
Red Hat Integration 2020-Q2

Using Data Virtualization

TECHNOLOGY PREVIEW - User's guide to Data Virtualization

Last Updated: 2020-07-15

Red Hat Integration 2020-Q2 Using Data Virtualization

TECHNOLOGY PREVIEW - User's guide to Data Virtualization

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Combine data from multiple sources so that applications can connect to a single, virtual data model

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA VIRTUALIZATION

CHAPTER 2. CREATING VIRTUAL DATABASES
2.1. COMPATIBLE DATA SOURCES
2.2. CREATING CUSTOM RESOURCES TO DEPLOY VIRTUALIZATIONS

2.2.1. Configuring an OpenShift load balancer service to enable external JDBC clients to access the virtual
database
2.2.2. Environment variables in custom resources

CHAPTER 3. CREATING A VIRTUAL DATABASE BY EMBEDDING DDL STATEMENTS IN A CUSTOM
RESOURCE (CR)

3.1. CREATING A CR TO DEPLOY A DDL ARTIFACT

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT
4.1. BUILDING A VIRTUAL DATABASE ARTIFACT
4.2. CREATING A CUSTOM RESOURCE (CR) TO DEPLOY A MAVEN ARTIFACT
4.3. PRIVATE MAVEN REPOSITORIES

4.3.1. Specifying private Maven repositories to build all virtual databases in a namespace
4.3.2. Specifying private Maven repositories for building an individual virtual database
4.3.3. Specifying the private Maven repositories for building an individual virtual database in its custom resource

4.4. VIRTUAL DATABASE IMPORT
4.4.1. How virtual database importing works
4.4.2. POM and DDL for virtual databases that import from other virtual databases
4.4.3. DDL limitations

CHAPTER 5. DATA SOURCE CONFIGURATION
5.1. CONFIGURATION PROPERTIES FOR S3 AND CEPH AS DATA SOURCES
5.2. SETTINGS TO CONNECT TO GOOGLE SHEETS AS A DATA SOURCE
5.3. CONFIGURATION PROPERTIES FOR RED HAT DATA GRID (INFINISPAN) AS A DATA SOURCE
5.4. CONFIGURATION PROPERTIES FOR MONGODB AS A DATA SOURCE
5.5. RELATIONAL DATABASES DATA SOURCES CONFIGURATION

5.5.1. Configuration properties for Amazon Athena as a data source
5.5.2. Configuration properties for Amazon Redshift data sources
5.5.3. Configuration properties for Db2 as a data source
5.5.4. Configuration properties for Microsoft SQL Server as a data source
5.5.5. Configuration properties for MySQL as a data source
5.5.6. Configuration properties for Oracle Database as a data source
5.5.7. Configuration properties for postgreSQL as a data source

5.6. CONFIGURATION PROPERTIES FOR USING A REST SERVICE AS A DATA SOURCE
5.7. CONFIGURATION PROPERTIES FOR ODATA AS A DATA SOURCE
5.8. CONFIGURATION PROPERTIES FOR OPENAPI AS A DATA SOURCE
5.9. CONFIGURATION PROPERTIES FOR SALESFORCE AS A DATA SOURCE

5.9.1. Setting up an OAuth connection to Salesforce
5.10. CONFIGURATION PROPERTIES FOR USING FTP/SFTP AS A DATA SOURCE
5.11. CONFIGURATION PROPERTIES FOR SOAP AS A DATA SOURCE

CHAPTER 6. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A VIRTUAL DATABASE
6.1. INSTALLING THE DATA VIRTUALIZATION OPERATOR ON OPENSHIFT
6.2. DEPLOYING VIRTUAL DATABASES

CHAPTER 7. SECURING DATA
7.1. CERTIFICATES AND DATA VIRTUALIZATION

4

5
6
7

7
9

10
12

13
15
16
17
18

20

20
21
22
22
23

25
25
26
27
28
29
31
32
33
33
34
35
35
36
38
38
39
40
42
43

46
46
47

49
49

Table of Contents

1

. .

. .

7.1.1. Service-generated certificates
7.1.2. Custom certificates
7.1.3. Using custom TLS certificates to encrypt communications between a virtual database and other services

7.1.4. Creating a keystore from the private key and public key certificate
7.1.5. Creating a truststore from the public key certificate
7.1.6. Adding the keystore and truststore passwords to the configuration
7.1.7. Creating an OpenShift secret to store the keystore and truststore

7.2. USING SECRETS TO STORE DATA SOURCE CREDENTIALS
7.3. SECURING ODATA APIS FOR A VIRTUAL DATABASE

7.3.1. Configuring Red Hat Single Sign-On to secure OData
7.3.2. Adding SSO properties to the custom resource file
7.3.3. Defining data roles in the virtual database DDL
7.3.4. Adding a redirect URI for the data virtualization client in the Red Hat Single Sign-On Admin Console

CHAPTER 8. VIRTUAL DATABASE MONITORING

CHAPTER 9. MIGRATING LEGACY VIRTUAL DATABASE FILES TO DDL FORMAT
9.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND VIEWING IT IN DDL FORMAT
9.2. CONVERTING A LEGACY VIRTUAL DATABASE XML FILE AND SAVING IT AS A DDL FILE

49
50

51
51
52
52
53
56
57
58
59
60
61

63

65
66
66

Red Hat Integration 2020-Q2 Using Data Virtualization

2

Table of Contents

3

CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA
VIRTUALIZATION

Data virtualization is a container-native service that provides integrated access to multiple diverse data
sources, including relational and noSQL databases, files, web services, and SaaS repositories through a
single uniform API. Applications and users connect to a virtual database over standard interfaces
(OData REST, or JDBC/ODBC) and can interact with data from all configured data sources as if the
data were served from a single relational database.

IMPORTANT

Data virtualization is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview/.

The Red Hat data virtualization technology is based on Teiid, the open source data virtualization project.
For more information about Teiid, see the Teiid community documentation.

Red Hat Integration 2020-Q2 Using Data Virtualization

4

https://access.redhat.com/support/offerings/techpreview/
http://teiid.github.io/teiid-documents/master/content/

CHAPTER 2. CREATING VIRTUAL DATABASES
To add a virtual database, you must complete the following tasks:

1. Install the Data Virtualization Operator.

2. Design and develop the database.

NOTE

If you want to use a custom TLS certificate to encrypt virtual database traffic,
you must obtain and configure the certificate before you deploy the virtual
database. For more information, see Section 7.1, “Certificates and data
virtualization”.

3. Create a custom resource (CR) file for deploying the database.

4. Deploy the virtual database to OpenShift by running the Data Virtualization Operator with the
CR.

You can use the following methods to design a virtual database.

Create a virtual database from a DDL file

Define the entire contents of a virtual database, including the DDL, in a YAML file. For more
information, see Chapter 3, Creating a virtual database by embedding DDL statements in a custom
resource (CR) .

Create a virtual database as a Maven artifact

Create a virtual database from one or more DDL files and generate a Maven artifact for deployment
For more information, see Chapter 4, Creating a virtual database as a Maven artifact .

In each of the methods, you use SQL data definition language (DDL) to specify the structure of the
virtual database, and you then configure the data sources that you want the virtual database to read
from and write to.

There are advantages and disadvantages to using each method, the runtime virtualizations that any of
the methods create have equivalent features. Choose a method based on the complexity of your project
and on whether you want to be able to test the virtualization as a standalone component or on
OpenShift only.

After you define the virtual database, you use the Data Virtualization Operator to deploy the
virtualization from a custom resource (CR). The custom resource that you use to deploy a virtual
database varies with the method that you used to design the virtual database. For more information, see
Chapter 6, Running the Data Virtualization Operator to deploy a virtual database .

After you set up connections to a data source, you can optionally configure authentication to Red Hat
SSO to secure the connections, and enable single sign-on.

NOTE

You can also create virtual databases in Fuse Online (Technology Preview). Virtual
databases that you create in Fuse Online provide a limited set of features.

Additional resources

CHAPTER 2. CREATING VIRTUAL DATABASES

5

Section 6.1, “Installing the Data Virtualization Operator on OpenShift” .

Chapter 7, Securing data.

2.1. COMPATIBLE DATA SOURCES

You can create virtual databases from a range of different data sources.

For each data source that you configure, you specify a set of properties in a custom resource (CR)
YAML file. A translator property specifies the name of a component that provides the logic to interpret
the commands and data exchanged that pass between the data source and the virtual database. Each
data sources uses a specific named translator.

The following table lists the data source types that you can include in a virtual database, and the names
of the translators for each data source:

Data source Translator name

Amazon S3/ Ceph amazon-s3

Google Sheets google-spreadsheet

Data Grid (Infinispan) infinispan-hotrod

MongoDB mongodb

Relational databases

 Amazon Athena amazon-athena or jdbc-ansi

 Amazon Redshift redshift

 Db2 db2

 Microsoft SQL Server (JDBC) sqlserver

 MySQL mysql

 Oracle oracle

 PostgreSQL postgresql

 SAP HANA (JDBC) hana

OData odata

OData4 odata4

OpenAPI openapi

Red Hat Integration 2020-Q2 Using Data Virtualization

6

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#amazon-s3-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#google-spreadsheet-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#infinispan-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#mongodb-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#jdbc-ansi-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#redshift-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#db2-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#microsoft-sql-server-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#mysql-translators
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#oracle-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#postgresql-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#sap-hana-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#odata-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#odata4-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#openapi-translator

REST ws

Salesforce salesforce

SFTP file

SOAP soap or ws

Data source Translator name

2.2. CREATING CUSTOM RESOURCES TO DEPLOY VIRTUALIZATIONS

Before you can use the Data Virtualization Operator to create a virtual database, you must specify
properties for the data source in a custom resource (CR) file.

When you run the Data Virtualization Operator, it reads information from the CR that it needs to convert
a data virtualization artifact into an image and deploy it to OpenShift.

Properties in the CR specify environment variables that store the credentials that the Operator requires
to connect to a data source. You can specify the values directly in the CR, or provide references to an
OpenShift secret that stores the values. For more information about creating secrets, see Section 7.2,
“Using secrets to store data source credentials”.

NOTE

Period characters (.) are not valid for use in environment variables. When you add variable
names to the CR, use underscore characters (_) as separators.

The information that you add to the CR depends on the type of artifact that you created for the
virtualization and the location of artifact. You can also supply configuration information in the CR.

NOTE

If you want OpenShift to create an HTTP endpoint for the deployed virtualization, add
the property spec/exposeVia3scale to the CR, and set its value to false. If the value is
set to true it is assumed that 3scale manages the endpoint, and no HTTP endpoint is
created.

Additional resources

Section 2.2.2, “Environment variables in custom resources”

Section 3.1, “Creating a CR to deploy a DDL artifact”

Section 4.2, “Creating a custom resource (CR) to deploy a Maven artifact”

2.2.1. Configuring an OpenShift load balancer service to enable external JDBC
clients to access the virtual database

After you deploy a virtual database, it is automatically available to internal JDBC clients, that is, clients
that are installed on the OpenShift cluster that hosts the virtual database. By default, external JDBC

CHAPTER 2. CREATING VIRTUAL DATABASES

7

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#web-services-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#salesforce-translators
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#file-translator
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#web-services-translator

clients are unable to access the virtual database service. To enable external clients to access the virtual
database service, you must add an OpenShift load balancer service.

To configure a load balancer for the virtual database, you define an attribute in the custom resource.
Afterwards, when you run the Data Virtualization Operator to build and deploy the virtual database, the
Operator creates the load balancer service automatically.

NOTE

Although OpenShift typically requires you to create a route to the service that you want
to expose, you do not have to create routes for virtual database services that you deploy
with the Data Virtualization Operator. When the Operator deploys the virtual database, it
automatically exposes the JDBC route to the virtual database service.

Prerequisites

You have access to an OpenShift cluster that permits you to add a LoadBalancer Ingress
Service.

You have a custom resource (CR) to which you can add the attribute to enable the load
balancer service.

Procedure

1. Add a load balancer service for the virtual database by setting the value of spec.expose in your
virtual database CR to LoadBalancer.
To provide flexibility in exposing other resources in the future, precede the value with a hyphen
(-) to indicate that it is an element in an array, as in the following example:

2. After you deploy the virtual database, you can run the following command from a terminal
window to identify the exposed host and port:

oc get svc VDB_NAME-external

For example,

oc get svc dv-customer-external

The command returns network information for the service, including the cluster IP address,
external host name, and port number and type. For example:

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: dv-customer
spec:
 replicas: 1
 expose:
 - LoadBalancer
....

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
dv-customer-ingress LoadBalancer 172.30.22.226 ad42f5d8b303045-

Red Hat Integration 2020-Q2 Using Data Virtualization

8

Additional resources

For information about deploying the virtual database, see Section 6.2, “Deploying virtual
databases”.

For more information about configuring an OpenShift load balancer service, see the OpenShift
documentation.

2.2.2. Environment variables in custom resources

You set environment variables in the custom resource file to enable your virtual database to connect to
data sources.

Because you typically deploy virtual databases to multiple OpenShift environments, such as to a staging
and a production environment, you might want to define different data source properties for each
environment. For example, the login credentials that you must provide to access a data source in the
staging environment are probably different from the credentials that you use to access the data source
in the production environment. To define unique values in each environment, you can use environment
variables.

The environment variables that you define in a CR replace any static properties that you might set
elsewhere. If you define a property in the properties file and in the CR, the value in the CR file takes
precedence.

You can combine the use of environment variables and secret objects to specify and protect the unique
details for each environment. Instead of specifying static values for environment variables directly in the
CR, you can store the values for each deployment environment in secret objects that are unique to each
environment. The value of each environment variable in the CR contains only a key reference, which
specifies the name of a secret object, and the name of a token in the secret. The token stores the actual
value. At runtime, environment variables retrieve their values from the tokens.

By using secrets to store the values of your environment variables, you can use a single version of the CR
across environments. The secret objects that you deploy in each environment must have the same
name, but in each environment you assign token values that are specific to the environment.

Additional resources

For more information about using secrets, see Section 7.2, “Using secrets to store data source
credentials”.

For information about adding a CR file, see Section 2.2, “Creating custom resources to deploy
virtualizations”.

487804948.example.com 3306:30357/TCP 15m

CHAPTER 2. CREATING VIRTUAL DATABASES

9

https://docs.openshift.com/container-platform/4.4/networking/configuring_ingress_cluster_traffic/configuring-ingress-cluster-traffic-load-balancer.html

CHAPTER 3. CREATING A VIRTUAL DATABASE BY
EMBEDDING DDL STATEMENTS IN A CUSTOM RESOURCE

(CR)
You can define the structure of a virtual database by adding DDL statements directly within a custom
resource file. During deployment, the Operator runs a source-to-image (S2I) build on OpenShift based
on the dependencies that it detects in the virtual database artifact. To prevent build failures, ensure that
any dependencies that your virtual database requires, such as JDBC driver dependencies, can be found
at build time.

