
Red Hat Integration 2020.Q1

Getting Started with Service Registry

Getting Started with Service Registry

Last Updated: 2021-02-19

Red Hat Integration 2020.Q1 Getting Started with Service Registry

Getting Started with Service Registry

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Service Registry, explains how to install in your storage environment, and how
to manage artifacts stored in Service Registry.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
1.1. SERVICE REGISTRY OVERVIEW

1.1.1. Service Registry artifacts
1.1.2. Registry REST API
1.1.3. Storage options
1.1.4. Available distributions
1.1.5. Client serializers/deserializers
1.1.6. Registry demonstration

1.2. SUPPORTED ARTIFACT TYPES

CHAPTER 2. INTRODUCTION TO SERVICE REGISTRY RULES
2.1. RULES FOR REGISTRY CONTENT

2.1.1. When rules are applied
2.1.2. How rules work

2.2. SUPPORTED RULE TYPES

CHAPTER 3. INSTALLING SERVICE REGISTRY
3.1. SETTING UP AMQ STREAMS STORAGE ON OPENSHIFT
3.2. INSTALLING SERVICE REGISTRY WITH AMQ STREAMS STORAGE ON OPENSHIFT

CHAPTER 4. MANAGING ARTIFACTS IN SERVICE REGISTRY
4.1. MANAGING ARTIFACTS USING THE REGISTRY REST API
4.2. MANAGING ARTIFACTS USING THE SERVICE REGISTRY MAVEN PLUG-IN
4.3. MANAGING ARTIFACTS IN A JAVA CLIENT APPLICATION

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading ZIP and TAR files
Registering your system for packages

3
3
3
4
5
5
5
6
6

7
7
7
7
8

9
9
11

14
14
15
16

18
18
18
18
18

Table of Contents

1

Red Hat Integration 2020.Q1 Getting Started with Service Registry

2

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
This chapter introduces Service Registry concepts and features and provides details on the supported
artifact types that are stored in the registry:

Section 1.1, “Service Registry overview”

Section 1.2, “Supported artifact types”

IMPORTANT

Service Registry is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

1.1. SERVICE REGISTRY OVERVIEW

Service Registry is a datastore for standard event schemas and API designs. You can use Service
Registry to decouple the structure of your data from your applications and to share and manage your
data structures and API descriptions at runtime using a REST interface.

For example, client applications can dynamically push or pull the latest schema updates to or from the
registry at runtime without needing to redeploy. Developer teams can query the registry for existing
schemas required by services deployed in production and can register new schemas required for new
services.

Service Registry provides the following capabilities:

Support for multiple payload formats for standard event schemas and API specifications.

Apache Kafka-based storage in Red Hat AMQ Streams.

Manage registry content using a REST API, a Maven plug-in, or a Java client.

Rules for content validation and version compatibility to govern how registry content evolves
over time.

Full Apache Kafka schema registry support, including integration with Kafka Connect for
external systems.

Client serializers/deserializers (SerDes) to validate Kafka and other message types at runtime.

Cloud-native Quarkus Java runtime for low memory footprint and fast deployment.

Compatibility with existing Confluent schema registry client applications.

Service Registry is based on the Apicurio Registry open source community project. For details, see
https://github.com/apicurio/apicurio-registry.

1.1.1. Service Registry artifacts

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

3

https://access.redhat.com/support/offerings/techpreview
https://github.com/apicurio/apicurio-registry

The items stored in Service Registry, such as event schemas and API specifications, are known as
artifacts. The following shows an example of an Apache Avro schema artifact in JSON format for a
simple share price application:

When a schema or API contract is added as an artifact in the registry, client applications can then use
that schema or API contract to validate that client messages conform to the correct data structure at
runtime.

Service Registry supports a wide range of message payload formats for standard event schemas and
API specifications. For example, supported formats include Apache Avro, Google protocol buffers,
GraphQL, AsyncAPI, OpenAPI, and others. For more details, see Section 1.2, “Supported artifact types”.

