED</status>
 </container-specs>
 <configs/>
 <server-instances>
 <server-instance-id>local-server-123@localhost:8080</server-instance-id>
 <server-name>local-server-123@localhost:8080</server-name>
 <server-template-id>local-server-123</server-template-id>
 <server-url>http://localhost:8080/kie-server/services/rest/server</server-url>
 </server-instances>
 <capabilities>RULE</capabilities>
 <capabilities>PROCESS</capabilities>
 <capabilities>PLANNING</capabilities>
 </server-template>
</server-template-list>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<server-template-list>
 <server-template>
 <server-id>local-server-123</server-id>
 <server-name>local-server-123</server-name>
 <container-specs>
 <container-id>hr</container-id>
 <container-name>hr</container-name>
 <server-template-key>
 <server-id>local-server-123</server-id>
 <server-name>local-server-123</server-name>
 </server-template-key>
 <release-id>
 <artifact-id>EmailProject</artifact-id>
 <group-id>org.redhat.gss</group-id>
 <version>1.0</version>
 </release-id>
 <configs>
 <entry>
 <key>RULE</key>
 <value xsi:type="ruleConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <pollInterval>500</pollInterval>
 <scannerStatus>STOPPED</scannerStatus>
 </value>
 </entry>
 <entry>
 <key>PROCESS</key>
 <value xsi:type="processConfig"

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

343

[PUT] /management/servers/ID

Creates a new Intelligent Process Server template with the specified id.

Example Request to Create a New Intelligent Process Server Instance

[DELETE] /management/servers/ID

Deletes an Intelligent Process Server template with the specified id.

[GET] /management/servers/ID/containers

Returns all containers on given server.

Server Response

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <runtimeStrategy>SINGLETON</runtimeStrategy>
 <mergeMode>MERGE_COLLECTIONS</mergeMode>
 </value>
 </entry>
 </configs>
 <status>STARTED</status>
 </container-specs>
 <configs/>
 <server-instances>
 <server-instance-id>local-server-123@localhost:8080</server-instance-id>
 <server-name>local-server-123@localhost:8080</server-name>
 <server-template-id>local-server-123</server-template-id>
 <server-url>http://localhost:8080/kie-server/services/rest/server</server-url>
 </server-instances>
 <capabilities>RULE</capabilities>
 <capabilities>PROCESS</capabilities>
 <capabilities>PLANNING</capabilities>
 </server-template>
</server-template-list>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<server-template-details>
 <server-id>test-demo</server-id>
 <server-name>test-demo</server-name>
 <configs/>
 <capabilities>RULE</capabilities>
 <capabilities>PROCESS</capabilities>
 <capabilities>PLANNING</capabilities>
</server-template-details>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<container-spec-list>
 <container-spec>
 <container-id>hr</container-id>
 <container-name>hr</container-name>
 <server-template-key>
 <server-id>local-server-123</server-id>
 <server-name>local-server-123</server-name>
 </server-template-key>
 <release-id>

Red Hat JBoss BPM Suite 6.4 Development Guide

344

[GET] /management/servers/ID/containers/CONTAINER_ID

Returns the container information including its release id and configuration.

Server Response

 <artifact-id>EmailProject</artifact-id>
 <group-id>org.redhat.gss</group-id>
 <version>1.0</version>
 </release-id>
 <configs>
 <entry>
 <key>RULE</key>
 <value xsi:type="ruleConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <pollInterval>500</pollInterval>
 <scannerStatus>STOPPED</scannerStatus>
 </value>
 </entry>
 <entry>
 <key>PROCESS</key>
 <value xsi:type="processConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <runtimeStrategy>SINGLETON</runtimeStrategy>
 <mergeMode>MERGE_COLLECTIONS</mergeMode>
 </value>
 </entry>
 </configs>
 <status>STARTED</status>
 </container-spec>
</container-spec-list>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<container-spec-details>
 <container-id>hr</container-id>
 <container-name>hr</container-name>
 <server-template-key>
 <server-id>local-server-123</server-id>
 <server-name>local-server-123</server-name>
 </server-template-key>
 <release-id>
 <artifact-id>EmailProject</artifact-id>
 <group-id>org.redhat.gss</group-id>
 <version>1.0</version>
 </release-id>
 <configs>
 <entry>
 <key>RULE</key>
 <value xsi:type="ruleConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <pollInterval>500</pollInterval>
 <scannerStatus>STOPPED</scannerStatus>
 </value>
 </entry>
 <entry>
 <key>PROCESS</key>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

345

[PUT] /management/servers/ID/containers/CONTAINER_ID

Creates a new container with the specified container ID, release ID, and the following
configuration:

Runtime strategy: SINGLETON.

KIE Base: default.

KIE Session: default.

Deployment descriptor merge mode: MERGE_COLLECTIONS.

KIE Scanner: Stopped.

Server Request

 <value xsi:type="processConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <runtimeStrategy>SINGLETON</runtimeStrategy>
 <mergeMode>MERGE_COLLECTIONS</mergeMode>
 </value>
 </entry>
 </configs>
 <status>STARTED</status>
</container-spec-details>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<container-spec-details>
 <container-id>hr</container-id>
 <container-name>hr</container-name>
 <server-template-key xsi:type="serverTemplate"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <server-id>demo</server-id>
 <server-name>local-server-123</server-name>
 <configs/>
 <server-instances>
 <server-instance-id>local-server-123@localhost:8080</server-instance-id>
 <server-name>local-server-123@localhost:8080</server-name>
 <server-template-id>local-server-123</server-template-id>
 <server-url>http://localhost:8080/kie-server/services/rest/server</server-url>
 </server-instances>
 </server-template-key>
 <release-id>
 <artifact-id>HR</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.0</version>
 </release-id>
 <configs>
 <entry>
 <key>PROCESS</key>
 <value xsi:type="processConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <runtimeStrategy>SINGLETON</runtimeStrategy>
 <kbase></kbase>
 <ksession></ksession>

Red Hat JBoss BPM Suite 6.4 Development Guide

346

[POST] /management/servers/ID/containers/CONTAINER_ID/config/CAPABILITY

Updates the capability (RULE, PROCESS, or PLANNING, case sensitive) for a specified KIE
container. Also requires a map containing the configurations for the specified KIE container
capability, such as the following configurations:

Runtime strategy: SINGLETON.

KIE Base: default.

KIE Session: default.

Deployment descriptor merge mode: MERGE_COLLECTIONS.

POST Endpoint with Parameters

http://localhost:8080/business-central/rest/controller/management/servers/default-
kieserver/containers/employeerostering_1.0.0-SNAPSHOT/config/PROCESS

Server Request

[DELETE] /management/servers/ID/containers/CONTAINER_ID

Disposes a container with the specified CONTAINER_ID.

[POST] /management/servers/ID/containers/CONTAINER_ID/status/started

Starts the container. No request body required.

[POST] /management/servers/ID/containers/CONTAINER_ID/status/stopped

Stops the Container. No request body required.

17.2. UNMANAGED INTELLIGENT PROCESS SERVER ENVIRONMENT

The unmanaged Intelligent Process Server supports endpoints described in this section through the
REST API. Note that:

 <mergeMode>MERGE_COLLECTIONS</mergeMode>
 </value>
 </entry>
 <entry>
 <key>RULE</key>
 <value xsi:type="ruleConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <scannerStatus>STOPPED</scannerStatus>
 </value>
 </entry>
 </configs>
 <status>STARTED</status>
</container-spec-details>

<process-config>
 <runtimeStrategy>SINGLETON</runtimeStrategy>
 <kbase></kbase>
 <ksession></ksession>
 <mergeMode>MERGE_COLLECTIONS</mergeMode>
</process-config>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

347

The base URL for these remains as the endpoint defined earlier: http://SERVER:PORT/kie-
server/services/rest/server/.

All requests require basic HTTP authentication for the kie-server role.

For information about how to access the endpoints, see Chapter 16, The REST API for Intelligent
Process Server Execution.

The commands are as follows:

[GET] /

Returns the execution server information.

Server Response

Note that the <capabilities> tags provide information about your execution server:

KieServer: This is the execution server core functionality. It is always present because it
provides deployment capabilities, such as deploy and undeploy containers on your server
instance.

BRM: Rule execution capability. Corresponds to Red Hat JBoss BRMS.

BPM: Process, task, and job execution capability. Corresponds to Red Hat JBoss BPM Suite.

BPM-UI: The UI extension functionality. See Chapter 18, Intelligent Process Server UI
Extension for further information.

BRP: The Business Resource Planner functionality.

[GET] /state

<response type="SUCCESS" msg="Kie Server info">
 <kie-server-info>
 <capabilities>KieServer</capabilities>
 <capabilities>BRM</capabilities>
 <capabilities>BPM</capabilities>
 <capabilities>BPM-UI</capabilities>
 <capabilities>BRP</capabilities>
 <location>
 http://localhost:8230/kie-server/services/rest/server
 </location>
 <messages>
 <content>
 Server KieServerInfo{serverId='15ad5bfa-7532-3eea-940a-abbbbc89f1e8', version='6.5.0.Final-
redhat-2', location='http://localhost:8230/kie-server/services/rest/server'}started successfully at
Tue Apr 18 08:00:45 CEST 2017
 </content>
 <severity>INFO</severity>
 <timestamp>2017-04-18T08:00:45.953+02:00</timestamp>
 </messages>
 <name>KieServer@/kie-server</name>
 <id>15ad5bfa-7532-3eea-940a-abbbbc89f1e8</id>
 <version>6.5.0.Final-redhat-2</version>
 </kie-server-info>
</response>

Red Hat JBoss BPM Suite 6.4 Development Guide

348

Returns information about the current state and configurations of the execution server.

Server Response

<response type="SUCCESS" msg="Successfully loaded server state for server id default-
kieserver">
 <result>
 <kie-server-state-info>
 <controller>http://localhost:8080/business-central/rest/controller</controller>
 <config>
 <config-items>
 <itemName>org.kie.server.location</itemName>
 <itemValue>http://localhost:8080/kie-server/services/rest/server</itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <config-items>
 <itemName>org.kie.server.controller.user</itemName>
 <itemValue>controllerUser</itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <config-items>
 <itemName>org.kie.server.controller</itemName>
 <itemValue>http://localhost:8080/business-central/rest/controller</itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 </config>
 <containers>
 <container-id>employee-rostering</container-id>
 <release-id>
 <group-id>employeerostering</group-id>
 <artifact-id>employeerostering</artifact-id>
 <version>1.0.0-SNAPSHOT</version>
 </release-id>
 <resolved-release-id/>
 <status>STARTED</status>
 <scanner>
 <status>STOPPED</status>
 <poll-interval/>
 </scanner>
 <config-items>
 <itemName>KBase</itemName>
 <itemValue>
 </itemValue>
 <itemType>BPM</itemType>
 </config-items>
 <config-items>
 <itemName>KSession</itemName>
 <itemValue>
 </itemValue>
 <itemType>BPM</itemType>
 </config-items>
 <config-items>
 <itemName>MergeMode</itemName>
 <itemValue>MERGE_COLLECTIONS</itemValue>
 <itemType>BPM</itemType>
 </config-items>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

349

[POST] /config

Use this endpoint to execute commands on the execution server, for example create-container, list-
containers, dispose-container, and call-container.
An example call for the JAXB marshaller:

curl -X POST -u 'kiesu:kiesu123!' -H 'Content-type: application/xml' -H 'X-KIE-ContentType:
JAXB' --data @request.xml 'http://localhost:8080/kie-server/services/rest/server/config'

An example call for the XSTREAM marshaller:

curl -X POST -u 'kiesu:kiesu123!' -H 'Content-type: application/xml' -H 'X-KIE-ContentType:
XSTREAM' --data @request.xml 'http://localhost:8080/kie-server/services/rest/server/config'

An example call for the JSON marshaller:

curl -X POST -u 'kiesu:kiesu123!' -H 'Content-type: application/json' -H 'X-KIE-ContentType:
JSON' --data @request.json 'http://localhost:8080/kie-server/services/rest/server/config'

Supported commands are:

GetServerInfoCommand

XML body request using the JAXB marshaller:

XML body request using the XSTREAM marshaller:

JSON body request:

 <config-items>
 <itemName>RuntimeStrategy</itemName>
 <itemValue>SINGLETON</itemValue>
 <itemType>BPM</itemType>
 </config-items>
 <messages/>
 <container-alias>employeerostering</container-alias>
 </containers>
 </kie-server-state-info>
 </result>
</response>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <get-server-info/>
</script>

<script>
 <commands>
 <get-server-info/>
 </commands>
</script>

{
 "commands" : [{
 "get-server-info" : { }

Red Hat JBoss BPM Suite 6.4 Development Guide

350

An example response:

CreateContainerCommand

XML body request using the JAXB marshaller:

XML body request using the XSTREAM marshaller:

 }]
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>
 <response type="SUCCESS" msg="Kie Server info">
 <kie-server-info>
 <capabilities>KieServer</capabilities>
 <capabilities>BRM</capabilities>
 <capabilities>BPM</capabilities>
 <capabilities>BPM-UI</capabilities>
 <capabilities>BRP</capabilities>
 <location>http://localhost:8230/kie-server/services/rest/server</location>
 <messages>
 <content>Server KieServerInfo{serverId='15ad5bfa-7532-3eea-940a-
abbbbc89f1e8', version='6.5.0.Final-redhat-2', location='http://localhost:8230/kie-
server/services/rest/server'}started successfully at Fri Mar 31 14:14:52 CEST
2017</content>
 <severity>INFO</severity>
 <timestamp>2017-03-31T14:14:52.710+02:00</timestamp>
 </messages>
 <name>KieServer@/kie-server</name>
 <id>15ad5bfa-7532-3eea-940a-abbbbc89f1e8</id>
 <version>6.5.0.Final-redhat-2</version>
 </kie-server-info>
 </response>
</responses>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
<create-container>
 <container container-id="command-script-container">
 <release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.0</version>
 </release-id>
 </container>
</create-container>
</script>

<script>
 <commands>
 <create-container>
 <kie-container>
 <container-id>command-script-container</container-id>
 <release-id>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

351

JSON body request:

An example response:

GetContainerInfoCommand

XML body request using the JAXB marshaller:

 <group-id>org.jbpm</group-id>
 <artifact-id>evaluation</artifact-id>
 <version>1.0</version>
 </release-id>
 </kie-container>
 </create-container>
 </commands>
</script>

{
 "commands" : [{
 "create-container" : {
 "container" : {
 "status" : null,
 "messages" : [],
 "container-id" : "command-script-container",
 "release-id" : {
 "version" : "1.0",
 "group-id" : "org.jbpm",
 "artifact-id" : "evaluation"
 },
 "config-items" : []
 }
 }
 }]
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>
 <response type="SUCCESS" msg="Container command-script-container
successfully deployed with module org.jbpm:evaluation:1.0.">
 <kie-container container-id="command-script-container" status="STARTED">
 <release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.0</version>
 </release-id>
 <resolved-release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.0</version>
 </resolved-release-id>
 <scanner status="DISPOSED"/>
 </kie-container>
 </response>
</responses>

Red Hat JBoss BPM Suite 6.4 Development Guide

352

XML body request using the XSTREAM marshaller:

JSON body request:

An example response:

ListContainersCommand

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <get-container-info container-id="command-script-container"/>
</script>

<script>
 <commands>
 <get-container-info>
 <container-id>command-script-container</container-id>
 </get-container-info>
 </commands>
</script>

{
 "commands" : [{
 "get-container-info" : {
 "container-id" : "command-script-container"
 }
 }]
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>
 <response type="SUCCESS" msg="Info for container command-script-container">
 <kie-container container-id="command-script-container" status="STARTED">
 <messages>
 <content>Container command-script-container successfully created with
module org.jbpm:evaluation:1.0.</content>
 <severity>INFO</severity>
 <timestamp>2017-03-31T15:29:21.056+02:00</timestamp>
 </messages>
 <release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.0</version>
 </release-id>
 <resolved-release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.0</version>
 </resolved-release-id>
 <scanner status="DISPOSED"/>
 </kie-container>
 </response>
</responses>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

353

XML body request using the JAXB marshaller:

XML body request using the XSTREAM marshaller:

JSON body request:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <list-containers>
 <kie-container-filter>
 <release-id-filter/>
 <container-status-filter>
 <accepted-status>CREATING</accepted-status>
 <accepted-status>STARTED</accepted-status>
 <accepted-status>FAILED</accepted-status>
 <accepted-status>DISPOSING</accepted-status>
 <accepted-status>STOPPED</accepted-status>
 </container-status-filter>
 </kie-container-filter>
 </list-containers>
</script>

<script>
 <commands>
 <list-containers>
 <kie-container-filter>
 <release-id-filter/>
 <container-status-filter>
 <accepted-status>

<org.kie.server.api.model.KieContainerStatus>CREATING</org.kie.server.api.model.Ki
eContainerStatus>

<org.kie.server.api.model.KieContainerStatus>STARTED</org.kie.server.api.model.Kie
ContainerStatus>

<org.kie.server.api.model.KieContainerStatus>FAILED</org.kie.server.api.model.KieCo
ntainerStatus>

<org.kie.server.api.model.KieContainerStatus>DISPOSING</org.kie.server.api.model.K
ieContainerStatus>

<org.kie.server.api.model.KieContainerStatus>STOPPED</org.kie.server.api.model.Kie
ContainerStatus>
 </accepted-status>
 </container-status-filter>
 </kie-container-filter>
 </list-containers>
 </commands>
</script>

{
 "commands" : [{
 "list-containers" : {
 "kie-container-filter" : {

Red Hat JBoss BPM Suite 6.4 Development Guide

354

An example response:

DisposeContainerCommand

XML body request using the JAXB marshaller:

XML body request using the XSTREAM marshaller:

 "release-id-filter" : { },
 "container-status-filter" : {
 "accepted-status" : ["CREATING", "STARTED", "FAILED", "DISPOSING",
"STOPPED"]
 }
 }
 }
 }]
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>
 <response type="SUCCESS" msg="List of created containers">
 <kie-containers>
 <kie-container container-id="command-script-container" status="STARTED">
 <messages>
 <content>Container command-script-container successfully created with
module org.jbpm:evaluation:1.0.</content>
 <severity>INFO</severity>
 <timestamp>2017-04-10T10:05:22.866+02:00</timestamp>
 </messages>
 <release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.0</version>
 </release-id>
 <resolved-release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.0</version>
 </resolved-release-id>
 <scanner status="DISPOSED"/>
 </kie-container>
 </kie-containers>
 </response>
</responses>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <dispose-container container-id="mycontainer"/>
</script

<script>
 <commands>
 <dispose-container>
 <container-id>mycontainer</container-id>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

355

JSON body request:

An example response:

GetScannerInfoCommand

XML body request using the JAXB marshaller:

XML body request using the XSTREAM marshaller:

JSON body request:

An example response:

 </dispose-container>
 </commands>
</script>

{
 "commands" : [{
 "dispose-container" : {
 "container-id" : "mycontainer"
 }
 }]
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>
 <response type="SUCCESS" msg="Container mycontainer successfully
disposed."/>
</responses>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <get-scanner-info container-id="command-script-container"/>
</script>

<script>
 <commands>
 <get-scanner-info>
 <container-id>command-script-container</container-id>
 </get-scanner-info>
 </commands>
</script>

{
 "commands" : [{
 "get-scanner-info" : {
 "container-id" : "command-script-container"
 }
 }]
}

Red Hat JBoss BPM Suite 6.4 Development Guide

356

UpdateScannerCommand

XML body request using the JAXB marshaller:

XML body request using the XSTREAM marshaller:

JSON body request:

An example response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>
 <response type="SUCCESS" msg="Scanner info successfully retrieved">
 <kie-scanner status="DISPOSED"/>
 </response>
</responses>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <update-scanner container-id="command-script-container">
 <scanner poll-interval="10000" status="STARTED"/>
 </update-scanner>
</script>

<script>
 <commands>
 <update-scanner>
 <container-id>command-script-container</container-id>
 <scanner>
 <status>STARTED</status>
 <poll-interval>10000</poll-interval>
 </scanner>
 </update-scanner>
 </commands>
</script>

{
 "commands" : [{
 "update-scanner" : {
 "scanner" : {
 "status" : "STARTED",
 "poll-interval" : 10000
 },
 "container-id" : "command-script-container"
 }
 }]
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>
 <response type="SUCCESS" msg="Kie scanner successfully created.">
 <kie-scanner poll-interval="10000" status="STARTED"/>
 </response>
</responses>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

357

UpdateReleaseIdCommand

XML body request using the JAXB marshaller:

XML body request using the XSTREAM marshaller:

JSON body request:

An example response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <update-release-id container-id="command-script-container">
 <releaseId>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.1</version>
 </releaseId>
 </update-release-id>
</script>

<script>
 <commands>
 <update-release-id>
 <container-id>command-script-container</container-id>
 <release-id>
 <group-id>org.jbpm</group-id>
 <artifact-id>evaluation</artifact-id>
 <version>1.1</version>
 </release-id>
 </update-release-id>
 </commands>
</script>

{
 "commands" : [{
 "update-release-id" : {
 "releaseId" : {
 "version" : "1.1",
 "group-id" : "org.jbpm",
 "artifact-id" : "evaluation"
 },
 "container-id" : "command-script-container"
 }
 }]
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>
 <response type="SUCCESS" msg="Release id successfully updated.">
 <release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.1</version>

Red Hat JBoss BPM Suite 6.4 Development Guide

358

CallContainerCommand

The CallContainerCommand command requires the payload attribute. The following
payload is used in the examples:

XML body request using the JAXB marshaller:

XML body request using the XSTREAM marshaller:

JSON body request:

 </release-id>
 </response>
</responses>

import org.kie.server.api.marshalling.Marshaller;
import org.kie.server.api.marshalling.MarshallerFactory;
import org.kie.server.api.marshalling.MarshallingFormat;

...

Marshaller marshaller =
MarshallerFactory.getMarshaller(MarshallingFormat.JSON,myclass.class.getClassLoade
r());
//Marshalling format is changed based on the method of marshalling for the
CallContainerCommand. Also note myclass.class classloader is called. If replicating
this code, change the name to the name of your class.

Command<?> fire = KieServices.Factory.get().getCommands().newFireAllRules();
BatchExecutionCommand batch =
KieServices.Factory.get().getCommands().newBatchExecution(Arrays.<Command<?
>>asList(fire), "defaultKieSession");
String payload = marshaller.marshall(batch);

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <call-container container-id="command-script-container">
 <payload><?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<batch-execution lookup="defaultKieSession">
 <fire-all-rules max="-1"/>
</batch-execution>
</payload>
 </call-container>
</script>

<script>
 <commands>
 <call-container>
 <container-id>command-script-container</container-id>
 <payload><batch-execution lookup="defaultKieSession">
 <fire-all-rules/>
</batch-execution></payload>
 </call-container>
 </commands>
</script>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

359

An example response:

GetServerStateCommand

XML body request using the JAXB marshaller:

XML body request using the XSTREAM marshaller:

JSON body request:

An example response:

{
 "commands" : [{
 "call-container" : {
 "payload" : "{\n \"lookup\" : \"defaultKieSession\",\n \"commands\" : [{\n \"fire-all-
rules\" : {\n \"max\" : -1,\n \"out-identifier\" : null\n }\n }]\n}",
 "container-id" : "command-script-container"
 }
 }]
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>
 <response type="SUCCESS" msg="Container command-script-container
successfully called.">
 <results><?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<execution-results>
 <results/>
 <facts/>
</execution-results>
</results>
 </response>
</responses>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <get-server-state/>
</script>

<script>
 <commands>
 <org.kie.server.api.commands.GetServerStateCommand/>
 </commands>
</script>

{
 "commands" : [{
 "get-server-state" : { }
 }]
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<responses>

Red Hat JBoss BPM Suite 6.4 Development Guide

360

The following example request contains the create-container, call-container, and
dispose-container commands:

Sample Request to Create a Container

 <response type="SUCCESS" msg="Successfully loaded server state for server id
15ad5bfa-7532-3eea-940a-abbbbc89f1e8">
 <kie-server-state-info>
 <config>
 <config-items>
 <itemName>org.kie.server.repo</itemName>
 <itemValue>/BPMS6.4/standalone/data</itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 </config>
 <containers container-id="command-script-container" status="STARTED">
 <release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.1</version>
 </release-id>
 <resolved-release-id>
 <artifact-id>evaluation</artifact-id>
 <group-id>org.jbpm</group-id>
 <version>1.1</version>
 </resolved-release-id>
 <scanner poll-interval="1000" status="STARTED"/>
 </containers>
 </kie-server-state-info>
 </response>
</responses>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<script>
 <create-container>
 <container container-id="command-script-container">
 <release-id>
 <artifact-id>baz</artifact-id>
 <group-id>foo.bar</group-id>
 <version>2.1.0.GA</version>
 </release-id>
 </container>
 </create-container>
 <call-container container-id="command-script-container">
 <payload><?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <batch-execution lookup="defaultKieSession">
 <insert out-identifier="message" return-object="true" entry-point="DEFAULT"
disconnected="false">
 <object xsi:type="message" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <text>HelloWorld</text>
 </object>
 </insert>
 <fire-all-rules max="-1"/>
 </batch-execution>
 </payload>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

361

[GET] /containers

Returns a list of containers on the server.

Server Response

Starting with Red Hat JBoss BPM Suite version 6.4, you can filter the containers by adding any of
the following Maven artifact coordinates to the query:

groupId

artifactId

version

Example 17.1. Filtering Containers by Maven Properties

Issuing the following call lists containers with Group ID org.example, Artifact ID artifact, and
version 1.0.0.Final:

curl -u 'kieserver:kieserver1!' -H 'Accept: application/json' 'http://localhost:8080/kie-
server/services/rest/server/containers?
groupId=org.example&artifactId=artifact&version=1.0.0.Final'

To filter by container status, specify the status attribute. Multiple values are separated with a
comma.

Example 17.2. Example Filtering Containers by Status

Issuing the following call lists only failed and stopped containers:

 </call-container>
 <dispose-container container-id="command-script-container"/>
</script>

<response type="SUCCESS" msg="List of created containers">
 <kie-containers>
 <kie-container container-id="MyProjectContainer" status="STARTED">
 <release-id>
 <artifact-id>Project1</artifact-id>
 <group-id>com.redhat</group-id>
 <version>1.0</version>
 </release-id>
 <resolved-release-id>
 <artifact-id>Project1</artifact-id>
 <group-id>com.redhat</group-id>
 <version>1.0</version>
 </resolved-release-id>
 </kie-container>
 </kie-containers>
</response>

Red Hat JBoss BPM Suite 6.4 Development Guide

362

curl -u 'kieserver:kieserver1!' -H 'Accept: application/json' 'http://localhost:8080/kie-
server/services/rest/server/containers?status=FAILED,STOPPED'

[GET] /containers/ID

Returns the status and information about a specified container.

Server Response

[PUT] /containers/CONTAINER_ID

Creates a new container in the Intelligent Process Server with a container ID specified in the URI and
configuration specified in the request body. The configuration, in addition to the project release ID,
provides the following settings:

Runtime strategy: SINGLETON.

KIE Base: default.

KIE Session: default.

Deployment descriptor merge mode: MERGE_COLLECTIONS.

KIE Scanner:

Status: STARTED.

Interval: 5000.

Request to Create a Container

<response type="SUCCESS" msg="Info for container MyProjectContainer">
 <kie-container container-id="MyProjectContainer" status="STARTED">
 <release-id>
 <artifact-id>Project1</artifact-id>
 <group-id>com.redhat</group-id>
 <version>1.0</version>
 </release-id>
 <resolved-release-id>
 <artifact-id>Project1</artifact-id>
 <group-id>com.redhat</group-id>
 <version>1.0</version>
 </resolved-release-id>
 </kie-container>
</response>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<kie-container>
 <config-items>
 <itemName>RuntimeStrategy</itemName>
 <itemValue>SINGLETON</itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <config-items>
 <itemName>MergeMode</itemName>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

363

Example Server Response When Creating a Container

 <itemValue>MERGE_COLLECTIONS</itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <config-items>
 <itemName>KBase</itemName>
 <itemValue></itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <config-items>
 <itemName>KSession</itemName>
 <itemValue></itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <release-id>
 <artifact-id>EmailProject</artifact-id>
 <group-id>org.redhat.gss</group-id>
 <version>1.0</version>
 </release-id>
 <scanner poll-interval="5000" status="STARTED"/>
</kie-container>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="Container Example successfully deployed with module
org.redhat.gss:EmailProject:1.0.">
 <kie-container container-id="Example" status="STARTED">
 <config-items>
 <itemName>RuntimeStrategy</itemName>
 <itemValue>SINGLETON</itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <config-items>
 <itemName>MergeMode</itemName>
 <itemValue>MERGE_COLLECTIONS</itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <config-items>
 <itemName>KBase</itemName>
 <itemValue></itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <config-items>
 <itemName>KSession</itemName>
 <itemValue></itemValue>
 <itemType>java.lang.String</itemType>
 </config-items>
 <release-id>
 <artifact-id>EmailProject</artifact-id>
 <group-id>org.redhat.gss</group-id>
 <version>1.0</version>
 </release-id>
 <resolved-release-id>
 <artifact-id>EmailProject</artifact-id>
 <group-id>org.redhat.gss</group-id>
 <version>1.0</version>

Red Hat JBoss BPM Suite 6.4 Development Guide

364

[DELETE] /containers/ID

Disposes of a container specified by the ID.

Server Response Disposing a Container

[GET] /containers/ID/release-id

Returns a full release ID for a specified container.

Server Response

[POST] /containers/ID/release-id

Allows you to update the release ID of a container.

Sample Server Request

The server responds with a success or error message, such as:

Sample Server Response

[GET] /containers/ID/scanner

Returns information about the scanner for container’s automatic updates.

 </resolved-release-id>
 <scanner poll-interval="5000" status="STARTED"/>
 </kie-container>
</response>

<response type="SUCCESS" msg="Container MyProjectContainer successfully disposed."/>

<response type="SUCCESS" msg="ReleaseId for container MyProjectContainer">
 <release-id>
 <artifact-id>Project1</artifact-id>
 <group-id>com.redhat</group-id>
 <version>1.0</version>
 </release-id>
</response>

<release-id>
 <artifact-id>Project1</artifact-id>
 <group-id>com.redhat</group-id>
 <version>1.1</version>
</release-id>

<response type="SUCCESS" msg="Release id successfully updated.">
 <release-id>
 <artifact-id>Project1</artifact-id>
 <group-id>com.redhat</group-id>
 <version>1.0</version>
 </release-id>
</response>

CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION

365

Server Response

[POST] /containers/ID/scanner

Allows you to start or stop a scanner that controls polling for updated container deployments.

Example Server Request to Start the Scanner

Server Response

To stop the scanner, replace the status with DISPOSED and remove the poll-interval attribute.

<response type="SUCCESS" msg="Scanner info successfully retrieved">
 <kie-scanner status="DISPOSED"/>
</response>

<kie-scanner status="STARTED" poll-interval="20"/>

<response type="SUCCESS" msg="Kie scanner successfully created.">
 <kie-scanner status="STARTED"/>
</response>

Red Hat JBoss BPM Suite 6.4 Development Guide

366

CHAPTER 18. INTELLIGENT PROCESS SERVER UI EXTENSION
The Intelligent Process Server is focused on execution and contains no UI for interaction. To simplify
creating custom UI, Intelligent Process Server is capable of providing:

Process form structures.

Task form structures.

SVG image of the process definition diagram.

Annotated SVG image of the process definition diagram.

Business Central, the authoring environment, allows users to build assets, such as rules, decision tables,
forms, and others. In Business Central, Form Modeler generates forms that are well integrated with
process and task variables, and provides binding between the inputs and outputs.

The Intelligent Process Server expects data to be mapped onto correct process and task variables. By
generating form structures, you are able to create custom UI that will properly map the input data onto
process and task variables.

18.1. USING THE INTELLIGENT PROCESS SERVER UI EXTENSION

The Intelligent Process Server UI Extension supports the following commands through the REST API.
Note the following before using these commands:

The base URL for these will remain as the endpoint defined earlier (http://_SERVER:PORT/kie-
server/services/rest/server/_).

All requests require basic HTTP Authentication for the role kie-server.

You need to enable SVG image storing in order to be able to retrieve it through REST API. To
do that, follow these steps:

1. Change into $SERVER_HOME/standalone/deployments/business-
central.war/org.kie.workbench.KIEWebapp/profiles/.

2. In jbpm.xml, find <storesvgonsave enabled="false"/>.

3. Change it to <storesvgonsave enabled="true"/>

4. Restart your server.

5. Modify your business process and save it. This step is necessary, otherwise you will receive
an empty SVG image.

6. Build and deploy your project.

If you set the package attribute of your business process, ensure that it matches the package structure
of your project. That means if you set the package attribute to com.example.myproject, place your
business process into the com/example/myproject directory of your JAR file.

If you set the package attribute to a structure different from the directory structure of your business
process, you will receive an error similar to the following:

CHAPTER 18. INTELLIGENT PROCESS SERVER UI EXTENSION

367

16:35:52,155 WARN [org.kie.server.services.jbpm.ui.ImageServiceBase] (http-127.0.0.1:8180-1)
Could not find SVG image file for process 'sampleproject1.sampleprocess' within container
TestKieUIContainer

The default form structure of the Intelligent Process Server is XML. You can change the format
to JSON by providing HTTP header Accept: application/json.

NOTE

Start the process through Intelligent Process Server (for example, through the REST
API) to ensure the following endpoints work.

[GET] /containers/CONTAINER_ID/forms/processes/PROCESS_ID

Server Response

<form id="1634631252">
 <property name="subject" value=""/>
 <property name="name" value="com.sample.evaluation-taskform"/>
 <property name="displayMode" value="default"/>
 <property name="labelMode" value="undefined"/>
 <property name="status" value="0"/>
 <field id="301394101" name="301394101" position="0" type="InputText">
 <property name="fieldRequired" value="true"/>
 <property name="groupWithPrevious" value="false"/>
 <property name="labelCSSClass" value=""/>
 <property name="labelCSSStyle" value=""/>
 <property name="label" value=""/>
 <property name="errorMessage" value=""/>
 <property name="title" value=""/>
 <property name="disabled" value="false"/>
 <property name="readonly" value="false"/>
 <property name="size" value=""/>
 <property name="formula" value=""/>
 <property name="rangeFormula" value=""/>
 <property name="pattern" value=""/>
 <property name="styleclass" value=""/>
 <property name="cssStyle" value=""/>
 <property name="isHTML" value="false"/>
 <property name="hideContent" value="false"/>
 <property name="defaultValueFormula" value=""/>
 <property name="inputBinding" value=""/>
 <property name="outputBinding" value="employee"/>
 </field>
 <field id="1698224711" name="1698224711" position="1" type="InputTextArea">
 <property name="fieldRequired" value="true"/>
 <property name="groupWithPrevious" value="false"/>
 <property name="height" value="3"/>
 <property name="labelCSSClass" value=""/>
 <property name="labelCSSStyle" value=""/>
 <property name="label" value=""/>
 <property name="errorMessage" value=""/>
 <property name="title" value=""/>
 <property name="disabled" value="false"/>
 <property name="readonly" value="false"/>

Red Hat JBoss BPM Suite 6.4 Development Guide

368

The XML response maps the following form:

Figure 18.1. Form Mapped to XML

[GET] /containers/CONTAINER_ID/forms/tasks/TASK_ID

Server Response

 <property name="size" value=""/>
 <property name="formula" value=""/>
 <property name="rangeFormula" value=""/>
 <property name="pattern" value=""/>
 <property name="styleclass" value=""/>
 <property name="cssStyle" value=""/>
 <property name="defaultValueFormula" value=""/>
 <property name="inputBinding" value=""/>
 <property name="outputBinding" value="reason"/>
 </field>
</form>

<form id="1635016860">
 <property name="name" value="PerformanceEvaluation-taskform"/>
 <property name="displayMode" value="default"/>
 <property name="status" value="0"/>
 <field id="822358072" name="822358072" position="0" type="InputTextArea">
 <property name="fieldRequired" value="false"/>
 <property name="groupWithPrevious" value="false"/>
 <property name="label" value="Reason"/>
 <property name="errorMessage" value=""/>
 <property name="title" value=""/>
 <property name="readonly" value="true"/>
 <property name="inputBinding" value="reason"/>
 <property name="fieldClass" value="java.lang.String"/>
 </field>

CHAPTER 18. INTELLIGENT PROCESS SERVER UI EXTENSION

369

The XML response maps the following form:

Figure 18.2. Form Mapped to XML

 <field id="348604726" name="348604726" position="1" type="InputText">
 <property name="fieldRequired" value="true"/>
 <property name="groupWithPrevious" value="false"/>
 <property name="label" value="Performance"/>
 <property name="errorMessage" value=""/>
 <property name="title" value=""/>
 <property name="readonly" value="false"/>
 <property name="isHTML" value="false"/>
 <property name="hideContent" value="false"/>
 <property name="inputBinding" value="performance"/>
 <property name="outputBinding" value="performance"/>
 <property name="fieldClass" value="java.lang.String"/>
 </field>
 <field id="1048590899" name="initiator" position="2" type="InputText">
 <property name="fieldRequired" value="false"/>
 <property name="label" value="BusinessAdministratorId (initiator)"/>
 <property name="readonly" value="false"/>
 <property name="inputBinding" value="BusinessAdministratorId"/>
 <property name="fieldClass" value="java.lang.String"/>
 </field>
 <dataHolder id="initiator" inputId="BusinessAdministratorId" name="#9BCAFA" outId=""
type="basicType" value="java.lang.String"/>
 <dataHolder id="performance" inputId="" name="#BBBBBB" outId="performance"
type="basicType" value="java.lang.String"/>
 <dataHolder id="reason" inputId="reason" name="#FF54A7" outId="" type="basicType"
value="java.lang.String"/>
</form>

Red Hat JBoss BPM Suite 6.4 Development Guide

370

[GET] /containers/CONTAINER_ID/images/processes/PROCESS_ID

Returns an SVG image of the process definition diagram.

Example 18.1. Server Response

[GET] /containers/CONTAINER_ID/images/processes/instances/PROCESS_INSTANCE_ID

Returns an annotated SVG image of the process definition diagram.

Example 18.2. Server Response

CHAPTER 18. INTELLIGENT PROCESS SERVER UI EXTENSION

371

CHAPTER 19. INTELLIGENT PROCESS SERVER JAVA CLIENT
API OVERVIEW

19.1. CLIENT CONFIGURATION

You need to declare a configuration object and set server communication aspects, such as the protocol
(REST or JMS), credentials and the payload format (XStream, JAXB or JSON). For additional example,
follow the Hello World project.

Client Configuration

JMS Client Configuration

import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;

public class DecisionServerTest {

 private static final String URL = "http://localhost:8080/kie-server/services/rest/server";
 private static final String USER = "kieserver";
 private static final String PASSWORD = "kieserver1!";

 private static final MarshallingFormat FORMAT = MarshallingFormat.JSON;

 private KieServicesConfiguration conf;
 private KieServicesClient kieServicesClient;

 @Before
 public void initialize() {
 conf = KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD);

 //If you use custom classes, such as Obj.class, add them to the configuration
 Set<Class<?>> extraClassList = new HashSet<Class<?>>();
 extraClassList.add(Obj.class);
 conf.addExtraClasses(extraClassList);

 conf.setMarshallingFormat(FORMAT);
 kieServicesClient = KieServicesFactory.newKieServicesClient(conf);
 }
}

import java.util.Properties;

import javax.jms.ConnectionFactory;
import javax.jms.Queue;
import javax.naming.Context;
import javax.naming.InitialContext;

import org.junit.Test;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;

Red Hat JBoss BPM Suite 6.4 Development Guide

372

Note that you must assign the the guest role to the user kieserver. Additionally, you must declare JMS
dependency:

import org.kie.server.client.KieServicesFactory;

public class DecisionServerTest {

 private static final String REMOTING_URL = new String("remote://localhost:4447");

 private static final String USER = "kieserver";
 private static final String PASSWORD = "kieserver1!";

 private static final String INITIAL_CONTEXT_FACTORY = new
String("org.jboss.naming.remote.client.InitialContextFactory");
 private static final String CONNECTION_FACTORY = new String("jms/RemoteConnectionFactory");
 private static final String REQUEST_QUEUE_JNDI = new
String("jms/queue/KIE.SERVER.REQUEST");
 private static final String RESPONSE_QUEUE_JNDI = new
String("jms/queue/KIE.SERVER.RESPONSE");

 private KieServicesConfiguration conf;
 private KieServicesClient kieServicesClient;

 @Test
 public void testJms() throws Exception {
 final Properties env = new Properties();
 env.put(Context.INITIAL_CONTEXT_FACTORY, INITIAL_CONTEXT_FACTORY);
 env.put(Context.PROVIDER_URL, REMOTING_URL);
 env.put(Context.SECURITY_PRINCIPAL, USER);
 env.put(Context.SECURITY_CREDENTIALS, PASSWORD);
 InitialContext context = new InitialContext(env);

 Queue requestQueue = (Queue) context.lookup(REQUEST_QUEUE_JNDI);
 Queue responseQueue = (Queue) context.lookup(RESPONSE_QUEUE_JNDI);
 ConnectionFactory connectionFactory = (ConnectionFactory)
context.lookup(CONNECTION_FACTORY);

 conf = KieServicesFactory.newJMSConfiguration(connectionFactory, requestQueue,
responseQueue, USER, PASSWORD);

 //If you use custom classes, such as Obj.class, add them to the configuration
 Set<Class<?>> extraClassList = new HashSet<Class<?>>();
 extraClassList.add(Obj.class);
 conf.addExtraClasses(extraClassList);

 kieServicesClient = KieServicesFactory.newKieServicesClient(conf);
 }
}

<dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-jms-client-bom</artifactId>
 <version>7.5.7.Final-redhat-3</version>
 <type>pom</type>
</dependency>

CHAPTER 19. INTELLIGENT PROCESS SERVER JAVA CLIENT API OVERVIEW

373

19.1.1. JMS Interaction Patterns

Since version 6.4 of Red Hat JBoss BPM Suite, Intelligent Process Server Client integration with JMS
has been enhanced by several interaction patterns. Available interaction patterns are:

Request reply: the default option that blocks the client until a response is received, making the
JMS integration synchronous. Request reply is not suitable for a JMS transactional delivery.

