
Red Hat Integration 2020-Q4

Getting Started with Service Registry

Service Registry 1.1

Last Updated: 2021-01-22





Red Hat Integration 2020-Q4 Getting Started with Service Registry

Service Registry 1.1



Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Service Registry and explains how to install with your chosen registry storage.
It shows how to manage event schemas and API designs using the Service Registry web console,
REST API, Maven plug-in, or Java client. This guide also explains how to to use Kafka client
serializers and deserializers in your consumer and producer applications. It also describes Service
Registry content types, rule configuration, and environment variables on OpenShift.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
1.1. SERVICE REGISTRY OVERVIEW

Service Registry capabilities
1.2. SCHEMA AND API ARTIFACTS IN SERVICE REGISTRY
1.3. SERVICE REGISTRY STORAGE OPTIONS
1.4. MANAGE CONTENT USING SERVICE REGISTRY WEB CONSOLE
1.5. VALIDATE SCHEMAS WITH KAFKA CLIENT SERIALIZERS/DESERIALIZERS
1.6. STREAM DATA TO EXTERNAL SYSTEMS WITH KAFKA CONNECT CONVERTERS
1.7. SERVICE REGISTRY DEMONSTRATION EXAMPLES
1.8. SERVICE REGISTRY AVAILABLE DISTRIBUTIONS

CHAPTER 2. SERVICE REGISTRY CONTENT RULES
2.1. GOVERN REGISTRY CONTENT USING RULES
2.2. WHEN RULES ARE APPLIED
2.3. HOW RULES WORK
2.4. CONTENT RULE CONFIGURATION

Configure artifact rules
Configure global rules

CHAPTER 3. SERVICE REGISTRY QUICKSTART
3.1. QUICKSTART SERVICE REGISTRY OPERATOR INSTALLATION
3.2. QUICKSTART SERVICE REGISTRY DEPLOYMENT

CHAPTER 4. INSTALLING SERVICE REGISTRY ON OPENSHIFT
4.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT OPERATORHUB

CHAPTER 5. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS
5.1. INSTALLING AMQ STREAMS FROM THE OPENSHIFT OPERATORHUB
5.2. CONFIGURING SERVICE REGISTRY WITH AMQ STREAMS STORAGE ON OPENSHIFT
5.3. CONFIGURING TLS SECURITY WITH SERVICE REGISTRY STORAGE IN AMQ STREAMS
5.4. CONFIGURING SCRAM SECURITY WITH SERVICE REGISTRY STORAGE IN AMQ STREAMS

CHAPTER 6. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE
6.1. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT OPERATORHUB
6.2. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL DATABASE STORAGE ON OPENSHIFT
6.3. BACKING UP SERVICE REGISTRY POSTGRESQL STORAGE
6.4. RESTORING SERVICE REGISTRY POSTGRESQL STORAGE

CHAPTER 7. DEPLOYING EMBEDDED SERVICE REGISTRY STORAGE IN INFINISPAN
7.1. CONFIGURING SERVICE REGISTRY WITH EMBEDDED INFINISPAN STORAGE ON OPENSHIFT

CHAPTER 8. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENT
8.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON OPENSHIFT
8.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH CHECKS

Liveness environment variables
Readiness environment variables

8.3. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM INSIDE THE OPENSHIFT
CLUSTER
8.4. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM OUTSIDE THE OPENSHIFT
CLUSTER

CHAPTER 9. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE
9.1. CONFIGURING THE SERVICE REGISTRY WEB CONSOLE

Configuring the web console deployment environment

5
5
5
6
6
7
8
9

10
11

13
13
13
13
14
14
14

16
16
16

18
18

20
20
21
23
26

29
29
30
32
32

34
34

36
36
37
37
38

39

41

43
43
43

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Configuring the console in read-only mode
9.2. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
9.3. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
9.4. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY WEB CONSOLE

CHAPTER 10. MANAGING SERVICE REGISTRY CONTENT USING THE REST API
10.1. REGISTRY REST API OVERVIEW
10.2. MANAGING ARTIFACTS USING REGISTRY REST API COMMANDS

CHAPTER 11. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN
11.1. MANAGING ARTIFACTS USING THE SERVICE REGISTRY MAVEN PLUG-IN

Registering an artifact using the Maven plug-in
Downloading an artifact using the Maven plug-in
Testing an artifact using the Maven plug-in

CHAPTER 12. MANAGING SERVICE REGISTRY CONTENT USING THE JAVA CLIENT
12.1. SERVICE REGISTRY JAVA CLIENT
12.2. WRITING SERVICE REGISTRY CLIENT APPLICATIONS
12.3. SERVICE REGISTRY JAVA CLIENT CONFIGURATION

Custom header configuration
TLS configuration

CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS
13.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY

Producer schema configuration
Consumer schema configuration

13.2. STRATEGIES TO LOOK UP A SCHEMA
Artifact ID strategy
Strategies to return an artifact ID
Global ID strategy
Strategies to return a global ID
Global ID strategy configuration

13.3. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONSTANTS
Constants for serializer/deserializer services
Constants for lookup strategies
Constants for converters
Constants for Avro data providers

13.4. USING DIFFERENT CLIENT SERIALIZER/DESERIALIZER TYPES
Kafka application configuration for serializers/deserializers
13.4.1. Configure Avro SerDe with Service Registry
13.4.2. Configure JSON Schema SerDe with Service Registry
13.4.3. Configure Protobuf SerDe with Service Registry

13.5. REGISTERING A SCHEMA IN SERVICE REGISTRY
Service Registry web console
Curl command example
Maven plugin example
Configuration using a producer client example

13.6. USING A SCHEMA FROM A KAFKA CONSUMER CLIENT
13.7. USING A SCHEMA FROM A KAFKA PRODUCER CLIENT
13.8. USING A SCHEMA FROM A KAFKA STREAMS APPLICATION

CHAPTER 14. SERVICE REGISTRY ARTIFACT REFERENCE
14.1. SERVICE REGISTRY ARTIFACT TYPES
14.2. SERVICE REGISTRY ARTIFACT STATES

43
44
45
47

49
49
50

52
52
52
53
53

55
55
55
56
56
56

58
58
59
59
60
60
61
61
61
61

62
62
62
62
63
63
63
65
67
68
69
69
69
70
70
70
71
72

74
74
74

Red Hat Integration 2020-Q4 Getting Started with Service Registry

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.3. SERVICE REGISTRY ARTIFACT METADATA
14.4. SERVICE REGISTRY CONTENT RULE TYPES
14.5. SERVICE REGISTRY CONTENT RULE MATURITY

CHAPTER 15. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE
15.1. SERVICE REGISTRY CUSTOM RESOURCE
15.2. SERVICE REGISTRY CR SPEC
15.3. SERVICE REGISTRY CR STATUS
15.4. SERVICE REGISTRY MANAGED RESOURCES
15.5. SERVICE REGISTRY OPERATOR LABELS

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading ZIP and TAR files
Registering your system for packages

75
76
77

79
79
80
82
83
83

85
85
85
85
85

Table of Contents

3



Red Hat Integration 2020-Q4 Getting Started with Service Registry

4



CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
This chapter introduces Service Registry concepts and features and provides details on the supported
artifact types that are stored in the registry:

Section 1.1, “Service Registry overview”

Section 1.2, “Schema and API artifacts in Service Registry”

Section 1.3, “Service Registry storage options”

Section 1.4, “Manage content using Service Registry web console”

Section 1.5, “Validate schemas with Kafka client serializers/deserializers”

Section 1.6, “Stream data to external systems with Kafka Connect converters”

Section 1.7, “Service Registry demonstration examples”

Section 1.8, “Service Registry available distributions”

1.1. SERVICE REGISTRY OVERVIEW

Service Registry is a datastore for sharing standard event schemas and API designs across API and
event-driven architectures. You can use Service Registry to decouple the structure of your data from
your client applications, and to share and manage your data types and API descriptions at runtime using
a REST interface.

For example, client applications can dynamically push or pull the latest schema updates to or from
Service Registry at runtime without needing to redeploy. Developer teams can query the registry for
existing schemas required for services already deployed in production, and can register new schemas
required for new services in development.

You can enable client applications to use schemas and API designs stored in Service Registry by
specifying the registry URL in your client application code. For example, the registry can store schemas
used to serialize and deserialize messages, which can then be referenced from your client applications to
ensure that the messages that they send and receive are compatible with those schemas.

Using Service Registry to decouple your data structure from your applications reduces costs by
decreasing overall message size, and creates efficiencies by increasing consistent reuse of schemas and
API designs across your organization. Service Registry provides a web console to make it easy for
developers and administrators to manage registry content.

In addition, you can configure optional rules to govern the evolution of your registry content. For
example, these include rules to ensure that uploaded content is syntactically and semantically valid, or is
backwards and forwards compatible with other versions. Any configured rules must pass before new
versions can be uploaded to the registry, which ensures that time is not wasted on invalid or
incompatible schemas or API designs.

Service Registry is based on the Apicurio Registry open source community project. For details, see
https://github.com/apicurio/apicurio-registry.

Service Registry capabilities

Support for multiple payload formats for standard event schemas and API specifications

Pluggable storage options including AMQ Streams, embedded Infinispan, or PostgreSQL

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

5

https://github.com/apicurio/apicurio-registry


Pluggable storage options including AMQ Streams, embedded Infinispan, or PostgreSQL
database

Registry content management using a web console, REST API command, Maven plug-in, or
Java client

Rules for content validation and version compatibility to govern how registry content evolves
over time

Full Apache Kafka schema registry support, including integration with Kafka Connect for
external systems

Client serializers/deserializers (Serdes) to validate Kafka and other message types at runtime

Cloud-native Quarkus Java runtime for low memory footprint and fast deployment times

Compatibility with existing Confluent schema registry client applications

Operator-based installation of Service Registry on OpenShift

1.2. SCHEMA AND API ARTIFACTS IN SERVICE REGISTRY

The items stored in Service Registry, such as event schemas and API specifications, are known as
registry artifacts. The following shows an example of an Apache Avro schema artifact in JSON format
for a simple share price application:

When a schema or API contract is added as an artifact in the registry, client applications can then use
that schema or API contract to validate that client messages conform to the correct data structure at
runtime.

Service Registry supports a wide range of message payload formats for standard event schemas and
API specifications. For example, supported formats include Apache Avro, Google protocol buffers,
GraphQL, AsyncAPI, OpenAPI, and others. For more details, see Chapter 14, Service Registry artifact
reference.

1.3. SERVICE REGISTRY STORAGE OPTIONS

Service Registry provides the following underlying storage implementations for registry artifacts:

{
   "type": "record",
   "name": "price",
   "namespace": "com.example",
   "fields": [
       {
           "name": "symbol",
           "type": "string"
       },
       {
           "name": "price",
           "type": "string"
       }
   ]
}

Red Hat Integration 2020-Q4 Getting Started with Service Registry

6



Table 1.1. Service Registry storage options

Storage option Release

Kafka Streams-based storage in AMQ Streams 1.5 General Availability

Cache-based storage in embedded Infinispan 10 Technical Preview only

Java Persistence API-based storage in PostgreSQL
12 database

Technical Preview only

IMPORTANT

Service Registry storage in Infinispan or PostgreSQL is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

Additional resources

Chapter 4, Installing Service Registry on OpenShift

Chapter 5, Deploying Service Registry storage in AMQ Streams

1.4. MANAGE CONTENT USING SERVICE REGISTRY WEB CONSOLE

You can use the Service Registry web console to browse and search the artifacts stored in the registry,
and to upload new artifacts and artifact versions. You can search for artifacts by label, name, and
description. You can also view an artifact’s content, view all of its available versions, or download an
artifact file locally.

You can also use the Service Registry web console to configure optional rules for registry content, both
globally and for each artifact. These optional rules for content validation and compatibility are applied
when new artifacts or artifact versions are uploaded to the registry. For more details, see Chapter 14,
Service Registry artifact reference .

Figure 1.1. Service Registry web console

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

7

https://access.redhat.com/support/offerings/techpreview


Figure 1.1. Service Registry web console

The Service Registry web console is available from the main endpoint of your Service Registry
deployment, for example, on http://MY-REGISTRY-URL/ui.

Additional resources

Chapter 9, Managing Service Registry content using the web console

1.5. VALIDATE SCHEMAS WITH KAFKA CLIENT
SERIALIZERS/DESERIALIZERS

Kafka producer applications can use serializers to encode messages that conform to a specific event
schema. Kafka consumer applications can then use deserializers to validate that messages have been
serialized using the correct schema, based on a specific schema ID.

Figure 1.2. Service Registry and Kafka client serializer/deserializer architecture

Red Hat Integration 2020-Q4 Getting Started with Service Registry

8



Figure 1.2. Service Registry and Kafka client serializer/deserializer architecture

Service Registry provides Kafka client serializers/deserializers (Serdes) to validate the following
message types at runtime:

Apache Avro

Google protocol buffers

JSON Schema

The Service Registry Maven repository and source code distributions include the Kafka
serializer/deserializer implementations for these message types, which Kafka client developers can use
to integrate with the registry. These implementations include custom io.apicurio.registry.utils.serde
Java classes for each supported message type, which client applications can use to pull schemas from
the registry at runtime for validation.

Additional resources

Chapter 13, Validating schemas using Kafka client serializers/deserializers

1.6. STREAM DATA TO EXTERNAL SYSTEMS WITH KAFKA CONNECT
CONVERTERS

You can use Service Registry with Apache Kafka Connect to stream data between Kafka and external
systems. Using Kafka Connect, you can define connectors for different systems to move large volumes
of data into and out of Kafka-based systems.

Figure 1.3. Service Registry and Kafka Connect architecture

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

9



Figure 1.3. Service Registry and Kafka Connect architecture

Service Registry provides the following features for Kafka Connect:

Storage for Kafka Connect schemas

Kafka Connect converters for Apache Avro and JSON Schema

Registry REST API to manage schemas

You can use the Avro and JSON Schema converters to map Kafka Connect schemas into Avro or JSON
schemas. Those schemas can then serialize message keys and values into the compact Avro binary
format or human-readable JSON format. The converted JSON is also less verbose because the
messages do not contain the schema information, only the schema ID.

Service Registry can manage and track the Avro and JSON schemas used in the Kafka topics. Because
the schemas are stored in Service Registry and decoupled from the message content, each message
must only include a tiny schema identifier. For an I/O bound system like Kafka, this means more total
throughput for producers and consumers.

The Avro and JSON Schema serializers and deserializers (Serdes) provided by Service Registry are also
used by Kafka producers and consumers in this use case. Kafka consumer applications that you write to
consume change events can use the Avro or JSON Serdes to deserialize these change events. You can
install these Serdes into any Kafka-based system and use them along with Kafka Connect, or with Kafka
Connect-based systems such as Debezium and Camel Kafka Connector.

Additional resources

Apache Kafka Connect documentation

Avro serialization in Debezium User Guide

Getting Started with Camel Kafka Connector

Demonstration of using Kafka Connect with Debezium and Apicurio Registry

1.7. SERVICE REGISTRY DEMONSTRATION EXAMPLES

Service Registry provides an open source demonstration of Apache Avro serialization/deserialization
with storage in Apache Kafka Streams. This example shows how the serializer/deserializer obtains the

Red Hat Integration 2020-Q4 Getting Started with Service Registry

10

https://kafka.apache.org/documentation/#connect
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#avro-serialization
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q4/html-single/getting_started_with_camel_kafka_connector/index
https://debezium.io/blog/2020/04/09/using-debezium-wit-apicurio-api-schema-registry/


Avro schema from the registry at runtime and uses it to serialize and deserialize Kafka messages. For
more details, see https://github.com/Apicurio/apicurio-registry-demo.

