
Red Hat Integration 2020.Q1

Developing Clients for Data Virtualization

TECHNOLOGY PREVIEW - Guide for client developers

Last Updated: 2021-02-19

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

TECHNOLOGY PREVIEW - Guide for client developers

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to connect to Data Virtualization and access your data through the client interfaces.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. DEVELOPING CLIENTS FOR DATA VIRTUALIZATION

CHAPTER 2. JDBC COMPATIBILITY
2.1. GENERATED KEYS
2.2. CONNECTING TO A DATA VIRTUALIZATION SERVER

2.2.1. OpenTracing compatibility
2.2.2. Driver Connection

2.2.2.1. Local Connections
2.2.2.2. URL Connection Properties
2.2.2.3. Client SSL Settings

2.2.2.3.1. Option 1: Java SSL properties
2.2.2.3.2. Option 2: Data Virtualization Specific Properties

2.2.3. Additional Socket Client Settings
2.3. PREPARED STATEMENTS
2.4. RESULTSET LIMITATIONS
2.5. JDBC EXTENSIONS

2.5.1. Statement Extensions
2.5.2. Partial Results Mode
2.5.3. Non-blocking Statement Execution

2.5.3.1. Continuous Execution
2.5.4. ResultSet Extensions
2.5.5. Connection Extensions

2.6. INCOMPATIBLE JDBC METHODS
2.6.1. Incompatible Classes and Methods in "java.sql"
2.6.2. Incompatible Classes and Methods in "javax.sql"

CHAPTER 3. ODBC COMPATIBILITY
3.1. KNOWN LIMITATIONS:
3.2. INSTALLATION
3.3. CONFIGURATION

3.3.1. Connection Settings
3.3.1.1. Data Virtualization Connection Settings

3.4. CONFIGURING THE DATA SOURCE NAME (DSN)
3.4.1. Windows Installation
3.4.2. Other *nix Platform Installations

3.5. DSN LESS CONNECTION
3.6. CONFIGURING CONNECTION PROPERTIES WITH ODBC

CHAPTER 4. ODATA COMPATIBILITY
4.1. WHAT IS ODATA
4.2. DATA VIRTUALIZATION COMPATIBILITY FOR ODATA
4.3. ODATA VERSION 4.0 COMPATIBILITY

4.3.1. How to Access the data?
4.3.2. Query Basics

4.3.2.1. How to execute a stored procedure?
4.3.2.2. Not seeing all the rows?
4.3.2.3. "EntitySet Not Found" error?

4.3.3. How to update your data?
4.3.4. Configuration
4.3.5. Limitations
4.3.6. Client Tools for Access
4.3.7. OData Metadata (How Data Virtualization interprets the relational schema into OData’s $metadata)

4

5
5
5
6
6
7
7
9

10
10
12
13
14
14
14
15
17
18
18
19
19
19
21

22
22
23
23
23
24
24
24
27
28
29

30
30
30
30
30
30
31
31
32
32
33
33
33
34

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

4.3.7.1. Functions And Actions
4.3.8. OpenAPI Metadata

CHAPTER 5. GEOSERVER INTEGRATION
5.1. PREREQUISITES
5.2. GEOSERVER CONFIGURATION
5.3. ADDITIONAL CONSIDERATIONS

CHAPTER 6. QGIS INTEGRATION
6.1. PREREQUISITES
6.2. QGIS CONFIGURATION
6.3. ADDITIONAL CONSIDERATIONS

CHAPTER 7. SQLALCHEMY INTEGRATION
7.1. PREREQUISITES
7.2. USAGE
7.3. LIMITATIONS
7.4. APPLICATION COMPATIBILITY

7.4.1. Superset

CHAPTER 8. NODE.JS INTEGRATION
8.1. PREREQUISITES
8.2. USAGE

CHAPTER 9. ADO.NET INTEGRATION
9.1. PREREQUISITES
9.2. NPGSQL CONFIGURATION
9.3. KNOWN LIMITATIONS

CHAPTER 10. REAUTHENTICATION

CHAPTER 11. EXECUTION PROPERTIES

CHAPTER 12. SET STATEMENT

CHAPTER 13. SHOW STATEMENT

CHAPTER 14. TRANSACTIONS
14.1. LOCAL TRANSACTIONS

14.1.1. JDBC Specific
14.1.1.1. Turning Off JDBC Local Transaction Controls

14.1.2. Transaction Statements
14.2. REQUEST LEVEL TRANSACTIONS

14.2.1. Multiple Insert Batches
14.3. USING GLOBAL TRANSACTIONS
14.4. RESTRICTIONS

14.4.1. Application Restrictions
14.4.2. Enterprise Information System (EIS) compatibility

35
36

37
37
37
37

39
39
39
39

40
40
40
40
40
40

42
42
42

43
43
43
43

44

45

46

48

49
49
49
50
50
50
51
51
52
52
53

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

2

Table of Contents

3

CHAPTER 1. DEVELOPING CLIENTS FOR DATA
VIRTUALIZATION

This guide intended for developers that are trying to write 3rd party applications that interact with Data
Virtualization. You can find information about connection mechanisms, extensions to the JDBC API,
ODBC, SSL and so forth.

Before one can delve into Data Virtualization it is very important to learn few basic constructs of Data
Virtualization, like what is VDB? what is Model? etc. For that please read the short introduction.

IMPORTANT

Data virtualization is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview/.

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

4

http://teiid.io/about/basics/
https://access.redhat.com/support/offerings/techpreview/

CHAPTER 2. JDBC COMPATIBILITY
Data Virtualization provides a robust JDBC driver that implements most of the JDBC API according to
the latest specification and compatible Java version. Most tooling designed to work with JDBC should
work seamlessly with the Data Virtualization driver. When in doubt, see Incompatible JDBC Methods for
functionality that has yet to be implemented.

If you’re needs go beyond JDBC, Data Virtualization has also provided JDBC Extensions for asynch
handling, federation, and other features.

2.1. GENERATED KEYS

Data Virtualization can return generated keys for JDBC sources and from Data Virtualization temp
tables with SERIAL primary key columns. However the current implementation will return only the last
set of keys generated and will return the key results directly from the source - no view projection of
other intermediate handling is performed. For most scenarios (single source inserts) this handling is
sufficient. A custom solution may need to be developed if you are using a FOR EACH ROW instead of
trigger to process your inserts and target multiple tables that each return generated keys. It is possible
to develop a UDF that also manipulates the returned generated keys - see the
org.teiid.CommandContext methods dealing with generated keys for more.

NOTE

You cannot use Generated Keys when the JDBC Batched updates is used to insert the
values into the source table.

2.2. CONNECTING TO A DATA VIRTUALIZATION SERVER

The Data Virtualization JDBC API provides Java Database Connectivity (JDBC) access to a Virtual
Database (VDB) deployed on Data Virtualization. The Data Virtualization JDBC API is compatible with
the JDBC 4.0 specification; however, it is not compatible with some methods. You cannot use some
advanced features, such as updatable result sets or SQL3 data types.

Java client applications connecting to a Data Virtualization Server will need to use at least the Java 1.8
JDK. Earlier versions of Java are not compatible. You may attempt to use a client driver from earlier
Teiid versions that were compatible with the target JRE.

Once you have the VDB deployed in Data Virtualization, client applications can connect to the Data
Virtualization Server and issue SQL queries against deployed VDB using JDBC API. If you are new to
JDBC, see Java’s documentation about JDBC. Data Virtualization ships with teiid-1.3.0-jdbc.jar that can
be found in the downloads.

You can also obtain the Data Virtualization JDBC from the Maven Repository
https://oss.sonatype.org/content/repositories/releases/ using the coordinates:

Important classes in the client JAR:

<dependency>
 <groupId>org.teiid</groupId>
 <artifactId>teiid</artifactId>
 <classifier>jdbc</classifier>
 <version>1.3.0</version>
</dependency>

CHAPTER 2. JDBC COMPATIBILITY

5

Unsupported_JDBC_Methods.adoc
JDBC_Extensions.adoc
http://docs.oracle.com/javase/tutorial/jdbc/index.html
http://teiid.io/teiid_runtimes/teiid_wildfly/downloads/
https://oss.sonatype.org/content/repositories/releases/

org.teiid.jdbc.TeiidDriver- allows JDBC connections using the DriverManager class.

org.teiid.jdbc.TeiidDatasource- allows JDBC connections using the DataSource
XADataSource class. You should use this class to create managed or XA connections.

Once you have established a connection with the Data Virtualization Server, you can use standard JDBC
API classes to interrogate metadata and execute queries.

2.2.1. OpenTracing compatibility

OpenTracing is optional for the client driver. For remote connections to propagate the span the driver
must have the appropriate OpenTracing jars in its classpath. This can be done via a maven dependency:

where version.opentracing (0.31 for Data Virtualization 11.0) is defined in the project integration bom.

Or you may manually include the opentracing-util, opentracing-api, and opentracing-noop jars as
needed by the tooling or other environment where the Data Virtualization client jar is utilized.

OpenTracing support in the client and server requires that the respective runtimes have an appropriate
tracing client installed and available via the GlobalTracer.

2.2.2. Driver Connection

Use org.teiid.jdbc.TeiidDriver as the driver class.

Use the following URL format for JDBC connections:

NOTE

The JDBC client will have both JRE and server compatibility considerations. Unless
otherwise stated a client jar will typically be forward and backwards compatible with one
major version of the server. You should attempt to keep the client up-to-date though as
fixes and features are made on to the client.

URL Components

1. <vdb-name> - Name of the VDB you are connecting to. Optionally VDB name can also contain
version information inside it. For example: "myvdb.2", this is equivalent to supplying the
"version=2" connection property defined below. However, use of vdb name in this format and
the "version" property at the same time is not allowed.

2. mm - defines Data Virtualization JDBC protocol, mms defines a secure channel (see SSL Client
Connections for more)

3. <host> - defines the server where the Data Virtualization Server is installed. If you are using IPv6
binding address as the host name, place it in square brackets. ex:[::1]

<dependency>
 <groupId>io.opentracing</groupId>
 <artifactId>opentracing-util</artifactId>
 <version>${version.opentracing}</version>
</dependency>

jdbc:teiid:<vdb-name>[@mm[s]://<host>:<port>][;prop-name=prop-value]*

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

6

http://docs.oracle.com/javase/8/docs/api/java.sql/java/sql/DriverManager.html
http://docs.oracle.com/javase/8/docs/api/java.sql/javax/sql/DataSource.html
http://docs.oracle.com/javase/8/docs/api/java.sql/javax/sql/XADataSource.html
http://opentracing.io/
SSL_Client_Connections.adoc

4. <port> - defines the port on which the Data Virtualization Server is listening for incoming JDBC
connections.

5. [prop-name=prop-value] - additionally you can supply any number of name value pairs
separated by semi-colon [;]. All compatible URL properties are defined in the connection
properties section. Property values should be URL encoded if they contain reserved characters,
e.g. (’?’, '=', ';', etc.)

