
Red Hat Integration 2020.Q1

Using Data Virtualization

TECHNOLOGY PREVIEW - User's guide to Data Virtualization

Last Updated: 2021-02-19

Red Hat Integration 2020.Q1 Using Data Virtualization

TECHNOLOGY PREVIEW - User's guide to Data Virtualization

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Combine data from multiple sources so that applications can connect to a single, virtual data model

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA VIRTUALIZATION

CHAPTER 2. CREATING VIRTUAL DATABASES
2.1. COMPATIBLE DATA SOURCES
2.2. CREATING CUSTOM RESOURCES TO DEPLOY VIRTUALIZATIONS

2.2.1. Environment variables in custom resources

CHAPTER 3. CREATING A VIRTUAL DATABASE BY EMBEDDING DDL STATEMENTS IN A CUSTOM
RESOURCE (CR)

3.1. CREATING A CR TO DEPLOY A DDL ARTIFACT

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT
4.1. CREATING A CUSTOM RESOURCE (CR) TO DEPLOY A MAVEN ARTIFACT

CHAPTER 5. CREATING A VIRTUAL DATABASE AS A FAT JAR
5.1. SAMPLE DATASOURCES.JAVA FILE
5.2. SPECIFYING APPLICATION PROPERTIES
5.3. CREATING A CR TO DEPLOY A FAT JAR

CHAPTER 6. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A VIRTUAL DATABASE
6.1. INSTALLING THE DATA VIRTUALIZATION OPERATOR ON OPENSHIFT
6.2. DEPLOYING VIRTUAL DATABASES

CHAPTER 7. SECURING DATA
7.1. SECURING ODATA APIS FOR A VIRTUAL DATABASE

7.1.1. Configuring Red Hat Single Sign-On to secure OData
7.1.2. Adding SSO properties to the custom resource file
7.1.3. Defining data roles in the virtual database DDL
7.1.4. Adding a redirect URI for the data virtualization client in the Red Hat Single Sign-On Admin Console

7.2. CUSTOM CERTIFICATES FOR ENDPOINT TRAFFIC ENCRYPTION
7.3. USING CUSTOM TLS CERTIFICATES TO ENCRYPT COMMUNICATIONS BETWEEN DATABASE CLIENTS
AND ENDPOINTS
7.4. USING SECRETS TO STORE DATA SOURCE CREDENTIALS

CHAPTER 8. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE
8.1. CREATING VIRTUAL DATABASES IN FUSE ONLINE
8.2. ADDING A VIEW TO A VIRTUAL DATABASE IN FUSE ONLINE
8.3. USING THE VIEW EDITOR IN FUSE ONLINE TO MODIFY THE DDL THAT DEFINES A VIRTUAL DATABASE

8.4. PREVIEWING A VIRTUAL DATABASE IN FUSE ONLINE BY SUBMITTING SQL TEST QUERIES
8.5. PUBLISHING VIRTUAL DATABASES IN FUSE ONLINE TO MAKE THEM AVAILABLE FOR ACCESS
8.6. DELETING A VIRTUAL DATABASE IN FUSE ONLINE

CHAPTER 9. VIRTUAL DATABASE MONITORING

CHAPTER 10. MIGRATING LEGACY VIRTUAL DATABASE FILES TO DDL FORMAT
10.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND VIEWING IT IN DDL FORMAT
10.2. CONVERTING A LEGACY VIRTUAL DATABASE XML FILE AND SAVING IT AS A DDL FILE

3

4
5
6
6

8
10

11
13

15
17
18
19

22
22
24

26
26
27
28
29
30
31

32
33

35
35
36

37
38
39
40

41

42
43
43

Table of Contents

1

Red Hat Integration 2020.Q1 Using Data Virtualization

2

CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA
VIRTUALIZATION

Data virtualization is a container-native service that provides integrated access to multiple diverse data
sources, including relational and noSQL databases, files, web services, and SaaS repositories through a
single uniform API. Applications and users connect to a virtual database over standard interfaces
(OData REST, or JDBC/ODBC) and can interact with data from all configured data sources as if the
data were served from a single relational database.

IMPORTANT

Data virtualization is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview/.

The Red Hat data virtualization technology is based on Teiid, the open source data virtualization project.
For more information about Teiid, see the Teiid community documentation.

CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA VIRTUALIZATION

3

https://access.redhat.com/support/offerings/techpreview/
http://teiid.github.io/teiid-documents/master/content/

CHAPTER 2. CREATING VIRTUAL DATABASES
To add a virtual database, you must complete the following tasks:

1. Install the Data Virtualization Operator.

2. Design and develop the database.

3. Create a custom resource (CR) file for deploying the database.

4. Deploy the virtual database to OpenShift by running the Data Virtualization Operator with the
CR.

You can use any of the following methods to design a virtual database.

Create a virtual database from a DDL file

Define the entire contents of a virtual database, including the DDL, in a YAML file. For more
information, see Chapter 3, Creating a virtual database by embedding DDL statements in a custom
resource (CR) .

Create a virtual database as a Maven artifact

Create a virtual database from one or more DDL files and generate a Maven artifact for deployment
For more information, see Chapter 4, Creating a virtual database as a Maven artifact .

Create a virtual Database as a fat JAR

Use the Teiid Spring Boot plug-in to create a Maven-based Java project with a DDL file, and then
generate a fat JAR for deployment. For more information, see Chapter 5, Creating a virtual database
as a fat JAR.

In each of the methods, you use SQL data definition language (DDL) to specify the structure of the
virtual database, and you then configure the data sources that you want the virtual database to read
from and write to.

There are advantages and disadvantages to using each method, the runtime virtualizations that any of
the methods create have equivalent features. Choose a method based on the complexity of your project
and on whether you want to be able to test the virtualization as a standalone component or on
OpenShift only.

After you define the virtual database, you use the Data Virtualization Operator to deploy the
virtualization from a custom resource (CR). The custom resource that you use to deploy a virtual
database varies with the method that you used to design the virtual database. For more information, see
Chapter 6, Running the data virtualization operator to deploy a virtual database .

After you set up connections to a data source, you can optionally configure authentication to Red Hat
SSO to secure the connections, and enable single sign-on.

NOTE

You can also create virtual databases in Fuse Online (Technology Preview). Virtual
databases that you create in Fuse Online provide a limited set of features.

Additional resources

Section 6.1, “Installing the Data Virtualization Operator on OpenShift” .

Chapter 8, Creating and working with virtual databases in Fuse Online .

Red Hat Integration 2020.Q1 Using Data Virtualization

4

Chapter 7, Securing data.

2.1. COMPATIBLE DATA SOURCES

You can configure create virtual databases from a range of different data sources.

For each data source, you must provide the name of the translator that can interpret the commands and
data that pass between the virtual database and the data source.

The following table lists the data source types from which you can create virtual databases, and the
names of the translators for each data source:

Data source Translator name

Amazon S3/ Ceph amazon-s3

Google Sheets google-spreadsheet

Data Grid (Infinispan) infinispan-hotrod

MongoDB mongodb

Relational databases

 Amazon Athena amazon-athena or jdbc-ansi

 Amazon Redshift redshift

 Db2 db2

 Microsoft SQL Server (JDBC) sqlserver

 MySQL mysql

 Oracle oracle

 PostgreSQL postgresql

 SAP HANA (JDBC) hana

OData odata

OData4 odata4

OpenAPI openapi

REST ws

CHAPTER 2. CREATING VIRTUAL DATABASES

5

https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#amazon-s3-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#google-spreadsheet-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#infinispan-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#mongodb-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#jdbc-ansi-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#redshift-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#db2-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#microsoft-sql-server-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#mysql-translators
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#oracle-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#postgresql-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#sap-hana-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#odata-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#odata4-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#openapi-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#web-services-translator

Salesforce salesforce

sFTP file

SOAP soap or ws

Data source Translator name

2.2. CREATING CUSTOM RESOURCES TO DEPLOY VIRTUALIZATIONS

Before you can use the Data Virtualization Operator to create a virtual database, you must specify
properties for the data source in a custom resource (CR) file.

When you run the Data Virtualization Operator, it reads information from the CR that it needs to convert
a data virtualization artifact into an image and deploy it to OpenShift.

Properties in the CR specify environment variables that store the credentials that the Operator requires
to connect to a data source. You can specify the values directly in the CR, or provide references to an
OpenShift secret that stores the values. For more information about creating secrets, see Section 7.4,
“Using secrets to store data source credentials”.

NOTE

Period characters (.) are not valid for use in environment variables. When you add variable
names to the CR, use underscore characters (_) as separators.

The information that you add to the CR depends on the type of artifact that you created for the
virtualization and the location of artifact. You can also supply configuration information in the CR.

NOTE

If you want OpenShift to create an HTTP endpoint for the deployed virtualization, add
the property spec/exposeVia3scale to the CR, and set its value to false. If the value is
set to true it is assumed that 3scale manages the endpoint, and no HTTP endpoint is
created.

Additional resources

Section 2.2.1, “Environment variables in custom resources”

Section 3.1, “Creating a CR to deploy a DDL artifact”

Section 4.1, “Creating a custom resource (CR) to deploy a Maven artifact”

Section 5.3, “Creating a CR to deploy a fat JAR”

2.2.1. Environment variables in custom resources

You set environment variables in the custom resource file to enable your virtual database to connect to
data sources.