Service Registry also provides the following example applications:

Simple Avro example

Simple JSON Schema example

Confluent Serdes integration

Avro bean example

Custom ID strategy example

Simple Avro Maven example

REST client example

For more details, see https://github.com/Apicurio/apicurio-registry-examples

1.8. SERVICE REGISTRY AVAILABLE DISTRIBUTIONS

Table 1.2. Service Registry Operator and images

Distribution Location Release

Service Registry Operator OpenShift web console under
Operators → OperatorHub

General Availability

Container image for Service Registry
Operator

Red Hat Ecosystem Catalog General Availability

Container image for Kafka storage in
AMQ Streams

Red Hat Ecosystem Catalog General Availability

Container image for embedded
Infinispan storage

Red Hat Ecosystem Catalog Technical Preview only

Container image for JPA storage in
PostgreSQL

Red Hat Ecosystem Catalog Technical Preview only

IMPORTANT

Service Registry storage in Infinispan or PostgreSQL is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

11

https://github.com/Apicurio/apicurio-registry-demo
https://github.com/Apicurio/apicurio-registry-examples
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://access.redhat.com/support/offerings/techpreview


Table 1.3. Service Registry zip downloads

Distribution Location Release

Example custom resource definitions
for installation

Software Downloads for Red Hat
Integration

General Availability and
Technical Preview

Kafka Connect converters Software Downloads for Red Hat
Integration

General Availability

Maven repository Software Downloads for Red Hat
Integration

General Availability

Source code Software Downloads for Red Hat
Integration

General Availability

NOTE

You must have a subscription for Red Hat Integration and be logged into the Red Hat
Customer Portal to access the available Service Registry distributions.

Red Hat Integration 2020-Q4 Getting Started with Service Registry

12

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration&version=2020-Q4
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration&version=2020-Q4
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration&version=2020-Q4
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration&version=2020-Q4


CHAPTER 2. SERVICE REGISTRY CONTENT RULES
This chapter introduces the optional rules used to govern registry content and provides details on the
available rule configuration:

Section 2.1, “Govern registry content using rules”

Section 2.2, “When rules are applied”

Section 2.3, “How rules work”

Section 2.4, “Content rule configuration”

2.1. GOVERN REGISTRY CONTENT USING RULES

To govern the evolution of registry content, you can configure optional rules for artifact content added
to the registry. All configured global rules or artifact rules must pass before a new artifact version can be
uploaded to the registry. Configured artifact rules override any configured global rules.

The goal of these rules is to prevent invalid content from being added to the registry. For example,
content can be invalid for the following reasons:

Invalid syntax for a given artifact type (for example, AVRO or PROTOBUF)

Valid syntax, but semantics violate a specification

Incompatibility, when new content includes breaking changes relative to the current artifact
version

You can add these optional content rules using the Service Registry web console, REST API commands,
or a Java client application.

2.2. WHEN RULES ARE APPLIED

Rules are applied only when content is added to the registry. This includes the following REST
operations:

Adding an artifact

Updating an artifact

Adding an artifact version

If a rule is violated, Service Registry returns an HTTP error. The response body includes the violated rule
and a message showing what went wrong.

NOTE

If no rules are configured for an artifact, the set of currently configured global rules are
applied, if any.

2.3. HOW RULES WORK

Each rule has a name and optional configuration information. The registry storage maintains the list of

CHAPTER 2. SERVICE REGISTRY CONTENT RULES

13



Each rule has a name and optional configuration information. The registry storage maintains the list of
rules for each artifact and the list of global rules. Each rule in the list consists of a name and a set of
configuration properties, which are specific to the rule implementation.

A rule is provided with the content of the current version of the artifact (if one exists) and the new
version of the artifact being added. The rule implementation returns true or false depending on whether
the artifact passes the rule. If not, the registry reports the reason why in an HTTP error response. Some
rules might not use the previous version of the content. For example, compatibility rules use previous
versions, but syntax or semantic validity rules do not.

Additional resources

For more details, see Chapter 14, Service Registry artifact reference .

2.4. CONTENT RULE CONFIGURATION

You can configure rules individually for each artifact, as well as globally. Service Registry applies the
rules configured for the specific artifact. If no rules are configured at that level, Service Registry applies
the globally configured rules. If no global rules are configured, no rules are applied.

Configure artifact rules
You can configure artifact rules using the Service Registry web console or REST API. For details, see the
following:

Chapter 9, Managing Service Registry content using the web console

Apicurio Registry REST API documentation

Configure global rules
You can configure global rules in several ways:

Use the /rules operations in the REST API

Use the Service Registry web console

Set default global rules using Service Registry application properties

Configure default global rules

You can configure Service Registry at the application level to enable or disable global rules. You can
configure default global rules at installation time without post-install configuration using the following
application property format:

registry.rules.global.<ruleName>

The following rule names are currently supported:

compatibility

validity

The value of the application property must be a valid configuration option that is specific to the rule
being configured. The following table shows the valid values for each rule:

Table 2.1. Service Registry content rules

Red Hat Integration 2020-Q4 Getting Started with Service Registry

14

files/registry-rest-api.htm


Rule Value

Validity FULL

 SYNTAX_ONLY

 NONE

Compatibility BACKWARD

 BACKWARD_TRANSITIVE

 FORWARD

 FORWARD_TRANSITIVE

 FULL

 FULL_TRANSITIVE

 NONE

NOTE

You can configure these application properties as Java system properties or include
them in the Quarkus application.properties file. For more details, see the Quarkus
documentation.

CHAPTER 2. SERVICE REGISTRY CONTENT RULES

15

https://quarkus.io/guides/config#overriding-properties-at-runtime


CHAPTER 3. SERVICE REGISTRY QUICKSTART
This chapter explains how to quickly install Service Registry Operator using the OpenShift command
line. This quickstart example deploys Service Registry using the embedded Infinispan storage option:

Section 3.1, “Quickstart Service Registry Operator installation”

Section 3.2, “Quickstart Service Registry deployment”

NOTE

The recommended installation option for production environments is Section 4.1,
“Installing Service Registry from the OpenShift OperatorHub”.

The recommended storage option for production environments is AMQ Streams. For
details, see Chapter 5, Deploying Service Registry storage in AMQ Streams .

3.1. QUICKSTART SERVICE REGISTRY OPERATOR INSTALLATION

You can quickly deploy the Service Registry Operator on the command line, without the Operator
Lifecycle Manager, by using a downloaded set of installation files and examples.

Prerequisites

You must go to Red Hat Integration Downloads , select the product version, and download the
Service Registry CRDs .zip file.

Procedure

1. Create a project for the installation, for example, service-registry:

2. Set the namespace in install/cluster_role_binding.yaml by replacing {NAMESPACE} with 
service-registry.

3. Apply the files located in the install/ folder:

3.2. QUICKSTART SERVICE REGISTRY DEPLOYMENT

To quickly create a new Service Registry deployment, use the embedded Infinispan storage option,
which does not require an external storage to be configured as a prerequisite.

Prerequisites

Ensure that the Service Registry Operator is already installed.

Procedure

1. Create an ApicurioRegistry custom resource (CR) in the same namespace that the Operator is
deployed:

oc new-project service-registry

oc apply -f install/ -n service-registry

Red Hat Integration 2020-Q4 Getting Started with Service Registry

16

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration


Example CR for Infinispan storage

2. Access the automatically created route for the Service Registry web console. For example:

http://example-apicurioregistry.my-project.my-domain-name.com/

oc apply -f ./examples/apicurioregistry_infinispan_cr.yaml -n service-registry

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
  name: example-apicurioregistry
spec:
  configuration:
    persistence: "infinispan"
    infinispan:
      clusterName: "example-apicurioregistry"
      # ^ Optional

CHAPTER 3. SERVICE REGISTRY QUICKSTART

17



CHAPTER 4. INSTALLING SERVICE REGISTRY ON OPENSHIFT
This chapter explains how to install Service Registry:

Section 4.1, “Installing Service Registry from the OpenShift OperatorHub”

Prerequisites

Chapter 1, Introduction to Service Registry

NOTE

You can install more than one instance of Service Registry depending on your
environment. The number of instances depends on the number and type of artifacts
stored in Service Registry and on your chosen storage option.

4.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT
OPERATORHUB

You can install the Service Registry Operator on your OpenShift cluster from the OperatorHub. The
OperatorHub is available from the OpenShift Container Platform web console and provides an interface
for cluster administrators to discover and install Operators. For more details, see the OpenShift
documentation.

Prerequisites

You must have cluster administrator access to an OpenShift cluster.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Create a new OpenShift project:

a. In the left navigation menu, click Home > Project > Create Project.

b. Enter a project name, for example, my-project, and click Create.

3. In the left navigation menu, click Operators > OperatorHub.

4. In the Filter by keyword text box, enter registry to find the Red Hat Integration - Service
Registry Operator.

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select your subscription settings, for example:

Update Channel > Select one of the following channels:

serviceregistry-1: All minor and patch updates, such as 1.1.0 and 1.0.1. An installation on
1.0.x automatically upgrades to 1.1.x.

serviceregistry-1.0: Patch updates only, such as 1.0.1 and 1.0.2. An installation on 1.0.x

Red Hat Integration 2020-Q4 Getting Started with Service Registry

18

https://docs.openshift.com/container-platform/4.3/operators/olm-understanding-operatorhub.html


serviceregistry-1.0: Patch updates only, such as 1.0.1 and 1.0.2. An installation on 1.0.x
automatically ignores 1.1.x.

serviceregistry-1.1: Patch updates only, such as 1.1.1 and 1.1.2. An installation on 1.1.x
automatically ignores 1.0.x.

Installation Mode > A specific namespace on the cluster > my-project

Approval Strategy > Manual

7. Click Install, and wait a few moments until the Operator is ready for use.

Additional resources

Adding Operators to an OpenShift cluster

Apicurio Registry Operator community in GitHub

CHAPTER 4. INSTALLING SERVICE REGISTRY ON OPENSHIFT

19

https://docs.openshift.com/container-platform/4.5/operators/olm-adding-operators-to-cluster.html
https://github.com/Apicurio/apicurio-registry-operator


CHAPTER 5. DEPLOYING SERVICE REGISTRY STORAGE IN
AMQ STREAMS

This chapter explains how to install and configure Service Registry storage in AMQ Streams.

Section 5.1, “Installing AMQ Streams from the OpenShift OperatorHub”

Section 5.2, “Configuring Service Registry with AMQ Streams storage on OpenShift”

Section 5.3, “Configuring TLS security with Service Registry storage in AMQ Streams”

Section 5.4, “Configuring SCRAM security with Service Registry storage in AMQ Streams”

IMPORTANT

Service Registry storage in AMQ Streams is the recommended storage option for
production environments.

Prerequisites

Chapter 4, Installing Service Registry on OpenShift

5.1. INSTALLING AMQ STREAMS FROM THE OPENSHIFT
OPERATORHUB

If you do not already have AMQ Streams installed, you can install the AMQ Streams Operator on your
OpenShift cluster from the OperatorHub. The OperatorHub is available from the OpenShift Container
Platform web console and provides an interface for cluster administrators to discover and install
Operators. For more details, see the OpenShift documentation.

Prerequisites

You must have cluster administrator access to an OpenShift cluster

See Using AMQ Streams on OpenShift  for detailed information on installing AMQ Streams. This
section shows a simple example of installing using the OpenShift OperatorHub.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which Service Registry is installed. For example, from the
Project drop-down, select my-project.

3. In the left navigation menu, click Operators > OperatorHub.

4. In the Filter by keyword text box, enter AMQ Streams to find the Red Hat Integration - AMQ
Streams Operator.

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select your subscription settings, for example:

Update Channel > amq-streams-1.5.x

Red Hat Integration 2020-Q4 Getting Started with Service Registry

20

https://docs.openshift.com/container-platform/4.5/operators/olm-understanding-operatorhub.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/getting-started-str


Update Channel > amq-streams-1.5.x

Installation Mode > A specific namespace on the cluster > my-project

Approval Strategy > Manual

7. Click Install, and wait a few moments until the Operator is ready for use.

Additional resources

Adding Operators to an OpenShift cluster

Using AMQ Streams on OpenShift

5.2. CONFIGURING SERVICE REGISTRY WITH AMQ STREAMS
STORAGE ON OPENSHIFT

This section explains how to configure Kafka-based storage for Service Registry using AMQ Streams on
OpenShift. This storage option is suitable for production environments when persistent storage is
configured for the Kafka cluster on OpenShift. You can install Service Registry in an existing Kafka
cluster or create a new Kafka cluster, depending on your environment.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Chapter 4, Installing Service Registry on
OpenShift.

You must have already installed AMQ Streams. See Section 5.1, “Installing AMQ Streams from
the OpenShift OperatorHub”.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. If you do not already have a Kafka cluster configured, create a new Kafka cluster using AMQ
Streams. For example, in the OpenShift OperatorHub:

a. Click Installed Operators > Red Hat Integration - AMQ Streams.

b. Under Provided APIs > Kafka, click Create Instance to create a new Kafka cluster.

c. Edit the custom resource definition as appropriate, and click Create.

CHAPTER 5. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

21

https://docs.openshift.com/container-platform/4.5/operators/olm-adding-operators-to-cluster.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/index?


WARNING

The default example creates a cluster with 3 Zookeeper nodes and 3
Kafka nodes with ephemeral storage. This temporary storage is
suitable for development and testing only, and not for production. For
more details, see Using AMQ Streams on OpenShift .

3. After the cluster is ready, click Provided APIs > Kafka > my-cluster > YAML.

4. In the status block, make a copy of the bootstrapServers value, which you will use later to
deploy Service Registry. For example:

5. Create a Kafka topic to store the Service Registry artifacts:

a. Under Provided APIs > Kafka Topic, click Create topic.

b. Change the default topic name from my-topic to the required storage-topic.

6. Create a Kafka topic to store the Service Registry global IDs:

a. Under Provided APIs > Kafka Topic, click Create topic.

b. Change the default topic name from my-topic to the required global-id-topic.

7. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

8. Paste in the following custom resource definition, but use your bootstrapServers value that
you copied earlier:



status:
  conditions:
  ...
  listeners:
    - addresses:
        - host: my-cluster-kafka-bootstrap.my-project.svc
          port: 9092
      bootstrapServers: 'my-cluster-kafka-bootstrap.my-project.svc:9092'
      type: plain
  ...

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
  name: example-apicurioregistry
spec:
  configuration:
    persistence: "streams"
    streams:
      bootstrapServers: "my-cluster-kafka-bootstrap.my-project.svc:9092"

Red Hat Integration 2020-Q4 Getting Started with Service Registry

22

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/index?


9. Click Create and wait for the Service Registry route to be created on OpenShift.

10. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry.my-project.my-domain-name.com/

Additional resources

For more details on creating Kafka clusters and topics using AMQ Streams, see Using AMQ
Streams on OpenShift.

5.3. CONFIGURING TLS SECURITY WITH SERVICE REGISTRY
STORAGE IN AMQ STREAMS

You can configure the AMQ Streams Operator and Service Registry Operator to use an encrypted
Transport Layer Security (TLS) connection.

Prerequisites

You must install the Service Registry Operator using the OperatorHub or command line.

