
Red Hat Fuse 7.5

Apache CXF Development Guide

Develop applications with Apache CXF Web services

Last Updated: 2023-07-24

Red Hat Fuse 7.5 Apache CXF Development Guide

Develop applications with Apache CXF Web services

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to developing Web services using Apache CXF.

. .

. .

. .

. .

Table of Contents

PART I. WRITING WSDL CONTRACTS

CHAPTER 1. INTRODUCING WSDL CONTRACTS
1.1. STRUCTURE OF A WSDL DOCUMENT

Overview
The logical part
The concrete part

1.2. WSDL ELEMENTS
1.3. DESIGNING A CONTRACT

CHAPTER 2. DEFINING LOGICAL DATA UNITS
2.1. INTRODUCTION TO LOGICAL DATA UNITS
2.2. MAPPING DATA INTO LOGICAL DATA UNITS

Overview
Available type systems for defining service data units
XML Schema as a type system
Considerations for creating your data units

2.3. ADDING DATA UNITS TO A CONTRACT
Overview
Procedure

2.4. XML SCHEMA SIMPLE TYPES
Overview
Entering simple types
Supported XSD simple types

2.5. DEFINING COMPLEX DATA TYPES
2.5.1. Defining data structures

Overview
Complex type varieties
Defining the parts of a structure
Defining attributes

2.5.2. Defining arrays
Overview
Complex type arrays
SOAP arrays

2.5.3. Defining types by extension
2.5.4. Defining types by restriction

Overview
Specifying the base type
Defining the restrictions
Example

2.5.5. Defining enumerated types
Overview
Defining an enumeration in XML Schema
Example

2.6. DEFINING ELEMENTS

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE
OVERVIEW
MESSAGES AND PARAMETER LISTS
MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS
MESSAGE DESIGN FOR SOAP SERVICES
MESSAGE NAMING

30

31
31
31
31
31
31
32

33
33
33
33
33
33
34
34
34
34
35
35
35
35
36
37
37
38
38
39
40
40
40
40
41

42
42
42
43
43
43
43
44
44
44

46
46
46
46
46
47

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

MESSAGE PARTS
EXAMPLE

CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES
OVERVIEW
PROCESS
PORT TYPES
OPERATIONS
OPERATION MESSAGES
RETURN VALUES
EXAMPLE

PART II. WEB SERVICES BINDINGS

CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL
OVERVIEW
PORT TYPES AND BINDINGS
THE WSDL ELEMENTS
ADDING TO A CONTRACT
SUPPORTED BINDINGS

CHAPTER 6. USING SOAP 1.1 MESSAGES
6.1. ADDING A SOAP 1.1 BINDING

Using wsdl2soap
Example

6.2. ADDING SOAP HEADERS TO A SOAP 1.1 BINDING
Overview
Syntax
Splitting messages between body and header
Example

CHAPTER 7. USING SOAP 1.2 MESSAGES
7.1. ADDING A SOAP 1.2 BINDING TO A WSDL DOCUMENT

Using wsdl2soap
Example

7.2. ADDING HEADERS TO A SOAP 1.2 MESSAGE
Overview
Syntax
Splitting messages between body and header
Example

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS
OVERVIEW
NAMESPACE
CHANGING THE MESSAGE BINDING
DESCRIBING A MIME MULTIPART MESSAGE
EXAMPLE

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM
9.1. OVERVIEW OF MTOM
9.2. ANNOTATING DATA TYPES TO USE MTOM

Overview
WSDL first
Java first

9.3. ENABLING MTOM

47
48

50
50
50
50
50
50
51
52

53

54
54
54
54
54
55

56
56
56
57
58
58
58
59
59

61
61
61

62
63
63
63
64
65

68
68
68
68
68
70

72
72
72
72
72
74
75

Red Hat Fuse 7.5 Apache CXF Development Guide

2

. .

. .

. .

. .

9.3.1. Using JAX-WS APIs
Overview
Service provider
Consumer

9.3.2. Using configuration
Overview
Procedure
Example

CHAPTER 10. USING XML DOCUMENTS
XML BINDING NAMESPACE
HAND EDITING
XML MESSAGES ON THE WIRE
OVERRIDING THE BINDING’S ROOTNODE ATTRIBUTE SETTING

PART III. WEB SERVICES TRANSPORTS

CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE DEFINED IN WSDL
OVERVIEW
ENDPOINTS AND SERVICES
THE WSDL ELEMENTS
ADDING ENDPOINTS TO A CONTRACT
SUPPORTED TRANSPORTS

CHAPTER 12. USING HTTP
12.1. ADDING A BASIC HTTP ENDPOINT

Alternative HTTP runtimes
Netty HTTP URL
Payload types
SOAP 1.1
SOAP 1.2
Other messages types

12.2. CONFIGURING A CONSUMER
12.2.1. Mechanisms for HTTP Consumer Endpoints
12.2.2. Using Configuration

Namespace
Undertow runtime or Netty runtime
The conduit element
The client element
Example
More information

12.2.3. Using WSDL
Namespace
Undertow runtime or Netty runtime
The client element
Example

12.2.4. Consumer Cache Control Directives
12.3. CONFIGURING A SERVICE PROVIDER

12.3.1. Mechanisms for a HTTP Service Provider
12.3.2. Using Configuration

Namespace
Undertow runtime or Netty runtime
The destination element
The server element

75
75
75
76
76
76
76
76

78
78
78
78
80

82

83
83
83
83
83
84

85
85
85
85
85
85
86
86
87
87
87
87
87
87
88
92
92
93
93
93
93
93
93
94
94
95
95
95
95
96

Table of Contents

3

. .

. .

Example
12.3.3. Using WSDL

Namespace
Undertow runtime or Netty runtime
The server element
Example

12.3.4. Service Provider Cache Control Directives
12.4. CONFIGURING THE UNDERTOW RUNTIME

Overview
Maven dependency
Namespace
The engine-factory element
The engine element
Configuring the thread pool
Example

12.5. CONFIGURING THE NETTY RUNTIME
Overview
Maven dependencies
Namespace
The engine-factory element
The engine element
Configuring the thread pool
Example

12.6. USING THE HTTP TRANSPORT IN DECOUPLED MODE
Overview
Configuring decoupled interactions
Configuring an endpoint to use WS-Addressing
Configuring the consumer
How messages are processed

CHAPTER 13. USING SOAP OVER JMS
13.1. BASIC CONFIGURATION

Overview
Specifying the JMS transport type
Specifying the target destination
Configuring JNDI and the JMS transport

13.2. JMS URIS
Overview
Syntax
JMS properties
JNDI properties
Additional JNDI properties
Example
Publishing a service
Consuming a service

13.3. WSDL EXTENSIONS
Overview
SOAP/JMS namespace
WSDL extension elements
Configuration scopes
Example

CHAPTER 14. USING GENERIC JMS

97
98
98
98
98
98
99

100
100
100
100
101
101
102
103
104
104
104
104
104
105
107
107
108
108
109
109
110
110

113
113
113
113
113
114
115
115
115
115
118
118
119
119

120
120
120
120
121
122
123

125

Red Hat Fuse 7.5 Apache CXF Development Guide

4

. .

. .

. .

. .

14.1. APPROACHES TO CONFIGURING JMS
14.2. USING THE JMS CONFIGURATION BEAN

Overview
Configuration namespace
Specifying the configuration
Applying the configuration to an endpoint
Applying the configuration to the transport

14.3. OPTIMIZING CLIENT-SIDE JMS PERFORMANCE
Overview
Pooling
Avoiding synchronous receives

14.4. CONFIGURING JMS TRANSACTIONS
Overview
Local transactions
JTA transactions

14.5. USING WSDL TO CONFIGURE JMS
14.5.1. JMS WSDL Extension Namespance
14.5.2. Basic JMS configuration

Overview
Specifying the JMS address
Specifying JNDI properties
Example

14.5.3. JMS client configuration
Overview
Specifying the message type
Example

14.5.4. JMS provider configuration
Overview
Specifying the configuration
Example

14.6. USING A NAMED REPLY DESTINATION
Overview
Setting the reply destination name
Example

CHAPTER 15. INTEGRATING WITH APACHE ACTIVEMQ
OVERVIEW
THE INITIAL CONTEXT FACTORY
LOOKING UP THE CONNECTION FACTORY
SYNTAX FOR DYNAMIC DESTINATIONS

CHAPTER 16. CONDUITS
OVERVIEW
CONDUIT LIFE-CYCLE
CONDUIT WEIGHT

PART IV. CONFIGURING WEB SERVICE ENDPOINTS

CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS
17.1. CONFIGURING SERVICE PROVIDERS

17.1.1. Elements for Configuring Service Providers
17.1.2. Using the jaxws:endpoint Element

Overview
Identifying the endpoint being configured

125
125
125
125
125
133
134
134
134
134
135
135
135
135
136
137
137
137
137
137
138
139
139
139
140
140
140
140
141
141

142
142
142
142

143
143
143
143
143

145
145
145
145

146

147
147
147
147
147
147

Table of Contents

5

. .

Attributes
Example

17.1.3. Using the jaxws:server Element
Overview
Identifying the endpoint being configured
Attributes
Example

17.1.4. Adding Functionality to Service Providers
Overview
Elements

17.1.5. Enable Schema Validation on a JAX-WS Endpoint
Overview
Example

17.2. CONFIGURING CONSUMER ENDPOINTS
Overview
Basic Configuration Properties
Adding functionality
Example
Enable schema validation on a JAX-WS consumer

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS
18.1. CONFIGURING JAX-RS SERVER ENDPOINTS

18.1.1. Defining a JAX-RS Server Endpoint
Basic server endpoint definition
Blueprint example
Blueprint XML namespaces
Spring example
Spring XML namespaces
Auto-discovery in Spring XML
Lifecycle management in Spring XML
Attaching a WADL document
Schema validation
Specifying the data binding
Using the JMS transport
Extension mappings and language mappings

18.1.2. jaxrs:server Attributes
Attributes

18.1.3. jaxrs:server Child Elements
Child elements

18.2. CONFIGURING JAX-RS CLIENT ENDPOINTS
18.2.1. Defining a JAX-RS Client Endpoint

Injecting client proxies
Namespaces
Basic client endpoint definition
Specifying headers

18.2.2. jaxrs:client Attributes
Attributes

18.2.3. jaxrs:client Child Elements
Child elements

18.3. DEFINING REST SERVICES WITH THE MODEL SCHEMA
RESTful services without annotations
Example model schema
Namespaces

148
150
151
151
151
152
153
154
154
154
155
155
156
156
156
156
158
159
160

161
161
161
161
161

162
162
163
163
163
165
165
166
166
167
168
168
170
170
173
173
173
173
173
173
174
174
175
175
177
177
177
178

Red Hat Fuse 7.5 Apache CXF Development Guide

6

. .

. .

How to attach a model schema to an endpoint
Configuration of model schema referencing a class
Configuration of model schema referencing an interface
Model Schema Reference

CHAPTER 19. APACHE CXF LOGGING
19.1. OVERVIEW OF APACHE CXF LOGGING

Overview
Default properties file
Logging feature
Where to begin?
More information on java.util.logging

19.2. SIMPLE EXAMPLE OF USING LOGGING
Changing the log levels and output destination

19.3. DEFAULT LOGGING CONFIGURATION FILE
19.3.1. Overview of Logging Configuration
19.3.2. Configuring Logging Output

Overview
Configuring the console handler
Configuring the file handler
Configuring both the console handler and the file handler

19.3.3. Configuring Logging Levels
Logging levels
Configuring the global logging level
Configuring logging at an individual package

19.4. ENABLING LOGGING AT THE COMMAND LINE
Overview
Specifying the log configuration file on application

19.5. LOGGING FOR SUBSYSTEMS AND SERVICES
Overview
Apache CXF logging subsystems
Example

19.6. LOGGING MESSAGE CONTENT
Overview
Configuring message content logging
Adding the logging feature to an endpoint
Adding the logging feature to a consumer
Set logging to log INFO level messages
Logging SOAP messages

CHAPTER 20. DEPLOYING WS-ADDRESSING
20.1. INTRODUCTION TO WS-ADDRESSING

Overview
Supported specifications
Further information

20.2. WS-ADDRESSING INTERCEPTORS
Overview
WS-Addressing Interceptors

20.3. ENABLING WS-ADDRESSING
Overview
Adding WS-Addressing as a Feature

20.4. CONFIGURING WS-ADDRESSING ATTRIBUTES
Overview

178
178
178
179

182
182
182
182
182
182
182
183
183
184
184
184
184
185
185
186
186
186
187
187
187
187
187
187
187
188
189
189
189
189
190
190
190
190

193
193
193
193
193
193
193
193
194
194
194
195
195

Table of Contents

7

. .

. .

Configuring WS-Addressing attributes
Using a WS-Policy assertion embedded in a feature

CHAPTER 21. ENABLING RELIABLE MESSAGING
21.1. INTRODUCTION TO WS-RM

Overview
How WS-RM works
WS-RM delivery assurances
Supported specifications
Selecting the WS-RM version

21.2. WS-RM INTERCEPTORS
Overview
Apache CXF WS-RM Interceptors
Enabling WS-RM
Configuring WS-RM Attributes

21.3. ENABLING WS-RM
Overview
Spring beans: explicitly adding interceptors
WS-Policy framework: implicitly adding interceptors

21.4. RUNTIME CONTROL
Overview
Runtime control options
Controlling WS-RM through JMX
Example of JMX control

21.5. CONFIGURING WS-RM
21.5.1. Configuring Apache CXF-Specific WS-RM Attributes

Overview
Children of the rmManager Spring bean
Example

21.5.2. Configuring Standard WS-RM Policy Attributes
Overview
WS-Policy RMAssertion Children
More detailed reference information
RMAssertion in rmManager Spring bean
Policy within a feature
WSDL file
External attachment

21.5.3. WS-RM Configuration Use Cases
Overview
Base retransmission interval
Exponential backoff for retransmission
Acknowledgement interval
Maximum unacknowledged messages threshold
Maximum length of an RM sequence
Message delivery assurance policies

21.6. CONFIGURING WS-RM PERSISTENCE
Overview
How it works
Enabling WS-persistence
Configuring WS-persistence

CHAPTER 22. ENABLING HIGH AVAILABILITY
22.1. INTRODUCTION TO HIGH AVAILABILITY

195
195

197
197
197
197
198
198
199
199
199
199

200
200
200
200
201

202
203
203
203
204
204
205
205
205
205
206
206
206
206
207
207
208
208
209
209
209
210
210
210
211
211
212
212
212
213
213
213

215
215

Red Hat Fuse 7.5 Apache CXF Development Guide

8

. .

. .

. .

. .

Overview
HA with static failover

22.2. ENABLING HA WITH STATIC FAILOVER
Overview
Encode replica details in your service WSDL file
Add the clustering feature to your client configuration

22.3. CONFIGURING HA WITH STATIC FAILOVER
Overview
Configuring a random strategy

CHAPTER 23. APACHE CXF BINDING IDS
TABLE OF BINDING IDS

APPENDIX A. USING THE MAVEN OSGI TOOLING
A.1. THE MAVEN BUNDLE PLUG-IN
A.2. SETTING UP A RED HAT FUSE OSGI PROJECT

Overview
Directory structure
Adding a bundle plug-in
Activating a bundle plug-in
Useful Maven archetypes
Spring OSGi archetype
Apache CXF code-first archetype
Apache CXF wsdl-first archetype
Apache Camel archetype

A.3. CONFIGURING THE BUNDLE PLUG-IN
Overview
Configuration properties
Setting a bundle’s symbolic name
Setting a bundle’s name
Setting a bundle’s version
Specifying exported packages
Specifying private packages
Specifying imported packages
More information

PART V. DEVELOPING APPLICATIONS USING JAX-WS

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT
24.1. INTRODUCTION TO JAX-WS SERVICE DEVELOPMENT
24.2. CREATING THE SEI

Overview
Writing the interface
Implementing the interface

24.3. ANNOTATING THE CODE
24.3.1. Overview of JAX-WS Annotations
24.3.2. Required Annotations

Overview
The @WebService annotation
Annotating the SEI
Annotating the service implementation

24.3.3. Optional Annotations
Overview
The @SOAPBinding annotation

215
215
215
215
215
216
217
217
217

218
218

219
219
219
219
219

220
221
221
221
221
222
222
222
222
222
222
223
224
224
225
225
226

227

228
228
228
228
229
229
230
230
230
231
231

232
232
233
233
233

Table of Contents

9

Document bare style parameters
Document wrapped parameters
Example
Overview
The @WebMethod annotation
The @RequestWrapper annotation
The @ResponseWrapper annotation
The @WebFault annotation
The @Oneway annotation
Example
Overview
The @WebParam annotation
The @WebResult annotation
Example

24.3.4. Apache CXF Annotations
24.3.4.1. WSDL Documentation

@WSDLDocumentation annotation
24.3.4.2. @WSDLDocumentation properties

@WSDLDocumentationCollection annotation
Placement in the WSDL contract
Example of @WSDLDocumentation

24.3.4.3. Using @WSDLDocumentation
24.3.4.4. WSDL generated with documentation

Example of @WSDLDocumentationCollection
24.3.4.5. Using @WSDLDocumentationCollection
24.3.4.6. Schema Validation of Messages

@SchemaValidation annotation
Schema validation type

24.3.4.7. Schema Validation Type Values
Example

24.3.4.8. Specifying the Data Binding
@DataBinding annotation
Supported data bindings
Example

24.3.4.9. Setting the data binding
24.3.4.10. Compressing Messages

@GZIP annotation
24.3.4.11. @GZIP Properties

@FastInfoset
24.3.4.12. @FastInfoset Properties

Example of @GZIP
24.3.4.13. Enabling GZIP

Exampe of @FastInfoset
24.3.4.14. Enabling FastInfoset
24.3.4.15. Enable Logging on an Endpoint

@Logging annotation
24.3.4.16. @Logging Properties

Example
24.3.4.17. Logging configuration using annotations
24.3.4.18. Adding Properties and Policies to an Endpoint
24.3.4.19. Adding properties

@EndpointProperty annotation
24.3.4.20. Configuring WS-Security Using @EndpointProperty Annotations

234
235
235
235
236
236
237
238
238
239
239
239
240
241
242
242
242
242
242
242
243
243
244
244
244
244
244
244
245
245
246
246
246
246
246
247
247
247
247
247
247
247
248
248
248
248
248
248
249
249
249
249
250

Red Hat Fuse 7.5 Apache CXF Development Guide

10

. .

. .

. .

. .

@EndpointProperties annotation
24.3.4.21. Configuring WS-Security Using an @EndpointProperties Annotation
24.3.4.22. Adding policies

@Policy annotation
24.3.4.23. @Policy Properties

@Policies annotation
Placement in the WSDL contract
Example of @Policy
Example of @Policies

24.4. GENERATING WSDL
Using Maven
Example

CHAPTER 25. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT
25.1. JAVA-FIRST CONSUMER DEVELOPMENT
25.2. CREATING A SERVICE OBJECT

Overview
The create() methods
Example

25.3. ADDING A PORT TO A SERVICE
Overview
The addPort() method
Example

25.4. GETTING A PROXY FOR AN ENDPOINT
Overview
The getPort() method
Example

25.5. IMPLEMENTING THE CONSUMER’S BUSINESS LOGIC
Overview
Example

CHAPTER 26. A STARTING POINT WSDL CONTRACT
26.1. SAMPLE WSDL CONTRACT

CHAPTER 27. TOP-DOWN SERVICE DEVELOPMENT
27.1. OVERVIEW OF JAX-WS SERVICE PROVIDER DEVELOPMENT
27.2. GENERATING THE STARTING POINT CODE

Overview
Running the code generator
Generated code
Generated packages

27.3. IMPLEMENTING THE SERVICE PROVIDER
Generating the implementation code
Generated code
Implement the operation’s logic
Example

CHAPTER 28. DEVELOPING A CONSUMER FROM A WSDL CONTRACT
28.1. GENERATING THE STUB CODE

Overview
Generating the consumer code
Generated code

28.2. IMPLEMENTING A CONSUMER
Overview

250
250
250
250
251
251
251

252
252
252
252
253

255
255
255
255
255
256
257
257
257
258
258
258
259
259
259
259
260

261
261

264
264
264
264
264
265
266
266
266
266
266
267

268
268
268
268
269
269
269

Table of Contents

11

. .

. .

. .

. .

Generated service class
Service endpoint interface
Consumer main function
Client proxy generated with -fe cxf option

CHAPTER 29. FINDING WSDL AT RUNTIME
29.1. MECHANISMS FOR LOCATING THE WSDL DOCUMENT
29.2. INSTANTIATING A PROXY BY INJECTION

Overview
Procedure
Configuring the proxy
Coding the provider implementation

29.3. USING A JAX-WS CATALOG
Overview
Writing the catalog
Packaging the catalog

29.4. USING A CONTRACT RESOLVER
Overview
Implementing the contract resolver
Registering the contract resolver programmatically
Registering a contract resolver using configuration
Contract resolution order

CHAPTER 30. GENERIC FAULT HANDLING
30.1. RUNTIME FAULTS

Overview
APIs that throw WebServiceException

30.2. PROTOCOL FAULTS
Overview
Types of protocol exceptions
Using the SOAP protocol exception

CHAPTER 31. PUBLISHING A SERVICE
31.1. WHEN TO PUBLISH A SERVICE
31.2. APIS USED TO PUBLISH A SERVICE

Overview
Instantiating an service provider
Publishing a service provider
Stopping a published service provider

31.3. PUBLISHING A SERVICE IN A PLAIN JAVA APPLICATION
Overview
Generating a Server Mainline
Writing a Server Mainline

31.4. PUBLISHING A SERVICE IN AN OSGI CONTAINER
Overview
The bundle activator interface
Implementing the start method
Implementing the stop method
Informing the container

CHAPTER 32. BASIC DATA BINDING CONCEPTS
32.1. INCLUDING AND IMPORTING SCHEMA DEFINITIONS

Overview
xsd:include syntax

270
271
271

273

274
274
274
274
274
275
276
276
276
276
277
277
277
277
278
278
280

281
281
281
281
282
282
282
282

284
284
284
284
284
285
285
285
285
286
286
288
288
288
288
289
290

291
291
291
291

Red Hat Fuse 7.5 Apache CXF Development Guide

12

. .

. .

. .

xsd:import syntax
Using non-referenced schema documents

32.2. XML NAMESPACE MAPPING
Overview
Package naming
Package contents

32.3. THE OBJECT FACTORY
Overview
Complex type factory methods
Element factory methods

32.4. ADDING CLASSES TO THE RUNTIME MARSHALLER
Overview
Using the @XmlSeeAlso annotation
Example

CHAPTER 33. USING XML ELEMENTS
OVERVIEW
XML SCHEMA MAPPING
JAVA MAPPING OF ELEMENTS WITH A NAMED TYPE
USING ELEMENTS WITH NAMED TYPES IN WSDL
JAVA MAPPING OF ELEMENTS WITH AN IN-LINE TYPE
JAVA MAPPING OF ABSTRACT ELEMENTS
JAVA MAPPING OF ELEMENTS WITH A DEFAULT VALUE

CHAPTER 34. USING SIMPLE TYPES
34.1. PRIMITIVE TYPES

Overview
Mappings
Wrapper classes

34.2. SIMPLE TYPES DEFINED BY RESTRICTION
Overview
Procedure
Defining a simple type in XML Schema
Mapping to Java
Enforcing facets

34.3. ENUMERATIONS
Overview
Defining an enumerated type in XML Schema
Mapping to Java

34.4. LISTS
Overview
Defining list types in XML Schema
Mapping list type elements to Java
Mapping list type parameters to Java

34.5. UNIONS
Overview
Defining in XML Schema
Mapping to Java

34.6. SIMPLE TYPE SUBSTITUTION
Overview
Default mapping and marshaling
Supporting lossless type substitution

CHAPTER 35. USING COMPLEX TYPES

292
293
293
293
293
294
295
295
295
295
296
296
296
296

298
298
298
300
301
301
302
302

304
304
304
304
305
306
306
307
307
308
308
309
309
309
309
310
310
311
312
312
313
313
314
314
314
314
314
315

316

Table of Contents

13

. .

35.1. BASIC COMPLEX TYPE MAPPING
Overview
Defining in XML Schema
Mapping to Java

35.2. ATTRIBUTES
Overview
Defining an attribute in XML Schema
Using an attribute group in XML Schema
Mapping attributes to Java
Mapping attribute groups to Java

35.3. DERIVING COMPLEX TYPES FROM SIMPLE TYPES
Overview
Derivation by extension
Derivation by restriction
Mapping to Java

35.4. DERIVING COMPLEX TYPES FROM COMPLEX TYPES
Overview
Schema syntax
Extending a complex type
Restricting a complex type
Mapping to Java

35.5. OCCURRENCE CONSTRAINTS
35.5.1. Schema Elements Supporting Occurrence Constraints
35.5.2. Occurrence Constraints on the All Element

XML Schema
Mapping to Java

35.5.3. Occurrence Constraints on the Choice Element
Overview
Using in XML Schema
Mapping to Java
minOccurs set to 0

35.5.4. Occurrence Constraints on Elements
Overview
minOccurs set to 0
minOccurs set to a value greater than 1
Elements with maxOccurs set

35.5.5. Occurrence Constraints on Sequences
Overview
Using XML Schema
Mapping to Java
minOccurs set to 0

35.6. USING MODEL GROUPS
Overview
Defining a model group in XML Schema
Using a model group in a type definition
Mapping to Java
Multiple occurrences

CHAPTER 36. USING WILD CARD TYPES
36.1. USING ANY ELEMENTS

Overview
Specifying in XML Schema
Mapping to Java

316
316
316
317

320
320
321

322
323
324
325
325
325
326
326
327
327
327
327
328
329
330
330
330
330
330
331
331
331
331
332
333
333
333
333
333
333
333
333
334
335
335
335
335
336
337
338

339
339
339
339
341

Red Hat Fuse 7.5 Apache CXF Development Guide

14

. .

. .

Marshalling
Unmarshalling

36.2. USING THE XML SCHEMA ANYTYPE TYPE
Overview
Using in XML Schema
Mapping to Java
Marshalling
Unmarshalling

36.3. USING UNBOUND ATTRIBUTES
Overview
Defining in XML Schema
Mapping to Java
Working with undeclared attributes

CHAPTER 37. ELEMENT SUBSTITUTION
37.1. SUBSTITUTION GROUPS IN XML SCHEMA

Overview
Syntax
Type restrictions
Abstract head elements

37.2. SUBSTITUTION GROUPS IN JAVA
Overview
Generated object factory methods
Substitution groups in interfaces
Substitution groups in complex types
Setting a substitution group property
Getting the value of a substitution group property

37.3. WIDGET VENDOR EXAMPLE
37.3.1. Widget Ordering Interface
37.3.2. The checkWidgets Operation

Overview
Consumer implementation
Service implementation

37.3.3. The placeWidgetOrder Operation
Overview
Consumer implementation
Service implementation

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED
38.1. BASICS OF CUSTOMIZING TYPE MAPPINGS

Overview
Namespace
Version declaration
Using in-line customization
Using an external binding declaration

38.2. SPECIFYING THE JAVA CLASS OF AN XML SCHEMA PRIMITIVE
Overview
Syntax
Specifying the converters
What is generated
Implementing converters
Default primitive type converters

38.3. GENERATING JAVA CLASSES FOR SIMPLE TYPES

342
343
343
343
343
343
344
344
345
345
345
345
346

348
348
348
348
348
350
350
350
350
352
353
354
355
356
356
357
357
357
358
359
359
359
360

363
363
363
363
363
363
364
365
365
365
368
369
370
371
371

Table of Contents

15

. .

. .

. .

Overview
Adding the customization
Generated classes

38.4. CUSTOMIZING ENUMERATION MAPPING
Overview
Member name customizer
Class customizer
Member customizer
Examples

38.5. CUSTOMIZING FIXED VALUE ATTRIBUTE MAPPING
Overview
Global customization
Local mapping
Java mapping

38.6. SPECIFYING THE BASE TYPE OF AN ELEMENT OR AN ATTRIBUTE
Overview
Customization usage
Specializing or generalizing the default mapping
Usage with javaType

CHAPTER 39. USING A JAXBCONTEXT OBJECT
OVERVIEW
BEST PRACTICES
GETTING A JAXBCONTEXT OBJECT USING AN OBJECT FACTORY
GETTING A JAXBCONTEXT OBJECT USING PACKAGE NAMES

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS
40.1. TYPES OF ASYNCHRONOUS INVOCATION
40.2. WSDL FOR ASYNCHRONOUS EXAMPLES
40.3. GENERATING THE STUB CODE

Overview
Using an external binding declaration
Using an embedded binding declaration
Generated interface

40.4. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE POLLING APPROACH
Overview
Using the non-blocking pattern
Using the blocking pattern

40.5. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE CALLBACK APPROACH
Overview
Implementing the callback
Implementing the consumer

40.6. CATCHING EXCEPTIONS RETURNED FROM A REMOTE SERVICE
Overview
Catching the exception
Getting the exception details
Example

CHAPTER 41. USING RAW XML MESSAGES
41.1. USING XML IN A CONSUMER

41.1.1. Usage Modes
Overview
Message mode
Payload mode

371
371
372
373
373
373
374
374
374
376
376
377
377
378
379
379
379
380
381

382
382
382
382
383

384
384
384
385
385
386
387
388
388
389
389
390
391
391
391

392
394
394
394
394
394

396
396
396
396
396
396

Red Hat Fuse 7.5 Apache CXF Development Guide

16

. .

41.1.2. Data Types
Overview
Using Source objects
Using SOAPMessage objects
Using DataSource objects
Using JAXB objects

41.1.3. Working with Dispatch Objects
Procedure
Creating a Dispatch object
Constructing request messages
Synchronous invocation
Asynchronous invocation
Oneway invocation

41.2. USING XML IN A SERVICE PROVIDER
41.2.1. Messaging Modes

Overview
Message mode
Payload mode

41.2.2. Data Types
Overview
Using Source objects
Using SOAPMessage objects
Using DataSource objects

41.2.3. Implementing a Provider Object
Overview
Working with messages
The @WebServiceProvider annotation
Implementing the invoke() method
Examples

CHAPTER 42. WORKING WITH CONTEXTS
42.1. UNDERSTANDING CONTEXTS

Overview
How properties are stored in a context
Property scopes
Overview of contexts in handlers
Overview of contexts in service implementations
Overview of contexts in consumer implementations

42.2. WORKING WITH CONTEXTS IN A SERVICE IMPLEMENTATION
Overview
Obtaining a context
Reading a property from a context
Setting properties in a context
Supported contexts

42.3. WORKING WITH CONTEXTS IN A CONSUMER IMPLEMENTATION
Overview
Obtaining a context
Reading a property from a context
Setting properties in a context
Supported contexts

42.4. WORKING WITH JMS MESSAGE PROPERTIES
42.4.1. Inspecting JMS Message Headers

Getting the JMS Message Headers in a Service

397
397
397
398
398
398
398
398
398
400
401
401
402
403
403
403
403
403
404
404
404
405
405
405
405
406
406
407
407

410
410
410
411
411

412
412
412
413
413
413
414
414
415
419
419
419

420
420
421
422
422
422

Table of Contents

17

. .

Getting JMS Message Header Properties in a Consumer
42.4.2. Inspecting the Message Header Properties

Standard JMS Header Properties
Optional Header Properties
Example

42.4.3. Setting JMS Properties
JMS Header Properties
Optional JMS Header Properties
Client Receive Timeout
Example

CHAPTER 43. WRITING HANDLERS
43.1. HANDLERS: AN INTRODUCTION

Overview
Handler types
Implementation of handlers
Adding handlers to an application

43.2. IMPLEMENTING A LOGICAL HANDLER
Overview
Procedure

43.3. HANDLING MESSAGES IN A LOGICAL HANDLER
Overview
Getting the message data
Working with the message body as an XML object
Working with the message body as a JAXB object
Working with context properties
Determining the direction of the message
Determining the return value
Example

43.4. IMPLEMENTING A PROTOCOL HANDLER
Overview
Procedure
Implementing the getHeaders() method

43.5. HANDLING MESSAGES IN A SOAP HANDLER
Overview
Working with the message body
Getting the SOAP headers
Working with context properties
Determining the direction of the message
Determining the return value
Example

43.6. INITIALIZING A HANDLER
Overview
Order of initialization

43.7. HANDLING FAULT MESSAGES
Overview
Getting the message payload
Determining the return value
Example

43.8. CLOSING A HANDLER
43.9. RELEASING A HANDLER

Overview
Order of release

423
424
424
424
424
425
425
426
426
426

428
428
428
429
430
430
430
430
431
431
431
431

432
432
433
433
433
434
436
436
437
437
437
437
437
438
438
438
439
440
441
441
441
441
441

442
442
442
442
443
443
443

Red Hat Fuse 7.5 Apache CXF Development Guide

18

. .

. .

. .

. .

43.10. CONFIGURING ENDPOINTS TO USE HANDLERS
43.10.1. Programmatic Configuration

43.10.1.1. Adding a Handler Chain to a Consumer
Overview
Procedure
Example

43.10.1.2. Adding a Handler Chain to a Service Provider
Overview
Procedure
The @HandlerChain annotation
Handler configuration file

43.10.2. Spring Configuration
Overview
Procedure
The handlers element
Example

CHAPTER 44. MAVEN TOOLING REFERENCE
44.1. PLUG-IN SETUP

Dependencies
44.2. CXF-CODEGEN-PLUGIN

Overview
Basic example
Basic configuration settings
Description
WSDL options
Default options
Specifying code generation options
Specifying binding files
Generating code for a specific WSDL service
Generating code for multiple WSDL files
Downloading WSDL from a Maven repository
Encoding
Forking a separate process
Options reference

44.3. JAVA2WS
Synopsis
Description
Required configuration
Optional configuration

PART VI. DEVELOPING RESTFUL WEB SERVICES

CHAPTER 45. INTRODUCTION TO RESTFUL WEB SERVICES
OVERVIEW
BASIC REST PRINCIPLES
RESOURCES
REST BEST PRACTICES
DESIGNING A RESTFUL WEB SERVICE
IMPLEMENTING REST WITH APACHE CXF
DATA BINDINGS

CHAPTER 46. CREATING RESOURCES
46.1. INTRODUCTION

443
443
443
443
443
444
444
444
444
445
445
447
447
447
447
448

449
449
449
449
449
449
450
450
450
450
451
451
452
452
453
453
453
454
458
458
458
458
458

460

461
461
461

462
462
462
463
463

464
464

Table of Contents

19

. .

Overview
Types of resources
Example

46.2. BASIC JAX-RS ANNOTATIONS
Overview
Setting the path
Specifying HTTP verbs

46.3. ROOT RESOURCE CLASSES
Overview
Requirements
Example

46.4. WORKING WITH RESOURCE METHODS
Overview
General constraints
Parameters
Return values

46.5. WORKING WITH SUB-RESOURCES
Overview
Specifying a sub-resource
Sub-resource methods
Sub-resource locators

46.6. RESOURCE SELECTION METHOD
Overview
The basic selection algorithm
Selecting from multiple resource classes
Selecting from multiple resource methods
Customizing the selection process

CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS
47.1. BASICS OF INJECTING DATA

Overview
When data is injected
Supported data types

47.2. USING JAX-RS APIS
47.2.1. JAX-RS Annotation Types
47.2.2. Injecting data from a request URI

Overview
Getting data from the URI’s path
Using query parameters
Using matrix parameters
Disabling URI decoding
Error handling

47.2.3. Injecting data from the HTTP message header
Overview
Injecting information from the HTTP headers
Injecting information from a cookie
Error handling

47.2.4. Injecting data from HTML forms
Overview
Using the @FormParam annotation to inject form data
Example

47.2.5. Specifying a default value to inject
Overview

464
464
464
465
465
465
466
466
466
466
466
468
468
468
468
469
469
469
470
470
471
472
472
473
473
474
475

476
476
476
476
476
476
476
477
477
477
478
479
480
481
481
481
481
481

482
482
482
482
483
483
483

Red Hat Fuse 7.5 Apache CXF Development Guide

20

. .

Syntax
Dealing with lists and sets
Example

47.2.6. Injecting Parameters into a Java Bean
Overview
Injection target
Example without BeanParam annotation
Example with BeanParam annotation

47.3. PARAMETER CONVERTERS
Overview
Automatic conversions
Parameter converters
Factory pattern
ParamConverter interface
ParamConverterProvider interface
Binding the parameter converter provider
Example
Using the parameter converter
Lazy conversion of default value

47.4. USING APACHE CXF EXTENSIONS
Overview
Supported injection annotations
Syntax
Example

CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER
48.1. RETURN TYPES
48.2. RETURNING PLAIN JAVA CONSTRUCTS

Overview
Returnable types
MIME types
Response codes

48.3. FINE TUNING AN APPLICATION’S RESPONSES
48.3.1. Basics of building responses

Overview
Relationship between a response and a response builder
Getting a response builder
More information

48.3.2. Creating responses for common use cases
Overview
Creating responses for successful requests
Creating responses for redirection
Creating responses to signal errors

48.3.3. Handling more advanced responses
Overview
Adding custom headers
Adding a cookie
Setting the response status
Setting cache control directives

48.4. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION
Overview
Using a GenericEntity<T> object
Creating a GenericEntity<T> object

484
484
484
485
485
485
485
486
487
487
487
487
487
487
488
488
489
489
490
490
490
491
491
491

492
492
492
492
492
493
493
493
493
493
494
494
495
495
495
495
496
496
497
497
497
497
498
498
499
499
499
499

Table of Contents

21

. .

48.5. ASYNCHRONOUS RESPONSE
48.5.1. Asynchronous Processing on the Server

Overview
Basic model for asynchronous processing
Thread pool implementation with Java executor
Defining an asynchronous resource method
AsyncResponse class
Encapsulating a suspended request as a Runnable
Example of asynchronous processing

48.5.2. Timeouts and Timeout Handlers
Overview
Example of setting a timeout without a handler
Default timeout behaviour
TimeoutHandler interface
Example of setting a timeout with a handler
Using a timeout handler to cancel the response
Dealing with a cancelled response in the Runnable instance

48.5.3. Handling Dropped Connections
Overview
ConnectionCallback interface
Registering a connection callback
Typical scenario for connection callback

48.5.4. Registering Callbacks
Overview
CompletionCallback interface
Registering a completion callback

CHAPTER 49. JAX-RS 2.0 CLIENT API
49.1. INTRODUCTION TO THE JAX-RS 2.0 CLIENT API

Overview
Dependencies
Client API package
Example of a simple client request
Fluent API
Steps to make a REST invocation
Bootstrap the client
Configure the target
Build and make the invocation
Parse the response

49.2. BUILDING THE CLIENT TARGET
Overview
WebTarget builder class
Create the client target
Base path and path segments
URI template parameters
Define query parameters
Define matrix parameters

49.3. BUILDING THE CLIENT INVOCATION
Overview
Invocation.Builder class
Create the invocation builder
Define HTTP headers
Define cookies

500
500
500
500
501

502
502
502
503
504
504
504
505
505
505
506
506
507
507
507
507
507
508
508
508
508

509
509
509
509
509
510
510
510
510
510
511
511
511
511
511
512
512
512
512
513
513
513
513
513
513
513

Red Hat Fuse 7.5 Apache CXF Development Guide

22

. .

Define properties
Define accepted media types, languages, or encodings
Invoke HTTP method
Typed responses
Specifying the outgoing message in post or put
Delayed invocation
Asynchronous invocation

49.4. PARSING REQUESTS AND RESPONSES
Overview
Entities
Variants
Entity providers
Standard entity providers
Response object
Accessing the response status
Accessing the returned headers
Accessing the returned cookies
Accessing the returned message content
Collection return value

49.5. CONFIGURING THE CLIENT ENDPOINT
Overview
Example
Configurable API for registering objects
What can you configure on the client?
Features
Providers
Filters
Interceptors
Properties
Other configurable types

49.6. ASYNCHRONOUS PROCESSING ON THE CLIENT
Overview
Asynchronous invocation with Future<V> return value
Asynchronous invocation with invocation callback

CHAPTER 50. HANDLING EXCEPTIONS
50.1. OVERVIEW OF JAX-RS EXCEPTION CLASSES

Overview
JAX-RS runtime level exceptions
JAX-RS application level exceptions

50.2. USING WEBAPPLICATIONEXCEPTION EXCEPTIONS TO REPORT
Overview
Creating a simple exception
Setting the status code returned to the client
Providing an entity body
Extending the generic exception

50.3. JAX-RS 2.0 EXCEPTION TYPES
Overview
Exception hierarchy
WebApplicationException class
ClientErrorException class
ServerErrorException class
RedirectionException class

514
514
514
514
514
515
515
516
516
516
516
516
516
517
517
517
518
518
518
518
518
519
519
519
519
519

520
520
520
520
520
520
520
521

523
523
523
523
523
524
524
524
524
524
525
525
525
526
526
526
526
526

Table of Contents

23

. .

. .

. .

. .

. .

Client exception subclasses
Server exception subclasses

50.4. MAPPING EXCEPTIONS TO RESPONSES
Overview
How exception mappers are selected
Implementing an exception mapper
Registering an exception mapper
Registering an exception mapper for WebApplicationException

CHAPTER 51. ENTITY SUPPORT
OVERVIEW
NATIVELY SUPPORTED TYPES
CUSTOM READERS
CUSTOM WRITERS
REGISTERING READERS AND WRITERS

CHAPTER 52. GETTING AND USING CONTEXT INFORMATION
52.1. INTRODUCTION TO CONTEXTS

Context annotation
Types of contexts
Where context information can be used
Scope
Adding contexts

52.2. WORKING WITH THE FULL REQUEST URI
52.2.1. Injecting the URI information

Overview
Example

52.2.2. Working with the URI
Overview
Getting the Base URI
Getting the path
Getting the full request URI

52.2.3. Getting the value of URI template variables
Overview
Methods for getting the path parameters
Example

CHAPTER 53. ANNOTATION INHERITANCE
OVERVIEW
INHERITANCE RULES
OVERRIDING INHERITED ANNOTATIONS

CHAPTER 54. EXTENDING JAX-RS ENDPOINTS WITH SWAGGER SUPPORT
54.1. SWAGGER2FEATURE OPTIONS
54.2. KARAF IMPLEMENTATIONS

54.2.1. Quickstart example
54.2.2. Enabling Swagger

54.3. SPRING BOOT IMPLEMENTATIONS
54.3.1. Quickstart example
54.3.2. Enabling Swagger

54.4. ACCESSING SWAGGER DOCUMENTS
54.5. ACCESSING SWAGGER THROUGH A REVERSE PROXY

PART VII. DEVELOPING APACHE CXF INTERCEPTORS

526
527
527
527
527
528
529
529

531
531
531
532
536
540

542
542
542
542
542
542
543
543
543
543
543
543
544
544
544
546
547
547
547
547

549
549
549
549

551
551

552
552
552
556
556
556
558
559

560

Red Hat Fuse 7.5 Apache CXF Development Guide

24

. .

. .

. .

. .

. .

CHAPTER 55. INTERCEPTORS IN THE APACHE CXF RUNTIME
OVERVIEW
MESSAGE PROCESSING IN APACHE CXF
INTERCEPTORS
PHASES
INTERCEPTOR CHAINS
DEVELOPING INTERCEPTORS

CHAPTER 56. THE INTERCEPTOR APIS
INTERFACES
ABSTRACT INTERCEPTOR CLASS

CHAPTER 57. DETERMINING WHEN THE INTERCEPTOR IS INVOKED
57.1. SPECIFYING THE INTERCEPTOR LOCATION
57.2. SPECIFYING AN INTERCEPTOR’S PHASE

Overview
Phase
Specifying a phase
Setting the phase

57.3. CONSTRAINING AN INTERCEPTORS PLACEMENT IN A PHASE
Overview
Add to the chain before
Add to the chain after

CHAPTER 58. IMPLEMENTING THE INTERCEPTORS PROCESSING LOGIC
58.1. INTERCEPTOR FLOW
58.2. PROCESSING MESSAGES

Overview
Getting the message contents
Determining the message’s direction
Example

58.3. UNWINDING AFTER AN ERROR
Overview
Getting the message payload
Example

CHAPTER 59. CONFIGURING ENDPOINTS TO USE INTERCEPTORS
59.1. DECIDING WHERE TO ATTACH INTERCEPTORS

Overview
Endpoints and proxies
Factories
Bindings
Buses
Combining attachment points

59.2. ADDING INTERCEPTORS USING CONFIGURATION
Overview
Configuration elements
Examples
More information

59.3. ADDING INTERCEPTORS PROGRAMMATICALLY
59.3.1. Approaches to Adding Interceptors
59.3.2. Using the interceptor provider API

Overview
Procedure

561
561
562
563
564
564
564

565
565
566

567
567
567
567
567
568
568
569
569
569
570

571
571
571
571
571

572
572
573
573
574
574

575
575
575
575
575
575
576
576
576
576
576
577
578
578
578
578
578
579

Table of Contents

25

. .

. .

Attaching an interceptor to a consumer
Attaching an interceptor to a service provider
Attaching an interceptor to a bus

59.3.3. Using Java annotations
Overview
Where to place the annotations
The annotations
Listing the interceptors
Example

CHAPTER 60. MANIPULATING INTERCEPTOR CHAINS ON THE FLY
OVERVIEW
CHAIN LIFE-CYCLE
GETTING THE INTERCEPTOR CHAIN
ADDING INTERCEPTORS
REMOVING INTERCEPTORS

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS
61.1. INTRODUCTION TO JAX-RS FILTERS AND INTERCEPTORS

Overview
Filters
Interceptors
Server processing pipeline
Server extension points
Client processing pipeline
Client extension points
Filter and interceptor order
Filter classes
Interceptor classes

61.2. CONTAINER REQUEST FILTER
Overview
ContainerRequestFilter interface
ContainerRequestContext interface
Sample implementation for PreMatchContainerRequest filter
Sample implementation for ContainerRequest filter
Injecting ResourceInfo
Aborting the invocation
Binding the server request filter

61.3. CONTAINER RESPONSE FILTER
Overview
ContainerResponseFilter interface
ContainerResponseContext interface
Sample implementation
Binding the server response filter

61.4. CLIENT REQUEST FILTER
Overview
ClientRequestFilter interface
ClientRequestContext interface
Sample implementation
Aborting the invocation
Registering the client request filter

61.5. CLIENT RESPONSE FILTER
Overview

579
580
581
581
581
581
582
582
582

583
583
583
583
583
584

586
586
586
586
586
586
587
587
587
587
588
588
588
588
588
589
590
591
591
592
593
594
594
594
595
596
597
598
598
598
599
600
601
601
602
602

Red Hat Fuse 7.5 Apache CXF Development Guide

26

. .

. .

. .

ClientResponseFilter interface
ClientResponseContext interface
Sample implementation
Registering the client response filter

61.6. ENTITY READER INTERCEPTOR
Overview
ReaderInterceptor interface
ReaderInterceptorContext interface
InterceptorContext interface
Sample implementation on the client side
Sample implementation on the server side
Binding a reader interceptor on the client side
Binding a reader interceptor on the server side

61.7. ENTITY WRITER INTERCEPTOR
Overview
WriterInterceptor interface
WriterInterceptorContext interface
InterceptorContext interface
Sample implementation on the client side
Sample implementation on the server side
Binding a writer interceptor on the client side
Binding a writer interceptor on the server side

61.8. DYNAMIC BINDING
Overview
DynamicFeature interface
Implementing a dynamic feature
Example dynamic feature
Dynamic binding process
FeatureContext interface

CHAPTER 62. APACHE CXF MESSAGE PROCESSING PHASES
INBOUND PHASES
OUTBOUND PHASES

CHAPTER 63. APACHE CXF PROVIDED INTERCEPTORS
63.1. CORE APACHE CXF INTERCEPTORS

Inbound
Outbound

63.2. FRONT-ENDS
JAX-WS
JAX-RS

63.3. MESSAGE BINDINGS
SOAP
XML
CORBA

63.4. OTHER FEATURES
Logging
WS-Addressing
WS-RM

CHAPTER 64. INTERCEPTOR PROVIDERS
OVERVIEW
LIST OF PROVIDERS

602
602
604
604
605
605
605
605
606
607
608
608
609
610
610
610
610
611
611

612
612
613
614
614
614
614
615
615
615

617
617
618

620
620
620
620
620
620
622
622
622
624
625
626
626
627
627

629
629
629

Table of Contents

27

. .

. .

PART VIII. APACHE CXF FEATURES

CHAPTER 65. BEAN VALIDATION
65.1. INTRODUCTION

Overview
Example of annotated class
Bean validation or schema validation?
Dependencies
Core dependencies
Hibernate Validator dependencies
Resolving the validation provider in an OSGi environment
Configuring the validation provider explicitly in OSGi
Example HibernateValidationProviderResolver class

65.2. DEVELOPING SERVICES WITH BEAN VALIDATION
65.2.1. Annotating a Service Bean

Overview
Validating simple input parameters
Validating complex input parameters
Validating return values (non-Response)
Validating return values (Response)

65.2.2. Standard Annotations
Bean validation constraints

65.2.3. Custom Annotations
Defining custom constraints in Hibernate

65.3. CONFIGURING BEAN VALIDATION
65.3.1. JAX-WS Configuration

Overview
Namespaces
Bean validation feature
Sample JAX-WS configuration with bean validation feature
Common bean validation 1.1 interceptors
Sample JAX-WS configuration with bean validation interceptors
Configuring a BeanValidationProvider

65.3.2. JAX-RS Configuration
Overview
Namespaces
Bean validation feature
Validation exception mapper
Sample JAX-RS configuration
Common bean validation 1.1 interceptors
Sample JAX-RS configuration with bean validation interceptors
Configuring a BeanValidationProvider

65.3.3. JAX-RS 2.0 Configuration
Overview
Bean validation feature
Validation exception mapper
Bean validation invoker
Sample JAX-RS 2.0 configuration with bean validation feature
Common bean validation 1.1 interceptors
Sample JAX-RS 2.0 configuration with bean validation interceptors
Configuring a BeanValidationProvider
Configuring a JAXRSParameterNameProvider

631

632
632
632
632
632
633
633
633
634
634
634
635
635
635
635
635
636
636
636
636
638
638
638
638
638
638
639
639
640
640
641
641
641

642
642
642
642
643
643
644
644
644
644
644
645
645
645
646
647
647

Red Hat Fuse 7.5 Apache CXF Development Guide

28

Table of Contents

29

PART I. WRITING WSDL CONTRACTS
This part describes how to define a Web service interface using WSDL.

Red Hat Fuse 7.5 Apache CXF Development Guide

30

CHAPTER 1. INTRODUCING WSDL CONTRACTS

Abstract

WSDL documents define services using Web Service Description Language and a number of possible
extensions. The documents have a logical part and a concrete part. The abstract part of the contract
defines the service in terms of implementation neutral data types and messages. The concrete part of
the document defines how an endpoint implementing a service will interact with the outside world.

The recommended approach to design services is to define your services in WSDL and XML Schema
before writing any code. When hand-editing WSDL documents you must make sure that the document
is valid, as well as correct. To do this you must have some familiarity with WSDL. You can find the
standard on the W3C web site, www.w3.org.

1.1. STRUCTURE OF A WSDL DOCUMENT

Overview

A WSDL document is, at its simplest, a collection of elements contained within a root definition element.
These elements describe a service and how an endpoint implementing that service is accessed.

A WSDL document has two distinct parts:

A logical part that defines the service in implementation neutral terms

A concrete part that defines how an endpoint implementing the service is exposed on a network

The logical part

The logical part of a WSDL document contains the types, the message, and the portType elements. It
describes the service’s interface and the messages exchanged by the service. Within the types element,
XML Schema is used to define the structure of the data that makes up the messages. A number of
message elements are used to define the structure of the messages used by the service. The portType
element contains one or more operation elements that define the messages sent by the operations
exposed by the service.

The concrete part

The concrete part of a WSDL document contains the binding and the service elements. It describes
how an endpoint that implements the service connects to the outside world. The binding elements
describe how the data units described by the message elements are mapped into a concrete, on-the-
wire data format, such as SOAP. The service elements contain one or more port elements which define
the endpoints implementing the service.

1.2. WSDL ELEMENTS

A WSDL document is made up of the following elements:

definitions — The root element of a WSDL document. The attributes of this element specify
the name of the WSDL document, the document’s target namespace, and the shorthand
definitions for the namespaces referenced in the WSDL document.

types — The XML Schema definitions for the data units that form the building blocks of the

CHAPTER 1. INTRODUCING WSDL CONTRACTS

31

http://www.w3.org/TR/wsdl

types — The XML Schema definitions for the data units that form the building blocks of the
messages used by a service. For information about defining data types see Chapter 2, Defining
Logical Data Units.

message — The description of the messages exchanged during invocation of a services
operations. These elements define the arguments of the operations making up your service. For
information on defining messages see Chapter 3, Defining Logical Messages Used by a Service .

portType — A collection of operation elements describing the logical interface of a service. For
information about defining port types see Chapter 4, Defining Your Logical Interfaces .

operation — The description of an action performed by a service. Operations are defined by the
messages passed between two endpoints when the operation is invoked. For information on
defining operations see the section called “Operations” .

binding — The concrete data format specification for an endpoint. A binding element defines
how the abstract messages are mapped into the concrete data format used by an endpoint. This
element is where specifics such as parameter order and return values are specified.

service — A collection of related port elements. These elements are repositories for organizing
endpoint definitions.

port — The endpoint defined by a binding and a physical address. These elements bring all of the
abstract definitions together, combined with the definition of transport details, and they define
the physical endpoint on which a service is exposed.

1.3. DESIGNING A CONTRACT

To design a WSDL contract for your services you must perform the following steps:

1. Define the data types used by your services.

2. Define the messages used by your services.

3. Define the interfaces for your services.

4. Define the bindings between the messages used by each interface and the concrete
representation of the data on the wire.

5. Define the transport details for each of the services.

Red Hat Fuse 7.5 Apache CXF Development Guide

32

CHAPTER 2. DEFINING LOGICAL DATA UNITS

Abstract

When describing a service in a WSDL contract complex data types are defined as logical units using XML
Schema.

2.1. INTRODUCTION TO LOGICAL DATA UNITS

When defining a service, the first thing you must consider is how the data used as parameters for the
exposed operations is going to be represented. Unlike applications that are written in a programming
language that uses fixed data structures, services must define their data in logical units that can be
consumed by any number of applications. This involves two steps:

1. Breaking the data into logical units that can be mapped into the data types used by the physical
implementations of the service

2. Combining the logical units into messages that are passed between endpoints to carry out the
operations

This chapter discusses the first step. Chapter 3, Defining Logical Messages Used by a Service discusses
the second step.

2.2. MAPPING DATA INTO LOGICAL DATA UNITS

Overview

The interfaces used to implement a service define the data representing operation parameters as XML
documents. If you are defining an interface for a service that is already implemented, you must translate
the data types of the implemented operations into discreet XML elements that can be assembled into
messages. If you are starting from scratch, you must determine the building blocks from which your
messages are built, so that they make sense from an implementation standpoint.

Available type systems for defining service data units

According to the WSDL specification, you can use any type system you choose to define data types in a
WSDL contract. However, the W3C specification states that XML Schema is the preferred canonical
type system for a WSDL document. Therefore, XML Schema is the intrinsic type system in Apache CXF.

XML Schema as a type system

XML Schema is used to define how an XML document is structured. This is done by defining the
elements that make up the document. These elements can use native XML Schema types, like xsd:int,
or they can use types that are defined by the user. User defined types are either built up using
combinations of XML elements or they are defined by restricting existing types. By combining type
definitions and element definitions you can create intricate XML documents that can contain complex
data.

When used in WSDL XML Schema defines the structure of the XML document that holds the data used
to interact with a service. When defining the data units used by your service, you can define them as
types that specify the structure of the message parts. You can also define your data units as elements
that make up the message parts.

CHAPTER 2. DEFINING LOGICAL DATA UNITS

33

Considerations for creating your data units

You might consider simply creating logical data units that map directly to the types you envision using
when implementing the service. While this approach works, and closely follows the model of building
RPC-style applications, it is not necessarily ideal for building a piece of a service-oriented architecture.

The Web Services Interoperability Organization’s WS-I basic profile provides a number of guidelines for
defining data units and can be accessed at http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-
24.html#WSDLTYPES. In addition, the W3C also provides the following guidelines for using XML
Schema to represent data types in WSDL documents:

Use elements, not attributes.

Do not use protocol-specific types as base types.

2.3. ADDING DATA UNITS TO A CONTRACT

Overview

Depending on how you choose to create your WSDL contract, creating new data definitions requires
varying amounts of knowledge. The Apache CXF GUI tools provide a number of aids for describing data
types using XML Schema. Other XML editors offer different levels of assistance. Regardless of the
editor you choose, it is a good idea to have some knowledge about what the resulting contract should
look like.

Procedure

Defining the data used in a WSDL contract involves the following steps:

1. Determine all the data units used in the interface described by the contract.

2. Create a types element in your contract.

3. Create a schema element, shown in Example 2.1, “Schema entry for a WSDL contract” , as a child
of the type element.
The targetNamespace attribute specifies the namespace under which new data types are
defined. Best practice is to also define the namespace that provides access to the target
namespace. The remaining entries should not be changed.

Example 2.1. Schema entry for a WSDL contract

<schema targetNamespace="http://schemas.iona.com/bank.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/bank.idl"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

4. For each complex type that is a collection of elements, define the data type using a
complexType element. See Section 2.5.1, “Defining data structures” .

5. For each array, define the data type using a complexType element. See Section 2.5.2, “Defining
arrays”.

6. For each complex type that is derived from a simple type, define the data type using a

Red Hat Fuse 7.5 Apache CXF Development Guide

34

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES

6. For each complex type that is derived from a simple type, define the data type using a
simpleType element. See Section 2.5.4, “Defining types by restriction” .

7. For each enumerated type, define the data type using a simpleType element. See
Section 2.5.5, “Defining enumerated types” .

8. For each element, define it using an element element. See Section 2.6, “Defining elements”.

2.4. XML SCHEMA SIMPLE TYPES

Overview

If a message part is going to be of a simple type it is not necessary to create a type definition for it.
However, the complex types used by the interfaces defined in the contract are defined using simple
types.

Entering simple types

XML Schema simple types are mainly placed in the element elements used in the types section of your
contract. They are also used in the base attribute of restriction elements and extension elements.

Simple types are always entered using the xsd prefix. For example, to specify that an element is of type
int, you would enter xsd:int in its type attribute as shown in Example 2.2, “Defining an element with a
simple type”.

Example 2.2. Defining an element with a simple type

<element name="simpleInt" type="xsd:int" />

Supported XSD simple types

Apache CXF supports the following XML Schema simple types:

xsd:string

xsd:normalizedString

xsd:int

xsd:unsignedInt

xsd:long

xsd:unsignedLong

xsd:short

xsd:unsignedShort

xsd:float

xsd:double

CHAPTER 2. DEFINING LOGICAL DATA UNITS

35

xsd:boolean

xsd:byte

xsd:unsignedByte

xsd:integer

xsd:positiveInteger

xsd:negativeInteger

xsd:nonPositiveInteger

xsd:nonNegativeInteger

xsd:decimal

xsd:dateTime

xsd:time

xsd:date

xsd:QName

xsd:base64Binary

xsd:hexBinary

xsd:ID

xsd:token

xsd:language

xsd:Name

xsd:NCName

xsd:NMTOKEN

xsd:anySimpleType

xsd:anyURI

xsd:gYear

xsd:gMonth

xsd:gDay

xsd:gYearMonth

xsd:gMonthDay

2.5. DEFINING COMPLEX DATA TYPES

Red Hat Fuse 7.5 Apache CXF Development Guide

36

Abstract

XML Schema provides a flexible and powerful mechanism for building complex data structures from its
simple data types. You can create data structures by creating a sequence of elements and attributes.
You can also extend your defined types to create even more complex types.

In addition to building complex data structures, you can also describe specialized types such as
enumerated types, data types that have a specific range of values, or data types that need to follow
certain patterns by either extending or restricting the primitive types.

2.5.1. Defining data structures

Overview

In XML Schema, data units that are a collection of data fields are defined using complexType elements.
Specifying a complex type requires three pieces of information:

1. The name of the defined type is specified in the name attribute of the complexType element.

2. The first child element of the complexType describes the behavior of the structure’s fields
when it is put on the wire. See the section called “Complex type varieties” .

3. Each of the fields of the defined structure are defined in element elements that are
grandchildren of the complexType element. See the section called “Defining the parts of a
structure”.

For example, the structure shown in Example 2.3, “Simple Structure” is defined in XML Schema as a
complex type with two elements.

Example 2.3. Simple Structure

struct personalInfo
{
 string name;
 int age;
};

Example 2.4, “A complex type” shows one possible XML Schema mapping for the structure shown in
Example 2.3, “Simple Structure” The structure defined in Example 2.4, “A complex type” generates a
message containing two elements: name and age.

.

Example 2.4. A complex type

<complexType name="personalInfo">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 </sequence>
</complexType>

CHAPTER 2. DEFINING LOGICAL DATA UNITS

37

Complex type varieties

XML Schema has three ways of describing how the fields of a complex type are organized when
represented as an XML document and passed on the wire. The first child element of the complexType
element determines which variety of complex type is being used. Table 2.1, “Complex type descriptor
elements” shows the elements used to define complex type behavior.

Table 2.1. Complex type descriptor elements

Element Complex Type Behavior

sequence All of a complex type’s fields can be present and they
must be in the order in which they are specified in the
type definition.

all All of the complex type’s fields can be present but
they can be in any order.

choice Only one of the elements in the structure can be
placed in the message.

If the structure is defined using a choice element, as shown in Example 2.5, “Simple complex choice
type”, it generates a message with either a name element or an age element.

Example 2.5. Simple complex choice type

<complexType name="personalInfo">
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 </choice>
</complexType>

Defining the parts of a structure

You define the data fields that make up a structure using element elements. Every complexType
element should contain at least one element element. Each element element in the complexType
element represents a field in the defined data structure.

To fully describe a field in a data structure, element elements have two required attributes:

 The name attribute specifies the name of the data field and it must be unique within the
defined complex type.

 The type attribute specifies the type of the data stored in the field. The type can be either one
of the XML Schema simple types, or any named complex type that is defined in the contract.

In addition to name and type, element elements have two other commonly used optional attributes:
minOcurrs and maxOccurs. These attributes place bounds on the number of times the field occurs in
the structure. By default, each field occurs only once in a complex type. Using these attributes, you can

Red Hat Fuse 7.5 Apache CXF Development Guide

38

change how many times a field must or can appear in a structure. For example, you can define a field,
previousJobs, that must occur at least three times, and no more than seven times, as shown in
Example 2.6, “Simple complex type with occurrence constraints” .

Example 2.6. Simple complex type with occurrence constraints

<complexType name="personalInfo">
 <all>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="previousJobs" type="xsd:string:
 minOccurs="3" maxOccurs="7"/>
 </all>
</complexType>

You can also use the minOccurs to make the age field optional by setting the minOccurs to zero as
shown in Example 2.7, “Simple complex type with minOccurs set to zero” . In this case age can be
omitted and the data will still be valid.

Example 2.7. Simple complex type with minOccurs set to zero

<complexType name="personalInfo">
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int" minOccurs="0"/>
 </choice>
</complexType>

Defining attributes

In XML documents, attributes are contained in the element’s tag. For example, in the complexType
element in the code below, name is an attribute. To specify an attribute for a complex type, you define
an attribute element in the complexType element definition. An attribute element can appear only
after the all, sequence, or choice element. Specify one attribute element for each of the complex
type’s attributes. Any attribute elements must be direct children of the complexType element.

Example 2.8. Complex type with an attribute

<complexType name="personalInfo">
 <all>
 <element name="name" type="xsd:string"/>
 <element name="previousJobs" type="xsd:string"
 minOccurs="3" maxOccurs="7"/>
 </all>
 <attribute name="age" type="xsd:int" use="required" />
</complexType>

In the previous code, the attribute element specifies that the personalInfo complex type has an age
attribute. The attribute element has these attributes:

CHAPTER 2. DEFINING LOGICAL DATA UNITS

39

name — A required attribute that specifies the string that identifies the attribute.

type — Specifies the type of the data stored in the field. The type can be one of the XML
Schema simple types.

use — An optional attribute that specifies whether the complex type is required to have this
attribute. Valid values are required or optional. The default is that the attribute is optional.

In an attribute element, you can specify the optional default attribute, which lets you specify a default
value for the attribute.

2.5.2. Defining arrays

Overview

Apache CXF supports two methods for defining arrays in a contract. The first is define a complex type
with a single element whose maxOccurs attribute has a value greater than one. The second is to use
SOAP arrays. SOAP arrays provide added functionality such as the ability to easily define multi-
dimensional arrays and to transmit sparsely populated arrays.

Complex type arrays

Complex type arrays are a special case of a sequence complex type. You simply define a complex type
with a single element and specify a value for the maxOccurs attribute. For example, to define an array
of twenty floating point numbers you use a complex type similar to the one shown in Example 2.9,
“Complex type array”.

Example 2.9. Complex type array

<complexType name="personalInfo">
 <element name="averages" type="xsd:float" maxOccurs="20"/>
</complexType>

You can also specify a value for the minOccurs attribute.

SOAP arrays

SOAP arrays are defined by deriving from the SOAP-ENC:Array base type using the wsdl:arrayType
element. The syntax for this is shown in Example 2.10, “Syntax for a SOAP array derived using
wsdl:arrayType”. Ensure that the definitions element declares xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/".

Example 2.10. Syntax for a SOAP array derived using wsdl:arrayType

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

Red Hat Fuse 7.5 Apache CXF Development Guide

40

Using this syntax, TypeName specifies the name of the newly-defined array type. ElementType specifies
the type of the elements in the array. ArrayBounds specifies the number of dimensions in the array. To
specify a single dimension array use []; to specify a two-dimensional array use either [][] or [,].

For example, the SOAP Array, SOAPStrings, shown in Example 2.11, “Definition of a SOAP array” , defines
a one-dimensional array of strings. The wsdl:arrayType attribute specifies the type of the array
elements, xsd:string, and the number of dimensions, with [] implying one dimension.

Example 2.11. Definition of a SOAP array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

You can also describe a SOAP Array using a simple element as described in the SOAP 1.1 specification.
The syntax for this is shown in Example 2.12, “Syntax for a SOAP array derived using an element” .

Example 2.12. Syntax for a SOAP array derived using an element

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

When using this syntax, the element’s maxOccurs attribute must always be set to unbounded.

2.5.3. Defining types by extension

Like most major coding languages, XML Schema allows you to create data types that inherit some of
their elements from other data types. This is called defining a type by extension. For example, you could
create a new type called alienInfo, that extends the personalInfo structure defined in Example 2.4, “A
complex type” by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the complexType element.

2. The complexContent element specifies that the new type will have more than one element.

NOTE

CHAPTER 2. DEFINING LOGICAL DATA UNITS

41

NOTE

If you are only adding new attributes to the complex type, you can use a
simpleContent element.

3. The type from which the new type is derived, called the base type, is specified in the base
attribute of the extension element.

4. The new type’s elements and attributes are defined in the extension element, the same as they
are for a regular complex type.

For example, alienInfo is defined as shown in Example 2.13, “Type defined by extension” .

Example 2.13. Type defined by extension

<complexType name="alienInfo">
 <complexContent>
 <extension base="xsd1:personalInfo">
 <sequence>
 <element name="planet" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

2.5.4. Defining types by restriction

Overview

XML Schema allows you to create new types by restricting the possible values of an XML Schema simple
type. For example, you can define a simple type, SSN, which is a string of exactly nine characters. New
types defined by restricting simple types are defined using a simpleType element.

The definition of a type by restriction requires three things:

1. The name of the new type is specified by the name attribute of the simpleType element.

2. The simple type from which the new type is derived, called the base type, is specified in the
restriction element. See the section called “Specifying the base type” .

3. The rules, called facets, defining the restrictions placed on the base type are defined as children
of the restriction element. See the section called “Defining the restrictions” .

Specifying the base type

The base type is the type that is being restricted to define the new type. It is specified using a
restriction element. The restriction element is the only child of a simpleType element and has one
attribute, base, that specifies the base type. The base type can be any of the XML Schema simple
types.

For example, to define a new type by restricting the values of an xsd:int you use a definition like the one
shown in Example 2.14, “Using int as the base type” .

Red Hat Fuse 7.5 Apache CXF Development Guide

42

Example 2.14. Using int as the base type

<simpleType name="restrictedInt">
 <restriction base="xsd:int">
 ...
 </restriction>
</simpleType>

Defining the restrictions

The rules defining the restrictions placed on the base type are called facets. Facets are elements with
one attribute, value, that defines how the facet is enforced. The available facets and their valid value
settings depend on the base type. For example, xsd:string supports six facets, including:

length

minLength

maxLength

pattern

whitespace

enumeration

Each facet element is a child of the restriction element.

Example

Example 2.15, “SSN simple type description” shows an example of a simple type, SSN, which represents a
social security number. The resulting type is a string of the form xxx-xx-xxxx. <SSN>032-43-
9876<SSN> is a valid value for an element of this type, but <SSN>032439876</SSN> is not.

Example 2.15. SSN simple type description

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}"/>
 </restriction>
</simpleType>

2.5.5. Defining enumerated types

Overview

Enumerated types in XML Schema are a special case of definition by restriction. They are described by
using the enumeration facet which is supported by all XML Schema primitive types. As with enumerated
types in most modern programming languages, a variable of this type can only have one of the specified
values.

CHAPTER 2. DEFINING LOGICAL DATA UNITS

43

Defining an enumeration in XML Schema

The syntax for defining an enumeration is shown in Example 2.16, “Syntax for an enumeration” .

Example 2.16. Syntax for an enumeration

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value"/>
 <enumeration value="Case2Value"/>
 ...
 <enumeration value="CaseNValue"/>
 </restriction>
</simpleType>

EnumName specifies the name of the enumeration type. EnumType specifies the type of the case
values. CaseNValue, where N is any number one or greater, specifies the value for each specific case of
the enumeration. An enumerated type can have any number of case values, but because it is derived
from a simple type, only one of the case values is valid at a time.

Example

For example, an XML document with an element defined by the enumeration widgetSize, shown in
Example 2.17, “widgetSize enumeration” , would be valid if it contained <widgetSize>big</widgetSize>,
but it would not be valid if it contained <widgetSize>big,mungo</widgetSize>.

Example 2.17. widgetSize enumeration

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 </restriction>
</simpleType>

2.6. DEFINING ELEMENTS

Elements in XML Schema represent an instance of an element in an XML document generated from the
schema. The most basic element consists of a single element element. Like the element element used
to define the members of a complex type, they have three attributes:

name — A required attribute that specifies the name of the element as it appears in an XML
document.

type — Specifies the type of the element. The type can be any XML Schema primitive type or
any named complex type defined in the contract. This attribute can be omitted if the type has
an in-line definition.

nillable — Specifies whether an element can be omitted from a document entirely. If nillable is
set to true, the element can be omitted from any document generated using the schema.

Red Hat Fuse 7.5 Apache CXF Development Guide

44

An element can also have an in-line type definition. In-line types are specified using either a
complexType element or a simpleType element. Once you specify if the type of data is complex or
simple, you can define any type of data needed using the tools available for each type of data. In-line
type definitions are discouraged because they are not reusable.

CHAPTER 2. DEFINING LOGICAL DATA UNITS

45

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A
SERVICE

Abstract

A service is defined by the messages exchanged when its operations are invoked. In a WSDL contract
these messages are defined using message element. The messages are made up of one or more parts
that are defined using part elements.

OVERVIEW

A service’s operations are defined by specifying the logical messages that are exchanged when an
operation is invoked. These logical messages define the data that is passed over a network as an XML
document. They contain all of the parameters that are a part of a method invocation. Logical messages
are defined using the message element in your contracts. Each logical message consists of one or more
parts, defined in part elements.

While your messages can list each parameter as a separate part, the recommended practice is to use
only a single part that encapsulates the data needed for the operation.

MESSAGES AND PARAMETER LISTS

Each operation exposed by a service can have only one input message and one output message. The
input message defines all of the information the service receives when the operation is invoked. The
output message defines all of the data that the service returns when the operation is completed. Fault
messages define the data that the service returns when an error occurs.

In addition, each operation can have any number of fault messages. The fault messages define the data
that is returned when the service encounters an error. These messages usually have only one part that
provides enough information for the consumer to understand the error.

MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS

If you are defining an existing application as a service, you must ensure that each parameter used by the
method implementing the operation is represented in a message. You must also ensure that the return
value is included in the operation’s output message.

One approach to defining your messages is RPC style. When using RPC style, you define the messages
using one part for each parameter in the method’s parameter list. Each message part is based on a type
defined in the types element of the contract. Your input message contains one part for each input
parameter in the method. Your output message contains one part for each output parameter, plus a part
to represent the return value, if needed. If a parameter is both an input and an output parameter, it is
listed as a part for both the input message and the output message.

RPC style message definition is useful when service enabling legacy systems that use transports such as
Tibco or CORBA. These systems are designed around procedures and methods. As such, they are
easiest to model using messages that resemble the parameter lists for the operation being invoked.
RPC style also makes a cleaner mapping between the service and the application it is exposing.

MESSAGE DESIGN FOR SOAP SERVICES

While RPC style is useful for modeling existing systems, the service’s community strongly favors the
wrapped document style. In wrapped document style, each message has a single part. The message’s

Red Hat Fuse 7.5 Apache CXF Development Guide

46

part references a wrapper element defined in the types element of the contract. The wrapper element
has the following characteristics:

It is a complex type containing a sequence of elements. For more information see Section 2.5,
“Defining complex data types”.

If it is a wrapper for an input message:

It has one element for each of the method’s input parameters.

Its name is the same as the name of the operation with which it is associated.

If it is a wrapper for an output message:

It has one element for each of the method’s output parameters and one element for each of
the method’s inout parameters.

Its first element represents the method’s return parameter.

Its name would be generated by appending Response to the name of the operation with
which the wrapper is associated.

MESSAGE NAMING

Each message in a contract must have a unique name within its namespace. It is recommended that you
use the following naming conventions:

Messages should only be used by a single operation.

Input message names are formed by appending Request to the name of the operation.

Output message names are formed by appending Response to the name of the operation.

Fault message names should represent the reason for the fault.

MESSAGE PARTS

Message parts are the formal data units of the logical message. Each part is defined using a part
element, and is identified by a name attribute and either a type attribute or an element attribute that
specifies its data type. The data type attributes are listed in Table 3.1, “Part data type attributes” .

Table 3.1. Part data type attributes

Attribute Description

element="elem_name" The data type of the part is defined by an element
called elem_name.

type="type_name" The data type of the part is defined by a type called
type_name.

Messages are allowed to reuse part names. For instance, if a method has a parameter, foo, that is passed
by reference or is an in/out, it can be a part in both the request message and the response message, as
shown in Example 3.1, “Reused part”.

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE

47

Example 3.1. Reused part

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
<message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
<message>

EXAMPLE

For example, imagine you had a server that stored personal information and provided a method that
returned an employee’s data based on the employee’s ID number. The method signature for looking up
the data is similar to Example 3.2, “personalInfo lookup method” .

Example 3.2. personalInfo lookup method

personalInfo lookup(long empId)

This method signature can be mapped to the RPC style WSDL fragment shown in Example 3.3, “RPC
WSDL message definitions”.

Example 3.3. RPC WSDL message definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo"/>
<message/>

It can also be mapped to the wrapped document style WSDL fragment shown in Example 3.4, “Wrapped
document WSDL message definitions”.

Example 3.4. Wrapped document WSDL message definitions

<wsdl:types>
 <xsd:schema ... >
 ...
 <element name="personalLookup">
 <complexType>
 <sequence>
 <element name="empID" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 <element name="personalLookupResponse">
 <complexType>
 <sequence>

Red Hat Fuse 7.5 Apache CXF Development Guide

48

 <element name="return" type="personalInfo" />
 </sequence>
 </complexType>
 </element>
 </schema>
</types>
<wsdl:message name="personalLookupRequest">
 <wsdl:part name="empId" element="xsd1:personalLookup"/>
<message/>
<wsdl:message name="personalLookupResponse">
 <wsdl:part name="return" element="xsd1:personalLookupResponse"/>
<message/>

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE

49

CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES

Abstract

Logical service interfaces are defined using the portType element.

OVERVIEW

Logical service interfaces are defined using the WSDL portType element. The portType element is a
collection of abstract operation definitions. Each operation is defined by the input, output, and fault
messages used to complete the transaction the operation represents. When code is generated to
implement the service interface defined by a portType element, each operation is converted into a
method containing the parameters defined by the input, output, and fault messages specified in the
contract.

PROCESS

To define a logical interface in a WSDL contract you must do the following:

1. Create a portType element to contain the interface definition and give it a unique name. See
the section called “Port types” .

2. Create an operation element for each operation defined in the interface. See the section called
“Operations”.

3. For each operation, specify the messages used to represent the operation’s parameter list,
return type, and exceptions. See the section called “Operation messages” .

PORT TYPES

A WSDL portType element is the root element in a logical interface definition. While many Web service
implementations map portType elements directly to generated implementation objects, a logical
interface definition does not specify the exact functionality provided by the the implemented service.
For example, a logical interface named ticketSystem can result in an implementation that either sells
concert tickets or issues parking tickets.

The portType element is the unit of a WSDL document that is mapped into a binding to define the
physical data used by an endpoint exposing the defined service.

Each portType element in a WSDL document must have a unique name, which is specified using the
name attribute, and is made up of a collection of operations, which are described in operation elements.
A WSDL document can describe any number of port types.

OPERATIONS

Logical operations, defined using WSDL operation elements, define the interaction between two
endpoints. For example, a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation defined within a portType element must have a unique name, specified using the name
attribute. The name attribute is required to define an operation.

OPERATION MESSAGES

Red Hat Fuse 7.5 Apache CXF Development Guide

50

Logical operations are made up of a set of elements representing the logical messages communicated
between the endpoints to execute the operation. The elements that can describe an operation are listed
in Table 4.1, “Operation message elements”.

Table 4.1. Operation message elements

Element Description

input Specifies the message the client endpoint sends to
the service provider when a request is made. The
parts of this message correspond to the input
parameters of the operation.

output Specifies the message that the service provider
sends to the client endpoint in response to a request.
The parts of this message correspond to any
operation parameters that can be changed by the
service provider, such as values passed by reference.
This includes the return value of the operation.

fault Specifies a message used to communicate an error
condition between the endpoints.

An operation is required to have at least one input or one output element. An operation can have both
input and output elements, but it can only have one of each. Operations are not required to have any
fault elements, but can, if required, have any number of fault elements.

The elements have the two attributes listed in Table 4.2, “Attributes of the input and output elements” .

Table 4.2. Attributes of the input and output elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format.
The name must be unique within the enclosing port
type.

message Specifies the abstract message that describes the
data being sent or received. The value of the
message attribute must correspond to the name
attribute of one of the abstract messages defined in
the WSDL document.

It is not necessary to specify the name attribute for all input and output elements; WSDL provides a
default naming scheme based on the enclosing operation’s name. If only one element is used in the
operation, the element name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation with either Request or
Response respectively appended to the name.

RETURN VALUES

CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES

51

Because the operation element is an abstract definition of the data passed during an operation, WSDL
does not provide for return values to be specified for an operation. If a method returns a value it will be
mapped into the output element as the last part of that message.

EXAMPLE

For example, you might have an interface similar to the one shown in Example 4.1, “personalInfo lookup
interface”.

Example 4.1. personalInfo lookup interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

This interface can be mapped to the port type in Example 4.2, “personalInfo lookup port type”.

Example 4.2. personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalLookupResponse"/>
<message/>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
<message/>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="tns:personalLookupRequest"/>
 <output name="return" message="tns:personalLookupResponse"/>
 <fault name="exception" message="tns:idNotFoundException"/>
 </operation>
</portType>

Red Hat Fuse 7.5 Apache CXF Development Guide

52

PART II. WEB SERVICES BINDINGS
This part describes how to add Apache CXF bindings to a WSDL document.

PART II. WEB SERVICES BINDINGS

53

CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL

Abstract

Bindings map the logical messages used to define a service into a concrete payload format that can be
transmitted and received by an endpoint.

OVERVIEW

Bindings provide a bridge between the logical messages used by a service to a concrete data format that
an endpoint uses in the physical world. They describe how the logical messages are mapped into a
payload format that is used on the wire by an endpoint. It is within the bindings that details such as
parameter order, concrete data types, and return values are specified. For example, the parts of a
message can be reordered in a binding to reflect the order required by an RPC call. Depending on the
binding type, you can also identify which of the message parts, if any, represent the return type of a
method.

PORT TYPES AND BINDINGS

Port types and bindings are directly related. A port type is an abstract definition of a set of interactions
between two logical services. A binding is a concrete definition of how the messages used to implement
the logical services will be instantiated in the physical world. Each binding is then associated with a set of
network details that finish the definition of one endpoint that exposes the logical service defined by the
port type.

To ensure that an endpoint defines only a single service, WSDL requires that a binding can only
represent a single port type. For example, if you had a contract with two port types, you could not write a
single binding that mapped both of them into a concrete data format. You would need two bindings.

However, WSDL allows for a port type to be mapped to several bindings. For example, if your contract
had a single port type, you could map it into two or more bindings. Each binding could alter how the parts
of the message are mapped or they could specify entirely different payload formats for the message.

THE WSDL ELEMENTS

Bindings are defined in a contract using the WSDL binding element. The binding element consists of
attributes like, name, that specifies a unique name for the binding and type that provides reference to
PortType. The value of this attribute is used to associate the binding with an endpoint as discussed in
Chapter 4, Defining Your Logical Interfaces .

The actual mappings are defined in the children of the binding element. These elements vary
depending on the type of payload format you decide to use. The different payload formats and the
elements used to specify their mappings are discussed in the following chapters.

ADDING TO A CONTRACT

Apache CXF provides command line tools that can generate bindings for predefined service interfaces.

