
Red Hat Integration 2020.Q1

Data Virtualization Reference

TECHNOLOGY PREVIEW - Reference for Data Virtualization

Last Updated: 2021-02-19

Red Hat Integration 2020.Q1 Data Virtualization Reference

TECHNOLOGY PREVIEW - Reference for Data Virtualization

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

General reference information for Data Virtualization.

. .

. .

. .

Table of Contents

CHAPTER 1. DATA VIRTUALIZATION REFERENCE

CHAPTER 2. VIRTUAL DATABASES
2.1. VIRTUAL DATABASE PROPERTIES
2.2. DDL METADATA FOR SCHEMA OBJECTS
2.3. DDL METADATA FOR DOMAINS

CHAPTER 3. SQL COMPATIBILITY
3.1. IDENTIFIERS
3.2. OPERATOR PRECEDENCE
3.3. EXPRESSIONS

3.3.1. Column Identifiers
3.3.2. Literals
3.3.3. Window functions
3.3.4. Case and searched case
3.3.5. Scalar subqueries
3.3.6. Parameter references
3.3.7. Arrays

3.4. CRITERIA
3.5. SCALAR FUNCTIONS

3.5.1. Numeric functions
3.5.2. String functions
3.5.3. Date and time functions
3.5.4. Type conversion functions
3.5.5. Choice functions
3.5.6. Decode functions
3.5.7. Lookup function
3.5.8. System functions
3.5.9. XML functions
3.5.10. JSON functions
3.5.11. Security functions
3.5.12. Spatial functions
3.5.13. Miscellaneous functions
3.5.14. Nondeterministic function handling

3.6. DML COMMANDS
3.6.1. Set operations
3.6.2. SELECT command
3.6.3. VALUES command
3.6.4. Update commands

3.6.4.1. INSERT command
3.6.4.2. UPDATE command
3.6.4.3. DELETE command
3.6.4.4. UPSERT (MERGE) command
3.6.4.5. EXECUTE command
3.6.4.6. Procedural relational command
3.6.4.7. Anonymous procedure block

3.6.5. Subqueries
3.6.6. WITH clause
3.6.7. SELECT clause
3.6.8. FROM clause

3.6.8.1. Nested tables

10

11
12
14

28

29
29
30
30
31
31

35
38
38
38
38
39
42
42
46
50
56
57
57
59
59
62
69
74
76
87
89
90
91
91

92
93
93
93
93
93
94
94
95
96
97
98
98

100

Table of Contents

1

. .

. .

. .

3.6.8.2. XMLTABLE
3.6.8.3. ARRAYTABLE
3.6.8.4. OBJECTTABLE
3.6.8.5. TEXTTABLE
3.6.8.6. JSONTABLE

3.6.9. WHERE clause
3.6.10. GROUP BY clause
3.6.11. HAVING Clause
3.6.12. ORDER BY clause
3.6.13. LIMIT clause
3.6.14. INTO clause
3.6.15. OPTION clause

3.7. DDL COMMANDS
3.7.1. Temporary Tables

3.7.1.1. Local temporary tables
3.7.1.2. Global temporary tables
3.7.1.3. Common features of global and local temporary tables
3.7.1.4. Foreign temporary tables

3.7.2. Alter view
3.7.3. Alter procedure
3.7.4. Alter trigger

3.8. PROCEDURES
3.8.1. Procedure language

3.8.1.1. Command statement
3.8.1.2. Dynamic SQL command
3.8.1.3. Declaration statement
3.8.1.4. Assignment statement
3.8.1.5. Special variables
3.8.1.6. Compound statement
3.8.1.7. IF statement
3.8.1.8. Loop Statement
3.8.1.9. While statement
3.8.1.10. Continue statement
3.8.1.11. Break statement
3.8.1.12. Leave statement
3.8.1.13. Return statement
3.8.1.14. Error statement
3.8.1.15. Raise statement
3.8.1.16. Exception expression

3.8.2. Virtual procedures
3.8.3. Triggers

3.9. COMMENTS
3.10. EXPLAIN STATEMENTS

CHAPTER 4. DATA TYPES
4.1. RUNTIME TYPES
4.2. TYPE CONVERSIONS
4.3. SPECIAL CONVERSION CASES
4.4. ESCAPED LITERAL SYNTAX

CHAPTER 5. UPDATABLE VIEWS
5.1. KEY-PRESERVED TABLES

CHAPTER 6. TRANSACTIONS

101
102
103
105
107
108
109
110
110
111

112
113
114
114
114
115
116
116
118
118
118
118
118
119

120
122
123
123
124
126
126
127
127
127
128
128
128
129
129
129
132
135
135

137
137
140
143
144

145
146

147

Red Hat Integration 2020.Q1 Data Virtualization Reference

2

. .

. .

. .

6.1. AUTOCOMMITTXN EXECUTION PROPERTY
6.2. UPDATING MODEL COUNT
6.3. JDBC AND TRANSACTIONS
6.4. LIMITATIONS

CHAPTER 7. DATA ROLES
7.1. PERMISSIONS
7.2. ROLE MAPPING

CHAPTER 8. SYSTEM SCHEMA
8.1. SYS SCHEMA
8.2. SYSADMIN SCHEMA

8.2.1. SYSADMIN.refreshMatView
8.2.2. SYSADMIN.refreshMatViewRow
8.2.3. SYSADMIN.refreshMatViewRows
8.2.4. SYSADMIN.setColumnStats
8.2.5. SYSADMIN.setProperty
8.2.6. SYSADMIN.setTableStats

CHAPTER 9. TRANSLATORS
9.1. AMAZON S3 TRANSLATOR
9.2. DELEGATOR TRANSLATORS

9.2.1. Extending the delegator translator
9.3. FILE TRANSLATOR
9.4. GOOGLE SPREADSHEET TRANSLATOR
9.5. JDBC TRANSLATORS

9.5.1. Actian Vector translator (actian-vector)
9.5.2. Apache Phoenix Translator (phoenix)
9.5.3. Cloudera Impala translator (impala)
9.5.4. Db2 Translator (db2)
9.5.5. Derby translator (derby)
9.5.6. Exasol translator (exasol)
9.5.7. Greenplum Translator (greenplum)
9.5.8. H2 Translator (h2)
9.5.9. Hive Translator (hive)
9.5.10. HSQL Translator (hsql)
9.5.11. Informix translator (informix)
9.5.12. Ingres translators (ingres / ingres93)
9.5.13. Intersystems Caché translator (intersystems-cache)
9.5.14. JDBC ANSI translator (jdbc-ansi)
9.5.15. JDBC simple translator (jdbc-simple)
9.5.16. Microsoft Access translators
9.5.17. Microsoft SQL Server translator (sqlserver)
9.5.18. MySQL translator (mysql/mysql5)
9.5.19. Netezza translator (netezza)
9.5.20. Oracle translator (oracle)
9.5.21. PostgreSQL translator (postgresql)
9.5.22. PrestoDB translator (prestodb)
9.5.23. Redshift translator (redshift)
9.5.24. SAP HANA translator (hana)
9.5.25. SAP IQ translator (sap-iq)
9.5.26. Sybase translator (sybase)
9.5.27. Data Virtualization translator (teiid)
9.5.28. Teradata translator (teradata)

147
148
148
149

150
150
154

155
155
167
173
173
174
174
175
175

178
181

186
186
188
190
191

200
201
201

202
203
203
203
203
203
204
204
205
205
205
205
205
206
206
207
207
210
210
211
212
212
212
213
213

Table of Contents

3

. .

. .

. .

9.5.29. Vertica translator (vertica)
9.6. LOOPBACK TRANSLATOR
9.7. MICROSOFT EXCEL TRANSLATOR
9.8. MONGODB TRANSLATOR
9.9. ODATA TRANSLATOR
9.10. ODATA V4 TRANSLATOR
9.11. OPENAPI TRANSLATOR
9.12. SALESFORCE TRANSLATORS
9.13. REST TRANSLATOR
9.14. WEB SERVICES TRANSLATOR

CHAPTER 10. FEDERATED PLANNING
10.1. PLANNING OVERVIEW
10.2. QUERY PLANNER
10.3. QUERY PLANS
10.4. FEDERATED OPTIMIZATIONS
10.5. SUBQUERY OPTIMIZATION
10.6. XQUERY OPTIMIZATION
10.7. FEDERATED FAILURE MODES
10.8. CONFORMED TABLES

CHAPTER 11. DATA VIRTUALIZATION ARCHITECTURE
11.1. TERMINOLOGY
11.2. DATA MANAGEMENT
11.3. QUERY TERMINATION
11.4. PROCESSING

CHAPTER 12. BNF FOR SQL GRAMMAR
12.1. RESERVED KEYWORDS
12.2. NON-RESERVED KEYWORDS
12.3. RESERVED KEYWORDS FOR FUTURE USE
12.4. TOKENS
12.5. PRODUCTION CROSS-REFERENCE
12.6. PRODUCTIONS

12.6.1. string ::=
12.6.2. non-reserved identifier ::=
12.6.3. basicNonReserved ::=
12.6.4. Unqualified identifier ::=
12.6.5. identifier ::=
12.6.6. create trigger ::=
12.6.7. alter ::=
12.6.8. for each row trigger action ::=
12.6.9. explain ::=
12.6.10. explain option ::=
12.6.11. directly executable statement ::=
12.6.12. drop table ::=
12.6.13. create temporary table ::=
12.6.14. temporary table element ::=
12.6.15. raise error statement ::=
12.6.16. raise statement ::=
12.6.17. exception reference ::=
12.6.18. sql exception ::=
12.6.19. statement ::=
12.6.20. delimited statement ::=

213
213
214
217

230
232
235
237
245
247

250
250
251

264
273
278
279
280
280

282
283
284
285
285

287
287
297
303
304
309
320
320
320
320
324
324
325
325
325
325
326
326
326
326
327
327
327
327
328
328
328

Red Hat Integration 2020.Q1 Data Virtualization Reference

4

12.6.21. compound statement ::=
12.6.22. branching statement ::=
12.6.23. return statement ::=
12.6.24. while statement ::=
12.6.25. loop statement ::=
12.6.26. if statement ::=
12.6.27. declare statement ::=
12.6.28. assignment statement ::=
12.6.29. assignment statement operand ::=
12.6.30. data statement ::=
12.6.31. dynamic data statement ::=
12.6.32. set clause list ::=
12.6.33. typed element list ::=
12.6.34. callable statement ::=
12.6.35. call statement ::=
12.6.36. named parameter list ::=
12.6.37. insert statement ::=
12.6.38. expression list ::=
12.6.39. update statement ::=
12.6.40. delete statement ::=
12.6.41. query expression ::=
12.6.42. with list element ::=
12.6.43. query expression body ::=
12.6.44. query term ::=
12.6.45. query primary ::=
12.6.46. query ::=
12.6.47. into clause ::=
12.6.48. select clause ::=
12.6.49. select sublist ::=
12.6.50. select derived column ::=
12.6.51. derived column ::=
12.6.52. all in group ::=
12.6.53. ordered aggregate function ::=
12.6.54. text aggreate function ::=
12.6.55. standard aggregate function ::=
12.6.56. analytic aggregate function ::=
12.6.57. filter clause ::=
12.6.58. from clause ::=
12.6.59. table reference ::=
12.6.60. joined table ::=
12.6.61. cross join ::=
12.6.62. qualified table ::=
12.6.63. table primary ::=
12.6.64. make dep options ::=
12.6.65. xml serialize ::=
12.6.66. array table ::=
12.6.67. json table ::=
12.6.68. json table column ::=
12.6.69. text table ::=
12.6.70. text table column ::=
12.6.71. xml query ::=
12.6.72. xml query ::=
12.6.73. object table ::=

328
328
329
329
329
329
329
330
330
330
330
330
331
331
331
331
331
332
332
332
332
332
333
333
333
333
334
334
334
334
335
335
335
335
335
336
336
336
336
337
337
337
337
337
338
338
338
338
338
339
339
339
339

Table of Contents

5

12.6.74. object table column ::=
12.6.75. xml table ::=
12.6.76. xml table column ::=
12.6.77. unsigned integer ::=
12.6.78. table subquery ::=
12.6.79. table name ::=
12.6.80. where clause ::=
12.6.81. condition ::=
12.6.82. boolean value expression ::=
12.6.83. boolean term ::=
12.6.84. boolean factor ::=
12.6.85. boolean primary ::=
12.6.86. comparison operator ::=
12.6.87. is distinct ::=
12.6.88. comparison predicate ::=
12.6.89. subquery ::=
12.6.90. quantified comparison predicate ::=
12.6.91. match predicate ::=
12.6.92. like regex predicate ::=
12.6.93. character ::=
12.6.94. between predicate ::=
12.6.95. is null predicate ::=
12.6.96. in predicate ::=
12.6.97. exists predicate ::=
12.6.98. group by clause ::=
12.6.99. having clause ::=
12.6.100. order by clause ::=
12.6.101. sort specification ::=
12.6.102. sort key ::=
12.6.103. integer parameter ::=
12.6.104. limit clause ::=
12.6.105. fetch clause ::=
12.6.106. option clause ::=
12.6.107. expression ::=
12.6.108. common value expression ::=
12.6.109. numeric value expression ::=
12.6.110. plus or minus ::=
12.6.111. term ::=
12.6.112. star or slash ::=
12.6.113. value expression primary ::=
12.6.114. parameter reference ::=
12.6.115. unescapedFunction ::=
12.6.116. nested expression ::=
12.6.117. unsigned value expression primary ::=
12.6.118. ARRAY expression constructor ::=
12.6.119. window specification ::=
12.6.120. window frame ::=
12.6.121. window frame bound ::=
12.6.122. case expression ::=
12.6.123. searched case expression ::=
12.6.124. function ::=
12.6.125. xml parse ::=
12.6.126. querystring function ::=

340
340
340
340
340
341
341
341
341
341
341

342
342
342
342
343
343
343
343
343
344
344
344
344
344
345
345
345
345
345
346
346
346
346
347
347
347
347
347
348
348
348
348
348
349
349
349
349
350
350
350
351
351

Red Hat Integration 2020.Q1 Data Virtualization Reference

6

12.6.127. xml element ::=
12.6.128. xml attributes ::=
12.6.129. json object ::=
12.6.130. derived column list ::=
12.6.131. xml forest ::=
12.6.132. xml namespaces ::=
12.6.133. xml namespace element ::=
12.6.134. simple data type ::=
12.6.135. basic data type ::=
12.6.136. data type ::=
12.6.137. time interval ::=
12.6.138. non numeric literal ::=
12.6.139. unsigned numeric literal ::=
12.6.140. ddl statement ::=
12.6.141. option namespace ::=
12.6.142. create database ::=
12.6.143. use database ::=
12.6.144. create schema ::=
12.6.145. drop schema ::=
12.6.146. set schema ::=
12.6.147. create a domain or type alias ::=
12.6.148. create data wrapper ::=
12.6.149. Drop data wrapper ::=
12.6.150. create role ::=
12.6.151. with role ::=
12.6.152. drop role ::=
12.6.153. CREATE POLICY ::=
12.6.154. DROP POLICY ::=
12.6.155. GRANT ::=
12.6.156. Revoke GRANT ::=
12.6.157. create server ::=
12.6.158. drop server ::=
12.6.159. create procedure ::=
12.6.160. drop procedure ::=
12.6.161. procedure parameter ::=
12.6.162. procedure result column ::=
12.6.163. create table ::=
12.6.164. create foreign or global temporary table ::=
12.6.165. create view ::=
12.6.166. drop table ::=
12.6.167. create foreign temp table ::=
12.6.168. create table body ::=
12.6.169. create view body ::=
12.6.170. table constraint ::=
12.6.171. foreign key ::=
12.6.172. primary key ::=
12.6.173. other constraints ::=
12.6.174. column list ::=
12.6.175. table element ::=
12.6.176. view element ::=
12.6.177. post create column ::=
12.6.178. inline constraint ::=
12.6.179. options clause ::=

351
352
352
352
352
352
353
353
354
354
354
355
355
356
357
357
357
357
357
358
358
358
358
358
359
359
359
359
359
360
360
360
360
361
361
361
361
361

362
362
362
362
362
363
363
363
363
363
364
364
364
364
364

Table of Contents

7

12.6.180. option pair ::=
12.6.181. alter option pair ::=
12.6.182. alterStatement ::=
12.6.183. ALTER TABLE ::=
12.6.184. RENAME Table ::=
12.6.185. ADD constraint ::=
12.6.186. ADD column ::=
12.6.187. DROP column ::=
12.6.188. alter column options ::=
12.6.189. rename column options ::=
12.6.190. ALTER PROCEDURE ::=
12.6.191. ALTER TRIGGER ::=
12.6.192. ALTER SERVER ::=
12.6.193. ALTER DATA WRAPPER ::=
12.6.194. ALTER DATABASE ::=
12.6.195. alter options list ::=
12.6.196. drop option ::=
12.6.197. add set option ::=
12.6.198. alter child options list ::=
12.6.199. drop option ::=
12.6.200. add set child option ::=
12.6.201. alter child option pair ::=
12.6.202. Import foreign schema ::=
12.6.203. Import another Database ::=
12.6.204. identifier list ::=
12.6.205. grant type ::=

365
365
365
365
365
366
366
366
366
366
367
367
367
367
367
368
368
368
368
368
369
369
369
369
369
369

Red Hat Integration 2020.Q1 Data Virtualization Reference

8

Table of Contents

9

CHAPTER 1. DATA VIRTUALIZATION REFERENCE
Data Virtualization offers a highly scalable and high performance solution to information integration. By
allowing integrated and enriched data to be consumed relationally, as JSON, XML, and other formats
over multiple protocols. Data Virtualization simplifies data access for developers and consuming
applications.

Commercial development support, production support, and training for Data Virtualization is available
through Red Hat. Data Virtualization is a professional open source project and a critical component of
Red Hat data Integration.

Before one can delve into Data Virtualization it is very important to learn few basic constructs of Data
Virtualization. For example, what is a virtual database? What is a model? and so forth. For more
information, see the Teiid Basics.

If not otherwise specified, versions referenced in this document refer to Teiid project versions. Teiid or
Data Virtualization running on various platforms will have both platform and product-specific versioning.

IMPORTANT

Data virtualization is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview/.

Red Hat Integration 2020.Q1 Data Virtualization Reference

10

http://teiid.io/about/basics/
https://access.redhat.com/support/offerings/techpreview/

CHAPTER 2. VIRTUAL DATABASES
A virtual database (VDB) is a metadata container for components used to integrate data from multiple
data sources, so that they can be accessed in an integrated manner through a single, uniform API.

A virtual database typically contains multiple schema components (also called as models), and each
schema contains the metadata (tables, procedures, functions). There are two different types of
schemas:

Foreign schema

Also called a source or physical schema, a foreign schema represents external or remote data
sources, such as a relational database, such as Oracle, Db2, or MySQL; files, such as CSV or Microsoft
Excel; or web services, such as SOAP or REST.

Virtual schema

A view layer, or logical schema layer that is defined using schema objects from foreign schemas . For
example, when you create a view table that aggregates multiple foreign tables from different
sources, the resulting view shields users from the complexities of the data sources that define the
view.

One important thing to note is, a virtual database contains only metadata. Any use case involving Data
Virtualization must have a virtual database model to begin with. So, it is important to learn how to design
and develop a VDB.

The following example of a virtual database model, defines a single foreign schema component that
makes a connection to a PostgreSQL database.

The SQL DDL commands in the example implement the SQL/MED specification.

CREATE DATABASE my_example;
USE DATABASE my_example;
CREATE SERVER pgsql
 VERSION 'one' FOREIGN DATA WRAPPER postgresql
 OPTIONS (
 "resource-name" 'java:/postgres-ds'
);
CREATE SCHEMA test SERVER pgsql;
IMPORT FOREIGN SCHEMA public FROM SERVER pgsql INTO test
 OPTIONS(

CHAPTER 2. VIRTUAL DATABASES

11

The following sections describe in greater detail how the statements in the preceding example are used
to define a virtual database. Before that we need to learn about the different elements of the source
schema component.

External data sources

As shown in preceding example, the "source schema" component of a virtual database is a collection of
schema objects, tables, procedures and functions, that represent an external data source’s metadata
locally. In the example, schema objects are not defined directly, but are imported from the server. Details
of the connection to the external data source are provided through a resource-name, which is a named
connection reference to a external data source.

For the purposes of Data Virtualization, connecting and issuing queries to fetch the metadata from
these external data sources, Data Virtualization defines/provides two types of resources.

Translator

A translator, also known as a DATA WRAPPER, is a component that provides an abstraction layer
between the Data Virtualization query engine and a physical data source. The translator knows how to
convert query commands from Data Virtualization into source-specific commands and execute them.
The translator also has the intelligence to convert data that the physical source returns into a form that
the Data Virtualization query engine can process. For example, when working with a web service
translator, the translator converts SQL procedures from the Data Virtualization layer into HTTP calls,
and JSON responses are converted to tabular results.

Data Virtualization provides various translators as part of the system, or one can be developed by using
the provided java libraries. For information about the available translators, see Translators.

2.1. VIRTUAL DATABASE PROPERTIES

DATABASE properties

domain-ddl

schema-ddl

query-timeout Sets the default query timeout in milliseconds for queries executed against this
VDB. 0 indicates that the server default query timeout should be used. Defaults to 0. Will have
no effect if the server default query timeout is set to a lesser value. Note that clients can still set
their own timeouts that will be managed on the client side.

connection.XXX For use by the ODBC transport and OData to set default connection/execution
properties. For more information about related properties, see Driver Connection in the Client
Developer’s Guide. Note these are set on the connection after it has been established.

authentication-type

Authentication type of configured security domain. Allowed values currently are (GSS,
USERPASSWORD). The default is set on the transport (typically USERPASSWORD).

 importer.useFullSchemaName false,
 importer.tableTypes 'TABLE,VIEW'
);

CREATE DATABASE vdb OPTIONS ("connection.partialResultsMode" true);

Red Hat Integration 2020.Q1 Data Virtualization Reference

12

https://teiid.github.io/teiid-documents/master/content/client-dev/Driver_Connection.html

password-pattern

Regular expression matched against the connecting user’s name that determines if USERPASSWORD
authentication is used. password-pattern takes precedence over authentication-type. The default is
authentication-type.

gss-pattern

Regular expression matched against the connecting user’s name that determines if GSS authentication
is used. gss-pattern takes precedence over password-pattern. The default is password-pattern.

max-sessions-per-user (11.2+)

Maximum number of sessions allowed for each user, as identified by the user name, of this VDB. No
setting or a negative number indicates no per user max, but the session service max will still apply. This is
enforced at each Data Virtualization server member in a cluster, and not cluster wide. Derived sessions
that are created for tasks under an existing session do not count against this maximum.

model.visible

Used to override the visibility of imported vdb models, where model is the name of the imported model.

include-pg-metadata

By default, PostgreSQL metadata is always added to VDB unless you set the property
org.teiid.addPGMetadata to false. This property enables adding PG metadata per VDB. For more
information, System Properties in the Administrator’s Guide. Please note that if you are using ODBC to
access your VDB, the VDB must include PG metadata.

lazy-invalidate

By default TTL expiration will be invalidating. For more information, see Internal Materialization in the
Caching guide. Setting lazy-invalidate to true will make TTL refreshes non-invalidating.

deployment-name

Effectively reserved. Will be set at deploy time by the server to the name of the server deployment.

Schema and model properties

visible

Marks the schema as visible when the value is true (the default setting). When the visible flag is set to
false, the schema’s metadata is hidden from any metadata requests. Setting the property to false does
not prohibit you from issuing queries against this schema. For information about how to control access
to data, see Data roles.

multisource

Sets the schema to multi-source mode, where the data exists in partitions in multiple different sources.
It is assumed that metadata of the schema is the same across all data sources.

multisource.columnName

In a multi-source schema, an additional column that designates the partition is implicitly added to all
tables to identify the source. This property defines the name of that column, the type will be always
String.

CHAPTER 2. VIRTUAL DATABASES

13

https://teiid.github.io/teiid-documents/master/content/admin/System_Properties.html
https://teiid.github.io/teiid-documents/master/content/caching/Internal_Materialization.html

multisource.addColumn

This flag specifies to add an implicit partition column to all the tables in this schema. A true value adds
the column. Default is false.

allowed-languages

Specifies a comma-separated list of programming languages that can be used for any purpose in the
VDB. Names are case-sensitive, and the list cannot include whitespace between entries. For example,
<property name="allowed-languages" value="javascript"/>

allow-language Specifies that a role has permission to use a language that is listed in the
allowed-languages property. For example, the allow-language property in following excerpt
specifies that users with the role RoleA have permission to use Javascript.

<data-role name="RoleA">
 <description>Read and javascript access.</description>

 <permission>
 <resource-name>modelName</resource-name>
 <allow-read>true</allow-read>
 </permission>

 <permission>
 <resource-name>javascript</resource-name>
 <allow-language>true</allow-language>
 </permission>

 <mapped-role-name>role1</mapped-role-name>

 </data-role>

2.2. DDL METADATA FOR SCHEMA OBJECTS

Tables and views exist in the same namespace in a schema. Indexes are not considered schema scoped
objects, but are rather scoped to the table or view they are defined against. Procedures and functions
are defined in separate namespaces, but a function that is defined by virtual procedure language exists
as both a function and a procedure of the same name. Domain types are not schema-scoped; they are
scoped to the entire VDB.

Data types

For information about data types, see simple data type in the BNF for SQL grammar.

Foreign tables

A FOREIGN table is table that is defined on source schema that represents a real relational table in
source databases such as Oracle, Microsoft SQL Server, and so forth. For relational databases, Data
Virtualization can automatically retrieve the database schema information upon the deployment of the
VDB, if you want to auto import the existing schema. However, users can use the following FOREIGN
table semantics, when they would like to explicitly define tables on PHYSICAL schema or represent non-
relational data as relational in custom translators.

Example: Create foreign table (Created on PHYSICAL model)

CREATE FOREIGN TABLE {table-name} (

Red Hat Integration 2020.Q1 Data Virtualization Reference

14

For more information about creating foreign tables, see CREATE TABLE in BNF for SQL grammar.

Example: Create foreign table (Created on PHYSICAL model)

TABLE OPTIONS: (the following options are well known, any others properties defined will be
considered as extension metadata)

Property Data type or allowed values Description

UUID string Unique identifier for the view.

 <table-element> (,<table-element>)*
 (,<constraint>)*
) [OPTIONS (<options-clause>)]

<table-element> ::=
 {column-name} <data-type> <element-attr> <options-clause>

<data-type> ::=
 varchar | boolean | integer | double | date | timestamp .. (see Data Types)

<element-attr> ::=
 [AUTO_INCREMENT] [NOT NULL] [PRIMARY KEY] [UNIQUE] [INDEX] [DEFAULT {expr}]

<constraint> ::=
 CONSTRAINT {constraint-name} (
 PRIMARY KEY <columns> |
 FOREIGN KEY (<columns>) REFERENCES tbl (<columns>)
 UNIQUE <columns> |
 ACCESSPATTERN <columns>
 INDEX <columns>

<columns> ::=
 ({column-name} [,{column-name}]*)

<options-clause> ::=
 <key> <value>[,<key>, <value>]*

CREATE FOREIGN TABLE Customer (
 id integer PRIMARY KEY,
 firstname varchar(25),
 lastname varchar(25),
 dob timestamp);

CREATE FOREIGN TABLE Order (
 id integer PRIMARY KEY,
 customerid integer OPTIONS(ANNOTATION 'Customer primary key'),
 saledate date,
 amount decimal(25,4),
 CONSTRAINT CUSTOMER_FK FOREIGN KEY(customerid) REFERENCES Customer(id)
) OPTIONS(UPDATABLE true, ANNOTATION 'Orders Table');

CHAPTER 2. VIRTUAL DATABASES

15

CARDINALITY int Costing information. Number of
rows in the table. Used for
planning purposes.

UPDATABLE 'TRUE' 'FALSE'

Defines whether or not the view is
allowed to update.

ANNOTATION string

Description of the view. DETERMINISM NONDETERMINISTIC,
COMMAND_DETERMINISTIC,
SESSION_DETERMINISTIC,
USER_DETERMINISTIC,
VDB_DETERMINISTIC,
DETERMINISTIC

Property Data type or allowed values Description

COLUMN OPTIONS: (the following options are well known, any others properties defined will be
considered as extension metadata).

Property Data type or allowed values Description

UUID string A unique identifier for the column.

NAMEINSOURCE string If this is a column name on the
FOREIGN table, this value
represents name of the column in
source database. If omitted, the
column name is used when
querying for data against the
source.

CASE_SENSITIVE 'TRUE'|'FALSE'

SELECTABLE 'TRUE'|'FALSE' TRUE when this column is
available for selection from the
user query.

Red Hat Integration 2020.Q1 Data Virtualization Reference

16

UPDATABLE 'TRUE'|'FALSE' Defines if the column is
updatable. Defaults to true if the
view/table is updatable.

SIGNED 'TRUE'|'FALSE'

CURRENCY 'TRUE'|'FALSE'

FIXED_LENGTH 'TRUE'|'FALSE'

SEARCHABLE 'SEARCHABLE'|'UNSEARCHABL
E'|'LIKE_ONLY'|'ALL_EXCEPT_LI
KE'

Column searchability. Usually
dictated by the data type.

MIN_VALUE

MAX_VALUE

CHAR_OCTET_LENGTH integer

ANNOTATION string

NATIVE_TYPE string

RADIX integer

NULL_VALUE_COUNT long Costing information. Number of
NULLS in this column.

DISTINCT_VALUES long Costing information. Number of
distinct values in this column.

Property Data type or allowed values Description

Columns may also be marked as NOT NULL, auto_increment, or with a DEFAULT value.

A column of type bigdecimal/decimal/numeric can be declared without a precision/scale, which defaults
to an internal maximum for precision with half scale, or with a precision which will default to a scale of 0.

A column of type timestamp can be declared without a scale which will default to an internal maximum of
9 fractional seconds.

Table Constraints

Constraints can be defined on table/view to define indexes and relationships to other tables/views. This
information is used by the Data Virtualization optimizer to plan queries, or use the indexes in
materialization tables to optimize the access to the data.

CHAPTER 2. VIRTUAL DATABASES

17

CONSTRAINTS are same as one can define on RDBMS.

Example of CONSTRAINTs

ALTER TABLE

For the full SQL grammar for the ALTER TABLE statement, see ALTER TABLE in the BNF for SQL
grammar.

Using the ALTER command, one can Add, Change, Delete columns, modify the values of any OPTIONS,
and add constraints. The following examples show how to use the ALTER command to modify table
objects.

CREATE FOREIGN TABLE Orders (
 name varchar(50),
 saledate date,
 amount decimal,
 CONSTRAINT CUSTOMER_FK FOREIGN KEY(customerid) REFERENCES Customer(id)
 ACCESSPATTERN (name),
 PRIMARY KEY ...
 UNIQUE ...
 INDEX ...

-- add column to the table
ALTER FOREIGN TABLE "Customer" ADD COLUMN address varchar(50) OPTIONS(SELECTABLE
true);

-- remove column to the table
ALTER FOREIGN TABLE "Customer" DROP COLUMN address;

-- adding options property on the table
ALTER FOREIGN TABLE "Customer" OPTIONS (ADD CARDINALITY 10000);

-- Changing options property on the table
ALTER FOREIGN TABLE "Customer" OPTIONS (SET CARDINALITY 9999);

-- Changing options property on the table's column
ALTER FOREIGN TABLE "Customer" ALTER COLUMN "name" OPTIONS(SET UPDATABLE

Red Hat Integration 2020.Q1 Data Virtualization Reference

18

Views

A view is a virtual table. A view contains rows and columns, like a real table. The columns in a view are
columns from one or more real tables from the source or other view models. They can also be
expressions made up multiple columns, or aggregated columns. When column definitions are not
defined on the view table, they are derived from the projected columns of the view’s select
transformation that is defined after the AS keyword.

You can add functions, JOIN statements and WHERE clauses to a view data as if the data were coming
from one single table.

Access patterns are not currently meaningful to views, but are still allowed by the grammar. Other
constraints on views are also not enforced, unless they are specified on an internal materialized view, in
which case they will be automatically added to the materialization target table. However, non-access
pattern View constraints are still useful for other purposes, such as to convey relationships for
optimization and for discovery by clients.

BNF for CREATE VIEW

FALSE)

-- Changing table's column type to integer
ALTER FOREIGN TABLE "Customer" ALTER COLUMN "id" TYPE bigdecimal;

-- Changing table's column column name
ALTER FOREIGN TABLE "Customer" RENAME COLUMN "id" TO "customer_id";

-- Adding a constraint
ALTER VIEW "Customer_View" ADD PRIMARY KEY (id);

CREATE VIEW {table-name} [(
 <view-element> (,<view-element>)*
 (,<constraint>)*
)] [OPTIONS (<options-clause>)]
 AS {transformation_query}

<table-element> ::=
 {column-name} [<data-type> <element-attr> <options-clause>]

<data-type> ::=
 varchar | boolean | integer | double | date | timestamp .. (see Data Types)

<element-attr> ::=
 [AUTO_INCREMENT] [NOT NULL] [PRIMARY KEY] [UNIQUE] [INDEX] [DEFAULT {expr}]

<constraint> ::=
 CONSTRAINT {constraint-name} (
 PRIMARY KEY <columns> |
 FOREIGN KEY (<columns>) REFERENCES tbl (<columns>)
 UNIQUE <columns> |
 ACCESSPATTERN <columns>
 INDEX <columns>

<columns> ::=
 ({column-name} [,{column-name}]*)

CHAPTER 2. VIRTUAL DATABASES

19

Table 2.1. VIEW OPTIONS: (These properties are in addition to properties defined in the CREATE
TABLE)

Property Data type or allowed values Description

MATERIALIZED 'TRUE'|'FALSE' Defines if a table is materialized.

MATERIALIZED_TABLE 'table.name' If this view is being materialized to
a external database, this defines
the name of the table that is
being materialized to.

Example: Create view table (created on VIRTUAL schema)

IMPORTANT

Note that the columns are implicitly defined by the transformation query (SELECT
statement). Columns can also defined inline, but if they are defined they can be only
altered to modify their properties. You cannot ADD or DROP new columns.

ALTER TABLE

The BNF for ALTER VIEW, refer to ALTER TABLE

Using the ALTER COMMAND you can change the transformation query of the VIEW. You are NOT
allowed to alter the column information. Transformation queries must be valid.

<options-clause> ::=
 <key> <value>[,<key>, <value>]*

CREATE VIEW CustomerOrders
 AS
 SELECT concat(c.firstname, c.lastname) as name,
 o.saledate as saledate,
 o.amount as amount
 FROM Customer C JOIN Order o ON c.id = o.customerid;

ALTER VIEW CustomerOrders
 AS
 SELECT concat(c.firstname, c.lastname) as name,
 o.saledate as saledate,

Red Hat Integration 2020.Q1 Data Virtualization Reference

20

INSTEAD OF triggers on VIEW (Update VIEW)

A view comprising multiple base tables must use an INSTEAD OF trigger to insert records, apply
updates, and implement deletes that reference data in the tables. Based on the select transformation’s
complexity some times INSTEAD OF TRIGGERS are automatically provided for the user when
UPDATABLE OPTION on the VIEW is set to TRUE. However, using the CREATE TRIGGER mechanism
user can provide/override the default behavior.

Example: Define INSTEAD OF trigger on View for INSERT

For Update

Example: Define instead of trigger on View for UPDATE

While updating you have access to previous and new values of the columns. For more information about
update procedures, see Update procedures.

AFTER triggers on source tables

A source table can have any number of uniquely named triggers registered to handle change events that
are reported by a change data capture system.

Similar to view triggers AFTER insert provides access to new values via the NEW group, AFTER delete

 o.amount as amount
 FROM Customer C JOIN Order o ON c.id = o.customerid
 WHERE saledate < TIMESTAMPADD(now(), -1, SQL_TSI_MONTH)

CREATE TRIGGER ON CustomerOrders INSTEAD OF INSERT AS
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO Customer (...) VALUES (NEW.name ...);
 INSERT INTO Orders (...) VALUES (NEW.value ...);
 END

CREATE TRIGGER ON CustomerOrders INSTEAD OF UPDATE AS
 FOR EACH ROW
 BEGIN ATOMIC
 IF (CHANGING.saledate)
 BEGIN
 UPDATE Customer SET saledate = NEW.saledate;
 UPDATE INTO Orders (...) VALUES (NEW.value ...);
 END
 END

CHAPTER 2. VIRTUAL DATABASES

21

Similar to view triggers AFTER insert provides access to new values via the NEW group, AFTER delete
provides access to old values via the OLD group, and AFTER update provides access to both.

Example:Define AFTER trigger on Customer

You will typically define a handler for each operation - INSERT/UPDATE/DELTE.

For more detailed information about update procedures, see Update procedures

Create procedure/function

A user can define one of the following functions:

Source Procedure ("CREATE FOREIGN PROCEDURE")

A stored procedure in source.

Source Function ("CREATE FOREIGN FUNCTION")

A function that depends on capabilities in the data source, and for which Data Virtualization will
pushdown to the source instead of evaluating in the Data Virtualization engine.

Virtual Procedure ("CREATE VIRTUAL PROCEDURE")

Similar to stored procedure, however this is defined using the Data Virtualization’s Procedure
language and evaluated in the Data Virtualization’s engine.

Function/UDF ("CREATE VIRTUAL FUNCTION")

A user defined function, that can be defined using the Teiid procedure language, or than can have
the implementation defined by a Java class. For more information about writing the Java code for a
UDF, see Support for user-defined functions (non-pushdown) in the Translator Development Guide .

CREATE TRIGGER ON Customer AFTER INSERT AS
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO CustomerOrders (CustomerName, CustomerID) VALUES (NEW.Name, NEW.ID);
 END

Red Hat Integration 2020.Q1 Data Virtualization Reference

22

https://teiid.github.io/teiid-documents/master/content/dev/Support_for_User-Defined_Functions_Non-Pushdown.html

For more information about creating functions or procedures, see the BNF for SQL grammar.

Variable arguments

Instead of using just an IN parameter, the last non optional parameter can be declared VARIADIC to
indicate that it can be repeated 0 or more times when the procedure is called.

Example: Vararg procedure

FUNCTION OPTIONS:(the below are well known options, any others properties defined will be
considered as extension metadata)

Property Data Type or Allowed Values Description

UUID string unique Identifier

NAMEINSOURCE If this is source
function/procedure the name in
the physical source, if different
from the logical name given above

ANNOTATION string Description of the
function/procedure

CATEGORY string Function Category

CREATE FOREIGN PROCEDURE proc (x integer, VARIADIC z integer)
 RETURNS (x string);

CHAPTER 2. VIRTUAL DATABASES

23

DETERMINISM NONDETERMINISTIC,
COMMAND_DETERMINISTIC,
SESSION_DETERMINISTIC,
USER_DETERMINISTIC,
VDB_DETERMINISTIC,
DETERMINISTIC

Not used on virtual procedures

NULL-ON-NULL 'TRUE'|'FALSE'

JAVA_CLASS string Java Class that defines the
method in case of UDF

JAVA_METHOD string The Java method name on the
above defined java class for the
UDF implementation

VARARGS 'TRUE'|'FALSE' Indicates that the last argument
of the function can be repeated 0
to any number of times. default
false. It is more proper to use a
VARIADIC parameter.

AGGREGATE 'TRUE'|'FALSE' Indicates the function is a user
defined aggregate function.
Properties specific to aggregates
are listed below.

Property Data Type or Allowed Values Description

Note that NULL-ON-NULL, VARARGS, and all of the AGGREGATE properties are also valid relational
extension metadata properties that can be used on source procedures marked as functions.

You can also create FOREIGN functions that are based on source-specific functions. For more
information about creating foreign functions that use functions that are provided by the data source,
see Source supported functions in the Translator development guide.

.AGGREGATE FUNCTION OPTIONS

Property Data type or allowed values Description

ANALYTIC 'TRUE'|'FALSE' Indicates the aggregate function
must be windowed. The default
value is false.

ALLOWS-ORDERBY 'TRUE'|'FALSE' Indicates that the aggregate
function can use an ORDER BY
clause. The default value is false.

Red Hat Integration 2020.Q1 Data Virtualization Reference

24

https://teiid.github.io/teiid-documents/master/content/dev/Source_Supported_Functions.html

ALLOWS-DISTINCT 'TRUE'|'FALSE' Indicates the aggregate function
can use the DISTINCT keyword.
The default value is false.

DECOMPOSABLE 'TRUE'|'FALSE' Indicates the single argument
aggregate function can be
decomposed as agg(agg(x)) over
subsets of data. The default value
is false.

USES-DISTINCT-ROWS 'TRUE'|'FALSE' Indicates the aggregate function
effectively uses distinct rows
rather than all rows. The default
value is false.

Property Data type or allowed values Description

Note that virtual functions defined using the Teiid procedure language cannot be aggregate functions.

NOTE

Providing the JAR libraries - If you have defined a UDF (virtual) function without a Teiid
procedure definition, then it must be accompanied by its implementation in Java. For
information about how to configure the Java library as a dependency to the VDB, see
Support for User-Defined Functions in the Translator development guide.

PROCEDURE OPTIONS:(the following options are well known, any others properties defined will be
considered as extension metadata)

Property Data Type or Allowed Values Description

UUID string Unique Identifier

NAMEINSOURCE string In the case of source

ANNOTATION string Description of the procedure

UPDATECOUNT int if this procedure updates the
underlying sources, what is the
update count, when update count
is >1 the XA protocol for execution
is enforced

Example: Define virtual procedure

CREATE VIRTUAL PROCEDURE CustomerActivity(customerid integer)

CHAPTER 2. VIRTUAL DATABASES

25

https://teiid.github.io/teiid-documents/master/content/dev/Support_for_User-Defined_Functions_Non-Pushdown.html

For more information about virtual procedures and virtual procedure language, see Virtual procedures,
and Procedure language.

Example: Define virtual function

Procedure columns may also be marked as NOT NULL, or with a DEFAULT value. On a source
procedure if you want the parameter to be defaultable in the source procedure and not supply a default
value in Data Virtualization, then the parameter must use the extension property
teiid_rel:default_handling set to omit.

There can only be a single RESULT parameter and it must be an out parameter. A RESULT parameter is
the same as having a single non-table RETURNS type. If both are declared they are expected to match
otherwise an exception is thrown. One is no more correct than the other. "RETURNS type" is shorter
hand syntax especially for functions, while the parameter form is useful for additional metadata (explicit
name, extension metadata, also defining a returns table, etc.).

A return parameter will be treated as the first parameter in for the procedure at runtime, regardless of
where it appears in the argument list. This matches the expectation of Data Virtualization and JDBC
calling semantics that expect assignments in the form "? = EXEC …".

.Relational extension OPTIONS:

Property Data Type or Allowed Values Description

native-query Parameterized String Applies to both functions and
procedures. The replacement for
the function syntax rather than
the standard prefix form with
parentheses. For more
information, see Parameterizable
native queries in Translators.

non-prepared boolean Applies to JDBC procedures
using the native-query option. If
true a PreparedStatement will not
be used to execute the native
query.

Example: Native query

 RETURNS (name varchar(25), activitydate date, amount decimal)
 AS
 BEGIN
 ...
 END

CREATE VIRTUAL FUNCTION CustomerRank(customerid integer)
 RETURNS integer AS
 BEGIN
 DECLARE integer result;
 ...
 RETURN result;
 END

Red Hat Integration 2020.Q1 Data Virtualization Reference

26

Example:Sequence native query

TIP

Use source function representations to expose sequence functionality.

Extension metadata

When defining the extension metadata in the case of Custom Translators, the properties on
tables/views/procedures/columns can be whatever you need. It is recommended that you use a
consistent prefix that denotes what the properties relate to. Prefixes starting with teiid_ are reserved for
use by Data Virtualization. Property keys are not case sensitive when accessed via the runtime APIs - but
they are case sensitive when accessing SYS.PROPERTIES.

WARNING

The usage of SET NAMESPACE for custom prefixes or namespaces is no longer
allowed.

Table 2.2. Built-in prefixes

Prefix Description

teiid_rel Relational Extensions. Uses include function and
native query metadata

teiid_sf Salesforce Extensions.

teiid_mongo MongoDB Extensions

teiid_odata OData Extensions

teiid_accumulo Accumulo Extensions

teiid_excel Excel Extensions

CREATE FOREIGN FUNCTION func (x integer, y integer)
 RETURNS integer OPTIONS ("teiid_rel:native-query" '$1 << $2');

CREATE FOREIGN FUNCTION seq_nextval ()
 RETURNS integer
 OPTIONS ("teiid_rel:native-query" 'seq.nextval');

CREATE VIEW MyView (...)
 OPTIONS ("my-translator:mycustom-prop" 'anyvalue')

CHAPTER 2. VIRTUAL DATABASES

27

teiid_ldap LDAP Extensions

teiid_rest REST Extensions

teiid_pi PI Database Extensions

Prefix Description

2.3. DDL METADATA FOR DOMAINS

Domains are simple type declarations that define a set of valid values for a given type name. They can
be created at the database level only.

Create domain

The domain name may any non-keyword identifier.

See the BNF for Data Types

Once a domain is defined it may be referenced as the data type for a column, parameter, etc.

Example: Virtual database DDL

When the system metadata is queried, the type for the column is shown as the domain name.

Limitations

Domain names might not be recognized in the following places where a data type is expected:

create temp table

execute immediate

arraytable

objecttable

texttable

xmltable

When you query a pg_attribute, the ODBC/pg metadata will show the name of the base type, rather
than the domain name.

CREATE DOMAIN <Domain name> [AS] <data type>
 [[NOT] NULL]

CREATE DOMAIN mychar AS VARCHAR(1000);

CREATE VIRTUAL SCHEMA viewLayer;
SET SCHEMA viewLayer;
CREATE VIEW v1 (col1 mychar) as select 'value';
...

Red Hat Integration 2020.Q1 Data Virtualization Reference

28

CHAPTER 3. SQL COMPATIBILITY
Data Virtualization provides nearly all of the functionality of SQL-92 DML. SQL-99 and later features
are constantly being added based upon community need. The following does not attempt to cover SQL
exhaustively, but rather highlights how SQL is used within Data Virtualization. For details about the exact
form of SQL that Data Virtualization accepts, see the BNF for SQL grammar.

3.1. IDENTIFIERS

SQL commands contain references to tables and columns. These references are in the form of
identifiers, which uniquely identify the tables and columns in the context of the command. All queries are
processed in the context of a virtual database, or VDB. Because information can be federated across
multiple sources, tables and columns must be scoped in some manner to avoid conflicts. This scoping is
provided by schemas, which contain the information for each data source or set of views.

Fully-qualified table and column names are of the following form, where the separate `parts' of the
identifier are delimited by periods.

TABLE: <schema_name>.<table_spec>

COLUMN: <schema_name>.<table_spec>.<column_name>

Syntax rules

Identifiers can consist of alphanumeric characters, or the underscore (_) character, and must
begin with an alphabetic character. Any Unicode character may be used in an identifier.

Identifiers in double quotes can have any contents. The double quote character can be used if is
escaped with an additional double quote; for example, "some "" id"

Because different data sources organize tables in different ways, with some prepending
catalog, schema, or user information, Data Virtualization allows table specification to be a dot-
delimited construct.

NOTE

When a table specification contains a dot resolving will allow for the match of a partial
name against any number of the end segments in the name. e.g. a table with the fully-
qualified name vdbname."sourceschema.sourcetable" would match the partial name
sourcetable.

Columns, column aliases, and schemas cannot contain a dot (.) character.

Identifiers, even when quoted, are not case-sensitive in Data Virtualization.

Some examples of valid, fully-qualified table identifiers are:

MySchema.Portfolios

"MySchema.Portfolios"

MySchema.MyCatalog.dbo.Authors

Some examples of valid fully-qualified column identifiers are:

CHAPTER 3. SQL COMPATIBILITY

29

MySchema.Portfolios.portfolioID

"MySchema.Portfolios"."portfolioID"

MySchema.MyCatalog.dbo.Authors.lastName

Fully-qualified identifiers can always be used in SQL commands. Partially- or unqualified forms can also
be used, as long as the resulting names are unambiguous in the context of the command. Different
forms of qualification can be mixed in the same query.

If you use an alias containing a period (.) character, it is a known issue that the alias name will be treated
the same as a qualified name and may conflict with fully qualified object names.

Reserved words

Reserved words in Data Virtualization include the standard SQL 2003 Foundation, SQL/MED, and
SQL/XML reserved words, as well as Data Virtualization specific words such as BIGINTEGER,
BIGDECIMAL, or MAKEDEP. For more information about reserved words, see the Reserved Keywords
and Reserved Keywords For Future Use sections in BNF for SQL grammar.

3.2. OPERATOR PRECEDENCE

Data Virtualization parses and evaluates operators with higher precedence before those with lower
precedence. Operators with equal precedence are left-associative (left-to-right). The following table
lists operator precedence from high to low:

Operator Description

[] array element reference

+,- positive/negative value expression

*,/ multiplication/division

+,- addition/subtraction

|| concat

criteria For information, see Criteria.

3.3. EXPRESSIONS

Identifiers, literals, and functions can be combined into expressions. Expressions can be used in a query
with nearly any keyword, including SELECT, FROM (if specifying join criteria), WHERE, GROUP BY,
HAVING, or ORDER BY.

You can use following types of expressions in Data Virtualization:

Column identifiers

Literals

Red Hat Integration 2020.Q1 Data Virtualization Reference

30

Aggregate functions

Window functions

Case and searched case

Scalar subqueries

Parameter references

Arrays

Criteria

Scalar functions

3.3.1. Column Identifiers

Column identifiers are used to specify the output columns in SELECT statements, the columns and their
values for INSERT and UPDATE statements, and criteria used in WHERE and FROM clauses. They are
also used in GROUP BY, HAVING, and ORDER BY clauses. The syntax for column identifiers was defined
in the Identifiers section above.

3.3.2. Literals

Literal values represent fixed values. These can be any of the 'standard' data types. For information
about data types, see Data types.

Syntax rules

Integer values will be assigned an integral data type big enough to hold the value (integer, long,
or biginteger).

Floating point values will always be parsed as a double.

The keyword 'null' is used to represent an absent or unknown value and is inherently untyped. In
many cases, a null literal value will be assigned an implied type based on context. For example, in
the function '5 + null', the null value will be assigned the type 'integer' to match the type of the
value '5'. A null literal used in the SELECT clause of a query with no implied context will be
assigned to type 'string'.

Some examples of simple literal values are:

Example: Escaped single tick

Example: Scientific notation

'abc'

'isn"t true'

5

-37.75e01

CHAPTER 3. SQL COMPATIBILITY

31

Example: exact numeric type BigDecimal

Example: Unicode character

Example: Binary

Date/Time literals can use either JDBC Escaped literal syntax:

Example: Date literal

Example: Time literal

Example: Timestamp literal

Or the ANSI keyword syntax:

Example: Date literal

Example: Time literal

Example: Timestamp literal

Either way, the string literal value portion of the expression is expected to follow the defined format -
"yyyy-MM-dd" for date, "hh:mm:ss" for time, and "yyyy-MM-dd[hh:mm:ss[.fff…]]" for timestamp.

Aggregate functions

Aggregate functions take sets of values from a group produced by an explicit or implicit GROUP BY and

100.0

true

false

'\u0027'

X'0F0A'

{d'...'}

{t'...'}

{ts'...'}

DATE '...'

TIME '...'

TIMESTAMP '...'

Red Hat Integration 2020.Q1 Data Virtualization Reference

32

Aggregate functions take sets of values from a group produced by an explicit or implicit GROUP BY and
return a single scalar value computed from the group.

You can use the following aggregate functions in Data Virtualization:

COUNT(*)

Count the number of values (including nulls and duplicates) in a group. Returns an integer - an
exception will be thrown if a larger count is computed.

COUNT(x)

Count the number of values (excluding nulls) in a group. Returns an integer - an exception will be
thrown if a larger count is computed.

COUNT_BIG(*)

Count the number of values (including nulls and duplicates) in a group. Returns a long - an exception
will be thrown if a larger count is computed.

COUNT_BIG(x)

Count the number of values (excluding nulls) in a group. Returns a long - an exception will be thrown
if a larger count is computed.

SUM(x)

Sum of the values (excluding nulls) in a group.

AVG(x)

Average of the values (excluding nulls) in a group.

MIN(x)

Minimum value in a group (excluding null).

MAX(x)

Maximum value in a group (excluding null).

ANY(x)/SOME(x)

Returns TRUE if any value in the group is TRUE (excluding null).

EVERY(x)

Returns TRUE if every value in the group is TRUE (excluding null).

VAR_POP(x)

Biased variance (excluding null) logically equals(sum(x^2) - sum(x)^2/count(x))/count(x); returns a
double; null if count = 0.

VAR_SAMP(x)

Sample variance (excluding null) logically equals(sum(x^2) - sum(x)^2/count(x))/(count(x) - 1);
returns a double; null if count < 2.

STDDEV_POP(x)

Standard deviation (excluding null) logically equals SQRT(VAR_POP(x)).

STDDEV_SAMP(x)

Sample standard deviation (excluding null) logically equals SQRT(VAR_SAMP(x)).

TEXTAGG(expression [as name], … [DELIMITER char] [QUOTE char | NO QUOTE] [HEADER]
[ENCODING id] [ORDER BY …])

CSV text aggregation of all expressions in each row of a group. When DELIMITER is not specified, by
default comma(,) is used as delimiter. All non-null values will be quoted. Double quotes(") is the
default quote character. Use QUOTE to specify a different value, or NO QUOTE for no value
quoting. If HEADER is specified, the result contains the header row as the first line - the header line
will be present even if there are no rows in a group. This aggregation returns a blob.

CHAPTER 3. SQL COMPATIBILITY

33

XMLAGG(xml_expr [ORDER BY …]) – XML concatenation of all XML expressions in a group
(excluding null). The ORDER BY clause cannot reference alias names or use positional ordering.

JSONARRAY_AGG(x [ORDER BY …]) – creates a JSON array result as a Clob including null
value. The ORDER BY clause cannot reference alias names or use positional ordering. For more
information, see JSONARRAY function.

Example: Integer value expression

could return

STRING_AGG(x, delim) – creates a lob results from the concatenation of x using the delimiter
delim. If either argument is null, no value is concatenated. Both arguments are expected to be
character (string/clob) or binary (varbinary, blob), and the result will be CLOB or BLOB
respectively. DISTINCT and ORDER BY are allowed in STRING_AGG.

Example: String aggregate expression

could return

LIST_AGG(x [, delim]) WITHIN GROUP (ORDER BY …) – a form of STRING_AGG that uses the
same syntax as Oracle. Here x can be any type that can be converted to a string. The delim
value, if specified, must be a literal, and the ORDER BY value is required. This is only a parsing
alias for an equivalent string_agg expression.

Example: List aggregate expression

could return

ARRAY_AGG(x [ORDER BY …]) – Creates an array with a base type that matches the
expression x. The ORDER BY clause cannot reference alias names or use positional ordering.

agg([DISTINCT|ALL] arg … [ORDER BY …]) – A user defined aggregate function.

Syntax rules

Some aggregate functions may contain a keyword 'DISTINCT' before the expression, indicating
that duplicate expression values should be ignored. DISTINCT is not allowed in COUNT(*) and is
not meaningful in MIN or MAX (result would be unchanged), so it can be used in COUNT, SUM,

TEXTAGG(col1, col2 as name DELIMITER '|' HEADER ORDER BY col1)

jsonArray_Agg(col1 order by col1 nulls first)

[null,null,1,2,3]

string_agg(col1, ',' ORDER BY col1 ASC)

'a,b,c'

listagg(col1, ',') WITHIN GROUP (ORDER BY col1 ASC)

'a,b,c'

Red Hat Integration 2020.Q1 Data Virtualization Reference

34

and AVG.

Aggregate functions cannot be used in FROM, GROUP BY, or WHERE clauses without an
intervening query expression.

Aggregate functions cannot be nested within another aggregate function without an intervening
query expression.

Aggregate functions may be nested inside other functions.

Any aggregate function may take an optional FILTER clause of the form

The condition may be any boolean value expression that does not contain a subquery or a correlated
variable. The filter will logically be evaluated for each row prior to the grouping operation. If false the
aggregate function will not accumulate a value for the given row.

For more information on aggregates, see the sections on GROUP BY or HAVING.

3.3.3. Window functions

Data Virtualization provides ANSI SQL 2003 window functions. A window function allows an aggregate
function to be applied to a subset of the result set, without the need for a GROUP BY clause. A window
function is similar to an aggregate function, but requires the use of an OVER clause or window
specification.

Usage:

In the preceding syntax, aggregate can refer to any aggregate function. Keywords exist for the
following analytical functions ROW_NUMBER, RANK, DENSE_RANK, PERCENT_RANK, CUME_DIST.
There are also the FIRST_VALUE, LAST_VALUE, LEAD, LAG, NTH_VALUE, and NTILE analytical
functions. For more information, see Analytical functions definitions .

FILTER (WHERE condition)

 aggregate [FILTER (WHERE ...)] OVER ([partition] [ORDER BY ...] [frame])
| FIRST_VALUE(val) OVER ([partition] [ORDER BY ...] [frame])
| LAST_VALUE(val) OVER ([partition] [ORDER BY ...] [frame])
| analytical OVER ([partition] [ORDER BY ...])

partition := PARTITION BY expression [, expression]*

frame := range_or_rows extent

range_or_rows := RANGE | ROWS

extent :=
 frameBound
 | BETWEEN frameBound AND frameBound

frameBound :=
 UNBOUNDED PRECEDING
 | UNBOUNDED FOLLOWING
 | n PRECEDING
 | n FOLLOWING
 | CURRENT ROW

CHAPTER 3. SQL COMPATIBILITY

35

Syntax rules

Window functions can only appear in the SELECT and ORDER BY clauses of a query expression.

Window functions cannot be nested in one another.

Partitioning and order by expressions cannot contain subqueries or outer references.

An aggregate ORDER BY clause cannot be used when windowed.

The window specification ORDER BY clause cannot reference alias names or use positional
ordering.

Windowed aggregates may not use DISTINCT if the window specification is ordered.

Analytical value functions may not use DISTINCT and require the use of an ordering in the
window specification.

RANGE or ROWS requires the ORDER BY clause to be specified. The default frame if not
specified is RANGE UNBOUNDED PRECEDING. If no end is specified the default is CURRENT
ROW. No combination of start and end is allowed such that the end is before the start - for
example UNBOUNDED FOLLOWING is not allow as a start nor is UNBOUNDED PRECEDING
allowed as an end.

RANGE cannot be used n PRECEDING or n FOLLOWING

Analytical function definitions

Ranking functions

RANK() – Assigns a number to each unique ordering value within each partition starting at 1,
such that the next rank is equal to the count of prior rows.

DENSE_RANK() – Assigns a number to each unique ordering value within each partition
starting at 1, such that the next rank is sequential.

PERCENT_RANK() – Computed as (RANK - 1) / (RC - 1) where RC is the total row count of
the partition.

CUME_DIST() – Computed as the PR / RC where PR is the rank of the row including peers
and RC is the total row count of the partition.
By default all values are integers - an exception will be thrown if a larger value is needed. Use
the system org.teiid.longRanks to have RANK, DENSE_RANK, and ROW_NUMBER return
long values instead.

Value functions

FIRST_VALUE(val) – Return the first value in the window frame with the given ordering.

LAST_VALUE(val) – Return the last observed value in the window frame with the given
ordering.

LEAD(val [, offset [, default]]) - Access the ordered value in the window that is offset rows
ahead of the current row. If there is no such row, then the default value will be returned. If not
specified the offset is 1 and the default is null.

LAG(val [, offset [, default]]) - Access the ordered value in the window that is offset rows

Red Hat Integration 2020.Q1 Data Virtualization Reference

36

LAG(val [, offset [, default]]) - Access the ordered value in the window that is offset rows
behind of the current row. If there is no such row, then the default value will be returned. If
not specified the offset is 1 and the default is null.

NTH_VALUE(val, n) - Returns the nth val in window frame. The index must be greater than 0.
If no such value exists, then null is returned.

Row value functions

ROW_NUMBER() – Sequentially assigns a number to each row in a partition starting at 1.

NTILE(n) – Divides the partition into n tiles that differ in size by at most 1. Larger tiles will be
created sequentially starting at the first. n must be greater than 0.

Processing

Window functions are logically processed just before creating the output from the SELECT clause.
Window functions can use nested aggregates if a GROUP BY clause is present. There is no guaranteed
effect on the output ordering from the presence of window functions. The SELECT statement must
have an ORDER BY clause to have a predictable ordering.

NOTE

An ORDER BY in the OVER clause follows the same rules pushdown and processing rules
as a top level ORDER BY. In general this means you should specify NULLS FIRST/LAST
as null handling may differ between engine and pushdown processing. Also see the
system properties controlling sort behavior if you different default behavior.

Data Virtualization processes all window functions with the same window specification together. In
general, a full pass over the row values coming into the SELECT clause is required for each unique
window specification. For each window specification the values are grouped according to the
PARTITION BY clause. If no PARTITION BY clause is specified, then the entire input is treated as a
single partition.

The frame for the output value is determined based upon the definition of the analytical function or the
ROWS/RANGE clause. The default frame is RANGE UNBOUNDED PRECEDING, which also implies
the default end bound of CURRENT ROW. RANGE computes over a row and its peers together. ROWS
computes over every row. Most analytical functions, such as ROW_NUMBER, have an implicit
RANGE/ROWS - which is why a different one cannot be specified. For example, ROW_NUMBER()
OVER (order)` can be expressed instead as count(*) OVER (order ROWS UNBOUNDED PRECEDING
AND CURRENT ROW). Thus it assigns a different value to every row regardless of the number of peers.

Example: Windowed results

name salary max_sal rank dense_rank row_num

John 100000 100000 2 2 2

Henry 50000 50000 5 4 5

SELECT name, salary, max(salary) over (partition by name) as max_sal,
 rank() over (order by salary) as rank, dense_rank() over (order by salary) as dense_rank,
 row_number() over (order by salary) as row_num FROM employees

CHAPTER 3. SQL COMPATIBILITY

37

John 60000 100000 3 3 3

Suzie 60000 150000 3 3 4

Suzie 150000 150000 1 1 1

name salary max_sal rank dense_rank row_num

3.3.4. Case and searched case

In Data Virtualization, to include conditional logic in a scalar expression, you can use the following two
forms of the CASE expression:

CASE <expr> (WHEN <expr> THEN <expr>)+ [ELSE expr] END

CASE (WHEN <criteria> THEN <expr>)+ [ELSE expr] END

Each form allows for an output based on conditional logic. The first form starts with an initial expression
and evaluates WHEN expressions until the values match, and outputs the THEN expression. If no WHEN
is matched, the ELSE expression is output. If no WHEN is matched and no ELSE is specified, a null literal
value is output. The second form (the searched case expression) searches the WHEN clauses, which
specify an arbitrary criteria to evaluate. If any criteria evaluates to true, the THEN expression is
evaluated and output. If no WHEN is true, the ELSE is evaluated or NULL is output if none exists.

Example case statements

3.3.5. Scalar subqueries

Subqueries can be used to produce a single scalar value in the SELECT, WHERE, or HAVING clauses
only. A scalar subquery must have a single column in the SELECT clause and should return either 0 or 1
row. If no rows are returned, null will be returned as the scalar subquery value. For information about
other types of subqueries, see Subqueries.

3.3.6. Parameter references

Parameters are specified using a ? symbol. You can use parameters only with PreparedStatement or
CallableStatements in JDBC. Each parameter is linked to a value specified by 1-based index in the
JDBC API.

3.3.7. Arrays

Array values may be constructed using parentheses around an expression list with an optional trailing
comma, or with an explicit ARRAY constructor.

Example: Empty arrays

SELECT CASE columnA WHEN '10' THEN 'ten' WHEN '20' THEN 'twenty' END AS myExample

SELECT CASE WHEN columnA = '10' THEN 'ten' WHEN columnA = '20' THEN 'twenty' END AS
myExample

Red Hat Integration 2020.Q1 Data Virtualization Reference

38

Example: Single element array

NOTE

A trailing comma is required for the parser to recognize a single element expression as an
array with parentheses, rather than a simple nested expression.

Example: General array syntax

If all of the elements in the array have the same type, the array will have a matching base type. If the
element types differ the array base type will be object.

An array element reference takes the form of:

index_expr must resolve to an integer value. This syntax is effectively the same as the array_get
system function and expects 1-based indexing.

3.4. CRITERIA

Criteria can be any of the following items:

Predicates that evaluate to true or false.

Logical criteria that combine criteria (AND, OR, NOT).

A value expression of type Boolean.

Usage

()
(,)
ARRAY[]

(expr,)
ARRAY[expr]

(expr, expr ... [,])
ARRAY[expr, ...]

array_expr[index_expr]

criteria AND|OR criteria

NOT criteria

(criteria)

expression (=|<>|!=|<|>|<=|>=) (expression|((ANY|ALL|SOME) subquery|(array_expression)))

expression IS [NOT] DISTINCT FROM expression

CHAPTER 3. SQL COMPATIBILITY

39

IS DISTINCT FROM considers null values to be equivalent and never produces an UNKNOWN value.

NOTE

Because the optimizer is not tuned to handle IS DISTINCT FROM, if you use it in a join
predicate that is not pushed down, the resulting plan does not perform as well a regular
comparison.

LIKE matches the string expression against the given string pattern. The pattern may contain % to
match any number of characters, and _ to match any single character. The escape character can be
used to escape the match characters % and _.

SIMILAR TO is a cross between LIKE and standard regular expression syntax. % and _ are still used,
rather than .* and ., respectively.

NOTE

Data Virtualization does not exhaustively validate SIMILAR TO pattern values. Instead,
the pattern is converted to an equivalent regular expression. Do not rely on general
regular expression features when using SIMILAR TO. If additional features are needed,
use LIKE_REGEX. Avoid the use of non-literal patterns, because Data Virtualization has
a limited ability to process SQL pushdown predicates.

You can use LIKE_REGEX with standard regular expression syntax for matching. This differs from
SIMILAR TO and LIKE in that the escape character is no longer used. \ is already the standard escape
mechanism in regular expressions, and % ̀and _ have no special meaning. The runtime engine uses the
JRE implementation of regular expressions. For more information, see the java.util.regex.Pattern class.

NOTE

Data Virtualization does not exhaustively validate LIKE_REGEX pattern values. It is
possible to use JRE-only regular expression features that are not specified by the SQL
specification. Additionally, not all sources can use the same regular expression flavor or
extensions. In pushdown situations, be careful to ensure that the pattern that you use has
the same meaning in Data Virtualization, and across all applicable sources.

expression [NOT] IS NULL

expression [NOT] IN (expression [,expression]*)|subquery

expression [NOT] LIKE pattern [ESCAPE char]

expression [NOT] SIMILAR TO pattern [ESCAPE char]

expression [NOT] LIKE_REGEX pattern

EXISTS (subquery)

expression [NOT] BETWEEN minExpression AND maxExpression

Red Hat Integration 2020.Q1 Data Virtualization Reference

40

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Data Virtualization converts BETWEEN into the equivalent form expression >= minExpression AND
expression ⇐ maxExpression.

Where expression has type Boolean.

Syntax rules

The precedence ordering from lowest to highest is comparison, NOT, AND, OR.

Criteria nested by parenthesis will be logically evaluated prior to evaluating the parent criteria.

Some examples of valid criteria are:

(balance > 2500.0)

100*(50 - x)/(25 - y) > z

concat(areaCode,concat('-',phone)) LIKE '314%1'

COMPARING NULL VALUES

Null values represent an unknown value. Comparison with a null value will evaluate to unknown, which
can never be true even if not is used.

Criteria precedence

Data Virtualization parses and evaluates conditions with higher precedence before those with lower
precedence. Conditions with equal precedence are left-associative. The following table lists condition
precedence from high to low:

Condition Description

SQL operators See Expressions

EXISTS, LIKE, SIMILAR TO, LIKE_REGEX, BETWEEN,
IN, IS NULL, IS DISTINCT, <, ⇐, >, >=, =, <>

Comparison

NOT Negation

AND Conjunction

OR Disjunction

NOTE

To prevent lookaheads, the parser does not accept all possible criteria sequences. For
example, a = b is null is not accepted, because by the left-associative parsing we first
recognize a =, then look for a common value expression. b is null is not a valid common
value expression. Thus, nesting must be used, for example, (a = b) is null. For more
information about parsing rules, see BNF for SQL grammar.

expression

CHAPTER 3. SQL COMPATIBILITY

41

3.5. SCALAR FUNCTIONS

Data Virtualization provides an extensive set of built-in scalar functions. For more information, see DML
commands and Data types. In addition, Data Virtualization provides the capability for user-defined
functions or UDFs. For information about adding UDFs, see User-defined functions in the Translator
Development Guide. After you add UDFs, you can call them in the same way that you call other
functions.

3.5.1. Numeric functions

Numeric functions return numeric values (integer, long, float, double, biginteger, bigdecimal). They
generally take numeric values as inputs, though some take strings.

Function Definition Datatype constraint

+ - * / Standard numeric operators x in {integer, long, float, double,
biginteger, bigdecimal}, return
type is same as x [a]

ABS(x) Absolute value of x See standard numeric operators
above

ACOS(x) Arc cosine of x x in {double, bigdecimal}, return
type is double

ASIN(x) Arc sine of x x in {double, bigdecimal}, return
type is double

ATAN(x) Arc tangent of x x in {double, bigdecimal}, return
type is double

ATAN2(x,y) Arc tangent of x and y x, y in {double, bigdecimal}, return
type is double

CEILING(x) Ceiling of x x in {double, float}, return type is
double

COS(x) Cosine of x x in {double, bigdecimal}, return
type is double

COT(x) Cotangent of x x in {double, bigdecimal}, return
type is double

DEGREES(x) Convert x degrees to radians x in {double, bigdecimal}, return
type is double

EXP(x) e^x x in {double, float}, return type is
double

Red Hat Integration 2020.Q1 Data Virtualization Reference

42

FLOOR(x) Floor of x x in {double, float}, return type is
double

FORMATBIGDECIMAL(x, y) Formats x using format y x is bigdecimal, y is string, returns
string

FORMATBIGINTEGER(x, y) Formats x using format y x is biginteger, y is string, returns
string

FORMATDOUBLE(x, y) Formats x using format y x is double, y is string, returns
string

FORMATFLOAT(x, y) Formats x using format y x is float, y is string, returns string

FORMATINTEGER(x, y) Formats x using format y x is integer, y is string, returns
string

FORMATLONG(x, y) Formats x using format y x is long, y is string, returns string

LOG(x) Natural log of x (base e) x in {double, float}, return type is
double

LOG10(x) Log of x (base 10) x in {double, float}, return type is
double

MOD(x, y) Modulus (remainder of x / y) x in {integer, long, float, double,
biginteger, bigdecimal}, return
type is same as x

PARSEBIGDECIMAL(x, y) Parses x using format y x, y are strings, returns bigdecimal

PARSEBIGINTEGER(x, y) Parses x using format y x, y are strings, returns biginteger

PARSEDOUBLE(x, y) Parses x using format y x, y are strings, returns double

PARSEFLOAT(x, y) Parses x using format y x, y are strings, returns float

PARSEINTEGER(x, y) Parses x using format y x, y are strings, returns integer

PARSELONG(x, y) Parses x using format y x, y are strings, returns long

PI() Value of Pi return is double

POWER(x,y) x to the y power x in {double, bigdecimal,
biginteger}, return is the same
type as x

Function Definition Datatype constraint

CHAPTER 3. SQL COMPATIBILITY

43

RADIANS(x) Convert x radians to degrees x in {double, bigdecimal}, return
type is double

RAND() Returns a random number, using
generator established so far in the
query or initializing with system
clock if necessary.