You must install the AMQ Streams Operator or have Kafka accessible from your OpenShift
cluster.

NOTE

This section assumes that the AMQ Streams Operator is available, however you can use
any Kafka deployment. In that case, you must manually create the Openshift secrets that
the Service Registry Operator expects.

Procedure

1. In the OpenShift web console, click Installed Operators, select the AMQ Streams Operator
details, and then the Kafka tab.

2. Click Create Kafka to provision a new Kafka cluster for Service Registry storage.

3. Configure the authorization and tls fields to use TLS authentication for the Kafka cluster, for
example:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
  name: my-cluster
  namespace: registry-example-streams-tls
spec:
  kafka:
    authorization:
      type: simple
    version: 2.5.0
    replicas: 3
    listeners:
      plain: {}

CHAPTER 5. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

23

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/index?


4. Create a Kafka topic to store the Service Registry artifacts:

a. Under Provided APIs > Kafka Topic, click Create topic.

b. Change the default topic name from my-topic to the required storage-topic.

5. Create a Kafka topic to store the Service Registry global IDs:

a. Under Provided APIs > Kafka Topic, click Create topic.

b. Change the default topic name from my-topic to the required global-id-topic.

6. Create a Kafka User resource to configure authentication and authorization for the Service
Registry user. For example, in the spec block, you can specify a user name in the metadata
section or use the default my-user.

      tls:
        authentication:
          type: tls
    config:
      offsets.topic.replication.factor: 3
      transaction.state.log.replication.factor: 3
      transaction.state.log.min.isr: 2
      log.message.format.version: '2.5'
    storage:
      type: ephemeral
  zookeeper:
    replicas: 3
    storage:
      type: ephemeral
  entityOperator:
    topicOperator: {}
    userOperator: {}

spec:
  authentication:
    type: tls
  authorization:
    acls:
      - operation: All
        resource:
          name: '*'
          patternType: literal
          type: topic
      - operation: All
        resource:
          name: '*'
          patternType: literal
          type: cluster
      - operation: All
        resource:
          name: '*'
          patternType: literal
          type: transactionalId
      - operation: All
        resource:

Red Hat Integration 2020-Q4 Getting Started with Service Registry

24



NOTE

You must configure the authorization specifically for the topics and resources
that the Service Registry requires. This is a simple example.

7. Click Workloads and then Secrets to find two secrets that AMQ Streams creates for Service
Registry to connect to the Kafka cluster:

my-cluster-cluster-ca-cert - contains the PKCS12 truststore for the Kafka cluster

my-user - contains the user’s keystore

NOTE

The name of the secret can vary based on your cluster or user name.

8. If you create the secrets manually, they must contain the following key-value pairs:

my-cluster-ca-cert

ca.p12 - truststore in PKCS12 format

ca.password - truststore password

my-user

user.p12 - keystore in PKCS12 format

user.password - keystore password

9. Configure the following example configuration to deploy the Service Registry.

IMPORTANT

          name: '*'
          patternType: literal
          type: group
    type: simple

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
  name: example-apicurioregistry
spec:
  configuration:
    persistence: "streams"
    streams:
      bootstrapServers: "my-cluster-kafka-bootstrap.registry-example-streams-tls.svc:9093"
      security:
        tls:
          keystoreSecretName: my-user
          truststoreSecretName: my-cluster-cluster-ca-cert

CHAPTER 5. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

25



IMPORTANT

You must use a different bootstrapServers address than in the plain insecure
use case. The address must support TLS connections and is found in the
specified Kafka resource under the type: tls field.

5.4. CONFIGURING SCRAM SECURITY WITH SERVICE REGISTRY
STORAGE IN AMQ STREAMS

You can configure the AMQ Streams Operator and Service Registry Operator to use Salted Challenge
Response Authentication Mechanism (SCRAM-SHA-512) for the Kafka cluster.

Prerequisites

You must install the Service Registry Operator using the OperatorHub or command line.

You must install the AMQ Streams Operator or have Kafka accessible from your OpenShift
cluster.

NOTE

This section assumes that AMQ Streams Operator is available, however you can use any
Kafka deployment. In that case, you must manually create the Openshift secrets that the
Service Registry Operator expects.

Procedure

1. In the OpenShift web console, click Installed Operators, select the AMQ Streams Operator
details, and then the Kafka tab.

2. Click Create Kafka to provision a new Kafka cluster for Service Registry storage.

3. Configure the authorization and tls fields to use SCRAM-SHA-512 authentication for the Kafka
cluster, for example:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
  name: my-cluster
  namespace: registry-example-streams-tls
spec:
  kafka:
    authorization:
      type: simple
    version: 2.5.0
    replicas: 3
    listeners:
      plain: {}
      tls:
        authentication:
          type: scram-sha-512
    config:
      offsets.topic.replication.factor: 3
      transaction.state.log.replication.factor: 3
      transaction.state.log.min.isr: 2

Red Hat Integration 2020-Q4 Getting Started with Service Registry

26



4. Create a Kafka topic to store the Service Registry artifacts:

a. Under Provided APIs > Kafka Topic, click Create topic.

b. Change the default topic name from my-topic to the required storage-topic.

5. Create a Kafka topic to store the Service Registry global IDs:

a. Under Provided APIs > Kafka Topic, click Create topic.

b. Change the default topic name from my-topic to the required global-id-topic.

6. Create a Kafka User resource to configure SCRAM authentication and authorization for the
Service Registry user. For example, in the spec block, see the authentication section.

7. Click Workloads and then Secrets to find two secrets that AMQ Streams creates for Service
Registry to connect to the Kafka cluster:

my-cluster-cluster-ca-cert - contains the PKCS12 truststore for the Kafka cluster

      log.message.format.version: '2.5'
    storage:
      type: ephemeral
  zookeeper:
    replicas: 3
    storage:
      type: ephemeral
  entityOperator:
    topicOperator: {}
    userOperator: {}

spec:
  authentication:
    type: scram-sha-512
  authorization:
    acls:
      - operation: All
        resource:
          name: '*'
          patternType: literal
          type: topic
      - operation: All
        resource:
          name: '*'
          patternType: literal
          type: cluster
      - operation: All
        resource:
          name: '*'
          patternType: literal
          type: transactionalId
      - operation: All
        resource:
          name: '*'
          patternType: literal
          type: group
    type: simple

CHAPTER 5. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

27



my-cluster-cluster-ca-cert - contains the PKCS12 truststore for the Kafka cluster

my-user - contains the user’s keystore

NOTE

The name of the secret can vary based on your cluster or user name.

8. If you create the secrets manually, they must contain the following key-value pairs:

my-cluster-ca-cert

ca.p12 - the truststore in PKCS12 format

ca.password - truststore password

my-user

password - user password

9. Configure the following example settings to deploy the Service Registry:

IMPORTANT

You must use a different bootstrapServers address than in the plain insecure
use case. The address must support TLS connections, and is found in the
specified Kafka resource under the type: tls field.

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
  name: example-apicurioregistry
spec:
  configuration:
    persistence: "streams"
    streams:
      bootstrapServers: "my-cluster-kafka-bootstrap.registry-example-streams-scram.svc:9093"
      security:
        scram:
          truststoreSecretName: my-cluster-cluster-ca-cert
          user: my-user
          passwordSecretName: my-user

Red Hat Integration 2020-Q4 Getting Started with Service Registry

28



CHAPTER 6. DEPLOYING SERVICE REGISTRY STORAGE IN A
POSTGRESQL DATABASE

This chapter explains how to install, configure, and manage Service Registry storage in a PostgreSQL
database.

Section 6.1, “Installing a PostgreSQL database from the OpenShift OperatorHub”

Section 6.2, “Configuring Service Registry with PostgreSQL database storage on OpenShift”

Section 6.3, “Backing up Service Registry PostgreSQL storage”

Section 6.4, “Restoring Service Registry PostgreSQL storage”

IMPORTANT

Service Registry storage in PostgreSQL is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

Prerequisites

Chapter 4, Installing Service Registry on OpenShift

6.1. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT
OPERATORHUB

If you do not already have a PostgreSQL database Operator installed, you can install a PostgreSQL
Operator on your OpenShift cluster from the OperatorHub. The OperatorHub is available from the
OpenShift Container Platform web console and provides an interface for cluster administrators to
discover and install Operators. For more details, see the OpenShift documentation.

Prerequisites

You must have cluster administrator access to an OpenShift cluster.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which Service Registry is installed. For example, from the
Project drop-down, select my-project.

3. In the left navigation menu, click Operators > OperatorHub.

4. In the Filter by keyword text box, enter PostgreSQL to find an Operator suitable for your

CHAPTER 6. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE

29

https://access.redhat.com/support/offerings/techpreview
https://docs.openshift.com/container-platform/4.5/operators/olm-understanding-operatorhub.html


4. In the Filter by keyword text box, enter PostgreSQL to find an Operator suitable for your
environment, for example, Crunchy PostgreSQL for OpenShift or PostgreSQL Operator by
Dev4Ddevs.com.

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select your subscription settings, for example:

Update Channel > stable

Installation Mode > A specific namespace on the cluster > my-project

Approval Strategy > Manual

7. Click Install, and wait a few moments until the Operator is ready for use.

IMPORTANT

You must read the documentation from your chosen PostgreSQL Operator for
details on how to create and manage your database.

Additional resources

Adding Operators to an OpenShift cluster

Crunchy PostgreSQL Operator QuickStart

6.2. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL
DATABASE STORAGE ON OPENSHIFT

This section explains how to configure Java Persistence API-based storage for Service Registry on
OpenShift using a PostgreSQL database Operator. You can install Service Registry in an existing
database or create a new database, depending on your environment. This section shows a simple
example using the PostgreSQL Operator by Dev4Ddevs.com.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Chapter 4, Installing Service Registry on
OpenShift.

You must have already installed a PostgreSQL Operator on OpenShift. For example, see
Section 6.1, “Installing a PostgreSQL database from the OpenShift OperatorHub” .

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which Service Registry and your PostgreSQL Operator are
installed. For example, from the Project drop-down, select my-project.

3. Create a PostgreSQL database for your Service Registry storage. For example, click Installed

Red Hat Integration 2020-Q4 Getting Started with Service Registry

30

https://docs.openshift.com/container-platform/4.5/operators/olm-adding-operators-to-cluster.html
https://access.crunchydata.com/documentation/postgres-operator/4.3.2/quickstart/


3. Create a PostgreSQL database for your Service Registry storage. For example, click Installed
Operators > PostgreSQL Operator by Dev4Ddevs.com > Create database > YAML.

4. Edit the database settings as follows:

name: Change the value to registry

image: Change the value to centos/postgresql-10-centos7

5. Edit any other database settings as needed depending on your environment, for example:

6. Click Create Database, and wait until the database is created.

7. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

8. Paste in the following custom resource definition, and edit the values for the database url and
credentials to match your environment:

9. Click Create and wait for the Service Registry route to be created on OpenShift.

10. Click Networking > Route to access the new route for the Service Registry web console. For

apiVersion: postgresql.dev4devs.com/v1alpha1
kind: Database
metadata:
  name: registry
  namespace: my-project
spec:
  databaseCpu: 30m
  databaseCpuLimit: 60m
  databaseMemoryLimit: 512Mi
  databaseMemoryRequest: 128Mi
  databaseName: example
  databaseNameKeyEnvVar: POSTGRESQL_DATABASE
  databasePassword: postgres
  databasePasswordKeyEnvVar: POSTGRESQL_PASSWORD
  databaseStorageRequest: 1Gi
  databaseUser: postgres
  databaseUserKeyEnvVar: POSTGRESQL_USER
  image: centos/postgresql-10-centos7
  size: 1

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
  name: example-apicurioregistry
spec:
  configuration:
    persistence: "jpa"
    dataSource:
      url: "jdbc:postgresql://SERVICE_NAME.NAMESPACE.svc:5432/"
      # e.g. url: "jdbc:postgresql://acid-minimal-cluster.my-project.svc:5432/"
      userName: "postgres"
      password: "PASSWORD"
      # ^ Optional

CHAPTER 6. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE

31



10. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry.my-project.my-domain-name.com/

Additional resources

Crunchy PostgreSQL Operator QuickStart

Apicurio Registry Operator QuickStart

6.3. BACKING UP SERVICE REGISTRY POSTGRESQL STORAGE

When using Java Persistence API storage in a PostgreSQL database, you must ensure that the data
stored by Service Registry is backed up regularly.

SQL Dump is a simple procedure that works with any PostgreSQL installation. This uses the pg_dump
utility to generate a file with SQL commands that you can use to recreate the database in the same
state that it was in at the time of the dump.

pg_dump is a regular PostgreSQL client application, which you can execute from any remote host that
has access to the database. Like any other client, the operations that can perform are limited to the user
permissions.

Procedure

Use the pg_dump command to redirect the output to a file:

You can specify the database server that pg_dump connects to using the -h host and -p port
options.

You can reduce large dump files using a compression tool, such as gzip, for example:

Additional resources

For details on client authentication, see the PostgreSQL documentation.

6.4. RESTORING SERVICE REGISTRY POSTGRESQL STORAGE

You can restore SQL Dump files created by pg_dump using the psql utility.

Prerequisites

You must have already backed up your PostgreSQL datbase using pg_dump. See Section 6.3,
“Backing up Service Registry PostgreSQL storage”.

All users who own objects or have permissions on objects in the dumped database must already
exist.

Procedure

 $ pg_dump dbname > dumpfile

 $ pg_dump dbname | gzip > filename.gz

Red Hat Integration 2020-Q4 Getting Started with Service Registry

32

https://access.crunchydata.com/documentation/postgres-operator/4.3.2/quickstart/
https://github.com/Apicurio/apicurio-registry-operator/blob/master/docs/minikube-quickstart.md
https://www.postgresql.org/docs/12/backup-dump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/client-authentication.html


1. Enter the following command to create the database:

2. Enter the following command to restore the SQL dump

3. Run ANALYZE on each database so the query optimizer has useful statistics.

 $ createdb -T template0 dbname

 $ psql dbname < dumpfile

CHAPTER 6. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE

33

https://www.postgresql.org/docs/12/sql-analyze.html


CHAPTER 7. DEPLOYING EMBEDDED SERVICE REGISTRY
STORAGE IN INFINISPAN

This chapter explains how to configure Service Registry storage in an embedded Infinispan cache.

Section 7.1, “Configuring Service Registry with embedded Infinispan storage on OpenShift”

IMPORTANT

Service Registry storage in Infinispan is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

Prerequisites

Chapter 4, Installing Service Registry on OpenShift

7.1. CONFIGURING SERVICE REGISTRY WITH EMBEDDED INFINISPAN
STORAGE ON OPENSHIFT

This section explains how to configure Infinispan cache-based storage for Service Registry on
OpenShift. This storage option is based on Infinispan community Java libraries embedded in the
Quarkus-based Service Registry server. You do not need to install a separate Infinispan server using this
storage option. This option is suitable for development or demonstration only, and is not suitable for
production environments.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Chapter 4, Installing Service Registry on
OpenShift.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

3. Paste in the following custom resource definition:

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
  name: example-apicurioregistry

Red Hat Integration 2020-Q4 Getting Started with Service Registry

34

https://access.redhat.com/support/offerings/techpreview


4. Click Create and wait for the Service Registry route to be created on OpenShift.

5. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry.my-project.my-domain-name.com/

Additional resources

For more details on configuring Infinispan clusters, see the example custom resources available
from the Apicurio Registry demonstration.

