
Red Hat Integration 2020.Q1

Getting Started with Debezium

For use with Debezium 1.0

Last Updated: 2021-02-19

Red Hat Integration 2020.Q1 Getting Started with Debezium

For use with Debezium 1.0

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to get started using Debezium.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION TO DEBEZIUM

CHAPTER 2. STARTING THE SERVICES
2.1. SETTING UP A KAFKA CLUSTER
2.2. DEPLOYING KAFKA CONNECT
2.3. DEPLOYING A MYSQL DATABASE

CHAPTER 3. CREATING A CONNECTOR TO MONITOR THE INVENTORY DATABASE

CHAPTER 4. VIEWING CHANGE EVENTS
4.1. VIEWING A CREATE EVENT
4.2. UPDATING THE DATABASE AND VIEWING THE UPDATE EVENT
4.3. DELETING A RECORD IN THE DATABASE AND VIEWING THE DELETE EVENT
4.4. RESTARTING THE KAFKA CONNECT SERVICE

CHAPTER 5. NEXT STEPS

3

4

5
5
6
6

9

13
13
19
21
23

26

Table of Contents

1

Red Hat Integration 2020.Q1 Getting Started with Debezium

2

PREFACE
This tutorial demonstrates how to use Debezium to monitor a MySQL database. As the data in the
database changes, you will see the resulting event streams.

In this tutorial you will start the Debezium services in OpenShift, run a MySQL database server with a
simple example database, and use Debezium to monitor the database for changes.

Prerequisites

Before you can use Debezium to monitor a MySQL database, you must have:

Access to an OpenShift Container Platform 4.x cluster with cluster-admin privileges

The AMQ Streams 1.4 OpenShift installation and example files
You can download these files from the AMQ Streams download site .

The Debezium 1.0.0 MySQL Connector
You can download these files from the Red Hat Integration download site .

NOTE

These prerequisites apply to the MySQL connector. Other Debezium connectors may
have different prerequisites.

PREFACE

3

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

CHAPTER 1. INTRODUCTION TO DEBEZIUM
Debezium is a distributed platform that turns your existing databases into event streams, so applications
can see and respond immediately to each row-level change in the databases.

Debezium is built on top of Apache Kafka and provides Kafka Connect compatible connectors that
monitor specific database management systems. Debezium records the history of data changes in
Kafka logs, from where your application consumes them. This makes it possible for your application to
easily consume all of the events correctly and completely. Even if your application stops unexpectedly, it
will not miss anything: when the application restarts, it will resume consuming the events where it left off.

Debezium includes multiple connectors. In this tutorial, you will use the MySQL connector.

Red Hat Integration 2020.Q1 Getting Started with Debezium

4

http://kafka.apache.org
https://kafka.apache.org/documentation.html#connect
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/change_data_capture_user_guide/index

CHAPTER 2. STARTING THE SERVICES
Using Debezium requires AMQ Streams and the Debezium connector service. To start the services
needed for this tutorial, you must:

1. Use AMQ Streams to set up a single-node Kafka cluster in OpenShift

2. Deploy Kafka Connect with the Debezium MySQL Connector plugin

3. Deploy a MySQL database

2.1. SETTING UP A KAFKA CLUSTER

You use AMQ Streams to set up a Kafka cluster. This procedure deploys a single-node Kafka cluster.

Procedure

1. In your OpenShift 4.x cluster, create a new project:

2. Change to the directory where you downloaded the AMQ Streams 1.4 OpenShift installation and
example files.

3. Deploy the AMQ Streams Cluster Operator.
The Cluster Operator is responsible for deploying and managing Kafka clusters within an
OpenShift cluster. This command deploys the Cluster Operator to watch just the project that
you created:

4. Verify that the Cluster Operator is running.
This command shows that the Cluster Operator is running, and that all of the Pods are ready:

5. Deploy the Kafka cluster.
This command uses the kafka-ephemeral-single.yaml Custom Resource to create an
ephemeral Kafka cluster with three ZooKeeper nodes and one Kafka node:

6. Verify that the Kafka cluster is running.
This command shows that the Kafka cluster is running, and that all of the Pods are ready:

$ oc new-project cdc-tutorial

$ sed -i 's/namespace: .*/namespace: cdc-tutorial/' install/cluster-operator/*RoleBinding*.yaml