Returns double.

RAND(x) Returns a random number, using
new generator seeded with x. This
should typically be called in an
initialization query. It will only
effect the random values returned
by the Data Virtualization RAND
function and not the values from
RAND functions evaluated by
sources.

x is integer, returns double.

ROUND(x,y) Round x to y places; negative
values of y indicate places to the
left of the decimal point

x in {integer, float, double,
bigdecimal} y is integer, return is
same type as x.

SIGN(x) 1 if x > 0, 0 if x = 0, -1 if x < 0 x in {integer, long, float, double,
biginteger, bigdecimal}, return
type is integer

SIN(x) Sine value of x x in {double, bigdecimal}, return
type is double

SQRT(x) Square root of x x in {long, double, bigdecimal},
return type is double

TAN(x) Tangent of x x in {double, bigdecimal}, return
type is double

BITAND(x, y) Bitwise AND of x and y x, y in {integer}, return type is
integer

BITOR(x, y) Bitwise OR of x and y x, y in {integer}, return type is
integer

BITXOR(x, y) Bitwise XOR of x and y x, y in {integer}, return type is
integer

BITNOT(x) Bitwise NOT of x x in {integer}, return type is
integer

Function Definition Datatype constraint

[a] The precision and scale of non-bigdecimal arithmetic function functions results matches that of

Red Hat Integration 2020.Q1 Data Virtualization Reference

44

[a] The precision and scale of non-bigdecimal arithmetic function functions results matches that of
Java. The results of bigdecimal operations match Java, except for division, which uses a preferred scale
of max(16, dividend.scale + divisor.precision + 1), which then has trailing zeros removed by setting the
scale to max(dividend.scale, normalized scale).

Parsing numeric datatypes from strings

Data Virtualization offers a set of functions you can use to parse numbers from strings. For each string,
you need to provide the formatting of the string. These functions use the convention established by the
java.text.DecimalFormat class to define the formats you can use with these functions. You can learn
more about how this class defines numeric string formats by visiting the Sun Java Web site at the
following URL for Sun Java .

For example, you could use these function calls, with the formatting string that adheres to the
java.text.DecimalFormat convention, to parse strings and return the datatype you need:

Input String Function Call to Format
String

Output Value Output Datatype

'$25.30' parseDouble(cost,
'$,0.00;($,0.00)')

25.3 double

'25%' parseFloat(percent,
',#0%')

25 float

'2,534.1' parseFloat(total,
',0.;-,0.')

2534.1 float

'1.234E3' parseLong(amt,
'0.###E0')

1234 long

'1,234,567' parseInteger(total,
',0;-,0')

1234567 integer

Formatting numeric datatypes as strings

Data Virtualization offers a set of functions you can use to convert numeric datatypes into strings. For
each string, you need to provide the formatting. These functions use the convention established within
the java.text.DecimalFormat class to define the formats you can use with these functions. You can learn
more about how this class defines numeric string formats by visiting the Sun Java Web site at the
following URL for Sun Java .

For example, you could use these function calls, with the formatting string that adheres to the
java.text.DecimalFormat convention, to format the numeric datatypes into strings:

Input Value Input Datatype Function Call to Format
String

Output String

25.3 double formatDouble(cost,
'$,0.00;($,0.00)')

'$25.30'

CHAPTER 3. SQL COMPATIBILITY

45

http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html

25 float formatFloat(percent,
',#0%')

'25%'

2534.1 float formatFloat(total,
',0.;-,0.')

'2,534.1'

1234 long formatLong(amt,
'0.###E0')

'1.234E3'

1234567 integer formatInteger(total,
',0;-,0')

'1,234,567'

Input Value Input Datatype Function Call to Format
String

Output String

3.5.2. String functions

String functions generally take strings as inputs and return strings as outputs.

Unless specified, all of the arguments and return types in the following table are strings and all indexes
are 1-based. The 0 index is considered to be before the start of the string.

Function Definition Datatype constraint

x || y Concatenation operator x,y in {string, clob}, return type is
string or character large object
(CLOB).

ASCII(x) Provide ASCII value of the left
most character[1] in x. The empty
string will as input will return null.

return type is integer

CHR(x) CHAR(x) Provide the character[1] for ASCII
value x [a].

x in {integer}

[1] For the engine’s
implementations of the ASCII and
CHR functions, characters are
limited to UCS2 values only. For
pushdown there is little
consistency among sources for
character values beyond
character code 255.

CONCAT(x, y) Concatenates x and y with ANSI
semantics. If x and/or y is null,
returns null.

x, y in {string}

Red Hat Integration 2020.Q1 Data Virtualization Reference

46

CONCAT2(x, y) Concatenates x and y with non-
ANSI null semantics. If x and y is
null, returns null. If only x or y is
null, returns the other value.

x, y in {string}

ENDSWITH(x, y) Checks if y ends with x. If x or y is
null, returns null.

x, y in {string}, returns boolean

INITCAP(x) Make first letter of each word in
string x capital and all others
lowercase.

x in {string}

INSERT(str1, start, length, str2) Insert string2 into string1 str1 in {string}, start in {integer},
length in {integer}, str2 in {string}

LCASE(x) Lowercase of x x in {string}

LEFT(x, y) Get left y characters of x x in {string}, y in {integer}, return
string

LENGTH(x) CHAR_LENGTH(x)
CHARACTER_LENGTH(x)

Length of x return type is integer

LOCATE(x, y) POSITION(x IN y) Find position of x in y starting at
beginning of y.

x in {string}, y in {string}, return
integer

LOCATE(x, y, z) Find position of x in y starting at z. x in {string}, y in {string}, z in
{integer}, return integer

LPAD(x, y) Pad input string x with spaces on
the left to the length of y.

x in {string}, y in {integer}, return
string

LPAD(x, y, z) Pad input string x on the left to
the length of y using character z.

x in {string}, y in {string}, z in
{character}, return string

LTRIM(x) Left trim x of blank chars. x in {string}, return string

Function Definition Datatype constraint

CHAPTER 3. SQL COMPATIBILITY

47

QUERYSTRING(path [, expr [AS
name] …])

Returns a properly encoded query
string appended to the given
path. Null valued expressions are
omitted, nd a null path is treated
as ". Names are optional for
column reference expressions.
For example,
QUERYSTRING('path', 'value'
as "&x", ' & ' as y, null as z)
returns 'path?
%26x=value&y=%20%26%20'

path, expr in {string}. name is an
identifier.

REPEAT(str1,instances) Repeat string1 a specified number
of times

str1 in {string}, instances in
{integer} return string.

RIGHT(x, y) Get right y characters of x x in {string}, y in {integer}, return
string

RPAD(input string x, pad length y) Pad input string x with spaces on
the right to the length of y

x in {string}, y in {integer}, return
string

RPAD(x, y, z) Pad input string x on the right to
the length of y using character z

x in {string}, y in {string}, z in
{character}, return string

RTRIM(x) Right trim x of blank chars x is string, return string

SPACE(x) Repeat the space character x
number of times

x is integer, return string

SUBSTRING(x, y) SUBSTRING(x
FROM y)

[b] Get substring from x, from
position y to the end of x

y in {integer}

SUBSTRING(x, y, z)
SUBSTRING(x FROM y FOR z)

[b] Get substring from x from
position y with length z

y, z in {integer}

TRANSLATE(x, y, z) Translate string x by replacing
each character in y with the
character in z at the same
position.

x in {string}

TRIM([[LEADING|TRAILING|BOT
H] [x] FROM] y)

Trim the leading, trailing, or both
ends of a string y of character x. If
LEADING/TRAILING/BOTH is
not specified, BOTH is used. If no
trim character x is specified, then
the blank space ’ is used.

x in {character}, y in {string}

UCASE(x) Uppercase of x x in {string}

Function Definition Datatype constraint

Red Hat Integration 2020.Q1 Data Virtualization Reference

48

UNESCAPE(x) Unescaped version of x. Possible
escape sequences are \b -
backspace, \t - tab, \n - line feed,
\f - form feed, \r - carriage
return. \uXXXX, where X is a hex
value, can be used to specify any
unicode character. \XXX, where X
is an octal digit, can be used to
specify an octal byte value. If any
other character appears after an
escape character, that character
will appear in the output and the
escape character will be ignored.

x in {string}

Function Definition Datatype constraint

[a] Non-ASCII range characters or integers used in these functions may produce different results or
exceptions depending on where the function is evaluated (Data Virtualization vs. source). Data
Virtualization’s uses Java default int to char and char to int conversions, which operates over UTF16
values.

[b] The substring function depending upon the source does not have consistent behavior with respect to
negative from/length arguments nor out of bounds from/length arguments. The default Data
Virtualization behavior is:

Return a null value when the from value is out of bounds or the length is less than 0

A zero from index is effective the same as 1.

A negative from index is first counted from the end of the string.

Some sources, however, can return an empty string instead of null, and some sources are not
compatible with negative indexing.

TO_CHARS

Return a CLOB from the binary large object (BLOB) with the given encoding.

BASE64, HEX, UTF-8-BOM and the built-in Java Charset names are valid values for the encoding [b]. x
is a BLOB, encoding is a string, wellformed is a boolean, and returns a CLOB. The two argument form
defaults to wellformed=true. If wellformed is false, the conversion function will immediately validate the
result such that an unmappable character or malformed input will raise an exception.

TO_BYTES

Return a BLOB from the CLOB with the given encoding.

BASE64, HEX, UTF-8-BOM and the builtin Java Charset names are valid values for the encoding [b]. x
in a CLOB, encoding is a string, wellformed is a boolean and returns a BLOB. The two argument form
defaults to wellformed=true. If wellformed is false, the conversion function will immediately validate the
result such that an unmappable character or malformed input will raise an exception. If wellformed is

TO_CHARS(x, encoding [, wellformed])

TO_BYTES(x, encoding [, wellformed])

CHAPTER 3. SQL COMPATIBILITY

49

true, then unmappable characters will be replaced by the default replacement character for the
character set. Binary formats, such as BASE64 and HEX, will be checked for correctness regardless of
the wellformed parameter.

[b] For more information about Charset names, see the Charset docs.

REPLACE

Replace all occurrences of a given string with another.

Replace all occurrences of y with z in x. x, y, z are strings and the return value is a string.

REGEXP_REPLACE

Replace one or all occurrences of a given pattern with another string.

Replace one or more occurrences of pattern with sub in str. All arguments are strings and the return
value is a string.

The pattern parameter is expected to be a valid Java regular expression

The flags argument can be any concatenation of any of the valid flags with the following meanings:

Flag Name Meaning

g Global Replace all occurrences, not just
the first.

m Multi-line Match over multiple lines.

i Case insensitive Match without case sensitivity.

Usage:

The following will return "xxbye Wxx" using the global and case insensitive options.

Example regexp_replace

3.5.3. Date and time functions

Date and time functions return or operate on dates, times, or timestamps.

Date and time functions use the convention established within the java.text.SimpleDateFormat class to
define the formats you can use with these functions. You can learn more about how this class defines
formats by visiting the Javadocs for SimpleDateFormat.

REPLACE(x, y, z)

REGEXP_REPLACE(str, pattern, sub [, flags])

regexp_replace('Goodbye World', '[g-o].', 'x', 'gi')

Red Hat Integration 2020.Q1 Data Virtualization Reference

50

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Function Definition Datatype constraint

CURDATE() CURRENT_DATE[()] Return current date - will return
the same value for all invocations
in the user command.

returns date.

CURTIME() Return current time - will return
the same value for all invocations
in the user command. See also
CURRENT_TIME.

returns time

NOW() Return current timestamp (date
and time with millisecond
precision) - will return the same
value for all invocations in the user
command or procedure
instruction. See also
CURRENT_TIMESTAMP.

returns timestamp

CURRENT_TIME[(precision)] Return current time - will return
the same value for all invocations
in the user command. The Data
Virtualization time type does not
track fractional seconds, so the
precision argument is effectively
ignored. Without a precision is the
same as CURTIME().

returns time

CURRENT_TIMESTAMP[(precisio
n)]

Return current timestamp (date
and time with millisecond
precision) - will return the same
value for all invocations with the
same precision in the user
command or procedure
instruction. Without a precision is
the same as NOW(). Since the
current timestamp has only
millisecond precision by default
setting the precision to greater
than 3 will have no effect.

returns timestamp

DAYNAME(x) Return name of day in the default
locale

x in {date, timestamp}, returns
string

DAYOFMONTH(x) Return day of month x in {date, timestamp}, returns
integer

DAYOFWEEK(x) Return day of week (Sunday=1,
Saturday=7)

x in {date, timestamp}, returns
integer

DAYOFYEAR(x) Return day number in year x in {date, timestamp}, returns
integer

CHAPTER 3. SQL COMPATIBILITY

51

EPOCH(x) Return seconds since the unix
epoch with microsecond precision

x in {date, timestamp}, returns
double

EXTRACT(YEAR|MONTH|DAY
|HOUR|MINUTE|SECOND|QUART
ER|EPOCH FROM x)

Return the given field value from
the date value x. Produces the
same result as the associated
YEAR, MONTH, DAYOFMONTH,
HOUR, MINUTE, SECOND,
QUARTER, EPOCH functions
functions. The SQL specification
also allows for TIMEZONE_HOUR
and TIMEZONE_MINUTE as
extraction targets. In Data
Virtualization all date values are in
the timezone of the server.

x in {date, time, timestamp},
epoch returns double, the others
return integer

FORMATDATE(x, y) Format date x using format y. x is date, y is string, returns string

FORMATTIME(x, y) Format time x using format y. x is time, y is string, returns string

FORMATTIMESTAMP(x, y) Format timestamp x using format
y.

x is timestamp, y is string, returns
string

FROM_MILLIS (millis) Return the Timestamp value for
the given milliseconds.

long UTC timestamp in
milliseconds

FROM_UNIXTIME
(unix_timestamp)

Return the Unix timestamp as a
String value with the default
format of yyyy/mm/dd hh:mm:ss.

long Unix timestamp (in seconds)

HOUR(x) Return hour (in military 24-hour
format).

x in {time, timestamp}, returns
integer

MINUTE(x) Return minute. x in {time, timestamp}, returns
integer

Function Definition Datatype constraint

Red Hat Integration 2020.Q1 Data Virtualization Reference

52

MODIFYTIMEZONE (timestamp,
startTimeZone, endTimeZone)

Returns a timestamp based upon
the incoming timestamp adjusted
for the differential between the
start and end time zones. If the
server is in GMT-6, then
modifytimezone({ts '2006-01-10
04:00:00.0'},'GMT-7', 'GMT-8')
will return the timestamp {ts
'2006-01-10 05:00:00.0'} as read
in GMT-6. The value has been
adjusted 1 hour ahead to
compensate for the difference
between GMT-7 and GMT-8.

startTimeZone and endTimeZone
are strings, returns a timestamp

MODIFYTIMEZONE (timestamp,
endTimeZone)

Return a timestamp in the same
manner as
modifytimezone(timestamp,
startTimeZone, endTimeZone),
but will assume that the
startTimeZone is the same as the
server process.

Timestamp is a timestamp;
endTimeZone is a string, returns a
timestamp

MONTH(x) Return month. x in {date, timestamp}, returns
integer

MONTHNAME(x) Return name of month in the
default locale.

x in {date, timestamp}, returns
string

PARSEDATE(x, y) Parse date from x using format y. x, y in {string}, returns date

PARSETIME(x, y) Parse time from x using format y. x, y in {string}, returns time

PARSETIMESTAMP(x,y) Parse timestamp from x using
format y.

x, y in {string}, returns timestamp

QUARTER(x) Return quarter. x in {date, timestamp}, returns
integer

SECOND(x) Return seconds. x in {time, timestamp}, returns
integer

TIMESTAMPCREATE(date, time) Create a timestamp from a date
and time.

date in {date}, time in {time},
returns timestamp

TO_MILLIS (timestamp) Return the UTC timestamp in
milliseconds.

timestamp value

Function Definition Datatype constraint

CHAPTER 3. SQL COMPATIBILITY

53

UNIX_TIMESTAMP
(unix_timestamp)

Return the long Unix timestamp
(in seconds).

unix_timestamp String in the
default format of yyyy/mm/dd
hh:mm:ss

WEEK(x) Return week in year 1-53. For
customization information, see
System Properties in the
Administrator’s Guide.

x in {date, timestamp}, returns
integer

YEAR(x) Return four-digit year x in {date, timestamp}, returns
integer

Function Definition Datatype constraint

Timestampadd

Add a specified interval amount to the timestamp.

Syntax

Arguments

Name Description

interval A datetime interval unit, can be one of the following keywords:

SQL_TSI_FRAC_SECOND - fractional seconds (billionths of a second)

SQL_TSI_SECOND - seconds

SQL_TSI_MINUTE - minutes

SQL_TSI_HOUR - hours

SQL_TSI_DAY - days

SQL_TSI_WEEK - weeks using Sunday as the first day

SQL_TSI_MONTH - months

SQL_TSI_QUARTER - quarters (3 months) where the first quarter is months 1-3,
etc.

SQL_TSI_YEAR - years

count A long or integer count of units to add to the timestamp. Negative values will subtract that
number of units. Long values are allowed for symmetry with TIMESTAMPDIFF - but the
effective range is still limited to integer values.

timestamp A datetime expression.

TIMESTAMPADD(interval, count, timestamp)

Red Hat Integration 2020.Q1 Data Virtualization Reference

54

https://teiid.github.io/teiid-documents/master/content/admin/System_Properties.html

Example

Timestampdiff

Calculates the number of date part intervals crossed between the two timestamps return a long value.

Syntax

Arguments

Name Description

interval A datetime interval unit, the same as keywords used
by Timestampadd.

startTime A datetime expression.

endTime A datetime expression.

Example

NOTE

If (endTime > startTime), a non-negative number will be returned. If (endTime <
startTime), a non-positive number will be returned. The date part difference difference is
counted regardless of how close the timestamps are. For example, '2000-01-02
00:00:00.0' is still considered 1 hour ahead of '2000-01-01 23:59:59.999999'.

Compatibility issues

In SQL, Timestampdiff typically returns an integer. However the Data Virtualization
implementation returns a long. You might receive an exception if you expect a value out of the
integer range from a pushed down timestampdiff.

The implementation of timestamp diff in Teiid 8.2 and earlier versions returned values based on
the number of whole canonical interval approximations (365 days in a year, 91 days in a quarter,
30 days in a month, etc.) crossed. For example the difference in months between 2013-03-24
and 2013-04-01 was 0, but based upon the date parts crossed is 1. For information about
backwards compatibility, see System Properties in the Adminstrator’s Guide.

Parsing date datatypes from strings

SELECT TIMESTAMPADD(SQL_TSI_MONTH, 12,'2016-10-10')
SELECT TIMESTAMPADD(SQL_TSI_SECOND, 12,'2016-10-10 23:59:59')

TIMESTAMPDIFF(interval, startTime, endTime)

SELECT TIMESTAMPDIFF(SQL_TSI_MONTH,'2000-01-02','2016-10-10')
SELECT TIMESTAMPDIFF(SQL_TSI_SECOND,'2000-01-02 00:00:00','2016-10-10 23:59:59')
SELECT TIMESTAMPDIFF(SQL_TSI_FRAC_SECOND,'2000-01-02 00:00:00.0','2016-10-10
23:59:59.999999')

CHAPTER 3. SQL COMPATIBILITY

55

https://teiid.github.io/teiid-documents/master/content/admin/System_Properties.html

Data Virtualization does not implicitly convert strings that contain dates presented in different formats,
such as '19970101' and '31/1/1996' to date-related datatypes. You can, however, use the parseDate,
parseTime, and parseTimestamp functions, described in the next section, to explicitly convert strings
with a different format to the appropriate datatype. These functions use the convention established
within the java.text.SimpleDateFormat class to define the formats you can use with these functions. For
more information about how this class defines date and time string formats, see Javadocs for
SimpleDateFormat. Note that the format strings are specific to your Java default locale.

For example, you could use these function calls, with the formatting string that adheres to the
java.text.SimpleDateFormat convention, to parse strings and return the datatype you need:

String Function call to parse string

'1997010' parseDate(myDateString, 'yyyyMMdd')

'31/1/1996' parseDate(myDateString, 'dd''/''MM''/''yyyy')

'22:08:56 CST' parseTime (myTime, 'HH:mm:ss z')

'03.24.2003 at 06:14:32' parseTimestamp(myTimestamp,
'MM.dd.yyyy''at''hh:mm:ss')

Specifying time zones

Time zones can be specified in several formats. Common abbreviations such as EST for "Eastern
standard time" are allowed but discouraged, as they can be ambiguous. Unambiguous time zones are
defined in the form continent or ocean/largest city. For example, America/New_York,
America/Buenos_Aires, or Europe/London. sAdditionally, you can specify a custom time zone by GMT
offset: GMT[+/-]HH:MM.

For example: GMT-05:00

3.5.4. Type conversion functions

Within your queries, you can convert between datatypes using the CONVERT or CAST keyword. For
more information, see Type conversions

Function Definition

CONVERT(x, type) Convert x to type, where type is a Data Virtualization
Base Type

CAST(x AS type) Convert x to type, where type is a Data Virtualization
Base Type

These functions are identical other than syntax; CAST is the standard SQL syntax, CONVERT is the
standard JDBC/ODBC syntax.

IMPORTANT

Red Hat Integration 2020.Q1 Data Virtualization Reference

56

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
Type_Conversions.html

IMPORTANT

Options that are specified on the type, such as length, precision, scale, etc., are effectively
ignored - the runtime is simply converting from one object type to another.

3.5.5. Choice functions

Choice functions provide a way to select from two values based on some characteristic of one of the
values.

Function Definition Datatype constraint

COALESCE(x,y+) Returns the first non-null
parameter.

x and all y’s can be any compatible
types.

IFNULL(x,y) If x is null, return y; else return x. x, y, and the return type must be
the same type but can be any
type.

NVL(x,y) If x is null, return y; else return x. x, y, and the return type must be
the same type but can be any
type.

NULLIF(param1, param2) Equivalent to case when (param1
= param2) then null else param1.

param1 and param2 must be
compatable comparable types.

IFNULL and NVL are aliases of each other. They are the same function.

3.5.6. Decode functions

Decode functions allow you to have the Data Virtualization server examine the contents of a column in a
result set and alter, or decode, the value so that your application can better use the results.

Function Definition Datatype constraint

DECODESTRING(x, y [, z]) Decode column x using string of
value pairs y with optional
delimiter z and return the
decoded column as a string. If a
delimiter is not specified, a
comma (,) is used. y has the
format
SearchDelimResultDelimSea
rchDelimResult[DelimDefault
]. Returns Default if specified or x
if there are no matches.
Deprecated. Use a CASE
expression instead.

all string

CHAPTER 3. SQL COMPATIBILITY

57

DECODEINTEGER(x, y [, z]) Decode column x using string of
value pairs y with optional
delimiter z and return the
decoded column as an integer. If a
delimiter is not specified, a
comma(,) is used. y has the
format
SearchDelimResultDelimSea
rchDelimResult[DelimDefault
]. Returns Default if specified or x
if there are no matches.
Deprecated. Use a CASE
expression instead.

all string parameters, return
integer

Function Definition Datatype constraint

Within each function call, you include the following arguments:

1. x is the input value for the decode operation. This will generally be a column name.

2. y is the literal string that contains a delimited set of input values and output values.

3. z is an optional parameter on these methods that allows you to specify what delimiter the string
specified in y uses.

For example, your application might query a table called PARTS that contains a column called
IS_IN_STOCK, which contains a Boolean value that you need to change into an integer for your
application to process. In this case, you can use the DECODEINTEGER function to change the Boolean
values to integers:

When the Data Virtualization system encounters the value false in the result set, it replaces the value
with 0.

If, instead of using integers, your application requires string values, you can use the DECODESTRING
function to return the string values you need:

In addition to two input/output value pairs, this sample query provides a value to use if the column does
not contain any of the preceding input values. If the row in the IS_IN_STOCK column does not contain
true or false, the Data Virtualization server inserts a null into the result set.

When you use these DECODE functions, you can provide as many input/output value pairs if you want
within the string. By default, the Data Virtualization system expects a comma delimiter, but you can add
a third parameter to the function call to specify a different delimiter:

You can use keyword null in the DECODE string as either an input value or an output value to represent
a null value. However, if you need to use the literal string null as an input or output value (which means
the word null appears in the column and not a null value) you can put the word in quotes: "null".

SELECT DECODEINTEGER(IS_IN_STOCK, 'false, 0, true, 1') FROM PartsSupplier.PARTS;

SELECT DECODESTRING(IS_IN_STOCK, 'false, no, true, yes, null') FROM PartsSupplier.PARTS;

SELECT DECODESTRING(IS_IN_STOCK, 'false:no:true:yes:null',':') FROM PartsSupplier.PARTS;

Red Hat Integration 2020.Q1 Data Virtualization Reference

58

If the DECODE function does not find a matching output value in the column and you have not specified
a default value, the DECODE function will return the original value the Data Virtualization server found
in that column.

3.5.7. Lookup function

The Lookup function provides a way to speed up access to values from a reference table. The Lookup
function automatically caches all key and return column pairs declared in the function for the referenced
table. Subsequent lookups against the same table using the same key and return columns will use the
cached values. This caching accelerates response time to queries that use lookup tables, also known in
business terminology as code or reference tables.

In the lookup table codeTable, find the row where keyColumn has the value keyValue and return the
associated returnColumn value or null, if no matching keyValue is found. codeTable must be a string
literal that is the fully-qualified name of the target table. returnColumn and keyColumn must also be
string literals and match corresponding column names in the codeTable. The keyValue can be any
expression that must match the datatype of the keyColumn. The return datatype matches that of
returnColumn.

Country code lookup

An ISOCountryCodes table is used to translate a country name to an ISO country code. One column,
CountryName, represents the keyColumn. A second column, CountryCode, represents the
returnColumn, containing the ISO code of the country. Hence, the usage of the lookup function here will
provide a CountryName, shown above as `United States', and expect a CountryCode value in response.

When you call this function for any combination of codeTable, returnColumn, and keyColumn for the
first time, the Data Virtualization System caches the result. The Data Virtualization System uses this
cache for all queries, in all sessions, that later access this lookup table. You should generally not use the
lookup function for data that is subject to updates or may be session/user specific, including row-based
security and column masking effects. For more information about caching in the Lookup function, see
the Caching Guide .

The keyColumn is expected to contain unique values for its corresponding codeTable. If the keyColumn
contains duplicate values, an exception will be thrown.

3.5.8. System functions

System functions provide access to information in the Data Virtualization system from within a query.

COMMANDPAYLOAD

Retrieve a string from the command payload or null if no command payload was specified. The command
payload is set by the TeiidStatement.setPayload method on the Data Virtualization JDBC API
extensions on a per-query basis.

COMMANDPAYLOAD([key])

SELECT DECODESTRING(IS_IN_STOCK, 'null,no,"null",no,nil,no,false,no,true,yes') FROM
PartsSupplier.PARTS;

LOOKUP(codeTable, returnColumn, keyColumn, keyValue)

lookup('ISOCountryCodes', 'CountryCode', 'CountryName', 'United States')

CHAPTER 3. SQL COMPATIBILITY

59

https://teiid.github.io/teiid-documents/master/content/caching/Code_Table_Caching.html

If the key parameter is provided, the command payload object is cast to a java.util.Properties object, and
the corresponding property value for the key is returned. If the key is not specified, the return value is
the command payload object toString value.

key, return value are strings

ENV

Retrieve a system property. This function was misnamed and is included for legacy compatibility. See
ENV_VAR and SYS_PROP for more appropriately named functions.

ENV(key)

call using ENV('KEY'), which returns value as string. Ex: ENV('PATH'). If a value is not found with the key
passed in, a lower cased version of the key is tried as well. This function is treated as deterministic, even
though it is possible to set system properties at runtime.

ENV_VAR

Retrieve an environment variable.

ENV_VAR(key)

call using ENV_VAR('KEY'), which returns value as string. Ex: ENV_VAR('USER'). The behavior of this
function is platform dependent with respect to case-sensitivity. This function is treated as deterministic,
even though it is possible for environment variables to change at runtime.

SYS_PROP

Retrieve an system property.

SYS_PROP(key)

call using SYS_PROP('KEY'), which returns value as string. Ex: SYS_PROP('USER'). This function is
treated as deterministic, even though it is possible for system properties to change at runtime.

NODE_ID

Retrieve the node id - typically the System property value for "jboss.node.name" which will not be set for
Data Virtualization embedded.

NODE_ID()

return value is string.

SESSION_ID

Retrieve the string form of the current session id.

SESSION_ID()

return value is string.

USER

Retrieve the name of the user executing the query.

USER([includeSecurityDomain])

Red Hat Integration 2020.Q1 Data Virtualization Reference

60

includeSecurityDomain is a boolean. return value is string.

If includeSecurityDomain is omitted or true, then the user name will be returned with @security-domain
appended.

CURRENT_DATABASE

Retrieve the catalog name of the database. The VDB name is always the catalog name.

CURRENT_DATABASE()

return value is string.

TEIID_SESSION_GET

Retrieve the session variable.

TEIID_SESSION_GET(name)

name is a string and the return value is an object.

A null name will return a null value. Typically you will use the a get wrapped in a CAST to convert to the
desired type.

TEIID_SESSION_SET

Set the session variable.

TEIID_SESSION_SET(name, value)

name is a string, value is an object, and the return value is an object.

The previous value for the key or null will be returned. A set has no effect on the current transaction and
is not affected by commit/rollback.

GENERATED_KEY

Get a column value from the generated keys of the last insert statement of this session returning a
generated key.

Typically this function will only be used within the scope of procedure to determine a generated key
value from an insert. Not all inserts provide generated keys, because not all sources return generated
keys.

GENERATED_KEY()

The return value is long.

Returns the first column of the last generated key as a long value. Null is returned if there is no such
generated key.

GENERATED_KEY(column_name)`

column_name is a string. The return value is of type object.

A more general form of GENERATED_KEY that can be used if there are more than one generated
column or a type other than long. Null is returned if there is no such generated key nor matching key
column.

CHAPTER 3. SQL COMPATIBILITY

61

3.5.9. XML functions

XML functions provide functionality for working with XML data. For more information, see
JSONTOXML in JSON functions.

Sample data for examples

Examples provided with XML functions use the following table structure

with Data

CustomerID CustomerN
ame

ContactNa
me

Address City PostalCode Country

87 Wartian
Herkku

Pirkko
Koskitalo

Torikatu 38 Oulu 90110 Finland

88 Wellington
Importadora

Paula
Parente

Rua do
Mercado, 12

Resende 08737-363 Brazil

89 White
Clover
Markets

Karl
Jablonski

305 - 14th
Ave. S. Suite
3B

Seattle 98128 USA

XMLCAST

Cast to or from XML.

Expression or type must be XML. The return value will be typed as type. This is the same functionality
that XMLTABLE uses to convert values to the desired runtime type, except that XMLCAST does not
work with array type targets.

XMLCOMMENT

Returns an XML comment.

Comment is a string. Return value is XML.

XMLCONCAT

TABLE Customer (
 CustomerId integer PRIMARY KEY,
 CustomerName varchar(25),
 ContactName varchar(25)
 Address varchar(50),
 City varchar(25),
 PostalCode varchar(25),
 Country varchar(25),
);

XMLCAST(expression AS type)

XMLCOMMENT(comment)

Red Hat Integration 2020.Q1 Data Virtualization Reference

62

Returns an XML with the concatenation of the given XML types.

Content is XML. Return value is XML.

If a value is null, it will be ignored. If all values are null, null is returned.

Concatenate two or more XML fragments

XMLELEMENT

Returns an XML element with the given name and content.

If the content value is of a type other than XML, it will be escaped when added to the parent element.
Null content values are ignored. Whitespace in XML or the string values of the content is preserved, but
no whitespace is added between content values.

XMLNAMESPACES is used provide namespace information. NO DEFAULT is equivalent to defining the
default namespace to the null uri - xmlns="". Only one DEFAULT or NO DEFAULT namespace item may
be specified. The namespace prefixes xmlns and xml are reserved.

If a attribute name is not supplied, the expression must be a column reference, in which case the
attribute name will be the column name. Null attribute values are ignored.

Name, prefix are identifiers. uri is a string literal. content can be any type. Return value is XML. The
return value is valid for use in places where a document is expected.

Simple example

Multiple columns

XMLCONCAT(content [, content]*)

SELECT XMLCONCAT(
 XMLELEMENT("name", CustomerName),
 XMLPARSE(CONTENT '<a>b' WELLFORMED)
)
FROM Customer c
WHERE c.CustomerID = 87;

==
<name>Wartian Herkku</name><a>b

XMLELEMENT([NAME] name [, <NSP>] [, <ATTR>][, content]*)

ATTR:=XMLATTRIBUTES(exp [AS name] [, exp [AS name]]*)

NSP:=XMLNAMESPACES((uri AS prefix | DEFAULT uri | NO DEFAULT))+

SELECT XMLELEMENT("name", CustomerName)
FROM Customer c
WHERE c.CustomerID = 87;

==
<name>Wartian Herkku</name>

CHAPTER 3. SQL COMPATIBILITY

63

Columns as attributes

XMLFOREST

Returns an concatenation of XML elements for each content item.

For the definition of NSP - XMLNAMESPACES, see See XMLELEMENT in XML functions.

Name is an identifier. Content can be any type. Return value is XML.

If a name is not supplied for a content item, the expression must be a column reference, in which case
the element name will be a partially escaped version of the column name.

You can use the XMLFOREST to simplify the declaration of multiple XMLELEMENTS. The
XMLFOREST function allows you to process multiple columns at once.

Example

XMLAGG

SELECT XMLELEMENT("customer",
 XMLELEMENT("name", c.CustomerName),
 XMLELEMENT("contact", c.ContactName))
FROM Customer c
WHERE c.CustomerID = 87;

==
<customer><name>Wartian Herkku</name><contact>Pirkko Koskitalo</contact></customer>

SELECT XMLELEMENT("customer",
 XMLELEMENT("name", c.CustomerName,
 XMLATTRIBUTES(
 "contact" as c.ContactName,
 "id" as c.CustomerID
)
)
)
FROM Customer c
WHERE c.CustomerID = 87;

==
<customer><name contact="Pirkko Koskitalo" id="87">Wartian Herkku</name></customer>

XMLFOREST(content [AS name] [, <NSP>] [, content [AS name]]*)

SELECT XMLELEMENT("customer",
 XMLFOREST(
 c.CustomerName AS "name",
 c.ContactName AS "contact"
))
FROM Customer c
WHERE c.CustomerID = 87;

==
<customer><name>Wartian Herkku</name><contact>Pirkko Koskitalo</contact></customer>

Red Hat Integration 2020.Q1 Data Virtualization Reference

64

XMLAGG is an aggregate function, that takes a collection of XML elements and returns an aggregated
XML document.

From above example in XMLElement, each row in the Customer table table will generate row of XML if
there are multiple rows matching the criteria. That will generate a valid XML, but it will not be well
formed, because it lacks the root element. XMLAGG can used to correct that

Example

XMLPARSE

Returns an XML type representation of the string value expression.

expr in {string, clob, blob, varbinary}. Return value is XML.

If DOCUMENT is specified then the expression must have a single root element and may or may not
contain an XML declaration.

If WELLFORMED is specified then validation is skipped; this is especially useful for CLOB and BLOB
known to already be valid.

XMLPI

Returns an XML processing instruction.

XMLAGG(xml)

SELECT XMLELEMENT("customers",
 XMLAGG(
 XMLELEMENT("customer",
 XMLFOREST(
 c.CustomerName AS "name",
 c.ContactName AS "contact"
)))
FROM Customer c

==
<customers>
<customer><name>Wartian Herkku</name><contact>Pirkko Koskitalo</contact></customer>
<customer><name>Wellington Importadora</name><contact>Paula Parente</contact></customer>
<customer><name>White Clover Markets</name><contact>Karl Jablonski</contact></customer>
</customers>

XMLPARSE((DOCUMENT|CONTENT) expr [WELLFORMED])

SELECT XMLPARSE(CONTENT '<customer><name>Wartian Herkku</name><contact>Pirkko
Koskitalo</contact></customer>' WELLFORMED);

Will return a SQLXML with contents
===
<customer><name>Wartian Herkku</name><contact>Pirkko Koskitalo</contact></customer>

XMLPI([NAME] name [, content])

CHAPTER 3. SQL COMPATIBILITY

65

Name is an identifier. Content is a string. Return value is XML.

XMLQUERY

Returns the XML result from evaluating the given xquery.

For the definition of NSP - XMLNAMESPACES, see XMLELEMENT in XML functions.

Namespaces may also be directly declared in the xquery prolog.

The optional PASSING clause is used to provide the context item, which does not have a name, and
named global variable values. If the xquery uses a context item and none is provided, then an exception
will be raised. Only one context item may be specified and should be an XML type. All non-context non-
XML passing values will be converted to an appropriate XML type. Null will be returned if the context
item evaluates to null.

The ON EMPTY clause is used to specify the result when the evaluted sequence is empty. EMPTY ON
EMPTY, the default, returns an empty XML result. NULL ON EMPTY returns a null result.

xquery in string. Return value is XML.

XMLQUERY is part of the SQL/XML 2006 specification.

For more information, see XMLTABLE in FROM clause.

NOTE

See also XQuery optimization.

XMLEXISTS

Returns true if a non-empty sequence would be returned by evaluating the given xquery.

For the definition of NSP - XMLNAMESPACES, see XMLELEMENT in XML functions.

Namespaces can also be directly declared in the xquery prolog.

The optional PASSING clause is used to provide the context item, which does not have a name, and
named global variable values. If the xquery uses a context item and none is provided, then an exception
will be raised. Only one context item may be specified and should be an XML type. All non-context non-
XML passing values will be converted to an appropriate XML type. Null/Unknown will be returned if the
context item evaluates to null.

xquery in string. Return value is boolean.

XMLEXISTS is part of the SQL/XML 2006 specification.

NOTE

XMLQUERY([<NSP>] xquery [<PASSING>] [(NULL|EMPTY) ON EMPTY]]

PASSING:=PASSING exp [AS name] [, exp [AS name]]*

XMLEXISTS([<NSP>] xquery [<PASSING>]]

PASSING:=PASSING exp [AS name] [, exp [AS name]]*

Red Hat Integration 2020.Q1 Data Virtualization Reference

66

NOTE

See also XQuery optimization.

XMLSERIALIZE

Returns a character type representation of the XML expression.

Return value matches datatype. If no datatype is specified, then clob will be assumed.

The type may be character (string, varchar, clob) or binary (blob, varbinar). CONTENT is the default. If
DOCUMENT is specified and the XML is not a valid document or fragment, then an exception is raised.

The encoding enc is specified as an identifier. A character serialization may not specify an encoding. The
version ver is specified as a string literal. If a particular XMLDECLARATION is not specified, then the
result will have a declaration only if performing a non UTF-8/UTF-16, or non version 1.0 document
serialization or the underlying XML has an declaration. If CONTENT is being serialized, then the
declaration will be omitted if the value is not a document or element.

See the following example that produces a BLOB of XML in UTF-16 including the appropriate byte order
mark of FE FF and XML declaration.

Sample Binary Serialization

XMLTEXT

Returns XML text.

text is a string. Return value is XML.

XSLTRANSFORM

Applies an XSL stylesheet to the given document.

Doc, XSL in {string, clob, xml}. Return value is a clob.

If either argument is null, the result is null.

XPATHVALUE

Applies the XPATH expression to the document and returns a string value for the first matching result.
For more control over the results and XQuery, use the XMLQUERY function. For more information, see
XMLQUERY in XML functions.

XMLSERIALIZE([(DOCUMENT|CONTENT)] xml [AS datatype] [ENCODING enc] [VERSION ver]
[(INCLUDING|EXCLUDING) XMLDECLARATION])

XMLSERIALIZE(DOCUMENT value AS BLOB ENCODING "UTF-16" INCLUDING
XMLDECLARATION)

XMLTEXT(text)

XSLTRANSFORM(doc, xsl)

XPATHVALUE(doc, xpath)

CHAPTER 3. SQL COMPATIBILITY

67

Doc in {string, clob, blob, xml}. xpath is string. Return value is a string.

Matching a non-text node will still produce a string result, which includes all descendant text nodes. If a
single element is matched that is marked with xsi:nil, then null will be returned.

When the input document utilizes namespaces, it is sometimes necessary to specify XPATH that ignores
namespaces:

Sample XML for xpathValue Ignoring Namespaces

Function:

Sample xpathValue Ignoring Namespaces

Results in Hello World

Example: Generating hierarchical XML from flat data structure

With following table and its contents

data like ['a', 1], ['a', 2], ['b', 3], ['b', 4], if you want generate a XML that looks like

use the SQL statement in Data Virtualization as below

For more examples, see http://oracle-base.com/articles/misc/sqlxml-sqlx-generating-xml-content-
using-sql.php

<?xml version="1.0" ?>
 <ns1:return xmlns:ns1="http://com.test.ws/exampleWebService">Hello<x> World</x></return>

xpathValue(value, '/*[local-name()="return"]')

Table {
 x string,
 y integer
}

<root>
 <x>
 a
 <y>1</y>
 <y>2</y>
 </x>
 <x>
 b
 <y>3</y>
 <y>4</y>
 </x>
</root>

select xmlelement(name "root", xmlagg(p))
 from (select xmlelement(name "x", x, xmlagg(xmlelement(name "y", y)) as p from tbl group by x)) as
v

Red Hat Integration 2020.Q1 Data Virtualization Reference

68

http://oracle-base.com/articles/misc/sqlxml-sqlx-generating-xml-content-using-sql.php

3.5.10. JSON functions

JSON functions provide functionality for working with JSON (JavaScript Object Notation) data.

Sample data for examples

Examples provided with XML functions use the following table structure:

with Data

CustomerID CustomerN
ame

ContactNa
me

Address City PostalCode Country

87 Wartian
Herkku

Pirkko
Koskitalo

Torikatu 38 Oulu 90110 Finland

88 Wellington
Importadora

Paula
Parente

Rua do
Mercado, 12

Resende 08737-363 Brazil

89 White
Clover
Markets

Karl
Jablonski

305 - 14th
Ave. S. Suite
3B

Seattle 98128 USA

JSONARRAY

Returns a JSON array.

value is any object that can be converted to a JSON value. For more information, see JSON functions.
Return value is JSON.

Null values will be included in the result as null literals.

mixed value example

Would return

Using JSONARRAY on a Table

TABLE Customer (
 CustomerId integer PRIMARY KEY,
 CustomerName varchar(25),
 ContactName varchar(25)
 Address varchar(50),
 City varchar(25),
 PostalCode varchar(25),
 Country varchar(25),
);

JSONARRAY(value...)

jsonArray('a"b', 1, null, false, {d'2010-11-21'})

["a\"b",1,null,false,"2010-11-21"]

CHAPTER 3. SQL COMPATIBILITY

69

http://www.json.org/

JSONOBJECT

Returns a JSON object.

value is any object that can be converted to a JSON value. For more information, see JSON functions.
Return value is JSON.

Null values will be included in the result as null literals.

If a name is not supplied and the expression is a column reference, the column name will be used
otherwise exprN will be used where N is the 1-based index of the value in the JSONARRAY expression.

mixed value example

Would return

Using JSONOBJECT on a Table

Another example

Another example

SELECT JSONARRAY(CustomerId, CustomerName)
FROM Customer c
WHERE c.CustomerID >= 88;
==
[88,"Wellington Importadora"]
[89,"White Clover Markets"]

JSONARRAY(value [as name] ...)

jsonObject('a"b' as val, 1, null as "null")

{"val":"a\"b","expr2":1,"null":null}

SELECT JSONOBJECT(CustomerId, CustomerName)
FROM Customer c
WHERE c.CustomerID >= 88;
==
{"CustomerId":88, "CustomerName":"Wellington Importadora"}
{"CustomerId":89, "CustomerName":"White Clover Markets"}

SELECT JSONOBJECT(JSONOBJECT(CustomerId, CustomerName) as Customer)
FROM Customer c
WHERE c.CustomerID >= 88;
==
{"Customer":{"CustomerId":88, "CustomerName":"Wellington Importadora"}}
{"Customer":{"CustomerId":89, "CustomerName":"White Clover Markets"}}

SELECT JSONOBJECT(JSONARRAY(CustomerId, CustomerName) as Customer)
FROM Customer c
WHERE c.CustomerID >= 88;

Red Hat Integration 2020.Q1 Data Virtualization Reference

70

JSONPARSE

Validates and returns a JSON result.

value is blob with an appropriate JSON binary encoding (UTF-8, UTF-16, or UTF-32) or a clob.
wellformed is a boolean indicating that validation should be skipped. Return value is JSON.

A null for either input will return null.

JSON parse of a simple literal value

JSONARRAY_AGG

creates a JSON array result as a Clob including null value. This is similar to JSONARRAY but aggregates
its contents into single object

You can also wrap array as

Conversion to JSON

A straight-forward, specification-compliant conversion is used for converting values into their
appropriate JSON document form.

Null values are included as the null literal.

Values parsed as JSON or returned from a JSON construction function (JSONPARSE,
JSONARRAY, JSONARRAY_AGG) will be directly appended into a JSON result.

Boolean values are included as true/false literals.

Numeric values are included as their default string conversion - in some circumstances if not a
number or +-infinity results are allowed, invalid JSON may be obtained.

==
{"Customer":[88, "Wellington Importadora"]}
{"Customer":[89, "White Clover Markets"]}

JSONPARSE(value, wellformed)

jsonParse('{"Customer":{"CustomerId":88, "CustomerName":"Wellington Importadora"}}', true)

SELECT JSONARRAY_AGG(JSONOBJECT(CustomerId, CustomerName))
FROM Customer c
WHERE c.CustomerID >= 88;
==
[{"CustomerId":88, "CustomerName":"Wellington Importadora"}, {"CustomerId":89,
"CustomerName":"White Clover Markets"}]

SELECT JSONOBJECT(JSONARRAY_AGG(JSONOBJECT(CustomerId as id, CustomerName as
name)) as Customer)
FROM Customer c
WHERE c.CustomerID >= 88;
==
{"Customer":[{"id":89,"name":"Wellington Importadora"},{"id":100,"name":"White Clover Markets"}]}

CHAPTER 3. SQL COMPATIBILITY

71

String values are included in their escaped/quoted form.

Binary values are not implicitly convertable to JSON values and require a specific prior to
inclusion in JSON.

All other values will be included as their string conversion in the appropriate escaped/quoted
form.

JSONTOXML

Returns an XML document from JSON.

rootElementName is a string, json is in {clob, blob}. Return value is XML.

The appropriate UTF encoding (8, 16LE. 16BE, 32LE, 32BE) will be detected for JSON blobs. If another
encoding is used, see the TO_CHARS function in String functions.

The result is always a well-formed XML document.

The mapping to XML uses the following rules:

The current element name is initially the rootElementName, and becomes the object value
name as the JSON structure is traversed.

All element names must be valid XML 1.1 names. Invalid names are fully escaped according to the
SQLXML specification.

Each object or primitive value will be enclosed in an element with the current name.

Unless an array value is the root, it will not be enclosed in an additional element.

Null values will be represented by an empty element with the attribute xsi:nil="true"

Boolean and numerical value elements will have the attribute xsi:type set to boolean and
decimal respectively.

JSON:

Sample JSON to XML for jsonToXml(’person’, x)

XML:

Sample JSON to XML for jsonToXml(’person’, x)

JSON:

JSONTOXML(rootElementName, json)

{"firstName" : "John" , "children" : ["Randy", "Judy"]}

<?xml version="1.0" ?>
 <person>
 <firstName>John</firstName>
 <children>Randy</children>
 <children>Judy<children>
 </person>

Red Hat Integration 2020.Q1 Data Virtualization Reference

72

Sample JSON to XML for jsonToXml('person', x) with a root array

XML (Notice there is an extra "person" wrapping element to keep the XML well-formed):

Sample JSON to XML for jsonToXml(’person’, x) with a root array

JSON:

Sample JSON to XML for jsonToXml(’root’, x) with an invalid name

XML:

Sample JSON to XML for jsonToXml(’root’, x) with an invalid name

NOTE

prior releases defaulted incorrectly to using uXXXX escaping rather than xXXXX. If you
need to rely on that behavior see the org.teiid.useXMLxEscape system property.

JsonPath

Processing of JsonPath expressions is provided by Jayway JsonPath. Please note that it uses 0-based
indexing, rather than 1-based indexing. Be sure that you are familiar with the expected returns for
various path expressions. For example, if a row JsonPath expression is expected to provide an array,
make sure that it’s the array that you want, and not an array that would be returned automatically by an
indefinite path expression.

If you encounter a situation where path names use reserved characters, such as '.', then you must use the
bracketed JsonPath notation as that allows for any key, e.g. $['.key'].

For more information, see JSONTABLE.

JSONPATHVALUE

Extracts a single JSON value as a string.

[{"firstName" : "George" }, { "firstName" : "Jerry" }]

<?xml version="1.0" ?>
<person>
 <person>
 <firstName>George</firstName>
 </person>
 <person>
 <firstName>Jerry</firstName>
 </person>
</person>

{"/invalid" : "abc" }

<?xml version="1.0" ?>
<root>
 <_x002F_invalid>abc</_x002F_invalid>
</root>

CHAPTER 3. SQL COMPATIBILITY

73

https://github.com/json-path/JsonPath

value is a clob JSON document, path is a JsonPath string, and nullLeafOnMissing is a Boolean. Return
value is a string value of the resulting JSON.

If nullLeafOnMissing is false (the default), then a path that evaluates to a leaf that is missing will throw
an exception. If nullLeafOnMissing is true, then a null value will be returned.

If the value is an array produced by an indefinite path expression, then only the first value will be
returned.

Would return

Would return

JSONQUERY

Evaluate a JsonPath expression against a JSON document and return the JSON result.

value is a clob JSON document, path is a JsonPath string, and nullLeafOnMissing is a Boolean. Return
value is a JSON value.

If nullLeafOnMissing is false (the default), then a path that evaluates to a leaf that is missing will throw
an exception. If nullLeafOnMissing is true, then a null value will be returned.

Would return

3.5.11. Security functions

Security functions provide the ability to interact with the security system or to hash/encrypt values.

HASROLE

Whether the current caller has the Data Virtualization data role roleName.

roleName must be a string, the return type is Boolean.

JSONPATHVALUE(value, path [, nullLeafOnMissing])

jsonPathValue('{"key":"value"}' '$.missing', true)

null

jsonPathValue('[{"key":"value1"}, {"key":"value2"}]' '$..key')

value1

JSONQUERY(value, path [, nullLeafOnMissing])

jsonPathValue('[{"key":"value1"}, {"key":"value2"}]' '$..key')

["value1","value2"]

hasRole([roleType,] roleName)

Red Hat Integration 2020.Q1 Data Virtualization Reference

74

The two argument form is provided for backwards compatibility. roleType is a string and must be `data'.

Role names are case-sensitive and only match Data Virtualization Data roles. Foreign/JAAS
roles/groups names are not valid for this function, unless there is corresponding data role with the same
name.

MD5

Computes the MD5 hash of the value.

value must be a string or varbinary, the return type is varbinary. String values are first converted to their
UTF-8 byte representation.

SHA1

Computes the SHA-1 hash of the value.

value must be a string or varbinary, the return type is varbinary. String values are first converted to their
UTF-8 byte representation.

SHA2_256

Computes the SHA-2 256 bit hash of the value.

value must be a string or varbinary, the return type is varbinary. String values are first converted to their
UTF-8 byte representation.

SHA2_512

Computes the SHA-2 512 bit hash of the value.

value must be a string or varbinary, the return type is varbinary. String values are first converted to their
UTF-8 byte representation.

AES_ENCRYPT

AES_ENCRYPT() allow encryption of data using the official AES (Advanced Encryption Standard)
algorithm, 16 bytes(128 bit) key length, and AES/CBC/PKCS5Padding cipher algorithm with an explicit
initialization vector.

The AES_ENCRYPT() will return a BinaryType encrypted data. The argument data is the BinaryType
data to encrypt, and the argument key is a BinaryType used in encryption.

AES_DECRYPT

MD5(value)

SHA1(value)

SHA2_256(value)

SHA2_512(value)

aes_encrypt(data, key)

CHAPTER 3. SQL COMPATIBILITY

75

AES_DECRYPT() allow decryption of data using the official AES (Advanced Encryption Standard)
algorithm, 16 bytes(128 bit) key length, and AES/CBC/PKCS5Padding cipher algorithm expecting an
explicit initialization vector.

The AES_DECRYPT() will return a BinaryType decrypted data. The argument data is the BinaryType
data to decrypt, and the argument key is a BinaryType used in decryption.

3.5.12. Spatial functions

Spatial functions provide functionality for working with geospatial data. Data Virtualization relies on the
JTS Topology Suite to provide partial compatibility with the OpenGIS Simple Features Specification For
SQL Revision 1.1. For more information about particular functions, see the Open GIS specification or the
PostGIS manual.

Most Geometry capabilities is limited to two dimensions due to the WKB and WKT formats.

NOTE

There might be minor differences between Data Virtualization and pushdown results that
will need to be further refined.

ST_GeomFromText

Returns a geometry from a Clob in WKT format.

text is a CLOB, srid is an optional integer that represents a spatial reference identifier (SRID). Return
value is a geometry.

ST_GeogFromText

Returns a geography from a Clob in (E)WKT format.

text is a CLOB, srid is an optional integer. Return value is a geography.

ST_GeomFromWKB/ST_GeomFromBinary

Returns a geometry from a BLOB in WKB format.

bin is a BLOB, srid is an optional integer. Return value is a geometry.

ST_GeomFromEWKB

Returns a geometry from a BLOB in EWKB format.

aes_decrypt(data, key)

ST_GeomFromText(text [, srid])

ST_GeogFromText(text)

ST_GeomFromWKB(bin [, srid])

ST_GeomFromEWKB(bin)

Red Hat Integration 2020.Q1 Data Virtualization Reference

76

http://www.opengeospatial.org/
http://www.vividsolutions.com/jts/JTSHome.htm
https://portal.opengeospatial.org/files/?artifact_id=829
http://postgis.net/docs/manual-2.0/

bin is a BLOB. Return value is a geometry. This version of the translator works with two dimensions only.

ST_GeogFromWKB

Returns a geography from a BLOB in (E)WKB format.

bin is a BLOB. Return value is a geography. This version of the translator works with two dimensions
only.

ST_GeomFromEWKT

Returns a geometry from a character large object (CLOB) in EWKT format.

text is a CLOB. Return value is a geometry. This version of the translator works with two dimensions
only.

ST_GeomFromGeoJSON

Returns a geometry from a CLOB in GeoJSON format.

text is a CLOB, srid is an optional integer. Return value is a geometry.

ST_GeomFromGML

Returns a geometry from a CLOB in GML2 format.

text is a CLOB, srid is an optional integer. Return value is a geometry.

ST_AsText

geom is a geometry. Return value is CLOB in WKT format.

ST_AsBinary

geo is a geometry or geography. Return value is a binary large object (BLOB) in WKB format.

ST_AsEWKB

geom is a geometry. Return value is BLOB in EWKB format.

ST_GeomFromEWKB(bin)

ST_GeomFromEWKT(text)

ST_GeomFromGeoJson(`text` [, srid])

ST_GeomFromGML(text [, srid])

ST_AsText(geom)

ST_AsBinary(geo)

ST_AsEWKB(geom)

CHAPTER 3. SQL COMPATIBILITY

77

ST_AsGeoJSON

geom is a geometry. Return value is a CLOB with the GeoJSON value.

ST_AsGML

geom is a geometry. Return value is a CLOB with the GML2 value.

ST_AsEWKT

geo is a geometry or geography. Return value is a CLOB with the EWKT value. The EWKT value is the
WKT value with the SRID prefix.

ST_AsKML

geom is a geometry. Return value is a CLOB with the KML value. The KML value is effectively a
simplified GML value and projected into SRID 4326.

&&

Returns true if the bounding boxes of geom1 and geom2 intersect.

geom1, geom2 are geometries. Return value is a Boolean.

ST_Contains

Returns true if geom1 contains geom2.

geom1, geom2 are geometries. Return value is a Boolean.

ST_Crosses

Returns true if the geometries cross.

geom1, geom2 are geometries. Return value is a Boolean.

ST_Disjoint

Returns true if the geometries are disjoint.

ST_AsGeoJSON(geom)

ST_AsGML(geom)

ST_AsEWKT(geo)

ST_AsKML(geom)

geom1 && geom2

ST_Contains(geom1, geom2)

ST_Crosses(geom1, geom2)

Red Hat Integration 2020.Q1 Data Virtualization Reference

78

geom1, geom2 are geometries. Return value is a Boolean.

ST_Distance

Returns the distance between two geometries.

geo1, geo2 are both geometries or geographies. Return value is a double. The geography variant must
be pushed down for evaluation.

ST_DWithin

Returns true if the geometries are within a given distance of one another.

geom1, geom2 are geometries. dist is a double. Return value is a Boolean.

ST_Equals

Returns true if the two geometries are spatially equal. The points and order can differ, but neither
geometry lies outside of the other.

geom1, geom2 are geometries. Return value is a Boolean.

ST_Intersects

Returns true if the geometries intersect.

geo1, geo2 are both geometries or geographies. Return value is a Boolean. The geography variant must
be pushed down for evaluation.

ST_OrderingEquals

Returns true if geom1 and geom2 have the same structure and the same ordering of points.

geom1, geom2 are geometries. Return value is a Boolean.

ST_Overlaps

Returns true if the geometries overlap.

geom1, geom2 are geometries. Return value is a Boolean.

ST_Relate

ST_Disjoint(geom1, geom2)

ST_Distance(geo1, geo2)

ST_DWithin(geom1, geom2, dist)

ST_Equals(geom1, geom2)

ST_Intersects(geo1, geo2)

ST_OrderingEquals(geom1, geom2)

ST_Overlaps(geom1, geom2)

CHAPTER 3. SQL COMPATIBILITY

79

Test or return the intersection of geom1 and geom2.

geom1, geom2 are geometries. pattern is a nine character DE-9IM pattern string. Return value is a
Boolean.

geom1, geom2 are geometries. Return value is the nine character DE-9IM intersection string.

ST_Touches

Returns true if the geometries touch.

geom1, geom2 are geometries. Return value is a Boolean.

ST_Within

Returns true if geom1 is completely inside geom2.

geom1, geom2 are geometries. Return value is a Boolean.

ST_Area

Returns the area of geom.

geom is a geometry. Return value is a double.

ST_CoordDim

Returns the coordinate dimensions of geom.

geom is a geometry. Return value is an integer between 0 and 3.

ST_Dimension

Returns the dimension of geom.

geom is a geometry. Return value is an integer between 0 and 3.

ST_EndPoint

Returns the end Point of the LineString geom. Returns null if geom is not a LineString.

ST_Relate(geom1, geom2, pattern)

ST_Relate(geom1, geom2)

ST_Touches(geom1, geom2)

ST_Within(geom1, geom2)

ST_Area(geom)

ST_CoordDim(geom)

ST_Dimension(geom)

Red Hat Integration 2020.Q1 Data Virtualization Reference

80

geom is a geometry. Return value is a geometry.

ST_ExteriorRing

Returns the exterior ring or shell LineString of the polygon geom. Returns null if geom is not a polygon.

geom is a geometry. Return value is a geometry.

ST_GeometryN

Returns the nth geometry at the given 1-based index in geom. Returns null if a geometry at the given
index does not exist. Non-collection types return themselves at the first index.

geom is a geometry. index is an integer. Return value is a geometry.

ST_GeometryType

Returns the type name of geom as ST_name. Where name will be LineString, Polygon, Point etc.

geom is a geometry. Return value is a string.

ST_HasArc

Tests if the geometry has a circular string. Reports false, because the translator does not work with
curved geometry types.

geom is a geometry. Return value is a geometry.

ST_InteriorRingN

Returns the nth interior ring LinearString geometry at the given 1-based index in geom. Returns null if a
geometry at the given index does not exist, or if geom is not a polygon.

geom is a geometry. index is an integer. Return value is a geometry.

ST_IsClosed

Returns true if LineString geom is closed. Returns false if geom is not a LineString

geom is a geometry. Return value is a Boolean.

ST_IsEmpty

ST_EndPoint(geom)

ST_ExteriorRing(geom)

ST_GeometryN(geom, index)

ST_GeometryType(geom)

ST_HasArc(geom)

ST_InteriorRingN(geom, index)

ST_IsClosed(geom)

CHAPTER 3. SQL COMPATIBILITY

81

Returns true if the set of points is empty.

geom is a geometry. Return value is a Boolean.

ST_IsRing

Returns true if the LineString geom is a ring. Returns false if geom is not a LineString.

geom is a geometry. Return value is a Boolean.

ST_IsSimple

Returns true if the geom is simple.

geom is a geometry. Return value is a Boolean.

ST_IsValid

Returns true if the geom is valid.

geom is a geometry. Return value is a Boolean.

ST_Length

Returns the length of a (Multi)LineString, otherwise returns 0.

geo is a geometry or a geography. Return value is a double. The geography variant must be pushed
down for evaluation.

ST_NumGeometries

Returns the number of geometries in geom. Will return 1 if not a geometry collection.

geom is a geometry. Return value is an integer.

ST_NumInteriorRings

Returns the number of interior rings in the polygon geometry. Returns null if geom is not a polygon.

geom is a geometry. Return value is an integer.

ST_NunPoints

ST_IsEmpty(geom)

ST_IsRing(geom)

ST_IsSimple(geom)

ST_IsValid(geom)

ST_Length(geo)

ST_NumGeometries(geom)

ST_NumInteriorRings(geom)

Red Hat Integration 2020.Q1 Data Virtualization Reference

82

Returns the number of points in geom.

geom is a geometry. Return value is an integer.

ST_PointOnSurface

Returns a point that is guaranteed to be on the surface of geom.

geom is a geometry. Return value is a point geometry.

ST_Perimeter

Returns the perimeter of the (Multi)Polygon geom. Will return 0 if geom is not a (Multi)Polygon

geom is a geometry. Return value is a double.

ST_PointN

Returns the nth point at the given 1-based index in geom. Returns null if a point at the given index does
not exist or if geom is not a LineString.

geom is a geometry. index is an integer. Return value is a geometry.

ST_SRID

Returns the SRID for the geometry.

geo is a geometry or geography. Return value is an integer. A 0 value rather than null will be returned for
an unknown SRID on a non-null geometry.

ST_SetSRID

Set the SRID for the given geometry.

geo is a geometry or geography. srid is an integer. Return value is the same as the value of geo. Only
the SRID metadata of is modified. No transformation is performed.

ST_StartPoint

Returns the start Point of the LineString geom. Returns null if geom is not a LineString.

geom is a geometry. Return value is a geometry.

ST_NunPoints(geom)

ST_PointOnSurface(geom)

ST_Perimeter(geom)

ST_PointN(geom, index)

ST_SRID(geo)

ST_SetSRID(geo, srid)

ST_StartPoint(geom)

CHAPTER 3. SQL COMPATIBILITY

83

ST_X

Returns the X ordinate value, or null if the point is empty. Throws an exception if the geometry is not a
point.

geom is a geometry. Return value is a double.

ST_Y

Returns the Y ordinate value, or null if the point is empty. Throws an exception if the geometry is not a
point.

geom is a geometry. Return value is a double.

ST_Z

Returns the Z ordinate value, or null if the point is empty. Throws an exception if the geometry is not a
point. Typically returns null because the translator does not work with more than two dimensions.

geom is a geometry. Return value is a double.

ST_Boundary

Computes the boundary of the given geometry.

geom is a geometry. Return value is a geometry.

ST_Buffer

Computes the geometry that has points within the given distance of geom.

geom is a geometry. distance is a double. Return value is a geometry.

ST_Centroid

Computes the geometric center point of geom.

geom is a geometry. Return value is a geometry.

ST_ConvexHull

Return the smallest convex polygon that contains all of the points in geometry.

ST_X(geom)

ST_Y(geom)

ST_Z(geom)

ST_Boundary(geom)

ST_Buffer(geom, distance)

ST_Centroid(geom)

ST_ConvexHull(geom)

Red Hat Integration 2020.Q1 Data Virtualization Reference

84

geom is a geometry. Return value is a geometry.

ST_CurveToLine

Converts a CircularString/CurvedPolygon to a LineString/Polygon. Not currently implemented in Data
Virtualization.

geom is a geometry. Return value is a geometry.

ST_Difference

Computes the closure of the point set of the points contained in geom1 that are not in geom2.

geom1, geom2 are geometries. Return value is a geometry.

ST_Envelope

Computes the 2D bounding box of the given geometry.

geom is a geometry. Return value is a geometry.

ST_Force_2D

Removes the z coordinate value if present.

geom is a geometry. Return value is a geometry.

ST_Intersection

Computes the point set intersection of the points contained in geom1 and in geom2.

geom1, geom2 are geometries. Return value is a geometry.

ST_Simplify

Simplifies a geometry using the Douglas-Peucker algorithm, but may oversimplify to an invalid or empty
geometry.

geom is a geometry. distanceTolerance is a double. Return value is a geometry.

ST_SimplifyPreserveTopology

Simplifies a geometry using the Douglas-Peucker algorithm. Will always return a valid geometry.

ST_CurveToLine(geom)

ST_Difference(geom1, geom2)

ST_Envelope(geom)

ST_Force_2D(geom)

ST_Intersection(geom1, geom2)

ST_Simplify(geom, distanceTolerance)

CHAPTER 3. SQL COMPATIBILITY

85

geom is a geometry. distanceTolerance is a double. Return value is a geometry.

ST_SnapToGrid

Snaps all points in the geometry to grid of given size.

geom is a geometry. size is a double. Return value is a geometry.

ST_SymDifference

Return the part of geom1 that does not intersect with geom2 and vice versa.

geom1, geom2 are geometry. Return value is a geometry.

ST_Transform

Transforms the geometry value from one coordinate system to another.

geom is a geometry. srid is an integer. Return value is a geometry. The srid value and the SRID of the
geometry value must exist in the SPATIAL_REF_SYS view.

ST_Union

Return a geometry that represents the point set containing all of geom1 and geom2.

geom1, geom2 are geometries. Return value is a geometry.

ST_Extent

Computes the 2D bounding box around all of the geometry values. All values should have the same
SRID.

geom is a geometry. Return value is a geometry.

ST_Point

Retuns the Point for the given coordinates.

x and y are doubles. Return value is a Point geometry.

ST_Polygon

ST_SimplifyPreserveTopology(geom, distanceTolerance)

ST_SnapToGrid(geom, size)

ST_SymDifference(geom1, geom2)

ST_Transform(geom, srid)

ST_Union(geom1, geom2)

ST_Extent(geom)

ST_Point(x, y)

Red Hat Integration 2020.Q1 Data Virtualization Reference

86

Returns the Polygon with the given shell and SRID.

geom is a linear ring geometry and srid is an integer. Return value is a Polygon geometry.

3.5.13. Miscellaneous functions

Documents additional functions and those contributed by other projects.

array_get

Returns the object value at a given array index.

array is the object type, index must be an integer, and the return type is an object.

1-based indexing is used. The actual array value should be a java.sql.Array or java array type. A null is
returned if either argument is null, or if the index is out of bounds.

array_length

Returns the length for a given array.

array is the object type, and the return type is integer.

The actual array value should be a java.sql.Array or java array type. An exception is thrown if the array
value is the wrong type.

uuid

Returns a universally unique identifier.

The return type is string.

Generates a type 4 (pseudo randomly generated) UUID using a cryptographically strong random number
generator. The format is XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX where each X is a hex digit.

Data quality functions

Data Quality functions are contributed by the ODDQ Project. The functions are prefixed with osdq., but
can be called without the prefix.

osdq.random

Returns the randomized string. For example, jboss teiid may randomize to jtids soibe.

The sourceValue is the string to be randomized.

ST_Polygon(geom, srid)

array_get(array, index)

array_length(array)

uuid()

random(sourceValue)

CHAPTER 3. SQL COMPATIBILITY

87

https://sourceforge.net/projects/dataquality/

osdq.digit

Returns digit characters of the string. For example, a1 b2 c3 d4 becomes 1234.

The sourceValue is the string from which you want to extract digit characters.

osdq.whitespaceIndex

Returns the index of the first whitespace. For example, jboss teiid will return 5.

The sourceValue is the string from which you want to find the whitespace index.

osdq.validCreditCard

Check whether a credit card number is valid. Returns true if it matches credit card logic and checksum.

cc is the credit card number string to check.

osdq.validSSN

Check whether a social security number (SSN) is valid. Returns true if it matches SSN logic.

ssn is the social security number string to check.

osdq.validPhone

Check whether a phone number is valid. Returns true if the number matches phone logic. Numbers must
contain more than 8, but less than 12 characters, and cannot start with 000.

`phone is the phone number string need to check.

osdq.validEmail

Check whether an email address is valid. Returns true if valid.

email is the email address string to check.

osdq.cosineDistance

Returns the float distance between two strings based on the Cosine Similarity algorithm.

a and b are strings for which you want to calculate the distance.

digit(sourceValue)

whitespaceIndex(sourceValue)

validCreditCard(cc)

validSSN(ssn)

validPhone(phone)

validEmail(email)

cosineDistance(a, b)

Red Hat Integration 2020.Q1 Data Virtualization Reference

88

osdq.jaccardDistance

Returns the float distance between two strings, based on the Jaccard similarity algorithm.

The a and b are strings for which you want to calculate the distance.

osdq.jaroWinklerDistance

Returns the float distance between two strings based on the Jaro-Winkler algorithm.

The a and b are strings for which you want to calculate the distance.

osdq.levenshteinDistance

Returns the float distance between two strings based on the Levenshtein algorithm.