For more details on Infinispan, see https://infinispan.org/

spec:
  configuration:
    persistence: "infinispan"
    infinispan: # Currently uses embedded version of Infinispan
      clusterName: "example-apicurioregistry"
      # ^ Optional

CHAPTER 7. DEPLOYING EMBEDDED SERVICE REGISTRY STORAGE IN INFINISPAN

35

https://github.com/Apicurio/apicurio-registry-demo/blob/master/kubernetes/resources-infinispan.yaml
https://infinispan.org/


CHAPTER 8. CONFIGURING AND MANAGING SERVICE
REGISTRY DEPLOYMENT

This chapter explains how to configure and manage optional settings for your Service Registry
deployment on OpenShift:

Section 8.1, “Configuring Service Registry health checks on OpenShift”

Section 8.2, “Environment variables for Service Registry health checks”

Section 8.3, “Configuring an HTTPS connection to Service Registry from inside the OpenShift
cluster”

Section 8.4, “Configuring an HTTPS connection to Service Registry from outside the OpenShift
cluster”

8.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON
OPENSHIFT

You can configure optional environment variables for liveness and readiness probes to monitor the
health of the Service Registry server on OpenShift:

Liveness probes test if the application can make progress. If the application cannot make
progress, OpenShift automatically restarts the failing Pod.

Readiness probes test if the application is ready to process requests. If the application is not
ready, it can become overwhelmed by requests, and OpenShift stops sending requests for the
time that the probe fails. If other Pods are OK, they continue to receive requests.

IMPORTANT

The default values of the liveness and readiness environment variables are designed for
most cases and should only be changed if required by your environment. Any changes to
the defaults depend on your hardware, network, and amount of data stored. These values
should be kept as low as possible to avoid unnecessary overhead.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry on OpenShift with your preferred storage
option. See Chapter 4, Installing Service Registry on OpenShift .

You must have already installed and configured your chosen Service Registry storage in AMQ
Streams, embedded Infinispan, or PostgreSQL.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Click Installed Operators > Red Hat Integration - Service Registry.

3. On the ApicurioRegistry tab, click the Operator custom resource for your deployment, for

Red Hat Integration 2020-Q4 Getting Started with Service Registry

36



3. On the ApicurioRegistry tab, click the Operator custom resource for your deployment, for
example, example-apicurioregistry.

4. In the main overview page, find the Deployment Name section and the corresponding 
DeploymentConfig name for your Service Registry deployment, for example, example-
apicurioregistry.

5. In the left navigation menu, click Workloads > Deployment Configs, and select your 
DeploymentConfig name.

6. Click the Environment tab, and enter your environment variables in the Single values env
section, for example:

NAME: LIVENESS_STATUS_RESET

VALUE: 350

7. Click Save at the bottom.
Alternatively, you can perform these steps using the OpenShift oc command. For more details,
see the OpenShift CLI documentation.

Additional resources

Section 8.2, “Environment variables for Service Registry health checks”

OpenShift documentation on monitoring application health

8.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH
CHECKS

This section describes the available environment variables for Service Registry health checks on
OpenShift. These include liveness and readiness probes to monitor the health of the Service Registry
server on OpenShift. For an example procedure, see Section 8.1, “Configuring Service Registry health
checks on OpenShift”.

IMPORTANT

The following environment variables are provided for reference only. The default values
are designed for most cases and should only be changed if required by your environment.
Any changes to the defaults depend on your hardware, network, and amount of data
stored. These values should be kept as low as possible to avoid unnecessary overhead.

Liveness environment variables

Table 8.1. Environment variables for Service Registry liveness probes

Name Description Type Default

LIVENESS_ERROR_THR
ESHOLD

Number of liveness issues or
errors that can occur before
the liveness probe fails.

Integer 1

CHAPTER 8. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENT

37

https://docs.openshift.com/container-platform/4.5/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/4.5/applications/application-health.html


LIVENESS_COUNTER_R
ESET

Period in which the threshold
number of errors must occur.
For example, if this value is
60 and the threshold is 1, the
check fails after two errors
occur in 1 minute

Seconds 60

LIVENESS_STATUS_RES
ET

Number of seconds that
must elapse without any
more errors for the liveness
probe to reset to OK status.

Seconds 300

LIVENESS_ERRORS_IGN
ORED

Comma-separated list of
ignored liveness exceptions.

String io.grpc.StatusRuntimeEx
ception,org.apache.kafk
a.streams.errors.InvalidS
tateStoreException

Name Description Type Default

NOTE

Because OpenShift automatically restarts a Pod that fails a liveness check, the liveness
settings, unlike readiness settings, do not directly affect behavior of Service Registry on
OpenShift.

Readiness environment variables

Table 8.2. Environment variables for Service Registry readiness probes

Name Description Type Default

READINESS_ERROR_THR
ESHOLD

Number of readiness issues or errors
that can occur before the readiness
probe fails.

Integer 1

READINESS_COUNTER_R
ESET

Period in which the threshold number of
errors must occur. For example, if this
value is 60 and the threshold is 1, the
check fails after two errors occur in 1
minute.

Seconds 60

READINESS_STATUS_RES
ET

Number of seconds that must elapse
without any more errors for the liveness
probe to reset to OK status. In this case,
this means how long the Pod stays not
ready, until it returns to normal
operation.

Seconds 300

Red Hat Integration 2020-Q4 Getting Started with Service Registry

38



READINESS_TIMEOUT Readiness tracks the timeout of two
operations:

How long it takes for storage
requests to complete

How long it takes for HTTP
REST API requests to return a
response

If these operations take more time than
the configured timeout, this is counted
as a readiness issue or error. This value
controls the timeouts for both
operations.

Seconds 5

Name Description Type Default

Additional resources

Section 8.1, “Configuring Service Registry health checks on OpenShift”

OpenShift documentation on monitoring application health

8.3. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY
FROM INSIDE THE OPENSHIFT CLUSTER

The following procedure shows how to configure Service Registry deployment to expose a port for
HTTPS connections from inside the OpenShift cluster.

WARNING

This kind of connection is not directly available outside of the cluster. Routing is
based on hostname, which is encoded in the case of an HTTPS connection.
Therefore, edge termination or other configuration is still needed. See Section 8.4,
“Configuring an HTTPS connection to Service Registry from outside the OpenShift
cluster”.

Prerequisites

You must have already installed the Service Registry Operator.

Procedure

1. Generate a keystore with a self-signed certificate. You can skip this step if you are using your
own certificates.



CHAPTER 8. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENT

39

https://docs.openshift.com/container-platform/4.5/applications/application-health.html


2. Create a new secret to hold the keystore and keystore password.

a. In the left navigation menu of the OpenShift web console, click Workloads > Secrets >
Create Key/Value Secret.

b. Use the following values:

Name: registry-keystore

Key 1: keystore.jks

Value 1: registry-keystore.jks (uploaded file)

Key 2: password

Value 2: password

NOTE

If you encounter a java.io.IOException: Invalid keystore format, the
upload of the binary file did not work properly. As an alternative, encode
the file as a base64 string using cat registry-keystore.jks | base64 -w0 
> data.txt and edit the Secret resource as yaml to manually add the
encoded file.

3. Edit the DeploymentConfig resource of the Service Registry instance. You can find the correct
name in a status field of the Service Registry Operator.

a. Add the keystore secret as a volume:

b. Add a volume mount:

c. Add JAVA_OPTIONS and KEYSTORE_PASSWORD environment variables:

keytool -genkey -trustcacerts -keyalg RSA -keystore registry-keystore.jks -storepass 
password

template:
  spec:
    volumes:
    - name: registry-keystore-secret-volume
      secret:
      secretName: registry-keystore

volumeMounts:
  - name: registry-keystore-secret-volume
    mountPath: /etc/registry-keystore
    readOnly: true

- name: KEYSTORE_PASSWORD
  valueFrom:
    secretKeyRef:
      name: registry-keystore
      key: password
- name: JAVA_OPTIONS

Red Hat Integration 2020-Q4 Getting Started with Service Registry

40



NOTE

Order is important when using string interpolation.

d. Enable the HTTPS port:

4. Edit the Service resource of the Service Registry instance. You can find the correct name in a
status field of the Service Registry Operator.

5. Verify that the connection is working:

a. Connect into a pod on the cluster using SSH (you can use the Service Registry pod):

b. Find the cluster IP of the Service Registry pod from the Service resource (see the Location
column in the web console).

c. Afterwards, execute a test request (we are using self-signed certificate, so an insecure flag
is required):

8.4. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY
FROM OUTSIDE THE OPENSHIFT CLUSTER

The following procedure shows how to configure Service Registry deployment to expose an HTTPS
edge-terminated route for connections from outside the OpenShift cluster.

Prerequisites

    value: >-
     -Dquarkus.http.ssl.certificate.key-store-file=/etc/registry-keystore/keystore.jks
     -Dquarkus.http.ssl.certificate.key-store-file-type=jks
     -Dquarkus.http.ssl.certificate.key-store-password=$(KEYSTORE_PASSWORD)

ports:
  - containerPort: 8080
    protocol: TCP
  - containerPort: 8443
    protocol: TCP

ports:
  - name: http
    protocol: TCP
    port: 8080
    targetPort: 8080
  - name: https
    protocol: TCP
    port: 8443
    targetPort: 8443

oc rsh -n default example-apicurioregistry-deployment-vx28s-4-lmtqb

curl -k https://172.30.209.198:8443/health
[...]

CHAPTER 8. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENT

41



You must have already installed the Service Registry Operator.

Read the OpenShift documentation for creating secured routes .

Procedure

Add a second Route in addition to the HTTP route created by the Service Registry Operator.
See the following example:

NOTE

Make sure the insecureEdgeTerminationPolicy: Redirect configuration
property is set.

If you do not specify a certificate, OpenShift will use a default. You can alternatively generate a
custom self-signed certificate using the following commands:

And then create a route using the OpenShift CLI:

kind: Route
apiVersion: route.openshift.io/v1
metadata:
  [...]
  labels:
    app: example-apicurioregistry
    [...]
spec:
  host: example-apicurioregistry-default.apps.example.com
  to:
    kind: Service
    name: example-apicurioregistry-service-9whd7
    weight: 100
  port:
    targetPort: 8080
  tls:
    termination: edge
    insecureEdgeTerminationPolicy: Redirect
  wildcardPolicy: None

openssl genrsa 2048 > host.key &&
openssl req -new -x509 -nodes -sha256 -days 365 -key host.key -out host.cert

oc create route edge \
  --service=example-apicurioregistry-service-9whd7 \
  --cert=host.cert --key=host.key \
  --hostname=example-apicurioregistry-default.apps.example.com \
  --insecure-policy=Redirect \
  -n default

Red Hat Integration 2020-Q4 Getting Started with Service Registry

42

https://docs.openshift.com/container-platform/latest/networking/routes/secured-routes.html


CHAPTER 9. MANAGING SERVICE REGISTRY CONTENT
USING THE WEB CONSOLE

This chapter explains how to manage artifacts stored in the registry using the Service Registry web
console. This includes uploading and browsing registry content, and configuring optional rules:

Section 9.1, “Configuring the Service Registry web console”

Section 9.2, “Adding artifacts using the Service Registry web console”

Section 9.3, “Viewing artifacts using the Service Registry web console”

Section 9.4, “Configuring content rules using the Service Registry web console”

9.1. CONFIGURING THE SERVICE REGISTRY WEB CONSOLE

You can configure the Service Registry web console specifically for your deployment environment or to
customize its behavior. This section provides details on how to configure optional environment variables
for the Service Registry web console.

Prerequisites

You must have already installed Service Registry.

Configuring the web console deployment environment
When a user navigates their browser to the Service Registry web console, some initial configuration
settings are loaded. Two important configuration properties are:

URL for backend Service Registry REST API

URL for frontend Service Registry web console

Typically, Service Registry automatically detects and generates these settings, but there are some
deployment environments where this automatic detection can fail. If this happens, you can configure
environment variables to explicitly set these URLs for your environment.

Procedure

Configure the following environment variables to override the default URLs:

REGISTRY_UI_CONFIG_APIURL: Set the URL for the backend Service Registry REST API. For
example,https://registry.my-domain.com/api

REGISTRY_UI_CONFIG_UIURL: Set the URL for the frontend Service Registry web console.
For example, https://registry.my-domain.com/ui

Configuring the console in read-only mode
You can configure the Service Registry web console in read-only mode as an optional feature. This
mode disables all features in the Service Registry web console that allow users to make changes to
registered artifacts. For example, this includes the following:

Creating an artifact

Uploading a new version of an artifact

Updating an artifact’s metadata

CHAPTER 9. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

43



Deleting an artifact

Procedure

Configure the following environment variable to set the Service Registry web console in read-only
mode:

REGISTRY_UI_FEATURES_READONLY: Set to true to enable read-only mode. Defaults to 
false.

9.2. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB
CONSOLE

You can use the Service Registry web console to upload event schema and API design artifacts to the
registry. For more details on the artifact types that you can upload, see Chapter 14, Service Registry
artifact reference. This section shows simple examples of uploading Service Registry artifacts, applying
artifact rules, and adding new artifact versions.

Prerequisites

Service Registry must be installed and running in your environment.

Procedure

1. Connect to the Service Registry web console on:
http://MY_REGISTRY_URL/ui

2. Click Upload Artifact, and specify the following:

ID: Use the default empty setting to automatically generate an ID, or enter a specific artifact
ID.

Type: Use the default Auto-Detect setting to automatically detect the artifact type, or
select the artifact type from the drop-down, for example, Avro Schema or OpenAPI.

NOTE

The Service Registry server cannot automatically detect the Kafka Connect
Schema artifact type. You must manually select this artifact type.

Artifact: Drag and drop or click Browse to upload a file, for example, my-schema.json or 
my-openapi.json.

3. Click Upload and view the Artifact Details:

Figure 9.1. Artifact Details in Service Registry web console

Red Hat Integration 2020-Q4 Getting Started with Service Registry

44



Figure 9.1. Artifact Details in Service Registry web console

Info: Displays the artifact name, description, lifecycle status, when created, and last
modified. You can click the Edit Artifact Metadata pencil icon to edit the artifact name and
description or add labels, and click Download to download the artifact file locally. Also
displays artifact Content Rules that you can enable and configure.

Documentation (OpenAPI only): Displays automatically-generated REST API
documentation.

Content: Displays a read-only view of the full artifact content.

4. In Content Rules, click Enable to configure a Validity Rule or Compatibility Rule, and select
the appropriate rule configuration from the drop-down. For more details, see Chapter 14,
Service Registry artifact reference .

5. Click Upload new version to add a new artifact version, and drag and drop or click Browse to
upload the file, for example, my-schema.json or my-openapi.json.

6. To delete an artifact, click the trash icon next to Upload new version.

WARNING

Deleting an artifact deletes the artifact and all of its versions, and cannot be
undone. Artifact versions are immutable and cannot be deleted individually.

Additional resources

Section 9.3, “Viewing artifacts using the Service Registry web console”

Section 9.4, “Configuring content rules using the Service Registry web console”

9.3. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB
CONSOLE

You can use the Service Registry web console to browse the event schema and API design artifacts
stored in the registry. This section shows simple examples of viewing Service Registry artifacts, versions,
and artifact rules. For more details on the artifact types stored in the registry, see Chapter 14, Service
Registry artifact reference.



CHAPTER 9. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

45



Prerequisites

Service Registry must be installed and running in your environment.