Fire and forget : an option for one-way integration. Suitable, for example, for notifications
invoked by integration with the Intelligent Process Server. Fire and forget is convenient for a
transactional JMS delivery. Messages are delivered to the server only if the transaction that
invoked the server client was committed successfully.

Asynchronous with callback : with this option, the client is not blocked after sending a message to
Intelligent Process Server. Responses can be received asynchronously. This option can be used
for the transactional JMS delivery.

You can set the response handlers either globally (when a KieServicesConfiguration is created) or
individually on different client instances (such as RuleServiceClient, ProcessServicesClient, and
others) during runtime.

Whereas fire and forget and request reply patterns do not require any additional configuration, you need
to configure the callback if you use the asynchronous pattern. The Intelligent Process Server client
includes a built-in callback (BlockingResponseCallback) that provides support using a blocking queue.
The callback is configured to receive a single message at a time by default. Therefore, each client
interaction contains a single message (request) and a single response. You can change the size of the
queue to make it possible to receive multiple messages.

To create a custom callback, implement the org.kie.server.client.jms.ResponseCallback interface.

NOTE

Intelligent Process Server client is not thread-safe when switching response handlers.
Change of a handler can affect all the threads which are using the same client instance. It
is recommended to use separate client instances in case of dynamic changes of the
handler. You can maintain a set of clients where each client uses a dedicated response
handler. Depending on which handler is required, choose a respective client.

For example, having two clients, the first client (with the fire and forget pattern) can be
used for starting processes and the second client (with the request reply pattern) can be
used for querying user tasks.

Example 19.1. Global JMS Configuration

InitialContext context = ...;
Queue requestQueue = (Queue) context.lookup("jms/queue/KIE.SERVER.REQUEST");
Queue responseQueue = (Queue) context.lookup("jms/queue/KIE.SERVER.RESPONSE");
ConnectionFactory connectionFactory = (ConnectionFactory)
context.lookup("jms/RemoteConnectionFactory");
KieServicesConfiguration jmsConfiguration =
KieServicesFactory.newJMSConfiguration(connectionFactory, requestQueue, responseQueue,
"user", "password");
// Set your response handler globally here.
jmsConfiguration.setResponseHandler(new FireAndForgetResponseHandler());

Red Hat JBoss BPM Suite 6.4 Development Guide

374

Example 19.2. Per Client JMS Configuration

In case you are using asynchronous or fire and forget response handlers, you can turn on JMS
transactions in KieServicesConfiguration. If you do so, use a transaction-aware connection factory:
XAConnectionFactory.

WARNING

JMS transactions are supported only on Red Hat JBoss Enterprise Application
Platform. JMS transactions are not tested on Oracle WebLogic Server and IBM
WebSphere Application Server.

19.2. SERVER RESPONSE

Service responses are represented by the org.kie.server.api.model.ServiceResponse<T> object,
where T represents the payload type. It has the following attributes:

String message: returns the response message.

ResponseType type: returns either SUCCESS or FAILURE.

T result: returns the requested object.

Example 19.3. Hello World Server Response

NOTE

A service response is retrieved only if you are using the request reply response handler. In
case of asynchronous or fire and forget response handlers, all remote calls always return
null.

19.3. INSERTING AND EXECUTING COMMANDS

ProcessServiceClient processClient = client.getServicesClient(ProcessServicesClient.class);
// Change response handler for processClient. The other clients are not affected.
processClient.setResponseHandler(new FireAndForgetResponseHandler());

import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.RuleServicesClient;

RuleServicesClient ruleClient = client.getServicesClient(RuleServicesClient.class);
ServiceResponse<ExecutionResults> response =
ruleClient.executeCommandsWithResults(container, batchCommand);
// Retrieve result with identifier output-object
Object result = response.getResult().getValue("output-object");

CHAPTER 19. INTELLIGENT PROCESS SERVER JAVA CLIENT API OVERVIEW

375

To insert commands, use the org.kie.api.command.KieCommands class. To instantiate the
KieCommands class, use org.kie.api.KieServices.get().getCommands(). If you want to add multiple
commands, use the BatchExecutionCommand wrapper.

Example 19.4. Inserting and Executing Commands

Add the org.drools:drools-compiler dependency into your pom.xml file. See the Supported
Components Versions section of Red Hat JBoss BPM Suite Installation Guide to add a correct version.

See Embedded jBPM Engine Dependencies for a list of further Maven dependencies.

import org.kie.api.command.Command;
import org.kie.api.command.KieCommands;
import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.RuleServicesClient;
import org.kie.server.client.KieServicesClient;
import org.kie.api.KieServices;

import java.util.Arrays;

...

public void executeCommands() {

 String containerId = "hello";
 System.out.println("== Sending commands to the server ==");
 RuleServicesClient rulesClient =
 kieServicesClient.getServicesClient(RuleServicesClient.class);
 KieCommands commandsFactory = KieServices.Factory.get().getCommands();

 Command<?> insert = commandsFactory.newInsert("Some String OBJ");
 Command<?> fireAllRules = commandsFactory.newFireAllRules();
 Command<?> batchCommand =
 commandsFactory.newBatchExecution(Arrays.asList(insert, fireAllRules));

 ServiceResponse<ExecutionResults> executeResponse =
 rulesClient.executeCommandsWithResults(containerId, batchCommand);

 if(executeResponse.getType() == ResponseType.SUCCESS) {
 System.out.println("Commands executed with success!");
 // Retrieve result with identifier output-object
 Object result = executeResponse.getResult().getValue("output-object");
 } else {
 System.out.println("Error executing rules. Message: ");
 System.out.println(executeResponse.getMsg());
 }
}

<dependency>
 <groupId>org.drools-redhat</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>6.5.0.Final-redhat-2</version>
</dependency>

Red Hat JBoss BPM Suite 6.4 Development Guide

376

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps

19.4. LISTING SERVER CAPABILITIES

From version 6.2, Intelligent Process Server supports the business process execution. To find out server
capabilities, use the org.kie.server.api.model.KieServerInfo object.

KieServicesClient requires the server capability information to correctly produce service clients (see
Section 19.7, “Available Intelligent Process Server Clients”). You can specify the capabilities globally in
KieServicesConfiguration, otherwise they are automatically retrieved from the server.

IMPORTANT

Regardless of which response handler is globally specified, KieServicesClient uses
synchronous request response handler to retrieve the server capabilities. However, you
cannot make synchronous calls when JMS transactions are enabled. To do so, you need to
set the server capabilities in KieServicesConfiguration.

Example 19.5. Server Capabilities

19.5. LISTING CONTAINERS

Containers are represented by the org.kie.server.api.model.KieContainerResource object. The list of
resources is represented by the org.kie.server.api.model.KieContainerResourceList object.

Example 19.6. Print a List of Containers

When obtaining the list of containers, you can optionally filter the result using an instance of the
org.kie.server.api.model.KieContainerResourceFilter class, which is passed to the
org.kie.server.client.KieServicesClient.listContainers() method.

public void listCapabilities() {

 KieServerInfo serverInfo = kieServicesClient.getServerInfo().getResult();
 System.out.print("Server capabilities:");

 for (String capability : serverInfo.getCapabilities()) {
 System.out.print(" " + capability);
 }

 System.out.println();
}

public void listContainers() {
 KieContainerResourceList containersList = kieServicesClient.listContainers().getResult();
 List<KieContainerResource> kieContainers = containersList.getContainers();
 System.out.println("Available containers: ");
 for (KieContainerResource container : kieContainers) {
 System.out.println("\t" + container.getContainerId() + " (" + container.getReleaseId() + ")");
 }
}

CHAPTER 19. INTELLIGENT PROCESS SERVER JAVA CLIENT API OVERVIEW

377

Example 19.7. Filter Containers in Java Client API

19.6. HANDLING CONTAINERS

You can use the Intelligent Process Server Java client to create and dispose containers. If you dispose a
container, ServiceResponse will be returned with void payload. If you create a container,
KieContainerResource object will be returned.

Disposing and Creating a Container

public void listContainersWithFilter() {

 // The following filter will match only containers with the ReleaseId
 // "org.example:container:1.0.0.Final" and status FAILED
 KieContainerResourceFilter filter = new KieContainerResourceFilter.Builder()
 .releaseId("org.example", "container", "1.0.0.Final")
 .status(KieContainerStatus.FAILED)
 .build();

 // using previously created KieServicesClient....
 KieContainerResourceList containersList = kieServicesClient.listContainers(filter).getResult();
 List<KieContainerResource> kieContainers = containersList.getContainers();

 System.out.println("Available containers: ");

 for (KieContainerResource container : kieContainers) {
 System.out.println("\t" + container.getContainerId() + " (" + container.getReleaseId() + ")");
 }
}

public void disposeAndCreateContainer() {
 System.out.println("== Disposing and creating containers ==");
 List<KieContainerResource> kieContainers =
kieServicesClient.listContainers().getResult().getContainers();
 if (kieContainers.size() == 0) {
 System.out.println("No containers available...");
 return;
 }
 KieContainerResource container = kieContainers.get(0);
 String containerId = container.getContainerId();
 ServiceResponse<Void> responseDispose = kieServicesClient.disposeContainer(containerId);
 if (responseDispose.getType() == ResponseType.FAILURE) {
 System.out.println("Error disposing " + containerId + ". Message: ");
 System.out.println(responseDispose.getMsg());
 return;
 }
 System.out.println("Success Disposing container " + containerId);
 System.out.println("Trying to recreate the container...");
 ServiceResponse<KieContainerResource> createResponse =
kieServicesClient.createContainer(containerId, container);
 if(createResponse.getType() == ResponseType.FAILURE) {
 System.out.println("Error creating " + containerId + ". Message: ");
 System.out.println(responseDispose.getMsg());

Red Hat JBoss BPM Suite 6.4 Development Guide

378

NOTE

A conversation between a client and a specific Intelligent Process Server container in a
clustered environment is secured by a unique conversationID. The conversationID is
transferred using the X-KIE-ConversationId REST header. If you update the container,
unset the previous conversationID. Use KieServiesClient.completeConversation() to
unset the conversationID for Java API.

19.7. AVAILABLE INTELLIGENT PROCESS SERVER CLIENTS

KieServicesClient serves also as an entry point for other clients with the ability to perform various
operations, such as Red Hat JBoss BRMS commands and manage processes. Following services are
available in the org.kie.server.client package:

JobServicesClient is used to schedule, cancel, requeue, and get job requests.

ProcessServicesClient is used to start, signal, and abort processes or work items.

QueryServicesClient is used to query processes, process nodes, and process variables.

RuleServicesClient is used to send commands to the server to perform rule-related operations
(for example insert objects into the working memory, fire rules, …).

The org.kie.server.client.RuleServicesClient.executeCommands() API call was deprecated in version
6.3. The new org.kie.server.client.RuleServicesClient.executeCommandsWithResults() API returns
execution results for objects that have been unmarshalled.

UserTaskServicesClient is used to perform all user-task operations (start, claim, cancel a task)
and query tasks by specified field (process instances id, user, …)

UIServicesClient is used to get String representation of forms (XML or JSON) and of the
process image (SVG).

SolverServicesClient is used to perform all Business Resource Planner operations, such as
getting the solver state and the best solution, or disposing of a solver.

The getServicesClient method provides access to any of these clients:

19.8. LISTING AVAILABLE BUSINESS PROCESSES

Use QueryClient to list available process definitions. QueryClient methods use pagination, therefore in
addition to the query you make, you must provide the current page and the number of results per page.
In the provided example, the query starts on page 0 and lists the first 1000 results.

List Processes

 return;
 }
 System.out.println("Container recreated with success!");
}

RuleServicesClient rulesClient = kieServicesClient.getServicesClient(RuleServicesClient.class);

public void listProcesses() {

CHAPTER 19. INTELLIGENT PROCESS SERVER JAVA CLIENT API OVERVIEW

379

https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-remote/kie-server-client/src/main/java/org/kie/server/client/JobServicesClient.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-remote/kie-server-client/src/main/java/org/kie/server/client/ProcessServicesClient.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-remote/kie-server-client/src/main/java/org/kie/server/client/QueryServicesClient.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-remote/kie-server-client/src/main/java/org/kie/server/client/RuleServicesClient.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-remote/kie-server-client/src/main/java/org/kie/server/client/UserTaskServicesClient.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.5.x/kie-server-parent/kie-server-remote/kie-server-client/src/main/java/org/kie/server/client/UIServicesClient.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/master/kie-server-parent/kie-server-remote/kie-server-client/src/main/java/org/kie/server/client/SolverServicesClient.java

19.9. STARTING A BUSINESS PROCESSES

Use the ProcessServicesClient client to start your process. Ensure that any custom classes you require
for your process are added into the KieServicesConfiguration object, using the addExtraClasses()
method. To start a process using the Java Client API, see the following example:

 System.out.println("== Listing Business Processes ==");
 QueryServicesClient queryClient =
kieServicesClient.getServicesClient(QueryServicesClient.class);
 List<ProcessDefinition> findProcessesByContainerId =
queryClient.findProcessesByContainerId("rewards", 0, 1000);
 for (ProcessDefinition def : findProcessesByContainerId) {
 System.out.println(def.getName() + " - " + def.getId() + " v" + def.getVersion());
 }
}

import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;

import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.ProcessServicesClient;
...

public static void startProcess() {
 //Client configuration setup
 KieServicesConfiguration config = KieServicesFactory.newRestConfiguration(SERVER_URL,
LOGIN, PASSWORD);

 //Add custom classes, such as Obj.class, to the configuration
 Set<Class<?>> extraClassList = new HashSet<Class<?>>();
 extraClassList.add(Obj.class);
 config.addExtraClasses(extraClassList);
 config.setMarshallingFormat(MarshallingFormat.JSON);

 // ProcessServicesClient setup
 KieServicesClient client = KieServicesFactory.newKieServicesClient(config);
 ProcessServicesClient processServicesClient =
client.getServicesClient(ProcessServicesClient.class);

 // Create an instance of the custom class
 Obj obj = new Obj();
 obj.setOk("ok");

 Map<String, Object> variables = new HashMap<String, Object>();
 variables.put("test", obj);

Red Hat JBoss BPM Suite 6.4 Development Guide

380

19.10. QUERYDEFINITION FOR INTELLIGENT PROCESS SERVER USING
JAVA CLIENT API

QueryDefinition is a feature used to execute advanced queries. For more information about advanced
queries, see Section 16.7, “Advanced Queries for the Intelligent Process Server”. To register and execute
query definitions using the Java Client API, see the following example:

Registering and Executing Query Definitions with QueryServicesClient

Note that target instructs QueryService to apply default filters. Alternatively, you can set filter
parameters manually. Target has the following values:

 // Start the process with custom class
 processServicesClient.startProcess(CONTAINER, processId, variables);
}

// client setup
KieServicesConfiguration conf = KieServicesFactory.newRestConfiguration(SERVER_URL, LOGIN,
PASSWORD);
KieServicesClient client = KieServicesFactory.newKieServicesClient(conf);

// get the query services client
QueryServicesClient queryClient = client.getServicesClient(QueryServicesClient.class);

// building the query
QueryDefinition queryDefinition = QueryDefinition.builder().name(QUERY_NAME)
 .expression("select * from Task t")
 .source("java:jboss/datasources/ExampleDS")
 .target("TASK").build();

// two queries cannot have the same name
queryClient.unregisterQuery(QUERY_NAME);

// register the query
queryClient.registerQuery(queryDefinition);

// execute the query with parameters: query name, mapping type (to map the fields to an object),
page number, page size and return type
List<TaskInstance> query = queryClient.query(QUERY_NAME,
QueryServicesClient.QUERY_MAP_TASK, 0, 100, TaskInstance.class);

// read the result
for (TaskInstance taskInstance : query) {
 System.out.println(taskInstance);
}

public enum Target {
 PROCESS,
 TASK,
 BA_TASK,
 PO_TASK,

CHAPTER 19. INTELLIGENT PROCESS SERVER JAVA CLIENT API OVERVIEW

381

 JOBS,
 CUSTOM;
}

Red Hat JBoss BPM Suite 6.4 Development Guide

382

PART V. KIE

PART V. KIE

383

CHAPTER 20. JAVA APIS
Red Hat JBoss BRMS and Red Hat JBoss BPM Suite provide various Java APIs which enable you to
embed runtime engines into your application.

NOTE

It is recommended to use the services described in Section 20.3, “KIE Services” . These
high-level APIs deal with low-level details and enable you to focus solely on business
logic.

20.1. KIE API

The KIE (Knowledge Is Everything) API is used to load and execute business processes. To interact with
the process engine—for example to start a process—you need to set up a session, which is used to
communicate with the process engine. A session must have a reference to a knowledge base, which
contains references to all the relevant process definitions and searches the definitions whenever
necessary.

To create a session:

1. First, create a knowledge base and load all the necessary process definitions. Process
definitions can be loaded from various sources, such as the class path, file system, or a process
repository.

2. Instantiate a session.

Once a session is set, you can use the session to execute processes. Every time a process is started, a
new process instance of that particular process defition is created. The process instance maintains its
state throughout the process life cycle.

For example, to write an application that processes sales orders, define one or more process definitions
that specify how the orders must be processed. When starting the application, create a knowledge base
that contains the specified process definitions. Based on the knowledge base, instantiate a session such
that each time a new sales order comes in, a new process instance is started for that sales order. The
process instance then contains the state of the process for that specific sales request.

A knowledge base can be shared across sessions and is usually created once, at the start of the
application. Knowledge bases can be dynamically changed, which allows you to add or remove processes
at runtime.

It is possible to create more independent sessions or multiple sessions; for example, to separate all
processes for one customer from processes for another customer, create an independent session for
each one. For scalability reasons, multiple sessions can be used.

The Red Hat JBoss BPM Suite projects have a clear separation between the APIs users interact with
and the actual implementation classes. The public API exposes most of the features that users can
safely use, however, experienced users can still access internal classes. Keep in mind that the internal
APIs may change in the future.

20.1.1. KIE Framework

In the Red Hat JBoss BPM Suite environment, the life cycle of KIE systems is divided into the following
labels:

Red Hat JBoss BPM Suite 6.4 Development Guide

384

Author Knowledge authoring: creating DRLs, BPMN2 sources, decision tables, and class
models.

Build Building the authored knowledge into deployable units; kJARs.

Test Testing the knowledge artifacts before they are deployed to the application.

Deploy Deploying the artifacts to be used to a Maven repository.

Utilize Loading of a kJAR exposed at runtime using a KIE container. A session, which the
application can interact with, is created from the KIE Container.

Run Interacting with a session using the KIE API.

Work Interacting with a session using the user interface.

Manage Managing any session or a KIE container.

20.1.2. KIE Base

The KIE API enables you to create a knowledge base that includes all the process definitions that may
need to be executed. To create a knowledge base, use KieHelper to load processes from various
resources (for example, from the class path or from the file system), and then create a new knowledge
base from that helper. The following code snippet shows how to manually create a simple knowledge
base consisting of only one process definition, using a resource from the class path:

The code snippet above uses org.kie.internal.utils.KieHelper and
org.kie.internal.io.ResourceFactory that are a part of the internal API. Using RuntimeManager is the
recommended way of creating a knowledge base and a knowledge session.

NOTE

KieBase or KiePackage serialization is not supported in Red Hat JBoss BPM Suite 6.4.
For more information, see Is serialization of kbase/package supported in BRMS 6/BPM
Suite 6/RHDM 7?.

The classes belonging to the internal API (org.kie.internal) are not supported because
they are subject to change.

KieBase is a repository that contains all knowledge definitions of the application—rules, processes,
forms, and data models—but does not contain any runtime data. Knowledge sessions are created based
on a particular KieBase. While creating knowledge bases can be onerous, creating knowledge sessions is
very light. Therefore, it is recommended to cache knowledge bases as much as possible to allow
repeated session creation. The caching mechanism is automatically provided by KieContainer.

See the following KieBase attributes:

KieBase kBase = new KieHelper()
 .addResource(ResourceFactory.newClassPathResource("MyProcess.bpmn"))
 .build();

CHAPTER 20. JAVA APIS

385

https://access.redhat.com/solutions/3216951

name

The name which retrieves KieBase from KieContainer. This attribute is mandatory .

Default Value Admitted Values

None Any

includes

A comma-separated list of other KieBase objects contained in this kmodule. The KieBase artifacts
are included as well. A knowledge base can be contained in multiple KIE modules, assuming that it is
declared as a dependency in the pom.xml file of the modules.

Default Value Admitted Values

None A comma-separated list

packages

|By default, all artifacts (such as rules and processes) in the resources directory are included into a
knowledge base. This attribute enables you to limit the number of compiled artifacts. Only the
packages belonging to the list specified in this attribute are compiled.

Default Value Admitted Values

All A comma-separated list

default

|Defines whether a knowledge base is the default knowledge base for a module, and therefore it can
be created from the KIE container without passing any name. Each module can have at most one
default knowledge base.

Default Value Admitted Values

false true or false

scope

The CDI bean scope that is set for the CDI bean representing the KieBase, for example
ApplicationScoped, SessionScoped, or RequestScoped. See the CDI specification for more
information about the CDI scope definition.
The scope can be specified in two ways;

As javax.enterprise.context.INTERFACE, for example.

As INTERFACE.

The javax.enterprise.context package is added automatically if no package is specified.

Red Hat JBoss BPM Suite 6.4 Development Guide

386

http://cdi-spec.org/

Default Value Admitted Values

javax.enterprise.context.ApplicationScoped A name of an interface in the
javax.enterprise.context package representing a
valid CDI bean scope.

equalsBehavior

Defines the behavior of Red Hat JBoss BRMS when a new fact is inserted into the working memory.
If set to identity, a new FactHandle is always created unless the same object is already present in the
working memory.

If set to equality, a new FactHandle is created only if the newly inserted object is not equal,
according to its equals() method, to an existing fact.

Default Value Admitted Values

identity identity or equality

eventProcessingMode

If set to cloud, KieBase treats events as normal facts.
If set to stream, temporal reasoning on events is allowed.

See Section 7.6, “Temporal Operations” for more information.

Default Value Admitted Values

cloud cloud or stream

The following example shows how to update assets using the KieBase object:

import org.kie.api.KieBase;
import org.kie.api.KieServices;
import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.KieSessionConfiguration;

// build kbase with the replace-version-1.bpmn process
 KieBase kbase = KieServices.Factory.get().newKieClasspathContainer().getKieBase();
 kbase.addKnowledgePackages(getProcessPackages("replace-version-1.bpmn"));

 KieSession ksession = kbase.newStatefulKnowledgeSession();
 try {
 // start a replace-version-1.bpmn process instance
 ksession.startProcess("com.sample.process", Collections.<String,
Object>singletonMap("name", "process1"));

 // add the replace-version-2.bpmn process and start its instance
 kbase.addKnowledgePackages(getProcessPackages("replace-version-2.bpmn"));

CHAPTER 20. JAVA APIS

387

20.1.3. KIE Session

Once the knowledge base is loaded, create a session to interact with the engine. The session can then
be used to start new processes and signal events. The following code snippet shows how to create a
session and start a new process instance:

KieSession stores and executes runtime data. It is created from a knowledge base, or, more easily,
directly from KieContainer if it is defined in the kmodule.xml file.

name

A unique name of the KieSession used to fetch KieSession from KieContainer. This attribute is
mandatory.

Default Value Admitted Values

None Any

type

A session set to stateful enables you to iteratively work with the working memory, while a session set
to stateless is used for a one-off execution of rules only.
A stateless session stores a knowledge state. Therefore, a state is changed every time a new fact is
added, updated, or deleted, as well as every time a rule is fired. An execution in a stateless session has
no information about previous actions, for example rule fires.

Default Value Admitted Values

stateful stateful or stateless

default

Defines whether the KieSession is the default one for a module, and therefore it can be created
from KieContainer without passing any name to it. There can be at most one default KieSession of
each type in a module.

Default Value Admitted Values

false true or false

 ksession.startProcess("com.sample.process", Collections.<String,
Object>singletonMap("name", "process2"));

 // signal all processes in the session to continue (both instances finish)
 ksession.signalEvent("continue", null);
 } finally {
 ksession.dispose();
 }

KieSession ksession = kbase.newKieSession();

ProcessInstance processInstance = ksession.startProcess("com.sample.MyProcess");

Red Hat JBoss BPM Suite 6.4 Development Guide

388

clockType

Defines whether event time stamps are determined by the system clock or by a pseudo clock
controlled by the application. This clock is especially useful for unit testing temporal rules.

Default Value Admitted Values

realtime realtime or pseudo

beliefSystem

Defines a type of a belief system used by KieSession. A belief system is a truth maintenance system.
For more information, see Section 6.4, “Truth Maintenance” .
A belief system tries to deduce the truth from knowledge (facts). For example, if a new fact is
inserted based on another fact which is later removed from the engine, the system can determine
that the newly inserted fact should be removed as well.

Default Value Admitted Values

simple simple, jtms, or defeasible

Alternatively, you can get a KIE session from the Runtime Manager:

For Maven dependencies, see Embedded jBPM Engine Dependencies. For further information about
the Runtime Manager, see Section 20.2, “Runtime Manager”.

20.1.3.1. Process Runtime Interface

The ProcessRuntime interface, which is extended by KieSession, defines methods for interacting with
processes. See the interface below:

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.manager.RuntimeManager;
import org.kie.api.runtime.manager.RuntimeManagerFactory;
import org.kie.internal.runtime.manager.context.ProcessInstanceIdContext;
...
RuntimeManager manager =
 RuntimeManagerFactory.Factory.get()
 .newPerProcessInstanceRuntimeManager(environment);

RuntimeEngine runtime =
 manager.getRuntimeEngine(
 ProcessInstanceIdContext.get());

KieSession ksession = runtime.getKieSession();
// do something here, for example:
ksession.startProcess(“org.jbpm.hello”);

manager.disposeRuntimeEngine(engine);
manager.close();

CHAPTER 20. JAVA APIS

389

package org.kie.api.runtime.process;

interface ProcessRuntime {

/**
 * Start a new process instance. The process (definition) that should
 * be used is referenced by the given process ID.
 *
 * @param processId The ID of the process that should be started
 * @return the ProcessInstance that represents the instance
 * of the process that was started
 */

ProcessInstance startProcess(String processId);

/**
 * Start a new process instance. The process (definition) that should
 * be used is referenced by the given process id. Parameters can be passed
 * to the process instance (as name-value pairs), and these will be set
 * as variables of the process instance.
 *
 * @param processId the ID of the process that should be started
 * @param parameters the process variables that should be set when
 * starting the process instance
 * @return the ProcessInstance that represents the instance
 * of the process that was started
 */

ProcessInstance startProcess(String processId, Map<String, Object> parameters);

/**
 * Signals the engine that an event has occurred. The type parameter defines
 * which type of event and the event parameter can contain additional information
 * related to the event. All process instances that are listening to this type
 * of (external) event will be notified. For performance reasons, this type of event
 * signaling should only be used if one process instance should be able to notify
 * other process instances. For internal event within one process instance, use the
 * signalEvent method that also include the processInstanceId of the process instance
 * in question.
 *
 * @param type the type of event
 * @param event the data associated with this event
 */

void signalEvent(String type, Object event);

/**
 * Signals the process instance that an event has occurred. The type parameter defines
 * which type of event and the event parameter can contain additional information
 * related to the event. All node instances inside the given process instance that
 * are listening to this type of (internal) event will be notified. Note that the event
 * will only be processed inside the given process instance. All other process instances
 * waiting for this type of event will not be notified.
 *
 * @param type the type of event
 * @param event the data associated with this event

Red Hat JBoss BPM Suite 6.4 Development Guide

390

20.1.3.2. Event Listeners

A knowledge session provides methods for registering and removing listeners.

The KieRuntimeEventManager interface is implemented by KieRuntime. KieRuntime provides two
interfaces: RuleRuntimeEventManager and ProcessEventManager.

 * @param processInstanceId the id of the process instance that should be signaled
 */

void signalEvent(String type, Object event, long processInstanceId);

/**
 * Returns a collection of currently active process instances. Note that only process
 * instances that are currently loaded and active inside the engine will be returned.
 * When using persistence, it is likely not all running process instances will be loaded
 * as their state will be stored persistently. It is recommended not to use this
 * method to collect information about the state of your process instances but to use
 * a history log for that purpose.
 *
 * @return a collection of process instances currently active in the session
 */

Collection<ProcessInstance> getProcessInstances();

/**
 * Returns the process instance with the given id. Note that only active process instances
 * will be returned. If a process instance has been completed already,
 * this method will return null.
 *
 * @param id the id of the process instance
 * @return the process instance with the given id or null if it cannot be found
 */

ProcessInstance getProcessInstance(long processInstanceId);

/**
 * Aborts the process instance with the given id. If the process instance has been completed
 * (or aborted), or the process instance cannot be found, this method will throw an
 * IllegalArgumentException.
 *
 * @param id the id of the process instance
 */

void abortProcessInstance(long processInstanceId);

/**
 * Returns the WorkItemManager related to this session. This can be used to
 * register new WorkItemHandlers or to complete (or abort) WorkItems.
 *
 * @return the WorkItemManager related to this session
 */

WorkItemManager getWorkItemManager();

}

CHAPTER 20. JAVA APIS

391

20.1.3.2.1. Process Event Listeners

Use the ProcessEventListener class to listen to process-related events, such as starting and
completing processes, entering and leaving nodes, or changing values of process variables. An event
object provides an access to related information, for example, what is the process and node instances
linked to the event.

Use this API to register your own event listeners. See the methods of the ProcessEventListener
interface:

The before and after events follow the structure of a stack. For example, if a node is triggered as result
of leaving a different node, ProcessNodeTriggeredEvent occurs in between the
BeforeNodeLeftEvent and AfterNodeLeftEvent of the first node. Similarly, all the NodeTriggered and
NodeLeft events that are a direct result of starting a process occur in between the
beforeProcessStarted and afterProcessStarted events. This feature enables you to derive cause
relationships between events more easily.

In general, to be notified when a particular event happens, consider only the before events, as they
occur immediately before the event actually occurs. If you are considering only the after events, it may
appear that the events arise in the wrong order. As the after events are executed in the same order as
any items in a stack, these events are triggered only after all the events executed as a result of this
event have already triggered. Use the after events to ensure that any process-related action has ended.
For example, use the after event to be notified when starting of a particular process instance has ended.

Not all nodes always generate the NodeTriggered or NodeLeft events; depending on the type of a
node, some nodes might only generate the NodeLeft events, or the NodeTriggered events.

Catching intermediate events is similar to generating the NodeLeft events, as they are not triggered by
another node, but activated from outside. Similarly, throwing intermediate events is similar to
generating the NodeTriggered events, as they have no outgoing connection.

20.1.3.2.2. Rule Event Listeners

The RuleRuntimeEventManager interface enables you to add and remove listeners to listen to the
events for the working memory and the agenda.

The following code snippet shows how to declare a simple agenda listener and attach the listener to a
session. The code prints the events after they fire.

Example 20.1. Adding AgendaEventListener

package org.kie.api.event.process;

public interface ProcessEventListener {

 void beforeProcessStarted(ProcessStartedEvent event);
 void afterProcessStarted(ProcessStartedEvent event);
 void beforeProcessCompleted(ProcessCompletedEvent event);
 void afterProcessCompleted(ProcessCompletedEvent event);
 void beforeNodeTriggered(ProcessNodeTriggeredEvent event);
 void afterNodeTriggered(ProcessNodeTriggeredEvent event);
 void beforeNodeLeft(ProcessNodeLeftEvent event);
 void afterNodeLeft(ProcessNodeLeftEvent event);
 void beforeVariableChanged(ProcessVariableChangedEvent event);
 void afterVariableChanged(ProcessVariableChangedEvent event);
}

Red Hat JBoss BPM Suite 6.4 Development Guide

392

Red Hat JBoss BRMS also provides the DebugRuleRuntimeEventListener and
DebugAgendaEventListener classes which implement each method of the
RuleRuntimeEventListener interface with a debug print statement. To print all the working memory
events, add a listener as shown below:

Example 20.2. Adding DebugRuleRuntimeEventListener

Each event implements the KieRuntimeEvent interface which can be used to retrieve
KnowlegeRuntime, from which the event originated.

The supported events are as follows:

MatchCreatedEvent

MatchCancelledEvent

BeforeMatchFiredEvent

AfterMatchFiredEvent

AgendaGroupPushedEvent

AgendaGroupPoppedEvent

ObjectInsertEvent

ObjectDeletedEvent

ObjectUpdatedEvent

ProcessCompletedEvent

ProcessNodeLeftEvent

ProcessNodeTriggeredEvent

ProcessStartEvent

20.1.3.3. Loggers

Red Hat JBoss BPM Suite provides a listener for creating an audit log to the console or a file on the file

import org.kie.api.runtime.process.EventListener;

ksession.addEventListener(new DefaultAgendaEventListener() {

 public void afterMatchFired(AfterMatchFiredEvent event) {
 super.afterMatchFired(event);
 System.out.println(event);
 }

});

ksession.addEventListener(new DebugRuleRuntimeEventListener());

CHAPTER 20. JAVA APIS

393

Red Hat JBoss BPM Suite provides a listener for creating an audit log to the console or a file on the file
system. You can use these logs for debugging purposes as it contains all the events occurring at
runtime. Red Hat JBoss BPM Suite provides the following logger implementations:

Console logger

This logger prints all the events to the console. The KieServices object provides a
KieRuntimeLogger logger that you can add to your session. When you create a console logger, pass
the knowledge session as an argument.

File logger

This logger writes all events to a file using an XML representation. You can use this log file in your IDE
to generate a tree-based visualization of the events that occurs during execution. For the file logger,
you need to provide a name.

Threaded file logger

As a file logger writes the events to disk only when closing the logger or when the number of events
in the logger reaches a predefined level. You cannot use it when debugging processes at runtime. A
threaded file logger writes the events to a file after a specified time interval, making it possible to
use the logger to visualize the progress in real-time, while debugging processes. For the threaded file
logger, you need to provide the interval (in milliseconds) after which the events must be saved. You
must always close the logger at the end of your application.

See an example of using FileLogger logger:

Example 20.3. FileLogger

KieRuntimeLogger uses the comprehensive event system in Red Hat JBoss BRMS to create an audit
log that can be used to log the execution of an application for later inspection, using tools such as the
Red Hat JBoss Developer Studio audit viewer.

20.1.3.4. Correlation Keys

When working with processes, you may require to assign a given process instance a business identifier
for later reference without knowing the generated process instance ID. To provide such capabilities,
Red Hat JBoss BPM Suite enables you to use the CorrelationKey interface that is composed of
CorrelationProperties. CorrelationKey can have a single property describing it. Alternatively,
CorrelationKey can be represented as multi-valued property set. Note that CorrelationKey is a unique
identifier for an active process instance, and is not passed on to the subprocesses.

Correlation is usually used with long running processes and thus require persistence to be enabled in

import org.kie.api.KieServices;
import org.kie.api.logger.KieRuntimeLogger;

...
KieRuntimeLogger logger = KieServices.Factory
 .get().getLoggers().newFileLogger(ksession, "test");

// Add invocations to the process engine here,
// for example ksession.startProcess(processId);

...

logger.close();

Red Hat JBoss BPM Suite 6.4 Development Guide

394

Correlation is usually used with long running processes and thus require persistence to be enabled in
order to permanently store correlation information. Correlation capabilities are provided as part of the
CorrelationAwareProcessRuntime interface.

The CorrelationAwareProcessRuntime interface exposes following methods:

package org.kie.internal.process;

interface CorrelationAwareProcessRuntime {

/**
 * Start a new process instance. The process (definition) that should
 * be used is referenced by the given process id. Parameters can be passed
 * to the process instance (as name-value pairs), and these will be set
 * as variables of the process instance.
 *
 * @param processId the id of the process that should be started
 * @param correlationKey custom correlation key that can be used to identify process instance
 * @param parameters the process variables that should be set
 * when starting the process instance
 * @return the ProcessInstance that represents the instance of the process that was started
 */

ProcessInstance startProcess(String processId, CorrelationKey correlationKey, Map<String, Object>
parameters);

/**
 * Creates a new process instance (but does not yet start it). The process
 * (definition) that should be used is referenced by the given process id.
 * Parameters can be passed to the process instance (as name-value pairs),
 * and these will be set as variables of the process instance. You should only
 * use this method if you need a reference to the process instance before actually
 * starting it. Otherwise, use startProcess.
 *
 * @param processId the id of the process that should be started
 * @param correlationKey custom correlation key that can be used to identify process instance
 * @param parameters the process variables that should be set
 * when creating the process instance
 * @return the ProcessInstance that represents the instance of the process
 * that was created (but not yet started)
 */

ProcessInstance createProcessInstance(String processId, CorrelationKey correlationKey,
Map<String, Object> parameters);

/**
 * Returns the process instance with the given correlationKey.
 * Note that only active process instances will be returned.
 * If a process instance has been completed already, this method will return null.
 *
 * @param correlationKey the custom correlation key assigned
 * when process instance was created
 * @return the process instance with the given id or null if it cannot be found
 */

CHAPTER 20. JAVA APIS

395

You can create and use a correlation key with single or multiple properties. In case of correlation keys
with multiple properties, it is not necessary that you know all parts of the correlation key in order to
search for a process instance. Red Hat JBoss BPM Suite enables you to set a part of the correlation key
properties and get a list of entities that match the properties. That is, you can search for process
instances even with partial correlation keys.

For example, consider a scenario when you have a unique identifier customerId per customer. Each
customer can have many applications (process instances) running simultaneously. To retrieve a list of all
the currently running applications and choose to continue any one of them, use a correlation key with
multiple properties (such as customerId and applicationId) and use only customerId to retrieve the
entire list.

Red Hat JBoss BPM Suite runtime provides the operations to find single process instance by complete
correlation key and many process instances by partial correlation key. The following methods of
RuntimeDataService can be used (see Section 20.3.4, “Runtime Data Service”):

20.1.3.5. Threads

Multi-threading is divided into technical and logical multi-threading.

Technical multi-threading

Occurs when multiple threads or processes are started on a computer.

Logical multi-threading

ProcessInstance getProcessInstance(CorrelationKey correlationKey);

}

/**
 * Returns active process instance description found for given correlation key
 * if found otherwise null. At the same time it will
 * fetch all active tasks (in status: Ready, Reserved, InProgress) to provide
 * information what user task is keeping instance and who owns them
 * (if were already claimed).
 *
 * @param correlationKey correlation key assigned to process instance
 * @return Process instance information, in the form of
 * a {@link ProcessInstanceDesc} instance.
 */

ProcessInstanceDesc getProcessInstanceByCorrelationKey(CorrelationKey correlationKey);

/**
 * Returns process instances descriptions (regardless of their states)
 * found for given correlation key if found otherwise empty list.
 * This query uses 'like' to match correlation key so it allows to pass only partial keys,
 * though matching is done based on 'starts with'.
 *
 * @param correlationKey correlation key assigned to process instance
 * @return A list of {@link ProcessInstanceDesc} instances representing the process
 * instances that match the given correlation key
 */

Collection<ProcessInstanceDesc> getProcessInstancesByCorrelationKey
 (CorrelationKey correlationKey);

Red Hat JBoss BPM Suite 6.4 Development Guide

396

Occurs in a BPM process, for example after a process reaches a parallel gateway. The original
process then splits into two processes that are executed in parallel.

The Red Hat JBoss BPM Suite engine supports logical multi-threading which is implemented using only
one technical thread. The logical implementation was chosen because multiple technical threads need
to communicate state information with each other, if they are working on the same process. While multi-
threading provides performance benefits, the extra logic used to ensure the different threads work
together well, means that this is not guaranteed. There is additional overhead of avoiding race
conditions and deadlocks.

The Red Hat JBoss BPM Suite engine executes actions serially. For example, if a process encounters a
parallel gateway, it sequentially triggers each of the outgoing branches, one after the other. This is
possible since execution is usually instantaneous. As a result, you may not even notice this behaivor.
Similarly, when the engine encounters a script task in a process, it synchronously executes that script and
waits for it to complete before continuing execution.

For example, calling a Thread.sleep(…) method as a part of a script does not make the engine continue
execution elsewhere, but blocks the engine thread during that period. The same principle applies to
service tasks.

When a service task is reached in a process, the engine invokes the handler of the service synchronously.
The engine waits for the completeWorkItem(…) method to return before continuing execution. It is
important that your service handler executes your service asynchronously if its execution is not
instantaneous. For example, a service task that invokes an external service. Since the delay in invoking
the service remotely and waiting for the results can take too long, invoking this service asynchronously is
advised. Asynchronous call invokes the service and notifies the engine later when the results are
available. After invoking the service, the process engine continues execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as the engine
does not have to wait until a human actor responds to the request. The human task handler only creates
a new task when the human task node is triggered. The engine then is able to continue the execution of
the process (if necessary) and the handler notifies the engine asynchronously when the user completes
the task.

20.1.3.6. Globals

Globals are named objects that are visible to the engine differently from facts; changes in a global do
not trigger reevaluation of rules. Globals are useful for providing static information, as an object offering
services that are used in the RHS of a rule, or as a means to return objects from the rule engine. When
you use a global on the LHS of a rule, make sure it is immutable, or, at least, do not expect changes to
have any effect on the behavior of your rules.

A global must be declared as a Java object in a rules file:

With the Knowledge Base now aware of the global identifier and its type, it is now possible to call the
ksession.setGlobal() method with the global’s name and an object, for any session, to associate the
object with the global. Failure to declare the global type and identifier in DRL code will result in an
exception being thrown from this call.

Set any global before it is used in the evaluation of a rule. Failure to do so results in a

global java.util.List list

List list = new ArrayList();
ksession.setGlobal("list", list);

CHAPTER 20. JAVA APIS

397

Set any global before it is used in the evaluation of a rule. Failure to do so results in a
NullPointerException exception.

You can also initialize global variables while instantiating a process:

1. Define the variables as a Map of String and Object values.

2. Provide the map as a parameter to the startProcess() method.

To access your global variable, use the getVariable() method:

20.1.4. KIE File System

You can define the a KIE base and a KIE session that belong to a KIE module programmatically instead of
using definitions in the kmodule.xml file. The API also enables you to add the file that contains the KIE
artifacts instead of automatically reading the files from the resources folder of your project. To add KIE
artifacts manually, create a KieFileSystem object, which is a sort of virtual file system, and add all the
resources contained in your project to it.