Because you typically deploy virtual databases to multiple OpenShift environments, such as to a staging

Red Hat Integration 2020.Q1 Using Data Virtualization

6

https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#salesforce-translators
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#file-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/data_virtualization_reference/index#ws-translator

and a production environment, you might want to define different data source properties for each
environment. For example, the login credentials that you must provide to access a data source in the
staging environment are probably different from the credentials that you use to access the data source
in the production environment. To define unique values in each environment, you can use environment
variables.

The environment variables that you define in a CR replace any static properties that you might set
elswhere, for example, in the application.properties file for a fat JAR. If you define a property in the
properties file and in the CR, the value in the CR file takes precedence.

You can combine the use of environment variables and secret objects to specify and protect the unique
details for each environment. Instead of specifying static values for environment variables directly in the
CR, you can store the values for each deployment environment in secret objects that are unique to each
environment. The value of each environment variable in the CR contains only a key reference, which
specifies the name of a secret object, and the name of a token in the secret. The token stores the actual
value. At runtime, environment variables retrieve their values from the tokens.

By using secrets to store the values of your environment variables, you can use a single version of the CR
across environments. The secret objects that you deploy in each environment must have the same
name, but in each environment you assign token values that are specific to the environment.

Additional resources

For more information about using secrets, see Section 7.4, “Using secrets to store data source
credentials”.

For information about adding a CR file, see Section 2.2, “Creating custom resources to deploy
virtualizations”.

CHAPTER 2. CREATING VIRTUAL DATABASES

7

CHAPTER 3. CREATING A VIRTUAL DATABASE BY
EMBEDDING DDL STATEMENTS IN A CUSTOM RESOURCE

(CR)
You can define the structure of a virtual database by adding DDL statements directly within a custom
resource file. During deployment, the Operator runs a source-to-image (S2I) build on OpenShift based
on the dependencies that it detects in the virtual database artifact. To prevent build failures, ensure that
any dependencies that your virtual database requires, such as JDBC driver dependencies, can be found
at build time.

Advantages of using DDL in the CR to create a virtual database

Simple and minimalistic.

Code and configuration for a virtualization are in a single file. No need to create a separate
CR file.

Easy to manage.

Disadvantages of using DDL in the CR to create a virtual database

Embedding the DDL for the virtual database in the custom resource (CR) file results in a
large file.

Because the DDL is embedded in the CR YAML file, you cannot version the DDL and other
aspects of the configuration independently.

If you deploy to multiple environments, you must store properties in configuration maps or
secrets to make them independent of the custom resource.

Prerequisites

You have Developer or Administrator access to an OpenShift cluster in which the data
virtualization operator is installed.

You have a compatible data source and the OpenShift cluster can access it.

The data virtualization operator has access to any Maven repositories that contain build
dependencies for the virtual database.

You have information about the connection settings for your data sources, including login
credentials.

You have a DDL file for the virtual database that you want to create, or you know how to write
the SQL code to design the database.

Procedure

Create a CR text file in YAML format and save it with a .yaml or .yml extension, for example dv-
customer.yaml
The following example shows the elements to include in a CR for a virtual database that uses a
postgreSQL data source:

Example: dv-customer.yaml

Red Hat Integration 2020.Q1 Using Data Virtualization

8

1

2

3

Specifies the number of instances to deploy. The default setting is 1.

Specifies the configuration properties for this virtualization, primarily the configuration for
connecting to data sources. The properties in the example apply to a connection to a
PostgreSQL database. For information about supported data sources and their properties,
see Section 2.1, “Compatible data sources” .

Specifies a list of Maven dependency JAR files in GAV format (groupId:artifactid:version).
These files define the JDBC driver files and any custom dependencies for the data source.
Typically, the Operator build automatically adds libraries that are available in public Maven
repositories.

 apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: dv-customer
spec:
 replicas: 1 1
 env: 2
 - name: SPRING_DATASOURCE_SAMPLEDB_USERNAME
 value: user
 - name: SPRING_DATASOURCE_SAMPLEDB_PASSWORD
 value: mypassword
 - name: SPRING_DATASOURCE_SAMPLEDB_DATABASENAME
 value: sampledb
 - name: SPRING_DATASOURCE_SAMPLEDB_JDBCURL
 value:
jdbc:postgresql://postgresql/$(SPRING_DATASOURCE_SAMPLEDB_DATABASENAME)
build:
 source:
 dependencies: 3
 - org.postgresql:postgresql:42.1.4
 ddl: | 4
 CREATE DATABASE customer OPTIONS (ANNOTATION 'Customer VDB');
 USE DATABASE customer;

 CREATE SERVER sampledb TYPE 'NONE' FOREIGN DATA WRAPPER postgresql;

 CREATE SCHEMA accounts SERVER sampledb;
 CREATE VIRTUAL SCHEMA portfolio;

 SET SCHEMA accounts;
 IMPORT FOREIGN SCHEMA public FROM SERVER sampledb INTO accounts
OPTIONS("importer.useFullSchemaName" 'false');

 SET SCHEMA portfolio;

 CREATE VIEW CustomerZip(id bigint PRIMARY KEY, name string, ssn string, zip
string) AS
 SELECT c.ID as id, c.NAME as name, c.SSN as ssn, a.ZIP as zip
 FROM accounts.CUSTOMER c LEFT OUTER JOIN accounts.ADDRESS a
 ON c.ID = a.CUSTOMER_ID;
 mavenRepositories: 5
 central: https://repo.maven.apache.org/maven2

CHAPTER 3. CREATING A VIRTUAL DATABASE BY EMBEDDING DDL STATEMENTS IN A CUSTOM RESOURCE (CR)

9

4

5

Defines the virtual database in DDL form. For information about how to use DDL to define
a virtual database, see DDL metadata for schema objects in the Data virtualization

Specifies the location of any private or non-public repositories that contain dependencies
or other virtual databases. You can specify multiple repositories.

After you create the YAML file, you can run the Data Virtualization Operator to deploy the virtual
database to OpenShift. For more information, see Chapter 6, Running the data virtualization operator to
deploy a virtual database.

3.1. CREATING A CR TO DEPLOY A DDL ARTIFACT

If you create a virtual databases by embedding DDL directly in a CR, you already have the CR that the
Data Virtualization Operator uses for deployment. For information about the CR for a DDL artifact, see
Chapter 3, Creating a virtual database by embedding DDL statements in a custom resource (CR) .

Run the Data Virtualization Operator with the CR to generate the virtual database and deploy it to
OpenShift.

Additional resources

Chapter 6, Running the data virtualization operator to deploy a virtual database .

Red Hat Integration 2020.Q1 Using Data Virtualization

10

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN
ARTIFACT

You can use a Teiid Maven plugin to convert a DDL file into a Maven artifact. You define the structure of
the virtual database in a DDL file and use the file to generate an artifact to deploy to a Maven
repository. The Data Virtualization Operator can then deploy the artifact from the Maven repository to
an OpenShift project.

This is an advanced method that provides a high level of flexibility and is suitable for complex projects.
Using this method, you can create multi-module Maven projects in which you import one or more other
virtual databases and incorporate them into your design.

You specify use of the Teiid plugin in your pom.xml file. You can also define other Maven dependencies
in the pom.xml file. When you run the build, the plugin reads the file and resolves its contents.

Advantages of creating a virtual database as a Maven artifact

Flexible, clean separation between the DDL code that represents the virtual database and
other configuration settings.

Enables easy deployment into multiple environments.

Provides for versioning at the virtual database level.

Enables a virtual database to be shared across projects and teams in a consistent way.

Supports continuous integration and continuous delivery (CI/CD) workflows.

Disadvantages of creating a virtual database as a Maven artifact

Requires a working knowledge of Maven.

Prerequisites

You have a compatible data source and the OpenShift cluster can access it.

You know how to create a pom.xml file to specify the dependencies that are required to build
your virtual database.

You have information about the connection settings for your data sources, including login
credentials.

The Data Virtualization Operator has access to the Maven repositories that contain build
dependencies for the virtual database.

You have Maven 3.2 or later installed.

Procedure

1. From a text editor, create a POM file to define build dependencies. For example,

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT

11

2. Create a Maven project to import the virtual database definition from a DDL file. For example:

vdb-project
├── pom.xml
└── src
 └── main
 └── vdb
 └── vdb.ddl

3. If you do not already have one, create a DDL file to specify the structure of the virtual database,
and save it with a .ddl extension to the /src/main/vdb directory of your project. For example
vdb.ddl
The following example shows a sample DDL file for a virtual database that uses a postgreSQL
data source:

Example: vdb.ddl

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.teiid</groupId>
 <artifactId>dv-customer</artifactId>
 <name>dv-customer</name>
 <description>Demo project to showcase maven based vdb</description>
 <packaging>vdb</packaging>
 <version>1.0</version>

 <build>
 <plugins>
 <plugin>
 <groupId>org.teiid</groupId>
 <artifactId>vdb-plugin</artifactId>
 <version>1.2.0</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <goals>
 <goal>vdb</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

CREATE DATABASE customer OPTIONS (ANNOTATION 'Customer VDB');
USE DATABASE customer;

CREATE FOREIGN DATA WRAPPER postgresql;
CREATE SERVER sampledb TYPE 'NONE' FOREIGN DATA WRAPPER postgresql;

CREATE SCHEMA accounts SERVER sampledb;
CREATE VIRTUAL SCHEMA portfolio;

SET SCHEMA accounts;

Red Hat Integration 2020.Q1 Using Data Virtualization

12

For information about how to use DDL to define a virtual database, see DDL metadata for
schema objects in the Data Virtualization Reference. Defining the complete DDL is beyond the
scope of this document.