$ oc apply -f install/cluster-operator -n cdc-tutorial

$ oc get pods
NAME READY STATUS RESTARTS AGE
strimzi-cluster-operator-5c6d68c54-l4gdz 1/1 Running 0 46s

$ oc apply -f examples/kafka/kafka-ephemeral-single.yaml

$ oc get pods
NAME READY STATUS RESTARTS AGE
my-cluster-entity-operator-5b5d4f7c58-8gnq5 3/3 Running 0 41s
my-cluster-kafka-0 2/2 Running 0 70s

CHAPTER 2. STARTING THE SERVICES

5

2.2. DEPLOYING KAFKA CONNECT

After setting up a Kafka cluster, you deploy the Kafka Connect Source-to-Image (S2I) service. This
service provides a framework for managing the Debezium MySQL connector.

Procedure

1. Deploy the Kafka Connect Source-to-Image (S2I) service:
This command deploys the Kafka Connect S2I service using the example YAML file for a single-
node Kafka cluster:

2. Verify that the Kafka Connect service is running.
This command shows that the Kafka Connect service is running, and that the Pod is ready:

3. Start a new build of the Kafka Connect image using the Debezium MySQL Connector plugin.
This command uses the Debezium MySQL Connector plugin that you previously downloaded:

4. Verify that the build has completed.
This command shows that the new build is complete (my-connect-cluster-connect-2). The
Debezium MySQL Connector is installed:

2.3. DEPLOYING A MYSQL DATABASE

At this point, you have deployed a Kafka cluster and the Kafka Connect service with the Debezium
MySQL Database Connector. However, you still need a database server from which Debezium can
capture changes. In this procedure, you will start a MySQL server with an example database.

Procedure

1. Start a MySQL database.
This command starts a MySQL database server preconfigured with an example inventory
database:

my-cluster-zookeeper-0 2/2 Running 0 107s
my-cluster-zookeeper-1 2/2 Running 0 107s
my-cluster-zookeeper-2 2/2 Running 0 107s
strimzi-cluster-operator-5c6d68c54-l4gdz 1/1 Running 0 8m53s

$ oc apply -f examples/kafka-connect/kafka-connect-s2i-single-node-kafka.yaml

$ oc get pods -l strimzi.io/name=my-connect-cluster-connect
NAME READY STATUS RESTARTS AGE
my-connect-cluster-connect-1-dxcs9 1/1 Running 0 7m

$ oc start-build my-connect-cluster-connect --from-dir ./my-plugins/

$ oc get build
NAME TYPE FROM STATUS STARTED DURATION
my-connect-cluster-connect-1 Source Complete 9 minutes ago 2m10s
my-connect-cluster-connect-2 Source Binary Complete 4 minutes ago 2m2s

Red Hat Integration 2020.Q1 Getting Started with Debezium

6

2. Configure credentials for the MySQL database.
This command updates the deployment configuration for the MySQL database to add the user
name and password:

3. Verify that the MySQL database is running.
This command shows that the MySQL database is running, and that the Pod is ready:

4. Open a new terminal and log into the sample inventory database.
This command opens a MySQL command line client in the Pod that is running the MySQL
database. It uses the user name and password that you previously configured:

5. List the tables in the inventory database.

$ oc new-app --name=mysql debezium/example-mysql:1.0

$ oc set env dc/mysql MYSQL_ROOT_PASSWORD=debezium MYSQL_USER=mysqluser
MYSQL_PASSWORD=mysqlpw

$ oc get pods -l app=mysql
NAME READY STATUS RESTARTS AGE
mysql-1-2gzx5 1/1 Running 1 23s

$ oc exec mysql-1-2gzx5 -it -- mysql -u mysqluser -p mysqlpw inventory
mysql: [Warning] Using a password on the command line interface can be insecure.
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7
Server version: 5.7.29-log MySQL Community Server (GPL)

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

mysql> show tables;
+---------------------+
| Tables_in_inventory |
+---------------------+
| addresses |
| customers |
| geom |
| orders |
| products |
| products_on_hand |
+---------------------+
6 rows in set (0.00 sec)