Artifacts must have been added to the registry using the Service Registry web console, REST
API commands, Maven plug-in, or a Java client application.

Procedure

1. Connect to the Service Registry web console on:
http://MY_REGISTRY_URL/ui

2. Browse the list of artifacts stored in the registry, or enter a search string to find an artifact. You
can select to search by a specific Name, Description, Label, or Everything.

Figure 9.2. Browse artifacts in Service Registry web console

3. Click View artifact to view the Artifact Details:

Info: Displays the artifact name, description, lifecycle status, when created, and last
modified. You can click the Edit Artifact Metadata pencil icon to edit the artifact name and
description or add labels, and click Download to download the artifact file locally. Also
displays artifact Content Rules that you can enable and configure.

Documentation (OpenAPI only): Displays automatically-generated REST API
documentation.

Content: Displays a read-only view of the full artifact content.

4. Select to view a different artifact Version from the drop-down, if additional versions have been
added.

Additional resources

Section 9.2, “Adding artifacts using the Service Registry web console”

Section 9.4, “Configuring content rules using the Service Registry web console”

Red Hat Integration 2020-Q4 Getting Started with Service Registry

46



9.4. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY
WEB CONSOLE

You can use the Service Registry web console to configure optional rules to prevent invalid content
from being added to the registry. All configured artifact rules or global rules must pass before a new
artifact version can be uploaded to the registry. Configured artifact rules override any configured global
rules. For more details, see Chapter 2, Service Registry content rules .

This section shows a simple example of configuring global and artifact rules. For details on the different
rule types and associated configuration settings that you can select, see Chapter 14, Service Registry
artifact reference.

Prerequisites

Service Registry must be installed and running in your environment.

For artifact rules, artifacts must have been added to the registry using the Service Registry web
console, REST API commands, Maven plug-in, or a Java client application.

Procedure

1. Connect to the Service Registry web console on:
http://MY_REGISTRY_URL/ui

2. For artifact rules, browse the list of artifacts stored in the registry, or enter a search string to find
an artifact. You can select to search by a specific artifact Name, Description, Label, or
Everything.

3. Click View artifact to view the Artifact Details.

4. In Content Rules, click Enable to configure an artifact Validity Rule or Compatibility Rule, and
select the appropriate rule configuration from the drop-down. For more details, see Chapter 14,
Service Registry artifact reference .

Figure 9.3. Configure content rules in Service Registry web console

5. For global rules, click the Settings cog icon at the top right of the toolbar, and click Enable to
configure a global Validity Rule or Compatibility Rule, and select the appropriate rule
configuration from the drop-down. For more details, see Chapter 14, Service Registry artifact
reference.

6. To disable an artifact rule or global rule, click the trash icon next to the rule.

Additional resources

CHAPTER 9. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

47



Section 9.2, “Adding artifacts using the Service Registry web console”

Red Hat Integration 2020-Q4 Getting Started with Service Registry

48



CHAPTER 10. MANAGING SERVICE REGISTRY CONTENT
USING THE REST API

This chapter describes the Registry REST API and shows how to use it manage artifacts stored in the
registry:

Section 10.1, “Registry REST API overview”

Section 10.2, “Managing artifacts using Registry REST API commands”

Additional resources

Apicurio Registry REST API documentation

10.1. REGISTRY REST API OVERVIEW

Using the Registry REST API, client applications can manage the artifacts in Service Registry. This API
provides create, read, update, and delete operations for:

Artifacts

Manage the schema and API design artifacts stored in the registry. This also includes browse or
search for artifacts, for example, by name, ID, description, or label. You can also manage the lifecycle
state of an artifact: enabled, disabled, or deprecated.

Artifact versions

Manage the versions that are created when artifact content is updated. This also includes browse or
search for versions, for example, by name, ID, description, or label. You can also manage the lifecycle
state of a version: enabled, disabled, or deprecated.

Artifact metadata

Manage details about artifacts such as when an artifact was created or modified, its current state, and
so on. Users can edit some metadata, and some is read-only. For example, editable metadata
includes artifact name, description, or label, but when the artifact was created and modified are read-
only.

Global rules

Configure rules to govern the content evolution of all artifacts to prevent invalid or incompatible
content from being added to the registry. Global rules are applied only if an artifact does not have its
own specific artifact rules configured.

Artifact rules

Configure rules to govern the content evolution of a specific artifact to prevent invalid or
incompatible content from being added to the registry. Artifact rules override any global rules
configured.

Compatibility with other schema registries

The Registry REST API is compatible with the Confluent schema registry REST API, which includes
support for Apache Avro, Google Protocol buffers, and JSON Schema artifact types. Applications using
Confluent client libraries can use Service Registry as a drop-in replacement instead. For more details,
see Replacing Confluent Schema Registry with Red Hat Integration Service Registry .

Additional resources

For detailed information, see the Apicurio Registry REST API documentation .

The Registry REST API documentation is also available from the main endpoint of your Service

CHAPTER 10. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

49

files/registry-rest-api.htm
https://developers.redhat.com/blog/2019/12/17/replacing-confluent-schema-registry-with-red-hat-integration-service-registry/
files/registry-rest-api.htm


The Registry REST API documentation is also available from the main endpoint of your Service
Registry deployment, for example, on http://MY-REGISTRY-URL/api.

10.2. MANAGING ARTIFACTS USING REGISTRY REST API COMMANDS

Client applications can use Registry REST API commands to manage artifacts in Service Registry, for
example, in a CI/CD pipeline deployed in production. The Registry REST API provides create, read,
update, and delete operations for artifacts, versions, metadata, and rules stored in the registry. For
detailed information, see the Apicurio Registry REST API documentation .

This section shows a simple curl-based example of using the Registry REST API to add and retrieve an
Apache Avro schema artifact in the registry.

NOTE

When adding artifacts in Service Registry using the REST API, if you do not specify a
unique artifact ID, Service Registry generates one automatically as a UUID.

Prerequisites

See Chapter 1, Introduction to Service Registry

Service Registry must be installed and running in your environment.

Procedure

1. Add an artifact in the registry using the /artifacts operation. The following example curl
command adds a simple artifact for a share price application:

This example shows adding an Avro schema artifact with an artifact ID of share-price.

MY-REGISTRY-HOST is the host name on which Service Registry is deployed. For example: 
my-cluster-service-registry-myproject.example.com.

2. Verify that the response includes the expected JSON body to confirm that the artifact was
added. For example:

3. Retrieve the artifact from the registry using its artifact ID. For example, in this case the specified
ID is share-price:

$ curl -X POST -H "Content-type: application/json; artifactType=AVRO" -H "X-Registry-
ArtifactId: share-price" --data 
'{"type":"record","name":"price","namespace":"com.example","fields":
[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}' http://MY-REGISTRY-
HOST/api/artifacts

{"createdOn":1578310374517,"modifiedOn":1578310374517,"id":"share-
price","version":1,"type":"AVRO","globalId":8}

$ curl http://MY-REGISTRY-URL/api/artifacts/share-price
'{"type":"record","name":"price","namespace":"com.example","fields":
[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}

Red Hat Integration 2020-Q4 Getting Started with Service Registry

50

files/registry-rest-api.htm


Additional resources

For more REST API sample requests, see the Apicurio Registry REST API documentation .

CHAPTER 10. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

51

files/registry-rest-api.htm


CHAPTER 11. MANAGING SERVICE REGISTRY CONTENT
USING THE MAVEN PLUG-IN

This chapter explains how to manage artifacts stored in the registry using the Service Registry Maven
plug-in:

Section 11.1, “Managing artifacts using the Service Registry Maven plug-in”

Prerequisites

See Chapter 1, Introduction to Service Registry

Service Registry must be installed and running in your environment

Maven must be installed and configured in your environment

11.1. MANAGING ARTIFACTS USING THE SERVICE REGISTRY MAVEN
PLUG-IN

You can use the Service Registry Maven plug-in to upload or download registry artifacts as part of your
development build. For example, this plug-in is useful for testing and validating that your schema
updates are compatible with client applications.

Registering an artifact using the Maven plug-in
Probably the most common use case for the Maven plug-in is registering artifacts during a build. You
can accomplish this by using the register execution goal.

Procedure

Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to register an
artifact. The following example shows registering an Apache Avro schema:

<plugin>
  <groupId>io.apicurio</groupId>
  <artifactId>apicurio-registry-maven-plugin</artifactId>
  <version>${registry.version}</version>
  <executions>
    <execution>
      <phase>generate-sources</phase>
      <goals>
        <goal>register</goal> 1
      </goals>
      <configuration>
        <registryUrl>http://my-cluster-service-registry-myproject.example.com/api</registryUrl> 
2

        <artifactType>AVRO</artifactType>
        <artifacts>
          <schema1>${project.basedir}/schemas/schema1.avsc</schema1> 3
        </artifacts>
      </configuration>
    </execution>
  </executions>
</plugin>

Red Hat Integration 2020-Q4 Getting Started with Service Registry

52



1

2

3

1

2

3

4

Specify register as the execution goal to upload the schema artifact to the registry.

You must specify the Service Registry URL with the /api endpoint.

You can upload multiple artifacts using the artifact ID and location.

Downloading an artifact using the Maven plug-in
You can also use the Maven plug-in to download artifacts from Service Registry. This is often useful, for
example, when generating code from a registered schema.

Procedure

Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to download an
artifact. The following example shows downloading a single schema by its artifact ID.

Specify download as the execution goal.

You must specify the Service Registry URL with the /api endpoint.

You can download multiple artifacts to a specified directory using the artifact ID.

The plug-in automatically tries to select an appropriate file extension, but you can override
it using <artifactExtension>.

Testing an artifact using the Maven plug-in
You might want to verify that an artifact can be registered without actually making any changes. This is
most often useful when rules are configured in Service Registry. Testing the artifact results in a failure if
the artifact content violates any of the configured rules.

NOTE

<plugin>
<groupId>io.apicurio</groupId>
<artifactId>apicurio-registry-maven-plugin</artifactId>
<version>${registry.version}</version>
<executions>
  <execution>
    <phase>generate-sources</phase>
    <goals>
      <goal>download</goal> 1
    </goals>
    <configuration>
      <registryUrl>http://my-cluster-service-registry-myproject.example.com/api</registryUrl> 
2

      <ids>
        <param1>schema1</param1> 3
      </ids>
      <artifactExtension>.avsc</artifactExtension> 4
      <outputDirectory>${project.build.directory}</outputDirectory>
   </configuration>
 </execution>
</executions>
</plugin>

CHAPTER 11. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN

53



1

2

3

NOTE

Even if the artifact passes the test, no content is added to Service Registry.

Procedure

Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to test an artifact.
The following example shows testing an Apache Avro schema:

Specify test-update as the execution goal to test the schema artifact.

You must specify the Service Registry URL with the /api endpoint.

You can test multiple artifacts using the artifact ID and location.

Additional resources

For more details on the Service Registry Maven plug-in, see the Registry demonstration
example

<plugin>
  <groupId>io.apicurio</groupId>
  <artifactId>apicurio-registry-maven-plugin</artifactId>
  <version>${registry.version}</version>
  <executions>
    <execution>
      <phase>generate-sources</phase>
      <goals>
        <goal>test-update</goal> 1
      </goals>
      <configuration>
        <registryUrl>http://my-cluster-service-registry-myproject.example.com/api</registryUrl> 
2

        <artifactType>AVRO</artifactType>
        <artifacts>
          <schema1>${project.basedir}/schemas/schema1.avsc</schema1> 3
        </artifacts>
      </configuration>
    </execution>
  </executions>
</plugin>

Red Hat Integration 2020-Q4 Getting Started with Service Registry

54

https://github.com/Apicurio/apicurio-registry-demo


CHAPTER 12. MANAGING SERVICE REGISTRY CONTENT
USING THE JAVA CLIENT

This chapter explains how to use the Service Registry Java client:

Section 12.1, “Service Registry Java client”

Section 12.2, “Writing Service Registry client applications”

Section 12.3, “Service Registry Java client configuration”

12.1. SERVICE REGISTRY JAVA CLIENT

You can manage artifacts stored in Service Registry using a Java client application. You can create, read,
update, or delete artifacts stored in the registry using the Service Registry Java client classes.

You can access the Service Registry Java client by adding the correct dependency to your project, see
Section 12.2, “Writing Service Registry client applications” .

The Service Registry client is auto-closeable and is implemented using Retrofit and OkHttp as base
libraries. This gives you the ability to customize its use, for example, by adding custom headers or
enabling Transport Layer Security (TLS) authentication. For more details, see Section 12.3, “Service
Registry Java client configuration”.

12.2. WRITING SERVICE REGISTRY CLIENT APPLICATIONS

This section explains how to manage artifacts stored in Service Registry using a Java client application.
The Service Registry Java client extends the Autocloseable interface.

Prerequisites

See Chapter 1, Introduction to Service Registry

Service Registry must be installed and running in your environment

Procedure

1. Add the following dependency to your Maven project:

2. Create a registry client as follows:

<dependency>
    <groupId>io.apicurio</groupId>
    <artifactId>apicurio-registry-rest-client</artifactId>
    <version>${apicurio-registry.version}</version>
</dependency>

public class ClientExample {

    private static final RegistryRestClient client;

     public static void main(String[] args) throws Exception {
        // Create a registry client

CHAPTER 12. MANAGING SERVICE REGISTRY CONTENT USING THE JAVA CLIENT

55



1

2

You must specify the Service Registry URL with the /api endpoint.

For more options when creating a Service Registry client, see the Java client configuration
in the next section.

3. When the client is created, you can use all the operations from the Service Registry REST API
through the client. For more details, see the Apicurio Registry REST API documentation .

Additional resources

For an example of how to use and customize the Service Registry client, see the Registry client
demonstration example.

For details on how to use the Service Registry Kafka client serializer/deserializer for Apache
Avro in AMQ Streams producer and consumer applications, see Using AMQ Streams on
Openshift.

12.3. SERVICE REGISTRY JAVA CLIENT CONFIGURATION

The Service Registry Java client includes the following configuration options, based on the client
factory:

Table 12.1. Service Registry Java client configuration options

Option Description Arguments

Plain client Basic REST client used to interact with a running
registry.

baseUrl

Custom HTTP client Registry client using an OkHttpClient provided by the
user.

baseUrl, okhttpClient

Custom configuration Registry client that accepts a map containing custom
configuration. This is useful, for example, to add
custom headers to the calls.

baseUrl, Map<String 
Object> configs

Custom header configuration
To configure custom headers, you must add the apicurio.registry.request.headers prefix to the 
configs map key. For example, a key of apicurio.registry.request.headers.Authorization with a value
of Basic: xxxxx results in a header of Authorization with value of Basic: xxxxx.

TLS configuration
You can configure Transport Layer Security (TLS) authentication for the Service Registry Java client
using the following properties:

apicurio.registry.request.ssl.truststore.location

        String registryUrl = "https://registry.my-domain.com/api"; 1
        RegistryRestClient client = RegistryRestClientFactory.create(registryUrl); 2
    }
}

Red Hat Integration 2020-Q4 Getting Started with Service Registry

56

files/registry-rest-api.htm
https://github.com/Apicurio/apicurio-registry-examples/blob/master/rest-client
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/service-registry-str


apicurio.registry.request.ssl.truststore.password

apicurio.registry.request.ssl.truststore.type

apicurio.registry.request.ssl.keystore.location

apicurio.registry.request.ssl.keystore.password

apicurio.registry.request.ssl.keystore.type

apicurio.registry.request.ssl.key.password

CHAPTER 12. MANAGING SERVICE REGISTRY CONTENT USING THE JAVA CLIENT

57



CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT
SERIALIZERS/DESERIALIZERS

Service Registry provides Kafka client serializers/deserializers for producer and consumer applications.
Kafka producer applications use serializers to encode messages that conform to a specific event
schema. Kafka consumer applications use deserializers to validate that the messages have been
serialized using the correct schema, based on a specific schema ID. This ensures consistent schema use
and helps to prevent data errors at runtime.