1.1.2. Registry REST API

Using the Registry REST API, client applications can manage the artifacts in Service Registry. This API
provides create, read, update, and delete operations for:

Artifacts

Manage the schema and API design artifacts stored in the registry. You can also manage the lifecycle
state of an artifact: enabled, disabled, or deprecated.

Artifact versions

Manage the versions that are created when artifact content is updated. You can also manage the
lifecycle state of a version: enabled, disabled, or deprecated.

Artifact metadata

Manage details such as when the artifact was created, last updated, and so on.

Global rules

Configure rules to govern the content evolution of all artifacts to prevent invalid or incompatible
content from being added to the registry. Global rules are applied only if an artifact does not have its
own specific artifact rules configured.

Artifact rules

Configure rules to govern the content evolution of a specific artifact to prevent invalid or
incompatible content from being added to the registry. Artifact rules override any global rules
configured.

For detailed information, see the Apicurio Registry REST API documentation .

{
 "type": "record",
 "name": "price",
 "namespace": "com.example",
 "fields": [
 {
 "name": "symbol",
 "type": "string"
 },
 {
 "name": "price",
 "type": "string"
 }
]
}

Red Hat Integration 2020.Q1 Getting Started with Service Registry

4

files/registry-rest-api.htm

Compatibility with other schema registries

The Service Registry REST API is compatible with the Confluent schema registry REST API. This means
that applications using Confluent client libraries can use Service Registry instead as a drop-in
replacement. For more details, see Replacing Confluent Schema Registry with Red Hat Integration
Service Registry.

1.1.3. Storage options

Service Registry supports the following underlying storage implementations for artifacts:

Red Hat AMQ Streams 1.4

Red Hat AMQ Streams 1.3

1.1.4. Available distributions

Table 1.1. Service Registry distributions

Distribution Location

Container image Red Hat Container Catalog

Maven repository Software Downloads for Red Hat Fuse

Full Maven repository (with all dependencies) Software Downloads for Red Hat Fuse

Source code Software Downloads for Red Hat Fuse

NOTE

You must have a subscription for Red Hat Fuse and be logged into the Red Hat Customer
Portal to access the available Service Registry distributions.

1.1.5. Client serializers/deserializers

Event-based producer applications can use serializers to encode messages that conform to a specific
event schema. Consumer applications can then use deserializers to validate that messages have been
serialized using the correct schema, based on a specific schema ID. Service Registry provides client
serializers/deserializers to validate the following message types at runtime:

Apache Avro

Google protocol buffers

JSON Schema

The Service Registry Maven repository and source code distributions include the serializer/deserializer
implementations for these message types, which client developers can use to integrate with the registry.
These implementations include custom io.apicurio.registry.utils.serde Java classes for each
supported message type, which client applications can use to pull schemas from the registry at runtime
for validation.

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

5

https://developers.redhat.com/blog/2019/12/17/replacing-confluent-schema-registry-with-red-hat-integration-service-registry/
https://access.redhat.com/containers/#/registry.access.redhat.com/fuse7-tech-preview/fuse-service-registry-rhel7
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=80161&product=jboss.fuse&version=7.6.0&downloadType=distributions
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=80171&product=jboss.fuse&version=7.6.0&downloadType=distributions
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=80151&product=jboss.fuse&version=7.6.0&downloadType=distributions

Additional resources

For instructions on how to use the Service Registry client serializer/deserializer for Apache Avro in AMQ
Streams producer and consumer applications, see Using AMQ Streams on OpenShift .

1.1.6. Registry demonstration

Service Registry provides an open source demonstration example of Apache Avro
serialization/deserialization with storage in Apache Kafka Streams. This example shows how the
serializer/deserializer obtains the Avro schema from the registry at runtime and uses it to serialize and
deserialize Kafka messages. For more details, see https://github.com/Apicurio/apicurio-registry-demo.