The a and b are strings for which you want to calculate the distance.

osdq.intersectionFuzzy

Returns the set of unique elements from the first set with cosine distance less than the specified value
to every member of the second set.

a and b are string arrays. c is a float representing the distance, such that 0.0 or less will match any and >
1.0 will match exact.

osdq.minusFuzzy

Returns the set of unique elements from the first set with cosine distance less than the specified value
to every member of the second set.

a and b are string arrays. c is a float representing the distance, such that 0.0 or less will match any and >
1.0 will match exact.

osdq.unionFuzzy

Returns the set of unique elements that contains members from the first set and members of the
second set that have a cosine distance less than the specified value to every member of the first set.

a and b are string arrays. c is a float representing the distance, such that 0.0 or less will match any and >
1.0 will match exact.

3.5.14. Nondeterministic function handling

jaccardDistance(a, b)

jaroWinklerDistance(a, b)

levenshteinDistance(a, b)

intersectionFuzzy(a, b)

minusFuzzy(a, b, c)

unionFuzzy(a, b, c)

CHAPTER 3. SQL COMPATIBILITY

89

Data Virtualization categorizes functions by varying degrees of determinism. When a function is
evaluated and to what extent the result can be cached are based upon its determinism level.

Deterministic

The function always returns the same result for the given inputs. Deterministic functions are
evaluated by the engine as soon as all input values are known, which may occur as soon as the rewrite
phase. Some functions, such as the lookup function, are not truly deterministic, but are treated as
such for performance. All functions that are not categorized according to the remaining items in this
list are considered deterministic.

User Deterministic

The function returns the same result for the given inputs for the same user. This includes the
hasRole and user functions. User deterministic functions are evaluated by the engine as soon as all
input values are known, which may occur as soon as the rewrite phase. If a user deterministic function
is evaluated during the creation of a prepared processing plan, then the resulting plan will be cached
only for the user.

Session Deterministic

The function returns the same result for the given inputs under the same user session. This category
includes the env function. Session deterministic functions are evaluated by the engine as soon as all
input values are known, which may occur as soon as the rewrite phase. If a session deterministic
function is evaluated during the creation of a prepared processing plan, then the resulting plan will
be cached only for the user’s session.

Command Deterministic

The result of function evaluation is only deterministic within the scope of the user command. This
category include the curdate, curtime, now, and commandpayload functions. Command
deterministic functions are delayed in evaluation until processing to ensure that even prepared plans
utilizing these functions will be executed with relevant values. Command deterministic function
evaluation will occur prior to pushdown. However, multiple occurrences of the same command
deterministic time function are not guaranteed to evaluate to the same value.

Nondeterministic

The result of function evaluation is fully nondeterministic. This category includes the rand function
and UDFs marked as nondeterministic. Nondeterministic functions are delayed in evaluation until
processing with a preference for pushdown. If the function is not pushed down, then it may be
evaluated for every row in it’s execution context (for example, if the function is used in the select
clause).

NOTE

Uncorrelated subqueries will be treated as deterministic regardless of the functions used
within them.

3.6. DML COMMANDS

You can use SQL in Data Virtualization to issue queries and define view transformations. For more
information about how SQL is used in virtual procedures and update procedures, see Procedure
language. Nearly all these features follow standard SQL syntax and functionality, so you can use any
SQL reference for more information.

There are 4 basic commands for manipulating data in SQL, corresponding to the create, read, update,
and delete (CRUD) operations: INSERT, SELECT, UPDATE, and DELETE. A MERGE statement acts as a
combination of INSERT and UPDATE.

You can also execute procedures by using the EXECUTE command, procedural relational command. For

Red Hat Integration 2020.Q1 Data Virtualization Reference

90

You can also execute procedures by using the EXECUTE command, procedural relational command. For
more information, see Procedural relational command, or Anonymous procedure block.

3.6.1. Set operations

You can use the SQL UNION, UNION ALL, INTERSECT, and EXCEPT set operations in Data
Virtualization to combine the results of query expressions.

Usage:

Syntax Rules:

The output columns will be named by the output columns of the first set operation branch.

Each SELECT must have the same number of output columns and compatible data types for
each relative column. Data type conversion is performed if data types are inconsistent and
implicit conversions exist.

If UNION, INTERSECT, or EXCEPT is specified without all, then the output columns must be
comparable types.

You cannot use the SQL INTERSECT ALL or EXCEPT ALL operators.

3.6.2. SELECT command

The SELECT command is used to retrieve records for any number of relations.

A SELECT command can contain the following clauses:

WITH …

SELECT …

FROM …

WHERE …

GROUP BY …

HAVING …

ORDER BY …

(LIMIT …) | ([OFFSET …] [FETCH …])

OPTION …

Except for the OPTION clause, all of the preceding clauses are defined by the SQL specification. The
specification also specifies the order in which these clauses are logically processed. Processing occurs in
stages, with each stage passing a set of rows to the following stage. The processing model is logical, and
does not represent the way that a database engine performs the processing, but it is a useful model for
understanding how SQL works. The SELECT command processes clauses in the following stages:

Stage 1: WITH clause

queryExpression (UNION|INTERSECT|EXCEPT) [ALL] queryExpression [ORDER BY...]

CHAPTER 3. SQL COMPATIBILITY

91

Gathers all rows from all with items in the order listed. Subsequent WITH items and the main query
can reference a WITH item as if it were a table.

Stage 2: FROM clause

Gathers all rows from all tables involved in the query and logically joins them with a Cartesian product
to produce a single large table with all columns from all tables. Joins and join criteria are then applied
to filter rows that do not match the join structure.

Stage 3: WHERE clause

Applies a criteria to every output row from the FROM stage, further reducing the number of rows.

Stage 4: GROUP BY clause

Groups sets of rows with matching values in the GROUP BY columns.

Stage 5: HAVING clause

Applies criteria to each group of rows. Criteria can only be applied to columns that will have constant
values within a group (those in the grouping columns or aggregate functions applied across the
group).

Stage 6: SELECT clause

Specifies the column expressions that should be returned from the query. Expressions are evaluated,
including aggregate functions that are based on the groups of rows, which will no longer exist after
this point. The output columns are named using either column aliases or an implicit name determined
by the engine. If SELECT DISTINCT is specified, duplicate removal is performed on the rows being
returned from the SELECT stage.

Stage 7: ORDER BY clause

Sorts the rows returned from the SELECT stage as desired. Supports sorting on multiple columns in
specified order, ascending or descending. The output columns will be identical to those columns
returned from the SELECT stage and will have the same name.

Stage 8: LIMIT clause

Returns only the specified rows (with skip and limit values).

The preceding model helps to understand how SQL works. For example, given that the SELECT clause
assigns aliases to columns, it makes sense that the subsequent ORDER BY clause must use those aliases
to reference columns. Without knowledge of the processing model, this can be somewhat confusing.
Seen in light of the model, it is clear that the ORDER BY stage is the only stage occurring after the
SELECT stage, which is where the columns are named. Because the WHERE clause is processed before
the SELECT, the columns have not yet been named and the aliases are not yet known.

TIP

The explicit table syntax TABLE x may be used as a shortcut for SELECT * FROM x.

3.6.3. VALUES command

The VALUES command is used to construct a simple table.

Example syntax

A VALUES command with a single value set is equivalent to SELECT value, …. A VALUES command

VALUES (value,...)

VALUES (value,...), (valueX,...) ...

Red Hat Integration 2020.Q1 Data Virtualization Reference

92

A VALUES command with a single value set is equivalent to SELECT value, …. A VALUES command
with multiple values sets is equivalent to a UNION ALL of simple SELECTs, for example SELECT value,
…. UNION ALL SELECT valueX, ….

3.6.4. Update commands

Update commands report integer update counts. Update commands can report a maximum integer
value of (2^31 -1). If you update a greater number of rows, the commands report the maximum integer
value.

3.6.4.1. INSERT command

The INSERT command is used to add a record to a table.

Example syntax

3.6.4.2. UPDATE command

The UPDATE command is used to modify records in a table. The operation results in 1 or more records
being updated, or in no records being updated if none match the criteria.

Example syntax

3.6.4.3. DELETE command

The DELETE command is used to remove records from a table. The operation results in 1 or more
records being deleted, or in no records being deleted if none match the criteria.

Example syntax

3.6.4.4. UPSERT (MERGE) command

The UPSERT (or MERGE) command is used to add or update records. The non-ANSI version of
UPSERT that is implemented in Data Virtualization is a modified INSERT statement that requires that
the target table has a primary key, and that the target columns cover the primary key. Before it performs
an INSERT, the UPSERT operation checks whether a row exists, and if it does, UPSERT updates the
current row rather than inserting a new one.

Example syntax

INSERT INTO table (column,...) VALUES (value,...)

INSERT INTO table (column,...) query

UPDATE table [[AS] alias] SET (column=value,...) [WHERE criteria]

DELETE FROM table [[AS] alias] [WHERE criteria]

UPSERT INTO table [[AS] alias] (column,...) VALUES (value,...)

UPSERT INTO table (column,...) query

CHAPTER 3. SQL COMPATIBILITY

93

UPSERT PUSHDOWN

If an UPSERT statement is not pushed to the source, it is broken down into the
respective INSERT and UPDATE operations. The target database system must support
extended architecture (XA) to guarantee transaction atomicity.

3.6.4.5. EXECUTE command

The EXECUTE command is used to execute a procedure, such as a virtual procedure or a stored
procedure. Procedures can have zero or more scalar input parameters. The return value from a
procedure is a result set, or the set of inout/out/return scalars.

You can use the following short forms of the EXECUTE command:

EXEC

CALL

Example syntax

Named parameter syntax

Syntax rules

The default order of parameter specification is the same as how they are defined in the
procedure definition.

You can specify the parameters in any order by name. Parameters that have default values, or
that are nullable in the metadata, can be omitted from the named parameter call, and will have
the appropriate value passed at runtime.

Positional parameters that have default values or that are nullable in the metadata, can be
omitted from the end of the parameter list and will have the appropriate value passed at
runtime.

If the procedure does not return a result set, the values from the RETURN, OUT, and IN_OUT
parameters are returned as a single row when used as an inline view query.

A VARIADIC parameter may be repeated 0 or more times as the last positional argument.

3.6.4.6. Procedural relational command

Procedural relational commands use the syntax of a SELECT to emulate an EXEC. In a procedural
relational command, a procedure group name is used in a FROM clause in place of a table. That
procedure is executed in place of a normal table access if all of the necessary input values can be found
in criteria against the procedure. Each combination of input values that is found in the criteria results in
the execution of the procedure.

EXECUTE proc()

CALL proc(value, ...)

EXECUTE proc(name1=>value1,name4=>param4, ...)

Red Hat Integration 2020.Q1 Data Virtualization Reference

94

Example syntax

Syntax rules

The procedure as a table projects the same columns as an EXEC with the addition of the input
parameters. For procedures that do not return a result set, IN_OUT columns are projected as
two columns:

One to represents the output value.

One with the name {column name}_IN that represents the input of the parameter.

Input values are passed via criteria. Values can be passed by =, is null, or as in predicates.
Disjuncts are not allowed. It is also not possible to pass the value of a non-comparable column
through an equality predicate.

The procedure view automatically has an access pattern on its IN and IN_OUT parameters. The
access pattern allows the procedure view to be planned correctly as a dependent join when
necessary, or to fail when sufficient criteria cannot be found.

Procedures that contain duplicate names between the parameters (IN, IN_OUT, OUT, RETURN)
and the result set columns cannot be used in a procedural relational command.

If there is already a table or view with the same name as the procedure, then it cannot be
invoked via procedural relational syntax.

Default values for IN or IN_OUT parameters are not used if there is no criteria present for a
given input. Default values are only valid for named procedure syntax. For more information, see
EXECUTE.

NOTE

The preceding issues do not apply when you use a nested table reference. For more
information, see Nested table reference in FROM clause.

Multiple execution

The use of in or join criteria can result in a procedure being executed multiple times.

3.6.4.7. Anonymous procedure block

You can execute a procedure language block as a user command. This can be an advantage in situations
in which a virtual procedure does not exist, but a set of processes can be carried out on the server side.
For more information about the language for defining virtual procedures, see Procedure language.

Example syntax

select * from proc

select output_param1, output_param2 from proc where input_param1 = 'x'

select output_param1, output_param2 from proc, table where input_param1 = table.col1 and
input_param2 = table.col2

CHAPTER 3. SQL COMPATIBILITY

95

Syntax rules

You can use in parameters with prepared/callable statement parameters, as shown in the
preceding example, which uses ? parameter.

You cannot use out parameters in an anonymous procedure block. As a workaround, you can
use session variables as needed.

Anonymous procedure blocks do not return data as output parameters.

A single result is returned if any of the statements returns a result set. All returnable result sets
must have a matching number of columns and types. To indicate that a statement is not
intended to provide a result set, use the WITHOUT RETURN clause.

3.6.5. Subqueries

A subquery is a SQL query embedded within another SQL query. The query containing the subquery is
the outer query.

Subquery types:

Scalar subquery - a subquery that returns only a single column with a single value. Scalar
subqueries are a type of expression and can be used where single valued expressions are
expected.

Correlated subquery - a subquery that contains a column reference to from the outer query.

Uncorrelated subquery - a subquery that contains no references to the outer sub-query.

Inline views

Subqueries in the FROM clause of the outer query (also known as "inline views") can return any number
of rows and columns. This type of subquery must always be given an alias. An inline view is nearly
identical to a traditional view. See also WITH Clause.

Example subquery in FROM clause (inline view)

Subqueries can appear anywhere where an expression or criteria is expected.

You can use subqueries in quantified criteria, the EXISTS predicate, the IN predicate, and as Scalar
subqueries.

Example subquery in WHERE using EXISTS

Example quantified comparison subqueries

begin insert into pm1.g1 (e1, e2) select ?, ?; select rowcount; end;

SELECT a FROM (SELECT Y.b, Y.c FROM Y WHERE Y.d = '3') AS X WHERE a = X.c AND b = X.b

SELECT a FROM X WHERE EXISTS (SELECT 1 FROM Y WHERE c=X.a)

Red Hat Integration 2020.Q1 Data Virtualization Reference

96

WITH_Clause.adoc

Example IN subquery

See also Subquery Optimization.

3.6.6. WITH clause

Data Virtualization provides access to common table expressions via the WITH clause. You can
reference WITH clause items as tables in subsequent WITH clause items, and in the main query. You can
think of the WITH clause as providing query-scoped temporary tables.

Usage

Syntax rules

All of the projected column names must be unique. If they are not unique, then the column name
list must be provided.

If the columns of the WITH clause item are declared, then they must match the number of
columns projected by the query expression.

Each WITH clause item must have a unique name.

The optional no_inline hint indicates to the optimizer that the query expression should not be
substituted as an inline view where referenced. It is possible with no_inline for multiple
evaluations of the common table as needed by source queries.

The optional materialize hint requires that the common table be created as a temporary table in
Data Virtualization. This forces a single evaluation of the common table.

NOTE

The WITH clause is also subject to optimization and its entries might not be processed if
they are not needed in the subsequent query.

NOTE

Common tables are aggressively inlined to enhance the possibility of pushdown. If a
common table is only referenced a single time in the main query, it is likely to be inlined. In
some situations, such as when you use a common table to prevent n-many-processing of
a non-pushdown, correlated subquery, you might need to include the no_inline or
materialize hint.

Examples

SELECT a FROM X WHERE a >= ANY (SELECT b FROM Y WHERE c=3)
SELECT a FROM X WHERE a < SOME (SELECT b FROM Y WHERE c=4)
SELECT a FROM X WHERE a = ALL (SELECT b FROM Y WHERE c=2)

SELECT a FROM X WHERE a IN (SELECT b FROM Y WHERE c=3)

WITH name [(column, ...)] AS [/*+ no_inline|materialize */] (query expression) ...

CHAPTER 3. SQL COMPATIBILITY

97

Subquery_Optimization.adoc

Recursive common table expressions

A recursive common table expression is a special form of a common table expression that is allowed to
refer to itself to build the full common table result in a recursive or iterative fashion.

Usage

The recursive query expression is allowed to refer to the common table by name. The anchor query
expression is executed first during processing. Results are added to the common table and are
referenced for the execution of the recursive query expression. The process is repeated against the new
results until there are no more intermediate results.

IMPORTANT

Non-terminating, recursive common table expressions can lead to excessive processing.

By default, to prevent runaway processing of a recursive common table expression, processing is limited
to 10000 iterations. Recursive common table expressions that are pushed down are not subject to this
limit, but could be subject to other source-specific limits. You can modify the limit by setting the session
variable teiid.maxRecursion to a larger integer value. After the limit is exceeded, an exception is
thrown.

The following example fails, because the recursion limit is reached before processing completes.

3.6.7. SELECT clause

SQL queries that start with the SELECT keyword and are often referred to as SELECT statements . YOu
can use most of the standard SQL query constructs in Data Virtualization.

Usage

Syntax Rules

Aliased expressions are only used as the output column names and in the ORDER BY clause.
They cannot be used in other clauses of the query.

DISTINCT may only be specified if the SELECT symbols are comparable.

3.6.8. FROM clause

The FROM clause specifies the target tables for SELECT, UPDATE, and DELETE statements.

WITH n (x) AS (select col from tbl) select x from n, n as n1

WITH n (x) AS /*+ no_inline */ (select col from tbl) select x from n, n as n1

WITH name [(column, ...)] AS (anchor query expression UNION [ALL] recursive query expression) ...

SELECT teiid_session_set('teiid.maxRecursion', 25);
WITH n (x) AS (values('a') UNION select chr(ascii(x)+1) from n where x < 'z') select * from n

SELECT [DISTINCT|ALL] ((expression [[AS] name])|(group identifier.STAR))*|STAR ...

Red Hat Integration 2020.Q1 Data Virtualization Reference

98

Example Syntax:

FROM table [[AS] alias]

FROM table1 [INNER|LEFT OUTER|RIGHT OUTER|FULL OUTER] JOIN table2 ON join-criteria

FROM table1 CROSS JOIN table2

FROM (subquery) [AS] alias

FROM TABLE(subquery) [AS] alias. For more information, see Nested tables

FROM table1 JOIN /*+ MAKEDEP */ table2 ON join-criteria

FROM table1 JOIN /*+ MAKENOTDEP */ table2 ON join-criteria

FROM /*+ MAKEIND */ table1 JOIN table2 ON join-criteria

FROM /*+ NO_UNNEST */ vw1 JOIN table2 ON join-criteria

FROM table1 left outer join /*+ optional */ table2 ON join-criteria. For more information, see
Optional join in Federated optimizations.

FROM TEXTTABLE… For more information, see TEXTTABLE.

FROM XMLTABLE… For more information, see XMLTABLE.

FROM ARRAYTABLE… For more information, see ARRAYTABLE.

FROM OBJECTTABLE… For more information, see OBJECTTABLE.

FROM JSONTABLE… For more information, see JSONTABLE.

FROM SELECT… For more information, see Inline views in Subqueries.

From clause hints

From clause hints are typically specified in a comment block preceding the affected clause. MAKEDEP
and MAKENOTDEP may also appear after in non-comment form after the affected clause. If multiple
hints apply to that clause, the hints should be placed in the same comment block.

Example hint

Dependent join hints

MAKEIND, MAKEDEP, and MAKENOTDEP are hints that you can use to control dependent join
behavior. Use them only in situations where the optimizer does not choose the most optimal plan based
upon query structure, metadata, and costing information. The hints can appear in a comment that
follows the FROM keyword. The hints can be specified against any FROM clause, not just a named table.

MAKEIND

Indicates that the clause should be the independent (feeder) side of a dependent join.

MAKEDEP

Indicates that the clause should be the dependent (filtered) side of a join.

FROM /*+ MAKEDEP PRESERVE */ (tbl1 inner join tbl2 inner join tbl3 on tbl2.col1 = tbl3.col1 on
tbl1.col1 = tbl2.col1), tbl3 WHERE tbl1.col1 = tbl2.col1

CHAPTER 3. SQL COMPATIBILITY

99

MAKENOTDEP

Prevents the clause from being the dependent (filtered) side of a join.

You can use the following optional MAX and JOIN arguments with MAKEDEP and MAKEIND:

MAKEDEP(JOIN)

Indicates that the entire join should be pushed.

MAKEDEP(NO JOIN)

Indicates that the entire join should not be pushed.

MAKEDEP(MAX:val)

Indicates that the dependent join should only be performed if there are less than the maximum
number of values from the independent side.

Other hints

NO_UNNEST can be specified against a subquery FROM clause or view to instruct the planner to not to
merge the nested SQL in the surrounding query. This process is known as view flattening. This hint only
applies to Data Virtualization planning and is not passed to source queries. NO_UNNEST can appear in a
comment that follows the FROM keyword.

The PRESERVE hint can be used against an ANSI join tree to preserve the structure of the join, rather
than allowing the Data Virtualization optimizer to reorder the join. This is similar in function to the Oracle
ORDERED or MySQL STRAIGHT_JOIN hints.

Example PRESERVE hint

3.6.8.1. Nested tables

Nested tables can appear in a FROM clause with the TABLE keyword. They are an alternative to using a
view with normal join semantics. The columns projected from a command contained in a nested table can
be used in join criteria, WHERE clauses, and other contexts where you can use FROM clause projected
columns.

A nested table can have correlated references to preceding FROM clause column references as long as
INNER and LEFT OUTER joins are used. This is especially useful in cases where then nested expression
is a procedure or function call.

Valid nested table example

Invalid nested table example

The following nested table example is invalid, because t1 appears after the nested table in the FROM
clause:

MULTIPLE EXECUTION

FROM /*+ PRESERVE */ (tbl1 inner join tbl2 inner join tbl3 on tbl2.col1 = tbl3.col1 on tbl1.col1 =
tbl2.col1)

select * from t1, TABLE(call proc(t1.x)) t2

select * from TABLE(call proc(t1.x)) t2, t1

Red Hat Integration 2020.Q1 Data Virtualization Reference

100

MULTIPLE EXECUTION

Using a correlated nested table can result in multiple executions of the table expression — 
one for each correlated row.

3.6.8.2. XMLTABLE

The XMLTABLE function uses XQuery to produce tabular output. The XMLTABLE function is implicitly a
nested table and it can be used within FROM clauses. XMLTABLE is part of the SQL/XML 2006
specification.

Usage

For the definition of NSP - XMLNAMESPACES, see XMLELEMENT in XML functions. For the definition
of PASSING, see XMLQUERY in XML functions.

NOTE

See also XQuery optimization.

Parameters

The optional XMLNAMESPACES clause specifies the namepaces that you can use in the
XQuery and COLUMN path expressions.

The xquery-expression must be a valid XQuery. Each sequence item returned by the xquery is
used to create a row of values as defined by the COLUMNS clause.

If COLUMNS is not specified, that is equivalent to a COLUMNS clause that returns the entire
item as an XML value, as in the following example:

"COLUMNS OBJECT_VALUE XML PATH '."'

FOR ORDINALITY columns are typed as integers and return 1-based item numbers as their
value.

Each non-ordinality column specifies a type, and optionally specifies a PATH and a DEFAULT
expression.

If PATH is not specified, then the path is the same as the column name.

Syntax Rules

You can specify only 1 FOR ORDINALITY column.

Columns names must not contain duplicates.

You can use binary large object (BLOB) datatypes, but there is built-in compatibility only for
xs:hexBinary values. For xs:base64Binary, use a workaround of a PATH that uses the following
explicit value constructor: xs:base64Binary(<path>).

XMLTABLE([<NSP>,] xquery-expression [<PASSING>] [COLUMNS <COLUMN>, ...]) AS name

COLUMN := name (FOR ORDINALITY | (datatype [DEFAULT expression] [PATH string]))

CHAPTER 3. SQL COMPATIBILITY

101

The column expression must evaluate to a single value if a non-array type is expected.

If an array type is specified, then an array is returned, unless there are no elements in the
sequence, in which case a null value is returned.

An empty element is not a valid null value, because its value is effectively an empty string. Use
the xsi:nil attribute to specify a null value for an element.

XMLTABLE examples

Use of PASSING, returns 1 row [1]

As a nested table

Invalid multi-value

Array multi-value

Nil element

NOTE

In the preceding example, an exception would be thrown if the nil attribute
(xsi:nil="true") were not specified, converting b to an integer value.

3.6.8.3. ARRAYTABLE

The ARRAYTABLE function processes an array input to produce tabular output. The function itself
defines what columns it projects. The ARRAYTABLE function is implicitly a nested table and can be used
within FROM clauses.

Usage

select * from xmltable('/a' PASSING xmlparse(document '') COLUMNS id integer PATH
'@id') x

select x.* from t, xmltable('/x/y' PASSING t.doc COLUMNS first string, second FOR ORDINALITY) x

select * from xmltable('/a' PASSING xmlparse(document '<a><b id="1"/><b id="2"/>') COLUMNS
id integer PATH 'b/@id') x

select * from xmltable('/a' PASSING xmlparse(document '<a><b id="1"/><b id="2"/>') COLUMNS
id integer[] PATH 'b/@id') x

select * from xmltable('/a' PASSING xmlparse(document '<a
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><b xsi:nil="true"/>') COLUMNS id
integer PATH 'b') x

ARRAYTABLE([ROW|ROWS] expression COLUMNS <COLUMN>, ...) AS name
COLUMN := name datatype

Red Hat Integration 2020.Q1 Data Virtualization Reference

102

Parameters

expression

The array to process, which should be a java.sql.Array or java array value.

ROW|ROWS

If ROW (the default) is specified, then only a single row is produced from the given array (typically a
one dimensional array). If ROWS is specified, then multiple rows are produced. A multidimensional
array is expected, and one row is produced for every non-null element of the outer array.

If the expression is null, no rows are produced.

Syntax rules

Columns names cannot contain duplicates.

Array table examples

As a nested table:

ARRAYTABLE is effectively a shortcut for using the array_get function in a nested table.

For example, the following ARRAYTABLE function:

is the same as the following statement which uses an array_get function:

3.6.8.4. OBJECTTABLE

The OBJECTTABLE function processes an object input to produce tabular output. The function itself
defines what columns it projects. The OBJECTTABLE function is implicitly a nested table and can be
used within FROM clauses.

Usage

Parameters

lang

An optional string literal that is the case sensitive language name of the scripts to be processed. The
script engine must be available via a JSR-223 ScriptEngineManager lookup.

If a LANGUAGE is not specified, the default 'teiid_script' is used. name:: An identifier that binds the val
expression value into the script context. rowScript:: A string literal that specifies the script to create the

select x.* from (call source.invokeMDX('some query')) r, arraytable(r.tuple COLUMNS first string,
second bigdecimal) x

ARRAYTABLE(val COLUMNS col1 string, col2 integer) AS X

TABLE(SELECT cast(array_get(val, 1) AS string) AS col1, cast(array_get(val, 2) AS integer) AS
col2) AS X

OBJECTTABLE([LANGUAGE lang] rowScript [PASSING val AS name ...] COLUMNS colName
colType colScript [DEFAULT defaultExpr] ...) AS id

CHAPTER 3. SQL COMPATIBILITY

103

row values. For each non-null item that the Iterator produces, the columns are evaluated.
colName/colType:: ID/data type of the column, which can optionally be defaulted with the DEFAULT
clause expression defaultExpr. colScript:: A string literal that specifies the script that evaluates to the
column value.

Syntax rules

Columns names cannot contain duplicates.

Data Virtualization places several special variables in the script execution context. The
CommandContext is available as teiid_context. Additionally the colScripts may access
teiid_row and teiid_row_number. teiid_row is the current row object produced by the row
script. teiid_row_number is the current 1-based row number.

rowScript is evaluated to an Iterator. If the results is already an Iterator, it is used directly. If the
evaluation result is an Iteratable, Array, or Array type, then an Iterator is obtained. Any other
Object will be treated as an Iterator of a single item. In all cases null row values are skipped.

NOTE

Although there are no restrictions on naming PASSING variables, it is best to choose
names that you can reference as identifiers in the target language.

OBJECTTABLE examples

Accessing special variables:

The result would be a row with two columns containing the user name and 1 respectively.

NOTE

Languages other than teiid_script generally permit unrestricted access to Java
functionality. As a result, by default, their use is restricted. You can override the
restrictions by declaring allowable languages by name in the allowed-languages
property. To use OBJECTTABLE, even from within view definitions that are not normally
subject to permission checks, you must define the allowed-languages property. You
must also set language access rights for user accounts to enable users to process
OBJECTTABLE functions.

For more information about about teiid_script, see the next section.

For more information about enabling the use of languages other than teiid_script,
see allowed-languages in Virtual database properties.

For more information about setting user account permission, see User query
permissions in Permissions.

teiid_script

teiid_script is a simple scripting expression language that allows access to passing and special variables,
and to non-void 0-argument methods on objects and indexed values on arrays/lists. A teiid_script
expression begins by referencing the passing or special variable. Then, any number of . accessors can be

SELECT x.* FROM OBJECTTABLE('teiid_context' COLUMNS "user" string 'teiid_row.userName',
row_number integer 'teiid_row_number') AS x

Red Hat Integration 2020.Q1 Data Virtualization Reference

104

chained to evaluate the expression to a different value. Methods may be accessed by their property
names, for example, foo rather than getFoo. If the object includes both a getFoo() and foo() method,
then the accessor foo references foo (), and getFoo should be used to call the getter. An array or list
index is accessed using a 1-based positive integral value, using the same . accessor syntax. The same
logic as the system function array_get is used. That is, if the index is out of bounds, null is returned,
rather than an exception.

teiid_script is effectively dynamically typed as typing is performed at runtime. If an accessor does not
exist on the object, or if the method is not accessible, then an exception is raised. If any point in the
accessor chain evaluates to a null value, then null will be returned.

teiid_script examples

To get the VDB description string:

To get the first character of the VDB description string:

3.6.8.5. TEXTTABLE

The TEXTTABLE function processes character input to produce tabular output. It provides both fixed
and delimited file format parsing. The function itself defines what columns it projects. The TEXTTABLE
function is implicitly a nested table and can be used within FROM clauses.

Usage

Where <COLUMN>

Parameters

expression

The text content to process, which should be convertible to a character large object (CLOB).

SELECTOR

Used with files containing multiple types of rows (example: order header, detail, summary). A
TEXTTABLE SELECTOR specifies which lines to include in the output. Matching lines must begin
with the selector string. The selector in column delimited files must be followed by the column
delimiter.
If a TEXTTABLE SELECTOR is specified, a SELECTOR may also be specified for column values. A
column SELECTOR argument will select the nearest preceding text line with the given SELECTOR
prefix, and select the value at the given 1-based integer position (which includes the selector itself).
If no such text line or position with a given line exists, a null value will be produced. A column
SELECTOR is not valid with fixed width parsing.

teiid_context.session.vdb.description

teiid_context.session.vdb.description.toCharArray.1

TEXTTABLE(expression [SELECTOR string] COLUMNS <COLUMN>, ... [NO ROW DELIMITER |
ROW DELIMITER char] [DELIMITER char] [(QUOTE|ESCAPE) char] [HEADER [integer]] [SKIP
integer] [NO TRIM]) AS name

COLUMN := name (FOR ORDINALITY | ([HEADER string] datatype [WIDTH integer [NO TRIM]]
[SELECTOR string integer]))

CHAPTER 3. SQL COMPATIBILITY

105

NO ROW DELIMITER

Specifies that fixed parsing should not assume the presence of newline row delimiters.

ROW DELIMITER

Sets the row delimiter / newline to an alternate character. Defaults to the new-line character - with
built-in handling for treating carriage return newline as a single character. If ROW DELIMITER is
specified, carriage return is given no special treatment.

DELIMITER

Sets the field delimiter character to use. Defaults to ,.

QUOTE

Sets the quote, or qualifier, character used to wrap field values. Defaults to ".

ESCAPE

Sets the escape character to use if no quoting character is in use. This is used in situations where the
delimiter or new line characters are escaped with a preceding character, e.g. \.

HEADER

Specifies the text line number (counting every new line) on which the column names occur. If the
HEADER option for a column is specified, then that will be used as the expected header name. All
lines prior to the header will be skipped. If HEADER is specified, then the header line will be used to
determine the TEXTTABLE column position by case-insensitive name matching. This is especially
useful in situations where only a subset of the columns are needed. If the HEADER value is not
specified, it defaults to 1. If HEADER is not specified, then columns are expected to match
positionally with the text contents.

SKIP

Specifies the number of text lines (counting every new line) to skip before parsing the contents.
HEADER can be specified with SKIP.

FOR ORDINALITY

Column that is typed as integer and returns a 1-based item number as its value.

WIDTH

Indicates the fixed-width length of a column in characters, not bytes. With the default ROW
DELIMITER, a CR NL sequence counts as a single character.

NO TRIM

When specified on a TEXTTABLE, it affects all column and header values. When NO TRIM is specified
on a column, the fixed or unqualified text value is not trimmed of leading and trailing white space.

Syntax Rules

If width is specified for one column it must be specified for all columns and be a non-negative
integer.

If width is specified, then fixed width parsing is used, and ESCAPE, QUOTE, column SELECTOR,
nor HEADER should not be specified.

If width is not specified, then NO ROW DELIMITER cannot be used.

Columns names must not contain duplicates.

The characters specified for QUOTE, DELIMITER, and ROW DELIMITER must all be different.

TEXTTABLE examples

Red Hat Integration 2020.Q1 Data Virtualization Reference

106

Use of the HEADER parameter, returns 1 row ['b']:

Use of fixed width, returns 2 rows ['a', 'b', 'c'], ['d', 'e', 'f']:

Use of fixed width without a row delimiter, returns 3 rows ['a'], ['b'], ['c']:

Use of ESCAPE parameter, returns 1 row ['a,', 'b']:

As a nested table:

Use of SELECTORs, returns 2 rows ['c', 'd', 'b'], ['c', 'f', 'b']:

3.6.8.6. JSONTABLE

The JSONTABLE function uses JsonPath to produce tabular output. The JSONTABLE function is
implicitly a nested table and can be used within FROM clauses.

Usage

See also JsonPath

Parameters

value

A clob containing a valid JSON document.

nullLeafOnMissing

If false (the default), then a path that evaluates to a leaf that is missing will throw an exception. If
nullLeafOnMissing is true, then a null value will be returned.

PATH

String should be a valid JsonPath. If an array value is returned, then each non-null element will be
used to generate a row. Otherwise a single non-null item will be used to create a single row.

SELECT * FROM TEXTTABLE(UNESCAPE('col1,col2,col3\na,b,c') COLUMNS col2 string HEADER)
x

SELECT * FROM TEXTTABLE(UNESCAPE('abc\ndef') COLUMNS col1 string width 1, col2 string
width 1, col3 string width 1) x

SELECT * FROM TEXTTABLE('abc' COLUMNS col1 string width 1 NO ROW DELIMITER) x

SELECT * FROM TEXTTABLE('a:,,b' COLUMNS col1 string, col2 string ESCAPE ':') x

SELECT x.* FROM t, TEXTTABLE(t.clobcolumn COLUMNS first string, second date SKIP 1) x

SELECT * FROM TEXTTABLE('a,b\nc,d\nc,f' SELECTOR 'c' COLUMNS col1 string, col2 string col3
string SELECTOR 'a' 2) x

JSONTABLE(value, path [, nullLeafOnMissing] COLUMNS <COLUMN>, ...) AS name

COLUMN := name (FOR ORDINALITY | (datatype [PATH string]))

CHAPTER 3. SQL COMPATIBILITY

107

https://github.com/json-path/JsonPath

FOR ORDINALITY

Column typed as integer. Returns a 1-based item number as its value.

Each non-ordinality column specifies a type and optionally a PATH.

If PATH is not specified, then the path will be generated from the column name: @['name'],
which will look for an object key value matching name. If PATH is specified, it must begin with
@, which means that the path will be processed relative the the current row context item.

Syntax Rules

Columns names must not contain duplicates.

You cannot use array types with the JSONTABLE function.

JSONTABLE examples

Use of passing, returns 1 row [1]:

As a nested table:

With more complicated paths:

Differences with XMLTABLE

Processing of JSON to tabular results was previously recommended through the use of XMLTABLE
with JSONTOXML. For most tasks, JSONTABLE provides a simpler syntax. However, there are some
differences to consider:

JSONTABLE parses the JSON completely, the processes it. XMLTABLE uses streaming
processing to reduce the memory overhead.

JsonPath is not as powerful as XQuery. There are a lot of functions and operations available in
XQuery/XPath that are not available in JsonPath.

JsonPath does not allow for parent references in the column paths. There is no ability to
reference the root or any part of the parent hierarchy (.. in XPath).

3.6.9. WHERE clause

The WHERE clause defines the criteria to limit the records affected by SELECT, UPDATE, and DELETE
statements.

The general form of the WHERE is:

WHERE Criteria

select * from jsontable('{"a": {"id":1}}}', '$.a' COLUMNS id integer) x

select x.* from t, jsontable(t.doc, '$.x.y' COLUMNS first string, second FOR ORDINALITY) x

select x.* from jsontable('[{"firstName": "John", "lastName": "Wayne", "children": []}, {"firstName":
"John", "lastName": "Adams", "children":["Sue","Bob"]}]', '$.*' COLUMNS familyName string path
'@.lastName', children integer path '@.children.length()') x

Red Hat Integration 2020.Q1 Data Virtualization Reference

108

3.6.10. GROUP BY clause

The GROUP BY clause denotes that rows should be grouped according to the specified expression
values. One row is returned for each group, after optionally filtering those aggregate rows based on a
HAVING clause.

The general form of the GROUP BY is:

Syntax Rules

Column references in the group by cannot be made to alias names in the SELECT clause.

Expressions used in the group by must appear in the select clause.

Column references and expressions in the SELECT/HAVING/ORDER BY clauses that are not
used in the group by clause must appear in aggregate functions.

If an aggregate function is used in the SELECT clause and no GROUP BY is specified, an implicit
GROUP BY will be performed with the entire result set as a single group. In this case, every
column in the SELECT must be an aggregate function as no other column value will be fixed
across the entire group.

The GROUP BY columns must be of a comparable type.

Rollups

Just like normal grouping, ROLLUP processing logically occurs before the HAVING clause is processed.
A ROLLUP of expressions will produce the same output as a regular grouping with the addition of
aggregate values computed at higher aggregation levels. For N expressions in the ROLLUP, aggregates
will be provided over (), (expr1), (expr1, expr2), etc. up to (expr1, … exprN-1), with the other grouping
expressions in the output as null values. The following example uses a normal aggregation query:

The query returns the following data:

Table 3.1. Data returned by a normal aggregation query

country city sum(amount)

US St. Louis 10000

US Raleigh 150000

US Denver 20000

UK Birmingham 50000

UK London 75000

GROUP BY expression [,expression]*

GROUP BY ROLLUP(expression [,expression]*)

SELECT country, city, sum(amount) from sales group by country, city

CHAPTER 3. SQL COMPATIBILITY

109

In contrast, the following example uses a rollup query:

Data returned from a rollup query

would return:

country city sum(amount)

US St. Louis 10000

US Raleigh 150000

US Denver 20000

US <null> 180000

UK Birmingham 50000

UK London 75000

UK <null> 125000

<null> <null> 305000

NOTE

Not all sources are compatible with ROLLUPs, and compared to normal aggregate
processing, some optimizations might be inhibited by the use of a ROLLUP.

The use of ROLLUPs in Data Virtualization is currently limited in comparison to the SQL specification.

3.6.11. HAVING Clause

The HAVING clause operates exactly as a WHERE clause, although it operates on the output of a
GROUP BY. You can use the same syntax with the HAVING clause as with the WHERE clause.

Syntax Rules

Expressions used in the GROUP BY clause must contain either an aggregate function (COUNT,
AVG, SUM, MIN, MAX), or be one of the grouping expressions.

3.6.12. ORDER BY clause

The ORDER BY clause specifies how records are sorted. The options are ASC (ascending) or DESC
(descending).

Usage

SELECT country, city, sum(amount) from sales group by rollup(country, city)

Red Hat Integration 2020.Q1 Data Virtualization Reference

110

Syntax rules

Sort columns can be specified positionally by a 1-based positional integer, by SELECT clause
alias name, by SELECT clause expression, or by an unrelated expression.

Column references can appear in the SELECT clause as the expression for an aliased column, or
can reference columns from tables in the FROM clause. If the column reference is not in the
SELECT clause, the query cannot be a set operation, specify SELECT DISTINCT, or contain a
GROUP BY clause.

Unrelated expressions, expressions not appearing as an aliased expression in the select clause,
are allowed in the ORDER BY clause of a non-set QUERY. The columns referenced in the
expression must come from the from clause table references. The column references cannot be
to alias names or positional.

The ORDER BY columns must be of a comparable type.

If an ORDER BY is used in an inline view or view definition without a LIMIT clause, it is removed
by the Data Virtualization optimizer.

If NULLS FIRST/LAST is specified, then nulls are guaranteed to be sorted either first or last. If
the null ordering is not specified, then results will typically be sorted with nulls as low values,
which is the default internal sorting behavior for Data Virtualization. However, not all sources
return results with nulls sorted as low values by default, and Data Virtualization might return
results with different null orderings.

WARNING

The use of positional ordering is no longer supported by the ANSI SQL standard
and is a deprecated feature in Data Virtualization. It is best to use alias names in the
ORDER BY clause.

3.6.13. LIMIT clause

The LIMIT clause specifies a limit on the number of records returned from the SELECT command. YOu
can specify an optional offset (the number of rows to skip). The LIMIT clause can also be specified using
the SQL 2008 OFFSET/FETCH FIRST clauses. If an ORDER BY is also specified, it will be applied
before the OFFSET/LIMIT are applied. If an ORDER BY is not specified there is generally no guarantee
what subset of rows will be returned.

Usage

LIMIT limit OFFSET offset

ORDER BY expression [ASC|DESC] [NULLS (FIRST|LAST)], ...

LIMIT [offset,] limit

[OFFSET offset ROW|ROWS] [FETCH FIRST|NEXT [limit] ROW|ROWS ONLY]

CHAPTER 3. SQL COMPATIBILITY

111

Syntax rules

The LIMIT/OFFSET expressions must be a non-negative integer or a parameter reference (?).
An offset of 0 is ignored. A limit of 0 returns no rows.

The terms FIRST/NEXT are interchangeable as well as ROW/ROWS.

The LIMIT clause can take an optional preceding NON_STRICT hint to indicate that push
operations should not be inhibited, even if the results will not be consistent with the logical
application of the limit. The hint is only needed on unordered limits, for example, "SELECT *
FROM VW /*+ NON_STRICT */ LIMIT 2".

LIMIT clause examples

LIMIT 100 returns the first 100 records (rows 1-100).

LIMIT 500, 100 skips 500 records and returns the next 100 records(rows 501-600).

OFFSET 500 ROWS skips 500 records.

OFFSET 500 ROWS FETCH NEXT 100 ROWS ONLY skips 500 records and returns the next
100 records (rows 501-600).

FETCH FIRST ROW ONLY returns only the first record.

3.6.14. INTO clause

WARNING

Usage of the INTO Clause for inserting into a table has been been deprecated. An
INSERT with a query command should be used instead. For information about using
INSERT, see INSERT command.

When the into clause is specified with a SELECT, the results of the query are inserted into the specified
table. This is often used to insert records into a temporary table. The INTO clause immediately precedes
the FROM clause.

Usage

Syntax rules

The INTO clause is logically applied last in processing, after the ORDER BY and LIMIT clauses.

Data Virtualization’s support for SELECT INTO is similar to Microsoft SQL Server. The target of
the INTO clause is a table where the result of the SELECT command will be inserted.
For example, the following statement:

INTO table FROM ...

SELECT col1, col2 INTO targetTable FROM sourceTable

Red Hat Integration 2020.Q1 Data Virtualization Reference

112

inserts col1 and col2 from the sourceTable into the targetTable.

You cannot combine SELECT INTO with a UNION query.
That is, you cannot select the results from a sourceTable UNION query for insertion into a
targetTable.

3.6.15. OPTION clause

The OPTION keyword denotes options that a user can pass in with a command. These options are
specific to Data Virtualization and are not covered by any SQL specification.

Usage

Supported options

MAKEDEP table (,table)*

Specifies source tables that should be made dependent in the join.

MAKEIND table (,table)*

Specifies source tables that should be made independent in the join.

MAKENOTDEP table (,table)*

Prevents a dependent join from being used.

NOCACHE [table (,table)*]

Prevents cache from being used for all tables or for the given tables.

Examples

All tables specified in the OPTION clause should be fully qualified. However, the table name can match
either the fully qualified name or an alias name.

The MAKEDEP and MAKEIND hints can take optional arguments to control the dependent join. The
extended hint form is:

tbl(JOIN) means that the entire join should be pushed.

tbl(NO JOIN) means that the entire join should not be pushed.

tbl(MAX:val) means that the dependent join should only be performed if there are less than the
maximum number of values from the independent side.

TIP

OPTION option (, option)*

OPTION MAKEDEP table1

OPTION NOCACHE

MAKEDEP tbl([max:val] [[no] join])

CHAPTER 3. SQL COMPATIBILITY

113

TIP

Data Virtualization does not accept PLANONLY, DEBUG, and SHOWPLAN arguments in the OPTION
clause. For information about how to perform the functions formerly provided by these options, see the
Client Developer’s Guide.

NOTE

MAKEDEP and MAKENOTDEP hints can take table names in the form of
@view1.view2…table. For example, with an inline view "SELECT * FROM (SELECT *
FROM tbl1, tbl2 WHERE tbl1.c1 = tbl2.c2) AS v1 OPTION MAKEDEP @v1.tbl1" the
hint will now be understood as applying under the v1 view.

3.7. DDL COMMANDS

Data Virtualization is compatible with a subset of the DDL commands for creating or dropping
temporary tables and manipulating procedure and view definitions at runtime. It is not currently possible
to arbitrarily drop or create non-temporary metadata entries. For information about the DDL
statements that you can use to define schemas in a virtual database, see DDL metadata.

3.7.1. Temporary Tables

You can create and use temporary (temp) tables in Data Virtualization. Temporary tables are created
dynamically, but are treated as any other physical table.

3.7.1.1. Local temporary tables

Local temporary tables can be defined implicitly by referencing them in a INSERT statement or explicitly
with a CREATE TABLE statement. Implicitly created temp tables must have a name that starts with #.

NOTE

Data Virtualization interprets local to mean that a temporary table is scoped to the
session or block of the virtual procedure that creates it. This interpretation differs from
the SQL specification and from the interpretation that other database vendors
implement. After exiting a block or at the termination of a session, the table is dropped.
Session tables and other temporary tables that a calling procedures creates are not
visible to called procedures. If a temporary table of the same name is created in a called
procedure, then a new instance is created.

Creation syntax

You can create local temporary tables explicitly or implicitly.

Explicit creation syntax

Local temporary tables can be defined explicitly with a CREATE TABLE statement, as in the following
example:name: value

Use the SERIAL data type to specify a NOT NULL and auto-incrementing INTEGER column.
The starting value of a SERIAL column is 1.

CREATE LOCAL TEMPORARY TABLE name (column type [NOT NULL], ... [PRIMARY KEY
(column, ...)]) [ON COMMIT PRESERVE ROWS]

Red Hat Integration 2020.Q1 Data Virtualization Reference

114

Implicit creation syntax

Local temporary tables can be defined implicitly by referencing them in an INSERT statement.

NOTE

If #name does not exist, it is defined using the given column names and types from
the value expressions.

NOTE

If #name does not exist, it is defined using the target column names, and the types
from the query-derived columns. If target columns are not supplied, the column names
will match the derived column names from the query.

Drop syntax

+ In the following example, a series of statements loads a temporary table with data from 2 sources,
manually inserts a record, and then uses the temporary table in a SELECT query.

Example: Local temporary tables

For more information about using local temporary tables, see Virtual procedures.

3.7.1.2. Global temporary tables

Global temporary tables are created from the metadata that you supply to Data Virtualization at
deployment time. Unlike local temporary tables, you cannot create global temporary tables at runtime.
Your global temporary tables share a common definition through a schema entry. However, a new
instance of the temporary table is created in each session. The table is then dropped when the session
ends. There is no explicit drop support. A common use for a global temporary table is to pass results into
and out of procedures.

Creation syntax

INSERT INTO #name (column, ...) VALUES (value, ...)
INSERT INTO #name [(column, ...)] select c1, c2 from t

INSERT INTO #name (column, ...) VALUES (value, ...)
INSERT INTO #name [(column, ...)] select c1, c2 from t

DROP TABLE name

CREATE LOCAL TEMPORARY TABLE TEMP (a integer, b integer, c integer);
SELECT * INTO temp FROM Src1;
SELECT * INTO temp FROM Src2;
INSERT INTO temp VALUES (1,2,3);
SELECT a,b,c FROM Src3, temp WHERE Src3.a = temp.b;

CREATE GLOBAL TEMPORARY TABLE name (column type [NOT NULL], ... [PRIMARY KEY
(column, ...)]) OPTIONS (UPDATABLE 'true')

CHAPTER 3. SQL COMPATIBILITY

115

If you use the SERIAL data type, then each session’s instance of the global temporary table will have its
own sequence.

You must explicitly specify UPDATABLE if you want to update the temporary table.

For information about syntax options, see the CREATE TABLE DDL statements in DDL metadata for
schema objects.

3.7.1.3. Common features of global and local temporary tables

Global and local temporary tables share some common features.

Primary key usage

All key columns must be comparable.

If you use a primary key, it creates a clustered index that enables search improvements for SQL
comparison operators, and the IN, LIKE, and ORDER BY operators.

You can use Null as a primary key value, but there must be only one row that has an all-null key.

Transactions

There is a READ_UNCOMMITED transaction isolation level. There are no locking mechanisms
available to enable higher isolation levels, and the result of a rollback may be inconsistent across
multiple transactions. If concurrent transactions are not associated with the same local
temporary table or session, then the transaction isolation level is effectively serializable. If you
want full consistency with local temporary tables, then only use a connection with one
transaction at a time. This mode of operation is ensured by connection pooling that tracks
connections by transaction.

Limitations

With the CREATE TABLE syntax, you can specify only basic table definition (column name,
type, and nullable information), and an optional primary key. For global temporary tables,
additional metadata in the CREATE statement is effectively ignored when creating the
temporary table instance. However, the metadata might still be used by planning similar to any
other table entry.

You can use ON COMMIT PRESERVE ROWS. You cannot use other ON COMMIT actions.

The cannot use "drop behavior" options in the DROP statement.

Temporary tables are not fail-over safe.

Non-inlined LOB values (XML, CLOB, BLOB, JSON, geometry) are tracked by reference rather
than by value in a temporary table. If you insert LOB values from external sources in your
temporary table, they might become unreadable when the associated statement or connection
is closed.

3.7.1.4. Foreign temporary tables

Unlike a local or global temporary table, a foreign temporary table is a reference to an actual source
table that is created at runtime, rather than during the metadata load.

A foreign temporary table requires explicit creation syntax:

Red Hat Integration 2020.Q1 Data Virtualization Reference

116

Where the table creation body syntax is the same as a standard CREATE FOREIGN TABLE DDL
statement. For more information, see DDL metadata. In general, usage of DDL OPTION clauses might
be required to properly access the source table, including setting the name in the source, updatability,
native types, and so forth.

The schema name must specify an existing schema/model in the VDB. The table will be accessed as if it
is on that source. However within Data Virtualization the temporary table will still be scoped the same as
a non-foreign temporary table. This means that the foreign temporary table will not belong to a Data
Virtualization schema, and will be scoped to the session or procedure block where it is created.

The DROP syntax for a foreign temporary table is the same as for a non-foreign temporary table.

Neither a CREATE nor a corresponding DROP of a foreign temporary table issues a pushdown
command. Rather, this mechanism exposes a source table for use within Data Virtualization on a
temporary basis.

There are two usage scenarios for a FOREIGN TEMPORARY TABLE. The first is to dynamically access
additional tables on the source. The other is to replace the usage of a Data Virtualization local temporary
table for performance reasons. The usage pattern for the latter case would look like:

Note the usage of the native procedure to pass source-specific CREATE DDL to the source. Data
Virtualization does not currently attempt to pushdown a source creation of a temporary table based on
the CREATE statement. Some other mechanism, such as the native procedure shown above, must be
used to first create the table. Also note the table is explicitly marked as updatable, since DDL defined
tables are not updatable by default.

The source’s handling of temporary tables must also be understood to make this work as intended.
Sources that use the same GLOBAL table definition for all sessions while scoping the data to be
session-specific (such as Oracle) or sources that use session-scoped temporary tables (such as
PostgreSQL) will work if accessed under a transaction. A transaction is necessary for the following
reasons:

The source on commit behavior (most likely DELETE ROWS or DROP) will ensure clean-up.
Keep in mind that a Data Virtualization drop does not issue a source command and is not
guaranteed to occur (in some exception cases, loss of database connectivity, hard shutdown,
and so forth).

The source pool when using track connections by transaction will ensure that multiple uses of
that source by Data Virtualization will use the same connection/session and thus the same
temporary table and data.

TIP

CREATE FOREIGN TEMPORARY TABLE name ... ON schema

//- create the source table
source.native("CREATE GLOBAL TEMPORARY TABLE name IF NOT EXISTS ... ON COMMIT
DELETE ROWS");
//- bring the table into Data Virtualization
CREATE FOREIGN TEMPORARY TABLE name ... OPTIONS (UPDATABLE true)
//- use the table
...
//- forget the table
DROP TABLE name

CHAPTER 3. SQL COMPATIBILITY

117

TIP

You cannot use the ON COMMIT clause with Data Virtualization. As a result, for local temporary tables,
the ON COMMIT behavior for source tables is likely to be different from the default PRESERVE ROWS.

3.7.2. Alter view

Usage

Syntax rules

The alter query expression can be prefixed with a cache hint for materialized view definitions.
The hint takes effect the next time that the materialized view table loads.

3.7.3. Alter procedure

Usage

Syntax rules

The ALTER block should not include CREATE VIRTUAL PROCEDURE.

You can prefix the ALTER block with a cache hint for cached procedures.

3.7.4. Alter trigger

Usage

Syntax rules

The target name must be an updatable view.

Triggers are not true schema objects. They are scoped only to their view and have no name.

Update procedures must already exist for the given trigger event. For more information, see
Triggers.

3.8. PROCEDURES

You can use a procedure language in Data Virtualization to call foreign procedures and define virtual
procedures and triggers.

3.8.1. Procedure language

ALTER VIEW name AS queryExpression

ALTER PROCEDURE name AS block

ALTER TRIGGER ON name INSTEAD OF INSERT|UPDATE|DELETE (AS FOR EACH ROW block)
| (ENABLED|DISABLED)

Red Hat Integration 2020.Q1 Data Virtualization Reference

118

You can use a procedural language in Data Virtualization to define virtual procedures. These are similar
to stored procedures in relational database management systems. You can use this language to define
the transformation logic for decomposing INSERT, UPDATE, and DELETE commands against views.
These are known as update procedures. For more information, see Virtual procedures and update
procedures (Triggers).

3.8.1.1. Command statement

A command statement executes a DML command, DDL command, or dynamic SQL against one or more
data sources. For more information, see DML commands and DDL commands.

Usage

Example command statements

Syntax rules

EXECUTE command statements may access IN/OUT, OUT, and RETURN parameters. To
access the return value the statement will have the form var = EXEC proc… . To access OUT or
IN/OUT values named parameter syntax must be used. For example, EXEC
proc(in_param⇒'1', out_param⇒var) will assign the value of the out parameter to the variable
var. It is expected that the datatype of a parameter is implicitly convertible to the data type of
the variable. For more information about EXECUTE command statements, see EXECUTE
command.

The RETURN clause determines if the result of the command is returnable from the procedure.
WITH RETURN is the default. If the command does not return a result set, or the procedure does
not return a result set, the RETURN clause is ignored. If WITH RETURN is specified, the result
set of the command must match the expected result set of the procedure. Only the last
successfully executed statement executed WITH RETURN will be returned as the procedure
result set. If there are no returnable result sets and the procedure declares that a result set will
be returned, then an empty result set is returned.

NOTE

command [(WITH|WITHOUT) RETURN];

SELECT * FROM MySchema.MyTable WHERE ColA > 100 WITHOUT RETURN;
INSERT INTO MySchema.MyTable (ColA,ColB) VALUES (50, 'hi');

CHAPTER 3. SQL COMPATIBILITY

119

NOTE

The INTO clause is used only for inserting into a table. `SELECT … INTO table … is
functionally equivalent to `INSERT INTO table SELECT … If you need to assign
variables, you can use one of the following methods:

Use an assignment statement with a scalar subquery

Use a temporary table

Use an array

3.8.1.2. Dynamic SQL command

Dynamic SQL allows for the execution of an arbitrary SQL command in a virtual procedure. Dynamic
SQL is useful in situations where the exact command form is not known prior to execution.

Usage

Syntax rules

The SQL expression must be a CLOB or string value of less than 262144 characters.

The AS clause is used to define the projected symbols names and types returned by the
executed SQL string. The AS clause symbols will be matched positionally with the symbols
returned by the executed SQL string. Non-convertible types or too few columns returned by the
executed SQL string will result in an error.

The INTO clause will project the dynamic SQL into the specified temp table. With the INTO
clause specified, the dynamic command will actually execute a statement that behaves like an
INSERT with a QUERY EXPRESSION. If the dynamic SQL command creates a temporary table
with the INTO clause, then the AS clause is required to define the table’s metadata.

The USING clause allows the dynamic SQL string to contain variable references that are bound
at runtime to specified values. This allows for some independence of the SQL string from the
surrounding procedure variable names and input names. In the dynamic command USING
clause, each variable is specified by short name only. However, in the dynamic SQL the USING
variable must be fully qualified to DVAR. The USING clause is only for values that will be used in
the dynamic SQL as valid expressions. It is not possible to use the USING clause to replace
table names, keywords, and so forth. This makes using symbols equivalent in power to normal

DECLARE string var = (SELECT col ...);

INSERT INTO #temp SELECT col1, col2 ...;
DECLARE string VARIABLES.RESULT = (SELECT x FROM #temp);

DECLARE string[] var = (SELECT (col1, col2) ...);
DECLARE string col1val = var[1];

EXECUTE IMMEDIATE <sql expression> AS <variable> <type> [, <variable> <type>]* [INTO
<variable>] [USING <variable>=<expression> [,<variable>=<expression>]*] [UPDATE <literal>]

Red Hat Integration 2020.Q1 Data Virtualization Reference

120

bind (?) expressions in prepared statements. The USING clause helps reduce the amount of
string manipulation needed. If a reference is made to a USING symbol in the SQL string that is
not bound to a value in the USING clause, an exception will occur.

The UPDATE clause is used to specify the updating model count. Accepted values are (0,1,*). 0
is the default value if the clause is not specified. For more information, see Updating model
count.

Example: Dynamic SQL

Here is an example showing a more complex approach to building criteria for the dynamic SQL string. In
short, the virtual procedure AccountAccess.GetAccounts has the inputs ID, LastName, and bday. If a
value is specified for ID it will be the only value used in the dynamic SQL criteria. Otherwise, if a value is
specified for LastName the procedure will detect if the value is a search string. If bday is specified in
addition to LastName, it will be used to form compound criteria with LastName.

Example: Dynamic SQL with USING clause and dynamically built criteria string

...
/* Typically complex criteria would be formed based upon inputs to the procedure.
 In this simple example the criteria is references the using clause to isolate
 the SQL string from referencing a value from the procedure directly */

DECLARE string criteria = 'Customer.Accounts.Last = DVARS.LastName';

/* Now we create the desired SQL string */
DECLARE string sql_string = 'SELECT ID, First || " " || Last AS Name, Birthdate FROM
Customer.Accounts WHERE ' || criteria;

/* The execution of the SQL string will create the #temp table with the columns (ID, Name, Birthdate).
 Note that we also have the USING clause to bind a value to LastName, which is referenced in the
criteria. */
EXECUTE IMMEDIATE sql_string AS ID integer, Name string, Birthdate date INTO #temp USING
LastName='some name';

/* The temp table can now be used with the values from the Dynamic SQL */
loop on (SELCT ID from #temp) as myCursor
...

...
DECLARE string crit = null;

IF (AccountAccess.GetAccounts.ID IS NOT NULL)
 crit = '(Customer.Accounts.ID = DVARS.ID)';
ELSE IF (AccountAccess.GetAccounts.LastName IS NOT NULL)
BEGIN
 IF (AccountAccess.GetAccounts.LastName == '%')
 ERROR "Last name cannot be %";
 ELSE IF (LOCATE('%', AccountAccess.GetAccounts.LastName) < 0)
 crit = '(Customer.Accounts.Last = DVARS.LastName)';
 ELSE
 crit = '(Customer.Accounts.Last LIKE DVARS.LastName)';
 IF (AccountAccess.GetAccounts.bday IS NOT NULL)
 crit = '(' || crit || ' and (Customer.Accounts.Birthdate = DVARS.BirthDay))';
END

CHAPTER 3. SQL COMPATIBILITY

121

Dynamic SQL limitations and workarounds

The use of the dynamic SQL command results in an assignment statement that requires the use of a
temporary table.

Example assignment

The construction of appropriate criteria will be cumbersome if parts of the criteria are not present. For
example if criteria were already NULL, then the following example results in criteria remaining NULL.

Example: Dangerous NULL handling

It is best to ensure that the criteria is not NULL prior its usage. If this is not possible, a you can specify a
default, as shown in the following example.

Example: NULL handling

If the dynamic SQL is an UPDATE, DELETE, or INSERT command, the rowcount of the statement can
be obtained from the rowcount variable.

Example: AS and INTO clauses

3.8.1.3. Declaration statement

A declaration statement declares a variable and its type. After you declare a variable, you can use it in
that block within the procedure and any sub-blocks. A variable is initialized to null by default, but can also
be assigned the value of an expression as part of the declaration statement.

Usage

Example syntax

ELSE
 ERROR "ID or LastName must be specified.";

EXECUTE IMMEDIATE 'SELECT ID, First || " " || Last AS Name, Birthdate FROM
Customer.Accounts WHERE ' || crit USING ID=AccountAccess.GetAccounts.ID,
LastName=AccountAccess.GetAccounts.LastName, BirthDay=AccountAccess.GetAccounts.Bday;
...

EXECUTE IMMEDIATE <expression> AS x string INTO #temp;
DECLARE string VARIABLES.RESULT = (SELECT x FROM #temp);

...
criteria = '(' || criteria || ' and (Customer.Accounts.Birthdate = DVARS.BirthDay))';

...
criteria = '(' || nvl(criteria, '(1 = 1)') || ' and (Customer.Accounts.Birthdate = DVARS.BirthDay))';

/* Execute an update */
EXECUTE IMMEDIATE <expression>;

DECLARE <type> [VARIABLES.]<name> [= <expression>];

Red Hat Integration 2020.Q1 Data Virtualization Reference

122

Syntax rules

You cannot redeclare a variable with a duplicate name in a sub-block.

The VARIABLES group is always implied even if it is not specified.

The assignment value follows the same rules as for an Assignment statement.

In addition to the standard types, you may specify EXCEPTION if declaring an exception
variable.

3.8.1.4. Assignment statement

An assignment statement assigns a value to a variable by evaluating an expression.

Usage

Example syntax

Valid variables for assignment include any in-scope variable that has been declared with a declaration
statement, or the procedure in_out and out parameters. In_out and out parameters can be accessed by
their fully qualified names.

Example: Out parameter

3.8.1.5. Special variables

VARIABLES.ROWCOUNT integer variable will contain the numbers of rows affected by the last
INSERT, UPDATE, or DELETE command statement executed. Inserts that are processed by dynamic
SQL with an into clause will also update the ROWCOUNT.

Sample usage

 declare integer x;
 declare string VARIABLES.myvar = 'value';

<variable reference> = <expression>;

myString = 'Thank you';
VARIABLES.x = (SELECT Column1 FROM MySchema.MyTable);

CREATE VIRTUAL PROCEDURE proc (OUT STRING x, INOUT STRING y) AS
BEGIN
 proc.x = 'some value ' || proc.y;
 y = 'some new value';
END

...
UPDATE FOO SET X = 1 WHERE Y = 2;
DECLARE INTEGER UPDATED = VARIABLES.ROWCOUNT;
...

CHAPTER 3. SQL COMPATIBILITY

123

Non-update command statements (WITH or WITHOUT RETURN) will reset the ROWCOUNT to 0.

NOTE

To ensure you are getting the appropriate ROWCOUNT value, save the ROWCOUNT to
a variable immediately after the command statement.

3.8.1.6. Compound statement

A compound statement or block logically groups a series of statements. Temporary tables and variables
that are created in a compound statement are local only to that block, and are destroyed when exiting
the block.

Usage

NOTE

When a block is expected by an IF, LOOP, WHILE, and so forth, a single statement is also
accepted by the parser. Even though the block BEGIN or END are not expected, the
statement will execute as if wrapped in a BEGIN or END pair.

Syntax rules

If NOT ATOMIC or no ATOMIC clause is specified, the block will be executed non-atomically.

If the ATOMIC clause is specified, the block must execute atomically. If a transaction is already
associated with the thread, no additional action will be taken; savepoints or sub-transactions are
not currently used. If the higher level transaction is used, and the block does not complete — 
regardless of the presence of exception handling — the transaction will be marked as rollback
only. Otherwise, a transaction will be associated with the execution of the block. Upon
successful completion of the block the transaction will be committed.

The label must not be the same as any label that is used in statements that contain this one.

Variable assignments and the implicit result cursor are unaffected by rollbacks. If a block does
not complete successfully, its assignments will still take affect.

Exception handling

If an EXCEPTION clause is used within a compound statement, any processing exception emitted from
statements will be caught with the flow of execution transferring to EXCEPTION statements. Any
block-level transaction started by this block will commit if the exception handler successfully completes.
If another exception, or the original exception, is emitted from the exception handler, the transaction
will rollback. Any temporary tables or variables specific to the BLOCK will not be available to the
exception handler statements.

NOTE

[label :] BEGIN [[NOT] ATOMIC]
 statement*
[EXCEPTION ex
 statement*
]
END

Red Hat Integration 2020.Q1 Data Virtualization Reference

124

NOTE

Only processing exceptions, which are typically caused by errors originating at the
sources or with function execution, are caught. A low-level internal Data Virtualization
error or Java RuntimeException will not be caught.

To aid in the processing of a caught exception, the EXCEPTION clause specifies a group name that
exposes the significant fields of the exception. The following table shows the variables that an exception
group contains:

Variable Type Description

STATE string The SQL State

ERRORCODE integer The error or vendor code. In the
case of Data Virtualization
internal exceptions this will be the
integer suffix of the TEIIDxxxx
code.

TEIIDCODE string The full Data Virtualization event
code. Typically TEIIDxxxx.

EXCEPTION object The exception being caught, will
be an instance of
TeiidSQLException.

CHAIN object The chained exception or cause
of the current exception.

NOTE

Data Virtualization does not yet fully comply with the ANSI SQL specification on SQL
State usage. For Data Virtualization errors without an underlying SQLException cause, it
is best to use the Data Virtualization code.

The exception group name might not be the same as any higher level exception group or loop cursor
name.

Example exception group handling

BEGIN
 DECLARE EXCEPTION e = SQLEXCEPTION 'this is bad' SQLSTATE 'xxxxx';
 RAISE variables.e;
EXCEPTION e
 IF (e.state = 'xxxxx')
 //in this trivial example, we'll always hit this branch and just log the exception
 RAISE SQLWARNING e.exception;
 ELSE
 RAISE e.exception;
END

CHAPTER 3. SQL COMPATIBILITY

125

3.8.1.7. IF statement

An IF statement evaluates a condition and executes either one of two statements depending on the
result. You can nest IF statements to create complex branching logic. A dependent ELSE statement will
execute its statement only if the IF statement evaluates to false.

Usage

Example IF statement

The criteria can be any valid Boolean expression or an IS DISTINCT FROM predicate referencing row
values. The IS DISTINCT FROM extension uses the following syntax:

Where rowVal and rowValOther are references to row value group. This would typically be used in
instead of update triggers on views to quickly determine if the row values are changing:

Example: IS DISTINCT FROM IF statement

IS DISTINCT FROM considers null values equivalent and never produces an UNKNOWN value.

TIP

Null values should be considered in the criteria of an IF statement. IS NULL criteria can be used to
detect the presence of a null value.

3.8.1.8. Loop Statement

A LOOP statement is an iterative control construct that is used to cursor through a result set.

Usage

IF (criteria)
 block
[ELSE
 block]
END

IF (var1 = 'North America')
BEGIN
 ...statement...
END ELSE
BEGIN
 ...statement...
END

rowVal IS [NOT] DISTINCT FROM rowValOther

IF ("new" IS DISTINCT FROM "old")
BEGIN
 ...statement...
END

Red Hat Integration 2020.Q1 Data Virtualization Reference

126

Syntax rules

The label must not be the same as any label that is used in statements that contain this one.

3.8.1.9. While statement

A WHILE statement is an iterative control construct that is used to execute a statement repeatedly
whenever a specified condition is met.

Usage

Syntax rules

The label must not be the same as any label that is used in statements that contain this one.

3.8.1.10. Continue statement

A CONTINUE statement is used inside a LOOP or WHILE construct to continue with the next loop by
skipping over the rest of the statements in the loop. It must be used inside a LOOP or WHILE statement.

Usage

Syntax rules

If the label is specified, it must exist on a containing LOOP or WHILE statement.

If no label is specified, the statement will affect the closest containing LOOP or WHILE
statement.

3.8.1.11. Break statement

A BREAK statement is used inside a LOOP or WHILE construct to break from the loop. It must be used
inside a LOOP or WHILE statement.

Usage

Syntax rules

If the label is specified, it must exist on a containing LOOP or WHILE statement.

If no label is specified, the statement will affect the closest containing LOOP or WHILE
statement.

[label :] LOOP ON <select statement> AS <cursorname>
 statement

[label :] WHILE <criteria>
 statement

CONTINUE [label];

BREAK [label];

CHAPTER 3. SQL COMPATIBILITY

127

3.8.1.12. Leave statement

A LEAVE statement is used inside a compound, LOOP, or WHILE construct to leave to the specified
level.

Usage

Syntax rules

The label must exist on a containing compound statement, LOOP, or WHILE statement.

3.8.1.13. Return statement

A RETURN statement gracefully exits the procedure and optionally returns a value.

Usage

Syntax rules

If an expression is specified, the procedure must have a return parameter and the value must be
implicitly convertible to the expected type.

Even if the procedure has a return parameter, it is not required to specify a return value in a
RETURN statement. A return parameter can be set through an assignment or it can be left as
null.

Sample usage

3.8.1.14. Error statement

An ERROR statement declares that the procedure has entered an error state and should abort. This
statement will also roll back the current transaction, if one exists. Any valid expression can be specified
after the ERROR keyword.