2.2.2.1. Local Connections

To make a in-VM connection, omit the protocol and host/port: jdbc:teiid:vdb-name;props

2.2.2.2. URL Connection Properties

The following table shows all the connection properties that you can use with Data Virtualization JDBC
Driver URL connection string, or on the Data Virtualization JDBC Data Source class.

Table 2.1. Connection Properties

Property Name Type Description

ApplicationName String Name of the client application; allows the administrator to
identify the connections

FetchSize int Size of the resultset; The default size if 500. ⇐0 indicates
that the default should be used.

partialResultsMod
e

boolean Enable/disable partial results mode. Default false. See the
Partial Results Mode section.

autoCommitTxn String Only applies only when "autoCommit" is set to "true". This
determines how a executed command needs to be
transactionally wrapped inside the Data Virtualization
engine to maintain the data integrity.

ON - Always wrap command in distributed
transaction

OFF - Never wrap command in distributed
transaction

DETECT (default)- If the executed command is
spanning more than one source it automatically
uses distributed transaction. Transactions for more
information.

disableLocalTxn boolean If "true", the autoCommit setting, commit and rollback will
be ignored for local transactions. Default false.

user String User name

Password String Credential for user

CHAPTER 2. JDBC COMPATIBILITY

7

Driver_Connection.adoc
Partial_Results_Mode.adoc
Transactions.adoc

ansiQuotedIdentif
iers

boolean Sets the parsing behavior for double quoted entries in SQL.
The default, true, parses doubled quoted entries as
identifiers. If set to false, then double quoted values that
are valid string literals will be parsed as string literals.

version integer Version number of the VDB

resultSetCacheM
ode

boolean ResultSet caching is turned on/off. Default false.

autoFailover boolean If true, will automatically select a new server instance after a
communication exception. Default false. This is typically not
needed when connections are managed, as the connection
can be purged from the pool. If true in embedded mode,
connections will reconnect to a newer VDB of the same
name/version.

SHOWPLAN String (typically not set as a connection property) Can be ON,
OFF,DEBUG;

ON returns the query plan along with the results

DEBUG additionally prints the query planner
debug information in the log and returns it with the
results. Both the plan and the log are available
through JDBC API extensions.

Default OFF.

NoExec String (typically not set as a connection property) Can be ON,
OFF; ON prevents query execution, but parsing and
planning will still occur. Default OFF.

PassthroughAuth
entication

boolean Only applies to "local" connections. When this option is set
to "true", then Data Virtualization looks for already
authenticated security context on the calling thread. If one
found it uses that users credentials to create session. Data
Virtualization also verifies that the same user is using this
connection during the life of the connection. if it finds a
different security context on the calling thread, it switches
the identity on the connection, if the new user is also eligible
to log in to Data Virtualization otherwise connection fails to
execute.

useCallingThread boolean Only applies to "local" connections. When this option is set
to "true" (the default), then the calling thread will be used
to process the query. If false, then an engine thread will be
used.

Property Name Type Description

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

8

QueryTimeout integer Default query timeout in seconds. Must be >= 0. 0 indicates
no timeout. Can be overriden by
Statement.setQueryTimeout. Default 0.

useJDBC4Colum
nNameAndLabelS
emantics

boolean A change was made in JDBC4 to return unaliased column
names as the ResultSetMetadata column name. Prior to
this, if a column alias were used it was returned as the
column name. Setting this property to false will enable
backwards compatibility with JDBC3 and earlier. Defaults to
true.

jaasName String JAAS configuration name. Only applies when configuring a
GSS authentication. Defaults to Data Virtualization. See the
Security Guide for configuration required for GSS.

kerberosServicePr
incipleName

String Kerberos authenticated principle name. Only applies when
configuring a GSS authentication. See the Security Guide
for configuration required for GSS

encryptRequest boolean Only applies to non-SSL socket connections. When "true"
the request message and any associate payload will be
encrypted using the connection cryptor. Default false.

disableResultSetF
etchSize

boolean In some situations tooling may choose undesirable fetch
sizes for processing results. Set to true to disable honoring
ResultSet.setFetchSize. Default false.

loginTimeout integer The login timeout in seconds. Must be >= 0. 0 indicates no
specific timeout, but other timeouts may apply. If a
connection cannot be created in approximately the the
timeout value an exception will be thrown. A default of 0
does not mean that the login will wait indefinitely. Typically
is an active vdb cannot be found the login will fail at that
time. Local connections that specify a vdb version however
can wait by default for up to
org.teiid.clientVdbLoadTimeoutMillis.

reportAsViews boolean If DatabaseMetaData will report Data Virtualization views as
a VIEW table type. If false then Data Virtualization views will
be reported as a TABLE. Default true.

Property Name Type Description

2.2.2.3. Client SSL Settings

The following sections define the properties required for each SSL mode. Note that when connecting to
Data Virtualization Server with SSL enabled, you MUST use the "mms" protocol, instead of "mm" in the
JDBC connection URL, for example

CHAPTER 2. JDBC COMPATIBILITY

9

https://teiid.github.io/teiid-documents/master/content/admin/System_Properties.html

There are two different sets of properties that a client can configure to enable 1-way or 2-way SSL.

2.2.2.3.1. Option 1: Java SSL properties

These are standard Java defined system properties to configure the SSL under any JVM, Data
Virtualization is not unique in its use of SSL. Provide the following system properties to the client VM
process.

1-way SSL

2-way SSL

2.2.2.3.2. Option 2: Data Virtualization Specific Properties

Use this option when the above "javax" based properties are already in use by the host process. For
example if your client application is a Tomcat process that is configured for https protocol and the
above Java based properties are already in use, and importing Data Virtualization-specific certificate
keys into those https certificate keystores is not allowed.

In this scenario, a different set of Data Virtualization-specific SSL properties can be set as system
properties or defined inside the a "teiid-client-settings.properties" file. A sample "teiid-client-
settings.properties" file can be found inside the "teiid-<version>-client.jar" file at the root called "teiid-
client-settings.orig.properties". Extract this file, make a copy, change the property values required for
the chosen SSL mode, and place this file in the client application’s classpath before the "teiid-<version>-
client.jar" file.

SSL properties and definitions that can be set in a "teiid-client-settings.properties" file are shown below.

jdbc:teiid:<myVdb>@mms://<host>:<port>

-Djavax.net.ssl.trustStore=<dir>/server.truststore (required)
-Djavax.net.ssl.trustStorePassword=<password> (optional)
-Djavax.net.ssl.keyStoreType (optional)

-Djavax.net.ssl.keyStore=<dir>/client.keystore (required)
-Djavax.net.ssl.keyStrorePassword=<password> (optional)
-Djavax.net.ssl.trustStore=<dir>/server.truststore (required)
-Djavax.net.ssl.trustStorePassword=<password> (optioanl)
-Djavax.net.ssl.keyStroreType=<keystore type> (optional)

##
SSL Settings
##

#
The key store type. Defaults to JKS
#

org.teiid.ssl.keyStoreType=JKS

#
The key store algorithm, defaults to
the system property "ssl.TrustManagerFactory.algorithm"
#

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

10

#org.teiid.ssl.algorithm=

#
The classpath or filesystem location of the
key store.
#
This property is required only if performing 2-way
authentication that requires a specific private
key.
#

#org.teiid.ssl.keyStore=

#
The key store password (not required)
#

#org.teiid.ssl.keyStorePassword=

#
The key alias(not required, if given named certificate is used)
#

#org.teiid.ssl.keyAlias=

#
The key password(not required, used if the key password is different than the keystore password)
#

#org.teiid.ssl.keyPassword=

#
The classpath or filesystem location of the
trust store.
#
This property is required if performing 1-way
authentication that requires trust not provided
by the system defaults.
#

#org.teiid.ssl.trustStore=

#
The trust store password (not required)
#

#org.teiid.ssl.trustStorePassword=

#
The cipher protocol, defaults to TLSv3
#

org.teiid.ssl.protocol=TLSv1

#

CHAPTER 2. JDBC COMPATIBILITY

11

1-way SSL

2-way SSL

2.2.3. Additional Socket Client Settings

A "teiid-client-settings.properties" file can be used to configure Data Virtualization low level and SSL
socket connection properties. Currently only a single properties file is expected per driver/classloader
combination. A sample "teiid-client-settings.properties" file can be found inside the "teiid-<version>-
client.jar" file at the root called "teiid-client-settings.orig.properties". To customize the settings, extract
this file, make a copy, change the property values accordingly, and place this file in the client
application’s classpath before the "teiid-<version>-client.jar" file. Typically clients will not need to adjust
the non-SSL properties. For reference the properties are:

Whether to allow anonymous SSL
(the TLS_DH_anon_WITH_AES_128_CBC_SHA cipher suite)
defaults to true
#

org.teiid.ssl.allowAnon=true

#
Whether to allow trust all server certificates
defaults to false
#

#org.teiid.ssl.trustAll=false

#
Whether to check for expired server certificates (no affect in anonymous mode or with trustAll=true)
defaults to false
#

#org.teiid.ssl.checkExpired=false

org.teiid.ssl.trustStore=<dir>/server.truststore (required)

org.teiid.ssl.keyStore=<dir>/client.keystore (required)
org.teiid.ssl.trustStore=<dir>/server.truststore (required)

##
Misc Socket Configuration
##

#
The time in milliseconds for socket timeouts.
Timeouts during the initialization, handshake, or
a server ping may be treated as an error.
#
This is the lower bound for all other timeouts
the JDBC login timeout.
#
Typically this should be left at the default of 1000
(1 second). Setting this value too low may cause read

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

12

SSL_Client_Connections.html

NOTE

All properties listed in "teiid-client-settings.properties" can also be set as System or env
properties.

2.3. PREPARED STATEMENTS

Data Virtualization provides a standard implementation of java.sql.PreparedStatement.
PreparedStatements can be very important in speeding up common statement execution, since they
allow the server to skip parsing, resolving, and planning of the statement. See the Java documentation
for more information on PreparedStatement usage.

PreparedStatement Considerations

It is not necessary to pool client side Data Virtualization PreparedStatements, since Data

errors.
#

org.teiid.sockets.soTimeout=1000

#
Set the max time to live (in milliseconds) for non-execution
synchronous calls.
#

org.teiid.sockets.synchronousttl=240000

#
Set the socket receive buffer size (in bytes)
0 indicates that the default socket setting will be used.
#

org.teiid.sockets.receiveBufferSize=0

#
Set the socket send buffer size (in bytes)
0 indicates that the default socket setting will be used.
#

org.teiid.sockets.sendBufferSize=0

#
Set to true to enable Nagle's algorithm to conserve bandwidth
by minimizing the number of segments that are sent.
#

org.teiid.sockets.conserveBandwidth=false

#
Maximum number of bytes per server message.
May need to be increased when using custom types and/or large batch sizes.
#

org.teiid.sockets.maxObjectSize=33554432

CHAPTER 2. JDBC COMPATIBILITY

13

http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/preparedstatement.html#1000039

It is not necessary to pool client side Data Virtualization PreparedStatements, since Data
Virtualization performs plan caching on the server side.