This chapter provides instructions on how to use the Kafka client serializers and deserializers for Apache
Avro, JSON Schema, and Google Protobuf in your Kafka producer and consumer client applications:

Section 13.1, “Kafka client applications and Service Registry”

Section 13.2, “Strategies to look up a schema”

Section 13.3, “Service Registry serializer/deserializer constants”

Section 13.4, “Using different client serializer/deserializer types”

Section 13.4.1, “Configure Avro SerDe with Service Registry”

Section 13.4.2, “Configure JSON Schema SerDe with Service Registry”

Section 13.4.3, “Configure Protobuf SerDe with Service Registry”

Section 13.5, “Registering a schema in Service Registry”

Section 13.6, “Using a schema from a Kafka consumer client”

Section 13.7, “Using a schema from a Kafka producer client”

Section 13.8, “Using a schema from a Kafka Streams application”

Prerequisites

You must have read Chapter 1, Introduction to Service Registry

You must have installed Service Registry.

You must have created Kafka producer and consumer client applications.
For more details on Kafka client applications, see Using AMQ Streams on Openshift .

13.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY

Using Service Registry decouples schema management from client application configuration. You can
enable an application to use a schema from the registry by specifying its URL in the client code.

For example, you can store the schemas to serialize and deserialize messages in the registry, which are
then referenced from the applications that use them to ensure that the messages that they send and
receive are compatible with those schemas. Kafka client applications can push or pull their schemas from
Service Registry at runtime.

Schemas can evolve, so you can define rules in Service Registry, for example, to ensure that changes to

Red Hat Integration 2020-Q4 Getting Started with Service Registry

58

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift


Schemas can evolve, so you can define rules in Service Registry, for example, to ensure that changes to
a schema are valid and do not break previous versions used by applications. Service Registry checks for
compatibility by comparing a modified schema with previous schema versions.

Service Registry provides schema registry support for a number of schema technologies such as:

Avro

Protobuf

JSON Schema

These schema technologies can be used by client applications through Kafka client serializer/deserializer
(SerDe) services provided by Service Registry. The maturity and usage of the SerDe classes provided by
Service Registry may vary. See the type-specific sections below for more details about each.

Producer schema configuration
A producer client application uses a serializer to put the messages that it sends to a specific broker topic
into the correct data format.

To enable a producer to use Service Registry for serialization:

Define and register your schema with Service Registry  (optional)

Configure the producer client code :

URL of Service Registry

Service Registry serializer to use with the messages

Strategy to map the Kafka message to an artifact ID in Service Registry

Strategy to look up or register the schema used for serialization in Service Registry

After registering your schema, when you start Kafka and Service Registry, you can access the schema to
format messages sent to the Kafka broker topic by the producer. Alternatively (depending on
configuration), the producer can automatically register the schema on first use.

If a schema already exists, you can create a new version using the REST API based on compatibility rules
defined in Service Registry. Versions are used for compatibility checking as a schema evolves. An artifact
ID and schema version represents a unique tuple that identifies a schema.

Consumer schema configuration
A consumer client application uses a deserializer to get the messages that it consumes from a specific
broker topic into the correct data format.

To enable a consumer to use Service Registry for deserialization:

Define and register your schema with Service Registry

Configure the consumer client code :

URL of Service Registry

Service Registry deserializer to use with the messages

Input data stream for deserialization

CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

59



The schema is then retrieved by the deserializer using a global ID written into the message being
consumed. The schema global ID can be located in the message headers or in the message payload
itself, depending on the configuration of the producer application.

When locating the global ID in the message payload, the format of the data begins with a magic byte (as
a signal to consumers) followed by the global ID and then the message data as normal.

For example:

Now, when you start Kafka and Service Registry, you can access the schema to format messages
received from the Kafka broker topic.

13.2. STRATEGIES TO LOOK UP A SCHEMA

The Kafka client serializer uses lookup strategies to determine the artifact ID and the global ID under
which the message schema is registered in Service Registry.

For a given topic and message, you can use implementations of the following Java interfaces:

ArtifactIdStrategy to return an artifact ID

GlobalIdStrategy to return a global ID

The classes for each strategy are organized in the io.apicurio.registry.utils.serde.strategy package.
The default strategy is the artifact ID TopicIdStrategy, which looks for Service Registry artifacts with
the same name as the Kafka topic receiving messages.

Example

The topic parameter is the name of the Kafka topic receiving the message.

The isKey parameter is true when the message key is being serialized, and false when the
message value is being serialized.

The schema parameter is the schema of the message being serialized or deserialized.

The artifactID returned is the artifact ID under which the schema is registered in Service
Registry.

Which lookup strategy you use depends on how and where you store your schema. For example, you
might use a strategy that uses a record ID  if you have different Kafka topics with the same Avro
message type.

Artifact ID strategy

The artifact ID strategy provides a way to map the Kafka topic and message information to an artifact ID

# ...
[MAGIC_BYTE]
[GLOBAL_ID]
[MESSAGE DATA]

public String artifactId(String topic, boolean isKey, T schema) {
    return String.format("%s-%s", topic, isKey ? "key" : "value");
}

Red Hat Integration 2020-Q4 Getting Started with Service Registry

60



The artifact ID strategy provides a way to map the Kafka topic and message information to an artifact ID
in Service Registry. The common convention for the mapping is to combine the Kafka topic name with
the key or value, depending on whether the serializer is used for the Kafka message key or value.

However, you can use alternative conventions for the mapping by using a strategy provided by Service
Registry, or by creating a custom Java class that implements 
io.apicurio.registry.utils.serde.strategy.ArtifactIdStrategy.

Strategies to return an artifact ID
Service Registry provides the following strategies to return an artifact ID based on an implementation of
ArtifactIdStrategy:

RecordIdStrategy

Avro-specific strategy that uses the full name of the schema.

TopicRecordIdStrategy

Avro-specific strategy that uses the topic name and the full name of the schema.

TopicIdStrategy

Default strategy that uses the topic name and key or value suffix.

SimpleTopicIdStrategy

Simple strategy that only uses the topic name.

Global ID strategy
The global ID strategy locates and identifies the specific version of the schema registered under the
artifact ID provided by the artifact ID strategy. Every version of every artifact has a single globally unique
identifier that can be used to retrieve the content of that artifact. This global ID is included in every
Kafka message so that a deserializer can properly fetch the schema from Service Registry.

The global ID strategy can look up an existing artifact version, or it can register one if not found,
depending on which strategy is used. You can also provide your own strategy by creating a custom Java
class that implements io.apicurio.registry.utils.serde.strategy.GlobalIdStrategy.

Strategies to return a global ID
Service Registry provides the following strategies to return a global ID based on an implementation of 
GlobalIdStrategy:

FindLatestIdStrategy

Strategy that returns the global ID of the latest schema version, based on an artifact ID.

FindBySchemaIdStrategy

Strategy that matches schema content, based on an artifact ID, to return a global ID.

CachedSchemaIdStrategy

Strategy that caches the schema, and uses the global ID of the cached schema.

GetOrCreateIdStrategy

Strategy that tries to get the latest schema, based on an artifact ID, and if it does not exist, creates a
new schema.

AutoRegisterIdStrategy

Strategy that updates the schema, and uses the global ID of the updated schema.

Global ID strategy configuration
You can configure the following application property for the global ID strategy:

apicurio.registry.check-period-ms: Configures the remote schema lookup period in

CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

61



1

2

3

4

1

2

apicurio.registry.check-period-ms: Configures the remote schema lookup period in
milliseconds

You can configure application properties as Java system properties or include them in the Quarkus 
application.properties file. For more details, see the Quarkus documentation.

13.3. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONSTANTS

You can configure specific client serializer/deserializer (SerDe) services and schema lookup strategies
directly into a client using the constants outlined in this section.

Alternatively, you can specify the constants in a properties file, or a properties instance.

Constants for serializer/deserializer services

(Required) The URL of Service Registry.

Allows the client to make the request and look up the information from a cache of previous results,
to improve processing time. If the cache is empty, the lookup is performed from Service Registry.

Extends ID handling to support other ID formats and make them compatible with Service Registry
SerDe services. For example, changing the ID format from Long to Integer supports the Confluent
ID format.

A flag to simplify the handling of Confluent IDs. If set to true, an Integer is used for the global ID
lookup.

Constants for lookup strategies

ArtifactId strategy.

Global ID strategy.

Constants for converters

public abstract class AbstractKafkaSerDe<T extends AbstractKafkaSerDe<T>> implements 
AutoCloseable {
   protected final Logger log = LoggerFactory.getLogger(getClass());

   public static final String REGISTRY_URL_CONFIG_PARAM = "apicurio.registry.url"; 1
   public static final String REGISTRY_CACHED_CONFIG_PARAM = "apicurio.registry.cached"; 2
   public static final String REGISTRY_ID_HANDLER_CONFIG_PARAM = "apicurio.registry.id-
handler"; 3
   public static final String REGISTRY_CONFLUENT_ID_HANDLER_CONFIG_PARAM = 
"apicurio.registry.as-confluent"; 4

public abstract class AbstractKafkaStrategyAwareSerDe<T, S extends 
AbstractKafkaStrategyAwareSerDe<T, S>> extends AbstractKafkaSerDe<S> {
   public static final String REGISTRY_ARTIFACT_ID_STRATEGY_CONFIG_PARAM = 
"apicurio.registry.artifact-id"; 1
   public static final String REGISTRY_GLOBAL_ID_STRATEGY_CONFIG_PARAM = 
"apicurio.registry.global-id"; 2

Red Hat Integration 2020-Q4 Getting Started with Service Registry

62

https://quarkus.io/guides/config#overriding-properties-at-runtime


1

2

1

2

1

2

(Required) Serializer to use with the converter.

(Required) Deserializer to use with the converter.

Constants for Avro data providers

Avro Datum provider to write data to a schema, with or without reflection.

Flag to set to use an Avro-specific datum reader.

Default datum reader.

Datum reader using reflection.

13.4. USING DIFFERENT CLIENT SERIALIZER/DESERIALIZER TYPES

When using a schema technology in your Kafka applications, you must choose which specific schema
type to use. Common options include:

Apache Avro

JSON Schema

Google Protobuf

Which schema technology you choose is dependent on use case and preference. Of course you can use
Kafka to implement custom serializer and deserializer classes, so you are always free to write your own
classes, including leveraging Service Registry functionality using the Service Registry REST Java client.

For your convenience, Service Registry provides out-of-the box SerDe classes for Avro, JSON Schema,
and Protobuf schema technologies. The following sections explains how to configure Kafka applications
to use each type.

Kafka application configuration for serializers/deserializers
Using one of the serializer or deserializer classes provided by Service Registry in your Kafka application
involves setting the correct configuration properties. The following simple examples show how to

public class SchemalessConverter<T> extends AbstractKafkaSerDe<SchemalessConverter<T>> 
implements Converter {
   public static final String REGISTRY_CONVERTER_SERIALIZER_PARAM = 
"apicurio.registry.converter.serializer"; 1
   public static final String REGISTRY_CONVERTER_DESERIALIZER_PARAM = 
"apicurio.registry.converter.deserializer"; 2

public interface AvroDatumProvider<T> {
   String REGISTRY_AVRO_DATUM_PROVIDER_CONFIG_PARAM = "apicurio.registry.avro-datum-
provider"; 1
   String REGISTRY_USE_SPECIFIC_AVRO_READER_CONFIG_PARAM = "apicurio.registry.use-
specific-avro-reader"; 2

DefaultAvroDatumProvider (io.apicurio.registry.utils.serde.avro) 1
ReflectAvroDatumProvider (io.apicurio.registry.utils.serde.avro) 2

CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

63



configure a serializer in a Kafka producer application and how to configure a deserializer in a Kafka
consumer application.

Example serializer configuration in a Kafka producer

Example deserializer configuration in a Kafka consumer

public Producer<Object,Object> createKafkaProducer(String kafkaBootstrapServers, String 
topicName) {
    Properties props = new Properties();

    // Configure standard Kafka settings
    props.putIfAbsent(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaBootstrapServers);
    props.putIfAbsent(ProducerConfig.CLIENT_ID_CONFIG, "Producer-" + topicName);
    props.putIfAbsent(ProducerConfig.ACKS_CONFIG, "all");

    // Use a Service Registry-provided Kafka serializer
    props.putIfAbsent(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
        io.apicurio.registry.utils.serde.AvroKafkaSerializer.class.getName());
    props.putIfAbsent(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
        io.apicurio.registry.utils.serde.AvroKafkaSerializer.class.getName());

    // Configure Service Registry location
    props.putIfAbsent(AbstractKafkaSerDe.REGISTRY_URL_CONFIG_PARAM, REGISTRY_URL);

    // Map the topic name (plus -key/value) to the artifactId in the registry
    
props.putIfAbsent(AbstractKafkaSerializer.REGISTRY_ARTIFACT_ID_STRATEGY_CONFIG_PARAM
,
        io.apicurio.registry.utils.serde.strategy.TopicIdStrategy.class.getName());

    // Get an existing schema or auto-register if not found
    
props.putIfAbsent(AbstractKafkaSerializer.REGISTRY_GLOBAL_ID_STRATEGY_CONFIG_PARAM,
        io.apicurio.registry.utils.serde.strategy.GetOrCreateIdStrategy.class.getName());

    // Create the Kafka producer
    Producer<Object, Object> producer = new KafkaProducer<>(props);
    return producer;
}

public Consumer<Object,Object> createKafkaConsumer(String kafkaBootstrapServers, String 
topicName) {
    Properties props = new Properties();

    // Configure standard Kafka settings
    props.putIfAbsent(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, kafkaBootstrapServers);
    props.putIfAbsent(ConsumerConfig.GROUP_ID_CONFIG, "Consumer-" + topicName);
    props.putIfAbsent(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
    props.putIfAbsent(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
    props.putIfAbsent(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

    // Use a Service Registry-provided Kafka deserializer
    props.putIfAbsent(ProducerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
        io.apicurio.registry.utils.serde.AvroKafkaDeserializer.class.getName());

Red Hat Integration 2020-Q4 Getting Started with Service Registry

64



13.4.1. Configure Avro SerDe with Service Registry

Service Registry provides Kafka client serializer and deserializer classes for Apache Avro to make using
Avro as easy as possible:

io.apicurio.registry.utils.serde.AvroKafkaSerializer

io.apicurio.registry.utils.serde.AvroKafkaDeserializer

Configure the Avro serializer

You can configure the Avro serializer class in the following ways:

Service Registry location as a URL

Artifact ID strategy

Global ID strategy

Global ID location

Global ID handler

Avro datum provider

Avro encoding

Global ID location

The serializer passes the unique global ID of the schema as part of the Kafka message so that
consumers can use the right schema for deserialization. The location of that global ID can be in the
payload of the message or in the message headers. The default approach is to pass the global ID in the
message payload. If you want the ID sent in the message headers instead, you can set the following
configuration property:

props.putIfAbsent(AbstractKafkaSerDe.USE_HEADERS, "true")

The property name is apicurio.registry.use.headers.