Usage

Example: Error statement

LEAVE label;

RETURN [expression];

CREATE VIRTUAL FUNCTION times_two(val integer)
 RETURNS integer AS
 BEGIN
 RETURN val*2;
 END

ERROR message;

ERROR 'Invalid input value: ' || nvl(Acct.GetBalance.AcctID, 'null');

Red Hat Integration 2020.Q1 Data Virtualization Reference

128

An ERROR statement is equivalent to:

3.8.1.15. Raise statement

A RAISE statement is used to raise an exception or warning. When raising an exception, this statement
will also roll back the current transaction, if one exists.

Usage

Where exception may be a variable reference to an exception or an exception expression.

Syntax rules

If SQLWARNING is specified, the exception will be sent to the client as a warning and the
procedure will continue to execute.

A null warning will be ignored. A null non-warning exception will still cause an exception to be
raised.

Example raise statement

3.8.1.16. Exception expression

An exception expression creates an exception that can be raised or used as a warning.

Usage

Syntax rules

Any of the values may be null.

message and state are string expressions that specify the exception message and SQL state.
Data Virtualization does not fully comply with the ANSI SQL specification on SQL state usage,
but you are allowed to set any SQL state you choose.

code is an integer expression that specifies the vendor code.

exception must be a variable reference to an exception or an exception expression, and will be
chained to the resulting exception as its parent.

3.8.2. Virtual procedures

Virtual procedures are defined using the Data Virtualization procedural language. For more information,
see Procedure language.

RAISE SQLEXCEPTION message;

RAISE [SQLWARNING] exception;

RAISE SQLWARNING SQLEXCEPTION 'invalid' SQLSTATE '05000';

SQLEXCEPTION message [SQLSTATE state [, code]] CHAIN exception

CHAPTER 3. SQL COMPATIBILITY

129

A virtual procedure has zero or more INPUT, INOUT, or OUT parameters, an optional RETURN
parameter, and an optional result set. Virtual procedures can execute queries and other SQL
commands, define temporary tables, add data to temporary tables, walk through result sets, use loops,
and use conditional logic.

Virtual procedure definition

For more information, see Create procedure/function in DDL metadata for schema objects .

Note that the optional result parameter is always considered the first parameter.

Within the body of the procedure, you can use any valid statement. For more information avbout
procedure language statements, see Procedure language.

There is no explicit cursoring or value returning statement. Instead, the last unnamed command
statement executed in the procedure that returns a result set will be returned as the result. The output
of that statement must match the expected result set and parameters of the procedure.

Virtual procedure parameters

Virtual procedures can take zero or more IN or INOUT parameters, and can have any number of OUT
parameters and an optional RETURN parameter. Each input has the following information that is used
during runtime processing:

Name

The name of the input parameter.

Datatype

The design-time type of the input parameter.

Default value

The default value if the input parameter is not specified.

Nullable

NO_NULLS, NULLABLE, NULLABLE_UNKNOWN; parameter is optional if nullable, and is not
required to be listed when using named parameter syntax.

You reference a parameter in a virtual procedure by using its fully-qualified name (or less if
unambiguous). For example, MySchema.MyProc.Param1.

Example: Referencing an input parameter and assigning an Out parameter for GetBalance
procedure

If an INOUT parameter is not assigned any value in a procedure, it will retain the value it was assigned for
input. Any OUT/RETURN parameter that is not assigned a value will retain the default NULL value. The
INOUT/OUT/RETURN output values are validated against the NOT NULL metadata of the parameter.

Example virtual procedures

The following example represents a loop that walks through a cursored table and uses CONTINUE and
BREAK.

BEGIN
 MySchema.GetBalance.RetVal = UPPER(MySchema.GetBalance.AcctID);
 SELECT Balance FROM MySchema.Accts WHERE MySchema.Accts.AccountID =
MySchema.GetBalance.AcctID;
END

Red Hat Integration 2020.Q1 Data Virtualization Reference

130

Virtual procedure using LOOP, CONTINUE, BREAK

The following example uses conditional logic to determine which of two SELECT statements to execute.

Virtual procedure with conditional SELECT

Executing virtual procedures

You execute procedures using the SQL EXECUTE command. For more information, see Execute
command in DML commands.

If the procedure has defined inputs, you specify those in a sequential list, or using name=value syntax.
You must use the name of the input parameter, scoped by the full procedure name if the parameter
name is ambiguous in the context of other columns or variables in the procedure.

A virtual procedure call returns a result set like any SELECT, so you can use this in many places you can
use a SELECT. Typically you’ll use the following syntax:

BEGIN
 DECLARE double total;
 DECLARE integer transactions;
 LOOP ON (SELECT amt, type FROM CashTxnTable) AS txncursor
 BEGIN
 IF(txncursor.type <> 'Sale')
 BEGIN
 CONTINUE;
 END ELSE
 BEGIN
 total = (total + txncursor.amt);
 transactions = (transactions + 1);
 IF(transactions = 100)
 BEGIN
 BREAK;
 END
 END
 END
 SELECT total, (total / transactions) AS avg_transaction;
END

BEGIN
 DECLARE string VARIABLES.SORTDIRECTION;
 VARIABLES.SORTDIRECTION = PartsVirtual.OrderedQtyProc.SORTMODE;
 IF (ucase(VARIABLES.SORTDIRECTION) = 'ASC')
 BEGIN
 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >
PartsVirtual.OrderedQtyProc.QTYIN ORDER BY PartsVirtual.SupplierInfo.PART_ID;
 END ELSE
 BEGIN
 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >
PartsVirtual.OrderedQtyProc.QTYIN ORDER BY PartsVirtual.SupplierInfo.PART_ID DESC;
 END
END

SELECT * FROM (EXEC ...) AS x

CHAPTER 3. SQL COMPATIBILITY

131

Virtual procedure limitations

A virtual procedure can return only one result set. If you need to pass in a result set, or pass out multiple
result sets, then consider using global temporary tables instead.

3.8.3. Triggers

View triggers

Views are abstractions above physical sources. They typically union or join information from multiple
tables, often from multiple data sources or other views. Data Virtualization can perform update
operations against views. Update commands that you run against a view (INSERT, UPDATE, or
DELETE) require logic to define how the tables and views integrated by the view are affected by each
type of command. This transformation logic, also referred to as a trigger, is invoked when an update
command is issued against a view. Update procedures define the logic for how the update command
that you run against a view is decomposed into the individual commands to be executed against the
underlying physical sources. Similar to virtual procedures, update procedures have the ability to execute
queries or other commands, define temporary tables, add data to temporary tables, walk through result
sets, use loops, and use conditional logic. For more inmformation about virtual procedures, see Virtual
procedures.

You can use INSTEAD OF triggers on views in a way that is similar to the way that you might use them
with traditional databases. You can have only one FOR EACH ROW procedure for each INSERT,
UPDATE, or DELETE operation against a view.

Usage

Update procedure processing

1. The user application submits the SQL command.

2. The command detects the view that it is executed against.

3. The correct procedure is chosen depending upon the command type (INSERT, UPDATE, or
DELETE).

4. The procedure is executed. The procedure might contain SQL commands of its own.
Commands in the procedure can be different in type from the command that is received from
the calling application.

5. Commands, as described in the procedure, are issued to the individual physical data sources or
other views.

6. A value representing the number of rows changed is returned to the calling application.

Source triggers

Data Virtualization can use AFTER triggers on source tables. AFTER triggers are called by events from
a change data capture (CDC) system.

Usage:

CREATE TRIGGER ON view_name INSTEAD OF INSERT|UPDATE|DELETE AS
FOR EACH ROW
...

Red Hat Integration 2020.Q1 Data Virtualization Reference

132

FOR EACH ROW triggers

Only the FOR EACH ROW construct serves as a trigger handler. A FOR EACH ROW trigger procedure
will evaluate its block for each row of the view/source affected by the UPDATE statement. For
UPDATE and DELETE statements, this will be every row that passes the WHERE condition. For
INSERT statements there will be one new row for each set of values from the VALUES or query
expression. For a view, the rows updated is reported as this number, regardless of the affect of the
underlying procedure logic.

Usage

The BEGIN and END keywords are used to denote block boundaries. Within the body of the procedure,
any valid statement may be used.

NOTE

The use of the ATOMIC keyword is currently optional for backward compatibility, but
unlike a normal block, the default for INSTEAD OF triggers is atomic.

Special variables for update procedures

You can use a number of special variables when defining your update procedure.

NEW variables

Every attribute in the view/table whose UPDATE and INSERT transformations you are defining has
an equivalent variable named NEW.<column_name>.
When an INSERT or an UPDATE command is executed against the view, or the event is received,
these variables are initialized to the values in the INSERT VALUES clause or the UPDATE SET
clause respectively.

In an UPDATE procedure, the default value of these variables, if they are not set by the command, is
the old value. In an INSERT procedure, the default value of these variables is the default value of the
virtual table attributes. See CHANGING variables, later in this list for distinguishing defaults from
passed values.

OLD variables

Every attribute on the view/table whose UPDATE and DELETE transformations you are defining has
an equivalent variable named OLD.<column_name>.
When a DELETE or UPDATE command is executed against the view, or the event is received, these
variables are initialized to the current values of the row being deleted or updated respectively.

CHANGING variables

Every attribute on the view/table whose UPDATE and INSERT transformations you are defining has
an equivalent variable named CHANGING.<column_name>.

CREATE TRIGGER ON source_table AFTER INSERT|UPDATE|DELETE AS
FOR EACH ROW
...

FOR EACH ROW
 BEGIN ATOMIC
 ...
 END

CHAPTER 3. SQL COMPATIBILITY

133

When an INSERT or an UPDATE command is executed against the view, or an the event is received,
these variables are initialized to true or false depending on whether the INPUT variable was set by
the command. A CHANGING variable is commonly used to differentiate between a default insert
value and one that is specified in the user query.

For example, for a view with columns A, B, C:

If User Executes… Then…

INSERT INTO VT (A, B) VALUES (0, 1) CHANGING.A = true, CHANGING.B = true,
CHANGING.C = false

UPDATE VT SET C = 2 CHANGING.A = false, CHANGING.B = false,
CHANGING.C = true

Key variables

To return generated keys from an INSERT trigger, a KEY group is made available that can be
assigned the value to be returned. Typically this requires using the generated_key system function.
However, not all inserts provide generated keys, because not all sources return generated keys.

Example update procedures

For example, for a view with columns A, B, C:

Sample DELETE procedure

Sample UPDATE procedure

create view v1 (i integer, k integer not null auto_increment primary key)
OPTIONS (UPDATABLE true) as
 select x, y from tbl;
create trigger on v1 instead of insert as
 for each row begin atomic
 -- ... some logic
 insert into tbl (x) values (new.i);
 key.k = cast(generated_key('y') as integer);
 end;

FOR EACH ROW
BEGIN
 DELETE FROM X WHERE Y = OLD.A;
 DELETE FROM Z WHERE Y = OLD.A; // cascade the delete
END

FOR EACH ROW
BEGIN
 IF (CHANGING.B)
 BEGIN
 UPDATE Z SET Y = NEW.B WHERE Y = OLD.B;
 END
END

Red Hat Integration 2020.Q1 Data Virtualization Reference

134

Other usages

FOR EACH ROW update procedures in a view can also be used to emulate BEFORE/AFTER each row
triggers while still retaining the ability to perform an inherent update. This BEFORE/AFTER trigger
behavior with an inherent update can be achieved by creating an additional updatable view over the
target view with update procedures of the form:

3.9. COMMENTS

You can add multi-line SQL comments in Data Virtualization by enclosing text with /* */.

You can also add single line comments:

You can also nest comments.

3.10. EXPLAIN STATEMENTS

You can use an EXPLAIN statement to obtain a query plan. Using EXPLAIN statements to obtain a query
execution plan is a native function of the SQL language, and it is the preferred mechanism to use over
pg/ODBC transport. If you are using a Teiid JDBC client, you can also use SET/SHOW statements. For
more information about SET and SHOW statements, see the Client Developer’s Guide.

Usage

If no options are specified, by default the plan is provided in text format without executing the query.

If you specify ANALYZE or ANALYZE TRUE, then the statement is executed, unless the client has set
the NOEXEC option. The resulting plan will include runtime node statistics from the fully executed

CREATE TRIGGER ON outerVW INSTEAD OF INSERT AS
FOR EACH ROW
 BEGIN ATOMIC
 --before row logic
 ...

 --default insert/update/delete against the target view
 INSERT INTO VW (c1, c2, c3) VALUES (NEW.c1, NEW.c2, NEW.c3);

 --after row logic
 ...
 END

/* comment
comment
comment... */

SELECT ... -- comment

EXPLAIN [(explainOption [, ...])] statement

explainOption :=
 ANALYZE [TRUE|FALSE]
 | FORMAT {TEXT|YAML|XML}

CHAPTER 3. SQL COMPATIBILITY

135

statement. All side effects, including updates, will still occur. You might need to use a transaction to
rollback any unwanted side effects.

While this is superficially the same syntax as PostgreSQL, the plan provided in the various formats is the
same that has been provided by Teiid in prior versions.

For more information about how to interpret results, see Query plans.

Example

Returns a text-formatted plan from an actual run of the given statement.

EXPLAIN (analyze) select * from really_complicated_view

Red Hat Integration 2020.Q1 Data Virtualization Reference

136

CHAPTER 4. DATA TYPES
The Data Virtualization type system is based on Java/JDBC types. The runtime object is represented by
the corresponding Java class, such as Long, Integer, Boolean, String, and so forth. For more information,
see Runtime types. You can use domain types to extend the type system. For more information, see
DDL metadata for domains.

4.1. RUNTIME TYPES

Data Virtualization works with a core set of runtime types. Runtime types can be different from
semantic types that are defined in type fields at design time. The runtime type can also be specified at
design time or it will be automatically chosen as the closest base type to the semantic type.

NOTE

Even if a type is declared with a length, precision, or scale argument, those restrictions are
effectively ignored by the runtime system, but may be enforced/reported at the edge by
OData, ODBC, JDBC. Geospatial types act in a similar manner. Extension metadata
might be needed for SRID, type, and number of dimensions for consumption by
tools/OData, but it is not yet enforced. In some instances you might need to use the
ST_SETSRID function to ensure the SRID is associated.

Table 4.1. Data Virtualization runtime types

Type Description Java runtime
class

JDBC type ODBC type

string or varchar Variable length
character string
with a maximum
length of 4000.

java.lang.String VARCHAR VARCHAR

varbinary Variable length
binary string with a
nominal maximum
length of 8192.

byte[] [1] VARBINARY VARBINARY

char A single 16 bit
character - which
cannot represent a
value beyond the
Basic Multilingual
Plane. This
limitation also
applies to
functions/expressi
ons that expect a
single character
such as trim,
textagg, texttable,
and like escape.

java.lang.Characte
r

CHAR CHAR

CHAPTER 4. DATA TYPES

137

boolean A single bit, or
Boolean, that can
be true, false, or
null (unknown)

java.lang.Boolean BIT SMALLINT

byte or tinyint Numeric, integral
type, signed 8-bit

java.lang.Byte TINYINT SMALLINT

short or smallint Numeric, integral
type, signed 16-bit

java.lang.Short SMALLINT SMALLINT

integer or serial Numeric, integral
type, signed 32-
bit. The serial type
also implies not
null and has an
auto-incrementing
value that starts at
1. serial types are
not automatically
UNIQUE.

java.lang.Integer INTEGER INTEGER

long or bigint Numeric, integral
type, signed 64-bit

java.lang.Long BIGINT NUMERIC

biginteger Numeric, integral
type, arbitrary
precision of up to
1000 digits

java.math.BigInteg
er

NUMERIC NUMERIC

float or real Numeric, floating
point type, 32-bit
IEEE 754 floating-
point numbers

java.lang.Float REAL FLOAT

double Numeric, floating
point type, 64-bit
IEEE 754 floating-
point numbers

java.lang.Double DOUBLE DOUBLE

bigdecimal or
decimal

Numeric, floating
point type,
arbitrary precision
of up to 1000
digits.

java.math.BigDeci
mal

NUMERIC NUMERIC

Type Description Java runtime
class

JDBC type ODBC type

Red Hat Integration 2020.Q1 Data Virtualization Reference

138

date Datetime,
representing a
single day (year,
month, day)

java.sql.Date DATE DATE

time Datetime,
representing a
single time (hours,
minutes, seconds)

java.sql.Time TIME TIME

timestamp Datetime,
representing a
single date and
time (year, month,
day, hours,
minutes, seconds,
fractional
seconds).

java.sql.Timestamp TIMESTAMP TIMESTAMP

object Any arbitrary Java
object, must
implement
java.lang.Serializabl
e.

Any JAVA_OBJECT VARCHAR

blob Binary large
object,
representing a
stream of bytes.

java.sql.Blob [2] BLOB VARCHAR

clob Character large
object,
representing a
stream of
characters.

java.sql.Clob [3] CLOB VARCHAR

xml XML document java.sql.SQLXML[
4]

JAVA_OBJECT VARCHAR

geometry Geospatial Object java.sql.Blob [5] BLOB BLOB

geography (11.2+) Geospatial Object java.sql.Blob [6] BLOB BLOB

Type Description Java runtime
class

JDBC type ODBC type

CHAPTER 4. DATA TYPES

139

json (11.2+) Character large
object,
representing a
stream of JSON
characters.

java.sql.Clob [7] CLOB VARCHAR

Type Description Java runtime
class

JDBC type ODBC type

1. The runtime type is org.teiid.core.types.BinaryType. Translators will need to explicitly handle
BinaryType values. UDFs will instead have a byte[] value passed.

2. The concrete type is expected to be org.teiid.core.types.BlobType

3. The concrete type is expected to be org.teiid.core.types.ClobType

4. The concrete type is expected to be org.teiid.core.types.XMLType

5. The concrete type is expected to be org.teiid.core.types.GeometryType

6. The concrete type is expected to be org.teiid.core.types.GeographyType

7. The concrete type is expected to be org.teiid.core.types.JsonType

NOTE

Character, String, and character large objects (CLOB) types are not limited to
ASCII/extended ASCII values. Character can hold codes up to 2^16-1 and String/CLOB
can hold any value.

Arrays

An array of any type is designated by adding [] for each array dimension to the type declaration.

Example: Array types

NOTE

Array handling is typically in memory. It is not advisable to rely on the usage of large array
values. Arrays of large objects (LOBs) are typically not handled correctly when serialized.

4.2. TYPE CONVERSIONS

Data types may be converted from one form to another either explicitly or implicitly. Implicit conversions
automatically occur in criteria and expressions to ease development. Explicit datatype conversions
require the use of the CONVERT function or CAST keyword.

Type conversion considerations

string[]

integer[][]

Red Hat Integration 2020.Q1 Data Virtualization Reference

140

Any type may be implicitly converted to the OBJECT type.

The OBJECT type can be explicitly converted to any other type.

The NULL value can be converted to any type.

Any valid implicit conversion is also a valid explicit conversion.

In scenarios where literal values would normally require explicit conversions, you can apply
implicit conversions if no loss of information occurs.

If widenComparisonToString is false (the default), Data Virtualization raises an exception if it
detects that an explicit conversion cannot be applied implicitly in criteria.

If widenComparisonToString is true, then depending upon the comparison, a widening
conversion is applied or the criteria are treated as false. For more information about
widenComparisonToString, see System properties in the Administrator’s Guide.

Example

If widenComparisonToString is false, and created_by is a date, not a date cannot be
converted to a date value, and an exception results.

Explicit conversions that are not allowed between two types will result in an exception before
execution. Allowed explicit conversions can still fail during processing if the runtime values are
not actually convertible.

WARNING

The Data Virtualization conversions of float/double/bigdecimal/timestamp to string
rely on the JDBC/Java defined output formats. Pushdown behavior attempts to
mimic these results, but can vary depending upon the actual source type and
conversion logic. It is best not to assume use of the string form in criteria or other
places where variations might lead to different results.

Table 4.2. Type conversions

Source type Valid implicit target types Valid explicit target types

string clob char, boolean, byte, short, integer,
long, biginteger, float, double,
bigdecimal, xml [a]

char string

SELECT * FROM my.table WHERE created_by = 'not a date'

CHAPTER 4. DATA TYPES

141

boolean string, byte, short, integer, long,
biginteger, float, double,
bigdecimal

byte string, short, integer, long,
biginteger, float, double,
bigdecimal

boolean

short string, integer, long, biginteger,
float, double, bigdecimal

boolean, byte

integer string, long, biginteger, double,
bigdecimal

boolean, byte, short, float

long string, biginteger, bigdecimal,

float [b], double [b]

boolean, byte, short, integer, float,
double

biginteger string, bigdecimal float [b], double
[b]

boolean, byte, short, integer, long,
float, double

bigdecimal string, float [b], double [b] boolean, byte, short, integer, long,
biginteger, float, double

float string, bigdecimal, double boolean, byte, short, integer, long,
biginteger

double string, bigdecimal, float [b] boolean, byte, short, integer, long,
biginteger, float

date string, timestamp

time string, timestamp

timestamp string date, time

clob string

json clob string

xml string [c]

geography geometry

Source type Valid implicit target types Valid explicit target types

Red Hat Integration 2020.Q1 Data Virtualization Reference

142

[a] string to xml is equivalent to XMLPARSE(DOCUMENT exp). For more information, see XMLPARSE in XML functions.

[b] Implicit conversion to float/double only occurs for literal values.

[c] xml to string is equivalent to XMLSERIALIZE(exp AS STRING). For more information, see XMLSERIALIZE in XML
functions.

Source type Valid implicit target types Valid explicit target types

4.3. SPECIAL CONVERSION CASES

Conversion of string literals

Data Virtualization automatically converts string literals within a SQL statement to their implied types.
This typically occurs in a criteria comparison where an expression with a different datatype is compared
to a literal string. For example:

In the preceding example, if the created_by column has the data type of date, Data Virtualization
automatically converts the data type of the string literal to a date.

Converting to Boolean

Data Virtualization can automatically convert literal strings and numeric type values to Boolean values as
shwon in the following table:

Table 4.3. Boolean conversions

Type Literal value Boolean value

String 'false' false

 'unknown' null

 other true

Numeric 0 false

 other true

Date and time conversions

Data Virtualization can implicitly convert properly formatted literal strings to their associated date-
related data types as shown in the following table:

Table 4.4. Date and time conversions

String literal format Possible implicit conversion type

yyyy-mm-dd DATE

SELECT * FROM my.table WHERE created_by = '2016-01-02'

CHAPTER 4. DATA TYPES

143

hh:mm:ss TIME

yyyy-mm-dd[hh:mm:ss.[fff…]] TIMESTAMP

String literal format Possible implicit conversion type

The preceding formats are those expected by the JDBC date types. For information about using other
formats, see the functions PARSEDATE, PARSETIME, and PARSETIMESTAMP in Date and time
functions.

4.4. ESCAPED LITERAL SYNTAX

Rather than relying on implicit conversion, you can define data type values directly in SQL by using
escape syntax. The string values that you supply must match the expected format exactly, or an
exception will occur.

Datatype Escaped syntax Standard literal

BOOLEAN {b 'true'} TRUE

DATE {d 'yyyy-mm-dd'} DATE 'yyyy-mm-dd'

TIME {t 'hh-mm-ss'} TIME 'hh-mm-ss'

TIMESTAMP {ts 'yyyy-mm-dd[hh:mm:ss.
[fff…]]'}

TIMESTAMP 'yyyy-mm-dd[
hh:mm:ss.[fff…]]'

Red Hat Integration 2020.Q1 Data Virtualization Reference

144

CHAPTER 5. UPDATABLE VIEWS
Any view can be marked as updatable. In many circumstances the view definition allows the view to be
inherently updatable without the need to manually define a trigger to handle
INSERT/UPDATE/DELETE operations.

An inherently updatable view cannot be defined with a query that has:

A set operation (INTERSECT, EXCEPT, UNION).

SELECT DISTINCT.

Aggregation (aggregate functions, GROUP BY, HAVING).

A LIMIT clause.

A UNION ALL can define an inherently updatable view only if each of the UNION branches are
themselves inherently updatable. A view defined by a UNION ALL can accommodate inherent INSERT
statements if it is a partitioned union, and the INSERT specifies values that belong to a single partition.
For more information, see partitioned union in Federated optimizations.

Any view column that is not mapped directly to a column is not updatable and cannot be targeted by an
UPDATE set clause or be an INSERT column.

If a view is defined by a join query or has a WITH clause it might still be inherently updatable. However, in
these situations there are further restrictions, and the resulting query plan may execute multiple
statements. For a non-simple query to be updatable, the following criteria apply:

An INSERT/UPDATE can only modify a single key-preserved table.

To allow DELETE operations, there must be only a single key-preserved table.
For information about key-preserved tables, see Key-preserved tables.

If the default handling is not available or if you want to have an alternative implementation of an
INSERT/UPDATE/DELETE, you can use update procedures, or triggers, to define procedures to handle
the respective operations. For more information see Update procedures (Triggers) .

Consider the following example of an inherently updatable denormalized view:

A query such as insert into denormalized (fk_col, child_name) values (1, 'a') would succeed against
this view, because it targets a single key-preserved table, child_table. However, insert into
denormalized (name) values ('a') would fail, because it maps to a parent_table that can have multiple
rows for each parent_table key. In other words, it is not key-preserved.

Also, an INSERT against parent_table alone might not be visible to the view, because there might be no
child entities associated either.

Not all scenarios will work. Referencing the preceding example, an insert into denormalized (pk_col,

create foreign table parent_table (pk_col integer primary key, name string) options (updatable true);

create foreign table child_table (pk_col integer primary key, name string, fk_col integer, foreign key
(fk_col) references parent_table (pk_col)) options (updatable true);

create view denormalized options (updatable true) as select c.fk_col, c.name as child_name, p.name
from parent_table as p, child_table as c where p.pk_col = c.fk_col;

CHAPTER 5. UPDATABLE VIEWS

145

Not all scenarios will work. Referencing the preceding example, an insert into denormalized (pk_col,
child_name) values (1, 'a') with a view that is defined using the p.pk_col will fail, because the logic
doesn’t yet consider the equivalency of the key values.

5.1. KEY-PRESERVED TABLES

A key-preserved table has a primary or unique key that remains unique when it is projected into the
result of the query. Note that it is not actually required for a view to reference the key columns in the
SELECT clause. The query engine can detect a key-preserved table by analyzing the join structure. The
engine will ensure that a join of a key-preserved table must be against one of its foreign keys.

Red Hat Integration 2020.Q1 Data Virtualization Reference

146

CHAPTER 6. TRANSACTIONS
Data Virtualization utilizes XA transactions for participating in global transactions and for demarcating
its local and command scoped transactions.

For information about advanced transaction technologies that are provided for Data Virtualization
through the Narayana community project, see the Narayana documentation.

Table 6.1. Data Virtualization transaction scopes

Scope Description

Command Treats the user command as if all source commands
are executed within the scope of the same
transaction. The AutoCommitTxn execution property
controls the behavior of command level transactions.

Local The transaction boundary is local defined by a single
client session.

Global Data Virtualization participates in a global
transaction as an XA resource.

The default transaction isolation level for Data Virtualization is READ_COMMITTED.

6.1. AUTOCOMMITTXN EXECUTION PROPERTY

User level commands can execute multiple source commands. To control the transactional behavior of a
user command when not in a local or global transaction, you can specify the AutoCommitTxn execution
property.

Table 6.2. AutoCommitTxn Settings

Setting Description

OFF Do not wrap each command in a transaction.
Individual source commands may commit or rollback
regardless of the success or failure of the overall
command.

ON Wrap each command in a transaction. This mode is
the safest, but may introduce performance overhead.

DETECT This is the default setting. Will automatically wrap
commands in a transaction, but only if the command
seems to be transactionally unsafe.

The concept of command safety with respect to a transaction is determined by Data Virtualization
based upon command type, the transaction isolation level, and available metadata. A wrapping
transaction is not needed if the following criteria are true:

CHAPTER 6. TRANSACTIONS

147

http://narayana.io/documentation/index.html
AutoCommitTxn_Execution_Property.adoc

The user command is fully pushed to the source.

The user command is a SELECT (including XML) and the transaction isolation is not
REPEATABLE_READ nor SERIALIABLE.

The user command is a stored procedure, the transaction isolation is not REPEATABLE_READ
nor SERIALIABLE, and the updating model count is zero. For more information, see Updating
model count.

The update count may be set on all procedures as part of the procedure metadata in the model.

6.2. UPDATING MODEL COUNT

The term "updating model count" refers to the number of times any model is updated during the
execution of a command. It is used to determine whether a transaction, of any scope, is required to
safely execute the command.

Table 6.3. Updating model count settings

Count Description

0 No updates are performed by this command.

1 Indicates that only one model is updated by this
command (and its subcommands). The success or
failure of that update corresponds to the success or
failure of the command. It should not be possible for
the update to succeed while the command fails.
Execution is not considered transactionally unsafe.

* Any number greater than 1 indicates that execution is
transactionally unsafe and an XA transaction will be
required.

6.3. JDBC AND TRANSACTIONS

JDBC API functionality

The transaction scopes in Transactions map to the following JDBC modes:

Command

Connection autoCommit property set to true.

Local

Connection autoCommit property set to false. The transaction is committed by setting autoCommit
to true or calling java.sql.Connection.commit. The transaction can be rolled back by a call to
java.sql.Connection.rollback

Global

The XAResource interface provided by an XAConnection is used to control the transaction. Note that
XAConnections are available only if Data Virtualization is consumed through its XADataSource,
org.teiid.jdbc.TeiidDataSource. JEE containers or data access APIs typically control XA
transactions on behalf of application code.

Red Hat Integration 2020.Q1 Data Virtualization Reference

148

J2EE usage models

J2EE provides the following ways to manage transactions for beans:

Client-controlled

The client of a bean begins and ends a transaction explicitly.

Bean-managed

The bean itself begins and ends a transaction explicitly.

Container-managed

The application server container begins and ends a transaction automatically.

In any of the preceding cases, transactions can be either local or XA transactions, depending on how the
code and descriptors are written. The XA specification does not require some types of beans (for
example, stateful session beans and entity beans) to work with non-transactional sources. However,
according to the specification, optionally, application servers can allow the use of these beans with non-
transactional sources, with the caution that such usage is not portable or predictable. Generally
speaking, to provide for most types of EJB activities in a portable fashion, applications require a
mechanism for managing transactions.

6.4. LIMITATIONS

The client setting of transaction isolation level is propagated only to JDBC connectors; the
setting is not propagated to other connector types. The default transaction isolation level can
be set on each XA connector. However, the isolation level is fixed, and cannot be changed at
runtime for specific connections or commands.

CHAPTER 6. TRANSACTIONS

149

CHAPTER 7. DATA ROLES
Data roles, also called entitlements, are sets of permissions defined per virtual database that specify
data access permissions (create, read, update, delete). Data roles use a fine-grained permission system
that Data Virtualization will enforce at runtime and provide audit log entries for access violations.

Before you apply data roles, you might want to restrict source system access through the fundamental
design of your virtual database. Foremost, Data Virtualization can only access source entries that are
represented in imported metadata. You should narrow imported metadata to only what is necessary for
use by your virtual database.

If data role validation is enabled and data roles are defined in a virtual database, then access permissions
will be enforced by the Data Virtualization server. The use of data roles may be disabled system wide by
removing the setting for the teiid subsystem policy-decider-module. Data roles also have built-in
security functions that can be used for row-based and other authorization checks.

WARNING

A virtual database that is deployed without data roles can be accessed by any
authenticated user.

TIP

By default, non-hidden schema metadata is only visible over JDBC/pg if the user is permissioned in
some way for the given object. OData access provides all non-hidden metadata by default. To configure
JDBC/pg to also make all non-hidden schema metadata visible to all authenticated users, set the
environment/system property org.teiid.metadataRequiresPermission to false.

7.1. PERMISSIONS

Permissions, or grants, control access to data in several ways. There are simple access restrictions to
SELECT, UPDATE, and so forth, down to a column level.

NOTE

Column or table metadata are not visible to JDBC/ODBC users unless the user has
permission to read at least a single column.

You may also use permissions to filter and mask results, and constrain/check update values.

User query permissions

CREATE, READ, UPDATE, DELETE (CRUD) permissions can be set for any resource path in a VDB. A
resource path can be as specific as the fully qualified name of a column or as general a top level model
(schema) name. Permissions granted to a particular path apply to it and any resource paths that share
the same partial name. For example, granting select to "model" will also grant select to "model.table",
"model.table.column", and so on. Allowing or denying a particular action is determined by searching for
permissions from the most to least specific resource paths. The first permission found with a specific
allow or deny will be used. Thus, it is possible to set very general permissions at high-level resource path
names and to override only as necessary at more specific resource paths.

Red Hat Integration 2020.Q1 Data Virtualization Reference

150

Permission grants are only needed for resources that a role needs access to. Permissions are also
applied only to the columns/tables/procedures in the user query, not to every resource that is accessed
transitively through view and procedure definitions. It is important therefore to ensure that permission
grants are applied consistently across models that access the same resources.

WARNING

Non-visible models are accessible by user queries. To restrict user access at a
model level, at least one data role should be created to enable data role checking.
In turn, that role can be mapped to any authenticated user, and should not grant
permissions to models that should be inaccessible.

Permissions are not applicable to the SYS and pg_catalog schemas. These metadata reporting schemas
are always accessible regardless of the user. The SYSADMIN schema however may need permissions as
applicable.

Permission assignment

To process a SELECT statement or a stored procedure execution, the user account requires the
following access rights:

SELECT- on the Table(s) being accessed or the procedure being called.

SELECT- on every column referenced.

To process an INSERT statement, the user account requires the following access rights:

INSERT- on the Table being inserted into.

INSERT- on every column being inserted on that Table.

To process an UPDATE statement, the user account requires the following access rights:

UPDATE- on the Table being updated.

UPDATE- on every column being updated on that Table.

SELECT- on every column referenced in the criteria.

To process a DELETE statement, the user account requires the following access rights:

DELETE- on the Table being deleted.

SELECT- on every column referenced in the criteria.

To process a EXEC/CALL statement, the user account requires the following access rights:

EXECUTE (or SELECT)- on the Procedure being executed.

To process any function, the user account requires the following access rights:

EXECUTE (or SELECT)- on the Function being called.

CHAPTER 7. DATA ROLES

151

To process any ALTER or CREATE TRIGGER statement, the user account requires the following access
rights:

ALTER- on the view or procedure that is effected. INSTEAD OF Triggers (update procedures)
are not yet treated as full schema objects and are instead treated as attributes of the view.

To process any OBJECTTABLE function, the user account requires the following access rights:

LANGUAGE - specifying the language name that is allowed.

To process any statement against a Data Virtualization temporary table requires the following access
rights:

allow-create-temporary-tables attribute on any applicable role

SELECT,INSERT,UPDATE,DELETE - against the target model/schema as needed for operations
against a FOREIGN temporary table.

Row- and column-based security

Although specified in a similar way to user query CRUD permissions, row-based and column-based
permissions may be used together or separately to control the data that is returned to users at a more
granular and consistent level.

ROW-BASED SECURITY

Specifying a condition on a GRANT for row based security has been deprecated.
Specifying a condition on a GRANT is the same as specifying "CREATE POLICY
policyName ON schemaName.tblName TO role USING (condition);", such that the
condition applies to all operations.

A POLICY against a fully qualified table/view/procedure may specify a condition to be satisfied by the
given role. The condition can be any valid boolean expression referencing the columns of the
table/view/procedure. Procedure result set columns may be referenced as proc.col. The condition will
act as a row-based filter and as a checked constraint for insert/update operations.

Application of row-based conditions

A condition is applied conjunctively to update/delete/select WHERE clauses against the affected
resource. Those queries will therefore only ever be effective against the subset of rows that pass the
condition, such as "SELECT * FROM TBL WHERE something AND condition. The condition will be
present regardless of how the table/view is used in the query, whether by means of a union, join, or other
operation.

Example condition

Inserts and updates against physical tables affected by a condition are further validated so that the
insert/change values must pass the condition (evaluate to true) for the insert/update to succeed — this
is effectively the same a SQL constraint. This will happen for all styles of insert/update — insert with
query expression, bulk insert/update, and so on. Inserts/updates against views are not checked with
regards to the constraint.

You can disable the insert/update constraint check by restricting the operations that the POLICY
applies to.

CREATE POLICY policyName ON schemaName.tblName TO superUser USING ('foo=bar');

Red Hat Integration 2020.Q1 Data Virtualization Reference

152

Example DDL non-constraint condition

You may of course add another POLICY to cover the INSERT and UPDATE operations should they
require a different condition.

If more than one POLICY applies to the same resource, the conditions will be accumulated disjunctively
via OR, that is, "(condition1) OR (condition2) …". Therefore, creating a POLICY with the condition "true"
will allow users in that role to see all rows of the given resource for the given operations.

Considerations when using conditions

Be aware that non-pushdown conditions may adversely impact performance. Avoid using multiple
conditions against the same resource as any non-pushdown condition will cause the entire OR
statement to not be pushed down. If you need to insert permission conditions, be careful when adding an
inline view, because adding them can cause performance problems if they are not compatible with your
sources.

Pushdown of multi-row insert/update operations will be inhibited since the condition must be checked
for each row.

You can manage permission conditions on a per-role basis, but another approach is to add condition
permissions to any authenticated role. By adding permissions in this way, the conditions are generalized
for anyone using the hasRole, user, and other security functions. The advantage of this latter approach
is that it provides you with a static row-based policy. As a result, your entire range of query plans can be
shared among your users.

How you handle null values is up to you. You can implement ISNULL checks to ensure that null values are
allowed when a column is nullable.

Limitations when using conditions

Conditions on source tables that act as check constraints must currently not contain correlated
subqueries.

Conditions may not contain aggregate or windowed functions.

Tables and procedures referenced via subqueries will still have row-based filters and column
masking applied to them.

NOTE

Row-based filter conditions are enforced even for materialized view loads.

You should ensure that tables consumed to produce materialized views do not have row-based filter
conditions on them that could affect the materialized view results.

Column masking

A permission against a fully qualified table/view/procedure column can also specify a mask and
optionally a condition. When the query is submitted, the roles are consulted, and the relevant
mask/condition information are combined to form a searched case expression to mask the values that
would have been returned by the access. Unlike the CRUD allow actions defined above, the resulting

CREATE POLICY readPolicyName ON schemaName.tblName FOR SELECT,DELETE TO
superUser USING ('col>10');

CHAPTER 7. DATA ROLES

153

masking effect is always applied — not just at the user query level. The condition and expression can be
any valid SQL referencing the columns of the table/view/procedure. Procedure result set columns may
be referenced as proc.col.

Application of column masks

Column masking is applied only against SELECTs. Column masking is applied logically after the affect of
row-based security. However, because both views and source tables canb have row- and column-based
security, the actual view-level masking can take place on top of source level masking. If the condition is
specified along with the mask, then the effective mask expression affects only a subset of the rows:
"CASE WHEN condition THEN mask ELSE column". Otherwise the condition is assumed to be TRUE,
meaning that the mask applies to all rows.

If multiple roles specify a mask against a column, the mask order argument will determine their
precedence from highest to lowest as part of a larger searched case expression. For example, a mask
with the default order of 0 and a mask with an order of 1 would be combined as "CASE WHEN condition1
THEN mask1 WHEN condition0 THEN mask0 ELSE column".

Column masking considerations

Non-pushdown masking conditions/expressions can adversely impact performance, because their
evaluation might inhibit pushdown of query constructs on top of the affected resource. In some
circumstances the insertion of masking may require that the plan be altered with the addition of an inline
view, which can result in poor performance if your sources are not compatible with the use of inline
views.

In addition to managing masking on a per-role basis with the use of the order value, another approach is
to specify masking in a single any authenticated role such that the conditions/expressions are
generalized for all users/roles using the hasRole, user, and other such security functions. The
advantage of the latter approach is that there is effectively a static masking policy in effect, such that all
query plans can still be shared between users.

Column masking limitations

If two masks have the same order value, it is not well defined what order they are applied in.

Masks or their conditions cannot contain aggregate or windowed functions.

Tables and procedures referenced via subqueries will still have row-based filters and column
masking applied to them.

NOTE

Masking is enforced even for materialized view loads.

You should ensure that tables consumed to produce materialized views do not have masking on them
that could affect the materialized view results.

7.2. ROLE MAPPING

Each Data Virtualization data role can be mapped to any number of container roles or to any
authenticated user.

It is possible for a user to have any number of container roles, which in turn imply a subset of Data
Virtualization data roles. Each applicable Data Virtualization data role contributes cumulatively to the
permissions of the user. No one role supersedes or negates the permissions of the other data roles.

Red Hat Integration 2020.Q1 Data Virtualization Reference

154

CHAPTER 8. SYSTEM SCHEMA
The built-in SYS and SYSADMIN schemas provide metadata tables and procedures against the current
virtual database.

By default, a system schema for ODBC metadata pg_catalog is also exposed. — however, that should be
considered for general use.

Metadata visibility

The SYS system schema tables and procedures are always visible and accessible.

When data roles are in use, users can view only the tables, views, and procedure metadata entries that
they have permissions to access. All columns of a key must be accessible for an entry to be visible.

NOTE

To make all metadata visible to any authenticated user, set the environment/system
property org.teiid.metadataRequiresPermission to false.

NOTE

If you use data roles, visibility of entries can be affected by the caching of system
metadata.

8.1. SYS SCHEMA

System schema for public information and actions.

SYS.Columns

This table supplies information about all the elements (columns, tags, attributes, etc) in the virtual
database.

Column name Type Description

VDBName string VDB name

SchemaName string Schema name

TableName string Table name

Name string Element name (not qualified)

Position integer Position in group (1-based)

NameInSource string Name of element in source

DataType string Data Virtualization runtime data
type name

CHAPTER 8. SYSTEM SCHEMA

155

Scale integer Number of digits after the
decimal point

ElementLength integer Element length (mostly used for
strings)

sLengthFixed boolean Whether the length is fixed or
variable

SupportsSelect boolean Element can be used in SELECT

SupportsUpdates boolean Values can be inserted or
updated in the element

IsCaseSensitive boolean Element is case-sensitive

IsSigned boolean Element is signed numeric value

IsCurrency boolean Element represents monetary
value

IsAutoIncremented boolean Element is auto-incremented in
the source

NullType string Nullability: "Nullable", "No Nulls",
"Unknown"

MinRange string Minimum value

MaxRange string Maximum value

DistinctCount integer Distinct value count, -1 can
indicate unknown

NullCount integer Null value count, -1 can indicate
unknown

SearchType string Searchability: "Searchable", "All
Except Like", "Like Only",
Unsearchable"

Format string Format of string value

DefaultValue string Default value

Column name Type Description

Red Hat Integration 2020.Q1 Data Virtualization Reference

156

JavaClass string Java class that will be returned

Precision integer Number of digits in numeric value

CharOctetLength integer Measure of return value size

Radix integer Radix for numeric values

GroupUpperName string Upper-case full group name

UpperName string Upper-case element name

UID string Element unique ID

Description string Description

TableUID string Parent Table unique ID

TypeName string The type name, which may be a
domain name

TypeCode integer JDBC SQL type code

ColumnSize string If numeric, the precision, if
character, the length, and if
date/time, then the string length
of a literal value.

Column name Type Description

SYS.DataTypes

This table supplies information on datatypes.

Column name Type Description

Name string Data Virtualization type or domain
name

IsStandard boolean True if the type is basic

Type String One of Basic, UserDefined,
ResultSet, Domain

TypeName string Design-time type name (same as
Name)

JavaClass string Java class returned for this type

CHAPTER 8. SYSTEM SCHEMA

157

Scale integer Max scale of this type

TypeLength integer Max length of this type

NullType string Nullability: "Nullable", "No Nulls",
"Unknown"

IsSigned boolean Is signed numeric?

IsAutoIncremented boolean Is auto-incremented?

IsCaseSensitive boolean Is case-sensitive?

Precision integer Max precision of this type

Radix integer Radix of this type

SearchType string Searchability: "Searchable", "All
Except Like", "Like Only",
"Unsearchable"

UID string Data type unique ID

RuntimeType string Data Virtualization runtime data
type name

BaseType string Base type

Description string Description of type

TypeCode integer JDBC SQL type code

Literal_Prefix string literal prefix

Literal_Prefix string literal suffix

Column name Type Description

SYS.KeyColumns

This table supplies information about the columns referenced by a key.

Column name Type Description

VDBName string VDB name

Red Hat Integration 2020.Q1 Data Virtualization Reference

158

SchemaName string Schema name

TableName string Table name

Name string Element name

KeyName string Key name

KeyType string Key type: "Primary", "Foreign",
"Unique", etc

RefKeyUID string Referenced key UID

UID string Key UID

Position integer Position in key

TableUID string Parent Table unique ID

Column name Type Description

SYS.Keys

This table supplies information about primary, foreign, and unique keys.

Column name Type Description

VDBName string VDB name

SchemaName string Schema name

Table name string Table name

Name string Key name

Description string Description

NameInSource string Name of key in source system

Type string Type of key: "Primary", "Foreign",
"Unique", etc

IsIndexed boolean True if key is indexed

RefKeyUID string Referenced key UID (if foreign
key)

CHAPTER 8. SYSTEM SCHEMA

159

RefTableUID string Referenced key table UID (if
foreign key)

RefSchemaUID string Referenced key table schema UID
(if foreign key)

UID string Key unique ID

TableUID string Key Table unique ID

SchemaUID string Key Table Schema unique ID

ColPositions short[] Array of column positions within
the key table

Column name Type Description

SYS.ProcedureParams

This supplies information on procedure parameters.

Column name Type Description

VDBName string VDB name

SchemaName string Schema name

ProcedureName string Procedure name

Name string Parameter name

DataType string Data Virtualization runtime data
type name

Position integer Position in procedure args

Type string Parameter direction: "In", "Out",
"InOut", "ResultSet",
"ReturnValue"

Optional boolean Parameter is optional

Precision integer Precision of parameter

TypeLength integer Length of parameter value

Scale integer Scale of parameter

Red Hat Integration 2020.Q1 Data Virtualization Reference

160

Radix integer Radix of parameter

NullType string Nullability: "Nullable", "No Nulls",
"Unknown"

Description string Description of parameter

TypeName string The type name, which may be a
domain name

TypeCode integer JDBC SQL type code

ColumnSize string If numeric, the precision, if
character, the length, and if
date/time, then the string length
of a literal value.

DefaultValue string Default value

Column name Type Description

SYS.Procedures

This table supplies information about the procedures in the virtual database.

Column name Type Description

VDBName string VDB name

SchemaName string Schema name

Name string Procedure name

NameInSource string Procedure name in source system

ReturnsResults boolean Returns a result set

UID string Procedure UID

Description string Description

SchemaUID string Parent Schema unique ID

SYS.FunctionParams

This supplies information on function parameters.

CHAPTER 8. SYSTEM SCHEMA

161

Column name Type Description

VDBName string VDB name

SchemaName string Schema name

FunctionName string Function name

FunctionUID string Function UID

Name string Parameter name

DataType string Data Virtualization runtime data
type name

Position integer Position in procedure args

Type string Parameter direction: "In", "Out",
"InOut", "ResultSet",
"ReturnValue"

Precision integer Precision of parameter

TypeLength integer Length of parameter value

Scale integer Scale of parameter

Radix integer Radix of parameter

NullType string Nullability: "Nullable", "No Nulls",
"Unknown"

Description string Description of parameter

TypeName string The type name, which may be a
domain name

TypeCode integer JDBC SQL type code

ColumnSize string If numeric, the precision, if
character, the length, and if
date/time, then the string length
of a literal value.

SYS.Functions

This table supplies information about the functions in the virtual database.

Red Hat Integration 2020.Q1 Data Virtualization Reference

162

Column name Type Description

VDBName string VDB name

SchemaName string Schema name

Name string Function name

NameInSource string Function name in source system

UID string Function UID

Description string Description

IsVarArgs boolean Does the function accept variable
arguments

SYS.Properties

This table supplies user-defined properties on all objects based on metamodel extensions. Normally, this
table is empty if no metamodel extensions are being used.

Column name Type Description

Name string Extension property name

Value string Extension property value

UID string Key unique ID

ClobValue clob Clob Value

SYS.ReferenceKeyColumns

This table supplies informaton about column’s key reference.

Column name Type Description

PKTABLE_CAT string VDB name

PKTABLE_SCHEM string Schema name

PKTABLE_NAME string Table/View name

PKCOLUMN_NAME string Column name

FKTABLE_CAT string VDB name

CHAPTER 8. SYSTEM SCHEMA

163

FKTABLE_SCHEM string Schema name

FKTABLE_NAME string Table/View name

FKCOLUMN_NAME string Column name

KEY_SEQ short Key Sequence

UPDATE_RULE integer Update Rule

DELETE_RULE integer Delete Rule

FK_NAME string FK name

PK_NAME string PK Nmae

DEFERRABILITY integer

Column name Type Description

SYS.Schemas

This table supplies information about all the schemas in the virtual database, including the system
schema itself (System).

Column name Type Description

VDBName string VDB name

Name string Schema name

IsPhysical boolean True if this represents a source

UID string Unique ID

Description string Description

PrimaryMetamodelURI string URI for the primary metamodel
describing the model used for this
schema

SYS.Tables

This table supplies information about all the groups (tables, views, documents, and so forth) in the virtual
database.

Red Hat Integration 2020.Q1 Data Virtualization Reference

164

Column name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string Short group name

Type string Table type (Table, View,
Document, …)

NameInSource string Name of this group in the source

IsPhysical boolean True if this is a source table

SupportsUpdates boolean True if group can be updated

UID string Group unique ID

Cardinality integer Approximate number of rows in
the group

Description string Description

IsSystem boolean True if in system table

SchemaUID string Parent Schema unique ID

SYS.VirtualDatabases

This table supplies information about the currently connected virtual database, of which there is always
exactly one (in the context of a connection).

Column name Type Description

Name string The name of the VDB

Version string The version of the VDB

Description string The description of the VDB

LoadingTimestamp timestamp The timestamp loading began

ActiveTimestamp timestamp The timestamp when the vdb
became active.

SYS.spatial_sys_ref

CHAPTER 8. SYSTEM SCHEMA

165

See also the PostGIS Documentation

Column name Type Description

srid integer Spatial Reference Identifier

auth_name string Name of the standard or
standards body

auth_srid integer SRID for the auth_name authority

srtext string Well-Known Text representation

proj4text string For use with the Proj4 library

SYS.GEOMETRY_COLUMNS

See also the PostGIS Documentation

Column name Type Description

F_TABLE_CATALOG string catalog name

F_TABLE_SCHEMA string schema name

F_TABLE_NAME string table name

F_GEOMETRY_COLUMN string column name

COORD_DIMENSION integer Number of coordinate dimensions

SRID integer Spatial Reference Identifier

TYPE string Geometry type name

Note: The coord_dimension and srid properties are determined from the
{http://www.teiid.org/translator/spatial/2015}coord_dimension and
{http://www.teiid.org/translator/spatial/2015}srid extension properties on the column. When possible,
these values are set automatically by the relevant importer. If the values are not set, they will be reported
as 2 and 0, respectively. If client logic expects actual values, such as integration with GeoServer, you can
set these values manually.

SYS.ArrayIterate

Returns a resultset with a single column with a row for each value in the array.

Example: ArrayIterate

SYS.ArrayIterate(IN val object[]) RETURNS TABLE (col object)

Red Hat Integration 2020.Q1 Data Virtualization Reference

166

http://postgis.net/docs/using_postgis_dbmanagement.html#spatial_ref_sys
http://postgis.net/docs/using_postgis_dbmanagement.html#geometry_columns
https://teiid.github.io/teiid-documents/master/content/client-dev/GeoServer_Integration.html

This will produce two rows - 'b', and 'd'.

8.2. SYSADMIN SCHEMA

System schema for administrative information and actions.

SYSADMIN.Usage

The following table supplies information about how views and procedures are defined.

Column name Type Description

VDBName string VDB name

UID string Object UID

object_type string Type of object (StoredProcedure,
ForeignProcedure, Table, View,
Column, etc.)

Name string Object Name or parent name

ElementName string Name of column or parameter,
may be null to indicate a
table/procedure. Parameter level
dependencies are currently not
implemented.

Uses_UID string Used object UID

Uses_object_type string Used object type

Uses_SchemaName string Used object schema

Uses_Name string Used object name or parent name

Uses_ElementName string Used column or parameter name,
may be null to indicate a
table/procedure level
dependency

Every column, parameter, table, or procedure referenced in a procedure or view definition will be shown
as used. Likewise every column, parameter, table, or procedure referenced in the expression that
defines a view column will be shown as used by that column. No dependency information is shown for
procedure parameters. Column level dependencies are not yet inferred through intervening temporary
or common tables.

Example: SYSADMIN.Usage

select array_get(cast(x.col as string[]), 2) from (exec arrayiterate((('a', 'b'),('c','d')))) x

CHAPTER 8. SYSTEM SCHEMA

167

Recursive common table queries can be used to determine transitive relationships.

Example: Finding all incoming usage

Example: Finding all outgoing usage

SYSADMIN.MatViews

The following table supplies information about all the materailized views in the virtual database.

Column name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string Short group name

TargetSchemaName string Name of the materialized table
schema. Will be null for internal
materialization.

TargetName string Name of the materialized table

Valid boolean True if materialized table is
currently valid. Will be null for
external materialization.

SELECT * FROM SYSADMIN.Usage

with im_using as (
 select 0 as level, uid, Uses_UID, Uses_Name, Uses_Object_Type, Uses_ElementName
 from usage where uid = (select uid from sys.tables where name='table name' and
schemaName='schema name')
 union all
 select level + 1, usage.uid, usage.Uses_UID, usage.Uses_Name, usage.Uses_Object_Type,
usage.Uses_ElementName
 from usage, im_using where level < 10 and usage.uid = im_using.Uses_UID) select * from
im_using

with uses_me as (
 select 0 as level, uid, Uses_UID, Name, Object_Type, ElementName
 from usage where uses_uid = (select uid from sys.tables where name='table name' and
schemaName='schema name')
 union all
 select level + 1, usage.uid, usage.Uses_UID, usage.Name, usage.Object_Type,
usage.ElementName
 from usage, uses_me where level < 10 and usage.uses_uid = uses_me.UID) select * from
uses_me

Red Hat Integration 2020.Q1 Data Virtualization Reference

168

LoadState boolean The load state, can be one of
NEEDS_LOADING, LOADING,
LOADED, FAILED_LOAD. Will
be null for external
materialization.

Updated timestamp The timestamp of the last full
refresh. Will be null for external
materialization.

Cardinality integer The number of rows in the
materialized view table. Will be
null for external materialization.

Column name Type Description

Valid, LoadState, Updated, and Cardinality may be checked for external materialized views with the
SYSADMIN.matViewStatus procedure.

Example: SYSADMIN.MatViews

SYSADMIN.VDBResources

The following table provides the current VDB contents.

Column Name Type Description

resourcePath string The path to the contents.

contents blob The contents as a blob.

Example: SYSADMIN.VDBResources

SYSADMIN.Triggers

The following table provides the triggers in the virtual database.

Column name Type Description

VDBName string VDB name

SchemaName string Schema Name

SELECT * FROM SYSADMIN.MatViews

SELECT * FROM SYSADMIN.VDBResources

CHAPTER 8. SYSTEM SCHEMA

169

TableName string Table name

Name string Trigger name

TriggerType string Trigger Type

TriggerEvent string Triggering Event

Status string Is Enabled

Body clob Trigger Action (FOR EACH ROW
…)

TableUID string Table Unique ID

Column name Type Description

Example: SYSADMIN.Triggers

SYSADMIN.Views

The following table provides the views in the virtual database.

Column name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string View name

Body clob View Definition Body (SELECT …)

UID string Table Unique ID

Example: SYSADMIN.Views

SYSADMIN.StoredProcedures

The following table provides the StoredProcedures in the virtual database.

SELECT * FROM SYSADMIN.Triggers

SELECT * FROM SYSADMIN.Views

Red Hat Integration 2020.Q1 Data Virtualization Reference

170

Column name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string Procedure name

Body clob Procedure Definition Body
(BEGIN …)

UID string Unique ID

Example: SYSADMIN.StoredProcedures

SYSADMIN.Requests

The following table provides active requests against the virtual database.

VDBName string(255) NOT NULL,

Column name Type Description

VDBName string VDB name

SessionId string session identifier

ExecutionId long execution identifier

Command clob The query being executed

StartTimestamp timestamp Start timestamp

TransactionId string transaction identifier as reported
by the Transaction Manager

ProcessingState string processing state, can be one of
PROCESSING, DONE,
CANCELED

ThreadState string thread state, can be one of
RUNNING, QUEUED, IDLE

SYSADMIN.Sessions

SELECT * FROM SYSADMIN.StoredProcedures

CHAPTER 8. SYSTEM SCHEMA

171

The following table provides the Sessions active for the virtual database.

Column name Type Description

VDBName string VDB name

SessionId string session identifier

UserName string username

CreatedTime timestamp timestamp of when the session
was created

ApplicationName string application name as reported by
the client

IPAddress string IP Address as reported by the
client

SYSADMIN.Transactions

The following table provides the active Transactions.

Column name Type Description

TransactionId string transaction identifier as reported
by the Transaction Manager

SessionId string session identifier if a session is
currently associated with the
transaction

StartTimestamp timestamp start time of the transaction

Scope string scope of the transaction, can be
one of GLOBAL, LOCAL,
REQUEST, INHERITED.
INHERITED means that a
Transaction was already
associated with the calling thread
(embedded usage).

Note: Transactions that are not associated with a given session will always be shown. Transactions that
are associated with a session must be for a session with the current VDB.

SYSADMIN.isLoggable

Tests if logging is enabled at the given level and context.

Red Hat Integration 2020.Q1 Data Virtualization Reference

172

Returns true if logging is enabled. level can be one of the log4j levels: OFF, FATAL, ERROR, WARN,
INFO, DEBUG, TRACE. level defaults to 'DEBUG' and context defaults to 'org.teiid.PROCESSOR'

Example: isLoggable

SYSADMIN.logMsg

Log a message to the underlying logging system.

Returns true if the message was logged. level can be one of the log4j levels: OFF, FATAL, ERROR,
WARN, INFO, DEBUG, TRACE. The level defaults to 'DEBUG' and context defaults to
'org.teiid.PROCESSOR'. A null msg object will be logged as the string 'null'.

Example: logMsg

The preceding example will log the message 'some debug' at the default level DEBUG to the context
org.something.

8.2.1. SYSADMIN.refreshMatView

Full refresh/load of an internal materialized view. Returns integer RowsUpdated. -1 indicates a load is in
progress, otherwise the cardinality of the table is returned. See the Caching Guide for more information.

See also SYSADMIN.loadMatView

8.2.2. SYSADMIN.refreshMatViewRow

Refreshes a row in an internal materialized view.

Returns integer RowsUpdated. -1 indicates the materialized table is currently invalid. 0 indicates that the
specified row did not exist in the live data query or in the materialized table. See the Caching Guide for
more information.

SYSADMIN.isLoggable(OUT loggable boolean NOT NULL RESULT, IN level string NOT NULL
DEFAULT 'DEBUG', IN context string NOT NULL DEFAULT 'org.teiid.PROCESSOR')

IF ((CALL SYSADMIN.isLoggable(context=>'org.something'))
BEGIN
 DECLARE STRING msg;
 // logic to build the message ...
 CALL SYSADMIN.logMsg(msg=>msg, context=>'org.something')
END

SYSADMIN.logMsg(OUT logged boolean NOT NULL RESULT, IN level string NOT NULL DEFAULT
'DEBUG', IN context string NOT NULL DEFAULT 'org.teiid.PROCESSOR', IN msg object)

CALL SYSADMIN.logMsg(msg=>'some debug', context=>'org.something')

SYSADMIN.refreshMatView(OUT RowsUpdated integer NOT NULL RESULT, IN ViewName string
NOT NULL, IN Invalidate boolean NOT NULL DEFAULT 'false')

CHAPTER 8. SYSTEM SCHEMA

173

https://teiid.github.io/teiid-documents/master/content/caching/Caching_Guide.html

Example: SYSADMIN.refreshMatViewRow

The materialized view SAMPLEMATVIEW has 3 rows under the TestMat Model as below:

Assuming the primary key only contains one column, id, update the second row:

Assuming the primary key contains more columns, a and b, update the second row:

8.2.3. SYSADMIN.refreshMatViewRows

Refreshes rows in an internal materialized view.

Returns integer RowsUpdated. -1 indicates the materialized table is currently invalid. Any row that does
not exist in the live data query or in the materialized table will not count toward the RowsUpdated. For
more information, see the Teiid Caching Guide.

Example: SYSADMIN.refreshMatViewRows

Continuing use the SAMPLEMATVIEW in Example of SYSADMIN.refreshMatViewRow. Assuming the
primary key only contains one column, id, update all rows:

Assuming the primary key comtain more columns, id, a and b compose of the primary key, update all
rows:

8.2.4. SYSADMIN.setColumnStats

SYSADMIN.CREATE FOREIGN PROCEDURE refreshMatViewRow(OUT RowsUpdated integer
NOT NULL RESULT, IN ViewName string NOT NULL, IN Key object NOT NULL, VARIADIC
KeyOther object)

EXEC SYSADMIN.refreshMatViewRow('TestMat.SAMPLEMATVIEW', '101')

EXEC SYSADMIN.refreshMatViewRow('TestMat.SAMPLEMATVIEW', '101', 'a1', 'b1')

SYSADMIN.refreshMatViewRows(OUT RowsUpdated integer NOT NULL RESULT, IN ViewName
string NOT NULL, VARIADIC Key object[] NOT NULL)

EXEC SYSADMIN.refreshMatViewRows('TestMat.SAMPLEMATVIEW', ('100',), ('101',), ('102',))

EXEC SYSADMIN.refreshMatViewRows('TestMat.SAMPLEMATVIEW', ('100', 'a0', 'b0'), ('101', 'a1',
'b1'), ('102', 'a2', 'b2'))

Red Hat Integration 2020.Q1 Data Virtualization Reference

174

http://teiid.github.io/teiid-documents/master/sb/caching/Caching_Guide.html

Set statistics for the given column.

All stat values are nullable. Passing a null stat value will leave corresponding metadata value unchanged.

8.2.5. SYSADMIN.setProperty

Set an extension metadata property for the given record. Extension metadata is typically used by
Translators.

Setting a value to null will remove the property.

Example: Property Set

The preceding example will set the property 'some name'='some value' on table tab.

NOTE

The use of this procedure will not trigger replanning of associated prepared plans.

Properties from built-in teiid_* namespaces can be set using the the short form - namespace:key form.

8.2.6. SYSADMIN.setTableStats

Set statistics for the given table.

NOTE

SYSADMIN.setColumnStats, SYSADMIN.setProperty, SYSADMIN.setTableStats are
Metadata Procedures.

SYSADMIN.matViewStatus

matViewStatus is used to retrieve the status of materialized views via schemaName and viewName.

Returns tables which contains TargetSchemaName, TargetName, Valid, LoadState, Updated,
Cardinality, LoadNumber, OnErrorAction.

SYSADMIN.setColumnStats(IN tableName string NOT NULL, IN columnName string NOT NULL, IN
distinctCount long, IN nullCount long, IN max string, IN min string)

SYSADMIN.setProperty(OUT OldValue clob NOT NULL RESULT, IN UID string NOT NULL, IN Name
string NOT NULL, IN "Value" clob)

CALL SYSADMIN.setProperty(uid=>(SELECT uid FROM TABLES WHERE name='tab'),
name=>'some name', value=>'some value')

SYSADMIN.setTableStats(IN tableName string NOT NULL, IN cardinality long NOT NULL)

SYSADMIN.matViewStatus(IN schemaName string NOT NULL, IN viewName string NOT NULL)
RETURNS TABLE (TargetSchemaName varchar(50), TargetName varchar(50), Valid boolean,
LoadState varchar(25), Updated timestamp, Cardinality long, LoadNumber long, OnErrorAction
varchar(25))

CHAPTER 8. SYSTEM SCHEMA

175

SYSADMIN.loadMatView

loadMatView is used to perform a complete refresh of an internal or external materialized table.

Returns integer RowsInserted. -1 indicates the materialized table is currently loading. And -3 indicates
there was an exception when performing the load. See the Caching Guide for more information.

Example: loadMatView

SYSADMIN.updateMatView

The updateMatView procedure is used to update a subset of an internal or external materialized table
based on the refresh criteria.

The refresh criteria might reference the view columns by qualified name, but all instances of . in the view
name will be replaced by _, because an alias is actually being used.

Returns integer RowsUpdated. -1 indicates the materialized table is currently invalid. And-3 indicates
there was an exception when performing the update. See the Caching Guide for more information.

SYSADMIN.updateMatView

Continuing use the SAMPLEMATVIEW in Example of SYSADMIN.refreshMatViewRow. Update view
rows:

SYSADMIN.cancelRequest

Cancel the user request identified by execution id for the given session.

See also SYSADMIN.REQUESTS

Example: Cancel

SYSADMIN.terminateSession

Terminate the session with the given identifier.

See also SYSADMIN.SESSIONS

SYSADMIN.loadMatView(IN schemaName string NOT NULL, IN viewName string NOT NULL, IN
invalidate boolean NOT NULL DEFAULT 'false') RETURNS integer

exec SYSADMIN.loadMatView(schemaName=>'TestMat',viewname=>'SAMPLEMATVIEW',
invalidate=>'true')

SYSADMIN.updateMatView(IN schemaName string NOT NULL, IN viewName string NOT NULL, IN
refreshCriteria string) RETURNS integer

EXEC SYSADMIN.updateMatView('TestMat', 'SAMPLEMATVIEW', 'id = ''101'' AND a = ''a1''')

SYSADMIN.cancelRequest(OUT cancelled boolean NOT NULL RESULT, IN SessionId string NOT
NULL, IN executionId long NOT NULL)

CALL SYSADMIN.cancelRequest('session id', 1)

Red Hat Integration 2020.Q1 Data Virtualization Reference

176

Example: Termination

SYSADMIN.terminateTransaction

Terminate the transaction associated with a session by marking the transaction as rollback only.

See also SYSADMIN.TRANSACTIONS

NOTE

You cannot only cancel transactions that are associated with a session.

Example: Terminate

SYSADMIN.terminateSession(OUT terminated boolean NOT NULL RESULT, IN SessionId string
NOT NULL)

CALL SYSADMIN.terminateSession('session id')

SYSADMIN.terminateTransaction(IN sessionid string NOT NULL)

CALL SYSADMIN.terminateTransaction('session id')

CHAPTER 8. SYSTEM SCHEMA

177

CHAPTER 9. TRANSLATORS
Data Virtualization uses the Teiid Connector Architecture (TCA), which provides a robust mechanism for
integrating with external systems. The TCA defines a common client interface between Data
Virtualization and an external system that includes metadata as to what SQL constructs are available for
pushdown and the ability to import metadata from the external system.

A Translator is the heart of the TCA and acts as the bridge logic between Data Virtualization and an
external system.

Translators can have a number of configurable properties. These are broken down into execution
properties, which determine aspects of how data is retrieved, and import settings, which determine what
metadata is read for import.

The execution properties for a translator typically have reasonable defaults. For specific translator
types, such as the Derby translator, base execution properties are already tuned to match the source. In
most cases the user will not need to adjust their values.

Table 9.1. Base execution properties - shared by all translators

Name Description Default

Immutable Set to true to indicate that the
source never changes. The
transactional capability is
reported as NONE, and update
commands will fail.

false

RequiresCriteria Set to true to indicate that
source
SELECT/UPDATE/DELETE
queries require a where clause.

false

SupportsOrderBy Set to true to indicate that the
ORDER BY clause can be used.

false

SupportsOuterJoins Set to true to indicate that
OUTER JOINs can be used.

false

SupportsFullOuterJoins If SupportsOuterJoins is set to
true, true indicates that FULL
OUTER JOINs can be used.

false

SupportsInnerJoins Set to true to indicate that
INNER JOINs can be used.

false

SupportedJoinCriteria If join capabilities are enabled,
defines the criteria that can be
used as the join criteria. May be
one of (ANY, THETA, EQUI, or
KEY).

ANY

Red Hat Integration 2020.Q1 Data Virtualization Reference

178

MaxInCriteriaSize If the use of IN criteria is enabled,
specifies the maximum number of
IN entries per predicate. -1
indicates no limit.

-1

MaxDependentInPredicates If the use of IN criteria is enabled,
defines what the maximum
number of predicates that can be
used for a dependent join. Values
less than 1 indicate to use only one
IN predicate per dependent value
pushed (which matches the pre-
7.4 behavior).

-1

DirectQueryProcedureName If
SupportsDirectQueryProced
ure is set to true for the
translator, this property indicates
the name of the procedure.

native

SupportsDirectQueryProcedure Set to true to indicate that direct
execution of commands is
available for the translator.

false

ThreadBound Set to true to indicate the
translator’s Executions should be
processed by only a single thread

false

CopyLobs If true, then returned large object
(LOB) data (clob, blob, sql/xml) is
copied by the engine in a memory
safe manner. Use this option if the
source does not provide memory
safe LOBS or if you want to
disconnect LOBS from the source
connection.

false

TransactionSupport The highest level of transaction
capability. Used by the engine as
a hint to determine if a
transaction is needed for
autoCommitTxn=DETECT
mode. Can be one of XA, NONE,
or LOCAL. If XA or LOCAL then
access under a transaction will be
serialized.

XA

Name Description Default

NOTE

CHAPTER 9. TRANSLATORS

179

NOTE

Only a subset of the available metadata can be set through execution properties on the
base ExecutionFactory. All methods are available on the
BaseDelegatingExecutionFactory.

There are no base importer settings.

Override execution properties

For all translators, you can override Execution Properties in the main vdb file.

Example: Overriding a translator property

.

The preceding example overrides the oracle translator and sets the RequiresCriteria property to true.
The modified translator is only available in the scope of this VDB. As many properties as desired may be
overriden together.

See also VDB Definition.

Parameterizable native queries

In some situations the teiid_rel:native-query property and native procedures accept
parameterizable strings that can positionally reference IN parameters. A parameter reference has
the form `$integer, for example, $1. Note that one-based indexing is used and that only IN parameters
may be referenced. Dollar-sign integer is therefore reserved, but may be escaped with another $`, for
example, $$1. The value will be bound as a prepared value or a literal is a source specific manner. The
native query must return a result set that matches the expectation of the calling procedure.

For example the native-query select c from g where c1 = $1 and c2 = '$$1' results in a JDBC source
query of select c from g where c1 = ? and c2 = '$1', where ?` will be replaced with the actual value
bound to parameter 1.

General import properties

Several import properties are shared by all translators.

When specifying an importer property, it must be prefixed with importer.. For example,
importer.tableTypes.

