
Red Hat JBoss A-MQ 6.2

WS-Notification Guide

Accessing topic subscriptions through the WS-Notification standard

Last Updated: 2018-06-15

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

Accessing topic subscriptions through the WS-Notification standard

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

WS-Notification is implemented as a wrapper around the JBoss A-MQ broker, enabling you to
access topic subscriptions through a standardised Web service interface.

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO WS-NOTIFICATION
1.1. WS-NOTIFICATION STANDARD
1.2. CONSUMER CLIENT SCENARIO
1.3. PULLPOINT CLIENT SCENARIO
1.4. IMPLEMENTATION OF WS-NOTIFICATION
1.5. CLIENT API

CHAPTER 2. WS-NOTIFICATION TUTORIAL
2.1. INSTALL AND CONFIGURE THE NOTIFICATION BROKER
2.2. CREATE A PUBLISHER CLIENT
2.3. CREATE A CONSUMER CLIENT
2.4. CREATE A PULLPOINT CLIENT

3
3
5
6
7
9

11
11
14
19
25

Table of Contents

1

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

2

CHAPTER 1. INTRODUCTION TO WS-NOTIFICATION

1.1. WS-NOTIFICATION STANDARD

Overview

WS-Notification is a standard that describes a publish/subscribe messaging model implemented over
Web services. The functionality is quite similar to the JMS publish/subscribe model, but the interfaces
and the protocols are defined in terms of Web services standards (based on Apache CXF, in the context
of JBoss A-MQ).

The WS-Notification standard is defined by combining the following OASIS specifications:

WS-Topics

WS-BaseNotification

WS-BrokeredNotification

WS-Topics

The WS-Topics standard describes how to organize and define the topics used in a notification broker. In
particular, the following aspects of a topic are described:

Topic hierarchy—a hierarchical naming scheme, which can be defined using an XML document
associated with the notification broker.

Topic set—a standardized XML schema, which can optionally be used to define the hierarchy of
topic names.

Topic dialect—a particular type of name expression that is used to specify one topic or to select
multiple topics. The following dialects are defined by the WS-Topics specification:

Simple

Concrete

Full

XPath

NOTE

Topic hierarchies are not supported in JBoss A-MQ. Only Simple topic names can be
defined.

WS-BaseNotification

The WS-BaseNotification standard describes a simple point-to-point model of message notification. The
base standard can be useful, if you want to send notifications through a standardized interface, without
deploying a fully-fledged broker to mediate the messages. The following WSDL interfaces are defined in
this standard:

NotificationPublisher

CHAPTER 1. INTRODUCTION TO WS-NOTIFICATION

3

https://www.oasis-open.org/

Must be implemented by the entity that wants to publish messages. This interfaces exposes the
subscribe operation, which enables consumers to register their interest in receiving notifications
from this publisher.

NotificationConsumer

Must be implemented by the entity that wants to receive messages. This interface exposes the
notify operation, which enables the consumer to receive message notifications directly from the
publisher.

In addition to the two preceding interfaces for point-to-point communication, WS-BaseNotification defines
another pair of interfaces for supporting pull-style notification, as follows:

CreatePullPoint

Exposes the createPullPoint operation, which creates a PullPoint object that can be used to
accumulates messages.

PullPoint

Exposes the notify operation, which enables the pull-point to accumulate notification messages,
and the getMessages operation, which enables a pull-style consumer to retrieve the accumulated
messages when it is ready.

WS-BrokeredNotification

The WS-BrokeredNotification standard describes a brokered model of message notification, where a
central broker (or network of brokers) can be used to route messages between publishers and
consumers. This architecture scales much better than point-to-point, because each consumer requires
only a single connection to the broker in order to monitor notifications from all publishers. The following
additional interfaces are defined in this specification:

NotificationBroker

Combines the NotificationPubisher, NotificationConsumer, and CreatePullPoint
interfaces, enabling you to provide the full range of notification services in a single application.

The NotificationBroker interface defines one additional operation, the registerPublisher
operation, which can optionally be used to register publishers with the broker. In particular, this
operation can be useful when constructing a federation of brokers.

RegisterPublisher

The notification broker also implements the RegisterPublisher interface, which defines one
additional operation, registerPublisher. A publisher can optionally use the
registerPublisher operation its NotificationPublisher object with the broker.

NOTE

It is also possible for publishers to send messages to the broker straightaway, by
invoking notify, without needing to register in advance.

PublisherRegistrationManager

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

4

The return value of the registerPublisher operation is a reference to a
PublisherRegistrationManager object, which can be used to destroy a registration.

References

For more information about the WS-Notification standards, see the following references:

WS-Topics 1.3 OASIS Standard

WS-BaseNotification 1.3 OASIS Standard

WS-BrokeredNotification 1.3 OASIS Standard

1.2. CONSUMER CLIENT SCENARIO

Overview

In the consumer client scenario, the consumer client receives messages directly from the broker, as
soon as they become available. This approach requires the consumer client to implement a callback
object, which exposes a Web service endpoint. Figure 1.1, “A Consumer Client Scenario” provides an
overview of this scenario.

Figure 1.1. A Consumer Client Scenario

3

N o t i f i c a t i o n B r o k e r

n o t i f y s ubsc r i be2

Clients in this scenario

There are two clients involved in this scenario:

Publisher client—generates notification messages and publishes the messages on a specific
topic, by sending them to the notification broker.

Consumer client—a client that implements a consumer callback object (exposing a Web service
endpoint of NotificationConsumer type), which is capable of receiving notifications directly
from the notification broker.

Scenario steps

In this scenario, a consumer client receives notification messages from the broker as follows:

1. The consumer client instantiates a consumer callback object, which implements the
NotificationConsumer interface and is capable of receiving notifications from the broker.