The number of cached plans is configurable (see the Admin Guide), and are purged by the least
recently used (LRU).

Cached plans are not distributed through a cluster. A new plan must be created for each cluster
member.

Plans are cached for the entire VDB or for just a particular session. The scope of a plan is
detected automatically based upon the functions evaluated during it’s planning process.

Stored procedures executed through a CallableStatement have their plans cached just as a
PreparedStatement.

Bind variable types in function signatures, e.g. "where t.col = abs(?)" can be determined if the
function has only one signature or if the function is used in a predicate where the return type can
be determined. In more complex situations it may be necessary to add a type hint with a cast or
convert, e.g. upper(convert(?, string)).

If you have the same value of a binding repeated multiple times in your query, you can
consolidate that usage in a couple of ways.

The query can be enclosed as a anonymous procedure block:

Note the cast of the bind variable, which is due to a small issue with the resolver that isn’t inferring the
type from the variable declaration.

You can also use the PostgreSQL like feature of $n positional bindings:

2.4. RESULTSET LIMITATIONS

The following limitations apply to result sets in Data Virtualization:

TYPE_SCROLL_SENSITIVE are not compatible.

UPDATABLE ResultSets are not compatible.

You cannot return multiple ResultSets from a Procedure execution.

2.5. JDBC EXTENSIONS

These are custom extensions to JDBC API from Data Virtualization to provide compatibility with various
features.

2.5.1. Statement Extensions

The Data Virtualization statement extension interface, org.teiid.jdbc.TeiidStatement, provides

BEGIN
 DECLARE string PARAM1 = cast(? as string);
 SELECT ... WHERE COLUMN1 = $1 AND COLUMN2 = $1 ...;

SELECT ... WHERE COLUMN1 = $1 AND COLUMN2 = $1 ...

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

14

The Data Virtualization statement extension interface, org.teiid.jdbc.TeiidStatement, provides
functionality beyond the JDBC standard. To use the extension interface, simply cast or unwap the
statement returned by the Connection. The following methods are provided on the extension interface:

Table 2.2. Connection Properties

Method Name Description

getAnnotations Get the query engine annotations if the statement
was last executed with SHOWPLAN ON/DEBUG.
Each org.teiid.client.plan.Annotation contains a
description, a category, a severity, and possibly a
resolution of notes recorded during query planning
that can be used to understand choices made by the
query planner.

getDebugLog Get the debug log if the statement was last executed
with SHOWPLAN DEBUG.

getExecutionProperty Get the current value of an execution property on
this statement object.

getPlanDescription Get the query plan description if the statement was
last executed with SHOWPLAN ON/DEBUG. The
plan is a tree made up of
org.teiid.client.plan.PlanNode objects. Typically
PlanNode.toString() or PlanNode.toXml() will
be used to convert the plan into a textual form.

getRequestIdentifier Get an identifier for the last command executed on
this statement. If no command has been executed
yet, null is returned.

setExecutionProperty Set the execution property on this statement. See
the Execution Properties section for more
information. It is generally preferable to use the SET
Statement unless the execution property applies only
to the statement being executed.

setPayload Set a per-command payload to pass to translators.
Currently the only built-in use is for sending hints for
Oracle data source.

2.5.2. Partial Results Mode

You can use a "partial results" query mode with the Data Virtualization Server. In this mode, the behavior
of the query processor changes so that the server returns results even when some data sources are
unavailable.

For example, suppose that two data sources exist for different suppliers and your data designers have
created a virtual group that creates a union between the information from the two suppliers. If your
application submits a query without using partial results query mode and one of the suppliers’ databases

CHAPTER 2. JDBC COMPATIBILITY

15

Execution_Properties.adoc
SET_Statement.adoc

is down, the query against the virtual group returns an exception. However, if your application runs the
same query in "partial results" query mode, the server returns data from the running data source and no
data from the data source that is down.

When using "partial results" mode, if a source throws an exception during processing it does not cause
the user’s query to fail. Rather, that source is treated as returning no more rows after the failure point.
Most commonly, that source will return 0 rows.

This behavior is most useful when using UNION or OUTER JOIN queries as these operations handle
missing information in a useful way. Most other kinds of queries will simply return 0 rows to the user
when used in partial results mode and the source is unavailable.

For each source that is excluded from the query, a warning will be generated describing the source and
the failure. These warnings can be obtained from the Statement.getWarnings() method. This method
returns a SQLWarning object but in the case of "partial results" warnings, this will be an object of type
org.teiid.jdbc.PartialResultsWarning class. This class can be used to obtain a list of all the failed
sources by name and to obtain the specific exception thrown by each source.

NOTE

Because Data Virtualization enables cursoring before an entire result is formed, it is
possible that a data source failure will not be determined until after the first batch of
results have been returned to the client. This can happen in the case of unions, but not
joins. To ensure that all warnings have been accumulated, the statement should be
checked after the entire result set has been read.

NOTE

If other warnings are returned by execution, then the partial results warnings may occur
after the first warning in the warning chain.

Partial results mode is off by default but can be turned on for all queries in a Connection with either
setPartialResultsMode("true") on a DataSource or partialResultsMode=true on a JDBC URL. In either
case, partial results mode may be toggled later with a SET Statement.

Setting Partial Results Mode

Getting Partial Results Warnings

Statement statement = ...obtain statement from Connection...
statement.execute("set partialResultsMode true");

statement.execute("set partialResultsMode true");
ResultSet results = statement.executeQuery("SELECT Name FROM Accounts");
while (results.next()) {
 ... //process the result set
}
SQLWarning warning = statement.getWarnings();
while(warning != null) {
 if (warning instanceof PartialResultsWarning) {
 PartialResultsWarning partialWarning = (PartialResultsWarning)warning;
 Collection failedConnectors = partialWarning.getFailedConnectors();
 Iterator iter = failedConnectors.iterator();
 while(iter.hasNext()) {

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

16

SET_Statement.adoc

WARNING

In some instances, typically JDBC sources, the source not being initially available will
prevent Data Virtualization from automatically determining the appropriate set of
source capabilities. If you get an exception indicating that the capabilities for an
unavailable source are not valid in partial results mode, then it may be necessary to
manually set the database version or similar property on the translator to ensure
that the capabilities are known even if the source is not available.

2.5.3. Non-blocking Statement Execution

JDBC query execution can indefinitely block the calling thread when a statement is executed or a
resultset is being iterated. In some situations you may not wish to have your calling threads held in these
blocked states. When using embedded/local connections, you may optionally use the
org.teiid.jdbc.TeiidStatement and org.teiid.jdbc.TeiidPreparedStatement interfaces to execute
queries with a callback org.teiid.jdbc.StatementCallback that will be notified of statement events, such
as an available row, an exception, or completion. Your calling thread will be free to perform other work.
The callback will be executed by an engine processing thread as needed. If your results processing is
itself blocking and you want query processing to be concurrent with results processing, then your
callback should implement onRow handling in a multi-threaded manner to allow the engine thread to
continue.

Non-blocking Prepared Statement Execution

 String connectorName = (String) iter.next();
 SQLException connectorException = partialWarning.getConnectorException(connectorName);
 System.out.println(connectorName + ": " + connectorException.getMessage());
 }
 }
 warning = warning.getNextWarning();
}



PreparedStatement stmt = c.prepareStatemen(sql);
Data VirtualizationPreparedStatement tStmt = stmt.unwrap(Data
VirtualizationPreparedStatement.class);
tStmt.submitExecute(new StatementCallback() {
 @Override
 public void onRow(Statement s, ResultSet rs) {
 //any logic that accesses the current row ...
 System.out.println(rs.getString(1));
 }

 @Override
 public void onException(Statement s, Exception e) throws Exception {
 s.close();
 }

 @Override
 public void onComplete(Statement s) throws Exception {

CHAPTER 2. JDBC COMPATIBILITY

17

The non-blocking logic is limited to statement execution only. Other JDBC operations, such as
connection creation or batched executions do not yet have non-blocking options.

If you access forward positions in the onRow method (calling next, isLast, isAfterLast, absolute), they
may not yet be valid and a org.teiid.jdbc.AsynchPositioningException will be thrown. That exception
is recoverable if caught or can be avoided by calling Data VirtualizationResultSet.available() to
determine if your desired positioning will be valid.

2.5.3.1. Continuous Execution

The RequestOptions object may be used to specify a special type of continuous asynch execution via
the continuous or setContinuous methods. In continuous mode the statement will be continuously re-
executed. This is intended for consuming real-time or other data streams processed through a SQL
plan. A continuous query will only terminate on an error or when the statement is explicitly closed. The
SQL for a continuous query is no different than any other statement. Care should be taken to ensure
that retrievals from non-continuous sources is appropriately cached for reuse, such as by using
materialized views or session scoped temp tables.

A continuous query must do the following:

return a result set

be executed with a forward-only result set

cannot be used in the scope of a transaction

Since resource consumption is expected to be different in a continuous plan, it does not count against
the server max active plan limit. Typically custom sources will be used to provide data streams. See the
Developer’s Guide, in particular the section on ReusableExecutions for more.

When the client wishes to end the continuous query, the Statement.close() or Statement.cancel()
method should be called. Typically your callback will close whenever it no long needs to process results.

See also the ContinuousStatementCallback for use as the StatementCallback for additional methods
related to continuous processing.

2.5.4. ResultSet Extensions

The Data Virtualization result set extension interface, org.teiid.jdbc.TeiidResultSet, provides
functionality beyond the JDBC standard. To use the extension interface, simply cast or unwap a result
set returned by a Data Virtualization statement. The following methods are provided on the extension
interface:

Table 2.3. Connection Properties

Method Name Description

available Returns an estimate of the minimum number of rows
that can be read (after the current) without blocking
or the end of the ResultSet is reached.

 s.close();
 }, new RequestOptions()
});

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

18

https://teiid.github.io/teiid-documents/master/content/dev/Executing_Commands.html

2.5.5. Connection Extensions

Data Virtualization connections (defined by the org.teiid.jdbc.TeiidConnection interface) are
compatible with the changeUser method to reauthenticate a given connection. If the reauthentication is
successful the current connection my be used with the given identity. Existing statements/result sets are
still available for use under the old identity.

2.6. INCOMPATIBLE JDBC METHODS

Based upon the JDBC in JDK 1.6, this appendix details only those JDBC methods that Data
Virtualization is not compatible with. Unless specified below, Data Virtualization is compatible with all
other JDBC Methods.

Those methods listed without comments throw a SQLException stating that it is not supported.