CREATE FOREIGN DATA WRAPPER "oracle-override" TYPE oracle OPTIONS (RequiresCriteria
'true');

CREATE SERVER ora FOREIGN DATA WRAPPER "oracle-override" OPTIONS ("resource-name"
'java:/oracle');

CREATE SCHEMA ora SERVER ora;

SET SCHEMA ora;

IMPORT FROM SERVER ora INTO ora;

Red Hat Integration 2020.Q1 Data Virtualization Reference

180

Name Description Default

autoCorrectColumnNames Replace any usage of . in a
column name with _ as the period
character is not valid in Data
Virtualization column names.

true

renameDuplicateColumns If true, rename duplicate columns
caused by either mixed case
collisions or
autoCorrectColumnNames
replacing . with _. A suffix _n
where n is an integer will be
added to make the name unique.

false

renameDuplicateTables If true, rename duplicate tables
caused by mixed case collisions. A
suffix _n where n is an integer will
be added to make the name
unique.

false

renameAllDuplicates If true, rename all duplicate
tables, columns, procedures, and
parameters caused by mixed case
collisions. A suffix _n where n is
an integer will be added to make
the name unique. Supersedes the
individual rename duplicate
options.

false

nameFormat Set to a Java string format to
modify table and procedure
names on import. The only
argument will be the original name
Data Virtualization name. For
example use prod_%s to prefix
all names with prod_.

9.1. AMAZON S3 TRANSLATOR

The Amazon Simple Storage Service (S3) translator, known by the type name amazon-s3, exposes
stored procedures to leverage Amazon S3 object resources.

This translator is typically used with the TEXTTABLE or XMLTABLE functions to consume CSV or XML
formatted data, or to read Microsoft Excel files or other object files that are stored in Amazon S3. The
S3 translator can access Amazon S3 by using an AWS access key ID and secret access key.

Usage

In the following example, a virtual database reads a CSV file with the name g2.txt from an Amazon S3
bucket called teiidbucket:

CHAPTER 9. TRANSLATORS

181

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="example" version="1">
 <model name="s3">
 <source name="web-connector" translator-name="user-s3" connection-jndi-
name="java:/amazon-s3"/>
 </model>
 <model name="Stocks" type="VIRTUAL">
 <metadata type="DDL"><![CDATA[
 CREATE VIEW G2 (e1 integer, e2 string, e3 double,PRIMARY KEY (e1))
 AS SELECT SP.e1, SP.e2,SP.e3
 FROM (EXEC s3.getTextFile(name=>'g2.txt')) AS f,
 TEXTTABLE(f.file COLUMNS e1 integer, e2 string, e3 double HEADER) AS SP;
]]> </metadata>
 </model>
 <translator name="user-s3" type="amazon-s3">
 <property name="accesskey" value="xxxx"/>
 <property name="secretkey" value="xxxx"/>
 <property name="region" value="us-east-1"/>
 <property name="bucket" value="teiidbucket"/>
 </translator>
</vdb>

Execution properties

Use the translator override mechanism to supply the following properties.

Name Description Default

Encoding The encoding that should be used
for CLOBs returned by the
getTextFiles procedure. The
value should match an encoding
known to the JRE.

The system default encoding.

Accesskey Amazon security access key. Log
in to Amazon console to find your
security access key. When
provided, this becomes the
default access key.

n/a

Secretkey Amazon security secret key. Log
in to Amazon console to find your
security secret key. When
provided, this becomes the
default secret key.

n/a

e1,e2,e3
5,'five',5.0
6,'six',6.0
7,'seven',7.0

Red Hat Integration 2020.Q1 Data Virtualization Reference

182

Region Amazon region to be used with
the request. When provided, this
will be default region used.

n/a

Bucket Amazon S3 bucket name. If
provided, this will serve as default
bucket to be used for all the
requests

n/a

Encryption When server-side encryption with
customer-provided encryption
keys (SSE-C) is used, the key is
used to define the "type" of
encryption algorithm used. You
can configure the translator to
use the AES-256 or AWS-KMS
encryption algorithms. If
provided, this will be used as
default algorithm for all "get"
based calls.

n/a

Encryptionkey When SSE-C type encryption
used, where customer supplies
the encryption key, this key will be
used for defining the "encryption
key". If provided, this will be used
as default key for all "get" based
calls.

n/a

Name Description Default

TIP

For information about setting properties, see Override execution property in Translators, and review the
examples in the sections that follow.

Procedures exposed by translator

When you add the a model (schema) like above in the example, the following procedure calls are
available for user to execute against Amazon S3.

NOTE

bucket, region, accesskey, secretkey, encryption and encryptionkey are optional or
nullable parameters in most of the methods provided. Provide them only if they are not
already configured by using translator override properties as shown in preceding example.

getTextFile(…)

Retrieves the given named object as a text file from the specified bucket and region by using the

CHAPTER 9. TRANSLATORS

183

Retrieves the given named object as a text file from the specified bucket and region by using the
provided security credentials as CLOB.

NOTE

endpoint is optional. When provided the endpoint URL is used instead of the one
constructed by the supplied properties. Use encryption and encryptionkey only in when
server side security with customer supplied keys (SSE-C) in force.

If the value of stream is true, then returned LOBs are read only once and are not typically buffered to
disk.

Examples

getFile(…)

Retrieves the given named object as binary file from specified bucket and region using the provided
security credentials as BLOB.

NOTE

endpoint is optional. When provided the endpoint URL is used instead of the one
constructed by the supplied properties. Use encryption and encryptionkey only in when
server side security with customer supplied keys (SSE-C) in force.

If the value of stream is true, then returned lOBs are read once and are not typically buffered to disk.

Examples

getTextFile(string name NOT NULL, string bucket, string region,
 string endpoint, string accesskey, string secretkey,string encryption, string encryptionkey, boolean
stream default false)
 returns TABLE(file blob, endpoint string, lastModified string, etag string, size long);

exec getTextFile(name=>'myfile.txt');

SELECT SP.e1, SP.e2,SP.e3, f.lastmodified
 FROM (EXEC getTextFile(name=>'myfile.txt')) AS f,
 TEXTTABLE(f.file COLUMNS e1 integer, e2 string, e3 double HEADER) AS SP;

getFile(string name NOT NULL, string bucket, string region,
 string endpoint, string accesskey, string secretkey, string encryption, string encryptionkey, boolean
stream default false)
 returns TABLE(file blob, endpoint string, lastModified string, etag string, size long)

exec getFile(name=>'myfile.xml', bucket=>'mybucket', region=>'us-east-1', accesskey=>'xxxx',
secretkey=>'xxxx');

select b.* from (exec getFile(name=>'myfile.xml', bucket=>'mybucket', region=>'us-east-1',
accesskey=>'xxxx', secretkey=>'xxxx')) as a,
XMLTABLE('/contents' PASSING XMLPARSE(CONTENT a.result WELLFORMED) COLUMNS e1
integer, e2 string, e3 double) as b;

Red Hat Integration 2020.Q1 Data Virtualization Reference

184

saveFile(…)

Save the CLOB, BLOB, or XML value to given name and bucket. In the following procedure signature,
the contents parameter can be any of the LOB types.

NOTE

You cannot use saveFile to stream or chunk uploads of a file’s contents. If you try to load
very large objects, out-of-memory issues can result. You cannot configure saveFile to
use SSE-C encryption.

Examples

exec saveFile(name=>'g4.txt', contents=>'e1,e2,e3\n1,one,1.0\n2,two,2.0');

deleteFile(…)

Delete the named object from the bucket.

Examples

exec deleteFile(name=>'myfile.txt');

list(…)

Lists the contents of the bucket.

The result is the XML file that Amazon S3 provides in the following format

call saveFile(string name NOT NULL, string bucket, string region, string endpoint,
 string accesskey, string secretkey, contents object)

call deleteFile(string name NOT NULL, string bucket, string region, string endpoint, string accesskey,
string secretkey)

call list(string bucket, string region, string accesskey, string secretkey, nexttoken string)
 returns Table(result clob)

<?xml version="1.0" encoding="UTF-8"?>/n
<ListBucketResult
 xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>teiidbucket</Name>
 <Prefix></Prefix>
 <KeyCount>1</KeyCount>
 <MaxKeys>1000</MaxKeys>
 <IsTruncated>false</IsTruncated>
 <Contents>
 <Key>g2.txt</Key>
 <LastModified>2017-08-08T16:53:19.000Z</LastModified>
 <ETag>"fa44a7893b1735905bfcce59d9d9ae2e"</ETag>
 <Size>48</Size>

CHAPTER 9. TRANSLATORS

185

You can parse this into a view by using a query similar to the one in the following example:

If all properties (bucket, region, accesskey, and secretkey) are defined as translator override
properties, you can run the following simple query:

SELECT * FROM Bucket

NOTE

If there are more then 1000 object in the bucket, then the value 'NextContinuationToken'
need to be supplied as 'nexttoken' into the list call to fetch the next batch of objects. This
can be automated in Data Virtualization with enhancement request.

9.2. DELEGATOR TRANSLATORS

You can use the delegator translator, which is available in the core Data Virtualization installation, to
modify the capabilities of a existing translator. Often times for debugging purposes, or in special
situations, you might want to turn certain capabilities of a translator on or off. For example, say that the
latest version of a Hive database supports the ORDER BY construct, but the current Data Virtualization
version of the Hive translator does not. You could use the delegator translator to enable ORDER BY
compatibility without actually writing any code. Similarly, you could do the reverse, and turn off certain
capabilities to produce a better plan.

To use the delegator translator, you must define it in the DDL. The following example shows how to
override the "hive" translator and turn off the ORDER BY capability.

For more information about the translator capabilities that you can override by using execution
properties, see Translator_Capabilities in the Translator Development Guide . The preceding example
shows how you might modify the default ORDER BY compatibility of the Hive translator.

9.2.1. Extending the delegator translator

You can create a delegating translator by extending

 <StorageClass>STANDARD</StorageClass>
 </Contents>
</ListBucketResult>

select b.* from (exec list(bucket=>'mybucket', region=>'us-east-1')) as a,
 XMLTABLE(XMLNAMESPACES(DEFAULT 'http://s3.amazonaws.com/doc/2006-03-01/'),
'/ListBucketResult/Contents'
 PASSING XMLPARSE(CONTENT a.result WELLFORMED) COLUMNS Key string, LastModified
string, ETag string, Size string,
 StorageClass string, NextContinuationToken string PATH '../NextContinuationToken') as b;

CREATE DATABASE myvdb;
USE DATABASE myvdb;
CREATE FOREIGN DATA WRAPPER "hive-delegator" TYPE delegator OPTIONS (delegateName
'hive', supportsOrderBy 'false');
CREATE SERVER source FOREIGN DATA WRAPPER "hive-delegator" OPTIONS ("resource-
name" 'java:hive-ds');
CREATE SCHEMA mymodel SERVER source;
SET SCHEMA mymodel;
IMPORT FROM SERVER source INTO mymodel;

Red Hat Integration 2020.Q1 Data Virtualization Reference

186

https://teiid.github.io/teiid-documents/master/content/dev/Translator_Capabilities.html

You can create a delegating translator by extending
the org.teiid.translator.BaseDelegatingExecutionFactory. After your classes are packaged as a
custom translator, you can wire another translator instance into your delegating translator at runtime in
order to intercept all of the calls to the delegate. This base class does not provide any functionality on
its own, other than delegation. You can hard code capabilities into the translator instead of defining
them as part of the DDL configuration. You can also override methods to provide alternate behavior.

Table 9.2. Execution properties

Name Description Default

delegateName Translator instance name to
delegate to.

n/a

cachePattern Regex pattern of queries that
should be cached using the
translator caching API.

n/a

cacheTtl Time to live in milliseconds for
queries matching the cache
pattern.

n/a

For example, if you use the oracle translator in your virtual database, and you want to intercept calls that
go through the translator, you could write a custom delegating translator, as in the following example:

You could then deploy this translator in the Data Virtualization engine. Then in your DDL file, define an
interceptor translator as in the following example:

@Translator(name="interceptor", description="interceptor")
public class InterceptorExecutionFactory extends
org.teiid.translator.BaseDelegatingExecutionFactory{
 @Override
 public void getMetadata(MetadataFactory metadataFactory, C conn) throws TranslatorException {
 // do intercepting code here..

 // If you want call the original delegate, do not call if do not need to.
 // but if you did not call the delegate fullfill the method contract
 super.getMetadata(metadataFactory, conn);

 // do more intercepting code here..
 }
}

CREATE DATABASE myvdb VERSION '1';
USE DATABASE myvdb VERSION '1';
CREATE FOREIGN DATA WRAPPER "oracle-interceptor" TYPE interceptor OPTIONS
(delegateName 'oracle');
CREATE SERVER source FOREIGN DATA WRAPPER "oracle-interceptor" OPTIONS ("resource-
name" 'java:oracle-ds');

CHAPTER 9. TRANSLATORS

187

We have defined a "translator" override called oracle-interceptor, which is based on the custom
translator "interceptor" from above, and supplied the translator it needs to delegate to "oracle" as its
delegateName. Then, we used this override translator oracle-interceptor in the VDB. Future calls going
into this VDB model’s translator are intercepted by your code to do whatever you want to do.

9.3. FILE TRANSLATOR

The file translator, known by the type name file, exposes stored procedures to leverage file resources.
The translator is typically used with the TEXTTABLE or XMLTABLE functions to consume CSV or XML
formatted data.

Table 9.3. Execution properties

Name Description Default

Encoding The encoding that should be used
for CLOBs returned by the
getTextFiles procedure. The
value should match an encoding
known to Data Virtualization. For
more information, see TO_CHARS
and TO_BYTES in String
functions.

The system default encoding.

ExceptionIfFileNotFound Throw an exception in getFiles or
getTextFiles if the specified
file/directory does not exist.

true

TIP

For information about how to set properties, see the following example, and Override execution
properties in Translators.

Example: Virtual datbase DDL override

getFiles

CREATE SCHEMA mymodel SERVER source;
SET SCHEMA mymodel;
IMPORT FROM SERVER source INTO mymodel;

CREATE SERVER "file-override"
 FOREIGN DATA WRAPPER file
 OPTIONS(
 Encoding 'ISO-8859-1', "ExceptionIfFileNotFound" false
);

CREATE SCHEMA file SERVER "file-override";

getFiles(String pathAndPattern) returns
TABLE(file blob, filePath string, lastModified timestamp, created timestamp, size long)

Red Hat Integration 2020.Q1 Data Virtualization Reference

188

Retrieve all files as BLOBs matching the given path and pattern.

If the path is a directory, then all files in the directory are returned. If the path matches a single file, the
file is returned.

The * character is treated as a wildcard to match any number of characters in the path name. Zero or
matching files will be returned.

If *’ is not used, and if the path doesn’t exist and `ExceptionIfFileNotFound is true, then an
exception is raised.

getTextFiles

NOTE

The size reports the number of bytes.

Retrieve all files as CLOBs matching the given path and pattern.

Retrieves the same files getFiles, but with the difference that the results are CLOB values that use the
encoding execution property as the character set.

saveFile

Save the CLOB, BLOB, or XML value to given path

deleteFile

Delete the file at the given path

The path should reference an existing file. If the file does not exist and ExceptionIfFileNotFound is
true, then an exception will be thrown. An exception is also thrown if the file cannot be deleted.

NATIVE QUERIES

This feature is not applicable for the File translator.

DIRECT QUERY PROCEDURE

This feature is not applicable for the File translator.

call getFiles('path/*.ext')

getTextFiles(String pathAndPattern) returns
TABLE(file clob, filePath string, lastModified timestamp, created timestamp, size long)

call getTextFiles('path/*.ext')

call saveFile('path', value)

call deleteFile('path')

CHAPTER 9. TRANSLATORS

189

9.4. GOOGLE SPREADSHEET TRANSLATOR

The google-spreadsheet translator is used to connect to a Google Sheets spreadsheet.

The query approach expects that the data in the worksheet has the following characteristics:

All columns that contains data can be queried.

Any column with an empty cell has the value retrieved as null. However, differentiating between
null string and empty string values may not always be possible as Google treats them
interchangeably. Where possible, the translator may provide a warning or throw an exception if it
cannot differentiate between null and empty strings.

If the first row is present and contains string values, then the row is assumed to represent the
column labels.

If you are using the default native metadata import, the metadata for your Google account (worksheets
and information about columns in worksheets) is loaded upon translator start up. If you make any
changes in data types, it is advisable to restart your virtual database.

The translator can submit queries against a single sheet only. It provides ordering, aggregation, basic
predicates, and most of the functions available in the spreadsheet query language.

The google-spreadsheet translator does not provide importer settings, but it can provide metadata for
VDBs.

WARNING

If you remove all data rows from a sheet with a header that is defined in Data
Virtualization, you can no longer access the sheet through Data Virtualization. The
Google API will treat the header as a data row at that point, and queries to it will no
longer be valid.

WARNING

Non-string fields are updated using the canonical Data Virtualization SQL value. In
cases where the spreadsheet is using a non-conforming locale, consider disallowing
updates. For more information, see TEIID-4854 and the following information
about the allTypesUpdatable import property.

Importer properties

allTypesUpdatable- Set to true to mark all columns as updatable. Set to false to enable update
only on string or Boolean columns that are not affected by TEIID-4854. Defaults to true.

Native queries

Red Hat Integration 2020.Q1 Data Virtualization Reference

190

https://issues.redhat.com/browse/TEIID-4854
https://issues.redhat.com/browse/TEIID-4854

Google spreadsheet source procedures may be created using the teiid_rel:native-query extension. For
more information, see Parameterizable native queries in Translators. The procedure will invoke the
native-query similar to an native procedure call, with the benefits that the query is predetermined, and
that result column types are known, rather than requiring the use of ARRAYTABLE or similar
functionality. For more information, see the Select section that follows.

DIRECT QUERY PROCEDURE

This feature is turned off by default, because of the security risk in permitting any
command to execute against the data source. To enable this feature, set the property
SupportsDirectQueryProcedure to true. For more information, see Override execution
properties in Translators.

TIP

By default the name of the procedure that executes the queries directly is called native. You can
change its name by overriding the execution property DirectQueryProcedureName. For more
information, see Override execution properties in Translators.

The Google spreadsheet translator provides a procedure to execute any ad-hoc query directly against
the source without any Data Virtualization parsing or resolving. Because the metadata of this
procedure’s execution results are not known to Data Virtualization, they are returned as an object array.
You can use ARRAYTABLE to construct tabular output for consumption by client applications. For more
information, see ARRAYTABLE.

Data Virtualization exposes this procedure with a simple query structure as shown in the following
example:

Select example

The first argument takes semicolon-separated (;) name-value pairs of the following properties to
execute the procedure:

Property Description Required

worksheet Google spreadsheet name. yes

query Spreadsheet query. yes

limit Number of rows to fetch. no

offset Offset of rows to fetch from limit
or beginning.

no

9.5. JDBC TRANSLATORS

The JDBC translators bridge the SQL semantics and data type differences between Data Virtualization

SELECT x.* FROM (call google_source.native('worksheet=People;query=SELECT A, B, C')) w,
 ARRAYTABLE(w.tuple COLUMNS "id" string , "type" string, "name" String) AS x

CHAPTER 9. TRANSLATORS

191

The JDBC translators bridge the SQL semantics and data type differences between Data Virtualization
and a target RDBMS. Data Virtualization has a range of specific translators that target the most popular
open source and proprietary relational databases.

Usage

Usage of a JDBC source is straight-forward. Using Data Virtualization SQL, the source can be queried as
if the tables and procedures were local to the Data Virtualization system.

If you are using a relational data source, or a data source that has a JDBC driver, and you do not find a
specific translator available for that data source type, then start with the JDBC ANSI translator. The
JDBC ANSI translator should enable you to perform the SQL basics. If there specific data source
capabilities that are not available, you can define a custom translator that does what you need. For more
information, see Translator Development.

Type conventions

UID types including UUID, GUID, or UNIQUEIDENTIFIER are typically mapped to the Data Virtualization
string type. JDBC data sources treat UID strings as non-case sensitive, but they are case-sensitive in
Data Virtualization. If the source does not support the implicit conversion to the string type, then usage
in functions that expect a string value might fail at the source.

The following table lists the execution properties that are shared by all JDBC translators.

Table 9.4. Execution properties — Shared by all JDBC translators

Name Description Default

DatabaseTimeZone The time zone of the database.
Used when fetching date, time, or
timestamp values.

The system default time zone

DatabaseVersion The specific database version.
Used to further tune the use of
pushdown operations.

The base compatible version, or
the version that is derived from
the
DatabaseMetadata.getDatabase
ProductVersion string. Automatic
detection requires a connection.
If there are circumstances where
you are getting an exception due
to capabilities being unavailable
(for example, because a
connection is not available), then
set DatabaseVersion property.
Use the
JDBCExecutionFactory.uses
DatabaseVersion()` method to
control whether your translator
requires a connection to
determine capabilities.

Red Hat Integration 2020.Q1 Data Virtualization Reference

192

https://teiid.github.io/teiid-documents/master/content/dev/Translator_Development.html

TrimStrings true trims trailing whitespace
from fixed length character
strings. Note that Data
Virtualization only has a string, or
varchar, type that treats trailing
whitespace as meaningful.

false

RemovePushdownCharacters Set to a regular expression to
remove characters that not
allowed or undesirable for the
source. For example [\u0000] will
remove the null character, which
is problematic for sources such as
PostgreSQL and Oracle. Note
that this does effectively change
the meaning of the affected
string literals and bind values,
which must be carefully
considered.

UseBindVariables true indicates that
PreparedStatements should be
used and that literal values in the
source query should be replace
with bind variables. If false only
LOB values will trigger the use of
PreparedStatements.

true

UseCommentsInSourceQuery This will embed a leading
comment with session/request id
in the source SQL for
informational purposes. Can be
customized with the
CommentFormat property.

false

Name Description Default

CHAPTER 9. TRANSLATORS

193

CommentFormat MessageFormat string to be used
if
UseCommentsInSourceQuer
y is enabled. You can set the
format to one of the following
values:

0 - Session ID string.

1 - Parent request ID
string.

2 - Request part ID
string.

3 - Execution count ID
string.

4 - User name string.

5 - VDB name string.

6 - VDB version integer.

7 - Is transactional
boolean.

/*teiid sessionid:\{0},
requestid:\{1}.\{2}*/

MaxPreparedInsertBatchSize The max size of a prepared insert
batch.

2048

StructRetrieval Specify one of the following
Struct retrieval modes:

OBJECT - getObject
value returned.

COPY - Returned as a
SerialStruct.

ARRAY - Returned as an
array.

OBJECT

EnableDependentJoins Allow dependent join pushdown
for sources that use temporary
tables (DB2, Derby, H2, HSQL
2.0+, MySQL 5.0+, Oracle,
PostgreSQL, SQLServer, SQP IQ,
Sybase).

false

Name Description Default

Importer properties — Shared by all JDBC translators

When specifying the importer property, it must be prefixed with importer.. Example:
importer.tableTypes

Red Hat Integration 2020.Q1 Data Virtualization Reference

194

http://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html

Name Description Default

catalog See
DatabaseMetaData.getTables [1]

null

schemaName Recommended setting to import
from a single schema. The
schema name will be converted
into an escaped
pattern,overriding schemaPattern
if it is also set.

null

schemaPattern See
DatabaseMetaData.getTables [1]

null

tableNamePattern See
DatabaseMetaData.getTables [1]

null

procedureNamePattern See
DatabaseMetaData.getProcedure
s [1]

null

tableTypes Comma separated list — without
spaces — of imported table types.
See
DatabaseMetaData.getTables
[1]

null

excludeTables A case-insensitive regular
expression that when matched
against a fully qualified table
name [2] will exclude it from
import. Applied after table names
are retrieved. Use a negative
look-ahead (?!<inclusion
pattern>).* to act as an inclusion
filter.

null

excludeProcedures A case-insensitive regular
expression that when matched
against a fully qualified procedure
name [2] will exclude it from
import. Applied after procedure
names are retrieved. Use a
negative look-ahead (?!<inclusion
pattern>).* to act as an inclusion
filter.

null

CHAPTER 9. TRANSLATORS

195

importKeys true to import primary and
foreign keys.

NOTE: Foreign keys to tables that
are not imported will be ignored.

true

autoCreateUniqueConstraints true to create a unique constraint
if one is not found for a foreign
keys

true

importIndexes true to import index/unique
key/cardinality information

false

importApproximateIndexes true to import approximate index
information. See
DatabaseMetaData.getIndexInfo
[1].

WARNING: Setting to false may
cause lengthy import times.

true

importProcedures true to import procedures and
procedure columns - Note that it
is not always possible to import
procedure result set columns due
to database limitations. It is also
not currently possible to import
overloaded procedures.

false

importSequences true to import sequences.
Compatible only with Db2, Oracle,
PostgreSQL, SQL Server, and H2.
A matching sequence will be
imported to a 0-argument Data
Virtualization function
name_nextval.

false

sequenceNamePattern LIKE pattern string to use when
importing sequences. Null or %
will match all.

null

Name Description Default

Red Hat Integration 2020.Q1 Data Virtualization Reference

196

useFullSchemaName When false, directs the importer
to use only the object name as
the Data Virtualization name. It is
expected that all objects will
come from the same foreign
schema. When true (not
recommended) the Data
Virtualization name will be formed
using the catalog and schema
names as directed by the
useCatalogName and
useQualifiedName properties,
and it will be allowed for objects
to come from multiple foreign
schema. This option does not
affect the name in source
property.

false (only change when importing
from multiple foreign schema).

useQualifiedName true will use name qualification
for both the Data Virtualization
name and name in source as
further refined by the
useCatalogName and
useFullSchemaName
properties. Set to false to
disable all qualification for both
the Data Virtualization name and
the name in source, which
effectively ignores the
useCatalogName and
useFullSchemaName
properties.

WARNING: When you set this
option to false, it can lead to
objects with duplicate names
when importing from multiple
schemas, which results in an
exception.

true (rarely needs changed)

Name Description Default

CHAPTER 9. TRANSLATORS

197

useCatalogName true will use any non-null/non-
empty catalog name as part of
the name in source, e.g.
"catalog"."schema"."table"."colum
n", and in the Data Virtualization
runtime name if applicable. false
will not use the catalog name in
either the name in source nor the
Data Virtualization runtime name.
Only required to be set to false
for sources such as HSQL that do
not use the catalog concept, but
return a non-null/non-empty
catalog name in their metadata.

true (rarely needs changed)

widenUnsignedTypes true to convert unsigned types to
the next widest type. For
example, SQL Server reports
tinyint as an unsigned type. With
this option enabled, tinyint would
be imported as a short instead of
a byte.

true

useIntegralTypes true to use integral types rather
than decimal when the scale is 0.

false

quoteNameInSource false will override the default and
direct Data Virtualization to
create source queries using
unquoted identifiers.

true

useAnyIndexCardinality true will use the maximum
cardinality returned from
DatabaseMetaData.getIndexI
nfo. importKeys or
importIndexes needs to be
enabled for this setting to have an
effect. This allows for better stats
gathering from sources that don’t
return a statistical index.

false

importStatistics true will use database dependent
logic to determine the cardinality
if none is determined. Not
available for all database types — 
currently available for Oracle and
MySQL only.

false

Name Description Default

Red Hat Integration 2020.Q1 Data Virtualization Reference

198

importRowIdAsBinary true will import RowId columns
as varbinary values.

false

importLargeAsLob true will import character and
binary types larger than the Data
Virtualization max as CLOB or
BLOB respectively. If you
experience memory issues even
with the property enabled, you
should use the copyLob
execution property as well.

false

Name Description Default

[1] JavaDoc for DatabaseMetaData
[2] The fully qualified name for exclusion is based upon the settings of the translator and the particulars
of the database. All of the applicable name parts used by the translator settings (see
useQualifiedName and useCatalogName) including catalog, schema, table will be combined as
catalogName.schemaName.tableName with no quoting. For example, Oracle does not report a
catalog, so the name used with default settings for comparison would be just schemaName.tableName.

WARNING

The default import settings will crawl all available metadata. This import process is
time-consuming, and full metadata import is not needed in most situations. Most
commonly you’ll want to limit the import by at least schemaName or
schemaPattern and tableTypes.

Example: Importer settings to import only tables and views from my-schema.

For more information about importer settings, see Virtual databases.

Native queries

Physical tables, functions, and procedures may optionally have native queries associated with them. No
validation of the native query is performed, it is simply used in a straight-forward manner to generate the
source SQL. For a physical table setting the teiid_rel:native-query extension metadata will execute the
native query as an inline view in the source query. This feature should only be used against sources that
provide inline views. The native query is used as is and is not treated as a parameterized string. For
example, on a physical table y with nameInSource="x"` and teiid_rel:native-query="select c from g",
the Data Virtualization source query "SELECT c FROM y" would generate the SQL query "SELECT c
FROM (select c from g) as x". Note that the column names in the native query must match the
nameInSource of the physical table columns for the resulting SQL to be valid.

SET SCHEMA ora;

IMPORT FOREIGN SCHEMA "my-schema" FROM SERVER ora INTO ora OPTIONS
("importer.tableTypes" 'TABLE,VIEW');

CHAPTER 9. TRANSLATORS

199

http://docs.oracle.com/javase/8/docs/api/java/sql/DatabaseMetaData.html

For physical procedures you may also set the teiid_rel:native-query extension metadata to a desired
query string with the added ability to positionally reference IN parameters . For more information, see
Parameterizable native queries in Translators. The teiid_rel:non-prepared extension metadata
property can be set to false to turn off parameter binding.

Be careful in setting this option, because inbound allows for SQL injection attacks if not properly
validated. The native query does not need to call a stored procedure. Any SQL that returns a result set
that positionally matches the result set that is expected by the physical stored procedure metadata will
work. For example on a stored procedure x with teiid_rel:native-query="select c from g where c1 =
$1 and c2 = `$$1"', the Data Virtualization source query `"CALL x(?)"` would generate the SQL query
`"select c from g where c1 = ? and c2 = `$1"' .̀ Note that ? in this example will be replaced with the
actual value bound to parameter 1.

Direct query procedure

This feature is turned off by default, because of the inherent security risk in allowing any command to be
run against the source. To enable this feature, override the execution property called
SupportsDirectQueryProcedure and set it to true. For more information, see Override execution
properties in Translators.

By default, the name of the procedure that executes the queries directly is native. To change the name,
override the execution property DirectQueryProcedureName.

The JDBC translator provides a procedure to execute any ad-hoc SQL query directly against the source
without Data Virtualization parsing or resolving. Since the metadata of this procedure’s results are not
known to Data Virtualization, they are returned as an object array. ARRAYTABLE can be used construct
tabular output for consumption by client applications. For more information, see arraytable.

SELECT example

INSERT example

UPDATE example

DELETE example

9.5.1. Actian Vector translator (actian-vector)

Also see common JDBC Translators information.

The Actian Vector translator, known by the type name actian-vector, is for use with Actian Vector in
Hadoop.

SELECT x.* FROM (call jdbc_source.native('select * from g1')) w,
 ARRAYTABLE(w.tuple COLUMNS "e1" integer , "e2" string) AS x

SELECT x.* FROM (call jdbc_source.native('insert into g1 (e1,e2) values (?, ?)', 112, 'foo')) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

SELECT x.* FROM (call jdbc_source.native('update g1 set e2=? where e1 = ?','blah', 112)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

SELECT x.* FROM (call jdbc_source.native('delete from g1 where e1 = ?', 112)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

Red Hat Integration 2020.Q1 Data Virtualization Reference

200

http://esd.actian.com/Express/readme_HSE_2.0.html

Download the JDBC driver at http://esd.actian.com/platform. Note the port number in the connection
URL is "AH7", which maps to 16967.

9.5.2. Apache Phoenix Translator (phoenix)

Also see common JDBC Translators information.

The Apache Phoenix translator, known by the type name phoenix, exposes querying functionality to
HBase tables. Apache Phoenix is a JDBC SQL interface for HBase that is required for this translator as it
pushes down commands into Phoenix SQL.

The translator is also known by the deprecated name hbase. The name change reflects that the
translator is specific to Phoenix and that there could be other translators introduced in the future to
connect to HBase.

Do not use the DatabaseTimezone property with this translator.

The HBase translator cannot process Join commands. Phoenix uses the HBase Table Row ID as the
Primary Key. This Translator is developed with Phoenix 4.3 or greater for HBase 0.98.1 or greater.

NOTE

The translator implements INSERT/UPDATE through the Phoenix UPSERT operation.
This means you can see different behavior than with standard INSERT/UPDATE. For
example, repeated inserts will not throw a duplicate key exception, but will instead update
the row in question.

NOTE

Due to Phoenix driver limitations, the importer does not look for unique constraints, and
defaults to not importing foreign keys.

NOTE

The translator can process SQL OFFSET arguments and other features starting with
Phoenix 4.8. The Phoenix driver hard codes the server version in
PhoenixDatabaseMetaData, and does not otherwise provide a way to detect the server
version at runtime. If a newer driver is used with an older server, set the database version
translator property manually.

WARNING

The Phoenix driver does not have robust handling of time values. If your time values
are normalized to use a date component of 1970-01-01, then the default handling
will work correctly. If not, then the time column should be modeled as timestamp
instead.

9.5.3. Cloudera Impala translator (impala)

Also see common JDBC Translators information.

CHAPTER 9. TRANSLATORS

201

http://esd.actian.com/platform
http://hbase.apache.org/
http://phoenix.apache.org/
http://phoenix.apache.org/language/index.html

The Cloudera Impala translator, known by the type name impala, is for use with Cloudera Impala 1.2.1 or
later.

Impala has limited support for data types. It is does not have native support for time/date/xml or LOBs.
These limitations are reflected in the translator capabilities. A Data Virtualization view can use these
types, however the transformation would need to specify the necessary conversions. Note that in those
situations, the evaluations will be done in the Data Virtualization engine.

Do not use the DatabaseTimeZone translator property with the Impala translator.

Impala only supports EQUI join, so using any other joins types on its source tables will result in inefficient
queries.

To write criteria based on partitioned columns, model them on the source table, but do not include them
in selection columns.

NOTE

Impala Hive importer does not have concept of catalog or source schema, nor does it
import keys, procedures, indexes, etc.

Impala specific importer properties

useDatabaseMetaData

Set to true to use the normal import logic with the option to import index information disabled.
Defaults to false.

If the value of useDatabaseMetaData is false, the typical JDBC DatabaseMetaData calls are not used,
so not all of the common JDBC importer properties are applicable to Impala. You may still use
excludeTables, regardless.

IMPORTANT

Some versions of Impala require the use of a LIMIT when performing an ORDER BY. If no
default is configured in Impala, an exception can occur when a Data Virtualization query
with an ORDER BY but no LIMIT is issued. You should set an Impala-wide default, or
configure the connection pool to use a new connection SQL string to issue a SET
DEFAULT_ORDER_BY_LIMIT statement. For more information about Impala limit
options, such as how to control what happens when the limit is exceeded, see the
Cloudera documentation.

NOTE

If the Impala JDBC driver has problems processing PreparedStatements or parsing
statements in general, try disabling useBindVariables. For more information, see
https://issues.redhat.com/browse/TEIID-4610.

9.5.4. Db2 Translator (db2)

Also see common JDBC Translators information.

The Db2 translator, known by the type name db2, is for use with IBM Db2 V8 or later, or IBM Db2 for i
V5.4 or later.

Db2 execution properties

Red Hat Integration 2020.Q1 Data Virtualization Reference

202

https://issues.redhat.com/browse/TEIID-4610

Db2 execution properties

DB2ForI

Indicates that the the Db2 instance is Db2 for i. Defaults to false.

supportsCommonTableExpressions

Indicates that the Db2 instance supports common table expressions (CTEs). Defaults to true.
Common table expression are not fully supported on some older versions of Db2, and on instances of
Db2 that run in a conversion mode. If you encounter errors working with CTEs in these environments,
set the CTE property to false.

9.5.5. Derby translator (derby)

Also see common JDBC Translators information.

The Derby translator, known by the type name derby, is for use with Derby 10.1 or later.

9.5.6. Exasol translator (exasol)

Also see common JDBC Translators information.

The Exasol translator, known by the type name exasol, is for use with Exasol version 6 or later.

Usage

The Exasol database has the NULL HIGH default ordering, whereas the Data Virtualization engine works
in the NULL LOW mode. As a result, depending on whether the ordering is pushed down to Exasol or
done by the engine, you might observe NULLs at either the beginning or end of returned results. To
enforce consistency, you can run Data Virtualization with org.teiid.pushdownDefaultNullOrder=true to
specify NULL LOW ordering. Enforcing NULL LOW ordering can result in decreased performance.

9.5.7. Greenplum Translator (greenplum)

Also see common JDBC Translators information.

The Greenplum translator, known by the type name greenplum, is for use with the Greenplum database.
This translator is an extension of the PostgreSQL translator, and inherits its options.

9.5.8. H2 Translator (h2)

Also see common JDBC Translators information.

The H2 Translator, known by the type name h2, is for use with H2 version 1.1 or later.

9.5.9. Hive Translator (hive)

Also see common JDBC Translators information.

The Hive translator, known by the type name hive, is for use with Hive v.10 and SparkSQL v1.0 and later.

Capabilities

Hive is compatible with a limited set of data types. It does not have native support for time/XML or large
objects (LOBs). These limitations are reflected in the translator capabilities. Although a Data
Virtualization view can use these types, the transformation must specify the necessary conversions.
Note that in those situations, evaluations are processed in Data Virtualization engine.

CHAPTER 9. TRANSLATORS

203

Do not use the DatabaseTimeZone translator property with the Hive translator.

Hive only supports EQUI join, so using any other joins types on its source tables will result in inefficient
queries.

To write criteria based on partitioned columns, model them on the source table, but do not include them
in selection columns.

NOTE

The Hive importer does not have the concept of catalog or source schema, nor does it
import keys, procedures, indexes, and so forth.

Import properties

trimColumnNames

For Hive 0.11.0 and later, the DESCRIBE command metadata is inappropriately returned with
padding. Set this property to true to remove white space from column names. Defaults to false.

useDatabaseMetaData

For Hive 0.13.0 and later, the normal JDBC DatabaseMetaData facilities are sufficient to perform an
import. Set to true to use the normal import logic with the option to import index information
disabled. Defaults to false. When true, trimColumnNames has no effect. If it is set to false, the
typical JDBC DatabaseMetaData calls are not used, so not all of the common JDBC importer
properties are applicable to Hive. You can still use excludeTables anyway.

"Database Name"

When the database name used in Hive differs from default, the metadata retrieval and execution of
queries does not work as expected in Data Virtualization. The Hive JDBC driver seems to be implicitly
connecting (tested with < 0.12) to "default" database, thus ignoring the database name mentioned on
connection URL. You can work around this issue if you configure your connection source to send the
command use {database-name}.

This is fixed in version 0.13 and later of the Hive JDBC driver. For more information, see
https://issues.apache.org/jira/browse/HIVE-4256.

Limitations

Empty tables might report their description without datatype information. To work around this problem
when importing, you can exclude empty tables, or use the useDatabaseMetaData option.

9.5.10. HSQL Translator (hsql)

Also see common JDBC Translators information.

The HSQL Translator, known by the type name hsql, is for use with HSQLDB 1.7 or later.

9.5.11. Informix translator (informix)

Also see common JDBC Translators information.

The Informix translator, known by the type name informix, is for use with any Informix version.

Known issues

Red Hat Integration 2020.Q1 Data Virtualization Reference

204

https://issues.redhat.com/browse/TEIID-2524
https://issues.apache.org/jira/browse/HIVE-4256

TEIID-3808

The Informix driver’s handling of timezone information is inconsistent, even if the databaseTimezone
translator property is set. Verify that the Informix server and the application server are in the same
time zone.

9.5.12. Ingres translators (ingres / ingres93)

Also see common JDBC Translators information.

You can use one of the following Ingres translators, depending on your Ingres version:

ingres

The Ingres translator, known by the type name ingres, is for use with Ingres 2006 or later.

ingres93

The Ingres93 translator, known by the type name ingres93, is for use with Ingres 9.3 or later.

9.5.13. Intersystems Caché translator (intersystems-cache)

Also see common JDBC Translators information.

The Intersystem Caché translator, known by the type name intersystems-cache, is for use with
Intersystems Caché Object database (relational aspects only).

9.5.14. JDBC ANSI translator (jdbc-ansi)

Also see common JDBC Translators information.

The JDBC ANSI translator, known by the type name jdbc-ansi, works with most of the SQL constructs
used in Data Virtualization, except for row LIMIT/OFFSET and EXCEPT/INTERSECT. It translates
source SQL into ANSI compliant syntax. This translator should be used when another more specific type
is not available. If source exceptions arise due to the use of incompatible SQL constructs, then consider
using the JDBC simple translator to further restrict capabilities, or create a custom translator. For more
information, see the Custom Translator documentation in the Teiid community .

9.5.15. JDBC simple translator (jdbc-simple)

Also see common JDBC Translators information.

The JDBC Simple translator, known by the type name jdbc-simple, is the same as the jdbc-ansi-
translator, except that, to provide maximum compatibility, it does not handle most pushdown constructs.

9.5.16. Microsoft Access translators

Also see common JDBC Translators information.

access

The Microsoft Access translator known by the type name access is for use with Microsoft Access
2003 or later via the JDBC-ODBC bridge.
If you are using the default native metadata import, or the Data Virtualization connection importer,
the importer defaults to importKeys=false and excludeTables=.[.]MSys. to avoid issues with the
metadata provided by the JDBC ODBC bridge. You might need to adjust these values if you use a
different JDBC driver.

CHAPTER 9. TRANSLATORS

205

https://issues.redhat.com/browse/TEIID-3808
http://teiid.github.io/teiid-documents/master/sb/dev/Translator_Development.html

ucanaccess

The Microsoft Access translator known by the type name ucanaccess is for use with Microsoft
Access 2003 or later via the UCanAccess driver.

9.5.17. Microsoft SQL Server translator (sqlserver)

Also see common JDBC translators information.

The Microsoft SQL Server translator, known by the type name sqlserver, is for use with SQL Server
2000 or later. A SQL Server JDBC driver version 2.0 or later (or a compatible driver such as, JTDS 1.2 or
later) should be used. The SQL Server DatabaseVersion property can be set to 2000, 2005, 2008, or
2012, but otherwise expects a standard version number, for example, 10.0.

Sequences

With Data Virtualization 8.5+, sequence operations may be modeled as source functions.

With Data Virtualization 10.0+, sequences may be imported automatically import properties .

Example: Sequence native query

Execution properties

SQL Server specific execution properties:

JtdsDriver

Specifies that use of the open source JTDS driver. Defaults to false.

9.5.18. MySQL translator (mysql/mysql5)

Also see common JDBC translators information.

You can use the following translators with MySQL and MariaDB:

mysql

The MySQL translator, known by the type name mysql, is for use with MySQL version 4.x.

mysql5

The MySQL5 translator, known by the type name mysql5, is for use with MySQL version 5 or later.
The translator also works with other compatible MySQL derivatives, such as MariaDB.

Usage

The MySQL translators expect the database or session to be using ANSI mode. If the database is not
using ANSI mode, you can set ANSI mode on the pool by submitting the following initialization query:

When data includes null timestamp values, Data Virtualization generates the following conversion error:
0000-00-00 00:00:00 cannot be converted to a timestamp. To avoid error, if you expect data with null
timestamp values, set the connection property zeroDateTimeBehavior=convertToNull.

CREATE FOREIGN FUNCTION seq_nextval () returns integer OPTIONS ("teiid_rel:native-query"
'NEXT VALUE FOR seq');

set SESSION sql_mode = 'ANSI'

Red Hat Integration 2020.Q1 Data Virtualization Reference

206

http://ucanaccess.sourceforge.net/site.html

WARNING

If you must retrieve large result sets, consider setting the connection property
useCursorFetch=true. Otherwise MySQL will fully fetch result sets into memory on
the Data Virtualization instance.

NOTE

MySQL reports TINYINT(1) columns as a JDBC BIT type - however the value range is not
actually restricted and may cause issues if for example you are relying on -1 being
recognized as a true value. If not using the native importer, change the BOOLEAN
columns in the affected source to have a native type of "TINYINT(1)" rather than BIT so
that the translator can appropriately handle the Boolean conversion.

9.5.19. Netezza translator (netezza)

Also see common JDBC translators information.

The Netezza translator, known by the type name netezza, is for use with any version of the IBM Netezza
appliance.

Usage

The current vendor-supplied JDBC driver for Netezza performs poorly with single transactional
updates. It is best to perform batched updates whenever possible.

Execution properties

Netezza-specific execution properties:

SqlExtensionsInstalled

Indicates that SQL extensions, including the ability to process Netezza REGEXP_LIKE functions, are
installed. All other REGEXP functions are then available as pushdown functions. Defaults to false.

9.5.20. Oracle translator (oracle)

Also see common JDBC translators information.

The Oracle translator, known by the type name oracle, is for use with Oracle Database 9i or later.

NOTE

The Oracle-provided JDBC driver uses large amounts of memory. Because the driver
caches a high volume of data in the buffer, problems can occur on computers that lack
sufficient memory allocation.

For more information, see the following resources:

Teiid issue.

Oracle whitepaper.

CHAPTER 9. TRANSLATORS

207

https://issues.redhat.com/browse/TEIID-4815
http://www.oracle.com/technetwork/topics/memory.pdf

Importer properties

useGeometryType

Use the Data Virtualization Geometry type when importing columns with a source type of
SDO_GEOMETRY. Defaults to false.

NOTE

Metadata import from Oracle may be slow. It is recommended that at least a schema
name filter is specified. There is also the useFetchSizeWithLongColumn=true
connection property that can increase the fetch size for metadata queries. It
significantly improves the metadata load process, especially when there are a large
number of tables in a schema.

Execution properties

OracleSuppliedDriver

Indicates that the Oracle supplied driver (typically prefixed by ojdbc) is being used. Defaults to true.
Set to false when using DataDirect or other Oracle JDBC drivers.

Oracle-specific metadata

Sequences

You can use sequences with the Oracle translator. You can model a sequence as a table with a name
in source of DUAL, and setting column names in the source set to <sequence name>.
[nextval|currval]
With Data Virtualization 10.0+, you can import sequences automatically.

For more information, see Importer properties in JDBC translators. Data Virtualization 8.4 and Prior
Oracle Sequence DDL

With Data Virtualization 8.5 it’s no longer necessary to rely on a table representation and Oracle-specific
handling for sequences.

For information about representing currval and nextval as source functions, see DDL metadata for
schema objects

8.5 Example: Sequence native query

You can also use a sequence as the default value for insert columns by setting the column to
autoincrement, and setting the name in source to <element name>:SEQUENCE=<sequence name>.
<sequence value>.

Rownum

A rownum column can also be added to any Oracle physical table to enable use of the rownum pseudo-

CREATE FOREIGN TABLE seq (nextval integer OPTIONS (NAMEINSOURCE 'seq.nextval'), currval
integer options (NAMEINSOURCE 'seq.currval')) OPTIONS (NAMEINSOURCE 'DUAL')

CREATE FOREIGN FUNCTION seq_nextval () returns integer OPTIONS ("teiid_rel:native-query"
'seq.nextval');

Red Hat Integration 2020.Q1 Data Virtualization Reference

208

https://docs.oracle.com/cd/E11882_01/appdev.112/e13995/oracle/jdbc/OracleDriver.html

A rownum column can also be added to any Oracle physical table to enable use of the rownum pseudo-
column. A rownum column should have a name in source of rownum. These rownum columns do not
have the same semantics as the Oracle rownum construct so care must be taken in their usage.

Out parameter result set

Out parameters for procedures may also be used to return a result set, if this is not represented
correctly by the automatic import you need to manually create a result set and represent the output
parameter with native type REF CURSOR.

DDL for out parameter result set

Geospatial functions

You can use the following geospatial functions with the translator for Oracle:

Relate = sdo_relate

Nearest_Neighbor = sdo_nn

Within_Distance = sdo_within_distance

Nearest_Neigher_Distance = sdo_nn_distance

Filter = sdo_filter

create foreign procedure proc (in x integer, out y object options (native_type 'REF CURSOR'))
returns table (a integer, b string)

CREATE FOREIGN FUNCTION sdo_relate (arg1 string, arg2 string, arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_relate (arg1 Object, arg2 Object, arg3 string) RETURNS
string;
CREATE FOREIGN FUNCTION sdo_relate (arg1 string, arg2 Object, arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_relate (arg1 Object, arg2 string, arg3 string) RETURNS string;

CREATE FOREIGN FUNCTION sdo_nn (arg1 string, arg2 Object, arg3 string, arg4 integer)
RETURNS string;
CREATE FOREIGN FUNCTION sdo_nn (arg1 Object, arg2 Object, arg3 string, arg4 integer)
RETURNS string;
CREATE FOREIGN FUNCTION sdo_nn (arg1 Object, arg2 string, arg3 string, arg4 integer)
RETURNS string;

CREATE FOREIGN FUNCTION sdo_within_distance (arg1 Object, arg2 Object, arg3 string)
RETURNS string;
CREATE FOREIGN FUNCTION sdo_within_distance (arg1 string, arg2 Object, arg3 string)
RETURNS string;
CREATE FOREIGN FUNCTION sdo_within_distance (arg1 Object, arg2 string, arg3 string)
RETURNS string;

CREATE FOREIGN FUNCTION sdo_nn_distance (arg integer) RETURNS integer;

CHAPTER 9. TRANSLATORS

209

Pushdown functions

Depending on the Oracle version, the Oracle translator, registers the following non-geospatial
pushdown functions with the engine:

TRUNC

Both numeric and timestamp versions.

LISTAGG

Requires the Data Virtualization SQL syntax "LISTAGG(arg [, delim] ORDER BY …)"

SQLXML

If you need to retrieve SQLXML values from Oracle and are getting oracle.xdb.XMLType or OPAQUE
instances instead, you make the following changes:

Use client driver version 11, or later.

Place the xdb.jar and xmlparserv2.jar files in the classpath.

Set the system property oracle.jdbc.getObjectReturnsXMLType="false".
For more information, see the Oracle documentation.

9.5.21. PostgreSQL translator (postgresql)

Also see common JDBC translators information.

The PostgreSQL translator, known by the type name postgresql, is for use with the following
PostgreSQL client and server versions: * Client — 8.0 or later * Server — 7.1 or later.

Execution properties

PostgreSQL-specific execution properties:

PostGisVersion

Indicates the PostGIS version in use. Defaults to 0, which means that PostGIS is not installed. Will be
set automatically if the database version is not set.

ProjSupported

Boolean that indicates if the PostGis version supports PROJ coordinate transformation software.
Will be set automatically if the database version is not set.

NOTE

Some driver versions of PostgreSQL will not associate columns to "INDEX" type tables.
The current version of Data Virtualization omits such tables automatically.

Older versions of Data Virtualization may need the importer.tableType property or other
filtering set.

9.5.22. PrestoDB translator (prestodb)

CREATE FOREIGN FUNCTION sdo_filter (arg1 Object, arg2 string, arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_filter (arg1 Object, arg2 Object, arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_filter (arg1 string, arg2 object, arg3 string) RETURNS string;

Red Hat Integration 2020.Q1 Data Virtualization Reference

210

https://docs.oracle.com/cd/E11882_01/java.112/e16548/jdbcvers.htm#JJDBC28110

Also see common JDBC translators information.

The PrestoDB translator, known by the type name prestodb, exposes querying functionality to Presto
data sources. In data integration respect, PrestoDB has capabilities that are similar to Data
Virtualization, however it goes beyond in terms of distributed query execution with multiple worker
nodes. Data Virtualization’s execution model is limited to single execution node and focuses more on
pushing the query down to sources. Data Virtualization provides more complete querying capabilities
and many enterprise features.

Capabilities

You can use the PrestoDB translator only with SELECT statements. The translator provides a restricted
set of capabilities.

Because PrestoDB exposes a relational model, Data Virtualization can use it as it does other RDBMS
sources, such as Oracle, Db2, and so forth. For information about configuring PrestoDB, see the Presto
documentation.

TIP

In SQL JOIN operations, PrestoDB does not support multiple ORDER BY columns well. If errors occur
during JOIN operations that involve more than one ORDER BY column, set the translator property
supportsOrderBy to disable the use of the ORDER BY clause.

NOTE

Some versions of Presto generate errors when you include null values in subqueries.

TIP

PrestoDB does not support transactions. To overcome issues caused by this limitation, define the data
source as non-transactional.

NOTE

By default, every catalog in PrestoDB has an information_schema. If you have to
configure multiple catalogs, duplicate table errors can cause deployment of a virtual
database to fail. To prevent duplicate table errors, use import options to filter the
schemas.

If you want to configure multiple Presto catalogs, set one of the following import options
to filter the schemas and tables in the source:

Set catalog to a specific catalog name to match the name of the source catalog
in Presto.

Set schemaName to a regular expression to filter schemas by matching result.

Set excludeTables to a regular expression to filter tables by matching results.

9.5.23. Redshift translator (redshift)

Also see common JDBC translators information.

The Redshift translator, known by the type name redshift, is for use with the Amazon Redshift database.

CHAPTER 9. TRANSLATORS

211

The Redshift translator, known by the type name redshift, is for use with the Amazon Redshift database.
This translator is an extension of the PostgreSQL translator and inherits its options.

9.5.24. SAP HANA translator (hana)

Also see common JDBC translators information.

The SAP HANA translator, known by the name of hana, is for use with SAP HANA.

Known issues

TEIID-3805

The pushdown of the SUBSTRING function is inconsistent with the Data Virtualization SUBSTRING
function when the FROM index exceeds the length of the string. SAP HANA will return an empty
string, while Data Virtualization produces a null value.

9.5.25. SAP IQ translator (sap-iq)

Also see common JDBC translators information.

The SAP IQ translator, known by the type name sap-iq, is for use with SAP IQ version 15.1 or later. The
translator name sybaseiq has been deprecated.

9.5.26. Sybase translator (sybase)

Also see common JDBC Translators information.

The Sybase translator, known by the type name sybase, is for use with SAP ASE (Adaptive Server
Enterprise), formerly known as Sybase SQL Server, version 12.5 or later.

If you use the default native import, you can avoid exceptions during the retrieval of system table
information, if you specify import properties. If errors occur when retrieving table information, specify a
schemaName or schemaPattern, or use excludeTables to exclude system tables. For more
information about using import properties, see Importer properties in JDBC translators.

If the name in the source metadata contains quoted identifiers (such as reserved words, or words that
contain characters that would not otherwise be allowed), and you are using a jConnect Sybase driver, you
must first configure the connection pool to enable quoted_identifier:

Example: Driver URL with SQLINITSTRING

IMPORTANT

If you are using a jConnect Sybase driver and will target the source for dependent joins,
set the JCONNECT_VERSION to 6 or later to increase the number of values that the
translator can send. If you do not set the JCONNECT_VERSION, an exception occurs
with statements that have more than 481 bind values.

Example: Driver URL with JCONNECT_VERSION

jdbc:sybase:Tds:host.at.some.domain:5000/db_name?SQLINITSTRING=set quoted_identifier on

Red Hat Integration 2020.Q1 Data Virtualization Reference

212

https://issues.redhat.com/browse/TEIID-3805

Execution properties specific to Sybase

JtdsDriver_

Indicates that the open source JTDS driver is being used. Defaults to false.

9.5.27. Data Virtualization translator (teiid)

Also see common JDBC translators information.

Use the Teiid translator, known by the type name teiid, when creating a virtual database from a Teiid
data source.

9.5.28. Teradata translator (teradata)

Also see common JDBC translators information.

The Teradata translator, known by the type name teradata, is for use with Teradata Database V2R5.1 or
later.

By default, Teradata driver version 15, adjusts date, time, and timestamp values to match the Data
Virtualization server timezone. To remove this adjustment, set the translator DatabaseTimezone
property to GMT or whatever the Teradata server defaults to.

9.5.29. Vertica translator (vertica)

Also see common JDBC translators information.

The Vertica translator, known by the type name vertica, is for use with Vertica 6 or later.

9.6. LOOPBACK TRANSLATOR

The Loopback translator, known by the type name loopback, provides a quick testing solution. It works
with all SQL constructs and returns default results, with some configurable behavior.

Table 9.5. Execution properties

Name Description Default

ThrowError true to always throw an error. false

RowCount Rows returned for non-update
queries.

1

WaitTime Wait randomly up to this number
of milliseconds with each source
query.

0

jdbc:sybase:Tds:host.at.some.domain:5000/db_name?SQLINITSTRING=set quoted_identifier
on&JCONNECT_VERSION=6

CHAPTER 9. TRANSLATORS

213

PollIntervalInMilli If positive, results will be
asynchronously returned — 
that is a
DataNotAvailableException
will be thrown initially and the
engine will wait the poll interval
before polling for the results.

-1

DelegateName Set to the name of the translator
which is to be mimicked.

na

Name Description Default

You can also use the Loopback translator to mimic how a real source query would be formed for a given
translator (although loopback will still return dummy data that might not be useful for your situation). To
enable this behavior, set the DelegateName property to the name of the translator that you want to
mimic. For example, to disable all capabilities, set the DelegateName property to jdbc-simple.

9.7. MICROSOFT EXCEL TRANSLATOR

The Microsoft Excel Translator, known by the type name excel, exposes querying functionality to a
Microsoft Excel document. This translator provides an easy way read a Excel spreadsheet and provide
the contents of the spreadsheet in a tabular form that can be integrated with other sources in Data
Virtualization.

NOTE

This translator works on all platforms, including Windows and Linux. The translator uses
Apache POI libraries to access the Excel documents which are platform independent.

Translation mapping

The following table describes how Excel translator interprets the data in Excel document into relational
terms.

Excel Term Relational term

Workbook schema

Sheet Table

Row Row of data

Cell Column Definition or Data of a column

The Excel translator provides a "source metadata" feature, where for a given Excel workbook, it can
introspect and build the schema based on the worksheets that are defined within it. There are options
available to detect header columns and data columns in a worksheet to define the correct metadata of a
table.

Red Hat Integration 2020.Q1 Data Virtualization Reference

214

DDL example

The following example shows how to expose an Excel spreadsheet in a virtual database.

Headers in document

If the Excel document contains headers, you can guide the import process to select the cell headers as
the column names in the table creation process. For information about defining import properties, see
the following table, and also see Importer Properties in JDBC translators.

Import properties

Import properties guide the schema generation part during the deployment of the VDB. This can be
used in a native import.

Property Name Description Default

importer.excelFileName Defines the name of the Excel
Document to import metadata.
This can be defined as a file
pattern (*.xls), however when
defined as pattern all files must
be of same format, and the
translator will choose an arbitrary
file to import metadata from. Use
file patterns to read data from
multiple Excel documents in the
same directory. In the case of a
single file, specify the absolute
name.

Required

importer.headerRowNumber Defines the cell header
information to be used as column
names.

Optional. Default is first data row
of sheet

importer.dataRowNumber Defines the row number where
the data rows start.

Optional. Default is first data row
of sheet.

To enable information in the Excel spreadsheet to be interpreted correctly, it is best to define all the
preceding importer properties.

NOTE

CREATE DATABASE excelvdb;
USE DATABASE excelvdb;
CREATE SERVER connector FOREIGN DATA WRAPPER excel OPTIONS ("resource-name"
'java:/fileDS');
CREATE SCHEMA excel SERVER connector;
SET SCHEMA excel;
IMPORT FROM SERVER connector INTO excel OPTIONS (
 "importer.headerRowNumber" '1',
 "importer.ExcelFileName" 'names.xls');

CHAPTER 9. TRANSLATORS

215

NOTE

Purely numerical cells in a column contain containing mixed types will have a string form
matching their decimal representation, thus integral values will have .0 appended. If you
need the exact text representation, then the cell must be a string value. You can force a
string value by preceding the numeric text of a cell with a single quote ('), or a single
space.

Translator extension properties

Excel specific execution properties

FormatStrings

Format non-string cell values in a string column according to the worksheet format. Defaults
to false.

Metadata extension properties
Properties that are defined on schema artifacts, such as Table, Column, Procedure and so forth.
These properties describe how the translator interacts with or interprets source systems. All the
properties are defined with the following namespace:
"http://www.teiid.org/translator/excel/2014[http://www.teiid.org/translator/excel/2014\]",
which also has a recognized alias teiid_excel.

Property Name Schema item property
belongs to

Description Mandatory

FILE Table Defines Excel Document
name or name pattern
(*.xls). File pattern can
be used to read data
from multiple files.

Yes

FIRST_DATA_ROW_NU
MBER

Table Defines the row number
where records start in
the sheet (applies to
every sheet).

Optional

CELL_NUMBER Column of Table Defines cell number to
use for reading data of
particular column.

Yes

The following example shows a table that is defined by using the extension metadata properties.

CREATE DATABASE excelvdb;
USE DATABASE excelvdb;
CREATE SERVER connector FOREIGN DATA WRAPPER excel OPTIONS ("resource-name"
'java:/fileDS');
CREATE SCHEMA excel SERVER connector;
SET SCHEMA excel;
CREATE FOREIGN TABLE Person (
 ROW_ID integer OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_excel:CELL_NUMBER" 'ROW_ID'),
 FirstName string OPTIONS (SEARCHABLE 'Unsearchable', "teiid_excel:CELL_NUMBER"

Red Hat Integration 2020.Q1 Data Virtualization Reference

216

http://www.teiid.org/translator/excel/2014\

Extended capabilities using ROW_ID column

If you define a column that has extension metadata property CELL_NUMBER with value ROW_ID, then
that column value contains the row information from Excel document. You can mark this column as
Primary Key. You can use this column in SELECT statements with a restrictive set of capabilities
including: comparison predicates, IN predicates and LIMIT. All other columns cannot be used as
predicates in a query.

TIP

Importing source metadata is not the only way to create the schema of an Excel document. You can also
create a source table manually, and then add the extension properties that you need to create a fully
functional model. Metadata imports result in schema models similar to the one in the preceding example.

The Excel translator processes updates with the following limitations:

The ROW_ID cannot be directly modified or used as an insert value.

UPDATE and INSERT values must be literals.

UPDATEs are not transactional. That is, the write lock is held while the file is written, but not
throughout the entire update. As a result, it is possible for one update to overwrite another.

The ROW_ID of an inserted row can be returned as a generated key.

NATIVE QUERIES

This feature is not applicable for the Excel translator.

DIRECT QUERY PROCEDURE

This feature is not applicable for the Excel translator.

9.8. MONGODB TRANSLATOR

The MongoDB translator, known by the type name mongodb, provides a relational view of data that
resides in a MongoDB database. This translator is capable of converting Data Virtualization SQL queries
into MongoDB based queries. It provides for a full range of SELECT, INSERT, UPDATE and DELETE
calls.

MongoDB is a document based "schema-less" database with it own query language. It does not map
perfectly with relational concepts or the SQL query language. More and more systems are using NOSQL
stores such as MongoDB to improve scalability and performance. For example, applications like storing
audit logs, or managing web site data, are well-suited to MongoDB, and do not require the structure of
relational databases. MongoDB uses JSON documents as its primary storage unit, and those documents

'1'),
 LastName string OPTIONS (SEARCHABLE 'Unsearchable', "teiid_excel:CELL_NUMBER"
'2'),
 Age integer OPTIONS (SEARCHABLE 'Unsearchable', "teiid_excel:CELL_NUMBER" '3'),
 CONSTRAINT PK0 PRIMARY KEY(ROW_ID)
) OPTIONS ("NAMEINSOURCE" 'Sheet1',"teiid_excel:FILE" 'names.xlsx',
"teiid_excel:FIRST_DATA_ROW_NUMBER" '2')

CHAPTER 9. TRANSLATORS

217

can have additional embedded documents inside the parent document. By using embedded documents,
MongoDB co-locates related information to achieve de-normalization that typically requires either
duplicate data or joins to achieve querying in a relational database.

For MongoDB to work with Data Virtualization the challenge for the MongoDB translator is to design a
MongoDB store that can achieve the balance between relational and document based storage. The
advantages of "schema-less" design are great at development time. But "schema-less" design can pose
problems during migration between application versions, and when querying data, and making effective
use of the returned information.

Since it is hard and may be impossible in certain situations to derive a schema based on existing the
MongoDB collection(s), Data Virtualization approaches the problem in reverse compared to other
translators. When working with MongoDB, Data Virtualization requires you to define the MongoDB
schema upfront, by using Data Virtualization metadata. Because Data Virtualization only allows relational
schema as its metadata, you must define your MongoDB schema in relational terms, using tables,
procedures, and functions. For the purposes of MongoDB, the Data Virtualization metadata has been
extended to provide extension properties that can be defined on a table to convert it into a MongoDB
based document. These extension properties let you define how a MongoDB document is structured
and stored. Based on the relationships (primary-key, foreign-key) that are defined on a table, and their
cardinality (ONE-to-ONE, ONE-to-MANY, MANY-to-ONE), relations between tables are mapped such
that related information can be embedded along with the parent document for co-location (as
mentioned earlier in this topic). Thus, a relational schema-based design, but document-based storage in
MongoDB.

Who is the primary audience for the MongoDB translator?

The above may not satisfy every user’s needs. The document structure in MongoDB can be more
complex than what Data Virtualization can currently define. We hope this will eventually catch up in
future versions of Data Virtualization. This is currently designed for:

Users who are using relational databases and would like to move/migrate their data to
MongoDB to take advantage of scaling and performance without modifying end user
applications that they currently run.

Users who are seasoned SQL developers, but do not have experience with MongoDB. This
provides a low barrier of entry compared to using MongoDB directly as an application developer.

Users who want to integrate MongoDB-based data with data from other enterprise data
sources.

Usage

The name of the translator to use in a virtual database DDL is "mongodb". For example:

The MongoDB translator can derive the metadata based on existing document collections in some
scenarios. However, when working with complex documents the interpretation of metadata can be
inaccurate. In such cases, you must define the metadata. For example, you can define a schema using
DDL, as shown in the following example:

CREATE DATABASE nothwind;
USE DATABASE nothwind;
CREATE SERVER local FOREIGN DATA WRAPPER mongodb OPTIONS ("resource-name"
'java:/mongoDS');
CREATE SCHEMA northwind SERVER local;

SET SCHEMA northwind;
IMPORT FROM SERVER local INTO northwind;

Red Hat Integration 2020.Q1 Data Virtualization Reference

218

When the following INSERT operation is executed against a table using Data Virtualization, the
MongoDB translator creates a document in the MongoDB:

If a PRIMARY KEY is defined on the table, then that column name is automatically used as "_id" field in
the MongoDB collection, and then the document structure is stored in the MongoDB, as shown in the
following examples:

If you defined the composite PRIMARY KEY on Customer table, the document structure that results is
shown in the following example:

<vdb name="nothwind" version="1">
 <model name="northwind">
 <source name="local" translator-name="mongodb" connection-jndi-name="java:/mongoDS"/>
 <metadata type="DDL"><![CDATA[
 CREATE FOREIGN TABLE Customer (
 customer_id integer,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');
]]> </metadata>
 </model>
<vdb>

 INSERT INTO Customer(customer_id, FirstName, LastName) VALUES (1, 'John', 'Doe');

{
 _id: ObjectID("509a8fb2f3f4948bd2f983a0"),
 customer_id: 1,
 FirstName: "John",
 LastName: "Doe"
}

 CREATE FOREIGN TABLE Customer (
 customer_id integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
}

 CREATE FOREIGN TABLE Customer (
 customer_id integer,
 FirstName varchar(25),
 LastName varchar(25),
 PRIMARY KEY (FirstName, LastName)
) OPTIONS(UPDATABLE 'TRUE');

{
 _id: {

CHAPTER 9. TRANSLATORS

219

Data types

The MongoDB translator provides automatic mapping of Data Virtualization data types into MongoDB
data types, including BLOBS, CLOBS and XML. The LOB mapping is based on GridFS in MongoDB.
Arrays are in the following form:

Users can get individual items in the array using the function array_get, or can transform the array into
tabular structure using ARRAYTABLE.

NOTE

Note that even though embedded documents can also be in arrays, the handling of
embedded documents is different from array with scalar values.

NOTE

The translator does not work with regular Expressions, MongoDB::Code,
MongoDB::MinKey, MongoDB::MaxKey, and MongoDB::OID.

NOTE

In documents that contain values of mixed types for the same key, you must mark the
column as unsearchable, or MongoDB will not correctly match predicates against the
column. A key is used as a mixed type of it is represented as a string value in one
document, and an integer in another. For more information, see the
importer.sampleSize property in the following table.

Importer Properties

Importer properties define the behavior of the translator during the metadata import from the physical
source.

Importer Properties

Name Description Default

excludeTables Regular expression to exclude the
tables from import.

null

 FirstName: "John",
 LastName: "Doe"
 },
 customer_id: 1,
}

{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
 Score: [89, "ninety", 91.0]
}

Red Hat Integration 2020.Q1 Data Virtualization Reference

220

includeTables Regular expression to include the
tables from import.

null

sampleSize Number of documents to sample
to determine the structure. If
documents have different fields,
or fields with different types, this
should be greater than 1.

1

fullEmbeddedNames Whether to prefix embedded
table names with their parents,
e.g. parent_embedded. If false
the name of the table will just be
the name of the field - which may
lead to conflicts with existing
tables or other embedded tables.

false

Name Description Default

MongoDB metadata extension properties for building complex documents

Using the preceding DDL, or any other metadata facility, you can map a table in a relational store into a
document in MongoDB. However, to make effective use of MongoDB, you must be able to build
complex documents that can co-locate related information, so that data can queried in a single
MongoDB query. Unlike a relational database, you cannot run join operations in MongoDB. As as a result,
unless you can build complex documents, you would have to issue multiple queries to retrieve data and
then join it manually. The power of MongoDB comes from its "embedded" documents, its support for
complex data types, such as arrays, and its use of an aggregation framework to query them. This
translator provides a way to achieve the goals.

When you do not define the complex embedded documents in MongoDB, Data Virtualization can step in
for join processing and provide that functionality. However, if you want to make use of the power of
MongoDB itself in querying the data and avoid bringing the unnecessary data and improve
performance, you need to look into building these complex documents.

MongoDB translator defines two additional metadata properties along with other Teiid metadata
properties to aid in building the complex "embedded" documents. For more information about Data
Virtualization schema metadata, see Section 2.2, “DDL metadata for schema objects” . You can use the
following metadata properties in your DDL:

teiid_mongo:EMBEDDABLE

Means that data defined in this table is allowed to be included as an "embeddable" document in any
parent document. The parent document is referenced by the foreign key relationships. In this
scenario, Data Virtualization maintains more than one copy of the data in MongoDB store, one in its
own collection, and also a copy in each of the parent tables that have relationship to this table. You
can even nest embeddable table inside another embeddable table with some limitations. Use this
property on table, where table can exist, encompass all its relations on its own. For example, a
"Category" table that defines a "Product"’s category is independent of Product, which can be
embeddable in "Products" table.

teiid_mongo:MERGE

Means that data of this table is merged with the defined parent table. There is only a single copy of
the data that is embedded in the parent document. Parent document is defined using the foreign
key relationships.

CHAPTER 9. TRANSLATORS

221

Using the above properties and FOREIGN KEY relationships, we will illustrate how to build complex
documents in MongoDB.