The tools will add the proper elements to your contract for you. However, it is recommended that you
have some knowledge of how the different types of bindings work.

You can also add a binding to a contract using any text editor. When hand editing a contract, you are
responsible for ensuring that the contract is valid.

Red Hat Fuse 7.5 Apache CXF Development Guide

54

SUPPORTED BINDINGS

Apache CXF supports the following bindings:

SOAP 1.1

SOAP 1.2

CORBA

Pure XML

CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL

55

CHAPTER 6. USING SOAP 1.1 MESSAGES

Abstract

Apache CXF provides a tool to generate a SOAP 1.1 binding which does not use any SOAP headers.
However, you can add SOAP headers to your binding using any text or XML editor.

6.1. ADDING A SOAP 1.1 BINDING

Using wsdl2soap

To generate a SOAP 1.1 binding using wsdl2soap use the following command: wsdl2soap-iport-type-
name-bbinding-name-doutput-directory-ooutput-file-nsoap-body-namespace-style (document/rpc)-
use (literal/encoded)-v-verbose-quietwsdlurl

NOTE

To use wsdl2soap you will need to download the Apache CXF distribution.

The command has the following options:

Option Interpretation

-i port-type-name Specifies the portType element for which a binding
is generated.

wsdlurl The path and name of the WSDL file containing the
portType element definition.

The tool has the following optional arguments:

Option Interpretation

-b binding-name Specifies the name of the generated SOAP binding.

-d output-directory Specifies the directory to place the generated WSDL
file.

-o output-file Specifies the name of the generated WSDL file.

-n soap-body-namespace Specifies the SOAP body namespace when the style
is RPC.

-style (document/rpc) Specifies the encoding style (document or RPC) to
use in the SOAP binding. The default is document.

-use (literal/encoded) Specifies the binding use (encoded or literal) to use
in the SOAP binding. The default is literal.

Red Hat Fuse 7.5 Apache CXF Development Guide

56

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation
process.

Option Interpretation

The -iport-type-name and wsdlurl arguments are required. If the -style rpc argument is specified, the -
nsoap-body-namspace argument is also required. All other arguments are optional and may be listed in
any order.

IMPORTANT

wsdl2soap does not support the generation of document/encoded SOAP bindings.

Example

If your system has an interface that takes orders and offers a single operation to process the orders it is
defined in a WSDL fragment similar to the one shown in Example 6.1, “Ordering System Interface” .

Example 6.1. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>

CHAPTER 6. USING SOAP 1.1 MESSAGES

57

</portType>
...
</definitions>

The SOAP binding generated for orderWidgets is shown in Example 6.2, “SOAP 1.1 Binding for
orderWidgets”.

Example 6.2. SOAP 1.1 Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal"/>
 </input>
 <output name="bill">
 <soap:body use="literal"/>
 </output>
 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>

This binding specifies that messages are sent using the document/literal message style.

6.2. ADDING SOAP HEADERS TO A SOAP 1.1 BINDING

Overview

SOAP headers are defined by adding soap:header elements to your default SOAP 1.1 binding. The
soap:header element is an optional child of the input, output, and fault elements of the binding. The
SOAP header becomes part of the parent message. A SOAP header is defined by specifying a message
and a message part. Each SOAP header can only contain one message part, but you can insert as many
SOAP headers as needed.

Syntax

The syntax for defining a SOAP header is shown in Example 6.3, “SOAP Header Syntax” . The message
attribute of soap:header is the qualified name of the message from which the part being inserted into
the header is taken. The part attribute is the name of the message part inserted into the SOAP header.
Because SOAP headers are always document style, the WSDL message part inserted into the SOAP
header must be defined using an element. Together the message and the part attributes fully describe
the data to insert into the SOAP header.

Example 6.3. SOAP Header Syntax

<binding name="headwig">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

Red Hat Fuse 7.5 Apache CXF Development Guide

58

 <operation name="weave">
 <soap:operation soapAction="" style="document"/>
 <input name="grain">
 <soap:body ... />
 <soap:header message="QName" part="partName"/>
 </input>
...
</binding>

As well as the mandatory message and part attributes, soap:header also supports the namespace, the
use, and the encodingStyle attributes. These attributes function the same for soap:header as they do
for soap:body.

Splitting messages between body and header

The message part inserted into the SOAP header can be any valid message part from the contract. It
can even be a part from the parent message which is being used as the SOAP body. Because it is unlikely
that you would want to send information twice in the same message, the SOAP binding provides a
means for specifying the message parts that are inserted into the SOAP body.

The soap:body element has an optional attribute, parts, that takes a space delimited list of part names.
When parts is defined, only the message parts listed are inserted into the SOAP body. You can then
insert the remaining parts into the SOAP header.

NOTE

When you define a SOAP header using parts of the parent message, Apache CXF
automatically fills in the SOAP headers for you.

Example

Example 6.4, “SOAP 1.1 Binding with a SOAP Header” shows a modified version of the orderWidgets
service shown in Example 6.1, “Ordering System Interface” . This version has been modified so that each
order has an xsd:base64binary value placed in the SOAP header of the request and response. The
SOAP header is defined as being the keyVal part from the widgetKey message. In this case you are
responsible for adding the SOAP header to your application logic because it is not part of the input or
output message.

Example 6.4. SOAP 1.1 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"

CHAPTER 6. USING SOAP 1.1 MESSAGES

59

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <soap:body use="literal"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

You can also modify Example 6.4, “SOAP 1.1 Binding with a SOAP Header” so that the header value is a
part of the input and output messages.

Red Hat Fuse 7.5 Apache CXF Development Guide

60

CHAPTER 7. USING SOAP 1.2 MESSAGES

Abstract

Apache CXF provides tools to generate a SOAP 1.2 binding which does not use any SOAP headers. You
can add SOAP headers to your binding using any text or XML editor.

7.1. ADDING A SOAP 1.2 BINDING TO A WSDL DOCUMENT

Using wsdl2soap

NOTE

To use wsdl2soap you will need to download the Apache CXF distribution.

To generate a SOAP 1.2 binding using wsdl2soap use the following command: wsdl2soap-iport-type-
name-bbinding-name-soap12-doutput-directory-ooutput-file-nsoap-body-namespace-style
(document/rpc)-use (literal/encoded)-v-verbose-quietwsdlurl The tool has the following required
arguments:

Option Interpretation

-i port-type-name Specifies the portType element for which a binding
is generated.

-soap12 Specifies that the generated binding uses SOAP 1.2.

wsdlurl The path and name of the WSDL file containing the
portType element definition.

The tool has the following optional arguments:

Option Interpretation

-b binding-name Specifies the name of the generated SOAP binding.

-soap12 Specifies that the generated binding will use SOAP
1.2.

-d output-directory Specifies the directory to place the generated WSDL
file.

-o output-file Specifies the name of the generated WSDL file.

-n soap-body-namespace Specifies the SOAP body namespace when the style
is RPC.

CHAPTER 7. USING SOAP 1.2 MESSAGES

61

-style (document/rpc) Specifies the encoding style (document or RPC) to
use in the SOAP binding. The default is document.

-use (literal/encoded) Specifies the binding use (encoded or literal) to use
in the SOAP binding. The default is literal.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation
process.

Option Interpretation

The -i port-type-name and wsdlurl arguments are required. If the -style rpc argument is specified, the -
n soap-body-namspace argument is also required. All other arguments are optional and can be listed in
any order.

IMPORTANT

wsdl2soap does not support the generation of document/encoded SOAP 1.2 bindings.

Example

If your system has an interface that takes orders and offers a single operation to process the orders it is
defined in a WSDL fragment similar to the one shown in Example 7.1, “Ordering System Interface” .

Example 7.1. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">

Red Hat Fuse 7.5 Apache CXF Development Guide

62

 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
...
</definitions>

The SOAP binding generated for orderWidgets is shown in Example 7.2, “SOAP 1.2 Binding for
orderWidgets”.

Example 7.2. SOAP 1.2 Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap12:operation soapAction="" style="document"/>
 <input name="order">
 <soap12:body use="literal"/>
 </input>
 <output name="bill">
 <wsoap12:body use="literal"/>
 </output>
 <fault name="sizeFault">
 <soap12:body use="literal"/>
 </fault>
 </operation>
</binding>

This binding specifies that messages are sent using the document/literal message style.

7.2. ADDING HEADERS TO A SOAP 1.2 MESSAGE

Overview

SOAP message headers are defined by adding soap12:header elements to your SOAP 1.2 message.
The soap12:header element is an optional child of the input, output, and fault elements of the binding.
The SOAP header becomes part of the parent message. A SOAP header is defined by specifying a
message and a message part. Each SOAP header can only contain one message part, but you can insert
as many headers as needed.

Syntax

The syntax for defining a SOAP header is shown in Example 7.3, “SOAP Header Syntax”.

Example 7.3. SOAP Header Syntax

<binding name="headwig">
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="weave">

CHAPTER 7. USING SOAP 1.2 MESSAGES

63

 <soap12:operation soapAction="" style="documment"/>
 <input name="grain">
 <soap12:body ... />
 <soap12:header message="QName" part="partName"
 use="literal|encoded"
 encodingStyle="encodingURI"
 namespace="namespaceURI" />
 </input>
...
</binding>

The soap12:header element’s attributes are described in Table 7.1, “soap12:header Attributes”.

Table 7.1. soap12:header Attributes

Attribute Description

message A required attribute specifying the qualified name of
the message from which the part being inserted into
the header is taken.

part A required attribute specifying the name of the
message part inserted into the SOAP header.

use Specifies if the message parts are to be encoded
using encoding rules. If set to encoded the message
parts are encoded using the encoding rules specified
by the value of the encodingStyle attribute. If set
to literal, the message parts are defined by the
schema types referenced.

encodingStyle Specifies the encoding rules used to construct the
message.

namespace Defines the namespace to be assigned to the header
element serialized with use="encoded".

Splitting messages between body and header

The message part inserted into the SOAP header can be any valid message part from the contract. It
can even be a part from the parent message which is being used as the SOAP body. Because it is unlikely
that you would send information twice in the same message, the SOAP 1.2 binding provides a means for
specifying the message parts that are inserted into the SOAP body.

The soap12:body element has an optional attribute, parts, that takes a space delimited list of part
names. When parts is defined, only the message parts listed are inserted into the body of the SOAP 1.2
message. You can then insert the remaining parts into the message’s header.

NOTE

Red Hat Fuse 7.5 Apache CXF Development Guide

64

NOTE

When you define a SOAP header using parts of the parent message, Apache CXF
automatically fills in the SOAP headers for you.

Example

Example 7.4, “SOAP 1.2 Binding with a SOAP Header” shows a modified version of the orderWidgets
service shown in Example 7.1, “Ordering System Interface” . This version is modified so that each order
has an xsd:base64binary value placed in the header of the request and the response. The header is
defined as being the keyVal part from the widgetKey message. In this case you are responsible for
adding the application logic to create the header because it is not part of the input or output message.

Example 7.4. SOAP 1.2 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">

CHAPTER 7. USING SOAP 1.2 MESSAGES

65

 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap12:operation soapAction="" style="document"/>
 <input name="order">
 <soap12:body use="literal"/>
 <soap12:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <soap12:body use="literal"/>
 <soap12:header message="tns:widgetKey" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap12:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

You can modify Example 7.4, “SOAP 1.2 Binding with a SOAP Header” so that the header value is a part
of the input and output messages, as shown in Example 7.5, “SOAP 1.2 Binding for orderWidgets with a
SOAP Header”. In this case keyVal is a part of the input and output messages. In the soap12:body
elements the parts attribute specifies that keyVal should not be inserted into the body. However, it is
inserted into the header.

Example 7.5. SOAP 1.2 Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="badSize">

Red Hat Fuse 7.5 Apache CXF Development Guide

66

 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap12:operation soapAction="" style="document"/>
 <input name="order">
 <soap12:body use="literal" parts="numOrdered"/>
 <soap12:header message="tns:widgetOrder" part="keyVal"/>
 </input>
 <output name="bill">
 <soap12:body use="literal" parts="bill"/>
 <soap12:header message="tns:widgetOrderBill" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap12:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

CHAPTER 7. USING SOAP 1.2 MESSAGES

67

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH
ATTACHMENTS

Abstract

SOAP attachments provide a mechanism for sending binary data as part of a SOAP message. Using
SOAP with attachments requires that you define your SOAP messages as MIME multipart messages.

OVERVIEW

SOAP messages generally do not carry binary data. However, the W3C SOAP 1.1 specification allows for
using MIME multipart/related messages to send binary data in SOAP messages. This technique is called
using SOAP with attachments. SOAP attachments are defined in the W3C’s SOAP Messages with
Attachments Note.

NAMESPACE

The WSDL extensions used to define the MIME multipart/related messages are defined in the
namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed with mime. The entry in the
WSDL definitions element to set this up is shown in Example 8.1, “MIME Namespace Specification in a
Contract”.

Example 8.1. MIME Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

CHANGING THE MESSAGE BINDING

In a default SOAP binding, the first child element of the input, output, and fault elements is a
soap:body element describing the body of the SOAP message representing the data. When using
SOAP with attachments, the soap:body element is replaced with a mime:multipartRelated element.

NOTE

WSDL does not support using mime:multipartRelated for fault messages.

The mime:multipartRelated element tells Apache CXF that the message body is a multipart message
that potentially contains binary data. The contents of the element define the parts of the message and
their contents. mime:multipartRelated elements contain one or more mime:part elements that
describe the individual parts of the message.

The first mime:part element must contain the soap:body element that would normally appear in a
default SOAP binding. The remaining mime:part elements define the attachments that are being sent
in the message.

DESCRIBING A MIME MULTIPART MESSAGE

MIME multipart messages are described using a mime:multipartRelated element that contains a

Red Hat Fuse 7.5 Apache CXF Development Guide

68

http://www.w3.org/TR/SOAP-attachments
http://schemas.xmlsoap.org/wsdl/mime/

MIME multipart messages are described using a mime:multipartRelated element that contains a
number of mime:part elements. To fully describe a MIME multipart message you must do the following:

1. Inside the input or output message you are sending as a MIME multipart message, add a
mime:mulipartRelated element as the first child element of the enclosing message.

2. Add a mime:part child element to the mime:multipartRelated element and set its name
attribute to a unique string.

3. Add a soap:body element as the child of the mime:part element and set its attributes
appropriately.

NOTE

If the contract had a default SOAP binding, you can copy the soap:body
element from the corresponding message from the default binding into the
MIME multipart message.

4. Add another mime:part child element to the mime:multipartReleated element and set its
name attribute to a unique string.

5. Add a mime:content child element to the mime:part element to describe the contents of this
part of the message.
To fully describe the contents of a MIME message part the mime:content element has the
following attributes:

Table 8.1. mime:content Attributes

Attribute Description +

part Specifies the name of the WSDL message part,
from the parent message definition, that is used
as the content of this part of the MIME multipart
message being placed on the wire.

+

type The MIME type of the data in this message part.
MIME types are defined as a type and a subtype
using the syntax type/subtype.

+

There are a number of predefined MIME types
such as image/jpeg and text/plain. The MIME
types are maintained by the Internet Assigned
Numbers Authority (IANA) and described in
detail in Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message
Bodies and Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types.

+

6. For each additional MIME part, repeat steps [i303819] and [i303821].

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS

69

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

EXAMPLE

Example 8.2, “Contract using SOAP with Attachments” shows a WSDL fragment defining a service that
stores X-rays in JPEG format. The image data, xRay, is stored as an xsd:base64binary and is packed
into the MIME multipart message’s second part, imageData. The remaining two parts of the input
message, patientName and patientNumber, are sent in the first part of the MIME multipart image as
part of the SOAP body.

Example 8.2. Contract using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="storRequest">
 <part name="patientName" type="xsd:string"/>
 <part name="patientNumber" type="xsd:int"/>
 <part name="xRay" type="xsd:base64Binary"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>

 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>

 <binding name="xRayStorageBinding" type="tns:xRayStorage">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap:operation soapAction="" style="document"/>
 <input name="storRequest">
 <mime:multipartRelated>
 <mime:part name="bodyPart">
 <soap:body use="literal"/>
 </mime:part>
 <mime:part name="imageData">
 <mime:content part="xRay" type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 <output name="storResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="xRayStorageService">

Red Hat Fuse 7.5 Apache CXF Development Guide

70

 <port binding="tns:xRayStorageBinding" name="xRayStoragePort">
 <soap:address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS

71

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

Abstract

SOAP Message Transmission Optimization Mechanism (MTOM) replaces SOAP with attachments as a
mechanism for sending binary data as part of an XML message. Using MTOM with Apache CXF requires
adding the correct schema types to a service’s contract and enabling the MTOM optimizations.

9.1. OVERVIEW OF MTOM

SOAP Message Transmission Optimization Mechanism (MTOM) specifies an optimized method for
sending binary data as part of a SOAP message. Unlike SOAP with Attachments, MTOM requires the
use of XML-binary Optimized Packaging (XOP) packages for transmitting binary data. Using MTOM to
send binary data does not require you to fully define the MIME Multipart/Related message as part of the
SOAP binding. It does, however, require that you do the following:

1. Annotate the data that you are going to send as an attachment.
You can annotate either your WSDL or the Java class that implements your data.

2. Enable the runtime’s MTOM support.
This can be done either programmatically or through configuration.

3. Develop a DataHandler for the data being passed as an attachment.

NOTE

Developing DataHandlers is beyond the scope of this book.

9.2. ANNOTATING DATA TYPES TO USE MTOM

Overview

In WSDL, when defining a data type for passing along a block of binary data, such as an image file or a
sound file, you define the element for the data to be of type xsd:base64Binary. By default, any
element of type xsd:base64Binary results in the generation of a byte[] which can be serialized using
MTOM. However, the default behavior of the code generators does not take full advantage of the
serialization.

In order to fully take advantage of MTOM you must add annotations to either your service’s WSDL
document or the JAXB class that implements the binary data structure. Adding the annotations to the
WSDL document forces the code generators to generate streaming data handlers for the binary data.
Annotating the JAXB class involves specifying the proper content types and might also involve
changing the type specification of the field containing the binary data.

WSDL first

Example 9.1, “Message for MTOM” shows a WSDL document for a Web service that uses a message
which contains one string field, one integer field, and a binary field. The binary field is intended to carry a
large image file, so it is not appropriate to send it as part of a normal SOAP message.

Example 9.1. Message for MTOM

<?xml version="1.0" encoding="UTF-8"?>

Red Hat Fuse 7.5 Apache CXF Development Guide

72

<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xsd1="http://mediStor.org/types/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <schema targetNamespace="http://mediStor.org/types/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="xRayType">
 <sequence>
 <element name="patientName" type="xsd:string" />
 <element name="patientNumber" type="xsd:int" />
 <element name="imageData" type="xsd:base64Binary" />
 </sequence>
 </complexType>
 <element name="xRay" type="xsd1:xRayType" />
 </schema>
 </types>

 <message name="storRequest">
 <part name="record" element="xsd1:xRay"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>

 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>

 <binding name="xRayStorageSOAPBinding" type="tns:xRayStorage">
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap12:operation soapAction="" style="document"/>
 <input name="storRequest">
 <soap12:body use="literal"/>
 </input>
 <output name="storResponse">
 <soap12:body use="literal"/>
 </output>
 </operation>
 </binding>
 ...
</definitions>

If you want to use MTOM to send the binary part of the message as an optimized attachment you must
add the xmime:expectedContentTypes attribute to the element containing the binary data. This
attribute is defined in the http://www.w3.org/2005/05/xmlmime namespace and specifies the MIME
types that the element is expected to contain. You can specify a comma separated list of MIME types.

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

73

http://www.w3.org/2005/05/xmlmime

The setting of this attribute changes how the code generators create the JAXB class for the data. For
most MIME types, the code generator creates a DataHandler. Some MIME types, such as those for
images, have defined mappings.

NOTE

The MIME types are maintained by the Internet Assigned Numbers Authority(IANA) and
are described in detail in Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies and Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types.

For most uses you specify application/octet-stream.

Example 9.2, “Binary Data for MTOM” shows how you can modify xRayType from Example 9.1,
“Message for MTOM” for using MTOM.

Example 9.2. Binary Data for MTOM

...
 <types>
 <schema targetNamespace="http://mediStor.org/types/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <complexType name="xRayType">
 <sequence>
 <element name="patientName" type="xsd:string" />
 <element name="patientNumber" type="xsd:int" />
 <element name="imageData" type="xsd:base64Binary"
 xmime:expectedContentTypes="application/octet-stream"/>
 </sequence>
 </complexType>
 <element name="xRay" type="xsd1:xRayType" />
 </schema>
 </types>
...

The generated JAXB class generated for xRayType no longer contains a byte[]. Instead the code
generator sees the xmime:expectedContentTypes attribute and generates a DataHandler for the
imageData field.

NOTE

You do not need to change the binding element to use MTOM. The runtime makes the
appropriate changes when the data is sent.

Java first

If you are doing Java first development you can make your JAXB class MTOM ready by doing the
following:

1. Make sure the field holding the binary data is a DataHandler.

2. Add the @XmlMimeType() annotation to the field containing the data you want to stream as an

Red Hat Fuse 7.5 Apache CXF Development Guide

74

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

2. Add the @XmlMimeType() annotation to the field containing the data you want to stream as an
MTOM attachment.

Example 9.3, “JAXB Class for MTOM” shows a JAXB class annotated for using MTOM.

Example 9.3. JAXB Class for MTOM

@XmlType
public class XRayType {
 protected String patientName;
 protected int patientNumber;
 @XmlMimeType("application/octet-stream")
 protected DataHandler imageData;
 ...
}

9.3. ENABLING MTOM

By default the Apache CXF runtime does not enable MTOM support. It sends all binary data as either
part of the normal SOAP message or as an unoptimized attachment. You can activate MTOM support
either programmatically or through the use of configuration.

9.3.1. Using JAX-WS APIs

Overview

Both service providers and consumers must have the MTOM optimizations enabled. The JAX-WS APIs
offer different mechanisms for each type of endpoint.

Service provider

If you published your service provider using the JAX-WS APIs you enable the runtime’s MTOM support
as follows:

1. Access the Endpoint object for your published service.
The easiest way to access the Endpoint object is when you publish the endpoint. For more
information see Chapter 31, Publishing a Service .

2. Get the SOAP binding from the Endpoint using its getBinding() method, as shown in
Example 9.4, “Getting the SOAP Binding from an Endpoint” .

Example 9.4. Getting the SOAP Binding from an Endpoint

// Endpoint ep is declared previously
SOAPBinding binding = (SOAPBinding)ep.getBinding();

You must cast the returned binding object to a SOAPBinding object to access the MTOM
property.

3. Set the binding’s MTOM enabled property to true using the binding’s setMTOMEnabled()
method, as shown in Example 9.5, “Setting a Service Provider’s MTOM Enabled Property” .

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

75

Example 9.5. Setting a Service Provider’s MTOM Enabled Property

binding.setMTOMEnabled(true);

Consumer

To MTOM enable a JAX-WS consumer you must do the following:

1. Cast the consumer’s proxy to a BindingProvider object.
For information on getting a consumer proxy see Chapter 25, Developing a Consumer Without a
WSDL Contract or Chapter 28, Developing a Consumer From a WSDL Contract .

2. Get the SOAP binding from the BindingProvider using its getBinding() method, as shown in
Example 9.6, “Getting a SOAP Binding from a BindingProvider”.

Example 9.6. Getting a SOAP Binding from a BindingProvider

// BindingProvider bp declared previously
SOAPBinding binding = (SOAPBinding)bp.getBinding();

3. Set the bindings MTOM enabled property to true using the binding’s setMTOMEnabled()
method, as shown in Example 9.7, “Setting a Consumer’s MTOM Enabled Property” .

Example 9.7. Setting a Consumer’s MTOM Enabled Property

binding.setMTOMEnabled(true);

9.3.2. Using configuration

Overview

If you publish your service using XML, such as when deploying to a container, you can enable your
endpoint’s MTOM support in the endpoint’s configuration file. For more information on configuring
endpoint’s see Part IV, “Configuring Web Service Endpoints”.

Procedure

The MTOM property is set inside the jaxws:endpoint element for your endpoint. To enable MTOM do
the following:

1. Add a jaxws:property child element to the endpoint’s jaxws:endpoint element.

2. Add a entry child element to the jaxws:property element.

3. Set the entry element’s key attribute to mtom-enabled.

4. Set the entry element’s value attribute to true.

Example

Red Hat Fuse 7.5 Apache CXF Development Guide

76

Example 9.8, “Configuration for Enabling MTOM” shows an endpoint that is MTOM enabled.

Example 9.8. Configuration for Enabling MTOM

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schema/jaxws.xsd">

 <jaxws:endpoint id="xRayStorage"
 implementor="demo.spring.xRayStorImpl"
 address="http://localhost/xRayStorage">
 <jaxws:properties>
 <entry key="mtom-enabled" value="true"/>
 </jaxws:properties>
 </jaxws:endpoint>
</beans>

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

77

CHAPTER 10. USING XML DOCUMENTS

Abstract

The pure XML payload format provides an alternative to the SOAP binding by allowing services to
exchange data using straight XML documents without the overhead of a SOAP envelope.

XML BINDING NAMESPACE

The extensions used to describe XML format bindings are defined in the namespace
http://cxf.apache.org/bindings/xformat. Apache CXF tools use the prefix xformat to represent the
XML binding extensions. Add the following line to your contracts:

xmlns:xformat="http://cxf.apache.org/bindings/xformat"

HAND EDITING

To map an interface to a pure XML payload format do the following:

1. Add the namespace declaration to include the extensions defining the XML binding. See the
section called “XML binding namespace”.

2. Add a standard WSDL binding element to your contract to hold the XML binding, give the
binding a unique name, and specify the name of the WSDL portType element that represents
the interface being bound.

3. Add an xformat:binding child element to the binding element to identify that the messages
are being handled as pure XML documents without SOAP envelopes.

4. Optionally, set the xformat:binding element’s rootNode attribute to a valid QName. For more
information on the effect of the rootNode attribute see the section called “XML messages on
the wire”.

5. For each operation defined in the bound interface, add a standard WSDL operation element to
hold the binding information for the operation’s messages.

6. For each operation added to the binding, add the input, output, and fault children elements to
represent the messages used by the operation.
These elements correspond to the messages defined in the interface definition of the logical
operation.

7. Optionally add an xformat:body element with a valid rootNode attribute to the added input,
output, and fault elements to override the value of rootNode set at the binding level.

NOTE

If any of your messages have no parts, for example the output message for an operation
that returns void, you must set the rootNode attribute for the message to ensure that
the message written on the wire is a valid, but empty, XML document.

XML MESSAGES ON THE WIRE

When you specify that an interface’s messages are to be passed as XML documents, without a SOAP

Red Hat Fuse 7.5 Apache CXF Development Guide

78

http://cxf.apache.org/bindings/xformat

envelope, you must take care to ensure that your messages form valid XML documents when they are
written on the wire. You also need to ensure that non-Apache CXF participants that receive the XML
documents understand the messages generated by Apache CXF.

A simple way to solve both problems is to use the optional rootNode attribute on either the global
xformat:binding element or on the individual message’s xformat:body elements. The rootNode
attribute specifies the QName for the element that serves as the root node for the XML document
generated by Apache CXF. When the rootNode attribute is not set, Apache CXF uses the root element
of the message part as the root element when using doc style messages, or an element using the
message part name as the root element when using rpc style messages.

For example, if the rootNode attribute is not set the message defined in Example 10.1, “Valid XML
Binding Message” would generate an XML document with the root element lineNumber.

Example 10.1. Valid XML Binding Message

<type ... >
 ...
 <element name="operatorID" type="xsd:int"/>
 ...
</types>
<message name="operator">
 <part name="lineNumber" element="ns1:operatorID"/>
</message>

For messages with one part, Apache CXF will always generate a valid XML document even if the
rootNode attribute is not set. However, the message in Example 10.2, “Invalid XML Binding Message”
would generate an invalid XML document.

Example 10.2. Invalid XML Binding Message

<types>
 ...
 <element name="pairName" type="xsd:string"/>
 <element name="entryNum" type="xsd:int"/>
 ...
</types>

<message name="matildas">
 <part name="dancing" element="ns1:pairName"/>
 <part name="number" element="ns1:entryNum"/>
</message>

Without the rootNode attribute specified in the XML binding, Apache CXF will generate an XML
document similar to Example 10.3, “Invalid XML Document” for the message defined in Example 10.2,
“Invalid XML Binding Message”. The generated XML document is invalid because it has two root
elements: pairName and entryNum.

Example 10.3. Invalid XML Document

<pairName>
 Fred&Linda

CHAPTER 10. USING XML DOCUMENTS

79

</pairName>
<entryNum>
 123
</entryNum>

If you set the rootNode attribute, as shown in Example 10.4, “XML Binding with rootNode set” Apache
CXF will wrap the elements in the specified root element. In this example, the rootNode attribute is
defined for the entire binding and specifies that the root element will be named entrants.

Example 10.4. XML Binding with rootNode set

<portType name="danceParty">
 <operation name="register">
 <input message="tns:matildas" name="contestant"/>
 </operation>
</portType>

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered"/>
</binding>

An XML document generated from the input message would be similar to Example 10.5, “XML
Document generated using the rootNode attribute”. Notice that the XML document now only has one
root element.

Example 10.5. XML Document generated using the rootNode attribute

<entrants>
 <pairName>
 Fred&Linda
 <entryNum>
 123
 </entryNum>
</entrants>

OVERRIDING THE BINDING’S ROOTNODE ATTRIBUTE SETTING

You can also set the rootNode attribute for each individual message, or override the global setting for a
particular message, by using the xformat:body element inside of the message binding. For example, if
you wanted the output message defined in Example 10.4, “XML Binding with rootNode set” to have a
different root element from the input message, you could override the binding’s root element as shown
in Example 10.6, “Using xformat:body”.

Example 10.6. Using xformat:body

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>

Red Hat Fuse 7.5 Apache CXF Development Guide

80

 <operation name="register">
 <input name="contestant"/>
 <output name="entered">
 <xformat:body rootNode="entryStatus" />
 </output>
 </operation>
</binding>

CHAPTER 10. USING XML DOCUMENTS

81

PART III. WEB SERVICES TRANSPORTS
This part describes how to add Apache CXF transports to a WSDL document.

Red Hat Fuse 7.5 Apache CXF Development Guide

82

CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE
DEFINED IN WSDL

Abstract

Endpoints represent an instantiated service. They are defined by combining a binding and the
networking details used to expose the endpoint.

OVERVIEW

An endpoint can be thought of as a physical manifestation of a service. It combines a binding, which
specifies the physical representation of the logical data used by a service, and a set of networking
details that define the physical connection details used to make the service contactable by other
endpoints.

NOTE

CXF providers are servers for CXF consumers, which correspond to clients. If you are
using the CXF (camel-cxf) component as the starting endpoint in a route, then the
endpoint is both a Camel consumer and a CXF provider. If you are using the Camel CXF
component, as an ending endpoint in a route, then the endpoint is both a Camel producer
and a CXF consumer.

ENDPOINTS AND SERVICES

In the same way a binding can only map a single interface, an endpoint can only map to a single service.
However, a service can be manifested by any number of endpoints. For example, you could define a
ticket selling service that was manifested by four different endpoints. However, you could not have a
single endpoint that manifested both a ticket selling service and a widget selling service.

THE WSDL ELEMENTS

Endpoints are defined in a contract using a combination of the WSDL service element and the WSDL
port element. The service element is a collection of related port elements. The port elements define
the actual endpoints.

The WSDL service element has a single attribute, name, that specifies a unique name. The service
element is used as the parent element of a collection of related port elements. WSDL makes no
specification about how the port elements are related. You can associate the port elements in any
manner you see fit.

The WSDL port element has a has a binding attribute, that specifies the binding used by the endpoint
and is a reference to the wsdl:binding element. It also includes the name attribute, which is a
mandatory attribute that provides a unique name among all ports. The port element is the parent
element of the elements that specify the actual transport details used by the endpoint. The elements
used to specify the transport details are discussed in the following sections.

ADDING ENDPOINTS TO A CONTRACT

Apache CXF provides command line tools that can generated endpoints for predefined service
interface and binding combinations.

The tools will add the proper elements to your contract for you. However, it is recommended that you

CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE DEFINED IN WSDL

83

The tools will add the proper elements to your contract for you. However, it is recommended that you
have some knowledge of how the different transports used in defining an endpoint work.

You can also add an endpoint to a contract using any text editor. When you hand edit a contract, you are
responsible for ensuring that the contract is valid.

SUPPORTED TRANSPORTS

Endpoint definitions are built using extensions defined for each of the transports Apache CXF supports.
This includes the following transports:

HTTP

CORBA

Java Messaging Service

Red Hat Fuse 7.5 Apache CXF Development Guide

84

CHAPTER 12. USING HTTP

Abstract

HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform
for communicating between endpoints. Because of these factors it is the assumed transport for most
WS-* specifications and is integral to RESTful architectures.

12.1. ADDING A BASIC HTTP ENDPOINT

Alternative HTTP runtimes

Apache CXF supports the following alternative HTTP runtime implementations:

Undertow, which is described in detail in Section 12.4, “Configuring the Undertow Runtime”.

Netty, which is described in detail in Section 12.5, “Configuring the Netty Runtime”.

Netty HTTP URL

Normally, a HTTP endpoint uses whichever HTTP runtime is included on the classpath (either Undertow
or Netty). If both the Undertow runtime and Netty runtime are included on the classpath, however, you
need to specify explicitly when you want to use the Netty runtime, because the Undertow runtime will be
used by default.

In the case where more than one HTTP runtime is available on the classpath, you can select the
Undertow runtime by specifying the endpoint URL to have the following format:

netty://http://RestOfURL

Payload types

There are three ways of specifying an HTTP endpoint’s address depending on the payload format you
are using.

SOAP 1.1 uses the standardized soap:address element.

SOAP 1.2 uses the soap12:address element.

All other payload formats use the http:address element.

NOTE

From Camel 2.16.0 release, Apache Camel CXF Payload supports stream cache out of
box.

SOAP 1.1

When you are sending SOAP 1.1 messages over HTTP you must use the SOAP 1.1 address element to
specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as a
URL. The SOAP 1.1 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap/.

CHAPTER 12. USING HTTP

85

http://http//undertow.io/
http://netty.io/
http://schemas.xmlsoap.org/wsdl/soap/

Example 12.1, “SOAP 1.1 Port Element” shows a port element used to send SOAP 1.1 messages over
HTTP.

Example 12.1. SOAP 1.1 Port Element

<definitions ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>
 ...
 <service name="SOAP11Service">
 <port binding="SOAP11Binding" name="SOAP11Port">
 <soap:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
<definitions>

SOAP 1.2

When you are sending SOAP 1.2 messages over HTTP you must use the SOAP 1.2 address element to
specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as a
URL. The SOAP 1.2 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap12/.

Example 12.2, “SOAP 1.2 Port Element” shows a port element used to send SOAP 1.2 messages over
HTTP.

Example 12.2. SOAP 1.2 Port Element

<definitions ...
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" ... >
 <service name="SOAP12Service">
 <port binding="SOAP12Binding" name="SOAP12Port">
 <soap12:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
</definitions>

Other messages types

When your messages are mapped to any payload format other than SOAP you must use the HTTP
address element to specify the endpoint’s address. It has one attribute, location, that specifies the
endpoint’s address as a URL. The HTTP address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/http/.

Example 12.3, “HTTP Port Element” shows a port element used to send an XML message.

Example 12.3. HTTP Port Element

<definitions ...
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" ... >

Red Hat Fuse 7.5 Apache CXF Development Guide

86

http://schemas.xmlsoap.org/wsdl/soap12/
http://schemas.xmlsoap.org/wsdl/http/

 <service name="HTTPService">
 <port binding="HTTPBinding" name="HTTPPort">
 <http:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
</definitions>

12.2. CONFIGURING A CONSUMER

12.2.1. Mechanisms for HTTP Consumer Endpoints

HTTP consumer endpoints can specify a number of HTTP connection attributes including whether the
endpoint automatically accepts redirect responses, whether the endpoint can use chunking, whether the
endpoint will request a keep-alive, and how the endpoint interacts with proxies. In addition to the HTTP
connection properties, an HTTP consumer endpoint can specify how it is secured.

A consumer endpoint can be configured using two mechanisms:

Configuration

WSDL

12.2.2. Using Configuration

Namespace

The elements used to configure an HTTP consumer endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix http-
conf. In order to use the HTTP configuration elements you must add the lines shown in Example 12.4,
“HTTP Consumer Configuration Namespace” to the beans element of your endpoint’s configuration
file. In addition, you must add the configuration elements' namespace to the xsi:schemaLocation
attribute.

Example 12.4. HTTP Consumer Configuration Namespace

<beans ...
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ...">

Undertow runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Undertow runtime or
the Netty runtime.

The conduit element

You configure an HTTP consumer endpoint using the http-conf:conduit element and its children. The

CHAPTER 12. USING HTTP

87

http://cxf.apache.org/transports/http/configuration

You configure an HTTP consumer endpoint using the http-conf:conduit element and its children. The
http-conf:conduit element takes a single attribute, name, that specifies the WSDL port element
corresponding to the endpoint. The value for the name attribute takes the form portQName`.http-
conduit`. Example 12.5, “http-conf:conduit Element” shows the http-conf:conduit element that would
be used to add configuration for an endpoint that is specified by the WSDL fragment <port
binding="widgetSOAPBinding" name="widgetSOAPPort> when the endpoint’s target namespace is
http://widgets.widgetvendor.net.

Example 12.5. http-conf:conduit Element

...
 <http-conf:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-conduit">
 ...
 </http-conf:conduit>
...

The http-conf:conduit element has child elements that specify configuration information. They are
described in Table 12.1, “Elements Used to Configure an HTTP Consumer Endpoint” .

Table 12.1. Elements Used to Configure an HTTP Consumer Endpoint

Element Description

http-conf:client Specifies the HTTP connection properties such as
timeouts, keep-alive requests, content types, etc.
See the section called “The client element”.

http-conf:authorization Specifies the parameters for configuring the basic
authentication method that the endpoint uses
preemptively. The preferred approach is to supply a
http-conf:basicAuthSupplier object.

http-conf:proxyAuthorization Specifies the parameters for configuring basic
authentication against outgoing HTTP proxy servers.

http-conf:tlsClientParameters Specifies the parameters used to configure
SSL/TLS.

http-conf:basicAuthSupplier Specifies the bean reference or class name of the
object that supplies the basic authentication
information used by the endpoint, either
preemptively or in response to a 401 HTTP challenge.

http-conf:trustDecider Specifies the bean reference or class name of the
object that checks the HTTP(S) URLConnection
object to establish trust for a connection with an
HTTPS service provider before any information is
transmitted.

The client element

Red Hat Fuse 7.5 Apache CXF Development Guide

88

The http-conf:client element is used to configure the non-security properties of a consumer endpoint’s
HTTP connection. Its attributes, described in Table 12.2, “HTTP Consumer Configuration Attributes” ,
specify the connection’s properties.

Table 12.2. HTTP Consumer Configuration Attributes

Attribute Description

ConnectionTimeout Specifies the amount of time, in milliseconds, that
the consumer attempts to establish a connection
before it times out. The default is 30000.

0 specifies that the consumer will continue to send
the request indefinitely.

ReceiveTimeout Specifies the amount of time, in milliseconds, that
the consumer will wait for a response before it times
out. The default is 30000.

0 specifies that the consumer will wait indefinitely.

AutoRedirect Specifies if the consumer will automatically follow a
server issued redirection. The default is false.

MaxRetransmits Specifies the maximum number of times a consumer
will retransmit a request to satisfy a redirect. The
default is -1 which specifies that unlimited
retransmissions are allowed.

AllowChunking Specifies whether the consumer will send requests
using chunking. The default is true which specifies
that the consumer will use chunking when sending
requests.

Chunking cannot be used if either of the following
are true:

http-conf:basicAuthSupplier is
configured to provide credentials
preemptively.

AutoRedirect is set to true.

In both cases the value of AllowChunking is
ignored and chunking is disallowed.

Accept Specifies what media types the consumer is prepared
to handle. The value is used as the value of the HTTP
Accept property. The value of the attribute is
specified using multipurpose internet mail extensions
(MIME) types.

CHAPTER 12. USING HTTP

89

AcceptLanguage Specifies what language (for example, American
English) the consumer prefers for the purpose of
receiving a response. The value is used as the value
of the HTTP AcceptLanguage property.

Language tags are regulated by the International
Organization for Standards (ISO) and are typically
formed by combining a language code, determined
by the ISO-639 standard, and country code,
determined by the ISO-3166 standard, separated by
a hyphen. For example, en-US represents American
English.

AcceptEncoding Specifies what content encodings the consumer is
prepared to handle. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). The value is used as the value of
the HTTP AcceptEncoding property.

ContentType Specifies the media type of the data being sent in the
body of a message. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType property. The default is text/xml.

For web services, this should be set to text/xml. If
the client is sending HTML form data to a CGI script,
this should be set to application/x-www-form-
urlencoded. If the HTTP POST request is bound to
a fixed payload format (as opposed to SOAP), the
content type is typically set to application/octet-
stream.

Host Specifies the Internet host and port number of the
resource on which the request is being invoked. The
value is used as the value of the HTTP Host
property.

This attribute is typically not required. It is only
required by certain DNS scenarios or application
designs. For example, it indicates what host the client
prefers for clusters (that is, for virtual servers
mapping to the same Internet protocol (IP) address).

Attribute Description

Red Hat Fuse 7.5 Apache CXF Development Guide

90

Connection Specifies whether a particular connection is to be
kept open or closed after each request/response
dialog. There are two valid values:

Keep-Alive — Specifies that the consumer
wants the connection kept open after the
initial request/response sequence. If the
server honors it, the connection is kept open
until the consumer closes it.

close(default) — Specifies that the
connection to the server is closed after each
request/response sequence.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a request from a consumer to a service
provider. See Section 12.2.4, “Consumer Cache
Control Directives”.

Cookie Specifies a static cookie to be sent with all requests.

BrowserType Specifies information about the browser from which
the request originates. In the HTTP specification
from the World Wide Web consortium (W3C) this is
also known as the user-agent. Some servers
optimize based on the client that is sending the
request.

Referer Specifies the URL of the resource that directed the
consumer to make requests on a particular service.
The value is used as the value of the HTTP Referer
property.

This HTTP property is used when a request is the
result of a browser user clicking on a hyperlink rather
than typing a URL. This can allow the server to
optimize processing based upon previous task flow,
and to generate lists of back-links to resources for
the purposes of logging, optimized caching, tracing
of obsolete or mistyped links, and so on. However, it
is typically not used in web services applications.

If the AutoRedirect attribute is set to true and the
request is redirected, any value specified in the
Referer attribute is overridden. The value of the
HTTP Referer property is set to the URL of the
service that redirected the consumer’s original
request.

Attribute Description

CHAPTER 12. USING HTTP

91

DecoupledEndpoint Specifies the URL of a decoupled endpoint for the
receipt of responses over a separate
provider→consumer connection. For more
information on using decoupled endpoints see,
Section 12.6, “Using the HTTP Transport in
Decoupled Mode”.

You must configure both the consumer endpoint and
the service provider endpoint to use WS-Addressing
for the decoupled endpoint to work.

ProxyServer Specifies the URL of the proxy server through which
requests are routed.

ProxyServerPort Specifies the port number of the proxy server
through which requests are routed.

ProxyServerType Specifies the type of proxy server used to route
requests. Valid values are:

HTTP(default)

SOCKS

Attribute Description

Example

Example 12.6, “HTTP Consumer Endpoint Configuration” shows the configuration of an HTTP consumer
endpoint that wants to keep its connection to the provider open between requests, that will only
retransmit requests once per invocation, and that cannot use chunking streams.

Example 12.6. HTTP Consumer Endpoint Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http-conf:conduit name="{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
 <http-conf:client Connection="Keep-Alive"
 MaxRetransmits="1"
 AllowChunking="false" />
 </http-conf:conduit>
</beans>

More information

Red Hat Fuse 7.5 Apache CXF Development Guide

92

For more information on HTTP conduits see Chapter 16, Conduits.

12.2.3. Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP consumer endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using
the prefix http-conf. In order to use the HTTP configuration elements you must add the line shown in
Example 12.7, “HTTP Consumer WSDL Element’s Namespace” to the definitions element of your
endpoint’s WSDL document.

Example 12.7. HTTP Consumer WSDL Element’s Namespace

<definitions ...
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

Undertow runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Undertow runtime or
the Netty runtime.

The client element

The http-conf:client element is used to specify the connection properties of an HTTP consumer in a
WSDL document. The http-conf:client element is a child of the WSDL port element. It has the same
attributes as the client element used in the configuration file. The attributes are described in Table 12.2,
“HTTP Consumer Configuration Attributes”.

Example

Example 12.8, “WSDL to Configure an HTTP Consumer Endpoint” shows a WSDL fragment that
configures an HTTP consumer endpoint to specify that it does not interact with caches.

Example 12.8. WSDL to Configure an HTTP Consumer Endpoint

<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:client CacheControl="no-cache" />
 </port>
</service>

12.2.4. Consumer Cache Control Directives

Table 12.3, “http-conf:client Cache Control Directives” lists the cache control directives supported by an
HTTP consumer.

Table 12.3. http-conf:client Cache Control Directives

CHAPTER 12. USING HTTP

93

http://cxf.apache.org/transports/http/configuration

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

no-store Caches must not store either any part of a response
or any part of the request that invoked it.

max-age The consumer can accept a response whose age is
no greater than the specified time in seconds.

max-stale The consumer can accept a response that has
exceeded its expiration time. If a value is assigned to
max-stale, it represents the number of seconds
beyond the expiration time of a response up to which
the consumer can still accept that response. If no
value is assigned, the consumer can accept a stale
response of any age.

min-fresh The consumer wants a response that is still fresh for
at least the specified number of seconds indicated.

no-transform Caches must not modify media type or location of
the content in a response between a provider and a
consumer.

only-if-cached Caches should return only responses that are
currently stored in the cache, and not responses that
need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can adhere
to the behavior mandated by the standard directive.

12.3. CONFIGURING A SERVICE PROVIDER

12.3.1. Mechanisms for a HTTP Service Provider

HTTP service provider endpoints can specify a number of HTTP connection attributes including if it will
honor keep alive requests, how it interacts with caches, and how tolerant it is of errors in communicating
with a consumer.

A service provider endpoint can be configured using two mechanisms:

Red Hat Fuse 7.5 Apache CXF Development Guide

94

Configuration

WSDL

12.3.2. Using Configuration

Namespace

The elements used to configure an HTTP provider endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix http-
conf. In order to use the HTTP configuration elements you must add the lines shown in Example 12.9,
“HTTP Provider Configuration Namespace” to the beans element of your endpoint’s configuration file.
In addition, you must add the configuration elements' namespace to the xsi:schemaLocation attribute.

Example 12.9. HTTP Provider Configuration Namespace

<beans ...
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ...">

Undertow runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Undertow runtime or
the Netty runtime.

The destination element

You configure an HTTP service provider endpoint using the http-conf:destination element and its
children. The http-conf:destination element takes a single attribute, name, that specifies the WSDL
port element that corresponds to the endpoint. The value for the name attribute takes the form
portQName`.http-destination`. Example 12.10, “http-conf:destination Element” shows the http-
conf:destination element that is used to add configuration for an endpoint that is specified by the
WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort> when the
endpoint’s target namespace is http://widgets.widgetvendor.net.

Example 12.10. http-conf:destination Element

...
 <http-conf:destination name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-
destination">
 ...
 </http-conf:destination>
...

The http-conf:destination element has a number of child elements that specify configuration
information. They are described in Table 12.4, “Elements Used to Configure an HTTP Service Provider
Endpoint”.

CHAPTER 12. USING HTTP

95

http://cxf.apache.org/transports/http/configuration

Table 12.4. Elements Used to Configure an HTTP Service Provider Endpoint

Element Description

http-conf:server Specifies the HTTP connection properties. See the
section called “The server element”.

http-conf:contextMatchStrategy Specifies the parameters that configure the context
match strategy for processing HTTP requests.

http-conf:fixedParameterOrder Specifies whether the parameter order of an HTTP
request handled by this destination is fixed.

The server element

The http-conf:server element is used to configure the properties of a service provider endpoint’s HTTP
connection. Its attributes, described in Table 12.5, “HTTP Service Provider Configuration Attributes” ,
specify the connection’s properties.

Table 12.5. HTTP Service Provider Configuration Attributes

Attribute Description

ReceiveTimeout Sets the length of time, in milliseconds, the service
provider attempts to receive a request before the
connection times out. The default is 30000.

0 specifies that the provider will not timeout.

SuppressClientSendErrors Specifies whether exceptions are to be thrown when
an error is encountered on receiving a request. The
default is false; exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to be thrown when
an error is encountered on sending a response to a
consumer. The default is false; exceptions are
thrown on encountering errors.

HonorKeepAlive Specifies whether the service provider honors
requests for a connection to remain open after a
response has been sent. The default is false; keep-
alive requests are ignored.

Red Hat Fuse 7.5 Apache CXF Development Guide

96

RedirectURL Specifies the URL to which the client request should
be redirected if the URL specified in the client
request is no longer appropriate for the requested
resource. In this case, if a status code is not
automatically set in the first line of the server
response, the status code is set to 302 and the
status description is set to Object Moved. The value
is used as the value of the HTTP RedirectURL
property.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a response from a service provider to a
consumer. See Section 12.3.4, “Service Provider
Cache Control Directives”.

ContentLocation Sets the URL where the resource being sent in a
response is located.

ContentType Specifies the media type of the information being
sent in a response. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType location.

ContentEncoding Specifies any additional content encodings that have
been applied to the information being sent by the
service provider. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). Possible content encoding values
include zip, gzip, compress, deflate, and identity. This
value is used as the value of the HTTP
ContentEncoding property.

The primary use of content encodings is to allow
documents to be compressed using some encoding
mechanism, such as zip or gzip. Apache CXF
performs no validation on content codings. It is the
user’s responsibility to ensure that a specified
content coding is supported at application level.

ServerType Specifies what type of server is sending the response.
Values take the form program-name/version; for
example, Apache/1.2.5.

Attribute Description

Example

Example 12.11, “HTTP Service Provider Endpoint Configuration” shows the configuration for an HTTP

CHAPTER 12. USING HTTP

97

Example 12.11, “HTTP Service Provider Endpoint Configuration” shows the configuration for an HTTP
service provider endpoint that honors keep-alive requests and suppresses all communication errors.

Example 12.11. HTTP Service Provider Endpoint Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http-conf:destination name="{http://apache.org/hello_world_soap_http}SoapPort.http-
destination">
 <http-conf:server SuppressClientSendErrors="true"
 SuppressClientReceiveErrors="true"
 HonorKeepAlive="true" />
 </http-conf:destination>
</beans>

12.3.3. Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP provider endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using
the prefix http-conf. To use the HTTP configuration elements you must add the line shown in
Example 12.12, “HTTP Provider WSDL Element’s Namespace” to the definitions element of your
endpoint’s WSDL document.

Example 12.12. HTTP Provider WSDL Element’s Namespace

<definitions ...
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

Undertow runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Undertow runtime or
the Netty runtime.

The server element

The http-conf:server element is used to specify the connection properties of an HTTP service provider
in a WSDL document. The http-conf:server element is a child of the WSDL port element. It has the
same attributes as the server element used in the configuration file. The attributes are described in
Table 12.5, “HTTP Service Provider Configuration Attributes” .

Example

Example 12.13, “WSDL to Configure an HTTP Service Provider Endpoint” shows a WSDL fragment that

Red Hat Fuse 7.5 Apache CXF Development Guide

98

http://cxf.apache.org/transports/http/configuration

Example 12.13, “WSDL to Configure an HTTP Service Provider Endpoint” shows a WSDL fragment that
configures an HTTP service provider endpoint specifying that it will not interact with caches.

Example 12.13. WSDL to Configure an HTTP Service Provider Endpoint

<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:server CacheControl="no-cache" />
 </port>
</service>

12.3.4. Service Provider Cache Control Directives

Table 12.6, “http-conf:server Cache Control Directives” lists the cache control directives supported by
an HTTP service provider.

Table 12.6. http-conf:server Cache Control Directives

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single user. If
specific response header fields are specified with this
value, the restriction applies only to those header
fields within the response. If no response header
fields are specified, the restriction applies to the
entire response.

no-store Caches must not store any part of the response or
any part of the request that invoked it.

no-transform Caches must not modify the media type or location
of the content in a response between a server and a
client.

must-revalidate Caches must revalidate expired entries that relate to
a response before that entry can be used in a
subsequent response.

CHAPTER 12. USING HTTP

99

proxy-revalidate Does the same as must-revalidate, except that it can
only be enforced on shared caches and is ignored by
private unshared caches. When using this directive,
the public cache directive must also be used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.

s-max-age Does the same as max-age, except that it can only be
enforced on shared caches and is ignored by private
unshared caches. The age specified by s-max-age
overrides the age specified by max-age. When using
this directive, the proxy-revalidate directive must
also be used.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can adhere
to the behavior mandated by the standard directive.

Directive Behavior

12.4. CONFIGURING THE UNDERTOW RUNTIME

Overview

The Undertow runtime is used by HTTP service providers and HTTP consumers using a decoupled
endpoint. The runtime’s thread pool can be configured, and you can also set a number of the security
settings for an HTTP service provider through the Undertow runtime.

Maven dependency

If you use Apache Maven as your build system, you can add the Undertow runtime to your project by
including the following dependency in your project’s pom.xml file:

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-undertow</artifactId>
 <version>${cxf-version}</version>
</dependency>

Namespace

The elements used to configure the Undertow runtime are defined in the namespace
http://cxf.apache.org/transports/http-undertow/configuration. In order to use the Undertow
configuration elements you must add the lines shown in Example 12.14, “Undertow Runtime

Red Hat Fuse 7.5 Apache CXF Development Guide

100

http://cxf.apache.org/transports/http-undertow/configuration

Configuration Namespace” to the beans element of your endpoint’s configuration file. In this example,
the namespace is assigned the prefix httpu. In addition, you must add the configuration element’s
namespace to the xsi:schemaLocation attribute.

Example 12.14. Undertow Runtime Configuration Namespace

<beans ...
 xmlns:httpu="http://cxf.apache.org/transports/http-undertow/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http-undertow/configuration
 http://cxf.apache.org/schemas/configuration/http-undertow.xsd
 ...">

The engine-factory element

The httpu:engine-factory element is the root element used to configure the Undertow runtime used by
an application. It has a single required attribute, bus, whose value is the name of the Bus that manages
the Undertow instances being configured.

NOTE

The value is typically cxf which is the name of the default Bus instance.

The http:engine-factory element has three children that contain the information used to configure the
HTTP ports instantiated by the Undertow runtime factory. The children are described in Table 12.7,
“Elements for Configuring a Undertow Runtime Factory”.

Table 12.7. Elements for Configuring a Undertow Runtime Factory

Element Description

httpu:engine Specifies the configuration for a particular Undertow
runtime instance. See the section called “The engine
element”.

httpu:identifiedTLSServerParameters Specifies a reusable set of properties for securing an
HTTP service provider. It has a single attribute, id,
that specifies a unique identifier by which the
property set can be referred.

httpu:identifiedThreadingParameters Specifies a reusable set of properties for controlling
a Undertow instance’s thread pool. It has a single
attribute, id, that specifies a unique identifier by
which the property set can be referred.

See the section called “Configuring the thread pool”.

The engine element

The httpu:engine element is used to configure specific instances of the Undertow runtime. It has a

CHAPTER 12. USING HTTP

101

The httpu:engine element is used to configure specific instances of the Undertow runtime. It has a
single attribute, port, that specifies the number of the port being managed by the Undertow instance.

NOTE

You can specify a value of 0 for the port attribute. Any threading properties specified in
an httpu:engine element with its port attribute set to 0 are used as the configuration for
all Undertow listeners that are not explicitly configured.

Each httpu:engine element can have two children: one for configuring security properties and one for
configuring the Undertow instance’s thread pool. For each type of configuration you can either directly
provide the configuration information or you can provide a reference to a set of configuration properties
defined in the parent httpu:engine-factory element.

The child elements used to provide the configuration properties are described in Table 12.8, “Elements
for Configuring an Undertow Runtime Instance”.

Table 12.8. Elements for Configuring an Undertow Runtime Instance

Element Description

httpu:tlsServerParameters Specifies a set of properties for configuring the
security used for the specific Undertow instance.

httpu:tlsServerParametersRef Refers to a set of security properties defined by a
identifiedTLSServerParameters element. The id
attribute provides the id of the referred
identifiedTLSServerParameters element.

httpu:threadingParameters Specifies the size of the thread pool used by the
specific Undertow instance. See the section called
“Configuring the thread pool”.

httpu:threadingParametersRef Refers to a set of properties defined by a
identifiedThreadingParameters element. The id
attribute provides the id of the referred
identifiedThreadingParameters element.

Configuring the thread pool

You can configure the size of an Undertow instance’s thread pool by either:

Specifying the size of the thread pool using a identifiedThreadingParameters element in the
engine-factory element. You then refer to the element using a threadingParametersRef
element.

Specifying the size of the of the thread pool directly using a threadingParameters element.

The threadingParameters has two attributes to specify the size of a thread pool. The attributes are
described in Table 12.9, “Attributes for Configuring an Undertow Thread Pool” .

NOTE

Red Hat Fuse 7.5 Apache CXF Development Guide

102

NOTE

The httpu:identifiedThreadingParameters element has a single child
threadingParameters element.

Table 12.9. Attributes for Configuring an Undertow Thread Pool

Attribute Description

minThreads Specifies the minimum number of threads available
to the Undertow instance for processing requests.

maxThreads Specifies the maximum number of threads available
to the Undertow instance for processing requests.

Example

Example 12.15, “Configuring an Undertow Instance” shows a configuration fragment that configures an
Undertow instance on port number 9001.

Example 12.15. Configuring an Undertow Instance

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpu="http://cxf.apache.org/transports/http-undertow/configuration"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 xsi:schemaLocation="http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-undertow/configuration
 http://cxf.apache.org/schemas/configuration/http-undertow.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">
 ...

 <httpu:engine-factory bus="cxf">
 <httpu:identifiedTLSServerParameters id="secure">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="JKS" password="password"
 file="certs/cherry.jks"/>
 </sec:keyManagers>
 </httpu:identifiedTLSServerParameters>

 <httpu:engine port="9001">
 <httpu:tlsServerParametersRef id="secure" />
 <httpu:threadingParameters minThreads="5"
 maxThreads="15" />
 </httpu:engine>
 </httpu:engine-factory>
 </beans>

CHAPTER 12. USING HTTP

103

12.5. CONFIGURING THE NETTY RUNTIME

Overview

The Netty runtime is used by HTTP service providers and HTTP consumers using a decoupled endpoint.
The runtime’s thread pool can be configured, and you can also set a number of the security settings for
an HTTP service provider through the Netty runtime.

Maven dependencies

If you use Apache Maven as your build system, you can add the server-side implementation of the Netty
runtime (for defining Web service endpoints) to your project by including the following dependency in
your project’s pom.xml file:

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-netty-server</artifactId>
 <version>${cxf-version}</version>
</dependency>

You can add the client-side implementation of the Netty runtime (for defining Web service clients) to
your project by including the following dependency in your project’s pom.xml file:

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-netty-client</artifactId>
 <version>${cxf-version}</version>
</dependency>

Namespace

The elements used to configure the Netty runtime are defined in the namespace
http://cxf.apache.org/transports/http-netty-server/configuration. It is commonly referred to using
the prefix httpn. In order to use the Netty configuration elements you must add the lines shown in
Example 12.16, “Netty Runtime Configuration Namespace” to the beans element of your endpoint’s
configuration file. In addition, you must add the configuration elements' namespace to the
xsi:schemaLocation attribute.

Example 12.16. Netty Runtime Configuration Namespace

<beans ...
 xmlns:httpn="http://cxf.apache.org/transports/http-netty-server/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http-netty-server/configuration
 http://cxf.apache.org/schemas/configuration/http-netty-server.xsd
 ...">

The engine-factory element

Red Hat Fuse 7.5 Apache CXF Development Guide

104

http://cxf.apache.org/transports/http-netty-server/configuration

The httpn:engine-factory element is the root element used to configure the Netty runtime used by an
application. It has a single required attribute, bus, whose value is the name of the Bus that manages the
Netty instances being configured.

NOTE

The value is typically cxf, which is the name of the default Bus instance.

The httpn:engine-factory element has three children that contain the information used to configure
the HTTP ports instantiated by the Netty runtime factory. The children are described in Table 12.10,
“Elements for Configuring a Netty Runtime Factory”.

Table 12.10. Elements for Configuring a Netty Runtime Factory

Element Description

httpn:engine Specifies the configuration for a particular Netty
runtime instance. See the section called “The engine
element”.

httpn:identifiedTLSServerParameters Specifies a reusable set of properties for securing an
HTTP service provider. It has a single attribute, id,
that specifies a unique identifier by which the
property set can be referred.

httpn:identifiedThreadingParameters Specifies a reusable set of properties for controlling
a Netty instance’s thread pool. It has a single
attribute, id, that specifies a unique identifier by
which the property set can be referred.

See the section called “Configuring the thread pool”.

The engine element

The httpn:engine element is used to configure specific instances of the Netty runtime. Table 12.11,
“Attributes for Configuring a Netty Runtime Instance” shows the attributes supported by the
httpn:engine element.

Table 12.11. Attributes for Configuring a Netty Runtime Instance

Attribute Description

port Specifies the port used by the Netty HTTP server
instance. You can specify a value of 0 for the port
attribute. Any threading properties specified in an
engine element with its port attribute set to 0 are
used as the configuration for all Netty listeners that
are not explicitly configured.

CHAPTER 12. USING HTTP

105

host Specifies the listen address used by the Netty HTTP
server instance. The value can be a hostname or an
IP address. If not specified, Netty HTTP server will
listen on all local addresses.

readIdleTime Specifies the maximum read idle time for a Netty
connection. The timer is reset whenever there are
any read actions on the underlying stream.

writeIdleTime Specifies the maximum write idle time for a Netty
connection. The timer is reset whenever there are
any write actions on the underlying stream.

maxChunkContentSize Specifies the maximum aggregated content size for a
Netty connection. The default value is 10MB.

Attribute Description

A httpn:engine element has one child element for configuring security properties and one child element
for configuring the Netty instance’s thread pool. For each type of configuration you can either directly
provide the configuration information or you can provide a reference to a set of configuration properties
defined in the parent httpn:engine-factory element.

The supported child elements of httpn:engine are shown in Table 12.12, “Elements for Configuring a
Netty Runtime Instance”.

Table 12.12. Elements for Configuring a Netty Runtime Instance

Element Description

httpn:tlsServerParameters Specifies a set of properties for configuring the
security used for the specific Netty instance.

httpn:tlsServerParametersRef Refers to a set of security properties defined by a
identifiedTLSServerParameters element. The id
attribute provides the id of the referred
identifiedTLSServerParameters element.

httpn:threadingParameters Specifies the size of the thread pool used by the
specific Netty instance. See the section called
“Configuring the thread pool”.

httpn:threadingParametersRef Refers to a set of properties defined by a
identifiedThreadingParameters element. The id
attribute provides the id of the referred
identifiedThreadingParameters element.

httpn:sessionSupport When true, enables support for HTTP sessions.
Default is false.

Red Hat Fuse 7.5 Apache CXF Development Guide

106

httpn:reuseAddress Specifies a boolean value to set the ReuseAddress
TCP socket option. Default is false.

Element Description

Configuring the thread pool

You can configure the size of a Netty instance’s thread pool by either:

Specifying the size of the thread pool using a identifiedThreadingParameters element in the
engine-factory element. You then refer to the element using a threadingParametersRef
element.

Specifying the size of the of the thread pool directly using a threadingParameters element.

The threadingParameters element has one attribute to specify the size of a thread pool, as described
in Table 12.13, “Attributes for Configuring a Netty Thread Pool” .

NOTE

The httpn:identifiedThreadingParameters element has a single child
threadingParameters element.

Table 12.13. Attributes for Configuring a Netty Thread Pool

Attribute Description

threadPoolSize Specifies the number of threads available to the
Netty instance for processing requests.

Example

Example 12.17, “Configuring a Netty Instance” shows a configuration fragment that configures a variety
of Netty ports.

Example 12.17. Configuring a Netty Instance

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:h="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpn="http://cxf.apache.org/transports/http-netty-server/configuration"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http/configuration

CHAPTER 12. USING HTTP

107

 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-netty-server/configuration
 http://cxf.apache.org/schemas/configuration/http-netty-server.xsd"
>
 ...
 <httpn:engine-factory bus="cxf">
 <httpn:identifiedTLSServerParameters id="sample1">
 <httpn:tlsServerParameters jsseProvider="SUN" secureSocketProtocol="TLS">
 <sec:clientAuthentication want="false" required="false"/>
 </httpn:tlsServerParameters>
 </httpn:identifiedTLSServerParameters>

 <httpn:identifiedThreadingParameters id="sampleThreading1">
 <httpn:threadingParameters threadPoolSize="120"/>
 </httpn:identifiedThreadingParameters>

 <httpn:engine port="9000" readIdleTime="30000" writeIdleTime="90000">
 <httpn:threadingParametersRef id="sampleThreading1"/>
 </httpn:engine>

 <httpn:engine port="0">
 <httpn:threadingParameters threadPoolSize="400"/>
 </httpn:engine>

 <httpn:engine port="9001" readIdleTime="40000" maxChunkContentSize="10000">
 <httpn:threadingParameters threadPoolSize="99" />
 <httpn:sessionSupport>true</httpn:sessionSupport>
 </httpn:engine>

 <httpn:engine port="9002">
 <httpn:tlsServerParameters>
 <sec:clientAuthentication want="true" required="true"/>
 </httpn:tlsServerParameters>
 </httpn:engine>

 <httpn:engine port="9003">
 <httpn:tlsServerParametersRef id="sample1"/>
 </httpn:engine>

 </httpn:engine-factory>
</beans>

12.6. USING THE HTTP TRANSPORT IN DECOUPLED MODE

Overview

In normal HTTP request/response scenarios, the request and the response are sent using the same
HTTP connection. The service provider processes the request and responds with a response containing
the appropriate HTTP status code and the contents of the response. In the case of a successful request,
the HTTP status code is set to 200.

In some instances, such as when using WS-RM or when requests take an extended period of time to
execute, it makes sense to decouple the request and response message. In this case the service

Red Hat Fuse 7.5 Apache CXF Development Guide

108

providers sends the consumer a 202 Accepted response to the consumer over the back-channel of the
HTTP connection on which the request was received. It then processes the request and sends the
response back to the consumer using a new decoupled server→client HTTP connection. The consumer
runtime receives the incoming response and correlates it with the appropriate request before returning
to the application code.

Configuring decoupled interactions

Using the HTTP transport in decoupled mode requires that you do the following:

1. Configure the consumer to use WS-Addressing.
See the section called “Configuring an endpoint to use WS-Addressing” .

2. Configure the consumer to use a decoupled endpoint.
See the section called “Configuring the consumer” .

3. Configure any service providers that the consumer interacts with to use WS-Addressing.
See the section called “Configuring an endpoint to use WS-Addressing” .

Configuring an endpoint to use WS-Addressing

Specify that the consumer and any service provider with which the consumer interacts use WS-
Addressing.

You can specify that an endpoint uses WS-Addressing in one of two ways:

Adding the wswa:UsingAddressing element to the endpoint’s WSDL port element as shown in
Example 12.18, “Activating WS-Addressing using WSDL” .

Example 12.18. Activating WS-Addressing using WSDL

...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wswa:UsingAddressing xmlns:wswa="http://www.w3.org/2005/02/addressing/wsdl"/>
 </port>
</service>
...

Adding the WS-Addressing policy to the endpoint’s WSDL port element as shown in
Example 12.19, “Activating WS-Addressing using a Policy” .

Example 12.19. Activating WS-Addressing using a Policy

...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wsp:Policy xmlns:wsp="http://www.w3.org/2006/07/ws-policy"> <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata"> <wsp:Policy/>
</wsam:Addressing> </wsp:Policy>
 </port>
</service>
...

CHAPTER 12. USING HTTP

109

NOTE

The WS-Addressing policy supersedes the wswa:UsingAddressing WSDL element.

Configuring the consumer

Configure the consumer endpoint to use a decoupled endpoint using the DecoupledEndpoint attribute
of the http-conf:conduit element.

Example 12.20, “Configuring a Consumer to Use a Decoupled HTTP Endpoint” shows the configuration
for setting up the endpoint defined in Example 12.18, “Activating WS-Addressing using WSDL” to use use
a decoupled endpoint. The consumer now receives all responses at
http://widgetvendor.net/widgetSellerInbox.

Example 12.20. Configuring a Consumer to Use a Decoupled HTTP Endpoint

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http:conduit name="{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
 <http:client DecoupledEndpoint="http://widgetvendor.net:9999/decoupled_endpoint" />
 </http:conduit>
</beans>

How messages are processed

Using the HTTP transport in decoupled mode adds extra layers of complexity to the processing of HTTP
messages. While the added complexity is transparent to the implementation level code in an application,
it might be important to understand what happens for debugging reasons.

Figure 12.1, “Message Flow in for a Decoupled HTTP Transport” shows the flow of messages when using
HTTP in decoupled mode.

Figure 12.1. Message Flow in for a Decoupled HTTP Transport

Red Hat Fuse 7.5 Apache CXF Development Guide

110

http://widgetvendor.net/widgetSellerInbox

Figure 12.1. Message Flow in for a Decoupled HTTP Transport

A request starts the following process:

1. The consumer implementation invokes an operation and a request message is generated.

2. The WS-Addressing layer adds the WS-A headers to the message.
When a decoupled endpoint is specified in the consumer’s configuration, the address of the
decoupled endpoint is placed in the WS-A ReplyTo header.

3. The message is sent to the service provider.

4. The service provider receives the message.

5. The request message from the consumer is dispatched to the provider’s WS-A layer.

6. Because the WS-A ReplyTo header is not set to anonymous, the provider sends back a message
with the HTTP status code set to 202, acknowledging that the request has been received.

7. The HTTP layer sends a 202 Accepted message back to the consumer using the original
connection’s back-channel.

8. The consumer receives the 202 Accepted reply on the back-channel of the HTTP connection
used to send the original message.
When the consumer receives the 202 Accepted reply, the HTTP connection closes.

9. The request is passed to the service provider’s implementation where the request is processed.

CHAPTER 12. USING HTTP

111

10. When the response is ready, it is dispatched to the WS-A layer.

11. The WS-A layer adds the WS-Addressing headers to the response message.

12. The HTTP transport sends the response to the consumer’s decoupled endpoint.

13. The consumer’s decoupled endpoint receives the response from the service provider.

14. The response is dispatched to the consumer’s WS-A layer where it is correlated to the proper
request using the WS-A RelatesTo header.

15. The correlated response is returned to the client implementation and the invoking call is
unblocked.

Red Hat Fuse 7.5 Apache CXF Development Guide

112

CHAPTER 13. USING SOAP OVER JMS

Abstract

Apache CXF implements the W3C standard SOAP/JMS transport. This standard is intended to provide
a more robust alternative to SOAP/HTTP services. Apache CXF applications using this transport should
be able to interoperate with applications that also implement the SOAP/JMS standard. The transport is
configured directly in an endpoint’s WSDL.

NOTE: Support for the JMS 1.0.2 APIs has been removed in CXF 3.0. If you are using RedHat JBoss Fuse
6.2 or higher (includes CXF 3.0), your JMS provider must support the JMS 1.1 APIs.

13.1. BASIC CONFIGURATION

Overview

The SOAP over JMS protocol is defined by the World Wide Web Consortium(W3C) as a way of providing
a more reliable transport layer to the customary SOAP/HTTP protocol used by most services. The
Apache CXF implementation is fully compliant with the specification and should be compatible with any
framework that is also compliant.

This transport uses JNDI to find the JMS destinations. When an operation is invoked, the request is
packaged as a SOAP message and sent in the body of a JMS message to the specified destination.

To use the SOAP/JMS transport:

1. Specify that the transport type is SOAP/JMS.

2. Specify the target destination using a JMS URI.

3. Optionally, configure the JNDI connection.

4. Optionally, add additional JMS configuration.

Specifying the JMS transport type

You configure a SOAP binding to use the JMS transport when specifying the WSDL binding. You set the
soap:binding element’s transport attribute to http://www.w3.org/2010/soapjms/. Example 13.1,
“SOAP over JMS binding specification” shows a WSDL binding that uses SOAP/JMS.

Example 13.1. SOAP over JMS binding specification

<wsdl:binding ... >
 <soap:binding style="document"
 transport="http://www.w3.org/2010/soapjms/" />
 ...
</wsdl:binding>

Specifying the target destination

You specify the address of the JMS target destination when specifying the WSDL port for the endpoint.
The address specification for a SOAP/JMS endpoint uses the same soap:address element and

CHAPTER 13. USING SOAP OVER JMS

113

http://www.w3.org/TR/soapjms/
http://www.w3.org/2010/soapjms/

attribute as a SOAP/HTTP endpoint. The difference is the address specification. JMS endpoints use a
JMS URI as defined in the URI Scheme for JMS 1.0 . Example 13.2, “JMS URI syntax” shows the syntax
for a JMS URI.

Example 13.2. JMS URI syntax

jms:variant:destination?options

Table 13.1, “JMS URI variants” describes the available variants for the JMS URI.

Table 13.1. JMS URI variants

Variant Description

jndi Specifies that the destination name is a JNDI queue
name. When using this variant, you must provide the
configuration for accessing the JNDI provider.

jndi-topic Specifies that the destination name is a JNDI topic
name. When using this variant, you must provide the
configuration for accessing the JNDI provider.

queue Specifies that the destination is a queue name
resolved using JMS. The string provided is passed
into Session.createQueue() to create a
representation of the destination.

topic Specifies that the destination is a topic name
resolved using JMS. The string provided is passed
into Session.createTopic() to create a
representation of the destination.

The options portion of a JMS URI are used to configure the transport and are discussed in Section 13.2,
“JMS URIs”.

Example 13.3, “SOAP/JMS endpoint address” shows the WSDL port entry for a SOAP/JMS endpoint
whose target destination is looked up using JNDI.

Example 13.3. SOAP/JMS endpoint address

<wsdl:port ... >
 ...
 <soap:address location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
</wsdl:port>

Configuring JNDI and the JMS transport

The SOAP/JMS provides several ways to configure the JNDI connection and the JMS transport:

Red Hat Fuse 7.5 Apache CXF Development Guide

114

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

Section 13.2, “JMS URIs”

Section 13.3, “WSDL extensions”

13.2. JMS URIS

Overview

When using SOAP/JMS, a JMS URI is used to specify the endpoint’s target destination. The JMS URI
can also be used to configure JMS connection by appending one or more options to the URI. These
options are detailed in the IETF standard, URI Scheme for Java Message Service 1.0 . They can be used
to configure the JNDI system, the reply destination, the delivery mode to use, and other JMS
properties.

Syntax

As shown in Example 13.4, “Syntax for JMS URI options” , you can append one or more options to the end
of a JMS URI by separating them from the destination’s address with a question mark(?). Multiple
options are separated by an ampersand(&). Example 13.4, “Syntax for JMS URI options” shows the
syntax for using multiple options in a JMS URI.

Example 13.4. Syntax for JMS URI options

jms:variant:jmsAddress?option1=value1&option2=value2&_optionN_=valueN

JMS properties

Table 13.2, “JMS properties settable as URI options” shows the URI options that affect the JMS
transport layer.

Table 13.2. JMS properties settable as URI options

Property Default Description

conduitIdSelectorPrefix [Optional] A string value that is
prefixed to all correlation IDs that
the conduit creates. The selector
can use it to listen for replies.

deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode,
the JMS broker stores messages
in persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are kept in memory only.

CHAPTER 13. USING SOAP OVER JMS

115

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

durableSubscriptionClientID [Optional] Specifies the client
identifier for the connection. This
property is used to associate a
connection with a state that the
provider maintains on behalf of
the client. This enables
subsequent subscribers with the
same identity to resume the
subscription in the state that the
preceding subscriber left it.

durableSubscriptionName [Optional] Specifies the name of
the subscription.

messageType byte Specifies the JMS message type
used by CXF. Valid values are:

byte

text

binary

password [Optional] Specifies the password
for creating the connection.
Appending this property to the
URI is discouraged.

priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

receiveTimout 60000 Specifies the time, in milliseconds,
the client will wait for a reply when
request/reply exchanges are
used.

reconnectOnException true [Deprecated in CXF 3.0]
Specifies whether the transport
should reconnect when
exceptions occur.

As of 3.0, the transport will always
reconnect when an exception
occurs.

Property Default Description

Red Hat Fuse 7.5 Apache CXF Development Guide

116

replyToName [Optional] Specifies the reply
destination for queue messages.
The reply destination appears in
the JMSReplyTo header.
Setting this property is
recommended for applications
that have request-reply semantics
because the JMS provider will
assign a temporary reply queue if
one is not specified.

The value of this property is
interpreted according to the
variant specified in the JMS URI:

jndi variant—the name
of the destination queue
resolved by JNDI

queue variant—the
name of the destination
queue resolved using
JMS

sessionTransacted false Specifies the transaction type.
Valid values are:

true—resource local
transactions

false—JTA transactions

timeToLive 0 Specifies the time, in milliseconds,
after which the JMS provider will
discard the message. A value of 0
indicates an infinite lifetime.

topicReplyToName [Optional] Specifies the reply
destination for topic messages.
The value of this property is
interpreted according to the
variant specified in the JMS URI:

jndi-topic—the name of
the destination topic
resolved by JNDI

topic—the name of the
destination topic
resolved by JMS

Property Default Description

CHAPTER 13. USING SOAP OVER JMS

117

useConduitIdSelector true Specifies whether the conduit’s
UUID will be used as the prefix for
all correlation IDs.

As all conduits are assigned a
unique UUID, setting this property
to true enables multiple
endpoints to share a JMS queue
or topic.

username [Optional] Specifies the username
to use to create the connection.

Property Default Description

JNDI properties

Table 13.3, “JNDI properties settable as URI options” shows the URI options that can be used to
configure JNDI for this endpoint.

Table 13.3. JNDI properties settable as URI options

Property Description

jndiConnectionFactoryName Specifies the JNDI name of the JMS connection
factory.

jndiInitialContextFactory Specifies the fully qualified Java class name of the
JNDI provider (which must be of
javax.jms.InitialContextFactory type).
Equivalent to setting the
java.naming.factory.initial Java system property.

jndiTransactionManagerName Specifies the name of the JTA transaction manager
that will be searched for in Spring, Blueprint, or JNDI.
If a transaction manager is found, JTA transactions
will be enabled. See the sessionTransacted JMS
property.

jndiURL Specifies the URL that initializes the JNDI provider.
Equivalent to setting the
java.naming.provider.url Java system property.

Additional JNDI properties

The properties, java.naming.factory.initial and java.naming.provider.url, are standard properties,
which are required to initialize any JNDI provider. Sometimes, however, a JNDI provider might support
custom properties in addition to the standard ones. In this case, you can set an arbitrary JNDI property
by setting a URI option of the form jndi-PropertyName.

For example, if you were using SUN’s LDAP implementation of JNDI, you could set the JNDI property,

Red Hat Fuse 7.5 Apache CXF Development Guide

118

For example, if you were using SUN’s LDAP implementation of JNDI, you could set the JNDI property,
java.naming.factory.control, in a JMS URI as shown in Example 13.5, “Setting a JNDI property in a JMS
URI”.

Example 13.5. Setting a JNDI property in a JMS URI

jms:queue:FOO.BAR?jndi-
java.naming.factory.control=com.sun.jndi.ldap.ResponseControlFactory

Example

If the JMS provider is not already configured, it is possible to provide the requisite JNDI configuration
details in the URI using options (see Table 13.3, “JNDI properties settable as URI options”). For example,
to configure an endpoint to use the Apache ActiveMQ JMS provider and connect to the queue called
test.cxf.jmstransport.queue, use the URI shown in Example 13.6, “JMS URI that configures a JNDI
connection”.

Example 13.6. JMS URI that configures a JNDI connection

jms:jndi:dynamicQueues/test.cxf.jmstransport.queue
?jndiInitialContextFactory=org.apache.activemq.jndi.ActiveMQInitialContextFactory
&jndiConnectionFactoryName=ConnectionFactory
&jndiURL=tcp://localhost:61616

Publishing a service

The JAX-WS standard publish() method cannot be used to publish a SOAP/JMS service. Instead, you
must use the Apache CXF’s JaxWsServerFactoryBean class as shown in Example 13.7, “Publishing a
SOAP/JMS service”.

Example 13.7. Publishing a SOAP/JMS service

String address = "jms:jndi:dynamicQueues/test.cxf.jmstransport.queue3"
 + "?jndiInitialContextFactory"
 + "=org.apache.activemq.jndi.ActiveMQInitialContextFactory"
 + "&jndiConnectionFactoryName=ConnectionFactory"
 + "&jndiURL=tcp://localhost:61500";
Hello implementor = new HelloImpl();
JaxWsServerFactoryBean svrFactory = new JaxWsServerFactoryBean();
svrFactory.setServiceClass(Hello.class);
svrFactory.setAddress(address);
svrFactory.setTransportId(JMSSpecConstants.SOAP_JMS_SPECIFICIATION_TRANSPORTID);
svrFactory.setServiceBean(implementor);
svrFactory.create();

The code in Example 13.7, “Publishing a SOAP/JMS service” does the following:

Creates the JMS URI representing t he endpoint’s address.

Instantiates a JaxWsServerFactoryBean to publish the service.

CHAPTER 13. USING SOAP OVER JMS

119

Sets the address field of the factory bean with the JMS URI of the service.

Specifies that the service created by the factory will use the SOAP/JMS transport.

Consuming a service

The standard JAX-WS APIs cannot be used to consume a SOAP/JMS service. Instead, you must use
the Apache CXF’s JaxWsProxyFactoryBean class as shown in Example 13.8, “Consuming a SOAP/JMS
service”.