4. Build the virtual database artifact. Open a terminal window to the root folder of your Maven
project, and type the following command:

mvn clean install

The command generates a ${project.name}-$2020.Q1.vdb file in your target repository.

5. Deploy the artifact to a remote repository by typing the following command:

mvn clean install deploy

After the virtual database artifact is available in a Maven repository, you can use a YAML-based custom
resource to deploy the virtual database to OpenShift. For information about using YAML to create a
custom resource for deploying virtual database Maven artifacts, see Section 4.1, “Creating a custom
resource (CR) to deploy a Maven artifact”.

For information about using the Data Virtualization Operator to deploy a virtual database, see
Chapter 6, Running the data virtualization operator to deploy a virtual database .

4.1. CREATING A CUSTOM RESOURCE (CR) TO DEPLOY A MAVEN
ARTIFACT

Before you can deploy a virtualization that you create as a Maven artifact, you must create a CR that
defines the location of the Maven repository. When you are ready to deploy the virtualization, you
provide this CR to the Data Virtualization Operator.

Prerequisites

You created a virtualization according to the instructions in Chapter 4, Creating a virtual
database as a Maven artifact.

You deployed the virtualization to a Maven repository that the Data Virtualization Operator can
access.

You have the login credentials to access the data source.

You are familiar with the creation of custom resource files in YAML format.

Procedure

1. Open a text editor, create a file with the name of the virtualization, and save it with the

IMPORT FOREIGN SCHEMA public FROM SERVER sampledb INTO accounts
OPTIONS("importer.useFullSchemaName" 'false');

SET SCHEMA portfolio;

CREATE VIEW CustomerZip(id bigint PRIMARY KEY, name string, ssn string, zip string) AS
 SELECT c.ID as id, c.NAME as name, c.SSN as ssn, a.ZIP as zip
 FROM accounts.CUSTOMER c LEFT OUTER JOIN accounts.ADDRESS a
 ON c.ID = a.CUSTOMER_ID;

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT

13

1

2

3

4

1. Open a text editor, create a file with the name of the virtualization, and save it with the
extension .yaml, for example, dv-customer.yaml.

2. Add information to define the custom resource kind, name, and source. The following annotated
example provides guidance on the contents to include in the CR:

dv-customer.yaml

Specifies the credentials for signing in to the data source. Although this example shows
credentials that are defined within the CR, in production use, use secrets to specify
credentials, rather than exposing them in plain text. For information about adding
credentials to secrets, see xref:

Specifies the URL for connecting to the data source.

Specifies the Maven location of the virtual database by providing the groupId, artifactId,
and version (GAV) coordinates.

If you are using a private Maven repository, specify its URL.

After you create the CR YAML file, you can run the Data Virtualization Operator to deploy the virtual
database to OpenShift.

Run the Data Virtualization Operator with the CR to generate the virtual database and deploy it to
OpenShift.

Additional resources

Chapter 6, Running the data virtualization operator to deploy a virtual database .

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: dv-customer
spec:
 replicas: 1
 env:
 - name: SPRING_DATASOURCE_SAMPLEDB_USERNAME 1
 value: user
 - name: SPRING_DATASOURCE_SAMPLEDB_PASSWORD
 value: mypassword
 - name: SPRING_DATASOURCE_SAMPLEDB_DATABASENAME
 value: sampledb
 - name: SPRING_DATASOURCE_SAMPLEDB_JDBCURL 2
 value:
jdbc:postgresql://postgresql/$(SPRING_DATASOURCE_SAMPLEDB_DATABASENAME)
 resources:
 memory: 1024Mi
 cpu: 2.0
 build:
 source:
 maven: com.example:customer-vdb:1.0.0:vdb 3
 mavenRepositories: 4
 central: https://repo.maven.apache.org/maven2

Red Hat Integration 2020.Q1 Using Data Virtualization

14

CHAPTER 5. CREATING A VIRTUAL DATABASE AS A FAT JAR
You can use the Teiid Springboot starter to create a virtualization file as a Fat JAR. You can then publish
the JAR to a Maven repository and use a YAML-based custom resource to deploy the virtual database
to OpenShift. For more information about the Teiid Spring Boot starter, see
https://github.com/teiid/teiid-spring-boot.

The Spring Boot Maven plugin creates a self-contained Uber JAR or fat JAR that includes all of the
application code and dependencies in a single JAR file.

You define the virtual database in the resource files for the project (for example, the DDL file and
application.properties), and specify the dependencies that are required to build the virtual database as
a Spring Boot Java executable in the pom.xml file. When you run the build, Maven reads the pom.xml
file and resolves its contents to incorporate external resources into the build.

When you build the project, it creates a virtual database as a Spring Boot Java executable. You can then
test the resulting executable locally.

After local testing is complete, you can deploy the JAR file to a Maven repository. Then after your FAT
JAR is available in the Maven repository, you can use a YAML based custom resource similar to deploy
the virtual database to OpenShift.

Advantages of creating a virtual database as a fat JAR

Establishes a clean separation between the DDL code that represents the virtual database
and the configuration.

Provides for local testing of the virtualization outside of OpenShift. Of course, caching,
authentication, and other capabilities that depend on the OpenShift environment do not
work locally.

Supports extensions such as user-defined functions (UDFs), custom translators, and so forth
as part of the project and they will be incorporated into the runtime virtual database
automatically.

Suitable for deployment into multiple environments.

Versioning is done at the level of the overall project.

Disadvantages of creating a virtual database as a fat JAR

Requires a working knowledge of Java, Maven, Teiid Spring Boot starters, Spring, and Teiid.

Prerequisites

You have a working knowledge of Java development, Maven, Teiid Spring Boot starters, Spring,
and Teiid.

You have Maven 3.2 or later installed.

You have JDK 11 (Java Platform, Standard Edition 11 Development Kit) or later installed.

You have a compatible data source and the OpenShift cluster can access it.

You have a pom.xml file that specifies the dependencies that are required to build your virtual
database.

CHAPTER 5. CREATING A VIRTUAL DATABASE AS A FAT JAR

15

https://github.com/teiid/teiid-spring-boot

If the driver for your data source is not available from the public Maven repository, you have
downloaded the driver and deployed it to your local Maven repository.

The Data Virtualization operator has access to the Maven repositories that contain build
dependencies for the virtual database.

You have a DDL file for the virtual database that you want to create, or you know how to write
SQL code and create DDL files.

Procedure

1. Create a Java Maven project with the following directory structure for your virtual database:

dv-customer-fatjar/
├── pom.xml
└── src
 └── main
 ├── java
 │ └── io
 │ └── integration
 │ ├── Application.java
 │ └── DataSources.java
 └── resources
 ├── application.properties
 └── vdb.ddl

1. In the pom.xml, define the repository locations, drivers, and user credentials that are required
to build your virtual database.

2. In the application library of the virtual database project, create a Java application file,
Application.java

3. In the same directory, add a Datasources.java class file, and add a bean method for each data
source that you want your virtual database to connect to. For an example of a
Datasources.java file that is designed to work with a postgreSQL database, see Section 5.1,
“Sample Datasources.java file”.

4. In /src/main/resources, add an application.properties file and connection properties for your
data sources to it. For more information, see Section 5.2, “Specifying application properties” .

5. In /resources/vdb.ddl, add DDL statements to specify the structure of the virtual database,
including any views. For example vdb.ddl
The following example shows a sample DDL file for a virtual database that uses a postgreSQL
data source:

Example: vdb.ddl

CREATE DATABASE customer OPTIONS (ANNOTATION 'Customer VDB');
USE DATABASE customer;

CREATE FOREIGN DATA WRAPPER postgresql;
CREATE SERVER sampledb TYPE 'NONE' FOREIGN DATA WRAPPER postgresql;

CREATE SCHEMA accounts SERVER sampledb;
CREATE VIRTUAL SCHEMA portfolio;

Red Hat Integration 2020.Q1 Using Data Virtualization

16

For information about how to use DDL to define a virtual database, see DDL metadata for
schema objects in the Data virtualization reference guide. Instructions for how to define the
complete DDL for a virtual database is beyond the scope of this document.

6. Build the virtual database artifact. Open a terminal window and type the following command:

mvn clean install

The command generates a ${project.name}-$2020.Q1.vdb file in your target repository.

7. Deploy the artifact to a remote repository by typing the following command:

mvn clean install deploy

After the virtual database artifact is available in a Maven repository, you can use a YAML-based custom
resource to deploy the virtual database to OpenShift.

5.1. SAMPLE DATASOURCES.JAVA FILE

The Datasources.java file adds a class to represent a connection to a data source. The file also
establishes a prefix in the ConfigurationProperties argument (spring.datasource.sampledb). This
prefix must be used in the names of data source properties that you specify in the
application.properties file.

You can define multiple data sources in Datasources.java by adding multiple classes, each with its own
prefix designation. In each case you must add corresponding entries to the DDL file and to the
datasources properties in the CR file.

To associate the Java bean with the data source that is defined in your DDL file, the bean name must be
the same as the name of the SERVER and resource-name properties in the DDL file. For example, the
following sample file establishes a connection to a PostgreSQL database called sampledb, which is the
name that is assigned in the DDL file to the data source SERVER object and to its resource-name
definition.