USAGE

A given table can contain either the teiid_mongo:EMBEDDABLE property or the
teiid_mongo:MERGE property defining the type of nesting in MongoDB. You cannot
use both properties within one table.

ONE-2-ONE Mapping

If your current DDL structure representing ONE-2-ONE relationship is like

By default, this will produce two different collections in MongoDB, like with sample data it will look like

You can enhance the storage in MongoDB to a single collection by using teiid_mongo:MERGE
extension property on the table’s OPTIONS clause.

 CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE Address (
 CustomerId integer,
 Street varchar(50),
 City varchar(25),
 State varchar(25),
 Zipcode varchar(6),
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

Customer
{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
}

Address
{
 _id: ObjectID("..."),
 CustomerId: 1,
 Street: "123 Lane"
 City: "New York",
 State: "NY"
 Zipcode: "12345"
}

 CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

Red Hat Integration 2020.Q1 Data Virtualization Reference

222

this will produce single collection in MongoDB, like

With the above both tables are merged into a single collection that can be queried together using the
JOIN clause in the SQL command. Since the existence of child/additional record has no meaning with
out parent table using the "teiid_mongo:MERGE" extension property is right choice in this situation.

NOTE

The Foreign Key defined on a child table must refer to Primary Keys on both the parent
and child tables to form a One-2-One relationship.

ONE-2-MANY Mapping.

Typically there can be more than two (2) tables involved in this relationship. If MANY side is only
associated single table, then use teiid_mongo:MERGE property on MANY side of table and define
ONE as the parent. If associated with more than single table then use teiid_mongo:EMBEDDABLE.

For example, if you define a virtual database as in the following DDL:

 CREATE FOREIGN TABLE Address (
 CustomerId integer PRIMARY KEY,
 Street varchar(50),
 City varchar(25),
 State varchar(25),
 Zipcode varchar(6),
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:MERGE" 'Customer');

Customer
{
 _id: 1,
 FirstName: "John",
 LastName: "Doe",
 Address:
 {
 Street: "123 Lane",
 City: "New York",
 State: "NY",
 Zipcode: "12345"
 }
}

 CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,

CHAPTER 9. TRANSLATORS

223

then a Single Customer can have MANY Orders. There are two options to define the how we store the
MongoDB document. If in your schema, the Customer table’s CustomerId is only referenced in Order
table (i.e. Customer information used for only Order purposes), you can use

that will produce a single document for Customer table like

If Customer table is referenced in more tables other than Order table, then use
"teiid_mongo:EMBEDDABLE" property

 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:MERGE" 'Customer');

{
 _id: 1,
 FirstName: "John",
 LastName: "Doe",
 Order:
 [
 {
 _id: 100,
 OrderDate: ISODate("2000-01-01T06:00:00Z")
 Status: 2
 },
 {
 _id: 101,
 OrderDate: ISODate("2001-03-06T06:00:00Z")
 Status: 5
 }
 ...
]
}

 CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:EMBEDDABLE" 'TRUE');

 CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,

Red Hat Integration 2020.Q1 Data Virtualization Reference

224

This creates three different collections in MongoDB.

Here as you can see the Customer table contents are embedded along with other table’s data where
they were referenced. This creates duplicated data where multiple of these embedded documents are
managed automatically in the MongoDB translator.

NOTE

 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE Comments (
 CommentID integer PRIMARY KEY,
 CustomerId integer,
 Comment varchar(140),
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

Customer
{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
}

Order
{
 _id: 100,
 CustomerId: 1,
 OrderDate: ISODate("2000-01-01T06:00:00Z")
 Status: 2
 Customer:
 {
 FirstName: "John",
 LastName: "Doe"
 }
}

Comment
{
 _id: 12,
 CustomerId: 1,
 Comment: "This works!!!"
 Customer:
 {
 FirstName: "John",
 LastName: "Doe"
 }
}

CHAPTER 9. TRANSLATORS

225

NOTE

All the SELECT, INSERT, DELETE operations that are generated against the tables with
"teiid_mongo:EMBEDDABLE" property are atomic, except for UPDATES, as there can be
multiple operations involved to update all the copies. Since there are no transactions in
MongoDB, Data Virtualization plans to provide automatic compensating transaction
framework around this in future releases TEIID-2957.

MANY-2-ONE Mapping.

This is same as ONE-2-MANY, see above to define relationships.

NOTE

A parent table can have multiple "embedded" and as well as "merge" documents inside it,
it not limited so either one or other. However, please note that MongoDB imposes
document size is limited can not exceed 16MB.

MANY-2-MANY Mapping.

This can also mapped with combination of "teiid_mongo:MERGE" and "teiid_mongo:EMBEDDABLE"
properties (partially). For example if DDL looks like

you modify the DDL like below, to have

 CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 OrderDate date,
 Status integer
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE OrderDetail (
 OrderID integer,
 ProductID integer,
 PRIMARY KEY (OrderID,ProductID),
 FOREIGN KEY (OrderID) REFERENCES Order (OrderID),
 FOREIGN KEY (ProductID) REFERENCES Product (ProductID)
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE Products (
 ProductID integer PRIMARY KEY,
 ProductName varchar(40)
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 OrderDate date,
 Status integer
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE OrderDetail (
 OrderID integer,
 ProductID integer,
 PRIMARY KEY (OrderID,ProductID),
 FOREIGN KEY (OrderID) REFERENCES Order (OrderID),

Red Hat Integration 2020.Q1 Data Virtualization Reference

226

https://issues.redhat.com/browse/TEIID-2957

That will produce a document like

Limitations

Nested embedding of documents is limited due to capabilities of handling nested arrays is
limited in the MongoDB. Nesting of "EMBEDDABLE" property with multiple levels is OK,
however more than two levels with MERGE is not recommended. Also, you need to be caution

 FOREIGN KEY (ProductID) REFERENCES Product (ProductID)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:MERGE" 'Order');

 CREATE FOREIGN TABLE Products (
 ProductID integer PRIMARY KEY,
 ProductName varchar(40)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:EMBEDDABLE" 'TRUE');

{
 _id : 10248,
 OrderDate : ISODate("1996-07-04T05:00:00Z"),
 Status : 5
 OrderDetails : [
 {
 _id : {
 OrderID : 10248,
 ProductID : 11
 Products : {
 ProductID: 11
 ProductName: "Hammer"
 }
 }
 },
 {
 _id : {
 OrderID : 10248,
 ProductID : 14
 Products : {
 ProductID: 14
 ProductName: "Screw Driver"
 }
 }
 }
]
}

Products
{
 {
 ProductID: 11
 ProductName: "Hammer"
 }
 {
 ProductID: 14
 ProductName: "Screw Driver"
 }
}

CHAPTER 9. TRANSLATORS

227

about not exceeding the document size of 16 MB for single row, so deep nesting is not
recommended.

JOINS between related tables, MUST use either the "EMBEDDABLE" or "MERGE" properties,
otherwise the query will result in error. In order for Data Virtualization to correctly plan and work
with JOINS, in the case that any two tables are NOT embedded in each other, use allow-
joins=false property on the Foreign Key that represents the relation. For example:

with the example above, Data Virtualization will create two collections, however when user issues query
such as

instead of resulting in error, the JOIN processing will happen in the Data Virtualization engine, without
the above property it will result in an error.

When you use above properties and carefully design the MongoDB document structure, Data
Virtualization translator can intelligently collate data based on their co-location and take advantage of it
while querying.

Geo Spatial functions

MongoDB translator enables you to use geo spatial query operators in the "WHERE" clause, when the
data is stored in the GeoJSon format in the MongoDB Document. The following functions are available:

a sample query looks like

 CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

 CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId) OPTIONS (allow-join
'FALSE')
) OPTIONS(UPDATABLE 'TRUE');

 SELECT OrderID, LastName FROM Order JOIN Customer ON Order.CustomerId =
Customer.CustomerId;

CREATE FOREIGN FUNCTION geoIntersects (columnRef string, type string, coordinates double[][])
RETURNS boolean;
CREATE FOREIGN FUNCTION geoWithin (ccolumnRef string, type string, coordinates double[][])
RETURNS boolean;
CREATE FOREIGN FUNCTION near (ccolumnRef string, coordinates double[], maxdistance
integer) RETURNS boolean;
CREATE FOREIGN FUNCTION nearSphere (ccolumnRef string, coordinates double[], maxdistance
integer) RETURNS boolean;
CREATE FOREIGN FUNCTION geoPolygonIntersects (ref string, north double, east double, west
double, south double) RETURNS boolean;
CREATE FOREIGN FUNCTION geoPolygonWithin (ref string, north double, east double, west
double, south double) RETURNS boolean;

Red Hat Integration 2020.Q1 Data Virtualization Reference

228

Same functions using built-in Geometry type (the versions of the functions in the preceding list will be
deprecated and removed in future versions)

CREATE FOREIGN FUNCTION geoIntersects (columnRef string, geo geometry) RETURNS
boolean;
CREATE FOREIGN FUNCTION geoWithin (ccolumnRef string, geo geometry) RETURNS boolean;
CREATE FOREIGN FUNCTION near (ccolumnRef string, geo geometry, maxdistance integer)
RETURNS boolean;
CREATE FOREIGN FUNCTION nearSphere (ccolumnRef string, geo geometry, maxdistance
integer) RETURNS boolean;
CREATE FOREIGN FUNCTION geoPolygonIntersects (ref string, geo geometry) RETURNS
boolean;
CREATE FOREIGN FUNCTION geoPolygonWithin (ref string, geo geometry) RETURNS boolean;

a sample query looks like

There are various "st_geom.." methods are available in the Geo Spatial function library in Data
Virtualization.

Capabilities

MongoDB translator is designed on top of the MongoDB aggregation framework. You must use a
MongoDB version that the aggregation framework. Apart from SELECT queries, the MongoDB
translator also works with INSERT, UPDATE and DELETE queries.

You can use the MongoDB translator with the following functions:

Grouping.

Matching.

Sorting.

Filtering.

Limits.

Working with LOBs stored in GridFS.

Composite primary and foreign keys.

Native queries

MongoDB source procedures may be created using the teiid_rel:native-query extension. For more
information, see Parameterizable native queries in Translators. The procedure will invoke the native-
query similar to a direct procedure call with the benefits that the query is predetermined and that result
column types are known, rather than requiring the use of ARRAYTABLE or similar functionality.

Direct query procedure

This feature is turned off by default because of the security risk this exposes to execute any command

SELECT loc FROM maps where mongo.geoWithin(loc, 'LineString', ((cast(1.0 as double), cast(2.0 as
double)), (cast(1.0 as double), cast(2.0 as double))))

SELECT loc FROM maps where mongo.geoWithin(loc, ST_GeomFromGeoJSON('{"coordinates":
[[1,2],[3,4]],"type":"Polygon"}'))

CHAPTER 9. TRANSLATORS

229

against the source. To enable direct query procedures, set the execution property called
SupportsDirectQueryProcedure to true. For more information, see Override the execution properties
in Chapter 9, Translators.

By default the name of the procedure that executes the queries directly is called native. For information
about how to change the default name, see Override the execution properties in Chapter 9, Translators.

The MongoDB translator provides a procedure to execute any ad-hoc aggregate query directly against
the source without Data Virtualization parsing or resolving. Since the metadata of this procedure’s
results are not known to Data Virtualization, they are returned as an object array containing single blob at
array location one(1). This blob contains the JSON document. XMLTABLE can be used construct tabular
output for consumption by client applications.

Example MongoDB Direct Query

In the above example, a collection called "city" is looked up with filter that matches the "city" name with
"FREEDOM", using "native" procedure and then using the nested tables feature the output is passed to a
XMLTABLE construct, where the output from the procedure is sent to a JSONTOXML function to
construct a XML then the results of that are exposed in tabular form.

The direct query MUST be in the format

From Data Virtualization 8.10, MongoDB translator also allows to execute Shell type java script
commands like remove, drop, createIndex. For this the command needs to be in format

and example looks like

9.9. ODATA TRANSLATOR

The OData translator, known by the type name "odata" exposes the OData V2 and V3 data sources and
uses the Data Virtualization web services resource adapter for making web service calls. This translator
is an extension of the Web services translator .

What is OData?

The Open Data Protocol (OData) web protocol is for querying and updating data that provides a way to
unlock your data and free it from silos that exist in applications today. OData does this by applying and
building upon Web technologies such as HTTP, Atom Publishing Protocol (AtomPub) and JSON to
provide access to information from a variety of applications, services, and stores. OData is being used to
expose and access information from a variety of sources including, but not limited to, relational
databases, file systems, content management systems and traditional Web sites.

Using this specification from the OASIS group, with help from the OData4J framework, Data
Virtualization maps OData entities into relational schema. Data Virtualization can read CSDL

 select x.* from TABLE(call native('city;{$match:{"city":"FREEDOM"}}')) t,
 xmltable('/city' PASSING JSONTOXML('city', cast(array_get(t.tuple, 1) as BLOB)) COLUMNS
city string, state string) x

 "collectionName;{$pipeline instr}+"

 "$ShellCmd;collectionName;operationName;{$instr}+"

 "$ShellCmd;MyTable;remove;{ qty: { $gt: 20 }}"

Red Hat Integration 2020.Q1 Data Virtualization Reference

230

http://www.odata.org
http://code.google.com/p/odata4j/

(Conceptual Schema Definition Language) from a provided OData endpoint, and convert the OData
schema into a relational schema. The following table shows the mapping selections in the OData
translator from a CSDL document.

OData Mapped to relational entity

EntitySet Table

FunctionImport Procedure

AssociationSet Foreign keys on the table*

ComplexType ignored**

A many-to-many association will result in a link table that can not be selected from, but can be
used for join purposes.

When used in functions, an implicit table is exposed. When used to define a embedded
table, all the columns will be in-lined.

All CRUD operations will be appropriately mapped to the resulting entity based on the SQL submitted to
the OData translator.

1. Usage

Usage of a OData source is similar to that of a JDBC translator. The metadata import is provided
through the translator, once the metadata is imported from the source system and exposed in relational
terms, then this source can be queried as if the EntitySets and Function Imports were local to the Data
Virtualization system.

Table 9.6. Execution properties

Name Description Default

DatabaseTimeZone The time zone of the database.
Used when fetchings date, time,
or timestamp values.

The system default time zone

SupportsOdataCount Enables the use of the $count
option in system queries.

true

SupportsOdataFilter Enables the use of the $filter
option in system queries.

true

SupportsOdataOrderBy Enables the use of the $orderby
option in system queries.

true

SupportsOdataSkip Enables the use of the $skip
option in system queries.

true

CHAPTER 9. TRANSLATORS

231

SupportsOdataTop Enables the use of the $top
option in system queries.

true

Name Description Default

Table 9.7. Importer Properties

Name Description Default

schemaNamespace Namespace of the schema to
import.

null

entityContainer Entity Container Name to import. default container

Example: Importer settings to import only tables and views from NetflixCatalog

ODATA SERVER IS NOT FULLY COMPATIBLE

The OData server that you connect to might not fully implement the entire OData
specification. If the server’s OData implementation does not support a feature, set
"execution properties" to turn off the corresponding capability, so that Data Virtualization
will not push down invalid queries to the translator.

For example, to turn off $filter, add the following statement to the virtual database DDL:

CREATE SERVER odata FOREIGN DATA WRAPPER "odata-override" OPTIONS
("SupportOdataFilter" 'false');

NATIVE QUERIES

The OData translator cannot perform native or direct query execution. However, you can use the
invokehttp method of the Web services translator to issue REST-based calls, and then use SQLXML to
parse results.

USING ODATA AS SERVER.

Data Virtualization can not only consume OData-based data sources, but it can also expose any data
source as an OData-based web service.

For more information about configuring an OData server, see OData support in the Client Developer’s
Guide.

9.10. ODATA V4 TRANSLATOR

The OData V4 translator, known by the type name "odata4" exposes the OData Version 4 data sources

<property name="importer.schemaNamespace" value="System.Data.Objects"/>
<property name="importer.entityContainer" value="NetflixCatalog"/>

Red Hat Integration 2020.Q1 Data Virtualization Reference

232

http://teiid.github.io/teiid-documents/master/sb/client-dev/Client_Developers_Guide.html

and uses the Data Virtualization web services resource adapter for making web service calls. This
translator is extension of Web Services Translator . The OData V4 translator is not for use with older
OData V1-3 sources. Use the OData translator ("odata") for older OData sources.

What is OData

The Open Data Protocol (OData) Web protocol is for querying and updating data that provides a way to
unlock your data and free it from silos that exist in applications today. OData does this by applying and
building upon Web technologies such as HTTP, Atom Publishing Protocol (AtomPub), and JSON to
provide access to information from a variety of applications, services, and stores. OData is being used to
expose and access information from a variety of sources including, but not limited to, relational
databases, file systems, content management systems and traditional Web sites.

Using this specification from the OASIS group, with the help from the Olingo framework, Data
Virtualization maps OData V4 CSDL (Conceptual Schema Definition Language) document from the
OData endpoint provided and converts the OData metadata into Data Virtualization’s relational schema.
The following table shows the mapping selections in the OData V4 translator from a CSDL document

USING ODATA AS A SERVER

Data Virtualization can not only consume OData-based data sources, but it can expose
any data source as an OData based web service. For more information see OData
Support in the Client Developer’s Guide.

OData Mapped to relational entity

EntitySet Table

EntityType Table see [1]

ComplexType Table see [2]

FunctionImport Procedure [3]

ActionImport Procedure [3]

NavigationProperties Table [4]

[1] Only if the EntityType is exposed as the EntitySet in the Entity container. [2] Only if the complex type
is used as property in the exposed EntitySet. This table will be designed as child table with foreign key [1-
to-1] or [1-to-many] relationship to the parent.
[3] If the return type is EntityType or ComplexType, the procedure is designed to return a table. [4]
Navigation properties are exposed as tables. The table will be created with foreign key relationship to
the parent.

All CRUD operations will be appropriately mapped to the resulting entity based on the SQL submitted to
the OData translator.

Usage

Usage of a OData source is similar a JDBC translator. The metadata import is supported through the
translator, once the metadata is imported from source system and exposed in relational terms, then this
source can be queried as if the EntitySets, Function Imports and Action Imports were local to the Data

CHAPTER 9. TRANSLATORS

233

http://www.odata.org
http://olingo.apache.org/
http://teiid.github.io/teiid-documents/master/sb/client-dev/Client_Developers_Guide.html

Virtualization system.

It is not recommended to define your own metadata using Data Virtualization DDL for complex services.
There are several extension metadata properties required to enable proper functioning. On non-string
properties, a NATIVE_TYPE property is expected and should specify the full EDM type name -
Edm.xxx.

The below is sample VDB that can read metadata service from TripPin service on http://odata.org site.

You can connect to the VDB deployed using Data Virtualization JDBC driver and issue SQL statements
like

Execution properties

Sometimes default properties need to adjusted for proper execution of the translator. The following
execution properties extend or limit the functionality of the translator based on the physical source
capabilities.

Name Description Default

SupportsOdataCount Supports $count true

SupportsOdataFilter Supports $filter true

SupportsOdataOrderBy Supports $orderby true

SupportsOdataSkip Supports $skip true

SupportsOdataTop Supports $top true

SupportsUpdates Supports
INSERT/UPDATE/DELETE

true

The OData server that you connect to might not fully implement the entire OData specification. If the
server’s OData implementation does not support a feature, set "execution properties" to turn off the
corresponding capability, so that Data Virtualization does not push down invalid queries to the
translator.

<vdb name="trippin" version="1">
 <model name="trippin">
 <source name="odata4" translator-name="odata4" connection-jndi-name="java:/tripDS"/>
 </model>
</vdb>

SELECT * FROM trippin.People;
SELECT * FROM trippin.People WHERE UserName = 'russelwhyte';
SELECT * FROM trippin.People p INNER JOIN trippin.People_Friends pf ON p.UserName =
pf.People_UserName; (note that People_UserName is implicitly added by Data Virtualization
metadata)
EXEC GetNearestAirport(lat, lon) ;

Red Hat Integration 2020.Q1 Data Virtualization Reference

234

http://odata.org

then use "odata-override" as the translator name on your source model.

Importer properties

The following table lists the importer properties that define the behavior of the translator during
metadata import from the physical source.

Name Description Default

schemaNamespace Namespace of the schema to
import

null

Example importer settings to only import tables and views from Trippin service exposed on odata.org

You can leave this property undefined. If the translator does not detect a configured instance of the
property, it specifies the default name of the EntityContainer.

TIP

Native queries - Native or direct query execution is not supported through the OData translator.
However, you can use the invokehttp method of the Web services translator to issue REST-based calls,
and then use SQLXML to parse results.

9.11. OPENAPI TRANSLATOR

The OpenAPI translator, known by the type name "openapi" exposes OpenAPI data sources via
relational concepts and uses the Data Virtualization WS resource adapter for making web service calls.

What is OpenAPI?

[OpenAPI is a simple yet powerful representation of your RESTful API. With the largest ecosystem of
API tooling on the planet, thousands of developers are supporting OpenAPI in almost every modern
programming language and deployment environment. With an OpenAPI-enabled API, you get interactive
documentation, client SDK generation, and discoverability.

This translator is compatible with OpenAPI/Swagger v2 and OpenAPI v3.

Usage

Usage of a OpenAPI source is similar any other translator in Data Virtualization. The translator enables
metadata import. The metadata is imported from source system’s metadata file and then exposed as
stored procedures in Data Virtualization. The source system can be queried by executing these stored
procedures in Data Virtualization system.

NOTE

<translator name="odata-override" type="odata">
 <property name="SupportsOdataFilter" value="false"/>
</translator>

<property name="importer.schemaNamespace"
value="Microsoft.OData.SampleService.Models.TripPin"/>

CHAPTER 9. TRANSLATORS

235

http://services.odata.org/V4/(S(nivess3y23eyhit4jbppgtdj))/TripPinServiceRW/$metadata
https://www.openapis.org/

NOTE

Although parameter order is guaranteed by the Swagger libraries, if you rely upon the
native import, it is best if you call procedures using named, rather than positional
parameters.

The below is sample VDB that can read metadata from Petstore reference service on
http://petstore.swagger.io/ site.

The required resource-adapter configuration will look like

After you configure the preceding resource-adapter and deploy the VDB successfully, then you can
connect to the VDB deployed using Data Virtualization JDBC driver and issue SQL statements such as
the following:

Execution properties

Execution properties extend/limit the functionality of the translator based on the physical source
capabilities. Sometimes default properties must be adjusted for proper execution of the translator.

Execution properties

None.

Importer properties

The following table lists the importer properties that define the behavior of the translator during the
import of from the physical source.

<vdb name="petstore" version="1">
 <model visible="true" name="m">
 <property name="importer.metadataUrl" value="/swagger.json"/>
 <source name="s" translator-name="openapi" connection-jndi-name="java:/openapi"/>
 </model>
</vdb>

<resource-adapter id="openapi">
 <module slot="main" id="org.jboss.teiid.resource-adapter.webservice"/>
 <transaction-support>NoTransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-
name="org.teiid.resource.adapter.ws.WSManagedConnectionFactory" jndi-name="java:/openapi"
enabled="true" use-java-context="true" pool-name="teiid-openapi-ds">
 <config-property name="EndPoint">
 http://petstore.swagger.io/v2
 </config-property>
 </connection-definition>
 </connection-definitions>
</resource-adapter>

EXEC findPetsByStatus(('sold',))
EXEC getPetById(1461159803)
EXEC deletePet('', 1461159803)

Red Hat Integration 2020.Q1 Data Virtualization Reference

236

http://petstore.swagger.io/

Name Description Default

metadataUrl URL from which to obtain the
OpenAPI metadata. May be a
local file using a file: URL.

true

server The server to use. Otherwise the
first server listed will be used.

null

preferredProduces Preferred Accept MIME type
header, this should be one of the
OpenAPI 'produces' types;

application/json

preferredConsumes Preferred Content-Type MIME
type header, this should be one of
the OpenAPI 'consumer' types;

application/json

TIP

Native queries - The OpenAPI translator cannot perform native or direct query execution. However,
you can use the invokehttp method of the Web services translator to issue REST-based calls, and then
use SQLXML to parse results.

Limitations

The OpenAPI translator does not fully implement all of the features of OpenAPI. The following
limitations apply:

You cannot set the MIME type to application/xml in either the Accept or Content-Type
headers.

File and Map properties cannot be used. As a result, any multi-part payloads are not supported.

The translator does not process security metadata.

The translator does not process custom properties that start with x-.

The translator does not work with following JSON schema keywords:

allOf

multipleOf

items

9.12. SALESFORCE TRANSLATORS

You can use the Salesforce translator to run SELECT, DELETE, INSERT, UPSERT, and UPDATE
operations against a Salesforce.com account.

salesforce

The translator, known by the type name salesforce, works with Salesforce API 37.0 and later.

CHAPTER 9. TRANSLATORS

237

Table 9.8. Execution properties

Name Description Default

MaxBulkInsertBatchSize Batch Size to use to insert bulk
inserts.

2048

SupportsGroupBy Enables GROUP BY Pushdown.
Set to false to have Data
Virtualization process group by
aggregations, such as those
returning more than 2000 rows
which error in SOQL.

true

The Salesforce translator can import metadata.

Table 9.9. Import properties

Property Name Description Required Default

NormalizeNames If the importer should
attempt to modify the
object/field names so
that they can be used
unquoted.

false true

excludeTables A case-insensitive
regular expression that
when matched against a
table name will exclude
it from import. Applied
after table names are
retrieved. Use a
negative look-ahead (?!
<inclusion pattern>).* to
act as an inclusion filter.

false n/a

includeTables A case-insensitive
regular expression that
when matched against a
table name will be
included during import.
Applied after table
names are retrieved
from source.

false n/a

importStatstics Retrieves cardinalities
during import using the
REST API explain plan
feature.

false false

Red Hat Integration 2020.Q1 Data Virtualization Reference

238

ModelAuditFields Add Audit Fields To
Model. This includes
CreatedXXX,
LastModifiedXXX, and
SystemModstamp fields.

false false

Property Name Description Required Default

NOTE： When both includeTables and excludeTables patterns are present during the import, the
includeTables pattern matched first, then the excludePatterns will be applied.

NOTE

If you need connectivity to an API version other than what is built in, you may try to use an
existing connectivity pair, but in some circumstances - especially accessing a later remote
api from an older Java API - this is not possible and results in what appears to be hung
connections.

Extension metadata properties

Salesforce is not relational database, however Data Virtualization provides ways to map Saleforce data
into relational constructs like Tables and Procedures. You can define a foreign table using DDL in Data
Virtualization VDB, which maps to Salesforce’s SObject. At runtime, to interpret this table back to a
SObject, Data Virtualization decorates or tags this table definition with additional metadata. For
example, a table is defined as in the following example:

In the preceding example, the property in the OPTIONS clause with the property "teiid_sf:Supports
Query" set to TRUE indicates that you can run SELECT commands against this table. The following
table lists the metadata extension properties that can be used in a Salesforce schema.

Property Name Description Required Default Applies To

Supports Query You can run
SELECT
commands against
the table.

false true Table

CREATE FOREIGN TABLE Pricebook2 (
 Id string,
 Name string,
 IsActive boolean,
 IsStandard boolean,
 Description string,
 IsDeleted boolean)
 OPTIONS (
 UPDATABLE 'TRUE',
 "teiid_sf:Supports Query" 'TRUE');

CHAPTER 9. TRANSLATORS

239

Supports Retrieve You can retrieve
the results of
SELECT
commands run
against the table.

false true Table

Property Name Description Required Default Applies To

SQL processing

Salesforce does not provide the same set of functionality as a relational database. For example,
Salesforce does not support arbitrary joins between tables. However, working in combination with the
Data Virtualization Query Planner, the Salesforce connector can use nearly all of the SQL syntax
capabilities in Data Virtualization. The Salesforce Connector executes SQL commands by "pushing
down" the command to Salesforce whenever possible, depending on the available capabilities. Data
Virtualization will automatically provide additional database functionality when the Salesforce
Connector does not explicitly enable use of a given SQL construct. In cases where certain SQL
capabilities cannot be pushed down to Salesforce, Data Virtualization will push down the capabilities
that it can, and fetch a set of data from Salesforce. Then, Data Virtualization will evaluate the additional
capabilities, creating a subset of the original data set. Finally, Data Virtualization will pass the result to
the client.

If you issue queries with a GROUP BY clause, and you receive a Salesforce error that indicates that
queryMore is not supported, you can either add limits, or set the execution property SupportsGroupBy
to false.

Neither Salesforce, nor the Salesforce Connector support the array_agg() scalar. however, both are
compatible with the CompareCriteriaEquals query, so the connector transforms the query that it
receives into this query to Salesforce.

The array_agg() function will be applied by the Data Virtualization Query Engine to the result set
returned by the connector.

In some cases, multiple calls to the Salesforce application will be made to process the SQL that is
passed to the connector.

The API in Salesforce to delete objects can delete by object ID only. In order to accomplish this, the
Salesforce connector will first execute a query to get the IDs of the correct objects, and then delete
those objects. So the above DELETE command will result in the following two commands.

NOTE： The Salesforce API DELETE call is not expressed in SQL, but the above is an equivalent SQL

SELECT array_agg(Reports) FROM Supervisor where Division = 'customer support';

SELECT Reports FROM Supervisor where Division = 'customer support';

DELETE From Case WHERE Status = 'Closed';

SELECT ID From Case WHERE Status = 'Closed';
DELETE From Case where ID IN (<result of query>);

Red Hat Integration 2020.Q1 Data Virtualization Reference

240

NOTE： The Salesforce API DELETE call is not expressed in SQL, but the above is an equivalent SQL
expression.

It’s useful to be aware of incompatible capabilities, in order to avoid fetching large data sets from
Salesforce and making you queries as performant as possible. For information about the SQL constructs
that you can push down to Salesforce, see Compatible SQL capabilities.

Selecting from multi-select picklists

A multi-select picklist is a field type in Salesforce that can contain multiple values in a single field. Query
criteria operators for fields of this type in SOQL are limited to EQ, NE, includes and excludes. For the
Salesforce documentation about how to select from multi-select picklists, see Querying Multi-select
Picklists

Data Virtualization SQL does not support the includes or excludes operators, but the Salesforce
connector provides user-defined function definitions for these operators that provide equivalent
functionality for fields of type multi-select. The definition for the functions is:

For example, take a single multi-select picklist column called Status that contains all of these values.

current

working

critical

For that column, all of the below are valid queries:

EQ and NE criteria will pass to Salesforce as supplied. For example, these queries will not be modified by
the connector.

Selecting all objects

You can use the Salesforce connector to call the queryAll operation from the Salesforce API. The
queryAll operation is equivalent to the query operation with the exception that it returns data about all
current and deletedobjects in the system.

The connector determines if it will call the query or queryAll operation via reference to the isDeleted
property present on each Salesforce object, and modeled as a column on each table generated by the
importer. By default this value is set to false when the model is generated and thus the connector calls
query. Users are free to change the value in the model to true, changing the default behavior of the
connector to be queryAll.

The behavior is different if isDeleted is used as a parameter in the query. If the isDeleted column is used
as a parameter in the query, and the value is true, then the connector calls queryAll.

boolean includes(Column column, String param)
boolean excludes(Column column, String param)

SELECT * FROM Issue WHERE true = includes (Status, 'current, working');
SELECT * FROM Issue WHERE true = excludes (Status, 'current, working');
SELECT * FROM Issue WHERE true = includes (Status, 'current;working, critical');

SELECT * FROM Issue WHERE Status = 'current';
SELECT * FROM Issue WHERE Status = 'current;critical';
SELECT * FROM Issue WHERE Status != 'current;working';

CHAPTER 9. TRANSLATORS

241

http://www.salesforce.com/us/developer/docs/soql_sosl/Content/sforce_api_calls_soql_querying_multiselect_picklists.htm

If the isDeleted column is used as a parameter in the query, and the value is false, then the connector
that performs the default behavior will call the query.

Selecting updated objects

If the option is selected when importing metadata from Salesforce, a GetUpdated procedure is
generated in the model with the following structure:

See the description of the GetUpdated operation in the Salesforce documentation for usage details.

Selecting deleted objects

If the option is selected when importing metadata from Salesforce, a GetDeleted procedure is
generated in the model with the following structure:

See the description of the GetDeleted operation in the Salesforce documentation for usage details.

Relationship queries

Unlike a relational database, Salesforce does not support join operations, but it does have support for
queries that include parent-to-child or child-to-parent relationships between objects. These are termed
Relationship Queries. You can run Relationship Queries in the SalesForce connector through Outer Join
syntax.

This query shows the correct syntax to query a SalesForce model with to produce a relationship query
from child to parent. It resolves to the following query to SalesForce.

select * from Contact where isDeleted = true;

select * from Contact where isDeleted = false;

GetUpdated (ObjectName IN string,
 StartDate IN datetime,
 EndDate IN datetime,
 LatestDateCovered OUT datetime)
returns
 ID string

GetDeleted (ObjectName IN string,
 StartDate IN datetime,
 EndDate IN datetime,
 EarliestDateAvailable OUT datetime,
 LatestDateCovered OUT datetime)
returns
 ID string,
 DeletedDate datetime

SELECT Account.name, Contact.Name from Contact LEFT OUTER JOIN Account
on Contact.Accountid = Account.id

SELECT Contact.Account.Name, Contact.Name FROM Contact

select Contact.Name, Account.Name from Account Left outer Join Contact
on Contact.Accountid = Account.id

Red Hat Integration 2020.Q1 Data Virtualization Reference

242

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm

This query shows the correct syntax to query a SalesForce model with to produce a relationship query
from parent to child. It resolves to the following query to SalesForce.

See the description of the Relationship Queries operation in the SalesForce documentation for
limitations.

Bulk insert queries

You can also use bulk insert statements in the SalesForce translator by using JDBC batch semantics or
SELECT INTO semantics. The batch size is determined by the execution property
MaxBulkInsertBatchSize, which can be overridden in the vdb file. The default value of the batch is 2048.
The bulk insert feature uses the async REST based API exposed by Salesforce for execution for better
performance.

Bulk selects

When querying tables with more than 10,000,000 records, or if experiencing timeouts with just result
batching, Data Virtualization can issue queries to Salesforce using the bulk API. When using a bulk select,
primary key (PK) chunking is enabled if it is compatible with the query.

The use of the bulk api requires a source hint in the query:

Where salesforce is the source name of the target source.

The default chunk size of 100,000 records will be used.

NOTE

This feature is only supported in the Salesforce API version 28 or higher.

Compatible SQL capabilities

You ca use the following SQL capabilities with the Salesforce Connector. These SQL constructs will be
pushed down to Salesforce.

SELECT command

INSERT Command

UPDATE Command

DELETE Command

NotCriteria

OrCriteria

CompareCriteriaEquals

CompareCriteriaOrdered

SELECT Account.Name, (SELECT Contact.Name FROM
Account.Contacts) FROM Account

SELECT /*+ sh salesforce:'bulk' */ Name ... FROM Account

CHAPTER 9. TRANSLATORS

243

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm

IsNullCritiera

InCriteria

LikeCriteria - Can be used for String fields only.

RowLimit

Basic Aggregates

OuterJoins with join criteria KEY

Native Queries

Salesforce procedures may optionally have native queries associated with them. For more information,
see Parameterizable native queries in Translators. The operation prefix (select;, insert;, update;, delete; -
see below for more) must be present in the native-query, but it will not be issued as part of the query to
the source.

Example DDL for a Salesforce native procedure

Direct query procedure

This feature is turned off by default because of the security risk this exposes to execute any command
against the source. To enable direct query procedures, set the execution property called
SupportsDirectQueryProcedure to true. For more information, see Override the execution properties
in Chapter 9, Translators.

TIP

By default the name of the procedure that executes the queries directly is called native. For information
about how to change the default name, see Override the execution properties in Chapter 9, Translators.

The Salesforce translator provides a procedure to execute any ad-hoc SOQL query directly against the
source without Data Virtualization parsing or resolving. Since the metadata of this procedure’s results
are not known to Data Virtualization, they are returned as an object array. ARRAYTABLE can be used
construct tabular output for consumption by client applications. Data Virtualization exposes this
procedure with a simple query structure as follows:

Select example

from the above code, the "search" keyword followed by a query statement.

NOTE

CREATE FOREIGN PROCEDURE proc (arg1 integer, arg2 string) OPTIONS ("teiid_rel:native-query"
'search;SELECT ... complex SOQL ... WHERE col1 = $1 and col2 = $2')
returns (col1 string, col2 string, col3 timestamp);

SELECT x.* FROM (call sf_source.native('search;SELECT Account.Id, Account.Type, Account.Name
FROM Account')) w,
 ARRAYTABLE(w.tuple COLUMNS "id" string , "type" string, "name" String) AS x

Red Hat Integration 2020.Q1 Data Virtualization Reference

244

NOTE

The SOQL is treated as a parameterized native query so that parameter values may be
inserted in the query string properly. For more information, see Parameterizable native
queries in Translators. The results returned by search may contain the object Id as the
first column value regardless of whether it was selected. Also queries that select columns
from multiple object types will not be correct.

Delete Example

form the above code, the "delete;" keyword followed by the ids to delete as varargs.

Create example

form the above code, the "create" or "update" keyword must be followed by the following properties.
Attributes must be matched positionally by the procedure variables - thus in the example attribute two
will be set to 2.

Property Name Description Required

type Table Name Yes

attributes comma separated list of names of
the columns

no

The values for each attribute is specified as separate argument to the "native" procedure.

Update is similar to create, with one more extra property called "id", which defines identifier for the
record.

Update example

TIP

By default the name of the procedure that executes the queries directly is called native, however you
can add set an override execution property in the DDL file to change it.

9.13. REST TRANSLATOR

The Rest translator, known by the type name rest, exposes stored procedures for calling REST services.

SELECT x.* FROM (call sf_source.native('delete;', 'id1', 'id2')) w,
 ARRAYTABLE(w.tuple COLUMNS "updatecount" integer) AS x

SELECT x.* FROM
 (call sf_source.native('create;type=table;attributes=one,two,three', 'one', 2, 3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

SELECT x.* FROM
 (call sf_source.native('update;id=pk;type=table;attributes=one,two,three', 'one', 2, 3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

CHAPTER 9. TRANSLATORS

245

The Rest translator, known by the type name rest, exposes stored procedures for calling REST services.
Results from this translator will commonly be used with the TEXTTABLE, JSONTABLE, or XMLTABLE
table functions to use CSV, JSON, or XML formated data.

Execution properties

There are no rest importer settings, but it can provide metadata for VDBs.

Usage

The rest translator exposes low level procedures for accessing web services.

InvokeHTTP procedure

invokeHttp can return the byte contents of an HTTP(S) call.

Action indicates the HTTP method (GET, POST, etc.), which defaults to POST.

A null value for endpoint will use the default value. The default endpoint is specified in the rest source
configuration. The endpoint URL may be absolute or relative. If it’s relative then it will be combined with
the default endpoint.

Since multiple parameters are not required to have values, it is often more clear to call the invokeHttp
procedure with named parameter syntax.

The request can be one of SQLXML, STRING, BLOB, or CLOB. The request will be sent as the POST
payload in byte form. For STRING/CLOB values this will default to the UTF-8 encoding. To control the
byte encoding, see the to_bytes function.

The optional headers parameter can be used to specify the request header values as a JSON value. The
JSON value should be a JSON object with primitive or list of primitive values.

Recommendations for setting headers parameter:

Content-Type might be necessary if the HTTP POST/PUT method is invoked.

Accept is necessary if you want to control return Media Type.

NATIVE QUERIES

You cannot use native queries or direct query execution procedures with the web
services translator.

Streaming considerations

If the stream parameter is set to true, then the resulting LOB value may only be used a single time. If
stream is null or false, then the engine may need to save a copy of the result for repeated use. Care
must be used as some operations, such as casting or XMLPARSE might perform validation which results

Procedure invokeHttp(action in STRING, request in OBJECT, endpoint in STRING, stream in
BOOLEAN, contentType out STRING, headers in CLOB) returns BLOB

call invokeHttp(action=>'GET')

call invokeHttp(... headers=>jsonObject('application/json' as "Content-Type", jsonArray('gzip',
'deflate') as "Accept-Encoding"))

Red Hat Integration 2020.Q1 Data Virtualization Reference

246

in the stream being consumed.

9.14. WEB SERVICES TRANSLATOR

The Web Services translator, known by the type name soap or ws, exposes stored procedures for calling
web/SOAP services. Results from this translator will commonly be used with the TEXTTABLE or
XMLTABLE table functions to use CSV or XML formated data.

Execution properties

Name Description When Used Default

DefaultBinding The binding that should
be used if one is not
specified. Can be one of
HTTP, SOAP11, or
SOAP12.

invoke* SOAP12

DefaultServiceMode The default service
mode. For SOAP,
MESSAGE mode
indicates that the
request will contain the
entire SOAP envelope.
and not just the
contents of the SOAP
body. Can be one of
MESSAGE or PAYLOAD

invoke* or WSDL call PAYLOAD

XMLParamName Used with the HTTP
binding (typically with
the GET method) to
indicate that the request
document should be
part of the query string.

invoke* null - unused

NOTE

Setting the proper binding value on the translator is recommended as it removes the
need for callers to pass an explicit value. If your service is actually uses SOAP11, but the
binding used SOAP12 you will receive execution failures.

There are no importer settings, but it can provide metadata for VDBs. If the connection is configured to
point at a specific WSDL, the translator will import all SOAP operations under the specified service and
port as procedures.

Importer properties

When specifying the importer property, it must be prefixed with "importer.". Example:
importer.tableTypes

CHAPTER 9. TRANSLATORS

247

Name Description Default

importWSDL Import the metadata from the
WSDL URL configured in
resource-adapter.

true

Usage

The translator exposes low level procedures for accessing web services.

Invoke procedure

Invoke allows for multiple binding, or protocol modes, including HTTP, SOAP11, and SOAP12.

The binding may be one of null (to use the default) HTTP, SOAP11, or SOAP12. Action with a SOAP
binding indicates the SOAPAction value. Action with a HTTP binding indicates the HTTP method (GET,
POST, etc.), which defaults to POST.

A null value for the binding or endpoint will use the default value. The default endpoint is specified in
the source configuration. The endpoint URL may be absolute or relative. If it’s relative then it will be
combined with the default endpoint.

Since multiple parameters are not required to have values, it is often more clear to call the invoke
procedure with named parameter syntax.

The request XML should be a valid XML document or root element.

InvokeHTTP procedure

invokeHttp can return the byte contents of an HTTP(S) call.

Action indicates the HTTP method (GET, POST, etc.), which defaults to POST.

A null value for endpoint will use the default value. The default endpoint is specified in the source
configuration. The endpoint URL may be absolute or relative. If it’s relative then it will be combined with
the default endpoint.

Since multiple parameters are not required to have values, it is often more clear to call the invokeHttp
procedure with named parameter syntax.

The request can be one of SQLXML, STRING, BLOB, or CLOB. The request will be sent as the POST
payload in byte form. For STRING/CLOB values this will default to the UTF-8 encoding. To control the
byte encoding, see the to_bytes function.

Procedure invoke(binding in STRING, action in STRING, request in XML, endpoint in STRING,
stream in BOOLEAN) returns XML

call invoke(binding=>'HTTP', action=>'GET')

Procedure invokeHttp(action in STRING, request in OBJECT, endpoint in STRING, stream in
BOOLEAN, contentType out STRING, headers in CLOB) returns BLOB

call invokeHttp(action=>'GET')

Red Hat Integration 2020.Q1 Data Virtualization Reference

248

The optional headers parameter can be used to specify the request header values as a JSON value. The
JSON value should be a JSON object with primitive or list of primitive values.

Recommendations for setting headers parameter:

Content-Type might be necessary if the HTTP POST/PUT method is invoked.

Accept is necessary if you want to control return Media Type.

WSDL based procedures

The procedures above give you anonymous way to execute any web service methods by supplying an
endpoint, with this mechanism you can alter the endpoint defined in WSDL with a different endpoint.
However, if you have access to the WSDL, then you can configure the WSDL URL in the web-service
resource-adapter’s connection configuration, Web Service translator can parse the WSDL and provide
the methods under configured port as pre-built procedures as its metadata. If you are using the default
native metadata import, you will see the procedures in your web service’s source model.

NATIVE QUERIES

You cannot use native queries or direct query execution procedures with the web
services translator.

Streaming considerations

If the stream parameter is set to true, then the resulting LOB value may only be used a single time. If
stream is null or false, then the engine may need to save a copy of the result for repeated use. Care
must be used as some operations, such as casting or XMLPARSE might perform validation which results
in the stream being consumed.

call invokeHttp(... headers=>jsonObject('application/json' as "Content-Type", jsonArray('gzip',
'deflate') as "Accept-Encoding"))

CHAPTER 9. TRANSLATORS

249

CHAPTER 10. FEDERATED PLANNING
At its core, Data Virtualization is a federated, relational query engine. This query engine allows you to
treat all of your data sources as one virtual database, and access them through a single SQL query. As a
result, instead of focusing on hand-coding joins, you can focus on building your application, and on
running other relational operations between data sources.

10.1. PLANNING OVERVIEW

When the query engine receives an incoming SQL query it performs the following operations:

1. Parsing — Validates syntax and convert to internal form.

2. Resolving — Links all identifiers to metadata and functions to the function library.

3. Validating — Validates SQL semantics based on metadata references and type signatures.

4. Rewriting — Rewrites SQL to simplify expressions and criteria.

5. Logical plan optimization — Converts the rewritten canonical SQL to a logical plan for in-depth
optimization. The Data Virtualization optimizer is predominantly rule-based. Based upon the
query structure and hints, a certain rule set will be applied. These rules may trigger in turn
trigger the execution of more rules. Within several rules, Data Virtualization also takes
advantage of costing information. The logical plan optimization steps can be seen by using the
`SET SHOWPLAN DEBUG`clause, as described in the Client Development Guide . For sample
steps, see Reading a debug plan in Query Planner. For more information about logical plan nodes
and rule-based optimization, see Query Planner.

6. Processing plan conversion — Converts the logic plan to an executable form where the nodes
represent basic processing operations. The final processing plan is displayed as a query plan.
For more information, see Query plans.

The logical query plan is a tree of operations that is used to transform data in source tables to the
expected result set. In the tree, data flows from the bottom (tables) to the top (output). The primary
logical operations are select (select or filter rows based on a criteria), project (project or compute
column values), join, source (retrieve data from a table), sort (ORDER BY), duplicate removal (SELECT
DISTINCT), group (GROUP BY), and union (UNION).

For example, consider the following query that retrieves all engineering employees born since 1970.

Example query

Logically, the data from the Employees and Departments tables are retrieved, then joined, then filtered
as specified, and finally the output columns are projected. The canonical query plan thus looks like this:

SELECT e.title, e.lastname FROM Employees AS e JOIN Departments AS d ON e.dept_id =
d.dept_id WHERE year(e.birthday) >= 1970 AND d.dept_name = 'Engineering'

Red Hat Integration 2020.Q1 Data Virtualization Reference

250

https://teiid.github.io/teiid-documents/master/content/client-dev/SET_Statement.html

Data flows from the tables at the bottom upwards through the join, through the select, and finally
through the project to produce the final results. The data passed between each node is logically a result
set with columns and rows.

Of course, this is what happens logically — it is not how the plan is actually executed. Starting from this
initial plan, the query planner performs transformations on the query plan tree to produce an equivalent
plan that retrieves the same results faster. Both a federated query planner and a relational database
planner deal with the same concepts and many of the same plan transformations. In this example, the
criteria on the Departments and Employees tables will be pushed down the tree to filter the results as
early as possible.

In both cases, the goal is to retrieve the query results in the fastest possible time. However, the
relational database planner achieve this primarily by optimizing the access paths in pulling data from
storage.

In contrast, a federated query planner is less concerned about storage access, because it is typically
pushing that burden to the data source. The most important consideration for a federated query planner
is minimizing data transfer.

10.2. QUERY PLANNER

For each sub-command in the user command an appropriate kind of sub-planner is used (relational,
XML, procedure, etc).

Each planner has three primary phases:

1. Generate canonical plan

2. Optimization

3. Plan to process converter — Converts plan data structure into a processing form.

CHAPTER 10. FEDERATED PLANNING

251

Relational planner

A relational processing plan is created by the optimizer after the logical plan is manipulated by a series of
rules. The application of rules is determined both by the query structure and by the rules themselves.
The node structure of the debug plan resembles that of the processing plan, but the node types more
logically represent SQL operations.

Canonical plan and all nodes

As described in the Planning overview, a SQL statement submitted to the query engine is parsed,
resolved, validated, and rewritten before it is converted into a canonical plan form. The canonical plan
form most closely resembles the initial SQL structure. A SQL select query has the following possible
clauses (all but SELECT are optional): WITH, SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER
BY, LIMIT. These clauses are logically executed in the following order:

1. WITH (create common table expressions) — Processed by a specialized PROJECT NODE.

2. FROM (read and join all data from tables) — Processed by a SOURCE node for each from clause
item, or a Join node (if >1 table).

3. WHERE (filter rows) — Processed by a SELECT node.

4. GROUP BY (group rows into collapsed rows) — Processed by a GROUP node.

5. HAVING (filter grouped rows) — Processed by a SELECT node.

6. SELECT (evaluate expressions and return only requested rows) — Processed by a PROJECT
node and DUP_REMOVE node (for SELECT DISTINCT).

7. INTO — Processed by a specialized PROJECT with a SOURCE child.

8. ORDER BY (sort rows) — Processed by a SORT node.

9. LIMIT (limit result set to a certain range of results) — Processed by a LIMIT node.

For example, a SQL statement such as SELECT max(pm1.g1.e1) FROM pm1.g1 WHERE e2 = 1
creates a logical plan:

Red Hat Integration 2020.Q1 Data Virtualization Reference

252

Here the Source corresponds to the FROM clause, the Select corresponds to the WHERE clause, the
Group corresponds to the implied grouping to create the max aggregate, and the Project corresponds
to the SELECT clause.

NOTE

The effect of grouping generates what is effectively an inline view, anon_grp0, to handle
the projection of values created by the grouping.

Table 10.1. Node Types

Type Name Description

ACCESS A source access or plan execution.

DUP_REMOVE Removes duplicate rows

JOIN A join (LEFT OUTER, FULL OUTER, INNER, CROSS,
SEMI, and so forth).

PROJECT A projection of tuple values

SELECT A filtering of tuples

SORT An ordering operation, which may be inserted to
process other operations such as joins.

SOURCE Any logical source of tuples including an inline view, a
source access, XMLTABLE, and so forth.

GROUP A grouping operation.

SET_OP A set operation (UNION/INTERSECT/EXCEPT).

NULL A source of no tuples.

TUPLE_LIMIT Row offset / limit

Node properties

Each node has a set of applicable properties that are typically shown on the node.

Table 10.2. Access properties

Project(groups=[anon_grp0], props={PROJECT_COLS=[anon_grp0.agg0 AS expr1]})
 Group(groups=[anon_grp0], props={SYMBOL_MAP={anon_grp0.agg0=MAX(pm1.G1.E1)}})
 Select(groups=[pm1.G1], props={SELECT_CRITERIA=pm1.G1.E2 = 1})
 Source(groups=[pm1.G1])

CHAPTER 10. FEDERATED PLANNING

253

Property Name Description

ATOMIC_REQUEST The final form of a source request.

MODEL_ID The metadata object for the target model/schema.

PROCEDURE_CRITERIA/PROCEDURE_INPUTS/PR
OCEDURE_DEFAULTS

Used in planning procedureal relational queries.

IS_MULTI_SOURCE set to true when the node represents a multi-source
access.

SOURCE_NAME used to track the multi-source source name.

CONFORMED_SOURCES tracks the set of conformed sources when the
conformed extension metadata is used.

SUB_PLAN/SUB_PLANS used in multi-source planning.

Table 10.3. Set operation properties

Property Name Description

SET_OPERATION/USE_ALL defines the set
operation(UNION/INTERSECT/EXCEPT) and if all
rows or distinct rows are used.

Table 10.4. Join properties

Property Name Description

JOIN_CRITERIA All join predicates.

JOIN_TYPE Type of join (INNER, LEFT OUTER, and so forth).

JOIN_STRATEGY The algorithm to use (nested loop, merge, and so
forth).

LEFT_EXPRESSIONS The expressions in equi-join predicates that originate
from the left side of the join.

RIGHT_EXPRESSIONS The expressions in equi-join predicates that originate
from the right side of the join.

DEPENDENT_VALUE_SOURCE set if a dependent join is used.

NON_EQUI_JOIN_CRITERIA Non-equi join predicates.

Red Hat Integration 2020.Q1 Data Virtualization Reference

254

SORT_LEFT If the left side needs sorted for join processing.

SORT_RIGHT If the right side needs sorted for join processing.

IS_OPTIONAL If the join is optional.

IS_LEFT_DISTINCT If the left side is distinct with respect to the equi join
predicates.

IS_RIGHT_DISTINCT If the right side is distinct with respect to the equi join
predicates.

IS_SEMI_DEP If the dependent join represents a semi-join.

PRESERVE If the preserve hint is preserving the join order.

Property Name Description

Table 10.5. Project properties

Property Name Description

PROJECT_COLS The expressions projected.

INTO_GROUP The group targeted if this is a select into or insert
with a query expression.

HAS_WINDOW_FUNCTIONS True if window functions are used.

CONSTRAINT The constraint that must be met if the values are
being projected into a group.

UPSERT If the insert is an upsert.

Table 10.6. Select properties

Property Name Description

SELECT_CRITERIA The filter.

IS_HAVING If the filter is applied after grouping.

IS_PHANTOM True if the node is marked for removal, but
temporarily left in the plan.

IS_TEMPORARY Inferred criteria that may not be used in the final plan.

CHAPTER 10. FEDERATED PLANNING

255

IS_COPIED If the criteria has already been processed by rule
copy criteria.

IS_PUSHED If the criteria is pushed as far as possible.

IS_DEPENDENT_SET If the criteria is the filter of a dependent join.

Property Name Description

Table 10.7. Sort properties

Property Name Description

SORT_ORDER The order by that defines the sort.

UNRELATED_SORT If the ordering includes a value that is not being
projected.

IS_DUP_REMOVAL If the sort should also perform duplicate removal
over the entire projection.

Table 10.8. Source properties

Property Name Description

SYMBOL_MAP The mapping from the columns above the source to
the projected expressions. Also present on Group
nodes.

PARTITION_INFO The partitioning of the union branches.

VIRTUAL_COMMAND If the source represents an view or inline view, the
query that defined the view.

MAKE_DEP Hint information.

PROCESSOR_PLAN The processor plan of a non-relational
source(typically from the NESTED_COMMAND).

NESTED_COMMAND The non-relational command.

TABLE_FUNCTION The table function (XMLTABLE, OBJECTTABLE,
and so forth.) defining the source.

CORRELATED_REFERENCES The correlated references for the nodes below the
source.

Red Hat Integration 2020.Q1 Data Virtualization Reference

256

MAKE_NOT_DEP If make not dep is set.

INLINE_VIEW If the source node represents an inline view.

NO_UNNEST If the no_unnest hint is set.

MAKE_IND If the make ind hint is set.

SOURCE_HINT The source hint. See Federated optimizations.

ACCESS_PATTERNS Access patterns yet to be satisfied.

ACCESS_PATTERN_USED Satisfied access patterns.

REQUIRED_ACCESS_PATTERN_GROUPS Groups needed to satisfy the access patterns. Used
in join planning.

Property Name Description

NOTE

Many source properties also become present on associated access nodes.

Table 10.9. Group properties

Property Name Description

GROUP_COLS The grouping columns.

ROLLUP If the grouping includes a rollup.

Table 10.10. Tuple limit properties

Property Name Description

MAX_TUPLE_LIMIT Expression that evaluates to the max number of
tuples generated.

OFFSET_TUPLE_COUNT Expression that evaluates to the tuple offset of the
starting tuple.

IS_IMPLICIT_LIMIT If the limit is created by the rewriter as part of a
subquery optimization.

IS_NON_STRICT If the unordered limit should not be enforced strictly.

CHAPTER 10. FEDERATED PLANNING

257

Table 10.11. General and costing properties

Property Name Description

OUTPUT_COLS The output columns for the node. Is typically set after
rule assign output elements.

EST_SET_SIZE Represents the estimated set size this node would
produce for a sibling node as the independent node
in a dependent join scenario.

EST_DEP_CARDINALITY Value that represents the estimated cardinality
(amount of rows) produced by this node as the
dependent node in a dependent join scenario.

EST_DEP_JOIN_COST Value that represents the estimated cost of a
dependent join (the join strategy for this could be
Nested Loop or Merge).

EST_JOIN_COST Value that represents the estimated cost of a merge
join (the join strategy for this could be Nested Loop
or Merge).

EST_CARDINALITY Represents the estimated cardinality (amount of
rows) produced by this node.

EST_COL_STATS Column statistics including number of null values,
distinct value count, and so forth.

EST_SELECTIVITY Represents the selectivity of a criteria node.

Rules

Relational optimization is based upon rule execution that evolves the initial plan into the execution plan.
There are a set of pre-defined rules that are dynamically assembled into a rule stack for every query.
The rule stack is assembled based on the contents of the user’s query and the views/procedures
accessed. For example, if there are no view layers, then rule Merge Virtual, which merges view layers
together, is not needed and will not be added to the stack. This allows the rule stack to reflect the
complexity of the query.

Logically the plan node data structure represents a tree of nodes where the source data comes up from
the leaf nodes (typically Access nodes in the final plan), flows up through the tree and produces the
user’s results out the top. The nodes in the plan structure can have bidirectional links, dynamic
properties, and allow any number of child nodes. Processing plans in contrast typically have fixed
properties.

Plan rule manipulate the plan tree, fire other rules, and drive the optimization process. Each rule is
designed to perform a narrow set of tasks. Some rules can be run multiple times. Some rules require a
specific set of precursors to run properly.

Access Pattern Validation — Ensures that all access patterns have been satisfied.

Apply Security — Applies row and column level security.

Red Hat Integration 2020.Q1 Data Virtualization Reference

258

Assign Output Symbol — This rule walks top down through every node and calculates the output
columns for each node. Columns that are not needed are dropped at every node, which is
known as projection minimization. This is done by keeping track of both the columns needed to
feed the parent node and also keeping track of columns that are "created" at a certain node.

Calculate Cost — Adds costing information to the plan

Choose Dependent — This rule looks at each join node and determines whether the join should
be made dependent and in which direction. Cardinality, the number of distinct values, and
primary key information are used in several formulas to determine whether a dependent join is
likely to be worthwhile. The dependent join differs in performance ideally because a fewer
number of values will be returned from the dependent side.
Also, we must consider the number of values passed from independent to dependent side. If that
set is larger than the maximum number of values in an IN criteria on the dependent side, then we
must break the query into a set of queries and combine their results. Executing each query in the
connector has some overhead and that is taken into account. Without costing information a lot
of common cases where the only criteria specified is on a non-unique (but strongly limiting) field
are missed.

A join is eligible to be dependent if:

There is at least one equi-join criterion, for example, tablea.col = tableb.col

The join is not a full outer join and the dependent side of the join is on the inner side of the
join.

The join will be made dependent if one of the following conditions, listed in precedence order, holds:

There is an unsatisfied access pattern that can be satisfied with the dependent join criteria.

The potential dependent side of the join is marked with an option makedep.

(4.3.2) if costing was enabled, the estimated cost for the dependent join (5.0+ possibly in each
direction in the case of inner joins) is computed and compared to not performing the dependent
join. If the costs were all determined (which requires all relevant table cardinality, column ndv,
and possibly nnv values to be populated) the lowest is chosen.

If key metadata information indicates that the potential dependent side is not "small" and the
other side is "not small" or (5.0.1) the potential dependent side is the inner side of a left outer
join.

Dependent join is the key optimization we use to efficiently process multi-source joins. Instead of
reading all of source A and all of source B and joining them on A.x = B.x, we read all of A, and then build a
set of A.x that are passed as a criteria when querying B. In cases where A is small and B is large, this can
drastically reduce the data retrieved from B, thus greatly speeding the overall query.

Choose Join Strategy — Choose the join strategy based upon the cost and attributes of the join.

Clean Criteria — Removes phantom criteria.

Collapse Source — Takes all of the nodes below an access node and creates a SQL query
representation.

Copy Criteria — This rule copies criteria over an equality criteria that is present in the criteria of a
join. Since the equality defines an equivalence, this is a valid way to create a new criteria that
may limit results on the other side of the join (especially in the case of a multi-source join).

CHAPTER 10. FEDERATED PLANNING

259

Decompose Join — This rule performs a partition-wise join optimization on joins of a partitioned
union. For more information, see Partitioned unions in Federated optimizations. The decision to
decompose is based upon detecting that each side of the join is a partitioned union (note that
non-ANSI joins of more than 2 tables may cause the optimization to not detect the appropriate
join). The rule currently only looks for situations where at most 1 partition matches from each
side.

Implement Join Strategy — Adds necessary sort and other nodes to process the chosen join
strategy

Merge Criteria — Combines select nodes

Merge Virtual — Removes view and inline view layers

Place Access — Places access nodes under source nodes. An access node represents the point
at which everything below the access node gets pushed to the source or is a plan invocation.
Later rules focus on either pushing under the access or pulling the access node up the tree to
move more work down to the sources. This rule is also responsible for placing access patterns.
For more information, see Access patterns in Federated optimizations

Plan Joins — This rule attempts to find an optimal ordering of the joins performed in the plan,
while ensuring that access pattern dependencies are met. This rule has three main steps.

1. It must determine an ordering of joins that satisfy the access patterns present.

2. It will heuristically create joins that can be pushed to the source (if a set of joins are pushed
to the source, we will not attempt to create an optimal ordering within that set. More than
likely it will be sent to the source in the non-ANSI multi-join syntax and will be optimized by
the database).

3. It will use costing information to determine the best left-linear ordering of joins performed
in the processing engine. This third step will do an exhaustive search for 7 or less join
sources and is heuristically driven by join selectivity for 8 or more sources.

Plan Outer Joins — Reorders outer joins as permitted to improve push down.

Plan Procedures — Plans procedures that appear in procedural relational queries.

Plan Sorts — Optimizations around sorting, such as combining sort operations or moving
projection.

Plan Subqueries — New for Data Virtualization 12. Generalizes the subquery optimization that
was performed in Merge Criteria to allow for the creation of join plans from subqueries in both
projection and filtering.

Plan Unions — Reorders union children for more pushdown.

Plan Aggregates — Performs aggregate decomposition over a join or union.

Push Limit — Pushes the affect of a limit node further into the plan.

Push Non-Join Criteria — This rule will push predicates out of an on clause if it is not necessary
for the correctness of the join.

Push Select Criteria — Push select nodes as far as possible through unions, joins, and views
layers toward the access nodes. In most cases movement down the tree is good as this will filter
rows earlier in the plan. We currently do not undo the decisions made by Push Select Criteria.

Red Hat Integration 2020.Q1 Data Virtualization Reference

260

 However in situations where criteria cannot be evaluated by the source, this can lead to sub-
optimal plans.

Push Large IN — Push IN predicates that are larger than the translator can process directly to be
processed as a dependent set.

One of the most important optimization related to pushing criteria, is how the criteria will be pushed
through join. Consider the following plan tree that represents a subtree of the plan for the query select
* from A inner join b on (A.x = B.x) where B.y = 3

NOTE

SELECT nodes represent criteria, and SRC stands for SOURCE.

It is always valid for inner join and cross joins to push (single source) criteria that are above the join,
below the join. This allows for criteria originating in the user query to eventually be present in source
queries below the joins. This result can be represented visually as:

The same optimization is valid for criteria specified against the outer side of an outer join. For example:

Becomes

However criteria specified against the inner side of an outer join needs special consideration. The above
scenario with a left or full outer join is not the same. For example:

 SELECT (B.y = 3)
 |
 JOIN - Inner Join on (A.x = B.x)
 / \
 SRC (A) SRC (B)

 JOIN - Inner Join on (A.x = B.x)
 / \
 / SELECT (B.y = 3)
 | |
 SRC (A) SRC (B)

 SELECT (B.y = 3)
 |
 JOIN - Right Outer Join on (A.x = B.x)
 / \
 SRC (A) SRC (B)

 JOIN - Right Outer Join on (A.x = B.x)
 / \
 / SELECT (B.y = 3)
 | |
 SRC (A) SRC (B)

 SELECT (B.y = 3)
 |
 JOIN - Left Outer Join on (A.x = B.x)

CHAPTER 10. FEDERATED PLANNING

261

Can become (available only after 5.0.2):

Since the criterion is not dependent upon the null values that may be populated from the inner side of
the join, the criterion is eligible to be pushed below the join — but only if the join type is also changed to
an inner join. On the other hand, criteria that are dependent upon the presence of null values CANNOT
be moved. For example:

The preceding plan tree must have the criteria remain above the join, becuase the outer join may be
introducing null values itself.

Raise Access — This rule attempts to raise the Access nodes as far up the plan as posssible. This
is mostly done by looking at the source’s capabilities and determining whether the operations
can be achieved in the source or not.

Raise Null — Raises null nodes. Raising a null node removes the need to consider any part of the
old plan that was below the null node.

Remove Optional Joins — Removes joins that are marked as or determined to be optional.

Substitute Expressions — Used only when a function based index is present.

Validate Where All — Ensures criteria is used when required by the source.

Cost calculations

The cost of node operations is primarily determined by an estimate of the number of rows (also referred
to as cardinality) that will be processed by it. The optimizer will typically compute cardinalities from the
bottom up of the plan (or subplan) at several points in time with planning — once generally with rule
calculate cost, and then specifically for join planning and other decisions. The cost calculation is mainly
directed by the statistics set on physical tables (cardinality, NNV, NDV, and so forth) and is also
influenced by the presence of constraints (unique, primary key, index, and so forth). If there is a situation
that seems like a sub-optimal plan is being chosen, you should first ensure that at least representative
table cardinalities are set on the physical tables involved.

Reading a debug plan

As each relational sub plan is optimized, the plan will show what is being optimized and it’s canonical
form:

 / \
 SRC (A) SRC (B)

 JOIN - Inner Join on (A.x = B.x)
 / \
 / SELECT (B.y = 3)
 | |
 SRC (A) SRC (B)

 SELECT (B.y is null)
 |
 JOIN - Left Outer Join on (A.x = B.x)
 / \
 SRC (A) SRC (B)

OPTIMIZE:
SELECT e1 FROM (SELECT e1 FROM pm1.g1) AS x

Red Hat Integration 2020.Q1 Data Virtualization Reference

262

With more complicated user queries, such as a procedure invocation or one containing subqueries, the
sub-plans may be nested within the overall plan. Each plan ends by showing the final processing plan:

The affect of rules can be seen by the state of the plan tree before and after the rule fires. For example,
the debug log below shows the application of rule merge virtual, which will remove the "x" inline view
layer:

Some important planning decisions are shown in the plan as they occur as an annotation. For example,
the following code snippet shows that the access node could not be raised, because the parent
SELECT node contained an unsupported subquery.

--
GENERATE CANONICAL:
SELECT e1 FROM (SELECT e1 FROM pm1.g1) AS x

CANONICAL PLAN:
Project(groups=[x], props={PROJECT_COLS=[e1]})
 Source(groups=[x], props={NESTED_COMMAND=SELECT e1 FROM pm1.g1, SYMBOL_MAP=
{x.e1=e1}})
 Project(groups=[pm1.g1], props={PROJECT_COLS=[e1]})
 Source(groups=[pm1.g1])

--
OPTIMIZATION COMPLETE:
PROCESSOR PLAN:
AccessNode(0) output=[e1] SELECT g_0.e1 FROM pm1.g1 AS g_0

EXECUTING AssignOutputElements

AFTER:
Project(groups=[x], props={PROJECT_COLS=[e1], OUTPUT_COLS=[e1]})
 Source(groups=[x], props={NESTED_COMMAND=SELECT e1 FROM pm1.g1, SYMBOL_MAP=
{x.e1=e1}, OUTPUT_COLS=[e1]})
 Project(groups=[pm1.g1], props={PROJECT_COLS=[e1], OUTPUT_COLS=[e1]})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema name=pm1,
nameInSource=null, uuid=3335, OUTPUT_COLS=[e1]})
 Source(groups=[pm1.g1], props={OUTPUT_COLS=[e1]})

==
EXECUTING MergeVirtual

AFTER:
Project(groups=[pm1.g1], props={PROJECT_COLS=[e1], OUTPUT_COLS=[e1]})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema name=pm1,
nameInSource=null, uuid=3335, OUTPUT_COLS=[e1]})
 Source(groups=[pm1.g1])

Project(groups=[pm1.g1], props={PROJECT_COLS=[e1], OUTPUT_COLS=null})
 Select(groups=[pm1.g1], props={SELECT_CRITERIA=e1 IN /*+ NO_UNNEST */ (SELECT e1
FROM pm2.g1), OUTPUT_COLS=null})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema name=pm1,
nameInSource=null, uuid=3341, OUTPUT_COLS=null})
 Source(groups=[pm1.g1], props={OUTPUT_COLS=null})

CHAPTER 10. FEDERATED PLANNING

263

Procedure planner

The procedure planner is fairly simple. It converts the statements in the procedure into instructions in a
program that will be run during processing. This is mostly a 1-to-1 mapping and very little optimization is
performed.

XQuery

XQuery is eligible for specific optimizations. For more information, see XQuery optimization. Document
projection is the most common optimization. It will be shown in the debug plan as an annotation. For
example, with the user query that contains "xmltable('/a/b' passing doc columns x string path '@x', val
string path '.')", the debug plan would show a tree of the document that will effectively be used by the
context and path XQuerys:

10.3. QUERY PLANS

When integrating information using a federated query planner it is useful to view the query plans to
better understand how information is being accessed and processed, and to troubleshoot problems.

A query plan (also known as an execution or processing plan) is a set of instructions created by a query
engine for executing a command submitted by a user or application. The purpose of the query plan is to
execute the user’s query in as efficient a way as possible.

Getting a query plan

You can get a query plan any time you execute a command. The following SQL options are available:

SET SHOWPLAN [ON|DEBUG]- Returns the processing plan or the plan and the full planner debug log.
For more information, see Reading a debug plan in Query planner and SET statement in the Client
Developer’s Guide. With the above options, the query plan is available from the Statement object by
casting to the org.teiid.jdbc.TeiidStatement interface or by using the SHOW PLAN statement. For
more information, see SHOW Statement in the Client Developer’s Guide. Alternatively you may use the
EXPLAIN statement. For more information, see, Explain statement.