Advantages of using DDL in the CR to create a virtual database

Simple and minimalistic.

Code and configuration for a virtualization are in a single file. No need to create a separate
CR file.

Easy to manage.

Disadvantages of using DDL in the CR to create a virtual database

Embedding the DDL for the virtual database in the custom resource (CR) file results in a
large file.

Because the DDL is embedded in the CR YAML file, you cannot version the DDL and other
aspects of the configuration independently.

If you deploy to multiple environments, you must store properties in configuration maps or
secrets to make them independent of the custom resource.

Prerequisites

You have Developer or Administrator access to an OpenShift cluster in which the data
virtualization operator is installed.

You have a compatible data source and the OpenShift cluster can access it.

The data virtualization operator has access to any Maven repositories that contain build
dependencies for the virtual database.

You have information about the connection settings for your data sources, including login
credentials.

You have a DDL file for the virtual database that you want to create, or you know how to write
the SQL code to design the database.

Procedure

Create a CR text file in YAML format and save it with a .yaml or .yml extension, for example dv-
customer.yaml
The following example shows the elements to include in a CR for a virtual database that uses a
postgreSQL data source:

Example: dv-customer.yaml

Red Hat Integration 2020-Q2 Using Data Virtualization

10

1

2

3

4

The name of the virtual database.

Specifies the number of instances to deploy. The default setting is 1.

Specifies the data source properties for the virtual database. The properties in the
example apply to a connection to a PostgreSQL database. For information about
supported data sources and their properties, see Section 2.1, “Compatible data sources” .

Specifies a list of Maven dependency JAR files in GAV format (groupId:artifactid:version).
These files define the JDBC driver files and any custom dependencies for the data source.
Typically, the Operator build automatically adds libraries that are available in public Maven
repositories.

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: dv-customer 1
spec:
 replicas: 1 2
 datasources: 3
 - name: sampledb
 type: postgresql
 properties:
 - name: username
 value: USER
 - name: password
 value: MYPASSWORD
 - name: jdbc-url
 value: jdbc:postgresql://accounts/accounts
build:
 source:
 dependencies: 4
 - org.postgresql:postgresql:42.1.4
 ddl: | 5
 CREATE DATABASE customer OPTIONS (ANNOTATION 'Customer VDB');
 USE DATABASE customer;

 CREATE SERVER sampledb TYPE 'NONE' FOREIGN DATA WRAPPER postgresql;

 CREATE SCHEMA accounts SERVER sampledb;
 CREATE VIRTUAL SCHEMA portfolio;

 SET SCHEMA accounts;
 IMPORT FOREIGN SCHEMA public FROM SERVER sampledb INTO accounts
OPTIONS("importer.useFullSchemaName" 'false');

 SET SCHEMA portfolio;

 CREATE VIEW CustomerZip(id bigint PRIMARY KEY, name string, ssn string, zip
string) AS
 SELECT c.ID as id, c.NAME as name, c.SSN as ssn, a.ZIP as zip
 FROM accounts.CUSTOMER c LEFT OUTER JOIN accounts.ADDRESS a
 ON c.ID = a.CUSTOMER_ID;
 mavenRepositories: 6
 central: https://repo.maven.apache.org/maven2

CHAPTER 3. CREATING A VIRTUAL DATABASE BY EMBEDDING DDL STATEMENTS IN A CUSTOM RESOURCE (CR)

11

5

6

Defines the virtual database in DDL form. For information about how to use DDL to define
a virtual database, see DDL metadata for schema objects in the Data virtualization

Specifies the location of any private or non-public repositories that contain dependencies
or other virtual databases. You can specify multiple repositories. If dependencies are in a
repository other than the public Maven Central repository, specify the repository location.
For more information about using private Maven repositories, see Section 4.3, “Private
Maven repositories”.

After you create the YAML file, you can run the Data Virtualization Operator to deploy the virtual
database to OpenShift. For more information, see Chapter 6, Running the Data Virtualization Operator
to deploy a virtual database.

3.1. CREATING A CR TO DEPLOY A DDL ARTIFACT

If you create a virtual databases by embedding DDL directly in a CR, you already have the CR that the
Data Virtualization Operator uses for deployment. For information about the CR for a DDL artifact, see
Chapter 3, Creating a virtual database by embedding DDL statements in a custom resource (CR) .

Run the Data Virtualization Operator with the CR to generate the virtual database and deploy it to
OpenShift.

Additional resources

Chapter 6, Running the Data Virtualization Operator to deploy a virtual database .

Red Hat Integration 2020-Q2 Using Data Virtualization

12

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN
ARTIFACT

You can use a Teiid Maven plugin to convert a DDL file into a Maven artifact. You define the structure of
the virtual database in a DDL file and use the file to generate an artifact to deploy to a Maven
repository. The Data Virtualization Operator can then deploy the artifact from the Maven repository to
an OpenShift project.

This is an advanced method that provides a high level of flexibility and is suitable for complex projects.
Using this method, you can create multi-module Maven projects in which you import one or more other
virtual databases and incorporate them into your design.

You specify use of the Teiid plugin in your pom.xml file. You can also define other Maven dependencies
in the pom.xml file. When you run the build, the plugin reads the file and resolves its contents.

Advantages of creating a virtual database as a Maven artifact

Flexible, clean separation between the DDL code that represents the virtual database and
other configuration settings.

Enables easy deployment into multiple environments.

Provides for versioning at the virtual database level.

Enables importing of one virtual database into another, by adding IMPORT DATABASE
statements to the DDL.

Enables a virtual database to be shared across projects and teams in a consistent way.

Supports continuous integration and continuous delivery (CI/CD) workflows.

Disadvantages of creating a virtual database as a Maven artifact

Requires a working knowledge of Maven.

Prerequisites

You have a compatible data source and the OpenShift cluster can access it.

You know how to create a pom.xml file to specify the dependencies that are required to build
your virtual database.

You have information about the connection settings for your data sources, including login
credentials.

The Data Virtualization Operator has access to the Maven repositories that contain build
dependencies for the virtual database.

You have Maven 3.2 or later installed.

Procedure

1. From a text editor, create a POM file to define build dependencies. For example,

Example: POM file for building a Maven-based virtual database

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT

13

1 For virtual databases that import from other virtual databases, supply a unique artifactId
name for each virtual database that you want to import.

The preceding example can serve as a model for the pom.xml for your virtual database.

2. Create a Maven project to import the virtual database definition from a DDL file. For example:

vdb-project
├── pom.xml
└── src
 └── main
 └── vdb
 └── vdb.ddl

3. If you do not already have one, create a DDL file to specify the structure of the virtual database,
and save it to the /src/main/vdb directory of your project. Maven-based virtual databases use
the same DDL structure as other virtual databases. The DDL file for a Maven-based virtual
database must have the name vdb.ddl.
The following example shows a sample DDL file for a virtual database that uses a postgreSQL
data source:

Example: vdb.ddl

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.teiid</groupId>
 <artifactId>dv-customer</artifactId>
 <name>dv-customer</name>
 <description>Demo project to showcase maven based vdb</description>
 <packaging>vdb</packaging>
 <version>1.0</version>

 <build>
 <plugins>
 <plugin>
 <groupId>org.teiid</groupId>
 <artifactId>vdb-plugin</artifactId> 1
 <version>1.2.0</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <goals>
 <goal>vdb</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat Integration 2020-Q2 Using Data Virtualization

14

Additional resources

For information about how to use DDL to define a virtual database, see DDL metadata for
schema objects in the Data Virtualization Reference. Defining the complete DDL is beyond the
scope of this document.

For more information about importing an existing virtual database into the current one, see
Section 4.4, “Virtual database import” .

4.1. BUILDING A VIRTUAL DATABASE ARTIFACT

After you have all components of your Maven-based virtual database project, you can build the artifact
and deploy it to your Maven repository.

Prerequisites

You set up your virtual database Maven project.

You have a DDL file, saved as vdb.ddl, that describes the virtual database that you want to
build.

You have a pom.xml file that defines the dependencies for building the virtual database.

Procedure

1. Open a terminal window to the root folder of your Maven project, and type the following
command:

The command builds the virtual database and deploys it to a local or remote Maven repository.
The Maven repository can be public or private. The command generates a
PROJECT_NAME-VERSION.vdb file in your target repository.

After the virtual database artifact is available in a Maven repository, you can use a YAML-based custom

CREATE DATABASE customer OPTIONS (ANNOTATION 'Customer VDB');
USE DATABASE customer;

CREATE FOREIGN DATA WRAPPER postgresql;
CREATE SERVER sampledb TYPE 'NONE' FOREIGN DATA WRAPPER postgresql;

CREATE SCHEMA accounts SERVER sampledb;
CREATE VIRTUAL SCHEMA portfolio;

SET SCHEMA accounts;
IMPORT FOREIGN SCHEMA public FROM SERVER sampledb INTO accounts
OPTIONS("importer.useFullSchemaName" 'false');

SET SCHEMA portfolio;

CREATE VIEW CustomerZip(id bigint PRIMARY KEY, name string, ssn string, zip string) AS
 SELECT c.ID as id, c.NAME as name, c.SSN as ssn, a.ZIP as zip
 FROM accounts.CUSTOMER c LEFT OUTER JOIN accounts.ADDRESS a
 ON c.ID = a.CUSTOMER_ID;

mvn deploy

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT

15

After the virtual database artifact is available in a Maven repository, you can use a YAML-based custom
resource to deploy the virtual database to OpenShift. For information about using YAML to create a
custom resource for deploying virtual database Maven artifacts, see Section 4.2, “Creating a custom
resource (CR) to deploy a Maven artifact”.

For information about using the Data Virtualization Operator to deploy a virtual database, see
Chapter 6, Running the Data Virtualization Operator to deploy a virtual database .

4.2. CREATING A CUSTOM RESOURCE (CR) TO DEPLOY A MAVEN
ARTIFACT

Before you can deploy a virtualization that you create as a Maven artifact, you must create a CR that
defines the location of the Maven repository. When you are ready to deploy the virtualization, you
provide this CR to the Data Virtualization Operator.

Prerequisites

You created a virtualization according to the instructions in Chapter 4, Creating a virtual
database as a Maven artifact.

You deployed the virtualization to a Maven repository that the Data Virtualization Operator can
access.

You have the login credentials to access the data source.

You are familiar with the creation of custom resource files in YAML format.

Procedure

1. Open a text editor, create a file with the name of the virtualization, and save it with the
extension .yaml, for example, dv-customer.yaml.

2. Add information to define the custom resource kind, name, and source. The following annotated
example provides guidance on the contents to include in the CR:

dv-customer.yaml

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: dv-customer
spec:
 replicas: 1
 datasources:
 - name: sampledb
 type: postgresql
 properties:
 - name: username 1
 value: user
 - name: password
 value: mypassword
 - name: jdbc-url
 value: jdbc:postgresql://sampledb/sampledb 2
 resources:
 memory: 1024Mi

Red Hat Integration 2020-Q2 Using Data Virtualization

16

1

2

3

4

Specifies the credentials for signing in to the data source. Although this example shows
credentials that are defined within the CR, in production use, use secrets to specify
credentials, rather than exposing them in plain text. For information about adding
credentials to secrets, see Section 7.2, “Using secrets to store data source credentials” .

Specifies the URL for connecting to the data source.

Specifies the Maven location of the virtual database by providing the groupId, artifactId,
and version (GAV) coordinates.

If you are using a private Maven repository, specify its URL. You can configure multiple
repositories.

After you create the CR YAML file, you can run the Data Virtualization Operator to deploy the virtual
database to OpenShift.

Run the Data Virtualization Operator with the CR to generate the virtual database and deploy it to
OpenShift.

Additional resources

Chapter 6, Running the Data Virtualization Operator to deploy a virtual database .

4.3. PRIVATE MAVEN REPOSITORIES

When you run the Data Virtualization Operator to build a virtual database, the Operator initiates a Maven
build. The Maven build converts the DDL in the custom resource that you provide into a container image
that can be deployed to OpenShift. If the Operator requires additional packages to complete the build
process (for example, JDBC drivers, client libraries, and other dependency libraries), it retrieves these
build dependencies from a Maven repository. By default, the Operator retrieves build dependencies
from the public Maven Central repository.

In some environments the network configuration does not permit direct access to the internet,
preventing the Operator from connecting to the Maven Central repository. To enable the Operator to
build virtual databases when it cannot connect to the Maven Central repository, you can configure the
use of a local, private Maven repository.

When you run the Operator to build a virtual database, it searches for a secret or ConfigMap object with
a specific name (either teiid-maven-settings or VDB_NAME-maven-settings). If it finds a matching
object, the Operator uses the Maven repositories specified in the settings.xml section of the object to
resolve any dependencies. As long as the settings.xml key in the named object is correctly specified, no
other configuration is required.

Methods for specifying private Maven repositories for virtual database builds

You can use several different methods to specify the local private Maven repository that the Operator
uses to retrieve dependencies. The method that you choose depends the following factors:

 cpu: 2.0
 build:
 source:
 maven: com.example:customer-vdb:1.0.0:vdb 3
 mavenRepositories:
 central: https://repo.maven.apache.org/maven2 4

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT

17

Whether the private Maven repository requires authentication

Whether you want to use a single repository to build all of your virtual database.

The following table lists the methods that are available.

Table 4.1. Methods for specifying a private Maven repository

Method Description Limitations

Specify a global repository. Applies to all virtual database in a
namespace.

List repositories in a
settings.xml key that you add
to an OpenShift secret or
ConfigMap.

Secret or ConfigMap must use
the name teiid-maven-settings

Specify unique repositories for
individual virtual databases.

Applies to a single virtual
database.

Lists repositories in a
settings.xml key that you add
to an OpenShift secret or
ConfigMap.

The secret or ConfigMap must
mirror the name of the virtual
database in the format
VDB_NAME-maven-
settings.xml

Specify repositories in the custom
resource.

Lists repositories in the custom
resource that you use to deploy
the virtual database.

The Maven repository cannot
require authentication.

4.3.1. Specifying private Maven repositories to build all virtual databases in a
namespace

You can provide a full settings.xml file that specifies a single common Maven repository for the
Operator to use in building any virtual database. Use this method if your Maven repository requires
authentication, or if you have multiple repositories and you want to use a specific one for all your virtual
database builds.

When the Operator builds the image for your virtual database, it checks for a ConfigMap named teiid-
maven-settings. If it finds it, it then uses the settings.xml file in the ConfigMap for the build.