This demonstration also provides simple examples of both Avro and JSON Schema
serialization/deserialization with storage in Apache Kafka: https://github.com/Apicurio/apicurio-
registry-demo/tree/master/src/main/java/io/apicurio/registry/demo/simple

For another demonstration example with detailed instructions on Avro serialization/deserialization with
storage in Apache Kafka, see the Red Hat Developer article on Getting Started with Red Hat
Integration Service Registry.

1.2. SUPPORTED ARTIFACT TYPES

You can store and manage the following artifact types in Service Registry:

Table 1.2. Service Registry artifact types

Type Description

ASYNCAPI AsyncAPI specification

AVRO Apache Avro schema

GRAPHQL GraphQL schema

JSON JSON Schema

KCONNECT Apache Kafka Connect schema

OPENAPI OpenAPI specification

PROTOBUF Google protocol buffers schema

PROTOBUF_FD Google protocol buffers file descriptor

Red Hat Integration 2020.Q1 Getting Started with Service Registry

6

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/using_amq_streams_on_openshift/service-registry-str
https://github.com/Apicurio/apicurio-registry-demo
https://github.com/Apicurio/apicurio-registry-demo/tree/master/src/main/java/io/apicurio/registry/demo/simple
https://developers.redhat.com/blog/2019/12/16/getting-started-with-red-hat-integration-service-registry/

CHAPTER 2. INTRODUCTION TO SERVICE REGISTRY RULES
This chapter introduces the optional rules used to govern registry content and provides details on the
available rule types:

Section 2.1, “Rules for registry content”

Section 2.2, “Supported rule types”

2.1. RULES FOR REGISTRY CONTENT

To govern content evolution in the registry, you can configure optional rules for artifacts added to the
registry, as a post-installation step. Any rules configured for an artifact must pass before a new artifact
version can be uploaded to the registry. The goal of these rules is to prevent invalid content from being
added to the registry. For example, content can be invalid for the following reasons:

Invalid syntax for a given artifact type (for example, AVRO or PROTOBUF)

Valid syntax, but semantics violate company standards

New content includes breaking changes to the current artifact version

2.1.1. When rules are applied

Rules are applied only when content is added to the registry. This includes the following REST
operations:

Creating an artifact

Updating an artifact

Creating an artifact version

If a rule is violated, Service Registry returns an HTTP error. The response body includes the violated rule
and a message showing what went wrong.

NOTE

If no rules are configured for an artifact, the set of any currently configured global rules
are applied.

2.1.2. How rules work

Each rule has a name and optional configuration information. The registry storage maintains the list of
rules for each artifact and the list of global rules. Each rule in the list consists of a name and a set of
configuration properties, which are specific to the rule implementation. For example, a validation rule
might use a Map<String,String>, or a compatibility rule might use a single property of BACKWARD for
compatibility with existing versions.

A rule is provided with the content of the current version of the artifact (if one exists) and the new
version of the artifact being added. The rule implementation returns true or false depending on whether
the artifact passes the rule. If not, the registry reports the reason why in an HTTP error response. Some
rules might not use the previous version of the content. For example, compatibility rules use previous
versions, but syntax or semantic validity rules do not.

CHAPTER 2. INTRODUCTION TO SERVICE REGISTRY RULES

7

2.2. SUPPORTED RULE TYPES

You can specify the following rule types to govern content evolution in the registry:

Table 2.1. Service Registry rule types

Type Description

VALIDITY Validates data before adding it to the registry. The
possible configuration values for this rule are:

FULL: The validation is both syntax and
semantic.

SYNTAX_ONLY: The validation is syntax
only.

COMPATIBILITY Ensures that newly added artifacts are compatible
with previously added versions. The possible
configuration values for this rule are:

FULL: The new artifact is forward and
backward compatible with the most recently
added artifact.

FULL_TRANSITIVE: The new artifact is
forward and backward compatible with all
previously added artifacts.

BACKWARD: Clients using the new
artifact can read data written using the most
recently added artifact.

BACKWARD_TRANSITIVE: Clients
using the new artifact can read data written
using all previously added artifacts.