CHAPTER 2. STARTING THE SERVICES

7

6. Explore the database and view the pre-loaded data.
This example shows the customers table:

mysql> select * from customers;
+------+------------+-----------+-----------------------+
| id | first_name | last_name | email |
+------+------------+-----------+-----------------------+
1001	Sally	Thomas	sally.thomas@acme.com
1002	George	Bailey	gbailey@foobar.com
1003	Edward	Walker	ed@walker.com
1004	Anne	Kretchmar	annek@noanswer.org
+------+------------+-----------+-----------------------+
4 rows in set (0.00 sec)

Red Hat Integration 2020.Q1 Getting Started with Debezium

8

CHAPTER 3. CREATING A CONNECTOR TO MONITOR THE
INVENTORY DATABASE

After starting the Kafka, Debezium, and MySQL services, you are ready to create a connector instance
to monitor the inventory database.

In this procedure, you will create the connector instance by creating a KafkaConnector Custom
Resource (CR) that defines the connector instance, and then applying it. After applying the CR, the
connector instance will start monitoring the inventory database’s binlog. The binlog records all of the
database’s transactions (such as changes to individual rows and changes to the schemas). When a row in
the database changes, Debezium generates a change event.

NOTE

Typically, you would likely use the Kafka tools to manually create the necessary topics,
including specifying the number of replicas. However, for this tutorial, Kafka is configured
to automatically create the topics with just one replica.

Procedure

1. Open the examples/kafka-connect/kafka-connect-s2i-single-node-kafka.yaml file that you
used to deploy Kafka Connect.
Before you can create the MySQL connector instance, you must first enable connector
resources in the KafkaConnectS2I Custom Resource (CR).

2. In the metadata.annotations section, enable Kafka Connect to use connector resources.
This example adds an annotation to the examples/kafka-connect/kafka-connect-s2i-single-
node-kafka.yaml example file:

kafka-connect-s2i-single-node-kafka.yaml

3. Apply the updated kafka-connect-s2i-single-node-kafka.yaml file to update the
KafkaConnectS2I CR.

4. Create a MySQL connector instance to monitor the inventory database.
This example creates a KafkaConnector CR that defines the MySQL connector instance:

inventory-connector.yaml

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnectS2I
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 ...

$ oc apply -f kafka-connect-s2i-single-node-kafka.yaml

 apiVersion: kafka.strimzi.io/v1alpha1
 kind: KafkaConnector
 metadata:

CHAPTER 3. CREATING A CONNECTOR TO MONITOR THE INVENTORY DATABASE

9

1

2

3

4

5 6

7

8 9

The name of the connector.

Only one task should operate at any one time. Because the MySQL connector reads the
MySQL server’s binlog, using a single connector task ensures proper order and event
handling. The Kafka Connect service uses connectors to start one or more tasks that do
the work, and it automatically distributes the running tasks across the cluster of Kafka
Connect services. If any of the services stop or crash, those tasks will be redistributed to
running services.

The connector’s configuration.

The database host, which is the name of the container running the MySQL server (mysql).

A unique server ID and name. The server name is the logical identifier for the MySQL
server or cluster of servers. This name will be used as the prefix for all Kafka topics.

Only changes in the inventory database will be detected.

The connector will store the history of the database schemas in Kafka using this broker
(the same broker to which you are sending events) and topic name. Upon restart, the
connector will recover the schemas of the database that existed at the point in time in the
binlog when the connector should begin reading.

5. Apply the connector instance.

The inventory-connector connector is registered and starts to run against the inventory
database.

6. Verify that inventory-connector was created and has started to monitor the inventory
database.
You can verify the connector instance by watching the Kafka Connect log output as inventory-
connector starts.

a. Display the Kafka Connect log output:

 name: inventory-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster
 spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 1 2
 config: 3
 database.hostname: mysql 4
 database.port: 3306
 database.user: debezium
 database.password: dbz
 database.server.id: 184054 5
 database.server.name: dbserver1 6
 database.whitelist: inventory 7
 database.history.kafka.bootstrap.servers: my-cluster-kafka-bootstrap:9092 8
 database.history.kafka.topic: schema-changes.inventory 9

$ oc apply -f inventory-connector.yaml

Red Hat Integration 2020.Q1 Getting Started with Debezium

10

b. Review the log output and verify that the initial snapshot has been executed.
These lines show that the initial snapshot has started:

The snapshot involves a number of steps:

After completing the snapshot, Debezium begins monitoring the inventory database’s
binlog for change events:

$ oc logs $(oc get pods -o name -l strimzi.io/name=my-connect-cluster-connect)

...
2020-02-21 17:57:30,801 INFO Starting snapshot for jdbc:mysql://mysql:3306/?
useInformationSchema=true&nullCatalogMeansCurrent=false&useSSL=false&useUnicode=
true&characterEncoding=UTF-8&characterSetResults=UTF-
8&zeroDateTimeBehavior=CONVERT_TO_NULL&connectTimeout=30000 with user
'debezium' with locking mode 'minimal' (io.debezium.connector.mysql.SnapshotReader)
[debezium-mysqlconnector-dbserver1-snapshot]
2020-02-21 17:57:30,805 INFO Snapshot is using user 'debezium' with these MySQL
grants: (io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-
dbserver1-snapshot]
...

...
2020-02-21 17:57:30,822 INFO Step 0: disabling autocommit, enabling repeatable read
transactions, and setting lock wait timeout to 10
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:30,836 INFO Step 1: flush and obtain global read lock to prevent
writes to database (io.debezium.connector.mysql.SnapshotReader) [debezium-
mysqlconnector-dbserver1-snapshot]
2020-02-21 17:57:30,839 INFO Step 2: start transaction with consistent snapshot
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:30,840 INFO Step 3: read binlog position of MySQL master
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:30,843 INFO using binlog 'mysql-bin.000003' at position '154' and gtid
'' (io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
...
2020-02-21 17:57:34,423 INFO Step 9: committing transaction
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:34,424 INFO Completed snapshot in 00:00:03.632
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
...

...
2020-02-21 17:57:35,584 INFO Transitioning from the snapshot reader to the binlog
reader (io.debezium.connector.mysql.ChainedReader) [task-thread-inventory-connector-
0]
2020-02-21 17:57:35,613 INFO Creating thread debezium-mysqlconnector-dbserver1-
binlog-client (io.debezium.util.Threads) [task-thread-inventory-connector-0]

CHAPTER 3. CREATING A CONNECTOR TO MONITOR THE INVENTORY DATABASE

11

2020-02-21 17:57:35,630 INFO Creating thread debezium-mysqlconnector-dbserver1-
binlog-client (io.debezium.util.Threads) [blc-mysql:3306]
Feb 21, 2020 5:57:35 PM com.github.shyiko.mysql.binlog.BinaryLogClient connect
INFO: Connected to mysql:3306 at mysql-bin.000003/154 (sid:184054, cid:5)
2020-02-21 17:57:35,775 INFO Connected to MySQL binlog at mysql:3306, starting at
binlog file 'mysql-bin.000003', pos=154, skipping 0 events plus 0 rows
(io.debezium.connector.mysql.BinlogReader) [blc-mysql:3306]
...

Red Hat Integration 2020.Q1 Getting Started with Debezium

12

CHAPTER 4. VIEWING CHANGE EVENTS
After deploying the Debezium MySQL connector, it starts monitoring the inventory database for data
change events.

When you watched the connector start up, you saw that events were written to the following topics with
the dbserver1 prefix (the name of the connector):

dbserver1

The schema change topic to which all of the DDL statements are written.

dbserver1.inventory.products

Captures change events for the products table in the inventory database.

dbserver1.inventory.products_on_hand

Captures change events for the products_on_hand table in the inventory database.

dbserver1.inventory.customers

Captures change events for the customers table in the inventory database.

dbserver1.inventory.orders

Captures change events for the orders table in the inventory database.

For this tutorial, you will explore the dbserver1.inventory.customers topic. In this topic, you will see
different types of change events to see how the connector captured them:

Viewing a create event

Updating the database and viewing the update event

Deleting a record in the database and viewing the delete event

Restarting Kafka Connect and changing the database

4.1. VIEWING A CREATE EVENT

By viewing the dbserver1.inventory.customers topic, you can see how the MySQL connector
captured create events in the inventory database. In this case, the create events capture new
customers being added to the database.

Procedure

1. Open a new terminal and use kafka-console-consumer to consume the
dbserver1.inventory.customers topic from the beginning of the topic.
This command runs a simple consumer (kafka-console-consumer.sh) in the Pod that is
running Kafka (my-cluster-kafka-0):

The consumer returns four messages (in JSON format), one for each row in the customers
table. Each message contains the event records for the corresponding table row.