NOTE

You an override the use of a common repository by specifying a settings.xml to apply to
a particular virtual database build. For more information, see Section 4.3.2, “Specifying
private Maven repositories for building an individual virtual database”.

Procedure

1. Create a ConfigMap or secret and assign the following value to the metadata/name key:
teiid-maven-settings

2. Add a key to the ConfigMap or secret and assign the key the name settings.xml. The value of

Red Hat Integration 2020-Q2 Using Data Virtualization

18

2. Add a key to the ConfigMap or secret and assign the key the name settings.xml. The value of
the key contains a full Maven settings file. The following example provides an excerpt that
shows how to include a settings.xml file in a ConfigMap:

Sample ConfigMap

NOTE

The preceding example does not represent a working settings.xml file. You can
use the example as the basis for your own ConfigMap, but you must provide
details that are are specific to your Maven repository.

3. Save the ConfigMap YAML file as maven-settings.yaml.

4. Deploy the ConfigMap to OpenShift by typing following command:

apiVersion: v1
kind: ConfigMap
metadata:
 name: teiid-maven-settings
 namespace: myproject
data:
 settings.xml: |-
 <?xml version="1.0" encoding="UTF-8"?>
 <settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <localRepository />
 <profiles>
 <profile>
 <id>maven-settings</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>private</id>
 <url>https://myprivate.host.com/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 <checksumPolicy>fail</checksumPolicy>
 </releases>
 </repository>
 </repositories>
 </profile>
 </profiles>
 <activeProfiles>
 <activeProfile>maven-settings</activeProfile>
 </activeProfiles>
 </settings>

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT

19

4.3.2. Specifying private Maven repositories for building an individual virtual
database

In some cases, you might want the Data Virtualization Operator to use a specific Maven repository when
it builds a particular virtual database. You can specify the Maven repository to use in a settings.xml file
that you add to a ConfigMap or secret that applies only to a virtual database with a specific name.

The configuration that you add for a specific virtual database build takes precedence over any global
configuration that you set for the namespace.

The repositories that you add designate for use in building an individual virtual database cannot require
authentication.

Procedure

1. Create a ConfigMap or secret and assign the metadata/name key a value that matches the
name of the virtual database, using the format VDB_NAME-maven-settings.xml. For example,

1. Add a key to the ConfigMap or secret and assign the key the name settings.xml. The value of
the key contains a full Maven settings file.

2. Save the ConfigMap YAML file as maven-settings.yaml.

3. Deploy the ConfigMap to OpenShift by typing following command:

Additional resources

Section 4.3.1, “Specifying private Maven repositories to build all virtual databases in a
namespace”

4.3.3. Specifying the private Maven repositories for building an individual virtual
database in its custom resource

You can specify the private Maven repositories to use in building an individual virtual database in the
custom resource for the virtual database. The method of specifying Maven repositories in a custom
resource applies only to repositories that do not require authentication.

The repositories that you add to the CR cannot require authentication.

When you run the Data Virtualization Operator to build a virtual database, it uses the settings in the CR.
For example,

dv-customer.yaml

oc create -f maven-settings.yaml

metadata:
 name: dv-customer-maven-settings

oc create -f maven-settings.yaml

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase

Red Hat Integration 2020-Q2 Using Data Virtualization

20

1 Define one or more Maven private repositories to be used with the build.

If you specify Maven repositories in the CR, the Operator uses them in addition to the repositories
specified in the settings.xml file.

4.4. VIRTUAL DATABASE IMPORT

You can use a Maven project to build a special type of virtual database that imports from one or more
existing virtual databases. The project structure and build process for these importing virtual databases
is the same as for other virtual databases that you create as Maven artifacts.

Virtual database import can be useful in organizations in which departments control access to their own
data sources, but must share subsets of their original data with other teams. The data owners might not
want to prevent outside groups from viewing details about the physical structure of the data. By setting
up a virtual database, the owning group can establish an abstraction layer that exposes only targeted
data without directly exposing your data sources.

Consuming groups typically have their own data stores that they use for data received from other
groups. Instead of accessing the source data directly, they can create their own virtual database layer to
import the data. Through this second abstraction layer, the consuming group can access the data in a
way that insulates them from changes to the physical data store schema. When the group that owns the
data updates the base virtual databases, changes can be easily pushed to the consuming groups virtual
databases.

For example, suppose that a Sales team has the following two postgreSQL databases:

Accounts Database (AccountsDB)

Sales Database (SalesDB)

Should members of the Operations team require data from the Sales databases, the Sales team can
create a virtual database to expose the source data. The Operations team can then consume the Sales
data by creating their own virtual database, as in the following example:

Example: Operations team virtual database that imports data from two virtual databases
created by the Sales team

metadata:
 name: dv-customer
spec:
 replicas: 1
 build:
 source:
 ddl: |
 CREATE DATABASE customer OPTIONS (ANNOTATION 'Customer VDB');
 USE DATABASE customer;
 ...
 mavenRepositories: 1
 private: https://myprivate.host.com/maven2
 private2: https://myprivate.host2.com/maven2

CREATE DATABASE OperationsDB;
USE DATABASE OperationsDB;

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT

21

In the preceding example, the DDL defines the database OperationsDB, which then imports metadata
from two source databases, AccountsDB and SalesDB. Users who connect to OperationsDB do not
know anything about the two virtual databases that supply the data, but they have full access to the
data that they expose. If future changes occur in the source databases, the Operations team can rebuild
and redeploy a new version of the OperationsDB database to make the changes available to its users.

4.4.1. How virtual database importing works

A virtual database developer can deploy a virtual database to a Maven repository, where it is assigned an
identifier, version number, and a defined location. The resulting Maven artifact can then be defined as a
dependency to the build process of a second virtual database. When this second virtual database is built,
the build reads the contents of the original virtual database from the Maven repository and incorporates
it into current new virtual database.

For example, imagine that a Sales team developer creates the virtual databases AccountsDB and
SalesDB, and then deploys them to a Maven repository. When the Operations team developer creates a
Maven project for a secondary virtual database, OperationsDB, the project defines the AccountsDB
and SalesDB databases as dependencies. The new project can then use an IMPORT statement to
extract content from the two original virtual databases. After the developer deploys the OperationsDB
database, users can connect to it to access data from both of its source databases.

Because the OperationsDB database is also available as a Maven artifact, it can be used as a data
source by other virtual databases.

To deploy the OperationsDB virtual database, you must supply the Maven coordinates of the
OperationsDB to the Data Virtualization Operator. During the build, the Operator retrieves the
contents from the Maven repository, including the dependency information, and deploys the virtual
database to OpenShift.

The Maven build process enables build tasks to be automated as part of an automated CI/CD workflow
in which you can configure Maven to rebuild virtual databases automatically with no user intervention
after changes occur in the sources.

4.4.2. POM and DDL for virtual databases that import from other virtual databases

You use a Maven build process to create a virtual database that import from other virtual databases.

The process and the project structure for developing virtual databases that use importing is the same as
the process for creating any virtual database as a Maven artifact. You use the standard Maven project
structure for your virtual database. Resources in the project must be added to the expected locations in
the project structure. If you want to include additional metadata files with the virtual database, add them
within this structure.

For more information about the structure for creating virtual databases as Maven artifacts, see
Chapter 4, Creating a virtual database as a Maven artifact .

POM file

As with any virtual database that you create as a Maven artifact, the project for an importing virtual
database must include a POM file. For an example of a POM file for building a virtual database as a
Maven artifact, see Chapter 4, Creating a virtual database as a Maven artifact .

Along with the standard entries, the POM for an importing virtual database must list the following

IMPORT DATABASE AccountsDB VERSION 1.0;
IMPORT DATABASE SalesDB VERSION 1.0;

Red Hat Integration 2020-Q2 Using Data Virtualization

22

Along with the standard entries, the POM for an importing virtual database must list the following
entries:

The artifactId for each virtual databases to import from.

Dependency definitions for each imported virtual database.

For example, if you want to import the virtual database accountsdb into the secondary virtual database
OperationsDB, the POM file for the OperationsDB database must include a dependency entry for the
accountsdb database as in the following example:

Example: Entry in the POM file for the OperationsDB database, listing the accountsdb
virtual database as a dependency

If you want to import multiple virtual databases, the <dependencies> section of the POM must include
separate <dependency> entries for each virtual database. The <dependencies> block is contained
within the <projects section of the POM.

DDL

The DDL file for a Maven-based virtual database must have the name vdb.ddl. Maven-based virtual
databases use the same DDL structure as other virtual databases.

The DDL for the importing virtual database must contain an IMPORT statement similar to the following
statement:

For example, if you want to import the virtual database accountsdb into a virtual database with the name
OperationsDB, you would include the following entry in the DDL for the OperationsDB database:

The Maven build reads the contents of the vdb.ddl file for the AccountsDB and merges it into the
virtual database that is being built. The result is a virtual database comprised of multiple virtual
databases.

After you configure the source files for the Maven build, you can run the build to deploy the Maven
artifact to a repository. The process for building the virtual database is the same as with any Maven-
based virtual database. For more information, see Section 4.1, “Building a virtual database artifact”

4.4.3. DDL limitations

You should avoid the use of some statements in the DDL for a virtual database.

Foreign schema import

For example:

<dependencies>
 <dependency>
 <groupId>org.example</groupId>
 <artifactId>accountsdb</artifactId>
 <version>1.0</version>
 </dependency>
</dependencies>

IMPORT DATABASE IMPORTED_VIRTUAL_DATABASE_ VERSION VERSION_NUMBER__;

IMPORT DATABASE AccountsDB VERSION 1.0;

CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT

23

The IMPORT FOREIGN SCHEMA statement is an expensive operation, that queries the underlying
physical data source every time a pod restarts. Introducing this query places a strain on the underlying
physical data source, increasing the time that it takes for the pod to start. The problem is magnified if
you have multiple pods trying to access the data source at once.

Another problem with importing the foreign schema from another virtual database is that images
deployed to OpenShift are assumed to be in an immutable state. That is, no matter how many times the
image is stopped and started, their behavior should persist. However, if you define a SQL IMPORT
SCHEMA operation in the DDL, the virtual database loads the schema from the source virtual database
every time that the image starts up. As a result, the image contents can be modified, which runs counter
to the principle of immutability for this architecture.

If you can guarantee that the underlying data source always returns the same metadata, there is no
problem. Problems arise if the data source returns different metadata when the image starts.

To ensure that the contents of an image remain stable, it is best to define all metadata explicitly in the
virtual database DDL, including tables, procedures, and any functions that data source represents.

ALTER statements to modify metadata

Do not use ALTER TABLE statements in the DDL for a virtual database if the DDL includes either of
the following statements:

IMPORT FOREIGN SCHEMA

IMPORT DATABASE

ALTER TABLE statements are intended to modify the structure of a table by adding, removing, or
modifying columns. However, in the case of imported virtual databases, the actual structure of the
imported tables is not available at build time. From the perspective of the virtual database, the runtime
metadata does not yet exist to be modified.

When you include an ALTER TABLE statement in the DDL with an IMPORT statement, it attempts to
change a table or column that does not exist in the the virtual database metadata. A deployment failure
can result, or if the virtual database is deployed, its contents might not include the expected data.

IMPORT FOREIGN SCHEMA public FROM SERVER sampledb INTO accounts;

Red Hat Integration 2020-Q2 Using Data Virtualization

24

CHAPTER 5. DATA SOURCE CONFIGURATION
You can configure external services as data sources for a virtual database. To describe a data source,
you add properties to a custom resource (CR) file. Some properties are common to multiple data
sources. Other properties are specific to a particular data source. Property names are case-sensitive.

For every data source, you must provide the name of a translator that can interpret the commands and
data that pass between the virtual database and the data source. For example, the web service
translator converts SQL procedures executed to a virtual database to an HTTP call to send to a web
service. Similarly, the translator can convert a JSON response to tabular results.

Translators can also include optional configurable properties that you can use to manage the behavior
of the translator. Execution properties control how data is retrieved. Import settings determine the
metadata that is the virtual database reads and imports.

Additional resources

For more information about translators, see Data Virtualization Reference

The sections that follow describe the specific properties to set in the custom resource files to add data
sources to virtual databases. Details about how to create the DDL to define the database structure are
not covered.

5.1. CONFIGURATION PROPERTIES FOR S3 AND CEPH AS DATA
SOURCES

You can configure an Amazon Simple Storage Service (S3) as a data source for a virtual database. Using
a similar configuration, you can also use the Ceph storage platform as a data source.

Translator setting

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For both S3 and
Ceph, set the translator to amazon-s3. A corresponding SERVER definition in the DDL represents the
external data source server, and associates the translator with the external server.

Data source information

The custom resource that you use to create a virtual database from S3 or Ceph requires information
about the service, For example, you must provide the access key and secret key that you use to sign
request to AWS.

Dependencies

S3 and Ceph do not require you to specify any build dependencies.

The following table shows the data source information that is required in the data source properties of
the custom resource:

Table 5.1. Data source properties for S3/Ceph

Property Name Description Required Default value

region S3 region. For example,
us-east-2 [a]

Yes n/a

CHAPTER 5. DATA SOURCE CONFIGURATION

25

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#translators

bucket The name of the S3
bucket.

Yes n/a

accesskey Access key ID for signing
requests to AWS
services.

Yes n/a

secretkey Secret access key for
signing requests.

Yes n/a

[a] The region property is not required for Ceph data sources.

Property Name Description Required Default value

Example: Excerpt from an S3 custom resource, showing the format for setting key
properties

5.2. SETTINGS TO CONNECT TO GOOGLE SHEETS AS A DATA
SOURCE

You can configure Google Sheets as a data source for a virtual database.

Translator setting

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For Google
Sheets sources, set the translator to google-spreadsheet. A corresponding SERVER definition in the
DDL represents the external data source server, and associates the translator with the external server.
Each Sheet in a Google Sheets spreadsheet becomes available as a table in the virtual database.

For a virtual database to connect to Google Sheets, you must register your data virtualization service as
a Google client application. During registration, you enable Google Sheets APIs and create credentials
that the virtual database uses to access the APIs.

For information about how to register data virtualization as a Google client application, see the Google
OAuth documentation.