Where specified, some listed methods do not throw an exception, but possibly exhibit unexpected
behavior. If no arguments are specified, then all related (overridden) methods are not compatible. If an
argument is listed then only those forms of the method specified are not compatible.

2.6.1. Incompatible Classes and Methods in "java.sql"

Class name Methods

Blob [source,java] ---- getBinaryStream(long, long) -
throws SQLFeatureNotSupportedException
setBinaryStream(long) - - throws
SQLFeatureNotSupportedException setBytes - -
throws SQLFeatureNotSupportedException
truncate(long) - throws
SQLFeatureNotSupportedException ----

CallableStatement [source,java] ---- getObject(int parameterIndex,
Map<String, Class<?>> map) - throws
SQLFeatureNotSupportedException getRef - throws
SQLFeatureNotSupportedException getRowId -
throws SQLFeatureNotSupportedException
getURL(String parameterName) - throws
SQLFeatureNotSupportedException
registerOutParameter - ignores
registerOutParameter(String parameterName, *) -
throws SQLFeatureNotSupportedException
setRowId(String parameterName, RowId x) - throws
SQLFeatureNotSupportedException setURL(String
parameterName, URL val) - throws
SQLFeatureNotSupportedException ----

CHAPTER 2. JDBC COMPATIBILITY

19

Clob [source,java] ---- getCharacterStream(long arg0,
long arg1) - throws
SQLFeatureNotSupportedException
setAsciiStream(long arg0) - throws
SQLFeatureNotSupportedException
setCharacterStream(long arg0) - throws
SQLFeatureNotSupportedException setString -
throws SQLFeatureNotSupportedException
truncate - throws
SQLFeatureNotSupportedException ----

Connection [source,java] ---- createBlob - throws
SQLFeatureNotSupportedException createClob -
throws SQLFeatureNotSupportedException
createNClob - throws
SQLFeatureNotSupportedException
createSQLXML - throws
SQLFeatureNotSupportedException
createStruct(String typeName, Object[] attributes) -
throws SQLFeatureNotSupportedException
getClientInfo - throws
SQLFeatureNotSupportedException
releaseSavepoint - throws
SQLFeatureNotSupportedException
rollback(Savepoint savepoint) - throws
SQLFeatureNotSupportedException setHoldability -
throws SQLFeatureNotSupportedException
setSavepoint - throws
SQLFeatureNotSupportedException setTypeMap -
throws SQLFeatureNotSupportedException
setRealOnly - effectively ignored ----

DatabaseMetaData [source,java] ---- getAttributes - throws
SQLFeatureNotSupportedException
getClientInfoProperties - throws
SQLFeatureNotSupportedException
getRowIdLifetime - throws
SQLFeatureNotSupportedException ----

NClob Not Supported

PreparedStatement [source,java] ---- setRef - throws
SQLFeatureNotSupportedException setRowId -
throws SQLFeatureNotSupportedException
setUnicodeStream - throws
SQLFeatureNotSupportedException ----

Ref Not Implemented

Class name Methods

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

20

ResultSet [source,java] ---- deleteRow - throws
SQLFeatureNotSupportedException getHoldability -
throws SQLFeatureNotSupportedException
getObject(, Map<String, Class<?>> map) - throws
SQLFeatureNotSupportedException getRef -
throws SQLFeatureNotSupportedException
getRowId - throws
SQLFeatureNotSupportedException
getUnicodeStream - throws
SQLFeatureNotSupportedException getURL -
throws SQLFeatureNotSupportedException
insertRow - throws
SQLFeatureNotSupportedException
moveToInsertRow - throws
SQLFeatureNotSupportedException refreshRow -
throws SQLFeatureNotSupportedException
rowDeleted - throws
SQLFeatureNotSupportedException rowInserted
- throws SQLFeatureNotSupportedException
rowUpdated - throws
SQLFeatureNotSupportedException
setFetchDirection - throws
SQLFeatureNotSupportedException update -
throws SQLFeatureNotSupportedException ----

RowId Not Supported

Savepoint not Supported

SQLData Not Supported

SQLInput not Supported

SQLOutput Not Supported

Class name Methods

2.6.2. Incompatible Classes and Methods in "javax.sql"

Class name Methods

RowSet* Not Supported

CHAPTER 2. JDBC COMPATIBILITY

21

CHAPTER 3. ODBC COMPATIBILITY
Open Database Connectivity (ODBC) is a standard database access method developed by the SQL
Access group in 1992. ODBC, just like JDBC in Java, allows consistent client access regardless of which
database management system (DBMS) is handling the data. ODBC uses a driver to translate the
application’s data queries into commands that the DBMS understands. For this to work, both the
application and the DBMS must be ODBC-compliant – that is, the application must be capable of
issuing ODBC commands and the DBMS must be capable of responding to them.

Data Virtualization can provide ODBC access to deployed VDBs in the Data Virtualization runtime
through PostgreSQL’s ODBC driver. This is possible because Data Virtualization has a PostgreSQL
server emulation layer accessible via socket clients.

NOTE

By default, ODBC is enabled and running on on port 35432.

The pg emulation is not complete. The intention of the ODBC access is to provide non-JDBC
connectivity to issue Data Virtualization queries - not pgsql queries. Although you can use many
PostgreSQL constructs, the default behavior for queries matches Data Virtualization’s expectations.
See System Properties for optional properties that further emulate pgsql handling.

NOTE

Handling names with underscore ("") in ODBC. By default Data Virtualization does
not have a default like escape character. Depending upon the ODBC client however
there may be an expectation that backslash is used by default - which is the behavior
of PostgreSQL. This may cause metadata queries to be issued against objects with ""
in their name to return no or incorrect results. You may globally emulate the behavior of
PostgreSQL by setting the org.teiid.backslashDefaultMatchEscape system property to
true. To alter the property just for the current session then have your ODBC client issue
select cast(teiid_session_set('backslashDefaultMatchEscape', true) as boolean)
statement before any other statement.

Postgres ODBC drivers 9.5 and later do not require this special property as the client will use an E
escaped literal instead.

Compatibility was last ensured with the 9.6 Postgres ODBC driver. You are encouraged to use later
client versions when needed and report any issues to the community.

3.1. KNOWN LIMITATIONS:

Updateable cursors are not supported. You will receive parsing errors containing the pg system
column ctid if this feature is not disabled.

LO support is not available. LOBs will be returned as string or bytea as appropriate using the
transport max lob size setting.

The Data Virtualization object type will map to the PostgreSQL UNKNOWN type, which cannot
be serialized by the ODBC layer. Cast/Convert should be used to provide a type hint when
appropriate - for example teiid_session_set returns an object value. "SELECT
teiid_session_set('x', 'y')" will fail, but "SELECT cast(teiid_session_set('x', 'y') as string)" will
succeed.

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

22

http://www.postgresql.org/
https://teiid.github.io/teiid-documents/master/content/admin/System_Properties.html

Multi-dimensional arrays are not supported.

3.2. INSTALLATION

Before an application can use ODBC, you must first install the ODBC driver on same machine that the
application is running on and then create a Data Source Name (DSN) that represents a connection
profile for your Data Virtualization VDB.

3.3. CONFIGURATION

WARNING

By default, clients use plain text password authentication in Data Virtualization for
pg/ODBC interfaces. If the client/server are not configured to use SSL or GSS
authentication, the password will be sent in plain text over the network.

For a windows client, see the Configuring the Data Source Name .

See also DSN Less Connection.

3.3.1. Connection Settings

All the available pg driver connection options with their descriptions that can be used are defined here
https://odbc.postgresql.org/docs/config.html. When using these properties on the connection string,
their property names are defined here https://odbc.postgresql.org/docs/config-opt.html.

However Data Virtualization does not honor all properties, and some, such as Updatable Cursors, will
cause query failures.

Table 3.1. Primary ODBC Settings For Data Virtualization

Name Description

Updateable Cursors & Row Versioning Should not be used.

Use serverside prepare & Parse Statements &
Disallow Premature

It is recommended that "Use serverside prepare" is
enabled and "Parse Statements"/"Disallow
Premature" are disabled

SSL mode May be needed if you are connecting to a secured pg
transport port.

Use Declare/Fetch cursors & Fetch Max Count Should be used to better manage resources when
large result sets are used

Logging/debug settings can be utilized as needed.

Settings that manipulate datatypes, metadata, or optimizations such as "Show SystemTables", "True is -



CHAPTER 3. ODBC COMPATIBILITY

23

Configuring_the_Data_Source_Name_DSN.adoc
DSN_Less_Connection.adoc
https://odbc.postgresql.org/docs/config.html
https://odbc.postgresql.org/docs/config-opt.html

Settings that manipulate datatypes, metadata, or optimizations such as "Show SystemTables", "True is -
1", "Backend genetic optimizer", "Bytea as LongVarBinary", "Bools as Char", etc. are ignored by the Data
Virtualization server and have no client side effect. If there is a need for these or any other settings to
have a defined affect, please open an issue with the product/project.

Any other setting that does have a client side affect, such as "LF <→ CR/LF conversion", may be used if
desired but there is currently no server side usage of the setting.

3.3.1.1. Data Virtualization Connection Settings

Most Data Virtualization specific connection properties do not map to ODBC client connection settings.
If you find yourself in this situation and cannot use post connection SET statements, then the VDB itself
may take default connection properties for ODBC. Use VDB properties of the form connection.XXX to
control things like partial results mode, result set caching, etc.

The application name may be set by some clients. If not, you may use a SET statement - "SET
application_name name" - to set the name even after the connection is made.

3.4. CONFIGURING THE DATA SOURCE NAME (DSN)

See Data Virtualization compatible options for a description of the available client configuration options.

3.4.1. Windows Installation

Once you have installed the ODBC Driver Client software on your workstation, you have to configure it
to connect to a Data Virtualization Runtime. Note that the following instructions are specific to the
Microsoft Windows Platform.

To do this, you must have logged into the workstation with administrative rights, and you need to use
the Control Panel’s Data Sources (ODBC) applet to add a new data source name.

Each data source name you configure can only access one VDB within a Data Virtualization System. To
make more than one VDB available, you need to configure more than one data source name.

Follow the below steps in creating a data source name (DSN)

1. From the Start menu, select Settings > Control Panel.

2. The Control Panel displays. Double click Administrative Tools.

3. Then Double-click Data Sources (ODBC).

4. The ODBC Data Source Administrator applet displays. Click the tab associated with the type of
DSN you want to add.

5. The Create New Data Source dialog box displays. In the Select a driver for which you want to set
up a data source table, select PostgreSQL Unicode.