There are two JSON documents for each event: a key and a value. The key corresponds to the

$ oc exec -it my-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-consumer.sh \
 --bootstrap-server localhost:9092 \
 --from-beginning \
 --property print.key=true \
 --topic dbserver1.inventory.customers

CHAPTER 4. VIEWING CHANGE EVENTS

13

There are two JSON documents for each event: a key and a value. The key corresponds to the
row’s primary key, and the value shows the details of the row (the fields that the row contains,
the value of each field, and the type of operation that was performed on the row).

2. For the last event, review the details of the key.
Here are the details of the key of the last event (formatted for readability):

The event has two parts: a schema and a payload. The schema contains a Kafka Connect
schema describing what is in the payload. In this case, the payload is a struct named
dbserver1.inventory.customers.Key that is not optional and has one required field (id of type
int32).

The payload has a single id field, with a value of 1004.

By reviewing the key of the event, you can see that this event applies to the row in the
inventory.customers table whose id primary key column had a value of 1004.

3. Review the details of the same event’s value.
The event’s value shows that the row was created, and describes what it contains (in this case,
the id, first_name, last_name, and email of the inserted row).

Here are the details of the value of the last event (formatted for readability):

{
 "schema":{
 "type":"struct",
 "fields":[
 {
 "type":"int32",
 "optional":false,
 "field":"id"
 }
],
 "optional":false,
 "name":"dbserver1.inventory.customers.Key"
 },
 "payload":{
 "id":1004
 }
}

{
 "schema": {
 "type": "struct",
 "fields": [
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,

Red Hat Integration 2020.Q1 Getting Started with Debezium

14

 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "dbserver1.inventory.customers.Value",
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "dbserver1.inventory.customers.Value",
 "field": "after"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": true,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,

CHAPTER 4. VIEWING CHANGE EVENTS

15

 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "server_id"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_sec"
 },
 {
 "type": "string",
 "optional": true,
 "field": "gtid"
 },
 {
 "type": "string",
 "optional": false,
 "field": "file"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "pos"
 },
 {
 "type": "int32",
 "optional": false,
 "field": "row"
 },
 {
 "type": "boolean",
 "optional": true,
 "field": "snapshot"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "thread"
 },
 {
 "type": "string",
 "optional": true,
 "field": "db"
 },
 {
 "type": "string",
 "optional": true,
 "field": "table"
 }
],
 "optional": false,
 "name": "io.debezium.connector.mysql.Source",
 "field": "source"

Red Hat Integration 2020.Q1 Getting Started with Debezium

16

This portion of the event is much longer, but like the event’s key, it also has a schema and a
payload. The schema contains a Kafka Connect schema named
dbserver1.inventory.customers.Envelope (version 1) that can contain five fields:

op

A required field that contains a string value describing the type of operation. Values for the
MySQL connector are c for create (or insert), u for update, d for delete, and r for read (in
the case of a non-initial snapshot).

before

An optional field that, if present, contains the state of the row before the event occurred.
The structure will be described by the dbserver1.inventory.customers.Value Kafka
Connect schema, which the dbserver1 connector uses for all rows in the

 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "dbserver1.inventory.customers.Envelope",
 "version": 1
 },
 "payload": {
 "before": null,
 "after": {
 "id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": {
 "version": "1.0.3.Final",
 "name": "dbserver1",
 "server_id": 0,
 "ts_sec": 0,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 154,
 "row": 0,
 "snapshot": true,
 "thread": null,
 "db": "inventory",
 "table": "customers"
 },
 "op": "c",
 "ts_ms": 1486500577691
 }
}

CHAPTER 4. VIEWING CHANGE EVENTS

17

inventory.customers table.

after

An optional field that, if present, contains the state of the row after the event occurred. The
structure is described by the same dbserver1.inventory.customers.Value Kafka Connect
schema used in before.

source

A required field that contains a structure describing the source metadata for the event,
which in the case of MySQL, contains several fields: the connector name, the name of the
binlog file where the event was recorded, the position in that binlog file where the event
appeared, the row within the event (if there is more than one), the names of the affected
database and table, the MySQL thread ID that made the change, whether this event was
part of a snapshot, and, if available, the MySQL server ID, and the timestamp in seconds.

ts_ms

An optional field that, if present, contains the time (using the system clock in the JVM
running the Kafka Connect task) at which the connector processed the event.