Example 13.8. Consuming a SOAP/JMS service

// Java
public void invoke() throws Exception {
 String address = "jms:jndi:dynamicQueues/test.cxf.jmstransport.queue3"
 + "?jndiInitialContextFactory"
 + "=org.apache.activemq.jndi.ActiveMQInitialContextFactory"
 + "&jndiConnectionFactoryName=ConnectionFactory&jndiURL=tcp://localhost:61500";
 JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
 factory.setAddress(address);
 factory.setTransportId(JMSSpecConstants.SOAP_JMS_SPECIFICIATION_TRANSPORTID);
 factory.setServiceClass(Hello.class);
 Hello client = (Hello)factory.create();
 String reply = client.sayHi(" HI");
 System.out.println(reply);
}

The code in Example 13.8, “Consuming a SOAP/JMS service” does the following:

Creates the JMS URI representing t he endpoint’s address.

Instantiates a JaxWsProxyFactoryBean to create the proxy.

Sets the address field of the factory bean with the JMS URI of the service.

Specifies that the proxy created by the factory will use the SOAP/JMS transport.

13.3. WSDL EXTENSIONS

Overview

You can specify the basic configuration of the JMS transport by inserting WSDL extension elements
into the contract, either at binding scope, service scope, or port scope. The WSDL extensions enable
you to specify the properties for bootstrapping a JNDI InitialContext, which can then be used to look up
JMS destinations. You can also set some properties that affect the behavior of the JMS transport layer.

SOAP/JMS namespace

the SOAP/JMS WSDL extensions are defined in the http://www.w3.org/2010/soapjms/ namespace. To
use them in your WSDL contracts add the following setting to the wsdl:definitions element:

Red Hat Fuse 7.5 Apache CXF Development Guide

120

http://www.w3.org/2010/soapjms/

<wsdl:definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >

WSDL extension elements

Table 13.4, “SOAP/JMS WSDL extension elements” shows all of the WSDL extension elements you can
use to configure the JMS transport.

Table 13.4. SOAP/JMS WSDL extension elements

Element Default Description

soapjms:jndiInitialContextFa
ctory

 Specifies the fully qualified Java
class name of the JNDI provider.
Equivalent to setting the
java.naming.factory.initial
Java system property.

soapjms:jndiURL Specifies the URL that initializes
the JNDI provider. Equivalent to
setting the
java.naming.provider.url Java
system property.

soapjms:jndiContextParamet
er

 Specifies an additional property
for creating the JNDI
InitialContext. Use the name
and value attributes to specify
the property.

soapjms:jndiConnectionFact
oryName

 Specifies the JNDI name of the
JMS connection factory.

soapjms:deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode,
the JMS broker stores messages
in persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are kept in memory only.

CHAPTER 13. USING SOAP OVER JMS

121

soapjms:replyToName [Optional] Specifies the reply
destination for queue messages.
The reply destination appears in
the JMSReplyTo header.
Setting this property is
recommended for applications
that have request-reply semantics
because the JMS provider will
assign a temporary reply queue if
one is not specified.

The value of this property is
interpreted according to the
variant specified in the JMS URI:

jndi variant—the name
of the destination queue
resolved by JNDI

queue variant—the
name of the destination
queue resolved using
JMS

soapjms:priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

soapjms:timeToLive 0 Time, in milliseconds, after which
the JMS provider will discard the
message. A value of 0 represents
an infinite lifetime.

Element Default Description

Configuration scopes

The WSDL elements placement in the WSDL contract effect the scope of the configuration changes on
the endpoints defined in the contract. The SOAP/JMS WSDL elements can be placed as children of
either the wsdl:binding element, the wsdl:service element, or the wsdl:port element. The parent of
the SOAP/JMS elements determine which of the following scopes the configuration is placed into.

Binding scope

You can configure the JMS transport at the binding scope by placing extension elements inside the
wsdl:binding element. Elements in this scope define the default configuration for all endpoints that
use this binding. Any settings in the binding scope can be overridden at the service scope or the port
scope.

Service scope

You can configure the JMS transport at the service scope by placing extension elements inside a
wsdl:service element. Elements in this scope define the default configuration for all endpoints in
this service. Any settings in the service scope can be overridden at the port scope.

Red Hat Fuse 7.5 Apache CXF Development Guide

122

Port scope

You can configure the JMS transport at the port scope by placing extension elements inside a
wsdl:port element. Elements in the port scope define the configuration for this port. They override
the defaults of the same extension elements defined at the service scope or at the binding scope.

Example

Example 13.9, “WSDL contract with SOAP/JMS configuration” shows a WSDL contract for a SOAP/JMS
service. It configures the JNDI layer in the binding scope, the message delivery details in the service
scope, and the reply destination in the port scope.

Example 13.9. WSDL contract with SOAP/JMS configuration

<wsdl:definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >
 ...
 <wsdl:binding name="JMSGreeterPortBinding" type="tns:JMSGreeterPortType">
 ...
 <soapjms:jndiInitialContextFactory>
 org.apache.activemq.jndi.ActiveMQInitialContextFactory
 </soapjms:jndiInitialContextFactory>
 <soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>
 <soapjms:jndiConnectionFactoryName>
 ConnectionFactory
 </soapjms:jndiConnectionFactoryName>
 ...
 </wsdl:binding>
 ...
 <wsdl:service name="JMSGreeterService">
 ...
 <soapjms:deliveryMode>NON_PERSISTENT</soapjms:deliveryMode>
 <soapjms:timeToLive>60000</soapjms:timeToLive>
 ...
 <wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">
 <soap:address location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
 <soapjms:replyToName>
 dynamicQueues/greeterReply.queue
 </soapjms:replyToName>
 ...
 </wsdl:port>
 ...
 </wsdl:service>
 ...
</wsdl:definitions>

The WSDL in Example 13.9, “WSDL contract with SOAP/JMS configuration” does the following:

Declares the namespace for the SOAP/JMS extensions.

Configures the JNDI connections in the binding scope.

Sets the JMS delivery style to non-persistent and each message to live for one minute.

CHAPTER 13. USING SOAP OVER JMS

123

Specifies the target destination.

Configures the JMS transport so that reply messages are delivered on the greeterReply.queue queue.

Red Hat Fuse 7.5 Apache CXF Development Guide

124

CHAPTER 14. USING GENERIC JMS

Abstract

Apache CXF provides a generic implementation of a JMS transport. The generic JMS transport is not
restricted to using SOAP messages and allows for connecting to any application that uses JMS.

NOTE: Support for the JMS 1.0.2 APIs has been removed in CXF 3.0. If you are using RedHat JBoss Fuse
6.2 or higher (includes CXF 3.0), your JMS provider must support the JMS 1.1 APIs.

14.1. APPROACHES TO CONFIGURING JMS

The Apache CXF generic JMS transport can connect to any JMS provider and work with applications
that exchange JMS messages with bodies of either TextMessage or ByteMessage.

There are two ways to enable and configure the JMS transport:

Section 14.2, “Using the JMS configuration bean”

Section 14.5, “Using WSDL to configure JMS”

14.2. USING THE JMS CONFIGURATION BEAN

Overview

To simplify JMS configuration and make it more powerful, Apache CXF uses a single JMS configuration
bean to configure JMS endpoints. The bean is implemented by the
org.apache.cxf.transport.jms.JMSConfiguration class. It can be used to either configure endpoint’s
directly or to configure the JMS conduits and destinations.

Configuration namespace

The JMS configuration bean uses the Spring p-namespace to make the configuration as simple as
possible. To use this namespace you need to declare it in the configuration’s root element as shown in
Example 14.1, “Declaring the Spring p-namespace”.

Example 14.1. Declaring the Spring p-namespace

<beans ...
 xmlns:p="http://www.springframework.org/schema/p"
 ... >
 ...
</beans>

Specifying the configuration

You specify the JMS configuration by defining a bean of class
org.apache.cxf.transport.jms.JMSConfiguration. The properties of the bean provide the
configuration settings for the transport.

IMPORTANT

CHAPTER 14. USING GENERIC JMS

125

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/beans.html

IMPORTANT

In CXF 3.0, the JMS transport no longer has a dependency on Spring JMS, so some
Spring JMS-related options have been removed.

Table 14.1, “General JMS Configuration Properties” lists properties that are common to both providers
and consumers.

Table 14.1. General JMS Configuration Properties

Property Default Description

connectionFactory [Required] Specifies a reference
to a bean that defines a JMS
ConnectionFactory.

wrapInSingleConnectionFact
ory

true [pre v3.0] Removed in CXF 3.0

pre CXF 3.0 Specifies whether to
wrap the ConnectionFactory with
a Spring
SingleConnectionFactory.

Enable this property when using a
ConnectionFactory that does not
pool connections, as it will
improve the performance of the
JMS transport. This is so because
the JMS transport creates a new
connection for each message, and
the SingleConnectionFactory
is needed to cache the
connection, so it can be reused.

Red Hat Fuse 7.5 Apache CXF Development Guide

126

reconnectOnException false Deprecated in CXF 3.0 CXF
always reconnects when an
exception occurs.

pre CXF 3.0 Specifies whether to
create a new connection when an
exception occurs.

When wrapping the
ConnectionFactory with a Spring
SingleConnectionFactory:

true — on an exception,
create a new connection
Do not enable this option
when using a
PooledConnectionFacto
ry, as this option only
returns the pooled
connection, but does not
reconnect.

false — on an exception,
do not try to reconnect

targetDestination Specifies the JNDI name or
provider-specific name of a
destination.

replyDestination Specifies the JMS name of the
JMS destination where replies are
sent. This property allows the use
of a user-defined destination for
replies. For more details see
Section 14.6, “Using a Named
Reply Destination”.

Property Default Description

CHAPTER 14. USING GENERIC JMS

127

destinationResolver DynamicDestinationResolver Specifies a reference to a Spring
DestinationResolver.

This property allows you to define
how destination names are
resolved to JMS destinations.
Valid values are:

DynamicDestination
Resolver — resolve
destination names using
the features of the JMS
provider.

JndiDestinationResol
ver — resolve destination
names using JNDI.

transactionManager Specifies a reference to a Spring
transaction manager. This enables
the service to participate in JTA
transactions.

taskExecutor SimpleAsyncTaskExecutor Removed in CXF 3.0

pre CXF 3.0 Specifies a
reference to a Spring
TaskExecutor. This is used in
listeners to decide how to handle
incoming messages.

useJms11 false Removed in CXF 3.0 CXF 3.0
supports JMS 1.1 features only.

pre CXF 3.0 Specifies whether
JMS 1.1 features are used. Valid
values are:

true — JMS 1.1 features

false — JMS 1.0.2
features

Property Default Description

Red Hat Fuse 7.5 Apache CXF Development Guide

128

messageIdEnabled true Removed in CXF 3.0

pre CXF 3.0 Specifies whether
the JMS transport wants the JMS
broker to provide message IDs.
Valid values are:

true — broker needs to
provide message IDs

false — broker need not
provide message IDs
In this case, the endpoint
calls its message
producer’s
setDisableMessageID
() method with a value of
true. The broker is then
given a hint that it need
not generate message
IDs or add them to the
endpoint’s messages.
The broker either
accepts the hint or
ignores it.

messageTimestampEnabled true Removed in CXF 3.0

pre CXF 3.0 Specifies whether
the JMS transport wants the JMS
broker to provide message time
stamps. Valid values are:

true — broker needs to
provide message
timestamps

false — broker need not
provide message
timestamps
In this case, the endpoint
calls its message
producer’s
setDisableMessageTi
mestamp() method
with a value of true. The
broker is then given a
hint that it need not
generate time stamps or
add them to the
endpoint’s messages.
The broker either
accepts the hint or
ignores it.

Property Default Description

CHAPTER 14. USING GENERIC JMS

129

cacheLevel -1 (feature disabled) Removed in CXF 3.0

pre CXF 3.0 Specifies the level of
caching that the JMS listener
container may apply. Valid values
are:

0 — CACHE_NONE

1 — 
CACHE_CONNECTION

2 — CACHE_SESSION

3 — 
CACHE_CONSUMER

4 — CACHE_AUTO

For details, see Class
DefaultMessageListenerContaine
r

pubSubNoLocal false Specifies whether to receive your
own messages when using topics.

true — do not receive
your own messages

false — receive your own
messages

receiveTimeout 60000 Specifies the time, in milliseconds,
to wait for response messages.

explicitQosEnabled false Specifies whether the QoS
settings (such as priority,
persistence, time to live) are
explicitly set for each message
(true) or use the default values
(false).

deliveryMode 2 Specifies whether a message is
persistent. Valid values are:

1 (NON_PERSISTENT)—
messages are kept
memory only

2 (PERSISTENT)—
messages are persisted
to disk

Property Default Description

Red Hat Fuse 7.5 Apache CXF Development Guide

130

http://docs.spring.io/spring-framework/docs/2.0.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html

priority 4 Specifies message priority. JMS
priority values range from 0
(lowest) to 9 (highest). See your
JMS provider’s documentation for
details.

timeToLive 0 (indefinitely) Specifies the time, in milliseconds,
before a message that has been
sent is discarded.

sessionTransacted false Specifies whether JMS
transactions are used.

concurrentConsumers 1 Removed in CXF 3.0

pre CXF 3.0 Specifies the
minimum number of concurrent
consumers for the listener.

maxConcurrentConsumers 1 Removed in CXF 3.0

pre CXF 3.0 Specifies the
maximum number of concurrent
consumers for the listener.

messageSelector Specifies the string value of the
selector used to filter incoming
messages. This property enables
multiple connections to share a
queue. For more information on
the syntax used to specify
message selectors, see the JMS
1.1 specification.

subscriptionDurable false Specifies whether the server uses
durable subscriptions.

durableSubscriptionName Specifies the name (string) used
to register the durable
subscription.

Property Default Description

CHAPTER 14. USING GENERIC JMS

131

http://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/

messageType text Specifies how the message data
will be packaged as a JMS
message. Valid values are:

text — specifies that the
data will be packaged as
a TextMessage

byte — specifies that the
data will be packaged as
an array of bytes
(byte[])

binary — specifies that
the data will be
packaged as an
ByteMessage

pubSubDomain false Specifies whether the target
destination is a topic or a queue.
Valid values are:

true — topic

false — queue

jmsProviderTibcoEms false Specifies whether the JMS
provider is Tibco EMS.

When set to true, the principal in
the security context is populated
from the
JMS_TIBCO_SENDER header.

useMessageIDAsCorrelationI
D

false Removed in CXF 3.0

Specifies whether JMS will use
the message ID to correlate
messages.

When set to true, the client sets a
generated correlation ID.

maxSuspendedContinuation
s

-1 (feature disabled) CXF 3.0 Specifies the maximum
number of suspended
continuations the JMS destination
may have. When the current
number exceeds the specified
maximum, the
JMSListenerContainer is
stopped.

Property Default Description

Red Hat Fuse 7.5 Apache CXF Development Guide

132

reconnectPercentOfMax 70 CXF 3.0 Specifies when to restart
the JMSListenerContainer
stopped for exceeding
maxSuspendedContinuation
s.

The listener container is restarted
when its current number of
suspended continuations falls
below the value of
(maxSuspendedContinuatio
ns *
reconnectPercentOfMax/100)
.

Property Default Description

As shown in Example 14.2, “JMS configuration bean” , the bean’s properties are specified as attributes to
the bean element. They are all declared in the Spring p namespace.

Example 14.2. JMS configuration bean

<bean id="jmsConfig"
 class="org.apache.cxf.transport.jms.JMSConfiguration"
 p:connectionFactory="jmsConnectionFactory"
 p:targetDestination="dynamicQueues/greeter.request.queue"
 p:pubSubDomain="false" />

Applying the configuration to an endpoint

The JMSConfiguration bean can be applied directly to both server and client endpoints using the
Apache CXF features mechanism. To do so:

1. Set the endpoint’s address attribute to jms://.

2. Add a jaxws:feature element to the endpoint’s configuration.

3. Add a bean of type org.apache.cxf.transport.jms.JMSConfigFeature to the feature.

4. Set the bean element’s p:jmsConfig-ref attribute to the ID of the JMSConfiguration bean.

Example 14.3, “Adding JMS configuration to a JAX-WS client” shows a JAX-WS client that uses the
JMS configuration from Example 14.2, “JMS configuration bean” .

Example 14.3. Adding JMS configuration to a JAX-WS client

<jaxws:client id="CustomerService"
 xmlns:customer="http://customerservice.example.com/"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServiceEndpoint"
 address="jms://"
 serviceClass="com.example.customerservice.CustomerService">

CHAPTER 14. USING GENERIC JMS

133

 <jaxws:features>
 <bean xmlns="http://www.springframework.org/schema/beans"
 class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig"/>
 </jaxws:features>
</jaxws:client>

Applying the configuration to the transport

The JMSConfiguration bean can be applied to JMS conduits and JMS destinations using the
jms:jmsConfig-ref element. The jms:jmsConfig-ref element’s value is the ID of the JMSConfiguration
bean.

Example 14.4, “Adding JMS configuration to a JMS conduit” shows a JMS conduit that uses the JMS
configuration from Example 14.2, “JMS configuration bean” .

Example 14.4. Adding JMS configuration to a JMS conduit

<jms:conduit name="{http://cxf.apache.org/jms_conf_test}HelloWorldQueueBinMsgPort.jms-
conduit">
 ...
 <jms:jmsConfig-ref>jmsConf</jms:jmsConfig-ref>
</jms:conduit>

14.3. OPTIMIZING CLIENT-SIDE JMS PERFORMANCE

Overview

Two major settings affect the JMS performance of clients: pooling and synchronous receives.

Pooling

On the client side, CXF creates a new JMS session and JMS producer for each message. This is so
because neither session nor producer objects are thread safe. Creating a producer is especially time
intensive because it requires communicating with the server.

Pooling connection factories improves performance by caching the connection, session, and producer.

For ActiveMQ, configuring pooling is simple; for example:

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.pool.PooledConnectionFactory;

ConnectionFactory cf = new ActiveMQConnectionFactory("tcp://localhost:61616");
PooledConnectionFactory pcf = new PooledConnectionFactory();

//Set expiry timeout because the default (0) prevents reconnection on failure
pcf.setExpiryTimeout(5000);
pcf.setConnectionFactory(cf);

Red Hat Fuse 7.5 Apache CXF Development Guide

134

JMSConfiguration jmsConfig = new JMSConfiguration();

jmsConfig.setConnectionFactory(pdf);

For more information on pooling, see "Appendix A Optimizing Performance of JMS Single- and
Multiple-Resource Transactions" in the Red Hat JBoss Fuse Transaction Guide

Avoiding synchronous receives

For request/reply exchanges, the JMS transport sends a request and then waits for a reply. Whenever
possible, request/reply messaging is implemented asynchronously using a JMS MessageListener.

However, CXF must use a synchronous Consumer.receive() method when it needs to share queues
between endpoints. This scenario requires the MessageListener to use a message selector to filter the
messages. The message selector must be known in advance, so the MessageListener is opened only
once.

Two cases in which the message selector cannot be known in advance should be avoided:

When JMSMessageID is used as the JMSCorrelationID
If the JMS properties useConduitIdSelector and conduitSelectorPrefix are not set on the
JMS transport, the client does not set a JMSCorrelationId. This causes the server to use the
JMSMessageId of the request message as the JMSCorrelationId. As JMSMessageID cannot
be known in advance, the client has to use a synchronous Consumer.receive() method.

Note that you must use the Consumer.receive() method with IBM JMS endpoints (their
default).

The user sets the JMStype in the request message and then sets a custom JMSCorrelationID.
Again, as the custom JMSCorrelationID cannot be known in advance, the client has to use a
synchronous Consumer.receive() method.

So the general rule is to avoid using settings that require using a synchronous receive.

14.4. CONFIGURING JMS TRANSACTIONS

Overview

CXF 3.0 supports both local JMS transactions and JTA transactions on CXF endpoints, when using one-
way messaging.

Local transactions

Transactions using local resources roll back the JMS message only when an exception occurs. They do
not directly coordinate other resources, such as database transactions.

To set up a local transaction, configure the endpoint as you normally would, and set the property
sessionTrasnsacted to true.

NOTE

For more information on transactions and pooling, see the Red Hat JBoss Fuse
Transaction Guide.

CHAPTER 14. USING GENERIC JMS

135

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Transaction_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Transaction_Guide/index.html

JTA transactions

Using JTA transactions, you can coordinate any number of XA resources. If a CXF endpoint is configured
for JTA transactions, it starts a transaction before calling the service implementation. The transaction
will be committed if no exception occurs. Otherwise, it will be rolled back.

In JTA transactions, a JMS message is consumed and the data written to a database. When an exception
occurs, both resources are rolled back, so either the message is consumed and the data is written to the
database, or the message is rolled back and the data is not written to the database.

Configuring JTA transactions requires two steps:

1. Defining a transaction manager

bean method

Define a transaction manager

<bean id="transactionManager"

class="org.apache.geronimo.transaction.manager.GeronimoTransactionManager"/>

Set the name of the transaction manager in the JMS URI

jms:queue:myqueue?jndiTransactionManager=TransactionManager

This example finds a bean with the ID TransactionManager.

OSGi reference method

Look up the transaction manager as an OSGi service using Blueprint

<reference id="TransactionManager"
interface="javax.transaction.TransactionManager"/>

Set the name of the transaction manager in the JMS URI

jms:jndi:myqueue?jndiTransactionManager=java:comp/env/TransactionManager

This example looks up the transaction manager in JNDI.

2. Configuring a JCA pooled connection factory
Using Spring to define the JCA pooled connection factory:

<bean id="xacf" class="org.apache.activemq.ActiveMQXAConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
</bean>

<bean id="ConnectionFactory"
class="org.apache.activemq.jms.pool.JcaPooledConnectionFactory">
 <property name="transactionManager" ref="transactionManager" />
 <property name="connectionFactory" ref="xacf" />
</bean>

In this example, the first bean defines an ActiveMQ XA connection factory, which is given to a

Red Hat Fuse 7.5 Apache CXF Development Guide

136

In this example, the first bean defines an ActiveMQ XA connection factory, which is given to a
JcaPooledConnectionFactory. The JcaPooledConnectionFactory is then provided as the
default bean with id ConnectionFactory.

Note that the JcaPooledConnectionFactory looks like a normal ConnectionFactory. But when
a new connection and session are opened, it checks for an XA transaction and, if found,
automatically registers the JMS session as an XA resource. This allows the JMS session to
participate in the JMS transaction.

IMPORTANT

Directly setting an XA ConnectionFactory on the JMS transport will not work!

14.5. USING WSDL TO CONFIGURE JMS

14.5.1. JMS WSDL Extension Namespance

The WSDL extensions for defining a JMS endpoint are defined in the namespace
http://cxf.apache.org/transports/jms. In order to use the JMS extensions you will need to add the line
shown in Example 14.5, “JMS WSDL extension namespace” to the definitions element of your contract.

Example 14.5. JMS WSDL extension namespace

xmlns:jms="http://cxf.apache.org/transports/jms"

14.5.2. Basic JMS configuration

Overview

The JMS address information is provided using the jms:address element and its child, the
jms:JMSNamingProperties element. The jms:address element’s attributes specify the information
needed to identify the JMS broker and the destination. The jms:JMSNamingProperties element
specifies the Java properties used to connect to the JNDI service.

IMPORTANT

Information specified using the JMS feature will override the information in the
endpoint’s WSDL file.

Specifying the JMS address

The basic configuration for a JMS endpoint is done by using a jms:address element as the child of your
service’s port element. The jms:address element used in WSDL is identical to the one used in the
configuration file. Its attributes are listed in Table 14.2, “JMS endpoint attributes”.

Table 14.2. JMS endpoint attributes

Attribute Description

CHAPTER 14. USING GENERIC JMS

137

http://cxf.apache.org/transports/jms

destinationStyle Specifies if the JMS destination is a JMS queue or a
JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS
connection factory to use when connecting to the
JMS destination.

jmsDestinationName Specifies the JMS name of the JMS destination to
which requests are sent.

jmsReplyDestinationName Specifies the JMS name of the JMS destinations
where replies are sent. This attribute allows you to
use a user defined destination for replies. For more
details see Section 14.6, “Using a Named Reply
Destination”.

jndiDestinationName Specifies the JNDI name bound to the JMS
destination to which requests are sent.

jndiReplyDestinationName Specifies the JNDI name bound to the JMS
destinations where replies are sent. This attribute
allows you to use a user defined destination for
replies. For more details see Section 14.6, “Using a
Named Reply Destination”.

connectionUserName Specifies the user name to use when connecting to a
JMS broker.

connectionPassword Specifies the password to use when connecting to a
JMS broker.

Attribute Description

The jms:address WSDL element uses a jms:JMSNamingProperties child element to specify
additional information needed to connect to a JNDI provider.

Specifying JNDI properties

To increase interoperability with JMS and JNDI providers, the jms:address element has a child element,
jms:JMSNamingProperties, that allows you to specify the values used to populate the properties used
when connecting to the JNDI provider. The jms:JMSNamingProperties element has two attributes:
name and value. name specifies the name of the property to set. value attribute specifies the value for
the specified property. jms:JMSNamingProperties element can also be used for specification of
provider specific properties.

The following is a list of common JNDI properties that can be set:

1. java.naming.factory.initial

2. java.naming.provider.url

3. java.naming.factory.object

Red Hat Fuse 7.5 Apache CXF Development Guide

138

4. java.naming.factory.state

5. java.naming.factory.url.pkgs

6. java.naming.dns.url

7. java.naming.authoritative

8. java.naming.batchsize

9. java.naming.referral

10. java.naming.security.protocol

11. java.naming.security.authentication

12. java.naming.security.principal

13. java.naming.security.credentials

14. java.naming.language

15. java.naming.applet

For more details on what information to use in these attributes, check your JNDI provider’s
documentation and consult the Java API reference material.

Example

Example 14.6, “JMS WSDL port specification” shows an example of a JMS WSDL port specification.

Example 14.6. JMS WSDL port specification

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>

14.5.3. JMS client configuration

Overview

JMS consumer endpoints specify the type of messages they use. JMS consumer endpoint can use
either a JMS ByteMessage or a JMS TextMessage.

When using an ByteMessage the consumer endpoint uses a byte[] as the method for storing data into
and retrieving data from the JMS message body. When messages are sent, the message data, including

CHAPTER 14. USING GENERIC JMS

139

any formating information, is packaged into a byte[] and placed into the message body before it is
placed on the wire. When messages are received, the consumer endpoint will attempt to unmarshall the
data stored in the message body as if it were packed in a byte[].

When using a TextMessage, the consumer endpoint uses a string as the method for storing and
retrieving data from the message body. When messages are sent, the message information, including
any format-specific information, is converted into a string and placed into the JMS message body.
When messages are received the consumer endpoint will attempt to unmarshall the data stored in the
JMS message body as if it were packed into a string.

When native JMS applications interact with Apache CXF consumers, the JMS application is responsible
for interpreting the message and the formatting information. For example, if the Apache CXF contract
specifies that the binding used for a JMS endpoint is SOAP, and the messages are packaged as
TextMessage, the receiving JMS application will get a text message containing all of the SOAP
envelope information.

Specifying the message type

The type of messages accepted by a JMS consumer endpoint is configured using the optional
jms:client element. The jms:client element is a child of the WSDL port element and has one attribute:

Table 14.3. JMS Client WSDL Extensions

messageType

Specifies how the message data will be packaged as a JMS message. text specifies that the data will be
packaged as a TextMessage. binary specifies that the data will be packaged as an ByteMessage.

Example

Example 14.7, “WSDL for a JMS consumer endpoint” shows the WSDL for configuring a JMS consumer
endpoint.

Example 14.7. WSDL for a JMS consumer endpoint

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 <jms:client messageType="binary" />
 </port>
</service>

14.5.4. JMS provider configuration

Overview

Red Hat Fuse 7.5 Apache CXF Development Guide

140

JMS provider endpoints have a number of behaviors that are configurable. These include:

how messages are correlated

the use of durable subscriptions

if the service uses local JMS transactions

the message selectors used by the endpoint

Specifying the configuration

Provider endpoint behaviors are configured using the optional jms:server element. The jms:server
element is a child of the WSDL wsdl:port element and has the following attributes:

Table 14.4. JMS provider endpoint WSDL extensions

Attribute Description

useMessageIDAsCorrealationID Specifies whether JMS will use the message ID to
correlate messages. The default is false.

durableSubscriberName Specifies the name used to register a durable
subscription.

messageSelector Specifies the string value of a message selector to
use. For more information on the syntax used to
specify message selectors, see the JMS 1.1
specification.

transactional Specifies whether the local JMS broker will create
transactions around message processing. The
default is false. [a]

[a] Currently, setting the transactional attribute to true is not supported by the runtime.

Example

Example 14.8, “WSDL for a JMS provider endpoint” shows the WSDL for configuring a JMS provider
endpoint.

Example 14.8. WSDL for a JMS provider endpoint

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>

CHAPTER 14. USING GENERIC JMS

141

 <jms:server messageSelector="cxf_message_selector"
 useMessageIDAsCorrelationID="true"
 transactional="true"
 durableSubscriberName="cxf_subscriber" />
 </port>
</service>

14.6. USING A NAMED REPLY DESTINATION

Overview

By default, Apache CXF endpoints using JMS create a temporary queue for sending replies back and
forth. If you prefer to use named queues, you can configure the queue used to send replies as part of an
endpoint’s JMS configuration.

Setting the reply destination name

You specify the reply destination using either the jmsReplyDestinationName attribute or the
jndiReplyDestinationName attribute in the endpoint’s JMS configuration. A client endpoint will listen
for replies on the specified destination and it will specify the value of the attribute in the ReplyTo field
of all outgoing requests. A service endpoint will use the value of the jndiReplyDestinationName
attribute as the location for placing replies if there is no destination specified in the request’s ReplyTo
field.

Example

Example 14.9, “JMS Consumer Specification Using a Named Reply Queue” shows the configuration for a
JMS client endpoint.

Example 14.9. JMS Consumer Specification Using a Named Reply Queue

<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
 <jms:address destinationStyle="queue"
 jndiConnectionFactoryName="myConnectionFactory"
 jndiDestinationName="myDestination"
 jndiReplyDestinationName="myReplyDestination" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.apache.cxf.transport.jms.MyInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </jms:conduit>

Red Hat Fuse 7.5 Apache CXF Development Guide

142

CHAPTER 15. INTEGRATING WITH APACHE ACTIVEMQ

OVERVIEW

If you are using Apache ActiveMQ as your JMS provider, the JNDI name of your destinations can be
specified in a special format that dynamically creates JNDI bindings for queues or topics. This means
that it is not necessary to configure the JMS provider in advance with the JNDI bindings for your
queues or topics.

THE INITIAL CONTEXT FACTORY

The key to integrating Apache ActiveMQ with JNDI is the ActiveMQInitialContextFactory class. This
class is used to create a JNDI InitialContext instance, which you can then use to access JMS
destinations in the JMS broker.

Example 15.1, “SOAP/JMS WSDL to connect to Apache ActiveMQ” shows SOAP/JMS WSDL
extensions to create a JNDI InitialContext that is integrated with Apache ActiveMQ.

Example 15.1. SOAP/JMS WSDL to connect to Apache ActiveMQ

<soapjms:jndiInitialContextFactory>
 org.apache.activemq.jndi.ActiveMQInitialContextFactory
</soapjms:jndiInitialContextFactory>
<soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>

In Example 15.1, “SOAP/JMS WSDL to connect to Apache ActiveMQ” , the Apache ActiveMQ client
connects to the broker port located at tcp://localhost:61616.

LOOKING UP THE CONNECTION FACTORY

As well as creating a JNDI InitialContext instance, you must specify the JNDI name that is bound to a
javax.jms.ConnectionFactory instance. In the case of Apache ActiveMQ, there is a predefined binding
in the InitialContext instance, which maps the JNDI name ConnectionFactory to an
ActiveMQConnectionFactory instance. Example 15.2, “SOAP/JMS WSDL for specifying the Apache
ActiveMQ connection factory” shaows the SOAP/JMS extension element for specifying the Apache
ActiveMQ connection factory.

Example 15.2. SOAP/JMS WSDL for specifying the Apache ActiveMQ connection factory

<soapjms:jndiConnectionFactoryName>
 ConnectionFactory
</soapjms:jndiConnectionFactoryName>

SYNTAX FOR DYNAMIC DESTINATIONS

To access queues or topics dynamically, specify the destination’s JNDI name as a JNDI composite name
in either of the following formats:

CHAPTER 15. INTEGRATING WITH APACHE ACTIVEMQ

143

dynamicQueues/QueueName
dynamicTopics/TopicName

QueueName and TopicName are the names that the Apache ActiveMQ broker uses. They are not
abstract JNDI names.

Example 15.3, “WSDL port specification with a dynamically created queue” shows a WSDL port that uses
a dynamically created queue.

Example 15.3. WSDL port specification with a dynamically created queue

<service name="JMSService">
 <port binding="tns:GreeterBinding" name="JMSPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="dynamicQueues/greeter.request.queue" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>

When the application attempts to open the JMS connection, Apache ActiveMQ will check to see if a
queue with the JNDI name greeter.request.queue exists. If it does not exist, it will create a new queue
and bind it to the JNDI name greeter.request.queue.

Red Hat Fuse 7.5 Apache CXF Development Guide

144

CHAPTER 16. CONDUITS

Abstract

Conduits are a low-level piece of the transport architecture that are used to implement outbound
connections. Their behavior and life-cycle can effect system performance and processing load.

OVERVIEW

Conduits manage the client-side, or outbound, transport details in the Apache CXF runtime. They are
responsible for opening ports, establishing outbound connections, sending messages, and listening for
any responses between an application and a single external endpoint. If an application connects to
multiple endpoints, it will have one conduit instance for each endpoint.

Each transport type implements its own conduit using the Conduit interface. This allows for a
standardized interface between the application level functionality and the transports.

In general, you only need to worry about the conduits being used by your application when configuring
the client-side transport details. The underlying semantics of how the runtime handles conduits is,
generally, not something a developer needs to worry about.

However, there are cases when an understanding of conduit’s can prove helpful:

Implementing a custom transport

Advanced application tuning to manage limited resources

CONDUIT LIFE-CYCLE

Conduits are managed by the client implementation object. Once created, a conduit lives for the
duration of the client implementation object. The conduit’s life-cycle is:

1. When the client implementation object is created, it is given a reference to a ConduitSelector
object.

2. When the client needs to send a message is request’s a reference to a conduit from the conduit
selector.
If the message is for a new endpoint, the conduit selector creates a new conduit and passes it to
the client implementation. Otherwise, it passes the client a reference to the conduit for the
target endpoint.

3. The conduit sends messages when needed.

4. When the client implementation object is destroyed, all of the conduits associated with it are
destroyed.

CONDUIT WEIGHT

The weight of a conduit object depends on the transport implementation. HTTP conduits are extremely
light weight. JMS conduits are heavy because they are associated with the JMS Session object and one
or more JMSListenerContainer objects.

CHAPTER 16. CONDUITS

145

PART IV. CONFIGURING WEB SERVICE ENDPOINTS
This guide describes how to create Apache CXF endpoints in Red Hat Fuse.

Red Hat Fuse 7.5 Apache CXF Development Guide

146

CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS

Abstract

JAX-WS endpoints are configured using one of three Spring configuration elements. The correct
element depends on what type of endpoint you are configuring and which features you wish to use. For
consumers you use the jaxws:client element. For service providers you can use either the
jaxws:endpoint element or the jaxws:server element.

The information used to define an endpoint is typically defined in the endpoint’s contract. You can use
the configuration element’s to override the information in the contract. You can also use the
configuration elements to provide information that is not provided in the contract.

You must use the configuration elements to activate advanced features such as WS-RM. This is done by
providing child elements to the endpoint’s configuration element. Note that when dealing with endpoints
developed using a Java-first approach it is likely that the SEI serving as the endpoint’s contract is lacking
information about the type of binding and transport to use.

17.1. CONFIGURING SERVICE PROVIDERS

17.1.1. Elements for Configuring Service Providers

Apache CXF has two elements that can be used to configure a service provider:

Section 17.1.2, “Using the jaxws:endpoint Element”

Section 17.1.3, “Using the jaxws:server Element”

The differences between the two elements are largely internal to the runtime. The jaxws:endpoint
element injects properties into the org.apache.cxf.jaxws.EndpointImpl object created to support a
service endpoint. The jaxws:server element injects properties into the
org.apache.cxf.jaxws.support.JaxWsServerFactoryBean object created to support the endpoint.
The EndpointImpl object passes the configuration data to the JaxWsServerFactoryBean object. The
JaxWsServerFactoryBean object is used to create the actual service object. Because either
configuration element will configure a service endpoint, you can choose based on the syntax you prefer.

17.1.2. Using the jaxws:endpoint Element

Overview

The jaxws:endpoint element is the default element for configuring JAX-WS service providers. Its
attributes and children specify all of the information needed to instantiate a service provider. Many of
the attributes map to information in the service’s contract. The children are used to configure
interceptors and other advanced features.

Identifying the endpoint being configured

For the runtime to apply the configuration to the proper service provider, it must be able to identify it.
The basic means for identifying a service provider is to specify the class that implements the endpoint.
This is done using the jaxws:endpoint element’s implementor attribute.

For instances where different endpoint’s share a common implementation, it is possible to provide

CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS

147

For instances where different endpoint’s share a common implementation, it is possible to provide
different configuration for each endpoint. There are two approaches for distinguishing a specific
endpoint in configuration:

a combination of the serviceName attribute and the endpointName attribute
The serviceName attribute specifies the wsdl:service element defining the service’s endpoint.
The endpointName attribute specifies the specific wsdl:port element defining the service’s
endpoint. Both attributes are specified as QNames using the format ns:name. ns is the
namespace of the element and name is the value of the element’s name attribute.

NOTE

If the wsdl:service element only has one wsdl:port element, the endpointName
attribute can be omitted.

the name attribute
The name attribute specifies the QName of the specific wsdl:port element defining the
service’s endpoint. The QName is provided in the format {ns}localPart. ns is the namespace of
the wsdl:port element and localPart is the value of the wsdl:port element’s name attribute.

Attributes

The attributes of the jaxws:endpoint element configure the basic properties of the endpoint. These
properties include the address of the endpoint, the class that implements the endpoint, and the bus
that hosts the endpoint.

Table 17.1, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint Element”
describes the attribute of the jaxws:endpoint element.

Table 17.1. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint Element

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

implementor Specifies the class implementing the service. You can
specify the implementation class using either the
class name or an ID reference to a Spring bean
configuring the implementation class. This class must
be on the classpath.

implementorClass Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean that
is wrapped using Spring AOP.

address Specifies the address of an HTTP endpoint. This
value overrides the value specified in the services
contract.

Red Hat Fuse 7.5 Apache CXF Development Guide

148

wsdlLocation Specifies the location of the endpoint’s WSDL
contract. The WSDL contract’s location is relative to
the folder from which the service is deployed.

endpointName Specifies the value of the service’s wsdl:port
element’s name attribute. It is specified as a QName
using the format ns:name where ns is the
namespace of the wsdl:port element.

serviceName Specifies the value of the service’s wsdl:service
element’s name attribute. It is specified as a QName
using the format ns:name where ns is the
namespace of the wsdl:service element.

publish Specifies if the service should be automatically
published. If this is set to false, the developer must
explicitly publish the endpointas described in
Chapter 31, Publishing a Service.

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindingUri Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Chapter 23, Apache CXF Binding IDs.

name Specifies the stringified QName of the service’s
wsdl:port element. It is specified as a QName using
the format {ns}localPart. ns is the namespace of
the wsdl:port element and localPart is the value of
the wsdl:port element’s name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false. Setting
this to true instructs the bean factory not to
instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before it can be instantiated.

Attribute Description

CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS

149

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs, such as Endpoint.publish() or
Service.getPort().

The default is false.

Setting this to true does the following:

Changes the internal name of the bean by
appending .jaxws-endpoint to its id

Makes the bean abstract

publishedEndpointUrl The URL that is placed in the address element of
the generated WSDL. If this value is not specified,
the value of the address attribute is used. This
attribute is useful when the "public" URL is not be the
same as the URL on which the service is deployed.

Attribute Description

In addition to the attributes listed in Table 17.1, “Attributes for Configuring a JAX-WS Service Provider
Using the jaxws:endpoint Element”, you might need to use multiple xmlns:shortName attributes to
declare the namespaces used by the endpointName and serviceName attributes.

Example

Example 17.1, “Simple JAX-WS Endpoint Configuration” shows the configuration for a JAX-WS endpoint
that specifies the address where the endpoint is published. The example assumes that you want to use
the defaults for all other values or that the implementation has specified values in the annotations.

Example 17.1. Simple JAX-WS Endpoint Configuration

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:endpoint id="example"
 implementor="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo" />
</beans>

Example 17.2, “JAX-WS Endpoint Configuration with a Service Name” shows the configuration for a
JAX-WS endpoint whose contract contains two service definitions. In this case, you must specify which
service definition to instantiate using the serviceName attribute.

Example 17.2. JAX-WS Endpoint Configuration with a Service Name

Red Hat Fuse 7.5 Apache CXF Development Guide

150

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">

 <jaxws:endpoint id="example2"
 implementor="org.apache.cxf.example.DemoImpl"
 serviceName="samp:demoService2"
 xmlns:samp="http://org.apache.cxf/wsdl/example" />

</beans>

The xmlns:samp attribute specifies the namespace in which the WSDL service element is defined.

17.1.3. Using the jaxws:server Element

Overview

The jaxws:server element is an element for configuring JAX-WS service providers. It injects the
configuration information into the org.apache.cxf.jaxws.support.JaxWsServerFactoryBean. This is a
Apache CXF specific object. If you are using a pure Spring approach to building your services, you will not
be forced to use Apache CXF specific APIs to interact with the service.

The attributes and children of the jaxws:server element specify all of the information needed to
instantiate a service provider. The attributes specify the information that is required to instantiate an
endpoint. The children are used to configure interceptors and other advanced features.

Identifying the endpoint being configured

In order for the runtime to apply the configuration to the proper service provider, it must be able to
identify it. The basic means for identifying a service provider is to specify the class that implements the
endpoint. This is done using the jaxws:server element’s serviceBean attribute.

For instances where different endpoint’s share a common implementation, it is possible to provide
different configuration for each endpoint. There are two approaches for distinguishing a specific
endpoint in configuration:

a combination of the serviceName attribute and the endpointName attribute
The serviceName attribute specifies the wsdl:service element defining the service’s endpoint.
The endpointName attribute specifies the specific wsdl:port element defining the service’s
endpoint. Both attributes are specified as QNames using the format ns:name. ns is the
namespace of the element and name is the value of the element’s name attribute.

NOTE

If the wsdl:service element only has one wsdl:port element, the endpointName
attribute can be omitted.

the name attribute

The name attribute specifies the QName of the specific wsdl:port element defining the

CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS

151

The name attribute specifies the QName of the specific wsdl:port element defining the
service’s endpoint. The QName is provided in the format {ns}localPart. ns is the namespace of
the wsdl:port element and localPart is the value of the wsdl:port element’s name attribute.

Attributes

The attributes of the jaxws:server element configure the basic properties of the endpoint. These
properties include the address of the endpoint, the class that implements the endpoint, and the bus
that hosts the endpoint.

Table 17.2, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element”
describes the attribute of the jaxws:server element.

Table 17.2. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

serviceBean Specifies the class implementing the service. You can
specify the implementation class using either the
class name or an ID reference to a Spring bean
configuring the implementation class. This class must
be on the classpath.

serviceClass Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean that
is wrapped using Spring AOP.

address Specifies the address of an HTTP endpoint. This
value will override the value specified in the services
contract.

wsdlLocation Specifies the location of the endpoint’s WSDL
contract. The WSDL contract’s location is relative to
the folder from which the service is deployed.

endpointName Specifies the value of the service’s wsdl:port
element’s name attribute. It is specified as a QName
using the format ns:name, where ns is the
namespace of the wsdl:port element.

serviceName Specifies the value of the service’s wsdl:service
element’s name attribute. It is specified as a QName
using the format ns:name, where ns is the
namespace of the wsdl:service element.

publish Specifies if the service should be automatically
published. If this is set to false, the developer must
explicitly publish the endpointas described in
Chapter 31, Publishing a Service.

Red Hat Fuse 7.5 Apache CXF Development Guide

152

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindingId Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Chapter 23, Apache CXF Binding IDs.

name Specifies the stringified QName of the service’s
wsdl:port element. It is specified as a QName using
the format {ns}localPart, where ns is the
namespace of the wsdl:port element and localPart
is the value of the wsdl:port element’s name
attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false. Setting
this to true instructs the bean factory not to
instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before the endpoint can be
instantiated.

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs, such as Endpoint.publish() or
Service.getPort().

The default is false.

Setting this to true does the following:

Changes the internal name of the bean by
appending .jaxws-endpoint to its id

Makes the bean abstract

Attribute Description

In addition to the attributes listed in Table 17.2, “Attributes for Configuring a JAX-WS Service Provider
Using the jaxws:server Element”, you might need to use multiple xmlns:shortName attributes to
declare the namespaces used by the endpointName and serviceName attributes.

Example

Example 17.3, “Simple JAX-WS Server Configuration” shows the configuration for a JAX-WS endpoint
that specifies the address where the endpoint is published.

Example 17.3. Simple JAX-WS Server Configuration

CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS

153

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:server id="exampleServer"
 serviceBean="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo" />
</beans>

17.1.4. Adding Functionality to Service Providers

Overview

The jaxws:endpoint and the jaxws:server elements provide the basic configuration information
needed to instantiate a service provider. To add functionality to your service provider or to perform
advanced configuration you must add child elements to the configuration.

Child elements allow you to do the following:

Chapter 19, Apache CXF Logging

Chapter 59, Configuring Endpoints to Use Interceptors

Chapter 20, Deploying WS-Addressing

Chapter 21, Enabling Reliable Messaging

Section 17.1.5, “Enable Schema Validation on a JAX-WS Endpoint”

Elements

Table 17.3, “Elements Used to Configure JAX-WS Service Providers” describes the child elements that
jaxws:endpoint supports.

Table 17.3. Elements Used to Configure JAX-WS Service Providers

Element Description

jaxws:handlers Specifies a list of JAX-WS Handler implementations
for processing messages. For more information on
JAX-WS Handler implementations see Chapter 43,
Writing Handlers.

jaxws:inInterceptors Specifies a list of interceptors that process inbound
requests. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:inFaultInterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

Red Hat Fuse 7.5 Apache CXF Development Guide

154

jaxws:outInterceptors Specifies a list of interceptors that process outbound
replies. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:outFaultInterceptors Specifies a list of interceptors that process outbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:binding Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using implementations of the
org.apache.cxf.binding.BindingFactory
interface.[a]

jaxws:dataBinding [b] Specifies the class implementing the data binding
used by the endpoint. This is specified using an
embedded bean definition.

jaxws:executor Specifies a Java executor that is used for the service.
This is specified using an embedded bean definition.

jaxws:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxws:invoker Specifies an implementation of the
org.apache.cxf.service.Invoker interface used by the

service. [c]

jaxws:properties Specifies a Spring map of properties that are passed
along to the endpoint. These properties can be used
to control features like enabling MTOM support.

jaxws:serviceFactory Specifies a bean configuring the
JaxWsServiceFactoryBean object used to
instantiate the service.

[a] The SOAP binding is configured using the soap:soapBinding bean.

[b] The jaxws:endpoint element does not support the jaxws:dataBinding element.

[c] The Invoker implementation controls how a service is invoked. For example, it controls whether each request is handled
by a new instance of the service implementation or if state is preserved across invocations.

Element Description

17.1.5. Enable Schema Validation on a JAX-WS Endpoint

Overview

CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS

155

You can set the schema-validation-enabled property to enable schema validation on a
jaxws:endpoint element or on a jaxws:server element. When schema validation is enabled, the
messages sent between client and server are checked for conformity to the schema. By default, schema
validation is turned off, because it has a significant impact on performance.

Example

To enable schema validation on a JAX-WS endpoint, set the schema-validation-enabled property in
the jaxws:properties child element of the jaxws:endpoint element or of the jaxws:server element.
For example, to enable schema validation on a jaxws:endpoint element:

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 wsdlLocation="wsdl/hello_world.wsdl"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="BOTH" />
 </jaxws:properties>
</jaxws:endpoint>

For the list of allowed values of the schema-validation-enabled property, see Section 24.3.4.7,
“Schema Validation Type Values”.

17.2. CONFIGURING CONSUMER ENDPOINTS

Overview

JAX-WS consumer endpoints are configured using the jaxws:client element. The element’s attributes
provide the basic information necessary to create a consumer.

To add other functionality, like WS-RM, to the consumer you add children to the jaxws:client element.
Child elements are also used to configure the endpoint’s logging behavior and to inject other properties
into the endpoint’s implementation.

Basic Configuration Properties

The attributes described in Table 17.4, “Attributes Used to Configure a JAX-WS Consumer” provide the
basic information necessary to configure a JAX-WS consumer. You only need to provide values for the
specific properties you want to configure. Most of the properties have sensible defaults, or they rely on
information provided by the endpoint’s contract.

Table 17.4. Attributes Used to Configure a JAX-WS Consumer

Attribute Description

address Specifies the HTTP address of the endpoint where
the consumer will make requests. This value overrides
the value set in the contract.

bindingId Specifies the ID of the message binding the
consumer uses. A list of valid binding IDs is provided
in Chapter 23, Apache CXF Binding IDs.

Red Hat Fuse 7.5 Apache CXF Development Guide

156

bus Specifies the ID of the Spring bean configuring the
bus managing the endpoint.

endpointName Specifies the value of the wsdl:port element’s
name attribute for the service on which the
consumer is making requests. It is specified as a
QName using the format ns:name, where ns is the
namespace of the wsdl:port element.

serviceName Specifies the value of the wsdl:service element’s
name attribute for the service on which the
consumer is making requests. It is specified as a
QName using the format ns:name where ns is the
namespace of the wsdl:service element.

username Specifies the username used for simple
username/password authentication.

password Specifies the password used for simple
username/password authentication.

serviceClass Specifies the name of the service endpoint
interface(SEI).

wsdlLocation Specifies the location of the endpoint’s WSDL
contract. The WSDL contract’s location is relative to
the folder from which the client is deployed.

name Specifies the stringified QName of the wsdl:port
element for the service on which the consumer is
making requests. It is specified as a QName using the
format {ns}localPart, where ns is the namespace of
the wsdl:port element and localPart is the value of
the wsdl:port element’s name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false. Setting
this to true instructs the bean factory not to
instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before it can be instantiated.

Attribute Description

CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS

157

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs like Service.getPort().

The default is false.

Setting this to true does the following:

Changes the internal name of the bean by
appending .jaxws-client to its id

Makes the bean abstract

Attribute Description

In addition to the attributes listed in Table 17.4, “Attributes Used to Configure a JAX-WS Consumer” , it
might be necessary to use multiple xmlns:shortName attributes to declare the namespaces used by
the endpointName and the serviceName attributes.

Adding functionality

To add functionality to your consumer or to perform advanced configuration, you must add child
elements to the configuration.

Child elements allow you to do the following:

Chapter 19, Apache CXF Logging

Chapter 59, Configuring Endpoints to Use Interceptors

Chapter 20, Deploying WS-Addressing

Chapter 21, Enabling Reliable Messaging

the section called “Enable schema validation on a JAX-WS consumer”

Table 17.5, “Elements For Configuring a Consumer Endpoint” describes the child element’s you can use
to configure a JAX-WS consumer.

Table 17.5. Elements For Configuring a Consumer Endpoint

Element Description

jaxws:binding Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using implementations of the
org.apache.cxf.binding.BindingFactory
interface.[a]

jaxws:dataBinding Specifies the class implementing the data binding
used by the endpoint. You specify this using an
embedded bean definition. The class implementing
the JAXB data binding is
org.apache.cxf.jaxb.JAXBDataBinding.

Red Hat Fuse 7.5 Apache CXF Development Guide

158

jaxws:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxws:handlers Specifies a list of JAX-WS Handler implementations
for processing messages. For more information in
JAX-WS Handler implementations see Chapter 43,
Writing Handlers.

jaxws:inInterceptors Specifies a list of interceptors that process inbound
responses. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:inFaultInterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:outInterceptors Specifies a list of interceptors that process outbound
requests. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:outFaultInterceptors Specifies a list of interceptors that process outbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:properties Specifies a map of properties that are passed to the
endpoint.

jaxws:conduitSelector Specifies an
org.apache.cxf.endpoint.ConduitSelector
implementation for the client to use. A
ConduitSelector implementation will override the
default process used to select the Conduit object
that is used to process outbound requests.

[a] The SOAP binding is configured using the soap:soapBinding bean.

Element Description

Example

Example 17.4, “Simple Consumer Configuration” shows a simple consumer configuration.

Example 17.4. Simple Consumer Configuration

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd

CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS

159

 ...">
 <jaxws:client id="bookClient"
 serviceClass="org.apache.cxf.demo.BookClientImpl"
 address="http://localhost:8080/books"/>
 ...
</beans>

Enable schema validation on a JAX-WS consumer

To enable schema validation on a JAX-WS consumer, set the schema-validation-enabled property in
the jaxws:properties child element of the jaxws:client element—for example:

<jaxws:client name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="BOTH" />
 </jaxws:properties>
</jaxws:client>

For the list of allowed values of the schema-validation-enabled property, see Section 24.3.4.7,
“Schema Validation Type Values”.

Red Hat Fuse 7.5 Apache CXF Development Guide

160

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

Abstract

This chapter explains how to instantiate and configure JAX-RS server endpoints in Blueprint XML and in
Spring XML, and also how to instantiate and configure JAX-RS client endpoints (client proxy beans) in
XML

18.1. CONFIGURING JAX-RS SERVER ENDPOINTS

18.1.1. Defining a JAX-RS Server Endpoint

Basic server endpoint definition

To define a JAX-RS server endpoint in XML, you need to specify at least the following:

1. A jaxrs:server element, which is used to define the endpoint in XML. Note that the jaxrs:
namespace prefix maps to different namespaces in Blueprint and in Spring respectively.

2. The base URL of the JAX-RS service, using the address attribute of the jaxrs:server element.
Note that there are two different ways of specifying the address URL, which affects how the
endpoint gets deployed:

As a relative URL—for example, /customers. In this case, the endpoint is deployed into the
default HTTP container, and the endpoint’s base URL is implicitly obtained by combining
the CXF servlet base URL with the specified relative URL.
For example, if you deploy a JAX-RS endpoint to the Fuse container, the specified
/customers URL would get resolved to the URL, http://Hostname:8181/cxf/customers
(assuming that the container is using the default 8181 port).

As an absolute URL — for example, http://0.0.0.0:8200/cxf/customers. In this case, a new
HTTP listener port is opened for the JAX-RS endpoint (if it is not already open). For
example, in the context of Fuse, a new Undertow container would implicitly be created to
host the JAX-RS endpoint. The special IP address, 0.0.0.0, acts as a wildcard, matching any
of the hostnames assigned to the current host (which can be useful on multi-homed host
machines).

3. One or more JAX-RS root resource classes, which provide the implementation of the JAX-RS
service. The simplest way to specify the resource classes is to list them inside a
jaxrs:serviceBeans element.

Blueprint example

The following Blueprint XML example shows how to define a JAX-RS endpoint, which specifies the
relative address, /customers (so that it deploys into the default HTTP container) and is implemented by
the service.CustomerService resource class:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 xsi:schemaLocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
http://cxf.apache.org/blueprint/jaxrs http://cxf.apache.org/schemas/blueprint/jaxrs.xsd

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

161

http://0.0.0.0:8200/cxf/customers

http://cxf.apache.org/blueprint/core http://cxf.apache.org/schemas/blueprint/core.xsd
">

 <cxf:bus>
 <cxf:features>
 <cxf:logging/>
 </cxf:features>
 </cxf:bus>

 <jaxrs:server id="customerService" address="/customers">
 <jaxrs:serviceBeans>
 <ref component-id="serviceBean" />
 </jaxrs:serviceBeans>
 </jaxrs:server>

 <bean id="serviceBean" class="service.CustomerService"/>
</blueprint>

Blueprint XML namespaces

To define a JAX-RS endpoint in Blueprint, you typically require at least the following XML namespaces:

Prefix Namespace

(default) http://www.osgi.org/xmlns/blueprint/v1.0.0

cxf http://cxf.apache.org/blueprint/core

jaxrs http://cxf.apache.org/blueprint/jaxrs

Spring example

The following Spring XML example shows how to define a JAX-RS endpoint, which specifies the relative
address, /customers (so that it deploys into the default HTTP container) and is implemented by the
service.CustomerService resource class:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/jaxrs"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd">

 <jaxrs:server id="customerService" address="/customers">
 <jaxrs:serviceBeans>
 <ref bean="serviceBean"/>
 </jaxrs:serviceBeans>
 </jaxrs:server>

 <bean id="serviceBean" class="service.CustomerService"/>
</beans>

Red Hat Fuse 7.5 Apache CXF Development Guide

162

http://www.osgi.org/xmlns/blueprint/v1.0.0
http://cxf.apache.org/blueprint/core
http://cxf.apache.org/blueprint/jaxrs

Spring XML namespaces

To define a JAX-RS endpoint in Spring, you typically require at least the following XML namespaces:

Prefix Namespace

(default) http://www.springframework.org/schema/bea
ns

cxf http://cxf.apache.org/core

jaxrs http://cxf.apache.org/jaxrs

Auto-discovery in Spring XML

(Spring only) Instead of specifying the JAX-RS root resource classes explicitly, Spring XML enables you
to configure auto-discovery, so that specific Java packages are searched for resource classes (classes
annotated by @Path) and all of the discovered resource classes are automatically attached to the
endpoint. In this case, you need to specify just the address attribute and the basePackages attribute in
the jaxrs:server element.

For example, to define a JAX-RS endpoint which uses all of the JAX-RS resource classes under the
a.b.c Java package, you can define the endpoint in Spring XML, as follows:

<jaxrs:server address="/customers" basePackages="a.b.c"/>

The auto-discovery mechanism also discovers and installs into the endpoint any JAX-RS provider
classes that it finds under the specified Java packages.

Lifecycle management in Spring XML

(Spring only) Spring XML enables you to control the lifecycle of beans by setting the scope attribute
on a bean element. The following scope values are supported by Spring:

singleton

(Default) Creates a single bean instance, which is used everywhere and lasts for the entire lifetime of
the Spring container.

prototype

Creates a new bean instance every time the bean is injected into another bean or when a bean is
obtained by invoking getBean() on the bean registry.

request

(Only available in a Web-aware container) Creates a new bean instance for every request invoked
on the bean.

session

(Only available in a Web-aware container) Creates a new bean for the lifetime of a single HTTP
session.

globalSession

(Only available in a Web-aware container) Creates a new bean for the lifetime of a single HTTP
session that is shared between portlets.

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

163

http://www.springframework.org/schema/beans
http://cxf.apache.org/core
http://cxf.apache.org/jaxrs

For more details about Spring scopes, please consult the Spring framework documentation on Bean
scopes.

Note that Spring scopes do not work properly, if you specify JAX-RS resource beans through the
jaxrs:serviceBeans element. If you specify the scope attribute on the resource beans in this case, the
scope attribute is effectively ignored.

In order to make bean scopes work properly within a JAX-RS server endpoint, you require a level of
indirection that is provided by a service factory. The simplest way to configure bean scopes is to specify
resource beans using the beanNames attribute on the jaxrs:server element, as follows:

<beans ... >
 <jaxrs:server id="customerService" address="/service1"
 beanNames="customerBean1 customerBean2"/>

 <bean id="customerBean1" class="demo.jaxrs.server.CustomerRootResource1"
scope="prototype"/>
 <bean id="customerBean2" class="demo.jaxrs.server.CustomerRootResource2"
scope="prototype"/>
</beans>

Where the preceding example configures two resource beans, customerBean1 and customerBean2.
The beanNames attribute is specified as a space-separated list of resource bean IDs.

For the ultimate degree of flexibility, you have the option of defining service factory objects explicitly,
when you configure the JAX-RS server endpoint, using the jaxrs:serviceFactories element. This more
verbose approach has the advantage that you can replace the default service factory implementation
with your custom implementation, thus giving you ultimate control over the bean lifecycle. The following
example shows how to configure the two resource beans, customerBean1 and customerBean2, using
this approach:

<beans ... >
 <jaxrs:server id="customerService" address="/service1">
 <jaxrs:serviceFactories>
 <ref bean="sfactory1" />
 <ref bean="sfactory2" />
 </jaxrs:serviceFactories>
 </jaxrs:server>

 <bean id="sfactory1" class="org.apache.cxf.jaxrs.spring.SpringResourceFactory">
 <property name="beanId" value="customerBean1"/>
 </bean>
 <bean id="sfactory2" class="org.apache.cxf.jaxrs.spring.SpringResourceFactory">
 <property name="beanId" value="customerBean2"/>
 </bean>

 <bean id="customerBean1" class="demo.jaxrs.server.CustomerRootResource1"
scope="prototype"/>
 <bean id="customerBean2" class="demo.jaxrs.server.CustomerRootResource2"
scope="prototype"/>
</beans>

NOTE

Red Hat Fuse 7.5 Apache CXF Development Guide

164

http://docs.spring.io/spring-framework/docs/3.0.0.M4/reference/html/ch03s05.html

NOTE

If you specify a non-singleton lifecycle, it is often a good idea to implement and register a
org.apache.cxf.service.Invoker bean (where the instance can be registered by referencing
it from a jaxrs:server/jaxrs:invoker element).

Attaching a WADL document

You can optionally associate a WADL document with the JAX-RS server endpoint using the
docLocation attribute on the jaxrs:server element. For example:

<jaxrs:server address="/rest" docLocation="wadl/bookStore.wadl">
 <jaxrs:serviceBeans>
 <bean class="org.bar.generated.BookStore"/>
 </jaxrs:serviceBeans>
</jaxrs:server>

Schema validation

If you have some external XML schemas, for describing message content in JAX-B format, you can
associate these external schemas with the JAX-RS server endpoint through the
jaxrs:schemaLocations element.

For example, if you have associated the server endpoint with a WADL document and you also want to
enable schema validation on incoming messages, you can specify associated XML schema files as
follows:

<jaxrs:server address="/rest"
 docLocation="wadl/bookStore.wadl">
 <jaxrs:serviceBeans>
 <bean class="org.bar.generated.BookStore"/>
 </jaxrs:serviceBeans>
 <jaxrs:schemaLocations>
 <jaxrs:schemaLocation>classpath:/schemas/a.xsd</jaxrs:schemaLocation>
 <jaxrs:schemaLocation>classpath:/schemas/b.xsd</jaxrs:schemaLocation>
 </jaxrs:schemaLocations>
</jaxrs:server>

Alternatively, if you want to include all of the schema files, *.xsd, in a given directory, you can just specify
the directory name, as follows:

<jaxrs:server address="/rest"
 docLocation="wadl/bookStore.wadl">
 <jaxrs:serviceBeans>
 <bean class="org.bar.generated.BookStore"/>
 </jaxrs:serviceBeans>
 <jaxrs:schemaLocations>
 <jaxrs:schemaLocation>classpath:/schemas/</jaxrs:schemaLocation>
 </jaxrs:schemaLocations>
</jaxrs:server>

Specifying schemas in this way is generally useful for any kind of functionality that requires access to the
JAX-B schemas.

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

165

Specifying the data binding

You can use the jaxrs:dataBinding element to specify the data binding that encodes the message
body in request and reply messages. For example, to specify the JAX-B data binding, you could
configure a JAX-RS endpoint as follows:

<jaxrs:server id="jaxbbook" address="/jaxb">
 <jaxrs:serviceBeans>
 <ref bean="serviceBean" />
 </jaxrs:serviceBeans>
 <jaxrs:dataBinding>
 <bean class="org.apache.cxf.jaxb.JAXBDataBinding"/>
 </jaxrs:dataBinding>
</jaxrs:server>>

Or to specify the Aegis data binding, you could configure a JAX-RS endpoint as follows:

<jaxrs:server id="aegisbook" address="/aegis">
 <jaxrs:serviceBeans>
 <ref bean="serviceBean" />
 </jaxrs:serviceBeans>
 <jaxrs:dataBinding>
 <bean class="org.apache.cxf.aegis.databinding.AegisDatabinding">
 <property name="aegisContext">
 <bean class="org.apache.cxf.aegis.AegisContext">
 <property name="writeXsiTypes" value="true"/>
 </bean>
 </property>
 </bean>
 </jaxrs:dataBinding>
</jaxrs:server>

Using the JMS transport

It is possible to configure JAX-RS to use a JMS messaging library as a transport protocol, instead of
HTTP. Because JMS itself is not a transport protocol, the actual messaging protocol depends on the
particular JMS implementation that you configure.

For example, the following Spring XML example shows how to configure a JAX-RS server endpoint to
use the JMS transport protocol:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jms="http://cxf.apache.org/transports/jms"
 xmlns:jaxrs="http://cxf.apache.org/jaxrs"
 xsi:schemaLocation="
http://cxf.apache.org/transports/jms http://cxf.apache.org/schemas/configuration/jms.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd">

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>
 <bean id="ConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL"

Red Hat Fuse 7.5 Apache CXF Development Guide

166

value="tcp://localhost:${testutil.ports.EmbeddedJMSBrokerLauncher}" />
 </bean>

 <jaxrs:server xmlns:s="http://books.com"
 serviceName="s:BookService"
 transportId= "http://cxf.apache.org/transports/jms"
 address="jms:queue:test.jmstransport.text?replyToName=test.jmstransport.response">
 <jaxrs:serviceBeans>
 <bean class="org.apache.cxf.systest.jaxrs.JMSBookStore"/>
 </jaxrs:serviceBeans>
 </jaxrs:server>

</beans>

Note the following points about the preceding example:

JMS implementation—the JMS implementation is provided by the ConnectionFactory bean,
which instantiates an Apache ActiveMQ connection factory object. After you instantiate the
connection factory, it is automatically installed as the default JMS implementation layer.

JMS conduit or destination object—Apache CXF implicitly instantiates a JMS conduit object
(to represent a JMS consumer) or a JMS destination object (to represent a JMS provider). This
object must be uniquely identified by a QName, which is defined through the attribute setttings
xmlns:s="http://books.com" (defining the namespace prefix) and
serviceName="s:BookService" (defining the QName).

Transport ID—to select the JMS transport, the transportId attribute must be set to
http://cxf.apache.org/transports/jms.

JMS address—the jaxrs:server/@address attribute uses a standardized syntax to specify the
JMS queue or JMS topic to send to. For details of this syntax, see
https://tools.ietf.org/id/draft-merrick-jms-uri-06.txt.

Extension mappings and language mappings

A JAX-RS server endpoint can be configured so that it automatically maps a file suffix (appearing in the
URL) to a MIME content type header, and maps a language suffix to a language type header. For
example, consider a HTTP request of the following form:

GET /resource.xml

You can configure the JAX-RS server endpoint to map the .xml suffix automatically, as follows:

<jaxrs:server id="customerService" address="/">
 <jaxrs:serviceBeans>
 <bean class="org.apache.cxf.jaxrs.systests.CustomerService" />
 </jaxrs:serviceBeans>
 <jaxrs:extensionMappings>
 <entry key="json" value="application/json"/>
 <entry key="xml" value="application/xml"/>
 </jaxrs:extensionMappings>
</jaxrs:server>

When the preceding server endpoint receives the HTTP request, it automatically creates a new content
type header of type, application/xml, and strips the .xml suffix from the resource URL.

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

167

http://cxf.apache.org/transports/jms
https://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

For the language mapping, consider a HTTP request of the following form:

GET /resource.en

You can configure the JAX-RS server endpoint to map the .en suffix automatically, as follows:

<jaxrs:server id="customerService" address="/">
 <jaxrs:serviceBeans>
 <bean class="org.apache.cxf.jaxrs.systests.CustomerService" />
 </jaxrs:serviceBeans>
 <jaxrs:languageMappings>
 <entry key="en" value="en-gb"/>
 </jaxrs:languageMappings>
</jaxrs:server>

When the preceding server endpoint receives the HTTP request, it automatically creates a new accept
language header with the value, en-gb, and strips the .en suffix from the resource URL.

18.1.2. jaxrs:server Attributes

Attributes

Table 18.1, “JAX-RS Server Endpoint Attributes” describes the attributes available on the jaxrs:server
element.

Table 18.1. JAX-RS Server Endpoint Attributes

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

address Specifies the address of an HTTP endpoint. This
value will override the value specified in the services
contract.

basePackages (Spring only) Enables auto-discovery, by specifying
a comma-separated list of Java packages, which are
searched to discover JAX-RS root resource classes
and/or JAX-RS provider classes.

beanNames Specifies a space-separated list of bean IDs of JAX-
RS root resource beans. In the context of Spring
XML, it is possible to define a root resource beans'
lifecycle by setting the scope attribute on the root
resource bean element.

bindingId Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Chapter 23, Apache CXF Binding IDs.

Red Hat Fuse 7.5 Apache CXF Development Guide

168

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

docLocation Specifies the location of an external WADL
document.

modelRef Specifies a model schema as a classpath resource
(for example, a URL of the form
classpath:/path/to/model.xml). For details of
how to define a JAX-RS model schema, see
Section 18.3, “Defining REST Services with the Model
Schema”.

publish Specifies if the service should be automatically
published. If set to false, the developer must
explicitly publish the endpoint.

publishedEndpointUrl Specifies the URL base address, which gets inserted
into the wadl:resources/@base attribute of the
auto-generated WADL interface.

serviceAnnotation (Spring only) Specifies the service annotation class
name for auto-discovery in Spring. When used in
combination with the basePackages property, this
option restricts the collection of auto-discovered
classes to include only the classes that are
annotated by this annotation type. guess!! Is this
correct?

serviceClass Specifies the name of a JAX-RS root resource class
(which implements a JAX-RS service). In this case,
the class is instantiated by Apache CXF, not by
Blueprint or Spring. If you want to instantiate the
class in Blueprint or Spring, use the
jaxrs:serviceBeans child element instead.

serviceName Specifies the service QName (using the format
ns:name) for the JAX-RS endpoint in the special
case where a JMS transport is used. For details, see
the section called “Using the JMS transport”.

staticSubresourceResolution If true, disables dynamic resolution of static sub-
resources. Default is false.

Attribute Description

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

169

transportId For selecting a non-standard transport layer (in place
of HTTP). In particular, you can select the JMS
transport by setting this property to
http://cxf.apache.org/transports/jms. For
details, see the section called “Using the JMS
transport”.

abstract (Spring only) Specifies if the bean is an abstract
bean. Abstract beans act as parents for concrete
bean definitions and are not instantiated. The default
is false. Setting this to true instructs the bean
factory not to instantiate the bean.

depends-on (Spring only) Specifies a list of beans that the
endpoint depends on being instantiated before the
endpoint can be instantiated.

Attribute Description

18.1.3. jaxrs:server Child Elements

Child elements

Table 18.2, “JAX-RS Server Endpoint Child Elements” describes the child elements of the jaxrs:server
element.

Table 18.2. JAX-RS Server Endpoint Child Elements

Element Description

jaxrs:executor Specifies a Java Executor (thread pool
implementation) that is used for the service. This is
specified using an embedded bean definition.

jaxrs:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxrs:binding Not used.

jaxrs:dataBinding Specifies the class implementing the data binding
used by the endpoint. This is specified using an
embedded bean definition. For more details, see the
section called “Specifying the data binding”.

Red Hat Fuse 7.5 Apache CXF Development Guide

170

http://cxf.apache.org/transports/jms

jaxrs:inInterceptors Specifies a list of interceptors that process inbound
requests. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxrs:inFaultInterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxrs:outInterceptors Specifies a list of interceptors that process outbound
replies. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxrs:outFaultInterceptors Specifies a list of interceptors that process outbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxrs:invoker Specifies an implementation of the
org.apache.cxf.service.Invoker interface used by the

service. [a]

jaxrs:serviceFactories Provides you with the maximum degree of control
over the lifecycle of the JAX-RS root resources
associated with this endpoint. The children of this
element (which must be instances of
org.apache.cxf.jaxrs.lifecycle.ResourceProvi
der type) are used to create JAX-RS root resource
instances.

jaxrs:properties Specifies a Spring map of properties that are passed
along to the endpoint. These properties can be used
to control features like enabling MTOM support.

jaxrs:serviceBeans The children of this element are instances of (bean
element) or references to (ref element) JAX-RS
root resources. Note that in this case the scope
attribute (Spring only), if present in the bean
element, is ignored.

jaxrs:modelBeans Consists of a list of references to one or more
org.apache.cxf.jaxrs.model.UserResource
beans, which are the basic elements of a resource
model (corresponding to jaxrs:resource
elements). For details, see Section 18.3, “Defining
REST Services with the Model Schema”.

Element Description

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

171

jaxrs:model Defines a resource model directly in this endpoint
(that is, this jaxrs:model element can contain one
or more jaxrs:resource elements). For details, see
Section 18.3, “Defining REST Services with the Model
Schema”.

jaxrs:providers Enables you to register one or more custom JAX-RS
providers with this endpoint. The children of this
element are instances of (bean element) or
references to (ref element) JAX-RS providers.

jaxrs:extensionMappings When the URL of a REST invocation ends in a file
extension, you can use this element to associate it
automatically with a particular content type. For
example, the .xml file extension could be associated
with the application/xml content type. For details,
see the section called “Extension mappings and
language mappings”.

jaxrs:languageMappings When the URL of a REST invocation ends in a
language suffix, you can use this element to map this
to a particular language. For example, the .en
language suffix could be associated with the en-GB
language. For details, see the section called
“Extension mappings and language mappings”.

jaxrs:schemaLocations Specifies one or more XML schemas used for
validating XML message content. This element can
contain one or more jaxrs:schemaLocation
elements, each specifying the location of an XML
schema file (usually as a classpath URL). For
details, see the section called “Schema validation”.

jaxrs:resourceComparator Enables you to register a custom resource
comparator, which implements the algorithm used to
match an incoming URL path to a particular resource
class or method.

jaxrs:resourceClasses (Blueprint only) Can be used instead of the
jaxrs:server/@serviceClass attribute, if you
want to create multiple resources from class names.
The children of jaxrs:resourceClasses must be
class elements with a name attribute set to the
name of the resource class. In this case, the classes
are instantiated by Apache CXF, not by Blueprint or
Spring.

[a] The Invoker implementation controls how a service is invoked. For example, it controls whether each request is handled
by a new instance of the service implementation or if state is preserved across invocations.

Element Description

Red Hat Fuse 7.5 Apache CXF Development Guide

172

18.2. CONFIGURING JAX-RS CLIENT ENDPOINTS

18.2.1. Defining a JAX-RS Client Endpoint

Injecting client proxies

The main point of instantiating a client proxy bean in an XML language (Blueprint XML or Spring XML) is
in order to inject it into another bean, which can then use the client proxy to invoke the REST service. To
create a client proxy bean in XML, use the jaxrs:client element.

Namespaces

The JAX-RS client endpoint is defined using a different XML namespace from the server endpoint. The
following table shows which namespace to use for which XML language:

XML Language Namespace for client endpoint

Blueprint http://cxf.apache.org/blueprint/jaxrs-client

Spring http://cxf.apache.org/jaxrs-client

Basic client endpoint definition

The following example shows how to create a client proxy bean in Blueprint XML or Spring XML:

<jaxrs:client id="restClient"
 address="http://localhost:8080/test/services/rest"
 serviceClass="org.apache.cxf.systest.jaxrs.BookStoreJaxrsJaxws"/>

Where you must set the following attributes to define the basic client endpoint:

id

The bean ID of the client proxy can be used to inject the client proxy into other beans in your XML
configuration.

address

The address attribute specifies the base URL of the REST invocations.

serviceClass

The serviceClass attribute provides a description of the REST service by specifying a root resource
class (annotated by @Path). In fact, this is a server class, but it is not used directly by the client. The
specified class is used only for its metadata (through Java reflection and JAX-RS annotations),
which is used to construct the client proxy dynamically.

Specifying headers

You can add HTTP headers to the client proxy’s invocations using the jaxrs:headers child elements, as
follows:

<jaxrs:client id="restClient"
 address="http://localhost:8080/test/services/rest"
 serviceClass="org.apache.cxf.systest.jaxrs.BookStoreJaxrsJaxws"

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

173

http://cxf.apache.org/blueprint/jaxrs-client
http://cxf.apache.org/jaxrs-client

 inheritHeaders="true">
 <jaxrs:headers>
 <entry key="Accept" value="text/xml"/>
 </jaxrs:headers>
</jaxrs:client>

18.2.2. jaxrs:client Attributes

Attributes

Table 18.3, “JAX-RS Client Endpoint Attributes” describes the attributes available on the jaxrs:client
element.

Table 18.3. JAX-RS Client Endpoint Attributes

Attribute Description

address Specifies the HTTP address of the endpoint where
the consumer will make requests. This value overrides
the value set in the contract.

bindingId Specifies the ID of the message binding the
consumer uses. A list of valid binding IDs is provided
in Chapter 23, Apache CXF Binding IDs.

bus Specifies the ID of the Spring bean configuring the
bus managing the endpoint.

inheritHeaders Specifies whether the headers set for this proxy will
be inherited, if a subresource proxy is created from
this proxy. Default is false.

username Specifies the username used for simple
username/password authentication.

password Specifies the password used for simple
username/password authentication.

modelRef Specifies a model schema as a classpath resource
(for example, a URL of the form
classpath:/path/to/model.xml). For details of
how to define a JAX-RS model schema, see
Section 18.3, “Defining REST Services with the Model
Schema”.

Red Hat Fuse 7.5 Apache CXF Development Guide

174

serviceClass Specifies the name of a service interface or a
resource class (that is annotated with @PATH), re-
using it from the JAX-RS server implementation. In
this case, the specified class is not invoked directly (it
is actually a server class). The specified class is used
only for its metadata (through Java reflection and
JAX-RS annotations), which is used to construct the
client proxy dynamically.

serviceName Specifies the service QName (using the format
ns:name) for the JAX-RS endpoint in the special
case where a JMS transport is used. For details, see
the section called “Using the JMS transport”.

threadSafe Specifies whether or not the client proxy is thread-
safe. Default is false.

transportId For selecting a non-standard transport layer (in place
of HTTP). In particular, you can select the JMS
transport by setting this property to
http://cxf.apache.org/transports/jms. For
details, see the section called “Using the JMS
transport”.

abstract (Spring only) Specifies if the bean is an abstract
bean. Abstract beans act as parents for concrete
bean definitions and are not instantiated. The default
is false. Setting this to true instructs the bean
factory not to instantiate the bean.

depends-on (Spring only) Specifies a list of beans that the
endpoint depends on being instantiated before it can
be instantiated.

Attribute Description

18.2.3. jaxrs:client Child Elements

Child elements

Table 18.4, “JAX-RS Client Endpoint Child Elements” describes the child elements of the jaxrs:client
element.

Table 18.4. JAX-RS Client Endpoint Child Elements

Element Description

jaxrs:executor

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

175

http://cxf.apache.org/transports/jms

jaxrs:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxrs:binding Not used.

jaxrs:dataBinding Specifies the class implementing the data binding
used by the endpoint. This is specified using an
embedded bean definition. For more details, see the
section called “Specifying the data binding”.

jaxrs:inInterceptors Specifies a list of interceptors that process inbound
responses. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxrs:inFaultInterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxrs:outInterceptors Specifies a list of interceptors that process outbound
requests. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxrs:outFaultInterceptors Specifies a list of interceptors that process outbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxrs:properties Specifies a map of properties that are passed to the
endpoint.

jaxrs:providers Enables you to register one or more custom JAX-RS
providers with this endpoint. The children of this
element are instances of (bean element) or
references to (ref element) JAX-RS providers.

jaxrs:modelBeans Consists of a list of references to one or more
org.apache.cxf.jaxrs.model.UserResource
beans, which are the basic elements of a resource
model (corresponding to jaxrs:resource
elements). For details, see Section 18.3, “Defining
REST Services with the Model Schema”.

jaxrs:model Defines a resource model directly in this endpoint
(that is, a jaxrs:model element containing one or
more jaxrs:resource elements). For details, see
Section 18.3, “Defining REST Services with the Model
Schema”.

Element Description

Red Hat Fuse 7.5 Apache CXF Development Guide

176

jaxrs:headers Used for setting headers on the outgoing message.
For details, see the section called “Specifying
headers”.

jaxrs:schemaLocations Specifies one or more XML schemas used for
validating XML message content. This element can
contain one or more jaxrs:schemaLocation
elements, each specifying the location of an XML
schema file (usually as a classpath URL). For
details, see the section called “Schema validation”.

Element Description

18.3. DEFINING REST SERVICES WITH THE MODEL SCHEMA

RESTful services without annotations

The JAX-RS model schema makes it possible to define RESTful services without annotating Java
classes. That is, instead of adding annotations like @Path, @PathParam, @Consumes, @Produces,
and so on, directly to a Java class (or interface), you can provide all of the relevant REST metadata in a
separate XML file, using the model schema. This can be useful, for example, in cases where you are
unable to modify the Java source that implements the service.

Example model schema

Example 18.1, “Sample JAX-RS Model Schema” shows an example of a model schema that defines
service metadata for the BookStoreNoAnnotations root resource class.

Example 18.1. Sample JAX-RS Model Schema

<model xmlns="http://cxf.apache.org/jaxrs">
 <resource name="org.apache.cxf.systest.jaxrs.BookStoreNoAnnotations" path="bookstore"
 produces="application/json" consumes="application/json">
 <operation name="getBook" verb="GET" path="/books/{id}" produces="application/xml">
 <param name="id" type="PATH"/>
 </operation>
 <operation name="getBookChapter" path="/books/{id}/chapter">
 <param name="id" type="PATH"/>
 </operation>
 <operation name="updateBook" verb="PUT">
 <param name="book" type="REQUEST_BODY"/>
 </operation>
 </resource>
 <resource name="org.apache.cxf.systest.jaxrs.ChapterNoAnnotations">
 <operation name="getItself" verb="GET"/>
 <operation name="updateChapter" verb="PUT" consumes="application/xml">
 <param name="content" type="REQUEST_BODY"/>
 </operation>
 </resource>
</model>

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

177

Namespaces

The XML namespace that you use to define a model schema depends on whether you are defining the
corresponding JAX-RS endpoint in Blueprint XML or in Spring XML. The following table shows which
namespace to use for which XML language:

XML Language Namespace

Blueprint http://cxf.apache.org/blueprint/jaxrs

Spring http://cxf.apache.org/jaxrs

How to attach a model schema to an endpoint

To define and attach a model schema to an endpoint, perform the following steps:

1. Define the model schema, using the appropriate XML namespace for your chosen injection
platform (Blueprint XML or Spring XML).