6. Click Finish

7. The PostgreSQL ODBC DSN Setup dialog box displays.

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

24

ODBC_Connection_Properties.adoc
ODBC_Support.adoc#_connection_settings

In the Data Source Name edit box, type the name you want to assign to this data source. In the
Database edit box, type the name of the virtual database you want to access through this data
source. In the Server edit box, type the host name or IP address of your Data Virtualization
runtime. If connecting via a firewall or NAT address, the firewall address or NAT address should
be entered. In the Port edit box, type the port number to which the Data Virtualization System
listens for ODBC requests. By default, Data Virtualization listens for ODBC requests on port
35432 In the User Name and Password edit boxes, supply the user name and password for the
Data Virtualization runtime access. Provide any description about the data source in the
Description field.

8. Click on the Datasource button, you will see this below figure. Configure options as shown.

CHAPTER 3. ODBC COMPATIBILITY

25

Click on "page2" and make sure the options are selected as shown

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

26

9. Click "save" and you can optionally click "test" to validate your connection if the Data
Virtualization is running. You have configured a Data Virtualization’s virtual database as a data
source for your ODBC applications. Now you can use applications such as Excel, Access to query
the data in the VDB

3.4.2. Other *nix Platform Installations

Before you can access Data Virtualization using ODBC on any *nix platforms, you need to either install a
ODBC driver manager or verify that one already exists. As the ODBC Driver manager Data Virtualization
recommends unixODBC. If you are working with RedHat Linux or Fedora you can check the graphical
"yum" installer to search, find and install unixODBC. Otherwise you can download the unixODBC
manager here. To install, simply untar the contents of the file to a temporary location and execute the
following commands as super user.

./configure
make
make install

Check unixODBC website site for more information, if you run into any issues during the installation.

Now, to verify that PostgreSQL driver installed correctly from earlier step, execute the following
command

odbcinst -q -d

CHAPTER 3. ODBC COMPATIBILITY

27

http://www.unixodbc.org/
http://www.unixodbc.org/unixODBC-2.3.0.tar.gz
http://www.unixodbc.org/

That should show you all the ODBC drivers installed in your system. Now it is time to create a DSN. Edit
"/etc/odbc.ini" file and add the following

 [<DSN name>]
 Driver = /usr/lib/psqlodbc.so
 Description = PostgreSQL Data Source
 Servername = <Data Virtualization Host name or ip>
 Port = 35432
 Protocol = 7.4-1
 UserName = <user-name>
 Password = <password>
 Database = <vdb-name>
 ReadOnly = no
 ServerType = Postgres
 ConnSettings =
 UseServerSidePrepare=1
 Debug=0
 Fetch = 10000
 # enable below when dealing large resultsets to enable cursoring
 #UseDeclareFetch=1

Note that you need "sudo" permissions to edit the "/etc/odbc.ini" file. For all the available configurable
options that you can use in defining a DSN can be found here on postgreSQL ODBC page.

Once you are done with defining the DSN, you can verify your DSN using the following command

isql <DSN-name> [<user-name> <password>] < commands.sql

where "commands.sql" file contains the SQL commands you would like to execute. You can also omit the
commands.sql file, then you will be provided with a interactive shell.

TIP

You can also use languages like Perl, Python, C/C++ with ODBC ports to Postgres, or if they have direct
Postgres connection modules you can use them too to connect Data Virtualization and issue queries an
retrieve results.

3.5. DSN LESS CONNECTION

You can also connect to Data Virtualization VDB using ODBC with out explicitly creating a DSN.
However, in these scenarios your application needs, what is called as "DSN less connection string". The
below is a sample connection string

For Windows:

ODBC;DRIVER={PostgreSQL Unicode};DATABASE=<vdb-name>;SERVER=<host-name>;PORT=
<port>;Uid=<username>;Pwd=<password>;c4=0;c8=1;

For *nix:

ODBC;DRIVER={PostgreSQL};DATABASE=<vdb-name>;SERVER=<host-name>;PORT=
<port>;Uid=<username>;Pwd=<password>;c4=0;c8=1;

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

28

http://psqlodbc.projects.postgresql.org/config.html

See the available Data Virtualization connection options .

3.6. CONFIGURING CONNECTION PROPERTIES WITH ODBC

When working with ODBC connection, the user can set the connection properties Driver
Connection#URL Connection Properties that are available in Data Virtualization by executing the
command like below.

SET <property-name> TO <property-value>

for example to turn on the result set caching you can issue

SET resultSetCacheMode TO 'true'

Another option is to set this as VDB property in the vdb file as

CREATE DATABASE vdb OPTIONS ("connection.partialResultsMode" true);

CHAPTER 3. ODBC COMPATIBILITY

29

ODBC_Support.adoc#_connection_settings
Driver_Connection.adoc

CHAPTER 4. ODATA COMPATIBILITY

4.1. WHAT IS ODATA

The Open Data Protocol (OData) is a Web protocol for querying and updating data that provides a way
to unlock your data and free it from silos that exist in applications today. OData does this by applying
and building upon Web technologies such as HTTP, Atom Publishing Protocol (AtomPub) and JSON to
provide access to information from a variety of applications, services, and stores. The protocol emerged
from experiences implementing AtomPub clients and servers in a variety of products over the past
several years. OData is used to expose and access information from a variety of sources including, but
not limited to, relational databases, file systems, content management systems and traditional Web
sites.

OData is consistent with the way the Web works - it makes a deep commitment to URIs for resource
identification and commits to an HTTP-based, uniform interface for interacting with those resources
(just like the Web). This commitment to core Web principles allows OData to enable a new level of data
integration and interoperability across a broad range of clients, servers, services, and tools.

copied from http://odata.org

4.2. DATA VIRTUALIZATION COMPATIBILITY FOR ODATA

Data Virtualization is compatible with OData Version 4.0.

4.3. ODATA VERSION 4.0 COMPATIBILITY

Data Virtualization strives to be compliant with the OData specification. The rest of this chapter
highlight some specifics of OData and Data Virtualization’s compatibility, but you should also consult the
specification.

4.3.1. How to Access the data?

For example, if you have a vdb by name northwind deployed that has a customers table in a NW model,
then you can access that table with an HTTP GET via the URL:

http://localhost:8080/odata/customers

this would be akin to making a JDBC/ODBC connection and issuing the SQL:

NOTE

Use correct case (upper or lower) in the resource path. Unlike SQL, the names used in the
URI as case-sensitive.

The returned results from OData query can be in Atom/AtomPub XML or JSON format. JSON results
are returned by default.

4.3.2. Query Basics

SELECT * FROM NW.customers

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

30

http://odata.org
OData4_Support.adoc
http://www.odata.org/documentation/

Users can submit predicates with along their query to filter the results:

http://localhost:8080/odata/customers?$filter=name eq 'bob'

NOTE

Spaces around 'eq' are for readability of the example only; in real URLs they must be
percent-encoded as %20. OData mandates percent encoding for all spaces in URLs.
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html

this would be similar to making a JDBC/ODBC connection and issuing the SQL

SELECT * FROM NW.customers where name = 'bob'

To request the result to be formatted in a specific format, add the query option $format

http://localhost:8080/odata/customers?$format=JSON

Query options can be combined as needed. For example format with a filter:

http://localhost:8080/odata/customers?$filter=name eq 'bob'&$format=xml

OData allows for querying navigations from one entity to another. A navigation is similar to the foreign
key relationships in relational databases.

For example, if the customers table has an exported key to the orders table on the customers primary
key called the customer_fk, then an OData GET could be issued like:

this would be akin to making a JDBC/ODBC connection and issuing the SQL:

NOTE

More Comprehensive Documentation about ODATA - For detailed protocol access
you can read the specification at http://odata.org. You can also read this very useful web
resource for an example of accessing an OData server.

4.3.2.1. How to execute a stored procedure?

Odata allows you to call your exposed stored procedure methods via odata.

http://localhost:8080/odata/getcustomersearch(id=120,firstname='micheal')

4.3.2.2. Not seeing all the rows?

See the configuration section below for more details. Generally batching is being utilized, which tooling

http://localhost:8080/odata/customers(1234)/customer_fk?$filter=orderdate gt datetime'2012-12-
31T21:23:38Z'

SELECT o.* FROM NW.orders o join NW.customers c on o.customer_id = c.id where c.id=1234 and
o.orderdate > {ts '2012-12-31 21:23:38'}

CHAPTER 4. ODATA COMPATIBILITY

31

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://odata.org
http://msdn.microsoft.com/en-us/library/ff478141.aspx

See the configuration section below for more details. Generally batching is being utilized, which tooling
should understand automatically, and additional queries with a $skiptoken query option specified are
needed:

4.3.2.3. "EntitySet Not Found" error?

When you issue the above query are you seeing a message similar to below?

Then, it means that either you supplied the model-name/table-name combination wrong, check the
spelling and case.

It is possible that the entity is not part of the metadata, such as when a table does not have any
PRIMARY KEY or UNIQUE KEY(s).

4.3.3. How to update your data?

Using the OData protocol it is possible to perform CREATE/UPDATE/DELETE operations along with
READ operations shown above. These operations use different HTTP methods.

INSERT/CREATE is accomplished through an HTTP method "POST".

Example POST

An UPDATE is performed with an HTTP "PUT".

Example PUT Update of Customer

http://localhost:8080/odata/customers?$skiptoken=xxx

{"error":{"code":null,"message":"Cannot find EntitySet, Singleton, ActionImport or FunctionImport with
name 'xxx'."}}

POST /service.svc/Customers HTTP/1.1
Host: host
Content-Type: application/json
Accept: application/json
{
 "CustomerID": "AS123X",
 "CompanyName": "Contoso Widgets",
 "Address" : {
 "Street": "58 Contoso St",
 "City": "Seattle"
 }
}

PUT /service.svc/Customers('ALFKI') HTTP/1.1
Host: host
Content-Type: application/josn
Accept: application/json
{
 "CustomerID": "AS123X",
 "CompanyName": "Updated Company Name",
 "Address" : {

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

32

The DELETE operation uses the HTTP "DELETE" method.

Example Delete

DELETE /service.svc/Customers('ALFKI') HTTP/1.1
Host: host
Content-Type: application/json
Accept: application/json

4.3.4. Configuration

You can customize the OData interfaces via properties prefixed with "spring.teiid.odata.".

|batch-size |Number of rows to send back each time, -1 returns all rows |256

|skiptoken-cache-time |Time interval between the results being recycled/expired between $skiptoken
requests |300000

Data Virtualization OData server implements cursoring logic when the result rows exceed the configured
batch size. On every request, only batch-size number of rows are returned. Each such request is
considered an active cursor, with a specified amount of idle time specified by skip-token-cache-time.
After the cursor is timed out, the cursor will be closed and remaining results will be cleaned up, and will
no longer be available for further queries. Since there is no session based tracking of these cursors, if the
request for skiptoken comes after the expired time, the original query will be executed again and tries to
reposition the cursor to relative absolute position, however the results are not guaranteed to be same as
the underlying sources may have been updated with new information meanwhile.

4.3.5. Limitations

The OData4 interface is subject to some feature limitations. You cannot use the following features.