NOTE

The JSON representations of the events are much longer than the rows they
describe. This is because, with every event key and value, Kafka Connect ships
the schema that describes the payload. Over time, this structure may change.
However, having the schemas for the key and the value in the event itself makes
it much easier for consuming applications to understand the messages, especially
as they evolve over time.

The Debezium MySQL connector constructs these schemas based upon the
structure of the database tables. If you use DDL statements to alter the table
definitions in the MySQL databases, the connector reads these DDL statements
and updates its Kafka Connect schemas. This is the only way that each event is
structured exactly like the table from where it originated at the time the event
occurred. However, the Kafka topic containing all of the events for a single table
might have events that correspond to each state of the table definition.

The JSON converter includes the key and value schemas in every message, so it
does produce very verbose events.

4. Compare the event’s key and value schemas to the state of the inventory database. In the
terminal that is running the MySQL command line client, run the following statement:

This shows that the event records you reviewed match the records in the database.

mysql> SELECT * FROM customers;
+------+------------+-----------+-----------------------+
| id | first_name | last_name | email |
+------+------------+-----------+-----------------------+
1001	Sally	Thomas	sally.thomas@acme.com
1002	George	Bailey	gbailey@foobar.com
1003	Edward	Walker	ed@walker.com
1004	Anne	Kretchmar	annek@noanswer.org
+------+------------+-----------+-----------------------+
4 rows in set (0.00 sec)

Red Hat Integration 2020.Q1 Getting Started with Debezium

18

4.2. UPDATING THE DATABASE AND VIEWING THE UPDATE EVENT

Now that you have seen how the Debezium MySQL connector captured the create events in the
inventory database, you will now change one of the records and see how the connector captures it.

By completing this procedure, you will learn how to find details about what changed in a database
commit, and how you can compare change events to determine when the change occurred in relation to
other changes.

Procedure

1. In the terminal that is running the MySQL command line client, run the following statement:

2. View the updated customers table:

3. Switch to the terminal running kafka-console-consumer to see a new fifth event.
By changing a record in the customers table, the Debezium MySQL connector generated a
new event. You should see two new JSON documents: one for the event’s key, and one for the
new event’s value.

Here are the details of the key for the update event (formatted for readability):

mysql> UPDATE customers SET first_name='Anne Marie' WHERE id=1004;
Query OK, 1 row affected (0.05 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM customers;
+------+------------+-----------+-----------------------+
| id | first_name | last_name | email |
+------+------------+-----------+-----------------------+
1001	Sally	Thomas	sally.thomas@acme.com
1002	George	Bailey	gbailey@foobar.com
1003	Edward	Walker	ed@walker.com
1004	Anne Marie	Kretchmar	annek@noanswer.org
+------+------------+-----------+-----------------------+
4 rows in set (0.00 sec)

 {
 "schema": {
 "type": "struct",
 "name": "dbserver1.inventory.customers.Key"
 "optional": false,
 "fields": [
 {
 "field": "id",
 "type": "int32",
 "optional": false
 }
]
 },
 "payload": {
 "id": 1004
 }
 }

CHAPTER 4. VIEWING CHANGE EVENTS

19

1

2

3

4

5

This key is the same as the key for the previous events.

Here is that new event’s value. There are no changes in the schema section, so only the
payload section is shown (formatted for readability):

The before field now has the state of the row with the values before the database commit.

The after field now has the updated state of the row, and the first_name value is now
Anne Marie.

The source field structure has many of the same values as before, except that the ts_sec
and pos fields have changed (the file might have changed in other circumstances).

The op field value is now u, signifying that this row changed because of an update.

The ts_ms field shows the time stamp for when Debezium processed this event.

By viewing the payload section, you can learn several important things about the update event:

By comparing the before and after structures, you can determine what actually changed in
the affected row because of the commit.
By reviewing the source structure, you can find information about MySQL’s record of the

{
 "schema": {...},
 "payload": {
 "before": { 1
 "id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "after": { 2
 "id": 1004,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": { 3
 "name": "1.0.3.Final",
 "name": "dbserver1",
 "server_id": 223344,
 "ts_sec": 1486501486,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 364,
 "row": 0,
 "snapshot": null,
 "thread": 3,
 "db": "inventory",
 "table": "customers"
 },
 "op": "u", 4
 "ts_ms": 1486501486308 5
 }
}

Red Hat Integration 2020.Q1 Getting Started with Debezium

20

By reviewing the source structure, you can find information about MySQL’s record of the
change (providing traceability).