SET SCHEMA accounts;
IMPORT FOREIGN SCHEMA public FROM SERVER sampledb INTO accounts
OPTIONS("importer.useFullSchemaName" 'false');

SET SCHEMA portfolio;

CREATE VIEW CustomerZip(id bigint PRIMARY KEY, name string, ssn string, zip string) AS
 SELECT c.ID as id, c.NAME as name, c.SSN as ssn, a.ZIP as zip
 FROM accounts.CUSTOMER c LEFT OUTER JOIN accounts.ADDRESS a
 ON c.ID = a.CUSTOMER_ID;

package com.example;

import javax.sql.DataSource;

import org.springframework.boot.jdbc.DataSourceBuilder;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration

CHAPTER 5. CREATING A VIRTUAL DATABASE AS A FAT JAR

17

1

2

The prefix must match the prefix that you assign to properties that you define in the
application.properties file.

The name sampledb in the prefix definition and in the method name must match the name in the
SERVER and resource-name objects that are defined in the virtual database DDL file. The Spring
Boot framework automatically associates the names of methods in the Datasources.java file with
the names of data sources in the DDL file.

5.2. SPECIFYING APPLICATION PROPERTIES

When you create a virtualization as a fat JAR, you must supply an application.properties file. You can
define some static properties for your virtual database application in an application.properties file in
the /src/main/resource directory. Static properties are configuration settings that remain constant
across different environments. After you deploy a virtual database on OpenShift, any modifications that
you make to the application.properties file are not effective unless you rebuild and redeploy your
virtual database.

You must prefix data source properties that you define in the application.properties file, with the
configuration properties string that is specified in the Datasources.java file. The prefix establishes a
connection between the properties and the Java class.

For example, if you establish the configuration properties prefix spring.datasource.sampledb in the
Datasources.java file, then you must precede the names of the properties that you define in the
application.properties file with that string, as in the following property definitions:

spring.datasource.sampledb.username=<username>
spring.datasource.sampledb.password=<password>

Prerequisites

You have a Datasources.java file in your Java class folder that specifies an application prefix.

Procedure

1. Add an application.properties file to the src/main/resources folder of your Java project.

2. Within the file, define properties that are required to connect to your data source, such as
authentication credentials.

NOTE

Properties that you do not define in the application.properties file, must be
defined in the CR YAML file.

NOTE

public class DataSources {

 @ConfigurationProperties(prefix = "spring.datasource.sampledb") 1
 @Bean
 public DataSource sampledb() { 2
 return DataSourceBuilder.create().build();
 }

}

Red Hat Integration 2020.Q1 Using Data Virtualization

18

1

2

3

4

5

6

NOTE

If you define a property in application.properties and define a corresponding
environment variables in the CR, the value in the CR takes precedence over the
value that is set in the application.properties file.

For example:

The JDBC URL that the virtual database uses to connect to a local postgreSQL database
as its data source.

The prefix that is used in each of these properties matches the prefix that is defined in the
Datasources.java file.

The user name and password values listed here are displayed in plain text. To enable
secure storage of authentication credentials, use environment variables in a CR file to
reference the secret object that defines these values.

The driver that is required to connect to the data source. The driver that you reference
here must be defined as a dependency in the pom.xml file. For an example of a pom.xml
file for creating a virtual database as a fat JAR, see the teiid/dv-customer-fatjar
repository.

The name of the data source.

Uncomment this statement to enable debug logging.

Additional resources

Section 5.3, “Creating a CR to deploy a fat JAR”

5.3. CREATING A CR TO DEPLOY A FAT JAR

After you develop a virtual database from the teiid-springboot starter, you deploy the resulting JAR to

spring.datasource.sampledb.jdbc-url=jdbc:postgresql://localhost/sampledb 1 2
spring.datasource.sampledb.username=user 3
spring.datasource.sampledb.password=user
spring.datasource.sampledb.driver-class-name=org.postgresql.Driver 4
spring.datasource.sampledb.platform=sampledb 5

spring overrides
spring.teiid.model.package=io.integration
spring.main.allow-bean-definition-overriding=true

open jdbc/odbc ports
teiid.jdbc-secure-enable=true
teiid.pg-secure-enable=true
teiid.jdbc-enable=true
teiid.pg-enable=true

How to debug?
#logging.level.org.teiid=DEBUG 6

CHAPTER 5. CREATING A VIRTUAL DATABASE AS A FAT JAR

19

https://github.com/teiid/dv-customer-fatjar/blob/master/pom.xml

1

After you develop a virtual database from the teiid-springboot starter, you deploy the resulting JAR to
Maven repository. You then create a YAML custom resource file for deploying the virtual database to
OpenShift.

The CR file for deploying a virtual database created as a fat JAR resembles the CR that you use to
deploy a virtual database that is created as a Maven artifact, as described in Section 4.1, “Creating a
custom resource (CR) to deploy a Maven artifact”. Only the Maven GAV coordinates differ. In this case,
the CR provides the Maven coordinates of the JAR file.

Prerequisites

You created a virtualization as a fat JAR, according to the instructions in Chapter 5, Creating a
virtual database as a fat JAR.

You deployed the virtualization to a Maven repository that the Data Virtualization Operator can
access.

You have the login credentials to access the data source.

You are familiar with the creation of custom resource files in YAML format.

Procedure

1. . Open a text editor, create a file with the name of the virtualization, and save it with the
extension .yaml, for example, dv-customer.yaml.

2. Add information to define the custom resource kind, name, and source.
The following example shows a CR that is designed to deploy a virtual database that is created
as a fat JAR:

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: dv-customer
spec:
 replicas: 1
 env:
 - name: SPRING_DATASOURCE_SAMPLEDB_USERNAME 1
 value: user
 - name: SPRING_DATASOURCE_SAMPLEDB_PASSWORD
 value: mypassword
 - name: SPRING_DATASOURCE_SAMPLEDB_DATABASENAME
 value: sampledb
 - name: SPRING_DATASOURCE_SAMPLEDB_JDBCURL
 value:
jdbc:postgresql://postgresql/$(SPRING_DATASOURCE_SAMPLEDB_DATABASENAME)
 resources:
 memory: 1024Mi
 cpu: 2.0
 build:
 source:
 maven: org.teiid:dv-customer-fatjar:1.1 2

Sample environment variables for a postgreSQL data source.

Red Hat Integration 2020.Q1 Using Data Virtualization

20

2

In the example, values for data source credentials are defined in clear text. However, as
mentioned in], specifying credentials directly in the CR is not secure. To protect
credentials, reference them from an OpenShift secret. For more information, see
xref:deploying-secrets[.

NOTE

If an environment variable that you define in the CR is also defined as a
property in the application.properties file, the value in the CR takes
precedence over the value that is set in the application.properties file.

The Maven coordinates of a fat JAR artifact that you deployed to a Maven repository in Chapter 5,
Creating a virtual database as a fat JAR .

After you create the CR YAML file, you can run the Data Virtualization Operator to deploy the virtual
database to OpenShift.

Additional resources

Chapter 6, Running the data virtualization operator to deploy a virtual database .

CHAPTER 5. CREATING A VIRTUAL DATABASE AS A FAT JAR

21

CHAPTER 6. RUNNING THE DATA VIRTUALIZATION
OPERATOR TO DEPLOY A VIRTUAL DATABASE

The data-virtualization operator helps to automate the configuration and deployment of virtual
databases.

The Data Virtualization Operator processes a virtual database custom resource (CR) to deploy a virtual
database object on OpenShift. By running the operator with different CRs, you can create virtual
databases from a range of data sources.

NOTE

Virtual databases that you deploy to OpenShift in this Technology Preview are not
available in Fuse Online.

6.1. INSTALLING THE DATA VIRTUALIZATION OPERATOR ON
OPENSHIFT

Install the Data Virtualization Operator so that you can use it to deploy virtual database images to
OpenShift from YAML-based custom resources (CRs).

You can install the data virtualization operator on OpenShift 3.11 or greater. On OpenShift 4.2 and later
the Operator is available in the OperatorHub.

After you add the operator to your OpenShift cluster, you can use it to build and deploy virtual database
images from a range of data sources.

Prerequisites

You have cluster-admin access to an OpenShift 3.11 or 4.2 or greater cluster.

You can use the oc command-line tool to connect to interact with your OpenShift 3.11 cluster,
or you have access to the OpenShift 4.2 or greater web console.

You have the 2020.Q1 release of Red Hat Integration.

You have Developer access to an OpenShift server and you are familiar with using the
OpenShift console and CLI.

Procedure

Install the operator using one of the following methods, depending on the version of OpenShift
that you are running.

Installing on OpenShift 3.11

1. From a terminal window, log in to the OpenShift cluster as a cluster administrator.

oc login

2. Create or open a project where you want to deploy a virtual database.

3. Type the following commands:

Red Hat Integration 2020.Q1 Using Data Virtualization

22

1

1

1

If you previously created a CRD in the cluster, the command returns an error, reporting that
the CRD already exists. You can ignore the message.

4. Type the following commands to create a pull secret that you can use to access the Red Hat
image registry:

Substitute the user name and password that you use to log in to the Red Hat Customer
Portal.

If the command completes with no errors, the operator is deployed to your OpenShift instance
within the current OpenShift project.

5. To enable the data virtualization operator to retrieve images from the Red Hat registry so that
you can create virtual databases, link the secret that you created in Step 4 to the service
account for the operator.

Installing on OpenShift 4.2 or greater

1. From a terminal window, type the following commands to log in to the OpenShift cluster and
create a pull secret that you can use to access the Red Hat image registry:

Use your Red Hat Customer Portal login credentials.