Search.

Delta processing.

Data-aggregation extension of the OData specification.

$it usage is limited to only primitive collection properties.

4.3.6. Client Tools for Access

OData access is really where the user comes in, depending upon your programming model and needs
there are various ways you write your access layer into OData. The following are some suggestions:

Your Browser: The OData Explorer is an online tool for browsing an OData data service.

Olingo: Is a Java framework that supports OData V4, has both consumer and producer
framework.

Microsoft has various .Net based libraries, see http://odata.github.io/

 "Street": "Updated Street"
 }
}

CHAPTER 4. ODATA COMPATIBILITY

33

http://odata.github.io/

Windows Desktop: LINQPad is a wonderful tool for building OData queries interactively. See
https://www.linqpad.net/

Shell Scripts: use CURL tool

For latest information other frameworks and tools available please see
http://www.odata.org/ecosystem/

4.3.7. OData Metadata (How Data Virtualization interprets the relational schema
into OData’s $metadata)

OData defines its schema using Conceptual Schema Definition Language (CSDL). A VDB in an ACTIVE
state in Data Virtualization exposes its visible metadata in CSDL format. For example if you want
retrieve metadata for your vdb, you need to issue a request like:

http://localhost:8080/odata/$metadata

Since OData schema model is not a relational schema model, Data Virtualization uses the following
semantics to map its relational schema model to OData schema model.

Relational Entity Mapped OData Entity

Model Name Schema Namespace, EntityContainer Name

Table/View EntityType, EntitySet

Table Columns EntityType’s Properties

Primary Key EntityType’s Key Properties

Foreign Key Navigation Property on EntityType

Procedure FunctionImport, ActionImport

Procedure’s Table Return ComplexType

Data Virtualization by design does not define any "embedded" ComplexType in the EntityType.

Since OData access is more key based, it is MANDATORY that every table Data Virtualization exposes
through OData must have a PK or at least one UNIQUE key. A table which does not either of these will
be dropped out of the $metadata.

Since all data roles are not consulted in the construction of the OData metadata there are times when
tables or procedures will need to be specifically hidden. This can be done in the vdb via a
"teiid_odata:visible" extension metadata property on the object.

With teiid_odata:visible set to false the OData layer will not expose the given object.

Datatype Mapping

create foreign table HIDDEN (id long primary key, ...) OPTIONS ("teiid_odata:visible" false);

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

34

https://www.linqpad.net/
http://www.odata.org/ecosystem/

Data Virtualization Type OData Type

STRING Edm.String

BOOLEAN Edm.Boolean

BYTE Edm.SByte

SHORT Edm.Int16

INTEGER Edm.Int32

LONG Edm.Int64

FLOAT Edm.Single

DOUBLE Edm.Double

BIG_INTEGER Edm.Decimal

BIG_DECIMAL Edm.Decimal

DATE Edm.Date

TIME Edm.TimeOfDay

TIMESTAMP Edm.DateTimeOffset

BLOB Edm.Stream

CLOB Edm.Stream

XML Edm.Stream

VARBINARY Edm.Binary

Geography and Geometry will be mapped to the corresponding Edm.GeometryXXX and
Edm.GeographyXXX types based upon the associated
{http://www.teiid.org/translator/spatial/2015}type property. A general mapping to Edm.Geometry or
EdmGeography will fail to serialize the values correctly.

Where possible, array types will be mapped to a collection type. However you cannot include
multidimensional arrays. Also array/collection values cannot be used as parameters nor in comparisons.

4.3.7.1. Functions And Actions

The mapping of entities and their properties is relatively straight-forward. The mapping of Data
Virtualization procedures to OData Functions and Actions is more involved. Virtual procedures, source

CHAPTER 4. ODATA COMPATIBILITY

35

procedure, and virtual functions defined by DDL (not a Java class) are all eligible to be mapped. Source
functions or virtual functions defined by a Java class are currently not mapped to corresponding OData
constructs - please log an issue if you need that functionality. OData does not have an out parameter
concept, thus OUT parameters are ignored, and INOUT parameters are treated only as IN. A result set is
mapped to a complex type collection result. An array result will be mapped to a simple type collection.

An OData Function will be used if:

The procedure/function has a return value - either scalar or a result set.

The procedure/function has no LOB input parameters - currently Clob, Blob, XML, Geometry,
Geography, and JSON are considered LOB types.

The procedure/function is side effect free - this is determined by an explicit value of 0 for the
update count. For example: CREATE VIRTUAL PROCEDURE …​ OPTIONS (UPDATECOUNT 0)
AS BEGIN …​

If any one of those conditions are not met the procedure/function is represented instead by an OData
Action. However if there is a result set that has a LOB value, then the procedure is not mapped at all as
multiple streaming values cannot be returned.

Note that OData Functions and Actions are called differently. A Function is called by a GET request
where the parameter values are included in the URI. An Action is called by a POST where the content
provides the parameter values.

Currently only unbounded Functions and Actions are compatible.

You should always consult the $metadata about Functions and Actions to validate how the
procedures/functions were mapped.

4.3.8. OpenAPI Metadata

An experimental feature is available to automatically provide a Swagger 2.0 / OpenAPI metadata via
[swagger|openapi].json rather than $metadata.

Example OpenAPI 2.0 URLs

http://localhost:8080/odata/swagger.json
http://localhost:8080/odata/openapi.json
http://localhost:8080/odata/openapi.json?version=2

Example OpenAPI 3.0 URL

http://localhost:8080/odata/openapi.json?version=3

WARNING

Due to all of the possible query options and expansions this metadata will be
significantly larger than the OData EDM representation.

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

36

https://issues.redhat.com/browse/TEIID-5555
https://www.openapis.org/

CHAPTER 5. GEOSERVER INTEGRATION
GeoServer is an open source server for geospatial data. It can be integrated with Data Virtualization to
serve geospatial data from a variety of sources.

5.1. PREREQUISITES

Have GeoServer installed. Data Virtualization integration was initially tested with GeoServer
version 2.6.x, and is compatible with versions 2.8.x and 2.12.x. See TEIID-5236

Your Data Virtualization installation should already be setup for pg/ODBC access. This allows
the built-in compatibility with GeoServer for PostGIS/PostgreSQL to be used.

Have a VDB deployed that exposes one or more tables containing an appropriate Geometry
column.

a. The Data Virtualization system table GEOMETY_COLUMNS will be used by GeoServer.
Please ensure that the relevant geometry columns have the appropriate srid and
coord_dimensions, which may require setting the
{http://www.teiid.org/translator/spatial/2015}srid and
{http://www.teiid.org/translator/spatial/2015}coord_dimension extension property on the
geometry column.

5.2. GEOSERVER CONFIGURATION

This process will need to be repeated for each VDB schema you are exposing that contains geospatial
data.

1. Using the GeoServer admin web application, select Stores → Add new Store. Under Vector Data
Sources, select PostGIS.

2. Using the non-JNDI connection, fill in the Data Virtualization server host, ODBC port, database
(VDB Name with optional version), user, and password, schema (schema/model from the target
VDB).

a. If your VDBs contain target schema or table names with % or _, Data Virtualization must be
configured to use the same default like escape character '\' as PostgreSQL to properly
respond to metadata queries. Either the system property
org.teiid.backslashDefaultMatchEscape must be set to true or the Data Virtualization
session variable backslashDefaultMatchEscape must be set to true - for example enter
"select cast(teiid_session_set('backslashDefaultMatchEscape', true) as boolean)" in the
"Session startup SQL" to configure just this GeoServer connection pool.

3. Follow the typical GeoServer instructions for creating a Layer based upon the Data
Virtualization store.

a. Note that Data Virtualization is not compatible with the PostGIS function
ST_Estimated_Extent and attempts to compute the bounding box from the data, result in
log errors.

5.3. ADDITIONAL CONSIDERATIONS

If you are integrating a PostgreSQL source, you must not re-expose the geometry_columns or
geography_columns tables. This is because GeoServer makes unqualified queries that
reference geometry_columns and the query should resolve against the Data Virtualization

CHAPTER 5. GEOSERVER INTEGRATION

37

http://geoserver.org/
https://issues.redhat.com/browse/TEIID-5236
https://teiid.github.io/teiid-documents/master/content/reference/sys_schema.html
https://teiid.github.io/teiid-documents/master/content/admin/System_Properties.html

system table instead.

Data Virtualization does not by default expose a GT_PK_METADATA, which is optionally used by
GeoServer

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

38

CHAPTER 6. QGIS INTEGRATION
QGIS is an open source geospatial platform. It can be integrated with Data Virtualization to serve
geospatial data from a variety of sources.

6.1. PREREQUISITES

Have QGIS installed. Data Virtualization integration was last tested with version 2.14.

Your Data Virtualization installation should already be setup for ODBC access. This allows the
built-in compatibility of QGIS for PostGIS/PostgreSQL to be used.

Have a VDB deployed that exposes one or more tables containing an appropriate Geometry
column.

a. The Data Virtualization system table GEOMETY_COLUMNS will be used by QGIS. Please
ensure that the relevant geometry columns have the appropriate srid and
coord_dimensions, which may require setting the
{http://www.teiid.org/translator/spatial/2015}srid and
{http://www.teiid.org/translator/spatial/2015}coord_dimension extension property on the
geometry column.

6.2. QGIS CONFIGURATION

This process will need to be repeated for each VDB schema you are exposing that contains geospatial
data.

1. In the QGIS GUI browser panel right click on PostGIS and select "New Connection".

2. Fill in the Data Virtualization server host, ODBC port, database (VDB Name with optional
version), user, and password.

a. If your VDBs contain target schema or table names with % or _, Data Virtualization must be
configured to use the same default like escape character '\' as PostgreSQL to properly
respond to metadata queries. Either the system property
org.teiid.backslashDefaultMatchEscape must be set to true.

3. Follow the typical QGIS instructions for creating a Layer by browsing to the appropriate schema
and selecting a table that exposes a geometry.

6.3. ADDITIONAL CONSIDERATIONS

If you are integrating a PostgreSQL source, you must not re-expose the postgres system tables
including the PostGIS geometry_columns or geography_columns tables. This is because QGIS
makes unqualified references to these tables, which may then be ambiguous.

Operations involving creating or deleting schemas or tables will not work.

The logs might contain messages related to information_schema.tables - this is to determine if
the qgis_editor_widget_styles table exists. Data Virtualization is not compatible with QGIS editor
widget styles.

CHAPTER 6. QGIS INTEGRATION

39

http://www.qgis.org/
https://teiid.github.io/teiid-documents/master/content/admin/Socket_Transports.html
https://teiid.github.io/teiid-documents/master/content/reference/sys_schema.html
https://teiid.github.io/teiid-documents/master/content/admin/System_Properties.html

CHAPTER 7. SQLALCHEMY INTEGRATION
SQLAlchemy is an open source SQL toolkit and ORM for Python.