By comparing the payload section of an event to other events in the same topic (or a
different topic), you can determine whether the event occurred before, after, or as part of
the same MySQL commit as another event.

4.3. DELETING A RECORD IN THE DATABASE AND VIEWING THE
DELETE EVENT

Now that you have seen how the Debezium MySQL connector captured the create and update events in
the inventory database, you will now delete one of the records and see how the connector captures it.

By completing this procedure, you will learn how to find details about delete events, and how Kafka uses
log compaction to reduce the number of delete events while still enabling consumers to get all of the
events.

Procedure

1. In the terminal that is running the MySQL command line client, run the following statement:

NOTE

If the above command fails with a foreign key constraint violation, then you must
remove the reference of the customer address from the addresses table using
the following statement:

2. Switch to the terminal running kafka-console-consumer to see two new events.
By deleting a row in the customers table, the Debezium MySQL connector generated two new
events.

3. Review the key and value for the first new event.
Here are the details of the key for the first new event (formatted for readability):

mysql> DELETE FROM customers WHERE id=1004;
Query OK, 1 row affected (0.00 sec)

mysql> DELETE FROM addresses WHERE customer_id=1004;

{
 "schema": {
 "type": "struct",
 "name": "dbserver1.inventory.customers.Key"
 "optional": false,
 "fields": [
 {
 "field": "id",
 "type": "int32",
 "optional": false
 }
]
 },
 "payload": {

CHAPTER 4. VIEWING CHANGE EVENTS

21

1

2

3

4

5

This key is the same as the key in the previous two events you looked at.

Here is the value of the first new event (formatted for readability):

The before field now has the state of the row that was deleted with the database commit.

The after field is null because the row no longer exists.

The source field structure has many of the same values as before, except the ts_sec and
pos fields have changed (the file might have changed in other circumstances).

The op field value is now d, signifying that this row was deleted.

The ts_ms field shows the time stamp for when Debezium processes this event.

Thus, this event provides a consumer with the information that it needs to process the removal
of the row. The old values are also provided, because some consumers might require them to
properly handle the removal.

4. Review the key and value for the second new event.
Here is the key for the second new event (formatted for readability):

 "id": 1004
 }
}

{
 "schema": {...},
 "payload": {
 "before": { 1
 "id": 1004,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "after": null, 2
 "source": { 3
 "name": "1.0.3.Final",
 "name": "dbserver1",
 "server_id": 223344,
 "ts_sec": 1486501558,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 725,
 "row": 0,
 "snapshot": null,
 "thread": 3,
 "db": "inventory",
 "table": "customers"
 },
 "op": "d", 4
 "ts_ms": 1486501558315 5
 }
}

Red Hat Integration 2020.Q1 Getting Started with Debezium

22

Once again, this key is exactly the same key as in the previous three events you looked at.

Here is the value of that same event (formatted for readability):

If Kafka is set up to be log compacted , it will remove older messages from the topic if there is at
least one message later in the topic with same key. This last event is called a tombstone event,
because it has a key and an empty value. This means that Kafka will remove all prior messages
with the same key. Even though the prior messages will be removed, the tombstone event
means that consumers can still read the topic from the beginning and not miss any events.

4.4. RESTARTING THE KAFKA CONNECT SERVICE

Now that you have seen how the Debezium MySQL connector captures create, update, and delete
events, you will now see how it can capture change events even when it is not running.

The Kafka Connect service automatically manages tasks for its registered connectors. Therefore, if it
goes offline, when it restarts, it will start any non-running tasks. This means that even if Debezium is not
running, it can still report changes in a database.

In this procedure, you will stop Kafka Connect, change some data in the database, and then restart Kafka
Connect to see the change events.

Procedure

1. Stop the Kafka Connect service.

a. Open the deployment configuration for the Kafka Connect service.