2. Add the model schema file to your project’s resources, so that the schema file is available on the
classpath in the final package (JAR, WAR, or OSGi bundle file).

NOTE

Alternatively, it is also possible to embed a model schema directly into a JAX-RS
endpoint, using the endpoint’s jaxrs:model child element.

3. Configure the endpoint to use the model schema, by setting the endpoint’s modelRef attribute
to the location of the model schema on the classpath (using a classpath URL).

4. If necessary, instantiate the root resources explicitly, using the jaxrs:serviceBeans element.
You can skip this step, if the model schema references root resource classes directly (instead of
referencing base interfaces).

Configuration of model schema referencing a class

If the model schema applies directly to root resource classes, there is no need to define any root
resource beans using the jaxrs:serviceBeans element, because the model schema automatically
instantiates the root resource beans.

For example, given that customer-resources.xml is a model schema that associates metadata with
customer resource classes, you could instantiate a customerService service endpoint as follows:

<jaxrs:server id="customerService"
 address="/customers"
 modelRef="classpath:/org/example/schemas/customer-resources.xml" />

Configuration of model schema referencing an interface

If the model schema applies to Java interfaces (which are the base interfaces of the root resources), you
must instantiate the root resource classes using the jaxrs:serviceBeans element in the endpoint.

For example, given that customer-interfaces.xml is a model schema that associates metadata with

Red Hat Fuse 7.5 Apache CXF Development Guide

178

http://cxf.apache.org/blueprint/jaxrs
http://cxf.apache.org/jaxrs

For example, given that customer-interfaces.xml is a model schema that associates metadata with
customer interfaces, you could instantiate a customerService service endpoint as follows:

<jaxrs:server id="customerService"
 address="/customers"
 modelRef="classpath:/org/example/schemas/customer-interfaces.xml">
 <jaxrs:serviceBeans>
 <ref component-id="serviceBean" />
 </jaxrs:serviceBeans>
</jaxrs:server>

<bean id="serviceBean" class="service.CustomerService"/>

Model Schema Reference

A model schema is defined using the following XML elements:

model

Root element of the model schema. If you need to reference the model schema (for example, from a
JAX-RS endpoint using the modelRef attribute), you should set the id attribute on this element.

model/resource

The resource element is used to associate metadata with a specific root resource class (or with a
corresponding interface). You can define the following attributes on the resource element:

Attribute Description +

name The name of the resource class (or corresponding
interface) to which this resource model is applied.

+

path The component of the REST URL path that maps
to this resource.

+

consumes Specifies the content type (Internet media type)
consumed by this resource—for example,
application/xml or application/json.

+

produces Specifies the content type (Internet media type)
produced by this resource—for example,
application/xml or application/json.

+

model/resource/operation

The operation element is used to associate metadata with Java methods. You can define the
following attributes on an operation element:

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

179

Attribute Description +

name The name of the Java method to which this
element is applied.

+

path The component of the REST URL path that maps
to this method. This attribute value can include
parameter references, for example:
path="/books/{id}/chapter", where {id}
extracts the value of the id parameter from the
path.

+

verb Specifies the HTTP verb that maps to this method.
Typically one of: GET, POST, PUT, or DELETE. If
the HTTP verb is not specified, it is assumed that
the Java method is a sub-resource locater, which
returns a reference to a sub-resource object
(where the sub-resource class must also be
provided with metadata using a resource
element).

+

consumes Specifies the content type (Internet media type)
consumed by this operation—for example,
application/xml or application/json.

+

produces Specifies the content type (Internet media type)
produced by this operation—for example,
application/xml or application/json.

+

oneway If true, configures the operation to be oneway,
meaning that no reply message is needed. Defaults
to false.

+

model/resource/operation/param

The param element is used extract a value from the REST URL and inject it into one of the method
parameters. You can define the following attributes on a param element:

Attribute Description +

Red Hat Fuse 7.5 Apache CXF Development Guide

180

name The name of the Java method parameter to which
this element is applied.

+

type Specifies how the parameter value is extracted
from the REST URL or message. It can be set to
one of the following values: PATH, QUERY,
MATRIX, HEADER, COOKIE, FORM,
CONTEXT, REQUEST_BODY.

+

defaultValue Default value to inject into the parameter, in case a
value could not be extracted from the REST URL
or message.

+

encoded If true, the parameter value is injected in its URI
encoded form (that is, using %nn encoding).
Default is false. For example, when extracting a
parameter from the URL path,
/name/Joe%20Bloggs with encoded set to true,
the parameter is injected as Joe%20Bloggs;
otherwise, the parameter would be injected as Joe
Bloggs.

+

Attribute Description +

CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS

181

CHAPTER 19. APACHE CXF LOGGING

Abstract

This chapter describes how to configure logging in the Apache CXF runtime.

19.1. OVERVIEW OF APACHE CXF LOGGING

Overview

Apache CXF uses the Java logging utility, java.util.logging. Logging is configured in a logging
configuration file that is written using the standard java.util.Properties format. To run logging on an
application, you can specify logging programmatically or by defining a property at the command that
points to the logging configuration file when you start the application.

Default properties file

Apache CXF comes with a default logging.properties file, which is located in your InstallDir/etc
directory. This file configures both the output destination for the log messages and the message level
that is published. The default configuration sets the loggers to print message flagged with the
WARNING level to the console. You can either use the default file without changing any of the
configuration settings or you can change the configuration settings to suit your specific application.

Logging feature

Apache CXF includes a logging feature that can be plugged into your client or your service to enable
logging. Example 19.1, “Configuration for Enabling Logging” shows the configuration to enable the
logging feature.

Example 19.1. Configuration for Enabling Logging

<jaxws:endpoint...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

For more information, see Section 19.6, “Logging Message Content” .

Where to begin?

To run a simple example of logging follow the instructions outlined in a Section 19.2, “Simple Example of
Using Logging”.

For more information on how logging works in Apache CXF, read this entire chapter.

More information on java.util.logging

The java.util.logging utility is one of the most widely used Java logging frameworks. There is a lot of
information available online that describes how to use and extend this framework. As a starting point,
however, the following documents gives a good overview of java.util.logging:

Red Hat Fuse 7.5 Apache CXF Development Guide

182

http://download.oracle.com/javase/1.5.0/docs/guide/logging/overview.html

http://download.oracle.com/javase/1.5.0/docs/api/java/util/logging/package-summary.html

19.2. SIMPLE EXAMPLE OF USING LOGGING

Changing the log levels and output destination

To change the log level and output destination of the log messages in the wsdl_first sample application,
complete the following steps:

1. Run the sample server as described in the Running the demo using java section of the
README.txt file in the InstallDir/samples/wsdl_first directory. Note that the server start
command specifies the default logging.properties file, as follows:

Platform Command +

Windows start java -
Djava.util.logging.config.file=%CXF_HOM
E%\etc\logging.properties
demo.hw.server.Server

+

UNIX java -
Djava.util.logging.config.file=$CXF_HOM
E/etc/logging.properties
demo.hw.server.Server &

+

The default logging.properties file is located in the InstallDir/etc directory. It configures the
Apache CXF loggers to print WARNING level log messages to the console. As a result, you see
very little printed to the console.

2. Stop the server as described in the README.txt file.

3. Make a copy of the default logging.properties file, name it mylogging.properties file, and
save it in the same directory as the default logging.properties file.

4. Change the global logging level and the console logging levels in your mylogging.properties
file to INFO by editing the following lines of configuration:

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

5. Restart the server using the following command:

Platform Command +

CHAPTER 19. APACHE CXF LOGGING

183

http://download.oracle.com/javase/1.5.0/docs/guide/logging/overview.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/logging/package-summary.html

Windows start java -
Djava.util.logging.config.file=%CXF_HOM
E%\etc\mylogging.properties
demo.hw.server.Server

+

UNIX java -
Djava.util.logging.config.file=$CXF_HOM
E/etc/mylogging.properties
demo.hw.server.Server &

+

Platform Command +

Because you configured the global logging and the console logger to log messages of level
INFO, you see a lot more log messages printed to the console.

19.3. DEFAULT LOGGING CONFIGURATION FILE

19.3.1. Overview of Logging Configuration

The default logging configuration file, logging.properties, is located in the InstallDir/etc directory. It
configures the Apache CXF loggers to print WARNING level messages to the console. If this level of
logging is suitable for your application, you do not have to make any changes to the file before using it.
You can, however, change the level of detail in the log messages. For example, you can change whether
log messages are sent to the console, to a file or to both. In addition, you can specify logging at the level
of individual packages.

NOTE

This section discusses the configuration properties that appear in the default
logging.properties file. There are, however, many other java.util.logging configuration
properties that you can set. For more information on the java.util.logging API, see the
java.util.logging javadoc at:
http://download.oracle.com/javase/1.5/docs/api/java/util/logging/package-
summary.html.

19.3.2. Configuring Logging Output

Overview

The Java logging utility, java.util.logging, uses handler classes to output log messages. Table 19.1,
“Java.util.logging Handler Classes” shows the handlers that are configured in the default
logging.properties file.

Table 19.1. Java.util.logging Handler Classes

Red Hat Fuse 7.5 Apache CXF Development Guide

184

http://download.oracle.com/javase/1.5/docs/api/java/util/logging/package-summary.html

Handler Class Outputs to

ConsoleHandler Outputs log messages to the console

FileHandler Outputs log messages to a file

IMPORTANT

The handler classes must be on the system classpath in order to be installed by the Java
VM when it starts. This is done when you set the Apache CXF environment.

Configuring the console handler

Example 19.2, “Configuring the Console Handler” shows the code for configuring the console logger.

Example 19.2. Configuring the Console Handler

handlers= java.util.logging.ConsoleHandler

The console handler also supports the configuration properties shown in Example 19.3, “Console Handler
Properties”.

Example 19.3. Console Handler Properties

java.util.logging.ConsoleHandler.level = WARNING
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

The configuration properties shown in Example 19.3, “Console Handler Properties” can be explained as
follows:

The console handler supports a separate log level configuration property. This allows you to limit the log
messages printed to the console while the global logging setting can be different (see Section 19.3.3,
“Configuring Logging Levels”). The default setting is WARNING.

Specifies the java.util.logging formatter class that the console handler class uses to format the log
messages. The default setting is the java.util.logging.SimpleFormatter.

Configuring the file handler

Example 19.4, “Configuring the File Handler” shows code that configures the file handler.

Example 19.4. Configuring the File Handler

handlers= java.util.logging.FileHandler

The file handler also supports the configuration properties shown in Example 19.5, “File Handler
Configuration Properties”.

CHAPTER 19. APACHE CXF LOGGING

185

Example 19.5. File Handler Configuration Properties

java.util.logging.FileHandler.pattern = %h/java%u.log
java.util.logging.FileHandler.limit = 50000
java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter

The configuration properties shown in Example 19.5, “File Handler Configuration Properties” can be
explained as follows:

Specifies the location and pattern of the output file. The default setting is your home directory.

Specifies, in bytes, the maximum amount that the logger writes to any one file. The default setting is
50000. If you set it to zero, there is no limit on the amount that the logger writes to any one file.

Specifies how many output files to cycle through. The default setting is 1.

Specifies the java.util.logging formatter class that the file handler class uses to format the log
messages. The default setting is the java.util.logging.XMLFormatter.

Configuring both the console handler and the file handler

You can set the logging utility to output log messages to both the console and to a file by specifying the
console handler and the file handler, separated by a comma, as shown in Configuring Both Console
Logging and File.

Configuring Both Console Logging and File

Logging

handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

19.3.3. Configuring Logging Levels

Logging levels

The java.util.logging framework supports the following levels of logging, from the least verbose to the
most verbose:

SEVERE

WARNING

INFO

CONFIG

FINE

FINER

FINEST

Red Hat Fuse 7.5 Apache CXF Development Guide

186

Configuring the global logging level

To configure the types of event that are logged across all loggers, configure the global logging level as
shown in Example 19.6, “Configuring Global Logging Levels” .

Example 19.6. Configuring Global Logging Levels

.level= WARNING

Configuring logging at an individual package

level

The java.util.logging framework supports configuring logging at the level of an individual package. For
example, the line of code shown in Example 19.7, “Configuring Logging at the Package Level”
configures logging at a SEVERE level on classes in the com.xyz.foo package.

Example 19.7. Configuring Logging at the Package Level

com.xyz.foo.level = SEVERE

19.4. ENABLING LOGGING AT THE COMMAND LINE

Overview

You can run the logging utility on an application by defining a java.util.logging.config.file property
when you start the application. You can either specify the default logging.properties file or a
logging.properties file that is unique to that application.

Specifying the log configuration file on application

start-up

To specify logging on application start-up add the flag shown in Example 19.8, “Flag to Start Logging on
the Command Line” when starting the application.

Example 19.8. Flag to Start Logging on the Command Line

-Djava.util.logging.config.file=myfile

19.5. LOGGING FOR SUBSYSTEMS AND SERVICES

Overview

You can use the com.xyz.foo.level configuration property described in the section called “Configuring

CHAPTER 19. APACHE CXF LOGGING

187

You can use the com.xyz.foo.level configuration property described in the section called “Configuring
logging at an individual package” to set fine-grained logging for specified Apache CXF logging
subsystems.

Apache CXF logging subsystems

Table 19.2, “Apache CXF Logging Subsystems” shows a list of available Apache CXF logging subsystems.

Table 19.2. Apache CXF Logging Subsystems

Subsystem Description

org.apache.cxf.aegis Aegis binding

org.apache.cxf.binding.coloc colocated binding

org.apache.cxf.binding.http HTTP binding

org.apache.cxf.binding.jbi JBI binding

org.apache.cxf.binding.object Java Object binding

org.apache.cxf.binding.soap SOAP binding

org.apache.cxf.binding.xml XML binding

org.apache.cxf.bus Apache CXF bus

org.apache.cxf.configuration configuration framework

org.apache.cxf.endpoint server and client endpoints

org.apache.cxf.interceptor interceptors

org.apache.cxf.jaxws Front-end for JAX-WS style message exchange,
JAX-WS handler processing, and interceptors
relating to JAX-WS and configuration

org.apache.cxf.jbi JBI container integration classes

org.apache.cxf.jca JCA container integration classes

org.apache.cxf.js JavaScript front-end

org.apache.cxf.transport.http HTTP transport

org.apache.cxf.transport.https secure version of HTTP transport, using HTTPS

org.apache.cxf.transport.jbi JBI transport

Red Hat Fuse 7.5 Apache CXF Development Guide

188

org.apache.cxf.transport.jms JMS transport

org.apache.cxf.transport.local transport implementation using local file system

org.apache.cxf.transport.servlet HTTP transport and servlet implementation for
loading JAX-WS endpoints into a servlet container

org.apache.cxf.ws.addressing WS-Addressing implementation

org.apache.cxf.ws.policy WS-Policy implementation

org.apache.cxf.ws.rm WS-ReliableMessaging (WS-RM) implementation

org.apache.cxf.ws.security.wss4j WSS4J security implementation

Subsystem Description

Example

The WS-Addressing sample is contained in the InstallDir/samples/ws_addressing directory. Logging is
configured in the logging.properties file located in that directory. The relevant lines of configuration
are shown in Example 19.9, “Configuring Logging for WS-Addressing” .

Example 19.9. Configuring Logging for WS-Addressing

java.util.logging.ConsoleHandler.formatter = demos.ws_addressing.common.ConciseFormatter
...
org.apache.cxf.ws.addressing.soap.MAPCodec.level = INFO

The configuration in Example 19.9, “Configuring Logging for WS-Addressing” enables the snooping of
log messages relating to WS-Addressing headers, and displays them to the console in a concise form.

For information on running this sample, see the README.txt file located in the
InstallDir/samples/ws_addressing directory.

19.6. LOGGING MESSAGE CONTENT

Overview

You can log the content of the messages that are sent between a service and a consumer. For example,
you might want to log the contents of SOAP messages that are being sent between a service and a
consumer.

Configuring message content logging

To log the messages that are sent between a service and a consumer, and vice versa, complete the
following steps:

1. Add the logging feature to your endpoint’s configuration.

CHAPTER 19. APACHE CXF LOGGING

189

2. Add the logging feature to your consumer’s configuration.

3. Configure the logging system log INFO level messages.

Adding the logging feature to an endpoint

Add the logging feature your endpoint’s configuration as shown in Example 19.10, “Adding Logging to
Endpoint Configuration”.

Example 19.10. Adding Logging to Endpoint Configuration

<jaxws:endpoint ...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

The example XML shown in Example 19.10, “Adding Logging to Endpoint Configuration” enables the
logging of SOAP messages.

Adding the logging feature to a consumer

Add the logging feature your client’s configuration as shown in Example 19.11, “Adding Logging to Client
Configuration”.

Example 19.11. Adding Logging to Client Configuration

<jaxws:client ...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:client>

The example XML shown in Example 19.11, “Adding Logging to Client Configuration” enables the logging
of SOAP messages.

Set logging to log INFO level messages

Ensure that the logging.properties file associated with your service is configured to log INFO level
messages, as shown in Example 19.12, “Setting the Logging Level to INFO” .

Example 19.12. Setting the Logging Level to INFO

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

Logging SOAP messages

To see the logging of SOAP messages modify the wsdl_first sample application located in the

Red Hat Fuse 7.5 Apache CXF Development Guide

190

To see the logging of SOAP messages modify the wsdl_first sample application located in the
InstallDir/samples/wsdl_first directory, as follows:

1. Add the jaxws:features element shown in Example 19.13, “Endpoint Configuration for Logging
SOAP Messages” to the cxf.xml configuration file located in the wsdl_first sample’s directory:

Example 19.13. Endpoint Configuration for Logging SOAP Messages

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="true" />
 </jaxws:properties>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

2. The sample uses the default logging.properties file, which is located in the InstallDir/etc
directory. Make a copy of this file and name it mylogging.properties.

3. In the mylogging.properties file, change the logging levels to INFO by editing the .level and
the java.util.logging.ConsoleHandler.level configuration properties as follows:

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

4. Start the server using the new configuration settings in both the cxf.xml file and the
mylogging.properties file as follows:

Platform Command +

Windows start java -
Djava.util.logging.config.file=%CXF_HOM
E%\etc\mylogging.properties
demo.hw.server.Server

+

UNIX java -
Djava.util.logging.config.file=$CXF_HOM
E/etc/mylogging.properties
demo.hw.server.Server &

+

5. Start the hello world client using the following command:

Platform Command +

CHAPTER 19. APACHE CXF LOGGING

191

Windows java -
Djava.util.logging.config.file=%CXF_HOM
E%\etc\mylogging.properties
demo.hw.client.Client
.\wsdl\hello_world.wsdl

+

UNIX java -
Djava.util.logging.config.file=$CXF_HOM
E/etc/mylogging.properties
demo.hw.client.Client
./wsdl/hello_world.wsdl

+

Platform Command +

The SOAP messages are logged to the console.

Red Hat Fuse 7.5 Apache CXF Development Guide

192

CHAPTER 20. DEPLOYING WS-ADDRESSING

Abstract

Apache CXF supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy
WS-Addressing in the Apache CXF runtime environment.

20.1. INTRODUCTION TO WS-ADDRESSING

Overview

WS-Addressing is a specification that allows services to communicate addressing information in a
transport neutral way. It consists of two parts:

A structure for communicating a reference to a Web service endpoint

A set of Message Addressing Properties (MAP) that associate addressing information with a
particular message

Supported specifications

Apache CXF supports both the WS-Addressing 2004/08 specification and the WS-Addressing
2005/03 specification.

Further information

For detailed information on WS-Addressing, see the 2004/08 submission at
http://www.w3.org/Submission/ws-addressing/.

20.2. WS-ADDRESSING INTERCEPTORS

Overview

In Apache CXF, WS-Addressing functionality is implemented as interceptors. The Apache CXF runtime
uses interceptors to intercept and work with the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the WS-Addressing interceptors are added to the application’s interceptor chain,
any WS-Addressing information included with a message is processed.

WS-Addressing Interceptors

The WS-Addressing implementation consists of two interceptors, as described in Table 20.1, “WS-
Addressing Interceptors”.

Table 20.1. WS-Addressing Interceptors

Interceptor Description

org.apache.cxf.ws.addressing.MAPAggregat
or

A logical interceptor responsible for aggregating the
Message Addressing Properties (MAPs) for outgoing
messages.

CHAPTER 20. DEPLOYING WS-ADDRESSING

193

http://www.w3.org/Submission/ws-addressing/

org.apache.cxf.ws.addressing.soap.MAPCod
ec

A protocol-specific interceptor responsible for
encoding and decoding the Message Addressing
Properties (MAPs) as SOAP headers.

Interceptor Description

20.3. ENABLING WS-ADDRESSING

Overview

To enable WS-Addressing the WS-Addressing interceptors must be added to the inbound and
outbound interceptor chains. This is done in one of the following ways:

Apache CXF Features

RMAssertion and WS-Policy Framework

Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a Feature

WS-Addressing can be enabled by adding the WS-Addressing feature to the client and the server
configuration as shown in Example 20.1, “client.xml and Adding WS-Addressing Feature to Client
Configuration” and Example 20.2, “server.xml and Adding WS-Addressing Feature to Server
Configuration” respectively.

Example 20.1. client.xml and Adding WS-Addressing Feature to Client Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/ws/addressing
 http://cxf.apache.org/schemas/ws-addr-conf.xsd">

 <jaxws:client ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:client>
</beans>

Example 20.2. server.xml and Adding WS-Addressing Feature to Server Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

Red Hat Fuse 7.5 Apache CXF Development Guide

194

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

20.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

Overview

The Apache CXF WS-Addressing feature element is defined in the namespace
http://cxf.apache.org/ws/addressing. It supports the two attributes described in Table 20.2, “WS-
Addressing Attributes”.

Table 20.2. WS-Addressing Attributes

Attribute Name Value

allowDuplicates A boolean that determines if duplicate MessageIDs
are tolerated. The default setting is true.

usingAddressingAdvisory A boolean that indicates if the presence of the
UsingAddressing element in the WSDL is advisory
only; that is, its absence does not prevent the
encoding of WS-Addressing headers.

Configuring WS-Addressing attributes

Configure WS-Addressing attributes by adding the attribute and the value you want to set it to the WS-
Addressing feature in your server or client configuration file. For example, the following configuration
extract sets the allowDuplicates attribute to false on the server endpoint:

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing" ...>
 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing allowDuplicates="false"/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Using a WS-Policy assertion embedded in a feature

In Example 20.3, “Using the Policies to Configure WS-Addressing” an addressing policy assertion to

CHAPTER 20. DEPLOYING WS-ADDRESSING

195

http://cxf.apache.org/ws/addressing

In Example 20.3, “Using the Policies to Configure WS-Addressing” an addressing policy assertion to
enable non-anonymous responses is embedded in the policies element.

Example 20.3. Using the Policies to Configure WS-Addressing

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:policy="http://cxf.apache.org/policy-config"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort"
 createdFromAPI="true">
 <jaxws:features>
 <policy:policies>
 <wsp:Policy xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 <policy:policies>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Red Hat Fuse 7.5 Apache CXF Development Guide

196

CHAPTER 21. ENABLING RELIABLE MESSAGING

Abstract

Apache CXF supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and
configure WS-RM in Apache CXF.

21.1. INTRODUCTION TO WS-RM

Overview

WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery of messages in a
distributed environment. It enables messages to be delivered reliably between distributed applications in
the presence of software, system, or network failures.

For example, WS-RM can be used to ensure that the correct messages have been delivered across a
network exactly once, and in the correct order.

How WS-RM works

WS-RM ensures the reliable delivery of messages between a source and a destination endpoint. The
source is the initial sender of the message and the destination is the ultimate receiver, as shown in
Figure 21.1, “Web Services Reliable Messaging” .

Figure 21.1. Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM destination. This
contains a reference for the endpoint that receives acknowledgements (the wsrm:AcksTo
endpoint).

2. The RM destination sends a CreateSequenceResponse protocol message back to the RM
source. This message contains the sequence ID for the RM sequence session.

3. The RM source adds an RM Sequence header to each message sent by the application source.

CHAPTER 21. ENABLING RELIABLE MESSAGING

197

3. The RM source adds an RM Sequence header to each message sent by the application source.
This header contains the sequence ID and a unique message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the RM source by sending
messages that contain the RM SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination in an exactly-once-in-
order fashion.

7. The RM source retransmits a message that it has not yet received an acknowledgement.
The first retransmission attempt is made after a base retransmission interval. Successive
retransmission attempts are made, by default, at exponential back-off intervals or, alternatively,
at fixed intervals. For more details, see Section 21.5, “Configuring WS-RM” .

This entire process occurs symmetrically for both the request and the response message; that is, in the
case of the response message, the server acts as the RM source and the client acts as the RM
destination.

WS-RM delivery assurances

WS-RM guarantees reliable message delivery in a distributed environment, regardless of the transport
protocol used. Either the source or the destination endpoint logs an error if reliable delivery can not be
assured.

Supported specifications

Apache CXF supports the following versions of the WS-RM specification:

WS-ReliableMessaging 1.0

(Default) Corresponds to the February 2005 submission version, which is now out of date. For
reasons of backward compatibility, however, this version is used as the default.
Version 1.0 of WS-RM uses the following namespace:

http://schemas.xmlsoap.org/ws/2005/02/rm/

This version of WS-RM can be used with either of the following WS-Addressing versions:

http://schemas.xmlsoap.org/ws/2004/08/addressing (default)
http://www.w3.org/2005/08/addressing

Strictly speaking, in order to comply with the February 2005 submission version of WS-RM, you
ought to use the first of these WS-Addressing versions (which is the default in Apache CXF). But
most other Web service implementations have switched to the more recent WS-Addressing
specification, so Apache CXF allows you to choose the WS-A version, to facilitate interoperability
(see Section 21.4, “Runtime Control”).

WS-ReliableMessaging 1.1/1.2

Corresponds to the official 1.1/1.2 Web Services Reliable Messaging specification.
Versions 1.1 and 1.2 of WS-RM uses the following namespace:

http://docs.oasis-open.org/ws-rx/wsrm/200702

Red Hat Fuse 7.5 Apache CXF Development Guide

198

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://www.w3.org/2005/08/addressing
http://docs.oasis-open.org/ws-rx/wsrm/200702

The 1.1 and 1.2 versions of WS-RM use the following WS-Addressing version:

http://www.w3.org/2005/08/addressing

Selecting the WS-RM version

You can select which WS-RM specification version to use, as follows:

Server side

On the provider side, Apache CXF adapts to whichever version of WS-ReliableMessaging is used by
the client and responds appropriately.

Client side

On the client side, the WS-RM version is determined either by the namespace that you use in the
client configuration (see Section 21.5, “Configuring WS-RM”) or by overriding the WS-RM version at
run time, using the runtime control options (see Section 21.4, “Runtime Control”).

21.2. WS-RM INTERCEPTORS

Overview

In Apache CXF, WS-RM functionality is implemented as interceptors. The Apache CXF runtime uses
interceptors to intercept and work with the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the application’s interceptor chain includes the WS-RM interceptors, the application
can participate in reliable messaging sessions. The WS-RM interceptors handle the collection and
aggregation of the message chunks. They also handle all of the acknowledgement and retransmission
logic.

Apache CXF WS-RM Interceptors

The Apache CXF WS-RM implementation consists of four interceptors, which are described in Table 21.1,
“Apache CXF WS-ReliableMessaging Interceptors”.

Table 21.1. Apache CXF WS-ReliableMessaging Interceptors

Interceptor Description

org.apache.cxf.ws.rm.RMOutInterceptor Deals with the logical aspects of providing reliability
guarantees for outgoing messages.

Responsible for sending the CreateSequence
requests and waiting for their
CreateSequenceResponse responses.

Also responsible for aggregating the sequence
properties—ID and message number—for an
application message.

CHAPTER 21. ENABLING RELIABLE MESSAGING

199

org.apache.cxf.ws.rm.RMInInterceptor Responsible for intercepting and processing RM
protocol messages and
SequenceAcknowledgement messages that are
piggybacked on application messages.

org.apache.cxf.ws.rm.RMCaptureInIntercepto
r

Caching incoming messages for persistent storage.

org.apache.cxf.ws.rm.RMDeliveryInterceptor Assuring InOrder delivery of messages to the
application.

org.apache.cxf.ws.rm.soap.RMSoapIntercept
or

Responsible for encoding and decoding the reliability
properties as SOAP headers.

org.apache.cxf.ws.rm.RetransmissionInterce
ptor

Responsible for creating copies of application
messages for future resending.

Interceptor Description

Enabling WS-RM

The presence of the WS-RM interceptors on the interceptor chains ensures that WS-RM protocol
messages are exchanged when necessary. For example, when intercepting the first application message
on the outbound interceptor chain, the RMOutInterceptor sends a CreateSequence request and waits
to process the original application message until it receives the CreateSequenceResponse response. In
addition, the WS-RM interceptors add the sequence headers to the application messages and, on the
destination side, extract them from the messages. It is not necessary to make any changes to your
application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see Section 21.3, “Enabling WS-RM” .

Configuring WS-RM Attributes

You control sequence demarcation and other aspects of the reliable exchange through configuration.
For example, by default Apache CXF attempts to maximize the lifetime of a sequence, thus reducing the
overhead incurred by the out-of-band WS-RM protocol messages. To enforce the use of a separate
sequence per application message configure the WS-RM source’s sequence termination policy (setting
the maximum sequence length to 1).

For more information on configuring WS-RM behavior, see Section 21.5, “Configuring WS-RM” .

21.3. ENABLING WS-RM

Overview

To enable reliable messaging, the WS-RM interceptors must be added to the interceptor chains for both
inbound and outbound messages and faults. Because the WS-RM interceptors use WS-Addressing, the
WS-Addressing interceptors must also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

Red Hat Fuse 7.5 Apache CXF Development Guide

200

Explicitly, by adding them to the dispatch chains using Spring beans

Implicitly, using WS-Policy assertions, which cause the Apache CXF runtime to transparently add
the interceptors on your behalf.

Spring beans: explicitly adding interceptors

To enable WS-RM add the WS-RM and WS-Addressing interceptors to the Apache CXF bus, or to a
consumer or service endpoint using Spring bean configuration. This is the approach taken in the WS-RM
sample that is found in the InstallDir/samples/ws_rm directory. The configuration file, ws-rm.cxf,
shows the WS-RM and WS-Addressing interceptors being added one-by-one as Spring beans (see
Example 21.1, “Enabling WS-RM Using Spring Beans”).

Example 21.1. Enabling WS-RM Using Spring Beans

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/
 beans http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="mapAggregator" class="org.apache.cxf.ws.addressing.MAPAggregator"/>
 <bean id="mapCodec" class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>
 <bean id="rmLogicalOut" class="org.apache.cxf.ws.rm.RMOutInterceptor">
 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">
 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmCodec" class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">
 <property name="inInterceptors">
 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 <property name="inFaultInterceptors">
 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 <property name="outInterceptors">
 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 <property name="outFaultInterceptors">

CHAPTER 21. ENABLING RELIABLE MESSAGING

201

 <list>
 <ref bean="mapAggregator">
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 </bean>
</beans>

The code shown in Example 21.1, “Enabling WS-RM Using Spring Beans” can be explained as follows:

A Apache CXF configuration file is a Spring XML file. You must include an opening Spring beans
element that declares the namespaces and schema files for the child elements that are encapsulated by
the beans element.

Configures each of the WS-Addressing interceptors—MAPAggregator and MAPCodec. For more
information on WS-Addressing, see Chapter 20, Deploying WS-Addressing .

Configures each of the WS-RM interceptors—RMOutInterceptor, RMInInterceptor, and
RMSoapInterceptor.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound faults.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound faults.

WS-Policy framework: implicitly adding interceptors

The WS-Policy framework provides the infrastructure and APIs that allow you to use WS-Policy. It is
compliant with the November 2006 draft publications of the Web Services Policy 1.5—Framework and
Web Services Policy 1.5—Attachment specifications.

To enable WS-RM using the Apache CXF WS-Policy framework, do the following:

1. Add the policy feature to your client and server endpoint. Example 21.2, “Configuring WS-RM
using WS-Policy” shows a reference bean nested within a jaxws:feature element. The reference
bean specifies the AddressingPolicy, which is defined as a separate element within the same
configuration file.

Example 21.2. Configuring WS-RM using WS-Policy

<jaxws:client>
 <jaxws:features>
 <ref bean="AddressingPolicy"/>
 </jaxws:features>
</jaxws:client>
<wsp:Policy wsu:Id="AddressingPolicy"
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>

Red Hat Fuse 7.5 Apache CXF Development Guide

202

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

 </wsp:Policy>
 </wsam:Addressing>
</wsp:Policy>

2. Add a reliable messaging policy to the wsdl:service element—or any other WSDL element that
can be used as an attachment point for policy or policy reference elements—to your WSDL file,
as shown in Example 21.3, “Adding an RM Policy to Your WSDL File” .

Example 21.3. Adding an RM Policy to Your WSDL File

<wsp:Policy wsu:Id="RM"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
 </wsrmp:RMAssertion>
</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">
 <wsdl:port binding="tns:GreeterSOAPBinding" name="GreeterPort">
 <soap:address location="http://localhost:9020/SoapContext/GreeterPort"/>
 <wsp:PolicyReference URI="#RM" xmlns:wsp="http://www.w3.org/2006/07/ws-
policy"/>
 </wsdl:port>
</wsdl:service>

21.4. RUNTIME CONTROL

Overview

Several message context property values can be set in client code to control WS-RM at runtime, with
key values defined by public constants in the org.apache.cxf.ws.rm.RMManager class.

Runtime control options

The following table lists the keys defined by the org.apache.cxf.ws.rm.RMManager class.

Key Description

WSRM_VERSION_PROPERTY String WS-RM version namespace
(http://schemas.xmlsoap.org/ws/2005/02/rm/
or http://docs.oasis-open.org/ws-
rx/wsrm/200702).

CHAPTER 21. ENABLING RELIABLE MESSAGING

203

http://schemas.xmlsoap.org/ws/2005/02/rm/
http://docs.oasis-open.org/ws-rx/wsrm/200702

WSRM_WSA_VERSION_PROPERTY String WS-Addressing version namespace
(http://schemas.xmlsoap.org/ws/2004/08/addr
essing or
http://www.w3.org/2005/08/addressing) - this
property is ignored unless you’re using the
http://schemas.xmlsoap.org/ws/2005/02/rm/
RM namespace).

WSRM_LAST_MESSAGE_PROPERTY Boolean value true to tell the WS-RM code that the
last message is being sent, allowing the code to close
the WS-RM sequence and release resources (as of
the 3.0.0 version of CXF, the WS-RM will close the
RM sequence by default, when you close your client).

WSRM_INACTIVITY_TIMEOUT_PROPERTY Long inactivity timeout in milliseconds.

WSRM_RETRANSMISSION_INTERVAL_PROP
ERTY

Long base retransmission interval in milliseconds.

WSRM_EXPONENTIAL_BACKOFF_PROPER
TY

Boolean exponential back-off flag.

WSRM_ACKNOWLEDGEMENT_INTERVAL_P
ROPERTY

Long acknowledgement interval in milliseconds.

Key Description

Controlling WS-RM through JMX

You can also monitor and control many aspects of WS-RM using the JMX Management features of
Apache CXF. The full list of JMX operations is defined by org.apache.cxf.ws.rm.ManagedRMManager
and org.apache.cxf.ws.rm.ManagedRMEndpoint, but these operations include viewing the current RM
state down to the individual message level. You can also use JXM to close or terminate a WS-RM
sequence, and to receive notification of when previously-sent messages are acknowledged by the
remote RM endpoint.

Example of JMX control

For example, if you have the JMX server enabled in your client configuration, you could use the following
code to track the last acknowledgement number received:

// Java
private static class AcknowledgementListener implements NotificationListener {
 private volatile long lastAcknowledgement;

 @Override
 public void handleNotification(Notification notification, Object handback) {
 if (notification instanceof AcknowledgementNotification) {
 AcknowledgementNotification ack = (AcknowledgementNotification)notification;
 lastAcknowledgement = ack.getMessageNumber();
 }
 }

Red Hat Fuse 7.5 Apache CXF Development Guide

204

http://schemas.xmlsoap.org/ws/2004/08/addressing
http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/ws/2005/02/rm/

 // initialize client
...
 // attach to JMX bean for notifications
 // NOTE: you must have sent at least one message to initialize RM before executing this code
 Endpoint ep = ClientProxy.getClient(client).getEndpoint();
 InstrumentationManager im = bus.getExtension(InstrumentationManager.class);
 MBeanServer mbs = im.getMBeanServer();
 RMManager clientManager = bus.getExtension(RMManager.class);
 ObjectName name = RMUtils.getManagedObjectName(clientManager, ep);
 System.out.println("Looking for endpoint name " + name);
 AcknowledgementListener listener = new AcknowledgementListener();
 mbs.addNotificationListener(name, listener, null, null);

 // send messages using RM with acknowledgement status reported to listener
...

21.5. CONFIGURING WS-RM

21.5.1. Configuring Apache CXF-Specific WS-RM Attributes

Overview

To configure the Apache CXF-specific attributes, use the rmManager Spring bean. Add the following to
your configuration file:

The http://cxf.apache.org/ws/rm/manager namespace to your list of namespaces.

An rmManager Spring bean for the specific attribute that your want to configure.

Example 21.4, “Configuring Apache CXF-Specific WS-RM Attributes” shows a simple example.

Example 21.4. Configuring Apache CXF-Specific WS-RM Attributes

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/ws/rm/manager http://cxf.apache.org/schemas/configuration/wsrm-
manager.xsd">
...
<wsrm-mgr:rmManager>
<!--
 ...Your configuration goes here
-->
</wsrm-mgr:rmManager>

Children of the rmManager Spring bean

Table 21.2, “Children of the rmManager Spring Bean” shows the child elements of the rmManager
Spring bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.

CHAPTER 21. ENABLING RELIABLE MESSAGING

205

http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/ws/rm/manager

Table 21.2. Children of the rmManager Spring Bean

Element Description

RMAssertion An element of type RMAssertion

deliveryAssurance An element of type DeliveryAssuranceType that
describes the delivery assurance that should apply

sourcePolicy An element of type SourcePolicyType that allows
you to configure details of the RM source

destinationPolicy An element of type DestinationPolicyType that
allows you to configure details of the RM destination

Example

For an example, see the section called “Maximum unacknowledged messages threshold” .

21.5.2. Configuring Standard WS-RM Policy Attributes

Overview

You can configure standard WS-RM policy attributes in one of the following ways:

the section called “RMAssertion in rmManager Spring bean”

the section called “Policy within a feature”

the section called “WSDL file”

the section called “External attachment”

WS-Policy RMAssertion Children

Table 21.3, “Children of the WS-Policy RMAssertion Element” shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 21.3. Children of the WS-Policy RMAssertion Element

Name Description

InactivityTimeout Specifies the amount of time that must pass without
receiving a message before an endpoint can consider
an RM sequence to have been terminated due to
inactivity.

Red Hat Fuse 7.5 Apache CXF Development Guide

206

http://schemas.xmlsoap.org/ws/2005/02/rm/policy

BaseRetransmissionInterval Sets the interval within which an acknowledgement
must be received by the RM Source for a given
message. If an acknowledgement is not received
within the time set by the
BaseRetransmissionInterval, the RM Source will
retransmit the message.

ExponentialBackoff Indicates the retransmission interval will be adjusted
using the commonly known exponential backoff
algorithm (Tanenbaum).

For more information, see Computer Networks,
Andrew S. Tanenbaum, Prentice Hall PTR, 2003.

AcknowledgementInterval In WS-RM, acknowledgements are sent on return
messages or sent stand-alone. If a return message is
not available to send an acknowledgement, an RM
Destination can wait for up to the acknowledgement
interval before sending a stand-alone
acknowledgement. If there are no unacknowledged
messages, the RM Destination can choose not to
send an acknowledgement.

Name Description

More detailed reference information

For more detailed reference information, including descriptions of each element’s sub-elements and
attributes, please refer to http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager Spring bean

You can configure standard WS-RM policy attributes by adding an RMAssertion within a Apache CXF
rmManager Spring bean. This is the best approach if you want to keep all of your WS-RM configuration
in the same configuration file; that is, if you want to configure Apache CXF-specific attributes and
standard WS-RM policy attributes in the same file.

For example, the configuration in Example 21.5, “Configuring WS-RM Attributes Using an RMAssertion in
an rmManager Spring Bean” shows:

A standard WS-RM policy attribute, BaseRetransmissionInterval, configured using an
RMAssertion within an rmManager Spring bean.

An Apache CXF-specific RM attribute, intraMessageThreshold, configured in the same
configuration file.

Example 21.5. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring
Bean

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

CHAPTER 21. ENABLING RELIABLE MESSAGING

207

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
 <wsrm-mgr:destinationPolicy>
 <wsrm-mgr:acksPolicy intraMessageThreshold="0" />
 </wsrm-mgr:destinationPolicy>
</wsrm-mgr:rmManager>
</beans>

Policy within a feature

You can configure standard WS-RM policy attributes within features, as shown in Example 21.6,
“Configuring WS-RM Attributes as a Policy within a Feature”.

Example 21.6. Configuring WS-RM Attributes as a Policy within a Feature

<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
 <jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">
 <jaxws:features>
 <wsp:Policy>
 <wsrm:RMAssertion
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrm:AcknowledgementInterval Milliseconds="200" />
 </wsrm:RMAssertion>
 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

WSDL file

If you use the WS-Policy framework to enable WS-RM, you can configure standard WS-RM policy

Red Hat Fuse 7.5 Apache CXF Development Guide

208

If you use the WS-Policy framework to enable WS-RM, you can configure standard WS-RM policy
attributes in a WSDL file. This is a good approach if you want your service to interoperate and use WS-
RM seamlessly with consumers deployed to other policy-aware Web services stacks.

For an example, see the section called “WS-Policy framework: implicitly adding interceptors” where the
base retransmission interval is configured in the WSDL file.

External attachment

You can configure standard WS-RM policy attributes in an external attachment file. This is a good
approach if you cannot, or do not want to, change your WSDL file.

Example 21.7, “Configuring WS-RM in an External Attachment” shows an external attachment that
enables both WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific EPR.

Example 21.7. Configuring WS-RM in an External Attachment

<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsp:PolicyAttachment>
 <wsp:AppliesTo>
 <wsa:EndpointReference>
 <wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wsp:Policy>
 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval Milliseconds="30000"/>
 </wsrmp:RMAssertion>
 </wsp:Policy>
 </wsp:PolicyAttachment>
</attachments>/

21.5.3. WS-RM Configuration Use Cases

Overview

This subsection focuses on configuring WS-RM attributes from a use case point of view. Where an
attribute is a standard WS-RM policy attribute, defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/ namespace, only the example of setting it in an
RMAssertion within an rmManager Spring bean is shown. For details of how to set such attributes as a
policy within a feature; in a WSDL file, or in an external attachment, see Section 21.5.2, “Configuring
Standard WS-RM Policy Attributes”.

The following use cases are covered:

the section called “Base retransmission interval”

the section called “Exponential backoff for retransmission”

the section called “Acknowledgement interval”

CHAPTER 21. ENABLING RELIABLE MESSAGING

209

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/

the section called “Maximum unacknowledged messages threshold”

the section called “Maximum length of an RM sequence”

the section called “Message delivery assurance policies”

Base retransmission interval

The BaseRetransmissionInterval element specifies the interval at which an RM source retransmits a
message that has not yet been acknowledged. It is defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd schema file. The default value is 3000
milliseconds.

Example 21.8, “Setting the WS-RM Base Retransmission Interval” shows how to set the WS-RM base
retransmission interval.

Example 21.8. Setting the WS-RM Base Retransmission Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Exponential backoff for retransmission

The ExponentialBackoff element determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals.

The presence of the ExponentialBackoff element enables this feature. An exponential backoff ratio of
2 is used by default. ExponentialBackoff is a flag. When the element is present, exponential backoff is
enabled. When the element is absent, exponential backoff is disabled. No value is required.

Example 21.9, “Setting the WS-RM Exponential Backoff Property” shows how to set the WS-RM
exponential backoff for retransmission.

Example 21.9. Setting the WS-RM Exponential Backoff Property

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:ExponentialBackoff/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Acknowledgement interval

Red Hat Fuse 7.5 Apache CXF Development Guide

210

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

The AcknowledgementInterval element specifies the interval at which the WS-RM destination sends
asynchronous acknowledgements. These are in addition to the synchronous acknowledgements that it
sends on receipt of an incoming message. The default asynchronous acknowledgement interval is 0
milliseconds. This means that if the AcknowledgementInterval is not configured to a specific value,
acknowledgements are sent immediately (that is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if both of the following conditions
are met:

The RM destination is using a non-anonymous wsrm:acksTo endpoint.

The opportunity to piggyback an acknowledgement on a response message does not occur
before the expiry of the acknowledgement interval.

Example 21.10, “Setting the WS-RM Acknowledgement Interval” shows how to set the WS-RM
acknowledgement interval.

Example 21.10. Setting the WS-RM Acknowledgement Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Maximum unacknowledged messages threshold

The maxUnacknowledged attribute sets the maximum number of unacknowledged messages that can
accrue per sequence before the sequence is terminated.

Example 21.11, “Setting the WS-RM Maximum Unacknowledged Message Threshold” shows how to set
the WS-RM maximum unacknowledged messages threshold.

Example 21.11. Setting the WS-RM Maximum Unacknowledged Message Threshold

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

Maximum length of an RM sequence

The maxLength attribute sets the maximum length of a WS-RM sequence. The default value is 0, which
means that the length of a WS-RM sequence is unbound.

CHAPTER 21. ENABLING RELIABLE MESSAGING

211

When this attribute is set, the RM endpoint creates a new RM sequence when the limit is reached, and
after receiving all of the acknowledgements for the previously sent messages. The new message is sent
using a newsequence.

Example 21.12, “Setting the Maximum Length of a WS-RM Message Sequence” shows how to set the
maximum length of an RM sequence.

Example 21.12. Setting the Maximum Length of a WS-RM Message Sequence

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxLength="100" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

Message delivery assurance policies

You can configure the RM destination to use the following delivery assurance policies:

AtMostOnce — The RM destination delivers the messages to the application destination only
once. If a message is delivered more than once an error is raised. It is possible that some
messages in a sequence may not be delivered.

AtLeastOnce — The RM destination delivers the messages to the application destination at
least once. Every message sent will be delivered or an error will be raised. Some messages might
be delivered more than once.

InOrder — The RM destination delivers the messages to the application destination in the order
that they are sent. This delivery assurance can be combined with the AtMostOnce or
AtLeastOnce assurances.

Example 21.13, “Setting the WS-RM Message Delivery Assurance Policy” shows how to set the WS-RM
message delivery assurance.

Example 21.13. Setting the WS-RM Message Delivery Assurance Policy

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:deliveryAssurance>
 <wsrm-mgr:AtLeastOnce />
 </wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

21.6. CONFIGURING WS-RM PERSISTENCE

Overview

Red Hat Fuse 7.5 Apache CXF Development Guide

212

The Apache CXF WS-RM features already described in this chapter provide reliability for cases such as
network failures. WS-RM persistence provides reliability across other types of failure such as an RM
source or an RM destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in persistent storage. This
enables the endpoints to continue sending and receiving messages when they are reincarnated.

Apache CXF enables WS-RM persistence in a configuration file. The default WS-RM persistence store is
JDBC-based. For convenience, Apache CXF includes Derby for out-of-the-box deployment. In addition,
the persistent store is also exposed using a Java API. To implement your own persistence mechanism,
you can implement one using this API with your preferred DB.

IMPORTANT

WS-RM persistence is supported for oneway calls only, and it is disabled by default.

How it works

Apache CXF WS-RM persistence works as follows:

At the RM source endpoint, an outgoing message is persisted before transmission. It is evicted
from the persistent store after the acknowledgement is received.

After a recovery from crash, it recovers the persisted messages and retransmits until all the
messages have been acknowledged. At that point, the RM sequence is closed.

At the RM destination endpoint, an incoming message is persisted, and upon a successful store,
the acknowledgement is sent. When a message is successfully dispatched, it is evicted from the
persistent store.

After a recovery from a crash, it recovers the persisted messages and dispatches them. It also
brings the RM sequence to a state where new messages are accepted, acknowledged, and
delivered.

Enabling WS-persistence

To enable WS-RM persistence, you must specify the object implementing the persistent store for WS-
RM. You can develop your own or you can use the JDBC based store that comes with Apache CXF.

The configuration shown in Example 21.14, “Configuration for the Default WS-RM Persistence Store”
enables the JDBC-based store that comes with Apache CXF.

Example 21.14. Configuration for the Default WS-RM Persistence Store

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

Configuring WS-persistence

The JDBC-based store that comes with Apache CXF supports the properties shown in Table 21.4,
“JDBC Store Properties”.

CHAPTER 21. ENABLING RELIABLE MESSAGING

213

Table 21.4. JDBC Store Properties

Attribute Name Type Default Setting

driverClassName String org.apache.derby.jdbc.Embe
ddedDriver

userName String null

passWord String null

url String jdbc:derby:rmdb;create=true

The configuration shown in Example 21.15, “Configuring the JDBC Store for WS-RM Persistence”
enables the JDBC-based store that comes with Apache CXF, while setting the driverClassName and
url to non-default values.

Example 21.15. Configuring the JDBC Store for WS-RM Persistence

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
 <property name="driverClassName" value="com.acme.jdbc.Driver"/>
 <property name="url" value="jdbc:acme:rmdb;create=true"/>
</bean>

Red Hat Fuse 7.5 Apache CXF Development Guide

214

CHAPTER 22. ENABLING HIGH AVAILABILITY

Abstract

This chapter explains how to enable and configure high availability in the Apache CXF runtime.

22.1. INTRODUCTION TO HIGH AVAILABILITY

Overview

Scalable and reliable applications require high availability to avoid any single point of failure in a
distributed system. You can protect your system from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the same service. Together these
act as a single logical service. Clients invoke requests on the replicated service, and Apache CXF delivers
the requests to one of the member replicas. The routing to a replica is transparent to the client.

HA with static failover

Apache CXF supports high availability (HA) with static failover in which replica details are encoded in the
service WSDL file. The WSDL file contains multiple ports, and can contain multiple hosts, for the same
service. The number of replicas in the cluster remains static as long as the WSDL file remains
unchanged. Changing the cluster size involves editing the WSDL file.

22.2. ENABLING HA WITH STATIC FAILOVER

Overview

To enable HA with static failover, you must do the following:

1. the section called “Encode replica details in your service WSDL file”

2. the section called “Add the clustering feature to your client configuration”

Encode replica details in your service WSDL file

You must encode the details of the replicas in your cluster in your service WSDL file. Example 22.1,
“Enabling HA with Static Failover: WSDL File” shows a WSDL file extract that defines a service cluster of
three replicas.

Example 22.1. Enabling HA with Static Failover: WSDL File

<wsdl:service name="ClusteredService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica1">
 <soap:address location="http://localhost:9001/SoapContext/Replica1"/>
 </wsdl:port>

 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica2">
 <soap:address location="http://localhost:9002/SoapContext/Replica2"/>
 </wsdl:port>

 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica3">

CHAPTER 22. ENABLING HIGH AVAILABILITY

215

 <soap:address location="http://localhost:9003/SoapContext/Replica3"/>
 </wsdl:port>

</wsdl:service>

The WSDL extract shown in Example 22.1, “Enabling HA with Static Failover: WSDL File” can be
explained as follows:

Defines a service, ClusterService, which is exposed on three ports:

1. Replica1

2. Replica2

3. Replica3

Defines Replica1 to expose the ClusterService as a SOAP over HTTP endpoint on port 9001.

Defines Replica2 to expose the ClusterService as a SOAP over HTTP endpoint on port 9002.

Defines Replica3 to expose the ClusterService as a SOAP over HTTP endpoint on port 9003.

Add the clustering feature to your client configuration

In your client configuration file, add the clustering feature as shown in Example 22.2, “Enabling HA with
Static Failover: Client Configuration”.

Example 22.2. Enabling HA with Static Failover: Client Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:clustering="http://cxf.apache.org/clustering"
 xsi:schemaLocation="http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:client name="{http://apache.org/hello_world_soap_http}Replica1"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

 <jaxws:client name="{http://apache.org/hello_world_soap_http}Replica2"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

 <jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"

Red Hat Fuse 7.5 Apache CXF Development Guide

216

 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

</beans>

22.3. CONFIGURING HA WITH STATIC FAILOVER

Overview

By default, HA with static failover uses a sequential strategy when selecting a replica service if the
original service with which a client is communicating becomes unavailable, or fails. The sequential
strategy selects a replica service in the same sequential order every time it is used. Selection is
determined by Apache CXF’s internal service model and results in a deterministic failover pattern.

Configuring a random strategy

You can configure HA with static failover to use a random strategy instead of the sequential strategy
when selecting a replica. The random strategy selects a random replica service each time a service
becomes unavailable, or fails. The choice of failover target from the surviving members in a cluster is
entirely random.

To configure the random strategy, add the configuration shown in Example 22.3, “Configuring a Random
Strategy for Static Failover” to your client configuration file.

Example 22.3. Configuring a Random Strategy for Static Failover

<beans ...>
 <bean id="Random" class="org.apache.cxf.clustering.RandomStrategy"/>

 <jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover>
 <clustering:strategy>
 <ref bean="Random"/>
 </clustering:strategy>
 </clustering:failover>
 </jaxws:features>
 </jaxws:client>
</beans>

The configuration shown in Example 22.3, “Configuring a Random Strategy for Static Failover” can be
explained as follows:

Defines a Random bean and implementation class that implements the random strategy.

Specifies that the random strategy is used when selecting a replica.

CHAPTER 22. ENABLING HIGH AVAILABILITY

217

CHAPTER 23. APACHE CXF BINDING IDS

TABLE OF BINDING IDS

Table 23.1. Binding IDs for Message Bindings

Binding ID

CORBA http://cxf.apache.org/bindings/corba

HTTP/REST http://apache.org/cxf/binding/http

SOAP 1.1 http://schemas.xmlsoap.org/wsdl/soap/http

SOAP 1.1 w/ MTOM http://schemas.xmlsoap.org/wsdl/soap/http?
mtom=true

SOAP 1.2 http://www.w3.org/2003/05/soap/bindings/HT
TP/

SOAP 1.2 w/ MTOM http://www.w3.org/2003/05/soap/bindings/HT
TP/?mtom=true

XML http://cxf.apache.org/bindings/xformat

Red Hat Fuse 7.5 Apache CXF Development Guide

218

http://cxf.apache.org/bindings/corba
http://apache.org/cxf/binding/http
http://schemas.xmlsoap.org/wsdl/soap/http
http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true
http://www.w3.org/2003/05/soap/bindings/HTTP/
http://www.w3.org/2003/05/soap/bindings/HTTP/?mtom=true
http://cxf.apache.org/bindings/xformat

APPENDIX A. USING THE MAVEN OSGI TOOLING

Abstract

Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The
Maven bundle plug-in makes the job easier by automating the process and providing a number of
shortcuts for specifying the contents of the bundle manifest.

A.1. THE MAVEN BUNDLE PLUG-IN

The Red Hat Fuse OSGi tooling uses the Maven bundle plug-in from Apache Felix. The bundle plug-in is
based on the bnd tool from Peter Kriens. It automates the construction of OSGi bundle manifests by
introspecting the contents of the classes being packaged in the bundle. Using the knowledge of the
classes contained in the bundle, the plug-in can calculate the proper values to populate the Import-
Packages and the Export-Package properties in the bundle manifest. The plug-in also has default
values that are used for other required properties in the bundle manifest.

To use the bundle plug-in, do the following:

1. Section A.2, “Setting up a Red Hat Fuse OSGi project” the bundle plug-in to your project’s POM
file.

2. Section A.3, “Configuring the Bundle Plug-In” the plug-in to correctly populate your bundle’s
manifest.

A.2. SETTING UP A RED HAT FUSE OSGI PROJECT

Overview

A Maven project for building an OSGi bundle can be a simple single level project. It does not require any
sub-projects. However, it does require that you do the following:

1. Add the bundle plug-in to your POM.

2. Instruct Maven to package the results as an OSGi bundle.

NOTE

There are several Maven archetypes you can use to set up your project with the
appropriate settings.

Directory structure

A project that constructs an OSGi bundle can be a single level project. It only requires that you have a
top-level POM file and a src folder. As in all Maven projects, you place all Java source code in the
src/java folder, and you place any non-Java resources in the src/resources folder.

Non-Java resources include Spring configuration files, JBI endpoint configuration files, and WSDL
contracts.

NOTE

APPENDIX A. USING THE MAVEN OSGI TOOLING

219

https://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Bnd/Bnd

NOTE

Red Hat Fuse OSGi projects that use Apache CXF, Apache Camel, or another Spring
configured bean also include a beans.xml file located in the src/resources/META-
INF/spring folder.

Adding a bundle plug-in

Before you can use the bundle plug-in you must add a dependency on Apache Felix. After you add the
dependency, you can add the bundle plug-in to the plug-in portion of the POM.

Example A.1, “Adding an OSGi bundle plug-in to a POM” shows the POM entries required to add the
bundle plug-in to your project.

Example A.1. Adding an OSGi bundle plug-in to a POM

...
<dependencies>
 <dependency>
 <groupId>org.apache.felix</groupId>
 <artifactId>org.osgi.core</artifactId>
 <version>1.0.0</version>
 </dependency>
...
</dependencies>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName>
 <Import-Package>*,org.apache.camel.osgi</Import-Package>
 <Private-Package>org.apache.servicemix.examples.camel</Private-Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
</build>
...

The entries in Example A.1, “Adding an OSGi bundle plug-in to a POM” do the following:

Adds the dependency on Apache Felix

Adds the bundle plug-in to your project

Configures the plug-in to use the project’s artifact ID as the bundle’s symbolic name

Configures the plug-in to include all Java packages imported by the bundled classes; also imports the
org.apache.camel.osgi package

Red Hat Fuse 7.5 Apache CXF Development Guide

220

Configures the plug-in to bundle the listed class, but not to include them in the list of exported
packages

NOTE

Edit the configuration to meet the requirements of your project.

For more information on configuring the bundle plug-in, see Section A.3, “Configuring the Bundle Plug-
In”.

Activating a bundle plug-in

To have Maven use the bundle plug-in, instruct it to package the results of the project as a bundle. Do
this by setting the POM file’s packaging element to bundle.

Useful Maven archetypes

There are several Maven archetypes available to generate a project that is preconfigured to use the
bundle plug-in:

the section called “Spring OSGi archetype”

the section called “Apache CXF code-first archetype”

the section called “Apache CXF wsdl-first archetype”

the section called “Apache Camel archetype”

Spring OSGi archetype

The Spring OSGi archetype creates a generic project for building an OSGi project using Spring DM, as
shown:

org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2

You invoke the archetype using the following command:

mvn archetype:generate -DarchetypeGroupId=org.springframework.osgi -
DarchetypeArtifactId=spring-osgi-bundle-archetype -DarchetypeVersion=1.1.2 -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

Apache CXF code-first archetype

The Apache CXF code-first archetype creates a project for building a service from Java, as shown:

org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-archetype/2010.02.0-fuse-02-00

You invoke the archetype using the following command:

mvn archetype:generate -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-cxf-code-first-archetype -DarchetypeVersion=2010.02.0-fuse-
02-00 -DgroupId=groupId -DartifactId=artifactId -Dversion=version

APPENDIX A. USING THE MAVEN OSGI TOOLING

221

Apache CXF wsdl-first archetype

The Apache CXF wsdl-first archetype creates a project for creating a service from WSDL, as shown:

org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-archetype/2010.02.0-fuse-02-00

You invoke the archetype using the following command:

mvn archetype:generate -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-cxf-wsdl-first-archetype -DarchetypeVersion=2010.02.0-fuse-
02-00 -DgroupId=groupId -DartifactId=artifactId -Dversion=version

Apache Camel archetype

The Apache Camel archetype creates a project for building a route that is deployed into Red Hat Fuse,
as shown:

org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2010.02.0-fuse-02-00

You invoke the archetype using the following command:

mvn archetype:generate -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-camel-archetype -DarchetypeVersion=2010.02.0-fuse-02-00 -
DgroupId=groupId -DartifactId=artifactId -Dversion=version

A.3. CONFIGURING THE BUNDLE PLUG-IN

Overview

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in’s instructions element.

Configuration properties

Some of the commonly used configuration properties are:

Bundle-SymbolicName

Bundle-Name

Bundle-Version

Export-Package

Private-Package

Import-Package

Setting a bundle’s symbolic name

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupId + "." +

Red Hat Fuse 7.5 Apache CXF Development Guide

222

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupId + "." +
artifactId, with the following exceptions:

If groupId has only one section (no dots), the first package name with classes is returned.
For example, if the group Id is commons-logging:commons-logging, the bundle’s symbolic
name is org.apache.commons.logging.

If artifactId is equal to the last section of groupId, then groupId is used.
For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle’s symbolic name is org.apache.maven.

If artifactId starts with the last section of groupId, that portion is removed.
For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven-
core, the bundle’s symbolic name is org.apache.maven.core.

To specify your own value for the bundle’s symbolic name, add a Bundle-SymbolicName child in the
plug-in’s instructions element, as shown in Example A.2, “Setting a bundle’s symbolic name” .

Example A.2. Setting a bundle’s symbolic name

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
 ...
 </instructions>
 </configuration>
</plugin>

Setting a bundle’s name

By default, a bundle’s name is set to ${project.name}.

To specify your own value for the bundle’s name, add a Bundle-Name child to the plug-in’s instructions
element, as shown in Example A.3, “Setting a bundle’s name”.

Example A.3. Setting a bundle’s name

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Name>JoeFred</Bundle-Name>
 ...
 </instructions>
 </configuration>
</plugin>

APPENDIX A. USING THE MAVEN OSGI TOOLING

223

Setting a bundle’s version

By default, a bundle’s version is set to ${project.version}. Any dashes (-) are replaced with dots (.) and
the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes 4.2.0.SNAPSHOT.

To specify your own value for the bundle’s version, add a Bundle-Version child to the plug-in’s
instructions element, as shown in Example A.4, “Setting a bundle’s version” .

Example A.4. Setting a bundle’s version

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Version>1.0.3.1</Bundle-Version>
 ...
 </instructions>
 </configuration>
</plugin>

Specifying exported packages

By default, the OSGi manifest’s Export-Package list is populated by all of the packages in your local
Java source code (under src/main/java), except for the default package, ., and any packages
containing .impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages listed
in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export-Package child to the plug-in’s
instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and that
are to be exported. The package names can be specified using the * wildcard symbol. For example, the
entry com.fuse.demo.* includes all packages on the project’s classpath that start with com.fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For example, the entry
!com.fuse.demo.private excludes the package com.fuse.demo.private.

When excluding packages, the order of entries in the list is important. The list is processed in order from
the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except the package
com.fuse.demo.private, list the packages using:

!com.fuse.demo.private,com.fuse.demo.*

However, if you list the packages using com.fuse.demo.*,!com.fuse.demo.private, then

Red Hat Fuse 7.5 Apache CXF Development Guide

224

However, if you list the packages using com.fuse.demo.*,!com.fuse.demo.private, then
com.fuse.demo.private is included in the bundle because it matches the first pattern.

Specifying private packages

If you want to specify a list of packages to include in a bundle without exporting them, you can add a
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a
Private-Package instruction, all packages in your local Java source are included in the bundle.

IMPORTANT

If a package matches an entry in both the Private-Package element and the Export-
Package element, the Export-Package element takes precedence. The package is
added to the bundle and exported.

The Private-Package element works similarly to the Export-Package element in that you specify a list
of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project’s classpath that are to be included in the bundle. These packages are packaged in the bundle, but
not exported (unless they are also selected by the Export-Package instruction).

Example A.5, “Including a private package in a bundle” shows the configuration for including a private
package in a bundle

Example A.5. Including a private package in a bundle

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
 ...
 </instructions>
 </configuration>
</plugin>

Specifying imported packages

By default, the bundle plug-in populates the OSGi manifest’s Import-Package property with a list of all
the packages referred to by the contents of the bundle.

While the default behavior is typically sufficient for most projects, you might find instances where you
want to import packages that are not automatically added to the list. The default behavior can also
result in unwanted packages being imported.

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-in’s
instructions element. The syntax for the package list is the same as for the Export-Package element
and the Private-Package element.

IMPORTANT

APPENDIX A. USING THE MAVEN OSGI TOOLING

225

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan the
bundle’s contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example A.6, “Specifying the packages imported by a bundle” shows the configuration for specifying
the packages imported by a bundle

Example A.6. Specifying the packages imported by a bundle

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Import-Package>javax.jws, javax.wsdl, org.apache.cxf.bus, org.apache.cxf.bus.spring,
org.apache.cxf.bus.resource, org.apache.cxf.configuration.spring, org.apache.cxf.resource,
org.springframework.beans.factory.config, * </Import-Package>
 ...
 </instructions>
 </configuration>
</plugin>

More information

For more information on configuring a bundle plug-in, see:

olink:OsgiDependencies/OsgiDependencies

Apache Felix documentation

Peter Kriens' aQute Software Consultancy web site

Red Hat Fuse 7.5 Apache CXF Development Guide

226

olink:OsgiDependencies/OsgiDependencies
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

PART V. DEVELOPING APPLICATIONS USING JAX-WS
This guide describes how to develop Web services using the standard JAX-WS APIs.

PART V. DEVELOPING APPLICATIONS USING JAX-WS

227

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

Abstract

There are many instances where you have Java code that already implements a set of functionality that
you want to expose as part of a service oriented application. You may also simply want to avoid using
WSDL to define your interface. Using JAX-WS annotations, you can add the information required to
service enable a Java class. You can also create a Service Endpoint Interface (SEI) that can be used in
place of a WSDL contract. If you want a WSDL contract, Apache CXF provides tools to generate a
contract from annotated Java code.

24.1. INTRODUCTION TO JAX-WS SERVICE DEVELOPMENT

To create a service starting from Java you must do the following:

1. Section 24.2, “Creating the SEI” a Service Endpoint Interface (SEI) that defines the methods
you want to expose as a service.

NOTE

You can work directly from a Java class, but working from an interface is the
recommended approach. Interfaces are better suited for sharing with the
developers who are responsible for developing the applications consuming your
service. The interface is smaller and does not provide any of the service’s
implementation details.

2. Section 24.3, “Annotating the Code” the required annotations to your code.

3. Section 24.4, “Generating WSDL” the WSDL contract for your service.

NOTE

If you intend to use the SEI as the service’s contract, it is not necessary to
generate a WSDL contract.

4. Chapter 31, Publishing a Service the service as a service provider.

24.2. CREATING THE SEI

Overview

The service endpoint interface (SEI) is the piece of Java code that is shared between a service
implementation and the consumers that make requests on that service. The SEI defines the methods
implemented by the service and provides details about how the service will be exposed as an endpoint.
When starting with a WSDL contract, the SEI is generated by the code generators. However, when
starting from Java, it is the developer’s responsibility to create the SEI. There are two basic patterns for
creating an SEI:

Green field development — In this pattern, you are developing a new service without any existing
Java code or WSDL. It is best to start by creating the SEI. You can then distribute the SEI to any
developers that are responsible for implementing the service providers and consumers that use
the SEI.

NOTE

Red Hat Fuse 7.5 Apache CXF Development Guide

228

NOTE

The recommended way to do green field service development is to start by
creating a WSDL contract that defines the service and its interfaces. See
Chapter 26, A Starting Point WSDL Contract .

 Service enablement — In this pattern, you typically have an existing set of functionality that is
implemented as a Java class, and you want to service enable it. This means that you must do
two things:

a. Create an SEI that contains only the operations that are going to be exposed as part of the
service.

b. Modify the existing Java class so that it implements the SEI.

NOTE

Although you can add the JAX-WS annotations to a Java class, it is not
recommended.

Writing the interface

The SEI is a standard Java interface. It defines a set of methods that a class implements. It can also
define a number of member fields and constants to which the implementing class has access.

In the case of an SEI the methods defined are intended to be mapped to operations exposed by a
service. The SEI corresponds to a wsdl:portType element. The methods defined by the SEI correspond
to wsdl:operation elements in the wsdl:portType element.

NOTE

JAX-WS defines an annotation that allows you to specify methods that are not exposed
as part of a service. However, the best practice is to leave those methods out of the SEI.

Example 24.1, “Simple SEI” shows a simple SEI for a stock updating service.

Example 24.1. Simple SEI

package com.fusesource.demo;

public interface quoteReporter
{
 public Quote getQuote(String ticker);
}

Implementing the interface

Because the SEI is a standard Java interface, the class that implements it is a standard Java class. If you
start with a Java class you must modify it to implement the interface. If you start with the SEI, the
implementation class implements the SEI.

Example 24.2, “Simple Implementation Class” shows a class for implementing the interface in

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

229

Example 24.2, “Simple Implementation Class” shows a class for implementing the interface in
Example 24.1, “Simple SEI” .

Example 24.2. Simple Implementation Class

package com.fusesource.demo;

import java.util.*;

public class stockQuoteReporter implements quoteReporter
{
 ...
public Quote getQuote(String ticker)
 {
 Quote retVal = new Quote();
 retVal.setID(ticker);

 retVal.setVal(Board.check(ticker));[1]

 Date retDate = new Date();
 retVal.setTime(retDate.toString());
 return(retVal);
 }
}

24.3. ANNOTATING THE CODE

24.3.1. Overview of JAX-WS Annotations

The JAX-WS annotations specify the metadata used to map the SEI to a fully specified service
definition. Among the information provided in the annotations are the following:

The target namespace for the service.

The name of the class used to hold the request message

The name of the class used to hold the response message

If an operation is a one way operation

The binding style the service uses

The name of the class used for any custom exceptions

The namespaces under which the types used by the service are defined

NOTE

Most of the annotations have sensible defaults and it is not necessary to provide values
for them. However, the more information you provide in the annotations, the better your
service definition is specified. A well-specified service definition increases the likelihood
that all parts of a distributed application will work together.

24.3.2. Required Annotations

Red Hat Fuse 7.5 Apache CXF Development Guide

230

Overview

In order to create a service from Java code you are only required to add one annotation to your code.
You must add the @WebService annotation on both the SEI and the implementation class.

The @WebService annotation

The @WebService annotation is defined by the javax.jws.WebService interface and it is placed on an
interface or a class that is intended to be used as a service. @WebService has the properties described
in Table 24.1, “@WebService Properties”

Table 24.1. @WebService Properties

Property Description

name Specifies the name of the service interface. This
property is mapped to the name attribute of the
wsdl:portType element that defines the service’s
interface in a WSDL contract. The default is to
append PortType to the name of the
implementation class. [a]

targetNamespace Specifies the target namespace where the service is
defined. If this property is not specified, the target
namespace is derived from the package name.

serviceName Specifies the name of the published service. This
property is mapped to the name attribute of the
wsdl:service element that defines the published
service. The default is to use the name of the
service’s implementation class.

wsdlLocation Specifies the URL where the service’s WSDL contract
is stored. This must be specified using a relative URL.
The default is the URL where the service is deployed.

endpointInterface Specifies the full name of the SEI that the
implementation class implements. This property is
only specified when the attribute is used on a service
implementation class.

portName Specifies the name of the endpoint at which the
service is published. This property is mapped to the
name attribute of the wsdl:port element that
specifies the endpoint details for a published service.
The default is the append Port to the name of the
service’s implementation class.

[a] When you generate WSDL from an SEI the interface’s name is used in place of the implementation class' name.

NOTE

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

231

NOTE

It is not necessary to provide values for any of the @WebService annotation’s
properties. However, it is recommended that you provide as much information as you can.

Annotating the SEI

The SEI requires that you add the @WebService annotation. Because the SEI is the contract that
defines the service, you should specify as much detail as possible about the service in the
@WebService annotation’s properties.

Example 24.3, “Interface with the @WebService Annotation” shows the interface defined in
Example 24.1, “Simple SEI” with the @WebService annotation.

Example 24.3. Interface with the @WebService Annotation

package com.fusesource.demo;

import javax.jws.*;

@WebService(name="quoteUpdater",
 targetNamespace="http:\\demos.redhat.com",
 serviceName="updateQuoteService",
 wsdlLocation="http:\\demos.redhat.com\quoteExampleService?wsdl",
 portName="updateQuotePort")
public interface quoteReporter
{
 public Quote getQuote(String ticker);
}

The @WebService annotation in Example 24.3, “Interface with the @WebService Annotation” does
the following:

Specifies that the value of the name attribute of the wsdl:portType element defining the service
interface is quoteUpdater.

Specifies that the target namespace of the service is http:\\demos.redhat.com.

Specifies that the value of the name of the wsdl:service element defining the published service is
updateQuoteService.

Specifies that the service will publish its WSDL contract at
http:\\demos.redhat.com\quoteExampleService?wsdl.

Specifies that the value of the name attribute of the wsdl:port element defining the endpoint exposing
the service is updateQuotePort.

Annotating the service implementation

In addition to annotating the SEI with the @WebService annotation, you also must annotate the service
implementation class with the @WebService annotation. When adding the annotation to the service
implementation class you only need to specify the endpointInterface property. As shown in
Example 24.4, “Annotated Service Implementation Class” the property must be set to the full name of
the SEI.

Red Hat Fuse 7.5 Apache CXF Development Guide

232

Example 24.4. Annotated Service Implementation Class

package org.eric.demo;

import javax.jws.*;

@WebService(endpointInterface="com.fusesource.demo.quoteReporter")
public class stockQuoteReporter implements quoteReporter
{
public Quote getQuote(String ticker)
 {
 ...
 }
}

24.3.3. Optional Annotations

Abstract

While the @WebService annotation is sufficient for service enabling a Java interface or a Java class, it
does not fully describe how the service will be exposed as a service provider. The JAX-WS programming
model uses a number of optional annotations for adding details about your service, such as the binding it
uses, to the Java code. You add these annotations to the service’s SEI.

The more details you provide in the SEI the easier it is for developers to implement applications that can
use the functionality it defines. It also makes the WSDL documents generated by the tools more
specific.

Overview

Defining the Binding Properties with Annotations

If you are using a SOAP binding for your service, you can use JAX-WS annotations to specify a number
of the bindings properties. These properties correspond directly to the properties you can specify in a
service’s WSDL contract. Some of the settings, such as the parameter style, can restrict how you
implement a method. These settings can also effect which annotations can be used when annotating
method parameters.

The @SOAPBinding annotation

The @SOAPBinding annotation is defined by the javax.jws.soap.SOAPBinding interface. It provides
details about the SOAP binding used by the service when it is deployed. If the @SOAPBinding
annotation is not specified, a service is published using a wrapped doc/literal SOAP binding.

You can put the @SOAPBinding annotation on the SEI and any of the SEI’s methods. When it is used
on a method, setting of the method’s @SOAPBinding annotation take precedence.

Table 24.2, “@SOAPBinding Properties” shows the properties for the @SOAPBinding annotation.

Table 24.2. @SOAPBinding Properties

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

233

Property Values Description

style Style.DOCUMENT (default)

Style.RPC

Specifies the style of the SOAP
message. If RPC style is specified,
each message part within the
SOAP body is a parameter or
return value and appears inside a
wrapper element within the
soap:body element. The
message parts within the wrapper
element correspond to operation
parameters and must appear in
the same order as the parameters
in the operation. If DOCUMENT
style is specified, the contents of
the SOAP body must be a valid
XML document, but its form is not
as tightly constrained.

use Use.LITERAL (default)

Use.ENCODED[a]

Specifies how the data of the
SOAP message is streamed.

parameterStyle [b] ParameterStyle.BARE

ParameterStyle.WRAPPED
(default)

Specifies how the method
parameters, which correspond to
message parts in a WSDL
contract, are placed into the
SOAP message body. If BARE is
specified, each parameter is
placed into the message body as
a child element of the message
root. If WRAPPED is specified, all
of the input parameters are
wrapped into a single element on
a request message and all of the
output parameters are wrapped
into a single element in the
response message.

[a] Use.ENCODED is not currently supported.

[b] If you set the style to RPC you must use the WRAPPED parameter style.

Document bare style parameters

Document bare style is the most direct mapping between Java code and the resulting XML
representation of the service. When using this style, the schema types are generated directly from the
input and output parameters defined in the operation’s parameter list.

You specify you want to use bare document\literal style by using the @SOAPBinding annotation with
its style property set to Style.DOCUMENT, and its parameterStyle property set to
ParameterStyle.BARE.

Red Hat Fuse 7.5 Apache CXF Development Guide

234

To ensure that an operation does not violate the restrictions of using document style when using bare
parameters, your operations must adhere to the following conditions:

The operation must have no more than one input or input/output parameter.

If the operation has a return type other than void, it must not have any output or input/output
parameters.

If the operation has a return type of void, it must have no more than one output or input/output
parameter.

NOTE

Any parameters that are placed in the SOAP header using the @WebParam annotation
or the @WebResult annotation are not counted against the number of allowed
parameters.

Document wrapped parameters

Document wrapped style allows a more RPC like mapping between the Java code and the resulting XML
representation of the service. When using this style, the parameters in the method’s parameter list are
wrapped into a single element by the binding. The disadvantage of this is that it introduces an extra-
layer of indirection between the Java implementation and how the messages are placed on the wire.

To specify that you want to use wrapped document\literal style use the @SOAPBinding annotation
with its style property set to Style.DOCUMENT, and its parameterStyle property set to
ParameterStyle.WRAPPED.

You have some control over how the wrappers are generated by using the the section called “The
@RequestWrapper annotation” annotation and the the section called “The @ResponseWrapper
annotation” annotation.

Example

Example 24.5, “Specifying a Document Bare SOAP Binding with the SOAP Binding Annotation” shows
an SEI that uses document bare SOAP messages.

Example 24.5. Specifying a Document Bare SOAP Binding with the SOAP Binding Annotation

package org.eric.demo;

import javax.jws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;

@WebService(name="quoteReporter")
@SOAPBinding(parameterStyle=ParameterStyle.BARE)
public interface quoteReporter
{
 ...
}

Overview

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

235

Defining Operation Properties with Annotations

When the runtime maps your Java method definitions into XML operation definitions it provides details
such as:

What the exchanged messages look like in XML

If the message can be optimized as a one way message

The namespaces where the messages are defined

The @WebMethod annotation

The @WebMethod annotation is defined by the javax.jws.WebMethod interface. It is placed on the
methods in the SEI. The @WebMethod annotation provides the information that is normally
represented in the wsdl:operation element describing the operation to which the method is associated.

Table 24.3, “@WebMethod Properties” describes the properties of the @WebMethod annotation.

Table 24.3. @WebMethod Properties

Property Description

operationName Specifies the value of the associated
wsdl:operation element’s name. The default value
is the name of the method.

action Specifies the value of the soapAction attribute of
the soap:operation element generated for the
method. The default value is an empty string.

exclude Specifies if the method should be excluded from the
service interface. The default is false.

The @RequestWrapper annotation

The @RequestWrapper annotation is defined by the javax.xml.ws.RequestWrapper interface. It is
placed on the methods in the SEI. The @RequestWrapper annotation specifies the Java class
implementing the wrapper bean for the method parameters of the request message starting a message
exchange. It also specifies the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the request messages.

Table 24.4, “@RequestWrapper Properties” describes the properties of the @RequestWrapper
annotation.

Table 24.4. @RequestWrapper Properties

Property Description

Red Hat Fuse 7.5 Apache CXF Development Guide

236

localName Specifies the local name of the wrapper element in
the XML representation of the request message. The
default value is either the name of the method, or the
value of the the section called “The @WebMethod
annotation” annotation’s operationName property.

targetNamespace Specifies the namespace under which the XML
wrapper element is defined. The default value is the
target namespace of the SEI.

className Specifies the full name of the Java class that
implements the wrapper element.

Property Description

NOTE

Only the className property is required.

IMPORTANT

If the method is also annotated with the @SOAPBinding annotation, and its
parameterStyle property is set to ParameterStyle.BARE, this annotation is ignored.

The @ResponseWrapper annotation

The @ResponseWrapper annotation is defined by the javax.xml.ws.ResponseWrapper interface. It is
placed on the methods in the SEI. The @ResponseWrapper specifies the Java class implementing the
wrapper bean for the method parameters in the response message in the message exchange. It also
specifies the element names, and namespaces, used by the runtime when marshaling and unmarshalling
the response messages.

Table 24.5, “@ResponseWrapper Properties” describes the properties of the @ResponseWrapper
annotation.

Table 24.5. @ResponseWrapper Properties

Property Description

localName Specifies the local name of the wrapper element in
the XML representation of the response message.
The default value is either the name of the method
with Response appended, or the value of the the
section called “The @WebMethod annotation”
annotation’s operationName property with
Response appended.

targetNamespace Specifies the namespace where the XML wrapper
element is defined. The default value is the target
namespace of the SEI.

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

237

className Specifies the full name of the Java class that
implements the wrapper element.

Property Description

NOTE

Only the className property is required.

IMPORTANT

If the method is also annotated with the @SOAPBinding annotation and its
parameterStyle property is set to ParameterStyle.BARE, this annotation is ignored.

The @WebFault annotation

The @WebFault annotation is defined by the javax.xml.ws.WebFault interface. It is placed on exceptions
that are thrown by your SEI. The @WebFault annotation is used to map the Java exception to a
wsdl:fault element. This information is used to marshall the exceptions into a representation that can be
processed by both the service and its consumers.