To use the KIE file system:

1. Create a KieModuleModel instance from KieServices.

2. Configure your KieModuleModel instance with the desired KIE base and KIE session.

3. Convert your KieModuleModel instance into XML and add the XML to KieFileSystem.

This process is shown by the following example:

Example 20.4. Creating kmodule.xml Programmatically and Adding It to KieFileSystem

Map<String, Object> params = new HashMap<String, Object>();
params.put("VARIABLE_NAME", "variable value");
ksession.startProcess("my.process.id", params);

processInstance.getContextInstance().getVariable("globalStatus");

import org.kie.api.KieServices;
import org.kie.api.builder.model.KieModuleModel;
import org.kie.api.builder.model.KieBaseModel;
import org.kie.api.builder.model.KieSessionModel;
import org.kie.api.builder.KieFileSystem;

KieServices kieServices = KieServices.Factory.get();
KieModuleModel kieModuleModel = kieServices.newKieModuleModel();

KieBaseModel kieBaseModel1 = kieModuleModel.newKieBaseModel("KBase1")
 .setDefault(true)
 .setEqualsBehavior(EqualityBehaviorOption.EQUALITY)
 .setEventProcessingMode(EventProcessingOption.STREAM);

KieSessionModel ksessionModel1 = kieBaseModel1.newKieSessionModel("KSession1")
 .setDefault(true)
 .setType(KieSessionModel.KieSessionType.STATEFUL)
 .setClockType(ClockTypeOption.get("realtime"));

Red Hat JBoss BPM Suite 6.4 Development Guide

398

Add remaining KIE artifacts that you use in your project to your KieFileSystem instance. The artifacts
must be in a Maven project file structure.

Example 20.5. Adding Kie Artifacts to KieFileSystem

The example above shows that it is possible to add the KIE artifacts both as a String variable and as
Resource instance. The Resource instance can be created by the KieResources factory, also provided
by the KieServices instance. The KieResources class provides factory methods to convert an
InputStream, URL, and File objects, or a String representing a path of your file system to a Resource
instance that can be managed by the KieFileSystem.

The type of Resource can be inferred from the extension of the name used to add it to the
KieFileSystem instance. However, it is also possible not to follow the KIE conventions about file
extensions and explicitly assign a ResourceType property to a Resource object as shown below:

Example 20.6. Creating and Adding Resource with Explicit Type

Add all the resources to your KieFileSystem instance and build it by passing the KieFileSystem
instance to KieBuilder.

When you build KieFileSystem, the resulting KieModule is automatically added to the KieRepository
singleton. KieRepository is a singleton acting as a repository for all the available KieModule instances.

20.1.5. KIE Module

Red Hat JBoss BRMS and Red Hat JBoss BPM Suite use Maven and align with Maven practices. A KIE
project or a KIE module is a Maven project or a module with an additional metadata file META-
INF/kmodule.xml. This file is a descriptor that selects resources to knowledge bases and configures
sessions. There is also alternative XML support through Spring and OSGi BluePrints.

While Maven can build and package KIE resources, it does not provide validation at build time by default.
A Maven plug-in, kie-maven-plugin, is recommended to get build time validation. The plug-in also

KieFileSystem kfs = kieServices.newKieFileSystem();
kfs.writeKModuleXML(kieModuleModel.toXML());

import org.kie.api.builder.KieFileSystem;

KieFileSystem kfs = ...
kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)
 .write("src/main/resources/dtable.xls",
 kieServices.getResources().newInputStreamResource(dtableFileStream));

import org.kie.api.builder.KieFileSystem;

KieFileSystem kfs = ...
kfs.write("src/main/resources/myDrl.txt",
 kieServices.getResources().newInputStreamResource(drlStream)
 .setResourceType(ResourceType.DRL));

CHAPTER 20. JAVA APIS

399

generates many classes, making the runtime loading faster. See Section 20.1.7, “KIE Maven Plug-in” for
more information about the kie-maven-plugin plug-in.

KIE uses default values to minimize the amount of required configuration; an empty kmodule.xml file is
the simplest configuration. The kmodule.xml file is required, even if it is empty, as it is used for
discovery of the JAR and its contents.

Maven can use the following commands:

mvn install to deploy a KIE module to the local machine, where all other applications on the
local machine use it.

mvn deploy to push the KIE module to a remote Maven repository. Building the application will
pull in the KIE module and populate the local Maven repository in the process.

JAR files and libraries can be deployed in one of two ways:

1. Added to the class path, similar to a standard JAR in a Maven dependency listing

2. Dynamically loaded at runtime.

KIE scans the class path to find all the JAR files with a kmodule.xml file in it. Each found JAR is
represented by the KieModule interface. The terms class path KIE module and dynamic KIE module are
used to refer to the two loading approaches. While dynamic modules support side by side versioning,
class path modules do not. Once a module is on the class path, no other version may be loaded
dynamically.

The kmodule.xml file enables you to define and configure one or more KIE bases. Additionally, you can
create one or more KIE sessions from each KIE base, as shown in the following example. For more
information about KieBase attributes, see Section 20.1.2, “KIE Base”. For more information about
KieSession attributes, see Section 20.1.3, “KIE Session”.

Example 20.7. Sample kmodule.xml File

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.drools.org/xsd/kmodule">
 <kbase name="KBase1" default="true" eventProcessingMode="cloud" equalsBehavior="equality"
declarativeAgenda="enabled" packages="org.domain.pkg1">
 <ksession name="KSession1_1" type="stateful" default="true" />
 <ksession name="KSession1_2" type="stateless" default="false" beliefSystem="jtms" />
 </kbase>
 <kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 <ksession name="KSession2_1" type="stateful" default="false" clockType="realtime">
 <fileLogger file="debugInfo" threaded="true" interval="10" />
 <workItemHandlers>
 <workItemHandler name="name" type="new org.domain.WorkItemHandler()" />
 </workItemHandlers>
 <listeners>
 <ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
 <agendaEventListener type="org.domain.FirstAgendaListener" />
 <agendaEventListener type="org.domain.SecondAgendaListener" />
 <processEventListener type="org.domain.ProcessListener" />
 </listeners>

Red Hat JBoss BPM Suite 6.4 Development Guide

400

The example above defines two KIE bases. It is possible to instantiate a different number of KIE sessions
from each KIE base. In this example, two KIE sessions are instantiated from the KBase1 KIE base, while
only one KIE session from the second KIE base.

You can specify properties in the <configuration> element of the kmodule.xml file:

See the list of supported properties:

drools.dialect.default

Sets the default Drools dialect. Possible values are java and mvel.

drools.accumulate.function.FUNCTION

Links a class that implements an accumulate function to a specified function name, which allows to
add custom accumulate functions into the engine. For example:

drools.evaluator.EVALUATION

Links a class that implements an evaluator definition to a specified evaluator name, which allows to
add custom evaluators into the engine. Evaluator is similar to a custom operator. For example:

drools.dump.dir

Sets a path to the Drools dump/log directory.

drools.defaultPackageName

Sets the default package.

drools.parser.processStringEscapes

Sets the String escape function. Possible values are true and false. If set to false, the \n character
will not be interpreted as the newline character. The default value is true.

drools.kbuilder.severity.SEVERITY

Sets the severity of problems in a knowledge definition. Possible severities are duplicateRule,
duplicateProcess, and duplicateFunction. Possible values are for example ERROR and WARNING.
The default value is INFO.

When you build a KIE base, it uses this setting for reporting found problems. For example, if there are

 </ksession>
 </kbase>
</kmodule>

<kmodule>
 ...
 <configuration>
 <property key="drools.dialect.default" value="java"/>
 ...
 </configuration>
 ...
</kmodule>

<property key="drools.accumulate.function.hyperMax"
value="org.drools.custom.HyperMaxAccumulate"/>

<property key="drools.evaluator.soundslike"
value="org.drools.core.base.evaluators.SoundslikeEvaluatorsDefinition"/>

CHAPTER 20. JAVA APIS

401

When you build a KIE base, it uses this setting for reporting found problems. For example, if there are
two function definitions in a DRL file with the same name and the property is set to the following,
then building KIE base throws an error.

drools.propertySpecific

Sets the property reactivity of the engine. Possible values are DISABLED, ALLOWED, and
ALWAYS.

drools.lang.level

Sets the DRL language level. Possible values are DRL5, DRL6, and DRL6_STRICT. The default value
is DRL6_STRICT.

For more information about the kmodule.xml file, download the Red Hat JBoss BPM Suite 6.4.0
Source Distribution ZIP file from the Red Hat Customer Portal and see the kmodule.xsd XML schema
located at FILE_HOME/jboss-bpmsuite-6.4.0.GA-sources/kie-api-parent-6.5.0.Final-redhat-2/kie-
api/src/main/resources/org/kie/api/.

Since default values have been provided for all configuration aspects, the simplest kmodule.xml file can
contain just an empty kmodule tag, such as:

Example 20.8. Empty kmodule.xml File

In this way the KIE module will contain a single default KIE base. All KIE assets stored in the resources
directory, or any directory in it, will be compiled and added to the default KIE base. To build the
artifacts, it is sufficient to create a KIE container for them.

20.1.6. KIE Container

The following example shows how to build a KieContainer object that reads resources built from the
class path:

Example 20.9. Creating KieContainer From Classpath

After defining named KIE bases and sessions in the kmodule.xml file, you can retrieve KieBase and
KieSession objects from KieContainer using their names. For example:

Example 20.10. Retrieving KieBases and KieSessions from KieContainer

<property key="drools.kbuilder.severity.duplicateFunction" value="ERROR"/>

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule"/>

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;

KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;

Red Hat JBoss BPM Suite 6.4 Development Guide

402

https://access.redhat.com/

Because KSession2_1 is stateful and KSession2_2 is stateless, the example uses different methods to
create the two objects. Use method corresponding to the session type when creating a KIE session.
Otherwise, KieContainer will throw a RuntimeException exception. Additionally, because
kmodule.xml has default KieBase and KieSession definitions, you can instantiate them from
KieContainer without invoking their name:

Example 20.11. Retrieving Default KieBases and KieSessions from KieContainer

Because a KIE project is also a Maven project, the groupId, artifactId and version values declared in the
pom.xml file are used to generate a ReleaseId object that uniquely identifies your project inside your
application. You can create a new KieContainer from the project by passing its ReleaseId to the
KieServices.

Example 20.12. Creating KieContainer of Existing Project by ReleaseId

Use the KieServices interface to access KIE building and runtime facilities.

The example shows how to compile all the Java sources and the KIE resources and deploy them into
your KIE container, which makes its content available for use at runtime.

20.1.6.1. KIE Base Configuration

import org.kie.api.KieBase;
import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.StatelessKieSession;

KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();

KieBase kBase1 = kContainer.getKieBase("KBase1");
KieSession kieSession1 = kContainer.newKieSession("KSession2_1");
StatelessKieSession kieSession2 = kContainer.newStatelessKieSession("KSession2_2");

import org.kie.api.runtime.KieContainer;
import org.kie.api.KieBase;
import org.kie.api.runtime.KieSession;

KieContainer kContainer = ...

KieBase kBase1 = kContainer.getKieBase(); // returns KBase1
KieSession kieSession1 = kContainer.newKieSession(); // returns KSession2_1

import org.kie.api.KieServices;
import org.kie.api.builder.ReleaseId;
import org.kie.api.runtime.KieContainer;

KieServices kieServices = KieServices.Factory.get();
ReleaseId releaseId = kieServices.newReleaseId("org.acme", "myartifact", "1.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseId);

CHAPTER 20. JAVA APIS

403

Sometimes, for instance in an OSGi environment, the KieBase object needs to resolve types that are
not in the default class loader. To do so, create a KieBaseConfiguration instance with an additional
class loader and pass it to KieContainer when creating a new KieBase object. For example:

Example 20.13. Creating a New KieBase with Custom Class Loader

The KieBase object can create, and optionally keep references to, KieSession objects. When you
modify KieBase, the modifications are applied against the data in the sessions. This reference is a weak
reference and it is also optional, which is controlled by a boolean flag.

NOTE

If you are using Oracle WebLogic Server, note how it finds and loads application class files
at runtime. When using a non-exploded WAR deployment, Oracle WebLogic Server packs
the contents of WEB-INF/classes into WEB-INF/lib/_wl_cls_gen.jar. Consequently,
when you use KIE-Spring to create KieBase and KieSession from resources stored in
WEB-INF/classes, KIE-Spring fails to locate these resources. For this reason, the
recommended deployment method on Oracle WebLogic Server is to use the exploded
archives contained within the product ZIP file.

20.1.7. KIE Maven Plug-in

The KIE Maven Plug-in validates and pre-compiles artifact resources. It is recommended that the plug-
in is used at all times. To use the plug-in, add it to the build section of your Maven pom.xml file:

Example 20.14. Adding KIE Plug-in to Maven pom.xml

For the supported Maven artifact version, see Supported Component Versions of the Red Hat JBoss
BPM Suite Installation Guide.

import org.kie.api.KieServices;
import org.kie.api.KieServices.Factory;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieBase;
import org.kie.api.runtime.KieContainer;

KieServices kieServices = KieServices.Factory.get();
KieBaseConfiguration kbaseConf = kieServices
 .newKieBaseConfiguration(null, MyType.class.getClassLoader());
KieBase kbase = kieContainer.newKieBase(kbaseConf);

<build>
 <plugins>
 <plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <version>${project.version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

Red Hat JBoss BPM Suite 6.4 Development Guide

404

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps

NOTE

The kie-maven-plugin artifact requires Maven version 3.1.1 or above due to the migration
of sonatype-aether to eclipse-aether. Aether implementation on Sonatype is no longer
maintained and supported. As the eclipse-aether requires Maven version 3.1.1 or above,
the kie-maven-plugin requires it too.

Building a KIE module without the Maven plugin copies all the resources into the resulting JAR file.
When the JAR file is loaded at runtime, all the resources are built. In case of compilation issues, it returns
a null KieContainer. It also pushes the compilation overhead to the runtime. To prevent these issues, it
is recommended that you use the Maven plugin.

NOTE

For compiling decision tables and processes, add their dependencies to project
dependencies (as compile scope) or as plugin dependencies. For decision tables the
dependency is org.drools:drools-decisiontables and for processes org.jbpm:jbpm-
bpmn2.

20.1.8. KIE Repository

When you build the content of KieFileSystem, the resulting KieModule is automatically added to
KieRepository. KieRepository is a singleton acting as a repository for all the available KIE modules.

After this, you can create a new KieContainer for the KieModule using its ReleaseId identifier.
However, because KieFileSystem does not contain pom.xml file (it is possible to add pom.xml using
the KieFileSystem.writePomXML method), KIE cannot determine the ReleaseId of the KieModule.
Consequently, it assigns a default ReleaseId to the module. The default ReleaseId can be obtained
from the KieRepository and used to identify the KieModule inside the KieRepository itself.

The following example shows this process.

Example 20.15. Building Content of KieFileSystem and Creating KieContainer

At this point, you can get KIE bases and create new KIE sessions from this KieContainer in the same way
as in the case of a KieContainer created directly from the class path.

It is a best practice to check the compilation results. The KieBuilder reports compilation results of three
different severities:

ERROR

import org.kie.api.KieServices;
import org.kie.api.KieServices.Factory;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;
import org.kie.api.runtime.KieContainer;

KieServices kieServices = KieServices.Factory.get();
KieFileSystem kfs = ...
kieServices.newKieBuilder(kfs).buildAll();
KieContainer kieContainer = kieServices
 .newKieContainer(kieServices.getRepository().getDefaultReleaseId());

CHAPTER 20. JAVA APIS

405

WARNING

INFO

An ERROR indicates that the compilation of the project failed, no KieModule is produced, and nothing
is added to the KieRepository singleton. WARNING and INFO results can be ignored, but are available
for inspection.

Example 20.16. Checking that Compilation Did Not Produce Any Error

20.1.9. KIE Scanner

The KIE Scanner continuously monitors your Maven repository to check for a new release of your KIE
project. A new release is deployed in the KieContainer wrapping that project. The use of the
KieScanner requires kie-ci.jar to be on the class path.

NOTE

Avoid using a KIE scanner with business processes. Using a KIE scanner with processes
can lead to unforeseen updates that can then cause errors in long-running processes
when changes are not compatible with running process instances.

A KieScanner can be registered on a KieContainer as in the following example.

Example 20.17. Registering and Starting KieScanner on KieContainer

In this example the KieScanner is configured to run with a fixed time interval, but it is also possible to
run it on demand by invoking the scanNow() method on it. If the KieScanner finds in the Maven
repository an updated version of the KIE project used by KieContainer for which it is configured, the

import org.kie.api.builder.KieBuilder;
import org.kie.api.KieServices;

KieBuilder kieBuilder = kieServices.newKieBuilder(kfs).buildAll();
assertEquals(0, kieBuilder.getResults().getMessages(Message.Level.ERROR).size());

import org.kie.api.KieServices;
import org.kie.api.builder.ReleaseId;
import org.kie.api.runtime.KieContainer;
import org.kie.api.builder.KieScanner;

...

KieServices kieServices = KieServices.Factory.get();
ReleaseId releaseId = kieServices
 .newReleaseId("org.acme", "myartifact", "1.0-SNAPSHOT");
KieContainer kContainer = kieServices.newKieContainer(releaseId);
KieScanner kScanner = kieServices.newKieScanner(kContainer);

// Start the KieScanner polling the Maven repository every 10 seconds:
kScanner.start(10000L);

Red Hat JBoss BPM Suite 6.4 Development Guide

406

KieScanner automatically downloads the new version and triggers an incremental build of the new
project. From this moment all the new KieBase and KieSession objects created from the KieContainer
will use the new project version.

Since KieScanner relies on Maven, Maven should be configured with the correct updatePolicy of
always as shown in the following example:

20.1.10. Command Executor

The CommandExecutor interface enables commands to be executed on both stateful and stateless KIE
sessions. The stateless KIE session executes fireAllRules() at the end before disposing the session.

SetGlobalCommand and GetGlobalCommand are two commands relevant to Red Hat JBoss BRMS.
SetGlobalCommand calls setGlobal method on a KIE session.

The optional Boolean indicates whether the command should return the value of the global as a part of
the ExecutionResults. If true it uses the same name as the global name. A String can be used instead of
the Boolean, if an alternative name is desired.

Example 20.18. Set Global Command

Example 20.19. Get Global Command

<profile>
 <id>guvnor-m2-repo</id>
 <repositories>
 <repository>
 <id>guvnor-m2-repo</id>
 <name>BRMS Repository</name>
 <url>http://10.10.10.10:8080/business-central/maven2/</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 </snapshots>
 </repository>
 </repositories>
</profile>

import org.kie.api.runtime.StatelessKieSession;
import org.kie.api.runtime.ExecutionResults;

StatelessKieSession ksession = kbase.newStatelessKieSession();
ExecutionResults results = ksession.execute
 (CommandFactory.newSetGlobal("stilton", new Cheese("stilton"), true));
Cheese stilton = results.getValue("stilton");

import org.kie.api.runtime.StatelessKieSession;
import org.kie.api.runtime.ExecutionResults;

CHAPTER 20. JAVA APIS

407

All the above examples execute single commands. The BatchExecution represents a composite
command, created from a list of commands. The execution engine will iterate over the list and execute
each command in turn. This means you can insert objects, start a process, call fireAllRules, and execute
a query in a single execute(…) call.

The StatelessKieSession session will execute fireAllRules() automatically at the end. The
FireAllRules command is allowed even for the stateless session, because using it disables the automatic
execution at the end. It is similar to manually overriding the function.

Any command in the batch that has an out identifier set will add its results to the returned
ExecutionResults instance.

Example 20.20. BatchExecution Command

In the example above, multiple commands are executed, two of which populate the ExecutionResults.
The query command uses the same identifier as the query name by default, but you can map it to a
different identifier.

All commands support XML (using XStream or JAXB marshallers) and JSON marshalling. For more
information, see Section 20.1.10.1, “Marshalling”.

20.1.10.1. Marshalling

XML marshalling and unmarshalling of the JBoss BRMS Commands requires the use of special classes.
This section describes these classes.

20.1.10.1.1. XStream

To use the XStream commands marshaller, you need to use the DroolsHelperProvider to obtain an
XStream instance. It is required because it has the commands converters registered. Also ensure that
the drools-compiler library is present on the classpath.

StatelessKieSession ksession = kbase.newStatelessKieSession();
ExecutionResults results =
 ksession.execute(CommandFactory.getGlobal("stilton"));
Cheese stilton = results.getValue("stilton");

import org.kie.api.runtime.StatelessKieSession;
import org.kie.api.runtime.ExecutionResults;

StatelessKieSession ksession = kbase.newStatelessKieSession();

List cmds = new ArrayList();

cmds.add(CommandFactory.newInsertObject(new Cheese("stilton", 1), "stilton"));
cmds.add(CommandFactory.newStartProcess("process cheeses"));
cmds.add(CommandFactory.newQuery("cheeses"));

ExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(cmds));
Cheese stilton = (Cheese) results.getValue("stilton");
QueryResults qresults = (QueryResults) results.getValue("cheeses");

Red Hat JBoss BPM Suite 6.4 Development Guide

408

The fully-qualified class name of the BatchExecutionHelper class is
org.kie.internal.runtime.helper.BatchExecutionHelper.

JSON
JSON API to marshalling/unmarshalling is similar to XStream API:

JAXB
There are two options for using JAXB. You can define your model in an XSD file or have a POJO model.
In both cases you have to declare your model inside JAXBContext. In order to do this, you need to use
Drools Helper classes. Once you have the JAXBContext, you need to create the
Unmarshaller/Marshaller as needed.

XSD File
With your model defined in a XSD file, you need to have a KBase that has your XSD model added as a
resource.

To do this, add the XSD file as a XSD ResourceType into the KBase. Finally you can create the
JAXBContext using the KBase (created with the KnowledgeBuilder). Ensure that the drools-compiler
and jaxb-xjc libraries are present on the classpath.

Using POJO Model
Use DroolsJaxbHelperProviderImpl to create the JAXBContext.
DroolsJaxbHelperProviderImpl.createDroolsJaxbContext() has two parameters:

classNames

A list with the canonical name of the classes that you want to use in the marshalling/unmarshalling
process.

BatchExecutionHelper.newXStreamMarshaller().toXML(command);

BatchExecutionHelper.newXStreamMarshaller().fromXML(xml);

BatchExecutionHelper.newJSonMarshaller().toXML(command);

BatchExecutionHelper.newJSonMarshaller().fromXML(xml);

import org.kie.api.conf.Option;
import org.kie.api.KieBase;

Options xjcOpts = new Options();
xjcOpts.setSchemaLanguage(Language.XMLSCHEMA);
JaxbConfiguration jaxbConfiguration =
 KnowledgeBuilderFactory.newJaxbConfiguration(xjcOpts, "xsd");
kbuilder.add
 (ResourceFactory.newClassPathResource
 ("person.xsd", getClass()), ResourceType.XSD, jaxbConfiguration);
KieBase kbase = kbuilder.newKnowledgeBase();

List<String> classesName = new ArrayList<String>();
classesName.add("org.drools.compiler.test.Person");

JAXBContext jaxbContext = KnowledgeBuilderHelper
 .newJAXBContext(classesName.toArray(new String[classesName.size()]), kbase);

CHAPTER 20. JAVA APIS

409

properties

JAXB custom properties.

Ensure that the drools-compiler and jaxb-xjc libraries are present on the classpath. The fully-qualified
class name of the DroolsJaxbHelperProviderImpl class is
org.drools.compiler.runtime.pipeline.impl.DroolsJaxbHelperProviderImpl.

20.1.10.2. Supported Commands

Red Hat JBoss BRMS supports the following list of commands:

BatchExecutionCommand

InsertObjectCommand

RetractCommand

ModifyCommand

GetObjectCommand

InsertElementsCommand

FireAllRulesCommand

StartProcessCommand

SignalEventCommand

CompleteWorkItemCommand

AbortWorkItemCommand

QueryCommand

SetGlobalCommand

GetGlobalCommand

GetObjectsCommand

NOTE

The code snippets provided in the examples for these commands use a POJO
org.drools.compiler.test.Person with the following fields:

name: String

age: Integer

List<String> classNames = new ArrayList<String>();
classNames.add("org.drools.compiler.test.Person");

JAXBContext jaxbContext = DroolsJaxbHelperProviderImpl
 .createDroolsJaxbContext(classNames, null);
Marshaller marshaller = jaxbContext.createMarshaller();

Red Hat JBoss BPM Suite 6.4 Development Guide

410

20.1.10.2.1. BatchExecutionCommand

The BatchExecutionCommand command wraps multiple commands to be executed together. It has
the following attributes:

Table 20.1. BatchExecutionCommand Attributes

Name Description Required

lookup Sets the knowledge session ID on which the
commands are going to be executed.

true

commands List of commands to be executed. false

Creating BatchExecutionCommand

XML Output

XStream:

JSON:

JAXB:

BatchExecutionCommand command = new BatchExecutionCommand();
command.setLookup("ksession1");

InsertObjectCommand insertObjectCommand = new InsertObjectCommand(new Person("john", 25));
FireAllRulesCommand fireAllRulesCommand = new FireAllRulesCommand();

command.getCommands().add(insertObjectCommand);
command.getCommands().add(fireAllRulesCommand);

ksession.execute(command);

<batch-execution lookup="ksession1">
 <insert>
 <org.drools.compiler.test.Person>
 <name>john</name>
 <age>25</age>
 </org.drools.compiler.test.Person>
 </insert>
 <fire-all-rules/>
</batch-execution>

{"batch-execution":{"lookup":"ksession1","commands":[{"insert":{"object":
{"org.drools.compiler.test.Person":{"name":"john","age":25}}}},{"fire-all-rules":""}]}}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<batch-execution lookup="ksession1">
 <insert>
 <object xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <age>25</age>

CHAPTER 20. JAVA APIS

411

20.1.10.2.2. InsertObjectCommand

The InsertObjectCommand command is used to insert an object in the knowledge session. It has the
following attributes:

Table 20.2. InsertObjectCommand Attributes

Name Description Required

object The object to be inserted. true

outIdentifier ID to identify the FactHandle created in the object
insertion and added to the execution results.

false

returnObject Boolean to establish if the object must be returned in
the execution results. Default value is true.

false

entryPoint Entrypoint for the insertion. false

Creating InsertObjectCommand

XML Output

XStream:

JSON:

 <name>john</name>
 </object>
 </insert>
 <fire-all-rules max="-1"/>
</batch-execution>

Command insertObjectCommand =
 CommandFactory.newInsert(new Person("john", 25), "john", false, null);

ksession.execute(insertObjectCommand);

<insert out-identifier="john" entry-point="my stream" return-object="false">
 <org.drools.compiler.test.Person>
 <name>john</name>
 <age>25</age>
 </org.drools.compiler.test.Person>
</insert>

{
 "insert": {
 "entry-point": "my stream",
 "object": {
 "org.drools.compiler.test.Person": {
 "age": 25,
 "name": "john"

Red Hat JBoss BPM Suite 6.4 Development Guide

412

JAXB:

20.1.10.2.3. RetractCommand

The RetractCommand command is used to retract an object from the knowledge session. It has the
following attributes:

Table 20.3. RetractCommand Attributes

Name Description Required

handle The FactHandle associated to the object to be
retracted.

true

Creating RetractCommand

There are two ways to create RetractCommand. You can either create the Fact Handle from a string,
with the same output result as shown below:

Or set the Fact Handle that you received when the object was inserted, as shown below:

XML Output

XStream:

JSON:

 }
 },
 "out-identifier": "john",
 "return-object": false
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<insert out-identifier="john" entry-point="my stream" >
 <object xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <age>25</age>
 <name>john</name>
 </object>
</insert>

RetractCommand retractCommand = new RetractCommand();
retractCommand.setFactHandleFromString("123:234:345:456:567");

RetractCommand retractCommand = new RetractCommand(factHandle);

<retract fact-handle="0:234:345:456:567"/>

{
 "retract": {
 "fact-handle": "0:234:345:456:567"

CHAPTER 20. JAVA APIS

413

JAXB:

20.1.10.2.4. ModifyCommand

The ModifyCommand command allows you to modify a previously inserted object in the knowledge
session. It has the following attributes:

Table 20.4. ModifyCommand Attributes

Name Description Required

handle The FactHandle associated to the object to be
retracted.

true

setters List of setters object’s modifications. true

Creating ModifyCommand

XML Output

XStream:

JSON:

 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<retract fact-handle="0:234:345:456:567"/>

ModifyCommand modifyCommand = new ModifyCommand();
modifyCommand.setFactHandleFromString("123:234:345:456:567");

List<Setter> setters = new ArrayList<Setter>();
setters.add(new SetterImpl("age", "30"));

modifyCommand.setSetters(setters);

<modify fact-handle="0:234:345:456:567">
 <set accessor="age" value="30"/>
</modify>

{
 "modify": {
 "fact-handle": "0:234:345:456:567",
 "setters": {
 "accessor": "age",
 "value": 30
 }
 }
}

Red Hat JBoss BPM Suite 6.4 Development Guide

414

JAXB:

20.1.10.2.5. GetObjectCommand

The GetObjectCommand command is used to get an object from a knowledge session. It has the
following attributes:

Table 20.5. GetObjectCommand Attributes

Name Description Required

factHandle The FactHandle associated to the object to be
retracted.

true

outIdentifier ID to identify the FactHandle created in the object
insertion and added to the execution results.

false

Creating GetObjectCommand

XML Output

XStream:

JSON:

JAXB:

20.1.10.2.6. InsertElementsCommand

The InsertElementsCommand command is used to insert a list of objects. It has the following

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<modify fact-handle="0:234:345:456:567">
 <set value="30" accessor="age"/>
</modify>

GetObjectCommand getObjectCommand = new GetObjectCommand();
getObjectCommand.setFactHandleFromString("123:234:345:456:567");
getObjectCommand.setOutIdentifier("john");

<get-object fact-handle="0:234:345:456:567" out-identifier="john"/>

{
 "get-object": {
 "fact-handle": "0:234:345:456:567",
 "out-identifier": "john"
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<get-object out-identifier="john" fact-handle="0:234:345:456:567"/>

CHAPTER 20. JAVA APIS

415

The InsertElementsCommand command is used to insert a list of objects. It has the following
attributes:

Table 20.6. InsertElementsCommand Attributes

Name Description Required

objects The list of objects to be inserted on the knowledge
session.

true

outIdentifier ID to identify the FactHandle created in the object
insertion and added to the execution results.

false

returnObject Boolean to establish if the object must be returned in
the execution results. Default value: true.

false

entryPoint Entrypoint for the insertion. false

Creating InsertElementsCommand

XML Output

XStream:

JSON:

List<Object> objects = new ArrayList<Object>();
objects.add(new Person("john", 25));
objects.add(new Person("sarah", 35));

Command insertElementsCommand = CommandFactory.newInsertElements(objects);

<insert-elements>
 <org.drools.compiler.test.Person>
 <name>john</name>
 <age>25</age>
 </org.drools.compiler.test.Person>
 <org.drools.compiler.test.Person>
 <name>sarah</name>
 <age>35</age>
 </org.drools.compiler.test.Person>
</insert-elements>

{
 "insert-elements": {
 "objects": [
 {
 "containedObject": {
 "@class": "org.drools.compiler.test.Person",
 "age": 25,
 "name": "john"
 }
 },

Red Hat JBoss BPM Suite 6.4 Development Guide

416

JAXB:

20.1.10.2.7. FireAllRulesCommand

The FireAllRulesCommand command is used to allow execution of the rules activations created. It has
the following attributes:

Table 20.7. FireAllRulesCommand Attributes

Name Description Required

max The maximum number of rules activations to be
executed. default is -1 and will not put any restriction
on execution.

false

outIdentifier Add the number of rules activations fired on the
execution results.

false

agendaFilter Allow the rules execution using an Agenda Filter. false

Creating FireAllRulesCommand

XML Output

 {
 "containedObject": {
 "@class": "Person",
 "age": 35,
 "name": "sarah"
 }
 }
]
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<insert-elements return-objects="true">
 <list>
 <element xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <age>25</age>
 <name>john</name>
 </element>
 <element xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <age>35</age>
 <name>sarah</name>
 </element>
 <list>
</insert-elements>

FireAllRulesCommand fireAllRulesCommand = new FireAllRulesCommand();
fireAllRulesCommand.setMax(10);
fireAllRulesCommand.setOutIdentifier("firedActivations");

CHAPTER 20. JAVA APIS

417

XStream:

JSON:

JAXB:

20.1.10.2.8. StartProcessCommand

The StartProcessCommand command allows you to start a process using the ID. Additionally, you can
pass parameters and initial data to be inserted. It has the following attributes:

Table 20.8. StartProcessCommand Attributes

Name Description Required

processId The ID of the process to be started. true

parameters A Map <String>, <Object> to pass parameters in the
process startup.

false

data A list of objects to be inserted in the knowledge
session before the process startup.

false

Creating StartProcessCommand

XML Output

XStream:

JSON:

{
 "start-process": {
 "process-id": "org.drools.task.processOne"

<fire-all-rules max="10" out-identifier="firedActivations"/>

{
 "fire-all-rules": {
 "max": 10,
 "out-identifier": "firedActivations"
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<fire-all-rules out-identifier="firedActivations" max="10"/>

StartProcessCommand startProcessCommand = new StartProcessCommand();
startProcessCommand.setProcessId("org.drools.task.processOne");

<start-process processId="org.drools.task.processOne"/>

Red Hat JBoss BPM Suite 6.4 Development Guide

418

 }
}

JAXB:

20.1.10.2.9. SignalEventCommand

The SignalEventCommand command is used to send a signal event. It has the following attributes:

Table 20.9. SignalEventCommand Attributes

Name Description Required

event-type The type of the incoming event. true

processInstanceId The ID of the process instance to be signalled. false

event The data of the incoming event. false

Creating SignalEventCommand

XML Output

XStream:

JSON:

{
 "signal-event": {
 "@event-type": "start",
 "event-type": "start",
 "object": {
 "org.drools.pipeline.camel.Person": {
 "age": 25,
 "name": "john"

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<start-process processId="org.drools.task.processOne">
 <parameter/>
</start-process>

SignalEventCommand signalEventCommand = new SignalEventCommand();
signalEventCommand.setProcessInstanceId(1001);
signalEventCommand.setEventType("start");
signalEventCommand.setEvent(new Person("john", 25));

<signal-event process-instance-id="1001" event-type="start">
 <org.drools.pipeline.camel.Person>
 <name>john</name>
 <age>25</age>
 </org.drools.pipeline.camel.Person>
</signal-event>

CHAPTER 20. JAVA APIS

419

 }
 },
 "process-instance-id": 1001
 }
}

JAXB:

20.1.10.2.10. CompleteWorkItemCommand

The CompleteWorkItemCommand command allows you to complete a WorkItem. It has the following
attributes:

Table 20.10. CompleteWorkItemCommand Attributes

Name Description Required

workItemId The ID of the WorkItem to be completed. true

results The result of the WorkItem. false

Creating CompleteWorkItemCommand

XML Output

XStream:

JSON:

JAXB:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<signal-event event-type="start" process-instance-id="1001">
 <event xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <age>25</age>
 <name>john</name>
 </event>
</signal-event>

CompleteWorkItemCommand completeWorkItemCommand = new CompleteWorkItemCommand();
completeWorkItemCommand.setWorkItemId(1001);

<complete-work-item id="1001"/>

{
 "complete-work-item": {
 "id": 1001
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<complete-work-item id="1001"/>

Red Hat JBoss BPM Suite 6.4 Development Guide

420

20.1.10.2.11. AbortWorkItemCommand

The AbortWorkItemCommand command enables you to abort a work item the same way as
ksession.getWorkItemManager().abortWorkItem(workItemId). It has the following attributes:

Table 20.11. AbortWorkItemCommand Attributes

Name Description Required

workItemId The ID of the WorkItem to be aborted. true

Creating AbortWorkItemCommand

XML Output

XStream:

JSON:

JAXB:

20.1.10.2.12. QueryCommand

The QueryCommand command executes a query defined in the knowledge base. It has the following
attributes:

Table 20.12. QueryCommand Attributes

Name Description Required

name The query name. true

outIdentifier The identifier of the query results. The query results
are going to be added in the execution results with
this identifier.

false

arguments A list of objects to be passed as a query parameter. false

AbortWorkItemCommand abortWorkItemCommand = new AbortWorkItemCommand();
abortWorkItemCommand.setWorkItemId(1001);

<abort-work-item id="1001"/>

{
 "abort-work-item": {
 "id": 1001
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<abort-work-item id="1001"/>

CHAPTER 20. JAVA APIS

421

Creating QueryCommand

XML Output

XStream:

JSON:

JAXB:

20.1.10.2.13. SetGlobalCommand

The SetGlobalCommand command enables you to set an object to global state. It has the following
attributes:

Table 20.13. SetGlobalCommand Attributes

Name Description Required

identifier The identifier of the global defined in the knowledge
base.

true

object The object to be set into the global. false

out A boolean to exclude the global you set from the
execution results.

false

outIdentifier The identifier of the global execution result. false

Creating SetGlobalCommand

QueryCommand queryCommand = new QueryCommand();
queryCommand.setName("persons");
queryCommand.setOutIdentifier("persons");

<query out-identifier="persons" name="persons"/>

{
 "query": {
 "name": "persons",
 "out-identifier": "persons"
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<query name="persons" out-identifier="persons"/>

SetGlobalCommand setGlobalCommand = new SetGlobalCommand();
setGlobalCommand.setIdentifier("helper");
setGlobalCommand.setObject(new Person("kyle", 30));

Red Hat JBoss BPM Suite 6.4 Development Guide

422

XML Output

XStream:

JSON:

JAXB:

20.1.10.2.14. GetGlobalCommand

The GetGlobalCommand command allows you to get a previously defined global object. It has the
following attributes:

Table 20.14. GetGlobalCommand Attributes

Name Description Required

identifier The identifier of the global defined in the knowledge
base.

true

outIdentifier The identifier to be used in the execution results. false

setGlobalCommand.setOut(true);
setGlobalCommand.setOutIdentifier("output");

<set-global identifier="helper" out-identifier="output">
 <org.drools.compiler.test.Person>
 <name>kyle</name>
 <age>30</age>
 </org.drools.compiler.test.Person>
</set-global>

{
 "set-global": {
 "identifier": "helper",
 "object": {
 "org.drools.compiler.test.Person": {
 "age": 30,
 "name": "kyle"
 }
 },
 "out-identifier": "output"
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<set-global out="true" out-identifier="output" identifier="helper">
 <object xsi:type="person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <age>30</age>
 <name>kyle</name>
 </object>
</set-global>

CHAPTER 20. JAVA APIS

423

Creating GetGlobalCommand

XML Output

XStream:

JSON:

JAXB:

20.1.10.2.15. GetObjectsCommand

The GetObjectsCommand command returns all the objects from the current session as a Collection. It
has the following attributes:

Table 20.15. GetObjectsCommand Attributes

Name Description Required

objectFilter An ObjectFilter to filter the objects returned from the
current session.

false

outIdentifier The identifier to be used in the execution results. false

Creating GetObjectsCommand

XML Output

XStream:

JSON:

GetGlobalCommand getGlobalCommand = new GetGlobalCommand();
getGlobalCommand.setIdentifier("helper");
getGlobalCommand.setOutIdentifier("helperOutput");

<get-global identifier="helper" out-identifier="helperOutput"/>

{
 "get-global": {
 "identifier": "helper",
 "out-identifier": "helperOutput"
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<get-global out-identifier="helperOutput" identifier="helper"/>

GetObjectsCommand getObjectsCommand = new GetObjectsCommand();
getObjectsCommand.setOutIdentifier("objects");

<get-objects out-identifier="objects"/>

Red Hat JBoss BPM Suite 6.4 Development Guide

424

JAXB:

20.1.11. KIE Configuration

20.1.11.1. Build Result Severity

In some cases, it is possible to change the default severity of a type of build result. For instance, when a
new rule with the same name of an existing rule is added to a package, the default behavior is to replace
the old rule by the new rule and report it as an INFO. This is probably ideal for most use cases, but in
some deployments the user might want to prevent the rule update and report it as an error.

Changing the default severity for a result type, configured like any other option in BRMS, can be done by
API calls, system properties or configuration files. As of this version, BRMS supports configurable result
severity for rule updates and function updates. To configure it using system properties or configuration
files, the user has to use the following properties:

Example 20.21. Setting the severity using properties

// Sets the severity of rule updates:
drools.kbuilder.severity.duplicateRule = <INFO|WARNING|ERROR>

// Sets the severity of function updates:
drools.kbuilder.severity.duplicateFunction = <INFO|WARNING|ERROR>

20.1.11.2. StatelessKieSession

The StatelessKieSession wraps the KieSession, instead of extending it. Its main focus is on the
decision service type scenarios. It avoids the need to call dispose(). Stateless sessions do not support
iterative insertions and the method call fireAllRules() from Java code; the act of calling execute() is a
single-shot method that will internally instantiate a KieSession, add all the user data and execute user
commands, call fireAllRules(), and then call dispose(). While the main way to work with this class is via
the BatchExecution (a subinterface of Command) as supported by the CommandExecutor interface,
two convenience methods are provided for when simple object insertion is all that’s required. The
CommandExecutor and BatchExecution are talked about in detail in their own section.

Our simple example shows a stateless session executing a given collection of Java objects using the
convenience API. It will iterate the collection, inserting each element in turn.

Example 20.22. Simple StatelessKieSession Execution with Collection

{
 "get-objects": {
 "out-identifier": "objects"
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<get-objects out-identifier="objects"/>

import org.kie.api.runtime.StatelessKieSession;

StatelessKieSession ksession = kbase.newStatelessKieSession();

CHAPTER 20. JAVA APIS

425

If this was done as a single command it would be as follows:

Example 20.23. Simple StatelessKieSession Execution with InsertElements Command

If you wanted to insert the collection itself, and the collection’s individual elements, then
CommandFactory.newInsert(collection) would do the job.

Methods of the CommandFactory create the supported commands, all of which can be marshalled
using XStream and the BatchExecutionHelper. BatchExecutionHelper provides details on the XML
format as well as how to use BRMS Pipeline to automate the marshalling of BatchExecution and
ExecutionResults.