7.1. PREREQUISITES

Have SQLAlchemy installed installed. Data Virtualization integration was last tested with version
1.1.6.

Your Data Virtualization installation should already be setup for ODBC access. This allows the
built-in compatibility with SQLAlchemy for PostgreSQL to be used.

7.2. USAGE

You should be able to use a SQLAlchemy engine for querying. Reflective import of most table metadata
is also provided.

Sample Usage

7.3. LIMITATIONS

Only a subset of the PostgreSQL dialect is available. The primary intent is to allow querying through
Data Virtualization. If there are additional features that are needed, please log an enhancement request.

Column metadata will not be available for tables that contain the period '.' character. Depending upon
your needs, you may need import settings that use simple Data Virtualization names and not source
schema qualified names.

7.4. APPLICATION COMPATIBILITY

7.4.1. Superset

Superset is an open source data visualization and dashboard builder. It uses SQLAlchemy to access
relational sources.

Once you have followed the above instructions, you may access a Data Virtualization VDB by adding a
Database under the Sources menu.

The URL will be of the same form shown in the SQLAlchemy integration:
postgresql+psycopg2://user:password@host:35432/vdb

Basic usage scenarios involving aggregation and all basic types have been tested. If there are additional

import sqlalchemy
from sqlalchemy import create_engine, Table, MetaData
engine = create_engine("postgresql+psycopg2://user:password@host:35432/vdb")
engine.connect()
#engine is ready for queries
result = connection.execute("select * from some_table")
#reflective table import
meta = MetaData()
test = Table('public.test', meta, autoload=True,
autoload_with=engine,postgresql_ignore_search_path=True)

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

40

http://www.sqlalchemy.org/
https://teiid.github.io/teiid-documents/master/content/admin/Socket_Transports.html
http://airbnb.io/superset/

Basic usage scenarios involving aggregation and all basic types have been tested. If there are additional
features that are needed, please log an enhancement request

CHAPTER 7. SQLALCHEMY INTEGRATION

41

CHAPTER 8. NODE.JS INTEGRATION
Node.js is an open source event driven runtime that can be integrated with Data Virtualization.

8.1. PREREQUISITES

Have Node.js installed. The npm pagckage pg is also required. Use "

Your Data Virtualization installation should already be setup for ODBC access. This allows the
optional compatibility with Node.js for PostGIS/PostgreSQL to be used.

8.2. USAGE

For example if you have VDB called "northwind" deployed on your Data Virtualization server, and it has
table called "customers" and you are using default configuration such as

user = 'user' password = 'user' host = 127.0.0.1 port = 35432

Simple Access Example

NOTE

you do not have to programmatically specify the connection information in the code as it
can be obtained from environment variables and other mechanisms - see https://node-
postgres.com

For more information please refer to: https://npmjs.org/package/pg

 const { Client } = require('pg')
 const client = new Client({
 user: 'user',
 host: 'localhost',
 database: 'northwind',
 password: 'secretpassword',
 port: 35432,
 })
 client.connect()

 client.query('SELECT CustomerID, ContactName, ContactTitle FROM Customers', (err, res) => {
 console.log(err, res)
 client.end()
 })

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

42

https://nodejs.org
https://teiid.github.io/teiid-documents/master/content/admin/Socket_Transports.html
https://node-postgres.com
https://npmjs.org/package/pg

CHAPTER 9. ADO.NET INTEGRATION
Npgsql is an open source ADO.NET Data Provider for PostgreSQL. It can be integrated with Data
Virtualization to provide access from programs written in C#, Visual Basic, F#.

9.1. PREREQUISITES

Install the Npgsql using the .msi Windows installer. Data Virtualization integration was last tested
with version 3.2.6.

Your Data Virtualization installation should already be setup for pg/ODBC access.

Have a VDB deployed.

9.2. NPGSQL CONFIGURATION

For information about the available connection parameters, see the Npgsql documentation. Not all
configuration parameters have been tested for use with Data Virtualization.

9.3. KNOWN LIMITATIONS

TEIID-5220 prevents displaying the metadata of tables and views, but does not affect querying.
Certain tools, such as PowerBi, may have options to turn of the need to perform metadata
introspection.

CHAPTER 9. ADO.NET INTEGRATION

43

http://www.npgsql.org/
https://teiid.github.io/teiid-documents/master/content/admin/Socket_Transports.html
http://www.npgsql.org/doc/connection-string-parameters.html
https://issues.redhat.com/browse/TEIID-5220

CHAPTER 10. REAUTHENTICATION
Data Virtualization allows for connections to be reauthenticated so that the identity on the connection
can be changed rather than creating a whole new connection. If using JDBC, see the changeUser
Connection extension. If using ODBC, or simply need a statement based mechanism for
reauthentication, see also the SET Statement for SESSION AUTHORIZATION.

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

44

Connection_Extensions.adoc
SET_Statement.adoc

CHAPTER 11. EXECUTION PROPERTIES
Execution properties may be set on a per statement basis through the Data VirtualizationStatement
interface or on the connection via the SET Statement. For convenience, the property keys are defined
by constants on the org.teiid.jdbc.ExecutionProperties interface.

Table 11.1. Execution Properties

Property Name/String Constant Description

PROP_TXN_AUTO_WRAP / autoCommitTxn Same as the connection property.

PROP_PARTIAL_RESULTS_MODE /
partialResultsMode

See the Partial Results Mode

RESULT_SET_CACHE_MODE /
resultSetCacheMode

Same as the connection property.

SQL_OPTION_SHOWPLAN / SHOWPLAN Same as the connection property.

NOEXEC / NOEXEC Same as the connection property.

JDBC4COLUMNNAMEANDLABELSEMANTIC
S /
useJDBC4ColumnNameAndLabelSemantics

Same as the connection property.

CHAPTER 11. EXECUTION PROPERTIES

45

SET_Statement.adoc
Partial_Results_Mode.adoc

CHAPTER 12. SET STATEMENT
Execution properties may also be set on the connection by using the SET statement. The SET statement
is not yet a language feature of Data Virtualization and is handled only in the JDBC client. Since a JDBC
clients backs the pg/ODBC transport, it will work there as well.

SET Syntax:

SET [PAYLOAD] (parameter|SESSION AUTHORIZATION) value

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL (READ
UNCOMMITTED|READ COMMITTED|REPEATABLE READ|SERIALIZABLE)

Syntax Rules:

The parameter must be an identifier - it can contain spaces or other special characters only if
quoted.

The value may be either a non-quoted identifier or a quoted string literal value.

If payload is specified, e.g. "SET PAYLOAD x y", then a session scoped payload properties object
will have the corresponding name value pair set. The payload object is not fully session scoped.
It will be removed from the session when the XAConnection handle is closed/returned to the
pool (assumes the use of Data VirtualizationDataSource). The session scoped payload is
superseded by the usage of Data VirtualizationStatement.setPayload.

Using SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL is equivalent
to calling Connection.setTransactionIsolation with the corresponding level.

The SET statement is most commonly used to control planning and execution.

SET SHOWPLAN (ON|DEBUG|OFF)

SET NOEXEC (ON|OFF)

Enabling Plan Debug

Query Plan without executing the query

The SET statement may also be used to control authorization. A SET SESSION AUTHORIZATION

Statement s = connection.createStatement();
s.execute("SET SHOWPLAN DEBUG");
...
Statement s1 = connection.createStatement();
ResultSet rs = s1.executeQuery("select col from table");

ResultSet planRs = s1.exeuteQuery("SHOW PLAN");
planRs.next();
String debugLog = planRs.getString("DEBUG_LOG");

s.execute("SET NOEXEC ON");
s.execute("SET SHOWPLAN DEBUG");
...
e.execute("SET NOEXEC OFF");

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

46

statement will perform a Reauthentication given the credentials currently set on the connection. The
connection credentials may be changed by issuing a SET PASSWORD statement. A SET PASSWORD
statement does not perform a reauthentication.

Changing Session Authorization

Statement s = connection.createStatement();
s.execute("SET PASSWORD 'someval'");
s.execute("SET SESSION AUTHORIZATION 'newuser'");

CHAPTER 12. SET STATEMENT

47

Reauthentication.adoc

CHAPTER 13. SHOW STATEMENT
The SHOW statement can be used to see a varitey of information. The SHOW statement is not yet a
language feature of Data Virtualization and is handled only in the JDBC client.

SHOW Usage:

SHOW PLAN- returns a resultset with a clob column PLAN_TEXT, an xml column PLAN_XML,
and a clob column DEBUG_LOG with a row containing the values from the previously executed
query. If SHOWPLAN is OFF or no plan is available, no rows are returned. If SHOWPLAN is not
set to DEBUG, then DEBUG_LOG will return a null value.

SHOW ANNOTATIONS- returns a resultset with string columns CATEGORY, PRIORITY,
ANNOTATION, RESOLUTION and a row for each annotation on the previously executed query.
If SHOWPLAN is OFF or no plan is available, no rows are returned.

SHOW <property> - the inverse of SET, shows the property value for the given property, returns
a resultset with a single string column with a name matching the property key.

SHOW ALL- returns a resultset with a NAME string column and a VALUE string column with a
row entry for every property value. The SHOW statement is most commonly used to retrieve the
query plan, see the plan debug example.

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

48

CHAPTER 14. TRANSACTIONS
Data Virtualization provides three types of transactions from a client perspective:

1. Global

2. Local

3. Request Level

All are implemented by Data Virtualization logically as XA transactions. See the JTA specification for
more on XA Transactions.

14.1. LOCAL TRANSACTIONS

A Local transaction from a client perspective affects only a single resource, but can coordinate multiple
statements.

14.1.1. JDBC Specific

The Connection class uses the autoCommit flag to explicitly control local transactions. By default,
autoCommit is set to true, which indicates request level or implicit transaction control.

An example of how to use local transactions by setting the autoCommit flag to false.

Local transaction control using autoCommit

This example demonstrates several things:

1. Setting autoCommit flag to false. This will start a transaction bound to the connection.

2. Executing multiple updates within the context of the transaction.

3. When the statements are complete, the transaction is committed by calling commit().

4. If an error occurs, the transaction is rolled back using the rollback() method.

// Set auto commit to false and start a transaction
connection.setAutoCommit(false);

try {
 // Execute multiple updates
 Statement statement = connection.createStatement();
 statement.executeUpdate("INSERT INTO Accounts (ID, Name) VALUES (10, 'Mike')");
 statement.executeUpdate("INSERT INTO Accounts (ID, Name) VALUES (15, 'John')");
 statement.close();

 // Commit the transaction
 connection.commit();

} catch(SQLException e) {
 // If an error occurs, rollback the transaction
 connection.rollback();
}

CHAPTER 14. TRANSACTIONS

49

http://java.sun.com/javaee/technologies/jta/index.jsp

Any of the following operations will end a local transaction:

1. Connection.setAutoCommit(true) – if previously set to false

2. Connection.commit()

3. Connection.rollback()

4. A transaction will be rolled back automatically if it times out.

14.1.1.1. Turning Off JDBC Local Transaction Controls

In some cases, tools or frameworks above Data Virtualization will call setAutoCommit(false), commit()
and rollback() even when all access is read-only and no transactions are necessary. In the scope of a
local transaction Data Virtualization will start and attempt to commit an XA transaction, possibly
complicating configuration or causing performance degradation.