Table 24.6, “@WebFault Properties” describes the properties of the @WebFault annotation.

Table 24.6. @WebFault Properties

Property Description

name Specifies the local name of the fault element.

targetNamespace Specifies the namespace under which the fault
element is defined. The default value is the target
namespace of the SEI.

faultName Specifies the full name of the Java class that
implements the exception.

IMPORTANT

The name property is required.

The @Oneway annotation

The @Oneway annotation is defined by the javax.jws.Oneway interface. It is placed on the methods in
the SEI that will not require a response from the service. The @Oneway annotation tells the run time
that it can optimize the execution of the method by not waiting for a response and by not reserving any
resources to process a response.

This annotation can only be used on methods that meet the following criteria:

They return void

Red Hat Fuse 7.5 Apache CXF Development Guide

238

They have no parameters that implement the Holder interface

They do not throw any exceptions that can be passed back to a consumer

Example

Example 24.6, “SEI with Annotated Methods” shows an SEI with its methods annotated.

Example 24.6. SEI with Annotated Methods

package com.fusesource.demo;

import javax.jws.*;
import javax.xml.ws.*;

@WebService(name="quoteReporter")
public interface quoteReporter
{
 @WebMethod(operationName="getStockQuote")
 @RequestWrapper(targetNamespace="http://demo.redhat.com/types",
 className="java.lang.String")
 @ResponseWrapper(targetNamespace="http://demo.redhat.com/types",
 className="org.eric.demo.Quote")
 public Quote getQuote(String ticker);
}

Overview

Defining Parameter Properties with Annotations

The method parameters in the SEI correspond to the wsdl:message elements and their wsdl:part
elements. JAX-WS provides annotations that allow you to describe the wsdl:part elements that are
generated for the method parameters.

The @WebParam annotation

The @WebParam annotation is defined by the javax.jws.WebParam interface. It is placed on the
parameters of the methods defined in the SEI. The @WebParam annotation allows you to specify the
direction of the parameter, if the parameter will be placed in the SOAP header, and other properties of
the generated wsdl:part.

Table 24.7, “@WebParam Properties” describes the properties of the @WebParam annotation.

Table 24.7. @WebParam Properties

Property Values Description

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

239

name Specifies the name of the
parameter as it appears in the
generated WSDL document. For
RPC bindings, this is the name of
the wsdl:part representing the
parameter. For document
bindings, this is the local name of
the XML element representing
the parameter. Per the JAX-WS
specification, the default is argN,
where N is replaced with the zero-
based argument index (i.e., arg0,
arg1, etc.).

targetNamespace Specifies the namespace for the
parameter. It is only used with
document bindings where the
parameter maps to an XML
element. The default is to use the
service’s namespace.

mode Mode.IN (default)[a]

Mode.OUT

Mode.INOUT

Specifies the direction of the
parameter.

header false (default)

true

Specifies if the parameter is
passed as part of the SOAP
header.

partName Specifies the value of the name
attribute of the wsdl:part
element for the parameter. This
property is used for document
style SOAP bindings.

[a] Any parameter that implements the Holder interface is mapped to Mode.INOUT by default.

Property Values Description

The @WebResult annotation

The @WebResult annotation is defined by the javax.jws.WebResult interface. It is placed on the
methods defined in the SEI. The @WebResult annotation allows you to specify the properties of the
wsdl:part that is generated for the method’s return value.

Table 24.8, “@WebResult Properties” describes the properties of the @WebResult annotation.

Table 24.8. @WebResult Properties

Red Hat Fuse 7.5 Apache CXF Development Guide

240

Property Description

name Specifies the name of the return value as it appears
in the generated WSDL document. For RPC
bindings, this is the name of the wsdl:part
representing the return value. For document
bindings, this is the local name of the XML element
representing the return value. The default value is
return.

targetNamespace Specifies the namespace for the return value. It is
only used with document bindings where the return
value maps to an XML element. The default is to use
the service’s namespace.

header Specifies if the return value is passed as part of the
SOAP header.

partName Specifies the value of the name attribute of the
wsdl:part element for the return value. This
property is used for document style SOAP bindings.

Example

Example 24.7, “Fully Annotated SEI” shows an SEI that is fully annotated.

Example 24.7. Fully Annotated SEI

package com.fusesource.demo;

import javax.jws.*;
import javax.xml.ws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;
import javax.jws.WebParam.*;

@WebService(targetNamespace="http://demo.redhat.com",
 name="quoteReporter")
@SOAPBinding(style=Style.RPC, use=Use.LITERAL)
public interface quoteReporter
{
 @WebMethod(operationName="getStockQuote")
 @RequestWrapper(targetNamespace="http://demo.redhat.com/types",
 className="java.lang.String")
 @ResponseWrapper(targetNamespace="http://demo.redhat.com/types",
 className="org.eric.demo.Quote")
 @WebResult(targetNamespace="http://demo.redhat.com/types",
 name="updatedQuote")
 public Quote getQuote(
 @WebParam(targetNamespace="http://demo.redhat.com/types",
 name="stockTicker",
 mode=Mode.IN)

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

241

 String ticker
);
}

24.3.4. Apache CXF Annotations

24.3.4.1. WSDL Documentation

@WSDLDocumentation annotation

The @WSDLDocumentation annotation is defined by the
org.apache.cxf.annotations.WSDLDocumentation interface. It can be placed on the SEI or the SEI
methods.

This annotation enables you to add documentation, which will then appear within wsdl:documentation
elements after the SEI is converted to WSDL. By default, the documentation elements appear inside the
port type, but you can specify the placement property to make the documentation appear at other
locations in the WSDL file. Section 24.3.4.2, “@WSDLDocumentation properties” shows the properties
supported by the @WSDLDocumentation annotation.

24.3.4.2. @WSDLDocumentation properties

Property Description

value (Required) A string containing the documentation
text.

placement (Optional) Specifies where in the WSDL file this
documentation is to appear. For the list of possible
placement values, see the section called “Placement
in the WSDL contract”.

faultClass (Optional) If the placement is set to be
FAULT_MESSAGE,
PORT_TYPE_OPERATION_FAULT, or
BINDING_OPERATION_FAULT, you must also
set this property to the Java class that represents
the fault.

@WSDLDocumentationCollection annotation

The @WSDLDocumentationCollection annotation is defined by the
org.apache.cxf.annotations.WSDLDocumentationCollection interface. It can be placed on the SEI or the
SEI methods.

This annotation is used to insert multiple documentation elements at a single placement location or at
various placement locations.

Placement in the WSDL contract

To specify where the documentation should appear in the WSDL contract, you can specify the

Red Hat Fuse 7.5 Apache CXF Development Guide

242

To specify where the documentation should appear in the WSDL contract, you can specify the
placement property, which is of type WSDLDocumentation.Placement. The placement can have one
of the following values:

WSDLDocumentation.Placement.BINDING

WSDLDocumentation.Placement.BINDING_OPERATION

WSDLDocumentation.Placement.BINDING_OPERATION_FAULT

WSDLDocumentation.Placement.BINDING_OPERATION_INPUT

WSDLDocumentation.Placement.BINDING_OPERATION_OUTPUT

WSDLDocumentation.Placement.DEFAULT

WSDLDocumentation.Placement.FAULT_MESSAGE

WSDLDocumentation.Placement.INPUT_MESSAGE

WSDLDocumentation.Placement.OUTPUT_MESSAGE

WSDLDocumentation.Placement.PORT_TYPE

WSDLDocumentation.Placement.PORT_TYPE_OPERATION

WSDLDocumentation.Placement.PORT_TYPE_OPERATION_FAULT

WSDLDocumentation.Placement.PORT_TYPE_OPERATION_INPUT

WSDLDocumentation.Placement.PORT_TYPE_OPERATION_OUTPUT

WSDLDocumentation.Placement.SERVICE

WSDLDocumentation.Placement.SERVICE_PORT

WSDLDocumentation.Placement.TOP

Example of @WSDLDocumentation

Section 24.3.4.3, “Using @WSDLDocumentation” shows how to add a @WSDLDocumentation
annotation to the SEI and to one of its methods.

24.3.4.3. Using @WSDLDocumentation

@WebService
@WSDLDocumentation("A very simple example of an SEI")
public interface HelloWorld {
 @WSDLDocumentation("A traditional form of greeting")
 String sayHi(@WebParam(name = "text") String text);
}

When WSDL, shown in Section 24.3.4.4, “WSDL generated with documentation” , is generated from the
SEI in Section 24.3.4.3, “Using @WSDLDocumentation”, the default placements of the documentation
elements are, respectively, PORT_TYPE and PORT_TYPE_OPERATION.

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

243

24.3.4.4. WSDL generated with documentation

<wsdl:definitions ... >
 ...
 <wsdl:portType name="HelloWorld">
 <wsdl:documentation>A very simple example of an SEI</wsdl:documentation>
 <wsdl:operation name="sayHi">
 <wsdl:documentation>A traditional form of greeting</wsdl:documentation>
 <wsdl:input name="sayHi" message="tns:sayHi">
 </wsdl:input>
 <wsdl:output name="sayHiResponse" message="tns:sayHiResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

Example of @WSDLDocumentationCollection

Section 24.3.4.5, “Using @WSDLDocumentationCollection” shows how to add a
@WSDLDocumentationCollection annotation to an SEI.

24.3.4.5. Using @WSDLDocumentationCollection

@WebService
@WSDLDocumentationCollection(
 {
 @WSDLDocumentation("A very simple example of an SEI"),
 @WSDLDocumentation(value = "My top level documentation",
 placement = WSDLDocumentation.Placement.TOP),
 @WSDLDocumentation(value = "Binding documentation",
 placement = WSDLDocumentation.Placement.BINDING)
 }
)
public interface HelloWorld {
 @WSDLDocumentation("A traditional form of Geeky greeting")
 String sayHi(@WebParam(name = "text") String text);
}

24.3.4.6. Schema Validation of Messages

@SchemaValidation annotation

The @SchemaValidation annotation is defined by the org.apache.cxf.annotations.SchemaValidation
interface. It can be placed on the SEI and on individual SEI methods.

This annotation turns on schema validation of the XML messages sent to this endpoint. This can be
useful for testing purposes, when you suspect there is a problem with the format of incoming XML
messages. By default, validation is disabled, because it has a significant impact on performance.

Schema validation type

The schema validation behaviour is controlled by the type parameter, whose value is an enumeration of

Red Hat Fuse 7.5 Apache CXF Development Guide

244

The schema validation behaviour is controlled by the type parameter, whose value is an enumeration of
org.apache.cxf.annotations.SchemaValidation.SchemaValidationType type. Section 24.3.4.7,
“Schema Validation Type Values” shows the list of available validation types.

24.3.4.7. Schema Validation Type Values

Type Description

IN Apply schema validation to incoming messages on
client and server.

OUT Apply schema validation to outgoing messages on
client and server.

BOTH Apply schema validation to both incoming and
outgoing messages on client and server.

NONE All schema validation is disabled.

REQUEST Apply schema validation to Request messages—that
is, causing validation to be applied to outgoing client
messages and to incoming server messages.

RESPONSE Apply schema validation to Response messages—that
is, causing validation to be applied to incoming client
messages, and outgoing server messages.

Example

The following example shows how to enable schema validation of messages for endpoints based on the
MyService SEI. Note how the annotation can be applied to the SEI as a whole, as well as to individual
methods in the SEI.

@WebService
@SchemaValidation(type = SchemaValidationType.BOTH)
public interface MyService {
 Foo validateBoth(Bar data);

 @SchemaValidation(type = SchemaValidationType.NONE)
 Foo validateNone(Bar data);

 @SchemaValidation(type = SchemaValidationType.IN)
 Foo validateIn(Bar data);

 @SchemaValidation(type = SchemaValidationType.OUT)
 Foo validateOut(Bar data);

 @SchemaValidation(type = SchemaValidationType.REQUEST)
 Foo validateRequest(Bar data);

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

245

 @SchemaValidation(type = SchemaValidationType.RESPONSE)
 Foo validateResponse(Bar data);
}

24.3.4.8. Specifying the Data Binding

@DataBinding annotation

The @DataBinding annotation is defined by the org.apache.cxf.annotations.DataBinding interface. It is
placed on the SEI.

This annotation is used to associate a data binding with the SEI, replacing the default JAXB data
binding. The value of the @DataBinding annotation must be the class that provides the data binding,
ClassName.class.

Supported data bindings

The following data bindings are currently supported by Apache CXF:

org.apache.cxf.jaxb.JAXBDataBinding
(Default) The standard JAXB data binding.

org.apache.cxf.sdo.SDODataBinding
The Service Data Objects (SDO) data binding is based on the Apache Tuscany SDO
implementation. If you want to use this data binding in the context of a Maven build, you need to
add a dependency on the cxf-rt-databinding-sdo artifact.

org.apache.cxf.aegis.databinding.AegisDatabinding
If you want to use this data binding in the context of a Maven build, you need to add a
dependency on the cxf-rt-databinding-aegis artifact.

org.apache.cxf.xmlbeans.XmlBeansDataBinding
If you want to use this data binding in the context of a Maven build, you need to add a
dependency on the cxf-rt-databinding-xmlbeans artifact.

org.apache.cxf.databinding.source.SourceDataBinding
This data binding belongs to the Apache CXF core.

org.apache.cxf.databinding.stax.StaxDataBinding
This data binding belongs to the Apache CXF core.

Example

Section 24.3.4.9, “Setting the data binding” shows how to associate the SDO binding with the
HelloWorld SEI

24.3.4.9. Setting the data binding

@WebService
@DataBinding(org.apache.cxf.sdo.SDODataBinding.class)
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Red Hat Fuse 7.5 Apache CXF Development Guide

246

https://jaxb.dev.java.net/
http://tuscany.apache.org/sdo-overview.html

24.3.4.10. Compressing Messages

@GZIP annotation

The @GZIP annotation is defined by the org.apache.cxf.annotations.GZIP interface. It is placed on the
SEI.

Enables GZIP compression of messages. GZIP is a negotiated enhancement. That is, an initial request
from a client will not be gzipped, but an Accept header will be added and, if the server supports GZIP
compression, the response will be gzipped and any subsequent requests will be also.

Section 24.3.4.11, “@GZIP Properties” shows the optional properties supported by the @GZIP
annotation.

24.3.4.11. @GZIP Properties

Property Description

threshold Messages smaller than the size specified by this
property are not gzipped. Default is -1 (no limit).

@FastInfoset

The @FastInfoset annotation is defined by the org.apache.cxf.annotations.FastInfoset interface. It is
placed on the SEI.

Enables the use of FastInfoset format for messages. FastInfoset is a binary encoding format for XML,
which aims to optimize both the message size and the processing performance of XML messages. For
more details, see the following Sun article on Fast Infoset .

FastInfoset is a negotiated enhancement. That is, an initial request from a client will not be in FastInfoset
format, but an Accept header will be added and, if the server supports FastInfoset, the response will be
in FastInfoset and any subsequent requests will be also.

Section 24.3.4.12, “@FastInfoset Properties” shows the optional properties supported by the
@FastInfoset annotation.

24.3.4.12. @FastInfoset Properties

Property Description

force A boolean property that forces the use of FastInfoset
format, instead of negotiating. When true, force the
use of FastInfoset format; otherwise, negotiate.
Default is false.

Example of @GZIP

Section 24.3.4.13, “Enabling GZIP” shows how to enable GZIP compression for the HelloWorld SEI.

24.3.4.13. Enabling GZIP

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

247

http://www.oracle.com/technetwork/java/fastinfoset-139262.html

@WebService
@GZIP
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Exampe of @FastInfoset

Section 24.3.4.14, “Enabling FastInfoset” shows how to enable the FastInfoset format for the
HelloWorld SEI.

24.3.4.14. Enabling FastInfoset

@WebService
@FastInfoset
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

24.3.4.15. Enable Logging on an Endpoint

@Logging annotation

The @Logging annotation is defined by the org.apache.cxf.annotations.Logging interface. It is placed
on the SEI.

This annotation enables logging for all endpoints associated with the SEI. Section 24.3.4.16, “@Logging
Properties” shows the optional properties you can set in this annotation.

24.3.4.16. @Logging Properties

Property Description

limit Specifies the size limit, beyond which the message is
truncated in the logs. Default is 64K.

inLocation Specifies the location to log incoming messages. Can
be either <stderr>, <stdout>, <logger>, or a
filename. Default is <logger>.

outLocation Specifies the location to log outgoing messages. Can
be either <stderr>, <stdout>, <logger>, or a
filename. Default is <logger>.

Example

Section 24.3.4.17, “Logging configuration using annotations” shows how to enable logging for the
HelloWorld SEI, where incoming messages are sent to <stdout> and outgoing messages are sent to
<logger>.

Red Hat Fuse 7.5 Apache CXF Development Guide

248

24.3.4.17. Logging configuration using annotations

@WebService
@Logging(limit=16000, inLocation="<stdout>")
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

24.3.4.18. Adding Properties and Policies to an Endpoint

Abstract

Both properties and policies can be used to associate configuration data with an endpoint. The essential
difference between them is that properties are a Apache CXF specific configuration mechanism
whereas policies are a standard WSDL configuration mechanism. Policies typically originate from WS
specifications and standards and they are normally set by defining wsdl:policy elements that appear in
the WSDL contract. By contrast, properties are Apache CXF-specific and they are normally set by
defining jaxws:properties elements in the Apache CXF Spring configuration file.

It is also possible, however, to define property settings and WSDL policy settings in Java using
annotations, as described here.

24.3.4.19. Adding properties

@EndpointProperty annotation

The @EndpointProperty annotation is defined by the org.apache.cxf.annotations.EndpointProperty
interface. It is placed on the SEI.

This annotation adds Apache CXF-specific configuration settings to an endpoint. Endpoint properties
can also be specified in a Spring configuration file. For example, to configure WS-Security on an
endpoint, you could add endpoint properties using the jaxws:properties element in a Spring
configuration file as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ... >

 <jaxws:endpoint
 id="MyService"
 address="https://localhost:9001/MyService"
 serviceName="interop:MyService"
 endpointName="interop:MyServiceEndpoint"
 implementor="com.foo.MyService">

 <jaxws:properties>
 <entry key="ws-security.callback-handler" value="interop.client.UTPasswordCallback"/>
 <entry key="ws-security.signature.properties" value="etc/keystore.properties"/>
 <entry key="ws-security.encryption.properties" value="etc/truststore.properties"/>
 <entry key="ws-security.encryption.username" value="useReqSigCert"/>
 </jaxws:properties>

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

249

 </jaxws:endpoint>
</beans>

Alternatively, you could specify the preceding configuration settings in Java by adding
@EndpointProperty annotations to the SEI, as shown in Section 24.3.4.20, “Configuring WS-Security
Using @EndpointProperty Annotations”.

24.3.4.20. Configuring WS-Security Using @EndpointProperty Annotations

@WebService
@EndpointProperty(name="ws-security.callback-handler"
value="interop.client.UTPasswordCallback")
@EndpointProperty(name="ws-security.signature.properties" value="etc/keystore.properties")
@EndpointProperty(name="ws-security.encryption.properties" value="etc/truststore.properties")
@EndpointProperty(name="ws-security.encryption.username" value="useReqSigCert")
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

@EndpointProperties annotation

The @EndpointProperties annotation is defined by the
org.apache.cxf.annotations.EndpointProperties interface. It is placed on the SEI.

This annotation provides a way of grouping multiple @EndpointProperty annotations into a list. Using
@EndpointProperties, it is possible to re-write Section 24.3.4.20, “Configuring WS-Security Using
@EndpointProperty Annotations” as shown in Section 24.3.4.21, “Configuring WS-Security Using an
@EndpointProperties Annotation”.

24.3.4.21. Configuring WS-Security Using an @EndpointProperties Annotation

@WebService
@EndpointProperties(
 {
 @EndpointProperty(name="ws-security.callback-handler"
value="interop.client.UTPasswordCallback"),
 @EndpointProperty(name="ws-security.signature.properties" value="etc/keystore.properties"),
 @EndpointProperty(name="ws-security.encryption.properties" value="etc/truststore.properties"),
 @EndpointProperty(name="ws-security.encryption.username" value="useReqSigCert")
})
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

24.3.4.22. Adding policies

@Policy annotation

The @Policy annotation is defined by the org.apache.cxf.annotations.Policy interface. It can be
placed on the SEI or the SEI methods.

This annotation is used to associate a WSDL policy with an SEI or an SEI method. The policy is specified

Red Hat Fuse 7.5 Apache CXF Development Guide

250

by providing a URI that references an XML file containing a standard wsdl:policy element. If a WSDL
contract is to be generated from the SEI (for example, using the java2ws command-line tool), you can
specify whether or not you want to include this policy in the WSDL.

Section 24.3.4.23, “@Policy Properties” shows the properties supported by the @Policy annotation.

24.3.4.23. @Policy Properties

Property Description

uri (Required) The location of the file containing the
policy definition.

includeInWSDL (Optional) Whether to include the policy in the
generated contract, when generating WSDL. Default
is true.

placement (Optional) Specifies where in the WSDL file this
documentation is to appear. For the list of possible
placement values, see the section called “Placement
in the WSDL contract”.

faultClass (Optional) If the placement is set to be
BINDING_OPERATION_FAULT or
PORT_TYPE_OPERATION_FAULT, you must
also set this property to specify which fault this policy
applies to. The value is the Java class that represents
the fault.

@Policies annotation

The @Policies annotation is defined by the org.apache.cxf.annotations.Policies interface. It can be
placed on the SEI or thse SEI methods.

This annotation provides a way of grouping multiple @Policy annotations into a list.

Placement in the WSDL contract

To specify where the policy should appear in the WSDL contract, you can specify the placement
property, which is of type Policy.Placement. The placement can have one of the following values:

Policy.Placement.BINDING
Policy.Placement.BINDING_OPERATION
Policy.Placement.BINDING_OPERATION_FAULT
Policy.Placement.BINDING_OPERATION_INPUT
Policy.Placement.BINDING_OPERATION_OUTPUT
Policy.Placement.DEFAULT
Policy.Placement.PORT_TYPE
Policy.Placement.PORT_TYPE_OPERATION
Policy.Placement.PORT_TYPE_OPERATION_FAULT
Policy.Placement.PORT_TYPE_OPERATION_INPUT

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

251

Policy.Placement.PORT_TYPE_OPERATION_OUTPUT
Policy.Placement.SERVICE
Policy.Placement.SERVICE_PORT

Example of @Policy

The following example shows how to associate WSDL policies with the HelloWorld SEI and how to
associate a policy with the sayHi method. The policies themselves are stored in XML files in the file
system, under the annotationpolicies directory.

@WebService
@Policy(uri = "annotationpolicies/TestImplPolicy.xml",
 placement = Policy.Placement.SERVICE_PORT),
@Policy(uri = "annotationpolicies/TestPortTypePolicy.xml",
 placement = Policy.Placement.PORT_TYPE)
public interface HelloWorld {
 @Policy(uri = "annotationpolicies/TestOperationPTPolicy.xml",
 placement = Policy.Placement.PORT_TYPE_OPERATION),
 String sayHi(@WebParam(name = "text") String text);
}

Example of @Policies

You can use the @Policies annotation to group multiple @Policy annotations into a list, as shown in
the following example:

@WebService
@Policies({
 @Policy(uri = "annotationpolicies/TestImplPolicy.xml",
 placement = Policy.Placement.SERVICE_PORT),
 @Policy(uri = "annotationpolicies/TestPortTypePolicy.xml",
 placement = Policy.Placement.PORT_TYPE)
})
public interface HelloWorld {
 @Policy(uri = "annotationpolicies/TestOperationPTPolicy.xml",
 placement = Policy.Placement.PORT_TYPE_OPERATION),
 String sayHi(@WebParam(name = "text") String text);
}

24.4. GENERATING WSDL

Using Maven

Once your code is annotated, you can generate a WSDL contract for your service using the java2ws
Maven plug-in’s -wsdl option. For a detailed listing of options for the java2ws Maven plug-in see
Section 44.3, “java2ws”.

Example 24.8, “Generating WSDL from Java” shows how to set up the java2ws Maven plug-in to
generate WSDL.

Example 24.8. Generating WSDL from Java

<plugin>

Red Hat Fuse 7.5 Apache CXF Development Guide

252

 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <configuration>
 <className>className</className>
 <genWsdl>true</genWsdl>
 </configuration>
 <goals>
 <goal>java2ws</goal>
 </goals>
 </execution>
 </executions>
</plugin>

NOTE

Replace the value of className with the qualified className.

Example

Example 24.9, “Generated WSDL from an SEI” shows the WSDL contract that is generated for the SEI
shown in Example 24.7, “Fully Annotated SEI”.

Example 24.9. Generated WSDL from an SEI

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://demo.eric.org/"
 xmlns:tns="http://demo.eric.org/"
 xmlns:ns1=""
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns2="http://demo.eric.org/types"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <xsd:schema>
 <xs:complexType name="quote">
 <xs:sequence>
 <xs:element name="ID" type="xs:string" minOccurs="0"/>
 <xs:element name="time" type="xs:string" minOccurs="0"/>
 <xs:element name="val" type="xs:float"/>
 </xs:sequence>
 </xs:complexType>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="getStockQuote">
 <wsdl:part name="stockTicker" type="xsd:string">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getStockQuoteResponse">

CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT

253

 <wsdl:part name="updatedQuote" type="tns:quote">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="quoteReporter">
 <wsdl:operation name="getStockQuote">
 <wsdl:input name="getQuote" message="tns:getStockQuote">
 </wsdl:input>
 <wsdl:output name="getQuoteResponse" message="tns:getStockQuoteResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="quoteReporterBinding" type="tns:quoteReporter">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="getStockQuote">
 <soap:operation style="rpc" />
 <wsdl:input name="getQuote">
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output name="getQuoteResponse">
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="quoteReporterService">
 <wsdl:port name="quoteReporterPort" binding="tns:quoteReporterBinding">
 <soap:address location="http://localhost:9000/quoteReporterService" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

[1] Board is an assumed class whose implementation is left to the reader.

Red Hat Fuse 7.5 Apache CXF Development Guide

254

CHAPTER 25. DEVELOPING A CONSUMER WITHOUT A WSDL
CONTRACT

Abstract

You do not need a WSDL contract to develop a service consumer. You can create a service consumer
from an annotated SEI. Along with the SEI you need to know the address at which the endpoint exposing
the service is published, the QName of the service element that defines the endpoint exposing the
service, and the QName of the port element defining the endpoint on which your consumer makes
requests. This information can be specified in the SEI’s annotations or provided separately.

25.1. JAVA-FIRST CONSUMER DEVELOPMENT

To create a consumer without a WSDL contract you must do the following:

1. Create a Service object for the service on which the consumer will invoke operations.

2. Add a port to the Service object.

3. Get a proxy for the service using the Service object’s getPort() method.

4. Implement the consumer’s business logic.

25.2. CREATING A SERVICE OBJECT

Overview

The javax.xml.ws.Service class represents the wsdl:service element which contains the definition of
all of the endpoints that expose a service. As such, it provides methods that allow you to get endpoints,
defined by wsdl:port elements, that are proxies for making remote invocations on a service.

NOTE

The Service class provides the abstractions that allow the client code to work with Java
types as opposed to working with XML documents.

The create() methods

The Service class has two static create() methods that can be used to create a new Service object. As
shown in Example 25.1, “Service create() Methods”, both of the create() methods take the QName of
the wsdl:service element the Service object will represent, and one takes a URI specifying the location
of the WSDL contract.

NOTE

All services publish their WSDL contracts. For SOAP/HTTP services the URI is usually the
URI for the service appended with ?wsdl.

Example 25.1. Service create() Methods

public staticServicecreateURLwsdlLocationQNameserviceNameWebServiceExceptionpublic
staticServicecreateQNameserviceNameWebServiceException

CHAPTER 25. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

255

The value of the serviceName parameter is a QName. The value of its namespace part is the target
namespace of the service. The service’s target namespace is specified in the targetNamespace
property of the @WebService annotation. The value of the QName’s local part is the value of
wsdl:service element’s name attribute. You can determine this value in one of the following ways: . It is
specified in the serviceName property of the @WebService annotation.

1. You append Service to the value of the name property of the @WebService annotation.

2. You append Service to the name of the SEI.

IMPORTANT

Programmatically-created CXF consumers deployed in OSGi environments require
special handling to avoid the likelihood of incurring ClassNotFoundExceptions. For each
bundle that contains programmatically-created CXF consumers, you need to create a
singleton CXF default bus and ensure that all of the bundle’s CXF consumers use it.
Without this safeguard, one bundle could be assigned the CXF default bus created in
another bundle, which could cause the inheriting bundle to fail.

For example, suppose bundle A did not explicitly set a CXF default bus and was assigned
the CXF default bus created in bundle B. If the CXF bus in bundle A needed to be
configured with additional features (such as SSL or WS-Security) or needed to load
certain classes or resources from the application in bundle A, it would fail. This is so
because the CXF bus instance sets a thread context class loader (TCCL) as the bundle
class loader of the bundle that created it (in this case bundle B). Furthermore, certain
frameworks, such as wss4j (implements WS-Security in CXF) use the TCCL to load
resources, such as calback handler classes or other property files, from inside the bundle.
Because bundle A is assigned bundle B’s default CXF bus and it’s TCCL, the wss4j layer
cannot load the required resources from bundle A, which results in
ClassNotFoundException errors.

To create the singleton CXF default bus, insert this code:

BusFactory.setThreadDefaultBus(BusFactory.newInstance().createBus());

at the beginning of the main method that creates the service object, as shown in the
section called “Example”.

Example

Example 25.2, “Creating a Service Object” shows code for creating a Service object for the SEI shown
in Example 24.7, “Fully Annotated SEI”.

Example 25.2. Creating a Service Object

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])

Red Hat Fuse 7.5 Apache CXF Development Guide

256

 {
 BusFactory.setThreadDefaultBus(BusFactory.newInstance().createBus());
 QName serviceName = new QName("http://demo.redhat.com", "stockQuoteReporter");
 Service s = Service.create(serviceName);
 ...
 }
}

The code in Example 25.2, “Creating a Service Object” does the following:

Creates a singleton CXF default bus that is available to all CXF consumers of the service.

Builds the QName for the service using the targetNamespace property and the name property of the
@WebService annotation.

Calls the single parameter create() method to create a new Service object.

NOTE

Using the single parameter create() frees you from having any dependencies on
accessing a WSDL contract.

25.3. ADDING A PORT TO A SERVICE

Overview

The endpoint information for a service is defined in a wsdl:port element, and the Service object creates
a proxy instance for each of the endpoints defined in a WSDL contract, if one is specified. If you do not
specify a WSDL contract when you create your Service object, the Service object has no information
about the endpoints that implement your service, and therefore cannot create any proxy instances. In
this case, you must provide the Service object with the information needed to represent a wsdl:port
element using the addPort() method.

The addPort() method

The Service class defines an addPort() method, shown in Example 25.3, “The addPort() Method”, that
is used in cases where there is no WSDL contract available to the consumer implementation. The
addPort() method allows you to give a Service object the information, which is typically stored in a
wsdl:port element, necessary to create a proxy for a service implementation.

Example 25.3. The addPort() Method

addPortQNameportNameStringbindingIdStringendpointAddressWebServiceException

The value of the portName is a QName. The value of its namespace part is the target namespace of the
service. The service’s target namespace is specified in the targetNamespace property of the
@WebService annotation. The value of the QName’s local part is the value of wsdl:port element’s
name attribute. You can determine this value in one of the following ways:

1. Specify it in the portName property of the @WebService annotation.

2. Append Port to the value of the name property of the @WebService annotation.

CHAPTER 25. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

257

3. Append Port to the name of the SEI.

The value of the bindingId parameter is a string that uniquely identifies the type of binding used by the
endpoint. For a SOAP binding you use the standard SOAP namespace:
http://schemas.xmlsoap.org/soap/. If the endpoint is not using a SOAP binding, the value of the
bindingId parameter is determined by the binding developer. The value of the endpointAddress
parameter is the address where the endpoint is published. For a SOAP/HTTP endpoint, the address is an
HTTP address. Transports other than HTTP use different address schemes.

Example

Example 25.4, “Adding a Port to a Service Object” shows code for adding a port to the Service object
created in Example 25.2, “Creating a Service Object”.

Example 25.4. Adding a Port to a Service Object

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 ...
 QName portName = new QName("http://demo.redhat.com", "stockQuoteReporterPort");
 s.addPort(portName,
 "http://schemas.xmlsoap.org/soap/",
 "http://localhost:9000/StockQuote");
 ...
 }
}

The code in Example 25.4, “Adding a Port to a Service Object” does the following:

Creates the QName for the portName parameter.

Calls the addPort() method.

Specifies that the endpoint uses a SOAP binding.

Specifies the address where the endpoint is published.

25.4. GETTING A PROXY FOR AN ENDPOINT

Overview

A service proxy is an object that provides all of the methods exposed by a remote service and handles all
of the details required to make the remote invocations. The Service object provides service proxies for
all of the endpoints it is aware of through the getPort() method. Once you have a service proxy, you can
invoke its methods. The proxy forwards the invocation to the remote service endpoint using the
connection details specified in the service’s contract.

Red Hat Fuse 7.5 Apache CXF Development Guide

258

http://schemas.xmlsoap.org/soap/

The getPort() method

The getPort() method, shown in Example 25.5, “The getPort() Method”, returns a service proxy for the
specified endpoint. The returned proxy is of the same class as the SEI.

Example 25.5. The getPort() Method

public<T> TgetPortQNameportNameClass<T>serviceEndpointInterfaceWebServiceException

The value of the portName parameter is a QName that identifies the wsdl:port element that defines
the endpoint for which the proxy is created. The value of the serviceEndpointInterface parameter is
the fully qualified name of the SEI.

NOTE

When you are working without a WSDL contract the value of the portName parameter is
typically the same as the value used for the portName parameter when calling addPort().

Example

Example 25.6, “Getting a Service Proxy” shows code for getting a service proxy for the endpoint added
in Example 25.4, “Adding a Port to a Service Object”.

Example 25.6. Getting a Service Proxy

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 ...
 quoteReporter proxy = s.getPort(portName, quoteReporter.class);
 ...
 }
}

25.5. IMPLEMENTING THE CONSUMER’S BUSINESS LOGIC

Overview

Once you instantiate a service proxy for a remote endpoint, you can invoke its methods as if it were a
local object. The calls block until the remote method completes.

NOTE

If a method is annotated with the @OneWay annotation, the call returns immediately.

CHAPTER 25. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

259

Example

Example 25.7, “Consumer Implemented without a WSDL Contract” shows a consumer for the service
defined in Example 24.7, “Fully Annotated SEI”.

Example 25.7. Consumer Implemented without a WSDL Contract

package com.fusesource.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 QName serviceName = new QName("http://demo.eric.org", "stockQuoteReporter");
 Service s = Service.create(serviceName);

 QName portName = new QName("http://demo.eric.org", "stockQuoteReporterPort");
 s.addPort(portName, "http://schemas.xmlsoap.org/soap/",
"http://localhost:9000/EricStockQuote");

 quoteReporter proxy = s.getPort(portName, quoteReporter.class);

 Quote quote = proxy.getQuote("ALPHA");
 System.out.println("Stock "+quote.getID()+" is worth "+quote.getVal()+" as of
"+quote.getTime());
 }
}

The code in Example 25.7, “Consumer Implemented without a WSDL Contract” does the following:

Creates a Service object.

Adds an endpoint definition to the Service object.

Gets a service proxy from the Service object.

Invokes an operation on the service proxy.

Red Hat Fuse 7.5 Apache CXF Development Guide

260

CHAPTER 26. A STARTING POINT WSDL CONTRACT

26.1. SAMPLE WSDL CONTRACT

Example 26.1, “HelloWorld WSDL Contract” shows the HelloWorld WSDL contract. This contract defines
a single interface, Greeter, in the wsdl:portType element. The contract also defines the endpoint which
will implement the service in the wsdl:port element.

Example 26.1. HelloWorld WSDL Contract

<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"
 targetNamespace="http://apache.org/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://apache.org/hello_world_soap_http"
 xmlns:x1="http://apache.org/hello_world_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema targetNamespace="http://apache.org/hello_world_soap_http/types"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <element name="sayHiResponse">
 <complexType>
 <sequence>
 <element name="responseType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMe">
 <complexType>
 <sequence>
 <element name="requestType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMeResponse">
 <complexType>
 <sequence>
 <element name="responseType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMeOneWay">
 <complexType>
 <sequence>
 <element name="requestType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="pingMe">
 <complexType/>
 </element>
 <element name="pingMeResponse">

CHAPTER 26. A STARTING POINT WSDL CONTRACT

261

 <complexType/>
 </element>
 <element name="faultDetail">
 <complexType>
 <sequence>
 <element name="minor" type="short"/>
 <element name="major" type="short"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>

 <wsdl:message name="sayHiRequest">
 <wsdl:part element="x1:sayHi" name="in"/>
 </wsdl:message>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="x1:sayHiResponse" name="out"/>
 </wsdl:message>
 <wsdl:message name="greetMeRequest">
 <wsdl:part element="x1:greetMe" name="in"/>
 </wsdl:message>
 <wsdl:message name="greetMeResponse">
 <wsdl:part element="x1:greetMeResponse" name="out"/>
 </wsdl:message>
 <wsdl:message name="greetMeOneWayRequest">
 <wsdl:part element="x1:greetMeOneWay" name="in"/>
 </wsdl:message>
 <wsdl:message name="pingMeRequest">
 <wsdl:part name="in" element="x1:pingMe"/>
 </wsdl:message>
 <wsdl:message name="pingMeResponse">
 <wsdl:part name="out" element="x1:pingMeResponse"/>
 </wsdl:message>
 <wsdl:message name="pingMeFault">
 <wsdl:part name="faultDetail" element="x1:faultDetail"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>
 </wsdl:operation>

 <wsdl:operation name="greetMe">
 <wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
 <wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>
 </wsdl:operation>

 <wsdl:operation name="greetMeOneWay">
 <wsdl:input message="tns:greetMeOneWayRequest" name="greetMeOneWayRequest"/>
 </wsdl:operation>

 <wsdl:operation name="pingMe">
 <wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>
 <wsdl:output name="pingMeResponse" message="tns:pingMeResponse"/>

Red Hat Fuse 7.5 Apache CXF Development Guide

262

 <wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
 ...
 </wsdl:binding>

 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location="http://localhost:9000/SoapContext/SoapPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

The Greeter interface defined in Example 26.1, “HelloWorld WSDL Contract” defines the following
operations:

sayHi — Has a single output parameter, of xsd:string.

greetMe — Has an input parameter, of xsd:string, and an output parameter, of xsd:string.

greetMeOneWay — Has a single input parameter, of xsd:string. Because this operation has no output
parameters, it is optimized to be a oneway invocation (that is, the consumer does not wait for a response
from the server).

pingMe — Has no input parameters and no output parameters, but it can raise a fault exception.

CHAPTER 26. A STARTING POINT WSDL CONTRACT

263

CHAPTER 27. TOP-DOWN SERVICE DEVELOPMENT

Abstract

In the top-down method of developing a service provider you start from a WSDL document that defines
the operations and methods the service provider will implement. Using the WSDL document, you
generate starting point code for the service provider. Adding the business logic to the generated code is
done using normal Java programming APIs.

27.1. OVERVIEW OF JAX-WS SERVICE PROVIDER DEVELOPMENT

Once you have a WSDL document, the process for developing a JAX-WS service provider is as follows:

1. Section 27.2, “Generating the Starting Point Code” starting point code.

2. Implement the service provider’s operations.

3. Chapter 31, Publishing a Service the implemented service.

27.2. GENERATING THE STARTING POINT CODE

Overview

JAX-WS specifies a detailed mapping from a service defined in WSDL to the Java classes that will
implement that service as a service provider. The logical interface, defined by the wsdl:portType
element, is mapped to a service endpoint interface (SEI). Any complex types defined in the WSDL are
mapped into Java classes following the mapping defined by the Java Architecture for XML Binding
(JAXB) specification. The endpoint defined by the wsdl:service element is also generated into a Java
class that is used by consumers to access service providers implementing the service.

The cxf-codegen-plugin Maven plug-in generates this code. It also provides options for generating
starting point code for your implementation. The code generator provides a number of options for
controlling the generated code.

Running the code generator

Example 27.1, “Service Code Generation” shows how to use the code generator to generate starting
point code for a service.

Example 27.1. Service Code Generation

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>outputDir</sourceRoot>
 <wsdlOptions>
 <wsdlOption>

Red Hat Fuse 7.5 Apache CXF Development Guide

264

 <wsdl>wsdl</wsdl>
 <extraargs>
 <extraarg>-server</extraarg>
 <extraarg>-impl</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This does the following:

The -impl option generates a shell implementation class for each wsdl:portType element in the
WSDL contract.

The -server option generates a simple main() to run your service provider as a stand alone
application.

The sourceRoot specifies that the generated code is written to a directory called outputDir.

wsdl element specifies the WSDL contract from which code is generated.

For a complete list of the options for the code generator see Section 44.2, “cxf-codegen-plugin”.

Generated code

Table 27.1, “Generated Classes for a Service Provider” describes the files generated for creating a
service provider.

Table 27.1. Generated Classes for a Service Provider

File Description

portTypeName.java The SEI. This file contains the interface your service
provider implements. You should not edit this file.

serviceName.java The endpoint. This file contains the Java class
consumers use to make requests on the service.

portTypeNameImpl.java The skeleton implementation class. Modify this file to
build your service provider.

portTypeNameServer.java A basic server mainline that allows you to deploy your
service provider as a stand alone process. For more
information see Chapter 31, Publishing a Service.

In addition, the code generator will generate Java classes for all of the types defined in the WSDL

CHAPTER 27. TOP-DOWN SERVICE DEVELOPMENT

265

In addition, the code generator will generate Java classes for all of the types defined in the WSDL
contract.

Generated packages

The generated code is placed into packages based on the namespaces used in the WSDL contract. The
classes generated to support the service (based on the wsdl:portType element, the wsdl:service
element, and the wsdl:port element) are placed in a package based on the target namespace of the
WSDL contract. The classes generated to implement the types defined in the types element of the
contract are placed in a package based on the targetNamespace attribute of the types element.

The mapping algorithm is as follows:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid Internet domain, for example it ends in .com or
.gov, then the leading www. is stripped off the string, and the two remaining components are
flipped.

3. If the final string in the namespace ends with a file extension of the pattern .xxx or .xx, then the
extension is stripped.

4. The remaining strings in the namespace are appended to the resulting string and separated by
dots.

5. All letters are made lowercase.

27.3. IMPLEMENTING THE SERVICE PROVIDER

Generating the implementation code

You generate the implementation class used to build your service provider with the code generator’s -
impl flag.

NOTE

If your service’s contract includes any custom types defined in XML Schema, you must
ensure that the classes for the types are generated and available.

For more information on using the code generator see Section 44.2, “cxf-codegen-plugin”.

Generated code

The implementation code consists of two files:

portTypeName.java — The service interface(SEI) for the service.

portTypeNameImpl.java — The class you will use to implement the operations defined by the
service.

Implement the operation’s logic

To provide the business logic for your service’s operations complete the stub methods in
portTypeNameImpl.java. You usually use standard Java to implement the business logic. If your service

Red Hat Fuse 7.5 Apache CXF Development Guide

266

uses custom XML Schema types, you must use the generated classes for each type to manipulate them.
There are also some Apache CXF specific APIs that can be used to access some advanced features.

Example

For example, an implementation class for the service defined in Example 26.1, “HelloWorld WSDL
Contract” may look like Example 27.2, “Implementation of the Greeter Service” . Only the code portions
highlighted in bold must be inserted by the programmer.

Example 27.2. Implementation of the Greeter Service

package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
 targetNamespace = "http://apache.org/hello_world_soap_http",
 endpointInterface = "org.apache.hello_world_soap_http.Greeter")

public class GreeterImpl implements Greeter {

 public String greetMe(String me) {
 System.out.println("Executing operation greetMe"); System.out.println("Message received: " +
me + "\n"); return "Hello " + me;
 }

 public void greetMeOneWay(String me) {
 System.out.println("Executing operation greetMeOneWay\n"); System.out.println("Hello there
" + me);
 }

 public String sayHi() {
 System.out.println("Executing operation sayHi\n"); return "Bonjour";
 }

 public void pingMe() throws PingMeFault {
 FaultDetail faultDetail = new FaultDetail(); faultDetail.setMajor((short)2);
faultDetail.setMinor((short)1); System.out.println("Executing operation pingMe, throwing
PingMeFault exception\n"); throw new PingMeFault("PingMeFault raised by server", faultDetail);
 }
}

CHAPTER 27. TOP-DOWN SERVICE DEVELOPMENT

267

CHAPTER 28. DEVELOPING A CONSUMER FROM A WSDL
CONTRACT

Abstract

One way of creating a consumer is to start from a WSDL contract. The contract defines the operations,
messages, and transport details of the service on which a consumer makes requests. The starting point
code for the consumer is generated from the WSDL contract. The functionality required by the
consumer is added to the generated code.

28.1. GENERATING THE STUB CODE

Overview

The cxf-codegen-plugin Maven plug-in generates the stub code from the WSDL contract. The stub
code provides the supporting code that is required to invoke operations on the remote service.

For consumers, the cxf-codegen-plugin Maven plug-in generates the following types of code:

Stub code — Supporting files for implementing a consumer.

Starting point code — Sample code that connects to the remote service and invokes every
operation on the remote service.

Generating the consumer code

To generate consumer code use the cxf-codegen-plugin Maven plug-in. Example 28.1, “Consumer
Code Generation” shows how to use the code generator to generate consumer code.

Example 28.1. Consumer Code Generation

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>outputDir</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>wsdl</wsdl>
 <extraargs>
 <extraarg>-client</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>

Red Hat Fuse 7.5 Apache CXF Development Guide

268

 </execution>
 </executions>
</plugin>

Where outputDir is the location of a directory where the generated files are placed and wsdl specifies
the WSDL contract’s location. The -client option generates starting point code for the consumer’s
main() method.

For a complete list of the arguments available for the cxf-codegen-plugin Maven plug-in see
Section 44.2, “cxf-codegen-plugin”.

Generated code

The code generation plug-in generates the following Java packages for the contract shown in
Example 26.1, “HelloWorld WSDL Contract” :

org.apache.hello_world_soap_http — This package is generated from the
http://apache.org/hello_world_soap_http target namespace. All of the WSDL entities defined
in this namespace (for example, the Greeter port type and the SOAPService service) map to
Java classes this Java package.

org.apache.hello_world_soap_http.types — This package is generated from the
http://apache.org/hello_world_soap_http/types target namespace. All of the XML types
defined in this namespace (that is, everything defined in the wsdl:types element of the
HelloWorld contract) map to Java classes in this Java package.

The stub files generated by the cxf-codegen-plugin Maven plug-in fall into the following categories:

Classes representing WSDL entities in the org.apache.hello_world_soap_http package. The
following classes are generated to represent WSDL entities:

Greeter — A Java interface that represents the Greeter wsdl:portType element. In JAX-
WS terminology, this Java interface is the service endpoint interface (SEI).

SOAPService — A Java service class (extending javax.xml.ws.Service) that represents the
SOAPService wsdl:service element.

PingMeFault — A Java exception class (extending java.lang.Exception) that represents the
pingMeFault wsdl:fault element.

Classes representing XML types in the org.objectweb.hello_world_soap_http.types package.
In the HelloWorld example, the only generated types are the various wrappers for the request
and reply messages. Some of these data types are useful for the asynchronous invocation
model.

28.2. IMPLEMENTING A CONSUMER

Overview

To implement a consumer when starting from a WSDL contract, you must use the following stubs:

Service class

SEI

CHAPTER 28. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

269

http://apache.org/hello_world_soap_http
http://apache.org/hello_world_soap_http/types

Using these stubs, the consumer code instantiates a service proxy to make requests on the remote
service. It also implements the consumer’s business logic.

Generated service class

Example 28.2, “Outline of a Generated Service Class” shows the typical outline of a generated service
class, ServiceName_Service[2], which extends the javax.xml.ws.Service base class.

Example 28.2. Outline of a Generated Service Class

@WebServiceClient(name="..." targetNamespace="..."
 wsdlLocation="...")
public class ServiceName extends javax.xml.ws.Service
{
 ...
 public ServiceName(URL wsdlLocation, QName serviceName) { }

 public ServiceName() { }

 // Available only if you specify '-fe cxf' option in wsdl2java
 public ServiceName(Bus bus) { }

 @WebEndpoint(name="...")
 public SEI getPortName() { }
 .
 .
 .
}

The ServiceName class in Example 28.2, “Outline of a Generated Service Class” defines the following
methods:

ServiceName(URL wsdlLocation, QName serviceName) — Constructs a service object based
on the data in the wsdl:service element with the QName ServiceName service in the WSDL
contract that is obtainable from wsdlLocation.

ServiceName() — The default constructor. It constructs a service object based on the service
name and the WSDL contract that were provided at the time the stub code was generated (for
example, when running the wsdl2java tool). Using this constructor presupposes that the WSDL
contract remains available at a specified location.

ServiceName(Bus bus) — (CXF specific) An additional constructor that enables you to specify
the Bus instance used to configure the Service. This can be useful in the context of a multi-
threaded application, where multiple Bus instances can be associated with different threads.
This constructor provides a simple way of ensuring that the Bus that you specify is the one that
is used with this Service. Only available if you specify the -fe cxf option when invoking the
wsdl2java tool.

getPortName() — Returns a proxy for the endpoint defined by the wsdl:port element with the
name attribute equal to PortName. A getter method is generated for every wsdl:port element
defined by the ServiceName service. A wsdl:service element that contains multiple endpoint
definitions results in a generated service class with multiple getPortName() methods.

Red Hat Fuse 7.5 Apache CXF Development Guide

270

Service endpoint interface

For every interface defined in the original WSDL contract, you can generate a corresponding SEI. A
service endpoint interface is the Java mapping of a wsdl:portType element. Each operation defined in
the original wsdl:portType element maps to a corresponding method in the SEI. The operation’s
parameters are mapped as follows: . The input parameters are mapped to method arguments.

1. The first output parameter is mapped to a return value.

2. If there is more than one output parameter, the second and subsequent output parameters map
to method arguments (moreover, the values of these arguments must be passed using Holder
types).

For example, Example 28.3, “The Greeter Service Endpoint Interface” shows the Greeter SEI, which is
generated from the wsdl:portType element defined in Example 26.1, “HelloWorld WSDL Contract” . For
simplicity, Example 28.3, “The Greeter Service Endpoint Interface” omits the standard JAXB and JAX-
WS annotations.

Example 28.3. The Greeter Service Endpoint Interface

package org.apache.hello_world_soap_http;
 ...
public interface Greeter
{
 public String sayHi();
 public String greetMe(String requestType);
 public void greetMeOneWay(String requestType);
 public void pingMe() throws PingMeFault;
}

Consumer main function

Example 28.4, “Consumer Implementation Code” shows the code that implements the HelloWorld
consumer. The consumer connects to the SoapPort port on the SOAPService service and then
proceeds to invoke each of the operations supported by the Greeter port type.

Example 28.4. Consumer Implementation Code

package demo.hw.client;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.SOAPService;

public final class Client {

 private static final QName SERVICE_NAME =
 new QName("http://apache.org/hello_world_soap_http",
 "SOAPService");

 private Client()

CHAPTER 28. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

271

 {
 }

 public static void main(String args[]) throws Exception
 {
 if (args.length == 0)
 {
 System.out.println("please specify wsdl");
 System.exit(1);
 }

 URL wsdlURL;
 File wsdlFile = new File(args[0]);
 if (wsdlFile.exists())
 {
 wsdlURL = wsdlFile.toURL();
 }
 else
 {
 wsdlURL = new URL(args[0]);
 }

 System.out.println(wsdlURL);
 SOAPService ss = new SOAPService(wsdlURL,SERVICE_NAME);
 Greeter port = ss.getSoapPort();
 String resp;

 System.out.println("Invoking sayHi...");
 resp = port.sayHi();
 System.out.println("Server responded with: " + resp);
 System.out.println();

 System.out.println("Invoking greetMe...");
 resp = port.greetMe(System.getProperty("user.name"));
 System.out.println("Server responded with: " + resp);
 System.out.println();

 System.out.println("Invoking greetMeOneWay...");
 port.greetMeOneWay(System.getProperty("user.name"));
 System.out.println("No response from server as method is OneWay");
 System.out.println();

 try {
 System.out.println("Invoking pingMe, expecting exception...");
 port.pingMe();
 } catch (PingMeFault ex) {
 System.out.println("Expected exception: PingMeFault has occurred.");
 System.out.println(ex.toString());
 }
 System.exit(0);
 }
}

The Client.main() method from Example 28.4, “Consumer Implementation Code” proceeds as follows:

Red Hat Fuse 7.5 Apache CXF Development Guide

272

Provided that the Apache CXF runtime classes are on your classpath, the runtime is implicitly initialized.
There is no need to call a special function to initialize Apache CXF.

The consumer expects a single string argument that gives the location of the WSDL contract for
HelloWorld. The WSDL contract’s location is stored in wsdlURL.

You create a service object using the constructor that requires the WSDL contract’s location and
service name. Call the appropriate getPortName() method to obtain an instance of the required port. In
this case, the SOAPService service supports only the SoapPort port, which implements the Greeter
service endpoint interface.

The consumer invokes each of the methods supported by the Greeter service endpoint interface.

In the case of the pingMe() method, the example code shows how to catch the PingMeFault fault
exception.

Client proxy generated with -fe cxf option

If you generate your client proxy by specifying the -fe cxf option in wsdl2java (thereby selecting the cxf
frontend), the generated client proxy code is better integrated with Java 7. In this case, when you call a
getServiceNamePort() method, you get back a type that is a sub-interface of the SEI and implements
the following additional interfaces:

java.lang.AutoCloseable

javax.xml.ws.BindingProvider (JAX-WS 2.0)

org.apache.cxf.endpoint.Client

To see how this simplifies working with a client proxy, consider the following Java code sample, written
using a standard JAX-WS proxy object:

// Programming with standard JAX-WS proxy object
//
(ServiceNamePortType port = service.getServiceNamePort();
((BindingProvider)port).getRequestContext()
 .put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, address);
port.serviceMethod(...);
((Closeable)port).close();

And compare the preceding code with the following equivalent code sample, written using code
generated by the cxf frontend:

// Programming with proxy generated using '-fe cxf' option
//
try (ServiceNamePortTypeProxy port = service.getServiceNamePort()) {
 port.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, address);
 port.serviceMethod(...);
}

[2] If the name attribute of the wsdl:service element ends in Service the _Service is not used.

CHAPTER 28. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

273

CHAPTER 29. FINDING WSDL AT RUNTIME

Abstract

Hard coding the location of WSDL documents into an application is not scalable. In real deployment
environments, you will want to allow the WSDL document’s location be resolved at runtime. Apache CXF
provides a number of tools to make this possible.

29.1. MECHANISMS FOR LOCATING THE WSDL DOCUMENT

When developing consumers using the JAX-WS APIs you are must provide a hard coded path to the
WSDL document that defines your service. While this is OK in a small environment, using hard coded
paths does not work well in enterprise deployments.

To address this issue, Apache CXF provides three mechanisms for removing the requirement of using
hard coded paths:

Section 29.2, “Instantiating a Proxy by Injection”

Section 29.3, “Using a JAX-WS Catalog”

Section 29.4, “Using a contract resolver”

NOTE

Injecting the proxy into your implementation code is generally the best option because it
is the easiest to implement. It requires only a client endpoint and a configuration file for
injecting and instantiating the service proxy.

29.2. INSTANTIATING A PROXY BY INJECTION

Overview

Apache CXF’s use of the Spring Framework allows you to avoid the hassle of using the JAX-WS APIs to
create service proxies. It allows you to define a client endpoint in a configuration file and then inject a
proxy directly into the implementation code. When the runtime instantiates the implementation object,
it will also instantiate a proxy for the external service based on the configuration. The implementation is
handed by reference to the instantiated proxy.

Because the proxy is instantiated using information in the configuration file, the WSDL location does not
need to be hard coded. It can be changed at deployment time. You can also specify that the runtime
should search the application’s classpath for the WSDL.

Procedure

To inject a proxy for an external service into a service provider’s implementation do the following:

1. Deploy the required WSDL documents in a well known location that all parts of the application
can access.

NOTE

Red Hat Fuse 7.5 Apache CXF Development Guide

274

NOTE

If you are deploying the application as a WAR file, it is recommended that you
place all of the WSDL documents and XML Schema documents in the WEB-
INF/wsdl folder of the WAR.

NOTE

If you are deploying the application as a JAR file, it is recommended that you
place all of the WSDL documents and XML Schema documents in the META-
INF/wsdl folder of the JAR.

2. Configure a JAX-WS client endpoint for the proxy that is being injected.

3. Inject the proxy into your service provide using the @Resource annotation.

Configuring the proxy

You configure a JAX-WS client endpoint using the jaxws:client element in you application’s
configuration file. This tells the runtime to instantiate a org.apache.cxf.jaxws.JaxWsClientProxy
object with the specified properties. This object is the proxy that will be injected into the service
provider.

At a minimum you need to provide values for the following attributes:

id—Specifies the ID used to identify the client to be injected.

serviceClass—Specifies the SEI of the service on which the proxy makes requests.

Example 29.1, “Configuration for a Proxy to be Injected into a Service Implementation” shows the
configuration for a JAX-WS client endpoint.

Example 29.1. Configuration for a Proxy to be Injected into a Service Implementation

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:client id="bookClient"
 serviceClass="org.apache.cxf.demo.BookService"
 wsdlLocation="classpath:books.wsdl"/>
 ...
</beans>

NOTE

In Example 29.1, “Configuration for a Proxy to be Injected into a Service Implementation”
the wsdlLocation attribute instructs the runtime to load the WSDL from the classpath. If
books.wsdl is on the classpath, the runtime will be able to find it.

For more information on configuring a JAX-WS client see Section 17.2, “Configuring Consumer

CHAPTER 29. FINDING WSDL AT RUNTIME

275

For more information on configuring a JAX-WS client see Section 17.2, “Configuring Consumer
Endpoints”.

Coding the provider implementation

You inject the configured proxy into a service implementation as a resource using the @Resource as
shown in Example 29.2, “Injecting a Proxy into a Service Implementation” .

Example 29.2. Injecting a Proxy into a Service Implementation

package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
 targetNamespace = "http://apache.org/hello_world_soap_http",
 endpointInterface = "org.apache.hello_world_soap_http.Greeter")
public class StoreImpl implements Store {

@Resource(name="bookClient") private BookService proxy;

}

The annotation’s name property corresponds to the value of the JAX-WS client’s id attribute. The
configured proxy is injected into the BookService object declared immediately after the annotation.
You can use this object to make invocations on the proxy’s external service.

29.3. USING A JAX-WS CATALOG

Overview

The JAX-WS specification mandates that all implementations support:

a standard catalog facility to be used when resolving any Web service document that is part of the
description of a Web service, specifically WSDL and XML Schema documents.

This catalog facility uses the XML catalog facility specified by OASIS. All of the JAX-WS APIs and
annotation that take a WSDL URI use the catalog to resolve the WSDL document’s location.

This means that you can provide an XML catalog file that rewrites the locations of your WSDL
documents to suite specific deployment environments.

Writing the catalog

JAX-WS catalogs are standard XML catalogs as defined by the OASIS XML Catalogs 1.1 specification.
They allow you to specify mapping:

a document’s public identifier and/or a system identifier to a URI.

the URI of a resource to another URI.

Table 29.1, “Common JAX-WS Catalog Elements” lists some common elements used for WSDL location
resolution.

Red Hat Fuse 7.5 Apache CXF Development Guide

276

https://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html

Table 29.1. Common JAX-WS Catalog Elements

Element Description

uri Maps a URI to an alternate URI.

rewriteURI Rewrites the beginning of a URI. For example, this
element allows you to map all URIs that start with
http://cxf.apache.org to URIs that start with
classpath:.

uriSuffix Maps a URI to an alternate URI based on the suffix of
the original URI. For example you could map all URIs
that end in foo.xsd to classpath:foo.xsd.

Packaging the catalog

The JAX-WS specification mandates that the catalog used to resolve WSDL and XML Schema
documents is assembled using all available resources named META-INF/jax-ws-catalog.xml. If your
application is packaged into a single JAR, or WAR, you can place the catalog into a single file.

If your application is packaged as multiple JARs, you can split the catalog into a number of files. Each
catalog file could be modularized to only deal with WSDLs accessed by the code in the specific JARs.

29.4. USING A CONTRACT RESOLVER

Overview

The most involved mechanism for resolving WSDL document locations at runtime is to implement your
own custom contract resolver. This requires that you provide an implementation of the Apache CXF
specific ServiceContractResolver interface. You also need to register your custom resolver with the bus.

Once properly registered, the custom contract resolver will be used to resolve the location of any
required WSDL and schema documents.

Implementing the contract resolver

A contract resolver is an implementation of the org.apache.cxf.endpoint.ServiceContractResolver
interface. As shown in Example 29.3, “ServiceContractResolver Interface” , this interface has a single
method, getContractLocation(), that needs to be implemented. getContractLocation() takes the
QName of a service and returns the URI for the service’s WSDL contract.

Example 29.3. ServiceContractResolver Interface

public interface ServiceContractResolver
{
 URI getContractLocation(QName qname);
}

The logic used to resolve the WSDL contract’s location is application specific. You can add logic that

CHAPTER 29. FINDING WSDL AT RUNTIME

277

http://cxf.apache.org

The logic used to resolve the WSDL contract’s location is application specific. You can add logic that
resolves contract locations from a UDDI registry, a database, a custom location on a file system, or any
other mechanism you choose.

Registering the contract resolver programmatically

Before the Apache CXF runtime will use your contract resolver, you must register it with a contract
resolver registry. Contract resolver registries implement the
org.apache.cxf.endpoint.ServiceContractResolverRegistry interface. However, you do not need to
implement your own registry. Apache CXF provides a default implementation in the
org.apache.cxf.endpoint.ServiceContractResolverRegistryImpl class.

To register a contract resolver with the default registry you do the following:

1. Get a reference to the default bus object.

2. Get the service contract registry from the bus using the bus' getExtension() method.

3. Create an instance of your contract resolver.

4. Register your contract resolver with the registry using the registry’s register() method.

Example 29.4, “Registering a Contract Resolver” shows the code for registering a contract resolver with
the default registry.

Example 29.4. Registering a Contract Resolver

BusFactory bf=BusFactory.newInstance();
Bus bus=bf.createBus();

ServiceContractResolverRegistry registry = bus.getExtension(ServiceContractResolverRegistry);

JarServiceContractResolver resolver = new JarServiceContractResolver();

registry.register(resolver);

The code in Example 29.4, “Registering a Contract Resolver” does the following:

Gets a bus instance.

Gets the bus' contract resolver registry.

Creates an instance of a contract resolver.

Registers the contract resolver with the registry.

Registering a contract resolver using configuration

You can also implement a contract resolver so that it can be added to a client through configuration.
The contract resolver is implemented in such a way that when the runtime reads the configuration and
instantiates the resolver, the resolver registers itself. Because the runtime handles the initialization, you
can decide at runtime if a client needs to use the contract resolver.

To implement a contract resolver so that it can be added to a client through configuration do the

Red Hat Fuse 7.5 Apache CXF Development Guide

278

To implement a contract resolver so that it can be added to a client through configuration do the
following:

1. Add an init() method to your contract resolver implementation.

2. Add logic to your init() method that registers the contract resolver with the contract resolver
registry as shown in Example 29.4, “Registering a Contract Resolver” .

3. Decorate the init() method with the @PostConstruct annotation.

Example 29.5, “Service Contract Resolver that can be Registered Using Configuration” shows a contract
resolver implementation that can be added to a client using configuration.

Example 29.5. Service Contract Resolver that can be Registered Using Configuration

import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.xml.namespace.QName;

import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;

public class UddiResolver implements ServiceContractResolver
{
 private Bus bus;
 ...

 @PostConstruct
 public void init()
 {
 BusFactory bf=BusFactory.newInstance();
 Bus bus=bf.createBus();
 if (null != bus)
 {
 ServiceContractResolverRegistry resolverRegistry =
bus.getExtension(ServiceContractResolverRegistry.class);
 if (resolverRegistry != null)
 {
 resolverRegistry.register(this);
 }
 }
 }

 public URI getContractLocation(QName serviceName)
 {
 ...
 }
}

To register the contract resolver with a client you need to add a bean element to the client’s
configuration. The bean element’s class attribute is the name of the class implementing the contract
resolver.

Example 29.6, “Bean Configuring a Contract Resolver” shows a bean for adding a configuration resolver
implemented by the org.apache.cxf.demos.myContractResolver class.

CHAPTER 29. FINDING WSDL AT RUNTIME

279

Example 29.6. Bean Configuring a Contract Resolver

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
 ...
 <bean id="myResolver" class="org.apache.cxf.demos.myContractResolver" />
 ...
</beans>

Contract resolution order

When a new proxy is created, the runtime uses the contract registry resolver to locate the remote
service’s WSDL contract. The contract resolver registry calls each contract resolver’s
getContractLocation() method in the order in which the resolvers were registered. It returns the first
URI returned from one of the registered contract resolvers.

If you registered a contract resolver that attempted to resolve the WSDL contract at a well known
shared file system, it would be the only contract resolver used. However, if you subsequently registered
a contract resolver that resolved WSDL locations using a UDDI registry, the registry could use both
resolvers to locate a service’s WSDL contract. The registry would first attempt to locate the contract
using the shared file system contract resolver. If that contract resolver failed, the registry would then
attempt to locate it using the UDDI contract resolver.

Red Hat Fuse 7.5 Apache CXF Development Guide

280

CHAPTER 30. GENERIC FAULT HANDLING

Abstract

The JAX-WS specification defines two types of faults. One is a generic JAX-WS runtime exception. The
other is a protocol specific class of exceptions that is thrown during message processing.

30.1. RUNTIME FAULTS

Overview

Most of the JAX-WS APIs throw a generic javax.xml.ws.WebServiceException exception.

APIs that throw WebServiceException

Table 30.1, “APIs that Throw WebServiceException” lists some of the JAX-WS APIs that can throw the
generic WebServiceException exception.

Table 30.1. APIs that Throw WebServiceException

API Reason

Binding.setHandlerChain() There is an error in the handler chain configuration.

BindingProvider.getEndpointReference() The specified class is not assigned from a
W3CEndpointReference.

Dispatch.invoke() There is an error in the Dispatch instance’s
configuration or an error occurred while
communicating with the service.

Dispatch.invokeAsync() There is an error in the Dispatch instance’s
configuration.

Dispatch.invokeOneWay() There is an error in the Dispatch instance’s
configuration or an error occurred while
communicating with the service.

LogicalMessage.getPayload() An error occurred when using a supplied
JAXBContext to unmarshall the payload. The
cause field of the WebServiceException contains
the original JAXBException.

LogicalMessage.setPayload() An error occurred when setting the payload of the
message. If the exception is thrown when using a
JAXBContext, the cause field of the
WebServiceException contains the original
JAXBException.

CHAPTER 30. GENERIC FAULT HANDLING

281

WebServiceContext.getEndpointReference() The specified class is not assigned from a
W3CEndpointReference.

API Reason

30.2. PROTOCOL FAULTS

Overview

Protocol exceptions are thrown when an error occurs during the processing of a request. All synchronous
remote invocations can throw a protocol exception. The underlying cause occurs either in the
consumer’s message handling chain or in the service provider.

The JAX-WS specification defines a generic protocol exception. It also specifies a SOAP-specific
protocol exception and an HTTP-specific protocol exception.

Types of protocol exceptions

The JAX-WS specification defines three types of protocol exception. Which exception you catch
depends on the transport and binding used by your application.

Table 30.2, “Types of Generic Protocol Exceptions” describes the three types of protocol exception and
when they are thrown.

Table 30.2. Types of Generic Protocol Exceptions

Exception Class When Thrown

javax.xml.ws.ProtocolException This exception is the generic protocol exception. It
can be caught regardless of the protocol in use. It
can be cast into a specific fault type if you are using
the SOAP binding or the HTTP binding. When using
the XML binding in combination with the HTTP or
JMS transports, the generic protocol exception
cannot be cast into a more specific fault type.

javax.xml.ws.soap.SOAPFaultException This exception is thrown by remote invocations when
using the SOAP binding. For more information see
the section called “Using the SOAP protocol
exception”.

javax.xml.ws.http.HTTPException This exception is thrown when using the Apache CXF
HTTP binding to develop RESTful Web services. For
more information see Part VI, “Developing RESTful
Web Services”.

Using the SOAP protocol exception

The SOAPFaultException exception wraps a SOAP fault. The underlying SOAP fault is stored in the
fault field as a javax.xml.soap.SOAPFault object.

Red Hat Fuse 7.5 Apache CXF Development Guide

282

If a service implementation needs to throw an exception that does not fit any of the custom exceptions
created for the application, it can wrap the fault in a SOAPFaultException using the exceptions creator
and throw it back to the consumer. Example 30.1, “Throwing a SOAP Protocol Exception” shows code
for creating and throwing a SOAPFaultException if the method is passed an invalid parameter.

Example 30.1. Throwing a SOAP Protocol Exception

public Quote getQuote(String ticker)
{
 ...
 if(tickers.length()<3)
 {
 SOAPFault fault = SOAPFactory.newInstance().createFault();
 fault.setFaultString("Ticker too short");
 throw new SOAPFaultException(fault);
 }
 ...
}

When a consumer catches a SOAPFaultException exception they can retrieve the underlying cause of
the exception by examining the wrapped SOAPFault exception. As shown in Example 30.2, “Getting the
Fault from a SOAP Protocol Exception”, the SOAPFault exception is retrieved using the
SOAPFaultException exception’s getFault() method.

Example 30.2. Getting the Fault from a SOAP Protocol Exception

...
try
{
 proxy.getQuote(ticker);
}
catch (SOAPFaultException sfe)
{
 SOAPFault fault = sfe.getFault();
 ...
}

CHAPTER 30. GENERIC FAULT HANDLING

283

CHAPTER 31. PUBLISHING A SERVICE

Abstract

When you want to deploy a JAX-WS service as a standalone Java application, you must explicitly
implement the code that publishes the service provider.

31.1. WHEN TO PUBLISH A SERVICE

Apache CXF provides a number of ways to publish a service as a service provider. How you publish a
service depends on the deployment environment you are using. Many of the containers supported by
Apache CXF do not require writing logic for publishing endpoints. There are two exceptions:

deploying a server as a standalone Java application

deploying a server into an OSGi container without Blueprint

For detailed information in deploying applications into the supported containers see Part IV,
“Configuring Web Service Endpoints”.

31.2. APIS USED TO PUBLISH A SERVICE

Overview

The javax.xml.ws.Enddpoint class does the work of publishing a JAX-WS service provider. To
publishing an endpoint do the following:

1. Create an Endpoint object for your service provider.

2. Publish the endpoint.

3. Stop the endpoint when application shuts down.

The Endpoint class provides methods for creating and publishing service providers. It also provides a
method that can create and publish a service provider in a single method call.

Instantiating an service provider

A service provider is instantiated using an Endpoint object. You instantiate an Endpoint object for your
service provider using one of the following methods:

staticEndpointcreateObjectimplementor This create() method returns an Endpoint for the
specified service implementation. The Endpoint object is created using the information
provided by the implementation class' javax.xml.ws.BindingType annotation, if it is present. If
the annotation is not present, the Endpoint uses a default SOAP 1.1/HTTP binding.

staticEndpointcreateURIbindingIDObjectimplementor This create() method returns an
Endpoint object for the specified implementation object using the specified binding. This
method overrides the binding information provided by the javax.xml.ws.BindingType
annotation, if it is present. If the bindingID cannot be resolved, or it is null, the binding
specified in the javax.xml.ws.BindingType is used to create the Endpoint. If neither the
bindingID or the javax.xml.ws.BindingType can be used, the Endpoint is created using a
default SOAP 1.1/HTTP binding.

staticEndpointpublishStringaddressObjectimplementor The publish() method creates an

Red Hat Fuse 7.5 Apache CXF Development Guide

284

staticEndpointpublishStringaddressObjectimplementor The publish() method creates an
Endpoint object for the specified implementation, and publishes it. The binding used for the
Endpoint object is determined by the URL scheme of the provided address. The list of
bindings available to the implementation are scanned for a binding that supports the URL
scheme. If one is found the Endpoint object is created and published. If one is not found, the
method fails.
Using publish() is the same as invoking one of the create() methods, and then invoking the
publish() method used in ???TITLE???.

IMPORTANT

The implementation object passed to any of the Endpoint creation methods must either
be an instance of a class annotated with javax.jws.WebService and meeting the
requirements for being an SEI implementation or it must be an instance of a class
annotated with javax.xml.ws.WebServiceProvider and implementing the Provider
interface.

Publishing a service provider

You can publish a service provider using either of the following Endpoint methods:

publishStringaddress This publish() method publishes the service provider at the address
specified.

IMPORTANT

The address's URL scheme must be compatible with one of the service
provider’s bindings.

publishObjectserverContext This publish() method publishes the service provider based on
the information provided in the specified server context. The server context must define an
address for the endpoint, and the context must also be compatible with one of the service
provider’s available bindings.

Stopping a published service provider

When the service provider is no longer needed you should stop it using its stop() method. The stop()
method, shown in Example 31.1, “Method for Stopping a Published Endpoint” , shuts down the endpoint
and cleans up any resources it is using.

Example 31.1. Method for Stopping a Published Endpoint

stop

IMPORTANT

Once the endpoint is stopped it cannot be republished.

31.3. PUBLISHING A SERVICE IN A PLAIN JAVA APPLICATION

Overview

CHAPTER 31. PUBLISHING A SERVICE

285

When you want to deploy your application as a plain java application you need to implement the logic for
publishing your endpoints in the application’s main() method. Apache CXF provides you two options for
writing your application’s main() method.

use the main() method generated by the wsdl2java tool

write a custom main() method that publishes the endpoints

Generating a Server Mainline

The code generators -server flag makes the tool generate a simple server mainline. The generated
server mainline, as shown in Example 31.2, “Generated Server Mainline” , publishes one service provider
for each port element in the specified WSDL contract.

For more information see Section 44.2, “cxf-codegen-plugin”.

Example 31.2, “Generated Server Mainline” shows a generated server mainline.

Example 31.2. Generated Server Mainline

package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer {

 protected GreeterServer() throws Exception {
 System.out.println("Starting Server");
 Object implementor = new GreeterImpl();
 String address = "http://localhost:9000/SoapContext/SoapPort";
 Endpoint.publish(address, implementor);
 }

 public static void main(String args[]) throws Exception {
 new GreeterServer();
 System.out.println("Server ready...");

 Thread.sleep(5 * 60 * 1000);
 System.out.println("Server exiting");
 System.exit(0);
 }
}

The code in Example 31.2, “Generated Server Mainline” does the following:

Instantiates a copy of the service implementation object.

Creates the address for the endpoint based on the contents of the address child of the wsdl:port
element in the endpoint’s contract.

Publishes the endpoint.

Writing a Server Mainline

Red Hat Fuse 7.5 Apache CXF Development Guide

286

If you used the Java first development model or you do not want to use the generated server mainline
you can write your own. To write your server mainline you must do the following:

1. the section called “Instantiating an service provider” an javax.xml.ws.Endpoint object for the
service provider.

2. Create an optional server context to use when publishing the service provider.

3. the section called “Publishing a service provider” the service provider using one of the publish()
methods.

4. Stop the service provider when the application is ready to exit.

Example 31.3, “Custom Server Mainline” shows the code for publishing a service provider.

Example 31.3. Custom Server Mainline

package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer
{
 protected GreeterServer() throws Exception
 {
 }

 public static void main(String args[]) throws Exception
 {
 GreeterImpl impl = new GreeterImpl();
 Endpoint endpt.create(impl);
 endpt.publish("http://localhost:9000/SoapContext/SoapPort");

 boolean done = false;
 while(!done)
 {
 ...
 }

 endpt.stop();
 System.exit(0);
 }
}

The code in Example 31.3, “Custom Server Mainline” does the following:

Instantiates a copy of the service’s implementation object.

Creates an unpublished Endpoint for the service implementation.

Publishes the service provider at http://localhost:9000/SoapContext/SoapPort.

Loops until the server should be shutdown.

Stops the published endpoint.

CHAPTER 31. PUBLISHING A SERVICE

287

http://localhost:9000/SoapContext/SoapPort

31.4. PUBLISHING A SERVICE IN AN OSGI CONTAINER

Overview

When you develop an application that will be deployed into an OSGi container, you need to coordinate
the publishing and stopping of your endpoints with the life-cycle of the bundle in which it is packaged.
You want your endpoints published when the bundle is started and you want the endpoints stopped
when the bundle is stopped.

You tie your endpoints life-cycle to the bundle’s life-cycle by implementing an OSGi bundle activator. A
bundle activator is used by the OSGi container to create the resource for a bundle when it is started. The
container also uses the bundle activator to clean up the bundles resources when it is stopped.

The bundle activator interface

You create a bundle activator for your application by implementing the
org.osgi.framework.BundleActivator interface. The BundleActivator interface, shown in Example 31.4,
“Bundle Activator Interface”, it has two methods that need to be implemented.

Example 31.4. Bundle Activator Interface

interface BundleActivator
{
 public void start(BundleContext context)
 throws java.lang.Exception;

 public void stop(BundleContext context)
 throws java.lang.Exception;
}

The start() method is called by the container when it starts the bundle. This is where you instantiate and
publish the endpoints.

The stop() method is called by the container when it stops the bundle. This is where you would stop the
endpoints.

Implementing the start method

The bundle activator’s start method is where you publish your endpoints. To publish your endpoints the
start method must do the following:

1. the section called “Instantiating an service provider” an javax.xml.ws.Endpoint object for the
service provider.

2. Create an optional server context to use when publishing the service provider.

3. the section called “Publishing a service provider” the service provider using one of the publish()
methods.

Example 31.5, “Bundle Activator Start Method for Publishing an Endpoint” shows code for publishing a
service provider.

Example 31.5. Bundle Activator Start Method for Publishing an Endpoint

Red Hat Fuse 7.5 Apache CXF Development Guide

288

package com.widgetvendor.osgi;

import javax.xml.ws.Endpoint;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class widgetActivator implements BundleActivator
{
 private Endpoint endpt;
 ...

 public void start(BundleContext context)
 {
 WidgetOrderImpl impl = new WidgetOrderImpl();
 endpt = Endpoint.create(impl);
 endpt.publish("http://localhost:9000/SoapContext/SoapPort");
 }

 ...

}

The code in Example 31.5, “Bundle Activator Start Method for Publishing an Endpoint” does the
following:

Instantiates a copy of the service’s implementation object.

Creates an unpublished Endpoint for the service implementation.

Publish the service provider at http://localhost:9000/SoapContext/SoapPort.

Implementing the stop method

The bundle activator’s stop method is where you clean up the resources used by your application. Its
implementation should include logic for stopping all of the endpoint’s published by the application.

Example 31.6, “Bundle Activator Stop Method for Stopping an Endpoint” shows a stop method for
stopping a published endpoint.

Example 31.6. Bundle Activator Stop Method for Stopping an Endpoint

package com.widgetvendor.osgi;

import javax.xml.ws.Endpoint;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class widgetActivator implements BundleActivator
{
 private Endpoint endpt;
 ...

 public void stop(BundleContext context)
 {

CHAPTER 31. PUBLISHING A SERVICE

289

http://localhost:9000/SoapContext/SoapPort

 endpt.stop();
 }

 ...

}

Informing the container

You must add inform the container that the application’s bundle includes a bundle activator. You do this
by adding the Bundle-Activator property to the bundle’s manifest. This property tells the container
which class in the bundle to use when activating the bundle. Its value is the fully qualified name of the
class implementing the bundle activator.

Example 31.7, “Bundle Activator Manifest Entry” shows a manifest entry for a bundle whose activator is
implemented by the class com.widgetvendor.osgi.widgetActivator.

Example 31.7. Bundle Activator Manifest Entry

Bundle-Activator: com.widgetvendor.osgi.widgetActivator

Red Hat Fuse 7.5 Apache CXF Development Guide

290

CHAPTER 32. BASIC DATA BINDING CONCEPTS

Abstract

There are a number of general topics that apply to how Apache CXF handles type mapping.

32.1. INCLUDING AND IMPORTING SCHEMA DEFINITIONS

Overview

Apache CXF supports the including and importing of schema definitions, using the include and import
schema tags. These tags enable you to insert definitions from external files or resources into the scope
of a schema element. The essential difference between including and importing is:

Including brings in definitions that belong to the same target namespace as the enclosing
schema element.

Importing brings in definitions that belong to a different target namespace from the enclosing
schema element.

xsd:include syntax

The include directive has the following syntax:

<include schemaLocation="anyURI" />

The referenced schema, given by anyURI, must either belong to the same target namespace as the
enclosing schema, or not belong to any target namespace at all. If the referenced schema does not
belong to any target namespace, it is automatically adopted into the enclosing schema’s namespace
when it is included.

Example 32.1, “Example of a Schema that Includes Another Schema” shows an example of an XML
Schema document that includes another XML Schema document.

Example 32.1. Example of a Schema that Includes Another Schema

<definitions targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns:tns="http://schemas.redhat.com/tests/schema_parser"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <include schemaLocation="included.xsd"/>
 <complexType name="IncludingSequence">
 <sequence>
 <element name="includedSeq" type="tns:IncludedSequence"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 ...
</definitions>

CHAPTER 32. BASIC DATA BINDING CONCEPTS

291

Example 32.2, “Example of an Included Schema” shows the contents of the included schema file.

Example 32.2. Example of an Included Schema

<schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- Included type definitions -->
 <complexType name="IncludedSequence">
 <sequence>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 </complexType>
</schema>

xsd:import syntax

The import directive has the following syntax:

<import namespace="namespaceAnyURI"
 schemaLocation="schemaAnyURI" />

The imported definitions must belong to the namespaceAnyURI target namespace. If namespaceAnyURI
is blank or remains unspecified, the imported schema definitions are unqualified.