Global ID handler

You can customize precisely how the global ID is encoded when passing it in the Kafka message body.

    props.putIfAbsent(ProducerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
        io.apicurio.registry.utils.serde.AvroKafkaDeserializer.class.getName());

    // Configure Service Registry location
    props.putIfAbsent(AbstractKafkaSerDe.REGISTRY_URL_CONFIG_PARAM, REGISTRY_URL);

    // No other configuration needed for deserializer because  globalId of the schema
    // the deserializer uses is sent as part of the message. The deserializer simply
    // extracts that globalId and uses it to look up the schema from the registry.

    // Create the Kafka consumer
    KafkaConsumer<Long, GenericRecord> consumer = new KafkaConsumer<>(props);
    return consumer;
}

CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

65



Set the configuration property apicurio.registry.id-handler to be a class that implements the 
io.apicurio.registry.utils.serde.strategy.IdHandler interface. Service Registry provides two
implementations of that interface:

io.apicurio.registry.utils.serde.strategy.DefaultIdHandler - stores the ID as an 8 byte long

io.apicurio.registry.utils.serde.strategy.Legacy4ByteIdHandler - stores the ID as an 4 byte
int

Service Registry represents the global ID of an artifact as a long, but for legacy reasons (or for
compatibility with other registries or serde classes) you may want to use 4 bytes when sending the ID.

Avro datum provider

Avro provides different datum writers and readers to write and read data. Service Registry supports
three different types:

Generic

Specific

Reflect

The Service Registry AvroDatumProvider is the abstraction on which type is then actually used, where 
DefaultAvroDatumProvider is used by default.

There are two configuration options you can set:

apicurio.registry.avro-datum-provider - provide a fully qualified Java class name of the 
AvroDatumProvider implementation, for example 
io.apicurio.registry.utils.serde.avro.ReflectAvroDatumProvider

apicurio.registry.use-specific-avro-reader - true or false, to use specific type when using 
DefaultAvroDatumProvider

Avro encoding

When using Apache Avro to serializer data, it is common to use the Avro binary encoding format. This is
so that the data is encoded in as efficient a format as possible. However, Avro also supports encoding
the data as JSON. Encoding as JSON is useful because it is much easier to inspect the payload of each
message, often for logging, debugging, or other similar use cases. The Service Registry Avro serializer
can be configured to change the encoding to JSON from the default (binary).

Set the Avro encoding to use by configuring the apicurio.avro.encoding property. The value must be
either JSON or BINARY.

Configure the Avro deserializer

You must configure the Avro deserializer class to match the configuration settings of the serializer. As a
result, you can configure the Avro deserializer class in the following ways:

Service Registry location as a URL

Global ID handler

Avro datum provider

Avro encoding

Red Hat Integration 2020-Q4 Getting Started with Service Registry

66



See the serializer section for these configuration options - the property names and values are the same.

NOTE

The following options are not needed when configuring the deserializer:

Artifact ID strategy

Global ID strategy

Global ID location

The reason these options are not necessary is that the deserializer class can figure this information out
from the message itself. In the case of the two strategies, they are not needed because the serializer is
responsible for sending the global ID of the schema as part of the message.

The location of that global ID is determined by the deserializer by simply checking for the magic byte at
the start of the message payload. If that byte is found, the global ID is read from the message payload
using the configured handler. If the magic byte is not found, the global ID is read from the message
headers.

13.4.2. Configure JSON Schema SerDe with Service Registry

Service Registry provides Kafka client serializer and deserializer classes for JSON Schema to make using
JSON Schema as easy as possible:

io.apicurio.registry.utils.serde.JsonSchemaKafkaSerializer

io.apicurio.registry.utils.serde.JsonSchemaKafkaDeserializer

Unlike Apache Avro, JSON Schema is not actually a serialization technology - it is instead a validation
technology. As a result, configuration options for JSON Schema are quite different. For example, there
is no encoding option, because data is always encoded as JSON.

Configure the JSON Schema serializer

You can configure the JSON Schema serializer class in the following ways:

Service Registry location as a URL

Artifact ID strategy

Global ID strategy

Validation enabled/disabled

The only non-standard configuration property is whether JSON Schema validation is enabled or
disabled. The validation feature is disabled by default but can be enabled by setting 
apicurio.registry.serdes.json-schema.validation-enabled to "true". For example:

props.putIfAbsent(JsonSchemaSerDeConstants.REGISTRY_JSON_SCHEMA_VALIDATION_ENABLE
D, "true")`

Configure the JSON Schema deserializer

You can configure the JSON Schema deserializer class in the following ways:

CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

67



Service Registry location as a URL

Validation enabled/disabled

The deserializer is simple to configure. You must provide the location of Service Registry so that the
schema can be loaded. The only other configuration is whether or not to perform validation. These
configuration properties are the same as for the serializer.

NOTE

Deserializer validation only works if the serializer passes the global ID in the Kafka
message, which will only happen when validation is enabled in the serializer.

13.4.3. Configure Protobuf SerDe with Service Registry

Service Registry provides Kafka client serializer and deserializer classes for Google Protobuf to make
using Protobuf as easy as possible:

io.apicurio.registry.utils.serde.ProtobufKafkaSerializer

io.apicurio.registry.utils.serde.ProtobufKafkaDeserializer

Configure the Protobuf serializer

You can configure the Protobuf serializer class in the following ways:

Service Registry location as a URL

Artifact ID strategy

Global ID strategy

Global ID location

Global ID handler

Configure the Protobuf deserializer

You must configure the Protobuf deserializer class to match the configuration settings of the serializer.
As a result, you can configure the Protobuf deserializer class in the following ways:

Service Registry location as a URL

Global ID handler

See the serializer section for these configuration options - the property names and values are the same.

NOTE

The following options are not needed when configuring the deserializer:

Artifact ID strategy

Global ID strategy

Global ID location

Red Hat Integration 2020-Q4 Getting Started with Service Registry

68



1

The reason these options are not necessary is that the deserializer class can figure this information out
from the message itself. In the case of the two strategies, they are not needed because the serializer is
responsible for sending the global ID of the schema as part of the message.

The location of that global ID is determined (by the deserializer) by simply checking for the magic byte
at the start of the message payload. If that byte is found, the global ID is read from the message payload
(using the configured handler). If the magic byte is not found, the global ID is read from the message
headers.

NOTE

The Protobuf deserializer does not deserialize to your exact Protobuf Message
implementation, but rather to a DynamicMessage instance (because there is no
appropriate API to do otherwise).

13.5. REGISTERING A SCHEMA IN SERVICE REGISTRY

After you have defined a schema in the appropriate format, such as Apache Avro, you can add the
schema to Service Registry.

You can add the schema using:

The Service Registry web console

A curl command using the Service Registry API

A Maven plugin supplied with Service Registry

Schema configuration added to your client code

Client applications cannot use Service Registry until you have registered your schemas.

Service Registry web console
Having installed Service Registry, you connect to the web console from the ui endpoint:

http://MY-REGISTRY-URL/ui

From the console, you can add, view and configure schemas. You can also create the rules that prevent
invalid content being added to the registry.

Curl command example

Avro schema artifact.

curl -X POST -H "Content-type: application/json; artifactType=AVRO" \
  -H "X-Registry-ArtifactId: prices-value" \
  --data '{ 1
      "type":"record",
      "name":"price",
      "namespace":"com.redhat",
      "fields":[{"name":"symbol","type":"string"},
      {"name":"price","type":"string"}]
    }'
  https://my-cluster-service-registry-myproject.example.com/api/artifacts -s 2

CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

69



2

1

2

OpenShift route name that exposes Service Registry.

Maven plugin example

Configuration using a producer client example

The properties are registered. You can register properties against more than one node.

Check to see if the schema already exists based on the artifact ID.

13.6. USING A SCHEMA FROM A KAFKA CONSUMER CLIENT

This procedure describes how to configure a Kafka consumer client written in Java to use a schema from
Service Registry.

Prerequisites

<plugin>
<groupId>io.apicurio</groupId>
<artifactId>apicurio-registry-maven-plugin</artifactId>
<version>${registry.version}</version>
<executions>
  <execution>
    <phase>generate-sources</phase>
    <goals>
      <goal>register</goal>
    </goals>
    <configuration>
      <registryUrl>https://my-cluster-service-registry-myproject.example.com/api</registryUrl>
      <artifactType>AVRO</artifactType>
      <artifacts>
        <schema1>${project.basedir}/schemas/schema1.avsc</schema1>
      </artifacts>
    </configuration>
  </execution>
</executions>
</plugin>

String registryUrl_node1 = PropertiesUtil.property(clientProperties, "registry.url.node1", 1
    "https://my-cluster-service-registry-myproject.example.com/api");
try (RegistryService service = RegistryClient.create(registryUrl_node1)) {
    String artifactId = ApplicationImpl.INPUT_TOPIC + "-value";
    try {
        service.getArtifactMetaData(artifactId); 2
    } catch (WebApplicationException e) {
        CompletionStage <ArtifactMetaData> csa = service.createArtifact(
            ArtifactType.AVRO,
            artifactId,
            new ByteArrayInputStream(LogInput.SCHEMA$.toString().getBytes())
        );
        csa.toCompletableFuture().get();
    }
}

Red Hat Integration 2020-Q4 Getting Started with Service Registry

70



1

2

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Configure the client with the URL of Service Registry. For example:

2. Configure the client with the Service Registry deserializer. For example:

The deserializer provided by Service Registry.

The deserialization is in Apache Avro JSON format.

13.7. USING A SCHEMA FROM A KAFKA PRODUCER CLIENT

This procedure describes how to configure a Kafka producer client written in Java to use a schema from
Service Registry.

Prerequisites

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Configure the client with the URL of Service Registry. For example:

2. Configure the client with the serializer, and the strategy to look up the schema in Service
Registry. For example:

String registryUrl = "https://registry.example.com/api";
Properties props = new Properties();
props.putIfAbsent(AbstractKafkaSerDe.REGISTRY_URL_CONFIG_PARAM, registryUrl);

// Configure Kafka
props.putIfAbsent(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, SERVERS);
props.putIfAbsent(ConsumerConfig.GROUP_ID_CONFIG, "Consumer-" + TOPIC_NAME);
props.putIfAbsent(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
props.putIfAbsent(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
props.putIfAbsent(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
props.putIfAbsent(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
    AvroKafkaDeserializer.class.getName()); 1
props.putIfAbsent(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
    AvroKafkaDeserializer.class.getName()); 2

String registryUrl = "https://registry.example.com/api";
Properties props = new Properties();
props.putIfAbsent(AbstractKafkaSerDe.REGISTRY_URL_CONFIG_PARAM, registryUrl);

props.put(CommonClientConfigs.BOOTSTRAP_SERVERS_CONFIG, "my-cluster-kafka-
bootstrap:9092");

CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

71



1

2

3

1

The serializer for the message key provided by Service Registry.

The serializer for the message value provided by Service Registry.

Lookup strategy to find the global ID for the schema.

13.8. USING A SCHEMA FROM A KAFKA STREAMS APPLICATION

This procedure describes how to configure a Kafka Streams client written in Java to use a schema from
Service Registry.

Prerequisites

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Create and configure a REST client with the Service Registry. For example:

2. Configure the serializer, deserializer, and create the Kafka Streams client. For example:

The serializer provided by Service Registry.

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 
AvroKafkaSerializer.class.getName()); 1
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 
AvroKafkaSerializer.class.getName()); 2
props.put(AbstractKafkaSerializer.REGISTRY_GLOBAL_ID_STRATEGY_CONFIG_PARAM, 
FindLatestIdStrategy.class.getName()); 3

String registryUrl = "https://registry.example.com/api";
RegistryService client = RegistryClient.cached(registryUrl);

Serializer<LogInput> serializer = new AvroKafkaSerializer<>( 1
    client,
    new DefaultAvroDatumProvider<LogInput>().setUseSpecificAvroReader(true)
);
Deserializer<LogInput> deserializer = new AvroKafkaDeserializer <> ( 2
    client,
    new DefaultAvroDatumProvider<LogInput>().setUseSpecificAvroReader(true)
);
Serde<LogInput> logSerde = Serdes.serdeFrom( 3
    serializer,
    deserializer
);
KStream<String, LogInput> input = builder.stream( 4
    INPUT_TOPIC,
    Consumed.with(Serdes.String(), logSerde)
);

Red Hat Integration 2020-Q4 Getting Started with Service Registry

72



2

3

4

The deserializer provided by Service Registry.

The deserialization is in Apache Avro format.

The Kafka Streams client application.

CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

73



CHAPTER 14. SERVICE REGISTRY ARTIFACT REFERENCE
This chapter provides details on the supported artifact types, states, metadata, and content rules that
are stored in Service Registry.

Section 14.1, “Service Registry artifact types”

Section 14.2, “Service Registry artifact states”

Section 14.3, “Service Registry artifact metadata”

Section 14.4, “Service Registry content rule types”

Section 14.5, “Service Registry content rule maturity”

Additional resources

For more detailed information, see the Apicurio Registry REST API documentation

14.1. SERVICE REGISTRY ARTIFACT TYPES

You can store and manage the following artifact types in Service Registry:

Table 14.1. Service Registry artifact types

Type Description

ASYNCAPI AsyncAPI specification

AVRO Apache Avro schema

GRAPHQL GraphQL schema

JSON JSON Schema

KCONNECT Apache Kafka Connect schema

OPENAPI OpenAPI specification

PROTOBUF Google protocol buffers schema

PROTOBUF_FD Google protocol buffers file descriptor

WSDL Web Services Definition Language

XSD XML Schema Definition

14.2. SERVICE REGISTRY ARTIFACT STATES

These are the valid artifact states in Service Registry:

Red Hat Integration 2020-Q4 Getting Started with Service Registry

74

files/registry-rest-api.htm


Table 14.2. Service Registry artifact states

State Description

ENABLED Basic state, all the operations are available.

DISABLED The artifact and its metadata is viewable and
searchable using the Service Registry web console,
but its content cannot be fetched by any client.

DEPRECATED The artifact is fully usable but a header is added to
the REST API response whenever the artifact
content is fetched. The Service Registry Rest Client
will also log a warning whenever it sees deprecated
content.

14.3. SERVICE REGISTRY ARTIFACT METADATA

When an artifact is added to Service Registry, a set of metadata properties is stored along with the
artifact content. This metadata consists of a set of generated read-only properties, along with some
properties that you can set.

Table 14.3. Service Registry metadata properties

Property Type Editable

id string false

type ArtifactType false

state ArtifactState true

version integer false

createdBy string false

createdOn date false

modifiedBy string false

modifiedOn date false

name string true

description string true

labels array of string true

properties map true

CHAPTER 14. SERVICE REGISTRY ARTIFACT REFERENCE

75



Property Type Editable

Updating artifact metadata

You can use the Service Registry REST API to update the set of editable properties using the
metadata endpoints.

You can edit the state property only by using the state transition API. For example, you can
mark an artifact as deprecated or disabled.

Additional resources

For more details, see the /artifacts/{artifactId}/meta sections in the Apicurio Registry REST API
documentation.

14.4. SERVICE REGISTRY CONTENT RULE TYPES

You can specify the following rule types to govern content evolution in Service Registry:

Table 14.4. Service Registry content rule types

Type Description

VALIDITY Validate data before adding it to the registry. The
possible configuration values for this rule are:

FULL: The validation is both syntax and
semantic.