The following table shows the data source information that is required in the data source properties of

datasources:
 - name: sampledb
 type: amazon-s3
 properties:
 - name: region
 value: us-east-2
 - name: bucket
 value: mybucket
 - name: accesskey
 value: xxxxxxxx
 - name: secretkey
 value: xxxxxx

Red Hat Integration 2020-Q2 Using Data Virtualization

26

https://developers.google.com/identity/protocols/oauth2

The following table shows the data source information that is required in the data source properties of
the custom resource:

Table 5.2. Data source properties for Google Sheets

Property Name Description Required Default value

spreadSheetName Name of the Google
Sheets spreadsheet

Yes n/a

spreadSheetId Spreadsheet ID Yes Sheet ID in the URL of
the spreadsheet. For
more info see the
Google Sheets API
documentation.

clientId OAuth2 client ID for
Google Sheets

Yes n/a

clientSecret OAuth2 client secret for
Google Sheets

Yes n/a

refreshToken OAuth2 refreshToken
for Google Sheets

Yes n/a

5.3. CONFIGURATION PROPERTIES FOR RED HAT DATA GRID
(INFINISPAN) AS A DATA SOURCE

You can configure Red Hat Data Grid (Infinispan) as a data source for a virtual database.

Translator setting

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For Data Grid or
Infinispan sources, set the translator to infinispan-hotrod. A corresponding SERVER definition in the
DDL represents the external data source server, and associates the translator with the external server.

Dependencies

Data Grid or Infinispan provide the client libraries that you need. You do not have to specify any build
dependencies.

The following table shows the information that is required in the data source properties of the custom
resource:

Table 5.3. Data source properties for Data Grid

Property Name Description Required Default value

url URL to connect to
Infinispan

Yes n/a

username User name Yes n/a

CHAPTER 5. DATA SOURCE CONFIGURATION

27

https://developers.google.com/sheets/api/guides/concepts#spreadsheet_id

password Password Yes n/a

cacheName Default cache name No n/a

authenticationRealm Auth Realm No n/a

authenticationServerNa
me

Auth Server No n/a

Property Name Description Required Default value

Example: Excerpt from an Infinispan custom resource, showing the format for setting key
properties

5.4. CONFIGURATION PROPERTIES FOR MONGODB AS A DATA
SOURCE

You can configure MongoDB as a data source for a virtual database.

Translator setting

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For MongoDB
sources, set the translator to mongodb. A corresponding SERVER definition in the DDL represents the
external data source server, and associates the translator with the external server.

Dependencies

MongoDB does not require you to specify any build dependencies.

The following tables list the properties that are required in the CR to create a virtual database that is
based on a MongoDB database

Table 5.4. Data source properties for MongoDB

Property Name Description Required Default value

datasources:
 - name: sampledb
 type: infinispan-hotrod
 properties:
 - name: url
 value: localhost:11222
 - name: user
 value: user
 - name: password
 value: pass
 - name: cacheName
 value: test

Red Hat Integration 2020-Q2 Using Data Virtualization

28

remoteServerList List of MongoDb
servers, for example:
(localhost:27012).

Yes n/a

user User name. Yes n/a

password Password. Yes n/a

database Database name to
connect to.

Yes n/a

authDatabase Database name for
authorization.

No n/a

ssl Use SSL Connection? No n/a

Property Name Description Required Default value

Example: Excerpt from an MongoDB custom resource, showing the format for setting key
properties

For a complete list of the properties that you can set to control how data is translated between
MongoDB and a virtual database, see the Data Virtualization Reference.

5.5. RELATIONAL DATABASES DATA SOURCES CONFIGURATION

To configure a virtual database to connect to a relational database for reading or writing tables, you
provide information about the database by specifying a common set of properties in the custom
resource, as shown in the following table:

Table 5.5. Data source properties for relational databases

Property name Description Required Default value

jdbc-url URL for the connection Yes n/a

username User name Yes n/a

datasources:
 - name: sampledb
 type: mongodb
 properties:
 - name: user
 value: USER_NAME
 - name: password
 value: PASSWORD
 - name: remoteServerList
 value: localhost:27012
 - name: database
 value: DATABASE_NAME

CHAPTER 5. DATA SOURCE CONFIGURATION

29

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index/#mongodb-translator

Password Yes n/a n/a

jdbcDriverClass [a] Driver class name No n/a

importer.schemaName Schema name for import Yes n/a

[a] Depending on the database, multiple JDBC drivers might be available. To ensure that the build uses a suitable driver,
some database types require you to specify a driver class.

Property name Description Required Default value

You must also specify the Maven coordinates for the JDBC driver. For more information, see JDBC
drivers.

JDBC drivers

To use a relational database as a source for a virtual database, you must provide a JDBC driver to
manage the connection to the database. For some database types, such as postgreSQL and SQL
Server, the JDBC driver is provided automatically during the virtual database build. However, for other
databases, you must specify the driver to retrieve from the public Maven repository, or, if there is no
publicly available driver, you must download the driver manually.

For downloaded drivers to be available to the build, you must add them to a private Maven repository,
and then reference the repository in the virtual database CR.

If the source database requires that you specify build dependencies for the JDBC driver class, you
specify these in the build.source.dependencies element in the CR. For most databases it is not
necessary to define the driver class.

The following example shows an excerpt from a CR that defines the data source configuration for a
sample postgreSQL database.

Example: Custom resource that defines data source properties in-line

spec:
 datasources: 1
 - name: sampledb 2
 type: postgresql 3
 properties:
 - name: username
 value: postgres
 - name: password
 value: postgres
 - name: jdbc-url 4
 value: jdbc:postgresql://database/postgres
 - name: jdbcDriverClass 5
 value: org.postgres.jdbc.Driver
 build:
 source:
 dependencies: 6
 - org.postgresql:postgresql:42.1.4

Red Hat Integration 2020-Q2 Using Data Virtualization

30

1

2

3

4

5

6

The datasources section lists the properties that define the connections to your data sources.

The custom name assigned to the source database.

The data source type. The type must match the translator that you specify in the ddl section of the
CR.

The URL for the source database. The URL uses the format jdbc:xxxx where xxxx is the name of
the data source. Requirements for specifying the full URL string vary by database vendor. Values in
the string are not required to match names for the data source our translator.

Specifies the driver class for the JDBC driver.

Specifies a list of Maven dependency JAR files in GAV format (groupId:artifactid:version). These
files define the JDBC driver files and any custom dependencies for the data source. For some
database types the Data Virtualization Operator automatically adds the required JDBC libraries,
and it is not necessary to specify the dependencies.

Property values defined as secrets

As an alternative to defining values for properties directly in the CR, you can define references to values
in a secret object. This is especially important for securing sensitive data such as Password properties.
For more information, see Section 7.2, “Using secrets to store data source credentials” .

To further tune the JDBC translator and schema import behavior, you can define additional properties.
For more information see the Data Virtualization Reference.

Any Maven repository that you list must be available to the Data Virtualization Operator when it builds
the virtual database. To provide the Operator with access to Maven resources that are not available
from the public Maven Central repository, you can configure one or more private repositories. For more
information, see Section 4.3, “Private Maven repositories”.

5.5.1. Configuration properties for Amazon Athena as a data source

You can configure an Amazon Athena query service as a data source for a virtual database.

Set the translator in the DDL for the virtual database to amazon-athena or jdbc-ansi with a matching
Server definition.

The custom resource that you use to create a virtual database from Athena is the same as the CR for a
standard JDBC source.

For more information, see Section 5.5, “Relational databases data sources configuration” .

The following table lists specific properties to use when you create a virtual database that is based on an
Amazon Athena database.

Table 5.6. Property settings for using Amazon Athena as a data source

JDBC driver
dependency

jdbc-url (Source
database URL)

jdbc-driver-class
name

JDBC driver download
link

CHAPTER 5. DATA SOURCE CONFIGURATION

31

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#jdbc-translators

Based on downloaded
driver [a]

jdbc:awsathena://Us
er=ACCESS_KEY;Pa
ssword=SECRET_KE
Y;S3OutputLocation
=OUTPUT;PROPERT
Y1=VALUE;PROPER
TY2=VALUE2;

com.simba.athena.jdbc.
Driver [b]

https://docs.aws.amazo
n.com/athena/latest/ug
/connect-with-

jdbc.html[c]

[a] Obtain the driver from the link in the Driver link column of this table, and define a driver dependency that is based on
the driver name in the build/source/dependencies section of the CR.

[b] Specify the driver class to ensure that the Data Virtualization Operator retrieves the correct driver from the JAR file.

[c] When you create a virtual database from an Amazon Athena source, the build does not automatically include the
Athena JDBC driver. To supply the necessary driver, download it from the specified link, and add it to a Maven repository
that the Data Virtualization Operator can access when it runs the OpenShift Source-To-Image (S2I) build.

JDBC driver
dependency

jdbc-url (Source
database URL)

jdbc-driver-class
name

JDBC driver download
link

For an example that shows how properties are defined in the custom resource for a virtual database that
uses a relational database as its source, see Section 5.5, “Relational databases data sources
configuration”.

5.5.2. Configuration properties for Amazon Redshift data sources

You can configure Amazon Redshift as a data source for a virtual database.

Set the translator in the DDL for the virtual database to redshift with a matching SERVER definition.

The custom resource that you use to create a virtual database from a Redshift source is the same as the
CR for a standard JDBC source.

For more information, see Section 5.5, “Relational databases data sources configuration” .

The following table lists specific properties to use when you create a virtual database that is based on an
Amazon Redshift database.

Table 5.7. Property settings for using Amazon Redshift as a data source

JDBC driver
dependency

jdbc-url (URL for the
source database)

jdbc-driver-class
name

JDBC driver download
link

'com.amazon.redshift:re
dshift-
jdbc42:jar:1.2.1.1001' [a]

jdbc:awsathena://Us
er=ACCESS_KEY;Pa
ssword=SECRET_KE
Y;S3OutputLocation
=OUTPUT;PROPERT
Y1=VALUE;PROPER
TY2=VALUE2;

com.amazon.redshift
[b]

N/A

Red Hat Integration 2020-Q2 Using Data Virtualization

32

https://docs.aws.amazon.com/athena/latest/ug/connect-with-jdbc.html

[a] When you create the custom resource for the virtual database, define a driver dependency with this value in the
build/source/dependencies section.

[b] Specify the driver class to ensure that the Data Virtualization Operator retrieves the correct driver from the JAR file.

JDBC driver
dependency

jdbc-url (URL for the
source database)

jdbc-driver-class
name

JDBC driver download
link

For an example that shows how properties are defined in the custom resource for a virtual database that
uses a relational database as its source, see Section 5.5, “Relational databases data sources
configuration”.

5.5.3. Configuration properties for Db2 as a data source

You can configure Db2 as a data source for a virtual database.

Set the translator in the DDL for the virtual database to db2 with a matching Server definition.

The custom resource that you use to create a virtual database from Db2 is the same as the CR for a
standard JDBC source.

For more information, see Section 5.5, “Relational databases data sources configuration” .

The following table lists specific properties to use when you create a virtual database that is based on a
Db2 database.

Table 5.8. Property settings for using Db2 as a data source

JDBC driver
dependency

jdbc-url (URL for the
source database)

jdbc-driver-class
name

JDBC driver download
link

com.ibm.db2:jcc:jar:
11.1.4.4 [a]

jdbc:db2://HOST:500
00/DATABASE_NAM
E

com.ibm.db2.jcc.DB
2Driver [b]

N/A

[a] When you create the custom resource for the virtual database, define a driver dependency with this value in the
build/source/dependencies section.

[b] Specify the driver class to ensure that the Data Virtualization Operator retrieves the correct driver from the JAR file.

For an example that shows how properties are defined in the custom resource for a virtual database that
uses a relational database as its source, see Section 5.5, “Relational databases data sources
configuration”.

5.5.4. Configuration properties for Microsoft SQL Server as a data source

You can configure Microsoft SQL Servers as a data source for a virtual database.

Set the translator in the DDL for the virtual database to sqlserver or ms-sqlserver with a matching
SERVER definition.

The custom resource that you use to create a virtual database from a SQL Server source is the same as

CHAPTER 5. DATA SOURCE CONFIGURATION

33

The custom resource that you use to create a virtual database from a SQL Server source is the same as
the CR for a standard JDBC source.

For more information, see Section 5.5, “Relational databases data sources configuration” .

The following table lists specific properties to use when you create a virtual database that is based on a
SQL Server database.

Table 5.9. Property settings for using SQL Server as a data source

JDBC driver
dependency

jdbc-url (URL for the
source database)

jdbc-driver-class
name

JDBC driver download
link

com.microsoft.sqlse
rver:sqljdbc4:jar:4.0
(Optional) [a]

jdbc:microsoft:sqlse
rver://HOST:1433

com.microsoft.sqlse
rver.jdbc.SQLServer
Driver (Optional)

N/A

[a] When you run the Data Virtualization Operator to build a virtual database that uses a SQL Server source, the build
process automatically retrieves the required JDBC driver. It is not required to also define the driver dependency in the
custom resource.

For an example that shows how properties are defined in the custom resource for a virtual database that
uses a relational database as its source, see Section 5.5, “Relational databases data sources
configuration”.

5.5.5. Configuration properties for MySQL as a data source

You can configure MySQL as a data source for a virtual database.

Set the translator in the DDL for the virtual database to mysql with a matching Server definition.

The custom resource that you use to create a virtual database from MySQL is the same as the CR for a
standard JDBC source.

For more information, see Section 5.5, “Relational databases data sources configuration” .

The following table lists specific properties to use when you create a virtual database that is based on a
MySQL database.

Table 5.10. Property settings for using MySQL as a data source

JDBC driver
dependency

jdbc-url (URL for the
source database)

jdbc-driver-class
name

JDBC driver download
link

mysql:mysql-
connector-
java:jar:8.0.20
(Optional) [a]

jdbc:mysql://HOST:3
306/DATABASE_NA
ME

com.mysql.jdbc.Driv
er (Optional)

N/A

[a] When you run the Data Virtualization Operator to build a virtual database that uses a MySQL source, the build process
automatically retrieves the required JDBC driver. It is not required to also define the driver dependency in the custom
resource.

Red Hat Integration 2020-Q2 Using Data Virtualization

34

For an example that shows how properties are defined in the custom resource for a virtual database that
uses a relational database as its source, see Section 5.5, “Relational databases data sources
configuration”.

5.5.6. Configuration properties for Oracle Database as a data source

You can configure Oracle Database as a data source for a virtual database.

Set the translator in the DDL for the virtual database to oracle with a matching SERVER definition.

The custom resource that you use to create a virtual database from an Oracle Database source is the
same as the CR for a standard JDBC source.

For more information, see Section 5.5, “Relational databases data sources configuration” .

The following table lists specific properties to use when you create a virtual database that is based on
Oracle Database.

Table 5.11. Property settings for using Oracle Database as a data source

JDBC driver
dependency

jdbc-url (URL for the
source database)

jdbc-driver-class
name

JDBC driver download
link

com.oracle:ojdbc14:j
ar:10.2.0.4.0 [a]

jdbc:oracle:thin:HOS
T:1521:orcl

oracle.jdbc.driver.Or
acleDriver [b]

N/A

[a] When you create the custom resource for the virtual database, define a driver dependency with this value in the
build/source/dependencies section.