CHAPTER 1. INTRODUCTION TO WS-NOTIFICATION

5

http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf

2. The consumer client creates a subscription by invoking the subscribe operation on the broker,
passing the following operation arguments:

Topic name—specifies the topic that the client wants to subscribe to.

Callback reference—a reference to the consumer callback object that will receive the
notifications, where the service reference has the format of a WS-Addressing Endpoint
Reference (EPR).

3. A publisher client sends a notification message on a specific topic, by invoking the notify
operation on the broker.

4. If the message topic matches the consumer client's subscription, the broker will forward the
message to the consumer client by invoking the notify operation on the consumer callback
service.

1.3. PULLPOINT CLIENT SCENARIO

Overview

In the pull-point client scenario, the pull-point client does not receive messages directly from the broker.
Instead, the pull-point client allows messages to accumulate in a remote PullPoint object (which acts
as a message drop-box) and retrieves the messages from time to time by invoking the getMessages
operation on the PullPoint. Figure 1.2, “A PullPoint Client Scenario” provides an overview of this
scenario.

Figure 1.2. A PullPoint Client Scenario

N o t i f i c a t i o n B r o k e r

2 s ubsc r i ben o t i f y3

Cr e a t e P u l l Po i n t

1 c re a t e

Clients in this scenario

There are two clients involved in this scenario:

Publisher client—generates notification messages and publishes the messages on a specific
topic, by sending them to the notification broker.

PullPoint client—a client that uses a polling strategy to get notification messages. Instead of
receiving notification messages directly from the broker, this client creates a remote PullPoint
instance. Messages that accumulate in the PullPoint can be retrieved at any time by invoking
the getMessages operation on the PullPoint.

Scenario steps

In this scenario, a pull-point client polls for notification messages as follows:

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

6

1. The pull-point client creates a remote PullPoint instance by invoking the create operation
on the CreatePullPoint interface in the broker. The return value from this operation contains
a WS-Addressing reference to the remote pull-point.

2. The pull-point client creates a subscription by invoking the subscribe operation on the broker,
passing the following operation arguments:

Topic name—specifies the topic that the client wants to subscribe to.

Callback reference—a reference to the remote PullPoint instance that will receive the
notifications on behalf of the client.

3. A publisher client sends a notification message on a specific topic, by invoking the notify
operation on the broker.

4. At any time, the pull-point client can retrieve messages that have accumulated in the
PullPoint instance by invoking the getMessages operation on the PullPoint.

1.4. IMPLEMENTATION OF WS-NOTIFICATION

Overview

Figure 1.3, “Notification Broker Architecture” shows an overview of how the WS-Notification standard is
implemented in JBoss A-MQ, where the notification broker supports both the WS-BaseNotification
standard and the WS-BrokeredNotification standard.

Figure 1.3. Notification Broker Architecture

ActiveMQ
Broker

N o t i f i c a t i o n B r o k e r

JBoss A-MQ - OSGi Container

Cr ea t eP u l l Po i n t

Notification broker as wrapper around ActiveMQ broker

The JBoss A-MQ notification broker is implemented essentially as a wrapper around the Apache
ActiveMQ broker. This is possible, because the topic-based messaging model at the heart of WS-
Notification is essentially the same as the JMS publish/subscribe model. The notification broker wrapper
layer provides the SOAP/HTTP protocol, implements the standard WSDL interfaces, and implements the
integration layer; the ActiveMQ broker component provides persistence, message routing, and JMX
support (amongst other things).

The notification broker wrapper and the ActiveMQ broker are connected together using a normal client-
broker connection. In theory, you could use any ActiveMQ supported protocol for this connection, but it
makes the most sense to embed both components in the same JVM and to use the VM protocol. This
embedded coupling ensures optimum efficiency and performance.

OSGi container deployment

CHAPTER 1. INTRODUCTION TO WS-NOTIFICATION

7

In theory, the notification broker can be deployed standalone or into various containers. The normal
deployment model in JBoss A-MQ, however, is the OSGi container deployment. To simplify OSGi
deployment, the notification broker can be installed as the Karaf feature, cxf-wsn.

Supported WS-Notification interfaces

The notification broker service supports the following two WS-Notification interfaces:

NotificationBroker

The main notification broker interface enables you to create subscriptions (subscribe operation),
send notification messages (notify operation), and register Publisher services
(registerPublisher operation).

CreatePullPoint

The create pull-point interface enables you to create new pull-point endpoints on the notification
broker, which are used to accumulate messages until a consumer client is ready to retrieve them.

Qualities of service

Most of the options to configure qualities of service are provided by the underlying ActiveMQ broker. All
of the usual topic-oriented features and qualities of service can be configured on the underlying broker. In
particular, you can turn on persistence in the broker, so that subscriptions and messages are persisted.

Topics

Notification messages are organized by topic, so that messages sent on a particular topic will be
received by those consumers that are subscribed to that topic. In JBoss A-MQ, the notification topics are
mapped to the underlying ActiveMQ topics, as follows:

Only the SIMPLE dialect is supported (of the dialects described in the WS-Notification
specification).

In a WS-Notification client, you can specify a topic name as the String type or as the QName
type.

A notification topic name maps directly to an ActiveMQ topic name.

Topic hierarchies are not supported in JBoss A-MQ, but something very similar is supported by
the underlying ActiveMQ broker. In Apache ActiveMQ, you can define a topic to have a
segmented structure, where each segment is delimited by the . character—for example,
STOCKS.NYSE.REDHAT. Within the ActiveMQ configuration, you can exploit this structure to
match multiple topics—for example, STOCKS.NYSE.> matches all topics starting with
STOCKS.NYSE..

Topics are ad-hoc—in other words, there is no need to pre-define any topic hierarchy in XML.
Topics are created dynamically: if you use them, they are automatically created in the broker.
This is the standard approach supported in the underlying ActiveMQ broker.