2. Log in to the OpenShift web console as a cluster administrator.

3. From the OpenShift menu, expand Operators and click OperatorHub.

export OP_ROOT=https://raw.githubusercontent.com/teiid/teiid-operator/7.6-0.0.x/deploy
oc create -f $OP_ROOT/crds/virtualdatabase.crd.yaml 1
oc create -f $OP_ROOT/service_account.yaml
oc create -f $OP_ROOT/role.yaml
oc create -f $OP_ROOT/role_binding.yaml
oc create -f $OP_ROOT/operator.yaml

oc create secret docker-registry dv-pull-secret /
--docker-server=registry.redhat.io /
--docker-username=$username / 1
--docker-password=$password /
--docker-email=$email_address
oc secrets link builder dv-pull-secret
oc secrets link builder dv-pull-secret --for=pull

oc secrets link dv-operator dv-pull-secret --for=pull

oc login
oc create secret docker-registry dv-pull-secret /
--docker-server=registry.redhat.io /
--docker-username=$username / 1
--docker-password=$password /
--docker-email=$email_address
oc secrets link builder dv-pull-secret
oc secrets link builder dv-pull-secret --for=pull

CHAPTER 6. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A VIRTUAL DATABASE

23

4. Click Data Virtualization Operator 7.6.0 provided by Red Hat, Inc., and then click Install.

5. From the Create Operator Subscription page, verify that the selected namespace matches
the name of the project where you want to install the operator, and then click Subscribe.
The Installed Operators page lists the Data Virtualization Operator and reports the status of
the installation.

6. From the OpenShift menu, expand Workloads and click Pods to check the status of the
operator pod. After a few minutes, the pod for the operator service begins to run.

7. To enable the data virtualization operator to retrieve images from the Red Hat registry so that
you can create virtual databases, link the secret that you created in Step 1 to the service account
for the operator.

Additional resources

Section 6.2, “Deploying virtual databases” .

6.2. DEPLOYING VIRTUAL DATABASES

After you create a virtual database and its corresponding CR file, run the Data Virtualization Operator to
deploy the database to Openshift.

Prerequisites

A cluster administrator added the Data Virtualization Operator to the OpenShift cluster where
you want to deploy the virtual database.

You have access to an OpenShift cluster in which the Data Virtualization Operator is installed.

You have a CR in YAML format that provides information about how to configure and deploy
the virtual database.

The Operator has access to the Maven repositories that contain the dependencies that the
build requires.

OpenShift can access the data source that is referenced in the CR.

Procedure

1. From a terminal window, log in to OpenShift and open the project where you want to create the
virtual database.

2. On your computer, change to the directory that contains the .yaml file that contains the CR.

3. Type the following command to run the operator to create the virtual database:

oc create -f <cr_filename.yaml>

Replace <cr_filename.yaml> with the name of the CR file for your data source. For example,

oc create -f dv-customer.yaml

oc secrets link dv-operator dv-pull-secret --for=pull

Red Hat Integration 2020.Q1 Using Data Virtualization

24

After the deployment completes, a virtual database service is added to the OpenShift cluster.
The name of the service matches the name that is specified in the custom resource.

4. Type the following command to verify that the virtual database is created:

oc get vdbs

OpenShift returns the list of virtual databases in the project. To see whether a particular
virtualization is available, type the following command:

oc get vdb <dv-name>

The deployed service supports connections from the following clients:

JDBC clients through port 31000.

postgreSQL clients, including ODBC clients, through port 5432.

OData clients, through an HTTP endpoint and route.

CHAPTER 6. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A VIRTUAL DATABASE

25

CHAPTER 7. SECURING DATA
To prevent unauthorized access to data, you can implement the following measures:

Configure integration with Red Hat Single Sign-On in OpenShift to enable OpenID-Connect
authentication and OAuth2 authorization.

Apply role-based access controls to your virtual database.

Configure 3Scale to secure OData API endpoints.

Encrypt communications between database clients (ODBC and JDBC) and the virtual database.

7.1. SECURING ODATA APIS FOR A VIRTUAL DATABASE

You can integrate data virtualization with Red Hat Single Sign-On and Red Hat 3scale API Management
to apply advanced authorization and authentication controls to the OData endpoints for your virtual
database services.

The Red Hat Single Sign-On technology uses OpenID-Connect as the authentication mechanism to
secure the API, and uses OAuth2 as the authorization mechanism. You can integrate data virtualization
with Red Hat Single Sign-On alone, or along with 3scale.

By default, after you create a virtual database, the OData interface to it is discoverable by 3scale, as
long as the 3scale system is defined to same cluster and namespace. By securing access to OData APIs
through Red Hat Single Sign-On, you can define user roles and implement role-based access to the API
endpoints. After you complete the configuration, you can control access in the virtual database at the
level of the view, column, or data source. Only authorized users can access the API endpoint, and each
user is permitted a level of access that is appropriate to their role (role-based access). By using 3scale
as a gateway to your API, you can take advantage of 3scale’s API management features, allowing you to
tie API usage to authorized accounts for tracking and billing.

When a user logs in, 3scale negotiates authentication with the Red Hat Single Sign-On package. If the
authentication succeeds, 3scale passes a security token to the OData API for verification. The OData
API then reads permissions from the token and applies them to the data roles that are defined for the
virtual database.

Prerequisites

Red Hat Single Sign-On is running in the OpenShift cluster. For more information about
deploying Red Hat Single Sign-On, see the Red Hat Single Sign-On for OpenShift
documentation.

You have Red Hat 3scale API Management installed in the OpenShift cluster that hosts your
virtual database.

You have configured integration between 3scale and Red Hat Single Sign-On. For more
information, see Configuring Red Hat Single Sign-On integration in Using the Developer Portal.

You have assigned the realm-management and manage-clients roles.

You created API users and specified credentials.

You configured 3scale to use OpenID-Connect as the authentication mechanism and
OAuth2 as the authorization mechanism.

Red Hat Integration 2020.Q1 Using Data Virtualization

26

{LinkRHSSOForOpenShift}
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.7/html-single/using_the_developer_portal/#configure-oidc-rhsso-integration

7.1.1. Configuring Red Hat Single Sign-On to secure OData

You must add configuration settings in Red Hat Single Sign-On to enable integration with data
virtualization.

Prerequisites

Red Hat Single Sign-On is running in the OpenShift cluster. For information about deploying
Red Hat Single Sign-On, see the link:Red Hat Single Sign-On for OpenShift[Red Hat Single
Sign-On] documentation.

You run the Data Virtualization Operator to create a virtual database in the cluster where Red
Hat Single Sign-On is running.

Procedure

1. From a browser, log in to the Red Hat Single Sign-On Admin Console.

2. Create a realm for your data virtualization service.

a. From the menu for the master realm, hover over Master and then click Add realm.

b. Type a name for the realm, such as datavirt, and then click Create.

3. Add roles.

a. From the menu, click Roles.

b. Click Add Role.

c. Type a name for the role, for example ReadRole, and then click Save.

d. Create other roles as needed to map to the roles in your organization’s LDAP or Active
Directory. For information about federating user data from external identity providers, see
the Server Administration Guide.

4. Add users.

a. From the menu, click Users, and then click Add user.

b. On the Add user form, type a user name, for example, user, specify other user properties
that you want to assign, and then click Save.
Only the user field is mandatory.

c. From the details page for the user, click the Credentials tab.

d. Type and confirm a password for the user, click Reset Password, and then click Change
password when prompted.

5. Assign roles to the user.

a. Click the Role Mappings tab.

b. In the Available Roles field, click ReadRole and then click Add selected.

6. Create a second user called developer, and assign a password and roles to the user.

7. Create a data virtualization client entry.

CHAPTER 7. SECURING DATA

27

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.3/html-single/server_administration_guide/index

The client entry represents the data virtualization service as an SSO client application. .. From
the menu, click Clients. .. Click Create to open the Add Client page. .. In the Client ID field, type
a name for the client, for example, dv-client. .. In the Client Protocol field, choose openid-
connect. .. Leave the Root URL field blank, and click Save.

You are now ready to add SSO properties to the CR for the data virtualization service.

7.1.2. Adding SSO properties to the custom resource file

After you configure Red Hat Single Sign-On to secure the OData endpoints for a virtual database, you
must configure the virtual database to integrate with Red Hat Single Sign-On. To configure the virtual
database to use SSO, you add SSO properties to the CR that you used when you first deployed the
service (for example, dv-customer.yaml). You add the properties as environment variables. The SSO
configuration takes effect after you redeploy the virtual database.

In this procedure you add the following Red Hat Single Sign-On properties to the CR:

Realm (KEYCLOAK_REALM)

The name of the realm that you created in Red Hat Single Sign-On for your virtual database.

Authentication server URL (KEYCLOAK_AUTH_SERVER_URL)

The base URL of the Red Hat Single Sign-On server. It is usually of the form https://host:port/auth.

Resource name(KEYCLOAK_RESOURCE)

The name of the client that you create in Red Hat Single Sign-On for the data virtualization service.

SSL requirement (KEYCLOAK_SSL_REQUIRED)

Specifies whether requests to the realm require SSL/TLS. You can require SSL/TLS for all requests,
external requests only, or none.

Access type (KEYCLOAK_PUBLIC_CLIENT)

The OAuth application type for the client. Public access type is for client-side clients that sign in
from a browser.

Prerequisites

You ran the Data Virtualization Operator to create a virtual database.

Red Hat Single Sign-On is running in the cluster where the virtual database is deployed.

You have the CR YAML file, for example, dv-customer.yaml that you used to deploy the virtual
database.