[b] Specify the driver class to ensure that the Data Virtualization Operator retrieves the correct driver from the JAR file.

For an example that shows how properties are defined in the custom resource for a virtual database that
uses a relational database as its source, see Section 5.5, “Relational databases data sources
configuration”.

5.5.7. Configuration properties for postgreSQL as a data source

You can configure postgreSQL as a data source for a virtual database.

Set the translator in the DDL for the virtual database to postgresql with a matching SERVER definition.

The custom resource that you use to create a virtual database from a postgreSQL source is the same as
the CR for a standard JDBC source. For more information, see Section 5.5, “Relational databases data
sources configuration”.

The following table lists specific properties to use when you create a virtual database that is based on a
postgreSQL database.

Table 5.12. Property settings for using postgreSQL as a data source

CHAPTER 5. DATA SOURCE CONFIGURATION

35

JDBC driver
dependency

jdbc-url (URL for the
source database)

jdbc-driver-class
name

JDBC driver download
link

org.postgresql:post
gresql:jar:42.2.5
(Optional) [a]

jdbc:postgresql://HO
ST:5432/DATABASE
_NAME

org.postgresql.Drive
r (Optional)

N/A

[a] When you run the Data Virtualization Operator to build a virtual database that uses a PostgreSQL source, the build
process automatically retrieves the required JDBC driver. It is not required to also define the driver dependency in the CR.

For an example that shows how these properties are specified in a CR, see Section 5.5, “Relational
databases data sources configuration”.

5.6. CONFIGURATION PROPERTIES FOR USING A REST SERVICE AS A
DATA SOURCE

You can configure a REST service as a data source for a virtual database.

A common set of data source connection properties is required for all REST-based data sources. In
addition to the common properties, services that are based on specific REST-based standards, such as
OData or OpenAPI, require specific translators.

By default, translators are unable to parse the security configuration of a secured API. To enable
translators to access data for a secured API, the CR must specify the security properties for the API.

Translator setting

For generic services that use REST directly, and that are not based on particular specifications, set the
translator in the DDL for the virtual database to rest with a matching SERVER definition. Generic
REST-based services lack built-in mechanisms for passing SQL query conditions to a REST API
endpoint. As a result, the data virtualization service cannot automatically convert query criteria for these
services into query parameters.

To pass SQL queries as XML or JSON payloads to the endpoints of these services, you must use the
invokeHttp procedure, and use it to specify your query strings and headers.

Some REST-based data sources, such as OData, OpenAPI, and SOAP have specific translators that are
based on the REST configuration.

For more information, see Rest translator in the Data Virtualization Reference.

The following tables show the data source information that is required in the data source properties of
the custom resource:

Table 5.13. Data source properties for REST

Property Name Description Required Default value

endpoint Endpoint for the service. Yes n/a

Red Hat Integration 2020-Q2 Using Data Virtualization

36

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index

securityType Security type to use.
Available options are
http-basic, openid-
connect or empty.

No no security

If the security type is defined as http_basic you must also set the following properties:

Table 5.14. HTTP basic properties for REST data sources

Property name Description Required Default value

userName User name Yes n/a

password Password Yes n/a

If the security type is defined as openid-connect, you must set the following properties:

Table 5.15. OpenID Connect properties for REST data sources

Property Name Description Required Default value

userName User name Yes n/a

password Password Yes n/a

clientId ClientId from connected
app.

Yes n/a

clientSecret clientSecret from
connected app.

Yes n/a

authorizeUrl clientSecret from
connected app.

Yes n/a

accessTokenUrl clientSecret from
connected app.

Yes n/a

scope clientSecret from
connected app.

No n/a

Alternatively, for openid-connect you can specify the refreshToken property and avoid using the
userName and password properties. The process obtaining a refresh token differs for different
services. Describing how to obtain refresh tokens is beyond the scope of this document.

NOTE

To enable communications with REST data source endpoints over secure HTTP (HTTPS),
you must have a truststore configured for the endpoint.

CHAPTER 5. DATA SOURCE CONFIGURATION

37

For information about configuring a custom TLS certificates, see xref:

For a complete list of the properties that you can set to control how data is translated between REST-
based services and a virtual database, see the OData, OData V4, OpenAPI, and Web Services translator
sections in the Data Virtualization Reference.

5.7. CONFIGURATION PROPERTIES FOR ODATA AS A DATA SOURCE

You can configure OData as a data source for a virtual database.

Translator setting

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For OData
sources, set the translator to odata. For an OData V4 service, use odata4 A corresponding SERVER
definition in the DDL represents the external data source server, and associates the translator with the
external server.

Because OData services are based on REST, they follow the same properties model as REST-based
connections.

The following configuration showing openid_connect security type with a OData service

A sample configuration

5.8. CONFIGURATION PROPERTIES FOR OPENAPI AS A DATA
SOURCE

You can configure an OpenAPI service as a data source for a virtual database.

Because OpenAPI services are based on REST, they follow the same properties model as REST-based
connections.

Translator setting

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For OpenAPI

datasources:
 - name: sampledb
 type: odata4
 properties:
 - name: endpoint
 value: https://dv-customer-myproject.apps-crc.testing/odata/accounts/customer
 - name: securityType
 value: openid-connect
 - name: clientId
 value: dv
 - name: clientSecret
 value: xxxxxxxxxxx
 - name: authorizeUrl
 value: https://keycloak-myproject.apps-crc.testing/auth/realms/master/protocol/openid-
connect/auth
 - name: accessTokenUrl
 value: https://keycloak-myproject.apps-crc.testing/auth/realms/master/protocol/openid-
connect/token

Red Hat Integration 2020-Q2 Using Data Virtualization

38

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#translators

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For OpenAPI
sources, set the translator to openapi. A corresponding SERVER definition in the DDL represents the
external data source server, and associates the translator with the external server.

The openapi translator assumes that the endpoint in the API document is set to the target location
/openapi, and it builds a source model that is based on that assumption.

If the API endpoint is set to a different target, a configuration setting must be specified so that the
translator can locate the endpoint and import data correctly. The following examples show a DDL
SCHEMA statement and an environment variable that you can set to specify the non-standard
endpoint, /swagger.

DDL SCHEMA statement for defining a non-standard OpenAPI endpoint

Example: Sample configuration that defines a non-standard OpenAPI endpoint

If the API is secured, the translator is unable to process the security configuration of the service
automatically. The translator understands only the API document and its responses. To process security
settings properly you must define them as REST properties, as described in Section 5.6, “Configuration
properties for using a REST service as a data source”.

5.9. CONFIGURATION PROPERTIES FOR SALESFORCE AS A DATA
SOURCE

You can configure Salesforce as a data source for a virtual database.

Salesforce uses OAuth 2.0 for authentication and authorization. Before you can set up a virtual
database to import and query Salesforce data, you must obtain OAuth credentials for the virtual
database from Salesforce. For information about how to set up OAuth, see Section 5.9.1, “Setting up an
OAuth connection to Salesforce”

Translator setting

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For Salesforce
sources, set the translator to salesforce. A corresponding SERVER definition in the DDL represents the
external data source server, and associates the translator with the external server.

Dependencies

Salesforce does not require you to specify any build dependencies.

The following tables list the properties that are required in the custom resource to create a virtual

CREATE SCHEMA sourceModel SERVER oService OPTIONS ("importer.metadataUrl"
'/swagger.json');

datasources:
 - name: sampledb
 type: openapi
 properties:
 - name: userName
 value: user
 - name: password
 value: pass
 - name: importer.metadataUrl
 value: /swagger.json

CHAPTER 5. DATA SOURCE CONFIGURATION

39

The following tables list the properties that are required in the custom resource to create a virtual
database that is based on a Salesforce database:

Table 5.16. Data source properties for Salesforce

Property Name Description Required Default value

url URL for salesforce. No https://login.salesforce.
com/services/Soap/u/4
5.0

username User account for
salesforce.com.

Yes n/a

password Password for
salesforce.com.

Yes n/a

clientId ClientId from connected
app.

Yes n/a

clientSecret clientSecret from
connected app.

No n/a

refreshToken Refresh Token [a] No n/a

[a] If your connected app uses refresh tokens to authenticate, rather than name and password, you must define the
refreshToken property in the CR, in place of the user name and password properties. Information about obtaining
refresh tokens is beyond the scope of this document. For information about how to obtain a refresh token for your
connected app, see the Salesforce documentation.

The following example shows a configuration that uses simple user name and password login.

Example: Excerpt from a virtual database custom resource that connects to Salesforce by
using name and password authentication

You can obtain the clientId and clientSecret from Salesforce when you create your Salesforce
application.

For a complete list of the properties that you can set to control how data is translated between
Salesforce and a virtual database, see the Data Virtualization Reference.

5.9.1. Setting up an OAuth connection to Salesforce

datasources:
 - name: sampledb
 type: salesforce
 properties:
 - name: userName
 value: user
 - name: password
 value: pass

Red Hat Integration 2020-Q2 Using Data Virtualization

40

https://login.salesforce.com/services/Soap/u/45.0
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/data_virtualization_reference/index#salesforce-translator

Before the data virtualization service can retrieve data from a Salesforce database, you must enable
configure it as a connected app in Salesforce that is OAuth-enabled. After you configure OAuth,
Salesforce generates a client ID and client secret that you must add to the CR file that defines the
connection from the virtual database to Salesforce.

To configure OAuth you create a connected app in Salesforce that can request access to Salesforce
data on behalf of the data virtualization service. In the settings for the connected app, you enable
integration with the Salesforce API by using the OAuth 2.0.

Prerequisites

You have a Salesforce.com account that has access to the data that you want to integrate in a
virtual database.

NOTE

The following steps are based on Salesforce Classic. If you use a different version of
Salesforce, you might use a different procedure. For more information about creating
connected apps in Salesforce, see the Salesforce documentation.

Procedure

1. From Salesforce, log into your account.

2. Click SetUp in the profile menu.

3. In the Build section of the navigation sidebar, expand Create, and then click Apps.

4. In the Connected Apps section, click New.

5. Complete the required fields.

6. In the section API (Enable OAuth Settings), select Enable OAuth Settings to display the
OAuth settings.

7. Complete the required OAuth fields. In the OAuth Scopes field, you must select the following
scopes:

Access and manage your data (api).

Access your basic information (id, profile, email, address, phone).

Allow access to your unique identifier (openid).

Full access (full).

Perform requests on your behalf at any time (refresh_token, offline_access).

8. Select Require Secret for Web Server Flow.

9. Click Save and then click Continue.

10. Make a note of the values in the Consumer Key and Consumer Secret fields. These values are
required for properties in the CR that specifies how the virtual database connects to Salesforce.

5.10. CONFIGURATION PROPERTIES FOR USING FTP/SFTP AS A

CHAPTER 5. DATA SOURCE CONFIGURATION

41

https://help.salesforce.com/articleView?id=connected_app_create.htm&type=5

5.10. CONFIGURATION PROPERTIES FOR USING FTP/SFTP AS A
DATA SOURCE

Translator setting

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For FTP sources,
set the translator to ftp. A corresponding SERVER definition in the DDL represents the external data
source server, and associates the translator with the external server.

NOTE

To enable secure transmission over SFTP you must provide a TLS certificate. For more
information about how to use certificates with data virtualization on OpenShift, see
Section 7.1, “Certificates and data virtualization”

The following table shows the information that is required in the data source properties of the custom
resource:

Table 5.17. Data source properties for SFTP

Property Name Description Required Default value

host Host name of the FTP
server.

yes n/a

port Port of the FTP server. No 21

username User for remote server
login

Yes n/a

password Password for remote
server login.

Yes n/a

parentDirectory Directory that contains
file data.

Yes n/a

isFtps FTP security. No false

Example: Excerpt from an FTP/SFTP custom resource, showing the format for setting key
properties

datasources:
 - name: sampleftp
 type: ftp
 properties:
 - name: host
 value: localhost
 - name: parent-directory
 value: /path/to/file/
 - name: username

Red Hat Integration 2020-Q2 Using Data Virtualization

42

5.11. CONFIGURATION PROPERTIES FOR SOAP AS A DATA SOURCE

You can configure SOAP as a data source for a virtual database.

Translator setting

The DDL for the virtual database defines a translator, or FOREIGN DATA WRAPPER. For SOAP
sources, set the translator to soap or ws. A corresponding SERVER definition in the DDL represents the
external data source server, and associates the translator with the external server.

The Web services or SOAP translator exposes stored procedures for calling web or SOAP services.
Results from this translator are typically used with the TEXTTABLE or XMLTABLE table functions to
process data formatted in CSV or XML.

Dependencies

SOAP data sources do not require you to specify any build dependencies.

The following table shows the data source information that is required in the data source properties of
the custom resource:

Table 5.18. Data source properties for SOAP

Property Name Applies to Required Default Value Description

EndPoint HTTP and SOAP false n/a URL for HTTP;
service endpoint
for SOAP. Not
required if using
HTTP to invoke
procedures that
specify absolute
URLs. Used as the
base URL if an
invoked procedure
uses a relative
URL.

SecurityType HTTP and SOAP false none Type of
authentication to
use with the web
service. Allowed
values
[None,HTTPBas
ic]

AuthUserName HTTP and SOAP false n/a Name value for
authentication,
used in HTTPBasic
and WsSecurity.

 value: user
 - name: password
 value: pass

CHAPTER 5. DATA SOURCE CONFIGURATION

43

AuthPassword HTTP and SOAP false n/a Password value for
authentication,
used in HTTPBasic
and WsSecurity.

ConfigFile HTTP and SOAP false n/a CXF client
configuration file
or URL.

EndPointName HTTP and SOAP false teiid Local part of the
endpoint QName
to use with this
connection. Must
match the one
defined in cxf file

ServiceName SOAP false n/a Local part of the
service QName to
use with this
connection.

NamespaceUri SOAP false http://teiid.org Namespace URI of
the service
QName to use
with this
connection.

RequestTimeout HTTP and SOAP false n/a Timeout for
request.

ConnectTimeout HTTP and SOAP false n/a Timeout for
connection.

Wsdl SOAP false n/a WSDL file or URL
for the web
service.

Property Name Applies to Required Default Value Description

Example: Excerpt from an SOAP custom resource, showing the format for setting key
properties

 datasources:
 - name: soapCountry
 type: soap
 properties:
 - name: wsdl
 value: http://www.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL
 - name: namespaceUri
 value: http://www.oorsprong.org/websamples.countryinfo
 - name: serviceName

Red Hat Integration 2020-Q2 Using Data Virtualization

44

http://teiid.org

 value: CountryInfoService
 - name: endPointName
 value: CountryInfoServiceSoap12

CHAPTER 5. DATA SOURCE CONFIGURATION

45

1

CHAPTER 6. RUNNING THE DATA VIRTUALIZATION
OPERATOR TO DEPLOY A VIRTUAL DATABASE

The Data Virtualization Operator helps to automate the configuration and deployment of virtual
databases.