==
EXECUTING RaiseAccess
LOW Relational Planner SubqueryIn is not supported by source pm1 - e1 IN /*+ NO_UNNEST */
(SELECT e1 FROM pm2.g1) was not pushed

AFTER:
Project(groups=[pm1.g1])
 Select(groups=[pm1.g1], props={SELECT_CRITERIA=e1 IN /*+ NO_UNNEST */ (SELECT e1
FROM pm2.g1), OUTPUT_COLS=null})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema name=pm1,
nameInSource=null, uuid=3341, OUTPUT_COLS=null})
 Source(groups=[pm1.g1])

MEDIUM XQuery Planning Projection conditions met for /a/b - Document projection will be used
child element(Q{}a)
 child element(Q{}b)
 attribute attribute(Q{}x)
 child text()
 child text()

Red Hat Integration 2020.Q1 Data Virtualization Reference

264

Retrieving a query plan using Data Virtualization extensions

Retrieving a query plan using statements

Retrieving a query plan using explain

The query plan is made available automatically in several of Data Virtualization’s tools.

Analyzing a query plan

After you obtain a query plan, you can examine it for the following items:

Source pushdown — What parts of the query that got pushed to each source

Ensure that any predicates especially against indexes are pushed

Joins — As federated joins can be quite expensive

Join ordering — Typically influenced by costing

Join criteria type mismatches.

Join algorithm used — Merge, enhanced merge, nested loop, and so forth.

Presence of federated optimizations, such as dependent joins.

Ensure hints have the desired affects. For more information about using hints, see the following
additional resources:

Hints and Options in the Caching Guide.

FROM clause hints in FROM clause.

Subquery optimization.

Federated optimizations.

You can determine all of information in the preceding list from the processing plan. You will typically be
interested in analyzing the textual form of the final processing plan. To understand why particular
decisions are made for debugging or support you will want to obtain the full debug log which will contain

statement.execute("set showplan on");
ResultSet rs = statement.executeQuery("select ...");
Data VirtualizationStatement tstatement = statement.unwrap(TeiidStatement.class);
PlanNode queryPlan = tstatement.getPlanDescription();
System.out.println(queryPlan);

statement.execute("set showplan on");
ResultSet rs = statement.executeQuery("select ...");
...
ResultSet planRs = statement.executeQuery("show plan");
planRs.next();
System.out.println(planRs.getString("PLAN_XML"));

ResultSet rs = statement.executeQuery("explain select ...");
System.out.println(rs.getString("QUERY PLAN"));

CHAPTER 10. FEDERATED PLANNING

265

the intermediate planning steps as well as annotations as to why specific pushdown decisions are made.

A query plan consists of a set of nodes organized in a tree structure. If you are executing a procedure,
the overall query plan will contain additional information related the surrounding procedural execution.

In a procedural context the ordering of child nodes implies the order of execution. In most other
situation, child nodes may be executed in any order even in parallel. Only in specific optimizations, such
as dependent join, will the children of a join execute serially.

Relational query plans

Relational plans represent the processing plan that is composed of nodes representing building blocks
of logical relational operations. Relational processing plans differ from logical debug relational plans in
that they will contain additional operations and execution specifics that were chosen by the optimizer.

The nodes for a relational query plan are:

Access — Access a source. A source query is sent to the connection factory associated with the
source. (For a dependent join, this node is called Dependent Access.)

Dependent procedure access — Access a stored procedure on a source using multiple sets of
input values.

Batched update — Processes a set of updates as a batch.

Project — Defines the columns returned from the node. This does not alter the number of
records returned.

Project into — Like a normal project, but outputs rows into a target table.

Insert plan execution — Similar to a project into, but executes a plan rather than a source query.
Typically created when executing an insert into view with a query expression.

Window function project — Like a normal project, but includes window functions.

Select — Select is a criteria evaluation filter node (WHERE / HAVING).

Join — Defines the join type, join criteria, and join strategy (merge or nested loop).

Union all — There are no properties for this node, it just passes rows through from it’s children.
Depending upon other factors, such as if there is a transaction or the source query concurrency
allowed, not all of the union children will execute in parallel.

Sort — Defines the columns to sort on, the sort direction for each column, and whether to
remove duplicates or not.

Dup remove — Removes duplicate rows. The processing uses a tree structure to detect
duplicates so that results will effectively stream at the cost of IO operations.

Grouping — Groups sets of rows into groups and evaluates aggregate functions.

Null — A node that produces no rows. Usually replaces a Select node where the criteria is always
false (and whatever tree is underneath). There are no properties for this node.

Plan execution — Executes another sub plan. Typically the sub plan will be a non-relational plan.

Dependent procedure execution — Executes a sub plan using multiple sets of input values.

Red Hat Integration 2020.Q1 Data Virtualization Reference

266

Limit — Returns a specified number of rows, then stops processing. Also processes an offset if
present.

XML table — Evaluates XMLTABLE. The debug plan will contain more information about the
XQuery/XPath with regards to their optimization. For more information, see XQuery
optimization.

Text table - Evaluates TEXTTABLE

Array table - Evaluates ARRAYTABLE

Object table - Evaluates OBJECTTABLE

Node statistics

Every node has a set of statistics that are output. These can be used to determine the amount of data
flowing through the node. Before execution a processor plan will not contain node statistics. Also the
statistics are updated as the plan is processed, so typically you’ll want the final statistics after all rows
have been processed by the client.

Statistic Description Units

Node output rows Number of records output from
the node.

count

Node next batch process time Time processing in this node only. millisec

Node cumulative next batch
process time

Time processing in this node +
child nodes.

millisec

Node cumulative process time Elapsed time from beginning of
processing to end.

millisec

Node next batch calls Number of times a node was
called for processing.

count

Node blocks Number of times a blocked
exception was thrown by this node
or a child.

count

In addition to node statistics, some nodes display cost estimates computed at the node.

Cost Estimates Description Units

Estimated node cardinality Estimated number of records that
will be output from the node; -1 if
unknown.

count

The root node will display additional information.

CHAPTER 10. FEDERATED PLANNING

267

Top level statistics Description Units

Data Bytes Sent The size of the serialized data
result (row and lob values) sent to
the client.

bytes

Reading a processor plan

The query processor plan can be obtained in a plain text or XML format. The plan text format is typically
easier to read, while the XML format is easier to process by tooling. When possible tooling should be
used to examine the plans as the tree structures can be deeply nested.

Data flows from the leafs of the tree to the root. Sub plans for procedure execution can be shown inline,
and are differentiated by different indentation. Given a user query of SELECT pm1.g1.e1, pm1.g2.e2,
pm1.g3.e3 from pm1.g1 inner join (pm1.g2 left outer join pm1.g3 on pm1.g2.e1=pm1.g3.e1) on
pm1.g1.e1=pm1.g3.e1, the text for a processor plan that does not push down the joins would look like:

ProjectNode
 + Output Columns:
 0: e1 (string)
 1: e2 (integer)
 2: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Child 0:
 JoinNode
 + Output Columns:
 0: e1 (string)
 1: e2 (integer)
 2: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Child 0:
 JoinNode
 + Output Columns:
 0: e1 (string)
 1: e1 (string)
 2: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Child 0:
 AccessNode
 + Output Columns:e1 (string)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Query:SELECT g_0.e1 AS c_0 FROM pm1.g1 AS g_0 ORDER BY c_0
 + Model Name:pm1
 + Child 1:
 AccessNode
 + Output Columns:
 0: e1 (string)
 1: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Query:SELECT g_0.e1 AS c_0, g_0.e3 AS c_1 FROM pm1.g3 AS g_0 ORDER BY c_0
 + Model Name:pm1
 + Join Strategy:MERGE JOIN (ALREADY_SORTED/ALREADY_SORTED)
 + Join Type:INNER JOIN

Red Hat Integration 2020.Q1 Data Virtualization Reference

268

Note that the nested join node is using a merge join and expects the source queries from each side to
produce the expected ordering for the join. The parent join is an enhanced sort join which can delay the
decision to perform sorting based upon the incoming rows. Note that the outer join from the user query
has been modified to an inner join since none of the null inner values can be present in the query result.

The preceding plan can also be represented in in XML format as in the following example:

 + Join Criteria:pm1.g1.e1=pm1.g3.e1
 + Child 1:
 AccessNode
 + Output Columns:
 0: e1 (string)
 1: e2 (integer)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Query:SELECT g_0.e1 AS c_0, g_0.e2 AS c_1 FROM pm1.g2 AS g_0 ORDER BY c_0
 + Model Name:pm1
 + Join Strategy:ENHANCED SORT JOIN (SORT/ALREADY_SORTED)
 + Join Type:INNER JOIN
 + Join Criteria:pm1.g3.e1=pm1.g2.e1
 + Select Columns:
 0: pm1.g1.e1
 1: pm1.g2.e2
 2: pm1.g3.e3

<?xml version="1.0" encoding="UTF-8"?>
<node name="ProjectNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e2 (integer)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Child 0">
 <node name="JoinNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e2 (integer)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Child 0">
 <node name="JoinNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e1 (string)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Child 0">
 <node name="AccessNode">

CHAPTER 10. FEDERATED PLANNING

269

 <property name="Output Columns">
 <value>e1 (string)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Query">
 <value>SELECT g_0.e1 AS c_0 FROM pm1.g1 AS g_0 ORDER BY c_0</value>
 </property>
 <property name="Model Name">
 <value>pm1</value>
 </property>
 </node>
 </property>
 <property name="Child 1">
 <node name="AccessNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Query">
 <value>SELECT g_0.e1 AS c_0, g_0.e3 AS c_1 FROM pm1.g3 AS g_0
 ORDER BY c_0</value>
 </property>
 <property name="Model Name">
 <value>pm1</value>
 </property>
 </node>
 </property>
 <property name="Join Strategy">
 <value>MERGE JOIN (ALREADY_SORTED/ALREADY_SORTED)</value>
 </property>
 <property name="Join Type">
 <value>INNER JOIN</value>
 </property>
 <property name="Join Criteria">
 <value>pm1.g1.e1=pm1.g3.e1</value>
 </property>
 </node>
 </property>
 <property name="Child 1">
 <node name="AccessNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e2 (integer)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Query">
 <value>SELECT g_0.e1 AS c_0, g_0.e2 AS c_1 FROM pm1.g2 AS g_0
 ORDER BY c_0</value>
 </property>

Red Hat Integration 2020.Q1 Data Virtualization Reference

270

Note that the same information appears in each of the plan forms. In some cases it can actually be easier
to follow the simplified format of the debug plan final processor plan. The following output shows how
the debug log represents the plan in the preceding XML example:

Common

Output columns - what columns make up the tuples returned by this node.

Data bytes sent - how many data byte, not including messaging overhead, were sent by this
query.

Planning time - the amount of time in milliseconds spent planning the query.

Relational

Relational node ID — Matches the node ids seen in the debug log Node(id).

Criteria — The Boolean expression used for filtering.

 <property name="Model Name">
 <value>pm1</value>
 </property>
 </node>
 </property>
 <property name="Join Strategy">
 <value>ENHANCED SORT JOIN (SORT/ALREADY_SORTED)</value>
 </property>
 <property name="Join Type">
 <value>INNER JOIN</value>
 </property>
 <property name="Join Criteria">
 <value>pm1.g3.e1=pm1.g2.e1</value>
 </property>
 </node>
 </property>
 <property name="Select Columns">
 <value>pm1.g1.e1</value>
 <value>pm1.g2.e2</value>
 <value>pm1.g3.e3</value>
 </property>
</node>

OPTIMIZATION COMPLETE:
PROCESSOR PLAN:
ProjectNode(0) output=[pm1.g1.e1, pm1.g2.e2, pm1.g3.e3] [pm1.g1.e1, pm1.g2.e2, pm1.g3.e3]
 JoinNode(1) [ENHANCED SORT JOIN (SORT/ALREADY_SORTED)] [INNER JOIN] criteria=
[pm1.g3.e1=pm1.g2.e1] output=[pm1.g1.e1, pm1.g2.e2, pm1.g3.e3]
 JoinNode(2) [MERGE JOIN (ALREADY_SORTED/ALREADY_SORTED)] [INNER JOIN] criteria=
[pm1.g1.e1=pm1.g3.e1] output=[pm1.g3.e1, pm1.g1.e1, pm1.g3.e3]
 AccessNode(3) output=[pm1.g1.e1] SELECT g_0.e1 AS c_0 FROM pm1.g1 AS g_0 ORDER BY
c_0
 AccessNode(4) output=[pm1.g3.e1, pm1.g3.e3] SELECT g_0.e1 AS c_0, g_0.e3 AS c_1 FROM
pm1.g3 AS g_0 ORDER BY c_0
 AccessNode(5) output=[pm1.g2.e1, pm1.g2.e2] SELECT g_0.e1 AS c_0, g_0.e2 AS c_1 FROM
pm1.g2 AS g_0 ORDER BY c_0

CHAPTER 10. FEDERATED PLANNING

271

Select columns — he columns that define the projection.

Grouping columns — The columns used for grouping.

Grouping mapping — Shows the mapping of aggregate and grouping column internal names to
their expression form.

Query — The source query.

Model name — The model name.

Sharing ID — Nodes sharing the same source results will have the same sharing id.

Dependent join — If a dependent join is being used.

Join strategy — The join strategy (Nested Loop, Sort Merge, Enhanced Sort, and so forth).

Join type — The join type (Left Outer Join, Inner Join, Cross Join).

Join criteria — The join predicates.

Execution plan — The nested execution plan.

Into target — The insertion target.

Upsert — If the insert is an upsert.

Sort columns — The columns for sorting.

Sort mode — If the sort performs another function as well, such as distinct removal.

Rollup — If the group by has the rollup option.

Statistics — The processing statistics.

Cost estimates — The cost/cardinality estimates including dependent join cost estimates.

Row offset — The row offset expression.

Row limit — The row limit expression.

With — The with clause.

Window functions — The window functions being computed.

Table function — The table function (XMLTABLE, OBJECTTABLE, TEXTTABLE, and so forth).

Streaming — If the XMLTABLE is using stream processing.

Procedure

Expression

Result Set

Program

Variable

Red Hat Integration 2020.Q1 Data Virtualization Reference

272

Then

Else

Other plans

Procedure execution (including instead of triggers) use intermediate and final plan forms that include
relational plans. Generally the structure of the XML/procedure plans will closely match their logical
forms. It’s the nested relational plans that will be of interest when analyzing performance issues.

10.4. FEDERATED OPTIMIZATIONS

Access patterns

Access patterns are used on both physical tables and views to specify the need for criteria against a set
of columns. Failure to supply the criteria will result in a planning error, rather than a run-away source
query. Access patterns can be applied in a set such that only one of the access patterns is required to be
satisfied.

Currently any form of criteria referencing an affected column may satisfy an access pattern.

Pushdown

In federated database systems pushdown refers to decomposing the user level query into source
queries that perform as much work as possible on their respective source system. Pushdown analysis
requires knowledge of source system capabilities, which is provided to Data Virtualization though the
Connector API. Any work not performed at the source is then processed in Federate’s relational engine.

Based upon capabilities, Data Virtualization will manipulate the query plan to ensure that each source
performs as much joining, filtering, grouping, and so forth, as possible. In many cases, such as with join
ordering, planning is a combination of standard relational techniques along with costing information, and
heuristics for pushdown optimization.

Criteria and join push down are typically the most important aspects of the query to push down when
performance is a concern. For information about how to read a plan to ensure that source queries are as
efficient as possible, see Query plans.

Dependent joins

A special optimization called a dependent join is used to reduce the rows returned from one of the two
relations involved in a multi-source join. In a dependent join, queries are issued to each source
sequentially rather than in parallel, with the results obtained from the first source used to restrict the
records returned from the second. Dependent joins can perform some joins much faster by drastically
reducing the amount of data retrieved from the second source and the number of join comparisons that
must be performed.

The conditions when a dependent join is used are determined by the query planner based on access
patterns, hints, and costing information. You can use the following types of dependent joins with Data
Virtualization:

Join based on equality or inequality

Where the engine determines how to break up large queries based on translator capabilities.

Key pushdown

Where the translator has access to the full set of key values and determines what queries to send.

Full pushdown

Where the translator ships the all data from the independent side to the translator. Can be used

CHAPTER 10. FEDERATED PLANNING

273

Where the translator ships the all data from the independent side to the translator. Can be used
automatically by costing or can be specified as an option in the hint.

You can use the following types of hints in Data Virtualization to control dependent join behavior:

MAKEIND

Indicates that the clause should be the independent side of a dependent join.

MAKEDEP

Indicates that the clause should be the dependent side of a join. As a non-comment hint, you can use
MAKEDEP with the following optional MAX and JOIN arguments.

MAKEDEP(JOIN)

meaning that the entire join should be pushed.

MAKEDEP(MAX:5000)

meaning that the dependent join should only be performed if there are less than the maximum
number of values from the independent side.

MAKENOTDEP

Prevents the clause from being the dependent side of a join.

These can be placed in either the OPTION Clause or directly in the FROM Clause. As long as all Access
Patterns can be met, the MAKEIND, MAKEDEP, and MAKENOTDEP hints override any use of costing
information. MAKENOTDEP supersedes the other hints.

TIP

The MAKEDEP or MAKEIND hints should only be used if the proper query plan is not chosen by default.
You should ensure that your costing information is representative of the actual source cardinality.

NOTE

An inappropriate MAKEDEP or MAKEIND hint can force an inefficient join structure and
may result in many source queries.

TIP

While these hints can be applied to views, the optimizer will by default remove views when possible. This
can result in the hint placement being significantly different than the original intention. You should
consider using the NO_UNNEST hint to prevent the optimizer from removing the view in these cases.

In the simplest scenario the engine will use IN clauses (or just equality predicates) to filter the values
coming from the dependent side. If the number of values from the independent side exceeds the
translators MaxInCriteriaSize, the values will be split into multiple IN predicates up to
MaxDependentPredicates. When the number of independent values exceeds
MaxInCriteriaSize*MaxDependentPredicates, then multiple dependent queries will be issued in
parallel.

If the translator returns true for supportsDependentJoins, then the engine may provide the entire set
of independent key values. This will occur when the number of independent values exceeds
MaxInCriteriaSize*MaxDependentPredicates so that the translator may use specific logic to avoid
issuing multiple queries as would happen in the simple scenario.

If the translator returns true for both supportsDependentJoins and supportsFullDependentJoins

Red Hat Integration 2020.Q1 Data Virtualization Reference

274

then a full pushdown may be chosen by the optimizer A full pushdown, sometimes also called as data-
ship pushdown, is where all the data from independent side of the join is sent to dependent side. This has
an added benefit of allowing the plan above the join to be eligible for pushdown as well. This is why the
optimizer may choose to perform a full pushdown even when the number of independent values does
not exceed MaxInCriteriaSize*MaxDependentPredicates. You may also force full pushdown using the
MAKEDEP(JOIN) hint. The translator is typically responsible for creating, populating, and removing a
temporary table that represents the independent side. For more information about how to use custom
translators with dependent, key, and full pushdown, see Dependent join pushdown in Translator
Development. NOTE: By default, Key/Full Pushdown is compatible with only a subset of JDBC
translators. To use it, set the translator override property enableDependentJoins to true. The JDBC
source must allow for the creation of temporary tables, which typically requires a Hibernate dialect. The
following translators are compatible with this feature: DB2, Derby, H2, Hana, HSQL, MySQL, Oracle,
PostgreSQL, SQL Server, SAP IQ, Sybase, Teiid, and Teradata.

Copy criteria

Copy criteria is an optimization that creates additional predicates based upon combining join and where
clause criteria. For example, equi-join predicates (source1.table.column = source2.table.column) are
used to create new predicates by substituting source1.table.column for source2.table.column and
vice versa. In a cross-source scenario, this allows for where criteria applied to a single side of the join to
be applied to both source queries

Projection minimization

Data Virtualization ensures that each pushdown query only projects the symbols required for processing
the user query. This is especially helpful when querying through large intermediate view layers.

Partial aggregate pushdown

Partial aggregate pushdown allows for grouping operations above multi-source joins and unions to be
decomposed so that some of the grouping and aggregate functions may be pushed down to the
sources.

Optional join

An optional or redundant join is one that can be removed by the optimizer. The optimizer will
automatically remove inner joins based upon a foreign key or left outer joins when the outer results are
unique.

The optional join hint goes beyond the automatic cases to indicate to the optimizer that a joined table
should be omitted if none of its columns are used by the output of the user query or in a meaningful way
to construct the results of the user query. This hint is typically only used in view layers containing multi-
source joins.

The optional join hint is applied as a comment on a join clause. It can be applied in both ANSI and non-
ANSI joins. With non-ANSI joins an entire joined table may be marked as optional.

Example: Optional join hint

Suppose this example defines a view layer X. If X is queried in such a way as to not need b.column2, then
the optional join hint will cause b to be omitted from the query plan. The result would be the same as if X
were defined as:

Example: Optional join hint

select a.column1, b.column2 from a, /*+ optional */ b WHERE a.key = b.key

CHAPTER 10. FEDERATED PLANNING

275

https://teiid.github.io/teiid-documents/master/content/dev/Dependent_Join_Pushdown.html

Example: ANSI optional join hint

In this example the ANSI join syntax allows for the join of a and b to be marked as optional. Suppose this
example defines a view layer X. Only if both column a.column1 and b.column2 are not needed, for
example, SELECT column3 FROM X will the join be removed.

The optional join hint will not remove a bridging table that is still required.

Example: Bridging table

Suppose this example defines a view layer X. If b.column2 or c.column3 are solely required by a query
to X, then the join on a be removed. However if a.column1 or both b.column2 and c.column3 are
needed, then the optional join hint will not take effect.

When a join clause is omitted via the optional join hint, the relevant criteria is not applied. Thus it is
possible that the query results may not have the same cardinality or even the same row values as when
the join is fully applied.

Left/right outer joins where the inner side values are not used and whose rows under go a distinct
operation will automatically be treated as an optional join and do not require a hint.

Example: Unnecessary optional join hint

NOTE

A simple "SELECT COUNT(*) FROM VIEW" against a view where all join tables are marked
as optional will not return a meaningful result.

Source hints

Data Virtualization user and transformation queries can contain a meta source hint that can provide
additional information to source queries. The source hint has the following form:

The source hint is expected to appear after the query (SELECT, INSERT, UPDATE, DELETE)
keyword.

Source hints can appear in any subquery, or in views. All hints applicable to a given source query
will be collected and pushed down together as a list. The order of the hints is not guaranteed.

The sh arg is optional and is passed to all source queries via the
ExecutionContext.getGeneralHints method. The additional args should have a source-name

select a.column1 from a

select a.column1, b.column2, c.column3 from /*+ optional */ (a inner join b ON a.key = b.key) INNER
JOIN c ON a.key = c.key

select a.column1, b.column2, c.column3 from /*+ optional */ a, b, c WHERE ON a.key = b.key AND
a.key = c.key

 select distinct a.column1 from a LEFT OUTER JOIN /*+optional*/ b ON a.key = b.key

/*+ sh[[KEEP ALIASES]:'arg'] source-name[KEEP ALIASES]:'arg1' ... */

Red Hat Integration 2020.Q1 Data Virtualization Reference

276

that matches the source name assigned to the translator in the VDB. If the source-name
matches, the hint values will be supplied via the ExecutionContext.getSourceHints method.
For more information about using an ExecutionContext, see Translator Development .

Each of the arg values has the form of a string literal - it must be surrounded in single quotes
and a single quote can be escaped with another single quote. Only the Oracle translator does
anything with source hints by default. The Oracle translator will use both the source hint and the
general hint (in that order) if available to form an Oracle hint enclosed in /*+ … */.

If the KEEP ALIASES option is used either for the general hint or on the applicable source
specific hint, then the table/view aliases from the user query and any nested views will be
preserved in the push-down query. This is useful in situations where the source hint may need to
reference aliases and the user does not wish to rely on the generated aliases (which can be seen
in the query plan in the relevant source queries — see above). However in some situations this
may result in an invalid source query if the preserved alias names are not valid for the source or
result in a name collision. If the usage of KEEP ALIASES results in an error, the query could be
modified by preventing view removal with the NO_UNNEST hint, the aliases modified, or the
KEEP ALIASES option could be removed and the query plan used to determine the generated
alias names.

Sample source hints

Partitioned union

Union partitioning is inferred from the transformation/inline view. If one (or more) of the UNION
columns is defined by constants and/or has WHERE clause IN predicates containing only constants that
make each branch mutually exclusive, then the UNION is considered partitioned. UNION ALL must be
used and the UNION cannot have a LIMIT, WITH, or ORDER BY clause (although individual branches
may use LIMIT, WITH, or ORDER BY). Partitioning values should not be null.

Example: Partitioned union

The view is partitioned on column x, since the first branch can only be the value 1 and the second branch
can only be the values 2 or 3.

NOTE

More advanced or explicit partitioning will be considered for future releases.

The concept of a partitioned union is used for performing partition-wise joins, in Updatable Views, and
Partial Aggregate Pushdown. These optimizations are also applied when using the multi-source feature
as well - which introduces an explicit partitioning column.

Partition-wise joins take a join of unions and convert the plan into a union of joins, such that only
matching partitions are joined against one another. If you want a partition-wise join to be performed
implicit without the need for an explicit join predicate on the partitioning column, set the model/schema
property implicit_partition.columnName to name of the partitioning column used on each partitioned
view in the model/schema.

SELECT /*+ sh:'general hint' */ ...

SELECT /*+ sh KEEP ALIASES:'general hint' my-oracle:'oracle hint' */ ...

create view part as select 1 as x, y from foo union all select z, a from foo1 where z in (2, 3)

CHAPTER 10. FEDERATED PLANNING

277

https://teiid.github.io/teiid-documents/master/content/dev/Translator_Development.html

Standard relational techniques

Data Virtualization also incorporates many standard relational techniques to ensure efficient query
plans.

Rewrite analysis for function simplification and evaluation.

Boolean optimizations for basic criteria simplification.

Removal of unnecessary view layers.

Removal of unnecessary sort operations.

Advanced search techniques through the left-linear space of join trees.

Parallelizing of source access during execution.

Subquery optimization.

Join compensation

Some source systems only allow "relationship" queries logically producing left outer join results. Even
when queried with an inner join, Data Virtualization will attempt to form an appropriate left outer join.
These sources are restricted to use with key joins. In some circumstances foreign key relationships on
the same source should not be traversed at all or with the referenced table on the outer side of join. The
extension property teiid_rel:allow-join can be used on the foreign key to further restrict the pushdown
behavior. With a value of "false" no join pushdown will be allowed, and with a value of "inner" the
referenced table must be on the inner side of the join. If the join pushdown is prevented, the join will be
processed as a federated join.

10.5. SUBQUERY OPTIMIZATION

EXISTS subqueries are typically rewrite to "SELECT 1 FROM …" to prevent unnecessary
evaluation of SELECT expressions.

Quantified compare SOME subqueries are always turned into an equivalent IN predicate or
comparison against an aggregate value. e.g. col > SOME (select col1 from table) would become
col > (select min(col1) from table)

Uncorrelated EXISTs and scalar subquery that are not pushed to the source can be pre-
evaluated prior to source command formation.

Correlated subqueries used in DETELEs or UPDATEs that are not pushed as part of the
corresponding DELETE/UPDATE will cause Data Virtualization to perform row-by-row
compensating processing.

The merge join (MJ) hint directs the optimizer to use a traditional, semijoin, or antisemijoin
merge join if possible. The dependent join (DJ) is the same as the MJ hint, but additionally
directs the optimizer to use the subquery as the independent side of a dependent join if
possible. This will only happen if the affected table has a primary key. If it does not, then an
exception will be thrown.

WHERE or HAVING clause IN, Quantified Comparison, Scalar Subquery Compare, and EXISTs
predicates can take the MJ, DJ, or NO_UNNEST (no unnest) hints appearing just before the

CREATE VIRTUAL SCHEMA all_customers SERVER server OPTIONS
("implicit_partition.columnName" 'theColumn');

Red Hat Integration 2020.Q1 Data Virtualization Reference

278

subquery. The NO_UNNEST hint, which supersedes the other hints, will direct the optimizer to
leave the subquery in place.

SELECT scalar subqueries can take the MJ or NO_UNNEST hints appearing just before the
subquery. The MJ hint directs the optimizer to use a traditional or semijoin merge join if
possible. The NO_UNNEST hint, which supersedes the other hints, will direct the optimizer to
leave the subquery in place.

Merge join hint usage

Dependent join hint usage

No unnest hint usage

The system property org.teiid.subqueryUnnestDefault controls whether the optimizer will by
default unnest subqueries during rewrite. If true, then most non-negated WHERE or HAVING
clause EXISTS or IN subquery predicates can be converted to a traditional join.

The planner will always convert to antijoin or semijoin variants if costing is favorable. Use a hint
to override this behavior needed.

EXISTs and scalar subqueries that are not pushed down, and not converted to merge joins, are
implicitly limited to 1 and 2 result rows respectively via a limit.

Conversion of subquery predicates to nested loop joins is not yet available.

10.6. XQUERY OPTIMIZATION

A technique known as document projection is used to reduce the memory footprint of the context item
document. Document projection loads only the parts of the document needed by the relevant XQuery
and path expressions. Since document projection analysis uses all relevant path expressions, even 1
expression that could potentially use many nodes, for example, //x rather than /a/b/x will cause a larger
memory footprint. With the relevant content removed the entire document will still be loaded into
memory for processing. Document projection will only be used when there is a context item (unnamed
PASSING clause item) passed to XMLTABLE/XMLQUERY. A named variable will not have document
projection performed. In some cases the expressions used may be too complex for the optimizer to use
document projection. You should check the SHOWPLAN DEBUG full plan output to see if the
appropriate optimization has been performed.

With additional restrictions, simple context path expressions allow the processor to evaluate document
subtrees independently - without loading the full document in memory. A simple context path
expression can be of the form [/][ns:]root/[ns1:]elem/…`, where a namespace prefix or element name
can also be the * wild card. As with normal XQuery processing if namespace prefixes are used in the
XQuery expression, they should be declared using the XMLNAMESPACES clause.

Streaming eligible XMLQUERY

SELECT col1 from tbl where col2 IN /*+ MJ*/ (SELECT col1 FROM tbl2)

SELECT col1 from tbl where col2 IN /*+ DJ */ (SELECT col1 FROM tbl2)

SELECT col1 from tbl where col2 IN /*+ NO_UNNEST */ (SELECT col1 FROM tbl2)

XMLQUERY('/*:root/*:child' PASSING doc)

CHAPTER 10. FEDERATED PLANNING

279

Rather than loading the entire doc in-memory as a DOM tree, each child element will be independently
added to the result.

Streaming ineligible XMLQUERY

The use of the descendant axis prevents the streaming optimization, but document projection can still
be performed.

When using XMLTABLE, the COLUMN PATH expressions have additional restrictions. They are allowed
to reference any part of the element subtree formed by the context expression and they may use any
attribute value from their direct parentage. Any path expression where it is possible to reference a non-
direct ancestor or sibling of the current context item prevent streaming from being used.

Streaming eligible XMLTABLE

The context XQuery and the column path expression allow the streaming optimization, rather than
loading the entire document in-memory as a DOM tree, each child element will be independently added
to the result.

Streaming ineligible XMLTABLE

The reference of an element outside of the child subtree in the sibling_attr path prevents the streaming
optimization from being used, but document projection can still be performed.

NOTE

Column paths should be as targeted as possible to avoid performance issues. A general
path such as ..//child will cause the entire subtree of the context item to be searched on
each output row.

10.7. FEDERATED FAILURE MODES

Data Virtualization provides the capability to obtain partial results in the event of data source
unavailability or failure. This is especially useful when unioning information from multiple sources, or
when doing a left outer join, where you are appending columns to a master record, but still want the
record if the extra information is not available.

A source is considered to be unavailable if the connection factory that is associated with the source
generates an exception in response to a query. The exception will be propagated to the query processor,
where it will become a warning on the statement. For more information about partial results and
SQLWarning objects, see Partial Results Mode in the Client Developer’s Guide.

10.8. CONFORMED TABLES

A conformed table is a source table that is the same in several physical sources.

XMLQUERY('//child' PASSING doc)

XMLTABLE('/*:root/*:child' PASSING doc COLUMNS fullchild XML PATH '.', parent_attr string PATH
'../@attr', child_val integer)

XMLTABLE('/*:root/*:child' PASSING doc COLUMNS sibling_attr string PATH '../other_child/@attr')

Red Hat Integration 2020.Q1 Data Virtualization Reference

280

Typically this would be used when reference data exists in multiple sources, but only a single metadata
entry is desired to represent the table.

Conformed tables are defined by adding the following extension metadata property to the appropriate
source tables:

You can set extension properties in the DDL file by using full DDL metadata or alter statements, or at
runtime by using the setProperty system procedure. The property is expected to be a comma separated
list of physical model/schema names.

DDL alter example

There is no expectation that a metadata entry exists on the other schemas.

The engine will take the list of conformed sources and associate a set of model metadata ids to the
corresponding access node. The logic considering joins and subqueries will also consider the conformed
sets when making pushdown decisions. The subquery handling will only check for conformed sources for
the subquery — not in the parent. So having a conformed table in the subquery will pushdown as
expected, but not vice versa.

{http://www.teiid.org/ext/relational/2012}conformed-sources

ALTER FOREIGN TABLE "reference_data" OPTIONS (ADD "teiid_rel:conformed-sources"
'source2,source3');

CHAPTER 10. FEDERATED PLANNING

281

CHAPTER 11. DATA VIRTUALIZATION ARCHITECTURE

Transport

Transport services manage client connections: security authentication, encryption, and so forth.

Query Engine

The query engine has several layers and components. At a high level, request processing is structured
as follows:

The following diagram shows the components that make up the data virtualization service in greater

Red Hat Integration 2020.Q1 Data Virtualization Reference

282

The following diagram shows the components that make up the data virtualization service in greater
detail:

1. SQL is converted to a processor plan. The engine receives an incoming SQL query. It is parsed
to a internal command. Then the command is converted a logical plan via resolving, validating,
and rewriting. Finally, rule and cost-based optimization convert the logical plan to a final
processor plan. For more information, see Federated planning.

2. Batch processing. The source and other aspects of query processing may return results
asynchronously to the processing thread. As soon as possible, batches of results are made
available to the client.

3. Buffer management controls the bulk of the on and off heap memory that Data Virtualization is
using. It prevents consuming too much memory that otherwise might exceed the VM size.

4. Transaction management determines when transactions are needed and interacts with the
TransactionManager subsystem to coordinate XA transactions.
Source queries are handled by the data tier layer which interfaces with the query engine and the
connector layer which utilizes a translator to interact directly with a source. Connectivity is
provided for heterogeneous data stores, such as databases or data warehouses, NoSQL,
Hadoop, data grid/cache, files, SaaS, and so on.

Translator

Data Virtualization has developed a series of translators. For more information, see
Translators.

11.1. TERMINOLOGY

VM or process

A Spring Boot instance of Data Virtualization.

Host

A machine that runs one or more VMs.

Service

A subsystem that runs in a VM (often in many VMs) and provides a related set of functionality. In

CHAPTER 11. DATA VIRTUALIZATION ARCHITECTURE

283

A subsystem that runs in a VM (often in many VMs) and provides a related set of functionality. In
addition to these main components, the service platform makes the following core set of services
available to the applications that are built on top of it:

Session

The Session service manages active session information.

Buffer manager

The Buffer Manager service provides access to data management for intermediate results. For
more information, see Buffer management in Data management.

Transaction

The Transaction service manages global, local, and request scoped transactions. For more
information, see Transactions.

11.2. DATA MANAGEMENT

Cursoring and batching

Data Virtualization cursors all results, regardless of whether they are from one source or many sources,
and regardless of what type of processing (joins, unions, and so forth.) have been performed on the
results.

Data Virtualization processes results in batches. A batch is simply a set of records. The number of rows
in a batch is determined by the buffer system property processor-batch-size and is scaled upon the
estimated memory footprint of the batch.

Client applications have no direct knowledge of batches or batch sizes, but rather specify fetch size.
However the first batch, regardless of fetch size is always proactively returned to synchronous clients.
Subsequent batches are returned based on client demand for the data. Pre-fetching is utilized at both
the client and connector levels.

Buffer management

The buffer manager manages memory for all result sets used in the query engine. That includes result
sets read from a connection factory, result sets used temporarily during processing, and result sets
prepared for a user. Each result set is referred to in the buffer manager as a tuple source.

When retrieving batches from the buffer manager, the size of a batch in bytes is estimated and then
allocated against the max limit.

Memory management

The buffer manager has two storage managers - a memory manager and a disk manager. The buffer
manager maintains the state of all the batches, and determines when batches must be moved from
memory to disk.

Disk management

Each tuple source has a dedicated file (named by the ID) on disk. This file will be created only if at least
one batch for the tuple source had to be swapped to disk. The file is random access. The processor
batch size property defines how many rows should nominally exist in a batch assuming 2048 bits worth
of data in a row. If the row is larger or smaller than that target, the engine will adjust the batch size for
those tuples accordingly. Batches are always read and written from the storage manager whole.

The disk storage manager caps the maximum number of open files to prevent running out of file

Red Hat Integration 2020.Q1 Data Virtualization Reference

284

The disk storage manager caps the maximum number of open files to prevent running out of file
handles. In cases with heavy buffering, this can cause wait times while waiting for a file handle to become
available (the default maximum open files is 64).

Cleanup

When a tuple source is no longer needed, it is removed from the buffer manager. The buffer manager
will remove it from both the memory storage manager and the disk storage manager. The disk storage
manager will delete the file. In addition, every tuple source is tagged with a "group name" which is
typically the session ID of the client. When the client’s session is terminated (by closing the connection,
server detecting client shutdown, or administrative termination), a call is sent to the buffer manager to
remove all tuple sources for the session.

In addition, when the query engine is shutdown, the buffer manager is shut down, which will remove all
state from the disk storage manager and cause all files to be closed. When the query engine is stopped,
it is safe to delete any files in the buffer directory as they are not used across query engine restarts and
must be due to a system crash where buffer files were not cleaned up.

11.3. QUERY TERMINATION

Canceling queries

When a query is canceled, processing will be stopped in the query engine and in all connectors involved
in the query. The semantics of what a connector does in response to a cancellation command depends
on the connector implementation. For example, JDBC connectors will asynchronously call cancel on the
underlying JDBC driver, which might or might not be compatible with this method.

User query timeouts

User query timeouts in Data Virtualization can be managed on the client-side or the server-side.
Timeouts are only relevant for the first record returned. If the first record has not been received by the
client within the specified timeout period, a cancel command is issued to the server for the request and
no results are returned to the client. The cancel command is issued asynchronously without the client’s
intervention.

The JDBC API uses the query timeout set by the java.sql.Statement.setQueryTimeout method. You
can also set a default statement timeout via the connection property "QUERYTIMEOUT". ODBC clients
can also use QUERYTIMEOUT as an execution property via a set statement to control the default
timeout setting. See the Client Developer’s Guide for more on connection/execution properties and set
statements.

Server-side timeouts start when the query is received by the engine. Network latency or server load can
delays the processing of I/O work after a client issues the query. The timeout will be cancelled if the first
result is sent back before the timeout has ended. For more information about setting the query-
timeout property for a virtual database, see Virtual database properties. For more information about
modifying system properties to set a default query timeout for all queries, see System properties in the
Administrator’s Guide.

11.4. PROCESSING

Join algorithms

Nested loop does the most obvious processing. For every row in the outer source, it compares with
every row in the inner source. Nested loop is only used when the join criteria has no equi-join predicates.

A merge join first sorts the input sources on the joined columns. You can then walk through each side in
parallel (effectively one pass through each sorted source), and when you have a match, emit a row. In

CHAPTER 11. DATA VIRTUALIZATION ARCHITECTURE

285

general, merge join is on the order of n+m rather than n*m in nested loop. Merge join is the default
algorithm.

Using costing information the engine may also delay the decision to perform a full sort merge join.
Based upon the actual row counts involved, the engine can choose to build an index of the smaller side
(which will perform similarly to a hash join) or to only partially sort the larger side of the relation.

Joins involving equi-join predicates can be converted into dependent joins. For more information, see
Dependent joins in Federated optimizations.

Sort-based algorithms

Sorting is used as the basis of the Sort (ORDER BY), Grouping (GROUP BY), and DupRemoval
(SELECT DISTINCT) operations. The sort algorithm is a multi-pass merge-sort that does not require all
of the result set to ever be in memory, yet uses the maximal amount of memory allowed by the buffer
manager.

Sorting consists of two phases. In the first phase ("sort"), the algorithm processes an unsorted input
stream to produce one or more sorted input streams. Each pass reads as much of the unsorted stream
as possible, sorts it, and writes it back out as a new stream. When an unsorted stream is processed, the
resulting sorted stream might be too large to reside in memory. If the size of a sorted stream exceeds
the available memory, it is written out to multiple sorted streams.

The second phase of the sort algorithm ("merge") consists of a set of phases that grab the next batch
from as many sorted input streams as will fit in memory. It then repeatedly grabs the next tuple in sorted
order from each stream and outputs merged sorted batches to a new sorted stream. At completion of
the phase, all input streams are dropped. In this way, each phase reduces the number of sorted streams.
 When only one stream remains, it is the final output.

Red Hat Integration 2020.Q1 Data Virtualization Reference

286

CHAPTER 12. BNF FOR SQL GRAMMAR
Main Entry Points

callable statement

ddl statement

explain

directly executable statement

Reserved Keywords

Non-Reserved Keywords

Reserved Keywords For Future Use

Tokens

Production Cross-Reference

Productions

12.1. RESERVED KEYWORDS

Keyword Usage

ADD add set child option, add set option, ADD column,
ADD constraint

ALL standard aggregate function, CREATE POLICY,
function, GRANT, query expression body, query term,
Revoke GRANT, select clause, quantified comparison
predicate

ALTER alter, ALTER PROCEDURE , alterStatement, ALTER
TABLE , grant type

AND between predicate, boolean term, window frame

ANY standard aggregate function, with role, quantified
comparison predicate

ARRAY ARRAY expression constructor

ARRAY_AGG ordered aggregate function

CHAPTER 12. BNF FOR SQL GRAMMAR

287

AS alter, ALTER PROCEDURE , ALTER TABLE , ALTER
TRIGGER , array table, create procedure, create a
domain or type alias, option namespace, create
trigger, create view, delete statement, derived
column, dynamic data statement, function, json table,
loop statement, xml namespace element, object
table, select derived column, table subquery, text
table, table name, unescapedFunction, update
statement, with list element, xml serialize, xml table

ASC sort specification

ATOMIC compound statement, for each row trigger action

AUTHENTICATED with role

BEGIN compound statement, for each row trigger action

BETWEEN between predicate, window frame

BIGDECIMAL simple data type

BIGINT simple data type

BIGINTEGER simple data type

BLOB simple data type, xml serialize

BOOLEAN simple data type

BOTH function

BREAK branching statement

BY group by clause, order by clause, window specification

BYTE simple data type

CALL callable statement, call statement

CASE case expression, searched case expression

CAST function

CHAR function, simple data type

Keyword Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

288

CLOB simple data type, xml serialize

COLUMN ADD column, DROP column, ALTER TABLE , GRANT,
Revoke GRANT

COMMIT create temporary table

CONSTRAINT GRANT, table constraint

CONTINUE branching statement

CONVERT function

CREATE create procedure, create data wrapper, create
database, create a domain or type alias, create
foreign temp table, CREATE POLICY, create role ,
create schema, create server, create table, create
temporary table, create trigger

CROSS cross join

CUME_DIST analytic aggregate function

CURRENT_DATE function

CURRENT_TIME function

CURRENT_TIMESTAMP function

DATE non numeric literal, simple data type

DAY function

DECIMAL simple data type

DECLARE declare statement

DELETE alter, ALTER TRIGGER , CREATE POLICY, create
trigger, delete statement, grant type

DESC sort specification

DISTINCT standard aggregate function, function, is distinct,
query expression body, query term, select clause

DOUBLE simple data type

Keyword Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

289

DROP DROP column, drop option, Drop data wrapper, drop
option, DROP POLICY, drop procedure, drop role ,
drop schema, drop server, drop table, drop table,
grant type

EACH for each row trigger action

ELSE case expression, if statement, searched case
expression

END case expression, compound statement, for each row
trigger action, searched case expression

ERROR raise error statement

ESCAPE match predicate, text table

EXCEPT query expression body

EXEC dynamic data statement, call statement

EXECUTE dynamic data statement, grant type, call statement

EXISTS exists predicate

FALSE explain option, json table, non numeric literal

FETCH fetch clause

FILTER filter clause

FLOAT simple data type

FOR CREATE POLICY, for each row trigger action,
function, json table column, text aggreate function,
text table column, xml table column

FOREIGN ALTER PROCEDURE , ALTER TABLE , create
procedure, create data wrapper, create foreign or
global temporary table, create foreign temp table,
create schema, create server, Drop data wrapper,
drop procedure, drop schema, drop table, foreign
key, Import foreign schema, with role

FROM delete statement, from clause, function, Import
foreign schema, is distinct, Revoke GRANT

Keyword Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

290

FULL qualified table

FUNCTION create procedure, drop procedure, GRANT, Revoke
GRANT

GLOBAL create foreign or global temporary table, drop table

GRANT GRANT

GROUP function, group by clause

HANDLER create data wrapper

HAVING having clause

HOUR function

IF if statement

IMMEDIATE dynamic data statement

IMPORT Import another Database, Import foreign schema

IN function, procedure parameter, in predicate

INNER qualified table

INOUT procedure parameter

INSERT alter, ALTER TRIGGER , CREATE POLICY, create
trigger, function, insert statement, grant type

INTEGER simple data type

INTERSECT query term

INTO dynamic data statement, Import foreign schema,
insert statement, into clause

IS is distinct, is null predicate

JOIN cross join, make dep options, qualified table

LANGUAGE GRANT, object table, Revoke GRANT

Keyword Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

291

LATERAL table subquery

LEADING function

LEAVE branching statement

LEFT function, qualified table

LIKE match predicate

LIKE_REGEX like regex predicate

LIMIT limit clause

LOCAL create foreign temp table, create temporary table

LONG simple data type

LOOP loop statement

MAKEDEP option clause, table primary

MAKEIND option clause, table primary

MAKENOTDEP option clause, table primary

MERGE insert statement

MINUTE function

MONTH function

NO make dep options, xml namespace element, text
aggreate function, text table column, text table

NOCACHE option clause

NOT alter column options, between predicate, compound
statement, table element, create a domain or type
alias, view element, GRANT, is distinct, is null
predicate, match predicate, boolean factor,
procedure parameter, procedure result column, like
regex predicate, in predicate, temporary table
element

Keyword Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

292

NULL alter column options, table element, create a domain
or type alias, view element, is null predicate, non
numeric literal, procedure parameter, procedure
result column, temporary table element, xml query

OF alter, ALTER TRIGGER , create trigger

OFFSET limit clause

ON alter, ALTER TRIGGER , create foreign temp table,
CREATE POLICY, create temporary table, create
trigger, DROP POLICY, GRANT, loop statement,
qualified table, Revoke GRANT, xml query

ONLY fetch clause

OPTION option clause

OPTIONS alter child options list, alter options list, options clause

OR boolean value expression

ORDER GRANT, order by clause

OUT procedure parameter

OUTER qualified table

OVER window specification

PARAMETER ALTER PROCEDURE

PARTITION window specification

PERCENT_RANK analytic aggregate function

PRIMARY create temporary table, inline constraint, primary key

PROCEDURE alter, ALTER PROCEDURE , create procedure,
CREATE POLICY, DROP POLICY, drop procedure,
GRANT, Revoke GRANT

RANGE window frame

REAL simple data type

Keyword Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

293

REFERENCES foreign key

RETURN assignment statement, return statement, data
statement

RETURNS create procedure

REVOKE Revoke GRANT

RIGHT function, qualified table

ROLLUP group by clause

ROW array table, fetch clause, for each row trigger action,
limit clause, text table, window frame bound

ROWS array table, create temporary table, fetch clause, limit
clause, window frame

SECOND function

SELECT CREATE POLICY, grant type, select clause

SERVER ALTER SERVER , create schema, create server, drop
server, Import foreign schema

SET add set child option, add set option, option
namespace, update statement, set schema

SHORT simple data type

SIMILAR match predicate

SMALLINT simple data type

SOME standard aggregate function, quantified comparison
predicate

SQLEXCEPTION sql exception

SQLSTATE sql exception

SQLWARNING raise statement

STRING dynamic data statement, simple data type, xml
serialize

Keyword Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

294

TABLE ALTER TABLE , create procedure, create foreign or
global temporary table, create foreign temp table,
create temporary table, drop table, drop table,
GRANT, query primary, Revoke GRANT, table
subquery

TEMPORARY create foreign or global temporary table, create
foreign temp table, create temporary table, drop
table, GRANT, Revoke GRANT

THEN case expression, searched case expression

TIME non numeric literal, simple data type

TIMESTAMP non numeric literal, simple data type

TINYINT simple data type

TO rename column options, RENAME Table, CREATE
POLICY, DROP POLICY, GRANT, match predicate

TRAILING function

TRANSLATE function

TRIGGER alter, ALTER TRIGGER , create trigger

TRUE explain option, json table, non numeric literal

UNION cross join, query expression body

UNIQUE other constraints, inline constraint

UNKNOWN non numeric literal

UPDATE alter, ALTER TRIGGER , CREATE POLICY, create
trigger, dynamic data statement, grant type, update
statement

USER function

USING CREATE POLICY, dynamic data statement

VALUES query primary

Keyword Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

295

VARBINARY simple data type, xml serialize

VARCHAR simple data type, xml serialize

VIRTUAL ALTER PROCEDURE , ALTER TABLE , create
procedure, create schema, create view, drop
procedure, drop schema, drop table

WHEN case expression, searched case expression

WHERE filter clause, where clause

WHILE while statement

WITH assignment statement, create role , Import another
Database, query expression, data statement

WITHIN function

WITHOUT assignment statement, data statement

WRAPPER ALTER DATA WRAPPER , create data wrapper,
create server, Drop data wrapper

XML explain option, simple data type

XMLAGG ordered aggregate function

XMLATTRIBUTES xml attributes

XMLCAST unescapedFunction

XMLCOMMENT function

XMLCONCAT function

XMLELEMENT xml element

XMLEXISTS xml query

XMLFOREST xml forest

XMLNAMESPACES xml namespaces

XMLPARSE xml parse

Keyword Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

296

XMLPI function

XMLQUERY xml query

XMLSERIALIZE xml serialize

XMLTABLE xml table

XMLTEXT function

YEAR function

Keyword Usage

12.2. NON-RESERVED KEYWORDS

Name Usage

ACCESS basicNonReserved, Import another Database

ACCESSPATTERN basicNonReserved, other constraints

AFTER alter, basicNonReserved, create trigger

ANALYZE basicNonReserved, explain option

ARRAYTABLE array table, basicNonReserved

AUTO_INCREMENT alter column options, basicNonReserved, table
element, view element

AVG standard aggregate function, basicNonReserved

CHAIN basicNonReserved, sql exception

COLUMNS array table, basicNonReserved, json table, object
table, text table, xml table

CONDITION basicNonReserved, GRANT, Revoke GRANT

CONTENT basicNonReserved, xml parse, xml serialize

CONTROL basicNonReserved, Import another Database

COUNT standard aggregate function, basicNonReserved

CHAPTER 12. BNF FOR SQL GRAMMAR

297

COUNT_BIG standard aggregate function, basicNonReserved

CURRENT basicNonReserved, window frame bound

DATA ALTER DATA WRAPPER , basicNonReserved, create
data wrapper, create server, Drop data wrapper

DATABASE ALTER DATABASE , basicNonReserved, create
database, Import another Database, use database

DEFAULT xml namespace element, non-reserved identifier,
object table column, post create column, procedure
parameter, xml table column

DELIMITER basicNonReserved, text aggreate function, text table

DENSE_RANK analytic aggregate function, basicNonReserved

DISABLED alter, ALTER TRIGGER , basicNonReserved

DOCUMENT basicNonReserved, xml parse, xml serialize

DOMAIN basicNonReserved, create a domain or type alias

EMPTY basicNonReserved, xml query

ENABLED alter, ALTER TRIGGER , basicNonReserved

ENCODING basicNonReserved, text aggreate function, xml
serialize

EPOCH basicNonReserved, function

EVERY standard aggregate function, basicNonReserved

EXCEPTION compound statement, declare statement, non-
reserved identifier

EXCLUDING basicNonReserved, xml serialize

EXPLAIN basicNonReserved, explain

EXTRACT basicNonReserved, function

FIRST basicNonReserved, fetch clause, sort specification

Name Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

298

FOLLOWING basicNonReserved, window frame bound

FORMAT basicNonReserved, explain option

GEOGRAPHY non-reserved identifier, simple data type

GEOMETRY non-reserved identifier, simple data type

HEADER basicNonReserved, text aggreate function, text table
column, text table

INCLUDING basicNonReserved, xml serialize

INDEX other constraints, inline constraint, non-reserved
identifier

INSTEAD alter, ALTER TRIGGER , basicNonReserved, create
trigger

JAAS basicNonReserved, with role

JSON non-reserved identifier, simple data type

JSONARRAY_AGG basicNonReserved, ordered aggregate function

JSONOBJECT basicNonReserved, json object

JSONTABLE basicNonReserved, json table

KEY basicNonReserved, create temporary table, foreign
key, inline constraint, primary key

LAST basicNonReserved, sort specification

LISTAGG basicNonReserved, function

MASK basicNonReserved, GRANT, Revoke GRANT

MAX standard aggregate function, basicNonReserved,
make dep options

MIN standard aggregate function, basicNonReserved

NAME basicNonReserved, function, xml element

Name Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

299

NAMESPACE basicNonReserved, option namespace

NEXT basicNonReserved, fetch clause

NONE basicNonReserved

NULLS basicNonReserved, sort specification

OBJECT non-reserved identifier, simple data type

OBJECTTABLE basicNonReserved, object table

ORDINALITY basicNonReserved, json table column, text table
column, xml table column

PASSING basicNonReserved, object table, xml query, xml
query, xml table

PATH basicNonReserved, json table column, xml table
column

POLICY basicNonReserved, CREATE POLICY, DROP POLICY

POSITION basicNonReserved, function

PRECEDING basicNonReserved, window frame bound

PRESERVE basicNonReserved, create temporary table

PRIVILEGES basicNonReserved, GRANT, Revoke GRANT

QUARTER basicNonReserved, function

QUERYSTRING basicNonReserved, querystring function

QUOTE basicNonReserved, text aggreate function, text table

RAISE basicNonReserved, raise statement

RANK analytic aggregate function, basicNonReserved

RENAME ALTER PROCEDURE , ALTER TABLE ,
basicNonReserved

REPOSITORY basicNonReserved, Import foreign schema

Name Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

300

RESULT basicNonReserved, procedure parameter

ROLE basicNonReserved, create role , drop role , with role

ROW_NUMBER analytic aggregate function, basicNonReserved

SCHEMA basicNonReserved, create schema, drop schema,
GRANT, Import foreign schema, Revoke GRANT, set
schema

SELECTOR basicNonReserved, text table column, text table

SERIAL alter column options, table element, view element,
non-reserved identifier, temporary table element

SKIP basicNonReserved, text table

SQL_TSI_DAY basicNonReserved, time interval

SQL_TSI_FRAC_SECOND basicNonReserved, time interval

SQL_TSI_HOUR basicNonReserved, time interval

SQL_TSI_MINUTE basicNonReserved, time interval

SQL_TSI_MONTH basicNonReserved, time interval

SQL_TSI_QUARTER basicNonReserved, time interval

SQL_TSI_SECOND basicNonReserved, time interval

SQL_TSI_WEEK basicNonReserved, time interval

SQL_TSI_YEAR basicNonReserved, time interval

STDDEV_POP standard aggregate function, basicNonReserved

STDDEV_SAMP standard aggregate function, basicNonReserved

SUBSTRING basicNonReserved, function

SUM standard aggregate function, basicNonReserved

TEXT basicNonReserved, explain option

Name Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

301

TEXTAGG basicNonReserved, text aggreate function

TEXTTABLE basicNonReserved, text table

TIMESTAMPADD basicNonReserved, function

TIMESTAMPDIFF basicNonReserved, function

TO_BYTES basicNonReserved, function

TO_CHARS basicNonReserved, function

TRANSLATOR ALTER DATA WRAPPER , basicNonReserved, create
data wrapper, create server, Drop data wrapper

TRIM basicNonReserved, function, text table column, text
table

TYPE alter column options, basicNonReserved, create data
wrapper, create server

UNBOUNDED basicNonReserved, window frame bound

UPSERT basicNonReserved, insert statement

USAGE basicNonReserved, GRANT, Revoke GRANT

USE basicNonReserved, use database

VARIADIC basicNonReserved, procedure parameter

VAR_POP standard aggregate function, basicNonReserved

VAR_SAMP standard aggregate function, basicNonReserved

VERSION basicNonReserved, create database, create server,
Import another Database, use database, xml serialize

VIEW alter, ALTER TABLE , basicNonReserved, create view,
drop table

WELLFORMED basicNonReserved, xml parse

WIDTH basicNonReserved, text table column

Name Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

302

XMLDECLARATION basicNonReserved, xml serialize

YAML basicNonReserved, explain option

Name Usage

12.3. RESERVED KEYWORDS FOR FUTURE USE

ALLOCATE ARE ASENSITIVE

ASYMETRIC AUTHORIZATION BINARY

CALLED CASCADED CHARACTER

CHECK CLOSE COLLATE

CONNECT CORRESPONDING CRITERIA

CURRENT_USER CURSOR CYCLE

DATALINK DEALLOCATE DEC

DEREF DESCRIBE DETERMINISTIC

DISCONNECT DLNEWCOPY DLPREVIOUSCOPY

DLURLCOMPLETE DLURLCOMPLETEONLY DLURLCOMPLETEWRITE

DLURLPATH DLURLPATHONLY DLURLPATHWRITE

DLURLSCHEME DLURLSERVER DLVALUE

DYNAMIC ELEMENT EXTERNAL

FREE GET HAS

HOLD IDENTITY INDICATOR

INPUT INSENSITIVE INT

INTERVAL ISOLATION LARGE

LOCALTIME LOCALTIMESTAMP MATCH

MEMBER METHOD MODIFIES

CHAPTER 12. BNF FOR SQL GRAMMAR

303

MODULE MULTISET NATIONAL

NATURAL NCHAR NCLOB

NEW NUMERIC OLD

OPEN OUTPUT OVERLAPS

PRECISION PREPARE READS

RECURSIVE REFERENCING RELEASE

ROLLBACK SAVEPOINT SCROLL

SEARCH SENSITIVE SESSION_USER

SPECIFIC SPECIFICTYPE SQL

START STATIC SUBMULTILIST

SYMETRIC SYSTEM SYSTEM_USER

TIMEZONE_HOUR TIMEZONE_MINUTE TRANSLATION

TREAT VALUE VARYING

WHENEVER WINDOW XMLBINARY

XMLDOCUMENT XMLITERATE XMLVALIDATE

12.4. TOKENS

Name Definition Usage

all in group identifier <identifier> <period> <star> all in group

binary string literal "X" | "x" "\'" (<hexit> <hexit>)+ "\'" non numeric literal

colon ":" make dep options, statement

Red Hat Integration 2020.Q1 Data Virtualization Reference

304

comma "," alter child options list, alter
options list, ARRAY expression
constructor, column list, create
procedure, typed element list,
CREATE POLICY, create table
body, create temporary table,
create view body, derived column
list, sql exception, named
parameter list, explain, expression
list, from clause, function, GRANT,
identifier list, json table, limit
clause, nested expression, object
table, option clause, options
clause, order by clause, simple
data type, query expression, query
primary, querystring function,
Revoke GRANT, select clause, set
clause list, in predicate, text
aggreate function, text table, xml
attributes, xml element, xml
query, xml forest, xml
namespaces, xml query, xml table

concat_op "||" common value expression

decimal numeric literal (<digit>)* <period> <unsigned
integer literal>

unsigned numeric literal

digit \["0"\-"9"\]

dollar "$" parameter reference

double_amp_op "&&" common value expression

eq "=" assignment statement, callable
statement, declare statement,
named parameter list, comparison
operator, set clause list

escaped function "{" "fn" unsigned value expression primary

escaped join "{" "oj" table reference

escaped type "{" ("d" | "t" | "ts" | "b") non numeric literal

approximate numeric literal <digit> <period> <unsigned integer
literal> \["e","E"\] (<plus> |
<minus>)? <unsigned integer
literal>

unsigned numeric literal

Name Definition Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

305

ge ">=" comparison operator

gt ">" named parameter list, comparison
operator

hexit \["a"\-"f","A"\-"F"\] | <digit>

identifier <quoted_id> (<period>
<quoted_id>)*

create a domain or type alias,
identifier, data type, Unqualified
identifier, unsigned value
expression primary

id_part ("" | "@" | "#" | <letter>) (<letter> |
"" | <digit>)*

lbrace "{" callable statement, match
predicate

le "⇐" comparison operator

letter \["a"\-"z","A"\-"Z"\] | \["\u0153"\-
"\ufffd"\]

Name Definition Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

306

lparen "(" standard aggregate function, alter
child options list, alter options list,
analytic aggregate function,
ARRAY expression constructor,
array table, callable statement,
column list, other constraints,
create procedure, CREATE
POLICY, create table body,
create temporary table, create
view body, explain, filter clause,
function, group by clause, if
statement, json object, json table,
loop statement, make dep
options, nested expression, object
table, options clause, ordered
aggregate function, simple data
type, query primary, querystring
function, in predicate, call
statement, subquery, quantified
comparison predicate, table
subquery, table primary, text
aggreate function, text table,
unescapedFunction, while
statement, window specification,
with list element, xml attributes,
xml element, xml query, xml
forest, xml namespaces, xml
parse, xml query, xml serialize, xml
table

lsbrace "[" ARRAY expression constructor,
basic data type, data type, value
expression primary

lt "<" comparison operator

minus "-" plus or minus

ne "<>" comparison operator

ne2 "!=" comparison operator

period "."

plus "+" plus or minus

qmark "?" callable statement, parameter
reference

Name Definition Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

307

quoted_id <id_part> | "\"" ("\"\"" | ~\["\""\])+
"\""

rbrace "}" callable statement, match
predicate, non numeric literal,
table reference, unsigned value
expression primary

rparen ")" standard aggregate function, alter
child options list, alter options list,
analytic aggregate function,
ARRAY expression constructor,
array table, callable statement,
column list, other constraints,
create procedure, CREATE
POLICY, create table body,
create temporary table, create
view body, explain, filter clause,
function, group by clause, if
statement, json object, json table,
loop statement, make dep
options, nested expression, object
table, options clause, ordered
aggregate function, simple data
type, query primary, querystring
function, in predicate, call
statement, subquery, quantified
comparison predicate, table
subquery, table primary, text
aggreate function, text table,
unescapedFunction, while
statement, window specification,
with list element, xml attributes,
xml element, xml query, xml
forest, xml namespaces, xml
parse, xml query, xml serialize, xml
table

rsbrace "]" ARRAY expression constructor,
basic data type, data type, value
expression primary

semicolon ";" delimited statement

slash "/" star or slash

star "*" standard aggregate function,
dynamic data statement, select
clause, star or slash

Name Definition Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

308

string literal ("N" | "E")? "\'" ("\'\'" | ~\["\'"\])*
"\'"

string

unsigned integer literal (<digit>)+ unsigned integer, unsigned
numeric literal

Name Definition Usage

12.5. PRODUCTION CROSS-REFERENCE

Name Usage

add set child option alter child options list

add set option alter options list

standard aggregate function unescapedFunction

all in group select sublist

alter directly executable statement

ADD column ALTER TABLE

ADD constraint ALTER TABLE

alter child option pair add set child option

alter child options list alter column options

alter column options ALTER PROCEDURE , ALTER TABLE

ALTER DATABASE alterStatement

DROP column ALTER TABLE

alter option pair add set option

alter options list ALTER DATABASE , ALTER PROCEDURE , ALTER
SERVER , ALTER TABLE , ALTER DATA WRAPPER

ALTER PROCEDURE alterStatement

rename column options ALTER PROCEDURE , ALTER TABLE

RENAME Table ALTER TABLE

CHAPTER 12. BNF FOR SQL GRAMMAR

309

ALTER SERVER alterStatement

alterStatement ddl statement

ALTER TABLE alterStatement

ALTER DATA WRAPPER alterStatement

ALTER TRIGGER alterStatement

analytic aggregate function unescapedFunction

ARRAY expression constructor unsigned value expression primary

array table table primary

assignment statement delimited statement

assignment statement operand assignment statement, declare statement

basicNonReserved create a domain or type alias, non-reserved identifier,
data type

between predicate boolean primary

boolean primary CREATE POLICY, filter clause, boolean factor

branching statement delimited statement

callable statement

case expression unsigned value expression primary

character match predicate, text aggreate function, text table

column list other constraints, create temporary table, foreign
key, insert statement, primary key, with list element

common value expression between predicate, boolean primary, comparison
predicate, sql exception, function, is distinct, match
predicate, like regex predicate, in predicate, text
table

comparison predicate boolean primary

Name Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

310

boolean term boolean value expression

boolean value expression condition

compound statement statement, directly executable statement

other constraints table constraint

table element ADD column, create table body

create procedure ddl statement

create data wrapper ddl statement

create database ddl statement

create a domain or type alias ddl statement

typed element list array table, dynamic data statement

create foreign or global temporary table create table

create foreign temp table directly executable statement

option namespace ddl statement

CREATE POLICY ddl statement

create role ddl statement

create schema ddl statement

create server ddl statement

create table ddl statement

create table body create foreign or global temporary table, create
foreign temp table

create temporary table directly executable statement

create trigger ddl statement, directly executable statement

create view create table

Name Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

311

create view body create view

view element create view body

condition expression, having clause, if statement, qualified
table, searched case expression, where clause, while
statement

cross join joined table

ddl statement ddl statement

declare statement delimited statement

delete statement assignment statement operand, directly executable
statement

delimited statement statement

derived column derived column list, object table, querystring function,
text aggreate function, xml attributes, xml query, xml
query, xml table

derived column list json object, xml forest

drop option alter child options list

Drop data wrapper ddl statement

drop option alter options list

DROP POLICY ddl statement

drop procedure ddl statement

drop role ddl statement

drop schema ddl statement

drop server ddl statement

drop table directly executable statement

drop table ddl statement

Name Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

312

dynamic data statement data statement

raise error statement delimited statement

sql exception assignment statement operand, exception reference

exception reference sql exception, raise statement

named parameter list callable statement, call statement

exists predicate boolean primary

explain

explain option explain

expression standard aggregate function, ARRAY expression
constructor, assignment statement operand, case
expression, derived column, dynamic data statement,
raise error statement, named parameter list,
expression list, function, nested expression, object
table column, ordered aggregate function, post
create column, procedure parameter, querystring
function, return statement, searched case expression,
select derived column, set clause list, sort key,
quantified comparison predicate,
unescapedFunction, xml table column, xml element,
xml parse, xml serialize

expression list callable statement, other constraints, function, group
by clause, query primary, call statement, window
specification

fetch clause limit clause

filter clause function, unescapedFunction

for each row trigger action alter, ALTER TRIGGER , create trigger

foreign key table constraint

from clause query

function unescapedFunction, unsigned value expression
primary

GRANT ddl statement

Name Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

313

group by clause query

having clause query

identifier alter, alter child option pair, alter column options,
ALTER DATABASE , DROP column, alter option pair,
ALTER PROCEDURE , rename column options,
RENAME Table, ALTER SERVER , ALTER TABLE ,
ALTER DATA WRAPPER , ALTER TRIGGER , array
table, assignment statement, branching statement,
callable statement, column list, compound statement,
table element, create data wrapper, create database,
typed element list, create foreign temp table, option
namespace, CREATE POLICY, create schema, create
trigger, view element, declare statement, delete
statement, derived column, drop option, Drop data
wrapper, drop option, DROP POLICY, drop
procedure, drop role , drop schema, drop server, drop
table, drop table, dynamic data statement, exception
reference, named parameter list, foreign key,
function, GRANT, identifier list, Import another
Database, Import foreign schema, insert statement,
into clause, json table column, json table, loop
statement, xml namespace element, object table
column, object table, option clause, option pair,
procedure parameter, procedure result column, query
primary, Revoke GRANT, select derived column, set
clause list, statement, call statement, table subquery,
table constraint, temporary table element, text
aggreate function, text table column, text table, table
name, update statement, use database, set schema,
with list element, xml table column, xml element, xml
serialize, xml table

identifier list create schema, with role

if statement statement

Import another Database ddl statement

Import foreign schema ddl statement

inline constraint post create column

insert statement assignment statement operand, directly executable
statement

integer parameter fetch clause, limit clause

Name Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

314

unsigned integer dynamic data statement, function, GRANT, integer
parameter, make dep options, parameter reference,
simple data type, text table column, text table,
window frame bound

time interval function

into clause query

is distinct boolean primary

is null predicate boolean primary

joined table table primary, table reference

json table column json table

json object function

json table table primary

limit clause query expression body

loop statement statement

make dep options option clause, table primary

match predicate boolean primary

xml namespace element xml namespaces

nested expression unsigned value expression primary

non numeric literal alter child option pair, alter option pair, option pair,
value expression primary

non-reserved identifier identifier, Unqualified identifier, unsigned value
expression primary

boolean factor boolean term

object table column object table

object table table primary

Name Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

315

comparison operator comparison predicate, quantified comparison
predicate

option clause callable statement, delete statement, insert
statement, query expression body, call statement,
update statement

option pair options clause

options clause create procedure, create data wrapper, create
database, create schema, create server, create table
body, create view, create view body, Import foreign
schema, post create column, procedure parameter,
procedure result column, table constraint

order by clause function, ordered aggregate function, query
expression body, text aggreate function, window
specification

ordered aggregate function unescapedFunction

parameter reference unsigned value expression primary

basic data type typed element list, json table column, object table
column, data type, temporary table element, text
table column, xml table column

data type alter column options, table element, create
procedure, create a domain or type alias, view
element, declare statement, function, procedure
parameter, procedure result column,
unescapedFunction

simple data type basic data type

numeric value expression common value expression, value expression primary

plus or minus alter child option pair, alter option pair, option pair,
numeric value expression, value expression primary

post create column table element, view element

primary key table constraint

procedure parameter create procedure

procedure result column create procedure

Name Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

316

qualified table joined table

query query primary

query expression alter, ALTER TABLE , ARRAY expression constructor,
assignment statement operand, create view, insert
statement, loop statement, subquery, table subquery,
directly executable statement, with list element

query expression body query expression, query primary

query primary query term

querystring function function

query term query expression body

raise statement delimited statement

grant type GRANT, Revoke GRANT

with role create role

like regex predicate boolean primary

return statement delimited statement

Revoke GRANT ddl statement

searched case expression unsigned value expression primary

select clause query

select derived column select sublist

select sublist select clause

set clause list dynamic data statement, update statement

in predicate boolean primary

sort key sort specification

sort specification order by clause

Name Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

317

data statement delimited statement

statement alter, ALTER PROCEDURE , compound statement,
create procedure, for each row trigger action, if
statement, loop statement, while statement

call statement assignment statement, subquery, table subquery,
directly executable statement

string character, create database, option namespace,
create server, function, GRANT, Import another
Database, json table column, json table, xml
namespace element, non numeric literal, object table
column, object table, text table column, text table,
use database, xml table column, xml query, xml
query, xml serialize, xml table

subquery exists predicate, in predicate, quantified comparison
predicate, unsigned value expression primary

quantified comparison predicate boolean primary

table subquery table primary

table constraint ADD constraint, create table body, create view body

temporary table element create temporary table

table primary cross join, joined table

table reference from clause, qualified table

text aggreate function unescapedFunction

text table column text table

text table table primary

term numeric value expression

star or slash term

table name table primary

unescapedFunction unsigned value expression primary

Name Usage

Red Hat Integration 2020.Q1 Data Virtualization Reference

318

Unqualified identifier create procedure, create data wrapper, create
foreign or global temporary table, create foreign
temp table, create role , create server, create
temporary table, create view

unsigned numeric literal alter child option pair, alter option pair, option pair,
value expression primary

unsigned value expression primary integer parameter, value expression primary

update statement assignment statement operand, directly executable
statement

use database ddl statement

set schema ddl statement

directly executable statement explain, data statement

value expression primary array table, json table, term

where clause delete statement, query, update statement

while statement statement

window frame window specification

window frame bound window frame

window specification unescapedFunction

with list element query expression

xml attributes xml element

xml table column xml table

xml element function

xml query boolean primary

xml forest function

xml namespaces xml element, xml query, xml forest, xml query, xml
table

Name Usage

CHAPTER 12. BNF FOR SQL GRAMMAR

319

xml parse function

xml query function

xml serialize function

xml table table primary

Name Usage

12.6. PRODUCTIONS

12.6.1. string ::=

<string literal>

A string literal value. Use '' to escape ' in the string.