StatelessKieSession supports globals, scoped in a number of ways. We cover the non-command way
first, as commands are scoped to a specific execution call. Globals can be resolved in three ways.

The StatelessKieSession method getGlobals() returns a Globals instance which provides
access to the session’s globals. These are shared for all execution calls. Exercise caution
regarding mutable globals because execution calls can be executing simultaneously in different
threads.

Example 20.24. Session Scoped Global

Using a delegate is another way of global resolution. Assigning a value to a global (with
setGlobal(String, Object)) results in the value being stored in an internal collection mapping
identifiers to values. Identifiers in this internal collection will have priority over any supplied
delegate. Only if an identifier cannot be found in this internal collection, the delegate global (if
any) will be used.

The third way of resolving globals is to have execution scoped globals. Here, a Command to set
a global is passed to the CommandExecutor.

The CommandExecutor interface also offers the ability to export data through "out" parameters.
Inserted facts, globals and query results can all be returned.

Example 20.25. Out Identifiers

ksession.execute(collection);

ksession.execute(CommandFactory.newInsertElements(collection));

import org.kie.api.runtime.StatelessKieSession;

StatelessKieSession ksession = kbase.newStatelessKieSession();

// Set a global hbnSession, that can be used for DB interactions in the rules.

ksession.setGlobal("hbnSession", hibernateSession);
// Execute while being able to resolve the "hbnSession" identifier.
ksession.execute(collection);

import org.kie.api.runtime.ExecutionResults;

Red Hat JBoss BPM Suite 6.4 Development Guide

426

20.1.11.2.1. Sequential Mode

In a stateless session, the initial data set cannot be modified, and rules cannot be added or removed with
the ReteOO algorithm. See the section called “PHREAK and Sequential Mode” for more information
about PHREAK and sequential mode. Sequential mode can be used with stateless sessions only.

Sequential Mode Workflow

If you enable sequential mode, the rule engine executes the following:

1. Rules are ordered by salience and position in the ruleset.

2. An element for each possible rule match is created. The element position indicates the firing
order.

3. Node memory is disabled, with the exception of the right-input object memory.

4. The left-input adapter node propagation is disconnected, and the object with the node are
referenced in a Command object. The Command object is put into a list in the working
memory for later execution.

5. All objects are asserted. Afterwards, the list of Command objects is checked and executed.

6. All matches resulting from executing the list are placed into elements based on the
sequence number of the rule.

7. The elements containing matches are executed in a sequence.

8. If you set the maximum number of rule executions, the evaluation network may exit too early.

In sequential mode, the LeftInputAdapterNode node creates a Command object and adds it to a list
in the working memory. This Command object holds a reference to the LeftInputAdapterNode
node and the propagated object. This stops any left-input propagations at insertion time, so the
right-input propagation will never need to attempt a join with the left-inputs. This removes the need
for the left-input memory.

All nodes have their memory turned off, including the left-input tuple memory, but excluding the
right-input object memory. Once all the assertions are finished and the right-input memory of all the
objects is populated, the list of LeftInputAdatperNode Command objects is iterated over. The

// Set up a list of commands:
List cmds = new ArrayList();
cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true));
cmds.add(CommandFactory.newInsert(new Person("jon", 102), "person"));
cmds.add(CommandFactory.newQuery("Get People" "getPeople"));

// Execute the list:
ExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(cmds));

// Retrieve the ArrayList:
results.getValue("list1");
// Retrieve the inserted Person fact:
results.getValue("person");
// Retrieve the query as a QueryResults instance:
results.getValue("Get People");

CHAPTER 20. JAVA APIS

427

objects will propagate down the network attempting to join with the right-input objects, but they will
not be remembered in the left input.

The agenda with a priority queue to schedule the tuples is replaced by an element for each rule. The
sequence number of the RuleTerminalNode node indicates the element where to place the match.
Once all Command objects have finished, the elements are checked and existing matches are fired.
To improve performance, the first and the last populated cell in the elements are remembered.

When the network is constructed, each RuleTerminalNode node receives a sequence number based
on its salience number and the order in which it was added to the network.

The right-input node memories are typically hash maps for fast object deletion. Because object
deletions is not supported, a list is used when the values of the object are not indexed. For a large
number of objects, indexed hash maps provide a performance increase. In case an object only has a
few instances, indexing may not be advantageous, and a list can be used.

Advantages of Sequential Mode

The rule execution is faster because the data does not change after the initial data set insertion.

Limitations of Sequential Mode

The insert, update, delete, or modify operations in the right-hand side (RHS) of the rules are not
supported for the ReteOO algorithm. For the PHREAK algorithm, the modify and update operations
are supported.

How to Enable Sequential Mode

Sequential mode is disabled by default. To enable it, do one of the following:

Set the system property drools.sequential to true.

Enable sequential mode while creating the KIE Base in the client code.
For example:

For sequential mode to use a dynamic agenda, do one of the following:

Set the system property drools.sequential.agenda to dynamic.

Set the sequential agenda option while creating the KIE Base in the client code.
For example:

KieServices services = KieServices.Factory.get();
KieContainer container = services.newKieContainer(releaseId);

KieBaseConfiguration conf = KieServices.Factory.get().newKieBaseConfiguration();
conf.setOption(SequentialOption.YES);

KieBase kieBase = kc.newKieBase(conf);

KieServices services = KieServices.Factory.get();
KieContainer container = services.newKieContainer(releaseId);

KieBaseConfiguration conf = KieServices.Factory.get().newKieBaseConfiguration();
conf.setOption(SequentialAgendaOption.DYNAMIC);

KieBase kieBase = kc.newKieBase(conf);

Red Hat JBoss BPM Suite 6.4 Development Guide

428

20.1.11.3. Marshalling

The KieMarshallers are used to marshal and unmarshal KieSessions.

An instance of the KieMarshallers can be retrieved from the KieServices. A simple example is shown
below:

Example 20.26. Simple Marshaller Example

However, with marshalling, you will need more flexibility when dealing with referenced user data. To
achieve this use the ObjectMarshallingStrategy interface. Two implementations are provided, but
users can implement their own. The two supplied strategies are IdentityMarshallingStrategy and
SerializeMarshallingStrategy. SerializeMarshallingStrategy is the default, as shown in the example
above, and it just calls the Serializable or Externalizable methods on a user instance.
IdentityMarshallingStrategy creates an integer id for each user object and stores them in a Map, while
the id is written to the stream. When unmarshalling it accesses the IdentityMarshallingStrategy map to
retrieve the instance. This means that if you use the IdentityMarshallingStrategy, it is stateful for the
life of the Marshaller instance and will create ids and keep references to all objects that it attempts to
marshal. Below is the code to use an Identity Marshalling Strategy.

Example 20.27. IdentityMarshallingStrategy

In most cases, a single strategy is insufficient. For added flexibility, the
ObjectMarshallingStrategyAcceptor interface can be used. This Marshaller has a chain of strategies,
and while reading or writing a user object it iterates the strategies asking if they accept responsibility for
marshalling the user object. One of the provided implementations is ClassFilterAcceptor. This allows
strings and wild cards to be used to match class names. The default is ., so in the above example the
Identity Marshalling Strategy is used which has a default . acceptor.

import org.kie.api.runtime.KieSession;
import org.kie.api.KieBase;
import org.kie.api.marshalling.Marshaller;

// ksession is the KieSession
// kbase is the KieBase
ByteArrayOutputStream baos = new ByteArrayOutputStream();
Marshaller marshaller = KieServices.Factory.get().getMarshallers().newMarshaller(kbase);
marshaller.marshall(baos, ksession);
baos.close();

import org.kie.api.marshalling.KieMarshallers;
import org.kie.api.marshalling.ObjectMarshallingStrategy;
import org.kie.api.marshalling.Marshaller;

ByteArrayOutputStream baos = new ByteArrayOutputStream();
KieMarshallers kMarshallers = KieServices.Factory.get().getMarshallers()
ObjectMarshallingStrategy oms = kMarshallers.newIdentityMarshallingStrategy()

Marshaller marshaller =
 kMarshallers.newMarshaller(kbase, new ObjectMarshallingStrategy[]{ oms });
marshaller.marshall(baos, ksession);
baos.close();

CHAPTER 20. JAVA APIS

429

Assuming that we want to serialize all classes except for one given package, where we will use identity
lookup, we could do the following:

Example 20.28. IdentityMarshallingStrategy with Acceptor

Note that the acceptance checking order is in the natural order of the supplied elements.

Also note that if you are using scheduled matches (for example some of your rules use timers or
calendars) they are marshallable only if, before you use it, you configure your KieSession to use a
trackable timer job factory manager as follows:

Example 20.29. Configuring a trackable timer job factory manager

20.1.11.4. KIE Persistence

Longterm out of the box persistence with Java Persistence API (JPA) is possible with BRMS. It is
necessary to have some implementation of the Java Transaction API (JTA) installed. For development
purposes the Bitronix Transaction Manager is suggested, as it’s simple to set up and works embedded,
but for production use JBoss Transactions is recommended.

Example 20.30. Simple example using transactions

import org.kie.api.marshalling.KieMarshallers;
import org.kie.api.marshalling.ObjectMarshallingStrategy;
import org.kie.api.marshalling.Marshaller;

ByteArrayOutputStream baos = new ByteArrayOutputStream();
KieMarshallers kMarshallers = KieServices.Factory.get().getMarshallers()

ObjectMarshallingStrategyAcceptor identityAcceptor =
 kMarshallers.newClassFilterAcceptor(new String[] { "org.domain.pkg1.*" });
ObjectMarshallingStrategy identityStrategy =
 kMarshallers.newIdentityMarshallingStrategy(identityAcceptor);
ObjectMarshallingStrategy sms = kMarshallers.newSerializeMarshallingStrategy();

Marshaller marshaller =
 kMarshallers.newMarshaller
 (kbase, new ObjectMarshallingStrategy[]{ identityStrategy, sms });
marshaller.marshall(baos, ksession);

baos.close();

import org.kie.api.runtime.KieSessionConfiguration;
import org.kie.api.KieServices.Factory;
import org.kie.api.runtime.conf.TimerJobFactoryOption;

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();
ksconf.setOption(TimerJobFactoryOption.get("trackable"));
KSession ksession = kbase.newKieSession(ksconf, null);

import org.kie.api.KieServices;

Red Hat JBoss BPM Suite 6.4 Development Guide

430

To use a JPA, the Environment must be set with both the EntityManagerFactory and the
TransactionManager. If rollback occurs the ksession state is also rolled back, hence it is possible to
continue to use it after a rollback. To load a previously persisted KieSession you’ll need the id, as shown
below:

Example 20.31. Loading a KieSession

To enable persistence several classes must be added to your persistence.xml, as in the example below:

Example 20.32. Configuring JPA

import org.kie.api.runtime.Environment;
import org.kie.api.runtime.EnvironmentName;
import org.kie.api.runtime.KieSessionConfiguration;

KieServices kieServices = KieServices.Factory.get();
Environment env = kieServices.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY,
 Persistence.createEntityManagerFactory("emf-name"));
env.set(EnvironmentName.TRANSACTION_MANAGER,
 TransactionManagerServices.getTransactionManager());

// KieSessionConfiguration may be null, and a default will be used:
KieSession ksession =
 kieServices.getStoreServices().newKieSession(kbase, null, env);
int sessionId = ksession.getId();

UserTransaction ut =
 (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");

ut.begin();
ksession.insert(data1);
ksession.insert(data2);
ksession.startProcess("process1");
ut.commit();

import org.kie.api.runtime.KieSession;

KieSession ksession =
 kieServices.getStoreServices().loadKieSession(sessionId, kbase, null, env);

<persistence-unit name="org.drools.persistence.jpa" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/BitronixJTADataSource</jta-data-source>
 <class>org.drools.persistence.info.SessionInfo</class>
 <class>org.drools.persistence.info.WorkItemInfo</class>
 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update" />
 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.transaction.manager_lookup_class"

CHAPTER 20. JAVA APIS

431

The JDBC JTA data source would have to be configured first. Bitronix provides a number of ways of
doing this, and its documentation should be consulted for details. For a quick start, here is the
programmatic approach:

Example 20.33. Configuring JTA DataSource

Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it, add a jndi.properties
file to your META-INF folder and add the following line to it:

Example 20.34. JNDI Properties

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContextFactory

20.1.12. KIE Sessions

20.1.12.1. Stateless KIE Sessions

A stateless KIE session is a session without inference. A stateless session can be called like a function in
that you can use it to pass data and then receive the result back.

Stateless KIE sessions are useful in situations requiring validation, calculation, routing, and filtering.

20.1.12.1.1. Configuring Rules in Stateless Session

1. Create a data model like the driver’s license example below:

2. Write the first rule. In this example, a rule is added to disqualify any applicant younger than 18:

 value="org.hibernate.transaction.BTMTransactionManagerLookup" />
 </properties>
</persistence-unit>

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/BitronixJTADataSource");
ds.setClassName("org.h2.jdbcx.JdbcDataSource");
ds.setMaxPoolSize(3);
ds.setAllowLocalTransactions(true);
ds.getDriverProperties().put("user", "sa");
ds.getDriverProperties().put("password", "sasa");
ds.getDriverProperties().put("URL", "jdbc:h2:mem:mydb");
ds.init();

public class Applicant {
 private String name;
 private int age;
 private boolean valid;
 // getter and setter methods here
}

Red Hat JBoss BPM Suite 6.4 Development Guide

432

package com.company.license

rule "Is of valid age"
when
 $a : Applicant(age < 18)
then
 $a.setValid(false);
end

3. When the Applicant object is inserted into the rule engine, each rule’s constraints evaluate it
and search for a match. There is always an implied constraint of "object type" after which there
can be any number of explicit field constraints.
$a is a binding variable. It exists to make possible a reference to the matched object in the rule’s
consequence (from which place the object’s properties can be updated).

NOTE

Use of the dollar sign ($) is optional. It helps to differentiate between variable
names and field names.

In the Is of valid age rule there are two constraints:

The fact being matched must be of type Applicant.

The value of age must be less than eighteen.

4. To use this rule, save it in a file with .drl extension (for example, licenseApplication.drl), and
store it in a KIE Project. A KIE Project has the structure of a normal Maven project with an
additional kmodule.xml file defining the KieBases and KieSessions. Place this file in the
resources/META-INF folder of the Maven project. Store all the other artifacts, such as the
licenseApplication.drl containing any former rule, in the resources folder or in any other
subfolder under it.

5. Create a KieContainer that reads the files to be built, from the classpath:

This compiles all the rule files found on the classpath and put the result of this compilation, a
KieModule, in the KieContainer.

6. If there are no errors, you can go ahead and create your session from the KieContainer and
execute against some data:

KieServices kieServices = KieServices.Factory.get();

KieContainer kContainer = kieServices.getKieClasspathContainer();

StatelessKieSession kSession = kContainer.newStatelessKieSession();

Applicant applicant = new Applicant("Mr John Smith", 16);

assertTrue(applicant.isValid());

ksession.execute(applicant);

assertFalse(applicant.isValid());

CHAPTER 20. JAVA APIS

433

Here, since the applicant is under the age of eighteen, their application will be marked as invalid.

Result

The preceding code executes the data against the rules. Since the applicant is under the age of 18, the
application is marked as invalid.

20.1.12.1.2. Configuring Rules with Multiple Objects

1. To execute rules against any object-implementing iterable (such as a collection), add another
class as shown in the example code below:

2. In order to check that the application was made within a legitimate time-frame, add this rule:

package com.company.license

rule "Is of valid age"
when
 Applicant(age < 18)
 $a : Application()
then
 $a.setValid(false);
end

rule "Application was made this year"
when
 $a : Application(dateApplied > "01-jan-2009")
then
 $a.setValid(false);
end

3. Use the JDK converter to implement the iterable interface. This method commences with the
line Arrays.asList(…). The code shown below executes rules against an iterable list. Every
collection element is inserted before any matched rules are fired:

NOTE

public class Applicant {
 private String name;
 private int age;
 // getter and setter methods here
}

public class Application {
 private Date dateApplied;
 private boolean valid;
 // getter and setter methods here
}

StatelessKieSession ksession = kbase.newStatelessKnowledgeSession();
Applicant applicant = new Applicant("Mr John Smith", 16);
Application application = new Application();

assertTrue(application.isValid());
ksession.execute(Arrays.asList(new Object[] { application, applicant }));
assertFalse(application.isValid());

Red Hat JBoss BPM Suite 6.4 Development Guide

434

NOTE

The execute(Object object) and execute(Iterable objects) methods are actually
"wrappers" around a further method called execute(Command command) which
comes from the BatchExecutor interface.

4. Use the CommandFactory to create instructions, so that the following is equivalent to
execute(Iterable it):

5. Use the BatchExecutor and CommandFactory when working with many different commands
or result output identifiers:

NOTE

CommandFactory supports many other commands that can be used in the
BatchExecutor. Some of these are StartProcess, Query and SetGlobal.

20.1.12.2. Stateful KIE Sessions

A stateful session allow you to make iterative changes to facts over time. As with the
StatelessKnowledgeSession, the StatefulKnowledgeSession supports the BatchExecutor interface.
The only difference is the FireAllRules command is not automatically called at the end.

WARNING

Ensure that the dispose() method is called after running a stateful session. This is
to ensure that there are no memory leaks. This is due to the fact that knowledge
bases will obtain references to stateful knowledge sessions when they are created.

20.1.12.2.1. Common Use Cases for Stateful Sessions

Monitoring

For example, you can monitor a stock market and automate the buying process.

Diagnostics

Stateful sessions can be used to run fault-finding processes. They could also be used for medical
diagnostic processes.

Logistical

ksession.execute
 (CommandFactory.newInsertIterable(new Object[] { application, applicant }));

List<Command> cmds = new ArrayList<Command>();
cmds.add(CommandFactory.newInsert(new Person("Mr John Smith"), "mrSmith"));
cmds.add(CommandFactory.newInsert(new Person("Mr John Doe"), "mrDoe"));

BatchExecutionResults results =
ksession.execute(CommandFactory.newBatchExecution(cmds));
assertEquals(new Person("Mr John Smith"), results.getValue("mrSmith"));

CHAPTER 20. JAVA APIS

435

For example, they could be applied to problems involving parcel tracking and delivery provisioning.

Ensuring compliance

For example, to validate the legality of market trades.

20.1.12.2.2. Stateful Session Monitoring Example

1. Create a model of what you want to monitor. In this example involving fire alarms, the rooms in a
house have been listed. Each has one sprinkler. A fire can start in any of the rooms:

2. The rules must express the relationships between multiple objects (to define things such as the
presence of a sprinkler in a certain room). To do this, use a binding variable as a constraint in a
pattern. This results in a cross-product.

3. Create an instance of the Fire class and insert it into the session.
The rule below adds a binding to Fire object’s room field to constrain matches. This so that only
the sprinkler for that room is checked. When this rule fires and the consequence executes, the
sprinkler activates:

rule "When there is a fire turn on the sprinkler"
when
 Fire($room : room)
 $sprinkler : Sprinkler(room == $room, on == false)
then
 modify($sprinkler) { setOn(true) };
 System.out.println("Turn on the sprinkler for room "+$room.getName());
end

Whereas the stateless session employed standard Java syntax to modify a field, the rule above
uses the modify statement. It acts much like a with statement.

20.2. RUNTIME MANAGER

The RuntimeManager interface enables and simplifies the usage of KIE API. The interface provides
configurable strategies that control actual runtime execution. The strategies are as follows:

Singleton

public class Room {
 private String name;
 // getter and setter methods here
}

public class Sprinkler {
 private Room room;
 private boolean on;
 // getter and setter methods here
}

public class Fire {
 private Room room;
 // getter and setter methods here
}

public class Alarm { }

Red Hat JBoss BPM Suite 6.4 Development Guide

436

The runtime manager maintains a single KieSession regardless of the number of processes
available.

Per Process Instance

The runtime manager maintains mapping between a process instance and a KieSession and always
provides the same KieSession when working with the original process instance.

Per Request

The runtime manager delivers a new KieSession for every request.

See the fragment of RuntimeManager interface with further comments below:

The runtime manager is responsible for managing and delivering instances of RuntimeEngine to the
caller. The RuntimeEngine interface contains two important parts of the process engine, KieSession
and TaskService:

Both these components are configured to work with each other without any additional changes from an
end user, and it is therefore not required to register a human task handler and keep track of its
connection to the service. Regardless of a strategy, the runtime manager provides the same capabilities

package org.kie.api.runtime.manager;

public interface RuntimeManager {

 /**
 * Returns a fully initialized RuntimeEngine instance:
 * KieSession is created or loaded depending on the strategy.
 * TaskService is initialized and attached to a ksession
 * (using a listener).
 * WorkItemHandlers are initialized and registered on the ksession.
 * EventListeners (Process, Agenda, WorkingMemory) are initialized
 * and added to the ksession.
 *
 * @param context: a concrete implementation of a context
 * supported by the given RuntimeManager
 * @return an instance of the RuntimeEngine
 */
 RuntimeEngine getRuntimeEngine(Context<?> context);

 ...
}

public interface RuntimeEngine {

 /**
 * Returns KieSession configured for this RuntimeEngine.
 * @return
 */
 KieSession getKieSession();

 /**
 * Returns TaskService configured for this RuntimeEngine.
 * @return
 */
 TaskService getTaskService();
}

CHAPTER 20. JAVA APIS

437

when initializing and configuring RuntimeEngine:

KieSession is loaded with the same factories, either in memory or JPA-based.

Work item handlers as well as event listeners are registered on each KieSession.

TaskService is configured with:

The JTA transaction manager.

The same entity manager factory as a KieSession.

UserGroupCallback from the environment.

Additionally, the runtime manager provides dedicated methods to dispose RuntimeEngine when it is no
longer required to release any resources it might have acquired.

20.2.1. Usage

20.2.1.1. Usage Scenario

Regular usage scenario for RuntimeManager is:

At application startup:

Build the RuntimeManager and keep it for the entire life time of the application. It is thread
safe and you can access it concurrently.

At request:

Get RuntimeEngine from RuntimeManager using proper context instance dedicated to
strategy of RuntimeManager.

Get KieSession or TaskService from RuntimeEngine.

Perform operations on KieSession or TaskService such as startProcess and
completeTask.

Once done with processing, dispose RuntimeEngine using the
RuntimeManager.disposeRuntimeEngine method.

At application shutdown:

Close RuntimeManager.

NOTE

When the RuntimeEngine is obtained from RuntimeManager within an active JTA
transaction, then there is no need to dispose RuntimeEngine at the end, as it
automatically disposes the RuntimeEngine on transaction completion (regardless of the
completion status commit or rollback).

20.2.1.2. Building Runtime Manager

Here is how you can build RuntimeManager (with RuntimeEnvironment) and get RuntimeEngine
(that encapsulates KieSession and TaskService) from it:

Red Hat JBoss BPM Suite 6.4 Development Guide

438

Runtime Manager Identifier
During runtime execution, the identifier of the runtime manager is deploymentId. If a task is persisted,
the identifier of the task is persisted as deploymentId as well. The deploymentId of the task is then
used to identify the runtime manager after the task is completed and its process instance is resumed.
The deploymentId is also persisted as externalId in a history log.

If the identifier is not specified during the creation of the runtime manager, a default value is used.
Therefore, the same deployment is used during the application’s lifecycle. It is possible to maintain
multiple runtime managers in one application. However, it is required to specify their identifiers. For
example, Deployment Service (see Section 20.3.1, “Deployment Service”) maintains more runtime
managers with identifiers based on the kJAR’s GAV. The Business Central web application depends on
Deployment Service, so it has multiple runtime managers as well.

20.2.2. Runtime Environment

The complexity of knowing when to create, dispose, and register handlers is taken away from the end
user and moved to the runtime manager that knows when and how to perform such operations. But it
still allows to have a fine grained control over this process by providing comprehensive configuration of
the RuntimeEnvironment.

The RuntimeEnvironment interface provides access to the data kept as part of the environment. You
can use RuntimeEnvironmentBuilder that provides fluent API to configure RuntimeEnvironment with
predefined settings. You can obtain instances of the RuntimeEnvironmentBuilder through
RuntimeEnvironmentBuilderFactory that provides preconfigured sets of builder to simplify and help
you build the environment for the RuntimeManager.

Besides KieSession, Runtime Manager also provides access to TaskService. The default builder comes
with predefined set of elements that consists of:

Persistence unit name

// First, configure environment that will be used by RuntimeManager:

RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()
 .newDefaultInMemoryBuilder()
 .addAsset(ResourceFactory.newClassPathResource
 ("BPMN2-ScriptTask.bpmn2"), ResourceType.BPMN2)
 .get();

// Next, create RuntimeManager - in this case singleton strategy is chosen:
RuntimeManager manager = RuntimeManagerFactory
 .Factory.get().newSingletonRuntimeManager(environment);

// Then, get RuntimeEngine out of manager - using empty context as singleton
// does not keep track of runtime engine as there is only one:
RuntimeEngine runtime = manager.getRuntimeEngine(EmptyContext.get());

// Get KieSession from runtime runtimeEngine - already initialized with all handlers,
// listeners, and others, that were configured on the environment:
KieSession ksession = runtimeEngine.getKieSession();

// Add invocations to the process engine here,
// for example ksession.startProcess(processId);
// and last dispose the runtime engine:
manager.disposeRuntimeEngine(runtimeEngine);

CHAPTER 20. JAVA APIS

439

It is set to org.jbpm.persistence.jpa (for both process engine and task service).

Human task handler

This is automatically registered on the KieSession.

JPA based history log event listener

This is automatically registered on the KieSession.

Event listener to trigger rule task evaluation (fireAllRules)

This is automatically registered on the KieSession.

WARNING

The MVELUserGroupCallback class fails to initialize in an OSGi environment. Do
not use or include MVELUserGroupCallback as it is not designed for production
purposes.

20.2.3. Strategies

There are multiple strategies of managing KIE sessions that can be used when working with the Runtime
Manager.

20.2.3.1. Singleton Strategy

This instructs the RuntimeManager to maintain single instance of RuntimeEngine and in turn single
instance of KieSession and TaskService. Access to the RuntimeEngine is synchronized and the
thread is safe although it comes with a performance penalty due to synchronization. This strategy is
considered to be the easiest one and recommended to start with. It has the following characteristics:

Small memory footprint, that is a single instance of runtime engine and task service.

Simple and compact in design and usage.

Good fit for low to medium load on process engine due to synchronized access.

Due to single KieSession instance, all state objects (such as facts) are directly visible to all
process instances and vice versa.

Not contextual, that is when retrieving instances of RuntimeEngine from singleton
RuntimeManager, Context instance is not important and usually the EmptyContext.get()
method is used, although null argument is acceptable as well.

Keeps track of the ID of the KieSession used between RuntimeManager restarts, to ensure it
uses the same session. This ID is stored as serialized file on disc in a temporary location that
depends on the environment.

Red Hat JBoss BPM Suite 6.4 Development Guide

440

WARNING

Consider the following warnings when using the Singleton strategy:

Do not use the Singleton runtime strategy with the EJB Timer Scheduler
(the default scheduler in Process Server) in a production environment. This
combination can result in Hibernate problems under load. For more
information about this limitation, see Hibernate issues with Singleton
strategy and EJBTimerScheduler.

Do not use the Singleton runtime strategy with JTA transactions
(UserTransaction or CMT). This combination can result in an
IllegalStateException error with a message similar to " Process instance X is
disconnected". For more information about this limitation, see Hibernate
errors with Singleton RuntimeManager and outer transaction.
To avoid this problem, put the transaction invocations into synchronized
blocks, as shown in the following example:

20.2.3.2. Per Request Strategy

This instructs the RuntimeManager to provide new instance of RuntimeEngine for every request. As
the RuntimeManager request considers one or more invocations within single transaction. It must return
same instance of RuntimeEngine within single transaction to ensure correctness of state as otherwise
the operation in one call would not be visible in the other. This a kind of stateless strategy that provides
only request scope state. Once the request is completed, the RuntimeEngine is permanently
destroyed. The KieSession information is then removed from the database in case you used
persistence. It has following characteristics:

Completely isolated process engine and task service operations for every request.

Completely stateless, storing facts makes sense only for the duration of the request.

A good fit for high load, stateless processes (no facts or timers involved that shall be preserved
between requests).

KieSession is only available during life time of request and at the end is destroyed.

Not contextual, that is when retrieving instances of RuntimeEngine from per request

synchronized (ksession) {
 try {
 tx.begin();

 // use ksession application logic

 tx.commit();
 } catch (Exception e) {
 ...
 }
}

CHAPTER 20. JAVA APIS

441

https://access.redhat.com/solutions/4065521
https://access.redhat.com/solutions/3462931

Not contextual, that is when retrieving instances of RuntimeEngine from per request
RuntimeManager, Context instance is not important and usually the EmptyContext.get()
method is used, although null argument is also acceptable.

20.2.3.3. Per Process Instance Strategy

This instructs the RuntimeManager to maintain a strict relationship between KieSession and
ProcessInstance. That means that the KieSession will be available as long as the ProcessInstance
that it belongs to is active. This strategy provides the most flexible approach to use advanced
capabilities of the engine like rule evaluation in isolation (for given process instance only). It provides
maximum performance and reduction of potential bottlenecks introduced by synchronization.
Additionally, it reduces number of KieSessions to the actual number of process instances, rather than
number of requests (in contrast to per request strategy). It has the following characteristics:

Most advanced strategy to provide isolation to given process instance only.

Maintains strict relationship between KieSession and ProcessInstance to ensure it will always
deliver same KieSession for given ProcessInstance.

Merges life cycle of KieSession with ProcessInstance making both to be disposed on process
instance completion (complete or abort).

Allows to maintain data (such as facts, timers) in scope of process instance, that is, only process
instance will have access to that data.

Introduces a bit of overhead due to need to look up and load KieSession for process instance.

Validates usage of KieSession, so it can not be used for other process instances. In such cases,
an exception is thrown.

Is contextual. It accepts EmptyContext, ProcessInstanceIdContext, and
CorrelationKeyContext context instances.

20.2.4. Handlers and Listeners

Runtime Manager provides various ways how to register work item handlers and process event listeners.

20.2.4.1. Registering Through Registerable Items Factory

The implementation of RegisterableItemsFactory provides a dedicated mechanism to create your own
handlers or listeners.

/**
 * Returns new instances of WorkItemHandler that will be registered on RuntimeEngine.
 *
 * @param runtime provides RuntimeEngine in case handler need to make use of it internally
 * @return map of handlers to be registered - in case of no handlers
 * empty map shall be returned
 */

Map<String, WorkItemHandler> getWorkItemHandlers(RuntimeEngine runtime);

/**
 * Returns new instances of ProcessEventListener that will be registered on RuntimeEngine.
 *
 * @param runtime provides RuntimeEngine in case listeners need to make use of it internally

Red Hat JBoss BPM Suite 6.4 Development Guide

442

Extending out-of-the-box implementation and adding your own is a good practice. You may not always
need extensions, as the default implementations of RegisterableItemsFactory provides a mechanism
to define custom handlers and listeners. Following is a list of available implementations ordered in the
hierarchy of inheritance:

org.jbpm.runtime.manager.impl.SimpleRegisterableItemsFactory

This is the simplest possible implementation that comes empty and is based on a reflection to
produce instances of handlers and listeners based on given class names.

org.jbpm.runtime.manager.impl.DefaultRegisterableItemsFactory

This is an extension of the simple implementation that introduces defaults described above and still
provides same capabilities as the SimpleRegisterableItemsFactory implementation.

org.jbpm.runtime.manager.impl.KModuleRegisterableItemsFactory

This is an extension of the default implementation (DefaultRegisterableItemsFactory) that
provides specific capabilities for KIE module and still provides the same capabilities as the simple
implementation (SimpleRegisterableItemsFactory).

org.jbpm.runtime.manager.impl.cdi.InjectableRegisterableItemsFactory

This is an extension of the default implementation (DefaultRegisterableItemsFactory) that is
tailored for CDI environments and provides CDI style approach to finding handlers and listeners
through producers.

20.2.4.2. Registering Through Configuration Files

Alternatively, you may also register simple (stateless or requiring only KieSession) work item handlers
by defining them as part of CustomWorkItem.conf file and update the class path. To use this approach
do the following:

1. Create a file called drools.session.conf inside META-INF of the root of the class path (WEB-

 * @return list of listeners to be registered - in case of no listeners
 * empty list shall be returned
 */

List<ProcessEventListener> getProcessEventListeners(RuntimeEngine runtime);

/**
 * Returns new instances of AgendaEventListener that will be registered on RuntimeEngine.
 *
 * @param runtime provides RuntimeEngine in case listeners need to make use of it internally
 * @return list of listeners to be registered - in case of no listeners
 * empty list shall be returned
 */

List<AgendaEventListener> getAgendaEventListeners(RuntimeEngine runtime);

/**
 * Returns new instances of WorkingMemoryEventListener that will be registered
 * on RuntimeEngine.
 *
 * @param runtime provides RuntimeEngine in case listeners need to make use of it internally
 * @return list of listeners to be registered - in case of no listeners
 * empty list shall be returned
 */

List<WorkingMemoryEventListener> getWorkingMemoryEventListeners(RuntimeEngine runtime);

CHAPTER 20. JAVA APIS

443

1. Create a file called drools.session.conf inside META-INF of the root of the class path (WEB-
INF/classes/META-INF for web applications).

2. Add the following line to the drools.session.conf file:

drools.workItemHandlers = CustomWorkItemHandlers.conf

3. Create a file called CustomWorkItemHandlers.conf inside META-INF of the root of the class
path (WEB-INF/classes/META-INF for web applications).

4. Define custom work item handlers in MVEL format inside the CustomWorkItemHandlers.conf
file:

[
"Log": new org.jbpm.process.instance.impl.demo.SystemOutWorkItemHandler(),
"WebService": new
org.jbpm.process.workitem.webservice.WebServiceWorkItemHandler(ksession),
"Rest": new org.jbpm.process.workitem.rest.RESTWorkItemHandler(),
"Service Task" : new org.jbpm.process.workitem.bpmn2.ServiceTaskHandler(ksession)
]

These steps register the work item handlers for any KieSession created by the application, regardless
of it using the RuntimeManager or not.

20.2.4.3. Registering in CDI Environment

When you are using RuntimeManager in CDI environment, you can use the dedicated interfaces to
provide custom WorkItemHandlers and EventListeners to the RuntimeEngine.

The event listener producer is annotated with proper qualifier to indicate what type of listeners they
provide. You can select one of the following to indicate the type:

@Process

public interface WorkItemHandlerProducer {

 /**
 * Returns map of (key = work item name, value work item handler instance)
 * of work items to be registered on KieSession.
 * Parameters that might be given are as follows:
 * ksessiontaskService
 * runtimeManager
 *
 * @param identifier - identifier of the owner - usually RuntimeManager that allows
 * the producer to filter out and provide valid instances
 * for given owner
 * @param params - owner might provide some parameters, usually KieSession,
 * TaskService, RuntimeManager instances
 * @return map of work item handler instances (recommendation is to always
 * return new instances when this method is invoked)
 */

 Map<String, WorkItemHandler> getWorkItemHandlers(String identifier,
 Map<String, Object> params);
}

Red Hat JBoss BPM Suite 6.4 Development Guide

444

for ProcessEventListener

@Agenda

for AgendaEventListener

@WorkingMemory

for WorkingMemoryEventListener

Package these interface implementations as bean archive that includes beans.xml inside META-INF
folder and update the application classpath (for example, WEB-INF/lib for web application). This
enables the CDI based RuntimeManager to discover them and register on every KieSession that is
created or loaded from the data store.

All the components (KieSession, TaskService, and RuntimeManager) are provided to the producers
to allow handlers or listeners to be more stateful and be able to do more advanced things with the
engine. You can also apply filtering based on the identifier (that is given as argument to the methods) to
decide if the given RuntimeManager can receive handlers or listeners or not.

NOTE

Whenever there is a need to interact with the process engine or task service from within
handler or listener, recommended approach is to use RuntimeManager and retrieve
RuntimeEngine (and then KieSession or TaskService) from it as that ensures a proper
state.

20.2.5. Control Parameters

The following control parameters are available to alter engine default behavior:

Engine Behavior Bootstrap Switches

jbpm.business.calendar.properties

The location of the configuration file with Business Calendar properties.

public interface EventListenerProducer<T> {

 /**
 * Returns list of instances for given (T) type of listeners.
 * Parameters that might be given are as follows:
 * ksession
 * taskServiceruntimeManager
 *
 * @param identifier - identifier of the owner - usually RuntimeManager that allows
 * the producer to filter out and provide valid instances
 * for given owner
 * @param params - owner might provide some parameters, usually KieSession,
 * TaskService, RuntimeManager instances
 * @return list of listener instances (recommendation is to always return new
 * instances when this method is invoked)
 */

 List<T> getEventListeners(String identifier, Map<String, Object> params);

}

CHAPTER 20. JAVA APIS

445

Default Value Admitted Values

/jbpm.business.calendar.properties Path

jbpm.data.dir

The location where data files produced by Red Hat JBoss BPM Suite must be stored.

Default Value Admitted Values

${java.io.tmpdir} ${jboss.server.data.dir} if available, otherwise
${java.io.tmpdir}

jbpm.enable.multi.con

Allows Web Designer to use multiple incoming or outgoing connections for tasks. If not enabled, the
tasks are marked as invalid.

Default Value Admitted Values

false true or false

jbpm.loop.level.disabled

Enables or disables loop iteration tracking to allow advanced loop support when using XOR gateways.

Default Value Admitted Values

true true or false

jbpm.overdue.timer.delay

Specifies the delay for overdue timers to allow proper initialization, in milliseconds.

Default Value Admitted Values

2000 Number (Long)

jbpm.process.name.comparator

An alternative comparator class to empower the Start Process by Name feature.

Default Value Admitted Values

org.jbpm.process.instance.StartProcessHel
per.NumberVersionComparator

Fully qualified name

jbpm.usergroup.callback.properties

The location of the usergroup callback property file when org.jbpm.ht.callback is set to jaas or db.

Red Hat JBoss BPM Suite 6.4 Development Guide

446

Default Value Admitted Values

classpath:/jbpm.usergroup.callback.propert
ies

Path

jbpm.user.group.mapping

An alternative classpath location of user information configuration (used by LDAPUserInfoImpl).

Default Value Admitted Values

${jboss.server.config.dir}/roles.properties Path

jbpm.user.info.properties

An alternative classpath location for user group callback implementation (LDAP, DB). For more
information, see org.jbpm.ht.userinfo.

Default Value Admitted Values

classpath:/userinfo.properties Path

jbpm.ut.jndi.lookup

An alternative JNDI name to be used when there is no access to the default one for user transactions
(java:comp/UserTransaction).

Default Value Admitted Values

N/A JNDI name

org.jbpm.ht.callback

Specifies the implementation of user group callback to be used:

mvel: Default; mostly used for testing.

ldap: LDAP; requires additional configuration in the jbpm.usergroup.callback.properties
file.

db: Database; requires additional configuration in the jbpm.usergroup.callback.properties
file.

jaas: JAAS; delegates to the container to fetch information about user data.

props: A simple property file; requires additional file that will keep all information (users and
groups).

custom: A custom implementation; you must specify the fully qualified name of the class in
the org.jbpm.ht.custom.callback.

CHAPTER 20. JAVA APIS

447

Default Value Admitted Values

jaas mvel, ldap, db, jaas, props, or custom

org.jbpm.ht.custom.callback

A custom implementation of the UserGroupCallback interface in case the org.jbpm.ht.callback
property is set to custom.

Default Value Admitted Values

N/A Fully qualified name

org.jbpm.ht.custom.userinfo

A custom implementation of the UserInfo interface in case the org.jbpm.ht.userinfo property is set
to custom.

Default Value Admitted Values

N/A Fully qualified name

org.jbpm.ht.userinfo

Specifies what implementation of the UserInfo interface to use for user or group information
providers.

ldap: LDAP; needs to be configured in the file specified in jbpm-user.info.properties.

db: Database; needs to be configured in the file specified in jbpm-user.info.properties.

props: A simple property file; set the property jbpm.user.info.properties to specify the
path to the file.

custom: A custom implementation; you must specify the fully qualified name of the class in
the org.jbpm.ht.custom.userinfo property.

Default Value Admitted Values

N/A ldap, db, props, or custom

org.jbpm.ht.user.separator

An alternative separator when loading actors and groups for user tasks from a String.

Default Value Admitted Values

, (comma) String

Red Hat JBoss BPM Suite 6.4 Development Guide

448

org.kie.executor.disabled

Disables the async job executor.

Default Value Admitted Values

false true or false

org.kie.executor.jms

Enables or disables the JMS support of the executor. Set to false to disable JMS support.

Default Value Admitted Values

true true or false

org.kie.executor.interval

The time between the moment the async job executor finishes a job and the moment it starts a new
one, in a time unit specified in org.kie.executor.timeunit.

Default Value Admitted Values

3 Number (Integer)

org.kie.executor.pool.size

The number of threads used by the async job executor.

Default Value Admitted Values

1 Number (Integer)

org.kie.executor.retry.count

The number of retries the async job executor attempts on a failed job.

Default Value Admitted Values

3 Number (Integer)

org.kie.executor.timeunit

The time unit in which the org.kie.executor.interval is specified.

Default Value Admitted Values

SECONDS A java.util.concurrent.TimeUnit constant

org.kie.mail.session

CHAPTER 20. JAVA APIS

449

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/TimeUnit.html

The JNDI name of the mail session as registered in the application server, for use by
EmailWorkItemHandler.

Default Value Admitted Values

mail/jbpmMailSession String

org.quartz.properties

The location of the Quartz configuration file to activate the Quartz timer service.

Default Value Admitted Values

N/A Path

These allow you to fine tune the execution for the environment needs and actual requirements. All of
these parameters are set as JVM system properties, usually with -D when starting a program such as an
application server.

20.2.6. Variable Persistence Strategy

Objects in Red Hat JBoss BPM Suite that are used as process variables must be serializable. That is,
they must implement the java.io.Serializable interface. Objects that are not serializable can be used as
process variables but for these you must implement and use a marshaling strategy and register it. The
default strategy will not convert these variables into bytes. By default all objects need to be serializable.

For internal objects, which are modified only by the engine, it is sufficient if java.io.Serializable is
implemented. The variable will be transformed into a byte stream and stored in a database.