FORWARD: Clients using the most
recently added artifact can read data
written using the new artifact.

FORWARD_TRANSITIVE: Clients using
all previously added artifacts can read data
written using the new artifact.

NONE: All backward and forward
compatibility checks are disabled.

Red Hat Integration 2020.Q1 Getting Started with Service Registry

8

CHAPTER 3. INSTALLING SERVICE REGISTRY
This chapter explains how to set up storage in AMQ Streams and how to install and run Service Registry:

Section 3.1, “Setting up AMQ Streams storage on OpenShift”

Section 3.2, “Installing Service Registry with AMQ Streams storage on OpenShift”

Prerequisites

Section 1.1, “Service Registry overview”

NOTE

You can install more than one instance of Service Registry depending on your
environment. The number of instances depends on your storage, for example, Kafka
cluster configuration, and on the number and type of artifacts stored in the registry.

3.1. SETTING UP AMQ STREAMS STORAGE ON OPENSHIFT

This topic explains how to install and configure Red Hat AMQ Streams storage for Service Registry on
OpenShift. The following versions are supported:

AMQ Streams 1.4 or 1.3

OpenShift 4.3, 4.2, or 3.11

You can install Service Registry in an existing Kafka cluster or create a new Kafka cluster, depending on
your environment.

Prerequisites

You must have an OpenShift cluster.

You must have installed AMQ Streams using the instructions in Using AMQ Streams on
OpenShift.
Alternatively, to install using the simple demonstration example shown in this section, you must
have:

Downloaded AMQ Streams from the Red Hat customer portal

OpenShift cluster adminstrator access

Procedure

1. If you do not already have AMQ Streams installed, install AMQ Streams on your OpenShift
cluster. For example, enter the following command from your AMQ Streams download directory:

2. If you do not already have a Kafka cluster set up, create a new Kafka cluster with AMQ Streams.
For example:

oc apply -f install/cluster-operator/

$ cat << EOF | oc create -f -

CHAPTER 3. INSTALLING SERVICE REGISTRY

9

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/using_amq_streams_on_openshift/index?

This simple example creates a cluster with 3 Zookeeper nodes and 3 Kafka nodes using
ephemeral storage. All data is lost when the Pods are no longer running on OpenShift.

3. Create the required storage-topic to store Service Registry artifacts in AMQ Streams. For
example:

4. Create the required global-id-topic to store Service Registry global IDs in AMQ Streams. For
example:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 replicas: 3
 listeners:
 external:
 type: route
 storage:
 type: ephemeral
 zookeeper:
 replicas: 3
 storage:
 type: ephemeral
 entityOperator:
 topicOperator: {}
EOF

$ cat << EOF | oc create -f -
apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic
metadata:
 name: storage-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 3
 replicas: 3
 config:
 cleanup.policy: compact
EOF

$ cat << EOF | oc create -f -
apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic
metadata:
 name: global-id-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 3
 replicas: 3
 config:
 cleanup.policy: compact
EOF

Red Hat Integration 2020.Q1 Getting Started with Service Registry

10

Additional resources

For more details on installing AMQ Streams and on creating Kafka clusters and topics:

Using AMQ Streams on OpenShift

How to run AMQ Streams on Minishift

3.2. INSTALLING SERVICE REGISTRY WITH AMQ STREAMS STORAGE
ON OPENSHIFT

This topic explains how to install and run Service Registry with storage in Red Hat AMQ Streams using
an OpenShift template.

The following versions are supported:

AMQ Streams 1.4 or 1.3

OpenShift 4.3, 4.2, or 3.11

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed AMQ Streams and configured your Kafka cluster on OpenShift.
See Section 3.1, “Setting up AMQ Streams storage on OpenShift” .

Ensure that you can access the Service Registry image in the Red Hat Container Catalog :

Create a service account and pull secret for the image. For details, see Container Service
Accounts.