SYNTAX_ONLY: The validation is syntax
only.

Red Hat Integration 2020-Q4 Getting Started with Service Registry

76

files/registry-rest-api.htm


COMPATIBILITY Ensure that newly added artifacts are compatible
with previously added versions. The possible
configuration values for this rule are:

FULL: The new artifact is forward and
backward compatible with the most recently
added artifact.

FULL_TRANSITIVE: The new artifact is
forward and backward compatible with all
previously added artifacts.

BACKWARD: Clients using the new
artifact can read data written using the most
recently added artifact.

BACKWARD_TRANSITIVE: Clients
using the new artifact can read data written
using all previously added artifacts.

FORWARD: Clients using the most
recently added artifact can read data
written using the new artifact.

FORWARD_TRANSITIVE: Clients using
all previously added artifacts can read data
written using the new artifact.

NONE: All backward and forward
compatibility checks are disabled.

Type Description

14.5. SERVICE REGISTRY CONTENT RULE MATURITY

Not all content rules are fully implemented for every artifact type supported by Service Registry. The
following table shows the current maturity level for each rule and artifact type.

Table 14.5. Service Registry content rule maturity matrix

Artifact type Validity rule Compatibility rule

Avro Full Full

Protobuf Full None

JSON Schema Full Full

OpenAPI Full None

AsyncAPI Syntax Only None

GraphQL Syntax Only None

CHAPTER 14. SERVICE REGISTRY ARTIFACT REFERENCE

77



Kafka Connect Syntax Only None

WSDL Syntax Only None

XSD Syntax Only None

Artifact type Validity rule Compatibility rule

Red Hat Integration 2020-Q4 Getting Started with Service Registry

78



CHAPTER 15. SERVICE REGISTRY OPERATOR
CONFIGURATION REFERENCE

This chapter provides detailed information on the custom resource used to configure the Service
Registry Operator to deploy Service Registry:

Section 15.1, “Service Registry Custom Resource”

Section 15.2, “Service Registry CR spec”

Section 15.3, “Service Registry CR status”

Section 15.5, “Service Registry Operator labels”

Section 15.4, “Service Registry managed resources”

15.1. SERVICE REGISTRY CUSTOM RESOURCE

The Service Registry Operator defines an ApicurioRegistry custom resource (CR) that represents a
single deployment of Service Registry on OpenShift.

These resource objects are created and maintained by users to instruct the Service Registry Operator
how to deploy and configure Service Registry.

Example ApicurioRegistry CR

The following command displays the ApicurioRegistry resource:

oc edit apicurioregistry example-apicurioregistry

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
  name: example-apicurioregistry
  namespace: demo-streams
  # ...
spec:
  configuration:
    persistence: streams
    streams:
      bootstrapServers: 'my-cluster-kafka-bootstrap.demo-streams.svc:9092'
  deployment:
    host: >-
      example-apicurioregistry.demo-streams.example.com
status:
  deploymentName: example-apicurioregistry-deployment-qsdb7
  host: >-
    example-apicurioregistry.demo-streams.example.com
  image: >-
    registry.redhat.io/integration/service-registry-streams-
rhel8@sha256:4b56da802333d2115cb3a0acc8d97445bd0dab67b639c361816df27b7f1aa296
  ingressName: example-apicurioregistry-ingress-7mlnw
  replicaCount: 1
  serviceName: example-apicurioregistry-service-xvnmz

CHAPTER 15. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

79

https://docs.openshift.com/container-platform/4.6/operators/understanding/crds/crd-extending-api-with-crds.html


IMPORTANT

The Service Registry Operator currently only watches its own project namespace.
Therefore you must create the ApicurioRegistry CR in the same namespace.

Additional resources

Extending the Kubernetes API with Custom Resource Definitions

15.2. SERVICE REGISTRY CR SPEC

The spec is the part of the ApicurioRegistry CR that is used to provide the desired state or
configuration for the Operator to achieve.

ApicurioRegistry CR spec contents

The following example block contains the full tree of possible spec configuration options. Some fields
may not be required or should not be defined at the same time.

The following table describes each configuration option:

Table 15.1. ApicurioRegistry CR spec configuration options

spec:
  configuration:
    persistence: <string>
    dataSource:
      url: <string>
      userName: <string>
      password: <string>
    kafka:
      bootstrapServers: <string>
    streams:
      bootstrapServers: <string>
      applicationId: <string>
      applicationServerPort: <string>
      security:
        tls:
          truststoreSecretName: <string>
          keystoreSecretName: <string>
        scram:
          mechanism: <string>
          truststoreSecretName: <string>
          user: <string>
          passwordSecretName: <string>
    infinispan:
      clusterName: <string>
    ui:
      readOnly: <string>
    logLevel: <string>
  deployment:
    replicas: <int32>
    host: <string>

Red Hat Integration 2020-Q4 Getting Started with Service Registry

80

https://docs.openshift.com/container-platform/4.6/operators/understanding/crds/crd-extending-api-with-crds.html


Configuration option type Default value Description

configuration - - Section for configuration
of Service Registry
application

configuration/persistence string mem Storage backend. One of 
jpa, streams, infinispan

configuration/dataSource - - Database connection
configuration for JPA
storage backend

configuration/dataSource/url string required Database connection URL
string

configuration/dataSource/userN
ame

string required Database connection user

configuration/dataSource/pass
word

string empty Database connection
password

configuration/streams - - Kafka Streams storage
backend configuration

configuration/streams/bootstra
pServers

string required Kafka bootstrap server
URL, for Streams storage
backend

configuration/streams/applicati
onId

string ApicurioRegistry
CR name

Kafka Streams application
ID

configuration/streams/applicati
onServerPort

string 9000 -

configuration/streams/security/t
ls

- - Section to configure TLS
authentication for Kafka
Streams storage backend

configuration/streams/security/t
ls/truststoreSecretName

string required Name of a secret
containing TLS truststore
for Kafka

configuration/streams/security/t
ls/keystoreSecretName

string required Name of a secret
containing user TLS
keystore

configuration/streams/security/
scram/truststoreSecretName

string required Name of a secret
containing TLS truststore
for Kafka

CHAPTER 15. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

81



configuration/streams/security/
scram/user

string required SCRAM user name

configuration/streams/security/
scram/passwordSecretName

string required Name of a secret
containing SCRAM user
password

configuration/streams/security/
scram/mechanism

string SCRAM-SHA-
512

SASL mechanism

configuration/infinispan - - Infinispan persistence
configuration section

configuration/infinispan/cluster
Name

string ApicurioRegistry
CR name

Infinispan cluster name

configuration/ui - - Service Registry web
console settings

configuration/ui/readOnly string false Set Service Registry web
console to read-only mode

configuration/logLevel string INFO Service Registry operand
log level. One of INFO, 
DEBUG

deployment - - Section for operand
deployment settings

deployment/replicas positive integer 1 Number of Service
Registry pods to deploy

deployment/host string auto-generated
from
ApicurioRegistry
CR name and
namespace

Host/URL where the
Service Registry console
and API are available

Configuration option type Default value Description

NOTE

If an option is marked as required, it might be conditional on other configuration options
being enabled. Empty values might be accepted, but the Operator does not perform the
specified action.

15.3. SERVICE REGISTRY CR STATUS

The status is the section of the CR managed by the Service Registry Operator that contains a
description of the current deployment and application state.

Red Hat Integration 2020-Q4 Getting Started with Service Registry

82



ApicurioRegistry CR status contents

The status section contains the following fields:

Table 15.2. ApicurioRegistry CR status fields

Status field Type Description

image string Service Registry operand image that the Operator
deploys. Might change based on the storage option
selected in configuration.

deploymentName string Name of the Deployment or DeploymentConfig
managed by the Operator, used to deploy the
Service Registry.

serviceName string Name of the Service managed by the Operator, to
expose the Service Registry operand as a service.

ingressName string Name of the Ingress managed by the Operator, to
make the Service Registry accessible via HTTP. A 
Route is also created on OCP.

replicaCount int32 Number of Service Registry operand pods deployed.

host string URL where the Service Registry UI and REST API are
accessible.

15.4. SERVICE REGISTRY MANAGED RESOURCES

The resources managed by the Service Registry Operator when deploying Service Registry are as
follows:

DeploymentConfig

Service

Ingress

Route

PodDisruptionBudget

15.5. SERVICE REGISTRY OPERATOR LABELS

status:
  image: <string>
  deploymentName: <string>
  serviceName: <string>
  ingressName: <string>
  replicaCount: <int32>
  host: <string>

CHAPTER 15. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

83



Resources managed by the Service Registry Operator are usually labeled as follows:

Table 15.3. Service Registry Operator labels for managed resources

Label Description

app Name of the Service Registry deployment that the resource belongs to,
based on the name of the specified ApicurioRegistry CR.

apicur.io/type Type of the deployment: apicurio-registry or operator

apicur.io/name Name of the deployment: same value as app or apicurio-registry-
operator

apicur.io/version Version of the Service Registry or the Service Registry Operator

app.kubernetes.io/* A set of recommended Kubernetes labels for application deployments.

com.company and rht.*` Metering labels for Red Hat products.

Additional resources

Recommended Kubernetes labels for application deployments

Red Hat Integration 2020-Q4 Getting Started with Service Registry

84

https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/


APPENDIX A. USING YOUR SUBSCRIPTION
Service Registry is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat Integration entries in the Integration and Automation category.

3. Select the desired Service Registry product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
ZIP or TAR files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

APPENDIX A. USING YOUR SUBSCRIPTION

85

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
	1.1. SERVICE REGISTRY OVERVIEW
	Service Registry capabilities

	1.2. SCHEMA AND API ARTIFACTS IN SERVICE REGISTRY
	1.3. SERVICE REGISTRY STORAGE OPTIONS
	1.4. MANAGE CONTENT USING SERVICE REGISTRY WEB CONSOLE
	1.5. VALIDATE SCHEMAS WITH KAFKA CLIENT SERIALIZERS/DESERIALIZERS
	1.6. STREAM DATA TO EXTERNAL SYSTEMS WITH KAFKA CONNECT CONVERTERS
	1.7. SERVICE REGISTRY DEMONSTRATION EXAMPLES
	1.8. SERVICE REGISTRY AVAILABLE DISTRIBUTIONS

	CHAPTER 2. SERVICE REGISTRY CONTENT RULES
	2.1. GOVERN REGISTRY CONTENT USING RULES
	2.2. WHEN RULES ARE APPLIED
	2.3. HOW RULES WORK
	2.4. CONTENT RULE CONFIGURATION
	Configure artifact rules
	Configure global rules


	CHAPTER 3. SERVICE REGISTRY QUICKSTART
	3.1. QUICKSTART SERVICE REGISTRY OPERATOR INSTALLATION
	3.2. QUICKSTART SERVICE REGISTRY DEPLOYMENT

	CHAPTER 4. INSTALLING SERVICE REGISTRY ON OPENSHIFT
	4.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT OPERATORHUB

	CHAPTER 5. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS
	5.1. INSTALLING AMQ STREAMS FROM THE OPENSHIFT OPERATORHUB
	5.2. CONFIGURING SERVICE REGISTRY WITH AMQ STREAMS STORAGE ON OPENSHIFT
	5.3. CONFIGURING TLS SECURITY WITH SERVICE REGISTRY STORAGE IN AMQ STREAMS
	5.4. CONFIGURING SCRAM SECURITY WITH SERVICE REGISTRY STORAGE IN AMQ STREAMS

	CHAPTER 6. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE
	6.1. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT OPERATORHUB
	6.2. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL DATABASE STORAGE ON OPENSHIFT
	6.3. BACKING UP SERVICE REGISTRY POSTGRESQL STORAGE
	6.4. RESTORING SERVICE REGISTRY POSTGRESQL STORAGE

	CHAPTER 7. DEPLOYING EMBEDDED SERVICE REGISTRY STORAGE IN INFINISPAN
	7.1. CONFIGURING SERVICE REGISTRY WITH EMBEDDED INFINISPAN STORAGE ON OPENSHIFT

	CHAPTER 8. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENT
	8.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON OPENSHIFT
	8.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH CHECKS
	Liveness environment variables
	Readiness environment variables

	8.3. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM INSIDE THE OPENSHIFT CLUSTER
	8.4. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM OUTSIDE THE OPENSHIFT CLUSTER

	CHAPTER 9. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE
	9.1. CONFIGURING THE SERVICE REGISTRY WEB CONSOLE
	Configuring the web console deployment environment
	Configuring the console in read-only mode

	9.2. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
	9.3. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
	9.4. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY WEB CONSOLE

	CHAPTER 10. MANAGING SERVICE REGISTRY CONTENT USING THE REST API
	10.1. REGISTRY REST API OVERVIEW
	10.2. MANAGING ARTIFACTS USING REGISTRY REST API COMMANDS

	CHAPTER 11. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN
	11.1. MANAGING ARTIFACTS USING THE SERVICE REGISTRY MAVEN PLUG-IN
	Registering an artifact using the Maven plug-in
	Downloading an artifact using the Maven plug-in
	Testing an artifact using the Maven plug-in


	CHAPTER 12. MANAGING SERVICE REGISTRY CONTENT USING THE JAVA CLIENT
	12.1. SERVICE REGISTRY JAVA CLIENT
	12.2. WRITING SERVICE REGISTRY CLIENT APPLICATIONS
	12.3. SERVICE REGISTRY JAVA CLIENT CONFIGURATION
	Custom header configuration
	TLS configuration


	CHAPTER 13. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS
	13.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY
	Producer schema configuration
	Consumer schema configuration

	13.2. STRATEGIES TO LOOK UP A SCHEMA
	Artifact ID strategy
	Strategies to return an artifact ID
	Global ID strategy
	Strategies to return a global ID
	Global ID strategy configuration

	13.3. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONSTANTS
	Constants for serializer/deserializer services
	Constants for lookup strategies
	Constants for converters
	Constants for Avro data providers

	13.4. USING DIFFERENT CLIENT SERIALIZER/DESERIALIZER TYPES
	Kafka application configuration for serializers/deserializers
	13.4.1. Configure Avro SerDe with Service Registry
	13.4.2. Configure JSON Schema SerDe with Service Registry
	13.4.3. Configure Protobuf SerDe with Service Registry

	13.5. REGISTERING A SCHEMA IN SERVICE REGISTRY
	Service Registry web console
	Curl command example
	Maven plugin example
	Configuration using a producer client example

	13.6. USING A SCHEMA FROM A KAFKA CONSUMER CLIENT
	13.7. USING A SCHEMA FROM A KAFKA PRODUCER CLIENT
	13.8. USING A SCHEMA FROM A KAFKA STREAMS APPLICATION

	CHAPTER 14. SERVICE REGISTRY ARTIFACT REFERENCE
	14.1. SERVICE REGISTRY ARTIFACT TYPES
	14.2. SERVICE REGISTRY ARTIFACT STATES
	14.3. SERVICE REGISTRY ARTIFACT METADATA
	14.4. SERVICE REGISTRY CONTENT RULE TYPES
	14.5. SERVICE REGISTRY CONTENT RULE MATURITY

	CHAPTER 15. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE
	15.1. SERVICE REGISTRY CUSTOM RESOURCE
	15.2. SERVICE REGISTRY CR SPEC
	15.3. SERVICE REGISTRY CR STATUS
	15.4. SERVICE REGISTRY MANAGED RESOURCES
	15.5. SERVICE REGISTRY OPERATOR LABELS

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files
	Registering your system for packages