For external data that can be modified by external systems and people (like documents from a CMS, or
other database entities), other strategies need to be implemented.

Red Hat JBoss BPM Suite uses what is known as the pluggable Variable Persistence Strategy — that is, it
uses serialization for objects that do implement the java.io.Serializable interface but uses the JPA-
based JPAPlaceholderResolverStrategy class to work on objects that are entities (not implementing
the java.io.Serializable interface).

JPA Placeholder Resolver Strategy
To use this strategy, configure it by placing it in your Runtime Environment used for creating your
Knowledge Sessions. This strategy should be set as the first one and the serialization based strategy as
the last, default one. An example on how to set this is shown here:

// Create entity manager factory:
EntityManagerFactory emf = Persistence.createEntityManagerFactory("com.redhat.sample");

RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get().newDefaultBuilder()
 .entityManagerFactory(emf)
 .addEnvironmentEntry(EnvironmentName.OBJECT_MARSHALLING_STRATEGIES,
 new ObjectMarshallingStrategy[] {
// Set the entity manager factory to JPA strategy so it knows how to store and read entities:
 new JPAPlaceholderResolverStrategy(emf),
// Set the serialization-based strategy as last one to deal with non entity classes:
 new

Red Hat JBoss BPM Suite 6.4 Development Guide

450

NOTE

Make sure to add your entity classes into persistence.xml configuration file that will be
used by the JPA strategy.

At runtime, process variables that need persisting are evaluated using the available strategy. It is up to
the strategy to accept or reject the variable. If the variable is rejected by the first strategy, it is passed on
till it reaches the default strategy.

A JPA based strategy will only accept classes that declare a field with the @Id annotation
(javax.persistence.Id) This is the unique id that is used to retrieve the variable. On the other hand, a
serialization based strategy simply accepts all variables by default.

Once the variable has been accepted, a JPA marshalling operation to store the variable is performed by
the marshal() method, while the unmarshal() method will retrieve the variable from the storage.

Creating Custom Strategy
The previous section alluded to the two methods that are used to marshal() and unmarshal() objects.
These methods are part of the org.kie.api.marshalling.ObjectMarshallingStrategy interface and you
can implement this interface to create a custom persistence strategy.

The methods read() and write() are for backwards compatibility. Use the methods accept(), marshal()
and unmarshal() to create your strategy.

20.3. KIE SERVICES

Red Hat JBoss BPM Suite provides a set of high level services on top of the Runtime Manager API.
These services are the easiest way to embed BPM capabilities into a custom application. These services
are split into several modules to ease their adoption in various environments:

SerializablePlaceholderResolverStrategy(ClassObjectMarshallingStrategyAcceptor.DEFAULT)})
 .addAsset(ResourceFactory.newClassPathResource("example.bpmn"), ResourceType.BPMN2)
 .get();

// Now create the runtime manager and start using entities as part of your process:
RuntimeManager manager = RuntimeManagerFactory.Factory
 .get().newSingletonRuntimeManager(environment);

public interface ObjectMarshallingStrategy {

 public boolean accept(Object object);

 public void write(ObjectOutputStream os, Object object) throws IOException;

 public Object read(ObjectInputStream os) throws IOException, ClassNotFoundException;

 public byte[] marshal(Context context, ObjectOutputStream os, Object object)
 throws IOException;

 public Object unmarshal(Context context, ObjectInputStream is, byte[] object,
 ClassLoader classloader) throws IOException, ClassNotFoundException;

 public Context createContext();
}

CHAPTER 20. JAVA APIS

451

jbpm-services-api

Service interfaces and other common classes

jbpm-kie-services

Core implementation of the services API in pure Java (without any framework-specific
dependencies)

jbpm-services-cdi

CDI wrappers of the core services implementation

jbpm-services-ejb

EJB wrappers of the core services implementation including EJB remote client implementation

jbpm-executor

Executor Service core implementation

jbpm-executor-cdi

CDI wrapper of the Executor Service core implementation

NOTE

When working with KIE Services, you do not have to create your own wrappers around
Runtime Manager, Runtime Engine, and KIE Session. KIE Services make use of Runtime
Manager API best practices and thus, eliminate various risks when working with that API.

20.3.1. Deployment Service

The Deployment Service is responsible for managing deployment units which include resources such as
rules, processes, and forms. It can be used to:

Deploy and undeploy deployment units

Activate and deactivate deployments

List all deployed units

Get deployment unit for a given deployment and check its status

Retrieve Runtime Manager instance dedicated to a given deployment

NOTE

There are some restrictions on EJB remote client to do not expose Runtime Manager as it
will not make any sense on the client side (after it was serialized).

Typical use case for this service is to provide dynamic behavior into your system so that multiple kjars
can be active at the same time and executed simultaneously.

// create deployment unit by giving GAV
DeploymentUnit deploymentUnit = new KModuleDeploymentUnit(GROUP_ID, ARTIFACT_ID,
VERSION);

// deploy
deploymentService.deploy(deploymentUnit);

// retrieve deployed unit

Red Hat JBoss BPM Suite 6.4 Development Guide

452

20.3.2. Definition Service

The Definition Service provides details about processes extracted from their BPMN2 definitions. Before
using any method to get some information, you must invoke the buildProcessDefinition method to
populate the repository with process information taken from the BPMN2 content.

The Definition Service provides access to the following BPMN2 data :

Process definitions, reusable subprocesses, and process variables

Java classes and rules referred in a given process

All organizational entities involved in a given process

Service tasks defined in a given process

User task definitions, task input and output mappings

Depending on the actual process definition, the returned values for users and groups can contain actual
user or group name or process variable that is used to get actual user or group name on runtime.

20.3.3. Process Service

The Process Service provides access to the execution environment. Before using this service, a
deployment unit containing process definitions needs to be created (see section Section 20.3.1,
“Deployment Service”). Process Service can be used to:

Start new process instances and abort the existing ones

Get process instance information

Get and modify process variables

Signal a single process instance or all instances in a given deployment

List all available signals in the current state of a given process instance

List, complete, and abort work items

Execute commands on the underlying command executor

NOTE

The Process Service is mostly focused on runtime operations that affect process
execution and not on read operations for which there is dedicated Runtime Data Service
(see section Section 20.3.4, “Runtime Data Service”).

An example on how to deploy and run a process can be done as follows:

DeployedUnit deployedUnit = deploymentService.getDeployedUnit(deploymentUnit.getIdentifier());

// get runtime manager
RuntimeManager manager = deployedUnit.getRuntimeManager();

KModuleDeploymentUnit deploymentUnit = new KModuleDeploymentUnit(groupId, artifactId,

CHAPTER 20. JAVA APIS

453

20.3.4. Runtime Data Service

The Runtime Data Service provides access to actual data that is available on runtime such as:

Process definitions by various query parameters

Active process instances by various query parameters

Current and previous values of process variables

List of active tasks by various parameters

Active and completed nodes of given process instance

Use this service as the main source of information whenever building list based user interface to show
process definitions, process instances, and tasks for a given user.

NOTE

The Runtime Data Service provides only basic querying capabilities. Use Query Service to
create and execute more advanced queries (see section Section 20.3.6, “Query
Service”).

There are two important arguments that most of the Runtime Data Service operations support:

QueryContext

This provides capabilities for efficient management result set like pagination, sorting, and ordering.

QueryFilter

This applies additional filtering to task queries in order to provide more advanced capabilities when
searching for user tasks.

20.3.5. User Task Service

The User Task Service covers a complete life cycle of a task so it can be managed from start to end. It
also provides a way to manipulate task content and other task properties.

The User Task Service allows you to:

Execute task operations (such as claim, start, and complete)

Change various task properties (such as priority and expiration date)

Manipulate task content, comments, and attachments

Execute various task commands

NOTE

version);
deploymentService.deploy(deploymentUnit);

long processInstanceId = processService.startProcess(deploymentUnit.getIdentifier(),
"HiringProcess");
ProcessInstance pi = processService.getProcessInstance(processInstanceId);

Red Hat JBoss BPM Suite 6.4 Development Guide

454

NOTE

The User Task Service focuses on executing task operations and manipulating task
content rather than task querying. Use the Runtime Data Service to get task details or list
tasks based on some parameter (see section Section 20.3.4, “Runtime Data Service”).

Example of how to start a process and complete a user task:

20.3.6. Query Service

The Query Service provides advanced search capabilities that are based on DashBuilder Data Sets. As a
user, you have a control over how to retrieve data from the underlying data store. This includes complex
joins with external tables such as JPA entities tables and custom systems database tables.

Query Service is build around two parts:

Management operations

Registering, unregistering, replacing, and getting query definitions

Runtime operations

Executing simple and advanced queries

The DashBuilder Data Sets provide support for multiple data sources (such as CSV, SQL, ElasticSearch)
while the process engine focuses on SQL based data sets as its backend is RDBMS based. So the Query
Service is a subset of DashBuilder Data Sets capabilities and allows efficient queries with simple API.

20.3.6.1. Terminology

The Query Service uses the following four classes describing queries and their results:

QueryDefinition

Represents definition of the data set which consists of unique name, SQL expression (the query) and
source - JNDI name of the data source to use when performing the query.

QueryParam

Basic structure that represents individual query parameter - condition - that consists of column
name, operator, expected value(s).

QueryResultMapper

Responsible for mapping raw data set data (rows and columns) into object representation.

long processInstanceId = processService.startProcess(deploymentUnit.getIdentifier(),
"HiringProcess");

List<Long> taskIds = runtimeDataService.getTasksByProcessInstanceId(processInstanceId);
Long taskId = taskIds.get(0);

userTaskService.start(taskId, "john");

UserTaskInstanceDesc task = runtimeDataService.getTaskById(taskId);
// do something with task data

Map<String, Object> results = new HashMap<String, Object>();
results.put("Result", "some document data");
userTaskService.complete(taskId, "john", results);

CHAPTER 20. JAVA APIS

455

QueryParamBuilder

Responsible for building query filters that are applied on the query definition for given query
invocation.

While using the QueryDefinition and QueryParam classes is straightforward, the QueryResultMapper
and QueryParamBuilder classes are more advanced and require more attention to make use of their
capabilities.

20.3.6.2. Query Result Mapper

The Query Result Mapper maps data taken out from database (from data set) into object
representation (like ORM providers such as Hibernate map tables to entities). As there can be many
object types that you can use for representing data set results, it is almost impossible to provide them
out of the box. Mappers are powerful and thus are pluggable. You can implement your own mapper to
transform the result into any type. Red Hat JBoss BPM Suite comes with the following mappers out of
the box:

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceQueryMapper

Registered with name ProcessInstances

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithVarsQueryMapper

Registered with name ProcessInstancesWithVariables

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithCustomVarsQueryMapper

Registered with name ProcessInstancesWithCustomVariables

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceQueryMapper

Registered with name UserTasks

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithVarsQueryMapper

Registered with name UserTasksWithVariables

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithCustomVarsQueryMapper

Registered with name UserTasksWithCustomVariables

org.jbpm.kie.services.impl.query.mapper.TaskSummaryQueryMapper

Registered with name TaskSummaries

org.jbpm.kie.services.impl.query.mapper.RawListQueryMapper

Registered with name RawList

Each mapper is registered under the given name to allow simple lookup by name instead of referencing
its class name. This is especially important when using EJB remote flavor of services where it is
important to reduce the number of dependencies and thus not relying on implementation on client side.
Hence, to be able to reference the QueryResultMapper class by name, use the NamedQueryMapper
class, which is a part of the KIE Services API. It acts as a delegate (lazy delegate) as it looks up the actual
mapper when the query is performed.

20.3.6.3. Query Parameter Builder

The QueryParamBuilder class provides an advanced way of building filters for data sets. By default
when using a query method of the Query Service (that accepts zero or more QueryParam instances), all
of these parameters will be joined with an AND operator. Therefore, all of them must match. However,

queryService.query("my query def", new NamedQueryMapper<Collection<ProcessInstanceDesc>>
("ProcessInstances"), new QueryContext());

Red Hat JBoss BPM Suite 6.4 Development Guide

456

that is not always the case, hence you can use QueryParamBuilder to provide filters at the time the
query is issued.

The QueryParamBuilder available out of the box is used to cover default QueryParams. The default
QueryParams are based on core functions, which are SQL based conditions and includes following:

IS_NULL

NOT_NULL

EQUALS_TO

NOT_EQUALS_TO

LIKE_TO

GREATER_THAN

GREATER_OR_EQUALS_TO

LOWER_THAN

LOWER_OR_EQUALS_TO

BETWEEN

IN

NOT_IN

The QueryParamBuilder is a simple interface that is invoked as long as its build method returns a non-
null value before the query is performed. So you can build up a complex filter options that could not be
simply expressed by list of QueryParams. Here is a basic implementation of QueryParamBuilder to
give you a jump start to implement your own (note that, it relies on the DashBuilder Data Set API):

public class TestQueryParamBuilder implements QueryParamBuilder<ColumnFilter> {

 private Map<String, Object> parameters;
 private boolean built = false;
 public TestQueryParamBuilder(Map<String, Object> parameters) {
 this.parameters = parameters;
 }

 @Override
 public ColumnFilter build() {
 // return null if it was already invoked
 if (built) {
 return null;
 }

 String columnName = "processInstanceId";

 ColumnFilter filter = FilterFactory.OR(
 FilterFactory.greaterOrEqualsTo((Long)parameters.get("min")),
 FilterFactory.lowerOrEqualsTo((Long)parameters.get("max")));
 filter.setColumnId(columnName);

CHAPTER 20. JAVA APIS

457

Once you have a QueryParamBuilder implemented, you can use its instance when performing query via
QueryService:

20.3.6.4. Typical usage scenario

First thing you need to do is to define a data set (the view of the data you want to work with), using
QueryDefinition in the KIE Services API:

This is the simplest possible query definition. The constructor takes a unique name that identifies it on
runtime and data source JNDI name used when performing queries on this definition. The expression is
the SQL statement that builds up the view to be filtered when performing queries.

Once you create the SQL query definition, you can register it to be used later for actual queries:

From now on, you can use this query definition to perform actual queries (or data look-ups to use
terminology from data sets). Following is the basic one that collects data as is, without any filtering:

The above query uses defaults from QueryContext(paging and sorting). However, you can change
these defaults:

You can perform the data filtering in the following way:

 built = true;
 return filter;
 }

}

queryService.query("my query def", ProcessInstanceQueryMapper.get(), new QueryContext(),
paramBuilder);

SqlQueryDefinition query = new SqlQueryDefinition("getAllProcessInstances",
"java:jboss/datasources/ExampleDS");
query.setExpression("select * from processinstancelog");

queryService.registerQuery(query);

Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",
ProcessInstanceQueryMapper.get(), new QueryContext());

QueryContext ctx = new QueryContext(0, 100, "start_date", true);

Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",
ProcessInstanceQueryMapper.get(), ctx);

// single filter parameter
Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",
ProcessInstanceQueryMapper.get(), new QueryContext(),
QueryParam.likeTo(COLUMN_PROCESSID, true, "org.jboss%"));

// multiple filter parameters (AND)
Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",

Red Hat JBoss BPM Suite 6.4 Development Guide

458

With this mechanism, you can define what data are retrieved and how they should be fetched, without
being limited by JPA provider. This also promotes the use of tailored queries for a given environment, as
in most of the cases, there may be a single database used. Thus, specific features of that database can
be utilized to increase performance.

20.3.7. Process Instance Migration Service

NOTE

Process instance migration is available only with Red Hat JBoss BPM Suite 6.4 and
higher.

The Process Instance Migration Service provides administrative utility to move given process
instance(s) from one deployment to another or from one process definition to another. Its main
responsibility is to allow basic upgrade of process definition behind a given process instance. This may
include mapping of currently active nodes to other nodes in a new definition.

Processes or task variables are not affected by migration. Process instance migration means a change
of underlying process definition that the process engine uses to move on with a process instance.

Even though process instance migration is available, it is recommended to let active process instances
finish and then start new instances with new version whenever possible. In case you can not use this
approach, carefully plan the migration of active process instances before its execution, as it might lead
to unexpected issues.

Ensure to take into account the following points:

Is the new process definition backward compatible?

Are there any data changes (variables that could affect process instance decisions after
migration)?

Is there a need for node mapping?

Answers to these questions might save a lot of production problems after migration. Opt for the
backward compatible processes, like extending process definition rather than removing nodes.
However, that may not always be possible and in some cases there is a need to remove certain nodes
from a process definition. In that situation, migration needs to be instructed how to map nodes that were
removed in new definition if the active process instance is at the moment in such a node.

Node mapping is given as a map of node IDs (unique IDs that are set in the definition) where key is the
source node ID (from the process definition used by the process instance) to target node ID (in the new
process definition).

NOTE

Node mapping can only be used to map the same type of nodes, for example user task to
user task.

Migration can either be performed for a single process instance or multiple process instances at the

ProcessInstanceQueryMapper.get(), new QueryContext(),
 QueryParam.likeTo(COLUMN_PROCESSID, true, "org.jboss%"),
 QueryParam.in(COLUMN_STATUS, 1, 3));

CHAPTER 20. JAVA APIS

459

same time. Multiple process instances migration is a utility method on top of a single instance. Instead of
calling it multiple times, you can call it once and then the service will take care of the migration of
individual process instances.

NOTE

Multi instance migration migrates each instance separately to ensure that one will not
affect the other and then produces dedicated migration reports for each process
instance.

20.3.7.1. Migration report

Migration is always concluded with a migration report for each process instance. The migration report
provides the following information:

start and end date of the migration

outcome of the migration

success or failure

complete log entry

all steps performed during migration

entry can be INFO, WARN or ERROR (in case of ERROR there will be at most one as they
are causing migration to be immediately terminated)

20.3.7.2. Known limitations

There are some process instance migration scenarios which are not supported at the moment:

When a new or modified task requires inputs, which are not available in the new process instance.

Modifying the tasks prior to the active task where the changes have an impact on further
processing.

Removing a human task, which is currently active (can only be replaced and requires to be
mapped to another human task)

Adding a new task parallel to the single active task (all branches in parallel gateway are not
activated - process will stuck)

Changing or removing the active recurring timer events (will not be changed in database)

Fixing or updating inputs and outputs in an active task (task data are not migrated)

Node mapping updates only the task node name and description (other task fields will not be
mapped including the TaskName variable)

20.3.7.3. Example

Following is an example of how to invoke the migration:

// first deploy both versions
deploymentUnitV1 = new KModuleDeploymentUnit(MIGRATION_GROUP_ID,

Red Hat JBoss BPM Suite 6.4 Development Guide

460

20.3.8. Form Provider Service

The Form Provider Service provides access to the process and task forms. It is built on the concept of
isolated form providers.

Implementations of the FormProvider interface must define a priority, as this is the main driver for the
Form Provider Service to ask for the content of the form from a given provider. The Form Provider
Service collects all available providers and iterates over them asking for the form content in the order of
the specified priority. The lower the priority number, the higher priority it gets during evaluation. For
example, a provider with priority 5 is evaluated before a provider with priority 10. FormProviderService
iterates over available providers as long as one delivers the content. In a worse case scenario, it returns
simple text-based forms.

The FormProvider interface shown below describes contract for the implementations:

Red Hat JBoss BPM Suite comes with the following FormProvider implementations out of the box:

Additional form provider available with the form modeler. The priority number of this form
provider is 2.

Freemarker based implementation to support process and task forms. The priority number of
this form provider is 3.

MIGRATION_ARTIFACT_ID, MIGRATION_VERSION_V1);
deploymentService.deploy(deploymentUnitV1);

// ... version 2
deploymentUnitV2 = new KModuleDeploymentUnit(MIGRATION_GROUP_ID,
MIGRATION_ARTIFACT_ID, MIGRATION_VERSION_V2);
deploymentService.deploy(deploymentUnitV2);

// next start process instance in version 1
long processInstanceId = processService.startProcess(deploymentUnitV1.getIdentifier(), "processID-
V1");

// and once the instance is active it can be migrated
MigrationReport report = migrationService.migrate(deploymentUnitV1.getIdentifier(),
processInstanceId, deploymentUnitV2.getIdentifier(), "processID-V2");

// as last step check if the migration finished successfully
if (report.isSuccessful()) {
 // do something
}

public interface FormProvider {

 int getPriority();

 String render(String name, ProcessDesc process,
 Map<String, Object> renderContext);

 String render(String name, ProcessDesc process,
 Task task, Map<String, Object> renderContext);

}

CHAPTER 20. JAVA APIS

461

Default form provider that provides simplest possible forms. It has the lowest priority and is the
last option if none of the other providers delivers content.

20.3.9. Executor Service

The Executor Service gives you access to the Job Executor, which provides advanced features for
asynchronous execution (see Section 11.12.3, “Job Executor for Asynchronous Execution” for more
details).

Executor Service provides:

Scheduling and cancelling requests (execution of commands)

Executor configuration (interval, number of retries, thread pool size)

Administration operations (clearing requests and errors)

Queries to access runtime data by various parameters (requests and errors)

20.4. CDI INTEGRATION

Apart from the API based approach, Red Hat JBoss BPM Suite 6 also provides the Context and
Dependency Injection (CDI) to build your custom applications.

The jbpm-services-cdi module provides CDI wrappers of Section 20.3, “KIE Services” that enable
these services to be injected in any CDI bean.

WARNING

A workaround is needed on the Oracle WebLogic Server for CDI to work. For more
information, see Additional Notes in the Red Hat JBoss BPM Suite Oracle WebLogic
Installation and Configuration Guide.

20.4.1. Configuring CDI Integration

To use the KIE Services in your CDI container, you must provide several CDI beans for these services to
satisfy their dependencies. For example:

Entity manager and entity manager factory.

User group callback for human tasks.

Identity provider to pass authenticated user information to the services.

Here is an example of a producer bean that satisfies all the requirements of KIE Services in a Java EE
environment, such as the Red Hat JBoss Enterprise Application Server (EAP):

public class EnvironmentProducer {

 @PersistenceUnit(unitName = "org.jbpm.domain")

Red Hat JBoss BPM Suite 6.4 Development Guide

462

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/oracle-weblogic-installation-and-configuration-guide/#appe_additional_notes

Provide an alternative for user group callback in the beans.xml configuration file. For example, the
org.jbpm.kie.services.cdi.producer.JAASUserGroupInfoProducer class allows Red Hat JBoss EAP
to reuse security settings on application server regardless of the settings (such as LDAP or DB):

 private EntityManagerFactory emf;

 @Inject
 @Selectable
 private UserGroupInfoProducer userGroupInfoProducer;

 @Inject
 @Kjar
 private DeploymentService deploymentService;

 @Produces
 public EntityManagerFactory getEntityManagerFactory() {
 return this.emf;
 }

 @Produces
 public org.kie.api.task.UserGroupCallback produceSelectedUserGroupCalback() {
 return userGroupInfoProducer.produceCallback();
 }

 @Produces
 public UserInfo produceUserInfo() {
 return userGroupInfoProducer.produceUserInfo();
 }

 @Produces
 @Named("Logs")
 public TaskLifeCycleEventListener produceTaskAuditListener() {
 return new JPATaskLifeCycleEventListener(true);
 }

 @Produces
 public DeploymentService getDeploymentService() {
 return this.deploymentService;
 }

 @Produces
 public IdentityProvider produceIdentityProvider {
 return new IdentityProvider() {
 // implement identity provider
 }
 }
}

<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://docs.jboss.org/cdi/beans_1_0.xsd">
 <alternatives>
 <class>org.jbpm.kie.services.cdi.producer.JAASUserGroupInfoProducer</class>
 </alternatives>
</beans>

CHAPTER 20. JAVA APIS

463

Optionally, you can use several other producers provided to deliver components like process, agenda,
WorkingMemory event listeners, and WorkItemHandlers. To provide these components, implement
the following interfaces:

org.kie.internal.runtime.manager.WorkItemHandlerProducer

org.kie.internal.runtime.manager.EventListenerProducer

CDI beans that implement the above-mentioned interfaces are collected at runtime and used when
building a KieSession by the RuntimeManager.

20.4.2. Deployment Service as CDI Bean

Deployment Service fires CDI events when deployment units are deployed or undeployed. This allows
application components to react real time to the CDI events and store or remove deployment details
from the memory. An event with the @Deploy qualifier is fired on deployment; an event with the
@Undeploy qualifier is fired on undeployment. You can use CDI observer mechanism to get a
notification on these events.

20.4.2.1. Saving and Removing Deployments from Database

The deployment service stores the deployed units in memory by default. To save deployments in the
data store of your choice:

To remove a saved deployment when undeployed:

NOTE

The deployment service contains deployment synchronization mechanisms that enable
you to persist deployed units into a database.

20.4.2.2. Available Deployment Services

You can use qualifiers to instruct the CDI container which deployment service to use. Red Hat JBoss
BPM Suite contains the following Deployment Services:

@Kjar: A KIE module deployment service configured to work with KModuleDeploymentUnit; a
small descriptor on top of a KJAR.

@Vfs: A VFS deployment service that enables you to deploy assets from VFS (Virtual File

public void saveDeployment(@Observes @Deploy DeploymentEvent event) {

 DeployedUnit deployedUnit = event.getDeployedUnit();

 // store deployed unit info for further needs

}

public void removeDeployment(@Observes @Undeploy DeploymentEvent event) {

 // remove deployment with ID event.getDeploymentId()

}

Red Hat JBoss BPM Suite 6.4 Development Guide

464

@Vfs: A VFS deployment service that enables you to deploy assets from VFS (Virtual File
System).

Note that every implementation of deployment service must have a dedicated implementation of
deployment unit as the services mentioned above.

20.4.3. Runtime Manager as CDI Bean

You can inject RuntimeManager as CDI bean into any other CDI bean within your application.
RuntimeManager comes with the following predefined strategies and each of them have CDI qualifiers:

@Singleton

@PerRequest

@PerProcessInstance

NOTE

Though you can directly inject RuntimeManager as a CDI bean, it is recommended to
utilize KIE services when frameworks like CDI, EJB or Spring are used. KIE services
provide significant amount of features that encapsulate best practices when using
RuntimeManager.

Here is an example of a producer method implementation that provides RuntimeEnvironment:

In the example above, a single producer method is capable of providing RuntimeEnvironment for all
strategies of RuntimeManager by specifying all qualifiers on the method level. Once a complete
producer is available, you can inject RuntimeManager into the application CDI bean as shown below:

public class EnvironmentProducer {

 // add the same producers as mentioned above in the configuration section

 @Produces
 @Singleton
 @PerRequest
 @PerProcessInstance
 public RuntimeEnvironment produceEnvironment(EntityManagerFactory emf) {
 RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()
 .newDefaultBuilder()
 .entityManagerFactory(emf)
 .userGroupCallback(getUserGroupCallback())
 .registerableItemsFactory(InjectableRegisterableItemsFactory
 .getFactory(beanManager, null))
 .addAsset(ResourceFactory.newClassPathResource("HiringProcess.bpmn2"),
 ResourceType.BPMN2)
 .addAsset(ResourceFactory.newClassPathResource("FiringProcess.bpmn2"),
 ResourceType.BPMN2)
 .get();
 return environment;
 }
}

public class ProcessEngine {

CHAPTER 20. JAVA APIS

465

NOTE

It is recommended to use DeploymentService when you need multiple
RuntimeManager instances active in your application instead of a single
RuntimeManager.

As an alternative to DeploymentService, the application can inject RuntimeManagerFactory and then
create RuntimeManager instance manually. In such cases, EnvironmentProducer remains the same as
the DeploymentService. Here is an example of a simple ProcessEngine bean:

 @Inject
 @Singleton
 private RuntimeManager singletonManager;

 public void startProcess() {
 RuntimeEngine runtime = singletonManager.getRuntimeEngine(EmptyContext.get());
 KieSession ksession = runtime.getKieSession();
 ProcessInstance processInstance = ksession.startProcess("HiringProcess");
 singletonManager.disposeRuntimeEngine(runtime);
 }
}

public class ProcessEngine {

 @Inject
 private RuntimeManagerFactory managerFactory;

 @Inject
 private EntityManagerFactory emf;

 @Inject
 private BeanManager beanManager;

 public void startProcess() {
 RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()
 .newDefaultBuilder()
 .entityManagerFactory(emf)
 .addAsset(ResourceFactory.newClassPathResource("HiringProcess.bpmn2"),
 ResourceType.BPMN2)
 .addAsset(ResourceFactory.newClassPathResource("FiringProcess.bpmn2"),
 ResourceType.BPMN2)
 .registerableItemsFactory(InjectableRegisterableItemsFactory
 .getFactory(beanManager, null))
 .get();

 RuntimeManager manager = managerFactory.newSingletonRuntimeManager(environment);
 RuntimeEngine runtime = manager.getRuntimeEngine(EmptyContext.get());
 KieSession ksession = runtime.getKieSession();

 ProcessInstance processInstance = ksession.startProcess("HiringProcess");

 manager.disposeRuntimeEngine(runtime);

Red Hat JBoss BPM Suite 6.4 Development Guide

466

 manager.close();
 }
}

CHAPTER 20. JAVA APIS

467

CHAPTER 21. REMOTE API
Red Hat JBoss BPM Suite provides various ways how to access the execution server in Business Central
remotely including REST, JMS, SOAP, and EJB interfaces. Moreover, it provides remote Java API which
allows developers to work with the RuntimeEngine interface while remote calls are executed in the
background, using either REST or JMS.

NOTE

It is not recommended to use Business Central remote APIs to any further extent, with
the exception of the Knowledge Store REST API. Instead, Intelligent Process Server
should be used. Both execution servers can be configured to use the same data source,
thus processes and tasks started on one server are accessible from the other server. See
section Unified Execution Servers of Red Hat JBoss BPM Suite Administration and
Configuration Guide for more details.

21.1. REST API

Representational State Transfer (hereinafter referred to as REST) is a style of software architecture of
distributed systems. It enables a highly abstract client-server communication: clients initiate requests to
servers to a particular URL with parameters if needed and servers process the requests and return
appropriate responses based on the requested URL. The requests and responses are built around the
transfer of representations of resources. A resource can be any coherent and meaningful concept that
may be addressed, such as a repository, a process, a rule, and so on.

Red Hat JBoss BPM Suite and Red Hat JBoss BRMS provide a REST API for individual application
components. The REST API implementations differ slightly:

Knowledge Store REST API calls interact with the artifact repository and are mostly
asynchronous, which means that they continue running after the call as a job. The calls return a
job ID which can be used after the REST API call was performed to request the job status and
verify whether the job finished successfully. Parameters of these calls are provided in the form
of JSON entities. See Section 21.1.1, “Knowledge Store REST API” .

The following APIs are only available in Red Hat JBoss BPM Suite.

Deployment REST API calls perform actions on deployments or retrieve information about one
ore more deployments. See Section 21.1.2, “Deployment REST API” .

The Process Image REST API allows you to get a diagram of your process in Business Central
through the remote REST API. See Section 21.1.3, “Process Image REST API” .

Runtime REST API calls interact with the process engine, task service, and business rule engine
in Business Central. See Section 21.1.4, “Runtime REST API” .

The REST Query API allows developers to query tasks, process instances, and their variables.
The operations results are grouped by the given process instance. See Section 21.1.5, “REST
Query API”.

All REST API calls use the following URL with the request body: http://SERVER:PORT/business-
central/rest/REQUEST_BODY.

CALLS ON RESOURCES ARE NOT SUPPORTED

Red Hat JBoss BPM Suite 6.4 Development Guide

468

CALLS ON RESOURCES ARE NOT SUPPORTED

It is not possible to issue REST API calls on project resources, such as rule files, work item
definitions, process definition files, and so on. Operations on such files should be
performed using Git and its REST API directly.

21.1.1. Knowledge Store REST API

REST API calls to the Knowledge Store REST API allow you to manage the organization units,
repositories, and projects.

All POST and DELETE calls return details about the request as well as a job ID that can be used to
request the job status and verify whether the job finished successfully. The GET calls return information
about repositories, projects, and organizational units.

Parameters and results of these calls are provided in the form of JSON entities. Java classes for
different entities are available in the org.guvnor.rest.client package and are referenced in the following
text.

21.1.1.1. Job Calls

Most Knowledge Store REST calls return a job ID after they are issued. This is necessary as the calls are
asynchronous and it is required to be able to reference the job later to check its status as it goes
through a job lifecycle.

During its lifecycle, a job can have the following statuses:

Table 21.1. Job Statuses

Status Description

ACCEPTED The job was accepted and is being processed.

BAD_REQUEST The request was not accepted as it contained incorrect content.

RESOURCE_NOT_E
XIST

The requested resource (path) does not exist.

DUPLICATE_RESOU
RCE

The resource already exists.

SERVER_ERROR An error on the server side occurred.

SUCCESS The job finished successfully.

FAIL The job failed.

APPROVED The job was approved.

DENIED The job was denied.

CHAPTER 21. REMOTE API

469

GONE The job ID could not be found. A job can be GONE in the following cases:

The job was explicitly removed.

The job finished and has been deleted from a status cache. A job is
removed from a status cache after the cache has reached its maximum
capacity.

The job never existed.

Status Description

The following job calls are provided:

[GET] /jobs/JOB_ID

Returns a status of the given JOB_ID.

Example 21.1. Formatted Response to GET Job Call on Repository Clone Request

{
 "status" : "SUCCESS",
 "jobId" : "1377770574783-27",
 "result" : "Alias: testInstallAndDeployProject, Scheme: git, Uri:
git://testInstallAndDeployProject",
 "lastModified" : 1377770578194,
 "detailedResult" : null
}

[DELETE] /jobs/JOB_ID

Removes a job with the given JOB_ID. If the job is not being processed yet, the call will remove the
job from the job queue. However, this call will not cancel or stop an ongoing job.

Both of these job calls return a JobResult instance.

21.1.1.2. Organizational Unit Calls

Organizational unit calls are calls to the Knowledge Store that allow you to manage its organizational
units which are useful to model departments and divisions. An organization unit can hold multiple
repositories.

The following organizational unit calls are provided:

[GET] /organizationalunits/

Returns a list of all organizational units.

Example 21.2. Organizational Unit List in JSON Format

[{
 "name" : "EmployeeWage",
 "description" : null,
 "owner" : "Employee",
 "defaultGroupId" : "org.bpms",

Red Hat JBoss BPM Suite 6.4 Development Guide

470

 "repositories" : ["EmployeeRepo", "OtherRepo"]
}, {
 "name" : "OrgUnitName",
 "description" : null,
 "owner" : "OrgUnitOwner",
 "defaultGroupId" : "org.group.id",
 "repositories" : ["repository-name-1", "repository-name-2"]
}]

[GET] /organizationalunits/ORGANIZATIONAL_UNIT_NAME

Returns information about a specific organizational unit.

[POST] /organizationalunits/

Creates an organizational unit in the Knowledge Store. The organizational unit is defined as a JSON
entity. The call requires an OrganizationalUnit instance and returns a
CreateOrganizationalUnitRequest instance.

Example 21.3. Organizational Unit in JSON Format

{
 "name" : "testgroup",
 "description" : "",
 "owner" : "tester",
 "repositories" : ["testGroupRepository"]
}

[POST] /organizationalunits/ORGANIZATIONAL_UNIT_NAME

Updates the details of an existing organizational unit.
Both the name and owner fields in the required UpdateOrganizationalUnit instance can be left
empty. Neither the description field nor the repository association can be updated using this
operation.

Example 21.4. Update Organizational Unit Input in JSON Format

{
 "owner" : "NewOwner",
 "defaultGroupId" : "org.new.default.group.id"
}

[DELETE] /organizationalunits/ORGANIZATIONAL_UNIT_NAME

Removes a specified organizational unit.

[POST] /organizationalunits/ORGANIZATIONAL_UNIT_NAME/repositories/REPOSITORY_NAME

Adds a repository to an organizational unit.

[DELETE]
/organizationalunits/ORGANIZATIONAL_UNIT_NAME/repositories/REPOSITORY_NAME

Removes a repository from an organizational unit.

21.1.1.3. Repository Calls

CHAPTER 21. REMOTE API

471

Repository calls are calls to the Knowledge Store that allow you to manage its Git repositories and their
projects.

The following repository calls are provided:

[GET] /repositories

Returns a list of repositories in the Knowledge Store.

Example 21.5. Response of Repository Call

[
 {
 "name": "bpms-assets",
 "description": "generic assets",
 "userName": null,
 "password": null,
 "requestType": null,
 "gitURL": "git://bpms-assets"
 },
 {
 "name": "loanProject",
 "description": "Loan processes and rules",
 "userName": null,
 "password": null,
 "requestType": null,
 "gitURL": "git://loansProject"
 }
]

[GET] /repositories/REPOSITORY_NAME

Returns information about a specific repository.

[DELETE] /repositories/REPOSITORY_NAME

Removes a repository.

[POST] /repositories/

Creates or clones a repository defined by a JSON entity.

Example 21.6. JSON Entity with Details about Repository to Be Cloned

{
 "name": "myClonedRepository",
 "organizationalUnitName": "example",
 "description": "",
 "userName": "",
 "password": "",
 "requestType": "clone",
 "gitURL": "git://localhost/example-repository"
}

Example 21.7. JSON Entity with Details about Repository to Be Created

{

Red Hat JBoss BPM Suite 6.4 Development Guide

472

 "name": "myCreatedRepository",
 "organizationalUnitName": "example",
 "description": "",
 "userName": "",
 "password": "",
 "requestType": "create",
 "gitURL": "git://localhost/example-repository"
}

IMPORTANT

Make sure you always include the organizationalUnitName key-value pair in your
query and that the specified organization unit exists before you create or clone the
repository.

[GET] /repositories/REPOSITORY_NAME/projects/

Returns a list of projects in a specific repository as a JSON entity.

Example 21.8. JSON Entity with Details about Existing Projects

[{
 "name" : "my-project-name",
 "description" : "A project to illustrate a REST output.",
 "groupId" : "com.acme",
 "version" : "1.0"
}, {
 "name" : "yet-another-project-name",
 "description" : "Yet another project to illustrate a REST output.",
 "groupId" : "com.acme",
 "version" : "2.2.1"
}]

[POST] /repositories/REPOSITORY_NAME/projects/

Creates a project in a repository.

Example 21.9. Request Body That Defines Project to Be Created

{
 "name" : "NewProject",
 "description" : "Description of the new project.",
 "groupId" : "org.redhat.test",
 "version" : "1.0.0"
}

[DELETE] /repositories/REPOSITORY_NAME/projects/PROJECT_NAME

Removes a project in a repository.

21.1.1.4. Maven Calls

Maven calls are calls to a project in the Knowledge Store that allow you to compile and deploy the

CHAPTER 21. REMOTE API

473

Maven calls are calls to a project in the Knowledge Store that allow you to compile and deploy the
project resources.

The following Maven calls are provided:

[POST] /repositories/REPOSITORY_NAME/projects/PROJECT_NAME/maven/compile/

Compiles the project. Equivalent to mvn compile. Returns a CompileProjectRequest instance.

[POST] /repositories/REPOSITORY_NAME/projects/PROJECT_NAME/maven/install/

Installs the project. Equivalent to mvn install. Returns a InstallProjectRequest instance.

[POST] /repositories/REPOSITORY_NAME/projects/PROJECT_NAME/maven/test/

Compiles and runs the tests. Equivalent to mvn test. Returns a TestProjectRequest instance.

[POST] /repositories/REPOSITORY_NAME/projects/PROJECT_NAME/maven/deploy/

Deploys the project. Equivalent to mvn deploy. Returns a DeployProjectRequest instance.

21.1.2. Deployment REST API

The KIE module JAR files can be deployed or undeployed using the Business Central UI or the REST API
calls.

Deployment units are represented by a unique deployment ID consisting of the following elements
separated by colons:

1. Group ID

2. Artifact ID

3. Version

4. KIE base ID (optional)

5. KIE session ID (optional)

21.1.2.1. Deployment Calls

The following deployment calls are provided:

[GET] /deployment/

Returns a list of all available deployed instances in a JaxbDeploymentUnitList instance.

[GET] /deployment/processes

Returns a list of all available deployed process definitions in a JaxbProcessDefinitionList instance.

[GET] /deployment/DEPLOYMENT_ID

Returns an instance of JaxbDeploymentUnit containing the information about a deployment unit,
including its configuration.

[POST] /deployment/DEPLOYMENT_ID/deploy

Deploys a deployment unit referenced by DEPLOYMENT_ID. The call returns a
JaxbDeploymentJobResult instance with a status of the request.
The deploy operation is asynchronous. Use the described GET calls to get a status of the
deployment.

When a project is deployed, it is activated by default: new process instances can be started using the
process definitions and other information in the deployment. However, at later point in time, users

Red Hat JBoss BPM Suite 6.4 Development Guide

474

may want to make sure that the deployment is no longer used without necessarily aborting or
stopping the existing (running) process instances. To do so, the deployment can first be deactivated
before it will be removed at a later date.

NOTE

Configuration options such as the runtime strategy should be defined before
deploying the JAR files and cannot be changed post deployment.

To override the session strategy specified in the deployment descriptor, use the strategy query
parameter. The following not case-sensitive values are supported:

SINGLETON

PER_REQUEST

PER_PROCESS_INSTANCE

For example:

[POST] /deployment/DEPLOYMENT_ID/deploy?strategy=PER_REQUEST

To use a specific merge mode in the deployment request, specify the mergemode query parameter.
The following not case-sensitive values are supported:

KEEP_ALL

OVERRIDE_ALL

OVERRIDE_EMPTY

MERGE_COLLECTIONS

It is possible to post a deployment descriptor or its fragment with the deployment request, which
allows to override other deployment descriptors. To do so, set a content type of the request to
application/xml and make sure the request body is a valid deployment descriptor content, for
example:

<deployment-descriptor xsi:schemaLocation="http://www.jboss.org/jbpm deployment-
descriptor.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <audit-mode>JMS</audit-mode>
</deployment-descriptor>

CHAPTER 21. REMOTE API

475

WARNING

To avoid the Unsupported Media Type error on Oracle WebLogic Server, make
sure the deployment-descriptor is always provided, even as an empty-element
tag, and the header is specified as Content-Type. See the example call:

curl -v -H 'Content-Type: application/xml' -u bpmsAdmin --data "<deployment-
descriptor/>" -X POST 'localhost:7001/business-
central/rest/deployment/com.sample:bpm-processes:1.1/deploy'

[POST] /deployment/DEPLOYMENT_ID/undeploy

Undeploys a deployment unit with a specified DEPLOYMENT_ID and returns a
JaxbDeploymentJobResult instance with a status of the request.
The undeploy operation is asynchronous. Use the described GET calls to get the status of the
deployment.