Configuration of the notification broker

The notification broker is configured mainly by the following OSGi Config Admin configuration files:

etc/org.apache.cxf.wsn.cfg

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

8

Configures the wrapper component of the notification broker. For details about the properties you can
set in this file, see the section called “org.apache.cxf.wsn.cfg settings”.

etc/io.fabric8.mq.fabric.server-default.cfg

Customizes the OSGi deployment of the Apache ActiveMQ broker. A couple of important properties
can be set in this file—for example, the broker name.

etc/activemq.xml

Configures the Apache ActiveMQ broker. Most of the broker features and properties can be
configured in this file. For example, you can configure message persistence and fine tune broker
performance in this file.

1.5. CLIENT API

Overview

Figure 1.4, “Client APIs” gives an overview of the available APIs for programing WS-Notification clients.

Figure 1.4. Client APIs

Simplified client API
o r g. ap a c he .c x f .w s n. c l i e nt

WS-Notification Client

WS-Notification Standard API

WS-Notification standard API

Clients can be implemented using the standard WS-Notification API, which is obtained by mapping the
standard WSDL interfaces to Java the JAX-WS and JAX-B. This has the advantage that you can use
standard client code to access the notification broker (ensuring code portability), but it has the
disadvantage that the standard API is relatively complicated to program with.

Simplified client API

To simplify working with the notification broker, JBoss A-MQ offers a simplified (non-standard) client API
for accessing the notification broker. This API automatically takes care of tedious manipulation of JAX-B
data types. Using this API, you typically require just a few method calls to implement a basic WS-
Notification client.

For example, see the client code samples in Chapter 2, WS-Notification Tutorial.

API reference

CHAPTER 1. INTRODUCTION TO WS-NOTIFICATION

9

The full API reference for the simplified client API is provided in the Apache CXF API Reference, which
is available from the API Reference in the JBoss Fuse library. All of the relevant classes can be found in
the following Java package:

org.apache.cxf.wsn.client

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

10

CHAPTER 2. WS-NOTIFICATION TUTORIAL

2.1. INSTALL AND CONFIGURE THE NOTIFICATION BROKER

Overview

This section of the tutorial describes how to install and configure the notification broker as a Web service
in the JBoss A-MQ standalone container. For convenient OSGi deployment, the notification broker is
packaged as an Apache Karaf feature.

Prerequisites

This tutorial assumes that you are starting from a plain standalone container, in the initial configuration
you find it in after installing JBoss A-MQ (and, in particular, that the container is not configured as part of
a Fuse fabric).

Steps to install the notification broker

To install and configure the notification broker in the JBoss A-MQ container, perform the following steps:

1. Make sure you have already configured some user accounts in the etc/users.properties
file. If necessary, create a user account by adding lines in the following format:

For example, this tutorial assumes that the following admin user account is defined (which has
privileges defined by the Administrator role):

2. Create the notification broker configuration file,
InstallDir/etc/org.apache.cxf.wsn.cfg, and use a text editor to add the following
property settings:

The following aspects of the notification broker are configured in this file:

Connection to the ActiveMQ broker—the vm://amq URL connects through the Java Virtual
Machine to access the broker named amq (where the broker's name is defined by the
broker-name setting in the etc/io.fabric8.mq.fabric.server-default.cfg file).
The following options are specified on this URL:

create

By setting create=false, you can ensure that the notification broker does not try to
create its own (embedded) instance of a broker, but always tries to connect to the
existing broker instance named amq.

waitForStart

Username=Password[,Role1][,Role2]...

admin=admin,Administrator

cxf.wsn.activemq=vm://amq?create=false&waitForStart=10000
cxf.wsn.activemq.username=admin
cxf.wsn.activemq.password=admin

CHAPTER 2. WS-NOTIFICATION TUTORIAL

11

To compensate for any delays that might occur during the container's start-up sequence,
this endpoint defines a grace period, during which it waits for the broker to start.

Credentials for the connection—because authentication is enabled by default in the broker,
you must provide credentials (username and password) for connecting to the broker. The
credentials must refer to one of the user accounts defined in etc/users.properties.

3. Start up the JBoss A-MQ container, by entering the following command from the
InstallDir/bin directory:

4. Install and start up the notification broker using the features:install console command, as
follows:

5. Check that broker has started up by navigating to the following URL in your Web browser
(querying the WSDL contract from the Web service endpoint):

NOTE

Your browser should display the NotificationBroker WSDL contract in response to
this URL, but this does not work in all browsers. For example, the Safari browser
just displays a blank page.

Troubleshooting

If you are not sure whether the notification broker is running properly, you can get some diagnostic
information using the following commands:

osgi:list

If you run osgi:list at the console prompt, you should see some output like the following:

./amq

JBossA-MQ:karaf@root> features:install cxf-wsn

http://localhost:8182/wsn/NotificationBroker?wsdl

JBossA-MQ:karaf@root> osgi:list
...
[149] [Active] [Created] [40] Apache CXF API
(2.6.0.redhat-60024)
[150] [Active] [Created] [40] Apache CXF Runtime Core
(2.6.0.redhat-60024)
[151] [Active] [] [40] Apache CXF Runtime
Management (2.6.0.redhat-60024)
[152] [Active] [Created] [40] Apache CXF Karaf Commands
(2.6.0.redhat-60024)
[153] [Active] [] [30] Apache Neethi (3.0.2)
[154] [Active] [Created] [40] Apache CXF Runtime WS
Policy (2.6.0.redhat-60024)
[155] [Active] [] [40] Apache CXF Runtime XML
Binding (2.6.0.redhat-60024)
[156] [Active] [Created] [40] Apache CXF Runtime SOAP

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

12

In particular, the Apache CXF WSN Core bundle (which deploys the notification broker server) must
have the status Active and Created.

log:display

Run the log:display command at the console prompt to search the container log for errors and
warnings.

org.apache.cxf.wsn.cfg settings

You can set the following properties in the etc/org.apache.cxf.wsn.cfg configuration file:

cxf.wsn.activemq

Specifies the URI for connecting to the ActiveMQ broker (must be an ActiveMQ client URL). Default
is vm:localhost.

cxf.wsn.activemq.username

Specifies the username credentials for logging on to the ActiveMQ broker. Default is user.

cxf.wsn.activemq.password

Specifies the password credentials for logging on to the ActiveMQ broker. Default is password.

cxf.wsn.rootUrl

Specifies the host and IP port of the notification broker's Web service endpoints. Default is
http://0.0.0.0:8182.

cxf.wsn.context

Defines the servlet context for notification broker's Web service endpoints. Default is /wsn.