Example 32.3, “Example of a Schema that Imports Another Schema” shows an example of an XML
Schema that imports another XML Schema.

Example 32.3. Example of a Schema that Imports Another Schema

<definitions targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns:tns="http://schemas.redhat.com/tests/schema_parser"
 xmlns:imp="http://schemas.redhat.com/tests/imported_types"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.redhat.com/tests/imported_types"
 schemaLocation="included.xsd"/>
 <complexType name="IncludingSequence">
 <sequence>
 <element name="includedSeq" type="imp:IncludedSequence"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 ...
</definitions>

Red Hat Fuse 7.5 Apache CXF Development Guide

292

Example 32.4, “Example of an Imported Schema” shows the contents of the imported schema file.

Example 32.4. Example of an Imported Schema

<schema targetNamespace="http://schemas.redhat.com/tests/imported_types"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- Included type definitions -->
 <complexType name="IncludedSequence">
 <sequence>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 </complexType>
</schema>

Using non-referenced schema documents

Using types defined in a schema document that is not referenced in the service’s WSDL document is a
three step process:

1. Convert the schema document to a WSDL document using the xsd2wsdl tool.

2. Generate Java for the types using the wsdl2java tool on the generated WSDL document.

IMPORTANT

You will get a warning from the wsdl2java tool stating that the WSDL document
does not define any services. You can ignore this warning.

3. Add the generated classes to your classpath.

32.2. XML NAMESPACE MAPPING

Overview

XML Schema type, group, and element definitions are scoped using namespaces. The namespaces
prevent possible naming clashes between entities that use the same name. Java packages serve a
similar purpose. Therefore, Apache CXF maps the target namespace of a schema document into a
package containing the classes necessary to implement the structures defined in the schema document.

Package naming

The name of the generated package is derived from a schema’s target namespace using the following
algorithm:

1. The URI scheme, if present, is stripped.

NOTE

Apache CXF will only strip the http:, https:, and urn: schemes.

For example, the namespace http:\\www.widgetvendor.com\types\widgetTypes.xsd

CHAPTER 32. BASIC DATA BINDING CONCEPTS

293

For example, the namespace http:\\www.widgetvendor.com\types\widgetTypes.xsd
becomes \\widgetvendor.com\types\widgetTypes.xsd.

2. The trailing file type identifier, if present, is stripped.
For example, \\www.widgetvendor.com\types\widgetTypes.xsd becomes
\\widgetvendor.com\types\widgetTypes.

3. The resulting string is broken into a list of strings using / and : as separators.
So, \\www.widgetvendor.com\types\widgetTypes becomes the list
{"www.widegetvendor.com", "types", "widgetTypes"}.

4. If the first string in the list is an internet domain name, it is decomposed as follows:

a. The leading www. is stripped.

b. The remaining string is split into its component parts using the . as the separator.

c. The order of the list is reversed.
So, {"www.widegetvendor.com", "types", "widgetTypes"} becomes {"com",
"widegetvendor", "types", "widgetTypes"}

NOTE

Internet domain names end in one of the following: .com, .net, .edu, .org,
.gov, or in one of the two-letter country codes.

5. The strings are converted into all lower case.
So, {"com", "widegetvendor", "types", "widgetTypes"} becomes {"com", "widegetvendor",
"types", "widgettypes"}.

6. The strings are normalized into valid Java package name components as follows:

a. If the strings contain any special characters, the special characters are converted to an
underscore(_).

b. If any of the strings are a Java keyword, the keyword is prefixed with an underscore(_).

c. If any of the strings begin with a numeral, the string is prefixed with an underscore(_).

7. The strings are concatenated using . as a separator.
So, {"com", "widegetvendor", "types", "widgettypes"} becomes the package name
com.widgetvendor.types.widgettypes.

The XML Schema constructs defined in the namespace
http:\\www.widgetvendor.com\types\widgetTypes.xsd are mapped to the Java package
com.widgetvendor.types.widgettypes.

Package contents

A JAXB generated package contains the following:

A class implementing each complex type defined in the schema
For more information on complex type mapping see Chapter 35, Using Complex Types.

An enum type for any simple types defined using the enumeration facet
For more information on how enumerations are mapped see Section 34.3, “Enumerations”.

Red Hat Fuse 7.5 Apache CXF Development Guide

294

A public ObjectFactory class that contains methods for instantiating objects from the schema
For more information on the ObjectFactory class see Section 32.3, “The Object Factory” .

A package-info.java file that provides metadata about the classes in the package

32.3. THE OBJECT FACTORY

Overview

JAXB uses an object factory to provide a mechanism for instantiating instances of JAXB generated
constructs. The object factory contains methods for instantiating all of the XML schema defined
constructs in the package’s scope. The only exception is that enumerations do not get a creation
method in the object factory.

Complex type factory methods

For each Java class generated to implement an XML schema complex type, the object factory contains
a method for creating an instance of the class. This method takes the form:

typeName createtypeName();

For example, if your schema contained a complex type named widgetType, Apache CXF generates a
class called WidgetType to implement it. Example 32.5, “Complex Type Object Factory Entry” shows
the generated creation method in the object factory.

Example 32.5. Complex Type Object Factory Entry

public class ObjectFactory
{
 ...
 WidgetType createWidgetType()
 {
 return new WidgetType();
 }
 ...
}

Element factory methods

For elements that are declared in the schema’s global scope, Apache CXF inserts a factory method into
the object factory. As discussed in Chapter 33, Using XML Elements , XML Schema elements are mapped
to JAXBElement<T> objects. The creation method takes the form:

public JAXBElement<elementType> createelementName(elementType value);

For example if you have an element named comment of type xsd:string, Apache CXF generates the
object factory method shown in Example 32.6, “Element Object Factory Entry”

Example 32.6. Element Object Factory Entry

public class ObjectFactory

CHAPTER 32. BASIC DATA BINDING CONCEPTS

295

{
 ...
 @XmlElementDecl(namespace = "...", name = "comment")
 public JAXBElement<String> createComment(String value) {
 return new JAXBElement<String>(_Comment_QNAME, String.class, null, value);
 }
 ...
}

32.4. ADDING CLASSES TO THE RUNTIME MARSHALLER

Overview

When the Apache CXF runtime reads and writes XML data it uses a map that associates the XML
Schema types with their representative Java types. By default, the map contains all of the types defined
in the target namespace of the WSDL contract’s schema element. It also contains any types that are
generated from the namespaces of any schemas that are imported into the WSDL contract.

The addition of types from namespaces other than the schema namespace used by an application’s
schema element is accomplished using the @XmlSeeAlso annotation. If your application needs to work
with types that are generated outside the scope of your application’s WSDL document, you can edit the
@XmlSeeAlso annotation to add them to the JAXB map.

Using the @XmlSeeAlso annotation

The @XmlSeeAlso annotation can be added to the SEI of your service. It contains a comma separated
list of classes to include in the JAXB context. Example 32.7, “Syntax for Adding Classes to the JAXB
Context” shows the syntax for using the @XmlSeeAlso annotation.

Example 32.7. Syntax for Adding Classes to the JAXB Context

import javax.xml.bind.annotation.XmlSeeAlso;
 @WebService()
 @XmlSeeAlso({Class1.class, Class2.class, ..., ClassN.class})
 public class GeneratedSEI {
 ...
 }

In cases where you have access to the JAXB generated classes, it is more efficient to use the
ObjectFactory classes generated to support the needed types. Including the ObjectFactory class
includes all of the classes that are known to the object factory.

Example

Example 32.8, “Adding Classes to the JAXB Context” shows an SEI annotated with @XmlSeeAlso.

Example 32.8. Adding Classes to the JAXB Context

...
import javax.xml.bind.annotation.XmlSeeAlso;

Red Hat Fuse 7.5 Apache CXF Development Guide

296

...
 @WebService()
 @XmlSeeAlso({org.apache.schemas.types.test.ObjectFactory.class,
org.apache.schemas.tests.group_test.ObjectFactory.class})
 public interface Foo {
 ...
 }

CHAPTER 32. BASIC DATA BINDING CONCEPTS

297

CHAPTER 33. USING XML ELEMENTS

Abstract

XML Schema elements are used to define an instance of an element in an XML document. Elements are
defined either in the global scope of an XML Schema document, or they are defined as a member of a
complex type. When they are defined in the global scope, Apache CXF maps them to a JAXB element
class that makes manipulating them easier.

OVERVIEW

An element instance in an XML document is defined by an XML Schema element element in the global
scope of an XML Schema document To make it easier for Java developers to work with elements,
Apache CXF maps globally scoped elements to either a special JAXB element class or to a Java class
that is generated to match its content type.

How the element is mapped depends on if the element is defined using a named type referenced by the
type attribute or if the element is defined using an in-line type definition. Elements defined with in-line
type definitions are mapped to Java classes.

It is recommended that elements are defined using a named type because in-line types are not reusable
by other elements in the schema.

XML SCHEMA MAPPING

In XML Schema elements are defined using element elements. element elements has one required
attribute. The name specifies the name of the element as it appears in an XML document.

In addition to the name attribute element elements have the optional attributes listed in Table 33.1,
“Attributes Used to Define an Element”.

Table 33.1. Attributes Used to Define an Element

Attribute Description

type Specifies the type of the element. The type can be
any XML Schema primitive type or any named
complex type defined in the contract. If this attribute
is not specified, you will need to include an in-line
type definition.

nillable Specifies if an element can be left out of a document
entirely. If nillable is set to true, the element can be
omitted from any document generated using the
schema.

Red Hat Fuse 7.5 Apache CXF Development Guide

298

abstract Specifies if an element can be used in an instance
document. true indicates that the element cannot
appear in the instance document. Instead, another
element whose substitutionGroup attribute
contains the QName of this element must appear in
this element’s place. For information on how this
attribute effects code generation see the section
called “Java mapping of abstract elements”.

substitutionGroup Specifies the name of an element that can be
substituted with this element. For more information
on using type substitution see Chapter 37, Element
Substitution.

default Specifies a default value for an element. For
information on how this attribute effects code
generation see the section called “Java mapping of
elements with a default value”.

fixed Specifies a fixed value for the element.

Attribute Description

Example 33.1, “Simple XML Schema Element Definition” shows a simple element definition.

Example 33.1. Simple XML Schema Element Definition

<element name="joeFred" type="xsd:string" />

An element can also define its own type using an in-line type definition. In-line types are specified using
either a complexType element or a simpleType element. Once you specify whether the type of data is
complex or simple, you can define any type of data needed using the tools available for each type of
data.

Example 33.2, “XML Schema Element Definition with an In-Line Type” shows an element definition with
an in-line type definition.

Example 33.2. XML Schema Element Definition with an In-Line Type

<element name="skate">
 <complexType>
 <sequence>
 <element name="numWheels" type="xsd:int" />
 <element name="brand" type="xsd:string" />
 </sequence>
 </complexType>
</element>

CHAPTER 33. USING XML ELEMENTS

299

JAVA MAPPING OF ELEMENTS WITH A NAMED TYPE

By default, globally defined elements are mapped to JAXBElement<T> objects where the template
class is determined by the value of the element element’s type attribute. For primitive types, the
template class is derived using the wrapper class mapping described in the section called “Wrapper
classes”. For complex types, the Java class generated to support the complex type is used as the
template class.

To support the mapping and to relieve the developer of unnecessary worry about an element’s QName,
an object factory method is generated for each globally defined element, as shown in Example 33.3,
“Object Factory Method for a Globally Scoped Element”.

Example 33.3. Object Factory Method for a Globally Scoped Element

public class ObjectFactory {

 private final static QName _name_QNAME = new QName("targetNamespace", "localName");

 ...

 @XmlElementDecl(namespace = "targetNamespace", name = "localName")
 public JAXBElement<type> createname(type value);

}

For example, the element defined in Example 33.1, “Simple XML Schema Element Definition” results in
the object factory method shown in Example 33.4, “Object Factory for a Simple Element” .

Example 33.4. Object Factory for a Simple Element

public class ObjectFactory {

 private final static QName _JoeFred_QNAME = new QName("...", "joeFred");

 ...

 @XmlElementDecl(namespace = "...", name = "joeFred")
 public JAXBElement<String> createJoeFred(String value);

}

Example 33.5, “Using a Globally Scoped Element” shows an example of using a globally scoped element
in Java.

Example 33.5. Using a Globally Scoped Element

JAXBElement<String> element = createJoeFred("Green");
String color = element.getValue();

Red Hat Fuse 7.5 Apache CXF Development Guide

300

USING ELEMENTS WITH NAMED TYPES IN WSDL

If a globally scoped element is used to define a message part, the generated Java parameter is not an
instance of JAXBElement<T>. Instead it is mapped to a regular Java type or class.

Given the WSDL fragment shown in Example 33.6, “WSDL Using an Element as a Message Part” , the
resulting method has a parameter of type String.

Example 33.6. WSDL Using an Element as a Message Part

<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"
 targetNamespace="http://apache.org/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://apache.org/hello_world_soap_http"
 xmlns:x1="http://apache.org/hello_world_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema targetNamespace="http://apache.org/hello_world_soap_http/types"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"><element name="sayHi">
 <element name="sayHi" type="string"/>
 <element name="sayHiResponse" type="string"/>
 </schema>
 </wsdl:types>

 <wsdl:message name="sayHiRequest">
 <wsdl:part element="x1:sayHi" name="in"/>
 </wsdl:message>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="x1:sayHiResponse" name="out"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

Example 33.7, “Java Method Using a Global Element as a Part” shows the generated method signature
for the sayHi operation.

Example 33.7. Java Method Using a Global Element as a Part

StringsayHiStringin

JAVA MAPPING OF ELEMENTS WITH AN IN-LINE TYPE

CHAPTER 33. USING XML ELEMENTS

301

When an element is defined using an in-line type, it is mapped to Java following the same rules used for
mapping other types to Java. The rules for simple types are described in Chapter 34, Using Simple
Types. The rules for complex types are described in Chapter 35, Using Complex Types.

When a Java class is generated for an element with an in-line type definition, the generated class is
decorated with the @XmlRootElement annotation. The @XmlRootElement annotation has two useful
properties: name and namespace. These attributes are described in Table 33.2, “Properties for the
@XmlRootElement Annotation”.

Table 33.2. Properties for the @XmlRootElement Annotation

Property Description

name Specifies the value of the XML Schema element
element’s name attribute.

namespace Specifies the namespace in which the element is
defined. If this element is defined in the target
namespace, the property is not specified.

The @XmlRootElement annotation is not used if the element meets one or more of the following
conditions:

The element’s nillable attribute is set to true

The element is the head element of a substitution group
For more information on substitution groups see Chapter 37, Element Substitution.

JAVA MAPPING OF ABSTRACT ELEMENTS

When the element’s abstract attribute is set to true the object factory method for instantiating
instances of the type is not generated. If the element is defined using an in-line type, the Java class
supporting the in-line type is generated.

JAVA MAPPING OF ELEMENTS WITH A DEFAULT VALUE

When the element’s default attribute is used the defaultValue property is added to the generated
@XmlElementDecl annotation. For example, the element defined in Example 33.8, “XML Schema
Element with a Default Value” results in the object factory method shown in Example 33.9, “Object
Factory Method for an Element with a Default Value”.

Example 33.8. XML Schema Element with a Default Value

<element name="size" type="xsd:int" default="7"/>

Example 33.9. Object Factory Method for an Element with a Default Value

 @XmlElementDecl(namespace = "...", name = "size", defaultValue = "7")
 public JAXBElement<Integer> createUnionJoe(Integer value) {
 return new JAXBElement<Integer>(_Size_QNAME, Integer.class, null, value);
 }

Red Hat Fuse 7.5 Apache CXF Development Guide

302

CHAPTER 33. USING XML ELEMENTS

303

CHAPTER 34. USING SIMPLE TYPES

Abstract

XML Schema simple types are either XML Schema primitive types like xsd:int, or are defined using the
simpleType element. They are used to specify elements that do not contain any children or attributes.
They are generally mapped to native Java constructs and do not require the generation of special
classes to implement them. Enumerated simple types do not result in generated code because they are
mapped to Java enum types.

34.1. PRIMITIVE TYPES

Overview

When a message part is defined using one of the XML Schema primitive types, the generated
parameter’s type is mapped to a corresponding Java native type. The same pattern is used when
mapping elements that are defined within the scope of a complex type. The resulting field is of the
corresponding Java native type.

Mappings

Table 34.1, “XML Schema Primitive Type to Java Native Type Mapping” lists the mapping between XML
Schema primitive types and Java native types.

Table 34.1. XML Schema Primitive Type to Java Native Type Mapping

XML Schema Type Java Type

xsd:string String

xsd:integer BigInteger

xsd:int int

xsd:long long

xsd:short short

xsd:decimal BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName QName

Red Hat Fuse 7.5 Apache CXF Development Guide

304

xsd:dateTime XMLGregorianCalendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time XMLGregorianCalendar

xsd:date XMLGregorianCalendar

xsd:g XMLGregorianCalendar

xsd:anySimpleType [a] Object

xsd:anySimpleType [b] String

xsd:duration Duration

xsd:NOTATION QName

[a] For elements of this type.

[b] For attributes of this type.

XML Schema Type Java Type

Wrapper classes

Mapping XML Schema primitive types to Java primitive types does not work for all possible XML
Schema constructs. Several cases require that an XML Schema primitive type is mapped to the Java
primitive type’s corresponding wrapper type. These cases include:

An element element with its nillable attribute set to true as shown:

<element name="finned" type="xsd:boolean"
 nillable="true" />

An element element with its minOccurs attribute set to 0 and its maxOccurs attribute set to
1, or its maxOccurs attribute not specified, as shown :

<element name="plane" type="xsd:string" minOccurs="0" />

CHAPTER 34. USING SIMPLE TYPES

305

An attribute element with its use attribute set to optional, or not specified, and having neither
its default attribute nor its fixed attribute specified, as shown:

<element name="date">
 <complexType>
 <sequence/>
 <attribute name="calType" type="xsd:string"
 use="optional" />
 </complexType>
</element>

Table 34.2, “Primitive Schema Type to Java Wrapper Class Mapping” shows how XML Schema primitive
types are mapped into Java wrapper classes in these cases.

Table 34.2. Primitive Schema Type to Java Wrapper Class Mapping

Schema Type Java Type

xsd:int java.lang.Integer

xsd:long java.lang.Long

xsd:short java.lang.Short

xsd:float java.lang.Float

xsd:double java.lang.Double

xsd:boolean java.lang.Boolean

xsd:byte java.lang.Byte

xsd:unsignedByte java.lang.Short

xsd:unsignedShort java.lang.Integer

xsd:unsignedInt java.lang.Long

xsd:unsignedLong java.math.BigInteger

xsd:duration java.lang.String

34.2. SIMPLE TYPES DEFINED BY RESTRICTION

Overview

XML Schema allows you to create simple types by deriving a new type from another primitive type or
simple type. Simple types are described using a simpleType element.

The new types are described by restricting the base type with one or more facets. These facets limit the

Red Hat Fuse 7.5 Apache CXF Development Guide

306

The new types are described by restricting the base type with one or more facets. These facets limit the
possible valid values that can be stored in the new type. For example, you could define a simple type,
SSN, which is a string of exactly 9 characters.

Each of the primitive XML Schema types has their own set of optional facets.

Procedure

To define your own simple type do the following:

1. Determine the base type for your new simple type.

2. Determine what restrictions define the new type based on the available facets for the chosen
base type.

3. Using the syntax shown in this section, enter the appropriate simpleType element into the
types section of your contract.

Defining a simple type in XML Schema

Example 34.1, “Simple type syntax” shows the syntax for describing a simple type.

Example 34.1. Simple type syntax

<simpleType name="typeName">
 <restriction base="baseType">
 <facet value="value" />
 <facet value="value" />
 ...
 </restriction>
</simpleType>

The type description is enclosed in a simpleType element and identified by the value of the name
attribute. The base type from which the new simple type is being defined is specified by the base
attribute of the xsd:restriction element. Each facet element is specified within the restriction element.
The available facets and their valid settings depend on the base type. For example, xsd:string has a
number of facets including:

length

minLength

maxLength

pattern

whitespace

Example 34.2, “Postal Code Simple Type” shows the definition for a simple type that represents the
two-letter postal code used for US states. It can only contain two, uppercase letters. TX is a valid value,
but tx or tX are not valid values.

Example 34.2. Postal Code Simple Type

CHAPTER 34. USING SIMPLE TYPES

307

<xsd:simpleType name="postalCode">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]{2}" />
 </xsd:restriction>
</xsd:simpleType>

Mapping to Java

Apache CXF maps user-defined simple types to the Java type of the simple type’s base type. So, any
message using the simple type postalCode, shown in Example 34.2, “Postal Code Simple Type” , is
mapped to a String because the base type of postalCode is xsd:string. For example, the WSDL
fragment shown in Example 34.3, “Credit Request with Simple Types” results in a Java method, state(),
that takes a parameter, postalCode, of String.

Example 34.3. Credit Request with Simple Types

<message name="stateRequest">
 <part name="postalCode" type="postalCode" />
</message>
...
<portType name="postalSupport">
 <operation name="state">
 <input message="tns:stateRequest" name="stateRec" />
 <output message="tns:stateResponse" name="credResp" />
 </operation>
</portType>

Enforcing facets

By default, Apache CXF does not enforce any of the facets that are used to restrict a simple type.
However, you can configure Apache CXF endpoints to enforce the facets by enabling schema validation.

To configure Apache CXF endpoints to use schema validation set the schema-validation-enabled
property to true. Example 34.4, “Service Provider Configured to Use Schema Validation” shows the
configuration for a service provider that uses schema validation

Example 34.4. Service Provider Configured to Use Schema Validation

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 wsdlLocation="wsdl/hello_world.wsdl"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="BOTH" />
 </jaxws:properties>
</jaxws:endpoint>

For more information on configuring schema validation, see Section 24.3.4.7, “Schema Validation Type
Values”.

Red Hat Fuse 7.5 Apache CXF Development Guide

308

34.3. ENUMERATIONS

Overview

In XML Schema, enumerated types are simple types that are defined using the xsd:enumeration facet.
Unlike atomic simple types, they are mapped to Java enums.

Defining an enumerated type in XML Schema

Enumerations are a simple type using the xsd:enumeration facet. Each xsd:enumeration facet defines
one possible value for the enumerated type.

Example 34.5, “XML Schema Defined Enumeration” shows the definition for an enumerated type. It has
the following possible values:

big

large

mungo

gargantuan

Example 34.5. XML Schema Defined Enumeration

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 <enumeration value="gargantuan"/>
 </restriction>

Mapping to Java

XML Schema enumerations where the base type is xsd:string are automatically mapped to Java enum
type. You can instruct the code generator to map enumerations with other base types to Java enum
types by using the customizations described in Section 38.4, “Customizing Enumeration Mapping”.

The enum type is created as follows:

1. The name of the type is taken from the name attribute of the simple type definition and
converted to a Java identifier.
In general, this means converting the first character of the XML Schema’s name to an
uppercase letter. If the first character of the XML Schema’s name is an invalid character, an
underscrore (_) is prepended to the name.

2. For each enumeration facet, an enum constant is generated based on the value of the value
attribute.
The constant’s name is derived by converting all of the lowercase letters in the value to their
uppercase equivalent.

3. A constructor is generated that takes the Java type mapped from the enumeration’s base type.

CHAPTER 34. USING SIMPLE TYPES

309

4. A public method called value() is generated to access the facet value that is represented by an
instance of the type.
The return type of the value() method is the base type of the XML Schema type.

5. A public method called fromValue() is generated to create an instance of the enum type based
on a facet value.
The parameter type of the value() method is the base type of the XML Schema type.

6. The class is decorated with the @XmlEnum annotation.

The enumerated type defined in Example 34.5, “XML Schema Defined Enumeration” is mapped to the
enum type shown in Example 34.6, “Generated Enumerated Type for a String Bases XML Schema
Enumeration”.

Example 34.6. Generated Enumerated Type for a String Bases XML Schema Enumeration

@XmlType(name = "widgetSize")
@XmlEnum
public enum WidgetSize {

 @XmlEnumValue("big")
 BIG("big"),
 @XmlEnumValue("large")
 LARGE("large"),
 @XmlEnumValue("mungo")
 MUNGO("mungo"),
 @XmlEnumValue("gargantuan")
 GARGANTUAN("gargantuan");
 private final String value;

 WidgetSize(String v) {
 value = v;
 }

 public String value() {
 return value;
 }

 public static WidgetSize fromValue(String v) {
 for (WidgetSize c: WidgetSize.values()) {
 if (c.value.equals(v)) {
 return c;
 }
 }
 throw new IllegalArgumentException(v);
 }

}

34.4. LISTS

Overview

XML Schema supports a mechanism for defining data types that are a list of space separated simple

Red Hat Fuse 7.5 Apache CXF Development Guide

310

XML Schema supports a mechanism for defining data types that are a list of space separated simple
types. An example of an element, primeList, using a list type is shown in Example 34.7, “List Type
Example”.

Example 34.7. List Type Example

<primeList>1 3 5 7 9 11 13<\primeList>

XML Schema list types are generally mapped to Java List<T> objects. The only variation to this pattern
is when a message part is mapped directly to an instance of an XML Schema list type.

Defining list types in XML Schema

XML Schema list types are simple types and as such are defined using a simpleType element. The most
common syntax used to define a list type is shown in Example 34.8, “Syntax for XML Schema List
Types”.

Example 34.8. Syntax for XML Schema List Types

<simpleType name="listType">
 <list itemType="atomicType">
 <facet value="value" />
 <facet value="value" />
 ...
 </list>
</simpleType>

The value given for atomicType defines the type of the elements in the list. It can only be one of the built
in XML Schema atomic types, like xsd:int or xsd:string, or a user-defined simple type that is not a list.

In addition to defining the type of elements listed in the list type, you can also use facets to further
constrain the properties of the list type. Table 34.3, “List Type Facets” shows the facets used by list
types.

Table 34.3. List Type Facets

Facet Effect

length Defines the number of elements in an instance of the
list type.

minLength Defines the minimum number of elements allowed in
an instance of the list type.

maxLength Defines the maximum number of elements allowed in
an instance of the list type.

enumeration Defines the allowable values for elements in an
instance of the list type.

CHAPTER 34. USING SIMPLE TYPES

311

pattern Defines the lexical form of the elements in an
instance of the list type. Patterns are defined using
regular expressions.

Facet Effect

For example, the definition for the simpleList element shown in Example 34.7, “List Type Example”, is
shown in Example 34.9, “Definition of a List Type” .

Example 34.9. Definition of a List Type

<simpleType name="primeListType">
 <list itemType="int"/>
</simpleType>
<element name="primeList" type="primeListType"/>

In addition to the syntax shown in Example 34.8, “Syntax for XML Schema List Types” you can also
define a list type using the less common syntax shown in Example 34.10, “Alternate Syntax for List
Types”.

Example 34.10. Alternate Syntax for List Types

<simpleType name="listType">
 <list>
 <simpleType>
 <restriction base="atomicType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </restriction>
 </simpleType>
 </list>
 </simpleType>

Mapping list type elements to Java

When an element is defined a list type, the list type is mapped to a collection property. A collection
property is a Java List<T> object. The template class used by the List<T> is the wrapper class mapped
from the list’s base type. For example, the list type defined in Example 34.9, “Definition of a List Type”
is mapped to a List<Integer>.

For more information on wrapper type mapping see the section called “Wrapper classes” .

Mapping list type parameters to Java

When a message part is defined as a list type, or is mapped to an element of a list type, the resulting
method parameter is mapped to an array instead of a List<T> object. The base type of the array is the
wrapper class of the list type’s base class.

For example, the WSDL fragment in Example 34.11, “WSDL with a List Type Message Part” results in the

Red Hat Fuse 7.5 Apache CXF Development Guide

312

For example, the WSDL fragment in Example 34.11, “WSDL with a List Type Message Part” results in the
method signature shown in Example 34.12, “Java Method with a List Type Parameter” .

Example 34.11. WSDL with a List Type Message Part

<definitions ...>
 ...
 <types ...>
 <schema ... >
 <simpleType name="primeListType">
 <list itemType="int"/>
 </simpleType>
 <element name="primeList" type="primeListType"/>
 </schemas>
 </types>
 <message name="numRequest"> <part name="inputData" element="xsd1:primeList" />
</message>
 <message name="numResponse">;
 <part name="outputData" type="xsd:int">
 ...
 <portType name="numberService">
 <operation name="primeProcessor">
 <input name="numRequest" message="tns:numRequest" />
 <output name="numResponse" message="tns:numResponse" />
 </operation>
 ...
 </portType>
 ...
</definitions>

Example 34.12. Java Method with a List Type Parameter

public interface NumberService {

 @XmlList
 @WebResult(name = "outputData", targetNamespace = "", partName = "outputData")
 @WebMethod
 public int primeProcessor(
 @WebParam(partName = "inputData", name = "primeList", targetNamespace = "...")
java.lang.Integer[] inputData
);
}

34.5. UNIONS

Overview

In XML Schema, a union is a construct that allows you to describe a type whose data can be one of a
number of simple types. For example, you can define a type whose value is either the integer 1 or the
string first. Unions are mapped to Java Strings.

CHAPTER 34. USING SIMPLE TYPES

313

Defining in XML Schema

XML Schema unions are defined using a simpleType element. They contain at least one union element
that defines the member types of the union. The member types of the union are the valid types of data
that can be stored in an instance of the union. They are defined using the union element’s
memberTypes attribute. The value of the memberTypes attribute contains a list of one or more
defined simple type names. Example 34.13, “Simple Union Type” shows the definition of a union that can
store either an integer or a string.

Example 34.13. Simple Union Type

<simpleType name="orderNumUnion">
 <union memberTypes="xsd:string xsd:int" />
</simpleType>

In addition to specifying named types as a member type of a union, you can also define an anonymous
simple type as a member type of a union. This is done by adding the anonymous type definition inside of
the union element. Example 34.14, “Union with an Anonymous Member Type” shows an example of a
union containing an anonymous member type that restricts the possible values of a valid integer to the
range 1 through 10.

Example 34.14. Union with an Anonymous Member Type

<simpleType name="restrictedOrderNumUnion">
 <union memberTypes="xsd:string">
 <simpleType>
 <restriction base="xsd:int">
 <minInclusive value="1" />
 <maxInclusive value="10" />
 </restriction>
 </simpleType>
 </union>
</simpleType>

Mapping to Java

XML Schema union types are mapped to Java String objects. By default, Apache CXF does not validate
the contents of the generated object. To have Apache CXF validate the contents you will must
configure the runtime to use schema validation as described in the section called “Enforcing facets” .

34.6. SIMPLE TYPE SUBSTITUTION

Overview

XML allows for simple type substitution between compatible types using the xsi:type attribute. The
default mapping of simple types to Java primitive types, however, does not fully support simple type
substitution. The runtime can handle basic simple type substitution, but information is lost. The code
generators can be customized to generate Java classes that facilitate lossless simple type substitution.

Default mapping and marshaling

Red Hat Fuse 7.5 Apache CXF Development Guide

314

Because Java primitive types do not support type substitution, the default mapping of simple types to
Java primitive types presents problems for supporting simple type substitution. The Java virtual
machine will balk if an attempt is made to pass a short into a variable that expects an int even though
the schema defining the types allows it.

To get around the limitations imposed by the Java type system, Apache CXF allows for simple type
substitution when the value of the element’s xsi:type attribute meets one of the following conditions:

It specifies a primitive type that is compatible with the element’s schema type.

It specifies a type that derives by restriction from the element’s schema type.

It specifies a complex type that derives by extension from the element’s schema type.

When the runtime does the type substitution it does not retain any knowledge of the type specified in
the element’s xsi:type attribute. If the type substitution is from a complex type to a simple type, only
the value directly related to the simple type is preserved. Any other elements and attributes added by
extension are lost.

Supporting lossless type substitution

You can customize the generation of simple types to facilitate lossless support of simple type
substitution in the following ways:

Set the globalBindings customization element’s mapSimpleTypeDef to true.
This instructs the code generator to create Java value classes for all named simple types
defined in the global scope.

For more information see Section 38.3, “Generating Java Classes for Simple Types” .

Add a javaType element to the globalBindings customization element.
This instructs the code generators to map all instances of an XML Schema primitive type to s
specific class of object.

For more information see Section 38.2, “Specifying the Java Class of an XML Schema
Primitive”.

Add a baseType customization element to the specific elements you want to customize.
The baseType customization element allows you to specify the Java type generated to
represent a property. To ensure the best compatibility for simple type substitution, use
java.lang.Object as the base type.

For more information see Section 38.6, “Specifying the Base Type of an Element or an
Attribute”.

CHAPTER 34. USING SIMPLE TYPES

315

CHAPTER 35. USING COMPLEX TYPES

Abstract

Complex types can contain multiple elements and they can have attributes. They are mapped into Java
classes that can hold the data represented by the type definition. Typically, the mapping is to a bean
with a set of properties representing the elements and the attributes of the content model..

35.1. BASIC COMPLEX TYPE MAPPING

Overview

XML Schema complex types define constructs containing more complex information than a simple type.
The most simple complex types define an empty element with an attribute. More intricate complex types
are made up of a collection of elements.

By default, an XML Schema complex type is mapped to a Java class, with a member variable to
represent each element and attribute listed in the XML Schema definition. The class has setters and
getters for each member variable.

Defining in XML Schema

XML Schema complex types are defined using the complexType element. The complexType element
wraps the rest of elements used to define the structure of the data. It can appear either as the parent
element of a named type definition, or as the child of an element element anonymously defining the
structure of the information stored in the element. When the complexType element is used to define a
named type, it requires the use of the name attribute. The name attribute specifies a unique identifier
for referencing the type.

Complex type definitions that contain one or more elements have one of the child elements described in
Table 35.1, “Elements for Defining How Elements Appear in a Complex Type” . These elements
determine how the specified elements appear in an instance of the type.

Table 35.1. Elements for Defining How Elements Appear in a Complex Type

Element Description

all All of the elements defined as part of the complex
type must appear in an instance of the type.
However, they can appear in any order.

choice Only one of the elements defined as part of the
complex type can appear in an instance of the type.

sequence All of the elements defined as part of the complex
type must appear in an instance of the type, and they
must also appear in the order specified in the type
definition.

NOTE

Red Hat Fuse 7.5 Apache CXF Development Guide

316

NOTE

If a complex type definition only uses attributes, you do not need one of the elements
described in Table 35.1, “Elements for Defining How Elements Appear in a Complex
Type”.

After deciding how the elements will appear, you define the elements by adding one or more element
element children to the definition.

Example 35.1, “XML Schema Complex Type” shows a complex type definition in XML Schema.

Example 35.1. XML Schema Complex Type

<complexType name="sequence">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="street" type="xsd:short" />
 <element name="city" type="xsd:string" />
 <element name="state" type="xsd:string" />
 <element name="zipCode" type="xsd:string" />
 </sequence>
</complexType>

Mapping to Java

XML Schema complex types are mapped to Java classes. Each element in the complex type definition is
mapped to a member variable in the Java class. Getter and setter methods are also generated for each
element in the complex type.

All generated Java classes are decorated with the @XmlType annotation. If the mapping is for a named
complex type, the annotations name is set to the value of the complexType element’s name attribute.
If the complex type is defined as part of an element definition, the value of the @XmlType annotation’s
name property is the value of the element element’s name attribute.

NOTE

As described in the section called “Java mapping of elements with an in-line type” , the
generated class is decorated with the @XmlRootElement annotation if it is generated
for a complex type defined as part of an element definition.

To provide the runtime with guidelines indicating how the elements of the XML Schema complex type
should be handled, the code generators alter the annotations used to decorate the class and its member
variables.

All Complex Type

All complex types are defined using the all element. They are annotated as follows:

The @XmlType annotation’s propOrder property is empty.

Each element is decorated with the @XmlElement annotation.

The @XmlElement annotation’s required property is set to true.

Example 35.2, “Mapping of an All Complex Type” shows the mapping for an all complex type

CHAPTER 35. USING COMPLEX TYPES

317

Example 35.2, “Mapping of an All Complex Type” shows the mapping for an all complex type
with two elements.

Example 35.2. Mapping of an All Complex Type

@XmlType(name = "all", propOrder = {

})
public class All {
 @XmlElement(required = true)
 protected BigDecimal amount;
 @XmlElement(required = true)
 protected String type;

 public BigDecimal getAmount() {
 return amount;
 }

 public void setAmount(BigDecimal value) {
 this.amount = value;
 }

 public String getType() {
 return type;
 }

 public void setType(String value) {
 this.type = value;
 }
}

Choice Complex Type

Choice complex types are defined using the choice element. They are annotated as follows:

The @XmlType annotation’s propOrder property lists the names of the elements in the
order they appear in the XML Schema definition.

None of the member variables are annotated.
Example 35.3, “Mapping of a Choice Complex Type” shows the mapping for a choice
complex type with two elements.

Example 35.3. Mapping of a Choice Complex Type

@XmlType(name = "choice", propOrder = {
 "address",
 "floater"
})
public class Choice {

 protected Sequence address;
 protected Float floater;

 public Sequence getAddress() {

Red Hat Fuse 7.5 Apache CXF Development Guide

318

 return address;
 }

 public void setAddress(Sequence value) {
 this.address = value;
 }

 public Float getFloater() {
 return floater;
 }

 public void setFloater(Float value) {
 this.floater = value;
 }

}

Sequence Complex Type

A sequence complex type is defined using the sequence element. It is annotated as follows:

The @XmlType annotation’s propOrder property lists the names of the elements in the
order they appear in the XML Schema definition.

Each element is decorated with the @XmlElement annotation.

The @XmlElement annotation’s required property is set to true.
Example 35.4, “Mapping of a Sequence Complex Type” shows the mapping for the complex
type defined in Example 35.1, “XML Schema Complex Type” .

Example 35.4. Mapping of a Sequence Complex Type

@XmlType(name = "sequence", propOrder = {
 "name",
 "street",
 "city",
 "state",
 "zipCode"
})
public class Sequence {

 @XmlElement(required = true)
 protected String name;
 protected short street;
 @XmlElement(required = true)
 protected String city;
 @XmlElement(required = true)
 protected String state;
 @XmlElement(required = true)
 protected String zipCode;

 public String getName() {
 return name;
 }

CHAPTER 35. USING COMPLEX TYPES

319

 public void setName(String value) {
 this.name = value;
 }

 public short getStreet() {
 return street;
 }

 public void setStreet(short value) {
 this.street = value;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String value) {
 this.city = value;
 }

 public String getState() {
 return state;
 }

 public void setState(String value) {
 this.state = value;
 }

 public String getZipCode() {
 return zipCode;
 }

 public void setZipCode(String value) {
 this.zipCode = value;
 }
}

35.2. ATTRIBUTES

Overview

Apache CXF supports the use of attribute elements and attributeGroup elements within the scope of a
complexType element. When defining structures for an XML document attribute declarations provide a
means of adding information that is specified within the tag, not the value that the tag contains. For
example, when describing the XML element <value currency="euro">410<\value> in XML Schema the
currency attribute is described using an attribute element as shown in Example 35.5, “XML Schema
Defining and Attribute”.

The attributeGroup element allows you to define a group of reusable attributes that can be referenced
by all complex types defined by the schema. For example, if you are defining a series of elements that all
use the attributes category and pubDate, you could define an attribute group with these attributes and
reference them in all the elements that use them. This is shown in Example 35.7, “Attribute Group
Definition”.

Red Hat Fuse 7.5 Apache CXF Development Guide

320

When describing data types for use in developing application logic, attributes whose use attribute is set
to either optional or required are treated as elements of a structure. For each attribute declaration
contained within a complex type description, an element is generated in the class for the attribute, along
with the appropriate getter and setter methods.

Defining an attribute in XML Schema

An XML Schema attribute element has one required attribute, name, that is used to identify the
attribute. It also has four optional attributes that are described in Table 35.2, “Optional Attributes Used
to Define Attributes in XML Schema”.

Table 35.2. Optional Attributes Used to Define Attributes in XML Schema

Attribute Description

use Specifies if the attribute is required. Valid values are
required, optional, or prohibited. optional is the
default value.

type Specifies the type of value the attribute can take. If it
is not used the schema type of the attribute must be
defined in-line.

default Specifies a default value to use for the attribute. It is
only used when the attribute element’s use
attribute is set to optional.

fixed Specifies a fixed value to use for the attribute. It is
only used when the attribute element’s use
attribute is set to optional.

Example 35.5, “XML Schema Defining and Attribute” shows an attribute element defining an attribute,
currency, whose value is a string.

Example 35.5. XML Schema Defining and Attribute

<element name="value">
 <complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:integer">
 <xsd:attribute name="currency" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

If the type attribute is omitted from the attribute element, the format of the data must be described in-
line. Example 35.6, “Attribute with an In-Line Data Description” shows an attribute element for an
attribute, category, that can take the values autobiography, non-fiction, or fiction.

CHAPTER 35. USING COMPLEX TYPES

321

Example 35.6. Attribute with an In-Line Data Description

<attribute name="category" use="required">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="autobiography"/>
 <enumeration value="non-fiction"/>
 <enumeration value="fiction"/>
 </restriction>
 </simpleType>
</attribute>

Using an attribute group in XML Schema

Using an attribute group in a complex type definition is a two step process:

1. Define the attribute group.
An attribute group is defined using an attributeGroup element with a number of attribute child
elements. The attributeGroup requires a name attribute that defines the string used to refer to
the attribute group. The attribute elements define the members of the attribute group and are
specified as shown in the section called “Defining an attribute in XML Schema” . Example 35.7,
“Attribute Group Definition” shows the description of the attribute group catalogIndecies. The
attribute group has two members: category, which is optional, and pubDate, which is required.

Example 35.7. Attribute Group Definition

<attributeGroup name="catalogIndices">
 <attribute name="category" type="catagoryType" />
 <attribute name="pubDate" type="dateTime"
 use="required" />
</attributeGroup>

2. Use the attribute group in the definition of a complex type.
You use attribute groups in complex type definitions by using the attributeGroup element with
the ref attribute. The value of the ref attribute is the name given the attribute group that you
want to use as part of the type definition. For example if you want to use the attribute group
catalogIndecies in the complex type dvdType, you would use <attributeGroup
ref="catalogIndecies" /> as shown in Example 35.8, “Complex Type with an Attribute Group” .

Example 35.8. Complex Type with an Attribute Group

<complexType name="dvdType">
 <sequence>
 <element name="title" type="xsd:string" />
 <element name="director" type="xsd:string" />
 <element name="numCopies" type="xsd:int" />
 </sequence>
 <attributeGroup ref="catalogIndices" />
</complexType>

Red Hat Fuse 7.5 Apache CXF Development Guide

322

Mapping attributes to Java

Attributes are mapped to Java in much the same way that member elements are mapped to Java.
Required attributes and optional attributes are mapped to member variables in the generated Java
class. The member variables are decorated with the @XmlAttribute annotation. If the attribute is
required, the @XmlAttribute annotation’s required property is set to true.

The complex type defined in Example 35.9, “techDoc Description” is mapped to the Java class shown in
Example 35.10, “techDoc Java Class” .

Example 35.9. techDoc Description

<complexType name="techDoc">
 <all>
 <element name="product" type="xsd:string" />
 <element name="version" type="xsd:short" />
 </all>
 <attribute name="usefullness" type="xsd:float"
 use="optional" default="0.01" />
</complexType>

Example 35.10. techDoc Java Class

@XmlType(name = "techDoc", propOrder = {

})
public class TechDoc {

 @XmlElement(required = true)
 protected String product;
 protected short version;
 @XmlAttribute protected Float usefullness;

 public String getProduct() {
 return product;
 }

 public void setProduct(String value) {
 this.product = value;
 }

 public short getVersion() {
 return version;
 }

 public void setVersion(short value) {
 this.version = value;
 }

 public float getUsefullness() { if (usefullness == null) { return 0.01F; } else { return usefullness; }
}

 public void setUsefullness(Float value) {

CHAPTER 35. USING COMPLEX TYPES

323

 this.usefullness = value;
 }
}

As shown in Example 35.10, “techDoc Java Class” , the default attribute and the fixed attribute instruct
the code generators to add code to the getter method generated for the attribute. This additional code
ensures that the specified value is returned if no value is set.

IMPORTANT

The fixed attribute is treated the same as the default attribute. If you want the fixed
attribute to be treated as a Java constant you can use the customization described in
Section 38.5, “Customizing Fixed Value Attribute Mapping” .

Mapping attribute groups to Java

Attribute groups are mapped to Java as if the members of the group were explicitly used in the type
definition. If the attribute group has three members, and it is used in a complex type, the generated class
for that type will include a member variable, along with the getter and setter methods, for each member
of the attribute group. For example, the complex type defined in Example 35.8, “Complex Type with an
Attribute Group”, Apache CXF generates a class containing the member variables category and
pubDate to support the members of the attribute group as shown in Example 35.11, “dvdType Java
Class”.

Example 35.11. dvdType Java Class

@XmlType(name = "dvdType", propOrder = {
 "title",
 "director",
 "numCopies"
})
public class DvdType {

 @XmlElement(required = true)
 protected String title;
 @XmlElement(required = true)
 protected String director;
 protected int numCopies;
 @XmlAttribute protected CatagoryType category; @XmlAttribute(required = true)
@XmlSchemaType(name = "dateTime") protected XMLGregorianCalendar pubDate;

 public String getTitle() {
 return title;
 }

 public void setTitle(String value) {
 this.title = value;
 }

 public String getDirector() {
 return director;
 }

Red Hat Fuse 7.5 Apache CXF Development Guide

324

 public void setDirector(String value) {
 this.director = value;
 }

 public int getNumCopies() {
 return numCopies;
 }

 public void setNumCopies(int value) {
 this.numCopies = value;
 }

 public CatagoryType getCatagory() {
 return catagory;
 }

 public void setCatagory(CatagoryType value) {
 this.catagory = value;
 }

 public XMLGregorianCalendar getPubDate() {
 return pubDate;
 }

 public void setPubDate(XMLGregorianCalendar value) {
 this.pubDate = value;
 }

}

35.3. DERIVING COMPLEX TYPES FROM SIMPLE TYPES

Overview

Apache CXF supports derivation of a complex type from a simple type. A simple type has, by definition,
neither sub-elements nor attributes. Hence, one of the main reasons for deriving a complex type from a
simple type is to add attributes to the simple type.

There are two ways of deriving a complex type from a simple type:

By extension

By restriction

Derivation by extension

Example 35.12, “Deriving a Complex Type from a Simple Type by Extension” shows an example of a
complex type, internationalPrice, derived by extension from the xsd:decimal primitive type to include
a currency attribute.

Example 35.12. Deriving a Complex Type from a Simple Type by Extension

<complexType name="internationalPrice">

CHAPTER 35. USING COMPLEX TYPES

325

 <simpleContent>
 <extension base="xsd:decimal">
 <attribute name="currency" type="xsd:string"/>
 </extension>
 </simpleContent>
 </complexType>

The simpleContent element indicates that the new type does not contain any sub-elements. The
extension element specifies that the new type extends xsd:decimal.

Derivation by restriction

Example 35.13, “Deriving a Complex Type from a Simple Type by Restriction” shows an example of a
complex type, idType, that is derived by restriction from xsd:string. The defined type restricts the
possible values of xsd:stringto values that are ten characters in length. It also adds an attribute to the
type.

Example 35.13. Deriving a Complex Type from a Simple Type by Restriction

<complexType name="idType">
 <simpleContent>
 <restriction base="xsd:string">
 <length value="10" />
 <attribute name="expires" type="xsd:dateTime" />
 </restriction>
 </simpleContent>
</complexType>

As in Example 35.12, “Deriving a Complex Type from a Simple Type by Extension” the simpleContent
element signals that the new type does not contain any children. This example uses a restriction
element to constrain the possible values used in the new type. The attribute element adds the element
to the new type.

Mapping to Java

A complex type derived from a simple type is mapped to a Java class that is decorated with the
@XmlType annotation. The generated class contains a member variable, value, of the simple type from
which the complex type is derived. The member variable is decorated with the @XmlValue annotation.
The class also has a getValue() method and a setValue() method. In addition, the generated class has a
member variable, and the associated getter and setter methods, for each attribute that extends the
simple type.

Example 35.14, “idType Java Class” shows the Java class generated for the idType type defined in
Example 35.13, “Deriving a Complex Type from a Simple Type by Restriction” .

Example 35.14. idType Java Class

@XmlType(name = "idType", propOrder = {
 "value"
})
public class IdType {

Red Hat Fuse 7.5 Apache CXF Development Guide

326

 @XmlValue
 protected String value;
 @XmlAttribute
 @XmlSchemaType(name = "dateTime")
 protected XMLGregorianCalendar expires;

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }

 public XMLGregorianCalendar getExpires() {
 return expires;
 }

 public void setExpires(XMLGregorianCalendar value) {
 this.expires = value;
 }

}

35.4. DERIVING COMPLEX TYPES FROM COMPLEX TYPES

Overview

Using XML Schema, you can derive new complex types by either extending or restricting other complex
types using the complexContent element. When generating the Java class to represent the derived
complex type, Apache CXF extends the base type’s class. In this way, the generated Java code
preserves the inheritance hierarchy intended in the XML Schema.

Schema syntax

You derive complex types from other complex types by using the complexContent element, and either
the extension element or the restriction element. The complexContent element specifies that the
included data description includes more than one field. The extension element and the restriction
element, which are children of the complexContent element, specify the base type being modified to
create the new type. The base type is specified by the base attribute.

Extending a complex type

To extend a complex type use the extension element to define the additional elements and attributes
that make up the new type. All elements that are allowed in a complex type description are allowable as
part of the new type’s definition. For example, you can add an anonymous enumeration to the new type,
or you can use the choice element to specify that only one of the new fields can be valid at a time.

Example 35.15, “Deriving a Complex Type by Extension” shows an XML Schema fragment that defines
two complex types, widgetOrderInfo and widgetOrderBillInfo. widgetOrderBillInfo is derived by
extending widgetOrderInfo to include two new elements: orderNumber and amtDue.

CHAPTER 35. USING COMPLEX TYPES

327

Example 35.15. Deriving a Complex Type by Extension

<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:int"/>
 <element name="order_date" type="xsd:dateTime"/>
 <element name="type" type="xsd1:widgetSize"/>
 <element name="shippingAddress" type="xsd1:Address"/>
 </sequence>
 <attribute name="rush" type="xsd:boolean" use="optional" />
</complexType>
<complexType name="widgetOrderBillInfo">
 <complexContent>
 <extension base="xsd1:widgetOrderInfo">
 <sequence>
 <element name="amtDue" type="xsd:decimal"/>
 <element name="orderNumber" type="xsd:string"/>
 </sequence>
 <attribute name="paid" type="xsd:boolean"
 default="false" />
 </extension>
 </complexContent>
</complexType>

Restricting a complex type

To restrict a complex type use the restriction element to limit the possible values of the base type’s
elements or attributes. When restricting a complex type you must list all of the elements and attributes
of the base type. For each element you can add restrictive attributes to the definition. For example, you
can add a maxOccurs attribute to an element to limit the number of times it can occur. You can also use
the fixed attribute to force one or more of the elements to have predetermined values.

Example 35.16, “Defining a Complex Type by Restriction” shows an example of defining a complex type
by restricting another complex type. The restricted type, wallawallaAddress, can only be used for
addresses in Walla Walla, Washington because the values for the city element, the state element, and
the zipCode element are fixed.

Example 35.16. Defining a Complex Type by Restriction

<complexType name="Address">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="street" type="xsd:short" maxOccurs="3"/>
 <element name="city" type="xsd:string"/>
 <element name="state" type="xsd:string"/>
 <element name="zipCode" type="xsd:string"/>
 </sequence>
</complexType>
<complexType name="wallawallaAddress">
 <complexContent>
 <restriction base="xsd1:Address">
 <sequence>
 <element name="name" type="xsd:string"/>

Red Hat Fuse 7.5 Apache CXF Development Guide

328

 <element name="street" type="xsd:short"
 maxOccurs="3"/>
 <element name="city" type="xsd:string"
 fixed="WallaWalla"/>
 <element name="state" type="xsd:string"
 fixed="WA" />
 <element name="zipCode" type="xsd:string"
 fixed="99362" />
 </sequence>
 </restriction>
 </complexContent>
</complexType>

Mapping to Java

As it does with all complex types, Apache CXF generates a class to represent complex types derived
from another complex type. The Java class generated for the derived complex type extends the Java
class generated to support the base complex type. The base Java class is also modified to include the
@XmlSeeAlso annotation. The base class' @XmlSeeAlso annotation lists all of the classes that extend
the base class.

When the new complex type is derived by extension, the generated class will include member variables
for all of the added elements and attributes. The new member variables will be generated according to
the same mappings as all other elements.

When the new complex type is derived by restriction, the generated class will have no new member
variables. The generated class will simply be a shell that does not provide any additional functionality. It
is entirely up to you to ensure that the restrictions defined in the XML Schema are enforced.

For example, the schema in Example 35.15, “Deriving a Complex Type by Extension” results in the
generation of two Java classes: WidgetOrderInfo and WidgetBillOrderInfo. WidgetOrderBillInfo
extends WidgetOrderInfo because widgetOrderBillInfo is derived by extension from widgetOrderInfo.
Example 35.17, “WidgetOrderBillInfo” shows the generated class for widgetOrderBillInfo.

Example 35.17. WidgetOrderBillInfo

@XmlType(name = "widgetOrderBillInfo", propOrder = {
 "amtDue",
 "orderNumber"
})
public class WidgetOrderBillInfo
 extends WidgetOrderInfo
{
 @XmlElement(required = true)
 protected BigDecimal amtDue;
 @XmlElement(required = true)
 protected String orderNumber;
 @XmlAttribute
 protected Boolean paid;

 public BigDecimal getAmtDue() {
 return amtDue;
 }

CHAPTER 35. USING COMPLEX TYPES

329

 public void setAmtDue(BigDecimal value) {
 this.amtDue = value;
 }

 public String getOrderNumber() {
 return orderNumber;
 }

 public void setOrderNumber(String value) {
 this.orderNumber = value;
 }

 public boolean isPaid() {
 if (paid == null) {
 return false;
 } else {
 return paid;
 }
 }

 public void setPaid(Boolean value) {
 this.paid = value;
 }
}

35.5. OCCURRENCE CONSTRAINTS

35.5.1. Schema Elements Supporting Occurrence Constraints

XML Schema allows you to specify the occurrence constraints on four of the XML Schema elements
that make up a complex type definition:

Section 35.5.2, “Occurrence Constraints on the All Element”

Section 35.5.3, “Occurrence Constraints on the Choice Element”

Section 35.5.4, “Occurrence Constraints on Elements”

Section 35.5.5, “Occurrence Constraints on Sequences”

35.5.2. Occurrence Constraints on the All Element

XML Schema

Complex types defined with the all element do not allow for multiple occurrences of the structure
defined by the all element. You can, however, make the structure defined by the all element optional by
setting its minOccurs attribute to 0.

Mapping to Java

Setting the all element’s minOccurs attribute to 0 has no effect on the generated Java class.

Red Hat Fuse 7.5 Apache CXF Development Guide

330

35.5.3. Occurrence Constraints on the Choice Element

Overview

By default, the results of a choice element can only appear once in an instance of a complex type. You
can change the number of times the element chosen to represent the structure defined by a choice
element is allowed to appear using its minOccurs attribute and its mxOccurs attribute. Using these
attributes you can specify that the choice type can occur zero to an unlimited number of times in an
instance of a complex type. The element chosen for the choice type does not need to be the same for
each occurrence of the type.

Using in XML Schema

The minOccurs attribute specifies the minimum number of times the choice type must appear. Its value
can be any positive integer. Setting the minOccurs attribute to 0 specifies that the choice type does
not need to appear inside an instance of the complex type.

The maxOccurs attribute specifies the maximum number of times the choice type can appear. Its value
can be any non-zero, positive integer or unbounded. Setting the maxOccurs attribute to unbounded
specifies that the choice type can appear an infinite number of times.

Example 35.18, “Choice Occurrence Constraints” shows the definition of a choice type, ClubEvent, with
choice occurrence constraints. The choice type overall can be repeated 0 to unbounded times.

Example 35.18. Choice Occurrence Constraints

<complexType name="ClubEvent">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="MemberName" type="xsd:string"/>
 <element name="GuestName" type="xsd:string"/>
 </choice>
</complexType>

Mapping to Java

Unlike single instance choice structures, XML Schema choice structures that can occur multiple times
are mapped to a Java class with a single member variable. This single member variable is a List<T>
object that holds all of the data for the multiple occurrences of the sequence. For example, if the
sequence defined in Example 35.18, “Choice Occurrence Constraints” occurred two times, then the list
would have two items.

The name of the Java class' member variable is derived by concatenating the names of the member
elements. The element names are separated by Or and the first letter of the variable name is converted
to lower case. For example, the member variable generated from Example 35.18, “Choice Occurrence
Constraints” would be named memberNameOrGuestName.

The type of object stored in the list depends on the relationship between the types of the member
elements. For example:

If the member elements are of the same type the generated list will contain JAXBElement<T>
objects. The base type of the JAXBElement<T> objects is determined by the normal mapping
of the member elements' type.

If the member elements are of different types and their Java representations implement a

CHAPTER 35. USING COMPLEX TYPES

331

If the member elements are of different types and their Java representations implement a
common interface, the list will contains objects of the common interface.

If the member elements are of different types and their Java representations extend a common
base class, the list will contains objects of the common base class.

If none of the other conditions are met, the list will contain Object objects.

The generated Java class will only have a getter method for the member variable. The getter method
returns a reference to the live list. Any modifications made to the returned list will effect the actual
object.

The Java class is decorated with the @XmlType annotation. The annotation’s name property is set to
the value of the name attribute from the parent element of the XML Schema definition. The
annotation’s propOrder property contains the single member variable representing the elements in the
sequence.

The member variable representing the elements in the choice structure are decorated with the
@XmlElements annotation. The @XmlElements annotation contains a comma separated list of
@XmlElement annotations. The list has one @XmlElement annotation for each member element
defined in the XML Schema definition of the type. The @XmlElement annotations in the list have their
name property set to the value of the XML Schema element element’s name attribute and their type
property set to the Java class resulting from the mapping of the XML Schema element element’s type.

Example 35.19, “Java Representation of Choice Structure with an Occurrence Constraint” shows the
Java mapping for the XML Schema choice structure defined in Example 35.18, “Choice Occurrence
Constraints”.

Example 35.19. Java Representation of Choice Structure with an Occurrence Constraint

@XmlType(name = "ClubEvent", propOrder = {
 "memberNameOrGuestName"
})
public class ClubEvent {

 @XmlElementRefs({
 @XmlElementRef(name = "GuestName", type = JAXBElement.class),
 @XmlElementRef(name = "MemberName", type = JAXBElement.class)
 })
 protected List<JAXBElement<String>> memberNameOrGuestName;

 public List<JAXBElement<String>> getMemberNameOrGuestName() {
 if (memberNameOrGuestName == null) {
 memberNameOrGuestName = new ArrayList<JAXBElement<String>>();
 }
 return this.memberNameOrGuestName;
 }

}

minOccurs set to 0

If only the minOccurs element is specified and its value is 0, the code generators generate the Java
class as if the minOccurs attribute were not set.

Red Hat Fuse 7.5 Apache CXF Development Guide

332

35.5.4. Occurrence Constraints on Elements

Overview

You can specify how many times a specific element in a complex type appears using the element
element’s minOccurs attribute and maxOccurs attribute. The default value for both attributes is 1.

minOccurs set to 0

When you set one of the complex type’s member element’s minOccurs attribute to 0, the
@XmlElement annotation decorating the corresponding Java member variable is changed. Instead of
having its required property set to true, the @XmlElement annotation’s required property is set to
false.

minOccurs set to a value greater than 1

In XML Schema you can specify that an element must occur more than once in an instance of the type
by setting the element element’s minOccurs attribute to a value greater than one. However, the
generated Java class will not support the XML Schema constraint. Apache CXF generates the
supporting Java member variable as if the minOccurs attribute were not set.

Elements with maxOccurs set

When you want a member element to appear multiple times in an instance of a complex type, you set the
element’s maxOccurs attribute to a value greater than 1. You can set the maxOccurs attribute’s value
to unbounded to specify that the member element can appear an unlimited number of times.

The code generators map a member element with the maxOccurs attribute set to a value greater than 1
to a Java member variable that is a List<T> object. The base class of the list is determined by mapping
the element’s type to Java. For XML Schema primitive types, the wrapper classes are used as described
in the section called “Wrapper classes” . For example, if the member element is of type xsd:int the
generated member variable is a List<Integer> object.

35.5.5. Occurrence Constraints on Sequences

Overview

By default, the contents of a sequence element can only appear once in an instance of a complex type.
You can change the number of times the sequence of elements defined by a sequence element is
allowed to appear using its minOccurs attribute and its maxOccurs attribute. Using these attributes
you can specify that the sequence type can occur zero to an unlimited number of times in an instance of
a complex type.

Using XML Schema

The minOccurs attribute specifies the minimum number of times the sequence must occur in an
instance of the defined complex type. Its value can be any positive integer. Setting the minOccurs
attribute to 0 specifies that the sequence does not need to appear inside an instance of the complex
type.

The maxOccurs attribute specifies the upper limit for how many times the sequence can occur in an
instance of the defined complex type. Its value can be any non-zero, positive integer or unbounded.
Setting the maxOccurs attribute to unbounded specifies that the sequence can appear an infinite
number of times.

CHAPTER 35. USING COMPLEX TYPES

333

Example 35.20, “Sequence with Occurrence Constraints” shows the definition of a sequence type,
CultureInfo, with sequence occurrence constraints. The sequence can be repeated 0 to 2 times.

Example 35.20. Sequence with Occurrence Constraints

<complexType name="CultureInfo">
 <sequence minOccurs="0" maxOccurs="2">
 <element name="Name" type="string"/>
 <element name="Lcid" type="int"/>
 </sequence>
</complexType>

Mapping to Java

Unlike single instance sequences, XML Schema sequences that can occur multiple times are mapped to
a Java class with a single member variable. This single member variable is a List<T> object that holds all
of the data for the multiple occurrences of the sequence. For example, if the sequence defined in
Example 35.20, “Sequence with Occurrence Constraints” occurred two times, then the list would have
four items.

The name of the Java class' member variable is derived by concatenating the names of the member
elements. The element names are separated by And and the first letter of the variable name is
converted to lower case. For example, the member variable generated from Example 35.20, “Sequence
with Occurrence Constraints” is named nameAndLcid.

The type of object stored in the list depends on the relationship between the types of the member
elements. For example:

If the member elements are of the same type the generated list will contain JAXBElement<T>
objects. The base type of the JAXBElement<T> objects is determined by the normal mapping
of the member elements' type.

If the member elements are of different types and their Java representations implement a
common interface, the list will contains objects of the common interface.

If the member elements are of different types and their Java representations extend a common
base class, the list will contain objects of the common base class.

If none of the other conditions are met, the list will contain Object objects.

The generated Java class only has a getter method for the member variable. The getter method returns
a reference to the live list. Any modifications made to the returned list effects the actual object.

The Java class is decorated with the @XmlType annotation. The annotation’s name property is set to
the value of the name attribute from the parent element of the XML Schema definition. The
annotation’s propOrder property contains the single member variable representing the elements in the
sequence.

The member variable representing the elements in the sequence are decorated with the
@XmlElements annotation. The @XmlElements annotation contains a comma separated list of
@XmlElement annotations. The list has one @XmlElement annotation for each member element
defined in the XML Schema definition of the type. The @XmlElement annotations in the list have their
name property set to the value of the XML Schema element element’s name attribute and their type
property set to the Java class resulting from the mapping of the XML Schema element element’s type.

Red Hat Fuse 7.5 Apache CXF Development Guide

334

Example 35.21, “Java Representation of Sequence with an Occurrence Constraint” shows the Java
mapping for the XML Schema sequence defined in Example 35.20, “Sequence with Occurrence
Constraints”.

Example 35.21. Java Representation of Sequence with an Occurrence Constraint

@XmlType(name = "CultureInfo", propOrder = {
 "nameAndLcid"
})
public class CultureInfo {

 @XmlElements({
 @XmlElement(name = "Name", type = String.class),
 @XmlElement(name = "Lcid", type = Integer.class)
 })
 protected List<Serializable> nameAndLcid;

 public List<Serializable> getNameAndLcid() {
 if (nameAndLcid == null) {
 nameAndLcid = new ArrayList<Serializable>();
 }
 return this.nameAndLcid;
 }

}

minOccurs set to 0

If only the minOccurs element is specified and its value is 0, the code generators generate the Java
class as if the minOccurs attribute is not set.

35.6. USING MODEL GROUPS

Overview

XML Schema model groups are convenient shortcuts that allows you to reference a group of elements
from a user-defined complex type.For example, you can define a group of elements that are common to
several types in your application and then reference the group repeatedly. Model groups are defined
using the group element, and are similar to complex type definitions. The mapping of model groups to
Java is also similar to the mapping for complex types.

Defining a model group in XML Schema

You define a model group in XML Schema using the group element with the name attribute. The value
of the name attribute is a string that is used to refer to the group throughout the schema. The group
element, like the complexType element, can have the sequence element, the all element, or the
choice element as its immediate child.

Inside the child element, you define the members of the group using element elements. For each
member of the group, specify one element element. Group members can use any of the standard
attributes for the element element including minOccurs and maxOccurs. So, if your group has three

CHAPTER 35. USING COMPLEX TYPES

335

elements and one of them can occur up to three times, you define a group with three element elements,
one of which uses maxOccurs="3". Example 35.22, “XML Schema Model Group” shows a model group
with three elements.

Example 35.22. XML Schema Model Group

<group name="passenger">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="clubNum" type="xsd:long" />
 <element name="seatPref" type="xsd:string"
 maxOccurs="3" />
 </sequence>
</group>

Using a model group in a type definition

Once a model group has been defined, it can be used as part of a complex type definition. To use a
model group in a complex type definition, use the group element with the ref attribute. The value of the
ref attribute is the name given to the group when it was defined. For example, to use the group defined
in Example 35.22, “XML Schema Model Group” you use <group ref="tns:passenger" /> as shown in
Example 35.23, “Complex Type with a Model Group” .

Example 35.23. Complex Type with a Model Group

<complexType name="reservation">
 <sequence>
 <group ref="tns:passenger" />
 <element name="origin" type="xsd:string" />
 <element name="destination" type="xsd:string" />
 <element name="fltNum" type="xsd:long" />
 </sequence>
</complexType>

When a model group is used in a type definition, the group becomes a member of the type. So an
instance of reservation has four member elements. The first element is the passenger element and it
contains the member elements defined by the group shown in Example 35.22, “XML Schema Model
Group”. An example of an instance of reservation is shown in Example 35.24, “Instance of a Type with a
Model Group”.

Example 35.24. Instance of a Type with a Model Group

<reservation>
 <passenger> <name>A. Smart</name> <clubNum>99</clubNum> <seatPref>isle1</seatPref>
</passenger>
 <origin>LAX</origin>
 <destination>FRA</destination>
 <fltNum>34567</fltNum>
</reservation>

Red Hat Fuse 7.5 Apache CXF Development Guide

336

Mapping to Java

By default, a model group is only mapped to Java artifacts when it is included in a complex type
definition. When generating code for a complex type that includes a model group, Apache CXF simply
includes the member variables for the model group into the Java class generated for the type. The
member variables representing the model group are annotated based on the definitions of the model
group.

Example 35.25, “Type with a Group” shows the Java class generated for the complex type defined in
Example 35.23, “Complex Type with a Model Group” .

Example 35.25. Type with a Group

@XmlType(name = "reservation", propOrder = {
 "name",
 "clubNum",
 "seatPref",
 "origin",
 "destination",
 "fltNum"
})
public class Reservation {

 @XmlElement(required = true)
 protected String name;
 protected long clubNum;
 @XmlElement(required = true)
 protected List<String> seatPref;
 @XmlElement(required = true)
 protected String origin;
 @XmlElement(required = true)
 protected String destination;
 protected long fltNum;

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public long getClubNum() {
 return clubNum;
 }

 public void setClubNum(long value) {
 this.clubNum = value;
 }

 public List<String> getSeatPref() {
 if (seatPref == null) {
 seatPref = new ArrayList<String>();
 }
 return this.seatPref;
 }

CHAPTER 35. USING COMPLEX TYPES

337

 public String getOrigin() {
 return origin;
 }

 public void setOrigin(String value) {
 this.origin = value;
 }

 public String getDestination() {
 return destination;
 }

 public void setDestination(String value) {
 this.destination = value;
 }

 public long getFltNum() {
 return fltNum;
 }

 public void setFltNum(long value) {
 this.fltNum = value;
 }

Multiple occurrences

You can specify that the model group appears more than once by setting the group element’s
maxOccurs attribute to a value greater than one. To allow for multiple occurrences of the model group
Apache CXF maps the model group to a List<T> object. The List<T> object is generated following the
rules for the group’s first child:

If the group is defined using a sequence element see Section 35.5.5, “Occurrence Constraints
on Sequences”.

If the group is defined using a choice element see Section 35.5.3, “Occurrence Constraints on
the Choice Element”.

Red Hat Fuse 7.5 Apache CXF Development Guide

338

CHAPTER 36. USING WILD CARD TYPES

Abstract

There are instances when a schema author wants to defer binding elements or attributes to a defined
type. For these cases, XML Schema provides three mechanisms for specifying wild card place holders.
These are all mapped to Java in ways that preserve their XML Schema functionality.

36.1. USING ANY ELEMENTS

Overview

The XML Schema any element is used to create a wild card place holder in complex type definitions.
When an XML element is instantiated for an XML Schema any element, it can be any valid XML element.
The any element does not place any restrictions on either the content or the name of the instantiated
XML element.

For example, given the complex type defined in Example 36.1, “XML Schema Type Defined with an Any
Element” you can instantiate either of the XML elements shown in Example 36.2, “XML Document with
an Any Element”.

Example 36.1. XML Schema Type Defined with an Any Element

<element name="FlyBoy">
 <complexType>
 <sequence>
 <any />
 <element name="rank" type="xsd:int" />
 </sequence>
 </complexType>
</element>

Example 36.2. XML Document with an Any Element

<FlyBoy>
 <learJet>CL-215</learJet>
 <rank>2</rank>
</element>
<FlyBoy>
 <viper>Mark II</viper>
 <rank>1</rank>
</element>

XML Schema any elements are mapped to either a Java Object object or a Java org.w3c.dom.Element
object.

Specifying in XML Schema

The any element can be used when defining sequence complex types and choice complex types. In

CHAPTER 36. USING WILD CARD TYPES

339

The any element can be used when defining sequence complex types and choice complex types. In
most cases, the any element is an empty element. It can, however, take an annotation element as a
child.

Table 36.1, “Attributes of the XML Schema Any Element” describes the any element’s attributes.

Table 36.1. Attributes of the XML Schema Any Element

Attribute Description

namespace Specifies the namespace of the elements that can be
used to instantiate the element in an XML document.
The valid values are:

##any
Specifies that elements from any namespace can
be used. This is the default.

##other
Specifies that elements from any namespace
other than the parent element’s namespace
can be used.

##local
Specifies elements without a namespace must be
used.

##targetNamespace
Specifies that elements from the parent
element’s namespace must be used.

A space delimited list of URIs #\#local and
\#\#targetNamespace

Specifies that elements from any of the listed
namespaces can be used.

maxOccurs Specifies the maximum number of times an instance
of the element can appear in the parent element. The
default value is 1. To specify that an instance of the
element can appear an unlimited number of times,
you can set the attribute’s value to unbounded.

minOccurs Specifies the minimum number of times an instance
of the element can appear in the parent element. The
default value is 1.

Red Hat Fuse 7.5 Apache CXF Development Guide

340

processContents Specifies how the element used to instantiate the
any element should be validated. Valid values are:

strict
Specifies that the element must be validated
against the proper schema. This is the default
value.

lax
Specifies that the element should be validated
against the proper schema. If it cannot be
validated, no errors are thrown.

skip
Specifies that the element should not be
validated.

Attribute Description

Example 36.3, “Complex Type Defined with an Any Element” shows a complex type defined with an any
element

Example 36.3. Complex Type Defined with an Any Element

<complexType name="surprisePackage">
 <sequence>
 <any processContents="lax" />
 <element name="to" type="xsd:string" />
 <element name="from" type="xsd:string" />
 </sequence>
</complexType>

Mapping to Java

XML Schema any elements result in the creation of a Java property named any. The property has
associated getter and setter methods. The type of the resulting property depends on the value of the
element’s processContents attribute. If the any element’s processContents attribute is set to skip,
the element is mapped to a org.w3c.dom.Element object. For all other values of the processContents
attribute an any element is mapped to a Java Object object.

The generated property is decorated with the @XmlAnyElement annotation. This annotation has an
optional lax property that instructs the runtime what to do when marshaling the data. Its default value is
false which instructs the runtime to automatically marshal the data into a org.w3c.dom.Element object.
Setting lax to true instructs the runtime to attempt to marshal the data into JAXB types. When the any
element’s processContents attribute is set to skip, the lax property is set to its default value. For all
other values of the processContents attribute, lax is set to true.

Example 36.4, “Java Class with an Any Element” shows how the complex type defined in Example 36.3,
“Complex Type Defined with an Any Element” is mapped to a Java class.

Example 36.4. Java Class with an Any Element

public class SurprisePackage {

CHAPTER 36. USING WILD CARD TYPES

341

 @XmlAnyElement(lax = true) protected Object any;
 @XmlElement(required = true)
 protected String to;
 @XmlElement(required = true)
 protected String from;

 public Object getAny() { return any; }

 public void setAny(Object value) { this.any = value; }

 public String getTo() {
 return to;
 }

 public void setTo(String value) {
 this.to = value;
 }

 public String getFrom() {
 return from;
 }

 public void setFrom(String value) {
 this.from = value;
 }

}

Marshalling

If the Java property for an any element has its lax set to false, or the property is not specified, the
runtime makes no attempt to parse the XML data into JAXB objects. The data is always stored in a
DOM Element object.

If the Java property for an any element has its lax set to true, the runtime attempts to marshal the XML
data into the appropriate JAXB objects. The runtime attempts to identify the proper JAXB classes
using the following procedure:

1. It checks the element tag of the XML element against the list of elements known to the runtime.
If it finds a match, the runtime marshals the XML data into the proper JAXB class for the
element.

2. It checks the XML element’s xsi:type attribute. If it finds a match, the runtime marshals the
XML element into the proper JAXB class for that type.

3. If it cannot find a match it marshals the XML data into a DOM Element object.

Usually an application’s runtime knows about all of the types generated from the schema’s included in its
contract. This includes the types defined in the contract’s wsdl:types element, any data types added to
the contract through inclusion, and any types added to the contract through importing other schemas.
You can also make the runtime aware of additional types using the @XmlSeeAlso annotation which is
described in Section 32.4, “Adding Classes to the Runtime Marshaller” .

Red Hat Fuse 7.5 Apache CXF Development Guide

342

Unmarshalling

If the Java property for an any element has its lax set to false, or the property is not specified, the
runtime will only accept DOM Element objects. Attempting to use any other type of object will result in
a marshalling error.

If the Java property for an any element has its lax set to true, the runtime uses its internal map between
Java data types and the XML Schema constructs they represent to determine the XML structure to
write to the wire. If the runtime knows the class and can map it to an XML Schema construct, it writes out
the data and inserts an xsi:type attribute to identify the type of data the element contains.

If the runtime cannot map the Java object to a known XML Schema construct, it will throw a marshaling
exception. You can add types to the runtime’s map using the @XmlSeeAlso annotation which is
described in Section 32.4, “Adding Classes to the Runtime Marshaller” .

36.2. USING THE XML SCHEMA ANYTYPE TYPE

Overview

The XML Schema type xsd:anyType is the root type for all XML Schema types. All of the primitives are
derivatives of this type, as are all user defined complex types. As a result, elements defined as being of
xsd:anyType can contain data in the form of any of the XML Schema primitives as well as any complex
type defined in a schema document.

In Java the closest matching type is the Object class. It is the class from which all other Java classes are
sub-typed.

Using in XML Schema

You use the xsd:anyType type as you would any other XML Schema complex type. It can be used as the
value of an element element’s type element. It can also be used as the base type from which other types
are defined.

Example 36.5, “Complex Type with a Wild Card Element” shows an example of a complex type that
contains an element of type xsd:anyType.

Example 36.5. Complex Type with a Wild Card Element

<complexType name="wildStar">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="ship" type="xsd:anyType" />
 </sequence>
</complexType>

Mapping to Java

Elements that are of type xsd:anyType are mapped to Object objects. Example 36.6, “Java
Representation of a Wild Card Element” shows the mapping of Example 36.5, “Complex Type with a
Wild Card Element” to a Java class.

Example 36.6. Java Representation of a Wild Card Element

CHAPTER 36. USING WILD CARD TYPES

343

public class WildStar {

 @XmlElement(required = true)
 protected String name;
 @XmlElement(required = true) protected Object ship;

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public Object getShip() { return ship; }

 public void setShip(Object value) { this.ship = value; }
}

This mapping allows you to place any data into the property representing the wild card element. The
Apache CXF runtime handles the marshaling and unmarshaling of the data into usable Java
representation.

Marshalling

When Apache CXF marshals XML data into Java types, it attempts to marshal anyType elements into
known JAXB objects. To determine if it is possible to marshal an anyType element into a JAXB
generated object, the runtime inspects the element’s xsi:type attribute to determine the actual type
used to construct the data in the element. If the xsi:type attribute is not present, the runtime attempts
to identify the element’s actual data type by introspection. If the element’s actual data type is
determined to be one of the types known by the application’s JAXB context, the element is marshaled
into a JAXB object of the proper type.

If the runtime cannot determine the actual data type of the element, or the actual data type of the
element is not a known type, the runtime marshals the content into a org.w3c.dom.Element object. You
will then need to work with the element’s content using the DOM APis.

An application’s runtime usually knows about all of the types generated from the schema’s included in its
contract. This includes the types defined in the contract’s wsdl:types element, any data types added to
the contract through inclusion, and any types added to the contract through importing other schema
documents. You can also make the runtime aware of additional types using the @XmlSeeAlso
annotation which is described in Section 32.4, “Adding Classes to the Runtime Marshaller” .

Unmarshalling

When Apache CXF unmarshals Java types into XML data, it uses an internal map between Java data
types and the XML Schema constructs they represent to determine the XML structure to write to the
wire. If the runtime knows the class and can map the class to an XML Schema construct, it writes out the
data and inserts an xsi:type attribute to identify the type of data the element contains. If the data is
stored in a org.w3c.dom.Element object, the runtime writes the XML structure represented by the
object but it does not include an xsi:type attribute.

If the runtime cannot map the Java object to a known XML Schema construct, it throws a marshaling

Red Hat Fuse 7.5 Apache CXF Development Guide

344

If the runtime cannot map the Java object to a known XML Schema construct, it throws a marshaling
exception. You can add types to the runtime’s map using the @XmlSeeAlso annotation which is
described in Section 32.4, “Adding Classes to the Runtime Marshaller” .

36.3. USING UNBOUND ATTRIBUTES

Overview

XML Schema has a mechanism that allows you to leave a place holder for an arbitrary attribute in a
complex type definition. Using this mechanism, you can define a complex type that can have any
attribute. For example, you can create a type that defines the elements <robot name="epsilon" />,
<robot age="10000" />, or <robot type="weevil" /> without specifying the three attributes. This can be
particularly useful when flexibility in your data is required.

Defining in XML Schema

Undeclared attributes are defined in XML Schema using the anyAttribute element. It can be used
wherever an attribute element can be used. The anyAttribute element has no attributes, as shown in
Example 36.7, “Complex Type with an Undeclared Attribute” .

Example 36.7. Complex Type with an Undeclared Attribute

<complexType name="arbitter">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="rate" type="xsd:float" />
 </sequence>
 <anyAttribute />
</complexType>

The defined type, arbitter, has two elements and can have one attribute of any type. The elements
three elements shown in Example 36.8, “Examples of Elements Defined with a Wild Card Attribute” can
all be generated from the complex type arbitter.

Example 36.8. Examples of Elements Defined with a Wild Card Attribute

<officer rank="12"><name>...</name><rate>...</rate></officer>
<lawyer type="divorce"><name>...</name><rate>...</rate></lawyer>
<judge><name>...</name><rate>...</rate></judge>

Mapping to Java

When a complex type containing an anyAttribute element is mapped to Java, the code generator adds
a member called otherAttributes to the generated class. otherAttributes is of type
java.util.Map<QName, String> and it has a getter method that returns a live instance of the map.
Because the map returned from the getter is live, any modifications to the map are automatically
applied. Example 36.9, “Class for a Complex Type with an Undeclared Attribute” shows the class
generated for the complex type defined in Example 36.7, “Complex Type with an Undeclared Attribute” .

Example 36.9. Class for a Complex Type with an Undeclared Attribute

CHAPTER 36. USING WILD CARD TYPES

345

public class Arbitter {

 @XmlElement(required = true)
 protected String name;
 protected float rate;

 @XmlAnyAttribute private Map<QName, String> otherAttributes = new HashMap<QName,
String>();

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public float getRate() {
 return rate;
 }

 public void setRate(float value) {
 this.rate = value;
 }

 public Map<QName, String> getOtherAttributes() { return otherAttributes; }

}

Working with undeclared attributes

The otherAttributes member of the generated class expects to be populated with a Map object. The
map is keyed using QNames. Once you get the map , you can access any attributes set on the object
and set new attributes on the object.

Example 36.10, “Working with Undeclared Attributes” shows sample code for working with undeclared
attributes.

Example 36.10. Working with Undeclared Attributes

Arbitter judge = new Arbitter();
Map<QName, String> otherAtts = judge.getOtherAttributes();

QName at1 = new QName("test.apache.org", "house");
QName at2 = new QName("test.apache.org", "veteran");

otherAtts.put(at1, "Cape");
otherAtts.put(at2, "false");

String vetStatus = otherAtts.get(at2);

The code in Example 36.10, “Working with Undeclared Attributes” does the following:

Red Hat Fuse 7.5 Apache CXF Development Guide

346

Gets the map containing the undeclared attributes.