Example:

12.6.2. non-reserved identifier ::=

EXCEPTION

SERIAL

OBJECT

INDEX

JSON

GEOMETRY

GEOGRAPHY

DEFAULT

<basicNonReserved>

Allows non-reserved keywords to be parsed as identifiers

Example: SELECT COUNT FROM …

12.6.3. basicNonReserved ::=

INSTEAD

'a string'

'it''s a string'

Red Hat Integration 2020.Q1 Data Virtualization Reference

320

VIEW

ENABLED

DISABLED

KEY

TEXTAGG

COUNT

COUNT_BIG

ROW_NUMBER

RANK

DENSE_RANK

SUM

AVG

MIN

MAX

EVERY

STDDEV_POP

STDDEV_SAMP

VAR_SAMP

VAR_POP

DOCUMENT

CONTENT

TRIM

EMPTY

ORDINALITY

PATH

FIRST

LAST

NEXT

SUBSTRING

CHAPTER 12. BNF FOR SQL GRAMMAR

321

EXTRACT

TO_CHARS

TO_BYTES

TIMESTAMPADD

TIMESTAMPDIFF

QUERYSTRING

NAMESPACE

RESULT

ACCESSPATTERN

AUTO_INCREMENT

WELLFORMED

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

TEXTTABLE

ARRAYTABLE

JSONTABLE

SELECTOR

SKIP

WIDTH

PASSING

NAME

ENCODING

Red Hat Integration 2020.Q1 Data Virtualization Reference

322

COLUMNS

DELIMITER

QUOTE

HEADER

NULLS

OBJECTTABLE

VERSION

INCLUDING

EXCLUDING

XMLDECLARATION

VARIADIC

RAISE

CHAIN

JSONARRAY_AGG

JSONOBJECT

PRESERVE

UPSERT

AFTER

TYPE

TRANSLATOR

JAAS

CONDITION

MASK

ACCESS

CONTROL

NONE

DATA

DATABASE

PRIVILEGES

CHAPTER 12. BNF FOR SQL GRAMMAR

323

ROLE

SCHEMA

USE

REPOSITORY

RENAME

DOMAIN

USAGE

POSITION

CURRENT

UNBOUNDED

PRECEDING

FOLLOWING

LISTAGG

EXPLAIN

ANALYZE

TEXT

FORMAT

YAML

EPOCH

QUARTER

POLICY

12.6.4. Unqualified identifier ::=

<identifier>

<non-reserved identifier>

Unqualified name of a single entity.

Example:

12.6.5. identifier ::=

"tbl"

Red Hat Integration 2020.Q1 Data Virtualization Reference

324

<identifier>

<non-reserved identifier>

Partial or full name of a single entity.

Example:

12.6.6. create trigger ::=

CREATE TRIGGER (<identifier>)? ON <identifier> ((INSTEAD OF) | AFTER) (INSERT |
UPDATE | DELETE) AS <for each row trigger action >

Creates a trigger action on the given target.

Example:

12.6.7. alter ::=

ALTER ((VIEW <identifier> AS <query expression>) | (PROCEDURE <identifier> AS
<statement>) | (TRIGGER (<identifier>)? ON <identifier> ((INSTEAD OF) | AFTER) (
INSERT | UPDATE | DELETE) ((AS <for each row trigger action >) | ENABLED | DISABLED))
)

Alter the given target.

Example:

12.6.8. for each row trigger action ::=

FOR EACH ROW ((BEGIN (ATOMIC)? (<statement>)* END) | <statement>)

Defines an action to perform on each row.

Example:

12.6.9. explain ::=

EXPLAIN (<lparen> <explain option> (<comma> <explain option>)* <rparen>)? <directly
executable statement>

Returns the query plan for the statement

tbl.col

"tbl"."col"

CREATE TRIGGER ON vw INSTEAD OF INSERT AS FOR EACH ROW BEGIN ATOMIC ... END

ALTER VIEW vw AS SELECT col FROM tbl

FOR EACH ROW BEGIN ATOMIC ... END

CHAPTER 12. BNF FOR SQL GRAMMAR

325

Example: EXPLAIN select 1

12.6.10. explain option ::=

(ANALYZE (TRUE | FALSE)?)

(FORMAT (XML | TEXT | YAML)?)

Option for the explain statement

Example: FORMAT YAML

12.6.11. directly executable statement ::=

<query expression>

<call statement>

<insert statement>

<update statement>

<delete statement>

<drop table>

<create temporary table>

<create foreign temp table >

<alter>

<create trigger>

<compound statement>

A statement that can be executed at runtime.

Example:

12.6.12. drop table ::=

DROP TABLE <identifier>

Drop the given table.

Example:

12.6.13. create temporary table ::=

CREATE (LOCAL)? TEMPORARY TABLE <Unqualified identifier> <lparen> <temporary table

SELECT * FROM tbl

DROP TABLE #temp

Red Hat Integration 2020.Q1 Data Virtualization Reference

326

CREATE (LOCAL)? TEMPORARY TABLE <Unqualified identifier> <lparen> <temporary table
element> (<comma> <temporary table element>)* (<comma> PRIMARY KEY <column list>)?
<rparen> (ON COMMIT PRESERVE ROWS)?

Creates a temporary table.

Example:

12.6.14. temporary table element ::=

<identifier> (<basic data type> | SERIAL) (NOT NULL)?

Defines a temporary table column.

Example:

12.6.15. raise error statement ::=

ERROR <expression>

Raises an error with the given message.

Example:

12.6.16. raise statement ::=

RAISE (SQLWARNING)? <exception reference>

Raises an error or warning with the given message.

Example:

12.6.17. exception reference ::=

<identifier>

<sql exception>

a reference to an exception

Example:

CREATE LOCAL TEMPORARY TABLE tmp (col integer)

col string NOT NULL

ERROR 'something went wrong'

RAISE SQLEXCEPTION 'something went wrong'

SQLEXCEPTION 'something went wrong' SQLSTATE '00X', 2

CHAPTER 12. BNF FOR SQL GRAMMAR

327

12.6.18. sql exception ::=

SQLEXCEPTION <common value expression > (SQLSTATE <common value expression > (
<comma> <common value expression >)?)? (CHAIN <exception reference>)?

creates a sql exception or warning with the specified message, state, and code

Example:

12.6.19. statement ::=

((<identifier> <colon>)? (<loop statement> | <while statement> | <compound statement>))

<if statement> | <delimited statement>

A procedure statement.

Example:

12.6.20. delimited statement ::=

(<assignment statement> | <data statement> | <raise error statement> | <raise statement> |
<declare statement> | <branching statement> | <return statement>) <semicolon>

A procedure statement terminated by ;.

Example:

12.6.21. compound statement ::=

BEGIN ((NOT)? ATOMIC)? (<statement>)* (EXCEPTION <identifier> (<statement>)*)?
END

A procedure statement block contained in BEGIN END.

Example:

12.6.22. branching statement ::=

((BREAK | CONTINUE) (<identifier>)?)

(LEAVE <identifier>)

A procedure branching control statement, which typically specifies a label to return control to.

SQLEXCEPTION 'something went wrong' SQLSTATE '00X', 2

IF (x = 5) BEGIN ... END

SELECT * FROM tbl;

BEGIN NOT ATOMIC ... END

Red Hat Integration 2020.Q1 Data Virtualization Reference

328

Example:

12.6.23. return statement ::=

RETURN (<expression>)?

A return statement.

Example:

12.6.24. while statement ::=

WHILE <lparen> <condition> <rparen> <statement>

A procedure while statement that executes until its condition is false.

Example:

12.6.25. loop statement ::=

LOOP ON <lparen> <query expression> <rparen> AS <identifier> <statement>

A procedure loop statement that executes over the given cursor.

Example:

12.6.26. if statement ::=

IF <lparen> <condition> <rparen> <statement> (ELSE <statement>)?

A procedure loop statement that executes over the given cursor.

Example:

12.6.27. declare statement ::=

DECLARE (<data type> | EXCEPTION) <identifier> (<eq> <assignment statement operand>)?

A procedure declaration statement that creates a variable and optionally assigns a value.

Example:

BREAK x

RETURN 1

WHILE (var) BEGIN ... END

LOOP ON (SELECT * FROM tbl) AS x BEGIN ... END

IF (boolVal) BEGIN variables.x = 1 END ELSE BEGIN variables.x = 2 END

CHAPTER 12. BNF FOR SQL GRAMMAR

329

12.6.28. assignment statement ::=

<identifier> <eq> (<assignment statement operand> | (<call statement> ((WITH | WITHOUT)
RETURN)?))

Assigns a variable a value in a procedure.

Example:

12.6.29. assignment statement operand ::=

<insert statement>

<update statement>

<delete statement>

<expression>

<query expression>

<sql exception>

A value or command that can be used in an assignment. {note}All assignments except for expression are
deprecated.{note}

12.6.30. data statement ::=

(<directly executable statement> | <dynamic data statement>) ((WITH | WITHOUT) RETURN
)?

A procedure statement that executes a SQL statement. An update statement can have its update count
accessed via the ROWCOUNT variable.

12.6.31. dynamic data statement ::=

(EXECUTE | EXEC) (STRING | IMMEDIATE)? <expression> (AS <typed element list> (INTO
<identifier>)?)? (USING <set clause list>)? (UPDATE (<unsigned integer> | <star>))?

A procedure statement that can execute arbitrary sql.

Example:

12.6.32. set clause list ::=

<identifier> <eq> <expression> (<comma> <identifier> <eq> <expression>)*

DECLARE STRING x = 'a'

x = 'b'

EXECUTE IMMEDIATE 'SELECT * FROM tbl' AS x STRING INTO #temp

Red Hat Integration 2020.Q1 Data Virtualization Reference

330

A list of value assignments.

Example:

12.6.33. typed element list ::=

<identifier> <basic data type> (<comma> <identifier> <basic data type>)*

A list of typed elements.

Example:

12.6.34. callable statement ::=

<lbrace> (<qmark> <eq>)? CALL <identifier> (<lparen> (<named parameter list> | (<expression
list>)?) <rparen>)? <rbrace> (<option clause>)?

A callable statement defined using JDBC escape syntax.

Example:

12.6.35. call statement ::=

((EXEC | EXECUTE | CALL) <identifier> <lparen> (<named parameter list> | (<expression list>
)?) <rparen>) (<option clause>)?

Executes the procedure with the given parameters.

Example:

12.6.36. named parameter list ::=

(<identifier> <eq> (<gt>)? <expression> (<comma> <identifier> <eq> (<gt>)? <expression>)*)

A list of named parameters.

Example:

12.6.37. insert statement ::=

(INSERT | MERGE | UPSERT) INTO <identifier> (<column list>)? <query expression> (<option
clause>)?

col1 = 'x', col2 = 'y' ...

col1 string, col2 integer ...

{? = CALL proc}

CALL proc('a', 1)

param1 => 'x', param2 => 1

CHAPTER 12. BNF FOR SQL GRAMMAR

331

Inserts values into the given target.

Example:

12.6.38. expression list ::=

<expression> (<comma> <expression>)*

A list of expressions.

Example:

12.6.39. update statement ::=

UPDATE <identifier> ((AS)? <identifier>)? SET <set clause list> (<where clause>)? (<option
clause>)?

Update values in the given target.

Example:

12.6.40. delete statement ::=

DELETE FROM <identifier> ((AS)? <identifier>)? (<where clause>)? (<option clause>)?

Delete rows from the given target.

Example:

12.6.41. query expression ::=

(WITH <with list element> (<comma> <with list element>)*)? <query expression body >

A declarative query for data.

Example:

12.6.42. with list element ::=

<identifier> (<column list>)? AS <lparen> <query expression> <rparen>

A query expression for use in the enclosing query.

INSERT INTO tbl (col1, col2) VALUES ('a', 1)

col1, 'a', ...

UPDATE tbl SET (col1 = 'a') WHERE col2 = 1

DELETE FROM tbl WHERE col2 = 1

SELECT * FROM tbl WHERE col2 = 1

Red Hat Integration 2020.Q1 Data Virtualization Reference

332

Example:

12.6.43. query expression body ::=

<query term> ((UNION | EXCEPT) (ALL | DISTINCT)? <query term>)* (<order by clause >)?
(<limit clause>)? (<option clause>)?

The body of a query expression, which can optionally be ordered and limited.

Example:

12.6.44. query term ::=

<query primary> (INTERSECT (ALL | DISTINCT)? <query primary>)*

Used to establish INTERSECT precedence.

Example:

12.6.45. query primary ::=

<query>

(VALUES <lparen> <expression list> <rparen> (<comma> <lparen> <expression list> <rparen>)*)

(TABLE <identifier>)

(<lparen> <query expression body > <rparen>)

A declarative source of rows.

Example:

12.6.46. query ::=

<select clause> (<into clause>)? (<from clause> (<where clause>)? (<group by clause>)? (
<having clause>)?)?

A SELECT query.

X (Y, Z) AS (SELECT 1, 2)

SELECT * FROM tbl ORDER BY col1 LIMIT 1

SELECT * FROM tbl

SELECT * FROM tbl1 INTERSECT SELECT * FROM tbl2

TABLE tbl

SELECT * FROM tbl1

CHAPTER 12. BNF FOR SQL GRAMMAR

333

Example:

12.6.47. into clause ::=

INTO <identifier>

Used to direct the query into a table. {note}This is deprecated. Use INSERT INTO with a query
expression instead.{note}

Example:

12.6.48. select clause ::=

SELECT (ALL | DISTINCT)? (<star> | (<select sublist> (<comma> <select sublist>)*))

The columns returned by a query. Can optionally be distinct.

Example:

12.6.49. select sublist ::=

<select derived column>

<all in group >

An element in the select clause

Example:

12.6.50. select derived column ::=

(<expression> ((AS)? <identifier>)?)

A select clause item that selects a single column. {note}This is slightly different than a derived column in
that the AS keyword is optional.{note}

Example:

SELECT col1, max(col2) FROM tbl GROUP BY col1

INTO tbl

SELECT *

SELECT DISTINCT a, b, c

tbl.*

tbl.col AS x

tbl.col AS x

Red Hat Integration 2020.Q1 Data Virtualization Reference

334

12.6.51. derived column ::=

(<expression> (AS <identifier>)?)

An optionally named expression.

Example:

12.6.52. all in group ::=

<all in group identifier >

A select sublist that can select all columns from the given group.

Example:

12.6.53. ordered aggregate function ::=

(XMLAGG | ARRAY_AGG | JSONARRAY_AGG) <lparen> <expression> (<order by clause >)?
<rparen>

An aggregate function that can optionally be ordered.

Example:

12.6.54. text aggreate function ::=

TEXTAGG <lparen> (FOR)? <derived column> (<comma> <derived column>)* (DELIMITER
<character>)? ((QUOTE <character>) | (NO QUOTE))? (HEADER)? (ENCODING
<identifier>)? (<order by clause >)? <rparen>

An aggregate function for creating separated value clobs.

Example:

12.6.55. standard aggregate function ::=

((COUNT | COUNT_BIG) <lparen> <star> <rparen>)

((COUNT | COUNT_BIG | SUM | AVG | MIN | MAX | EVERY | STDDEV_POP | STDDEV_SAMP
| VAR_SAMP | VAR_POP | SOME | ANY) <lparen> (DISTINCT | ALL)? <expression> <rparen>)

tbl.col AS x

tbl.*

XMLAGG(col1) ORDER BY col2

ARRAY_AGG(col1)

TEXTAGG (col1 as t1, col2 as t2 DELIMITER ',' HEADER)

CHAPTER 12. BNF FOR SQL GRAMMAR

335

A standard aggregate function.

Example:

12.6.56. analytic aggregate function ::=

(ROW_NUMBER | RANK | DENSE_RANK | PERCENT_RANK | CUME_DIST) <lparen> <rparen>

An analytic aggregate function.

Example:

12.6.57. filter clause ::=

FILTER <lparen> WHERE <boolean primary> <rparen>

An aggregate filter clause applied prior to accumulating the value.

Example:

12.6.58. from clause ::=

FROM (<table reference> (<comma> <table reference>)*)

A query from clause containing a list of table references.

Example:

12.6.59. table reference ::=

(<escaped join> <joined table> <rbrace>)

<joined table>

An optionally escaped joined table.

Example:

COUNT(*)

ROW_NUMBER()

FILTER (WHERE col1='a')

FROM a, b

FROM a right outer join b, c, d join e".</p>

a

a inner join b

Red Hat Integration 2020.Q1 Data Virtualization Reference

336

12.6.60. joined table ::=

<table primary> (<cross join> | <qualified table>)*

A table or join.

Example:

12.6.61. cross join ::=

((CROSS | UNION) JOIN <table primary>)

A cross join.

Example:

12.6.62. qualified table ::=

(((RIGHT (OUTER)?) | (LEFT (OUTER)?) | (FULL (OUTER)?) | INNER)? JOIN <table
reference> ON <condition>)

An INNER or OUTER join.

Example:

12.6.63. table primary ::=

(<text table> | <array table> | <json table> | <xml table> | <object table> | <table name> | <table
subquery> | (<lparen> <joined table> <rparen>)) ((MAKEDEP <make dep options >) |
MAKENOTDEP)? ((MAKEIND <make dep options >))?

A single source of rows.

Example:

12.6.64. make dep options ::=

(<lparen> (MAX <colon> <unsigned integer>)? ((NO)? JOIN)? <rparen>)?

options for the make dep hint

Example:

a

a inner join b

a CROSS JOIN b

a inner join b

a

CHAPTER 12. BNF FOR SQL GRAMMAR

337

12.6.65. xml serialize ::=

XMLSERIALIZE <lparen> (DOCUMENT | CONTENT)? <expression> (AS (STRING |
VARCHAR | CLOB | VARBINARY | BLOB))? (ENCODING <identifier>)? (VERSION <string>
)? ((INCLUDING | EXCLUDING) XMLDECLARATION)? <rparen>

Serializes an XML value.

Example:

12.6.66. array table ::=

ARRAYTABLE <lparen> (ROW | ROWS)? <value expression primary> COLUMNS <typed
element list> <rparen> (AS)? <identifier>

The ARRAYTABLE table function creates tabular results from arrays. It can be used as a nested table
reference.

Example:

12.6.67. json table ::=

JSONTABLE <lparen> <value expression primary> <comma> <string> (<comma> (TRUE |
FALSE))? COLUMNS <json table column > (<comma> <json table column >)* <rparen> (AS)?
<identifier>

The JSONTABLE table function creates tabular results from JSON. It can be used as a nested table
reference.

Example:

12.6.68. json table column ::=

<identifier> ((FOR ORDINALITY) | (<basic data type> (PATH <string>)?))

json table column.

Example:

12.6.69. text table ::=

TEXTTABLE <lparen> <common value expression > (SELECTOR <string>)? COLUMNS <text

(min:10000)

XMLSERIALIZE(col1 AS CLOB)

ARRAYTABLE (col1 COLUMNS x STRING) AS y

JSONTABLE (col1, '$..book', false COLUMNS x STRING) AS y

col FOR ORDINALITY

Red Hat Integration 2020.Q1 Data Virtualization Reference

338

table column> (<comma> <text table column >)* ((NO ROW DELIMITER) | (ROW DELIMITER
<character>))? (DELIMITER <character>)? ((ESCAPE <character>) | (QUOTE <character>)
)? (HEADER (<unsigned integer>)?)? (SKIP <unsigned integer>)? (NO TRIM)? <rparen> (
AS)? <identifier>

The TEXTTABLE table function creates tabular results from text. It can be used as a nested table
reference.

Example:

12.6.70. text table column ::=

<identifier> ((FOR ORDINALITY) | ((HEADER <string>)? <basic data type> (WIDTH
<unsigned integer> (NO TRIM)?)? (SELECTOR <string> <unsigned integer>)?))

A text table column.

Example:

12.6.71. xml query ::=

XMLEXISTS <lparen> (<xml namespaces> <comma>)? <string> (PASSING <derived column> (
<comma> <derived column>)*)? <rparen>

Executes an XQuery to return an XML result.

Example:

12.6.72. xml query ::=

XMLQUERY <lparen> (<xml namespaces> <comma>)? <string> (PASSING <derived column> (
<comma> <derived column>)*)? ((NULL | EMPTY) ON EMPTY)? <rparen>

Executes an XQuery to return an XML result.

Example:

12.6.73. object table ::=

OBJECTTABLE <lparen> (LANGUAGE <string>)? <string> (PASSING <derived column> (
<comma> <derived column>)*)? COLUMNS <object table column> (<comma> <object table
column>)* <rparen> (AS)? <identifier>

Returns table results by processing a script.

TEXTTABLE (file COLUMNS x STRING) AS y

x INTEGER WIDTH 6

XMLQUERY('<a>...' PASSING doc)

XMLQUERY('<a>...' PASSING doc)

CHAPTER 12. BNF FOR SQL GRAMMAR

339

Example:

12.6.74. object table column ::=

<identifier> <basic data type> <string> (DEFAULT <expression>)?

object table column.

Example:

12.6.75. xml table ::=

XMLTABLE <lparen> (<xml namespaces> <comma>)? <string> (PASSING <derived column> (
<comma> <derived column>)*)? (COLUMNS <xml table column> (<comma> <xml table
column>)*)? <rparen> (AS)? <identifier>

Returns table results by processing an XQuery.

Example:

12.6.76. xml table column ::=

<identifier> ((FOR ORDINALITY) | (<basic data type> (DEFAULT <expression>)? (PATH
<string>)?))

XML table column.

Example:

12.6.77. unsigned integer ::=

<unsigned integer literal>

An unsigned interger value.

Example:

12.6.78. table subquery ::=

(TABLE | LATERAL)? <lparen> (<query expression> | <call statement>) <rparen> (AS)?
<identifier>

OBJECTTABLE('z' PASSING val AS z COLUMNS col OBJECT 'teiid_row') AS X

y integer 'teiid_row_number'

XMLTABLE('/a/b' PASSING doc COLUMNS col XML PATH '.') AS X

y FOR ORDINALITY

12345

Red Hat Integration 2020.Q1 Data Virtualization Reference

340

A table defined by a subquery.

Example:

12.6.79. table name ::=

(<identifier> ((AS)? <identifier>)?)

A table named in the FROM clause.

Example:

12.6.80. where clause ::=

WHERE <condition>

Specifies a search condition

Example:

12.6.81. condition ::=

<boolean value expression >

A boolean expression.

12.6.82. boolean value expression ::=

<boolean term> (OR <boolean term>)*

An optionally ORed boolean expression.

12.6.83. boolean term ::=

<boolean factor> (AND <boolean factor>)*

An optional ANDed boolean factor.

12.6.84. boolean factor ::=

(NOT)? <boolean primary>

A boolean factor.

Example:

(SELECT * FROM tbl) AS x

tbl AS x

WHERE x = 'a'

CHAPTER 12. BNF FOR SQL GRAMMAR

341

12.6.85. boolean primary ::=

(<common value expression > (<between predicate> | <match predicate> | <like regex predicate>
| <in predicate> | <is null predicate> | <quantified comparison predicate> | <comparison
predicate> | <is distinct>)?)

<exists predicate>

<xml query>

A boolean predicate or simple expression.

Example:

12.6.86. comparison operator ::=

<eq>

<ne>

<ne2>

<lt>

<le>

<gt>

<ge>

A comparison operator.

Example:

12.6.87. is distinct ::=

IS (NOT)? DISTINCT FROM <common value expression >

Is Distinct Right Hand Side

Example:

12.6.88. comparison predicate ::=

<comparison operator> <common value expression >

NOT x = 'a'

col LIKE 'a%'

=

IS DISTINCT FROM expression

Red Hat Integration 2020.Q1 Data Virtualization Reference

342

A value comparison.

Example:

12.6.89. subquery ::=

<lparen> (<query expression> | <call statement>) <rparen>

A subquery.

Example:

12.6.90. quantified comparison predicate ::=

<comparison operator> (ANY | SOME | ALL) (<subquery> | (<lparen> <expression> <rparen>)
)

A subquery comparison.

Example:

12.6.91. match predicate ::=

(NOT)? (LIKE | (SIMILAR TO)) <common value expression > (ESCAPE <character> | (
<lbrace> ESCAPE <character> <rbrace>))?

Matches based upon a pattern.

Example:

12.6.92. like regex predicate ::=

(NOT)? LIKE_REGEX <common value expression >

A regular expression match.

Example:

12.6.93. character ::=

<string>

= 'a'

(SELECT * FROM tbl)

= ANY (SELECT col FROM tbl)

LIKE 'a_'

LIKE_REGEX 'a.*b'

CHAPTER 12. BNF FOR SQL GRAMMAR

343

A single character.

Example:

12.6.94. between predicate ::=

(NOT)? BETWEEN <common value expression > AND <common value expression >

A comparison between two values.

Example:

12.6.95. is null predicate ::=

IS (NOT)? NULL

A null test.

Example:

12.6.96. in predicate ::=

(NOT)? IN (<subquery> | (<lparen> <common value expression > (<comma> <common value
expression>)* <rparen>))

A comparison with multiple values.

Example:

12.6.97. exists predicate ::=

EXISTS <subquery>

A test if rows exist.

Example:

12.6.98. group by clause ::=

GROUP BY (ROLLUP <lparen> <expression list> <rparen> | <expression list>)

Defines the grouping columns

'a'

BETWEEN 1 AND 5

IS NOT NULL

IN (1, 5)

EXISTS (SELECT col FROM tbl)

Red Hat Integration 2020.Q1 Data Virtualization Reference

344

Example:

12.6.99. having clause ::=

HAVING <condition>

Search condition applied after grouping.

Example:

12.6.100. order by clause ::=

ORDER BY <sort specification> (<comma> <sort specification>)*

Specifices row ordering.

Example:

12.6.101. sort specification ::=

<sort key> (ASC | DESC)? (NULLS (FIRST | LAST))?

Defines how to sort on a particular expression

Example:

12.6.102. sort key ::=

<expression>

A sort expression.

Example:

12.6.103. integer parameter ::=

<unsigned integer>

<unsigned value expression primary >

A literal integer or parameter reference to an integer.

GROUP BY col1, col2

HAVING max(col1) = 5

ORDER BY x, y DESC

col1 NULLS FIRST

col1

CHAPTER 12. BNF FOR SQL GRAMMAR

345

Example:

12.6.104. limit clause ::=

(LIMIT <integer parameter> ((<comma> <integer parameter>) | (OFFSET <integer
parameter>))?)

(OFFSET <integer parameter> (ROW | ROWS) (<fetch clause>)?)

<fetch clause>

Limits and/or offsets the resultant rows.

Example:

12.6.105. fetch clause ::=

FETCH (FIRST | NEXT) (<integer parameter>)? (ROW | ROWS) ONLY

ANSI limit.

Example:

12.6.106. option clause ::=

OPTION (MAKEDEP <identifier> <make dep options > (<comma> <identifier> <make dep
options>)* | MAKEIND <identifier> <make dep options > (<comma> <identifier> <make dep
options>)* | MAKENOTDEP <identifier> (<comma> <identifier>)* | NOCACHE (<identifier> (
<comma> <identifier>)*)?)*

Specifies query options.

Example:

12.6.107. expression ::=

<condition>

A value.

Example:

?

LIMIT 2

FETCH FIRST 1 ROWS ONLY

OPTION MAKEDEP tbl

col1

Red Hat Integration 2020.Q1 Data Virtualization Reference

346

12.6.108. common value expression ::=

(<numeric value expression> ((<double_amp_op> | <concat_op>) <numeric value expression>)*
)

Establishes the precedence of concat.

Example:

12.6.109. numeric value expression ::=

(<term> (<plus or minus> <term>)*)

Example:

12.6.110. plus or minus ::=

<plus>

<minus>

The + or - operator.

Example:

12.6.111. term ::=

(<value expression primary> (<star or slash> <value expression primary>)*)

A numeric term

Example:

12.6.112. star or slash ::=

<star>

<slash>

The * or / operator.

Example:

'a' || 'b'

1 + 2

+

1 * 2

/

CHAPTER 12. BNF FOR SQL GRAMMAR

347

12.6.113. value expression primary ::=

<non numeric literal>

(<plus or minus>)? (<unsigned numeric literal> | (<unsigned value expression primary > (
<lsbrace> <numeric value expression> <rsbrace>)*))

A simple value expression.

Example:

12.6.114. parameter reference ::=

<qmark>

(<dollar> <unsigned integer>)

A parameter reference to be bound later.

Example:

12.6.115. unescapedFunction ::=

((<text aggreate function > | <standard aggregate function> | <ordered aggregate function>) (
<filter clause>)? (<window specification>)?) | (<analytic aggregate function > (<filter clause>
)? <window specification>) | (<function> (<window specification>)?)

(XMLCAST <lparen> <expression> AS <data type> <rparen>)

12.6.116. nested expression ::=

(<lparen> (<expression> (<comma> <expression>)*)? (<comma>)? <rparen>)

An expression nested in parens

Example:

12.6.117. unsigned value expression primary ::=

<parameter reference>

(<escaped function> <function> <rbrace>)

<unescapedFunction>

<identifier> | <non-reserved identifier>

<subquery>

+col1

?

(1)

Red Hat Integration 2020.Q1 Data Virtualization Reference

348

<nested expression>

<ARRAY expression constructor >

<searched case expression>

<case expression>

An unsigned simple value expression.

Example:

12.6.118. ARRAY expression constructor ::=

ARRAY ((<lsbrace> (<expression> (<comma> <expression>)*)? <rsbrace>) | (<lparen> <query
expression> <rparen>))

Creates and array of the given expressions.

Example:

12.6.119. window specification ::=

OVER <lparen> (PARTITION BY <expression list>)? (<order by clause >)? (<window frame>)?
<rparen>

The window specification for an analytical or windowed aggregate function.

Example:

12.6.120. window frame ::=

(RANGE | ROWS) ((BETWEEN <window frame bound> AND <window frame bound>) |
<window frame bound>)

Defines the mode, start, and optionally end of the window frame

Example:

12.6.121. window frame bound ::=

((UNBOUNDED | <unsigned integer>) (FOLLOWING | PRECEDING))

(CURRENT ROW)

col1

ARRAY[1,2]

OVER (PARTION BY col1)

RANGE UNBOUNDED PRECEDING

CHAPTER 12. BNF FOR SQL GRAMMAR

349

Defines the start or end of a window frame

Example:

12.6.122. case expression ::=

CASE <expression> (WHEN <expression> THEN <expression>)+ (ELSE <expression>)? END

If/then/else chain using a common search predicand.

Example:

12.6.123. searched case expression ::=

CASE (WHEN <condition> THEN <expression>)+ (ELSE <expression>)? END

If/then/else chain using multiple search conditions.

Example:

12.6.124. function ::=

(CONVERT <lparen> <expression> <comma> <data type> <rparen>)

(CAST <lparen> <expression> AS <data type> <rparen>)

(SUBSTRING <lparen> <expression> ((FROM <expression> (FOR <expression>)?) | (
<comma> <expression list>)) <rparen>)

(EXTRACT <lparen> (YEAR | MONTH | DAY | HOUR | MINUTE | SECOND | QUARTER |
EPOCH) FROM <expression> <rparen>)

(TRIM <lparen> ((((LEADING | TRAILING | BOTH) (<expression>)?) | <expression>) FROM
)? <expression> <rparen>)

((TO_CHARS | TO_BYTES) <lparen> <expression> <comma> <string> (<comma> <expression>
)? <rparen>)

((TIMESTAMPADD | TIMESTAMPDIFF) <lparen> <time interval> <comma> <expression>
<comma> <expression> <rparen>)

<querystring function>

((LEFT | RIGHT | CHAR | USER | YEAR | MONTH | HOUR | MINUTE | SECOND |
XMLCONCAT | XMLCOMMENT | XMLTEXT) <lparen> (<expression list>)? <rparen>)

((TRANSLATE | INSERT) <lparen> (<expression list>)? <rparen>)

CURRENT ROW

CASE col1 WHEN 'a' THEN 1 ELSE 2

CASE WHEN x = 'a' THEN 1 WHEN y = 'b' THEN 2

Red Hat Integration 2020.Q1 Data Virtualization Reference

350

<xml parse>

<xml element>

(XMLPI <lparen> ((NAME)? <identifier>) (<comma> <expression>)? <rparen>)

<xml forest>

<json object>

<xml serialize>

<xml query>

(POSITION <lparen> <common value expression > IN <common value expression > <rparen>)

(LISTAGG <lparen> <expression> (<comma> <string>)? <rparen> WITHIN GROUP <lparen>
<order by clause > <rparen>)

(<identifier> <lparen> (ALL | DISTINCT)? (<expression list>)? (<order by clause >)? <rparen>
(<filter clause>)?)

(CURRENT_DATE (<lparen> <rparen>)?)

((CURRENT_TIMESTAMP | CURRENT_TIME) (<lparen> <unsigned integer> <rparen>)?)

Calls a scalar function.

Example:

12.6.125. xml parse ::=

XMLPARSE <lparen> (DOCUMENT | CONTENT) <expression> (WELLFORMED)? <rparen>

Parses the given value as XML.

Example:

12.6.126. querystring function ::=

QUERYSTRING <lparen> <expression> (<comma> <derived column>)* <rparen>

Produces a URL query string from the given arguments.

Example:

12.6.127. xml element ::=

XMLELEMENT <lparen> ((NAME)? <identifier>) (<comma> <xml namespaces>)? (<comma>

func('1', col1)

XMLPARSE(DOCUMENT doc WELLFORMED)

QUERYSTRING('path', col1 AS opt, col2 AS val)

CHAPTER 12. BNF FOR SQL GRAMMAR

351

XMLELEMENT <lparen> ((NAME)? <identifier>) (<comma> <xml namespaces>)? (<comma>
<xml attributes>)? (<comma> <expression>)* <rparen>

Creates an XML element.

Example:

12.6.128. xml attributes ::=

XMLATTRIBUTES <lparen> <derived column> (<comma> <derived column>)* <rparen>

Creates attributes for the containing element.

Example:

12.6.129. json object ::=

JSONOBJECT <lparen> <derived column list> <rparen>

Produces a JSON object containing name value pairs.

Example:

12.6.130. derived column list ::=

<derived column> (<comma> <derived column>)*

a list of name value pairs

Example:

12.6.131. xml forest ::=

XMLFOREST <lparen> (<xml namespaces> <comma>)? <derived column list> <rparen>

Produces an element for each derived column.

Example:

12.6.132. xml namespaces ::=

XMLNAMESPACES <lparen> <xml namespace element> (<comma> <xml namespace element>

XMLELEMENT(NAME "root", child)

XMLATTRIBUTES(col1 AS attr1, col2 AS attr2)

JSONOBJECT(col1 AS val1, col2 AS val2)

col1 AS val1, col2 AS val2

XMLFOREST(col1 AS ELEM1, col2 AS ELEM2)

Red Hat Integration 2020.Q1 Data Virtualization Reference

352

XMLNAMESPACES <lparen> <xml namespace element> (<comma> <xml namespace element>
)* <rparen>

Defines XML namespace URI/prefix combinations

Example:

12.6.133. xml namespace element ::=

(<string> AS <identifier>)

(NO DEFAULT)

(DEFAULT <string>)

An xml namespace

Example:

12.6.134. simple data type ::=

(STRING (<lparen> <unsigned integer> <rparen>)?)

(VARCHAR (<lparen> <unsigned integer> <rparen>)?)

BOOLEAN

BYTE

TINYINT

SHORT

SMALLINT

(CHAR (<lparen> <unsigned integer> <rparen>)?)

INTEGER

LONG

BIGINT

(BIGINTEGER (<lparen> <unsigned integer> <rparen>)?)

FLOAT

REAL

DOUBLE

(BIGDECIMAL (<lparen> <unsigned integer> (<comma> <unsigned integer>)? <rparen>)?)

XMLNAMESPACES('http://foo' AS foo)

NO DEFAULT

CHAPTER 12. BNF FOR SQL GRAMMAR

353

(DECIMAL (<lparen> <unsigned integer> (<comma> <unsigned integer>)? <rparen>)?)

DATE

TIME

(TIMESTAMP (<lparen> <unsigned integer> <rparen>)?)

(OBJECT (<lparen> <unsigned integer> <rparen>)?)

(BLOB (<lparen> <unsigned integer> <rparen>)?)

(CLOB (<lparen> <unsigned integer> <rparen>)?)

JSON

(VARBINARY (<lparen> <unsigned integer> <rparen>)?)

GEOMETRY

GEOGRAPHY

XML

A non-collection data type.

Example:

12.6.135. basic data type ::=

<simple data type> (<lsbrace> <rsbrace>)*

A data type.

Example:

12.6.136. data type ::=

<basic data type>

((<identifier> | <basicNonReserved>) (<lsbrace> <rsbrace>)*)

A data type.

Example:

12.6.137. time interval ::=

STRING

STRING[]

STRING[]

Red Hat Integration 2020.Q1 Data Virtualization Reference

354

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

A time interval keyword.

Example:

12.6.138. non numeric literal ::=

<string>

<binary string literal>

FALSE

TRUE

UNKNOWN

NULL

(<escaped type> <string> <rbrace>)

((DATE | TIME | TIMESTAMP) <string>)

An escaped or simple non numeric literal.

Example:

12.6.139. unsigned numeric literal ::=

<unsigned integer literal>

<approximate numeric literal>

<decimal numeric literal>

SQL_TSI_HOUR

'a'

CHAPTER 12. BNF FOR SQL GRAMMAR

355

An unsigned numeric literal value.

Example:

12.6.140. ddl statement ::=

<create table> (<create table> | <create procedure>)?

<option namespace>

<alterStatement>

<create trigger>

<create a domain or type alias >

<create server>

<create role >

<drop role >

<GRANT>

<Revoke GRANT>

<CREATE POLICY>

<DROP POLICY>

<drop server>

<drop table>

<Import foreign schema>

<Import another Database>

<create database>

<use database>

<drop schema>

<set schema>

<create schema>

<create procedure> (<ddl statement>)?

<create data wrapper>

<Drop data wrapper>

<drop procedure>

1.234

Red Hat Integration 2020.Q1 Data Virtualization Reference

356

A data definition statement.

Example:

12.6.141. option namespace ::=

SET NAMESPACE <string> AS <identifier>

A namespace used to shorten the full name of an option key.

Example:

12.6.142. create database ::=

CREATE DATABASE <identifier> (VERSION <string>)? (<options clause>)?

create a new database

Example:

12.6.143. use database ::=

USE DATABASE <identifier> (VERSION <string>)?

database into working context

Example:

12.6.144. create schema ::=

CREATE (VIRTUAL | FOREIGN)? SCHEMA <identifier> (SERVER <identifier list>)? (<options
clause>)?

create a schema in database

Example:

12.6.145. drop schema ::=

DROP (VIRTUAL | FOREIGN)? SCHEMA <identifier>

drop a schema in database

CREATE FOREIGN TABLE X (Y STRING)

SET NAMESPACE 'http://foo' AS foo

CREATE DATABASE foo OPTIONS(x 'y')

USE DATABASE foo

CREATE VIRTUAL SCHEMA foo SERVER (s1,s2,s3);

CHAPTER 12. BNF FOR SQL GRAMMAR

357

Example:

12.6.146. set schema ::=

SET SCHEMA <identifier>

set the schema for subsequent ddl statements

Example:

12.6.147. create a domain or type alias ::=

CREATE DOMAIN (<identifier> | <basicNonReserved>) (AS)? <data type> (NOT NULL)?

creates a named type with optional constraints

Example:

12.6.148. create data wrapper ::=

CREATE FOREIGN ((DATA WRAPPER) | TRANSLATOR) <Unqualified identifier> ((TYPE |
HANDLER) <identifier>)? (<options clause>)?

Defines a translator; use the options to override the translator properties.

Example:

12.6.149. Drop data wrapper ::=

DROP FOREIGN ((DATA WRAPPER) | TRANSLATOR) <identifier>

Deletes a translator

Example:

12.6.150. create role ::=

CREATE ROLE <Unqualified identifier> (WITH <with role>)?

Defines data role for the database

Example:

DROP SCHEMA foo

SET SCHEMA foo

CREATE DOMAIN my_type AS INTEGER NOT NULL

CREATE FOREIGN DATA WRAPPER wrapper OPTIONS (x true)

DROP FOREIGN DATA WRAPPER wrapper

Red Hat Integration 2020.Q1 Data Virtualization Reference

358

12.6.151. with role ::=

(ANY AUTHENTICATED)

((JAAS | FOREIGN) ROLE <identifier list>)

12.6.152. drop role ::=

DROP ROLE <identifier>

Removes data role for the database

Example:

12.6.153. CREATE POLICY ::=

CREATE POLICY <identifier> ON ((<identifier> (FOR (ALL | ((SELECT | INSERT | UPDATE
| DELETE) (<comma> (SELECT | INSERT | UPDATE | DELETE))*)))?) | (PROCEDURE
<identifier> (FOR ALL)?)) TO <identifier> USING <lparen> <boolean primary> <rparen>

CREATE row level policy

Example:

12.6.154. DROP POLICY ::=

DROP POLICY <identifier> ON (<identifier> | (PROCEDURE <identifier>)) TO <identifier>

DROP row level policy

Example:

12.6.155. GRANT ::=

GRANT (((<grant type> (<comma> <grant type>)*)? ON (TABLE <identifier> (CONDITION (
(NOT)? CONSTRAINT)? <string>)? | FUNCTION <identifier> | PROCEDURE <identifier> (
CONDITION ((NOT)? CONSTRAINT)? <string>)? | SCHEMA <identifier> | COLUMN
<identifier> (MASK (ORDER <unsigned integer>)? <string>)?)) | (ALL PRIVILEGES) | (
TEMPORARY TABLE) | (USAGE ON LANGUAGE <identifier>)) TO <identifier>

Defines GRANT for a role

Example:

CREATE ROLE lowly WITH FOREIGN ROLE "role"

DROP ROLE <data-role>

CREATE POLICY pname ON tbl FOR SELECT,INSERT TO role USING col = user();

----DROP POLICY pname ON tbl TO role

CHAPTER 12. BNF FOR SQL GRAMMAR

359

12.6.156. Revoke GRANT ::=

REVOKE (((<grant type> (<comma> <grant type>)*)? ON (TABLE <identifier> (CONDITION
)? | FUNCTION <identifier> | PROCEDURE <identifier> (CONDITION)? | SCHEMA <identifier>
| COLUMN <identifier> (MASK)?)) | (ALL PRIVILEGES) | (TEMPORARY TABLE) | (
USAGE ON LANGUAGE <identifier>)) FROM <identifier>

Revokes GRANT for a role

Example:

12.6.157. create server ::=

CREATE SERVER <Unqualified identifier> (TYPE <string>)? (VERSION <string>)? FOREIGN (
(DATA WRAPPER) | TRANSLATOR) <Unqualified identifier> (<options clause>)?

Defines a connection to a source

Example:

12.6.158. drop server ::=

DROP SERVER <identifier>

Defines dropping connection to foreign source

Example:

12.6.159. create procedure ::=

CREATE (VIRTUAL | FOREIGN)? (PROCEDURE | FUNCTION) <Unqualified identifier> (
<lparen> (<procedure parameter> (<comma> <procedure parameter>)*)? <rparen> (
RETURNS (<options clause>)? (((TABLE)? <lparen> <procedure result column > (<comma>
<procedure result column >)* <rparen>) | <data type>))? (<options clause>)? (AS
<statement>)?)

Defines a procedure or function invocation.

Example:

GRANT SELECT ON TABLE x.y TO role

REVOKE SELECT ON TABLE x.y TO role

CREATE SERVER "h2-connector" FOREIGN DATA WRAPPER h2 OPTIONS ("resource-name"
'java:/accounts-ds');

DROP SERVER server_name

CREATE FOREIGN PROCEDURE proc (param STRING) RETURNS STRING

Red Hat Integration 2020.Q1 Data Virtualization Reference

360

12.6.160. drop procedure ::=

DROP (VIRTUAL | FOREIGN)? (PROCEDURE | FUNCTION) <identifier>

Drops a table or view.

Example:

12.6.161. procedure parameter ::=

(IN | OUT | INOUT | VARIADIC)? <identifier> <data type> (NOT NULL)? (RESULT)? (
DEFAULT <expression>)? (<options clause>)?

A procedure or function parameter

Example:

12.6.162. procedure result column ::=

<identifier> <data type> (NOT NULL)? (<options clause>)?

A procedure result column.

Example:

12.6.163. create table ::=

CREATE (<create view> | <create foreign or global temporary table >)

Defines a table or view.

Example:

12.6.164. create foreign or global temporary table ::=

((FOREIGN TABLE) | (GLOBAL TEMPORARY TABLE)) <Unqualified identifier> <create
table body>

Defines a foreign or global temporary table.

Example:

DROP FOREIGN TABLE table-name

OUT x INTEGER

x INTEGER

CREATE VIEW vw AS SELECT 1

FOREIGN TABLE ft (col integer)

CHAPTER 12. BNF FOR SQL GRAMMAR

361

12.6.165. create view ::=

(VIRTUAL)? VIEW <Unqualified identifier> (<create view body > | (<options clause>)?) AS
<query expression>

Defines a view.

Example:

12.6.166. drop table ::=

DROP ((FOREIGN TABLE) | ((VIRTUAL)? VIEW) | (GLOBAL TEMPORARY TABLE))
<identifier>

Drops a table or view.

Example:

12.6.167. create foreign temp table ::=

CREATE (LOCAL)? FOREIGN TEMPORARY TABLE <Unqualified identifier> <create table
body> ON <identifier>

Defines a foreign temp table

Example:

12.6.168. create table body ::=

<lparen> <table element> (<comma> (<table constraint> | <table element>))* <rparen> (
<options clause>)?

Defines a table.

Example:

12.6.169. create view body ::=

<lparen> <view element> (<comma> (<table constraint> | <view element>))* <rparen> (
<options clause>)?

Defines a view.

Example:

VIEW vw AS SELECT 1

DROP VIEW name

CREATE FOREIGN TEMPORARY TABLE t (x string) ON z

(x string) OPTIONS (CARDINALITY 100)

Red Hat Integration 2020.Q1 Data Virtualization Reference

362

12.6.170. table constraint ::=

(CONSTRAINT <identifier>)? (<primary key> | <other constraints> | <foreign key>) (<options
clause>)?

Defines a constraint on a table or view.

Example:

12.6.171. foreign key ::=

FOREIGN KEY <column list> REFERENCES <identifier> (<column list>)?

Defines the foreign key referential constraint.

Example:

12.6.172. primary key ::=

PRIMARY KEY <column list>

Defines the primary key.

Example:

12.6.173. other constraints ::=

((UNIQUE | ACCESSPATTERN) <column list>)

(INDEX <lparen> <expression list> <rparen>)

Defines ACCESSPATTERN and UNIQUE constraints and INDEXes.

Example:

12.6.174. column list ::=

<lparen> <identifier> (<comma> <identifier>)* <rparen>

A list of column names.

Example:

(x) OPTIONS (CARDINALITY 100)

FOREIGN KEY (a, b) REFERENCES tbl (x, y)

FOREIGN KEY (a, b) REFERENCES tbl (x, y)

PRIMARY KEY (a, b)

UNIQUE (a)

CHAPTER 12. BNF FOR SQL GRAMMAR

363

12.6.175. table element ::=

<identifier> (SERIAL | (<data type> (NOT NULL)? (AUTO_INCREMENT)?)) <post create
column>

Defines a table column.

Example:

12.6.176. view element ::=

<identifier> (SERIAL | (<data type> (NOT NULL)? (AUTO_INCREMENT)?))? <post create
column>

Defines a view column with optional type.

Example:

12.6.177. post create column ::=

(<inline constraint>)? (DEFAULT <expression>)? (<options clause>)?

Common options trailing a column

Example:

12.6.178. inline constraint ::=

(PRIMARY KEY)

UNIQUE

INDEX

Defines a constraint on a single column

Example:

12.6.179. options clause ::=

OPTIONS <lparen> <option pair> (<comma> <option pair>)* <rparen>

(a, b)

x INTEGER NOT NULL

x INTEGER NOT NULL

PRIMARY KEY

x INTEGER PRIMARY KEY

Red Hat Integration 2020.Q1 Data Virtualization Reference

364

A list of statement options.

Example:

12.6.180. option pair ::=

<identifier> (<non numeric literal> | (<plus or minus>)? <unsigned numeric literal>)

An option key/value pair.

Example:

12.6.181. alter option pair ::=

<identifier> (<non numeric literal> | (<plus or minus>)? <unsigned numeric literal>)

Alter An option key/value pair.

Example:

12.6.182. alterStatement ::=

ALTER (<ALTER TABLE > | <ALTER PROCEDURE > | <ALTER TRIGGER > | <ALTER SERVER >
| <ALTER DATA WRAPPER > | <ALTER DATABASE >)

12.6.183. ALTER TABLE ::=

(((VIRTUAL)? VIEW <identifier>) | ((FOREIGN)? TABLE <identifier>)) ((AS <query
expression>) | <ADD column> | <ADD constraint> | <alter options list> | <DROP column> | (
ALTER COLUMN <alter column options>) | (RENAME (<RENAME Table > | (COLUMN
<rename column options>))))

alters options of database

Example:

12.6.184. RENAME Table ::=

TO <identifier>

alters table name

Example:

OPTIONS ('x' 'y', 'a' 'b')

'key' 'value'

'key' 'value'

ALTER TABLE foo ADD COLUMN x xml

CHAPTER 12. BNF FOR SQL GRAMMAR

365

12.6.185. ADD constraint ::=

ADD <table constraint>

alters table and adds a constraint

Example:

12.6.186. ADD column ::=

ADD COLUMN <table element>

alters table and adds a column

Example:

12.6.187. DROP column ::=

DROP COLUMN <identifier>

alters table and adds a column

Example:

12.6.188. alter column options ::=

<identifier> ((TYPE (SERIAL | (<data type> (NOT NULL)? (AUTO_INCREMENT)?))) |
<alter child options list>)

alters a set of column options

Example:

12.6.189. rename column options ::=

<identifier> TO <identifier>

renames either a table column or procedure’s parameter name

Example:

ALTER TABLE foo RENAME TO BAR;

ADD PRIMARY KEY (ID)

ADD COLUMN bar type OPTIONS (ADD updatable true)

DROP COLUMN bar

ALTER COLUMN bar OPTIONS (ADD updatable true)

RENAME COLUMN bar TO foo

Red Hat Integration 2020.Q1 Data Virtualization Reference

366

12.6.190. ALTER PROCEDURE ::=

(VIRTUAL | FOREIGN)? PROCEDURE <identifier> ((AS <statement>) | <alter options list> | (
ALTER PARAMETER <alter column options>) | (RENAME PARAMETER <rename column
options>))

alters options of database

Example:

12.6.191. ALTER TRIGGER ::=

TRIGGER ON <identifier> INSTEAD OF (INSERT | UPDATE | DELETE) (AS <for each row
trigger action> | ENABLED | DISABLED)

alters options of table triggers

Example:

12.6.192. ALTER SERVER ::=

SERVER <identifier> <alter options list>

alters options of database

Example:

12.6.193. ALTER DATA WRAPPER ::=

((DATA WRAPPER) | TRANSLATOR) <identifier> <alter options list>

alters options of data wrapper

Example:

12.6.194. ALTER DATABASE ::=

DATABASE <identifier> <alter options list>

alters options of database

Example:

ALTER PROCEDURE foo OPTIONS (ADD x y)

ALTER TRIGGER ON vw INSTEAD OF INSERT ENABLED

ALTER SERVER foo OPTIONS (ADD x y)

ALTER DATA WRAPPER foo OPTIONS (ADD x y)

CHAPTER 12. BNF FOR SQL GRAMMAR

367

12.6.195. alter options list ::=

OPTIONS <lparen> (<add set option> | <drop option>) (<comma> (<add set option> | <drop
option>))* <rparen>

a list of alterations to options

Example:

12.6.196. drop option ::=

DROP <identifier>

drop option

Example:

12.6.197. add set option ::=

(ADD | SET) <alter option pair>

add or set an option pair

Example:

12.6.198. alter child options list ::=

OPTIONS <lparen> (<add set child option > | <drop option>) (<comma> (<add set child option >
| <drop option>))* <rparen>

a list of alterations to options

Example:

12.6.199. drop option ::=

DROP <identifier>

drop option

Example:

ALTER DATABASE foo OPTIONS (ADD x y)

OPTIONS (ADD updatable true)

DROP updatable

ADD updatable true

OPTIONS (ADD updatable true)

Red Hat Integration 2020.Q1 Data Virtualization Reference

368

12.6.200. add set child option ::=

(ADD | SET) <alter child option pair>

add or set an option pair

Example:

12.6.201. alter child option pair ::=

<identifier> (<non numeric literal> | (<plus or minus>)? <unsigned numeric literal>)

Alter An option key/value pair.

Example:

12.6.202. Import foreign schema ::=

IMPORT (FOREIGN SCHEMA <identifier>)? FROM (SERVER | REPOSITORY) <identifier>
INTO <identifier> (<options clause>)?

imports schema metadata from server

Example:

12.6.203. Import another Database ::=

IMPORT DATABASE <identifier> VERSION <string> (WITH ACCESS CONTROL)?

imports another database into current database

Example:

12.6.204. identifier list ::=

<identifier> (<comma> <identifier>)*

12.6.205. grant type ::=

SELECT

DROP updatable

ADD updatable true

'key' 'value'

IMPORT FOREIGN SCHEMA foo FROM SERVER bar

IMPORT DATABASE vdb VERSION '1.2.3' WITH ACCESS CONTROL]

CHAPTER 12. BNF FOR SQL GRAMMAR

369

INSERT

UPDATE

DELETE

EXECUTE

ALTER

DROP

Red Hat Integration 2020.Q1 Data Virtualization Reference

370

	Table of Contents
	CHAPTER 1. DATA VIRTUALIZATION REFERENCE
	CHAPTER 2. VIRTUAL DATABASES
	2.1. VIRTUAL DATABASE PROPERTIES
	2.2. DDL METADATA FOR SCHEMA OBJECTS
	2.3. DDL METADATA FOR DOMAINS

	CHAPTER 3. SQL COMPATIBILITY
	3.1. IDENTIFIERS
	3.2. OPERATOR PRECEDENCE
	3.3. EXPRESSIONS
	3.3.1. Column Identifiers
	3.3.2. Literals
	3.3.3. Window functions
	3.3.4. Case and searched case
	3.3.5. Scalar subqueries
	3.3.6. Parameter references
	3.3.7. Arrays

	3.4. CRITERIA
	3.5. SCALAR FUNCTIONS
	3.5.1. Numeric functions
	3.5.2. String functions
	3.5.3. Date and time functions
	3.5.4. Type conversion functions
	3.5.5. Choice functions
	3.5.6. Decode functions
	3.5.7. Lookup function
	3.5.8. System functions
	3.5.9. XML functions
	3.5.10. JSON functions
	3.5.11. Security functions
	3.5.12. Spatial functions
	3.5.13. Miscellaneous functions
	3.5.14. Nondeterministic function handling

	3.6. DML COMMANDS
	3.6.1. Set operations
	3.6.2. SELECT command
	3.6.3. VALUES command
	3.6.4. Update commands
	3.6.4.1. INSERT command
	3.6.4.2. UPDATE command
	3.6.4.3. DELETE command
	3.6.4.4. UPSERT (MERGE) command
	3.6.4.5. EXECUTE command
	3.6.4.6. Procedural relational command
	3.6.4.7. Anonymous procedure block

	3.6.5. Subqueries
	3.6.6. WITH clause
	3.6.7. SELECT clause
	3.6.8. FROM clause
	3.6.8.1. Nested tables
	3.6.8.2. XMLTABLE
	3.6.8.3. ARRAYTABLE
	3.6.8.4. OBJECTTABLE
	3.6.8.5. TEXTTABLE
	3.6.8.6. JSONTABLE

	3.6.9. WHERE clause
	3.6.10. GROUP BY clause
	3.6.11. HAVING Clause
	3.6.12. ORDER BY clause
	3.6.13. LIMIT clause
	3.6.14. INTO clause
	3.6.15. OPTION clause

	3.7. DDL COMMANDS
	3.7.1. Temporary Tables
	3.7.1.1. Local temporary tables
	3.7.1.2. Global temporary tables
	3.7.1.3. Common features of global and local temporary tables
	3.7.1.4. Foreign temporary tables

	3.7.2. Alter view
	3.7.3. Alter procedure
	3.7.4. Alter trigger

	3.8. PROCEDURES
	3.8.1. Procedure language
	3.8.1.1. Command statement
	3.8.1.2. Dynamic SQL command
	3.8.1.3. Declaration statement
	3.8.1.4. Assignment statement
	3.8.1.5. Special variables
	3.8.1.6. Compound statement
	3.8.1.7. IF statement
	3.8.1.8. Loop Statement
	3.8.1.9. While statement
	3.8.1.10. Continue statement
	3.8.1.11. Break statement
	3.8.1.12. Leave statement
	3.8.1.13. Return statement
	3.8.1.14. Error statement
	3.8.1.15. Raise statement
	3.8.1.16. Exception expression

	3.8.2. Virtual procedures
	3.8.3. Triggers

	3.9. COMMENTS
	3.10. EXPLAIN STATEMENTS

	CHAPTER 4. DATA TYPES
	4.1. RUNTIME TYPES
	4.2. TYPE CONVERSIONS
	4.3. SPECIAL CONVERSION CASES
	4.4. ESCAPED LITERAL SYNTAX

	CHAPTER 5. UPDATABLE VIEWS
	5.1. KEY-PRESERVED TABLES

	CHAPTER 6. TRANSACTIONS
	6.1. AUTOCOMMITTXN EXECUTION PROPERTY
	6.2. UPDATING MODEL COUNT
	6.3. JDBC AND TRANSACTIONS
	6.4. LIMITATIONS

	CHAPTER 7. DATA ROLES
	7.1. PERMISSIONS
	7.2. ROLE MAPPING

	CHAPTER 8. SYSTEM SCHEMA
	8.1. SYS SCHEMA
	8.2. SYSADMIN SCHEMA
	8.2.1. SYSADMIN.refreshMatView
	8.2.2. SYSADMIN.refreshMatViewRow
	8.2.3. SYSADMIN.refreshMatViewRows
	8.2.4. SYSADMIN.setColumnStats
	8.2.5. SYSADMIN.setProperty
	8.2.6. SYSADMIN.setTableStats

	CHAPTER 9. TRANSLATORS
	9.1. AMAZON S3 TRANSLATOR
	9.2. DELEGATOR TRANSLATORS
	9.2.1. Extending the delegator translator

	9.3. FILE TRANSLATOR
	9.4. GOOGLE SPREADSHEET TRANSLATOR
	9.5. JDBC TRANSLATORS
	9.5.1. Actian Vector translator (actian-vector)
	9.5.2. Apache Phoenix Translator (phoenix)
	9.5.3. Cloudera Impala translator (impala)
	9.5.4. Db2 Translator (db2)
	9.5.5. Derby translator (derby)
	9.5.6. Exasol translator (exasol)
	9.5.7. Greenplum Translator (greenplum)
	9.5.8. H2 Translator (h2)
	9.5.9. Hive Translator (hive)
	9.5.10. HSQL Translator (hsql)
	9.5.11. Informix translator (informix)
	9.5.12. Ingres translators (ingres / ingres93)
	9.5.13. Intersystems Caché translator (intersystems-cache)
	9.5.14. JDBC ANSI translator (jdbc-ansi)
	9.5.15. JDBC simple translator (jdbc-simple)
	9.5.16. Microsoft Access translators
	9.5.17. Microsoft SQL Server translator (sqlserver)
	9.5.18. MySQL translator (mysql/mysql5)
	9.5.19. Netezza translator (netezza)
	9.5.20. Oracle translator (oracle)
	9.5.21. PostgreSQL translator (postgresql)
	9.5.22. PrestoDB translator (prestodb)
	9.5.23. Redshift translator (redshift)
	9.5.24. SAP HANA translator (hana)
	9.5.25. SAP IQ translator (sap-iq)
	9.5.26. Sybase translator (sybase)
	9.5.27. Data Virtualization translator (teiid)
	9.5.28. Teradata translator (teradata)
	9.5.29. Vertica translator (vertica)

	9.6. LOOPBACK TRANSLATOR
	9.7. MICROSOFT EXCEL TRANSLATOR
	9.8. MONGODB TRANSLATOR
	9.9. ODATA TRANSLATOR
	9.10. ODATA V4 TRANSLATOR
	9.11. OPENAPI TRANSLATOR
	9.12. SALESFORCE TRANSLATORS
	9.13. REST TRANSLATOR
	9.14. WEB SERVICES TRANSLATOR

	CHAPTER 10. FEDERATED PLANNING
	10.1. PLANNING OVERVIEW
	10.2. QUERY PLANNER
	10.3. QUERY PLANS
	10.4. FEDERATED OPTIMIZATIONS
	10.5. SUBQUERY OPTIMIZATION
	10.6. XQUERY OPTIMIZATION
	10.7. FEDERATED FAILURE MODES
	10.8. CONFORMED TABLES

	CHAPTER 11. DATA VIRTUALIZATION ARCHITECTURE
	11.1. TERMINOLOGY
	11.2. DATA MANAGEMENT
	11.3. QUERY TERMINATION
	11.4. PROCESSING

	CHAPTER 12. BNF FOR SQL GRAMMAR
	12.1. RESERVED KEYWORDS
	12.2. NON-RESERVED KEYWORDS
	12.3. RESERVED KEYWORDS FOR FUTURE USE
	12.4. TOKENS
	12.5. PRODUCTION CROSS-REFERENCE
	12.6. PRODUCTIONS
	12.6.1. string ::=
	12.6.2. non-reserved identifier ::=
	12.6.3. basicNonReserved ::=
	12.6.4. Unqualified identifier ::=
	12.6.5. identifier ::=
	12.6.6. create trigger ::=
	12.6.7. alter ::=
	12.6.8. for each row trigger action ::=
	12.6.9. explain ::=
	12.6.10. explain option ::=
	12.6.11. directly executable statement ::=
	12.6.12. drop table ::=
	12.6.13. create temporary table ::=
	12.6.14. temporary table element ::=
	12.6.15. raise error statement ::=
	12.6.16. raise statement ::=
	12.6.17. exception reference ::=
	12.6.18. sql exception ::=
	12.6.19. statement ::=
	12.6.20. delimited statement ::=
	12.6.21. compound statement ::=
	12.6.22. branching statement ::=
	12.6.23. return statement ::=
	12.6.24. while statement ::=
	12.6.25. loop statement ::=
	12.6.26. if statement ::=
	12.6.27. declare statement ::=
	12.6.28. assignment statement ::=
	12.6.29. assignment statement operand ::=
	12.6.30. data statement ::=
	12.6.31. dynamic data statement ::=
	12.6.32. set clause list ::=
	12.6.33. typed element list ::=
	12.6.34. callable statement ::=
	12.6.35. call statement ::=
	12.6.36. named parameter list ::=
	12.6.37. insert statement ::=
	12.6.38. expression list ::=
	12.6.39. update statement ::=
	12.6.40. delete statement ::=
	12.6.41. query expression ::=
	12.6.42. with list element ::=
	12.6.43. query expression body ::=
	12.6.44. query term ::=
	12.6.45. query primary ::=
	12.6.46. query ::=
	12.6.47. into clause ::=
	12.6.48. select clause ::=
	12.6.49. select sublist ::=
	12.6.50. select derived column ::=
	12.6.51. derived column ::=
	12.6.52. all in group ::=
	12.6.53. ordered aggregate function ::=
	12.6.54. text aggreate function ::=
	12.6.55. standard aggregate function ::=
	12.6.56. analytic aggregate function ::=
	12.6.57. filter clause ::=
	12.6.58. from clause ::=
	12.6.59. table reference ::=
	12.6.60. joined table ::=
	12.6.61. cross join ::=
	12.6.62. qualified table ::=
	12.6.63. table primary ::=
	12.6.64. make dep options ::=
	12.6.65. xml serialize ::=
	12.6.66. array table ::=
	12.6.67. json table ::=
	12.6.68. json table column ::=
	12.6.69. text table ::=
	12.6.70. text table column ::=
	12.6.71. xml query ::=
	12.6.72. xml query ::=
	12.6.73. object table ::=
	12.6.74. object table column ::=
	12.6.75. xml table ::=
	12.6.76. xml table column ::=
	12.6.77. unsigned integer ::=
	12.6.78. table subquery ::=
	12.6.79. table name ::=
	12.6.80. where clause ::=
	12.6.81. condition ::=
	12.6.82. boolean value expression ::=
	12.6.83. boolean term ::=
	12.6.84. boolean factor ::=
	12.6.85. boolean primary ::=
	12.6.86. comparison operator ::=
	12.6.87. is distinct ::=
	12.6.88. comparison predicate ::=
	12.6.89. subquery ::=
	12.6.90. quantified comparison predicate ::=
	12.6.91. match predicate ::=
	12.6.92. like regex predicate ::=
	12.6.93. character ::=
	12.6.94. between predicate ::=
	12.6.95. is null predicate ::=
	12.6.96. in predicate ::=
	12.6.97. exists predicate ::=
	12.6.98. group by clause ::=
	12.6.99. having clause ::=
	12.6.100. order by clause ::=
	12.6.101. sort specification ::=
	12.6.102. sort key ::=
	12.6.103. integer parameter ::=
	12.6.104. limit clause ::=
	12.6.105. fetch clause ::=
	12.6.106. option clause ::=
	12.6.107. expression ::=
	12.6.108. common value expression ::=
	12.6.109. numeric value expression ::=
	12.6.110. plus or minus ::=
	12.6.111. term ::=
	12.6.112. star or slash ::=
	12.6.113. value expression primary ::=
	12.6.114. parameter reference ::=
	12.6.115. unescapedFunction ::=
	12.6.116. nested expression ::=
	12.6.117. unsigned value expression primary ::=
	12.6.118. ARRAY expression constructor ::=
	12.6.119. window specification ::=
	12.6.120. window frame ::=
	12.6.121. window frame bound ::=
	12.6.122. case expression ::=
	12.6.123. searched case expression ::=
	12.6.124. function ::=
	12.6.125. xml parse ::=
	12.6.126. querystring function ::=
	12.6.127. xml element ::=
	12.6.128. xml attributes ::=
	12.6.129. json object ::=
	12.6.130. derived column list ::=
	12.6.131. xml forest ::=
	12.6.132. xml namespaces ::=
	12.6.133. xml namespace element ::=
	12.6.134. simple data type ::=
	12.6.135. basic data type ::=
	12.6.136. data type ::=
	12.6.137. time interval ::=
	12.6.138. non numeric literal ::=
	12.6.139. unsigned numeric literal ::=
	12.6.140. ddl statement ::=
	12.6.141. option namespace ::=
	12.6.142. create database ::=
	12.6.143. use database ::=
	12.6.144. create schema ::=
	12.6.145. drop schema ::=
	12.6.146. set schema ::=
	12.6.147. create a domain or type alias ::=
	12.6.148. create data wrapper ::=
	12.6.149. Drop data wrapper ::=
	12.6.150. create role ::=
	12.6.151. with role ::=
	12.6.152. drop role ::=
	12.6.153. CREATE POLICY ::=
	12.6.154. DROP POLICY ::=
	12.6.155. GRANT ::=
	12.6.156. Revoke GRANT ::=
	12.6.157. create server ::=
	12.6.158. drop server ::=
	12.6.159. create procedure ::=
	12.6.160. drop procedure ::=
	12.6.161. procedure parameter ::=
	12.6.162. procedure result column ::=
	12.6.163. create table ::=
	12.6.164. create foreign or global temporary table ::=
	12.6.165. create view ::=
	12.6.166. drop table ::=
	12.6.167. create foreign temp table ::=
	12.6.168. create table body ::=
	12.6.169. create view body ::=
	12.6.170. table constraint ::=
	12.6.171. foreign key ::=
	12.6.172. primary key ::=
	12.6.173. other constraints ::=
	12.6.174. column list ::=
	12.6.175. table element ::=
	12.6.176. view element ::=
	12.6.177. post create column ::=
	12.6.178. inline constraint ::=
	12.6.179. options clause ::=
	12.6.180. option pair ::=
	12.6.181. alter option pair ::=
	12.6.182. alterStatement ::=
	12.6.183. ALTER TABLE ::=
	12.6.184. RENAME Table ::=
	12.6.185. ADD constraint ::=
	12.6.186. ADD column ::=
	12.6.187. DROP column ::=
	12.6.188. alter column options ::=
	12.6.189. rename column options ::=
	12.6.190. ALTER PROCEDURE ::=
	12.6.191. ALTER TRIGGER ::=
	12.6.192. ALTER SERVER ::=
	12.6.193. ALTER DATA WRAPPER ::=
	12.6.194. ALTER DATABASE ::=
	12.6.195. alter options list ::=
	12.6.196. drop option ::=
	12.6.197. add set option ::=
	12.6.198. alter child options list ::=
	12.6.199. drop option ::=
	12.6.200. add set child option ::=
	12.6.201. alter child option pair ::=
	12.6.202. Import foreign schema ::=
	12.6.203. Import another Database ::=
	12.6.204. identifier list ::=
	12.6.205. grant type ::=