By default, the notification broker constructs its NotificationBroker endpoint address and its
CreatePullPoint endpoint address as follows:

Binding (2.6.0.redhat-60024)
[157] [Active] [Created] [40] Apache CXF Runtime WS
Addressing (2.6.0.redhat-60024)
[158] [Active] [] [40] Apache CXF Runtime JAXB
DataBinding (2.6.0.redhat-60024)
[159] [Active] [Created] [40] Apache CXF Runtime HTTP
Transport (2.6.0.redhat-60024)
[160] [Active] [Created] [40] Apache CXF Runtime Simple
Frontend (2.6.0.redhat-60024)
[161] [Active] [Created] [40] Apache CXF Runtime JAX-WS
Frontend (2.6.0.redhat-60024)
[162] [Active] [] [60] Apache CXF WSN API
(2.6.0.redhat-60024)
[163] [Active] [Created] [40] Apache CXF Runtime HTTP
Jetty Transport (2.6.0.redhat-60024)
[166] [Active] [Created] [60] Apache CXF WSN Core
(2.6.0.redhat-60024)

CHAPTER 2. WS-NOTIFICATION TUTORIAL

13

Advanced configuration

Because the ActiveMQ broker provides the core functionality of the notification broker, most of the
configuration options are available in the etc/activemq.xml file. For example, through the settings in
this file you can configure persistent storage and you can optimize the broker for optimum performance.

For more details, see Managing and Monitoring a Broker and Configuring Broker Persistence.

2.2. CREATE A PUBLISHER CLIENT

Overview

This section describes how to create a publisher client of the notification broker. The publisher client is
capable of sending messages on a specific topic to the notification broker.

Prerequisites

In order to access artifacts from the Maven repository, you need to add the fusesource repository to
Maven's settings.xml file. Maven looks for your settings.xml file in the following standard
location:

UNIX: home/User/.m2/settings.xml

Windows: Documents and Settings\User\.m2\settings.xml

If there is currently no settings.xml file at this location, you need to create a new settings.xml file.
Modify the settings.xml file by adding the repository element for fusesource, as highlighted in
the following example:

${cxf.wsn.rootUrl}${cxf.wsn.context}/NotificationBroker
${cxf.wsn.rootUrl}${cxf.wsn.context}/CreatePullPoint

<settings>
 <profiles>
 <profile>
 <id>my-profile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>fusesource</id>

<url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 ...

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

14

Sample publisher client code

Example 2.1, “Publisher Client Code” shows the code for a sample publisher client that pushes a simple
Hello World! message to the MyTopic topic on the notification broker.

Example 2.1. Publisher Client Code

 </repositories>
 </profile>
 </profiles>
 ...
</settings>

// Java
package org.jboss.fuse.example.wsn.publisher;

import javax.xml.bind.JAXBElement;
import javax.xml.namespace.QName;

import org.w3c.dom.Element;

import org.apache.cxf.wsn.client.Consumer;
import org.apache.cxf.wsn.client.NotificationBroker;
import org.apache.cxf.wsn.client.Subscription;
import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;

/**
 *
 */
public final class Client {
 private Client() {
 //not constructed
 }

 /**
 * @param args
 */
 public static void main(String[] args) throws Exception {
 String wsnPort = "8182";
 if (args.length > 0) {
 wsnPort = args[0];
 }

 // Create a NotificationBroker proxy
 NotificationBroker notificationBroker
 = new NotificationBroker("http://localhost:" + wsnPort +
"/wsn/NotificationBroker");

 for (int i=0; i<120; i++) {
 // Send notifications on the Topic
 notificationBroker.notify(
 "MyTopic",
 new JAXBElement<String>(
 new QName("urn:test:org", "foo"),

CHAPTER 2. WS-NOTIFICATION TUTORIAL

15

NotificationBroker proxy class

The client code from Example 2.1, “Publisher Client Code” uses the NotificationBroker proxy class
to connect to the remote notification broker and to publish notifications to the broker. In this example, the
following NotificationBroker methods are invoked:

NotificationBroker(String address, Class<?>... cls)

The NotificationBroker constructor normally takes a single argument, which is the URL of the
remote notification broker Web service.

notify(String topic, Object msg)

Sends a message, msg, on the topic, topic, to the notification broker, where the format of the msg
argument is an XML document. For example, you can use the JAX-B API to create a single XML
element containing a string for the message, as shown in Example 2.1, “Publisher Client Code”.

NOTE

This NotificationBroker proxy class belongs to the simplified client API provided by
the Apache CXF implementation of WS-Notification; it is not an instance of the standard
NotificationBroker SEI defined by JAX-WS (although the standard SEI is also
available and could be used instead).

Steps to create a publisher client

Perform the following steps to create a publisher client:

1. You can create a Maven project directly from the command line, by invoking the
archetype:generate goal. First of all, create a directory to hold the WS-Notification client
projects. Open a command prompt, navigate to a convenient location in your file system, and
create the wsn directory, as follows:

You can now use the archetype:generate goal to invoke the karaf-soap-archetype
archetype, which generates a simple Apache CXF demonstration, as follows:

 String.class,
 "Hello World!"
)
);

 // Sleep for 1s between notifications
 Thread.sleep(1000);
 }

 // Cleanup and exit
 System.exit(0);
 }

}

mkdir wsn
cd wsn

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

16

NOTE

The backslash characters at the end of each line are effective as line-continuation
characters on UNIX and LINUX platforms. If you are entering the command on a
Windows platform, however, you must enter the entire command on a single line.