Download the pull secret and submit it to your OpenShift cluster. For example:

Procedure

1. Get the Service Registry OpenShift template.

2. Enter the following command to get the name of the Kafka bootstrap service running in AMQ
Streams on your OpenShift cluster:

3. Create a new OpenShift application using the oc new-app command. For example:

You must specify the following arguments:

$ oc create -f 11223344_service-registry-secret.yaml --namespace=myproject

$ oc get services | grep .*kafka-bootstrap

$ oc new-app service-registry-template.yml \
 -p KAFKA_BOOTSTRAP_SERVERS=my-cluster-kafka-bootstrap:9092 \
 -p REGISTRY_ROUTE=my-cluster-service-registry-myproject.example.com \
 -p APPLICATION_ID=my-kafka-streams-app

CHAPTER 3. INSTALLING SERVICE REGISTRY

11

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/using_amq_streams_on_openshift/index?
https://developers.redhat.com/blog/2018/10/29/how-to-run-kafka-on-openshift-the-enterprise-kubernetes-with-amq-streams
https://access.redhat.com/containers/#/registry.access.redhat.com/fuse7-tech-preview/fuse-service-registry-rhel7
https://access.redhat.com/terms-based-registry/
https://github.com/Apicurio/apicurio-registry/blob/1.1.x-redhat/distro/openshift-template/service-registry-template.yml

service-registry-template.yml: The OpenShift template file for Service Registry.

KAFKA_BOOTSTRAP_SERVERS: The name of the Kafka bootstrap service on your
OpenShift cluster, followed by the Kafka broker port. For example: my-cluster-kafka-
bootstrap:9092.

REGISTRY_ROUTE: The name of the OpenShift route to expose Service Registry, which is
based on your OpenShift cluster environment. For example: my-cluster-service-registry-
myproject.example.com.

APPLICATION_ID: The name of your AMQ Streams application. For example: my-kafka-
streams-app.
You can also specify the following environment variables using the -e option:

APPLICATION_SERVER_HOST: The IP address of your Kafka Streams application server
host, which is required in a multi-node Kafka configuration. Defaults to $(POD_IP).

APPLICATION_SERVER_PORT: The port number of your Kafka Streams application
server, which is required in a multi-node Kafka configuration. Defaults to 9000.

4. Verify the command output when complete. For example:

Deploying template "myproject/service-registry" for "service-registry-template.yml" to project
myproject

 service-registry

 Congratulations on deploying Service Registry into OpenShift!

 All components have been deployed and configured.

 * With parameters:
 * Registry Route Name=my-cluster-service-registry-myproject.example.com
 * Registry Max Memory Limit=1300Mi
 * Registry Memory Requests=600Mi
 * Registry Max CPU Limit=1
 * Registry CPU Requests=100m
 * Kafka Bootstrap Servers=my-cluster-kafka-bootstrap:9092
 * Kafka Application ID=my-kafka-streams-app

--> Creating resources ...
 imagestream.image.openshift.io "registry" created
 service "service-registry" created
 deploymentconfig.apps.openshift.io "service-registry" created
 route.route.openshift.io "service-registry" created
--> Success
 Access your application via route 'my-cluster-service-registry-myproject.example.com'

5. Enter oc status to view your Service Registry installation on OpenShift.

Additional resources

For sample REST API requests, see the Registry REST API documentation .

For details on example client applications:

Red Hat Integration 2020.Q1 Getting Started with Service Registry

12

files/registry-rest-api.htm

https://github.com/Apicurio/apicurio-registry-demo

Getting Started with Red Hat Integration Service Registry

CHAPTER 3. INSTALLING SERVICE REGISTRY

13

https://github.com/Apicurio/apicurio-registry-demo
https://developers.redhat.com/blog/2019/12/16/getting-started-with-red-hat-integration-service-registry/

CHAPTER 4. MANAGING ARTIFACTS IN SERVICE REGISTRY
This chapter provides details on different approaches to managing artifacts in Service Registry:

Section 4.1, “Managing artifacts using the Registry REST API”

Section 4.2, “Managing artifacts using the Service Registry Maven plug-in”

Section 4.3, “Managing artifacts in a Java client application”

4.1. MANAGING ARTIFACTS USING THE REGISTRY REST API

The Registry REST API enables client applications to manage artifacts in the registry, for example, in a
CI/CD pipeline deployed in production. This REST API provides create, read, update, and delete
operations for artifacts, versions, metadata, and rules stored in the registry.