NOTE

The deploy and undeploy operations can fail if one of the following is true:

An identical job has already been submitted to the queue and has not yet
completed.

The amount of deploy and undeploy jobs submitted but not yet processed
exceeds the job cache size.

[POST] /deployment/DEPLOYMENT_ID/activate

Activates a deployment. Returns a JaxbDeploymentJobResult instance with a status of the
request.
The activate operation is asynchronous.

[POST] /deployment/DEPLOYMENT_ID/deactivate

Deactivates a deployment. Returns a JaxbDeploymentJobResult instance with a status of the
request.
The deactivate operation is asynchronous.

NOTE

The deactivate operation ensures that no new process instances can be started
with the existing deployment.

If it is decided that a deactivated deployment should be reactivated instead of
deleted, the activate operation should be used to reactivate the deployment. A
deployment is always activated by default when it is initially deployed.

Red Hat JBoss BPM Suite 6.4 Development Guide

476

WARNING

In version 6.4 of the product, start timer events keep starting new process instances
after a deployment is deactivated. This is a known issue.

[GET] /deployment/DEPLOYMENT_ID/processes

Lists all available process definitions in a given deployment unit. Returns an instance of
JaxbProcessDefinitionList.

21.1.2.2. Asynchronous Calls

The following deployment calls described in the previous section are asynchronous REST operations:

/deployment/DEPLOYMENT_ID/deploy

/deployment/DEPLOYMENT_ID/undeploy

/deployment/DEPLOYMENT_ID/activate

/deployment/DEPLOYMENT_ID/deactivate

Asynchronous calls allow a user to issue a request and continue to the next task before the previous task
in the queue is finished. Therefore, the information received after posting a call does not reflect the
actual state or eventual status of the operation. It returns a status 202 upon the completion of the
request: "The request has been accepted for processing, but the processing has not been completed. "

This means that:

The POST request has been successfully queued, but the result of the actual operation
(deploying or undeploying the deployment unit) cannot be determined from this code.
Interrogate the JaxbDeploymentUnit object returned by the GET
/deployment/DEPLOYMENT_ID call to obtain that state.

The JaxbDeploymentUnit object returned using the GET request is only valid for the point in
time which it was checked. Its status may change after the GET request has completed.

21.1.3. Process Image REST API

Red Hat JBoss BPM Suite allows you to get a diagram of your process in Business Central through the
remote REST API. To get the diagram, you need to generate the image based on the SVG source first,
which is done automatically by the process designer when you save a process definition.

To ensure that the process is saved in the process designer as SVG and is added to the kJAR, set
<storesvgonsave enabled="true"/> in the /org.kie.workbench.KIEWebapp/profiles/jbpm.xml file in
business-central.war. SVGImageProcessor adds further annotations based on the audit log data. You
can extend SVGImageProcessor further for more advanced visualizations.

NOTE

CHAPTER 21. REMOTE API

477

NOTE

It is recommended to use Intelligent Process Server instead of Business Central.
Chapter 18, Intelligent Process Server UI Extension provides a richer set of REST
endpoints, including process diagram images as well as process and task forms.

The following process image REST operations are provided by Business Central:

[GET] /runtime/DEPLOYMENT_ID/process/PROCESS_DEFINITION_ID/image

Returns an SVG image of the process definition diagram.

[GET]
/runtime/DEPLOYMENT_ID/process/PROCESS_DEFINITION_ID/image/PROCESS_INSTANCE_ID

Returns an SVG image of the process instance diagram, with highlighted currently active nodes.

21.1.4. Runtime REST API

Runtime REST API provided by Business Central allows you to work with its underlying execution server,
including process engine, task service, and business rule engine, and manipulate runtime data.

NOTE

It is recommended to use Intelligent Process Server instead of Business Central for all
remote calls. See Chapter 16, The REST API for Intelligent Process Server Execution for
more information about equivalent REST endpoints.

With the exception of execute operations (see Section 21.1.6, “Execute Operations”), all the other REST
calls can use JAXB or JSON. The calls are synchronous and return the requested data as JAXB objects
by default. When using JSON, the JSON media type (application/json) should be added to the
ACCEPT header of the REST call.

21.1.4.1. Query Parameters

The Runtime REST API calls can have various query parameters. To add a parameter to a call, add the ?
symbol to the URL and a parameter name with its value. For example, http://localhost:8080/business-
central/rest/task/query?workItemId=393 returns a list of all tasks (TaskSummary instances) based on
the work item with ID 393. Note that parameters and their values are case sensitive.

21.1.4.1.1. Map Parameters

Some runtime REST API calls can use the Map parameter. That means it is possible to submit key-value
pairs to the operation using a query parameter prefixed with the map_ keyword. For example,

map_age=5000

is translated as

{ "age" => Long.parseLong("5000") }

Example 21.10. GET Call That Returns All Tasks to Locally Running Application Using curl

curl -v -H 'Accept: application/json' -u eko 'localhost:8080/business-central/rest/tasks/'

Red Hat JBoss BPM Suite 6.4 Development Guide

478

http://localhost:8080/business-central/rest/task/query?workItemId=393

To perform the runtime REST calls from your Java application, see Section 21.5, “Remote Java API” .

While interacting with the Remote API, some classes are to be included in the deployment. This enables
users to pass instances of their own classes as parameters to certain operations. The REST calls that
start with /task often do not contain any information about the associated deployment. In this case, an
extra query parameter deploymentId is added to the REST call allowing the server to find the
appropriate deployment class and deserialize the information passed with the call.

21.1.4.1.2. Pagination

The pagination parameters allow you to define pagination of REST call results. The following pagination
parameters are available:

page or p

A number of the page to be returned. The default value is 1, which means that page number 1 is
returned.

pageSize or s

A number of items per page. The default value is 10.

If both the long option and the short option are included in a URL, the longer version of the parameter
takes precedence. When no pagination parameters are included, the returned results are not paginated.

Pagination parameters can be applied to the following REST requests:

/task/query

/history/instances

/history/instance/*

/task/query

Example 21.11. REST Request Body with Pagination Parameter

/history/instances?page=3&pageSize=20
/history/instances?p=3&s=20

21.1.4.1.3. Object Data Type Parameters

By default, any object parameters provided in a REST call are considered to be strings. If you need to
explicitly define the data type of a parameter in a call, you can do so by adding one of the following
values to the parameter:

\d+i: Integer

\d+l: Long

Example 21.12. REST Request Body with Integer Parameter

/rest/runtime/business-central/process/org.jbpm.test/start?map_var1=1234i

Note that the intended use of these object parameters is to define data types of send signal and

CHAPTER 21. REMOTE API

479

Note that the intended use of these object parameters is to define data types of send signal and
process variable values. For example, consider the use in the startProcess command in the execute
operation. See Section 21.1.6, “Execute Operations”.

21.1.4.2. Runtime Calls

Runtime REST calls allow you to work with runtime data such as process instances, signals, and work
items.

NOTE

If you want to use other features of the execution engine that are not available as direct
REST calls, look at generic execute operations. See Section 21.1.6, “Execute Operations”.

21.1.4.2.1. Process Calls

Process calls allow you to start new process instances, abort the existing ones, and get details about
running process instances and their variables.

The following runtime process calls are provided:

[POST] /runtime/DEPLOYMENT_ID/process/PROCESS_DEFINITION_ID/start

Starts a new instance of PROCESS_DEFINITION_ID process and returns
JaxbProcessInstanceResponse with information about the process instance.
This operation accepts map parameters. For more information, see Section 21.1.4.1.1, “Map
Parameters”. If you want to pass custom classes, use Remove Java API. See Section 21.5, “Remote
Java API”.

[POST] /runtime/DEPLOYMENT_ID/withvars/process/PROCESS_DEFINITION_ID/start

Starts a new instance of PROCESS_DEFINITION_ID process and returns
JaxbProcessInstanceWithVariablesResponse with information about the process instance
including process variables.

[GET] /runtime/DEPLOYMENT_ID/process/PROCESS_DEFINITION_ID/startform

If the PROCESS_DEFINITION_ID process exists, returns JaxbProcessInstanceFormResponse
containing a URL where the process form can be found.

[POST] /runtime/DEPLOYMENT_ID/process/instance/PROCESS_INSTANCE_ID/abort

Aborts the process instance and returns JaxbGenericResponse indicating success or failure of the
operation.

[GET] /runtime/DEPLOYMENT_ID/process/instance/PROCESS_INSTANCE_ID

Returns JaxbProcessInstanceResponse with details about the active process instance.

[GET] /runtime/DEPLOYMENT_ID/withvars/process/instance/PROCESS_INSTANCE_ID

Returns JaxbProcessInstanceWithVariablesResponse with details about the active process
instance including process variables.

[GET]
/runtime/DEPLOYMENT_ID/process/instance/PROCESS_INSTANCE_ID/variable/VARIABLE_NAME

Returns the VARIABLE_NAME variable in the PROCESS_INSTANCE_ID process instance. If the
variable is primitive, the variable value is returned.

21.1.4.2.2. Signal Calls

Signal calls allow you to send a signal to a deployment or a particular process instance.

Red Hat JBoss BPM Suite 6.4 Development Guide

480

All signal calls accept the following query parameters:

signal: the name of the signal event (required).

event: the data associated with this event.

The following signal calls are provided:

[POST] /runtime/DEPLOYMENT_ID/signal

Sends a signal event to all active process instances as well as process definitions with a Signal start
event (see Section 11.5.1, “Start Events”) in the given deployment unit. Returns
JaxbGenericResponse with the status of the operation.

Example 21.13. Signal Call Example

/runtime/DEPLOYMENT_ID/signal?signal=SIGNAL_CODE

WARNING

There is a known issue preventing this operation to work with deployment units
using the Per Process Instance runtime strategy.

[POST] /runtime/DEPLOYMENT_ID/process/instance/PROCESS_INSTANCE_ID/signal

Sends a signal event to the given process instance and returns JaxbGenericResponse with a status
of the operation.

Example 21.14. Local Signal Invocation and Its REST Version

curl -v -u admin 'localhost:8080/business-
central/rest/runtime/myDeployment/process/instance/23/signal?signal=MySignal&event=value'

[POST] /runtime/DEPLOYMENT_ID/withvars/process/instance/PROCESS_INSTANCE_ID/signal

Sends a signal event to the given process instance and returns
JaxbProcessInstanceWithVariablesResponse.

21.1.4.2.3. Work Item Calls

Work item calls allow you to complete or abort a particular work item as well as get details about a work
item instance.

The parameters of work item calls must match the following regular expressions:

DEPLOYMENT_ID: (:[\\w\\.-]){2,2}(:[\\w\\.-]*){0,2}}

ksession.signalEvent("MySignal", "value", 23l);

CHAPTER 21. REMOTE API

481

WORK_ITEM_ID: [0-9]+

The following work item calls are provided:

[GET] /runtime/DEPLOYMENT_ID/workitem/WORK_ITEM_ID

Returns JaxbWorkItemResponse with details about a work item with the given WORK_ITEM_ID.

[POST] /runtime/DEPLOYMENT_ID/workitem/WORK_ITEM_ID/complete

Completes the given work item.
The call accepts map parameters containing information about the results. See Section 21.1.4.1.1,
“Map Parameters”.

Example 21.15. Local Invocation and Its REST Version

curl -v -u admin 'localhost:8080/business-
central/rest/runtime/myDeployment/workitem/23/complete?map_one=done&map_two=2i'

[POST] /runtime/DEPLOYMENT_ID/workitem/WORK_ITEM_ID/abort

Aborts the given work item.

21.1.4.2.4. History Calls

The history calls allow you to access audit log information about process instances.

The following history calls are provided:

[GET] /history/instances

Returns logs of all process instances.

[GET] /history/instance/PROCESS_INSTANCE_ID

Returns all logs of the given process instance, including subprocesses.

[GET] /history/instance/PROCESS_INSTANCE_ID/child

Returns logs of subprocesses of the given process instance.

[GET] /history/instance/PROCESS_INSTANCE_ID/node

Returns logs of all nodes of the given process instance.

[GET] /history/instance/PROCESS_INSTANCE_ID/node/NODE_ID

Returns logs of the specified node of the given process instance.

[GET] /history/instance/PROCESS_INSTANCE_ID/variable

Returns variable logs of the given process instance.

[GET] /history/instance/PROCESS_INSTANCE_ID/variable/VARIABLE_ID

Returns a variable log of the specified variable of the given process instance.

[GET] /history/process/PROCESS_INSTANCE_ID

Map<String, Object> results = new HashMap<String, Object>();

results.put("one", "done");
results.put("two", 2);

kieSession.getWorkItemManager().completeWorkItem(23l, results);

Red Hat JBoss BPM Suite 6.4 Development Guide

482

Returns logs of the given process instance, excluding logs of its nodes and variables.

[POST] /history/clear

Clears all process, variable, and node logs.

History Variable Calls
In the following REST calls, variables are used to search process instances, variables, and their values.

The calls below accept an optional boolean query parameter:

activeProcesses: if set to true, only the information from active process instances is returned.

The following history variable calls are provided:

[GET] /history/variable/VARIABLE_ID

Returns variable logs of the given process variable.

[GET] /history/variable/VARIABLE_ID/value/VALUE

Returns variable logs of the given process variable with the specified value.

Example 21.16. Local Invocation and Its REST Version

curl -v -u admin 'localhost:8080/business-central/rest/history/variable/countVar/value/three?
activeProcesses=true'

[GET] /history/variable/VARIABLE_ID/instances

Returns process instance logs for the processes that contain the given process variable.

[GET] /history/variable/VARIABLE_ID/value/VALUE/instances

Returns process instance logs for the processes that contain the given process variable with the
specified value.

21.1.4.3. Task Calls

The task calls allow you to execute task operations as well as query the tasks and get task details.

The following task calls are provided:

[GET] /task/TASK_ID

Returns JaxbTask with details about the given task.

[POST] /task/TASK_ID/TASK_OPERATION

Executes the given task operation. For more information, see Section 21.1.4.3.1, “Task Operations”.

[GET] /task/TASK_ID/content

Returns JaxbContent with a content of the given task. For more information, see Section 21.1.4.3.2,
“Content Operations”.

[GET] /task/content/CONTENT_ID

Returns JaxbContent with a task content. For more information, see Section 21.1.4.3.2, “Content
Operations”.

[GET] /task/query

Another entry point for the /query/runtime/task calls of the REST Query API. See Section 21.1.5,

auditLogService.findVariableInstancesByNameAndValue("countVar", "three", true);

CHAPTER 21. REMOTE API

483

Another entry point for the /query/runtime/task calls of the REST Query API. See Section 21.1.5,
“REST Query API”.

21.1.4.3.1. Task Operations

The following operations can be executed on a task:

Table 21.2. Task Operations

Task Action

activate Activate the task.

claim Claim the task.

claimnextavailable Claim the next available task assigned to the user.

complete Complete the task with the specified map parameters. See Section 21.1.4.1.1, “Map
Parameters”.

delegate Delegate the task to the user specified by the targetEntityId query parameter.

exit Exit the task.

This operation can be performed by any user or a group specified as the
administrator of a human task. If the task does not specify any values, the system
automatically adds user Administrator and group Administrators to the task.

fail Fail the task.

forward Forward the task.

release Release the task.

resume Resume the task.

skip Skip the task.

start Start the task.

stop Stop the task.

suspend Suspend the task.

nominate Nominate either a user or a group, specified by the user or the group query
parameter, for the task.

21.1.4.3.2. Content Operations

Both task and content operations return the serialized content associated with the given task.

Red Hat JBoss BPM Suite 6.4 Development Guide

484

The content associated with a task is stored in a database in a serialized form either as a string with XML
data or a map with several different key-value pairs. The content is serialized using the algorithm based
on Protocol Buffers: protobuf. This serialization process is usually executed by the static methods in the
org.jbpm.services.task.utils.ContentMarshallerHelper class.

If the client that calls the task content operation do not have access to the
org.jbpm.services.task.utils.ContentMarshallerHelper class, the task content cannot be deserialized.
When using the REST call to obtain task content, the content is first deserialized using the
ContentMarshallerHelper class and then serialized with the common Java serialization mechanism.

Due to restrictions of REST operations, only the objects for which the following is true can be returned
by the task content operations:

The requested objects are instances of a class that implements the Serializable interface. In the
case of Map objects, they only contain values that implement the Serializable interface.

The objects are not instances of a local class, an anonymous class, or arrays of a local or an
anonymous class.

The object classes are present on the class path of the server application.

21.1.5. REST Query API

The REST Query API allows developers to query tasks, process instances, and their variables. The
operations results are grouped by the process instance they belong to.

21.1.5.1. URL Layout

The rich query operations can be performed using the following URLs:

http://SERVER:PORT/business-central/rest/query/runtime/task
Rich query for task summaries and process variables.

http://SERVER:PORT/business-central/rest/query/runtime/process
Rich query for process instances and process variables.

You can specify a number of different query parameters. For more information, see Section 21.1.5.2,
“Query Parameters”.

21.1.5.2. Query Parameters

In the text below, query parameters are strings such as processInstanceId, taskId, or tid. These query
parameters are not case sensitive, with the exception of those also specifying the name of a user-
defined variable. Parameters are the values passed with query parameters, for example
org.process.frombulator, 29, or harry.

When you submit a REST call to the query operation, the URL could be similar to the following:

http://localhost:8080/business-central/rest/query/runtime/process?
processId=org.process.frombulator&piid=29

A query containing multiple query parameters searches for their intersection. However, many of the
query parameters described later can be entered multiple times. In such case, the query searches for any
results that match one or more of the entered values.

CHAPTER 21. REMOTE API

485

Example 21.17. Repeated Query Parameters

processId=org.example.process&processInstanceId=27&processInstanceId=29

This process instance query returns a result that contains information about process instances with
the org.example.process process definition and ID 27 or 29.

WARNING

When running Business Central on WebSphere application server, the server ignores
the parameters of REST Query API calls without a value (for example
http://localhost:9080/business-central/rest/query/runtime/process?
vv=john&all). However, the server accepts the call if you specify an empty value for
these parameters. For example http://localhost:9080/business-
central/rest/query/runtime/process?vv=john&all=.

21.1.5.2.1. Range and Regular Expression Parameters

There are two ways to define a value of a query parameter: using ranges or a simple regular expression.

21.1.5.2.2. Range Query Parameters

To define the start of a range, add _min to the parameter’s name. To define the end of a range, add
_max to the parameter’s name. Range ends are inclusive.

Defining only one end of the range results in querying on an open ended range.

Example 21.18. Range Parameters

processId=org.example.process&taskId_min=50&taskId_max=53

This task query returns a result that contains only the information about tasks associated with the
org.example.process process definition and the tasks that have an ID between 50 and 53, inclusive.

The following tak query differs:

processId=org.example.process&taskId_min=52

This task query returns a result that contains only the information about tasks associated with the
org.example.process process definition and the tasks that have an ID larger than or equal to 52.

21.1.5.2.3. Regular Expression Query Parameters

To use regular expressions in a query parameter, add _re to the parameter’s name. The regular
expression language contains two special characters:

* means 0 or more characters

Red Hat JBoss BPM Suite 6.4 Development Guide

486

http://localhost:9080/business-central/rest/query/runtime/process?vv=john&all
http://localhost:9080/business-central/rest/query/runtime/process?vv=john&all=

. means 1 character

The slash character (\) is not interpreted.

Example 21.19. Regular Expression Parameters

processId_re=org.example.*&processVersion=2.0

This process instance query returns a result that fulfills the following:

Contains only the information about process instances associated with a process definition
whose name matches the regular expression org.example.*. This includes:

org.example.process

org.example.process.definition.example.long.name

orgXexampleX

Contains only the information about process instances that have process version 2.0.

21.1.5.3. List of Query Parameters

Query parameters that can be defined in ranges have an X in the MIN/MAX column. Query parameters
that use regular expressions have an X in the Regex column. The last column describes whether a query
parameter can be used in task queries, process instance queries, or both.

processinstanceid

The process instance ID.

Short Form Regex MIN/MAX Task, Process

piid X T, P

processid

The process definition ID.

Short Form Regex MIN/MAX Task, Process

pid X T, P

deploymentid

The deployment ID.

Short Form Regex MIN/MAX Task, Process

did X T, P

taskid

CHAPTER 21. REMOTE API

487

The task ID.

Short Form Regex MIN/MAX Task, Process

tid X T

initiator

The task initiator or creator.

Short Form Regex MIN/MAX Task, Process

init X T

potentialowner

The task potential owner.

Short Form Regex MIN/MAX Task, Process

po X T

taskowner

The task owner.

Short Form Regex MIN/MAX Task, Process

to X T

businessadmin

The task business administrator.

Short Form Regex MIN/MAX Task, Process

ba X T

taskstatus

The task status.

Short Form Regex MIN/MAX Task, Process

tst T

processinstancestatus

The process instance status.

Red Hat JBoss BPM Suite 6.4 Development Guide

488

Short Form Regex MIN/MAX Task, Process

pist T, P

processversion

The process version.

Short Form Regex MIN/MAX Task, Process

pv X T, P

startdate

The process instance start date.1

Short Form Regex MIN/MAX Task, Process

stdt X T, P

enddate

The process instance end date.1

Short Form Regex MIN/MAX Task, Process

edt X T, P

varid

The variable ID.

Short Form Regex MIN/MAX Task, Process

vid X T, P

varvalue

The variable value.

Short Form Regex MIN/MAX Task, Process

vv X T, P

var

The variable ID and value.2

CHAPTER 21. REMOTE API

489

Short Form Regex MIN/MAX Task, Process

var T, P

varregex

The variable ID and value.3

Short Form Regex MIN/MAX Task, Process

vr X T, P

all

Retrieves all variable instance logs.4

Short Form Regex MIN/MAX Task, Process

all T, P

[1] The date operations require strings with the yy-MM-dd_HH:mm:ss date format as their values.
However, you can submit only a part of the date:

Submitting only the date (yy-MM-dd) means that a time of 00:00:00 is used (the beginning of
the day).

Submitting only the time (HH:mm:ss) means that the current date is used.

Table 21.3. Example Date Strings

Date String Actual Meaning

15-05-29_13:40:12 May 29th, 2015, 13:40:12 (1:40:12 PM)

14-11-20 November 20th, 2014, 00:00:00

9:30:00 Today, 9:30:00 (AM)

For more information about the used format, see the Class SimpleDateFormat documentation.

[2] The var query parameter is used differently than other parameters. If you want to specify both the
variable ID and the value of a variable, as opposed to just the variable ID, do so by using the var query
parameter. The syntax is var_{VARIABLE_ID}={VARIABLE_VALUE}.

For example, the query parameter and parameter pair var_myVar=foo3 queries for process instances
with a variable called myVar that have value foo3.

[3] The varreggex (or just vr) parameter works similarly as the var query parameter. The value part of
the query parameter can be a regular expression.

Red Hat JBoss BPM Suite 6.4 Development Guide

490

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

[4] By default, only the information from the latest variable instance logs is retrieved. Using this
parameters, you can retrieve all the variable instance logs that match the given criteria.

Table 21.4. Query Parameters Examples

Parameter Short Form Example

processinstanceid piid piid=23

processid pid processid=com.acme.example

workitemid wid wid_max=11

deploymentid did did_re=com.willy.loompa.*

taskid tid taskid=4

initiator init init_re=Davi*

stakeholder stho stho=theBoss&stho=theBossesAssistant

potentialowner po potentialowner=sara

taskowner to taskowner_re=*anderson

businessadmin ba ba=admin

taskstatus tst tst=Reserved

processinstancestat
us

pist pist=3&pist=4

processversion pv processVersion_re=4.2*

startdate stdt stdt_min=00:00:00

enddate edt edt_max=15-01-01

varid vid varid=numCars

varvalue vv vv=abracadabra

var var var_numCars=10

varregex vr vr_nameCar=chitty*

all all all

CHAPTER 21. REMOTE API

491

21.1.5.4. Query Output Format

The REST Query API calls return the following results:

JaxbQueryProcessInstanceResult for all process instance queries.

JaxbQueryTaskResult for all task queries.

21.1.6. Execute Operations

For remote communication, it is recommended to use the Remote Java API. See Section 21.5, “Remote
Java API”.

For performing runtime operations that involves passing a custom Java object used in the process (such
as starting a process instance with process variables, or completing a task with task variables), you can
use the approach mentioned in Section 21.5.2.3, “Custom Model Objects and Remote API” .

If it is not possible to use the Remote Java API or if your requirement is to use the REST API directly,
you may consider using the execute operations. While the REST API accepts only string or integer
values as parameters, the execute operation allows you to send complex Java objects to perform Red
Hat JBoss BPM Suite runtime operations.

The execute operations are created to support the Remote Java API. Use the operations only in
exceptional circumstances, such as:

When you need to pass complex objects as parameters.

When it is not possible to use /runtime or /task endpoints.

Additionally, you can consider using the execute operations in cases when you are running any other
client besides Java.

In the following example, a complex object org.MyPOJO is passed as a parameter to start a process:

package com.redhat.gss.jbpm;

import java.io.StringReader;
import java.io.StringWriter;
import java.net.URL;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;

import javax.ws.rs.core.MediaType;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;

import org.MyPOJO;
import org.apache.commons.codec.binary.Base64;
import org.jboss.resteasy.client.ClientRequest;
import org.jboss.resteasy.client.ClientRequestFactory;
import org.jboss.resteasy.client.ClientResponse;
import org.kie.api.command.Command;
import org.kie.remote.client.jaxb.JaxbCommandsRequest;

Red Hat JBoss BPM Suite 6.4 Development Guide

492

import org.kie.remote.client.jaxb.JaxbCommandsResponse;
import org.kie.remote.jaxb.gen.JaxbStringObjectPairArray;
import org.kie.remote.jaxb.gen.StartProcessCommand;
import org.kie.remote.jaxb.gen.util.JaxbStringObjectPair;
import org.kie.services.client.serialization.JaxbSerializationProvider;
import org.kie.services.client.serialization.jaxb.impl.JaxbCommandResponse;

public class StartProcessWithPOJO {

 /*
 * Set the parameters according your installation:
 */
 private static final String DEPLOYMENT_ID = "org.kie.example:project1:3.0";
 private static final String PROCESS_ID = "project1.proc_start";
 private static final String PROCESS_PARAM_NAME = "myPOJO";
 private static final String APP_URL = "http://localhost:8080/business-central/rest";
 private static final String USER = "jesuino";
 private static final String PASSWORD = "redhat2014!";

 public static void main(String[] args) throws Exception {
 // List of commands to be executed:
 List<Command> commands = new ArrayList<>();

 // A sample command to start a process:
 StartProcessCommand startProcessCommand = new StartProcessCommand();
 JaxbStringObjectPairArray params = new JaxbStringObjectPairArray();
 params.getItems().add(new JaxbStringObjectPair(PROCESS_PARAM_NAME, new MyPOJO("My
POJO TESTING")));
 startProcessCommand.setProcessId(PROCESS_ID);
 startProcessCommand.setParameter(params);
 commands.add(startProcessCommand);
 List<JaxbCommandResponse<?>> response = executeCommand(DEPLOYMENT_ID,
commands);
 System.out.printf("Command %s executed.\n", response.toString());
 System.out.println("commands1" + commands);
 }

 private static List<JaxbCommandResponse<?>> executeCommand(String deploymentId,
List<Command> commands) throws Exception {

 URL address = new URL(APP_URL + "/execute");
 ClientRequest request = createRequest(address);

 request.header(JaxbSerializationProvider.EXECUTE_DEPLOYMENT_ID_HEADER,
DEPLOYMENT_ID);
 JaxbCommandsRequest commandMessage = new JaxbCommandsRequest();
 commandMessage.setCommands(commands);
 commandMessage.setDeploymentId(DEPLOYMENT_ID);
 String body = convertJaxbObjectToString(commandMessage);
 request.body(MediaType.APPLICATION_XML, body);
 ClientResponse<String> responseObj = request.post(String.class);
 String strResponse = responseObj.getEntity();
 System.out.println("RESPONSE FROM THE SERVER: \n" + strResponse);
 JaxbCommandsResponse cmdsResp = convertStringToJaxbObject(strResponse);

 return cmdsResp.getResponses();

CHAPTER 21. REMOTE API

493

In this example, the org.kie.remote.jaxb.gen package classes are used for the client, which are in the
org.kie.remote:kie-remote-client artifact. The deployment ID is set using a new HTTP header Kie-
Deployment-Id that is also available as the
JaxbSerializationProvider.EXECUTE_DEPLOYMENT_ID_HEADER Java constant.

The /execute call takes the JaxbCommandsRequest object as its parameter. The
JaxbCommandsRequest object contains a list of org.kie.api.command.Command objects. The
commands are stored in the JaxbCommandsRequest object, which are converted to a string
representation and sent to the execute REST call. The JaxbCommandsRequest parameters are
deploymentId and a Command object.

When you send a command to the /execute endpoint, a Java code is used to convert the Command
object to String in an XML format. Once you generate the XML, you can use any Java or non-Java
client to send it to the REST endpoint exposed by Business Central.

Note that the org.MyPOJO class must be the same in your client code as well as on the server side. To

 }

 private static ClientRequest createRequest(URL address) {
 return new ClientRequestFactory()
 .createRequest(address.toExternalForm())
 .header("Authorization", getAuthHeader());
 }

 private static String getAuthHeader() {
 String auth = USER + ":" + PASSWORD;
 byte[] encodedAuth = Base64.encodeBase64(auth.getBytes(Charset.forName("US-ASCII")));

 return "Basic " + new String(encodedAuth);
 }

 private static String convertJaxbObjectToString(Object object) throws JAXBException {
 // Add your classes here.

 Class<?>[] classesToBeBound = { JaxbCommandsRequest.class, MyPOJO.class };
 Marshaller marshaller = JAXBContext
 .newInstance(classesToBeBound)
 .createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
 StringWriter stringWriter = new StringWriter();
 marshaller.marshal(object, stringWriter);
 String output = stringWriter.toString();
 System.out.println("REQUEST CONTENT: \n" + output);

 return output;
 }

 private static JaxbCommandsResponse convertStringToJaxbObject(String str)
 throws JAXBException {
 Unmarshaller unmarshaller = JAXBContext
 .newInstance(JaxbCommandsResponse.class)
 .createUnmarshaller();

 return (JaxbCommandsResponse) unmarshaller.unmarshal(new StringReader(str));
 }
}

Red Hat JBoss BPM Suite 6.4 Development Guide

494

Note that the org.MyPOJO class must be the same in your client code as well as on the server side. To
achieve this, share it through a Maven dependency: create the org.MyPOJO class using the Data
Modeler in Business Central and in your REST client, add the dependency of the project which includes
the org.MyPOJO class. An example of the pom.xml file with the dependency of the project created in
Business Central that contains the org.MyPOJO class and other required dependencies follows.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.redhat.gss.jbpm</groupId>
 <artifactId>bpms-start-process</artifactId>
 <version>1.0</version>
 <name>Start process using execute</name>
 <properties>
 1
 <version.org.jboss.bom.eap>6.4.7.GA</version.org.jboss.bom.eap>
 2
 <version.org.jboss.bom.brms>6.4.0.GA-redhat-2</version.org.jboss.bom.brms>
 <maven.compiler.target>1.7</maven.compiler.target>
 <maven.compiler.source>1.7</maven.compiler.source>
 </properties>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom.brms</groupId>
 <artifactId>jboss-brms-bpmsuite-platform-bom</artifactId>
 <type>pom</type>
 <version>${version.org.jboss.bom.brms}</version>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.bom.eap</groupId>
 <artifactId>jboss-javaee-6.0-with-tools</artifactId>
 <version>${version.org.jboss.bom.eap}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.bom.brms</groupId>
 <artifactId>jboss-javaee-6.0-with-brms-bpmsuite</artifactId>
 <version>${version.org.jboss.bom.brms}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.kie.remote</groupId>
 <artifactId>kie-remote-client</artifactId>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-core</artifactId>

CHAPTER 21. REMOTE API

495

1

2

See the supported Red Hat JBoss EAP version in the Supported Platforms chapter of the Red Hat
JBoss BPM Suite Installation Guide.

See the current version in the Supported Component Versions chapter of the Red Hat JBoss BPM
Suite Installation Guide.

In the example, com.redhat.gss:remote-process-start-with-bean:1.0 is the kJAR created by Business
Central. The kJAR includes the org.MyPOJO class. By sharing the dependency, you ensure that your
org.MyPOJO class on the server matches with the one on the client.

Another way to achieve this is to create a data model using Red Hat JBoss Developer Studio, export the
JAR file, and add it as a dependency of both the Business Central kJAR and your REST client.

21.1.6.1. Execute Operation Commands

In this section, a list of commands accepted by the execute REST endpoint is provided.

See the constructor and set methods on the actual command classes for more information about which
parameters the commands accept.

The following commands are used for interacting with the process engine:

AbortWorkItemCommand

CompleteWorkItemCommand

GetWorkItemCommand

AbortProcessInstanceCommand

GetProcessIdsCommand

GetProcessInstanceByCorrelationKeyCommand

 </dependency>
 <dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>resteasy-jaxrs</artifactId>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 </dependency>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 </dependency>
 <!-- A Business Central project dependency which contains the POJO. -->
 <dependency>
 <artifactId>remote-process-start-with-bean</artifactId>
 <groupId>com.redhat.gss</groupId>
 <version>1.0</version>
 </dependency>
 </dependencies>
</project>

Red Hat JBoss BPM Suite 6.4 Development Guide

496

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_platforms
https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps

GetProcessInstanceCommand

GetProcessInstancesCommand

SetProcessInstanceVariablesCommand

SignalEventCommand

StartCorrelatedProcessCommand

StartProcessCommand

GetVariableCommand

GetFactCountCommand

GetGlobalCommand

GetIdCommand

FireAllRulesCommand

The following commands are used for interacting with a Task service:

ActivateTaskCommand

AddTaskCommand

CancelDeadlineCommand

ClaimNextAvailableTaskCommand

ClaimTaskCommand

CompleteTaskCommand

CompositeCommand

DelegateTaskCommand

ExecuteTaskRulesCommand

ExitTaskCommand

FailTaskCommand

ForwardTaskCommand

GetAttachmentCommand

GetContentCommand

GetTaskAssignedAsBusinessAdminCommand

GetTaskAssignedAsPotentialOwnerCommand

GetTaskByWorkItemIdCommand

CHAPTER 21. REMOTE API

497

GetTaskCommand

GetTasksByProcessInstanceIdCommand

GetTasksByStatusByProcessInstanceIdCommand

GetTasksOwnedCommand

NominateTaskCommand

ProcessSubTaskCommand

ReleaseTaskCommand

ResumeTaskCommand

SkipTaskCommand

StartTaskCommand

StopTaskCommand

SuspendTaskCommand

The following commands are used for managing and retrieving historical (audit log) information:

ClearHistoryLogsCommand

FindActiveProcessInstancesCommand

FindNodeInstancesCommand

FindProcessInstanceCommand

FindProcessInstancesCommand

FindSubProcessInstancesCommand

FindSubProcessInstancesCommand

FindVariableInstancesByNameCommand

FindVariableInstancesCommand

Simple Call Example
An example of /rest/execute operation for:

processID: evaluation

deploymentID: org.jbpm:Evaluation:1.0

Parameters to start the process are employee and reason.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<command-request>
 <deployment-id>org.jbpm:Evaluation:1.0</deployment-id>
 <ver>6.2.0.1</ver>
 <user>krisv</user>

Red Hat JBoss BPM Suite 6.4 Development Guide

498

Include the following HTTP headers in your request:

The Content-Type header: application/xml.

The Authorization header with basic authentication information, as specificed by RFC2616.

An example response:

Custom Data Type Call Example
The execute operations support sending user-defined class instances as parameters in the command,
which requires JAXB for serialization and deserialization. To be able to deserialize the custom class on
the server side, include the Kie-Deployment-Id header.

The following request starts a process which contains a custom TestObject class as a parameter:

 <start-process processId="evaluation">
 <parameter>
 <item key="reason">
 <value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Yearly performance evaluation</value>
 </item>
 <item key="employee">
 <value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">krisv</value>
 </item>
 </parameter>
 </start-process>
</command-request>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <command-response>
 <deployment-id>org.jbpm:Evaluation:1.0</deployment-id>
 <ver>6.2.0.1</ver>
 <process-instance index="0">
 <process-id>evaluation</process-id>
 <id>15</id>
 <state>1</state>
 <parentProcessInstanceId>0</parentProcessInstanceId>
 <command-name>StartProcessCommand</command-name>
 </process-instance>
</command-response>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<command-request>
 <deployment-id>demo:testproject:1.0</deployment-id>
 <ver>6.2.0.1</ver>
 <user>krisv</user>
 <start-process processId="testproject.testprocess">
 <parameter>
 <item key="testobject">
 <value xsi:type="testObject" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <field1>1</field1>
 <field2>2</field2>
 </value>
 </item>

CHAPTER 21. REMOTE API

499

Include the following HTTP headers in your request:

The Content-Type header: application/xml.

The Authorization header with basic authentication information, as specificed by RFC2616.

The Kie-Deployment-Id header with deploymentID that contains a definition of the custom
class.

21.1.7. REST API Summary

The URL templates in the table below are relative to the following URL:

http://SERVER:PORT/business-central/rest

Table 21.5. Knowledge Store REST Operations

URL Template HTTP Method Description

/jobs/JOB_ID GET Returns a job status.

/jobs/JOB_ID DELETE Removes a job.

/organizationalunits GET Returns a list of organizational
units.

/organizationalunits/ORGANIZATIONAL_U
NIT_NAME

GET Returns a single organizational
unit.

/organizationalunits POST Creates an organizational unit.

/organizationalunits/ORGANIZATIONAL_U
NIT_NAME

POST Updates an organizational unit.

/organizationalunits/ORGANIZATIONAL_U
NIT_NAME

DELETE Removes an organizational unit.

/organizationalunits/ORGANIZATIONAL_U
NIT_NAME/repositories/REPOSITORY_NA
ME

POST Adds a repository to an
organizational unit.

/organizationalunits/ORGANIZATIONAL_U
NIT_NAME/repositories/REPOSITORY_NA
ME

DELETE Removes a repository from an
organizational unit.

/repositories GET Returns a list of repositories.

 </parameter>
 </start-process>
</command-request>

Red Hat JBoss BPM Suite 6.4 Development Guide

500

/repositories/REPOSITORY_NAME GET Returns a single repository.

/repositories POST Creates or clones a repository.

/repositories/REPOSITORY_NAME DELETE Removes a repository.

/repositories/REPOSITORY_NAME/projects GET Returns a list of projects in a
repository.

/repositories/REPOSITORY_NAME/projects POST Creates a project in a repository.

/repositories/REPOSITORY_NAME/projects
/PROJECT_NAME

DELETE Removes a project in a repository.

/repositories/REPOSITORY_NAME/projects
/PROJECT_NAME/maven/compile

POST Compiles a project.

/repositories/REPOSITORY_NAME/projects
/PROJECT_NAME/maven/test

POST Tests a project.

/repositories/REPOSITORY_NAME/projects
/PROJECT_NAME/maven/install

POST Installs a project.

/repositories/REPOSITORY_NAME/projects
/PROJECT_NAME/maven/deploy

POST Deploys a project.

URL Template HTTP Method Description

Table 21.6. Deployment REST Operations

URL Template HTTP Method Description

/deployment GET Returns a list of (deployed)
deployments.

/deployment/DEPLOYMENT_ID GET Returns a status and information
about a deployment.

/deployment/DEPLOYMENT_ID/deploy POST Submits a request to deploy a
deployment.

/deployment/DEPLOYMENT_ID/undeploy POST Submits a request to undeploy a
deployment.

/deployment/DEPLOYMENT_ID/deactivate POST Deactivates a deployment.

/deployment/DEPLOYMENT_ID/activate POST Activates a deployment.

CHAPTER 21. REMOTE API

501

Table 21.7. Process Image REST Operations

URL Template HTTP Method Description

/runtime/DEPLOYMENT_ID/process/PROCE
SS_ID/image

GET Returns an SVG image with a
process definition diagram.

/runtime/DEPLOYMENT_ID/process/PROCE
SS_ID/image/PROCESS_INSTANCE_ID

GET Returns an SVG image with a
process instance diagram.

Table 21.8. Runtime REST Operations

URL Template HTTP Method Description

/runtime/DEPLOYMENT_ID/process/PROCE
SS_ID/start

POST Starts a new process instance.
Accepts query map parameters.

/runtime/DEPLOYMENT_ID/process/PROCE
SS_ID/startform

GET Returns a URL where the process
form can be found.

/runtime/DEPLOYMENT_ID/process/instanc
e/PROCESS_INSTANCE_ID

GET Returns process instance details.

/runtime/DEPLOYMENT_ID/process/instanc
e/PROCESS_INSTANCE_ID/abort

POST Aborts a process instance.

/runtime/DEPLOYMENT_ID/process/instanc
e/PROCESS_INSTANCE_ID/signal

POST Sends a signal event to a process
instance. Accepts query map
parameters.

/runtime/DEPLOYMENT_ID/process/instanc
e/PROCESS_INSTANCE_ID/variable/VARIA
BLE_ID

GET Returns a variable from a process
instance.

/runtime/DEPLOYMENT_ID/signal/SIGNAL_
CODE

POST Sends a signal event to a
deployment unit.

/runtime/DEPLOYMENT_ID/withvars/proces
s/PROCESS_ID/start

POST Starts a new process instance and
return a process instance details
with its variables.

Note that even if a passed variable
is not defined in the underlying
process definition, it is created and
initialized with the passed value.

/runtime/DEPLOYMENT_ID/withvars/proces
s/instance/PROCESS_INSTANCE_ID

GET Returns process instance details
with its variables.

Red Hat JBoss BPM Suite 6.4 Development Guide

502

/runtime/DEPLOYMENT_ID/withvars/proces
s/instance/PROCESS_INSTANCE_ID/signal

POST Sends a signal event to a process
instance. Accepts query map
parameters.

The following query parameters
are accepted:

The signal parameter
specifies the name of the
signal to be sent.