You will be prompted to confirm the project settings, with a message similar to this one:

Type Return to accept the settings and generate the project. When the command finishes, you
should find a new Maven project in the wsn/wsn-publisher directory.

2. Some of the generated project files are not needed for this tutorial. Under the wsn/wsn-
publisher directory, delete the following files and directories:

3. Edit the pom.xml file in the wsn-publisher directory, and add the dependency required for
WS-Notification clients:

mvn archetype:generate \
 -DarchetypeGroupId=io.fabric8.archetypes \
 -DarchetypeArtifactId=karaf-soap-archetype \
 -DarchetypeVersion=1.2.0.redhat-621084 \
 -DgroupId=org.jboss.fuse.example \
 -DartifactId=wsn-publisher \
 -Dversion=1.0-SNAPSHOT \
 -Dpackage=org.jboss.fuse.example.wsn.publisher \
 -Dfabric8-profile=wsn-publisher-profile

Confirm properties configuration:
groupId: org.jboss.fuse.example
artifactId: wsn-publisher
version: 1.0-SNAPSHOT
package: org.jboss.fuse.example.wsn.publisher
fabric8-profile: wsn-publisher-profile
 Y: :

src/main/resources/OSGI-INF/blueprint/blueprint.xml
src/main/java/org/jboss/fuse/example/wsn/publisher/HelloWorld.java
src/main/java/org/jboss/fuse/example/wsn/publisher/HelloWorldImpl.ja
va

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <dependencies>
 ...
 <!-- Needed for WS-Notification -->
 <dependency>
 <groupId>org.apache.cxf.services.wsn</groupId>
 <artifactId>cxf-services-wsn-api</artifactId>
 </dependency>
 </dependencies>
 ...
</project>

CHAPTER 2. WS-NOTIFICATION TUTORIAL

17

NOTE

There is no need to specify the version of this artifact, because the version is
provided by the Fabric8 BOM, which uses Maven dependency management to
specify the artifact versions.

4. Delete the cxf-java2ws-plugin plug-in configuration from the wsn-publisher/pom.xml
file. That is, open the pom.xml file and delete the cxf-java2ws-plugin plug-in configuration
as highlighted in the following example:

5. Add a client profile to the POM file, which provides an easy way to run the publisher client
code. Edit the wsn-publisher/pom.xml file and add the new profile element, as
highlighted in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <build>
 <plugins>
 ...
 <!-- DELETE THE FOLLOWING LINES! -->
 <plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>${cxf-version}</version>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <goals>
 <goal>java2ws</goal>
 </goals>
 <configuration>

<className>org.jboss.fuse.example.wsn.publisher.HelloWorld</classNam
e>
 <genWsdl>true</genWsdl>
 <attachWsdl>false</attachWsdl>
 <verbose>true</verbose>
 </configuration>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
 </build>
 ...
</project>

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <profiles>
 ...
 <profile>

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

18

6. Create a new Client.java file in the wsn-
publisher/src/main/java/org/jboss/fuse/example/wsn/publisher/ directory,
and add the code from Example 2.1, “Publisher Client Code” to this file.

7. You can now run the publisher client from the wsn-publisher directory by entering the
following command:

In the command window, you should see some output like the following:

Notification messages are now accumulating in the broker, but you will not be able to receive the
messages until you create a consumer client.

2.3. CREATE A CONSUMER CLIENT

Overview

This section describes how to create a consumer client of the notification broker. The consumer client
subscribes to a particular topic and creates a callback service, which is capable of receiving messages
directly from the broker.

Sample consumer client code

 <id>client</id>
 <build>
 <defaultGoal>test</defaultGoal>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>test</phase>
 <goals>
 <goal>java</goal>
 </goals>
 <configuration>

<mainClass>org.jboss.fuse.example.wsn.publisher.Client</mainClass>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
 ...
</project>

mvn -Pclient

[INFO] --- exec-maven-plugin:1.4.0:java (default) @ wsn-publisher --
-

CHAPTER 2. WS-NOTIFICATION TUTORIAL

19

Example 2.2, “Consumer Client Code” shows the code for a sample consumer client that subscribes to
messages published on the MyTopic topic.

Example 2.2. Consumer Client Code

// Java
package org.jboss.fuse.example.wsn.consumer;

import javax.xml.bind.JAXBElement;
import javax.xml.namespace.QName;

import org.w3c.dom.Element;

import org.apache.cxf.wsn.client.Consumer;
import org.apache.cxf.wsn.client.NotificationBroker;
import org.apache.cxf.wsn.client.Subscription;
import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;

/**
 *
 */
public final class Client {
 private Client() {
 //not constructed
 }

 /**
 * @param args
 */
 public static void main(String[] args) throws Exception {
 String wsnPort = "8182";
 if (args.length > 0) {
 wsnPort = args[0];
 }

 // Start a consumer that will listen for notification messages
 // We'll just print the text content out for now.
 Consumer consumer = new Consumer(new Consumer.Callback() {
 public void notify(NotificationMessageHolderType message) {
 Object o = message.getMessage().getAny();
 System.out.println(message.getMessage().getAny());
 if (o instanceof Element) {
 System.out.println(((Element)o).getTextContent());
 }
 }
 }, "http://localhost:9001/MyConsumer");

 // Create a subscription for a Topic on the broker
 NotificationBroker notificationBroker
 = new NotificationBroker("http://localhost:" + wsnPort +
"/wsn/NotificationBroker");
 Subscription subscription =
notificationBroker.subscribe(consumer, "MyTopic");

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

20

Creating a consumer callback object

In order to receive notification messages from the notification broker, you must create a consumer
callback object to receive the messages. The consumer callback object is in fact a Web service which is
embedded in your client. The easiest way to create the consumer callback is to use the
org.apache.cxf.wsn.client.Consumer class from the simplified client API, which enables you to
define a callback as follows:

The first argument to the Consumer constructor is a reference to the consumer callback object, which is
defined inline. The second argument specifies the URL of the consumer callback endpoint, which can
receive messages from the notification broker.