You have have administrator access to the Red Hat Single Sign-On Admin Console.

Procedure

1. Log in to the Red Hat Single Sign-On Admin Console to find the values for the required
authentication properties.

2. In a text editor, open the CR YAML file that you used to deploy your virtual database, and define
authentication environment variables that are based on the values of your Red Hat Single Sign-
On properties.
For example:

env:

Red Hat Integration 2020.Q1 Using Data Virtualization

28

 - name: KEYCLOAK_REALM
 value: master
 - name: KEYCLOAK_AUTH_SERVER_URL
 value: http://rh-sso-datavirt.openshift.example.com/auth
 - name: KEYCLOAK_RESOURCE
 value: datavirt
 - name: KEYCLOAK_SSL_REQUIRED
 value: external
 - name: KEYCLOAK_PUBLIC_CLIENT
 value: true

3. Declare a build source dependency for the following Maven artifact for securing data
virtualizations: org.teiid:spring-keycloak
For example:

env:

 build:
 source:
 dependencies:
 - org.teiid:spring-keycloak

4. Save the CR.

You are now ready to define data roles in the DDL for the virtual database.

7.1.3. Defining data roles in the virtual database DDL

After you configure Red Hat Single Sign-On to integrate with data virtualization, to complete the
required configuration changes, define role-based access policies in the DDL for the virtual database.
Depending on how you deployed the virtual database, the DDL might be embedded in the CR file, or
exist as a separate file.

You add the following information to the DDL file:

The name of the role. Roles that you define in the DDL must map to roles that you created
earlier in Red Hat Single Sign-On.

TIP

For the sake of clarity, match the role names in the DDL file to the role names that you specified
in Red Hat Single Sign-On. Consistent naming makes it easier to correlate how the roles that
you define in each location relate to each other.

The database access to allow to users who are granted the specified role. For example, SELECT
permissions on a particular table view.

Prerequisites

You configured Red Hat Single Sign-On to work with data virtualization as described in
Section 7.1.1, “Configuring Red Hat Single Sign-On to secure OData” .

You added SSO properties to the CR file for the virtual database, as described in .

Procedure

CHAPTER 7. SECURING DATA

29

Procedure

1. In a text editor, open the file that contains the DDL description that you used to deploy the
virtual database.

2. Insert statements to add any roles that you defined for virtual database users in Red Hat Single
Sign-On. For example, to add a role with the name ReadRole add the following statement to
the DDL:

CREATE ROLE ReadRole WITH FOREIGN ROLE ReadRole;

Add separate CREATE ROLE statements for each role that you want to implement for the
virtual database.

3. Insert statements that specify the level of access that users with the role have to database
objects. For example,

GRANT SELECT ON TABLE "portfolio.CustomerZip" TO ReadRole

Add separate GRANT statements for each role that you want to implement for the virtual
database.

4. Save and close the CR or DDL file.
You are now ready to redeploy the virtual database. For information about how to run the Data
Virtualization Operator to deploy the virtual database, see Chapter 6, Running the data
virtualization operator to deploy a virtual database.

After you redeploy the virtual database, add a redirect URL in the Red Hat Single Sign-On
Admin Console. For more information, see Section 7.1.4, “Adding a redirect URI for the data
virtualization client in the Red Hat Single Sign-On Admin Console”.

7.1.4. Adding a redirect URI for the data virtualization client in the Red Hat Single
Sign-On Admin Console

After you enable SSO for your virtual database and redeploy it, specify a redirect URI for the data
virtualization client that you created in Section 7.1.1, “Configuring Red Hat Single Sign-On to secure
OData”.

Redirect URIs, or callback URLs are required for public clients, such as OData clients that use OpenID
Connect to authenticate, and communicate with an identity provider through the redirect mechanism.

For more information about adding redirect URIs for OIDC clients, see the NameOfRHSSOServerAdmin.

Prerequisites

You enabled SSO for a virtual database and used the Data Virtualization Operator to redeploy
it.

You have administrator access to the Red Hat Single Sign-On Admin Console.

Procedure

1. From a browser, sign in to the Red Hat Single Sign-On Admin Console.

2. From the security realm where you created the client for the data virtualization service, click

Red Hat Integration 2020.Q1 Using Data Virtualization

30

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.3/html-single/server_administration_guide/index#oidc_clients

2. From the security realm where you created the client for the data virtualization service, click
Clients in the menu, and then click the ID of the data virtualization client that you created
previously (for example, dv-client).

3. In the Valid Redirect URIs field, type the root URL for the OData service and append an
asterisk to it. For example, http://datavirt.odata.example.com/*

4. Test whether Red Hat Single Sign-On intercepts calls to the OData API.

a. From a browser, type the address of an OData endpoint, for example:

http://datavirt.odata.example.com/odata/CustomerZip

A login page prompts you to provide credentials.

5. Sign in with the credentials of an authorized user.
Your view of the data depends on the role of the account that you use to sign in.

NOTE

Some endpoints, such as odata/$metadata are excluded from security filtering so that
they can be discovered by other services.

7.2. CUSTOM CERTIFICATES FOR ENDPOINT TRAFFIC ENCRYPTION

Data Virtualization uses TLS certificates to encrypt network traffic between JDBC and ODBC database
clients and a virtual database service. You can supply your own custom certificate, or use a service
certificate that is generated by the OpenShift certificate authority. If you do not supply a custom TLS
certificate, the Data Virtualization Operator generates a service certificate automatically.

Service certificates provide for encrypted communications for internal and external clients alike.
However, only internal clients, that is, clients that are deployed in the same OpenShift cluster, can
validate the authenticity of a service certificate.

OpenShift service certificates have the following characteristics:

Consist of a public key certificate (tls.crt) and a private key (tls.key) in PEM base-64-encoded
format.

Stored in an encryption secret in the OpenShift pod.

Signed by the OpenShift CA.

Valid for one year.

Replaced automatically before expiration.

Can be validated by internal clients only.

External clients do not recognize validity of certificates generated by the OpenShift certificate
authority. To enable external clients to validate certificates, you must provide custom certificates from
trusted, third-party certificate authorities (CAs). Such certificates are universally recognized, and can be
verified by any client. To add a custom certificate to a virtual database, you supply information about the
certificate in an encryption secret that you deploy to OpenShift before you run the Data Virtualization
Operator to create the service.

CHAPTER 7. SECURING DATA

31

http://datavirt.odata.example.com/*

When you deploy the encryption secret to OpenShift, it becomes available to the Data Virtualization
Operator when it creates a virtual database. The Operator detects the secret with the name that
matches the name of the virtual database in the CR, and it automatically configures the service to use
the specified certificate to encrypt connections with database clients.

7.3. USING CUSTOM TLS CERTIFICATES TO ENCRYPT
COMMUNICATIONS BETWEEN DATABASE CLIENTS AND ENDPOINTS

You can add a custom TLS certificate to OpenShift to encrypt communications between JDBC or
ODBC clients and a virtual database service. Because custom certificate are issued by trusted third-
party certificate authorities (CA), clients can authenticate the CA signature on the certificate.

To configure an OpenShift pod to use a custom certificate to encrypt traffic, you add the certificate
details to an OpenShift secret and deploy the secret to the namespace where you want to create the
virtual database. You must create the secret before you create the service.

Prerequisites

You have a TLS certificate from a trusted, third-party CA.

You have Developer or Administrator access to the OpenShift project where you want to create
the secret and virtual database.

Procedure

1. Create a YAML file to define a secret of type kubernetes.io/tls, and include the following
information:

The public and private keys of the TLS key pair.

The name of the virtual database that you want to create.

The OpenShift namespace in which you want to create the virtual database.
For example:

The name of the secret. The secret name must match the name of the virtual database

apiVersion: v1
kind: Secret
type: kubernetes.io/tls
metadata:
 name: dv-customer 1
 namespace: myproject 2

data: 3
 tls.crt: >-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 tls.key: >-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----

Red Hat Integration 2020.Q1 Using Data Virtualization

32

1

2

3

The name of the secret. The secret name must match the name of the virtual database
object in the CR YAML file that the Data Virtualization Operator uses to create a
virtual database, for example, dv-customer.

The OpenShift namespace in which the virtual database service is deployed, for
example, myproject.

The data value is made up of the contents of the TLS public key certificate (tls.crt),
and the private encryption key (tls.key) in base64-encoded PEM format.

2. Save the file as tls_secret.yaml.

3. Open a terminal window, sign in to the OpenShift project where you want to add the secret, and
then type the following command:

4. After you deploy the TLS secret to OpenShift, run the Data Virtualization Operator to create a
virtual database with the name that is specified in the secret.
When the Operator creates the virtual database, it matches the name in the secret to the name
specified for the service in the CR. The Operator then configures the service to use the secret
to encrypt client communications with the service.

7.4. USING SECRETS TO STORE DATA SOURCE CREDENTIALS

Create and deploy secret objects to store values for your environment variables.

Although secrets exist primarily to protect sensitive data by obscuring the value of a property, you can
use them to store the value of any property.

Prerequisites

You have the login credentials and other information that are required to access the data
source.