The event parameter
specifies the (optional)
value of the signal to be
sent.

/runtime/DEPLOYMENT_ID/workitem/WOR
K_ITEM_ID/complete

POST Completes a work item. Accepts
query map parameters.

/runtime/DEPLOYMENT_ID/workitem/WOR
K_ITEM_ID/abort

POST Aborts a work item.

URL Template HTTP Method Description

Table 21.9. Task REST Operations

URL Template HTTP Method Description

/task/query GET Returns a TaskSummary list.

/task/content/CONTENT_ID GET Returns a content of a task.

/task/TASK_ID/content GET Returns a content of a task.

/task/TASK_ID GET Returns a task.

/task/TASK_ID/activate POST Activates a task.

/task/TASK_ID/claim POST Claims a task.

/task/TASK_ID/claimnextavailable POST Claim the next available task.

/task/TASK_ID/complete POST Complete a task. Accepts query
map parameters.

/task/TASK_ID/delegate POST Delegates a task.

/task/TASK_ID/exit POST Exits a task.

CHAPTER 21. REMOTE API

503

/task/TASK_ID/fail POST Fails a task.

/task/TASK_ID/forward POST Forwards a task.

/task/TASK_ID/nominate POST Nominates a task.

/task/TASK_ID/release POST Releases a task.

/task/TASK_ID/resume POST Resumes a task after suspending.

/task/TASK_ID/skip POST Skips a task.

/task/TASK_ID/start POST Starts a task.

/task/TASK_ID/stop POST Stops a task.

/task/TASK_ID/suspend POST Suspends a task.

/task/TASK_ID/showTaskForm GET Generates a URL to show a task
form on a remote application as a
JaxbTaskFormResponse
instance.

URL Template HTTP Method Description

Table 21.10. History REST Operations

URL Template HTTP Method Description

/history/instances GET Returns a list of all process
instance history records.

/history/instance/PROCESS_INSTANCE_ID GET Returns a list of process instance
history records for a process
instance.

/history/instance/PROCESS_INSTANCE_ID/
child

GET Returns a list of process instance
history records for subprocesses
of a process instance.

/history/instance/PROCESS_INSTANCE_ID/
node

GET Returns a list of node history
records for a process instance.

/history/instance/PROCESS_INSTANCE_ID/
node/NODE_ID

GET Returns a list of node history
records for a node in a process
instance.

Red Hat JBoss BPM Suite 6.4 Development Guide

504

/history/instance/PROCESS_INSTANCE_ID/
variable

GET Returns a list of variable history
records for a process instance.

/history/instance/PROCESS_INSTANCE_ID/
variable/VARIABLE_ID

GET Returns a list of variable history
records for a variable in a process
instance.

/history/process/PROCESS_DEFINITION_ID GET Returns a list of process instance
history records for process
instances using the given process
definition.

/history/variable/VARIABLE_ID GET Returns a list of variable history
records for a variable.

/history/variable/VARIABLE_ID/instances GET Returns a list of process instance
history records for process
instances that contain a variable
with the given variable ID.

/history/variable/VARIABLE_ID/value/VALU
E

GET Returns a list of variable history
records for variable(s) with the
given variable ID and the given
value.

/history/variable/VARIABLE_ID/value/VALU
E/instances

GET Returns a list of process instance
history records for process
instances with the specified
variable that contains the
specified variable value.

/history/clear/ POST Removes all process, node, and
history records.

URL Template HTTP Method Description

Table 21.11. Query REST Operations

URL Template HTTP Method Description

/query/runtime/process GET Query for process instances and
process variables. Returns a
JaxbQueryProcessInstanceR
esult object.

/query/runtime/task GET Query for task summaries and
process variables. Returns a
JaxbQueryTaskResult object.

CHAPTER 21. REMOTE API

505

/query/task GET Query for tasks. Returns a
JaxbTaskSummaryListRespo
nse object.

Supported query parameters are
workItemId, taskId,
businessAdministrator,
potentialOwner, status,
taskOwner,
processInstanceId, language,
and union.

URL Template HTTP Method Description

NOTE

None of these REST endpoints has an equivalent Java client. Return values are examples
of classes that can be used when you retrieve responses of calls made from your Java
application. Each response is either in an XML or JSON format.

21.1.8. Control of REST API

You can use the following roles:

Table 21.12. Available Roles, Their Type and Scope of Access

Name Type Scope of access

rest-all GET, POST, DELETE All direct REST calls, excluding a remote client.

rest-project GET, POST, DELETE Knowledge store REST calls.

rest-deployment GET, POST Deployment unit REST calls.

rest-process GET, POST Runtime and history REST calls.

rest-process-read-
only

GET Runtime and history REST calls.

rest-task GET, POST Task REST calls.

rest-task-read-only GET Task REST calls.

rest-query GET REST query API calls.

rest-client POST Remote client calls.

Red Hat JBoss BPM Suite 6.4 Development Guide

506

21.2. JMS

The Java Message Service (JMS) is an API that allows Java Enterprise components to communicate
with each other asynchronously and reliably.

Operations on the runtime engine and tasks can be done through the JMS API exposed by Business
Central. However, it is not possible to manage deployments or the knowledge base using this JMS API.

Unlike the REST API, it is possible to send a batch of commands to the JMS API that will all be processed
in one request after which the responses to the commands will be collected and returned in one
response message.

NOTE

It is not recommended to use JMS directly. Use the Remote Java API when you want to
communicate with Business Central. The better way is to use the Intelligent Process
Server Java Client API. See Chapter 19, Intelligent Process Server Java Client API
Overview.

21.2.1. JMS Queue Setup

When you deploy Business Central on the Java EE application server, it automatically creates the
following JMS queues:

KIE.SESSION

KIE.TASK

KIE.RESPONSE

KIE.AUDIT

KIE.EXECUTOR

KIE.SIGNAL

The KIE.SESSION and KIE.TASK queues are used to send request messages to the JMS API.
Command response messages will be then placed on the KIE.RESPONSE queues. Command request
messages that involve starting and managing business processes should be sent to the KIE.SESSION
queue and command request messages that involve managing human tasks should be sent to the
KIE.TASK queue.

Although there are two different input queues, KIE.SESSION and KIE.TASK, it is to provide multiple
input queues to optimize processing: command request messages will be processed in the same manner
regardless of which queue they are sent to. However, in some cases, users may send more requests
involving human tasks than requests involving business processes, but then not want the processing of
business process-related request messages to be delayed by the human task messages. By sending the
appropriate command request messages to the appropriate queues, this problem can be avoided.

The term command request message used above refers to a JMS byte message that contains a
serialized JaxbCommandsRequest object. At the moment, only XML serialization is supported as
opposed to, for example, JSON or protobuf.

JMS queue KIE.EXECUTOR is used in the Job Executor component to speed up processing of
asynchronous tasks and defined jobs. See Section 11.12.3, “Job Executor for Asynchronous Execution”
for more information about Job Executor. Note that the executor can work without JMS. You can

CHAPTER 21. REMOTE API

507

disable JMS, for example, when you deploy Red Hat JBoss BPM Suite on container without full JMS
support out of the box, such as Tomcat. To disable JMS, set the following property:
org.kie.executor.jms=false.

21.2.2. Example JMS Usage

The following example shows the usage of the JMS API. The numbers (callouts) in the example refer to
notes below that explain particular parts of the example. It is provided for the advanced users that do
not wish to use the Red Hat JBoss BPM Suite Remote Java API which otherwise incorporates the logic
shown below.

// Usual Java imports skipped.

import org.drools.core.command.runtime.process.StartProcessCommand;
import org.jbpm.services.task.commands.GetTaskAssignedAsPotentialOwnerCommand;
import org.kie.api.command.Command;
import org.kie.api.runtime.process.ProcessInstance;
import org.kie.api.task.model.TaskSummary;
// 1
import org.kie.services.client.api.command.exception.RemoteCommunicationException;
import org.kie.services.client.serialization.JaxbSerializationProvider;
import org.kie.services.client.serialization.SerializationConstants;
import org.kie.services.client.serialization.SerializationException;
import org.kie.services.client.serialization.jaxb.impl.JaxbCommandResponse;
import org.kie.services.client.serialization.jaxb.impl.JaxbCommandsRequest;
import org.kie.services.client.serialization.jaxb.impl.JaxbCommandsResponse;
import org.kie.services.client.serialization.jaxb.rest.JaxbExceptionResponse;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class DocumentationJmsExamples {

 protected static final Logger logger = LoggerFactory.getLogger(DocumentationJmsExamples.class);

 public void sendAndReceiveJmsMessage() {

 String USER = "charlie";
 String PASSWORD = "ch0c0licious";

 String DEPLOYMENT_ID = "test-project";
 String PROCESS_ID_1 = "oompa-processing";
 URL serverUrl;
 try {
 serverUrl = new URL("http://localhost:8080/business-central/");
 } catch (MalformedURLException murle) {
 logger.error("Malformed URL for the server instance!", murle);
 return;
 }

 // Create JaxbCommandsRequest instance and add commands:
 Command<?> cmd = new StartProcessCommand(PROCESS_ID_1);
 int oompaProcessingResultIndex = 0;
 // 5
 JaxbCommandsRequest req = new JaxbCommandsRequest(DEPLOYMENT_ID, cmd);

Red Hat JBoss BPM Suite 6.4 Development Guide

508

 // 2
 req.getCommands().add(new GetTaskAssignedAsPotentialOwnerCommand(USER, "en-UK"));
 int loompaMonitoringResultIndex = 1;
 // 5
 // Get JNDI context from server:
 InitialContext context = getRemoteJbossInitialContext(serverUrl, USER, PASSWORD);

 // Create JMS connection:
 ConnectionFactory connectionFactory;
 try {
 connectionFactory = (ConnectionFactory) context.lookup("jms/RemoteConnectionFactory");
 } catch (NamingException ne) {
 throw new RuntimeException("Unable to lookup JMS connection factory.", ne);
 }

 // Set up queues:
 Queue sendQueue, responseQueue;
 try {
 sendQueue = (Queue) context.lookup("jms/queue/KIE.SESSION");
 responseQueue = (Queue) context.lookup("jms/queue/KIE.RESPONSE");
 } catch (NamingException ne) {
 throw new RuntimeException("Unable to lookup send or response queue", ne);
 }

 // Send command request:
 Long processInstanceId = null; // needed if you are doing an operation on a
PER_PROCESS_INSTANCE deployment
 String humanTaskUser = USER;
 JaxbCommandsResponse cmdResponse = sendJmsCommands(DEPLOYMENT_ID,
processInstanceId, humanTaskUser, req, connectionFactory, sendQueue, responseQueue, USER,
PASSWORD, 5);

 // Retrieve results:
 ProcessInstance oompaProcInst = null;
 List<TaskSummary> charliesTasks = null;

 // 6

 for (JaxbCommandResponse<?> response : cmdResponse.getResponses()) {
 if (response instanceof JaxbExceptionResponse) {
 // Something went wrong on the server side:
 JaxbExceptionResponse exceptionResponse = (JaxbExceptionResponse) response;
 throw new RuntimeException(exceptionResponse.getMessage());
 }

 // 5

 if (response.getIndex() == oompaProcessingResultIndex) {
 oompaProcInst = (ProcessInstance) response.getResult();
 // 6
 } else if (response.getIndex() == loompaMonitoringResultIndex) {
 // 5
 charliesTasks = (List<TaskSummary>) response.getResult();
 // 6
 }
 }

CHAPTER 21. REMOTE API

509

 }

 private JaxbCommandsResponse sendJmsCommands(String deploymentId, Long
processInstanceId, String user, JaxbCommandsRequest req, ConnectionFactory factory, Queue
sendQueue, Queue responseQueue, String jmsUser, String jmsPassword, int timeout) {

 req.setProcessInstanceId(processInstanceId);
 req.setUser(user);

 Connection connection = null;
 Session session = null;
 String corrId = UUID.randomUUID().toString();
 String selector = "JMSCorrelationID = '" + corrId + "'";
 JaxbCommandsResponse cmdResponses = null;
 try {
 // Setup:
 MessageProducer producer;
 MessageConsumer consumer;
 try {
 if (jmsPassword != null) {
 connection = factory.createConnection(jmsUser, jmsPassword);
 } else {
 connection = factory.createConnection();
 }

 session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE);
 producer = session.createProducer(sendQueue);
 consumer = session.createConsumer(responseQueue, selector);

 connection.start();
 } catch (JMSException jmse) {
 throw new RemoteCommunicationException("Unable to setup a JMS connection.", jmse);
 }
 // 7

 JaxbSerializationProvider serializationProvider = new JaxbSerializationProvider();
 // If necessary, add user-created classes here:
 // xmlSerializer.addJaxbClasses(MyType.class, AnotherJaxbAnnotatedType.class);

 // Create msg:
 BytesMessage msg;
 try {
 msg = session.createBytesMessage();
 // 3
 // Set properties:
 msg.setJMSCorrelationID(corrId);
 // 3
 msg.setIntProperty(SerializationConstants.SERIALIZATION_TYPE_PROPERTY_NAME,
JaxbSerializationProvider.JMS_SERIALIZATION_TYPE);

 // 3

 Collection<Class<?>> extraJaxbClasses = serializationProvider.getExtraJaxbClasses();
 if (!extraJaxbClasses.isEmpty()) {
 String extraJaxbClassesPropertyValue =
JaxbSerializationProvider.classSetToCommaSeperatedString(extraJaxbClasses);

Red Hat JBoss BPM Suite 6.4 Development Guide

510

 msg.setStringProperty(SerializationConstants.EXTRA_JAXB_CLASSES_PROPERTY_NAME,
extraJaxbClassesPropertyValue);
 msg.setStringProperty(SerializationConstants.DEPLOYMENT_ID_PROPERTY_NAME,
deploymentId);
 }

 // Serialize request:
 String xmlStr = serializationProvider.serialize(req);
 msg.writeUTF(xmlStr);

 // 3

 } catch (JMSException jmse) {
 throw new RemoteCommunicationException("Unable to create and fill a JMS message.", jmse);
 } catch (SerializationException se) {
 throw new RemoteCommunicationException("Unable to deserialze JMS message.",
se.getCause());
 }

 // Send:
 try {
 producer.send(msg);
 } catch (JMSException jmse) {
 throw new RemoteCommunicationException("Unable to send a JMS message.", jmse);
 }

 // Receive:
 Message response;

 // 4

 try {
 response = consumer.receive(timeout);
 } catch (JMSException jmse) {
 throw new RemoteCommunicationException("Unable to receive or retrieve the JMS response.",
jmse);
 }

 if (response == null) {
 logger.warn("Response is empty, leaving");
 return null;
 }
 // Extract response:
 assert response != null : "Response is empty.";
 try {
 String xmlStr = ((BytesMessage) response).readUTF();
 cmdResponses = (JaxbCommandsResponse) serializationProvider.deserialize(xmlStr);
 } catch (JMSException jmse) {
 throw new RemoteCommunicationException("Unable to extract "
 + JaxbCommandsResponse.class.getSimpleName()
 + " instance from JMS response.", jmse);
 } catch (SerializationException se) {
 throw new RemoteCommunicationException("Unable to extract "
 + JaxbCommandsResponse.class.getSimpleName()
 + " instance from JMS response.", se.getCause());
 }

CHAPTER 21. REMOTE API

511

1. These classes can all be found in the kie-services-client and the kie-services-jaxb JARs.

2. The JaxbCommandsRequest instance is the "holder" object in which you can place all of the
commands you want to execute in a particular request. By using the
JaxbCommandsRequest.getCommands() method, you can retrieve the list of commands to
add more commands to the request.
A deployment ID is required for command request messages that deal with business processes.
Command request messages that only contain human task-related commands do not require a
deployment ID.

3. Note that the JMS message sent to the remote JMS API must be constructed as follows:

It must be a JMS byte message.

It must have a filled JMS Correlation ID property.

It must have an int property called serialization set to an acceptable value: only 0 at the
moment.

It must contain a serialized instance of a JaxbCommandsRequest, added to the message

 assert cmdResponses != null : "Jaxb Cmd Response was null!";
 } finally {
 if (connection != null) {
 try {
 connection.close();
 session.close();
 } catch (JMSException jmse) {
 logger.warn("Unable to close connection or session!", jmse);
 }
 }
 }
 return cmdResponses;
 }

 private InitialContext getRemoteJbossInitialContext(URL url, String user, String password) {

 Properties initialProps = new Properties();
 initialProps.setProperty(InitialContext.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
 String jbossServerHostName = url.getHost();
 initialProps.setProperty(InitialContext.PROVIDER_URL, "remote://"+ jbossServerHostName +
":4447");
 initialProps.setProperty(InitialContext.SECURITY_PRINCIPAL, user);
 initialProps.setProperty(InitialContext.SECURITY_CREDENTIALS, password);

 for (Object keyObj : initialProps.keySet()) {
 String key = (String) keyObj;
 System.setProperty(key, (String) initialProps.get(key));
 }
 try {
 return new InitialContext(initialProps);
 } catch (NamingException e) {
 throw new RemoteCommunicationException("Unable to create " +
InitialContext.class.getSimpleName(), e);
 }
 }
}

Red Hat JBoss BPM Suite 6.4 Development Guide

512

It must contain a serialized instance of a JaxbCommandsRequest, added to the message
as a UTF string.

4. The same serialization mechanism used to serialize the request message will be used to serialize
the response message.

5. To match the response, use the index field of the returned JaxbCommandResponse
instances. This index field will match the index of the initial command. Because not all
commands will return a result, it is possible to send three commands with a command request
message, and then receive a command response message that only includes one
JaxbCommandResponse message with an index value 1. This value then identifies it as the
response to the second command.

6. Since many of the results returned by various commands are not serializable, the JMS API of
Business Central converts these results into JAXB equivalents, all of which implement the
JaxbCommandResponse interface. The JaxbCommandResponse.getResult() method then
returns the JAXB equivalent to the actual result, which will conform to the interface of the
result.
For example, in the code above, the StartProcessCommand returns ProcessInstance. To
return this object to the requester, the ProcessInstance is converted to
JaxbProcessInstanceResponse and then added as JaxbCommandResponse to the
command response message. The same applies to List<TaskSummary> that is returned by
GetTaskAssignedAsPotentialOwnerCommand.

However, not all methods that can be called on ProcessInstance can be called on the
JaxbProcessInstanceResponse because JaxbProcessInstanceResponse is simply a
representation of a ProcessInstance object. This applies to various other command response
as well. In particular, methods which require an active (backing) KieSession, such as
ProcessInstance.getProcess() or ProcessInstance.signalEvent(String type, Object event),
will throw UnsupportedOperationException.

7. By default, a session is created in kieServerMDB with the acknowledge mode set to
Session.AUTO_ACKNOWLEDGE and the transacted value set to false, resulting in the
following response as shown in the example:

If a generic resource adapter is used with JMS, this session setting can generate a null pointer
error. You can either temporarily work around this issue or resolve it going forward:

To work around this issue when a generic resource adapter is used, set the transacted value
to true and set the session type to SESSION_TRANSACTED:

To resolve this issue when a generic resource adapter is used, add the following under
<system properties> in the standalone.xml file of Red Hat JBoss EAP:

21.3. SOAP API

Simple Object Access Protocol (SOAP) is a type of distribution architecture used for exchanging

session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE);

session = connection.createSession(true, Session.SESSION_TRANSACTED);

org.kie.server.jms.session.tx=true // If not set, defaults to `false`.
org.kie.server.jms.session.ack=$INTEGER // Integer value matching one of the
javax.jms.Session constants that represent `ack` mode.

CHAPTER 21. REMOTE API

513

Simple Object Access Protocol (SOAP) is a type of distribution architecture used for exchanging
information. SOAP requires a minimal amount of overhead on the system and is used as a protocol for
communication, while it is versatile enough to allow the use of different transport protocols.

Like REST, SOAP allows client-server communication. Clients can initiate requests to servers using
URLs with parameters. The servers then process the requests and return responses based on the
particular URL.

21.3.1. CommandWebService

Business Central in Red Hat JBoss BPM Suite provides a SOAP interface in the form of
CommandWebService. A Java client is provided as a generated CommandWebService class and can
be used as follows.

Classes generated by the kie-remote-client module function as a client-side interface for SOAP. The
CommandWebServiceClient class referenced in the test code below is generated by the Web Service
Description Language (WSDL) in the kie-remote-client JAR.

The SOAP interface of Business Central in Red Hat JBoss BPM Suite is currently available for Red Hat
JBoss EAP, IBM WebSphere, and Oracle WebLogic servers.

21.4. EJB INTERFACE

Starting with version 6.1, the Red Hat JBoss BPM Suite execution engine supports an EJB interface for
accessing KieSession and TaskService remotely. This enables close transaction integration between
the execution engine and remote customer applications.

import org.kie.remote.client.api.RemoteRuntimeEngineFactory;
import org.kie.remote.client.jaxb.JaxbCommandsRequest;
import org.kie.remote.client.jaxb.JaxbCommandsResponse;
import org.kie.remote.jaxb.gen.StartProcessCommand;
import org.kie.remote.services.ws.command.generated.CommandWebService;
import org.kie.services.client.serialization.jaxb.impl.JaxbCommandResponse;

public JaxbProcessInstanceResponse startProcessInstance(String user, String password, String
processId, String deploymentId, String applicationUrl) throws Exception {

 CommandWebService client = RemoteRuntimeEngineFactory
 .newCommandWebServiceClientBuilder()
 .addDeploymentId(deploymentId)
 .addUserName(user)
 .addPassword(password)
 .addServerUrl(applicationUrl)
 .buildBasicAuthClient();

 // Get a response from the WebService:
 StartProcessCommand cmd = new StartProcessCommand();
 cmd.setProcessId(processId);
 JaxbCommandsRequest req = new JaxbCommandsRequest(deploymentId, cmd);
 final JaxbCommandsResponse response = client.execute(req);

 JaxbCommandResponse<?> cmdResp = response.getResponses().get(0);

 return (JaxbProcessInstanceResponse) cmdResp;
}

Red Hat JBoss BPM Suite 6.4 Development Guide

514

The implementation of the EJB interface is a single framework-independent and container-agnostic API
that can be used with framework-specific code. The services are exposed using the
org.jbpm.services.api and org.jbpm.services.ejb packages. CDI is supported as well through the
org.jbpm.services.cdi package.

The implementation does not support RuleService at the moment, however, the ProcessService class
exposes an execute method that enables you to use various rule-related commands, such as
InsertCommand and FireAllRulesCommand.

Deployment of EJB Client
The EJB interface is supported on Red Hat JBoss EAP only.

Download the Red Hat JBoss BPM Suite 6.4 Maven Repository ZIP file from the Red Hat Customer
Portal. The EJB client is available as a JAR file jbpm-services-ejb-client-VERSION-
redhat-MINOR_VERSION in the maven-repository/org/jbpm/jbpm-services-ejb-client directory of
the downloaded file.

NOTE

The inclusion of EJB does not mean that CDI-based services are replaced. CDI and EJB
can be used together, however, it is not recommended. Since EJBs are not available by
default in Business Central, the kie-services package must be present on the class path.
The EJB services are suitable for embedded use cases.

21.4.1. EJB Interface Artifacts

The artifacts that provide the EJB interface to the jBPM services are contained in the following
packages:

1. org.jbpm.services.ejb.api: the extension of the Services API for the needs of the EJB
interface.

2. org.jbpm.services.ejb.impl: EJB wrappers on top of the core service implementation.

3. org.jbpm.services.ejb.client: the EJB remote client implementation. The implementation is
supported on Red Hat JBoss EAP only.

The org.jbpm.services.ejb.api package mentioned above contains the following service interfaces that
can be used by remote EJB clients:

DefinitionServiceEJBRemote: use this interface to gather information about processes (ID,
name, and version), process variables (name and type), defined reusable subprocesses,
domain-specific services, user tasks, and user tasks inputs and outputs.

DeploymentServiceEJBRemote: use this interface to initiate deployments and
undeployments. Methods include deploy, undeploy, getRuntimeManager, getDeployedUnits,
isDeployed, activate, deactivate, and getDeployedUnit. Calling the deploy method with an
instance of DeploymentUnit deploys the unit into the runtime engine by building a
RuntimeManager instance. After a successful deployment, an instance of DeployedUnit is
created and cached for further usage.
To use the methods mentioned above, the artifacts of the project must be installed in a Maven
repository.

ProcessServiceEJBRemote: use this interface to control a lifecycle of one or more processes
and work items.

CHAPTER 21. REMOTE API

515

http://access.redhat.com/downloads

RuntimeDataServiceEJBRemote: use this interface to retrieve data related to the runtime:
process instances, process definitions, node instance information, and variable information. The
interface includes several convenience methods for gathering task information based on owner,
status, and time.

UserTaskServiceEJBRemote: use this interface to control a lifecycle of a user task. The
included methods are for example activate, start, stop, and execute.

QueryServiceEJBRemote: provides advanced query capabilities.

ProcessInstanceMigrationServiceEJBRemote: provides a migration service for process
instances. If a new version of a process definition is deployed and the active process instances
should be migrated, use this interface to do so.

NOTE

Process instance migration is available only with Red Hat JBoss BPM Suite 6.4 and
higher.

A synchronization service that synchronizes the information between Business Central and EJBs is
available as well. The synchronization interval can be set using the org.jbpm.deploy.sync.int system
property. However, note that you have to wait for the service to finish the synchronization before trying
to access the updated information using REST.

NOTE

When you deploy the jBPM services EJB API, the executor is registered during the
deployment of a kJAR. Hence the JNDI name used is only visible for the module where
the EJB is deployed. If you want to use the executor service from a different module, use
the org.jbpm.executor.service.ejb-jndi system property that enables you to configure
the executor service JNDI name. For more information, see the List of System Properties
section of the Red Hat JBoss BPM Suite Administration and Configuration Guide .

21.4.2. Generating EJB Services WAR File

Follow the procedure below to create an EJB Services WAR file using the EJB interface.

1. Register a Human Task callback using a startup class:

@Singleton
@Startup
public class StartupBean {

 @PostConstruct
 public void init()
 { System.setProperty("org.jbpm.ht.callback", "jaas"); }

}

2. Run the following command to generate the WAR file:

mvn assembly:assembly

3. Deploy the generated WAR file sample-war-ejb-app.war on the Red Hat JBoss EAP instance

Red Hat JBoss BPM Suite 6.4 Development Guide

516

https://access.qa.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/administration_and_configuration_guide/#list_of_system_properties

3. Deploy the generated WAR file sample-war-ejb-app.war on the Red Hat JBoss EAP instance
where Red Hat JBoss BPM Suite is running.

WARNING

If you are deploying the EJB WAR file on the same Red Hat JBoss EAP
instance, avoid using the Singleton strategy for your runtime sessions. The
Singleton strategy causes both applications to load the same ksession
instance from the underlying file system and causes optimistic lock
exceptions.

If you want to deploy the file on a Red Hat JBoss EAP instance separate from the one where
Red Hat JBoss BPM Suite is running:

Configure your application or the application server to invoke a remote EJB.

Configure your application or the application server to propagate the security context.

If you are using Hibernate to create a database schema for jBPM, update the persistence.xml
file in Business Central. Edit the hibernate.hbm2ddl.auto property and set its value to update
instead of create.

4. To test it, create a simple web application and inject the EJB Services:

@EJB(lookup = "ejb:/sample-war-ejb-
app/ProcessServiceEJBImpl!org.jbpm.services.ejb.api.ProcessServiceEJBRemote")
private ProcessServiceEJBRemote processService;

@EJB(lookup = "ejb:/sample-war-ejb-
app/UserTaskServiceEJBImpl!org.jbpm.services.ejb.api.UserTaskServiceEJBRemote")
private UserTaskServiceEJBRemote userTaskService;

@EJB(lookup = "ejb:/sample-war-ejb-
app/RuntimeDataServiceEJBImpl!org.jbpm.services.ejb.api.RuntimeDataServiceEJBRemote")

private RuntimeDataServiceEJBRemote runtimeDataService;

For more information about invoking remote EJBs, see the Invoking Session Beans chapter of the Red
Hat JBoss EAP Development Guide.

21.5. REMOTE JAVA API

The Remote Java API provides KieSession, TaskService, and AuditService interfaces to the JMS and
REST APIs.

The interface implementations provided by the Remote Java API incorporate the underlying logic
needed to communicate with the JMS or REST APIs. In other words, these implementations allow you to
interact with Business Central through the known interfaces such as the KieSession or TaskService
interface, without having to deal with the underlying transport and serialization details.

THE REMOTE JAVA API PROVIDES CLIENTS, NOT INSTANCES

CHAPTER 21. REMOTE API

517

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Development_Guide/sect-Invoking_Session_Beans.html

THE REMOTE JAVA API PROVIDES CLIENTS, NOT INSTANCES

While the KieSession, TaskService, and AuditService instances provided by the
Remote Java API may "look" and "feel" like local instances of the same interfaces, make
sure to remember that these instances are only wrappers around a REST or JMS client
that interacts with a remote REST or JMS API.

This means that if a requested operation fails on the server, the Remote Java API client
instance on the client side will throw RuntimeException indicating that the REST call
failed. This is different from the behavior of a "real" (or local) instance of a KieSession,
TaskService, and AuditService instance: the exception the local instances will throw will
relate to how the operation failed. Also, while local instances require different handling,
such as having to dispose of KieSession, client instances provided by the Remote Java
API hold no state and thus do not require any special handling.

Lastly, operations on a Remote Java API client instance that would normally throw other
exceptions, such as the TaskService.claim(taskId, userId) operation when called by a
user who is not a potential owner, will now throw RuntimeException instead when the
requested operation fails on the server.

NOTE

It is recommended to use Intelligent Process Server instead of Business Central.
Intelligent Process Server provides more intuitive and easier way to use the Java Client
API. See Chapter 19, Intelligent Process Server Java Client API Overview .

The very first step in interacting with the remote runtime is to create the RemoteRuntimeEngine
instance. The recommended way is to use RemoteRestRuntimeEngineBuilder or
RemoteJmsRuntimeEngineBuilder. There is a number of different methods for both the JMS and
REST client builders that allow the configuration of parameters such as the base URL of the REST API,
JMS queue location, or timeout while waiting for responses.

Procedure: Creating RemoteRuntimeEngine Instance

1. Instantiate the RemoteRestRuntimeEngineBuilder or RemoteJmsRuntimeEngineBuilder by
calling either RemoteRuntimeEngineFactory.newRestBuilder() or
RemoteRuntimeEngineFactory.newJmsBuilder().

2. Set the required parameters.

3. Finally, call the build() method.

Detailed examples can be found in Section 21.5.2, “REST Client”, Section 21.5.2.2, “Calling Tasks Without
Deployment ID”, and Section 21.5.2.3, “Custom Model Objects and Remote API” .

Once the RemoteRuntimeEngine instance has been created, there are a couple of methods that can
be used to instantiate the client classes you want to use:

Remote Java API Methods

KieSession RemoteRuntimeEngine.getKieSession()

This method instantiates a new (client) KieSession instance.

TaskService RemoteRuntimeEngine.getTaskService()

This method instantiates a new (client) TaskService instance.

Red Hat JBoss BPM Suite 6.4 Development Guide

518

A`uditService RemoteRuntimeEngine.getAuditService()`

This method instantiates a new (client) AuditService instance.

Starting Project: Adding Dependencies
To start your own project, specify the Red Hat JBoss BPM Suite BOM in the project’s pom.xml file.
Also, make sure you add the kie-remote-client dependency. See the following example:

For the supported Maven BOM version, see Supported Component Versions of the Red Hat JBoss BPM
Suite Installation Guide.

21.5.1. Common Configuration

The following common methods can be called on both RemoteRestRuntimeEngineBuilder and
RemoteJmsRuntimeEngineBuilder when creating a new instance of RemoteRuntimeEngine:

addUrl(java.net.URL param)

URL of the deployed Business Central. For example http://localhost:8080/business-central/.

addUserName(String param)

The password to access the REST API.

addPassword(String param)

The password to access the REST API.

addDeploymentId(String param)

The name (ID) of the deployment the RuntimeEngine must interact with. This can be an empty
String in case you are only interested in task operations.

addTimeout(int param)

The maximum number of seconds the engine must wait for a response from the server.

addProcessInstanceId(long param)

The method that adds the process instance ID, which may be necessary when interacting with
deployments that employ the per process instance runtime strategy.

addExtraJaxbClasses(MyClass.class)

The method that adds extra classes to the class path available to the serialization mechanisms. When

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom.brms</groupId>
 <artifactId>jboss-brms-bpmsuite-bom</artifactId>
 <version>6.4.2.GA-redhat-2</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.kie.remote</groupId>
 <artifactId>kie-remote-client</artifactId>
 </dependency>
</dependencies>

CHAPTER 21. REMOTE API

519

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/installation-guide/#supported_comps
http://localhost:8080/business-central/

The method that adds extra classes to the class path available to the serialization mechanisms. When
passing instances of user-defined classes in a Remote Java API call, it is important to have added the
classes using this method first so that the class instances can be serialized correctly.

clearJaxbClasses()

If RemoteRuntimeEngineBuilder is being reused to build multiple instances of
RemoteRuntimeEngineFactory, this method can be called between build() methods to reset the
list of user-defined classes being used by the builder.

addCorrelationProperties(String[] params)

Adds the correlation key properties which are necessary when interacting with a correlation-key
identitied KieSession.

clearCorrelationProperties()

Clears all the correlation key properties added by the addCorrelationProperties method.

21.5.2. REST Client

The RemoteRuntimeEngineFactory class is the starting point for building and configuring a new
RemoteRuntimeEngine instance that can interact with the Remote API. This class creates an instance
of a REST client builder using the newRestBuilder() method. This builder is then used to create a
RemoteRuntimeEngine instance that acts as a client to the remote REST API.

In addition to the methods mentioned in Section 21.5.1, “Common Configuration”, the following
configuration methods can be called on RemoteRestRuntimeEngineBuilder:

addUrl(java.net.URL param)

Configures a URL of the deployed Business Central. For example http://localhost:8080/business-
central/.

disableTaskSecurity()

Allows an authenticated user to work on tasks on behalf of other users.
This requires the org.kie.task.insecure property to be set to true on the server side as well.

addHeader(String param1, String param2)

Adds a custom HTTP header field that will be sent with each request.
Multiple calls to this method with the same header field name will not replace existing header fields
with the same header field name.

clearHeaderFields()

Clears all custom header fields for this builder.

Once you have configured all the necessary properties, call build() to get access to
RemoteRuntimeEngine.

IMPORTANT

If the REST API access control is turned on, which is done by default, the given user who
wants to use RemoteRuntimeEngine calls has to have the rest-client and rest-all roles
assigned.

The following example illustrates how the Remote Java API can be used with the REST API.

package org.kie.remote.client.documentation;

Red Hat JBoss BPM Suite 6.4 Development Guide

520

http://localhost:8080/business-central/

import java.net.URL;
import java.util.List;

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.process.ProcessInstance;
import org.kie.api.task.TaskService;
import org.kie.api.task.model.TaskSummary;
import org.kie.remote.client.api.RemoteRuntimeEngineFactory;

public class RemoteJavaApiRestClientExample {

 public void startProcessAndStartTask(URL baseUrl, String deploymentId, String user, String
password) {

 // The baseUrl should contain a URL similar to
 // "http://localhost:8080/business-central/".

 // RuntimeEngine instance with the necessary information to communicate
 // with the REST services.

 // Select a user with the rest-all role.

 RuntimeEngine engine = RemoteRuntimeEngineFactory
 .newRestBuilder()
 .addDeploymentId(deploymentId)
 .addUrl(baseUrl)
 .addUserName(user)
 .addPassword(password)
 .build();

 // Create KieSession and TaskService instances and use them:
 KieSession ksession = engine.getKieSession();
 TaskService taskService = engine.getTaskService();

 // Each operation on a KieSession, TaskService, or AuditLogService (client) instance
 // sends a request for the operation to the server side and waits for the response.
 // If something goes wrong on the server side, the client will throw an exception.
 ProcessInstance processInstance =
ksession.startProcess("com.burns.reactor.maintenance.cycle");
 long procId = processInstance.getId();

 String taskUserId = user;
 taskService = engine.getTaskService();
 List<TaskSummary> tasks = taskService.getTasksAssignedAsPotentialOwner(user, "en-UK");

 long taskId = -1;
 for (TaskSummary task : tasks) {
 if (task.getProcessInstanceId() == procId) {
 taskId = task.getId();
 }
 }

 if (taskId == -1) {
 throw new IllegalStateException("Unable to find task for " + user + " in process instance " +
procId);

CHAPTER 21. REMOTE API

521

21.5.2.1. Retrieving Potential Owners of Human Task

To guarantee high performance, the getPotentialOwners() method of the TaskSummary class does
not return the list of potential owners of a task.

Instead, you should retrieve information about owners on an individual task basis. In the following
example, the mentioned Task is from the org.kie.api.task.model.Task package. Also notice that the
method getTaskById() uses the task ID as a parameter.

In addition, actual owners and users created by them can be retrieved using the getActualOwnerId()
and getCreatedById() methods.

For a list of Maven dependencies, see Embedded jBPM Engine Dependencies.

21.5.2.2. Calling Tasks Without Deployment ID

The addDeploymentId() method called on the instance of RemoteRuntimeEngineBuilder requires the
calling application to pass the deploymentId parameter to connect to Business Central. The
deploymentId is the ID of the deployment with which the RuntimeEngine interacts. However, there
may be applications that require working with human tasks and dealing with processes across multiple
deployments. In such cases, where providing deploymentId parameters for multiple deployments to
connect to Business Central is not feasible, it is possible to skip the parameter when using the fluent API
of RemoteRestRuntimeEngineBuilder.

This API does not require the calling application to pass the deploymentId parameter. If a request
requires the deploymentId parameter, but does not have it configured, an exception is thrown.

 }

 taskService.start(taskId, taskUserId);
 }
 }
}

import org.kie.api.task.model.OrganizationalEntity;
import org.kie.api.task.model.Task;

public List<OrganizationalEntity> getPotentialOwnersByTaskId(long taskId) {
 Task task = taskService.getTaskById(taskId);
 return task.getPeopleAssignments().getPotentialOwners();
}

import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.remote.client.api.RemoteRestRuntimeEngineBuilder;
import org.kie.remote.client.api.RemoteRestRuntimeEngineFactory;
import org.kie.remote.client.api.RemoteRuntimeEngineFactory;

import java.net.URL;

...

RuntimeEngine engine = RemoteRuntimeEngineFactory
 .newRestBuilder()
 .addUrl(instanceUrl)
 .addUserName(user)

Red Hat JBoss BPM Suite 6.4 Development Guide

522

For a list of Maven dependencies, see Embedded jBPM Engine Dependencies.

21.5.2.3. Custom Model Objects and Remote API

Working with custom model objects from a client application using the Remote API is supported in Red
Hat JBoss BPM Suite. Custom model objects can be created using the Data Modeler in Business
Central. Once built and deployed successfully into a project, these objects are part of the project in the
local Maven repository.

NOTE

Reuse model objects instead of recreating them locally in the client application.

The process to access and manipulate these objects from a client application follows.

Procedure: Accessing Custom Model Objects Using Remote API

1. Ensure that the custom model objects have been installed into the local Maven repository of
the project that they are a part of. To achieve that, the project has to be built successfully.

2. If your client application is a Maven-based project, include project the custom model objects as
a Maven dependency in the pom.xml configuration file of the client application.
To find the Maven GAV of the project: in Business Central, go to Authoring → Project
Authoring and Tools → Project Editor.

If the client application is not a Maven-based project, download the Red Hat JBoss BPM Suite
project which includes the model classes: in Business Central, go to Authoring → Artifact
Repository. Add this JAR file of the project on the build path of your client application.

3. You can now use the custom model objects in your client application and invoke methods on
them using the Remote API. See the following example with a Person custom model object.

 .addPassword(password)
 .build();

 // This call does not require the deployment ID and ends successfully:

 engine.getTaskService().claim(23l, "user");

 // This code throws a "MissingRequiredInfoException" because the
 // deployment ID is required:

 engine.getKieSession().startProcess("org.test.process");

import java.net.URL;
import java.util.HashMap;
import java.util.Map;

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.process.ProcessInstance;
import org.kie.remote.client.api.RemoteRestRuntimeEngineBuilder;
import org.kie.remote.client.api.RemoteRestRuntimeEngineFactory;
import org.kie.remote.client.api.RemoteRuntimeEngineFactory;

CHAPTER 21. REMOTE API

523

For a list of Maven dependencies, see Embedded jBPM Engine Dependencies.

Ensure that your client application has imported the correct Red Hat JBoss BPM Suite libraries
for the example to work.

If you are creating a data object, make sure that the class has the @org.kie.api.remote.Remotable
annotation. The @org.kie.api.remote.Remotable annotation makes the entity available for use with
JBoss BPM Suite remote services such as REST, JMS, and WS.

There are two ways to add the annotation:

1. On the Drools & jBPM screen of the data object in Business Central, select the Remotable
check box.
You can also add the annotation manually. On the right side of the Data Object editor screen in
Business Central, choose the Advanced tab and click add annotation. In the Add new
annotation dialog window, define the annotation class name as org.kie.api.remote.Remotable
and click the search button.

2. It is also possible to edit the source of the class directly. See the following example:

If you are creating a data object, make sure that the class has the @org.kie.api.remote.Remotable
annotation. The @org.kie.api.remote.Remotable annotation makes the entity available for use with
the Red Hat JBoss BPM Suite remote services such as REST, JMS, and WS.

21.5.3. JMS Client

RemoteRuntimeEngineFactory works similarly as the REST variation: it is a starting point for building

...

RuntimeEngine engine = RemoteRuntimeEngineFactory
 .newRestBuilder()
 .addUrl(instanceUrl)
 .addUserName(user)
 .addPassword(password)
 .addExtraJaxbClasses(Person.class)
 .addDeploymentId(deploymentId)
 .build();

KieSession kSession = engine.getKieSession();

Map<String, Object> params = new HashMap<>();
Person person = new Person();
person.setName("anton");
params.put("pVar", person);
ProcessInstance pi = kSession.startProcess(PROCESS2_ID, params);
System.out.println("Process Started: " + pi.getId());

package org.bpms.helloworld;

@org.kie.api.remote.Remotable

public class Person implements java.io.Serializable {
 ...