The deployment configuration opens:

 {
 "schema": {
 "type": "struct",
 "name": "dbserver1.inventory.customers.Key"
 "optional": false,
 "fields": [
 {
 "field": "id",
 "type": "int32",
 "optional": false
 }
]
 },
 "payload": {
 "id": 1004
 }
 }

{
 "schema": null,
 "payload": null
}

$ oc edit dc/my-connect-cluster-connect

CHAPTER 4. VIEWING CHANGE EVENTS

23

b. Change the spec.replicas value to 0.

c. Save the deployment configuration.

d. Verify that the Kafka Connect service has stopped.
This command shows that the Kafka Connect service is completed, and that no Pods are
running:

2. While the Kafka Connect service is down, switch to the terminal running the MySQL client, and
add a new record to the database.

3. Restart the Kafka Connect service.

a. Open the deployment configuration for the Kafka Connect service.

The deployment configuration opens:

b. Change the spec.replicas value to 1.

c. Save the deployment configuration.

d. Verify that the Kafka Connect service has restarted.
This command shows that the Kafka Connect service is running, and that the Pod is ready:

4. Switch to the terminal that is running kafka-console-consumer and review the messages.

You should see the record that you created when Kafka Connect was offline (formatted for

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 ...
spec:
 replicas: 1
...

$ oc get pods -l strimzi.io/name=my-connect-cluster-connect
NAME READY STATUS RESTARTS AGE
my-connect-cluster-connect-1-dxcs9 0/1 Completed 0 7h

mysql> INSERT INTO customers VALUES (default, "Sarah", "Thompson", "kitt@acme.com");

$ oc edit dc/my-connect-cluster-connect

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 ...
spec:
 replicas: 0
...

$ oc get pods -l strimzi.io/name=my-connect-cluster-connect
NAME READY STATUS RESTARTS AGE
my-connect-cluster-connect-2-q9kkl 1/1 Running 0 74s

Red Hat Integration 2020.Q1 Getting Started with Debezium

24

You should see the record that you created when Kafka Connect was offline (formatted for
readability):

{
 ...
 "payload":{
 "id":1005
 }
}
{
 ...
 "payload":{
 "before":null,
 "after":{
 "id":1005,
 "first_name":"Sarah",
 "last_name":"Thompson",
 "email":"kitt@acme.com"
 },
 "source":{
 "version":"{debezium-version}",
 "connector":"mysql",
 "name":"dbserver1",
 "ts_ms":1582581502000,
 "snapshot":"false",
 "db":"inventory",
 "table":"customers",
 "server_id":223344,
 "gtid":null,
 "file":"mysql-bin.000004",
 "pos":364,
 "row":0,
 "thread":5,
 "query":null
 },
 "op":"c",
 "ts_ms":1582581502317
 }
}

CHAPTER 4. VIEWING CHANGE EVENTS

25

CHAPTER 5. NEXT STEPS
After completing the tutorial, consider the following next steps:

Explore the tutorial further.
Use the MySQL command line client to add, modify, and remove rows in the database tables,
and see the effect on the topics. Keep in mind that you cannot remove a row that is referenced
by a foreign key.

Plan a Debezium deployment.
You can install Debezium in OpenShift or on Red Hat Enterprise Linux. For more information,
see the following:

Installing Debezium on OpenShift

Installing Debezium on RHEL

Red Hat Integration 2020.Q1 Getting Started with Debezium

26

https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/installing_change_data_capture_on_openshift/
https://access.redhat.com/documentation/en-us/red_hat_integration/2020.Q1/html-single/installing_change_data_capture_on_rhel/

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION TO DEBEZIUM
	CHAPTER 2. STARTING THE SERVICES
	2.1. SETTING UP A KAFKA CLUSTER
	2.2. DEPLOYING KAFKA CONNECT
	2.3. DEPLOYING A MYSQL DATABASE

	CHAPTER 3. CREATING A CONNECTOR TO MONITOR THE INVENTORY DATABASE
	CHAPTER 4. VIEWING CHANGE EVENTS
	4.1. VIEWING A CREATE EVENT
	4.2. UPDATING THE DATABASE AND VIEWING THE UPDATE EVENT
	4.3. DELETING A RECORD IN THE DATABASE AND VIEWING THE DELETE EVENT
	4.4. RESTARTING THE KAFKA CONNECT SERVICE

	CHAPTER 5. NEXT STEPS