Procedure

1. Create a secrets file to contain the credentials for your data source, and save it locally as a
YAML file. For example,

Sample secrets.yml file

2. Deploy the secret object on OpenShift.

$ oc apply -f tls_secret.yaml

apiVersion: v1
kind: Secret
metadata:
 name: postgresql
type: Opaque
stringData:
 database-user: bob
 database-name: sampledb
 database-password: bob_password

CHAPTER 7. SECURING DATA

33

a. Log in to OpenShift, and open the project that you want to use for your virtual database.
For example,
oc login --token=<token> --server=https://<server>oc project <projectName>

b. Run the following command to deploy the secret file:
oc create -f ./secret.yaml

3. Set an environment variable to retrieve its value from the secret.

a. In the environment variable, use the format valueFrom:/secretKeyRef to specify that the
variable retrieves it value from a key in the secret that you created in Step 1.
For example, in the following excerpt, the
SPRING_DATASOURCE_SAMPLEDB_PASSWORD retrieves its value from a reference
to the database-password key of the postgresql secret:

- name: SPRING_DATASOURCE_SAMPLEDB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: postgresql
 key: database-password

Additional resources

For more information about how to use secrets on OpenShift, see Providing sensitive data to
pods in the OpenShift documentation.

Red Hat Integration 2020.Q1 Using Data Virtualization

34

https://docs.openshift.com/container-platform/4.3/nodes/pods/nodes-pods-secrets.html

CHAPTER 8. CREATING AND WORKING WITH VIRTUAL
DATABASES IN FUSE ONLINE

In Fuse Online, you can create a virtual database that integrates data from multiple data sources that
you choose. After you deploy the resulting virtual database service, application developers and other
database users can connect to as if it were a single physical database.

IMPORTANT

Data virtualization in Fuse Online is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process. For more information about the support scope of Red Hat Technology Preview
features, see https://access.redhat.com/support/offerings/techpreview/.

After you create a virtual database in Fuse Online, you can use Fuse Online tools to:

Add or remove data sources.

Add or edit views of data from different tables or sources.

Submit SQL queries to test that views return the expected results.

Modify the schema that defines the virtual database.

Publish the virtual database to make it available on OpenShift.

Delete the virtual database.

Prerequisites

You have the 2020.Q1 release of Red Hat Integration, and you are running 7.6.

The data virtualization UI for 7.6 was enabled during installation. For more information, see
Enabling data virtualization in Fuse Online on OCP in the Installing and Operating Fuse Online
on OpenShift Container Platform.

8.1. CREATING VIRTUAL DATABASES IN FUSE ONLINE

In Fuse Online, you can create virtual databases that import views from applications or services that are
available from the Connections page.

For each virtual database that you create, you must import data sources, and select the tables from
each data source that you want to include. The views in the resulting virtual database map directly to the
database tables that you import. After the initial creation, you can add views to a virtual database that
join data from more than one table.

NOTE

In this Technology Preview, you can create virtual databases in Fuse Online only from
relational databases, MongoDB, and Salesforce.

CHAPTER 8. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE

35

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.6/html-single/installing_and_operating_fuse_online_on_openshift_container_platform/#enabling-data-virtualization_install

Prerequisites

Your Fuse Online environment has a connection to one or more of the following data sources:

Relational database, such as postgreSQL or MySQL.

MongoDB database

Salesforce database

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. Click Create Data Virtualization.

3. On the Create New Data Virtualization page, type a name for the virtual database and click
Create.

Provide a name that informs people about the database contents or purpose, and that is
short enough for application developers and SQL users to easily insert in their code.

Names can include only alphanumeric ([a-z]|[A-Z], [0-9]), and hyphen (-) characters.

4. On the page for your virtualization, click Import Data Source.

5. On the Import Data Source page, click the tile for an active data source, and then click Next.

6. From the list of tables that are available, select one or more tables to include in your virtual
database and then click Done.
A confirmation message reports when the import completes. The Views tab for the draft
virtualization lists a view for each table that you imported.

You can now edit the existing views, create another view, or publish the virtual database to
make it available for use.

8.2. ADDING A VIEW TO A VIRTUAL DATABASE IN FUSE ONLINE

Add a view to a virtual database to provide a view of the data in a new table.

After you first create a virtual database, it contains only the views that you imported from the initial data
source. Add views to the virtual database if you want to incorporate data from other tables. You can add
views based on tables in the original data source, or from other data sources.

NOTE

In this Technology Preview release, you can only add one table to each view.

Prerequisites

The virtual database that you want to add a view to is available in Fuse Online in a Draft or
Published state. You cannot use Fuse Online to add views to virtual databases that were created
outside of Fuse Online.

A Fuse Online connection exists to the data source that contains the table that you want
integrate.

Red Hat Integration 2020.Q1 Using Data Virtualization

36

You know the name of the table that you want to use in the view.

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. From the list on the Data Virtualizations page, find the virtual database that you want to
modify and click Edit.

3. Click Create a View.

4. Expand a data source to view the tables that it contains.

5. Select the table that you want to add to the virtual database, and then click Next.

6. On the Create a View page, type a name in the View Name field, and then click Done.
The View Editor displays the SQL for the view that you created. The Preview panel displays the
data in the view.

7. If no data displays, click Refresh.

8. Click Done to close the view.
If the virtual database was previously published, you must republish it to make the new view
available.

Additional resources

Experienced SQL programmers can also add views by directly editing the default SQL
statements for the virtual database. For more information, see Section 8.3, “Using the View
Editor in Fuse Online to modify the DDL that defines a virtual database”.

Section 8.5, “Publishing virtual databases in Fuse Online to make them available for access”

Section 8.4, “Previewing a virtual database in Fuse Online by submitting SQL test queries”

Section 8.3, “Using the View Editor in Fuse Online to modify the DDL that defines a virtual
database”

8.3. USING THE VIEW EDITOR IN FUSE ONLINE TO MODIFY THE DDL
THAT DEFINES A VIRTUAL DATABASE

The process of creating a virtual database in Fuse Online is designed to automate many tasks and hide
the complexities of the underlying SQL code.

When you create a view for a virtual database, Fuse Online automatically generates the data definition
language (DDL) that defines the view. The DDL is a set of SQL statements that describe the view’s
schema, tables, columns, and other fields.

Fuse Online provides tools to add basic views for a virtual database, but if you know SQL and you want
greater control in designing a view, you can directly edit the DDL for the view. In Fuse Online, developers
can use the embedded View Editor to modify these SQL statements. To assist you, this SQL editor
includes a code-completion feature that provides a list of SQL keywords.

After you save your changes, a built-in validation tool runs to ensure that the SQL code does not contain
syntax errors.

CHAPTER 8. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE

37

Prerequisites

You have experience using a data definition language (DDL) that is based on the SQL-MED
specification to define database structures and to integrate externally stored data.

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. On the Data Virtualizations page, find the virtual database that you want to modify and click
Edit.

3. In the Views tab, find the view that you want to edit, and then click Edit.

4. Update the SQL as needed. As you edit, press Ctrl+Space to open the code completion tool.

5. After you complete your changes, click Save.
Fuse Online validates the SQL and returns an error if the view contains invalid code.

After the SQL validates, the preview panel shows the result of the updates that you made to the
view. The preview displays the first fifteen rows of the results set.

6. Click Done to close the View Editor and return to the list of views.
If the virtual database was previously published, you must republish it to put your changes into
effect.

Additional resources

Section 8.5, “Publishing virtual databases in Fuse Online to make them available for access”

For more information about using SQL in data virtualization DDL files, see the Teiid Reference
Guide.

You can modify the results set by altering the default query to specify different row limits or row
offsets. For more information, see Section 8.4, “Previewing a virtual database in Fuse Online by
submitting SQL test queries”

8.4. PREVIEWING A VIRTUAL DATABASE IN FUSE ONLINE BY
SUBMITTING SQL TEST QUERIES

Before you publish a virtual database and make it available to applications, you can run test queries
against its views to verify that it returns the information that you expect.

Although the default preview shows you the first 15 results returned when a SQL SELECT * FROM
statement is submitted to a virtual database view, you can use the embedded SQL client in Fuse Online
to send modified test queries to your views. You can adjust the default results set by specifying the row
limits and row offsets.

If the view that you query originates from a non-SQL data source, the data virtualization engine converts
the SQL query into a format that the data source can interpret.

Prerequisites

You have a valid virtual database that was created in Fuse Online.

Procedure

Red Hat Integration 2020.Q1 Using Data Virtualization

38

http://teiid.github.io/teiid-documents/master/content/reference/SQL_Support.html

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. On the Data Virtualizations page, click Edit in the entry for the virtual database that contains
the view that you want to test.

3. Click the SQL Client tab.

4. From the View field, select the view that you want to test.

5. In the Row Limit field, specify the number of rows to display.

6. In the Row Offset field, specify the number of rows to skip.

7. Click Submit. The Query Results table displays the result set.

8.5. PUBLISHING VIRTUAL DATABASES IN FUSE ONLINE TO MAKE
THEM AVAILABLE FOR ACCESS

After you define a virtual database in Fuse Online, you must publish it to make it available for users and
applications to access.

Publishing a virtual database builds the schema definition that you implemented by importing data
sources and views into a runtime image. Fuse Online deploys the runtime image to OpenShift as a
virtual database container image that you can scale independently.

After you publish the virtual database, it becomes available as a service and is represented on the Fuse
Online Connections page. The service behaves like any relational database, and clients can connect to
it over standard interfaces. It can be incorporated into Fuse Online integration workflows, and it is
available to JDBC and OData clients.

Prerequisites

You created a virtual database in Fuse Online.

You added any views that you want to the virtual database.

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. On the Data Virtualizations page, find a virtual database that you want to publish, and from the
overflow menu, click Publish.
A confirmation message notifies you that the virtual database was submitted for publishing, and
a progress bar reports the status of the process.