Creates QNames to work with the attributes.

Sets the values for the attributes into the map.

Retrieves the value for one of the attributes.

CHAPTER 36. USING WILD CARD TYPES

347

CHAPTER 37. ELEMENT SUBSTITUTION

Abstract

XML Schema substitution groups allow you to define a group of elements that can replace a top level, or
head, element. This is useful in cases where you have multiple elements that share a common base type
or with elements that need to be interchangeable.

37.1. SUBSTITUTION GROUPS IN XML SCHEMA

Overview

A substitution group is a feature of XML schema that allows you to specify elements that can replace
another element in documents generated from that schema. The replaceable element is called the head
element and must be defined in the schema’s global scope. The elements of the substitution group must
be of the same type as the head element or a type that is derived from the head element’s type.

In essence, a substitution group allows you to build a collection of elements that can be specified using a
generic element. For example, if you are building an ordering system for a company that sells three
types of widgets you might define a generic widget element that contains a set of common data for all
three widget types. Then you can define a substitution group that contains a more specific set of data
for each type of widget. In your contract you can then specify the generic widget element as a message
part instead of defining a specific ordering operation for each type of widget. When the actual message
is built, the message can contain any of the elements of the substitution group.

Syntax

Substitution groups are defined using the substitutionGroup attribute of the XML Schema element
element. The value of the substitutionGroup attribute is the name of the element that the element
being defined replaces. For example, if your head element is widget, adding the attribute
substitutionGroup="widget" to an element named woodWidget specifies that anywhere a widget
element is used, you can substitute a woodWidget element. This is shown in Example 37.1, “Using a
Substitution Group”.

Example 37.1. Using a Substitution Group

<element name="widget" type="xsd:string" />
<element name="woodWidget" type="xsd:string"
 substitutionGroup="widget" />

Type restrictions

The elements of a substitution group must be of the same type as the head element or of a type derived
from the head element’s type. For example, if the head element is of type xsd:int all members of the
substitution group must be of type xsd:int or of a type derived from xsd:int. You can also define a
substitution group similar to the one shown in Example 37.2, “Substitution Group with Complex Types”
where the elements of the substitution group are of types derived from the head element’s type.

Example 37.2. Substitution Group with Complex Types

<complexType name="widgetType">

Red Hat Fuse 7.5 Apache CXF Development Guide

348

 <sequence>
 <element name="shape" type="xsd:string" />
 <element name="color" type="xsd:string" />
 </sequence>
</complexType>
<complexType name="woodWidgetType">
 <complexContent>
 <extension base="widgetType">
 <sequence>
 <element name="woodType" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>
<complexType name="plasticWidgetType">
 <complexContent>
 <extension base="widgetType">
 <sequence>
 <element name="moldProcess" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>
<element name="widget" type="widgetType" />
<element name="woodWidget" type="woodWidgetType"
 substitutionGroup="widget" />
<element name="plasticWidget" type="plasticWidgetType"
 substitutionGroup="widget" />
<complexType name="partType">
 <sequence>
 <element ref="widget" />
 </sequence>
</complexType>
<element name="part" type="partType" />

The head element of the substitution group, widget, is defined as being of type widgetType. Each
element of the substitution group extends widgetType to include data that is specific to ordering that
type of widget.

Based on the schema in Example 37.2, “Substitution Group with Complex Types” , the part elements in
Example 37.3, “XML Document using a Substitution Group” are valid.

Example 37.3. XML Document using a Substitution Group

<part>
 <widget>
 <shape>round</shape>
 <color>blue</color>
 </widget>
</part>
<part>
 <plasticWidget>
 <shape>round</shape>
 <color>blue</color>

CHAPTER 37. ELEMENT SUBSTITUTION

349

 <moldProcess>sandCast</moldProcess>
 </plasticWidget>
</part>
<part>
 <woodWidget>
 <shape>round</shape>
 <color>blue</color>
 <woodType>elm</woodType>
 </woodWidget>
</part>

Abstract head elements

You can define an abstract head element that can never appear in a document produced using your
schema. Abstract head elements are similar to abstract classes in Java because they are used as the
basis for defining more specific implementations of a generic class. Abstract heads also prevent the use
of the generic element in the final product.

You declare an abstract head element by setting the abstract attribute of an element element to true,
as shown in Example 37.4, “Abstract Head Definition”. Using this schema, a valid review element can
contain either a positiveComment element or a negativeComment element, but cannot contain a
comment element.

Example 37.4. Abstract Head Definition

<element name="comment" type="xsd:string" abstract="true" />
<element name="positiveComment" type="xsd:string"
 substitutionGroup="comment" />
<element name="negtiveComment" type="xsd:string"
 substitutionGroup="comment" />
<element name="review">
 <complexContent>
 <all>
 <element name="custName" type="xsd:string" />
 <element name="impression" ref="comment" />
 </all>
 </complexContent>
</element>

37.2. SUBSTITUTION GROUPS IN JAVA

Overview

Apache CXF, as specified in the JAXB specification, supports substitution groups using Java’s native
class hierarchy in combination with the ability of the JAXBElement class' support for wildcard
definitions. Because the members of a substitution group must all share a common base type, the
classes generated to support the elements' types also share a common base type. In addition, Apache
CXF maps instances of the head element to JAXBElement<? extends T> properties.

Generated object factory methods

The object factory generated to support a package containing a substitution group has methods for

Red Hat Fuse 7.5 Apache CXF Development Guide

350

The object factory generated to support a package containing a substitution group has methods for
each of the elements in the substitution group. For each of the members of the substitution group,
except for the head element, the @XmlElementDecl annotation decorating the object factory method
includes two additional properties, as described in Table 37.1, “Properties for Declaring a JAXB Element
is a Member of a Substitution Group”.

Table 37.1. Properties for Declaring a JAXB Element is a Member of a Substitution Group

Property Description

substitutionHeadNamespace Specifies the namespace where the head element is
defined.

substitutionHeadName Specifies the value of the head element’s name
attribute.

The object factory method for the head element of the substitution group’s @XmlElementDecl
contains only the default namespace property and the default name property.

In addition to the element instantiation methods, the object factory contains a method for instantiating
an object representing the head element. If the members of the substitution group are all of complex
types, the object factory also contains methods for instantiating instances of each complex type used.

Example 37.5, “Object Factory Method for a Substitution Group” shows the object factory method for
the substitution group defined in Example 37.2, “Substitution Group with Complex Types” .

Example 37.5. Object Factory Method for a Substitution Group

public class ObjectFactory {

 private final static QName _Widget_QNAME = new QName(...);
 private final static QName _PlasticWidget_QNAME = new QName(...);
 private final static QName _WoodWidget_QNAME = new QName(...);

 public ObjectFactory() {
 }

 public WidgetType createWidgetType() {
 return new WidgetType();
 }

 public PlasticWidgetType createPlasticWidgetType() {
 return new PlasticWidgetType();
 }

 public WoodWidgetType createWoodWidgetType() {
 return new WoodWidgetType();
 }

 @XmlElementDecl(namespace="...", name = "widget")
 public JAXBElement<WidgetType> createWidget(WidgetType value) {
 return new JAXBElement<WidgetType>(_Widget_QNAME, WidgetType.class, null, value);
 }

CHAPTER 37. ELEMENT SUBSTITUTION

351

 @XmlElementDecl(namespace = "...", name = "plasticWidget", substitutionHeadNamespace =
"...", substitutionHeadName = "widget")
 public JAXBElement<PlasticWidgetType> createPlasticWidget(PlasticWidgetType value) {
 return new JAXBElement<PlasticWidgetType>(_PlasticWidget_QNAME,
PlasticWidgetType.class, null, value);
 }

 @XmlElementDecl(namespace = "...", name = "woodWidget", substitutionHeadNamespace =
"...", substitutionHeadName = "widget")
 public JAXBElement<WoodWidgetType> createWoodWidget(WoodWidgetType value) {
 return new JAXBElement<WoodWidgetType>(_WoodWidget_QNAME,
WoodWidgetType.class, null, value);
 }

}

Substitution groups in interfaces

If the head element of a substitution group is used as a message part in one of an operation’s messages,
the resulting method parameter will be an object of the class generated to support that element. It will
not necessarily be an instance of the JAXBElement<? extends T> class. The runtime relies on Java’s
native type hierarchy to support the type substitution, and Java will catch any attempts to use
unsupported types.

To ensure that the runtime knows all of the classes needed to support the element substitution, the SEI
is decorated with the @XmlSeeAlso annotation. This annotation specifies a list of classes required by
the runtime for marshalling. Fore more information on using the @XmlSeeAlso annotation see
Section 32.4, “Adding Classes to the Runtime Marshaller” .

Example 37.7, “Generated Interface Using a Substitution Group” shows the SEI generated for the
interface shown in Example 37.6, “WSDL Interface Using a Substitution Group” . The interface uses the
substitution group defined in Example 37.2, “Substitution Group with Complex Types” .

Example 37.6. WSDL Interface Using a Substitution Group

<message name="widgetMessage">
 <part name="widgetPart" element="xsd1:widget" />
 </message>
 <message name="numWidgets">
 <part name="numInventory" type="xsd:int" />
 </message>
 <message name="badSize">
 <part name="numInventory" type="xsd:int" />
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order" />
 <output message="tns:widgetOrderBill" name="bill" />
 <fault message="tns:badSize" name="sizeFault" />
 </operation>
 <operation name="checkWidgets">
 <input message="tns:widgetMessage" name="request" />

Red Hat Fuse 7.5 Apache CXF Development Guide

352

 <output message="tns:numWidgets" name="response" />
 </operation>
 </portType>

Example 37.7. Generated Interface Using a Substitution Group

@WebService(targetNamespace = "...", name = "orderWidgets")
@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})
public interface OrderWidgets {

 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(name = "numInventory", targetNamespace = "", partName = "numInventory")
 @WebMethod
 public int checkWidgets(
 @WebParam(partName = "widgetPart", name = "widget", targetNamespace = "...")
 com.widgetvendor.types.widgettypes.WidgetType widgetPart
);
}

The SEI shown in Example 37.7, “Generated Interface Using a Substitution Group” lists the object
factory in the @XmlSeeAlso annotation. Listing the object factory for a namespace provides access to
all of the generated classes for that namespace.

Substitution groups in complex types

When the head element of a substitution group is used as an element in a complex type, the code
generator maps the element to a JAXBElement<? extends T> property. It does not map it to a
property containing an instance of the generated class generated to support the substitution group.

For example, the complex type defined in Example 37.8, “Complex Type Using a Substitution Group”
results in the Java class shown in Example 37.9, “Java Class for a Complex Type Using a Substitution
Group”. The complex type uses the substitution group defined in Example 37.2, “Substitution Group
with Complex Types”.

Example 37.8. Complex Type Using a Substitution Group

<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:int"/>
 <element ref="xsd1:widget"/>
 </sequence>
</complexType>

Example 37.9. Java Class for a Complex Type Using a Substitution Group

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "widgetOrderInfo", propOrder = {"amount","widget",})
public class WidgetOrderInfo {

 protected int amount;

CHAPTER 37. ELEMENT SUBSTITUTION

353

 @XmlElementRef(name = "widget", namespace = "...", type = JAXBElement.class) protected
JAXBElement<? extends WidgetType> widget;
 public int getAmount() {
 return amount;
 }

 public void setAmount(int value) {
 this.amount = value;
 }

 public JAXBElement<? extends WidgetType> getWidget() { return widget; }

 public void setWidget(JAXBElement<? extends WidgetType> value) { this.widget =
((JAXBElement<? extends WidgetType>) value); }

}

Setting a substitution group property

How you work with a substitution group depends on whether the code generator mapped the group to a
straight Java class or to a JAXBElement<? extends T> class. When the element is simply mapped to an
object of the generated value class, you work with the object the same way you work with other Java
objects that are part of a type hierarchy. You can substitute any of the subclasses for the parent class.
You can inspect the object to determine its exact class, and cast it appropriately.

The JAXB specification recommends that you use the object factory methods for instantiating objects
of the generated classes.

When the code generators create a JAXBElement<? extends T> object to hold instances of a
substitution group, you must wrap the element’s value in a JAXBElement<? extends T> object. The
best method to do this is to use the element creation methods provided by the object factory. They
provide an easy means for creating an element based on its value.

Example 37.10, “Setting a Member of a Substitution Group” shows code for setting an instance of a
substitution group.

Example 37.10. Setting a Member of a Substitution Group

ObjectFactory of = new ObjectFactory();
PlasticWidgetType pWidget = of.createPlasticWidgetType();
pWidget.setShape = "round';
pWidget.setColor = "green";
pWidget.setMoldProcess = "injection";

JAXBElement<PlasticWidgetType> widget = of.createPlasticWidget(pWidget);

WidgetOrderInfo order = of.createWidgetOrderInfo();
order.setWidget(widget);

The code in Example 37.10, “Setting a Member of a Substitution Group” does the following:

Instantiates an object factory.

Red Hat Fuse 7.5 Apache CXF Development Guide

354

Instantiates a PlasticWidgetType object.

Instantiates a JAXBElement<PlasticWidgetType> object to hold a plastic widget element.

Instantiates a WidgetOrderInfo object.

Sets the WidgetOrderInfo object’s widget to the JAXBElement object holding the plastic widget
element.

Getting the value of a substitution group property

The object factory methods do not help when extracting the element’s value from a JAXBElement<?
extends T> object. You must to use the JAXBElement<? extends T> object’s getValue() method. The
following options determine the type of object returned by the getValue() method:

Use the isInstance() method of all the possible classes to determine the class of the element’s
value object.

Use the JAXBElement<? extends T> object’s getName() method to determine the element’s
name.
The getName() method returns a QName. Using the local name of the element, you can
determine the proper class for the value object.

Use the JAXBElement<? extends T> object’s getDeclaredType() method to determine the
class of the value object.
The getDeclaredType() method returns the Class object of the element’s value object.

WARNING

There is a possibility that the getDeclaredType() method will return the
base class for the head element regardless of the actual class of the value
object.

Example 37.11, “Getting the Value of a Member of the Substitution Group” shows code retrieving the
value from a substitution group. To determine the proper class of the element’s value object the
example uses the element’s getName() method.

Example 37.11. Getting the Value of a Member of the Substitution Group

String elementName = order.getWidget().getName().getLocalPart();
if (elementName.equals("woodWidget")
{
 WoodWidgetType widget=order.getWidget().getValue();
}
else if (elementName.equals("plasticWidget")
{
 PlasticWidgetType widget=order.getWidget().getValue();
}
else

CHAPTER 37. ELEMENT SUBSTITUTION

355

{
 WidgetType widget=order.getWidget().getValue();
}

37.3. WIDGET VENDOR EXAMPLE

37.3.1. Widget Ordering Interface

This section shows an example of substitution groups being used in Apache CXF to solve a real world
application. A service and consumer are developed using the widget substitution group defined in
Example 37.2, “Substitution Group with Complex Types” . The service offers two operations:
checkWidgets and placeWidgetOrder. Example 37.12, “Widget Ordering Interface” shows the interface
for the ordering service.

Example 37.12. Widget Ordering Interface

<message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
 <part name="widgetOrderConformation"
 type="xsd1:widgetOrderBillInfo"/>
</message>
<message name="widgetMessage">
 <part name="widgetPart" element="xsd1:widget" />
</message>
<message name="numWidgets">
 <part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 <operation name="checkWidgets">
 <input message="tns:widgetMessage" name="request" />
 <output message="tns:numWidgets" name="response" />
 </operation>
</portType>

Example 37.13, “Widget Ordering SEI” shows the generated Java SEI for the interface.

Example 37.13. Widget Ordering SEI

@WebService(targetNamespace = "http://widgetVendor.com/widgetOrderForm", name =
"orderWidgets")
@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})
public interface OrderWidgets {

 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(name = "numInventory", targetNamespace = "", partName = "numInventory")

Red Hat Fuse 7.5 Apache CXF Development Guide

356

 @WebMethod
 public int checkWidgets(
 @WebParam(partName = "widgetPart", name = "widget", targetNamespace =
"http://widgetVendor.com/types/widgetTypes")
 com.widgetvendor.types.widgettypes.WidgetType widgetPart
);

 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(name = "widgetOrderConformation", targetNamespace = "", partName =
"widgetOrderConformation")
 @WebMethod
 public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo placeWidgetOrder(
 @WebParam(partName = "widgetOrderForm", name = "widgetOrderForm",
targetNamespace = "")
 com.widgetvendor.types.widgettypes.WidgetOrderInfo widgetOrderForm
) throws BadSize;
}

NOTE

Because the example only demonstrates the use of substitution groups, some of the
business logic is not shown.

37.3.2. The checkWidgets Operation

Overview

checkWidgets is a simple operation that has a parameter that is the head member of a substitution
group. This operation demonstrates how to deal with individual parameters that are members of a
substitution group. The consumer must ensure that the parameter is a valid member of the substitution
group. The service must properly determine which member of the substitution group was sent in the
request.

Consumer implementation

The generated method signature uses the Java class supporting the type of the substitution group’s
head element. Because the member elements of a substitution group are either of the same type as the
head element or of a type derived from the head element’s type, the Java classes generated to support
the members of the substitution group inherit from the Java class generated to support the head
element. Java’s type hierarchy natively supports using subclasses in place of the parent class.

Because of how Apache CXF generates the types for a substitution group and Java’s type hierarchy,
the client can invoke checkWidgets() without using any special code. When developing the logic to
invoke checkWidgets() you can pass in an object of one of the classes generated to support the widget
substitution group.

Example 37.14, “Consumer Invoking checkWidgets()” shows a consumer invoking checkWidgets().

Example 37.14. Consumer Invoking checkWidgets()

System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");

CHAPTER 37. ELEMENT SUBSTITUTION

357

System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{
 case '1':
 {
 WidgetType widget = new WidgetType();
 ...
 break;
 }
 case '2':
 {
 WoodWidgetType widget = new WoodWidgetType();
 ...
 break;
 }
 case '3':
 {
 PlasticWidgetType widget = new PlasticWidgetType();
 ...
 break;
 }
 default :
 System.out.println("Invaid Widget Selection!!");
}

proxy.checkWidgets(widgets);

Service implementation

The service’s implementation of checkWidgets() gets a widget description as a WidgetType object,
checks the inventory of widgets, and returns the number of widgets in stock. Because all of the classes
used to implement the substitution group inherit from the same base class, you can implement
checkWidgets() without using any JAXB specific APIs.

All of the classes generated to support the members of the substitution group for widget extend the
WidgetType class. Because of this fact, you can use instanceof to determine what type of widget was
passed in and simply cast the widgetPart object into the more restrictive type if appropriate. Once you
have the proper type of object, you can check the inventory of the right kind of widget.

Example 37.15, “Service Implementation of checkWidgets()” shows a possible implementation.

Example 37.15. Service Implementation of checkWidgets()

public int checkWidgets(WidgetType widgetPart)
{
 if (widgetPart instanceof WidgetType)
 {
 return checkWidgetInventory(widgetType);
 }
 else if (widgetPart instanceof WoodWidgetType)

Red Hat Fuse 7.5 Apache CXF Development Guide

358

 {
 WoodWidgetType widget = (WoodWidgetType)widgetPart;
 return checkWoodWidgetInventory(widget);
 }
 else if (widgetPart instanceof PlasticWidgetType)
 {
 PlasticWidgetType widget = (PlasticWidgetType)widgetPart;
 return checkPlasticWidgetInventory(widget);
 }
}

37.3.3. The placeWidgetOrder Operation

Overview

placeWidgetOrder uses two complex types containing the substitution group. This operation
demonstrates to use such a structure in a Java implementation. Both the consumer and the service must
get and set members of a substitution group.

Consumer implementation

To invoke placeWidgetOrder() the consumer must construct a widget order containing one element of
the widget substitution group. When adding the widget to the order, the consumer should use the
object factory methods generated for each element of the substitution group. This ensures that the
runtime and the service can correctly process the order. For example, if an order is being placed for a
plastic widget, the ObjectFactory.createPlasticWidget() method is used to create the element before
adding it to the order.

Example 37.16, “Setting a Substitution Group Member” shows consumer code for setting the widget
property of the WidgetOrderInfo object.

Example 37.16. Setting a Substitution Group Member

ObjectFactory of = new ObjectFactory();

WidgetOrderInfo order = new of.createWidgetOrderInfo();
...
System.out.println();
System.out.println("What color widgets do you want to order?");
String color = reader.readLine();
System.out.println();
System.out.println("What shape widgets do you want to order?");
String shape = reader.readLine();
System.out.println();
System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)

CHAPTER 37. ELEMENT SUBSTITUTION

359

{
 case '1':
 {
 WidgetType widget = of.createWidgetType();
 widget.setColor(color);
 widget.setShape(shape);
 JAXB<WidgetType> widgetElement = of.createWidget(widget);
order.setWidget(widgetElement);
 break;
 }
 case '2':
 {
 WoodWidgetType woodWidget = of.createWoodWidgetType();
 woodWidget.setColor(color);
 woodWidget.setShape(shape);
 System.out.println();
 System.out.println("What type of wood are your widgets?");
 String wood = reader.readLine();
 woodWidget.setWoodType(wood);
 JAXB<WoodWidgetType> widgetElement = of.createWoodWidget(woodWidget);
order.setWoodWidget(widgetElement);
 break;
 }
 case '3':
 {
 PlasticWidgetType plasticWidget = of.createPlasticWidgetType();
 plasticWidget.setColor(color);
 plasticWidget.setShape(shape);
 System.out.println();
 System.out.println("What type of mold to use for your
 widgets?");
 String mold = reader.readLine();
 plasticWidget.setMoldProcess(mold);
 JAXB<WidgetType> widgetElement = of.createPlasticWidget(plasticWidget);
order.setPlasticWidget(widgetElement);
 break;
 }
 default :
 System.out.println("Invaid Widget Selection!!");
 }

Service implementation

The placeWidgetOrder() method receives an order in the form of a WidgetOrderInfo object, processes
the order, and returns a bill to the consumer in the form of a WidgetOrderBillInfo object. The orders
can be for a plain widget, a plastic widget, or a wooden widget. The type of widget ordered is
determined by what type of object is stored in widgetOrderForm object’s widget property. The widget
property is a substitution group and can contain a widget element, a woodWidget element, or a
plasticWidget element.

The implementation must determine which of the possible elements is stored in the order. This can be
accomplished using the JAXBElement<? extends T> object’s getName() method to determine the
element’s QName. The QName can then be used to determine which element in the substitution group

Red Hat Fuse 7.5 Apache CXF Development Guide

360

is in the order. Once the element included in the bill is known, you can extract its value into the proper
type of object.

Example 37.17, “Implementation of placeWidgetOrder()” shows a possible implementation.

Example 37.17. Implementation of placeWidgetOrder()

public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo
placeWidgetOrder(WidgetOrderInfo widgetOrderForm)
{
 ObjectFactory of = new ObjectFactory();

 WidgetOrderBillInfo bill = new WidgetOrderBillInfo()

 // Copy the shipping address and the number of widgets
 // ordered from widgetOrderForm to bill
 ...

 int numOrdered = widgetOrderForm.getAmount();

 String elementName = widgetOrderForm.getWidget().getName().getLocalPart();
 if (elementName.equals("woodWidget")
 {
 WoodWidgetType widget=order.getWidget().getValue();
 buildWoodWidget(widget, numOrdered);

 // Add the widget info to bill
 JAXBElement<WoodWidgetType> widgetElement = of.createWoodWidget(widget);
 bill.setWidget(widgetElement);

 float amtDue = numOrdered * 0.75;
 bill.setAmountDue(amtDue);
 }
 else if (elementName.equals("plasticWidget")
 {
 PlasticWidgetType widget=order.getWidget().getValue();
 buildPlasticWidget(widget, numOrdered);

 // Add the widget info to bill
 JAXBElement<PlasticWidgetType> widgetElement = of.createPlasticWidget(widget);
 bill.setWidget(widgetElement);

 float amtDue = numOrdered * 0.90;
 bill.setAmountDue(amtDue);
 }
 else
 {
 WidgetType widget=order.getWidget().getValue();
 buildWidget(widget, numOrdered);

 // Add the widget info to bill
 JAXBElement<WidgetType> widgetElement = of.createWidget(widget);
 bill.setWidget(widgetElement);

 float amtDue = numOrdered * 0.30;
 bill.setAmountDue(amtDue);

CHAPTER 37. ELEMENT SUBSTITUTION

361

 }

 return(bill);
}

The code in Example 37.17, “Implementation of placeWidgetOrder()” does the following:

Instantiates an object factory to create elements.

Instantiates a WidgetOrderBillInfo object to hold the bill.

Gets the number of widgets ordered.

Gets the local name of the element stored in the order.

Checks to see if the element is a woodWidget element.

Extracts the value of the element from the order to the proper type of object.

Creates a JAXBElement<T> object placed into the bill.

Sets the bill object’s widget property.

Sets the bill object’s amountDue property.

Red Hat Fuse 7.5 Apache CXF Development Guide

362

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

Abstract

The default JAXB mappings address most of the cases encountered when using XML Schema to define
the objects for a Java application. For instances where the default mappings are insufficient, JAXB
provides an extensive customization mechanism.

38.1. BASICS OF CUSTOMIZING TYPE MAPPINGS

Overview

The JAXB specification defines a number of XML elements that customize how Java types are mapped
to XML Schema constructs. These elements can be specified in-line with XML Schema constructs. If you
cannot, or do not want to, modify the XML Schema definitions, you can specify the customizations in
external binding document.

Namespace

The elements used to customize the JAXB data bindings are defined in the namespace
http://java.sun.com/xml/ns/jaxb. You must add a namespace declaration similar to the one shown in
Example 38.1, “JAXB Customization Namespace” . This is added to the root element of all XML
documents defining JAXB customizations.

Example 38.1. JAXB Customization Namespace

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

Version declaration

When using the JAXB customizations, you must indicate the JAXB version being used. This is done by
adding a jaxb:version attribute to the root element of the external binding declaration. If you are using
in-line customization, you must include the jaxb:version attribute in the schema element containing
the customizations. The value of the attribute is always 2.0.

Example 38.2, “Specifying the JAXB Customization Version” shows an example of the jaxb:version
attribute used in a schema element.

Example 38.2. Specifying the JAXB Customization Version

< schema ...
 jaxb:version="2.0">

Using in-line customization

The most direct way to customize how the code generators map XML Schema constructs to Java
constructs is to add the customization elements directly to the XML Schema definitions. The JAXB
customization elements are placed inside the xsd:appinfo element of the XML schema construct that is
being modified.

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

363

http://java.sun.com/xml/ns/jaxb

Example 38.3, “Customized XML Schema” shows an example of a schema containing an in-line JAXB
customization.

Example 38.3. Customized XML Schema

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <complexType name="size">
 <annotation> <appinfo> <jaxb:class name="widgetSize" /> </appinfo> </annotation>
 <sequence>
 <element name="longSize" type="xsd:string" />
 <element name="numberSize" type="xsd:int" />
 </sequence>
 </complexType>
<schema>

Using an external binding declaration

When you cannot, or do not want to, make changes to the XML Schema document that defines your
type, you can specify the customizations using an external binding declaration. An external binding
declaration consists of a number of nested jaxb:bindings elements. Example 38.4, “JAXB External
Binding Declaration Syntax” shows the syntax of an external binding declaration.

Example 38.4. JAXB External Binding Declaration Syntax

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings [schemaLocation="schemaUri" | wsdlLocation="wsdlUri">
 <jaxb:bindings node="nodeXPath">
 binding declaration
 </jaxb:bindings>
 ...
 </jaxb:bindings>
<jaxb:bindings>

The schemaLocation attribute and the wsdlLocation attribute are used to identify the schema
document to which the modifications are applied. Use the schemaLocation attribute if you are
generating code from a schema document. Use the wsdlLocation attribute if you are generating code
from a WSDL document.

The node attribute is used to identify the specific XML schema construct that is to be modified. It is an
XPath statement that resolves to an XML Schema element.

Given the schema document widgetSchema.xsd, shown in Example 38.5, “XML Schema File” , the
external binding declaration shown in Example 38.6, “External Binding Declaration” modifies the
generation of the complex type size.

Example 38.5. XML Schema File

Red Hat Fuse 7.5 Apache CXF Development Guide

364

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 version="1.0">
 <complexType name="size">
 <sequence>
 <element name="longSize" type="xsd:string" />
 <element name="numberSize" type="xsd:int" />
 </sequence>
 </complexType>
<schema>

Example 38.6. External Binding Declaration

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="wsdlSchema.xsd">
 <jaxb:bindings node="xsd:complexType[@name='size']">
 <jaxb:class name="widgetSize" />
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

To instruct the code generators to use the external binging declaration use the wsdl2java tool’s -b
binding-file option, as shown below:

wsdl2java -b widgetBinding.xml widget.wsdl

38.2. SPECIFYING THE JAVA CLASS OF AN XML SCHEMA PRIMITIVE

Overview

By default, XML Schema types are mapped to Java primitive types. While this is the most logical
mapping between XML Schema and Java, it does not always meet the requirements of the application
developer. You might want to map an XML Schema primitive type to a Java class that can hold extra
information, or you might want to map an XML primitive type to a class that allows for simple type
substitution.

The JAXB javaType customization element allows you to customize the mapping between an XML
Schema primitive type and a Java primitive type. It can be used to customize the mappings at both the
global level and the individual instance level. You can use the javaType element as part of a simple type
definition or as part of a complex type definition.

When using the javaType customization element you must specify methods for converting the XML
representation of the primitive type to and from the target Java class. Some mappings have default
conversion methods. For instances where there are no default mappings, Apache CXF provides JAXB
methods to ease the development of the required methods.

Syntax

The javaType customization element takes four attributes, as described in Table 38.1, “Attributes for

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

365

The javaType customization element takes four attributes, as described in Table 38.1, “Attributes for
Customizing the Generation of a Java Class for an XML Schema Type”.

Table 38.1. Attributes for Customizing the Generation of a Java Class for an XML Schema Type

Attribute Required Description

name Yes Specifies the name of the Java
class to which the XML Schema
primitive type is mapped. It must
be either a valid Java class name
or the name of a Java primitive
type. You must ensure that this
class exists and is accessible to
your application. The code
generator does not check for this
class.

xmlType No Specifies the XML Schema
primitive type that is being
customized. This attribute is only
used when the javaType element
is used as a child of the
globalBindings element.

parseMethod No Specifies the method responsible
for parsing the string-based XML
representation of the data into an
instance of the Java class. For
more information see the section
called “Specifying the converters”.

printMethod No Specifies the method responsible
for converting a Java object to
the string-based XML
representation of the data. For
more information see the section
called “Specifying the converters”.

The javaType customization element can be used in three ways:

To modify all instances of an XML Schema primitive type — The javaType element modifies all
instances of an XML Schema type in the schema document when it is used as a child of the
globalBindings customization element. When it is used in this manner, you must specify a value
for the xmlType attribute that identifies the XML Schema primitive type being modified.
Example 38.7, “Global Primitive Type Customization” shows an in-line global customization that
instructs the code generators to use java.lang.Integer for all instances of xsd:short in the
schema.

Example 38.7. Global Primitive Type Customization

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"

Red Hat Fuse 7.5 Apache CXF Development Guide

366

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings ...>
 <jaxb:javaType name="java.lang.Integer"
 xmlType="xsd:short" />
 </globalBindings
 </appinfo>
 </annotation>
 ...
</schema>

To modify a simple type definition — The javaType element modifies the class generated for all
instances of an XML simple type when it is applied to a named simple type definition. When
using the javaType element to modify a simple type definition, do not use the xmlType
attribute.
Example 38.8, “Binding File for Customizing a Simple Type” shows an external binding file that
modifies the generation of a simple type named zipCode.

Example 38.8. Binding File for Customizing a Simple Type

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings wsdlLocation="widgets.wsdl">
 <jaxb:bindings node="xsd:simpleType[@name='zipCode']">
 <jaxb:javaType name="com.widgetVendor.widgetTypes.zipCodeType"
 parseMethod="com.widgetVendor.widgetTypes.support.parseZipCode"
 printMethod="com.widgetVendor.widgetTypes.support.printZipCode" />
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

To modify an element or attribute of a complex type definition — The javaType can be applied
to individual parts of a complex type definition by including it as part of a JAXB property
customization. The javaType element is placed as a child to the property’s baseType element.
When using the javaType element to modify a specific part of a complex type definition, do not
use the xmlType attribute.
Example 38.9, “Binding File for Customizing an Element in a Complex Type” shows a binding file
that modifies an element of a complex type.

Example 38.9. Binding File for Customizing an Element in a Complex Type

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="enumMap.xsd">
 <jaxb:bindings node="xsd:ComplexType[@name='widgetOrderInfo']">
 <jaxb:bindings node="xsd:element[@name='cost']">
 <jaxb:property>

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

367

 <jaxb:baseType>
 <jaxb:javaType name="com.widgetVendor.widgetTypes.costType"
 parseMethod="parseCost"
 printMethod="printCost" >
 </jaxb:baseType>
 </jaxb:property>
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

For more information on using the baseType element see Section 38.6, “Specifying the Base
Type of an Element or an Attribute”.

Specifying the converters

The Apache CXF cannot convert XML Schema primitive types into random Java classes. When you use
the javaType element to customize the mapping of an XML Schema primitive type, the code generator
creates an adapter class that is used to marshal and unmarshal the customized XML Schema primitive
type. A sample adapter class is shown in Example 38.10, “JAXB Adapter Class” .

Example 38.10. JAXB Adapter Class

public class Adapter1 extends XmlAdapter<String, javaType>
{
 public javaType unmarshal(String value)
 {
 return(parseMethod(value));
 }

 public String marshal(javaType value)
 {
 return(printMethod(value));
 }
}

parseMethod and printMethod are replaced by the value of the corresponding parseMethod attribute
and printMethod attribute. The values must identify valid Java methods. You can specify the method’s
name in one of two ways:

A fully qualified Java method name in the form of packagename.ClassName.methodName

A simple method name in the form of methodName
When you only provide a simple method name, the code generator assumes that the method
exists in the class specified by the javaType element’s name attribute.

IMPORTANT

The code generators do not generate parse or print methods. You are responsible for
supplying them. For information on developing parse and print methods see the section
called “Implementing converters”.

Red Hat Fuse 7.5 Apache CXF Development Guide

368

If a value for the parseMethod attribute is not provided, the code generator assumes that the Java class
specified by the name attribute has a constructor whose first parameter is a Java String object. The
generated adapter’s unmarshal() method uses the assumed constructor to populate the Java object
with the XML data.

If a value for the printMethod attribute is not provided, the code generator assumes that the Java class
specified by the name attribute has a toString() method. The generated adapter’s marshal() method
uses the assumed toString() method to convert the Java object to XML data.

If the javaType element’s name attribute specifies a Java primitive type, or one of the Java primitive’s
wrapper types, the code generators use the default converters. For more information on default
converters see the section called “Default primitive type converters” .

What is generated

As mentioned in the section called “Specifying the converters” , using the javaType customization
element triggers the generation of one adapter class for each customization of an XML Schema
primitive type. The adapters are named in sequence using the pattern AdapterN. If you specify two
primitive type customizations, the code generators create two adapter classes: Adapter1 and
Adapter2.

The code generated for an XML schema construct depends on whether the effected XML Schema
construct is a globally defined element or is defined as part of a complex type.

When the XML Schema construct is a globally defined element, the object factory method generated
for the type is modified from the default method as follows:

The method is decorated with an @XmlJavaTypeAdapter annotation.
The annotation instructs the runtime which adapter class to use when processing instances of
this element. The adapter class is specified as a class object.

The default type is replaced by the class specified by the javaType element’s name attribute.

Example 38.11, “Customized Object Factory Method for a Global Element” shows the object factory
method for an element affected by the customization shown in Example 38.7, “Global Primitive Type
Customization”.

Example 38.11. Customized Object Factory Method for a Global Element

 @XmlElementDecl(namespace = "http://widgetVendor.com/types/widgetTypes", name = "shorty")
 @XmlJavaTypeAdapter(org.w3._2001.xmlschema.Adapter1.class)
 public JAXBElement<Integer> createShorty(Integer value) {
 return new JAXBElement<Integer>(_Shorty_QNAME, Integer.class, null, value);
 }

When the XML Schema construct is defined as part of a complex type, the generated Java property is
modified as follows:

The property is decorated with an @XmlJavaTypeAdapter annotation.
The annotation instructs the runtime which adapter class to use when processing instances of
this element. The adapter class is specified as a class object.

The property’s @XmlElement includes a type property.

The value of the type property is the class object representing the generated object’s default

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

369

The value of the type property is the class object representing the generated object’s default
base type. In the case of XML Schema primitive types, the class is String.

The property is decorated with an @XmlSchemaType annotation.
The annotation identifies the XML Schema primitive type of the construct.

The default type is replaced by the class specified by the javaType element’s name attribute.

Example 38.12, “Customized Complex Type” shows the object factory method for an element affected
by the customization shown in Example 38.7, “Global Primitive Type Customization”.

Example 38.12. Customized Complex Type

public class NumInventory {

 @XmlElement(required = true, type = String.class) @XmlJavaTypeAdapter(Adapter1.class)
@XmlSchemaType(name = "short") protected Integer numLeft;
 @XmlElement(required = true)
 protected String size;

 public Integer getNumLeft() {
 return numLeft;
 }

 public void setNumLeft(Integer value) {
 this.numLeft = value;
 }

 public String getSize() {
 return size;
 }

 public void setSize(String value) {
 this.size = value;
 }

}

Implementing converters

The Apache CXF runtime does not know how to convert XML primitive types to and from the Java class
specified by the javaType element, except that it should call the methods specified by the
parseMethod attribute and the printMethod attribute. You are responsible for providing
implementations of the methods the runtime calls. The implemented methods must be capable of
working with the lexical structures of the XML primitive type.

To simplify the implementation of the data conversion methods, Apache CXF provides the
javax.xml.bind.DatatypeConverter class. This class provides methods for parsing and printing all of the
XML Schema primitive types. The parse methods take string representations of the XML data and they
return an instance of the default type defined in Table 34.1, “XML Schema Primitive Type to Java Native
Type Mapping”. The print methods take an instance of the default type and they return a string
representation of the XML data.

The Java documentation for the DatatypeConverter class can be found at

Red Hat Fuse 7.5 Apache CXF Development Guide

370

The Java documentation for the DatatypeConverter class can be found at
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/DatatypeConverter.html.

Default primitive type converters

When specifying a Java primitive type, or one of the Java primitive type Wrapper classes, in the
javaType element’s name attribute, it is not necessary to specify values for the parseMethod attribute
or the printMethod attribute. The Apache CXF runtime substitutes default converters if no values are
provided.

The default data converters use the JAXB DatatypeConverter class to parse the XML data. The default
converters will also provide any type casting necessary to make the conversion work.

38.3. GENERATING JAVA CLASSES FOR SIMPLE TYPES

Overview

By default, named simple types do not result in generated types unless they are enumerations. Elements
defined using a simple type are mapped to properties of a Java primitive type.

There are instances when you need to have simple types generated into Java classes, such as is when
you want to use type substitution.

To instruct the code generators to generate classes for all globally defined simple types, set the
globalBindings customization element’s mapSimpleTypeDef to true.

Adding the customization

To instruct the code generators to create Java classes for named simple types add the globalBinding
element’s mapSimpleTypeDef attribute and set its value to true.

Example 38.13, “in-Line Customization to Force Generation of Java Classes for SimpleTypes” shows an
in-line customization that forces the code generator to generate Java classes for named simple types.

Example 38.13. in-Line Customization to Force Generation of Java Classes for SimpleTypes

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings mapSimpleTypeDef="true" />
 </appinfo>
 </annotation>
 ...
</schema>

Example 38.14, “Binding File to Force Generation of Constants” shows an external binding file that
customizes the generation of simple types.

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

371

https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/DatatypeConverter.html

Example 38.14. Binding File to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="types.xsd">
 <jaxb:globalBindings mapSimpleTypeDef="true" />
 <jaxb:bindings>
<jaxb:bindings>

IMPORTANT

This customization only affects named simple types that are defined in the global scope.

Generated classes

The class generated for a simple type has one property called value. The value property is of the Java
type defined by the mappings in Section 34.1, “Primitive Types” . The generated class has a getter and a
setter for the value property.

Example 38.16, “Customized Mapping of a Simple Type” shows the Java class generated for the simple
type defined in Example 38.15, “Simple Type for Customized Mapping” .

Example 38.15. Simple Type for Customized Mapping

<simpleType name="simpleton">
 <restriction base="xsd:string">
 <maxLength value="10"/>
 </restriction>
</simpleType>

Example 38.16. Customized Mapping of a Simple Type

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "simpleton", propOrder = {"value"})
public class Simpleton {

 @XmlValue
 protected String value;

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }

}

Red Hat Fuse 7.5 Apache CXF Development Guide

372

38.4. CUSTOMIZING ENUMERATION MAPPING

Overview

If you want enumerated types that are based on a schema type other than xsd:string, you must instruct
the code generator to map it. You can also control the name of the generated enumeration constants.

The customization is done using the jaxb:typesafeEnumClass element along with one or more
jaxb:typesafeEnumMember elements.

There might also be instances where the default settings for the code generator cannot create valid
Java identifiers for all of the members of an enumeration. You can customize how the code generators
handle this by using an attribute of the globalBindings customization.

Member name customizer

If the code generator encounters a naming collision when generating the members of an enumeration or
if it cannot create a valid Java identifier for a member of the enumeration, the code generator, by
default, generates a warning and does not generate a Java enum type for the enumeration.

You can alter this behavior by adding the globalBinding element’s typesafeEnumMemberName
attribute. The typesafeEnumMemberName attribute’s values are described in Table 38.2, “Values for
Customizing Enumeration Member Name Generation”.

Table 38.2. Values for Customizing Enumeration Member Name Generation

Value Description

skipGeneration(default) Specifies that the Java enum type is not generated
and generates a warning.

generateName Specifies that member names will be generated
following the pattern VALUE_N. N starts off at one,
and is incremented for each member of the
enumeration.

generateError Specifies that the code generator generates an error
when it cannot map an enumeration to a Java enum
type.

Example 38.17, “Customization to Force Type Safe Member Names” shows an in-line customization that
forces the code generator to generate type safe member names.

Example 38.17. Customization to Force Type Safe Member Names

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings typesafeEnumMemberName="generateName" />

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

373

 </appinfo>
 </annotation>
 ...
</schema>

Class customizer

The jaxb:typesafeEnumClass element specifies that an XML Schema enumeration should be mapped
to a Java enum type. It has two attributes that are described in Table 38.3, “Attributes for Customizing
a Generated Enumeration Class”. When the jaxb:typesafeEnumClass element is specified in-line, it
must be placed inside the xsd:annotation element of the simple type it is modifying.

Table 38.3. Attributes for Customizing a Generated Enumeration Class

Attribute Description

name Specifies the name of the generated Java enum
type. This value must be a valid Java identifier.

map Specifies if the enumeration should be mapped to a
Java enum type. The default value is true.

Member customizer

The jaxb:typesafeEnumMember element specifies the mapping between an XML Schema
enumeration facet and a Java enum type constant. You must use one jaxb:typesafeEnumMember
element for each enumeration facet in the enumeration being customized.

When using in-line customization, this element can be used in one of two ways:

It can be placed inside the xsd:annotation element of the enumeration facet it is modifying.

They can all be placed as children of the jaxb:typesafeEnumClass element used to customize
the enumeration.

The jaxb:typesafeEnumMember element has a name attribute that is required. The name attribute
specifies the name of the generated Java enum type constant. It’s value must be a valid Java identifier.

The jaxb:typesafeEnumMember element also has a value attribute. The value is used to associate the
enumeration facet with the proper jaxb:typesafeEnumMember element. The value of the value
attribute must match one of the values of an enumeration facets' value attribute. This attribute is
required when you use an external binding specification for customizing the type generation, or when
you group the jaxb:typesafeEnumMember elements as children of the jaxb:typesafeEnumClass
element.

Examples

Example 38.18, “In-line Customization of an Enumerated Type” shows an enumerated type that uses in-
line customization and has the enumeration’s members customized separately.

Example 38.18. In-line Customization of an Enumerated Type

Red Hat Fuse 7.5 Apache CXF Development Guide

374

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <simpleType name="widgetInteger">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumClass />
 </appinfo>
 </annotation>
 <restriction base="xsd:int">
 <enumeration value="1">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="one" />
 </appinfo>
 </annotation>
 </enumeration>
 <enumeration value="2">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="two" />
 </appinfo>
 </annotation>
 </enumeration>
 <enumeration value="3">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="three" />
 </appinfo>
 </annotation>
 </enumeration>
 <enumeration value="4">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="four" />
 </appinfo>
 </annotation>
 </enumeration>
 </restriction>
 </simpleType>
<schema>

Example 38.19, “In-line Customization of an Enumerated Type Using a Combined Mapping” shows an
enumerated type that uses in-line customization and combines the member’s customization in the class
customization.

Example 38.19. In-line Customization of an Enumerated Type Using a Combined Mapping

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

375

 jaxb:version="2.0">
 <simpleType name="widgetInteger">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumClass>
 <jaxb:typesafeEnumMember value="1" name="one" />
 <jaxb:typesafeEnumMember value="2" name="two" />
 <jaxb:typesafeEnumMember value="3" name="three" />
 <jaxb:typesafeEnumMember value="4" name="four" />
 </jaxb:typesafeEnumClass>
 </appinfo>
 </annotation>
 <restriction base="xsd:int">
 <enumeration value="1" />
 <enumeration value="2" />
 <enumeration value="3" />
 <enumeration value="4" >
 </restriction>
 </simpleType>
<schema>

Example 38.20, “Binding File for Customizing an Enumeration” shows an external binding file that
customizes an enumerated type.

Example 38.20. Binding File for Customizing an Enumeration

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="enumMap.xsd">
 <jaxb:bindings node="xsd:simpleType[@name='widgetInteger']">
 <jaxb:typesafeEnumClass>
 <jaxb:typesafeEnumMember value="1" name="one" />
 <jaxb:typesafeEnumMember value="2" name="two" />
 <jaxb:typesafeEnumMember value="3" name="three" />
 <jaxb:typesafeEnumMember value="4" name="four" />
 </jaxb:typesafeEnumClass>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

38.5. CUSTOMIZING FIXED VALUE ATTRIBUTE MAPPING

Overview

By default, the code generators map attributes defined as having a fixed value to normal properties.
When using schema validation, Apache CXF can enforce the schema definition (see Section 24.3.4.7,
“Schema Validation Type Values”). However, using schema validation increases message processing
time.

Another way to map attributes that have fixed values to Java is to map them to Java constants. You can

Red Hat Fuse 7.5 Apache CXF Development Guide

376

instruct the code generator to map fixed value attributes to Java constants using the globalBindings
customization element. You can also customize the mapping of fixed value attributes to Java constants
at a more localized level using the property element.

Global customization

You can alter this behavior by adding the globalBinding element’s fixedAttributeAsConstantProperty
attribute. Setting this attribute to true instructs the code generator to map any attribute defined using
fixed attribute to a Java constant.

Example 38.21, “in-Line Customization to Force Generation of Constants” shows an in-line
customization that forces the code generator to generate constants for attributes with fixed values.

Example 38.21. in-Line Customization to Force Generation of Constants

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings fixedAttributeAsConstantProperty="true" />
 </appinfo>
 </annotation>
 ...
</schema>

Example 38.22, “Binding File to Force Generation of Constants” shows an external binding file that
customizes the generation of fixed attributes.

Example 38.22. Binding File to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="types.xsd">
 <jaxb:globalBindings fixedAttributeAsConstantProperty="true" />
 <jaxb:bindings>
<jaxb:bindings>

Local mapping

You can customize attribute mapping on a per-attribute basis using the property element’s
fixedAttributeAsConstantProperty attribute. Setting this attribute to true instructs the code
generator to map any attribute defined using fixed attribute to a Java constant.

Example 38.23, “In-Line Customization to Force Generation of Constants” shows an in-line
customization that forces the code generator to generate constants for a single attribute with a fixed
value.

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

377

Example 38.23. In-Line Customization to Force Generation of Constants

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <complexType name="widgetAttr">
 <sequence>
 ...
 </sequence>
 <attribute name="fixer" type="xsd:int" fixed="7">
 <annotation> <appinfo> <jaxb:property fixedAttributeAsConstantProperty="true" /> </appinfo>
</annotation>
 </attribute>
 </complexType>
 ...
</schema>

Example 38.24, “Binding File to Force Generation of Constants” shows an external binding file that
customizes the generation of a fixed attribute.

Example 38.24. Binding File to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="types.xsd">
 <jaxb:bindings node="xsd:complexType[@name='widgetAttr']">
 <jaxb:bindings node="xsd:attribute[@name='fixer']">
 <jaxb:property fixedAttributeAsConstantProperty="true" />
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

Java mapping

In the default mapping, all attributes are mapped to standard Java properties with getter and setter
methods. When this customization is applied to an attribute defined using the fixed attribute, the
attribute is mapped to a Java constant, as shown in Example 38.25, “Mapping of a Fixed Value Attribute
to a Java Constant”.

Example 38.25. Mapping of a Fixed Value Attribute to a Java Constant

@XmlAttribute
public final static type NAME = value;

type is determined by mapping the base type of the attribute to a Java type using the mappings
described in Section 34.1, “Primitive Types” .
NAME is determined by converting the value of the attribute element’s name attribute to all capital

Red Hat Fuse 7.5 Apache CXF Development Guide

378

NAME is determined by converting the value of the attribute element’s name attribute to all capital
letters.

value is determined by the value of the attribute element’s fixed attribute.

For example, the attribute defined in Example 38.23, “In-Line Customization to Force Generation of
Constants” is mapped as shown in Example 38.26, “Fixed Value Attribute Mapped to a Java Constant” .

Example 38.26. Fixed Value Attribute Mapped to a Java Constant

@XmlRootElement(name = "widgetAttr")
public class WidgetAttr {

 ...

 @XmlAttribute
 public final static int FIXER = 7;

 ...

}

38.6. SPECIFYING THE BASE TYPE OF AN ELEMENT OR AN
ATTRIBUTE

Overview

Occasionally you need to customize the class of the object generated for an element, or for an attribute
defined as part of an XML Schema complex type. For example, you might want to use a more
generalized class of object to allow for simple type substitution.

One way to do this is to use the JAXB base type customization. It allows a developer, on a case by case
basis, to specify the class of object generated to represent an element or an attribute. The base type
customization allows you to specify an alternate mapping between the XML Schema construct and the
generated Java object. This alternate mapping can be a simple specialization or a generalization of the
default base class. It can also be a mapping of an XML Schema primitive type to a Java class.

Customization usage

To apply the JAXB base type property to an XML Schema construct use the JAXB baseType
customization element. The baseType customization element is a child of the JAXB property element,
so it must be properly nested.

Depending on how you want to customize the mapping of the XML Schema construct to Java object,
you add either the baseType customization element’s name attribute, or a javaType child element. The
name attribute is used to map the default class of the generated object to another class within the
same class hierarchy. The javaType element is used when you want to map XML Schema primitive types
to a Java class.

IMPORTANT

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

379

IMPORTANT

You cannot use both the name attribute and a javaType child element in the same
baseType customization element.

Specializing or generalizing the default mapping

The baseType customization element’s name attribute is used to redefine the class of the generated
object to a class within the same Java class hierarchy. The attribute specifies the fully qualified name of
the Java class to which the XML Schema construct is mapped. The specified Java class must be either a
super-class or a sub-class of the Java class that the code generator normally generates for the XML
Schema construct. For XML Schema primitive types that map to Java primitive types, the wrapper class
is used as the default base class for the purpose of customization.

For example, an element defined as being of xsd:int uses java.lang.Integer as its default base class.
The value of the name attribute can specify any super-class of Integer such as Number or Object.

For simple type substitution, the most common customization is to map the primitive types to an Object
object.

Example 38.27, “In-Line Customization of a Base Type” shows an in-line customization that maps one
element in a complex type to a Java Object object.

Example 38.27. In-Line Customization of a Base Type

<complexType name="widgetOrderInfo">
 <all>
 <element name="amount" type="xsd:int" />
 <element name="shippingAdress" type="Address">
 <annotation> <appinfo> <jaxb:property> <jaxb:baseType name="java.lang.Object" />
</jaxb:property> </appinfo> </annotation>
 </element>
 <element name="type" type="xsd:string"/>
 </all>
</complexType>

Example 38.28, “External Binding File to Customize a Base Type” shows an external binding file for the
customization shown in Example 38.27, “In-Line Customization of a Base Type” .

Example 38.28. External Binding File to Customize a Base Type

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="enumMap.xsd">
 <jaxb:bindings node="xsd:ComplexType[@name='widgetOrderInfo']">
 <jaxb:bindings node="xsd:element[@name='shippingAddress']">
 <jaxb:property>
 <jaxb:baseType name="java.lang.Object" />
 </jaxb:property>
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

Red Hat Fuse 7.5 Apache CXF Development Guide

380

The resulting Java object’s @XmlElement annotation includes a type property. The value of the type
property is the class object representing the generated object’s default base type. In the case of XML
Schema primitive types, the class is the wrapper class of the corresponding Java primitive type.

Example 38.29, “Java Class with a Modified Base Class” shows the class generated based on the
schema definition in Example 38.28, “External Binding File to Customize a Base Type” .

Example 38.29. Java Class with a Modified Base Class

public class WidgetOrderInfo {

 protected int amount;
 @XmlElement(required = true)
 protected String type;
 @XmlElement(required = true, type = Address.class) protected Object shippingAddress;

 ...
 public Object getShippingAddress() {
 return shippingAddress;
 }

 public void setShippingAddress(Object value) {
 this.shippingAddress = value;
 }

}

Usage with javaType

The javaType element can be used to customize how elements and attributes defined using XML
Schema primitive types are mapped to Java objects. Using the javaType element provides a lot more
flexibility than simply using the baseType element’s name attribute. The javaType element allows you
to map a primitive type to any class of object.

For a detailed description of using the javaType element, see Section 38.2, “Specifying the Java Class
of an XML Schema Primitive”.

CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED

381

CHAPTER 39. USING A JAXBCONTEXT OBJECT

Abstract

The JAXBContext object allows the Apache CXF’s runtime to transform data between XML elements
and Java object. Application developers need to instantiate a JAXBContext object they want to use
JAXB objects in message handlers and when implementing consumers that work with raw XML
messages.

OVERVIEW

The JAXBContext object is a low-level object used by the runtime. It allows the runtime to convert
between XML elements and their corresponding Java representations. An application developer
generally does not need to work with JAXBContext objects. The marshaling and unmarshaling of XML
data is typically handled by the transport and binding layers of a JAX-WS application.

However, there are instances when an application will need to manipulate the XML message content
directly. In two of these instances:

Section 41.1, “Using XML in a Consumer”

Chapter 43, Writing Handlers

You will need instantiate a JAXBContext object using one of the two available
JAXBContext.newInstance() methods.

BEST PRACTICES

JAXBContext objects are resource intensive to instantiate. It is recommended that an application create
as few instances as possible. One way to do this is to create a single JAXBContext object that can
manage all of the JAXB objects used by your application and share it among as many parts of your
application as possible.

JAXBContext objects are thread safe.

GETTING A JAXBCONTEXT OBJECT USING AN OBJECT FACTORY

The JAXBContext class provides a newInstance() method, shown in Example 39.1, “Getting a JAXB
Context Using Classes”, that takes a list of classes that implement JAXB objects.

Example 39.1. Getting a JAXB Context Using Classes

staticJAXBContextnewInstanceClass… classesToBeBoundJAXBException

The returned JAXBObject object will be able to marshal and unmarshal data for the JAXB object
implemented by the classes passed into the method. It will also be able to work with any classes that are
statically referenced from any of the classes passed into the method.

While it is possible to pass the name of every JAXB class used by your application to the newInstance()
method it is not efficient. A more efficient way to accomplish the same goal is to pass in the object
factory, or object factories, generated for your application. The resulting JAXBContext object will be
able to manage any JAXB classes the specified object factories can instantiate.

Red Hat Fuse 7.5 Apache CXF Development Guide

382

GETTING A JAXBCONTEXT OBJECT USING PACKAGE NAMES

The JAXBContext class provides a newInstance() method, shown in Example 39.2, “Getting a JAXB
Context Using Classes”, that takes a colon (:) seperated list of package names. The specified packages
should contain JAXB objects derived from XML Schema.

Example 39.2. Getting a JAXB Context Using Classes

staticJAXBContextnewInstanceStringcontextPathJAXBException

The returned JAXBContext object will be able to marshal and unmarshal data for all of the JAXB
objects implemented by the classes in the specified packages.

CHAPTER 39. USING A JAXBCONTEXT OBJECT

383

CHAPTER 40. DEVELOPING ASYNCHRONOUS
APPLICATIONS

Abstract

JAX-WS provides an easy mechanism for accessing services asynchronously. The SEI can specify
additional methods that can be used to access a service asynchronously. The Apache CXF code
generators generate the extra methods for you. You simply add the business logic.

40.1. TYPES OF ASYNCHRONOUS INVOCATION

In addition to the usual synchronous mode of invocation, Apache CXF supports two forms of
asynchronous invocation:

 Polling approach — To invoke the remote operation using the polling approach, you call a
method that has no output parameters, but returns a javax.xml.ws.Response object. The
Response object (which inherits from the javax.util.concurrency.Future interface) can be polled
to check whether or not a response message has arrived.

 Callback approach — To invoke the remote operation using the callback approach, you call a
method that takes a reference to a callback object (of javax.xml.ws.AsyncHandler type) as
one of its parameters. When the response message arrives at the client, the runtime calls back
on the AsyncHandler object, and gives it the contents of the response message.

40.2. WSDL FOR ASYNCHRONOUS EXAMPLES

Example 40.1, “WSDL Contract for Asynchronous Example” shows the WSDL contract that is used for
the asynchronous examples. The contract defines a single interface, GreeterAsync, which contains a
single operation, greetMeSometime.

Example 40.1. WSDL Contract for Asynchronous Example

<?xml version="1.0" encoding="UTF-8"?><wsdl:definitions
xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://apache.org/hello_world_async_soap_http"
 xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://apache.org/hello_world_async_soap_http"
 name="HelloWorld">
 <wsdl:types>
 <schema targetNamespace="http://apache.org/hello_world_async_soap_http/types"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
 elementFormDefault="qualified">
 <element name="greetMeSometime">
 <complexType>
 <sequence>
 <element name="requestType" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>

Red Hat Fuse 7.5 Apache CXF Development Guide

384

 <element name="greetMeSometimeResponse">
 <complexType>
 <sequence>
 <element name="responseType"
 type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>

 <wsdl:message name="greetMeSometimeRequest">
 <wsdl:part name="in" element="x1:greetMeSometime"/>
 </wsdl:message>
 <wsdl:message name="greetMeSometimeResponse">
 <wsdl:part name="out"
 element="x1:greetMeSometimeResponse"/>
 </wsdl:message>

 <wsdl:portType name="GreeterAsync">
 <wsdl:operation name="greetMeSometime">
 <wsdl:input name="greetMeSometimeRequest"
 message="tns:greetMeSometimeRequest"/>
 <wsdl:output name="greetMeSometimeResponse"
 message="tns:greetMeSometimeResponse"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="GreeterAsync_SOAPBinding"
 type="tns:GreeterAsync">
 ...
 </wsdl:binding>

 <wsdl:service name="SOAPService">
 <wsdl:port name="SoapPort"
 binding="tns:GreeterAsync_SOAPBinding">
 <soap:address location="http://localhost:9000/SoapContext/SoapPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

40.3. GENERATING THE STUB CODE

Overview

The asynchronous style of invocation requires extra stub code for the dedicated asynchronous methods
defined on the SEI. This special stub code is not generated by default. To switch on the asynchronous
feature and generate the requisite stub code, you must use the mapping customization feature from the
WSDL 2.0 specification.

Customization enables you to modify the way the Maven code generation plug-in generates stub code.
In particular, it enables you to modify the WSDL-to-Java mapping and to switch on certain features.
Here, customization is used to switch on the asynchronous invocation feature. Customizations are

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

385

specified using a binding declaration, which you define using a jaxws:bindings tag (where the jaxws
prefix is tied to the http://java.sun.com/xml/ns/jaxws namespace). There are two ways of specifying a
binding declaration:

External Binding Declaration

When using an external binding declaration the jaxws:bindings element is defined in a file separate
from the WSDL contract. You specify the location of the binding declaration file to code generator
when you generate the stub code.

Embedded Binding Declaration

When using an embedded binding declaration you embed the jaxws:bindings element directly in a
WSDL contract, treating it as a WSDL extension. In this case, the settings in jaxws:bindings apply
only to the immediate parent element.

Using an external binding declaration

The template for a binding declaration file that switches on asynchronous invocations is shown in
Example 40.2, “Template for an Asynchronous Binding Declaration” .

Example 40.2. Template for an Asynchronous Binding Declaration

<bindings xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="AffectedWSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="AffectedNode">
 <enableAsyncMapping>true</enableAsyncMapping>
 </bindings>
</bindings>

Where AffectedWSDL specifies the URL of the WSDL contract that is affected by this binding
declaration. The AffectedNode is an XPath value that specifies which node (or nodes) from the WSDL
contract are affected by this binding declaration. You can set AffectedNode to wsdl:definitions, if you
want the entire WSDL contract to be affected. The jaxws:enableAsyncMapping element is set to true
to enable the asynchronous invocation feature.

For example, if you want to generate asynchronous methods only for the GreeterAsync interface, you
can specify <bindings node="wsdl:definitions/wsdl:portType[@name='GreeterAsync']"> in the preceding
binding declaration.

Assuming that the binding declaration is stored in a file, async_binding.xml, you would set up your
POM as shown in Example 40.3, “Consumer Code Generation” .

Example 40.3. Consumer Code Generation

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>

Red Hat Fuse 7.5 Apache CXF Development Guide

386

http://java.sun.com/xml/ns/jaxws

 <configuration>
 <sourceRoot>outputDir</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>hello_world.wsdl</wsdl>
 <extraargs>
 <extraarg>-client</extraarg>
 <extraarg>-b async_binding.xml</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The -b option tells the code generator where to locate the external binding file.

For more information on the code generator see Section 44.2, “cxf-codegen-plugin”.

Using an embedded binding declaration

You can also embed the binding customization directly into the WSDL document defining the service by
placing the jaxws:bindings element and its associated jaxws:enableAsynchMapping child directly
into the WSDL. You also must add a namespace declaration for the jaxws prefix.

Example 40.4, “WSDL with Embedded Binding Declaration for Asynchronous Mapping” shows a WSDL
file with an embedded binding declaration that activates the asynchronous mapping for an operation.

Example 40.4. WSDL with Embedded Binding Declaration for Asynchronous Mapping

<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 ...
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 ...>
 ...
 <wsdl:portType name="GreeterAsync">
 <wsdl:operation name="greetMeSometime">
 <jaxws:bindings> <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>
</jaxws:bindings>
 <wsdl:input name="greetMeSometimeRequest"
 message="tns:greetMeSometimeRequest"/>
 <wsdl:output name="greetMeSometimeResponse"
 message="tns:greetMeSometimeResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

When embedding the binding declaration into the WSDL document you can control the scope affected

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

387

When embedding the binding declaration into the WSDL document you can control the scope affected
by the declaration by changing where you place the declaration. When the declaration is placed as a child
of the wsdl:definitions element the code generator creates asynchronous methods for all of the
operations defined in the WSDL document. If it is placed as a child of a wsdl:portType element the code
generator creates asynchronous methods for all of the operations defined in the interface. If it is placed
as a child of a wsdl:operation element the code generator creates asynchronous methods for only that
operation.

It is not necessary to pass any special options to the code generator when using embedded declarations.
The code generator will recognize them and act accordingly.

Generated interface

After generating the stub code in this way, the GreeterAsync SEI (in the file GreeterAsync.java) is
defined as shown in Example 40.5, “Service Endpoint Interface with Methods for Asynchronous
Invocations”.

Example 40.5. Service Endpoint Interface with Methods for Asynchronous Invocations

package org.apache.hello_world_async_soap_http;

import org.apache.hello_world_async_soap_http.types.GreetMeSometimeResponse;
...

public interface GreeterAsync
{
 public Future<?> greetMeSometimeAsync(
 java.lang.String requestType,
 AsyncHandler<GreetMeSometimeResponse> asyncHandler
);

 public Response<GreetMeSometimeResponse> greetMeSometimeAsync(
 java.lang.String requestType
);

 public java.lang.String greetMeSometime(
 java.lang.String requestType
);
}

In addition to the usual synchronous method, greetMeSometime(), two asynchronous methods are also
generated for the greetMeSometime operation:

 Callback approach publicFuture<?
>greetMeSomtimeAsyncjava.lang.StringrequestTypeAsyncHandler<GreetMeSomtimeRes
ponse>asyncHandler

 Polling approach
publicResponse<GreetMeSomeTimeResponse>greetMeSometimeAsyncjava.lang.Stringre
questType

40.4. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE
POLLING APPROACH

Red Hat Fuse 7.5 Apache CXF Development Guide

388

Overview

The polling approach is the more straightforward of the two approaches to developing an asynchronous
application. The client invokes the asynchronous method called OperationNameAsync() and is returned
a Response<T> object that it polls for a response. What the client does while it is waiting for a response
is depends on the requirements of the application. There are two basic patterns for handling the polling:

Non-blocking polling— You periodically check to see if the result is ready by calling the non-
blocking Response<T>.isDone() method. If the result is ready, the client processes it. If it not,
the client continues doing other things.

Blocking polling— You call Response<T>.get() right away, and block until the response arrives
(optionally specifying a timeout).

Using the non-blocking pattern

Example 40.6, “Non-Blocking Polling Approach for an Asynchronous Operation Call” illustrates using
non-blocking polling to make an asynchronous invocation on the greetMeSometime operation defined in
Example 40.1, “WSDL Contract for Asynchronous Example” . The client invokes the asynchronous
operation and periodically checks to see if the result is returned.

Example 40.6. Non-Blocking Polling Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_async_soap_http",
 "SOAPService");

 private Client() {}

 public static void main(String args[]) throws Exception {

 // set up the proxy for the client

 Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
 port.greetMeSometimeAsync(System.getProperty("user.name"));

 while (!greetMeSomeTimeResp.isDone()) {
 // client does some work
 }
 GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
 // process the response

 System.exit(0);
 }
}

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

389

The code in Example 40.6, “Non-Blocking Polling Approach for an Asynchronous Operation Call” does
the following:

Invokes the greetMeSometimeAsync() on the proxy.

The method call returns the Response<GreetMeSometimeResponse> object to the client
immediately. The Apache CXF runtime handles the details of receiving the reply from the remote
endpoint and populating the Response<GreetMeSometimeResponse> object.

NOTE

The runtime transmits the request to the remote endpoint’s greetMeSometime()
method and handles the details of the asynchronous nature of the call transparently. The
endpoint, and therefore the service implementation, never worries about the details of
how the client intends to wait for a response.

Checks to see if a response has arrived by checking the isDone() of the returned Response object.

If the response has not arrived, the client continues working before checking again.

When the response arrives, the client retrieves it from the Response object using the get() method.

Using the blocking pattern

When using the block polling pattern, the Response object’s isDone() is never called. Instead, the
Response object’s get() method is called immediately after invoking the remote operation. The get()
blocks until the response is available.

You can also pass a timeout limit to the get() method.

Example 40.7, “Blocking Polling Approach for an Asynchronous Operation Call” shows a client that uses
blocking polling.

Example 40.7. Blocking Polling Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_async_soap_http",
 "SOAPService");

 private Client() {}

 public static void main(String args[]) throws Exception {

Red Hat Fuse 7.5 Apache CXF Development Guide

390

 // set up the proxy for the client

 Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
 port.greetMeSometimeAsync(System.getProperty("user.name"));
 GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
 // process the response
 System.exit(0);
 }
}

40.5. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE
CALLBACK APPROACH

Overview

An alternative approach to making an asynchronous operation invocation is to implement a callback
class. You then call the asynchronous remote method that takes the callback object as a parameter. The
runtime returns the response to the callback object.

To implement an application that uses callbacks, do the following:

1. Create a callback class that implements the AsyncHandler interface.

NOTE

Your callback object can perform any amount of response processing required by
your application.

2. Make remote invocations using the operationNameAsync() that takes the callback object as a
parameter and returns a Future<?> object.

3. If your client requires access to the response data, you can poll the returned Future<?> object’s
isDone() method to see if the remote endpoint has sent the response.
If the callback object does all of the response processing, it is not necessary to check if the
response has arrived.

Implementing the callback

The callback class must implement the javax.xml.ws.AsyncHandler interface. The interface defines a
single method: handleResponseResponse<T>res The Apache CXF runtime calls the
handleResponse() method to notify the client that the response has arrived. Example 40.8, “The
javax.xml.ws.AsyncHandler Interface” shows an outline of the AsyncHandler interface that you must
implement.

Example 40.8. The javax.xml.ws.AsyncHandler Interface

public interface javax.xml.ws.AsyncHandler
{
 void handleResponse(Response<T> res)
}

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

391

Example 40.9, “Callback Implementation Class” shows a callback class for the greetMeSometime
operation defined in Example 40.1, “WSDL Contract for Asynchronous Example” .

Example 40.9. Callback Implementation Class

package demo.hw.client;

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.types.*;

public class GreeterAsyncHandler implements AsyncHandler<GreetMeSometimeResponse>
{
 private GreetMeSometimeResponse reply;

 public void handleResponse(Response<GreetMeSometimeResponse>
 response)
 {
 try
 {
 reply = response.get();
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public String getResponse()
 {
 return reply.getResponseType();
 }
}

The callback implementation shown in Example 40.9, “Callback Implementation Class” does the
following:

Defines a member variable, response, that holds the response returned from the remote endpoint.

Implements handleResponse().

This implementation simply extracts the response and assigns it to the member variable reply.

Implements an added method called getResponse().

This method is a convenience method that extracts the data from reply and returns it.

Implementing the consumer

Example 40.10, “Callback Approach for an Asynchronous Operation Call” illustrates a client that uses the
callback approach to make an asynchronous call to the GreetMeSometime operation defined in
Example 40.1, “WSDL Contract for Asynchronous Example” .

Red Hat Fuse 7.5 Apache CXF Development Guide

392

Example 40.10. Callback Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
 ...

 public static void main(String args[]) throws Exception
 {
 ...
 // Callback approach
 GreeterAsyncHandler callback = new GreeterAsyncHandler();

 Future<?> response =
 port.greetMeSometimeAsync(System.getProperty("user.name"),
 callback);
 while (!response.isDone())
 {
 // Do some work
 }
 resp = callback.getResponse();
 ...
 System.exit(0);
 }
}

The code in Example 40.10, “Callback Approach for an Asynchronous Operation Call” does the following:

Instantiates a callback object.

Invokes the greetMeSometimeAsync() that takes the callback object on the proxy.

The method call returns the Future<?> object to the client immediately. The Apache CXF runtime
handles the details of receiving the reply from the remote endpoint, invoking the callback object’s
handleResponse() method, and populating the Response<GreetMeSometimeResponse> object.

NOTE

The runtime transmits the request to the remote endpoint’s greetMeSometime()
method and handles the details of the asynchronous nature of the call without the
remote endpoint’s knowledge. The endpoint, and therefore the service implementation,
does not need to worry about the details of how the client intends to wait for a response.

Uses the returned Future<?> object’s isDone() method to check if the response has arrived from the
remote endpoint.

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

393

Invokes the callback object’s getResponse() method to get the response data.

40.6. CATCHING EXCEPTIONS RETURNED FROM A REMOTE SERVICE

Overview

Consumers making asynchronous requests will not receive the same exceptions returned when they
make synchronous requests. Any exceptions returned to the consumer asynchronously are wrapped in
an ExecutionException exception. The actual exception thrown by the service is stored in the
ExecutionException exception’s cause field.

Catching the exception

Exceptions generated by a remote service are thrown locally by the method that passes the response to
the consumer’s business logic. When the consumer makes a synchronous request, the method making
the remote invocation throws the exception. When the consumer makes an asynchronous request, the
Response<T> object’s get() method throws the exception. The consumer will not discover that an error
was encountered in processing the request until it attempts to retrieve the response message.

Unlike the methods generated by the JAX-WS framework, the Response<T> object’s get() method
throws neither user modeled exceptions nor generic JAX-WS exceptions. Instead, it throws a
java.util.concurrent.ExecutionException exception.

Getting the exception details

The framework stores the exception returned from the remote service in the ExecutionException
exception’s cause field. The details about the remote exception are extracted by getting the value of
the cause field and examining the stored exception. The stored exception can be any user defined
exception or one of the generic JAX-WS exceptions.

Example

Example 40.11, “Catching an Exception using the Polling Approach” shows an example of catching an
exception using the polling approach.

Example 40.11. Catching an Exception using the Polling Approach

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client
{
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_async_soap_http",
 "SOAPService");

 private Client() {}

Red Hat Fuse 7.5 Apache CXF Development Guide

394

 public static void main(String args[]) throws Exception
 {
 ...
 // port is a previously established proxy object.
 Response<GreetMeSometimeResponse> resp =
 port.greetMeSometimeAsync(System.getProperty("user.name"));

 while (!resp.isDone())
 {
 // client does some work
 }

 try
 {
 GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
 // process the response
 }
 catch (ExecutionException ee)
 {
 Throwable cause = ee.getCause();
 System.out.println("Exception "+cause.getClass().getName()+" thrown by the remote
service.");
 }
 }
}

The code in Example 40.11, “Catching an Exception using the Polling Approach” does the following:

Wraps the call to the Response<T> object’s get() method in a try/catch block.

Catches a ExecutionException exception.

Extracts the cause field from the exception.

If the consumer was using the callback approach the code used to catch the exception would be placed
in the callback object where the service’s response is extracted.

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

395

CHAPTER 41. USING RAW XML MESSAGES

Abstract

The high-level JAX-WS APIs shield the developer from using native XML messages by marshaling the
data into JAXB objects. However, there are cases when it is better to have direct access to the raw XML
message data that is passing on the wire. The JAX-WS APIs provide two interfaces that provide access
to the raw XML: the Dispatch interface is the client-side interface, and the Provider interface is the
server-side interface.

41.1. USING XML IN A CONSUMER

Abstract

The Dispatch interface is a low-level JAX-WS API that allows you work directly with raw messages. It
accepts and returns messages, or payloads, of a number of types including DOM objects, SOAP
messages, and JAXB objects. Because it is a low-level API, the Dispatch interface does not perform any
of the message preparation that the higher-level JAX-WS APIs perform. You must ensure that the
messages, or payloads, that you pass to the Dispatch object are properly constructed, and make sense
for the remote operation being invoked.

41.1.1. Usage Modes

Overview

Dispatch objects have two usage modes:

Message mode

Message Payload mode (Payload mode)

The usage mode you specify for a Dispatch object determines the amount of detail that is passed to the
user level code.

Message mode

In message mode , a Dispatch object works with complete messages. A complete message includes any
binding specific headers and wrappers. For example, a consumer interacting with a service that requires
SOAP messages must provide the Dispatch object’s invoke() method a fully specified SOAP message.
The invoke() method also returns a fully specified SOAP message. The consumer code is responsible
for completing and reading the SOAP message’s headers and the SOAP message’s envelope
information.

Message mode is not ideal when working with JAXB objects.

To specify that a Dispatch object uses message mode provide the value
java.xml.ws.Service.Mode.MESSAGE when creating the Dispatch object. For more information about
creating a Dispatch object see the section called “Creating a Dispatch object” .

Payload mode

In payload mode , also called message payload mode, a Dispatch object works with only the payload of a
message. For example, a Dispatch object working in payload mode works only with the body of a SOAP

Red Hat Fuse 7.5 Apache CXF Development Guide

396

message. The binding layer processes any binding level wrappers and headers. When a result is returned
from the invoke() method the binding level wrappers and headers are already striped away, and only the
body of the message is left.

When working with a binding that does not use special wrappers, such as the Apache CXF XML binding,
payload mode and message mode provide the same results.

To specify that a Dispatch object uses payload mode provide the value
java.xml.ws.Service.Mode.PAYLOAD when creating the Dispatch object. For more information about
creating a Dispatch object see the section called “Creating a Dispatch object” .

41.1.2. Data Types

Overview

Because Dispatch objects are low-level objects, they are not optimized for using the same JAXB
generated types as the higher level consumer APIs. Dispatch objects work with the following types of
objects:

javax.xml.transform.Source

javax.xml.soap.SOAPMessage

javax.activation.DataSource

the section called “Using JAXB objects”

Using Source objects

A Dispatch object accepts and returns objects that are derived from the javax.xml.transform.Source
interface. Source objects are supported by any binding, and in either message mode or payload mode.

Source objects are low level objects that hold XML documents. Each Source implementation provides
methods that access the stored XML documents and then manipulate its contents. The following
objects implement the Source interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML message is stored as a set
of Node objects that are accessed using the getNode() method. Nodes can be either updated or
added to the DOM tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects contain an InputSource
object that holds the raw data and an XMLReader object that parses the raw data.

StreamSource

Holds XML messages as a data stream. The data stream can be manipulated the same as any other
data stream.

If you create your Dispatch object so that it uses generic Source objects, Apache CXF returns the
messages as SAXSource objects.

This behavior can be changed using the endpoint’s source-preferred-format property. See Part IV,
“Configuring Web Service Endpoints” for information about configuring the Apache CXF runtime.

CHAPTER 41. USING RAW XML MESSAGES

397

Using SOAPMessage objects

Dispatch objects can use javax.xml.soap.SOAPMessage objects when the following conditions are
true:

The Dispatch object is using the SOAP binding

The Dispatch object is using message mode

A SOAPMessage object holds a SOAP message. They contain one SOAPPart object and zero or more
AttachmentPart objects. The SOAPPart object contains the SOAP specific portions of the SOAP
message including the SOAP envelope, any SOAP headers, and the SOAP message body. The
AttachmentPart objects contain binary data that is passed as an attachment.

Using DataSource objects

Dispatch objects can use objects that implement the javax.activation.DataSource interface when the
following conditions are true:

The Dispatch object is using the HTTP binding

The Dispatch object is using message mode

DataSource objects provide a mechanism for working with MIME typed data from a variety of sources,
including URLs, files, and byte arrays.

Using JAXB objects

While Dispatch objects are intended to be low level APIs that allow you to work with raw messages, they
also allow you to work with JAXB objects. To work with JAXB objects a Dispatch object must be passed
a JAXBContext that can marshal and unmarshal the JAXB objects in use. The JAXBContext is passed
when the Dispatch object is created.

You can pass any JAXB object understood by the JAXBContext object as the parameter to the
invoke() method. You can also cast the returned message into any JAXB object understood by the
JAXBContext object.

For information on creating a JAXBContext object see Chapter 39, Using A JAXBContext Object.

41.1.3. Working with Dispatch Objects

Procedure

To use a Dispatch object to invoke a remote service the following sequence should be followed:

1. Create a Dispatch object.

2. Construct a request message.

3. Call the proper invoke() method.

4. Parse the response message.

Creating a Dispatch object

Red Hat Fuse 7.5 Apache CXF Development Guide

398

To create a Dispatch object do the following:

1. Create a Service object to represent the wsdl:service element that defines the service on
which the Dispatch object will make invocations. See Section 25.2, “Creating a Service Object” .

2. Create the Dispatch object using the Service object’s createDispatch() method, shown in
Example 41.1, “The createDispatch() Method”.

Example 41.1. The createDispatch() Method

publicDispatch<T>createDispatchQNameportNamejava.lang.Class<T>typeService.Mod
emodeWebServiceException

NOTE

If you are using JAXB objects the method signature for createDispatch() is:
publicDispatch<T>createDispatchQNameportNamejavax.xml.bind.JAXBCont
extcontextService.ModemodeWebServiceException

Table 41.1, “Parameters for createDispatch()” describes the parameters for the
createDispatch() method.

Table 41.1. Parameters for createDispatch()

Parameter Description

portName Specifies the QName of the wsdl:port element
that represents the service provider where the
Dispatch object will make invocations.

type Specifies the data type of the objects used by
the Dispatch object. See Section 41.1.2, “Data
Types”. When working with JAXB objects, this
parameter specifies the JAXBContext object
used to marshal and unmarshal the JAXB
objects.

mode Specifies the usage mode for the Dispatch
object. See Section 41.1.1, “Usage Modes”.

Example 41.2, “Creating a Dispatch Object” shows the code for creating a Dispatch object that works
with DOMSource objects in payload mode.

Example 41.2. Creating a Dispatch Object

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{

CHAPTER 41. USING RAW XML MESSAGES

399

public static void main(String args[])
 {
 QName serviceName = new QName("http://org.apache.cxf", "stockQuoteReporter");
 Service s = Service.create(serviceName);

 QName portName = new QName("http://org.apache.cxf", "stockQuoteReporterPort");
 Dispatch<DOMSource> dispatch = s.createDispatch(portName,
 DOMSource.class,
 Service.Mode.PAYLOAD);
 ...

Constructing request messages

When working with Dispatch objects, requests must be built from scratch. The developer is responsible
for ensuring that the messages passed to a Dispatch object match a request that the targeted service
provider can process. This requires precise knowledge about the messages used by the service provider
and what, if any, header information it requires.

This information can be provided by a WSDL document or an XML Schema document that defines the
messages. While service providers vary greatly there are a few guidelines to be followed:

The root element of the request is based in the value of the name attribute of the
wsdl:operation element corresponding to the operation being invoked.

WARNING

If the service being invoked uses doc/literal bare messages, the root
element of the request is based on the value of the name attribute of the
wsdl:part element referred to by the wsdl:operation element.

The root element of the request is namespace qualified.

If the service being invoked uses rpc/literal messages, the top-level elements in the request will
not be namespace qualified.

IMPORTANT

The children of top-level elements may be namespace qualified. To be certain
you must check their schema definitions.

If the service being invoked uses rpc/literal messages, none of the top-level elements can be
null.

If the service being invoked uses doc/literal messages, the schema definition of the message
determines if any of the elements are namespace qualified.