In these cases, you can override the default JDBC behavior to indicate that these methods should
perform no action regardless of the commands being executed. To turn off the use of local transactions,
add this property to the JDBC connection URL

TIP

Turning off local transactions can be dangerous and can result in inconsistent results (if reading data) or
inconsistent data in data stores (if writing data). For safety, this mode should be used only if you are
certain that the calling application does not need local transactions.

14.1.2. Transaction Statements

Transaction control statements, which are also applicable to ODBC clients, explicitly control the local
transaction boundaries. The relevant statements are:

START TRANSACTION- synonym for connection.setAutoCommit(false)

COMMIT- synonym for connection.setAutoCommit(true)

ROLLBACK- synonym for connection.rollback() and returning to auto commit mode.

14.2. REQUEST LEVEL TRANSACTIONS

Request level transactions are used when the request is not in the scope of a global or local transaction,
which implies "autoCommit" is "true". In a request level transaction, your application does not need to
explicitly call commit or rollback, rather every command is assumed to be its own transaction that will
automatically be committed or rolled back by the server.

The Data Virtualization Server can perform updates through virtual tables. These updates might result in
an update against multiple physical systems, even though the application issues the update command
against a single virtual table. Often, a user might not know whether the queried tables actually update
multiple sources and require a transaction.

For that reason, the Data Virtualization Server allows your application to automatically wrap commands
in transactions when necessary. Because this wrapping incurs a performance penalty for your queries,
you can choose from a number of available wrapping modes to suit your environment. You need to

disableLocalTxn=true

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

50

choose between the highest degree of integrity and performance your application needs. For example,
if your data sources are not transaction-compliant, you might turn the transaction wrapping off
(completely) to maximize performance.

You can set your transaction wrapping to one of the following modes:

1. ON: This mode always wraps every command in a transaction without checking whether it is
required. This is the safest mode.

2. OFF: This mode never automatically wraps a command in a transaction or check whether it
needs to wrap a command. This mode can be dangerous as it will allow multiple source updates
outside of a transaction without an error. This mode has best performance for applications that
do not use updates or transactions.

3. DETECT: This mode assumes that the user does not know to execute multiple source updates in
a transaction. The Data Virtualization Server checks every command to see whether it is a
multiple source update and wraps it in a transaction. If it is single source then uses the source
level command transaction. You can set the transaction mode as a property when you establish
the Connection or on a per-query basis using the execution properties. For more information on
execution properties, see the section Execution Properties

14.2.1. Multiple Insert Batches

When issuing an INSERT with a query expression (or the deprecated SELECT INTO), multiple insert
batches handled by separate source INSERTS may be processed by the Data Virtualization server. Be
sure that the sources that you target support XA or that compensating actions are taken in the event of
a failure.

14.3. USING GLOBAL TRANSACTIONS

Global or client XA transactions are only applicable to JDBC clients. They all the client to coordinate
multiple resources in a single transaction. To take advantage of XA transactions on the client side, use
the Data VirtualizationDataSource (or Data Virtualization Embedded with transaction detection
enabled).

When an XAConnection is used in the context of a UserTransaction in an application server, such as
JBoss, WebSphere, or Weblogic, the resulting connection will already be associated with the current XA
transaction. No additional client JDBC code is necessary to interact with the XA transaction.

Usage with UserTransaction

 UserTransaction ut = context.getUserTransaction();
 try {
 ut.begin();
 Datasource oracle = lookup(...)
 Datasource teiid = lookup(...)

 Connection c1 = oracle.getConnection();
 Connection c2 = teiid.getConnection();

 // do something with Oracle connection
 // do something with Data Virtualization connection
 c1.close();
 c2.close();
 ut.commit();

CHAPTER 14. TRANSACTIONS

51

Execution_Properties.adoc

In the case that you are not running in a JEE container environment and you have your own transaction
manger to co-ordinate the XA transactions, code will look some what like below.

Manual Usage of XA transactions

With the use of global transactions multiple Data Virtualization XAConnections may participate in the
same transaction. The Data Virtualization JDBC XAResource "isSameRM" method returns "true" only if
connections are made to the same server instance in a cluster. If the Data Virtualization connections are
to different server instances then transactional behavior may not be the same as if they were to the
same cluster member. For example, if the client transaction manager uses the same XID for each
connection (which it should not since isSameRM will return false), duplicate XID exceptions may arise
from the same physical source accessed through different cluster members. More commonly if the
client transaction manager uses a different branch identifier for each connection, issues may arise with
sources that lock or isolate changes based upon branch identifiers.

14.4. RESTRICTIONS

14.4.1. Application Restrictions

The use of global, local, and request level transactions are all mutually exclusive. Request level
transactions only apply when not in a global or local transaction. Any attempt to mix global and local
transactions concurrently will result in an exception.

 } catch (Exception ex) {
 ut.rollback();
 }

XAConnection xaConn = null;
XAResource xaRes = null;
Connection conn = null;
Statement stmt = null;

try {
 xaConn = <XADataSource instance>.getXAConnection();
 xaRes = xaConn.getXAResource();
 Xid xid = <new Xid instance>;
 conn = xaConn.getConnection();
 stmt = conn.createStatement();

 xaRes.start(xid, XAResource.TMNOFLAGS);
 stmt.executeUpdate("insert into …");
 <other statements on this connection or other resources enlisted in this transaction>
 xaRes.end(xid, XAResource.TMSUCCESS);

 if (xaRes.prepare(xid) == XAResource.XA_OK) {
 xaRes.commit(xid, false);
 }
}
catch (XAException e) {
 xaRes.rollback(xid);
}
finally {
 <clean up>
}

Red Hat Integration 2020.Q1 Developing Clients for Data Virtualization

52

14.4.2. Enterprise Information System (EIS) compatibility

The underlying data source that represents the EIS system and the EIS system itself must support XA
transactions if they want to participate in distributed XA transaction through Data Virtualization. If
source system does not support the XA, then it can not fully participate in the distributed transaction.
However, the source is still eligible to participate in data integration without the XA support.

The participation in the XA transaction is automatically determined based on the source XA capability. It
is user’s responsibility to make sure that they configure a XA resource when they require them to
participate in distributed transaction.

CHAPTER 14. TRANSACTIONS

53

	Table of Contents
	CHAPTER 1. DEVELOPING CLIENTS FOR DATA VIRTUALIZATION
	CHAPTER 2. JDBC COMPATIBILITY
	2.1. GENERATED KEYS
	2.2. CONNECTING TO A DATA VIRTUALIZATION SERVER
	2.2.1. OpenTracing compatibility
	2.2.2. Driver Connection
	2.2.2.1. Local Connections
	2.2.2.2. URL Connection Properties
	2.2.2.3. Client SSL Settings

	2.2.3. Additional Socket Client Settings

	2.3. PREPARED STATEMENTS
	2.4. RESULTSET LIMITATIONS
	2.5. JDBC EXTENSIONS
	2.5.1. Statement Extensions
	2.5.2. Partial Results Mode
	2.5.3. Non-blocking Statement Execution
	2.5.3.1. Continuous Execution

	2.5.4. ResultSet Extensions
	2.5.5. Connection Extensions

	2.6. INCOMPATIBLE JDBC METHODS
	2.6.1. Incompatible Classes and Methods in "java.sql"
	2.6.2. Incompatible Classes and Methods in "javax.sql"

	CHAPTER 3. ODBC COMPATIBILITY
	3.1. KNOWN LIMITATIONS:
	3.2. INSTALLATION
	3.3. CONFIGURATION
	3.3.1. Connection Settings
	3.3.1.1. Data Virtualization Connection Settings

	3.4. CONFIGURING THE DATA SOURCE NAME (DSN)
	3.4.1. Windows Installation
	3.4.2. Other *nix Platform Installations

	3.5. DSN LESS CONNECTION
	3.6. CONFIGURING CONNECTION PROPERTIES WITH ODBC

	CHAPTER 4. ODATA COMPATIBILITY
	4.1. WHAT IS ODATA
	4.2. DATA VIRTUALIZATION COMPATIBILITY FOR ODATA
	4.3. ODATA VERSION 4.0 COMPATIBILITY
	4.3.1. How to Access the data?
	4.3.2. Query Basics
	4.3.2.1. How to execute a stored procedure?
	4.3.2.2. Not seeing all the rows?
	4.3.2.3. "EntitySet Not Found" error?

	4.3.3. How to update your data?
	4.3.4. Configuration
	4.3.5. Limitations
	4.3.6. Client Tools for Access
	4.3.7. OData Metadata (How Data Virtualization interprets the relational schema into OData’s $metadata)
	4.3.7.1. Functions And Actions

	4.3.8. OpenAPI Metadata

	CHAPTER 5. GEOSERVER INTEGRATION
	5.1. PREREQUISITES
	5.2. GEOSERVER CONFIGURATION
	5.3. ADDITIONAL CONSIDERATIONS

	CHAPTER 6. QGIS INTEGRATION
	6.1. PREREQUISITES
	6.2. QGIS CONFIGURATION
	6.3. ADDITIONAL CONSIDERATIONS

	CHAPTER 7. SQLALCHEMY INTEGRATION
	7.1. PREREQUISITES
	7.2. USAGE
	7.3. LIMITATIONS
	7.4. APPLICATION COMPATIBILITY
	7.4.1. Superset

	CHAPTER 8. NODE.JS INTEGRATION
	8.1. PREREQUISITES
	8.2. USAGE

	CHAPTER 9. ADO.NET INTEGRATION
	9.1. PREREQUISITES
	9.2. NPGSQL CONFIGURATION
	9.3. KNOWN LIMITATIONS

	CHAPTER 10. REAUTHENTICATION
	CHAPTER 11. EXECUTION PROPERTIES
	CHAPTER 12. SET STATEMENT
	CHAPTER 13. SHOW STATEMENT
	CHAPTER 14. TRANSACTIONS
	14.1. LOCAL TRANSACTIONS
	14.1.1. JDBC Specific
	14.1.1.1. Turning Off JDBC Local Transaction Controls

	14.1.2. Transaction Statements

	14.2. REQUEST LEVEL TRANSACTIONS
	14.2.1. Multiple Insert Batches

	14.3. USING GLOBAL TRANSACTIONS
	14.4. RESTRICTIONS
	14.4.1. Application Restrictions
	14.4.2. Enterprise Information System (EIS) compatibility