When creating artifacts in Service Registry using the REST API, if you do not specify a unique artifact ID,
Service Registry generates one automatically as a UUID.

This chapter shows a simple curl-based example of using the Registry REST API to create and retrieve a
Apache Avro schema artifact in the registry.

Prerequisites

See Section 1.1.2, “Registry REST API” .

Service Registry must be installed and running in your environment. For details, see Chapter 3,
Installing Service Registry .

Procedure

1. Create an artifact in the registry using the /artifacts operation. The following example curl
command creates a simple artifact for a share price application:

This example shows creating an Avro schema artifact with an artifact ID of share-price.

MY-REGISTRY-HOST is the host name on which Service Registry is deployed. For example:
my-cluster-service-registry-myproject.example.com.

2. Verify that the response includes the expected JSON body to confirm that the artifact was
created. For example:

3. Retrieve the artifact from the registry using its artifact ID. For example, in this case the specified
ID is share-price:

$ curl -X POST -H "Content-type: application/json; artifactType=AVRO" -H "X-Registry-
ArtifactId: share-price" --data
'{"type":"record","name":"price","namespace":"com.example","fields":
[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}' http://MY-REGISTRY-
HOST/artifacts

{"createdOn":1578310374517,"modifiedOn":1578310374517,"id":"share-
price","version":1,"type":"AVRO","globalId":8}

Red Hat Integration 2020.Q1 Getting Started with Service Registry

14

1

2

3

Additional resources

For more REST API sample requests, see the Registry REST API documentation .

4.2. MANAGING ARTIFACTS USING THE SERVICE REGISTRY MAVEN
PLUG-IN

Service Registry provides a Maven plug-in to enable you to upload or download registry artifacts as part
of your development build. For example, this plug-in is useful for testing and validating that your schema
updates are compatible with client applications.

Prerequisites

Service Registry must be installed and running in your environment

Maven must be installed and configured in your environment

Procedure

1. Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to upload an
artifact. The following example shows registering an Apache Avro schema artifact:

Specify register as the execution goal to upload an artifact to the registry.

You must specify the Service Registry URL.

You can upload multiple artifacts using the artifact ID and location.

$ curl https://MY-REGISTRY-URL/artifacts/share-price
'{"type":"record","name":"price","namespace":"com.example","fields":
[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}

<plugin>
<groupId>io.apicurio</groupId>
<artifactId>apicurio-registry-maven-plugin</artifactId>
<version>${registry.version}</version>
<executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>register</goal> 1
 </goals>
 <configuration>
 <registryUrl>https://my-cluster-service-registry-myproject.example.com</registryUrl> 2
 <artifactType>AVRO</artifactType>
 <artifacts>
 <schema1>${project.basedir}/schemas/schema1.avsc</schema1> 3
 </artifacts>
 </configuration>
 </execution>
</executions>
</plugin>

CHAPTER 4. MANAGING ARTIFACTS IN SERVICE REGISTRY

15

files/registry-rest-api.htm

1

2

3

2. You can also update your Maven pom.xml file to download a previously registered artifact:

Specify download as the execution goal.

You must specify the Service Registry URL.

You can download multiple artifacts to a specified directory using the artifact ID.

Additional resources

For more details on the Maven plug-in, see https://github.com/Apicurio/apicurio-registry-
demo.

4.3. MANAGING ARTIFACTS IN A JAVA CLIENT APPLICATION

You can also manage artifacts in the registry using a Java client application. The Service Registry Java
client classes enable you to create, read, update, or delete artifacts in the registry.