Subscribing to a topic

To start receiving messages, you must subscribe the consumer to a topic in the notification broker. To
create a subscription, invoke the following subscribe method on the NotificationBroker proxy
object:

The first argument is a reference to a Consumer object (which is capable of returning a WS-Addressing
endpoint reference to the consumer callback through the Referencable.getEpr() method). The
second argument is the name of the topic you want to subscribe to.

The return value is a reference to a Subscription object, which you can use to manage the
subscription (for example, pause, resume, or unsubscribe).

Threading in the consumer client

 // Just sleep for a bit to pick up some incoming messages
 Thread.sleep(60000);

 // Cleanup and exit
 subscription.unsubscribe();
 consumer.stop();
 System.exit(0);
 }

}

 // Start a consumer that will listen for notification messages
 // We'll just print the text content out for now.
 Consumer consumer = new Consumer(new Consumer.Callback() {
 public void notify(NotificationMessageHolderType message) {
 Object o = message.getMessage().getAny();
 System.out.println(message.getMessage().getAny());
 if (o instanceof Element) {
 System.out.println(((Element)o).getTextContent());
 }
 }
 }, "http://localhost:9001/MyConsumer");

Subscription subscribe(Referencable consumer, String topic)

CHAPTER 2. WS-NOTIFICATION TUTORIAL

21

Because the consumer client has an embedded Web service (the consumer callback object), which
automatically starts in a background thread, it is necessary to manage threading in this sample client. In
particular, after creating the subscription, you need to put the main thread to sleep (by calling
Thread.sleep(60000)), so that the thread context can switch to the background thread, where the
callback Web service is running. This makes it possible for the consumer callback to receive some
messages.

Steps to create a consumer client

Perform the following steps to create a consumer client:

1. Use the archetype:generate goal to invoke the servicemix-cxf-code-first-osgi-
bundle archetype. Under the wsn directory, invoke the Maven archetype as follows:

NOTE

The backslash characters at the end of each line are effective as line-continuation
characters on UNIX and LINUX platforms. If you are entering the command on a
Windows platform, however, you must enter the entire command on a single line.

You will be prompted to confirm the project settings, with a message similar to this one:

Type Return to accept the settings and generate the project. When the command finishes, you
should find a new Maven project in the wsn/wsn-consumer directory.

2. Some of the generated project files are not needed for this tutorial. Under the wsn/wsn-
consumer directory, delete the following files and directories:

3. Edit the pom.xml file in the wsn-consumer directory, and add the following dependencies, as
required by the consumer client:

mvn archetype:generate \
 -DarchetypeGroupId=io.fabric8.archetypes \
 -DarchetypeArtifactId=karaf-soap-archetype \
 -DarchetypeVersion=1.2.0.redhat-621084 \
 -DgroupId=org.jboss.fuse.example \
 -DartifactId=wsn-consumer \
 -Dversion=1.0-SNAPSHOT \
 -Dpackage=org.jboss.fuse.example.wsn.consumer \
 -Dfabric8-profile=wsn-consumer-profile

Confirm properties configuration:
groupId: org.jboss.fuse.example
artifactId: wsn-consumer
version: 1.0-SNAPSHOT
package: org.jboss.fuse.example.wsn.consumer
fabric8-profile: wsn-consumer-profile
 Y: :

src/main/resources/OSGI-INF/blueprint/blueprint.xml
src/main/java/org/jboss/fuse/example/wsn/consumer/HelloWorld.java
src/main/java/org/jboss/fuse/example/wsn/consumer/HelloWorldImpl.jav
a

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

22

4. Delete the cxf-java2ws-plugin plug-in configuration from the wsn-
consumer/pom.xml file. That is, open the pom.xml file and delete the cxf-java2ws-
plugin plug-in configuration as highlighted in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <dependencies>
 ...
 <!-- Needed for HTTP callback endpoint -->
 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-jetty</artifactId>
 </dependency>

 <!-- Needed for WS-Notification -->
 <dependency>
 <groupId>org.apache.cxf.services.wsn</groupId>
 <artifactId>cxf-services-wsn-api</artifactId>
 </dependency>
 </dependencies>
 ...
</project>

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <build>
 <plugins>
 ...
 <!-- DELETE THE FOLLOWING LINES! -->
 <plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>${cxf-version}</version>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <goals>
 <goal>java2ws</goal>
 </goals>
 <configuration>

<className>org.jboss.fuse.example.wsn.consumer.HelloWorld</className
>
 <genWsdl>true</genWsdl>
 <attachWsdl>false</attachWsdl>
 <verbose>true</verbose>
 </configuration>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>

CHAPTER 2. WS-NOTIFICATION TUTORIAL

23

5. Add a client profile to the POM file, which provides an easy way to run the publisher
client code. Edit the wsn-consumer/pom.xml file and add the new profile element, as
highlighted in the following example:

6. Create a new Client.java file in the wsn-
consumer/src/main/java/org/jboss/fuse/example/wsn/consumer/ directory, and
add the code from Example 2.2, “Consumer Client Code” to this file.