}

Red Hat JBoss BPM Suite 6.4 Development Guide

524

and configuring a new RemoteRuntimeEngine instance that can interact with the remote JMS API. The
main use for this class is to create a builder instance of JMS using the newJmsBuilder() method. The
builder is then used to create a RemoteRuntimeEngine instance that will act as a client to the remote
JMS API.

In addition to methods mentioned in Section 21.5.1, “Common Configuration”, the following
configuration methods can be called on RemoteJmsRuntimeEngineBuilder:

addRemoteInitialContext(javax.jms.InitialContext param)

A remote InitialContext instance from the server, created using JNDI.

addConnectionFactory(javax.jms.ConnectionFactory param)

A ConnectionFactory instance used to connect to KieSessionQueue or TaskServiceQueue.

addKieSessionQueue(javax.jms.Queue param)

Sets the JMS queue for requests related to a process instance.

addTaskServiceQueue(javax.jms.Queue param)

Sets the JMS queue for requests related to the task service usage.

addResponseQueue(javax.jms.Queue param)

Sets a JMS queue used for receiving responses.

addJbossServerHostName(String param)

Sets a host name to look up and retrieve a remote instance of InitialContext.

addHostName(String param)

Sets a host name of JMS queues.

addJmsConnectorPort(int param)

Sets a port for the JMS Connector.

addKeystorePassword(String param)

Sets a JMS Keystore password.

addKeystoreLocation(String param)

Specifies a JMS Keystore location.

addTruststorePassword(String param)

Sets a JMS Truststore password.

addTruststoreLocation(String param)

Specifies a JMS Truststore location.

useKeystoreAsTruststore()

Configures the client to use the same file for both Keystore and Truststore.

useSsl(boolean param)

Sets whether this client instance uses secured connection.

disableTaskSecurity()

Turns off SSL usage when communicating with Business Central.
Note that disabling task security exposes users to a man-in-the-middle attack, since no encryption
will be used when sending a message containing a password.

The following example illustrates how the Remote Java API can be used with the JMS API.

import java.net.URL;
import java.util.HashMap;

CHAPTER 21. REMOTE API

525

Configuration Using InitialContext Instance
When configuring the RemoteJmsRuntimeEngineBuilder with an InitialContext instance as a
parameter, it is necessary to retrieve the (remote) instance of InitialContext first from the server. See
the following example:

import java.util.List;
import java.util.Map;

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.process.ProcessInstance;
import org.kie.api.task.TaskService;
import org.kie.api.task.model.TaskSummary;
import org.kie.remote.client.api.RemoteRuntimeEngineFactory;
import org.kie.services.client.builder.objects.MyType;

public class RemoteJavaApiJmsClientExample {

 public void startProcessAndTaskViaJmsRemoteJavaAPI (URL serverUrl, String deploymentId,
String user, String password) {
 // The serverURL should contain a URL similar to "http://localhost:8080/business-central".
 // Select a user with the rest-all role.

 // Set up remote JMS runtime engine factory:
 RuntimeEngine engine = RemoteRuntimeEngineFactory
 .newJmsBuilder()
 .addDeploymentId(deploymentId)
 .addJbossServerHostName(serverUrl.getHost())
 .addUserName(user)
 .addPassword(password)
 .build();

 // Interface with JMS API
 KieSession ksession = engine.getKieSession();

 Map<String, Object> params = new HashMap<String, Object>();
 params.put("paramName", new MyType("name", 23));
 ProcessInstance processInstance =
ksession.startProcess("com.burns.reactor.maintenance.cycle", params);
 long procId = processInstance.getId();
 TaskService taskService = engine.getTaskService();
 List<Long> tasks = taskService.getTasksByProcessInstanceId(procId);
 taskService.start(tasks.get(0), user);
 }
}

private InitialContext getRemoteJbossInitialContext(URL url, String user, String password) {

 Properties initialProps = new Properties();
 initialProps.setProperty(InitialContext.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
 String jbossServerHostName = url.getHost();
 initialProps.setProperty(InitialContext.PROVIDER_URL, "remote://"+ jbossServerHostName +
":4447");
 initialProps.setProperty(InitialContext.SECURITY_PRINCIPAL, user);
 initialProps.setProperty(InitialContext.SECURITY_CREDENTIALS, password);

Red Hat JBoss BPM Suite 6.4 Development Guide

526

You can work with JMS queues directly without using RemoteRuntimeEngine. For more information,
see the How to Use JMS Queues Without the RemoteRuntimeEngine in Red Hat JBoss BPMS article.
However, this approach is not a recommended way to use the provided JMS interface.

21.5.4. Supported Methods

The Remote Java API provides client-like instances of the RuntimeEngine, KieSession, TaskService,
and AuditService interfaces. This means that while many of the methods in those interfaces are
available, some are not. The following tables list the available methods. Methods not listed in the tables
below throw UnsupportedOperationException explaining that the called method is not available.

Available Process-Related KieSession Methods

abortProcessInstance(long processInstanceId)

Aborts a process instance. Return value: void.

getProcessInstance(long processInstanceId)

Returns a process instance. Return value: ProcessInstance.

getProcessInstance(long processInstanceId, boolean readonly)

Returns a process instance. Return value: ProcessInstance.

getProcessInstances()

Returns all (active) process instances. Return value: Collection<ProcessInstance>.

signalEvent(String type, Object event)

Signals all (active) process instances. Return value: void.

signalEvent(String type, Object event, long processInstanceId)

Signals a process instance. Return value: void.

startProcess(String processId)

Starts a new process and returns a process instance if the process instance has not immediately
completed. Return value: ProcessInstance.

startProcess(String processId, Map<String, Object> parameters)

Starts a new process and returns a process instance if the process instance has not immediately
completed. Return value: ProcessInstance.

Available Rules-Related KieSession Methods

getFactCount()

Returns the total fact count. Return value: Long.

 for (Object keyObj : initialProps.keySet()) {
 String key = (String) keyObj;
 System.setProperty(key, (String) initialProps.get(key));
 }

 try {
 return new InitialContext(initialProps);
 } catch (NamingException e) {
 throw new RemoteCommunicationException("Unable to create "
 + InitialContext.class.getSimpleName(), e);
 }
}

CHAPTER 21. REMOTE API

527

https://access.redhat.com/articles/2182341

getGlobal(String identifier)

Returns a global fact. Return value: Object.

setGlobal(String identifier, Object value)

Sets a global fact. Return value: void.

Available WorkItemManager Methods

abortWorkItem(long id)

Aborts a work item. Return value: void.

completeWorkItem(long id, Map<String, Object> results)

Completes a work item. Return value: void.

getWorkItem(long workItemId)

Returns a work item. Return value: WorkItem.

Available Task Operation TaskService Methods

addTask(Task task, Map<String, Object> params)

Adds a new task. Return value: Long.

activate(long taskId, String userId)

Activates a task. Return value: void.

claim(long taskId, String userId)

Claims a task. Return value: void.

claimNextAvailable(String userId, String language)

Claims the next available task for a user. Return value: void.

complete(long taskId, String userId, Map<String, Object> data)

Completes a task. Return value: void.

delegate(long taskId, String userId, String targetUserId)

Delegates a task. Return value: void.

exit(long taskId, String userId)

Exits a task. Return value: void.

fail(long taskId, String userId, Map<String, Object> faultData)

Fails a task. Return value: void.

forward(long taskId, String userId, String targetEntityId)

Forwards a task. Return value: void.

nominate(long taskId, String userId, List<OrganizationalEntity> potentialOwners)

Nominates a task. Return value: void.

release(long taskId, String userId)

Releases a task. Return value: void.

resume(long taskId, String userId)

Resumes a task. Return value: void.

skip(long taskId, String userId)

Skips a task. Return value: void.

start(long taskId, String userId)

Starts a task. Return value: void.

Red Hat JBoss BPM Suite 6.4 Development Guide

528

stop(long taskId, String userId)

Stops a task. Return value: void.

suspend(long taskId, String userId)

Suspends a task. Return value: void.

addOutputContent(long taskId, Map<String, Object> params)[4]

Adds output parameters to a task. Return value: RemoteApiResponse<Long>.

getOutputContentMap(long taskId) [4]

Retrieves the output parameters of a task. Return value: RemoteApiResponse<Map<String,
Object>>.

Available Task Retrieval and Query TaskService Methods

getTaskByWorkItemId(long workItemId)

Return value: Task.

getTaskById(long taskId)

Return value: Task.

getTasksAssignedAsBusinessAdministrator(String userId, String language)

Return value: List<TaskSummary>.

getTasksAssignedAsPotentialOwner(String userId, String language)

Return value: List<TaskSummary>.

getTasksAssignedAsPotentialOwnerByStatus(String userId, List<Status> status, String language)

Return value: List<TaskSummary>.

getTasksOwned(String userId, String language)

Return value: List<TaskSummary>.

getTasksOwnedByStatus(String userId, List<Status> status, String language)

Return value: List<TaskSummary>.

getTasksByStatusByProcessInstanceId(long processInstanceId, List<Status> status, String
language)

Return value: List<TaskSummary>.

getTasksByProcessInstanceId(long processInstanceId)

Return value: List<TaskSummary>.

getTasksAssignedAsPotentialOwnerByProcessId(String userId, String processId)

Return value: List<TaskSummary>.

getContentById(long contentId)

Return value: Content.

getAttachmentById(long attachId)

Return value: Attachment.

NOTE

The language parameter is not used for task retrieval and query TaskService methods
anymore. However, the method signatures still contain it to support backward
compatibility. This parameter will be removed in future releases.

CHAPTER 21. REMOTE API

529

Available AuditService Methods

findProcessInstances()

Return value: List<ProcessInstanceLog>.

findProcessInstances(String processId)

Return value: List<ProcessInstanceLog>.

findActiveProcessInstances(String processId)

Return value: List<ProcessInstanceLog>.

findProcessInstance(long processInstanceId)

Return value: ProcessInstanceLog.

findSubProcessInstances(long processInstanceId)

Return value: List<ProcessInstanceLog>.

findNodeInstances(long processInstanceId)

Return value: List<NodeInstanceLog>.

findNodeInstances(long processInstanceId, String nodeId)

Return value: List<NodeInstanceLog>.

findVariableInstances(long processInstanceId)

Return value: List<VariableInstanceLog>.

findVariableInstances(long processInstanceId, String variableId)

Return value: List<VariableInstanceLog>.

findVariableInstancesByName(String variableId, boolean onlyActiveProcesses)

Return value: List<VariableInstanceLog>.

findVariableInstancesByNameAndValue(String variableId, String value, boolean
onlyActiveProcesses)

Return value: List<VariableInstanceLog>.

clear()

Return value: void.

21.6. TROUBLESHOOTING

21.6.1. Serialization Issues

Sometimes, users may wish to pass instances of their own classes as parameters to commands sent in a
REST request or JMS message. In order to do this, there are a number of requirements.

1. The user-defined class satisfy the following in order to be property serialized and deserialized by
the JMS or REST API:

The user-defined class must be correctly annotated with JAXB annotations, including the
following:

The user-defined class must be annotated with a
javax.xml.bind.annotation.XmlRootElement annotation with a non-empty name
value

All fields or getter/setter methods must be annotated with a

Red Hat JBoss BPM Suite 6.4 Development Guide

530

All fields or getter/setter methods must be annotated with a
javax.xml.bind.annotation.XmlElement or javax.xml.bind.annotation.XmlAttribute
annotations.
Furthermore, the following usage of JAXB annotations is recommended:

Annotate the user-defined class with a javax.xml.bind.annotation.XmlAccessorType
annotation specifying that fields should be used,
(javax.xml.bind.annotation.XmlAccessType.FIELD). This also means that you should
annotate the fields (instead of the getter or setter methods) with @XmlElement or
@XmlAttribute annotations.

Fields annotated with @XmlElement or @XmlAttribute annotations should also be
annotated with javax.xml.bind.annotation.XmlSchemaType annotations specifying
the type of the field, even if the fields contain primitive values.

Use objects to store primitive values. For example, use the java.lang.Integer class for
storing an integer value, and not the int class. This way it will always be obvious if the
field is storing a value.

The user-defined class definition must implement a no-arg constructor.

Any fields in the user-defined class must either be object primitives (such as a Long or
String) or otherwise be objects that satisfy the first 2 requirements in this list (correct
usage of JAXB annotations and a no-arg constructor).

2. The class definition must be included in the deployment JAR of the deployment that the JMS
message content is meant for.

NOTE

If you create your class definitions from an XSD schema, you may end up creating
classes that inconsistently (among classes) refer to a namespace. This
inconsistent use of a namespace can end up preventing a these class instance
from being correctly deserialized when received as a parameter in a command on
the server side.

For example, you may create a class that is used in a BPMN2 process, and add an
instance of this class as a parameter when starting the process. While sending the
command/operation request (via the Remote (client) Java API) will succeed, the
parameter will not be correctly deserialized on the server side, leading the
process to eventually throw an exception about an unexpected type for the class.

3. The sender must set a deploymentId string property on the JMS bytes message to the name of
the deploymentId. This property is necessary in order to be able to load the proper classes from
the deployment itself before deserializing the message on the server side.

RETRIEVING PROCESS VARIABLES

While submitting an instance of a user-defined class is possible using both the JMS and
REST API, retrieving an instance of the process variable is only possible through the
REST API.

21.6.2. Insecure Task Operations

By default, you may only work with tasks as the authenticated user. If you try to claim tasks on behalf of

CHAPTER 21. REMOTE API

531

By default, you may only work with tasks as the authenticated user. If you try to claim tasks on behalf of
another user, you may get an exception similar to:

PermissionDeniedException thrown with message 'User '[UserImpl:'john']' does not have permissions
to execute operation 'Claim' on task id 14'

This is caused by the security settings. To bypass the security settings:

1. Set the org.kie.task.insecure=true property on your server. For example, on Red Hat JBoss
EAP, add the following into EAP_HOME/standalone/configuration/standalone.xml:

2. On the client side, do one of the following:

Use the disableTaskSecurity() method when building the RuntimeEngine object:

Set the org.kie.task.insecure system property to true.

If you are still experiencing the exception in your application, configure the UserGroupCallback
settings. See Configuring UserGroupCallback for further information.

[4] To access this method, you must use the org.kie.remote.client.api.RemoteTaskService class instead of
the TaskService class.

<system-properties>
 ...
 <property name="org.kie.task.insecure" value="true"/>
 ...
</system-properties>

RuntimeEngine engine = RemoteRuntimeEngineFactory
 .newRestBuilder()
 .addDeploymentId(deploymentId)
 .addUrl(baseUrl)
 .addUserName(user)
 .addPassword(password)
 .disableTaskSecurity()
 .build();

Red Hat JBoss BPM Suite 6.4 Development Guide

532

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on: Monday, May 13, 2019.

APPENDIX A. VERSIONING INFORMATION

533

	Table of Contents
	PART I. OVERVIEW
	CHAPTER 1. ABOUT THIS GUIDE
	1.1. AUDIENCE
	1.2. PREREQUISITES

	CHAPTER 2. RED HAT JBOSS BRMS AND RED HAT JBOSS BPM SUITE ARCHITECTURE
	2.1. RED HAT JBOSS BUSINESS RULES MANAGEMENT SYSTEM
	2.1.1. Red Hat JBoss BRMS Key Components
	2.1.2. Red Hat JBoss BRMS Features

	2.2. RED HAT JBOSS BUSINESS PROCESS MANAGEMENT SUITE
	2.2.1. Red Hat JBoss BPM Suite Key Components
	2.2.2. Red Hat JBoss BPM Suite Features

	2.3. SUPPORTED PLATFORMS AND APIS
	2.4. USE CASES
	2.4.1. Use Case: Business Decision Management in Insurance Industry with Red Hat JBoss BRMS
	2.4.2. Use Case: Process-Based Solution in Loan Industry

	CHAPTER 3. APACHE MAVEN
	3.1. MAVEN REPOSITORIES
	3.2. USING THE MAVEN REPOSITORY IN YOUR PROJECT
	3.3. MAVEN PROJECT CONFIGURATION FILE
	3.4. MAVEN SETTINGS FILE
	3.5. DEPENDENCY MANAGEMENT
	3.6. INTEGRATED MAVEN DEPENDENCIES
	3.7. UPLOADING ARTIFACTS TO MAVEN REPOSITORY
	Alternative Maven Approach

	3.8. DEPLOYING RED HAT JBOSS BPM SUITE ARTIFACTS TO RED HAT JBOSS FUSE
	Separating Assets and Code

	CHAPTER 4. INSTALL AND SET UP RED HAT JBOSS DEVELOPER STUDIO
	4.1. INSTALLING RED HAT JBOSS DEVELOPER STUDIO PLUG-INS
	4.2. CONFIGURING RED HAT JBOSS BRMS/BPM SUITE SERVER
	4.3. IMPORTING PROJECTS FROM GIT REPOSITORY INTO RED HAT JBOSS DEVELOPER STUDIO
	4.4. KIE NAVIGATOR

	PART II. ALL ABOUT RULES
	CHAPTER 5. RULE ALGORITHMS
	5.1. PHREAK ALGORITHM
	5.2. RULE EVALUATION WITH PHREAK ALGORITHM
	PHREAK and Sequential Mode

	5.3. RETE ALGORITHM
	5.3.1. ReteOO
	Rete Root Node
	ObjectTypeNode
	AlphaNodes
	Hashing
	BetaNodes
	Alpha Memory and Beta Memory
	Lookups with BetaNodes
	LeftInputNodeAdapters
	Terminal Nodes
	Node Sharing

	5.4. SWITCHING BETWEEN PHREAK AND RETEOO
	Switching Between PHREAK and ReteOO in System Properties
	Switching Between PHREAK and ReteOO in KieBaseConfiguration

	CHAPTER 6. GETTING STARTED WITH RULES AND FACTS
	Rules Processing Steps
	6.1. CREATING AND EXECUTING RULES
	6.1.1. Creating and Executing Rules Using Plain Java
	6.1.2. Creating and Executing Rules Using Maven
	6.1.3. Creating and Executing Rules Using Red Hat JBoss Developer Studio
	6.1.4. Creating and Executing Rules Using Business Central

	6.2. EXECUTION OF RULES
	6.2.1. Agenda
	6.2.2. Agenda Processing
	6.2.3. Conflict Resolution
	6.2.4. AgendaGroup
	6.2.5. setFocus()
	6.2.6. ActivationGroup

	6.3. INFERENCE
	6.3.1. The Inference Engine
	6.3.2. Inference Example

	6.4. TRUTH MAINTENANCE
	6.5. USING DECISION TABLES IN SPREADSHEETS
	6.5.1. OpenOffice Example
	6.5.2. Rules and Spreadsheets
	6.5.3. The RuleTable Keyword
	6.5.4. The RuleSet Keyword
	6.5.5. Data-Defining Cells
	6.5.6. Rule Table Columns
	6.5.7. Rule Set Entries
	6.5.8. Rule Attribute Entries in Rule Set Area
	6.5.9. The RuleTable Cell
	6.5.10. Column Types
	6.5.11. Conditional Elements
	6.5.12. Action Statements
	6.5.13. Metadata Statements
	6.5.14. Interpolating Cell Data Example
	6.5.15. Tips for Working Within Cells
	6.5.16. The SpreadsheetCompiler Class
	6.5.17. Using Spreadsheet-Based Decision Tables
	6.5.18. Lists
	6.5.19. Revision Control
	6.5.20. Tabular Data Sources

	6.6. DEPENDENCY MANAGEMENT FOR GUIDED DECISION TABLES, SCORECARDS, AND RULE TEMPLATES
	6.7. LOGGING
	6.7.1. Configuring Logging Level

	CHAPTER 7. COMPLEX EVENT PROCESSING
	7.1. INTRODUCTION TO COMPLEX EVENT PROCESSING
	7.2. EVENTS
	7.2.1. Event Declaration
	7.2.2. Event Metadata

	7.3. CLOCK IMPLEMENTATION IN COMPLEX EVENT PROCESSING
	7.3.1. Session Clock
	7.3.2. Available Clock Implementations

	7.4. EVENT PROCESSING MODES
	7.4.1. Cloud Mode
	7.4.2. Stream Mode

	7.5. EVENT STREAMS
	7.5.1. Declaring and Using Entry Points
	7.5.2. Negative Pattern in Stream Mode

	7.6. TEMPORAL OPERATIONS
	7.6.1. Temporal Reasoning
	7.6.2. Temporal Operations
	7.6.3. After
	7.6.4. Before
	7.6.5. Coincides
	7.6.6. During
	7.6.7. Finishes
	7.6.8. Finishes By
	7.6.9. Includes
	7.6.10. Meets
	7.6.11. Met By
	7.6.12. Overlaps
	7.6.13. Overlapped By
	7.6.14. Starts
	7.6.15. Started By

	7.7. SLIDING WINDOWS
	7.7.1. Sliding Time Windows
	7.7.2. Sliding Length Windows

	7.8. MEMORY MANAGEMENT FOR EVENTS
	7.8.1. Explicit Expiration
	7.8.2. Inferred Expiration

	CHAPTER 8. WORKING WITH RULES
	8.1. ABOUT RULE FILES
	8.1.1. Rule File
	8.1.2. Structure of Rule Files

	8.2. OPERATING ON FACTS
	8.2.1. Accessing Working Memory

	8.3. USING RULE KEYWORDS
	8.3.1. Hard Keywords
	8.3.2. Soft Keywords
	8.3.3. List of Soft Keywords

	8.4. ADDING COMMENTS TO RULE FILE
	8.4.1. Single Line Comment Example
	8.4.2. Multi-Line Comment Example

	8.5. ERROR MESSAGES IN RULES
	8.5.1. Error Message Format
	8.5.2. Error Message Description

	8.6. PACKAGING
	8.6.1. Import Statements
	8.6.2. Using Globals
	8.6.3. From Element
	8.6.4. Using Globals with E-Mail Service

	8.7. FUNCTIONS IN RULES
	8.7.1. Importing Static Method Example
	8.7.2. Calling Function Declaration Example
	8.7.3. Type Declarations
	8.7.4. Declaring New Types
	8.7.5. Declaring New Fact Type Example
	8.7.6. Declaring New Fact Type Additional Example
	8.7.7. Using Import Example
	8.7.8. Generated Java Classes
	8.7.9. Generated Java Class Example
	8.7.10. Using Declared Types in Rules Example
	8.7.11. Declaring Metadata
	8.7.12. Working with Metadata Attributes
	8.7.13. Declaring Metadata Attribute with Fact Types Example
	8.7.14. @position Attribute
	8.7.15. @position Example
	8.7.16. Predefined Class Level Annotations
	8.7.17. @key Attribute Functions
	8.7.18. @key Declaration Example
	8.7.19. Creating Instance with Key Constructor Example
	8.7.20. Positional Arguments
	8.7.21. Positional Argument Example
	8.7.22. @position Annotation
	8.7.23. Example Patterns

	8.8. BACKWARD-CHAINING
	8.8.1. Backward-Chaining Systems
	8.8.2. Cloning Transitive Closures
	8.8.3. Defining Query
	8.8.4. Transitive Closure Example
	8.8.5. Reactive Transitive Queries
	8.8.6. Queries with Unbound Arguments
	8.8.7. Multiple Unbound Arguments

	8.9. TYPE DECLARATION
	8.9.1. Declaring Metadata for Existing Types
	8.9.2. Declaring Metadata for Existing Types Example
	8.9.3. Declaring Metadata Using Fully Qualified Class Name Example
	8.9.4. Parametrized Constructors for Declared Types Example
	8.9.5. Non-Typesafe Classes
	8.9.6. Accessing Declared Types from Application Code
	8.9.7. Declaring Type
	8.9.8. Handling Declared Fact Types Through API Example
	8.9.9. Type Declaration Extends
	8.9.10. Type Declaration Extends Example
	8.9.11. Traits
	8.9.12. Traits Example
	8.9.13. Core Objects and Traits
	8.9.14. @traitable Example
	8.9.15. Writing Rules with Traits
	8.9.16. Rules with Traits Example
	8.9.17. Hidden Fields
	8.9.18. Two-Part Proxy
	8.9.19. Wrappers
	8.9.20. Wrapper Example
	8.9.21. Wrapper with isA Annotation Example
	8.9.22. Removing Traits

	8.10. RULE ATTRIBUTES
	8.10.1. Timer Attribute Example
	8.10.2. Timers
	8.10.3. Cron Timer Example
	8.10.4. Calendars
	8.10.5. Quartz Calendar Example
	8.10.6. Registering Calendar
	8.10.7. Left Hand Side
	8.10.8. Conditional Elements
	8.10.9. Rule Without Conditional Element Example

	8.11. PATTERNS
	8.11.1. Pattern Example
	8.11.2. Pattern Matching
	8.11.3. Pattern Binding
	8.11.4. Pattern Binding with Variable Example
	8.11.5. Constraints

	8.12. ELEMENTS AND VARIABLES
	8.12.1. Property Access on Java Beans (POJOs)
	8.12.2. POJO Example
	8.12.3. Working with POJOs
	8.12.4. POJO Fallbacks
	8.12.5. Fallback Example
	8.12.6. Java Expressions
	8.12.7. Comma-Separated Operators
	8.12.8. Comma-Separated Operator Example
	8.12.9. Binding Variables
	8.12.10. Binding Variable Examples
	8.12.11. Unification
	8.12.12. Unification Example
	8.12.13. Options and Operators in Red Hat JBoss BRMS
	8.12.14. Operator Precedence
	8.12.15. Fine Grained Property Change Listeners
	8.12.16. Fine Grained Property Change Listener Example
	8.12.17. Working with Fine Grained Property Change Listeners
	8.12.18. Using Patterns with @watch
	8.12.19. @watch Example
	8.12.20. Using @PropertySpecificOption
	8.12.21. Basic Conditional Elements
	8.12.22. Conditional Element forall
	8.12.23. forall Examples
	8.12.24. Conditional Element from
	8.12.25. from Examples
	8.12.26. Conditional Element collect
	8.12.27. Conditional Element accumulate
	Top-Level accumulate Syntax
	Built-in accumulate Functions
	Accumulate Functions Pluggability
	Alternative Syntax
	accumulate with Inline Custom Code
	Custom Objects

	8.12.28. Conditional Element eval
	8.12.29. eval Conditional Element Examples
	8.12.30. Right Hand Side
	8.12.31. RHS Convenience Methods
	8.12.32. Convenience Methods Using Drools Variable
	8.12.33. Convenience Methods Using kcontext Variable
	8.12.34. Modify Statement
	8.12.35. Query Examples
	8.12.36. QueryResults Example
	8.12.37. Queries Calling Other Queries
	8.12.38. Queries Calling Other Queries Example
	8.12.39. Unification for Derivation Queries

	8.13. SEARCHING WORKING MEMORY USING QUERY
	8.13.1. Queries
	8.13.2. Live Queries
	8.13.3. ViewChangedEventListener Implementation Example

	8.14. DOMAIN SPECIFIC LANGUAGES (DSLS)
	8.14.1. DSL Editor
	8.14.2. Using DSLs
	8.14.3. DSL Example
	8.14.4. About DSL Parser
	8.14.5. About DSL Compiler
	8.14.6. DSL Syntax Examples
	8.14.7. Chaining DSL Expressions
	8.14.8. Adding Constraints to Facts
	8.14.9. Tips for Developing DSLs
	8.14.10. DSL and DSLR Reference
	8.14.11. DSL Entry Description
	8.14.12. Debug Options for DSL Expansion
	8.14.13. DSL Definition Example
	8.14.14. Transformation of DSLR File
	8.14.15. String Transformation Functions
	8.14.16. Stringing DSL Transformation Functions

	CHAPTER 9. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST RULES
	9.1. RED HAT JBOSS DEVELOPER STUDIO DROOLS PERSPECTIVE
	9.2. RED HAT JBOSS BRMS RUNTIMES
	9.2.1. Defining a Red Hat JBoss BRMS Runtime
	9.2.2. Selecting a Runtime for Your Red Hat JBoss BRMS Project
	9.2.3. Changing the Runtime of Your Red Hat JBoss BRMS Project
	9.2.4. Configuring the Red Hat JBoss BRMS Server

	9.3. EXPLORING RED HAT JBOSS BRMS APPLICATION
	9.4. CREATING A RED HAT JBOSS BRMS PROJECT
	9.5. USING TEXTUAL RULE EDITOR
	9.6. RED HAT JBOSS BRMS VIEWS
	9.7. DEBUGGING RULES
	9.7.1. Creating Breakpoints

	PART III. ALL ABOUT PROCESSES
	CHAPTER 10. GETTING STARTED WITH PROCESSES
	10.1. THE RED HAT JBOSS BPM SUITE ENGINE
	10.2. INTEGRATING BPM SUITE ENGINE WITH OTHER SERVICES

	CHAPTER 11. WORKING WITH PROCESSES
	11.1. BPMN 2.0 NOTATION
	11.1.1. Business Process Model and Notation (BPMN) 2.0 Specification
	BPMN 2.0 Supported Elements and Attributes (Events)
	BPMN 2.0 Supported Elements and Attributes (Activities)
	BPMN 2.0 Supported Elements and Attributes (Gateways)
	BPMN 2.0 Supported Elements and Attributes (Data)
	BPMN 2.0 Supported Elements and Attributes (BPMNDI)

	11.1.2. BPMN 2.0 Process Example
	11.1.3. Supported Elements and Attributes in BPMN 2.0 Specification
	Flow Objects
	Data
	Connecting Objects

	11.1.4. Loading and Executing a BPMN2 Process Into Repository

	11.2. WHAT COMPRISES A BUSINESS PROCESS
	11.2.1. Process Nodes
	11.2.2. Process Properties
	11.2.3. Defining Processes Using XML

	11.3. ACTIVITIES
	11.3.1. Tasks
	11.3.2. Subprocesses

	11.4. DATA
	11.5. EVENTS
	11.5.1. Start Events
	11.5.2. End Events
	11.5.3. Intermediate Events
	11.5.3.1. Catching Intermediate Events
	11.5.3.2. Throwing Intermediate Events

	11.6. GATEWAYS
	11.6.1. Gateway Types
	11.6.1.1. Event-Based Gateway
	11.6.1.2. Parallel Gateway
	11.6.1.3. Inclusive Gateway
	11.6.1.4. Data-Based Exclusive Gateway

	11.7. VARIABLES
	11.8. ASSIGNMENT
	11.9. ACTION SCRIPTS
	Process Instance Action Scripts

	11.10. CONSTRAINTS
	11.11. TIMERS
	Configuring Timer with Delay and Period
	Configuring Timer ISO-8601 Date Format
	Configuring Timer with Process Variables
	Updating Timer Within a Running Process Instance
	Troubleshooting

	11.12. MULTI-THREADING
	11.12.1. Multi-Threading
	11.12.2. Engine Execution
	11.12.3. Job Executor for Asynchronous Execution
	11.12.4. Using Job Executor in Embedded Mode
	11.12.5. Hello World Example with Embedded Job Executor
	11.12.6. Using Job Executor in Business Central
	Executor Configuration

	11.12.7. Multiple Sessions and persistence
	11.12.8. Asynchronous Events
	11.12.9. Technical exceptions
	Code in Element properties
	Code in WorkItemHandlers
	11.12.9.1. Technical exception examples

	11.13. PROCESS FLUENT API
	11.13.1. Using the Process Fluent API to Create Business Process
	11.13.2. Process Fluent API Example

	11.14. TESTING BUSINESS PROCESSES
	11.14.1. JbpmJUnitBaseTestCase
	11.14.2. Configuring Persistence
	11.14.3. Testing Integration with External Services

	CHAPTER 12. HUMAN TASKS MANAGEMENT
	12.1. HUMAN TASKS
	12.2. USING USER TASKS IN PROCESSES
	12.3. DATA MAPPING
	12.4. TASK LIFECYCLE
	12.5. TASK PERMISSIONS
	12.5.1. Task Permissions Matrix
	Permissions Matrices

	12.6. TASK SERVICE
	12.6.1. Task Service and Process Engine
	12.6.2. Task Service API
	12.6.3. Interacting with the Task Service
	12.6.4. Accessing Task Variables Using TaskEventListener
	12.6.5. Task Service Data Model
	Tasks
	Entities and People Assignments
	Reassignments
	Notifications
	Attachments
	Delegations

	12.6.6. Connecting to Custom Directory Information Services
	12.6.7. LDAP Connection
	12.6.7.1. Connecting to LDAP

	12.7. TASK ESCALATION AND NOTIFICATIONS
	12.7.1. Configuring a Custom Implementation of Email Notification Events

	12.8. RETRIEVING PROCESS AND TASK INFORMATION
	12.9. ADVANCED QUERIES WITH QUERYSERVICE
	12.9.1. QueryResultMapper
	12.9.2. QueryParamBuilder
	12.9.3. Implementing QueryParamBuilder
	12.9.4. QueryService in Embedded Mode
	12.9.5. Advanced Queries Through Intelligent Process Server

	12.10. PROCESS INSTANCE MIGRATION
	Known Limitations

	CHAPTER 13. PERSISTENCE AND TRANSACTIONS
	13.1. PROCESS INSTANCE STATE
	13.1.1. Runtime State
	13.1.2. Binary Persistence
	13.1.3. Data Model Description
	13.1.4. Safe Points

	13.2. AUDIT LOG
	13.2.1. Audit Data Model
	13.2.2. Audit Data Model Description
	13.2.3. Storing Process Events in a Database
	13.2.4. Storing Process Events in a JMS Queue
	13.2.5. Auditing Variables
	13.2.6. Building and Registering Custom Indexers

	13.3. TRANSACTIONS
	13.4. IMPLEMENTING CONTAINER MANAGED TRANSACTION
	13.5. USING PERSISTENCE
	13.5.1. Adding Dependencies
	13.5.2. Manually Configuring Red Hat JBoss BPM Suite Engine to Use Persistence

	CHAPTER 14. USING RED HAT JBOSS DEVELOPER STUDIO TO CREATE AND TEST PROCESSES
	14.1. RED HAT JBOSS BPM SUITE RUNTIME
	14.1.1. Red Hat JBoss BPM Suite Runtime
	14.1.2. Setting the Red Hat JBoss BPM Suite Runtime
	14.1.3. Configuring Red Hat JBoss BPM Suite Server

	14.2. IMPORTING AND CLONING PROJECTS FROM GIT REPOSITORY INTO RED HAT JBOSS DEVELOPER STUDIO
	14.3. COMPONENTS OF RED HAT JBOSS BPM SUITE APPLICATION
	14.4. CREATING RED HAT JBOSS BPM SUITE PROJECT
	14.5. CONVERTING EXISTING JAVA PROJECT TO RED HAT JBOSS BPM SUITE PROJECT
	14.6. CREATING PROCESSES IN RED HAT JBOSS DEVELOPER STUDIO
	14.7. MODELING AND VALIDATING PROCESSES IN RED HAT JBOSS DEVELOPER STUDIO
	14.8. AUDIT VIEW
	14.8.1. File Logger

	14.9. SYNCHRONIZING RED HAT JBOSS DEVELOPER STUDIO WORKSPACE WITH BUSINESS CENTRAL REPOSITORIES
	14.9.1. Importing Business Central Repository
	14.9.2. Committing Changes to Business Central
	14.9.3. Retrieving Changes from Business Central Repository
	14.9.4. Importing Individual Projects from Repository
	14.9.5. Adding Red Hat JBoss BPM Suite Libraries to Project Class Path

	CHAPTER 15. CASE MANAGEMENT
	15.1. INTRODUCTION
	15.2. USE CASES
	15.3. CASE MANAGEMENT IN RED HAT JBOSS BPM SUITE
	15.4. STARTING A CASE
	15.5. EXAMPLE CASE MODEL

	PART IV. INTELLIGENT PROCESS SERVER AND REALTIME DECISION SERVER
	CHAPTER 16. THE REST API FOR INTELLIGENT PROCESS SERVER EXECUTION
	16.1. BRMS COMMANDS
	16.2. MANAGING PROCESSES
	16.3. MANAGING PROCESS DEFINITIONS
	16.4. MANAGING USER TASKS
	16.4.1. Managing Task Instances
	16.4.2. Managing Task Instance Data

	16.5. QUERYING PROCESS INSTANCES
	16.6. QUERYING TASKS
	16.7. ADVANCED QUERIES FOR THE INTELLIGENT PROCESS SERVER
	16.8. MANAGING JOB EXECUTION
	Job Execution Endpoints

	CHAPTER 17. THE REST API FOR INTELLIGENT PROCESS SERVER ADMINISTRATION
	17.1. MANAGED INTELLIGENT PROCESS SERVER ENVIRONMENT
	17.2. UNMANAGED INTELLIGENT PROCESS SERVER ENVIRONMENT

	CHAPTER 18. INTELLIGENT PROCESS SERVER UI EXTENSION
	18.1. USING THE INTELLIGENT PROCESS SERVER UI EXTENSION

	CHAPTER 19. INTELLIGENT PROCESS SERVER JAVA CLIENT API OVERVIEW
	19.1. CLIENT CONFIGURATION
	19.1.1. JMS Interaction Patterns

	19.2. SERVER RESPONSE
	19.3. INSERTING AND EXECUTING COMMANDS
	19.4. LISTING SERVER CAPABILITIES
	19.5. LISTING CONTAINERS
	19.6. HANDLING CONTAINERS
	19.7. AVAILABLE INTELLIGENT PROCESS SERVER CLIENTS
	19.8. LISTING AVAILABLE BUSINESS PROCESSES
	19.9. STARTING A BUSINESS PROCESSES
	19.10. QUERYDEFINITION FOR INTELLIGENT PROCESS SERVER USING JAVA CLIENT API

	PART V. KIE
	CHAPTER 20. JAVA APIS
	20.1. KIE API
	20.1.1. KIE Framework
	20.1.2. KIE Base
	20.1.3. KIE Session
	20.1.3.1. Process Runtime Interface
	20.1.3.2. Event Listeners
	20.1.3.3. Loggers
	20.1.3.4. Correlation Keys
	20.1.3.5. Threads
	20.1.3.6. Globals

	20.1.4. KIE File System
	20.1.5. KIE Module
	20.1.6. KIE Container
	20.1.6.1. KIE Base Configuration

	20.1.7. KIE Maven Plug-in
	20.1.8. KIE Repository
	20.1.9. KIE Scanner
	20.1.10. Command Executor
	20.1.10.1. Marshalling
	20.1.10.2. Supported Commands

	20.1.11. KIE Configuration
	20.1.11.1. Build Result Severity
	20.1.11.2. StatelessKieSession
	20.1.11.3. Marshalling
	20.1.11.4. KIE Persistence

	20.1.12. KIE Sessions
	20.1.12.1. Stateless KIE Sessions
	20.1.12.2. Stateful KIE Sessions

	20.2. RUNTIME MANAGER
	20.2.1. Usage
	20.2.1.1. Usage Scenario
	20.2.1.2. Building Runtime Manager

	20.2.2. Runtime Environment
	20.2.3. Strategies
	20.2.3.1. Singleton Strategy
	20.2.3.2. Per Request Strategy
	20.2.3.3. Per Process Instance Strategy

	20.2.4. Handlers and Listeners
	20.2.4.1. Registering Through Registerable Items Factory
	20.2.4.2. Registering Through Configuration Files
	20.2.4.3. Registering in CDI Environment

	20.2.5. Control Parameters
	20.2.6. Variable Persistence Strategy
	JPA Placeholder Resolver Strategy
	Creating Custom Strategy

	20.3. KIE SERVICES
	20.3.1. Deployment Service
	20.3.2. Definition Service
	20.3.3. Process Service
	20.3.4. Runtime Data Service
	20.3.5. User Task Service
	20.3.6. Query Service
	20.3.6.1. Terminology
	20.3.6.2. Query Result Mapper
	20.3.6.3. Query Parameter Builder
	20.3.6.4. Typical usage scenario

	20.3.7. Process Instance Migration Service
	20.3.7.1. Migration report
	20.3.7.2. Known limitations
	20.3.7.3. Example

	20.3.8. Form Provider Service
	20.3.9. Executor Service

	20.4. CDI INTEGRATION
	20.4.1. Configuring CDI Integration
	20.4.2. Deployment Service as CDI Bean
	20.4.2.1. Saving and Removing Deployments from Database
	20.4.2.2. Available Deployment Services

	20.4.3. Runtime Manager as CDI Bean

	CHAPTER 21. REMOTE API
	21.1. REST API
	21.1.1. Knowledge Store REST API
	21.1.1.1. Job Calls
	21.1.1.2. Organizational Unit Calls
	21.1.1.3. Repository Calls
	21.1.1.4. Maven Calls

	21.1.2. Deployment REST API
	21.1.2.1. Deployment Calls
	21.1.2.2. Asynchronous Calls

	21.1.3. Process Image REST API
	21.1.4. Runtime REST API
	21.1.4.1. Query Parameters
	21.1.4.2. Runtime Calls
	21.1.4.3. Task Calls

	21.1.5. REST Query API
	21.1.5.1. URL Layout
	21.1.5.2. Query Parameters
	21.1.5.3. List of Query Parameters
	21.1.5.4. Query Output Format

	21.1.6. Execute Operations
	21.1.6.1. Execute Operation Commands

	21.1.7. REST API Summary
	21.1.8. Control of REST API

	21.2. JMS
	21.2.1. JMS Queue Setup
	21.2.2. Example JMS Usage

	21.3. SOAP API
	21.3.1. CommandWebService

	21.4. EJB INTERFACE
	Deployment of EJB Client
	21.4.1. EJB Interface Artifacts
	21.4.2. Generating EJB Services WAR File

	21.5. REMOTE JAVA API
	Remote Java API Methods
	Starting Project: Adding Dependencies
	21.5.1. Common Configuration
	21.5.2. REST Client
	21.5.2.1. Retrieving Potential Owners of Human Task
	21.5.2.2. Calling Tasks Without Deployment ID
	21.5.2.3. Custom Model Objects and Remote API

	21.5.3. JMS Client
	Configuration Using InitialContext Instance

	21.5.4. Supported Methods
	Available Process-Related KieSession Methods
	Available Rules-Related KieSession Methods
	Available WorkItemManager Methods
	Available Task Operation TaskService Methods
	Available Task Retrieval and Query TaskService Methods
	Available AuditService Methods

	21.6. TROUBLESHOOTING
	21.6.1. Serialization Issues
	21.6.2. Insecure Task Operations

	APPENDIX A. VERSIONING INFORMATION