The Operator processes a virtual database custom resource (CR) to deploy a virtual database object on
OpenShift. By running the operator with different CRs, you can create virtual databases from a range of
data sources.

NOTE

Virtual databases that you deploy to OpenShift in this Technology Preview are not
available from Fuse Online.

6.1. INSTALLING THE DATA VIRTUALIZATION OPERATOR ON
OPENSHIFT

Install the Data Virtualization Operator so that you can use it to deploy virtual database images to
OpenShift from YAML-based custom resources (CRs).

You can install the data virtualization operator from the OperatorHub on OpenShift 4.2 and later.

After you add the operator to your OpenShift cluster, you can use it to build and deploy virtual database
images from a range of data sources.

Prerequisites

You have cluster-admin access to an OpenShift 4.2 or greater cluster.

You have access to the OpenShift 4.2 or greater web console.

You have Developer access to an OpenShift server and you are familiar with using the
OpenShift console and CLI.

Procedure

1. From a terminal window, type the following commands to log in to the OpenShift cluster and
create a pull secret that you can use to access the Red Hat image registry:

Use your Red Hat Customer Portal login credentials.

2. Log in to the OpenShift web console as a cluster administrator.

oc login
oc create secret docker-registry dv-pull-secret /
--docker-server=registry.redhat.io /
--docker-username=$username / 1
--docker-password=$password /
--docker-email=$email_address
oc secrets link builder dv-pull-secret
oc secrets link builder dv-pull-secret --for=pull

Red Hat Integration 2020-Q2 Using Data Virtualization

46

3. From the OpenShift menu, expand Operators and click OperatorHub.

4. Click Red Hat Integration - Data Virtualization, and then click Install.

5. From the Create Operator Subscription page, verify that the selected namespace matches
the name of the project where you want to install the operator, and then click Subscribe.
The Installed Operators page lists the Data Virtualization Operator and reports the status of
the installation.

6. From the OpenShift menu, expand Workloads and click Pods to check the status of the
Operator pod. After a few minutes, the pod for the Operator service begins to run.

7. To enable the data virtualization Operator to retrieve images from the Red Hat registry so that
you can create virtual databases, link the secret that you created in Step 1 to the service account
for the Operator.

Additional resources

Section 6.2, “Deploying virtual databases” .

6.2. DEPLOYING VIRTUAL DATABASES

After you create a virtual database and its corresponding CR file, run the Data Virtualization Operator to
deploy the database to Openshift.

Prerequisites

A cluster administrator added the Data Virtualization Operator to the OpenShift cluster where
you want to deploy the virtual database.

You have access to an OpenShift cluster in which the Data Virtualization Operator is installed.

You have a CR in YAML format that provides information about how to configure and deploy
the virtual database.

The Operator has access to the Maven repositories that contain the dependencies that the
build requires.

OpenShift can access the data source that is referenced in the CR.

Procedure

1. From a terminal window, log in to OpenShift and open the project where you want to create the
virtual database.

2. On your computer, change to the directory that contains the .yaml file that contains the CR.

3. Type the following command to run the operator to create the virtual database:

oc create -f <cr_filename.yaml>

Replace <cr_filename.yaml> with the name of the CR file for your data source. For example,

oc secrets link dv-operator dv-pull-secret --for=pull

CHAPTER 6. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A VIRTUAL DATABASE

47

oc create -f dv-customer.yaml

After the deployment completes, a virtual database service is added to the OpenShift cluster.
The name of the service matches the name that is specified in the custom resource.

4. Type the following command to verify that the virtual database is created:

oc get vdbs

OpenShift returns the list of virtual databases in the project.

5. To see whether a particular virtualization is available, type the following command:

oc get vdb <dv-name>

The deployed service supports connections from the following clients:

JDBC clients through port 31000.

postgreSQL clients, including ODBC clients, through port 5432.

OData clients, through an HTTP endpoint and route.

Red Hat Integration 2020-Q2 Using Data Virtualization

48

CHAPTER 7. SECURING DATA
To prevent unauthorized access to data, you can implement the following measures:

Encrypt communications between the virtual database and other database clients and servers.

Use OpenShift secrets to store the values of properties.

Configure integration with Red Hat Single Sign-On in OpenShift to enable OpenID-Connect
authentication and OAuth2 authorization.

Apply role-based access controls to your virtual database.

Configure 3Scale to secure OData API endpoints.

7.1. CERTIFICATES AND DATA VIRTUALIZATION

You can use TLS to secure communications between the data virtualization service and other services.
For example, you can use TLS to encrypt the traffic that the service exchanges during the following
operations:

Responding to queries from JDBC and postgreSQL clients.

Responding to calls from REST or OData APIs over HTTPS.

Communicating with a Keycloak/RH-SSO server.

Communicating with SFTP data sources.

Certificate types

To encrypt traffic, you must add a TLS certificate for the virtual database service to the cluster. You can
use either of two type of certificates to configure encryption. The certificate can be either a self-signed
service certificate that is generated by the OpenShift certificate authority, or a custom certificate from
a trusted third-party Certificate Authority (CA). If you use a custom certificate, you must configure it
before you build and deploy the virtual database.

Certificate scope

After you configure a certificate for the data virtualization service, you can use the certificate for all of
the data virtualization operations within the OpenShift cluster.

7.1.1. Service-generated certificates

Service certificates provide for encrypted communications with internal and external services alike.
However, only internal services, that is, services that are deployed in the same OpenShift cluster, can
validate the authenticity of a service certificate.

OpenShift service certificates have the following characteristics:

Consist of a public key certificate (tls.crt) and a private key (tls.key) in PEM base-64-encoded
format.

Stored in an encryption secret in the OpenShift pod.

Signed by the OpenShift CA.

CHAPTER 7. SECURING DATA

49

Valid for one year.

Replaced automatically before expiration.

Can be validated by internal services only.

Using a service-generated certificate is the simplest way to secure communications between a virtual
database and other applications and services in the cluster. When you run the Data Virtualization
Operator to create a virtual database, it checks for the existence of a secret that has the same name as
the virtual database that is defined in the CR, for example, VDB_NAME-certificates..

If the Operator detects a secret with a name that matches the virtual database name, it converts
certificate and key in the secret into a Java Keystore. The Operator then configures the Keystore for
use with the virtual database container that it deploys.

If the Operator does not find a secret with the name of the virtual database, it creates a service-
generated certificate files in PEM format to define the public key certificate and private encryption key
for the service. Also known as a service serving certificates, a service-generated certificate originates
from the OpenShift Certificate Authority.

The following certificate files are created:

tls.crt - TLS public key certificate

tls.key - TLS private encryption key

The Operator stores the generated certificate files in a secret with the name of the virtual database:
VDB_NAME-certificates.

When the certificate and key are converted to a Keystore, the Operator also adds the default Truststore
from the Kubernetes /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt certificate to the
cluster. After the Keystore and Truststore are deployed, the virtual database service can communicate
securely with other services in the cluster, as long as they use service-based certificates. However, the
virtual database cannot exchange secure communications with services that are use other certificate
types, such as custom certificates, or other types of self-signed certificates. To enable communication
with these services, and with services that hosted outside of the cluster, you must configure the service
to use custom certificates.

Additional resources

For more information about service serving certificates in OpenShift, see the OpenShift Authentication
documentation.

7.1.2. Custom certificates

To support secure communications between the virtual database service and applications outside of the
OpenShift cluster, you can obtain custom certificates from a trusted third-party Certificate Authority.

External services do not recognize the validity of certificates that are generated by the OpenShift
certificate authority. For an external services to validate custom TLS certificates, the certificates must
originate from a trusted, third-party certificate authority (CA). Such certificates are universally
recognized, and can be verified by any client. Information about how to obtain a certificate from a third-
party CA is beyond the scope of this document.

You can add custom certificates to a virtual database by supplying information about the certificate in
an encryption secret and deploying the secret to OpenShift before you run the Data Virtualization
Operator to create the service. After you deploy an encryption secret to OpenShift, it becomes available

Red Hat Integration 2020-Q2 Using Data Virtualization

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication/index#add-service-serving

to the Data Virtualization Operator when it creates a virtual database. The Operator detects the secret
with the name that matches the name of the virtual database in the CR, and it automatically configures
the virtual database service to use the specified certificate to encrypt communications with other
services.

7.1.3. Using custom TLS certificates to encrypt communications between a virtual
database and other services

Data virtualization uses TLS certificates to encrypt network traffic between a virtual database service
and the clients or data sources that the service communicates with.

To ensure that both internal and external services can authenticate the CA signature on the TLS
certificates, the certificate must originate from trusted third-party certificate authorities (CA).

To configure the data virtualization service to use a custom certificate to encrypt traffic, you add the
certificate details to an OpenShift secret and deploy the secret to the namespace where you want to
create the virtual database. You must create the secret before you create the service.

To use custom TLS certificates, you first generate a keystore and truststore from the certificates. You
then convert the binary content of those files into Base64 encoding. After you convert the content, you
add the content to a secret and deploy it to OpenShift.

7.1.4. Creating a keystore from the private key and public key certificate

To support secure communications between the virtual database service and applications outside of the
OpenShift cluster, you can obtain custom certificates from a trusted third-party Certificate Authority.

Adding a custom keystore and truststore for your TLS certificates provides the most flexible framework
for securing communications, enabling you to define a configuration that works in any situation.

You must complete the following general tasks:

Obtain a TLS certificate from a CA.

Build a keystore in PKCS12 format from the public certificate and private key in the CA
certificate.

Convert the keystore to Base64 encoding.

Prerequisite

You have a TLS certificate from a trusted, third-party CA.

You have the private key (tls.key) and public key certificate (tls.crt) from the TLS certificate in
PEM format.

Procedure

1. Taking as input the tls.key and tls.crt from the certificate in PEM format, run the following
command to create a keystore.

The following table describes the elements of the openssl command:

openssl pkcs12 -export -in tls.crt -inkey tls.key -out keystore.pkcs12

CHAPTER 7. SECURING DATA

51

Table 7.1. openssl command to generate a keystore from certificate files

Command element Description

pkcs12 The openssl pkcs12 utility.

-export Exports the file.

-in tls.crt Identifies the certificate file.

-inkey tls.key Identifies the key to import into the keystore.

-out keystore.pkcs12 Specifies the name of the keystore file to create.

2. From the keystore.pkcs12 file that you generated in the previous step, type the following
command to convert the file to Base64 encoding:

3. Copy the contents of the command output to a YAML secret file.
For more information, see Section 7.1.7, “Creating an OpenShift secret to store the keystore
and truststore”.

7.1.5. Creating a truststore from the public key certificate

Prerequisite

You have the Java 11 or later version of the keytool key and certificate management utility,
which uses PKCS12 as the default format.

You have a public key certificate (tls.crt) in PKCS12 format.

Procedure

In the steps that follow, after you generate Base64 encodings for the keystore and truststore keys, add
the content to the YAML file.

1. From a terminal window, using the public key certificate, tls.crt, type the following command:

2. Type the following command to convert the output to Base64 encoding:

3. Copy the contents of the command output and paste it into the secret.

7.1.6. Adding the keystore and truststore passwords to the configuration

To use the custom keystores, you must specify the passwords to use in virtual database operations.

base64 keystore.pkcs12

keytool -import -file tls.crt -alias myalias -keystore truststore.pkcs12

base64 truststore.pkcs12

Red Hat Integration 2020-Q2 Using Data Virtualization

52

To use the custom keystores, you must specify the passwords to use in virtual database operations.
Provide the passwords as environment properties in the custom resource for the virtual database by
setting the following properties.

TEIID_SSL_KEYSTORE_PASSWORD

TEIID_SSL_TRUSTSTORE_PASSWORD

KEYCLOAK_TRUSTSTORE_PASSWORD (For use with Red Hat SSO/Keycloak, if the trust
manager is not disabled)

The following example shows an excerpt from a virtual database CR in which the preceding variables are
defined:

Example: Custom resource showing environment variables to define passwords for
certificate keystore and truststores

After you configure the cluster to use the preceding certificates in the keystore and truststore, the
virtual database can use the certificates to encrypt or decrypt communications with services.

After you deploy the TLS secret to OpenShift, run the Data Virtualization Operator to create a virtual
database with the name that is specified in the secret. For more information, see Section 6.2,
“Deploying virtual databases”.

When the Operator creates the virtual database, it searches for a secret that has a name that matches
the name specified in the CR for the virtual database service. If it finds a matching secret, the Operator
configures the service to use the secret to encrypt communications between the virtual database
service and other applications and services.

7.1.7. Creating an OpenShift secret to store the keystore and truststore

Create a YAML file

Add the keystore to an OpenShift secret.

Deploy the secret to OpenShift.

1. Create a YAML file to define a secret of type Opaque with the name {vdb-name}-keystore,
and include the following information: +

apiVersion: teiid.io/v1alpha1
kind: VirtualDatabase
metadata:
 name: dv-customer
spec:
 replicas: 1
 env:
 - name: TEIID_SSL_KEYSTORE_PASSWORD
 value: KEYSTORE_PASSWORD
 - name: TEIID_SSL_TRUSTSTORE_PASSWORD
 value: TRUSTSTORE_PASSWORD
 - name: KEYCLOAK_TRUSTSTORE_PASSWORD
 value: SSO_TRUSTSTORE_PASSWORD

 ... additional content removed for brevity

CHAPTER 7. SECURING DATA

53

1

2

3

The keystore and truststore generated from a TLS key pair, in Base64 encoding.

The name of the virtual database that you want to create.

The OpenShift namespace in which you want to create the virtual database.

Prerequisites

You have Developer or Administrator access to the OpenShift project where you want to create
the secret and virtual database.

You have the keystore and truststore in Base64 format that you generated from a custom TLS
certificate.

Procedure

1. Create a YAML file to define a secret of type kubernetes.io/tls, and include the following
information:

The public and private keys of the TLS key pair.

The name of the virtual database that you want to create.

The OpenShift namespace in which you want to create the virtual database.
For example:

The name of the secret. The secret name must match the name of the virtual database
object in the CR YAML file that the Data Virtualization Operator uses to create a
virtual database, for example, dv-customer.

The OpenShift namespace in which the virtual database service is deployed, for
example, myproject.

The data value is made up of the contents of the TLS keystore certificate
(keystore.pkcs12), and the truststore (truststore.pkcs12) in base64-encoded
format.