If the publishing process succeeds, Fuse Online makes the following updates:

The status label of the virtual database entry on the Data virtualizations page changes
from Draft to Published.

The virtual database entry displays a URL link to the OData endpoint for the virtual
database.

The virtual database service is added to the Connections page, and a JDBC connection
to it is created.
You can verify the JDBC URL by opening the entry for the virtual database service from

CHAPTER 8. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE

39

You can verify the JDBC URL by opening the entry for the virtual database service from
the Connections page.

If the publishing process fails, the entry is flagged with the label Error.

8.6. DELETING A VIRTUAL DATABASE IN FUSE ONLINE

You can permanently delete virtual databases that you create in Fuse Online. You can delete virtual
databases whether they are published or in draft.

The data sources that a virtual database consumes are not affected by the deletion. Connections
between Fuse Online and the data sources remain in place.

Prerequisites

You have a virtual database that was created in Fuse Online and you want to remove it.

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. On the Data Virtualizations page, click the overflow menu for the virtual database that you
want to delete, and then click Delete.

3. When prompted, click Delete to confirm that you want to delete the virtual database.
A confirmation message reports when the virtualization is deleted.

Red Hat Integration 2020.Q1 Using Data Virtualization

40

CHAPTER 9. VIRTUAL DATABASE MONITORING
Prometheus is an open-source systems and service monitoring and alerting toolkit that you can use to
monitor services deployed in your Red Hat OpenShift environment. Prometheus collects and stores
metrics from configured services at given intervals, evaluates rule expressions, displays the results, and
can trigger alerts if a specified condition becomes true.

IMPORTANT

Red Hat support for Prometheus is limited to the setup and configuration
recommendations provided in Red Hat product documentation.

Prometheus communicates with the data virtualization service to retrieve metrics and data. Users can
query the data, or use a visualization took such as Grafana to view trends in a dashboard.

To enable monitoring of an OpenShift service, the service must expose an endpoint to Prometheus. This
endpoint is an HTTP interface that provides a list of metrics and the current values of the metrics. When
you use the Data Virtualization Operator to create a virtual database, the data virtualization service
automatically exposes an HTTP endpoint to Prometheus. Prometheus periodically scrapes each target-
defined endpoint and writes the collected data to its database.

After Prometheus is deployed to an OpenShift cluster, the metrics for any virtualization that you deploy
to the same cluster are exposed to the Prometheus service automatically.

For more information about using Prometheus to monitor services in Red Hat Integration, see
Monitoring Red Hat Integration .

CHAPTER 9. VIRTUAL DATABASE MONITORING

41

https://prometheus.io
https://access.redhat.com/documentation/en-us/red_hat_integration2020.Q1/html-single/prometheus/

CHAPTER 10. MIGRATING LEGACY VIRTUAL DATABASE FILES
TO DDL FORMAT

The data virtualization Technology Preview requires that you define the structure of virtual databases in
SQL-MED DDL (data definition language) format. By contrast, the structure of legacy Teiid virtual
databases, such as those that run on Wildfly, or on the Red Hat JBoss Data Virtualization offering, are
defined by using files that are in .xml or .vdb format.

You can reuse the virtual database designs that you developed for a legacy deployment, but you must
first update the format of the files. A migration tool is available to convert your files. After your convert
the files you can rebuild the virtual databases as container images and deploy them to OpenShift.

Migration considerations

The following features that were supported in virtual databases in JBoss Data Virtualization and Teiid
might be limited or unavailable in this Technology Preview release of data virtualization:

Data source compatibility

You cannot use all data sources with this release. For a list of compatible data sources, see
Section 2.1, “Compatible data sources” .

Internal distributed materialization

Not available.

Resultset caching

Not available.

Use of runtime metadata to import other virtual databases

DDL must be used to specify metadata for virtual databases.

Runtime manipulation of multisource vdb sources

Not available.

You can use the migration utility in the following two ways:

To validate a VDB file only

Use this method to check whether the utility can a successfully convert a VDB file. The utility
converts the VDB file and reports validation errors to the terminal. If there are no validation errors,
the utility displays the resulting DDL, but it does not save the converted DDL to a file.

To validate and a VDB file and save it to a DDL file

The file is saved only if there are no validation errors.

The migration tool works on XML files only. Files with a .vdb file extension are file archives that contain
multiple folders. If you have legacy files in .vdb format, use Teiid Designer to export the files to XML
format, and then run the migration tool to convert the resulting XML files.

Prerequisites

You have a legacy virtual database file in .xml format.

You download the settings.xml file from the Teiid OpenShift repository. Maven uses the
information in the file to run the migration tool.

10.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND

Red Hat Integration 2020.Q1 Using Data Virtualization

42

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/settings.xml

10.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND
VIEWING IT IN DDL FORMAT

You can run a test conversion on a legacy virtual database to check for validation errors and view the
resulting DDL file. When you run the migration tool in this way, the converted DDL file is not saved.

Procedure

1. Open the directory that contains the settings.xml file that you downloaded from the Teiid
OpenShift repository, and type the following command:

$ mvn -s settings.xml exec:java -Dvdb=<path_to_vdb_xml_file>

For example:

$ mvn -s settings.xml exec:java -Dvdb=rdbms-example/src/main/resources/vdb.xml

The migration tool checks the specified .xml file, and reports any validation errors. If there are
no validation errors, the migration tool displays a .ddl version of the virtual database on the
screen.

10.2. CONVERTING A LEGACY VIRTUAL DATABASE XML FILE AND
SAVING IT AS A DDL FILE

You can run the migration tool to convert a legacy virtual database file to .ddl format, and then save the
.ddl file to a specified directory. The migration tool checks the .xml file that you provide for validation
errors. If there are no validation errors, the migration tool converts the file to .ddl format and saves it to
the file name and directory that you specify.

Procedure

Open the directory that contains the settings.xml file that you downloaded from the Teiid
OpenShift repository, and type the following command:

$ mvn -s settings.xml exec:java -Dvdb=<path_to_vdb_xml_file> -Doutput=
<path_to_save_ddl_file>

For example:

$ mvn -s settings.xml exec:java -Dvdb=rdbms-example/src/main/resources/vdb.xml -
Doutput=rdbms-example/src/main/resources/vdb.ddl

CHAPTER 10. MIGRATING LEGACY VIRTUAL DATABASE FILES TO DDL FORMAT

43

	Table of Contents
	CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA VIRTUALIZATION
	CHAPTER 2. CREATING VIRTUAL DATABASES
	2.1. COMPATIBLE DATA SOURCES
	2.2. CREATING CUSTOM RESOURCES TO DEPLOY VIRTUALIZATIONS
	2.2.1. Environment variables in custom resources

	CHAPTER 3. CREATING A VIRTUAL DATABASE BY EMBEDDING DDL STATEMENTS IN A CUSTOM RESOURCE (CR)
	3.1. CREATING A CR TO DEPLOY A DDL ARTIFACT

	CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT
	4.1. CREATING A CUSTOM RESOURCE (CR) TO DEPLOY A MAVEN ARTIFACT

	CHAPTER 5. CREATING A VIRTUAL DATABASE AS A FAT JAR
	5.1. SAMPLE DATASOURCES.JAVA FILE
	5.2. SPECIFYING APPLICATION PROPERTIES
	5.3. CREATING A CR TO DEPLOY A FAT JAR

	CHAPTER 6. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A VIRTUAL DATABASE
	6.1. INSTALLING THE DATA VIRTUALIZATION OPERATOR ON OPENSHIFT
	6.2. DEPLOYING VIRTUAL DATABASES

	CHAPTER 7. SECURING DATA
	7.1. SECURING ODATA APIS FOR A VIRTUAL DATABASE
	7.1.1. Configuring Red Hat Single Sign-On to secure OData
	7.1.2. Adding SSO properties to the custom resource file
	7.1.3. Defining data roles in the virtual database DDL
	7.1.4. Adding a redirect URI for the data virtualization client in the Red Hat Single Sign-On Admin Console

	7.2. CUSTOM CERTIFICATES FOR ENDPOINT TRAFFIC ENCRYPTION
	7.3. USING CUSTOM TLS CERTIFICATES TO ENCRYPT COMMUNICATIONS BETWEEN DATABASE CLIENTS AND ENDPOINTS
	7.4. USING SECRETS TO STORE DATA SOURCE CREDENTIALS

	CHAPTER 8. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE
	8.1. CREATING VIRTUAL DATABASES IN FUSE ONLINE
	8.2. ADDING A VIEW TO A VIRTUAL DATABASE IN FUSE ONLINE
	8.3. USING THE VIEW EDITOR IN FUSE ONLINE TO MODIFY THE DDL THAT DEFINES A VIRTUAL DATABASE
	8.4. PREVIEWING A VIRTUAL DATABASE IN FUSE ONLINE BY SUBMITTING SQL TEST QUERIES
	8.5. PUBLISHING VIRTUAL DATABASES IN FUSE ONLINE TO MAKE THEM AVAILABLE FOR ACCESS
	8.6. DELETING A VIRTUAL DATABASE IN FUSE ONLINE

	CHAPTER 9. VIRTUAL DATABASE MONITORING
	CHAPTER 10. MIGRATING LEGACY VIRTUAL DATABASE FILES TO DDL FORMAT
	10.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND VIEWING IT IN DDL FORMAT
	10.2. CONVERTING A LEGACY VIRTUAL DATABASE XML FILE AND SAVING IT AS A DDL FILE