Test the consumer client

Test the consumer client as follows:

1. If the JBoss A-MQ container is not already running (with the notification broker installed),
start it up now:

 </build>
 ...
</project>

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <profiles>
 ...
 <profile>
 <id>client</id>
 <build>
 <defaultGoal>test</defaultGoal>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>test</phase>
 <goals>
 <goal>java</goal>
 </goals>
 <configuration>

<mainClass>org.jboss.fuse.example.wsn.consumer.Client</mainClass>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
 ...
</project>

./amq

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

24

2. Run the publisher client at the command line. Open a new command prompt, and enter
the following commands:

In the command window, you should see some output like the following:

You now have approximately two minutes before the publisher client times out.

3. Run the consumer client at the command line. Open a new command prompt and enter
the following commands:

In the command window, you should see some output like the following:

4. To inspect the state of the notification broker, you can connect to the JMX port of the
ActiveMQ broker. Start up a JMX console by entering the following command at the
command line:

In the JConsole: New Connection dialog, select Remote Process and enter the
following URL in the accompanying text field:

In the Username and Password fields, enter one of the user credentials you created at
the start of this tutorial. When you are connected to the JMX port, you can inspect the
state of the broker by clicking on the MBeans tab and drilling down the object tree in the
JConsole.

2.4. CREATE A PULLPOINT CLIENT

Overview

cd wsn/wsn-publisher
mvn -Pclient

...
INFO: Creating Service
{http://cxf.apache.org/wsn/jaxws}NotificationBrokerService
from WSDL:
jar:file:/Users/fbolton/.m2/repository/org/apache/cxf/services/wsn/
cxf-services-wsn-api/2.6.0.redhat-60024/cxf-services-wsn-api-
2.6.0.redhat-60024.jar
!/org/apache/cxf/wsn/wsdl/wsn.wsdl

cd wsn/wsn-consumer
mvn -Pclient

...
[INFO] --- exec-maven-plugin:1.4.0:java (default) @ wsn-consumer ---
[foo: null]
Hello World!
...

jconsole

service:jmx:rmi:///jndi/rmi://localhost:1099/karaf-root

CHAPTER 2. WS-NOTIFICATION TUTORIAL

25

This section describes how to create a pull-point client of the notification broker. The pull-point
client first creates a remote pull-point (which is used to accumulate messages), then subscribes
the pull-point to a particular topic. Finally, the pull-point client retrieves the accumulated
messages from the pull-point.

Sample PullPoint client code

Example 2.3, “PullPoint Client Code” shows the code for a sample pull-point client that
subscribes to messages published on the MyTopic topic.

Example 2.3. PullPoint Client Code

// Java
package org.jboss.fuse.example.wsn.pullpoint;

import java.util.List;
import java.util.Iterator;

import javax.xml.bind.JAXBElement;
import javax.xml.namespace.QName;

import org.w3c.dom.Element;

import org.apache.cxf.wsn.client.PullPoint;
import org.apache.cxf.wsn.client.NotificationBroker;
import org.apache.cxf.wsn.client.CreatePullPoint;
import org.apache.cxf.wsn.client.Subscription;
import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;

/**
 *
 */
public final class Client {
 private Client() {
 //not constructed
 }

 /**
 * @param args
 */
 public static void main(String[] args) throws Exception {
 String wsnPort = "8182";
 if (args.length > 0) {
 wsnPort = args[0];
 }

 // Create a PullPoint
 CreatePullPoint createPullPoint
 = new CreatePullPoint("http://localhost:" + wsnPort +
"/wsn/CreatePullPoint");
 PullPoint pullPoint = createPullPoint.create();

 // Create a PullPoint style subscription
 NotificationBroker notificationBroker
 = new NotificationBroker("http://localhost:" + wsnPort +

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

26

Steps to create a pullpoint client

Perform the following steps to create a PullPoint client:

1. Use the archetype:generate goal to invoke the servicemix-cxf-code-first-osgi-
bundle archetype. Under the wsn directory, invoke the Maven archetype as follows:

"/wsn/NotificationBroker");
 Subscription subscription =
notificationBroker.subscribe(pullPoint, "MyTopic");

 // Wait for some messages to accumulate in the pull point
 Thread.sleep(10000);

 // Now retrieve messages from the pull point
 List<NotificationMessageHolderType> messages =
pullPoint.getMessages(10);

 if (!messages.isEmpty()) {
 Iterator<NotificationMessageHolderType> messageIterator =
messages.iterator();
 while (messageIterator.hasNext()) {
 NotificationMessageHolderType messageH =
messageIterator.next();
 Object o = messageH.getMessage().getAny();
 System.out.println(messageH.getMessage().getAny());
 if (o instanceof Element) {
 System.out.println(((Element)o).getTextContent());
 }
 }
 }
 else {
 System.out.println("Warn: message list is empty!");
 }

 subscription.unsubscribe();
 pullPoint.destroy();

 System.exit(0);
 }

}

mvn archetype:generate \
 -DarchetypeGroupId=io.fabric8.archetypes \
 -DarchetypeArtifactId=karaf-soap-archetype \
 -DarchetypeVersion=1.2.0.redhat-621084 \
 -DgroupId=org.jboss.fuse.example \
 -DartifactId=wsn-pullpoint \
 -Dversion=1.0-SNAPSHOT \
 -Dpackage=org.jboss.fuse.example.wsn.pullpoint \
 -Dfabric8-profile=wsn-pullpoint-profile

CHAPTER 2. WS-NOTIFICATION TUTORIAL

27

NOTE

The backslash characters at the end of each line are effective as line-
continuation characters on UNIX and LINUX platforms. If you are entering
the command on a Windows platform, however, you must enter the entire
command on a single line.

You will be prompted to confirm the project settings, with a message similar to this one:

Type Return to accept the settings and generate the project. When the command
finishes, you should find a new Maven project in the wsn/wsn-pullpoint directory.