2. Save the file as dv-customer-keystore.yaml.
3. Open a terminal window, sign in to the OpenShift project where you want to add the secret, and

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: _VDB_NAME-keystore 1
 namespace: PROJECT_NAME 2

data: 3
 keystore.pkcs12: >-
 -----BEGIN KEYSTORE-----
 [...]
 -----END KEYSTORE-----
 truststore.pkcs12: >-
 -----BEGIN TRUSTSTORE-----
 [...]
 -----END TRUSTSTORE-----

Red Hat Integration 2020-Q2 Using Data Virtualization

54

1

3. Open a terminal window, sign in to the OpenShift project where you want to add the secret, and
then type the following command:

The following example shows a YAML file for creating an OpenShift secret to store a keystore and
truststore.

Example: dv-customer-keystore.yaml file

An example script to create the secret will be like below

dv-customer-keystore.yaml

dv-customer is name of the virtual database that will use the keystore.

Based on the format of the preceding example, create a secret file with the content from your keystore
and truststore.

1. Type the following command to add the secret to OpenShift:

$ oc apply -f tls_secret.yaml

kind: Secret
apiVersion: v1
metadata:
 name: dv-customer-keystore 1
 namespace: my-project
data:
 keystore.pkcs12: >-

MIIKAwIBAzCCCc8GCSqGSIb3DQEHAaCCCcAEggm8MIIJuDCCBG8GCSqGSIb3DQEHBqCCBGA
wggRcAgEAMIIEVQYJKoZIhvcNAQcBMBwGCiqGSIb3DQEMAQYwDgQI7RFjrbx64PkCAggAgIIEKLn
2Y244Jw2O37QlmT+uS3XE0vErwJIIwpwR8nlu8YDPTU8UtN3nDXNkdKbolQVTCVnzFSbJ7RohoAEJ
dB3D8iDkVpFpvIbBYUvq3LB8obFuSuFP50IMprp9gnUjRit5/nOGdJIKiM3ZJQgE46gvYsQJiKo0CGlBf/
7J9CWh/zwp7fV4JzxZaW/4bkUaz1jegPx0lYEPW14U1lNF0BCn0DnTffCHnSqQIlW+KwNj3uNtqVqLTt
4LoLTbfvCjYN+6q+0Ei67a05g8X2ZI7y7LJvfRGlAssVwqOIOMeiwajOtsJXXaN1WsZjURFVIJpmlWAcG/
72J9xUlA5YYUzdxI8GdaQis78b0lsvYPU0WqCMBmfoJMxhQuIfpZVqDgqTTaJhvrv7lw/VYLyJKG1N0pA
Q9dDnWUtje7MB+Q853ffjzZ5PDp8G+BoxUrsxABheslI8PwIb0JG66yxyBmgvpxlGVN1IyHLKZzn3/RUC
A8/WLjuD1SAmFQxfDoOir1LEnodXLEVLH+8/Ety0xvP5T9BFn/YVsPSjplhukkdfqiHDqxffg8aJlpfOC8AJ
4EVItb/W8fBQovQ+jhm1LpuQedA6fiaROYYHChaQM94y9HqPIveCEpKGkG47ohGWU/LCht/Da3iHhl6
h9BCX/U/PcsojKy8ZmzZTJb+oIRCx+A84X/hObGoqU+dOItQ//G37BIL7jIcQ9gwShtQhXmdCtrh10iNK
GxaDxyBBJS64+KeuAv16eyj3UHoR3Ux9P3RVzZ6bH+IrKsWRacg+JYzEZNAzo0NYkVCqgvbdC+fWDt
q6rQA2knjRhwwK/WU/=
 truststore.pkcs12: >-

MIIWlgIBAzCCFmIGCSqGSIb3DQEHAaCCFlMEghZPMIIWSzCCFkcGCSqGSIb3DQEHBqCCFjgwgh
Y0AgEAMIIWLQYJKoZIhvcNAQcBMBwGCiqGSIb3DQEMAQYwDgQIq4NIOxI8IoUCAggAgIIWAN8YK
MvjIo6qGX2Rz0SIKiDlUNySI5GKjt1RKicid9QIVfyKjWhjufqn+OXjhaxYJtZ+GgW3SdO1il0cHEGSQycEJ
PQ/diAMqmdgoyd1batEYxp1baR9wm4aqmYip0j3Xd84fpQylTs73tFOZYWJYPDqq27jYYbEUL0bOKko
MOvIftW6y18gT/E8XVYi7Gy81IJzNnhQkyt4bZO3/vyoEgvyUDGLCtFxSk4U9JiGk3RtzLW1HnOiGof1B/l
Js7vHe13QITJWqxhqKs4rWYj8pOiyrIhAcLtGMEUH9cyQ7gpYFvx5KObY//gEDr2MnRdR4cm79wuffg9
mUH96hvqwrm/dpJC1lP+dRM/9Alyn9KEuEilWaUOxkHobvcCs04fh2Fw8GS4wdCAiB7Rj3e2U1duWdg
3MJ5Qxq4SVEZeTPkDKetqZTTWpzDiw8nxgZx7MGYAQ5kIYeWHWzVs9fFDuNFTnvhEb535KMz6qZ
YMjJdiZRVhX5XyCKyLyiBovQsdHDUkuubroJfUFe3VI7FNGNVJ1OIuqrIVJVYIpqER6khWoCOizm/L1P
WU8XS6fsR3ES296VaukzAyewQIpQhEek9XjRY=
type: Opaque

CHAPTER 7. SECURING DATA

55

7.2. USING SECRETS TO STORE DATA SOURCE CREDENTIALS

Create and deploy secret objects to store values for your environment variables.

Although secrets exist primarily to protect sensitive data by obscuring the value of a property, you can
use them to store the value of any property.

Prerequisites

You have the login credentials and other information that are required to access the data
source.

Procedure

1. Create a secrets file to contain the credentials for your data source, and save it locally as a
YAML file. For example,

Sample secrets.yml file

2. Deploy the secret object on OpenShift.

a. Log in to OpenShift, and open the project that you want to use for your virtual database.
For example,
oc login --token=<token> --server=https://<server>oc project <projectName>

b. Run the following command to deploy the secret file:
oc create -f ./secret.yaml

3. Set an environment variable to retrieve its value from the secret.

a. In the environment variable, use the format valueFrom:/secretKeyRef to specify that the
variable retrieves it value from a key in the secret that you created in Step 1.
For example, in the following excerpt, the
SPRING_DATASOURCE_SAMPLEDB_PASSWORD retrieves its value from a reference
to the database-password key of the postgresql secret:

- name: SPRING_DATASOURCE_SAMPLEDB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: postgresql
 key: database-password

oc create -f dv-customer-keystore.yaml

apiVersion: v1
kind: Secret
metadata:
 name: postgresql
type: Opaque
stringData:
 database-user: bob
 database-name: sampledb
 database-password: bob_password

Red Hat Integration 2020-Q2 Using Data Virtualization

56

The following example shows the use of secrets to define the username and password properties for a
postgreSQL datbase.

Sample data source configuration that uses secrets to define properties

In the preceding example, sampledb denotes a custom name that is assigned to the source database.
The same name would be assigned to the SERVER definition for the data source in the DDL for the
virtual database. For example, CREATE SERVER sampledb FOREIGN DATA WRAPPER postgresql.

Additional resources

For more information about how to use secrets on OpenShift, see Providing sensitive data to
pods in the OpenShift documentation.

7.3. SECURING ODATA APIS FOR A VIRTUAL DATABASE

You can integrate data virtualization with Red Hat Single Sign-On and Red Hat 3scale API Management
to apply advanced authorization and authentication controls to the OData endpoints for your virtual
database services.

The Red Hat Single Sign-On technology uses OpenID-Connect as the authentication mechanism to
secure the API, and uses OAuth2 as the authorization mechanism. You can integrate data virtualization
with Red Hat Single Sign-On alone, or along with 3scale.

By default, after you create a virtual database, the OData interface to it is discoverable by 3scale, as
long as the 3scale system is defined to same cluster and namespace. By securing access to OData APIs
through Red Hat Single Sign-On, you can define user roles and implement role-based access to the API
endpoints. After you complete the configuration, you can control access in the virtual database at the
level of the view, column, or data source. Only authorized users can access the API endpoint, and each
user is permitted a level of access that is appropriate to their role (role-based access). By using 3scale
as a gateway to your API, you can take advantage of 3scale’s API management features, allowing you to
tie API usage to authorized accounts for tracking and billing.

When a user logs in, 3scale negotiates authentication with the Red Hat Single Sign-On package. If the
authentication succeeds, 3scale passes a security token to the OData API for verification. The OData
API then reads permissions from the token and applies them to the data roles that are defined for the
virtual database.

Prerequisites

datasources:
 - name: sampledb
 type: postgresql
 properties:
 - name: username
 valueFrom:
 secretKeyRef:
 name: sampledb-secret
 key: username
 - name: password
 valueFrom:
 secretKeyRef:
 name: sampledb-secret
 key: password
 - name: jdbc-url
 value: jdbc:postgresql://database/postgres

CHAPTER 7. SECURING DATA

57

https://docs.openshift.com/container-platform/4.3/nodes/pods/nodes-pods-secrets.html

Prerequisites

Red Hat Single Sign-On is running in the OpenShift cluster. For more information about
deploying Red Hat Single Sign-On, see the Red Hat Single Sign-On for OpenShift
documentation.

You have Red Hat 3scale API Management installed in the OpenShift cluster that hosts your
virtual database.

You have configured integration between 3scale and Red Hat Single Sign-On. For more
information, see Configuring Red Hat Single Sign-On integration in Using the Developer Portal.

You have assigned the realm-management and manage-clients roles.

You created API users and specified credentials.

You configured 3scale to use OpenID-Connect as the authentication mechanism and
OAuth2 as the authorization mechanism.

7.3.1. Configuring Red Hat Single Sign-On to secure OData

You must add configuration settings in Red Hat Single Sign-On to enable integration with data
virtualization.

Prerequisites

Red Hat Single Sign-On is running in the OpenShift cluster. For information about deploying
Red Hat Single Sign-On, see the link:Red Hat Single Sign-On for OpenShift[Red Hat Single
Sign-On] documentation.

You run the Data Virtualization Operator to create a virtual database in the cluster where Red
Hat Single Sign-On is running.

Procedure

1. From a browser, log in to the Red Hat Single Sign-On Admin Console.

2. Create a realm for your data virtualization service.

a. From the menu for the master realm, hover over Master and then click Add realm.

b. Type a name for the realm, such as datavirt, and then click Create.

3. Add roles.

a. From the menu, click Roles.

b. Click Add Role.

c. Type a name for the role, for example ReadRole, and then click Save.

d. Create other roles as needed to map to the roles in your organization’s LDAP or Active
Directory. For information about federating user data from external identity providers, see
the Server Administration Guide.

4. Add users.

Red Hat Integration 2020-Q2 Using Data Virtualization

58

{LinkRHSSOForOpenShift}
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.7/html-single/using_the_developer_portal/#configure-oidc-rhsso-integration
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.3/html-single/server_administration_guide/index

a. From the menu, click Users, and then click Add user.

b. On the Add user form, type a user name, for example, user, specify other user properties
that you want to assign, and then click Save.
Only the user field is mandatory.

c. From the details page for the user, click the Credentials tab.

d. Type and confirm a password for the user, click Reset Password, and then click Change
password when prompted.

5. Assign roles to the user.

a. Click the Role Mappings tab.

b. In the Available Roles field, click ReadRole and then click Add selected.

6. Create a second user called developer, and assign a password and roles to the user.

7. Create a data virtualization client entry.
The client entry represents the data virtualization service as an SSO client application. .. From
the menu, click Clients. .. Click Create to open the Add Client page. .. In the Client ID field, type
a name for the client, for example, dv-client. .. In the Client Protocol field, choose openid-
connect. .. Leave the Root URL field blank, and click Save.

You are now ready to add SSO properties to the CR for the data virtualization service.

7.3.2. Adding SSO properties to the custom resource file

After you configure Red Hat Single Sign-On to secure the OData endpoints for a virtual database, you
must configure the virtual database to integrate with Red Hat Single Sign-On. To configure the virtual
database to use SSO, you add SSO properties to the CR that you used when you first deployed the
service (for example, dv-customer.yaml). You add the properties as environment variables. The SSO
configuration takes effect after you redeploy the virtual database.

In this procedure you add the following Red Hat Single Sign-On properties to the CR:

Realm (KEYCLOAK_REALM)

The name of the realm that you created in Red Hat Single Sign-On for your virtual database.

Authentication server URL (KEYCLOAK_AUTH_SERVER_URL)

The base URL of the Red Hat Single Sign-On server. It is usually of the form https://host:port/auth.

Resource name(KEYCLOAK_RESOURCE)

The name of the client that you create in Red Hat Single Sign-On for the data virtualization service.

SSL requirement (KEYCLOAK_SSL_REQUIRED)

Specifies whether requests to the realm require SSL/TLS. You can require SSL/TLS for all requests,
external requests only, or none.

Access type (KEYCLOAK_PUBLIC_CLIENT)

The OAuth application type for the client. Public access type is for client-side clients that sign in
from a browser.

Prerequisites

You ran the Data Virtualization Operator to create a virtual database.

CHAPTER 7. SECURING DATA

59

Red Hat Single Sign-On is running in the cluster where the virtual database is deployed.

You have the CR YAML file, for example, dv-customer.yaml that you used to deploy the virtual
database.

You have have administrator access to the Red Hat Single Sign-On Admin Console.

Procedure

1. Log in to the Red Hat Single Sign-On Admin Console to find the values for the required
authentication properties.

2. In a text editor, open the CR YAML file that you used to deploy your virtual database, and define
authentication environment variables that are based on the values of your Red Hat Single Sign-
On properties.
For example:

env:
 - name: KEYCLOAK_REALM
 value: master
 - name: KEYCLOAK_AUTH_SERVER_URL
 value: http://rh-sso-datavirt.openshift.example.com/auth
 - name: KEYCLOAK_RESOURCE
 value: datavirt
 - name: KEYCLOAK_SSL_REQUIRED
 value: external
 - name: KEYCLOAK_PUBLIC_CLIENT
 value: true

3. Declare a build source dependency for the following Maven artifact for securing data
virtualizations: org.teiid:spring-keycloak
For example:

env:

 build:
 source:
 dependencies:
 - org.teiid:spring-keycloak

4. Save the CR.

You are now ready to define data roles in the DDL for the virtual database.

7.3.3. Defining data roles in the virtual database DDL

After you configure Red Hat Single Sign-On to integrate with data virtualization, to complete the
required configuration changes, define role-based access policies in the DDL for the virtual database.
Depending on how you deployed the virtual database, the DDL might be embedded in the CR file, or
exist as a separate file.

You add the following information to the DDL file:

The name of the role. Roles that you define in the DDL must map to roles that you created
earlier in Red Hat Single Sign-On.