Prerequisites

See Section 1.1.5, “Client serializers/deserializers”

You must have implemented a client application in Java that imports the Service Registry client
classes: io.apicurio.registry.client.RegistryClient

Service Registry must be installed and running in your environment.

Procedure

Update your client application to create a new artifact in the registry. The following example
shows creating an Apache Avro schema artifact from a Kafka producer client application:

<plugin>
<groupId>io.apicurio</groupId>
<artifactId>apicurio-registry-maven-plugin</artifactId>
<version>${registry.version}</version>
<executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>download</goal> 1
 </goals>
 <configuration>
 <registryUrl>https://my-cluster-service-registry-myproject.example.com</registryUrl> 2
 <ids>
 <param1>schema1</param1> 3
 </ids>
 <outputDirectory>${project.build.directory}</outputDirectory>
 </configuration>
 </execution>
</executions>
</plugin>

Red Hat Integration 2020.Q1 Getting Started with Service Registry

16

https://github.com/Apicurio/apicurio-registry-demo

1

2

3

Configure the client application with the Service Registry URL in the client properties. You
can create properties for more than one registry node.

Check to see if the schema artifact already exists in the registry based on the artifact ID.

Create the new schema artifact in the registry.

Additional resources

For an example Java client application, see https://github.com/Apicurio/apicurio-registry-
demo.

For more details on Kafka client applications, see: Using AMQ Streams on OpenShift .

String registryUrl_node1 = PropertiesUtil.property(clientProperties, "registry.url.node1",
 "https://my-cluster-service-registry-myproject.example.com"); 1
 try (RegistryService service = RegistryClient.create(registryUrl_node1))
 {
 String artifactId = ApplicationImpl.INPUT_TOPIC + "-value";
 try {
 service.getArtifactMetaData(artifactId); 2
 }
 catch (WebApplicationException e) {
 CompletionStage < ArtifactMetaData > csa = service.createArtifact(3
 ArtifactType.AVRO,
 artifactId,
 new ByteArrayInputStream(LogInput.SCHEMA$.toString().getBytes())
);
 csa.toCompletableFuture().get();
 }
 }

CHAPTER 4. MANAGING ARTIFACTS IN SERVICE REGISTRY

17

https://github.com/Apicurio/apicurio-registry-demo
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/using_amq_streams_on_openshift/index

APPENDIX A. USING YOUR SUBSCRIPTION
Fuse is provided through a software subscription. To manage your subscriptions, access your account at
the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat Fuse entries in the Integration and Automation category.

3. Select the desired Fuse product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
ZIP or TAR files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

Red Hat Integration 2020.Q1 Getting Started with Service Registry

18

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
	1.1. SERVICE REGISTRY OVERVIEW
	1.1.1. Service Registry artifacts
	1.1.2. Registry REST API
	1.1.3. Storage options
	1.1.4. Available distributions
	1.1.5. Client serializers/deserializers
	1.1.6. Registry demonstration

	1.2. SUPPORTED ARTIFACT TYPES

	CHAPTER 2. INTRODUCTION TO SERVICE REGISTRY RULES
	2.1. RULES FOR REGISTRY CONTENT
	2.1.1. When rules are applied
	2.1.2. How rules work

	2.2. SUPPORTED RULE TYPES

	CHAPTER 3. INSTALLING SERVICE REGISTRY
	3.1. SETTING UP AMQ STREAMS STORAGE ON OPENSHIFT
	3.2. INSTALLING SERVICE REGISTRY WITH AMQ STREAMS STORAGE ON OPENSHIFT

	CHAPTER 4. MANAGING ARTIFACTS IN SERVICE REGISTRY
	4.1. MANAGING ARTIFACTS USING THE REGISTRY REST API
	4.2. MANAGING ARTIFACTS USING THE SERVICE REGISTRY MAVEN PLUG-IN
	4.3. MANAGING ARTIFACTS IN A JAVA CLIENT APPLICATION

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files
	Registering your system for packages