2. Some of the generated project files are not needed for this tutorial. Under the wsn/wsn-
pullpoint directory, delete the following files and directories:

3. Edit the pom.xml file in the wsn-pullpoint directory, and add the following dependency
required for WS-Notification clients:

4. Delete the cxf-java2ws-plugin plug-in configuration from the wsn-
pullpoint/pom.xml file. That is, open the pom.xml file and delete the cxf-java2ws-
plugin plug-in configuration as highlighted in the following example:

Confirm properties configuration:
groupId: org.jboss.fuse.example
artifactId: wsn-pullpoint
version: 1.0-SNAPSHOT
package: org.jboss.fuse.example.wsn.pullpoint
fabric8-profile: wsn-pullpoint-profile
 Y: :

src/main/resources/OSGI-INF/blueprint/blueprint.xml
src/main/java/org/jboss/fuse/example/wsn/pullpoint/HelloWorld.java
src/main/java/org/jboss/fuse/example/wsn/pullpoint/HelloWorldImpl.ja
va

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <dependencies>
 ...
 <!-- Needed for WS-Notification -->
 <dependency>
 <groupId>org.apache.cxf.services.wsn</groupId>
 <artifactId>cxf-services-wsn-api</artifactId>
 </dependency>
 </dependencies>
 ...
</project>

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <build>
 <plugins>

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

28

5. Add a client profile to the POM file, which provides an easy way to run the publisher
client code. Edit the wsn-pullpoint/pom.xml file and add the new profile element, as
highlighted in the following example:

 ...
 <!-- DELETE THE FOLLOWING LINES! -->
 <plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>${cxf-version}</version>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <goals>
 <goal>java2ws</goal>
 </goals>
 <configuration>

<className>org.jboss.fuse.example.wsn.pullpoint.HelloWorld</classNam
e>
 <genWsdl>true</genWsdl>
 <attachWsdl>false</attachWsdl>
 <verbose>true</verbose>
 </configuration>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
 </build>
 ...
</project>

<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <profiles>
 ...
 <profile>
 <id>client</id>
 <build>
 <defaultGoal>test</defaultGoal>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>test</phase>
 <goals>
 <goal>java</goal>
 </goals>
 <configuration>

<mainClass>org.jboss.fuse.example.wsn.pullpoint.Client</mainClass>

CHAPTER 2. WS-NOTIFICATION TUTORIAL

29

6. Create a new Client.java file in the wsn-
pullpoint/src/main/java/org/jboss/fuse/example/wsn/pullpoint/ directory,
and add the code from Example 2.3, “PullPoint Client Code” to this file.

Test the PullPoint client

Test the PullPoint client as follows:

1. If the JBoss A-MQ container is not already running (with the notification broker installed),
start it up now:

2. Run the publisher client at the command line. Open a new command prompt, and enter
the following commands:

In the command window, you should see some output like the following:

You now have approximately two minutes before the publisher client times out.

3. Run the PullPoint client at the command line. Open a new command prompt and enter
the following commands:

After a ten second delay, you should see some output like the following:

 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
 ...
</project>

./amq

cd wsn/wsn-publisher
mvn -Pclient

...
[INFO] Tests are skipped.
[INFO]
[INFO] --- exec-maven-plugin:1.4.0:java (default) @ wsn-publisher --
-

cd wsn/wsn-pullpoint
mvn -Pclient

...
[INFO] Tests are skipped.
[INFO]
[INFO] --- exec-maven-plugin:1.4.0:java (default) @ wsn-pullpoint --
-
[foo: null]

Red Hat JBoss A-MQ 6.2 WS-Notification Guide

30

4. To inspect the state of the notification broker, you can connect to the JMX port of the
ActiveMQ broker. Start up a JMX console by entering the following command at the
command line:

In the JConsole: New Connection dialog, select Remote Process and enter the
following URL in the accompanying text field:

In the Username and Password fields, enter one of the user credentials you created at
the start of this tutorial. When you are connected to the JMX port, you can inspect the
state of the broker by clicking on the MBeans tab and drilling down the object tree in the
JConsole.

Hello World!
[foo: null]
Hello World!
...

jconsole

service:jmx:rmi:///jndi/rmi://localhost:1099/karaf-root

CHAPTER 2. WS-NOTIFICATION TUTORIAL

31

	Table of Contents
	CHAPTER 1. INTRODUCTION TO WS-NOTIFICATION
	1.1. WS-NOTIFICATION STANDARD
	Overview
	WS-Topics
	WS-BaseNotification
	WS-BrokeredNotification
	References

	1.2. CONSUMER CLIENT SCENARIO
	Overview
	Clients in this scenario
	Scenario steps

	1.3. PULLPOINT CLIENT SCENARIO
	Overview
	Clients in this scenario
	Scenario steps

	1.4. IMPLEMENTATION OF WS-NOTIFICATION
	Overview
	Notification broker as wrapper around ActiveMQ broker
	OSGi container deployment
	Supported WS-Notification interfaces
	Qualities of service
	Topics
	Configuration of the notification broker

	1.5. CLIENT API
	Overview
	WS-Notification standard API
	Simplified client API
	API reference

	CHAPTER 2. WS-NOTIFICATION TUTORIAL
	2.1. INSTALL AND CONFIGURE THE NOTIFICATION BROKER
	Overview
	Prerequisites
	Steps to install the notification broker
	Troubleshooting
	org.apache.cxf.wsn.cfg settings
	Advanced configuration

	2.2. CREATE A PUBLISHER CLIENT
	Overview
	Prerequisites
	Sample publisher client code
	NotificationBroker proxy class
	Steps to create a publisher client

	2.3. CREATE A CONSUMER CLIENT
	Overview
	Sample consumer client code
	Creating a consumer callback object
	Subscribing to a topic
	Threading in the consumer client
	Steps to create a consumer client
	Test the consumer client

	2.4. CREATE A PULLPOINT CLIENT
	Overview
	Sample PullPoint client code
	Steps to create a pullpoint client
	Test the PullPoint client