TIP

Red Hat Integration 2020-Q2 Using Data Virtualization

60

TIP

For the sake of clarity, match the role names in the DDL file to the role names that you specified
in Red Hat Single Sign-On. Consistent naming makes it easier to correlate how the roles that
you define in each location relate to each other.

The database access to allow to users who are granted the specified role. For example, SELECT
permissions on a particular table view.

Prerequisites

You configured Red Hat Single Sign-On to work with data virtualization as described in
Section 7.3.1, “Configuring Red Hat Single Sign-On to secure OData” .

You added SSO properties to the CR file for the virtual database, as described in .

Procedure

1. In a text editor, open the file that contains the DDL description that you used to deploy the
virtual database.

2. Insert statements to add any roles that you defined for virtual database users in Red Hat Single
Sign-On. For example, to add a role with the name ReadRole add the following statement to
the DDL:

CREATE ROLE ReadRole WITH FOREIGN ROLE ReadRole;

Add separate CREATE ROLE statements for each role that you want to implement for the
virtual database.

3. Insert statements that specify the level of access that users with the role have to database
objects. For example,

GRANT SELECT ON TABLE "portfolio.CustomerZip" TO ReadRole

Add separate GRANT statements for each role that you want to implement for the virtual
database.

4. Save and close the CR or DDL file.
You are now ready to redeploy the virtual database. For information about how to run the Data
Virtualization Operator to deploy the virtual database, see Chapter 6, Running the Data
Virtualization Operator to deploy a virtual database.

After you redeploy the virtual database, add a redirect URL in the Red Hat Single Sign-On
Admin Console. For more information, see Section 7.3.4, “Adding a redirect URI for the data
virtualization client in the Red Hat Single Sign-On Admin Console”.

7.3.4. Adding a redirect URI for the data virtualization client in the Red Hat Single
Sign-On Admin Console

After you enable SSO for your virtual database and redeploy it, specify a redirect URI for the data
virtualization client that you created in Section 7.3.1, “Configuring Red Hat Single Sign-On to secure
OData”.

Redirect URIs, or callback URLs are required for public clients, such as OData clients that use OpenID

CHAPTER 7. SECURING DATA

61

Redirect URIs, or callback URLs are required for public clients, such as OData clients that use OpenID
Connect to authenticate, and communicate with an identity provider through the redirect mechanism.

For more information about adding redirect URIs for OIDC clients, see the NameOfRHSSOServerAdmin.

Prerequisites

You enabled SSO for a virtual database and used the Data Virtualization Operator to redeploy
it.

You have administrator access to the Red Hat Single Sign-On Admin Console.

Procedure

1. From a browser, sign in to the Red Hat Single Sign-On Admin Console.

2. From the security realm where you created the client for the data virtualization service, click
Clients in the menu, and then click the ID of the data virtualization client that you created
previously (for example, dv-client).

3. In the Valid Redirect URIs field, type the root URL for the OData service and append an
asterisk to it. For example, http://datavirt.odata.example.com/*

4. Test whether Red Hat Single Sign-On intercepts calls to the OData API.

a. From a browser, type the address of an OData endpoint, for example:

http://datavirt.odata.example.com/odata/CustomerZip

A login page prompts you to provide credentials.

5. Sign in with the credentials of an authorized user.
Your view of the data depends on the role of the account that you use to sign in.

NOTE

Some endpoints, such as odata/$metadata are excluded from security filtering so that
they can be discovered by other services.

Red Hat Integration 2020-Q2 Using Data Virtualization

62

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.3/html-single/server_administration_guide/index#oidc_clients
http://datavirt.odata.example.com/*

CHAPTER 8. VIRTUAL DATABASE MONITORING
Prometheus is an open-source systems and service monitoring and alerting toolkit that you can use to
monitor services deployed in your Red Hat OpenShift environment. Prometheus collects and stores
metrics from configured services at given intervals, evaluates rule expressions, displays the results, and
can trigger alerts if a specified condition becomes true.

IMPORTANT

Red Hat support for Prometheus is limited to the setup and configuration
recommendations provided in Red Hat product documentation.

Prometheus communicates with the data virtualization service to retrieve metrics and data. Users can
query the data, or use a visualization took such as Grafana to view trends in a dashboard.

To enable monitoring of an OpenShift service, the service must expose an endpoint to Prometheus. This
endpoint is an HTTP interface that provides a list of metrics and the current values of the metrics. When
you use the Data Virtualization Operator to create a virtual database, the data virtualization service
automatically exposes an HTTP endpoint to Prometheus. Prometheus periodically scrapes each target-
defined endpoint and writes the collected data to its database.

After Prometheus is deployed to an OpenShift cluster, the metrics for any virtualization that you deploy
to the same cluster are exposed to the Prometheus service automatically.

The following tables list the runtime and cache metrics that the data virtualization service exposes to
Prometheus:

Table 8.1. Data virtualization runtime metrics exposed to Prometheus

Name Description Type

org.teiid.TotalRequestsProcessed Total requests processed Counter

org.teiid.WaitingRequestsCount Requests queued for processing Gauge

org.teiid.ActiveEngineThreadCou
nt

Number of current engine threads Gauge

org.teiid.QueuedEngineWorkItem
s

Number of queued work items Gauge

org.teiid.LongRunningRequestCo
unt

Number of long-running requests Gauge

org.teiid.TotalOutOfDiskErrors Total buffer out-of-disk errors Counter

org.teiid.PercentBufferDiskSpaceI
nUse

Percent buffer disk space in use Gauge

org.teiid.SessionCount Number of client sessions Gauge

CHAPTER 8. VIRTUAL DATABASE MONITORING

63

https://prometheus.io

org.teiid.DiskSpaceUsedInMB Disk space used (MB) Gauge

org.teiid.ActiveRequestCount Active requests Gauge

Name Description Type

Table 8.2. Data virtualization cache metrics exposed to Prometheus

Name Description Type

org.teiid.CacheRequestCount Number of cache reads Gauge

org.teiid.CacheTotalEntries Number of cache entries Gauge

org.teiid.CacheHitRatio Ratio of cache hits to total
attempts

Gauge

For more information about deploying Prometheus to monitor services on OpenShift, see the OpenShift
documentation.

Red Hat Integration 2020-Q2 Using Data Virtualization

64

https://docs.openshift.com/container-platform/4.5/monitoring/cluster_monitoring/configuring-the-monitoring-stack.html

CHAPTER 9. MIGRATING LEGACY VIRTUAL DATABASE FILES
TO DDL FORMAT

The data virtualization Technology Preview requires that you define the structure of virtual databases in
SQL-MED DDL (data definition language) format. By contrast, the structure of legacy Teiid virtual
databases, such as those that run on Wildfly, or on the Red Hat JBoss Data Virtualization offering, are
defined by using files that are in .xml or .vdb format.

You can reuse the virtual database designs that you developed for a legacy deployment, but you must
first update the format of the files. A migration tool is available to convert your files. After your convert
the files you can rebuild the virtual databases as container images and deploy them to OpenShift.

Migration considerations

The following features that were supported in virtual databases in JBoss Data Virtualization and Teiid
might be limited or unavailable in this Technology Preview release of data virtualization:

Data source compatibility

You cannot use all data sources with this release. For a list of compatible data sources, see
Section 2.1, “Compatible data sources” .

Internal distributed materialization

Not available.

Resultset caching

Not available.

Use of runtime metadata to import other virtual databases

DDL must be used to specify metadata for virtual databases.

Runtime manipulation of multisource vdb sources

Not available.

You can use the migration utility in the following two ways:

To validate a VDB file only

Use this method to check whether the utility can a successfully convert a VDB file. The utility
converts the VDB file and reports validation errors to the terminal. If there are no validation errors,
the utility displays the resulting DDL, but it does not save the converted DDL to a file.

To validate and a VDB file and save it to a DDL file

The file is saved only if there are no validation errors.

The migration tool works on XML files only. Files with a .vdb file extension are file archives that contain
multiple folders. If you have legacy files in .vdb format, use Teiid Designer to export the files to XML
format, and then run the migration tool to convert the resulting XML files.

Prerequisites

You have a legacy virtual database file in .xml format.

You download the settings.xml file from the Teiid OpenShift repository. Maven uses the
information in the file to run the migration tool.

9.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND

CHAPTER 9. MIGRATING LEGACY VIRTUAL DATABASE FILES TO DDL FORMAT

65

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/settings.xml

9.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND
VIEWING IT IN DDL FORMAT

You can run a test conversion on a legacy virtual database to check for validation errors and view the
resulting DDL file. When you run the migration tool in this way, the converted DDL file is not saved.

Procedure

1. Open the directory that contains the settings.xml file that you downloaded from the Teiid
OpenShift repository, and type the following command:

$ mvn -s settings.xml exec:java -Dvdb=<path_to_vdb_xml_file>

For example:

$ mvn -s settings.xml exec:java -Dvdb=rdbms-example/src/main/resources/vdb.xml

The migration tool checks the specified .xml file, and reports any validation errors. If there are
no validation errors, the migration tool displays a .ddl version of the virtual database on the
screen.

9.2. CONVERTING A LEGACY VIRTUAL DATABASE XML FILE AND
SAVING IT AS A DDL FILE

You can run the migration tool to convert a legacy virtual database file to .ddl format, and then save the
.ddl file to a specified directory. The migration tool checks the .xml file that you provide for validation
errors. If there are no validation errors, the migration tool converts the file to .ddl format and saves it to
the file name and directory that you specify.

Procedure

Open the directory that contains the settings.xml file that you downloaded from the Teiid
OpenShift repository, and type the following command:

$ mvn -s settings.xml exec:java -Dvdb=<path_to_vdb_xml_file> -Doutput=
<path_to_save_ddl_file>

For example:

$ mvn -s settings.xml exec:java -Dvdb=rdbms-example/src/main/resources/vdb.xml -
Doutput=rdbms-example/src/main/resources/vdb.ddl

Red Hat Integration 2020-Q2 Using Data Virtualization

66

	Table of Contents
	CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA VIRTUALIZATION
	CHAPTER 2. CREATING VIRTUAL DATABASES
	2.1. COMPATIBLE DATA SOURCES
	2.2. CREATING CUSTOM RESOURCES TO DEPLOY VIRTUALIZATIONS
	2.2.1. Configuring an OpenShift load balancer service to enable external JDBC clients to access the virtual database
	2.2.2. Environment variables in custom resources

	CHAPTER 3. CREATING A VIRTUAL DATABASE BY EMBEDDING DDL STATEMENTS IN A CUSTOM RESOURCE (CR)
	3.1. CREATING A CR TO DEPLOY A DDL ARTIFACT

	CHAPTER 4. CREATING A VIRTUAL DATABASE AS A MAVEN ARTIFACT
	4.1. BUILDING A VIRTUAL DATABASE ARTIFACT
	4.2. CREATING A CUSTOM RESOURCE (CR) TO DEPLOY A MAVEN ARTIFACT
	4.3. PRIVATE MAVEN REPOSITORIES
	4.3.1. Specifying private Maven repositories to build all virtual databases in a namespace
	4.3.2. Specifying private Maven repositories for building an individual virtual database
	4.3.3. Specifying the private Maven repositories for building an individual virtual database in its custom resource

	4.4. VIRTUAL DATABASE IMPORT
	4.4.1. How virtual database importing works
	4.4.2. POM and DDL for virtual databases that import from other virtual databases
	4.4.3. DDL limitations

	CHAPTER 5. DATA SOURCE CONFIGURATION
	5.1. CONFIGURATION PROPERTIES FOR S3 AND CEPH AS DATA SOURCES
	5.2. SETTINGS TO CONNECT TO GOOGLE SHEETS AS A DATA SOURCE
	5.3. CONFIGURATION PROPERTIES FOR RED HAT DATA GRID (INFINISPAN) AS A DATA SOURCE
	5.4. CONFIGURATION PROPERTIES FOR MONGODB AS A DATA SOURCE
	5.5. RELATIONAL DATABASES DATA SOURCES CONFIGURATION
	5.5.1. Configuration properties for Amazon Athena as a data source
	5.5.2. Configuration properties for Amazon Redshift data sources
	5.5.3. Configuration properties for Db2 as a data source
	5.5.4. Configuration properties for Microsoft SQL Server as a data source
	5.5.5. Configuration properties for MySQL as a data source
	5.5.6. Configuration properties for Oracle Database as a data source
	5.5.7. Configuration properties for postgreSQL as a data source

	5.6. CONFIGURATION PROPERTIES FOR USING A REST SERVICE AS A DATA SOURCE
	5.7. CONFIGURATION PROPERTIES FOR ODATA AS A DATA SOURCE
	5.8. CONFIGURATION PROPERTIES FOR OPENAPI AS A DATA SOURCE
	5.9. CONFIGURATION PROPERTIES FOR SALESFORCE AS A DATA SOURCE
	5.9.1. Setting up an OAuth connection to Salesforce

	5.10. CONFIGURATION PROPERTIES FOR USING FTP/SFTP AS A DATA SOURCE
	5.11. CONFIGURATION PROPERTIES FOR SOAP AS A DATA SOURCE

	CHAPTER 6. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A VIRTUAL DATABASE
	6.1. INSTALLING THE DATA VIRTUALIZATION OPERATOR ON OPENSHIFT
	6.2. DEPLOYING VIRTUAL DATABASES

	CHAPTER 7. SECURING DATA
	7.1. CERTIFICATES AND DATA VIRTUALIZATION
	7.1.1. Service-generated certificates
	7.1.2. Custom certificates
	7.1.3. Using custom TLS certificates to encrypt communications between a virtual database and other services
	7.1.4. Creating a keystore from the private key and public key certificate
	7.1.5. Creating a truststore from the public key certificate
	7.1.6. Adding the keystore and truststore passwords to the configuration
	7.1.7. Creating an OpenShift secret to store the keystore and truststore

	7.2. USING SECRETS TO STORE DATA SOURCE CREDENTIALS
	7.3. SECURING ODATA APIS FOR A VIRTUAL DATABASE
	7.3.1. Configuring Red Hat Single Sign-On to secure OData
	7.3.2. Adding SSO properties to the custom resource file
	7.3.3. Defining data roles in the virtual database DDL
	7.3.4. Adding a redirect URI for the data virtualization client in the Red Hat Single Sign-On Admin Console

	CHAPTER 8. VIRTUAL DATABASE MONITORING
	CHAPTER 9. MIGRATING LEGACY VIRTUAL DATABASE FILES TO DDL FORMAT
	9.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND VIEWING IT IN DDL FORMAT
	9.2. CONVERTING A LEGACY VIRTUAL DATABASE XML FILE AND SAVING IT AS A DDL FILE