For more information about how services use XML messages see, the WS-I Basic Profile .

Red Hat Fuse 7.5 Apache CXF Development Guide

400

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Synchronous invocation

For consumers that make synchronous invocations that generate a response, use the Dispatch object’s
invoke() method shown in Example 41.3, “The Dispatch.invoke() Method”.

Example 41.3. The Dispatch.invoke() Method

TinvokeTmsgWebServiceException

The type of both the response and the request passed to the invoke() method are determined when the
Dispatch object is created. For example if you create a Dispatch object using
createDispatch(portName, SOAPMessage.class, Service.Mode.MESSAGE), both the response and
the request are SOAPMessage objects.

NOTE

When using JAXB objects, both the response and the request can be of any type the
provided JAXBContext object can marshal and unmarshal. Also, the response and the
request can be different JAXB objects.

Example 41.4, “Making a Synchronous Invocation Using a Dispatch Object” shows code for making a
synchronous invocation on a remote service using a DOMSource object.

Example 41.4. Making a Synchronous Invocation Using a Dispatch Object

// Creating a DOMSource Object for the request
DocumentBuilder db = DocumentBuilderFactory.newDocumentBuilder();
Document requestDoc = db.newDocument();
Element root = requestDoc.createElementNS("http://org.apache.cxf/stockExample",
 "getStockPrice");
root.setNodeValue("DOW");
DOMSource request = new DOMSource(requestDoc);

// Dispatch disp created previously
DOMSource response = disp.invoke(request);

Asynchronous invocation

Dispatch objects also support asynchronous invocations. As with the higher level asynchronous APIs
discussed in Chapter 40, Developing Asynchronous Applications , Dispatch objects can use both the
polling approach and the callback approach.

When using the polling approach, the invokeAsync() method returns a Response<t> object that can be
polled to see if the response has arrived. Example 41.5, “The Dispatch.invokeAsync() Method for
Polling” shows the signature of the method used to make an asynchronous invocation using the polling
approach.

Example 41.5. The Dispatch.invokeAsync() Method for Polling

Response <T>invokeAsyncTmsgWebServiceException

CHAPTER 41. USING RAW XML MESSAGES

401

For detailed information on using the polling approach for asynchronous invocations see Section 40.4,
“Implementing an Asynchronous Client with the Polling Approach”.

When using the callback approach, the invokeAsync() method takes an AsyncHandler implementation
that processes the response when it is returned. Example 41.6, “The Dispatch.invokeAsync() Method
Using a Callback” shows the signature of the method used to make an asynchronous invocation using
the callback approach.

Example 41.6. The Dispatch.invokeAsync() Method Using a Callback

Future<?>invokeAsyncTmsgAsyncHandler<T>handlerWebServiceException

For detailed information on using the callback approach for asynchronous invocations see Section 40.5,
“Implementing an Asynchronous Client with the Callback Approach”.

NOTE

As with the synchronous invoke() method, the type of the response and the type of the
request are determined when you create the Dispatch object.

Oneway invocation

When a request does not generate a response, make remote invocations using the Dispatch object’s
invokeOneWay(). Example 41.7, “The Dispatch.invokeOneWay() Method” shows the signature for this
method.

Example 41.7. The Dispatch.invokeOneWay() Method

invokeOneWayTmsgWebServiceException

The type of object used to package the request is determined when the Dispatch object is created. For
example if the Dispatch object is created using createDispatch(portName, DOMSource.class,
Service.Mode.PAYLOAD), then the request is packaged into a DOMSource object.

NOTE

When using JAXB objects, the response and the request can be of any type the provided
JAXBContext object can marshal and unmarshal.

Example 41.8, “Making a One Way Invocation Using a Dispatch Object” shows code for making a oneway
invocation on a remote service using a JAXB object.

Example 41.8. Making a One Way Invocation Using a Dispatch Object

// Creating a JAXBContext and an Unmarshaller for the request
JAXBContext jbc = JAXBContext.newInstance("org.apache.cxf.StockExample");
Unmarshaller u = jbc.createUnmarshaller();

// Read the request from disk
File rf = new File("request.xml");
GetStockPrice request = (GetStockPrice)u.unmarshal(rf);

Red Hat Fuse 7.5 Apache CXF Development Guide

402

// Dispatch disp created previously
disp.invokeOneWay(request);

41.2. USING XML IN A SERVICE PROVIDER

Abstract

The Provider interface is a low-level JAX-WS API that allows you to implement a service provider that
works directly with messages as raw XML. The messages are not packaged into JAXB objects before
being passed to an object that implements the Provider interface.

41.2.1. Messaging Modes

Overview

Objects that implement the Provider interface have two messaging modes:

Message mode

Payload mode

The messaging mode you specify determines the level of messaging detail that is passed to your
implementation.

Message mode

When using message mode , a Provider implementation works with complete messages. A complete
message includes any binding specific headers and wrappers. For example, a Provider implementation
that uses a SOAP binding receives requests as fully specified SOAP message. Any response returned
from the implementation must be a fully specified SOAP message.

To specify that a Provider implementation uses message mode by provide the value
java.xml.ws.Service.Mode.MESSAGE as the value to the javax.xml.ws.ServiceMode annotation, as
shown in Example 41.9, “Specifying that a Provider Implementation Uses Message Mode” .

Example 41.9. Specifying that a Provider Implementation Uses Message Mode

@WebServiceProvider
@ServiceMode(value=Service.Mode.MESSAGE)
public class stockQuoteProvider implements Provider<SOAPMessage>
{
 ...
}

Payload mode

In payload mode a Provider implementation works with only the payload of a message. For example, a
Provider implementation working in payload mode works only with the body of a SOAP message. The
binding layer processes any binding level wrappers and headers.

When working with a binding that does not use special wrappers, such as the Apache CXF XML binding,

CHAPTER 41. USING RAW XML MESSAGES

403

When working with a binding that does not use special wrappers, such as the Apache CXF XML binding,
payload mode and message mode provide the same results.

To specify that a Provider implementation uses payload mode by provide the value
java.xml.ws.Service.Mode.PAYLOAD as the value to the javax.xml.ws.ServiceMode annotation, as
shown in Example 41.10, “Specifying that a Provider Implementation Uses Payload Mode” .

Example 41.10. Specifying that a Provider Implementation Uses Payload Mode

@WebServiceProvider
@ServiceMode(value=Service.Mode.PAYLOAD)
public class stockQuoteProvider implements Provider<DOMSource>
{
 ...
}

If you do not provide a value for the @ServiceMode annotation, the Provider implementation uses
payload mode.

41.2.2. Data Types

Overview

Because they are low-level objects, Provider implementations cannot use the same JAXB generated
types as the higher level consumer APIs. Provider implementations work with the following types of
objects:

javax.xml.transform.Source

javax.xml.soap.SOAPMessage

javax.activation.DataSource

Using Source objects

A Provider implementation can accept and return objects that are derived from the
javax.xml.transform.Source interface. Source objects are low level objects that hold XML documents.
Each Source implementation provides methods that access the stored XML documents and manipulate
its contents. The following objects implement the Source interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML message is stored as a set
of Node objects that are accessed using the getNode() method. Nodes can be either updated or
added to the DOM tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects contain an InputSource
object that holds the raw data and an XMLReader object that parses the raw data.

StreamSource

Holds XML messages as a data stream. The data stream can be manipulated the same as any other
data stream.

If you create your Provider object so that it uses generic Source objects, Apache CXF returns the

Red Hat Fuse 7.5 Apache CXF Development Guide

404

If you create your Provider object so that it uses generic Source objects, Apache CXF returns the
messages as SAXSource objects.

This behavior can be changed using the endpoint’s source-preferred-format property. See Part IV,
“Configuring Web Service Endpoints” for information about configuring the Apache CXF runtime.

IMPORTANT

When using Source objects the developer is responsible for ensuring that all required
binding specific wrappers are added to the message. For example, when interacting with
a service expecting SOAP messages, the developer must ensure that the required SOAP
envelope is added to the outgoing request and that the SOAP envelope’s contents are
correct.

Using SOAPMessage objects

Provider implementations can use javax.xml.soap.SOAPMessage objects when the following
conditions are true:

The Provider implementation is using the SOAP binding

The Provider implementation is using message mode

A SOAPMessage object holds a SOAP message. They contain one SOAPPart object and zero or more
AttachmentPart objects. The SOAPPart object contains the SOAP specific portions of the SOAP
message including the SOAP envelope, any SOAP headers, and the SOAP message body. The
AttachmentPart objects contain binary data that is passed as an attachment.

Using DataSource objects

Provider implementations can use objects that implement the javax.activation.DataSource interface
when the following conditions are true:

The implementation is using the HTTP binding

The implementation is using message mode

DataSource objects provide a mechanism for working with MIME typed data from a variety of sources,
including URLs, files, and byte arrays.

41.2.3. Implementing a Provider Object

Overview

The Provider interface is relatively easy to implement. It only has one method, invoke(), that must be
implemented. In addition it has three simple requirements:

An implementation must have the @WebServiceProvider annotation.

An implementation must have a default public constructor.

An implementation must implement a typed version of the Provider interface.
In other words, you cannot implement a Provider<T> interface. You must implement a version of
the interface that uses a concrete data type as listed in Section 41.2.2, “Data Types” . For
example, you can implement an instance of a Provider<SAXSource>.

CHAPTER 41. USING RAW XML MESSAGES

405

The complexity of implementing the Provider interface is in the logic handling the request messages and
building the proper responses.

Working with messages

Unlike the higher-level SEI based service implementations, Provider implementations receive requests
as raw XML data, and must send responses as raw XML data. This requires that the developer has
intimate knowledge of the messages used by the service being implemented. These details can typically
be found in the WSDL document describing the service.

WS-I Basic Profile provides guidelines about the messages used by services, including:

The root element of a request is based in the value of the name attribute of the wsdl:operation
element that corresponds to the operation that is invoked.

WARNING

If the service uses doc/literal bare messages, the root element of the
request is based on the value of name attribute of the wsdl:part element
referred to by the wsdl:operation element.

The root element of all messages is namespace qualified.

If the service uses rpc/literal messages, the top-level elements in the messages are not
namespace qualified.

IMPORTANT

The children of top-level elements might be namespace qualified, but to be
certain you will must check their schema definitions.

If the service uses rpc/literal messages, none of the top-level elements can be null.

If the service uses doc/literal messages, then the schema definition of the message determines
if any of the elements are namespace qualified.

The @WebServiceProvider annotation

To be recognized by JAX-WS as a service implementation, a Provider implementation must be
decorated with the @WebServiceProvider annotation.

Table 41.2, “@WebServiceProvider Properties” describes the properties that can be set for the
@WebServiceProvider annotation.

Table 41.2. @WebServiceProvider Properties

Property Description

Red Hat Fuse 7.5 Apache CXF Development Guide

406

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

portName Specifies the value of the name attribute of the
wsdl:port element that defines the service’s
endpoint.

serviceName Specifies the value of the name attribute of the
wsdl:service element that contains the service’s
endpoint.

targetNamespace Specifies the targetname space of the service’s
WSDL definition.

wsdlLocation Specifies the URI for the WSDL document defining
the service.

Property Description

All of these properties are optional, and are empty by default. If you leave them empty, Apache CXF
creates values using information from the implementation class.

Implementing the invoke() method

The Provider interface has only one method, invoke(), that must be implemented. The invoke() method
receives the incoming request packaged into the type of object declared by the type of Provider
interface being implemented, and returns the response message packaged into the same type of object.
For example, an implementation of a Provider<SOAPMessage> interface receives the request as a
SOAPMessage object and returns the response as a SOAPMessage object.

The messaging mode used by the Provider implementation determines the amount of binding specific
information the request and the response messages contain. Implementations using message mode
receive all of the binding specific wrappers and headers along with the request. They must also add all of
the binding specific wrappers and headers to the response message. Implementations using payload
mode only receive the body of the request. The XML document returned by an implementation using
payload mode is placed into the body of the request message.

Examples

Example 41.11, “Provider<SOAPMessage> Implementation” shows a Provider implementation that works
with SOAPMessage objects in message mode.

Example 41.11. Provider<SOAPMessage> Implementation

import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@WebServiceProvider(portName="stockQuoteReporterPort"
 serviceName="stockQuoteReporter")
@ServiceMode(value="Service.Mode.MESSAGE")
public class stockQuoteReporterProvider implements Provider<SOAPMessage>

CHAPTER 41. USING RAW XML MESSAGES

407

{
public stockQuoteReporterProvider()
 {
 }

public SOAPMessage invoke(SOAPMessage request)
 {
 SOAPBody requestBody = request.getSOAPBody();
 if(requestBody.getElementName.getLocalName.equals("getStockPrice"))
 {
 MessageFactory mf = MessageFactory.newInstance();
 SOAPFactory sf = SOAPFactory.newInstance();

 SOAPMessage response = mf.createMessage();
 SOAPBody respBody = response.getSOAPBody();
 Name bodyName = sf.createName("getStockPriceResponse");
 respBody.addBodyElement(bodyName);
 SOAPElement respContent = respBody.addChildElement("price");
 respContent.setValue("123.00");
 response.saveChanges();
 return response;
 }
 ...
 }
}

The code in Example 41.11, “Provider<SOAPMessage> Implementation” does the following:

Specifies that the following class implements a Provider object that implements the service whose
wsdl:service element is named stockQuoteReporter, and whose wsdl:port element is named
stockQuoteReporterPort.

Specifies that this Provider implementation uses message mode.

Provides the required default public constructor.

Provides an implementation of the invoke() method that takes a SOAPMessage object and returns a
SOAPMessage object.

Extracts the request message from the body of the incoming SOAP message.

Checks the root element of the request message to determine how to process the request.

Creates the factories required for building the response.

Builds the SOAP message for the response.

Returns the response as a SOAPMessage object.

Example 41.12, “Provider<DOMSource> Implementation” shows an example of a Provider implementation
using DOMSource objects in payload mode.

Example 41.12. Provider<DOMSource> Implementation

import javax.xml.ws.Provider;

Red Hat Fuse 7.5 Apache CXF Development Guide

408

import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@WebServiceProvider(portName="stockQuoteReporterPort"
serviceName="stockQuoteReporter")
@ServiceMode(value="Service.Mode.PAYLOAD")
public class stockQuoteReporterProvider implements Provider<DOMSource>
public stockQuoteReporterProvider()
 {
 }

public DOMSource invoke(DOMSource request)
 {
 DOMSource response = new DOMSource();
 ...
 return response;
 }
}

The code in Example 41.12, “Provider<DOMSource> Implementation” does the following:

Specifies that the class implements a Provider object that implements the service whose wsdl:service
element is named stockQuoteReporter, and whose wsdl:port element is named
stockQuoteReporterPort.

Specifies that this Provider implementation uses payload mode.

Provides the required default public constructor.

Provides an implementation of the invoke() method that takes a DOMSource object and returns a
DOMSource object.

CHAPTER 41. USING RAW XML MESSAGES

409

CHAPTER 42. WORKING WITH CONTEXTS

Abstract

JAX-WS uses contexts to pass metadata along the messaging chain. This metadata, depending on its
scope, is accessible to implementation level code. It is also accessible to JAX-WS handlers that operate
on the message below the implementation level.

42.1. UNDERSTANDING CONTEXTS

Overview

In many instances it is necessary to pass information about a message to other parts of an application.
Apache CXF does this using a context mechanism. Contexts are maps that hold properties relating to an
outgoing or an incoming message. The properties stored in the context are typically metadata about the
message, and the underlying transport used to communicate the message. For example, the transport
specific headers used in transmitting the message, such as the HTTP response code or the JMS
correlation ID, are stored in the JAX-WS contexts.

The contexts are available at all levels of a JAX-WS application. However, they differ in subtle ways
depending upon where in the message processing stack you are accessing the context. JAX-WS Handler
implementations have direct access to the contexts and can access all properties that are set in them.
Service implementations access contexts by having them injected, and can only access properties that
are set in the APPLICATION scope. Consumer implementations can only access properties that are set
in the APPLICATION scope.

Figure 42.1, “Message Contexts and Message Processing Path” shows how the context properties pass
through Apache CXF. As a message passes through the messaging chain, its associated message
context passes along with it.

Figure 42.1. Message Contexts and Message Processing Path

Red Hat Fuse 7.5 Apache CXF Development Guide

410

Figure 42.1. Message Contexts and Message Processing Path

How properties are stored in a context

The message contexts are all implementations of the javax.xml.ws.handler.MessageContext interface.
The MessageContext interface extends the java.util.Map<String key, Object value> interface. Map
objects store information as key value pairs.

In a message context, properties are stored as name/value pairs. A property’s key is a String that
identifies the property. The value of a property can be any value stored in any Java object. When the
value is returned from a message context, the application must know the type to expect and cast
accordingly. For example, if a property’s value is stored in a UserInfo object it is still returned from a
message context as an Object object that must be cast back into a UserInfo object.

Properties in a message context also have a scope. The scope determines where a property can be
accessed in the message processing chain.

Property scopes

Properties in a message context are scoped. A property can be in one of the following scopes:

APPLICATION

Properties scoped as APPLICATION are available to JAX-WS Handler implementations, consumer
implementation code, and service provider implementation code. If a handler needs to pass a
property to the service provider implementation, it sets the property’s scope to APPLICATION. All
properties set from either the consumer implementation or the service provider implementation
contexts are automatically scoped as APPLICATION.

CHAPTER 42. WORKING WITH CONTEXTS

411

HANDLER

Properties scoped as HANDLER are only available to JAX-WS Handler implementations. Properties
stored in a message context from a Handler implementation are scoped as HANDLER by default.

You can change a property’s scope using the message context’s setScope() method. Example 42.1,
“The MessageContext.setScope() Method” shows the method’s signature.

Example 42.1. The MessageContext.setScope() Method

setScopeStringkeyMessageContext.Scopescopejava.lang.IllegalArgumentException

The first parameter specifies the property’s key. The second parameter specifies the new scope for the
property. The scope can be either:

MessageContext.Scope.APPLICATION

MessageContext.Scope.HANDLER

Overview of contexts in handlers

Classes that implement the JAX-WS Handler interface have direct access to a message’s context
information. The message’s context information is passed into the Handler implementation’s
handleMessage(), handleFault(), and close() methods.

Handler implementations have access to all of the properties stored in the message context, regardless
of their scope. In addition, logical handlers use a specialized message context called a
LogicalMessageContext. LogicalMessageContext objects have methods that access the contents of
the message body.

Overview of contexts in service implementations

Service implementations can access properties scoped as APPLICATION from the message context.
The service provider’s implementation object accesses the message context through the
WebServiceContext object.

For more information see Section 42.2, “Working with Contexts in a Service Implementation” .

Overview of contexts in consumer implementations

Consumer implementations have indirect access to the contents of the message context. The
consumer implementation has two separate message contexts:

Request context — holds a copy of the properties used for outgoing requests

Response context — holds a copy of the properties from an incoming response

The dispatch layer transfers the properties between the consumer implementation’s message contexts
and the message context used by the Handler implementations.

When a request is passed to the dispatch layer from the consumer implementation, the contents of the
request context are copied into the message context that is used by the dispatch layer. When the
response is returned from the service, the dispatch layer processes the message and sets the

Red Hat Fuse 7.5 Apache CXF Development Guide

412

appropriate properties into its message context. After the dispatch layer processes a response, it copies
all of the properties scoped as APPLICATION in its message context to the consumer implementation’s
response context.

For more information see Section 42.3, “Working with Contexts in a Consumer Implementation” .

42.2. WORKING WITH CONTEXTS IN A SERVICE IMPLEMENTATION

Overview

Context information is made available to service implementations using the WebServiceContext
interface. From the WebServiceContext object you can obtain a MessageContext object that is
populated with the current request’s context properties in the application scope. You can manipulate the
values of the properties, and they are propagated back through the response chain.

NOTE

The MessageContext interface inherits from the java.util.Map interface. Its contents can
be manipulated using the Map interface’s methods.

Obtaining a context

To obtain the message context in a service implementation do the following:

1. Declare a variable of type WebServiceContext.

2. Decorate the variable with the javax.annotation.Resource annotation to indicate that the
context information is being injected into the variable.

3. Obtain the MessageContext object from the WebServiceContext object using the
getMessageContext() method.

IMPORTANT

getMessageContext() can only be used in methods that are decorated with the
@WebMethod annotation.

Example 42.2, “Obtaining a Context Object in a Service Implementation” shows code for obtaining a
context object.

Example 42.2. Obtaining a Context Object in a Service Implementation

import javax.xml.ws.*;
import javax.xml.ws.handler.*;
import javax.annotation.*;

@WebServiceProvider
public class WidgetServiceImpl
{
 @Resource
 WebServiceContext wsc;

 @WebMethod

CHAPTER 42. WORKING WITH CONTEXTS

413

 public String getColor(String itemNum)
 {
 MessageContext context = wsc.getMessageContext();
 }

 ...
}

Reading a property from a context

Once you have obtained the MessageContext object for your implementation, you can access the
properties stored there using the get() method shown in Example 42.3, “The MessageContext.get()
Method”.

Example 42.3. The MessageContext.get() Method

VgetObjectkey

NOTE

This get() is inherited from the Map interface.

The key parameter is the string representing the property you want to retrieve from the context. The
get() returns an object that must be cast to the proper type for the property. Table 42.1, “Properties
Available in the Service Implementation Context” lists a number of the properties that are available in a
service implementation’s context.

IMPORTANT

Changing the values of the object returned from the context also changes the value of
the property in the context.

Example 42.4, “Getting a Property from a Service’s Message Context” shows code for getting the name
of the WSDL operation element that represents the invoked operation.

Example 42.4. Getting a Property from a Service’s Message Context

import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

 ...
 // MessageContext context retrieved in a previous example
 QName wsdl_operation = (QName)context.get(Message.WSDL_OPERATION);

Setting properties in a context

Once you have obtained the MessageContext object for your implementation, you can set properties,
and change existing properties, using the put() method shown in Example 42.5, “The
MessageContext.put() Method”.

Red Hat Fuse 7.5 Apache CXF Development Guide

414

Example 42.5. The MessageContext.put() Method

VputKkeyVvalueClassCastExceptionIllegalArgumentExceptionNullPointerException

If the property being set already exists in the message context, the put() method replaces the existing
value with the new value and returns the old value. If the property does not already exist in the message
context, the put() method sets the property and returns null.

Example 42.6, “Setting a Property in a Service’s Message Context” shows code for setting the response
code for an HTTP request.

Example 42.6. Setting a Property in a Service’s Message Context

import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

 ...
 // MessageContext context retrieved in a previous example
 context.put(Message.RESPONSE_CODE, new Integer(404));

Supported contexts

Table 42.1, “Properties Available in the Service Implementation Context” lists the properties accessible
through the context in a service implementation object.

Table 42.1. Properties Available in the Service Implementation Context

Property Name Description

org.apache.cxf.message.Message

PROTOCOL_HEADERS[a] Specifies the transport specific header information.
The value is stored as a java.util.Map<String,
List<String>>.

RESPONSE_CODE Specifies the response code returned to the
consumer. The value is stored as an Integer object.

ENDPOINT_ADDRESS Specifies the address of the service provider. The
value is stored as a String.

HTTP_REQUEST_METHOD Specifies the HTTP verb sent with a request. The
value is stored as a String.

CHAPTER 42. WORKING WITH CONTEXTS

415

PATH_INFO Specifies the path of the resource being requested.
The value is stored as a String.

The path is the portion of the URI after the hostname
and before any query string. For example, if an
endpoint’s URI is
http://cxf.apache.org/demo/widgets the path is
/demo/widgets.

QUERY_STRING Specifies the query, if any, attached to the URI used
to invoke the request. The value is stored as a
String.

Queries appear at the end of the URI after a ?. For
example, if a request is made to
http://cxf.apache.org/demo/widgets?color the
query is color.

MTOM_ENABLED Specifies whether or not the service provider can use
MTOM for SOAP attachments. The value is stored as
a Boolean.

SCHEMA_VALIDATION_ENABLED Specifies whether or not the service provider
validates messages against a schema. The value is
stored as a Boolean.

FAULT_STACKTRACE_ENABLED Specifies if the runtime provides a stack trace along
with a fault message. The value is stored as a
Boolean.

CONTENT_TYPE Specifies the MIME type of the message. The value is
stored as a String.

BASE_PATH Specifies the path of the resource being requested.
The value is stored as a java.net.URL.

The path is the portion of the URI after the hostname
and before any query string. For example, if an
endpoint’s URL is
http://cxf.apache.org/demo/widgets the base
path is /demo/widgets.

ENCODING Specifies the encoding of the message. The value is
stored as a String.

FIXED_PARAMETER_ORDER Specifies whether the parameters must appear in the
message in a particular order. The value is stored as a
Boolean.

Property Name Description

Red Hat Fuse 7.5 Apache CXF Development Guide

416

http://cxf.apache.org/demo/widgets
http://cxf.apache.org/demo/widgets?color
http://cxf.apache.org/demo/widgets

MAINTAIN_SESSION Specifies if the consumer wants to maintain the
current session for future requests. The value is
stored as a Boolean.

WSDL_DESCRIPTION Specifies the WSDL document that defines the
service being implemented. The value is stored as a
org.xml.sax.InputSource object.

WSDL_SERVICE Specifies the qualified name of the wsdl:service
element that defines the service being implemented.
The value is stored as a QName.

WSDL_PORT Specifies the qualified name of the wsdl:port
element that defines the endpoint used to access the
service. The value is stored as a QName.

WSDL_INTERFACE Specifies the qualified name of the wsdl:portType
element that defines the service being implemented.
The value is stored as a QName.

WSDL_OPERATION Specifies the qualified name of the wsdl:operation
element that corresponds to the operation invoked
by the consumer. The value is stored as a QName.

javax.xml.ws.handler.MessageContext

MESSAGE_OUTBOUND_PROPERTY Specifies if a message is outbound. The value is
stored as a Boolean. true specifies that a message
is outbound.

INBOUND_MESSAGE_ATTACHMENTS Contains any attachments included in the request
message. The value is stored as a
java.util.Map<String, DataHandler>.

The key value for the map is the MIME Content-ID
for the header.

OUTBOUND_MESSAGE_ATTACHMENTS Contains any attachments for the response message.
The value is stored as a java.util.Map<String,
DataHandler>.

The key value for the map is the MIME Content-ID
for the header.

WSDL_DESCRIPTION Specifies the WSDL document that defines the
service being implemented. The value is stored as a
org.xml.sax.InputSource object.

Property Name Description

CHAPTER 42. WORKING WITH CONTEXTS

417

WSDL_SERVICE Specifies the qualified name of the wsdl:service
element that defines the service being implemented.
The value is stored as a QName.

WSDL_PORT Specifies the qualified name of the wsdl:port
element that defines the endpoint used to access the
service. The value is stored as a QName.

WSDL_INTERFACE Specifies the qualified name of the wsdl:portType
element that defines the service being implemented.
The value is stored as a QName.

WSDL_OPERATION Specifies the qualified name of the wsdl:operation
element that corresponds to the operation invoked
by the consumer. The value is stored as a QName.

HTTP_RESPONSE_CODE Specifies the response code returned to the
consumer. The value is stored as an Integer object.

HTTP_REQUEST_HEADERS Specifies the HTTP headers on a request. The value
is stored as a java.util.Map<String,
List<String>>.

HTTP_RESPONSE_HEADERS Specifies the HTTP headers for the response. The
value is stored as a java.util.Map<String,
List<String>>.

HTTP_REQUEST_METHOD Specifies the HTTP verb sent with a request. The
value is stored as a String.

SERVLET_REQUEST Contains the servlet’s request object. The value is
stored as a
javax.servlet.http.HttpServletRequest.

SERVLET_RESPONSE Contains the servlet’s response object. The value is
stored as a javax.servlet.http.HttpResponse.

SERVLET_CONTEXT Contains the servlet’s context object. The value is
stored as a javax.servlet.ServletContext.

PATH_INFO Specifies the path of the resource being requested.
The value is stored as a String.

The path is the portion of the URI after the hostname
and before any query string. For example, if an
endpoint’s URL is
http://cxf.apache.org/demo/widgets the path is
/demo/widgets.

Property Name Description

Red Hat Fuse 7.5 Apache CXF Development Guide

418

http://cxf.apache.org/demo/widgets

QUERY_STRING Specifies the query, if any, attached to the URI used
to invoke the request. The value is stored as a
String.

Queries appear at the end of the URI after a ?. For
example, if a request is made to
http://cxf.apache.org/demo/widgets?color the
query string is color.

REFERENCE_PARAMETERS Specifies the WS-Addressing reference parameters.
This includes all of the SOAP headers whose
wsa:IsReferenceParameter attribute is set to
true. The value is stored as a java.util.List.

org.apache.cxf.transport.jms.JMSConstants

JMS_SERVER_HEADERS Contains the JMS message headers. For more
information see Section 42.4, “Working with JMS
Message Properties”.

[a] When using HTTP this property is the same as the standard JAX-WS defined property.

Property Name Description

42.3. WORKING WITH CONTEXTS IN A CONSUMER IMPLEMENTATION

Overview

Consumer implementations have access to context information through the BindingProvider interface.
The BindingProvider instance holds context information in two separate contexts:

Request Context The request context enables you to set properties that affect outbound
messages. Request context properties are applied to a specific port instance and, once set, the
properties affect every subsequent operation invocation made on the port, until such time as a
property is explicitly cleared. For example, you might use a request context property to set a
connection timeout or to initialize data for sending in a header.

Response Context The response context enables you to read the property values set by the
response to the last operation invocation made from the current thread. Response context
properties are reset after every operation invocation. For example, you might access a response
context property to read header information received from the last inbound message.

IMPORTANT

Only information that is placed in the application scope of a message context can be
accessed by the consumer implementation.

Obtaining a context

Contexts are obtained using the javax.xml.ws.BindingProvider interface. The BindingProvider interface
has two methods for obtaining a context:

CHAPTER 42. WORKING WITH CONTEXTS

419

http://cxf.apache.org/demo/widgets?color

getRequestContext() The getRequestContext() method, shown in Example 42.7, “The
getRequestContext() Method”, returns the request context as a Map object. The returned Map
object can be used to directly manipulate the contents of the context.

Example 42.7. The getRequestContext() Method

Map<String, Object>getRequestContext

getResponseContext() The getResponseContext(), shown in Example 42.8, “The
getResponseContext() Method”, returns the response context as a Map object. The returned
Map object’s contents reflect the state of the response context’s contents from the most
recent successful request on a remote service made in the current thread.

Example 42.8. The getResponseContext() Method

Map<String, Object>getResponseContext

Since proxy objects implement the BindingProvider interface, a BindingProvider object can be obtained
by casting a proxy object. The contexts obtained from the BindingProvider object are only valid for
operations invoked on the proxy object used to create it.

Example 42.9, “Getting a Consumer’s Request Context” shows code for obtaining the request context
for a proxy.

Example 42.9. Getting a Consumer’s Request Context

// Proxy widgetProxy obtained previously
BindingProvider bp = (BindingProvider)widgetProxy;
Map<String, Object> requestContext = bp.getRequestContext();

Reading a property from a context

Consumer contexts are stored in java.util.Map<String, Object> objects. The map has keys that are
String objects and values that contain arbitrary objects. Use java.util.Map.get() to access an entry in
the map of response context properties.

To retrieve a particular context property, ContextPropertyName, use the code shown in Example 42.10,
“Reading a Response Context Property”.

Example 42.10. Reading a Response Context Property

// Invoke an operation.
port.SomeOperation();

// Read response context property.
java.util.Map<String, Object> responseContext =
 ((javax.xml.ws.BindingProvider)port).getResponseContext();
PropertyType propValue = (PropertyType) responseContext.get(ContextPropertyName);

Setting properties in a context

Red Hat Fuse 7.5 Apache CXF Development Guide

420

Consumer contexts are hash maps stored in java.util.Map<String, Object> objects. The map has keys
that are String objects and values that are arbitrary objects. To set a property in a context use the
java.util.Map.put() method.

While you can set properties in both the request context and the response context, only the changes
made to the request context have any impact on message processing. The properties in the response
context are reset when each remote invocation is completed on the current thread.

The code shown in Example 42.11, “Setting a Request Context Property” changes the address of the
target service provider by setting the value of the BindingProvider.ENDPOINT_ADDRESS_PROPERTY.

Example 42.11. Setting a Request Context Property

// Set request context property.
java.util.Map<String, Object> requestContext =
 ((javax.xml.ws.BindingProvider)port).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
"http://localhost:8080/widgets");

// Invoke an operation.
port.SomeOperation();

IMPORTANT

Once a property is set in the request context its value is used for all subsequent remote
invocations. You can change the value and the changed value will then be used.

Supported contexts

Apache CXF supports the following context properties in consumer implementations:

Table 42.2. Consumer Context Properties

Property Name Description

javax.xml.ws.BindingProvider

ENDPOINT_ADDRESS_PROPERTY Specifies the address of the target service. The value
is stored as a String.

USERNAME_PROPERTY[a] Specifies the username used for HTTP basic
authentication. The value is stored as a String.

PASSWORD_PROPERTY[b] Specifies the password used for HTTP basic
authentication. The value is stored as a String.

SESSION_MAINTAIN_PROPERTY[c] Specifies if the client wants to maintain session
information. The value is stored as a Boolean
object.

org.apache.cxf.ws.addressing.JAXWSAConstants

CHAPTER 42. WORKING WITH CONTEXTS

421

CLIENT_ADDRESSING_PROPERTIES Specifies the WS-Addressing information used by
the consumer to contact the desired service
provider. The value is stored as a
org.apache.cxf.ws.addressing.AddressingPr
operties.

org.apache.cxf.transports.jms.context.JMSConstants

JMS_CLIENT_REQUEST_HEADERS Contains the JMS headers for the message. For
more information see Section 42.4, “Working with
JMS Message Properties”.

[a] This property is overridden by the username defined in the HTTP security settings.

[b] This property is overridden by the password defined in the HTTP security settings.

[c] The Apache CXF ignores this property.

Property Name Description

42.4. WORKING WITH JMS MESSAGE PROPERTIES

Abstract

The Apache CXF JMS transport has a context mechanism that can be used to inspect a JMS message’s
properties. The context mechanism can also be used to set a JMS message’s properties.

42.4.1. Inspecting JMS Message Headers

Abstract

Consumers and services use different context mechanisms to access the JMS message header
properties. However, both mechanisms return the header properties as a
org.apache.cxf.transports.jms.context.JMSMessageHeadersType object.

Getting the JMS Message Headers in a Service

To get the JMS message header properties from the WebServiceContext object, do the following:

1. Obtain the context as described in the section called “Obtaining a context” .

2. Get the message headers from the message context using the message context’s get() method
with the parameter org.apache.cxf.transports.jms.JMSConstants.JMS_SERVER_HEADERS.

Example 42.12, “Getting JMS Message Headers in a Service Implementation” shows code for getting the
JMS message headers from a service’s message context:

Example 42.12. Getting JMS Message Headers in a Service Implementation

import org.apache.cxf.transport.jms.JMSConstants;
import org.apache.cxf.transports.jms.context.JMSMessageHeadersType;

Red Hat Fuse 7.5 Apache CXF Development Guide

422

@WebService(serviceName = "HelloWorldService",
 portName = "HelloWorldPort",
 endpointInterface = "org.apache.cxf.hello_world_jms.HelloWorldPortType",
 targetNamespace = "http://cxf.apache.org/hello_world_jms")
 public class GreeterImplTwoWayJMS implements HelloWorldPortType
 {
 @Resource
 protected WebServiceContext wsContext;
 ...

 @WebMethod
 public String greetMe(String me)
 {
 MessageContext mc = wsContext.getMessageContext();
 JMSMessageHeadersType headers = (JMSMessageHeadersType)
mc.get(JMSConstants.JMS_SERVER_HEADERS);
 ...
 }
 ...
}

Getting JMS Message Header Properties in a Consumer

Once a message is successfully retrieved from the JMS transport you can inspect the JMS header
properties using the consumer’s response context. In addition, you can set or check the length of time
the client will wait for a response before timing out, as described in the section called “Client Receive
Timeout”. To get the JMS message headers from a consumer’s response context do the following:

1. Get the response context as described in the section called “Obtaining a context” .

2. Get the JMS message header properties from the response context using the context’s get()
method with
org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RESPONSE_HEADERS as the
parameter.

Example 42.13, “Getting the JMS Headers from a Consumer Response Header” shows code for getting
the JMS message header properties from a consumer’s response context.

Example 42.13. Getting the JMS Headers from a Consumer Response Header

import org.apache.cxf.transports.jms.context.*;
// Proxy greeter initialized previously
BindingProvider bp = (BindingProvider)greeter;
Map<String, Object> responseContext = bp.getResponseContext();
JMSMessageHeadersType responseHdr = (JMSMessageHeadersType)
 responseContext.get(JMSConstants.JMS_CLIENT_RESPONSE_HEADERS);
...
}

The code in Example 42.13, “Getting the JMS Headers from a Consumer Response Header” does the
following:

CHAPTER 42. WORKING WITH CONTEXTS

423

Casts the proxy to a BindingProvider.

Gets the response context.

Retrieves the JMS message headers from the response context.

42.4.2. Inspecting the Message Header Properties

Standard JMS Header Properties

Table 42.3, “JMS Header Properties” lists the standard properties in the JMS header that you can
inspect.

Table 42.3. JMS Header Properties

Property Name Property Type Getter Method

Correlation ID string getJMSCorralationID()

Delivery Mode int getJMSDeliveryMode()

Message Expiration long getJMSExpiration()

Message ID string getJMSMessageID()

Priority int getJMSPriority()

Redelivered boolean getJMSRedlivered()

Time Stamp long getJMSTimeStamp()

Type string getJMSType()

Time To Live long getTimeToLive()

Optional Header Properties

In addition, you can inspect any optional properties stored in the JMS header using
JMSMessageHeadersType.getProperty(). The optional properties are returned as a List of
org.apache.cxf.transports.jms.context.JMSPropertyType. Optional properties are stored as
name/value pairs.

Example

Example 42.14, “Reading the JMS Header Properties” shows code for inspecting some of the JMS
properties using the response context.

Example 42.14. Reading the JMS Header Properties

// JMSMessageHeadersType messageHdr retrieved previously

Red Hat Fuse 7.5 Apache CXF Development Guide

424

System.out.println("Correlation ID: "+messageHdr.getJMSCorrelationID());
System.out.println("Message Priority: "+messageHdr.getJMSPriority());
System.out.println("Redelivered: "+messageHdr.getRedelivered());

JMSPropertyType prop = null;
List<JMSPropertyType> optProps = messageHdr.getProperty();
Iterator<JMSPropertyType> iter = optProps.iterator();
while (iter.hasNext())
{
 prop = iter.next();
 System.out.println("Property name: "+prop.getName());
 System.out.println("Property value: "+prop.getValue());
}

The code in Example 42.14, “Reading the JMS Header Properties” does the following:

Prints the value of the message’s correlation ID.

Prints the value of the message’s priority property.

Prints the value of the message’s redelivered property.

Gets the list of the message’s optional header properties.

Gets an Iterator to traverse the list of properties.

Iterates through the list of optional properties and prints their name and value.

42.4.3. Setting JMS Properties

Abstract

Using the request context in a consumer endpoint, you can set a number of the JMS message header
properties and the consumer endpoint’s timeout value. These properties are valid for a single invocation.
You must reset them each time you invoke an operation on the service proxy.

Note that you cannot set header properties in a service.

JMS Header Properties

Table 42.4, “Settable JMS Header Properties” lists the properties in the JMS header that can be set
using the consumer endpoint’s request context.

Table 42.4. Settable JMS Header Properties

Property Name Property Type Setter Method

Correlation ID string setJMSCorralationID()

Delivery Mode int setJMSDeliveryMode()

Priority int setJMSPriority()

CHAPTER 42. WORKING WITH CONTEXTS

425

Time To Live long setTimeToLive()

Property Name Property Type Setter Method

To set these properties do the following:

1. Create an org.apache.cxf.transports.jms.context.JMSMessageHeadersType object.

2. Populate the values you want to set using the appropriate setter methods described in
Table 42.4, “Settable JMS Header Properties” .

3. Set the values to the request context by calling the request context’s put() method using
org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_REQUEST_HEADERS as the first
argument, and the new JMSMessageHeadersType object as the second argument.

Optional JMS Header Properties

You can also set optional properties to the JMS header. Optional JMS header properties are stored in
the JMSMessageHeadersType object that is used to set the other JMS header properties. They are
stored as a List object containing org.apache.cxf.transports.jms.context.JMSPropertyType objects.
To add optional properties to the JMS header do the following:

1. Create a JMSPropertyType object.

2. Set the property’s name field using setName().

3. Set the property’s value field using setValue().

4. Add the property to the JMS message header using
JMSMessageHeadersType.getProperty().add(JMSPropertyType).

5. Repeat the procedure until all of the properties have been added to the message header.

Client Receive Timeout

In addition to the JMS header properties, you can set the amount of time a consumer endpoint waits for
a response before timing out. You set the value by calling the request context’s put() method with
org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RECEIVE_TIMEOUT as the first argument
and a long representing the amount of time in milliseconds that you want the consumer to wait as the
second argument.

Example

Example 42.15, “Setting JMS Properties using the Request Context” shows code for setting some of the
JMS properties using the request context.

Example 42.15. Setting JMS Properties using the Request Context

import org.apache.cxf.transports.jms.context.*;
 // Proxy greeter initialized previously
InvocationHandler handler = Proxy.getInvocationHandler(greeter);

Red Hat Fuse 7.5 Apache CXF Development Guide

426

BindingProvider bp= null;
if (handler instanceof BindingProvider)
{
 bp = (BindingProvider)handler;
 Map<String, Object> requestContext = bp.getRequestContext();

 JMSMessageHeadersType requestHdr = new JMSMessageHeadersType();
 requestHdr.setJMSCorrelationID("WithBob");
 requestHdr.setJMSExpiration(3600000L);

 JMSPropertyType prop = new JMSPropertyType;
 prop.setName("MyProperty");
 prop.setValue("Bluebird");
 requestHdr.getProperty().add(prop);

 requestContext.put(JMSConstants.CLIENT_REQUEST_HEADERS, requestHdr);

 requestContext.put(JMSConstants.CLIENT_RECEIVE_TIMEOUT, new Long(1000));
}

The code in Example 42.15, “Setting JMS Properties using the Request Context” does the following:

Gets the InvocationHandler for the proxy whose JMS properties you want to change.

Checks to see if the InvocationHandler is a BindingProvider.

Casts the returned InvocationHandler object into a BindingProvider object to retrieve the request
context.

Gets the request context.

Creates a JMSMessageHeadersType object to hold the new message header values.

Sets the Correlation ID.

Sets the Expiration property to 60 minutes.

Creates a new JMSPropertyType object.

Sets the values for the optional property.

Adds the optional property to the message header.

Sets the JMS message header values into the request context.

Sets the client receive timeout property to 1 second.

CHAPTER 42. WORKING WITH CONTEXTS

427

CHAPTER 43. WRITING HANDLERS

Abstract

JAX-WS provides a flexible plug-in framework for adding message processing modules to an
application. These modules, known as handlers, are independent of the application level code and can
provide low-level message processing capabilities.

43.1. HANDLERS: AN INTRODUCTION

Overview

When a service proxy invokes an operation on a service, the operation’s parameters are passed to
Apache CXF where they are built into a message and placed on the wire. When the message is received
by the service, Apache CXF reads the message from the wire, reconstructs the message, and then
passes the operation parameters to the application code responsible for implementing the operation.
When the application code is finished processing the request, the reply message undergoes a similar
chain of events on its trip to the service proxy that originated the request. This is shown in Figure 43.1,
“Message Exchange Path”.

Figure 43.1. Message Exchange Path

JAX-WS defines a mechanism for manipulating the message data between the application level code
and the network. For example, you might want the message data passed over the open network to be
encrypted using a proprietary encryption mechanism. You could write a JAX-WS handler that encrypted
and decrypted the data. Then you could insert the handler into the message processing chains of all
clients and servers.

As shown in Figure 43.2, “Message Exchange Path with Handlers” , the handlers are placed in a chain that
is traversed between the application level code and the transport code that places the message onto
the network.

Figure 43.2. Message Exchange Path with Handlers

Red Hat Fuse 7.5 Apache CXF Development Guide

428

Figure 43.2. Message Exchange Path with Handlers

Handler types

The JAX-WS specification defines two basic handler types:

Logical Handler Logical handlers can process the message payload and the properties stored in
the message context. For example, if the application uses pure XML messages, the logical
handlers have access to the entire message. If the application uses SOAP messages, the logical
handlers have access to the contents of the SOAP body. They do not have access to either the
SOAP headers or any attachments unless they were placed into the message context.
Logical handlers are placed closest to the application code on the handler chain. This means
that they are executed first when a message is passed from the application code to the
transport. When a message is received from the network and passed back to the application
code, the logical handlers are executed last.

Protocol Handler Protocol handlers can process the entire message received from the network
and the properties stored in the message context. For example, if the application uses SOAP
messages, the protocol handlers would have access to the contents of the SOAP body, the
SOAP headers, and any attachments.
Protocol handlers are placed closest to the transport on the handler chain. This means that they
are executed first when a message is received from the network. When a message is sent to the
network from the application code, the protocol handlers are executed last.

NOTE

The only protocol handler supported by Apache CXF is specific to SOAP.

CHAPTER 43. WRITING HANDLERS

429

Implementation of handlers

The differences between the two handler types are very subtle and they share a common base interface.
Because of their common parentage, logical handlers and protocol handlers share a number of methods
that must be implemented, including:

handleMessage() The handleMessage() method is the central method in any handler. It is the
method responsible for processing normal messages.

handleFault() handleFault() is the method responsible for processing fault messages.

close() close() is called on all executed handlers in a handler chain when a message has reached
the end of the chain. It is used to clean up any resources consumed during message processing.

The differences between the implementation of a logical handler and the implementation of a protocol
handler revolve around the following:

The specific interface that is implemented
All handlers implement an interface that derives from the Handler interface. Logical handlers
implement the LogicalHandler interface. Protocol handlers implement protocol specific
extensions of the Handler interface. For example, SOAP handlers implement the SOAPHandler
interface.

The amount of information available to the handler
Protocol handlers have access to the contents of messages and all of the protocol specific
information that is packaged with the message content. Logical handlers can only access the
contents of the message. Logical handlers have no knowledge of protocol details.

Adding handlers to an application

To add a handler to an application you must do the following:

1. Determine whether the handler is going to be used on the service providers, the consumers, or
both.

2. Determine which type of handler is the most appropriate for the job.

3. Implement the proper interface.
To implement a logical handler see Section 43.2, “Implementing a Logical Handler” .

To implement a protocol handler see Section 43.4, “Implementing a Protocol Handler” .

4. Configure your endpoint(s) to use the handlers. See Section 43.10, “Configuring Endpoints to
Use Handlers”.

43.2. IMPLEMENTING A LOGICAL HANDLER

Overview

Logical handlers implement the javax.xml.ws.handler.LogicalHandler interface. The LogicalHandler
interface, shown in Example 43.1, “LogicalHandler Synopsis” passes a LogicalMessageContext object
to the handleMessage() method and the handleFault() method. The context object provides access to
the body of the message and to any properties set into the message exchange’s context.

Example 43.1. LogicalHandler Synopsis

Red Hat Fuse 7.5 Apache CXF Development Guide

430

public interface LogicalHandler extends Handler
{
 boolean handleMessage(LogicalMessageContext context);
 boolean handleFault(LogicalMessageContext context);
 void close(LogicalMessageContext context);
}

Procedure

To implement a logical hander you do the following:

1. Implement any Section 43.6, “Initializing a Handler” logic required by the handler.

2. Implement the Section 43.3, “Handling Messages in a Logical Handler” logic.

3. Implement the Section 43.7, “Handling Fault Messages” logic.

4. Implement the logic for Section 43.8, “Closing a Handler” the handler when it is finished.

5. Implement any logic for Section 43.9, “Releasing a Handler” the handler’s resources before it is
destroyed.

43.3. HANDLING MESSAGES IN A LOGICAL HANDLER

Overview

Normal message processing is handled by the handleMessage() method.

The handleMessage() method receives a LogicalMessageContext object that provides access to the
message body and any properties stored in the message context.

The handleMessage() method returns either true or false depending on how message processing is to
continue. It can also throw an exception.

Getting the message data

The LogicalMessageContext object passed into logical message handlers allows access to the message
body using the context’s getMessage() method. The getMessage() method, shown in Example 43.2,
“Method for Getting the Message Payload in a Logical Handler”, returns the message payload as a
LogicalMessage object.

Example 43.2. Method for Getting the Message Payload in a Logical Handler

LogicalMessagegetMessage

Once you have the LogicalMessage object, you can use it to manipulate the message body. The
LogicalMessage interface, shown in Example 43.3, “Logical Message Holder”, has getters and setters for
working with the actual message body.

Example 43.3. Logical Message Holder

LogicalMessageSourcegetPayloadObjectgetPayloadJAXBContextcontextsetPayloadObjectpa

CHAPTER 43. WRITING HANDLERS

431

LogicalMessageSourcegetPayloadObjectgetPayloadJAXBContextcontextsetPayloadObjectpa
yloadJAXBContextcontextsetPayloadSourcepayload

IMPORTANT

The contents of the message payload are determined by the type of binding in use. The
SOAP binding only allows access to the SOAP body of the message. The XML binding
allows access to the entire message body.

Working with the message body as an XML object

One pair of getters and setters of the logical message work with the message payload as a
javax.xml.transform.dom.DOMSource object.

The getPayload() method that has no parameters returns the message payload as a DOMSource
object. The returned object is the actual message payload. Any changes made to the returned object
change the message body immediately.

You can replace the body of the message with a DOMSource object using the setPayload() method
that takes the single Source object.

Working with the message body as a JAXB object

The other pair of getters and setters allow you to work with the message payload as a JAXB object. They
use a JAXBContext object to transform the message payload into JAXB objects.

To use the JAXB objects you do the following:

1. Get a JAXBContext object that can manage the data types in the message body.
For information on creating a JAXBContext object see Chapter 39, Using A JAXBContext
Object.

2. Get the message body as shown in Example 43.4, “Getting the Message Body as a JAXB
Object”.

Example 43.4. Getting the Message Body as a JAXB Object

JAXBContext jaxbc = JAXBContext(myObjectFactory.class);
Object body = message.getPayload(jaxbc);

3. Cast the returned object to the proper type.

4. Manipulate the message body as needed.

5. Put the updated message body back into the context as shown in Example 43.5, “Updating the
Message Body Using a JAXB Object”.

Example 43.5. Updating the Message Body Using a JAXB Object

message.setPayload(body, jaxbc);

Red Hat Fuse 7.5 Apache CXF Development Guide

432

Working with context properties

The logical message context passed into a logical handler is an instance of the application’s message
context and can access all of the properties stored in it. Handlers have access to properties at both the
APPLICATION scope and the HANDLER scope.

Like the application’s message context, the logical message context is a subclass of Java Map. To
access the properties stored in the context, you use the get() method and put() method inherited from
the Map interface.

By default, any properties you set in the message context from inside a logical handler are assigned a
scope of HANDLER. If you want the application code to be able to access the property you need to use
the context’s setScope() method to explicitly set the property’s scope to APPLICATION.

For more information on working with properties in the message context see Section 42.1,
“Understanding Contexts”.

Determining the direction of the message

It is often important to know the direction a message is passing through the handler chain. For example,
you would want to retrieve a security token from incoming requests and attach a security token to an
outgoing response.

The direction of the message is stored in the message context’s outbound message property. You
retrieve the outbound message property from the message context using the
MessageContext.MESSAGE_OUTBOUND_PROPERTY key as shown in Example 43.6, “Getting the
Message’s Direction from the SOAP Message Context”.

Example 43.6. Getting the Message’s Direction from the SOAP Message Context

Boolean outbound;
outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

The property is stored as a Boolean object. You can use the object’s booleanValue() method to
determine the property’s value. If the property is set to true, the message is outbound. If the property is
set to false the message is inbound.

Determining the return value

How the handleMessage() method completes its message processing has a direct impact on how
message processing proceeds. It can complete by doing one of the following actions:

1. Return true—Returning true signals to the Apache CXF runtime that message processing should
continue normally. The next handler, if any, has its handleMessage() invoked.

2. Return false—Returning false signals to the Apache CXF runtime that normal message
processing must stop. How the runtime proceeds depends on the message exchange pattern in
use for the current message.
For request-response message exchanges the following happens:

a. The direction of message processing is reversed.
For example, if a request is being processed by a service provider, the message stops
progressing toward the service’s implementation object. Instead, it is sent back towards the
binding for return to the consumer that originated the request.

CHAPTER 43. WRITING HANDLERS

433

b. Any message handlers that reside along the handler chain in the new processing direction
have their handleMessage() method invoked in the order in which they reside in the chain.

c. When the message reaches the end of the handler chain it is dispatched.
For one-way message exchanges the following happens:

d. Message processing stops.

e. All previously invoked message handlers have their close() method invoked.

f. The message is dispatched.

3. Throw a ProtocolException exception—Throwing a ProtocolException exception, or a subclass
of this exception, signals the Apache CXF runtime that fault message processing is beginning.
How the runtime proceeds depends on the message exchange pattern in use for the current
message.
For request-response message exchanges the following happens:

a. If the handler has not already created a fault message, the runtime wraps the message in a
fault message.

b. The direction of message processing is reversed.
For example, if a request is being processed by a service provider, the message stops
progressing toward the service’s implementation object. Instead, it is sent back towards the
binding for return to the consumer that originated the request.

c. Any message handlers that reside along the handler chain in the new processing direction
have their handleFault() method invoked in the order in which they reside in the chain.

d. When the fault message reaches the end of the handler chain it is dispatched.
For one-way message exchanges the following happens:

e. If the handler has not already created a fault message, the runtime wraps the message in a
fault message.

f. Message processing stops.

g. All previously invoked message handlers have their close() method invoked.

h. The fault message is dispatched.

4. Throw any other runtime exception—Throwing a runtime exception other than a
ProtocolException exception signals the Apache CXF runtime that message processing is to
stop. All previously invoked message handlers have the close() method invoked and the
exception is dispatched. If the message is part of a request-response message exchange, the
exception is dispatched so that it is returned to the consumer that originated the request.

Example

Example 43.7, “Logical Message Handler Message Processing” shows an implementation of
handleMessage() message for a logical message handler that is used by a service consumer. It
processes requests before they are sent to the service provider.

Example 43.7. Logical Message Handler Message Processing

public class SmallNumberHandler implements LogicalHandler<LogicalMessageContext>

Red Hat Fuse 7.5 Apache CXF Development Guide

434

{
 public final boolean handleMessage(LogicalMessageContext messageContext)
 {
 try
 {
 boolean outbound =
(Boolean)messageContext.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

 if (outbound)
 {
 LogicalMessage msg = messageContext.getMessage();

 JAXBContext jaxbContext = JAXBContext.newInstance(ObjectFactory.class);
 Object payload = msg.getPayload(jaxbContext);
 if (payload instanceof JAXBElement)
 {
 payload = ((JAXBElement)payload).getValue();
 }

 if (payload instanceof AddNumbers)
 {
 AddNumbers req = (AddNumbers)payload;

 int a = req.getArg0();
 int b = req.getArg1();
 int answer = a + b;

 if (answer < 20)
 {
 AddNumbersResponse resp = new AddNumbersResponse();
 resp.setReturn(answer);
 msg.setPayload(new ObjectFactory().createAddNumbersResponse(resp),
 jaxbContext);

 return false;
 }
 }
 else
 {
 throw new WebServiceException("Bad Request");
 }
 }
 return true;
 }
 catch (JAXBException ex)
 {
 throw new ProtocolException(ex);
 }
 }
...
}

The code in Example 43.7, “Logical Message Handler Message Processing” does the following:

Checks if the message is an outbound request.

CHAPTER 43. WRITING HANDLERS

435

If the message is an outbound request, the handler does additional message processing.

Gets the LogicalMessage representation of the message payload from the message context.

Gets the actual message payload as a JAXB object.

Checks to make sure the request is of the correct type.

If it is, the handler continues processing the message.

Checks the value of the sum.

If it is less than the threshold of 20 then it builds a response and returns it to the client.

Builds the response.

Returns false to stop message processing and return the response to the client.

Throws a runtime exception if the message is not of the correct type.

This exception is returned to the client.

Returns true if the message is an inbound response or the sum does not meet the threshold.

Message processing continues normally.

Throws a ProtocolException if a JAXB marshalling error is encountered.

The exception is passed back to the client after it is processed by the handleFault() method of the
handlers between the current handler and the client.

43.4. IMPLEMENTING A PROTOCOL HANDLER

Overview

Protocol handlers are specific to the protocol in use. Apache CXF provides the SOAP protocol handler
as specified by JAX-WS. A SOAP protocol handler implements the
javax.xml.ws.handler.soap.SOAPHandler interface.

The SOAPHandler interface, shown in Example 43.8, “SOAPHandler Synopsis” , uses a SOAP specific
message context that provides access to the message as a SOAPMessage object. It also allows you to
access the SOAP headers.

Example 43.8. SOAPHandler Synopsis

public interface SOAPHandler extends Handler
{
 boolean handleMessage(SOAPMessageContext context);
 boolean handleFault(SOAPMessageContext context);
 void close(SOAPMessageContext context);
 Set<QName> getHeaders()
}

In addition to using a SOAP specific message context, SOAP protocol handlers require that you

Red Hat Fuse 7.5 Apache CXF Development Guide

436

In addition to using a SOAP specific message context, SOAP protocol handlers require that you
implement an additional method called getHeaders(). This additional method returns the QNames of
the header blocks the handler can process.

Procedure

To implement a logical hander do the following:

1. Implement any Section 43.6, “Initializing a Handler” logic required by the handler.

2. Implement the Section 43.5, “Handling Messages in a SOAP Handler” logic.

3. Implement the Section 43.7, “Handling Fault Messages” logic.

4. Implement the getHeaders() method.

5. Implement the logic for Section 43.8, “Closing a Handler” the handler when it is finished.

6. Implement any logic for Section 43.9, “Releasing a Handler” the handler’s resources before it is
destroyed.

Implementing the getHeaders() method

The getHeaders(), shown in Example 43.9, “The SOAPHander.getHeaders() Method”, method informs
the Apache CXF runtime what SOAP headers the handler is responsible for processing. It returns the
QNames of the outer element of each SOAP header the handler understands.

Example 43.9. The SOAPHander.getHeaders() Method

Set<QName>getHeaders

For many cases simply returning null is sufficient. However, if the application uses the mustUnderstand
attribute of any of the SOAP headers, then it is important to specify the headers understood by the
application’s SOAP handlers. The runtime checks the set of SOAP headers that all of the registered
handlers understand against the list of headers with the mustUnderstand attribute set to true. If any of
the flagged headers are not in the list of understood headers, the runtime rejects the message and
throws a SOAP must understand exception.

43.5. HANDLING MESSAGES IN A SOAP HANDLER

Overview

Normal message processing is handled by the handleMessage() method.

The handleMessage() method receives a SOAPMessageContext object that provides access to the
message body as a SOAPMessage object and the SOAP headers associated with the message. In
addition, the context provides access to any properties stored in the message context.

The handleMessage() method returns either true or false depending on how message processing is to
continue. It can also throw an exception.

Working with the message body

You can get the SOAP message using the SOAP message context’s getMessage() method. It returns

CHAPTER 43. WRITING HANDLERS

437

You can get the SOAP message using the SOAP message context’s getMessage() method. It returns
the message as a live SOAPMessage object. Any changes to the message in the handler are
automatically reflected in the message stored in the context.

If you wish to replace the existing message with a new one, you can use the context’s setMessage()
method. The setMessage() method takes a SOAPMessage object.

Getting the SOAP headers

You can access the SOAP message’s headers using the SOAPMessage object’s getHeader() method.
This will return the SOAP header as a SOAPHeader object that you will need to inspect to find the
header elements you wish to process.

The SOAP message context provides a getHeaders() method, shown in Example 43.10, “The
SOAPMessageContext.getHeaders() Method”, that will return an array containing JAXB objects for
the specified SOAP headers.

Example 43.10. The SOAPMessageContext.getHeaders() Method

Ojbect[]getHeadersQNameheaderJAXBContextcontextbooleanallRoles

You specify the headers using the QName of their element. You can further limit the headers that are
returned by setting the allRoles parameter to false. That instructs the runtime to only return the SOAP
headers that are applicable to the active SOAP roles.

If no headers are found, the method returns an empty array.

For more information about instantiating a JAXBContext object see Chapter 39, Using A JAXBContext
Object.

Working with context properties

The SOAP message context passed into a logical handler is an instance of the application’s message
context and can access all of the properties stored in it. Handlers have access to properties at both the
APPLICATION scope and the Handler scope.

Like the application’s message context, the SOAP message context is a subclass of Java Map. To
access the properties stored in the context, you use the get() method and put() method inherited from
the Map interface.

By default, any properties you set in the context from inside a logical handler will be assigned a scope of
HANDLER. If you want the application code to be able to access the property you need to use the
context’s setScope() method to explicitly set the property’s scope to APPLICATION.

For more information on working with properties in the message context see Section 42.1,
“Understanding Contexts”.

Determining the direction of the message

It is often important to know the direction a message is passing through the handler chain. For example,
you would want to add headers to an outgoing message and strip headers from an incoming message.

The direction of the message is stored in the message context’s outbound message property. You
retrieve the outbound message property from the message context using the

Red Hat Fuse 7.5 Apache CXF Development Guide

438

MessageContext.MESSAGE_OUTBOUND_PROPERTY key as shown in Example 43.11, “Getting the
Message’s Direction from the SOAP Message Context”.

Example 43.11. Getting the Message’s Direction from the SOAP Message Context

Boolean outbound;
outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

The property is stored as a Boolean object. You can use the object’s booleanValue() method to
determine the property’s value. If the property is set to true, the message is outbound. If the property is
set to false the message is inbound.

Determining the return value

How the handleMessage() method completes its message processing has a direct impact on how
message processing proceeds. It can complete by doing one of the following actions:

1. return true—Returning true signals to the Apache CXF runtime that message processing should
continue normally. The next handler, if any, has its handleMessage() invoked.

2. return false—Returning false signals to the Apache CXF runtime that normal message
processing is to stop. How the runtime proceeds depends on the message exchange pattern in
use for the current message.
For request-response message exchanges the following happens:

a. The direction of message processing is reversed.
For example, if a request is being processed by a service provider, the message will stop
progressing toward the service’s implementation object. It will instead be sent back towards
the binding for return to the consumer that originated the request.

b. Any message handlers that reside along the handler chain in the new processing direction
have their handleMessage() method invoked in the order in which they reside in the chain.

c. When the message reaches the end of the handler chain it is dispatched.
For one-way message exchanges the following happens:

d. Message processing stops.

e. All previously invoked message handlers have their close() method invoked.

f. The message is dispatched.

3. throw a ProtocolException exception—Throwing a ProtocolException exception, or a subclass of
this exception, signals the Apache CXF runtime that fault message processing is to start. How
the runtime proceeds depends on the message exchange pattern in use for the current
message.
For request-response message exchanges the following happens:

a. If the handler has not already created a fault message, the runtime wraps the message in a
fault message.

b. The direction of message processing is reversed.

For example, if a request is being processed by a service provider, the message will stop

CHAPTER 43. WRITING HANDLERS

439

For example, if a request is being processed by a service provider, the message will stop
progressing toward the service’s implementation object. It will be sent back towards the
binding for return to the consumer that originated the request.

c. Any message handlers that reside along the handler chain in the new processing direction
have their handleFault() method invoked in the order in which they reside in the chain.

d. When the fault message reaches the end of the handler chain it is dispatched.
For one-way message exchanges the following happens:

e. If the handler has not already created a fault message, the runtime wraps the message in a
fault message.

f. Message processing stops.

g. All previously invoked message handlers have their close() method invoked.

h. The fault message is dispatched.

4. throw any other runtime exception—Throwing a runtime exception other than a
ProtocolException exception signals the Apache CXF runtime that message processing is to
stop. All previously invoked message handlers have the close() method invoked and the
exception is dispatched. If the message is part of a request-response message exchange the
exception is dispatched so that it is returned to the consumer that originated the request.

Example

Example 43.12, “Handling a Message in a SOAP Handler” shows a handleMessage() implementation that
prints the SOAP message to the screen.

Example 43.12. Handling a Message in a SOAP Handler

public boolean handleMessage(SOAPMessageContext smc)
{
 PrintStream out;

 Boolean outbound =
(Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

 if (outbound.booleanValue())
 {
 out.println("\nOutbound message:");
 }
 else
 {
 out.println("\nInbound message:");
 }

 SOAPMessage message = smc.getMessage();

 message.writeTo(out);
 out.println();

 return true;
}

Red Hat Fuse 7.5 Apache CXF Development Guide

440

The code in Example 43.12, “Handling a Message in a SOAP Handler” does the following:

Retrieves the outbound property from the message context.

Tests the messages direction and prints the appropriate message.

Retrieves the SOAP message from the context.

Prints the message to the console.

43.6. INITIALIZING A HANDLER

Overview

When the runtime creates an instance of a handler, it creates all of the resources the hander needs to
process messages. While you can place all of the logic for doing this in the handler’s constructor, it may
not be the most appropriate place. The handler framework performs a number of optional steps when it
instantiates a handler. You can add resource injection and other initialization logic that will be executed
during the optional steps.

You do not have to provide any initialization methods for a handler.

Order of initialization

The Apache CXF runtime initializes a handler in the following manner:

1. The handler’s constructor is called.

2. Any resources that are specified by the @Resource annotation are injected.

3. The method decorated with @PostConstruct annotation, if it is present, is called.

NOTE

Methods decorated with the @PostConstruct annotation must have a void
return type and have no parameters.

4. The handler is place in the Ready state.

43.7. HANDLING FAULT MESSAGES

Overview

Handlers use the handleFault() method for processing fault messages when a ProtocolException
exception is thrown during message processing.

The handleFault() method receives either a LogicalMessageContext object or
SOAPMessageContext object depending on the type of handler. The received context gives the
handler’s implementation access to the message payload.

The handleFault() method returns either true or false, depending on how fault message processing is to
proceed. It can also throw an exception.

CHAPTER 43. WRITING HANDLERS

441

Getting the message payload

The context object received by the handleFault() method is similar to the one received by the
handleMessage() method. You use the context’s getMessage() method to access the message
payload in the same way. The only difference is the payload contained in the context.

For more information on working with a LogicalMessageContext see Section 43.3, “Handling Messages
in a Logical Handler”.

For more information on working with a SOAPMessageContext see Section 43.5, “Handling Messages
in a SOAP Handler”.

Determining the return value

How the handleFault() method completes its message processing has a direct impact on how message
processing proceeds. It completes by performing one of the following actions:

Return true

Returning true signals that fault processing should continue normally. The handleFault() method of
the next handler in the chain will be invoked.

Return false

Returning false signals that fault processing stops. The close() method of the handlers that were
invoked in processing the current message are invoked and the fault message is dispatched.

Throw an exception

Throwing an exception stops fault message processing. The close() method of the handlers that
were invoked in processing the current message are invoked and the exception is dispatched.

Example

Example 43.13, “Handling a Fault in a Message Handler” shows an implementation of handleFault() that
prints the message body to the screen.

Example 43.13. Handling a Fault in a Message Handler

public final boolean handleFault(LogicalMessageContext messageContext)
{
 System.out.println("handleFault() called with message:");

 LogicalMessage msg=messageContext.getMessage();
 System.out.println(msg.getPayload());

 return true;
}

43.8. CLOSING A HANDLER

When a handler chain is finished processing a message, the runtime calls each executed handler’s
close() method. This is the appropriate place to clean up any resources that were used by the handler
during message processing or resetting any properties to a default state.

If a resource needs to persist beyond a single message exchange, you should not clean it up during in the

Red Hat Fuse 7.5 Apache CXF Development Guide

442

If a resource needs to persist beyond a single message exchange, you should not clean it up during in the
handler’s close() method.

43.9. RELEASING A HANDLER

Overview

The runtime releases a handler when the service or service proxy to which the handler is bound is
shutdown. The runtime will invoke an optional release method before invoking the handler’s destructor.
This optional release method can be used to release any resources used by the handler or perform other
actions that would not be appropriate in the handler’s destructor.

You do not have to provide any clean-up methods for a handler.

Order of release

The following happens when the handler is released:

1. The handler finishes processing any active messages.

2. The runtime invokes the method decorated with the @PreDestroy annotation.
This method should clean up any resources used by the handler.

3. The handler’s destructor is called.

43.10. CONFIGURING ENDPOINTS TO USE HANDLERS

43.10.1. Programmatic Configuration

43.10.1.1. Adding a Handler Chain to a Consumer

Overview

Adding a handler chain to a consumer involves explicitly building the chain of handlers. Then you set the
handler chain directly on the service proxy’s Binding object.

IMPORTANT

Any handler chains configured using the Spring configuration override the handler chains
configured programmaticaly.

Procedure

To add a handler chain to a consumer you do the following:

1. Create a List<Handler> object to hold the handler chain.

2. Create an instance of each handler that will be added to the chain.

3. Add each of the instantiated handler objects to the list in the order they are to be invoked by the
runtime.

4. Get the Binding object from the service proxy.
Apache CXF provides an implementation of the Binding interface called

CHAPTER 43. WRITING HANDLERS

443

Apache CXF provides an implementation of the Binding interface called
org.apache.cxf.jaxws.binding.DefaultBindingImpl.

5. Set the handler chain on the proxy using the Binding object’s setHandlerChain() method.

Example

Example 43.14, “Adding a Handler Chain to a Consumer” shows code for adding a handler chain to a
consumer.

Example 43.14. Adding a Handler Chain to a Consumer

import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.Handler;
import java.util.ArrayList;
import java.util.List;

import org.apache.cxf.jaxws.binding.DefaultBindingImpl;
...
SmallNumberHandler sh = new SmallNumberHandler();
List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(sh);

DefaultBindingImpl binding = ((BindingProvider)proxy).getBinding();
binding.getBinding().setHandlerChain(handlerChain);

The code in Example 43.14, “Adding a Handler Chain to a Consumer” does the following:

Instantiates a handler.

Creates a List object to hold the chain.

Adds the handler to the chain.

Gets the Binding object from the proxy as a DefaultBindingImpl object.

Assigns the handler chain to the proxy’s binding.

43.10.1.2. Adding a Handler Chain to a Service Provider

Overview

You add a handler chain to a service provider by decorating either the SEI or the implementation class
with the @HandlerChain annotation. The annotation points to a meta-data file defining the handler
chain used by the service provider.

Procedure

To add handler chain to a service provider you do the following:

1. Decorate the provider’s implementation class with the @HandlerChain annotation.

2. Create a handler configuration file that defines the handler chain.

Red Hat Fuse 7.5 Apache CXF Development Guide

444

The @HandlerChain annotation

The javax.jws.HandlerChain annotation decorates service provider’s implementation class. It instructs
the runtime to load the handler chain configuration file specified by its file property.

The annotation’s file property supports two methods for identifying the handler configuration file to
load:

a URL

a relative path name

Example 43.15, “Service Implementation that Loads a Handler Chain” shows a service provider
implementation that will use the handler chain defined in a file called handlers.xml. handlers.xml must
be located in the directory from which the service provider is run.

Example 43.15. Service Implementation that Loads a Handler Chain

import javax.jws.HandlerChain;
import javax.jws.WebService;
...

@WebService(name = "AddNumbers",
 targetNamespace = "http://apache.org/handlers",
 portName = "AddNumbersPort",
 endpointInterface = "org.apache.handlers.AddNumbers",
 serviceName = "AddNumbersService")
@HandlerChain(file = "handlers.xml")
public class AddNumbersImpl implements AddNumbers
{
...
}

Handler configuration file

The handler configuration file defines a handler chain using the XML grammar that accompanies JSR
109 (Web Services for Java EE, Version 1.2). This grammar is defined in the
http://java.sun.com/xml/ns/javaee.

The root element of the handler configuration file is the handler-chains element. The handler-chains
element has one or more handler-chain elements.

The handler-chain element define a handler chain. Table 43.1, “Elements Used to Define a Server-Side
Handler Chain” describes the handler-chain element’s children.

Table 43.1. Elements Used to Define a Server-Side Handler Chain

Element Description

handler Contains the elements that describe a handler.

CHAPTER 43. WRITING HANDLERS

445

http://java.sun.com/xml/ns/javaee

service-name-pattern Specifies the QName of the WSDL service element
defining the service to which the handler chain is
bound. You can use * as a wildcard when defining the
QName.

port-name-pattern Specifies the QName of the WSDL port element
defining the endpoint to which the handler chain is
bound. You can use * as a wildcard when defining the
QName.

protocol-binding Specifies the message binding for which the handler
chain is used. The binding is specified as a URI or
using one of the following aliases:
#\#SOAP11_HTTP, \##SOAP11_HTTP_MTOM,
\##SOAP12_HTTP, \##SOAP12_HTTP_MTOM,
or \#\#XML_HTTP.

For more information about message binding URIs
see Chapter 23, Apache CXF Binding IDs.

Element Description

The handler-chain element is only required to have a single handler element as a child. It can, however,
support as many handler elements as needed to define the complete handler chain. The handlers in the
chain are executed in the order they specified in the handler chain definition.

IMPORTANT

The final order of execution will be determined by sorting the specified handlers into
logical handlers and protocol handlers. Within the groupings, the order specified in the
configuration will be used.

The other children, such as protocol-binding, are used to limit the scope of the defined handler chain.
For example, if you use the service-name-pattern element, the handler chain will only be attached to
service providers whose WSDL port element is a child of the specified WSDL service element. You can
only use one of these limiting children in a handler element.

The handler element defines an individual handler in a handler chain. Its handler-class child element
specifies the fully qualified name of the class implementing the handler. The handler element can also
have an optional handler-name element that specifies a unique name for the handler.

Example 43.16, “Handler Configuration File” shows a handler configuration file that defines a single
handler chain. The chain is made up of two handlers.

Example 43.16. Handler Configuration File

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-name>LoggingHandler</handler-name>

Red Hat Fuse 7.5 Apache CXF Development Guide

446

 <handler-class>demo.handlers.common.LoggingHandler</handler-class>
 </handler>
 <handler>
 <handler-name>AddHeaderHandler</handler-name>
 <handler-class>demo.handlers.common.AddHeaderHandler</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

43.10.2. Spring Configuration

Overview

The easiest way to configure an endpoint to use a handler chain is to define the chain in the endpoint’s
configuration. This is done by adding a jaxwxs:handlers child to the element configuring the endpoint.

IMPORTANT

A handler chain added through the configuration file takes precedence over a handler
chain configured programatically.

Procedure

To configure an endpoint to load a handler chain you do the following:

1. If the endpoint does not already have a configuration element, add one.
For more information on configuring Apache CXF endpoints see Chapter 17, Configuring JAX-
WS Endpoints.

2. Add a jaxws:handlers child element to the endpoint’s configuration element.

3. For each handler in the chain, add a bean element specifying the class that implements the
handler.
If your handler implementation is used in more than one place you can reference a bean
element using the ref element.

The handlers element

The jaxws:handlers element defines a handler chain in an endpoint’s configuration. It can appear as a
child to all of the JAX-WS endpoint configuration elements. These are:

jaxws:endpoint configures a service provider.

jaxws:server also configures a service provider.

jaxws:client configures a service consumer.

You add handlers to the handler chain in one of two ways:

add a bean element defining the implementation class

use a ref element to refer to a named bean element from elsewhere in the configuration file

The order in which the handlers are defined in the configuration is the order in which they will be

CHAPTER 43. WRITING HANDLERS

447

The order in which the handlers are defined in the configuration is the order in which they will be
executed. The order may be modified if you mix logical handlers and protocol handlers. The run time will
sort them into the proper order while maintaining the basic order specified in the configuration.

Example

Example 43.17, “Configuring an Endpoint to Use a Handler Chain In Spring” shows the configuration for a
service provider that loads a handler chain.

Example 43.17. Configuring an Endpoint to Use a Handler Chain In Spring

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:endpoint id="HandlerExample"
 implementor="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo">
 <jaxws:handlers> <bean class="demo.handlers.common.LoggingHandler" /> <bean
class="demo.handlers.common.AddHeaderHandler" /> </jaxws:handlers>
 </jaws:endpoint>
</beans>

Red Hat Fuse 7.5 Apache CXF Development Guide

448

http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

CHAPTER 44. MAVEN TOOLING REFERENCE

44.1. PLUG-IN SETUP

Abstract

before you can use the Apache CXF plug-ins, you must first add the proper dependencies and
repositories to your POM.

Dependencies

You need to add the following dependencies to your project’s POM:

the JAX-WS frontend

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-jaxws</artifactId>
 <version>version</version>
</dependency>

the HTTP transport

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http</artifactId>
 <version>version</version>
</dependency>

the Undertow transport

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-undertow</artifactId>
 <version>version</version>
</dependency>

44.2. CXF-CODEGEN-PLUGIN

Abstract

Generates JAX-WS compliant Java code from a WSDL document

Overview

Basic example

The following POM extract shows a simple example of how to configure the Maven cxf-codegen-
plugin to process the myService.wsdl WSDL file:

<plugin>

CHAPTER 44. MAVEN TOOLING REFERENCE

449

 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>3.2.7.fuse-750027-redhat-00001</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>target/generated/src/main/java</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>src/main/resources/wsdl/myService.wsdl</wsdl>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Basic configuration settings

In the preceding example, you can customize the following configuration settings

configuration/sourceRoot

Specifies the directory where the generated Java files will be stored. Default is target/generated-
sources/cxf.

configuration/wsdlOptions/wsdlOption/wsdl

Specifies the location of the WSDL file.

Description

The wsdl2java task takes a WSDL document and generates fully annotated Java code from which to
implement a service. The WSDL document must have a valid portType element, but it does not need to
contain a binding element or a service element. Using the optional arguments you can customize the
generated code.

WSDL options

At least one wsdlOptions element is required to configure the plug-in. The wsdlOptions element’s
wsdl child is required and specifies a WSDL document to be processed by the plug-in. In addition to the
wsdl element, the wsdlOptions element can take a number of children that can customize how the
WSDL document is processed.

More than one wsdlOptions element can be listed in the plug-in configuration. Each element
configures a single WSDL document for processing.

Default options

The defaultOptions element is an optional element. It can be used to set options that are used across all
of the specified WSDL documents.

IMPORTANT

Red Hat Fuse 7.5 Apache CXF Development Guide

450

IMPORTANT

If an option is duplicated in the wsdlOptions element, the value in the wsdlOptions
element takes precedent.

Specifying code generation options

To specify generic code generation options (corresponding to the switches supported by the Apache
CXF wsdl2java command-line tool), you can add the extraargs element as a child of a wsdlOption
element. For example, you can add the -impl option and the -verbose option as follows:

...
<configuration>
 <sourceRoot>target/generated/src/main/java</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <!-- you can set the options of wsdl2java command by using the <extraargs> -->
 <extraargs>
 <extraarg>-impl</extraarg>
 <extraarg>-verbose</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

If a switch takes arguments, you can specify these using subsequent extraarg elements. For example, to
specify the jibx data binding, you can configure the plug-in as follows:

...
<configuration>
 <sourceRoot>target/generated/src/main/java</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <extraargs>
 <extraarg>-databinding</extraarg>
 <extraarg>jibx</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

Specifying binding files

To specify the location of one or more JAX-WS binding files, you can add the bindingFiles element as a
child of wsdlOption—for example:

...
<configuration>
 <wsdlOptions>
 <wsdlOption>

CHAPTER 44. MAVEN TOOLING REFERENCE

451

 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <bindingFiles>
 <bindingFile>${basedir}/src/main/resources/wsdl/async_binding.xml</bindingFile>
 </bindingFiles>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

Generating code for a specific WSDL service

To specify the name of the WSDL service for which code is to be generated, you can add the
serviceName element as a child of wsdlOption (the default behaviour is to generate code for every
service in the WSDL document)—for example:

...
<configuration>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <serviceName>MyWSDLService</serviceName>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

Generating code for multiple WSDL files

To generate code for multiple WSDL files, simply insert additional wsdlOption elements for the WSDL
files. If you want to specify some common options that apply to all of the WSDL files, put the common
options into the defaultOptions element as shown:

<configuration>
 <defaultOptions>
 <bindingFiles>
 <bindingFile>${basedir}/src/main/jaxb/bindings.xml</bindingFile>
 </bindingFiles>
 <noAddressBinding>true</noAddressBinding>
 </defaultOptions>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <serviceName>MyWSDLService</serviceName>
 </wsdlOption>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myOtherService.wsdl</wsdl>
 <serviceName>MyOtherWSDLService</serviceName>
 </wsdlOption>
 </wsdlOptions>
</configuration>

It is also possible to specify multiple WSDL files using wildcard matching. In this case, specify the
directory containing the WSDL files using the wsdlRoot element and then select the required WSDL
files using an include element, which supports wildcarding with the * character. For example, to select all

Red Hat Fuse 7.5 Apache CXF Development Guide

452

of the WSDL files ending in Service.wsdl from the src/main/resources/wsdl root directory, you could
configure the plug-in as follows:

<configuration>
 <defaultOptions>
 <bindingFiles>
 <bindingFile>${basedir}/src/main/jaxb/bindings.xml</bindingFile>
 </bindingFiles>
 <noAddressBinding>true</noAddressBinding>
 </defaultOptions>
 <wsdlRoot>${basedir}/src/main/resources/wsdl</wsdlRoot>
 <includes>
 <include>*Service.wsdl</include>
 </includes>
</configuration>

Downloading WSDL from a Maven repository

To download a WSDL file directly from a Maven repository, add a wsdlArtifact element as a child of the
wsdlOption element and specify the coordinates of the Maven artifact, as follows:

...
<configuration>
 <wsdlOptions>
 <wsdlOption>
 <wsdlArtifact>
 <groupId>org.apache.pizza</groupId>
 <artifactId>PizzaService</artifactId>
 <version>1.0.0</version>
 </wsdlArtifact>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

Encoding

(Requires JAXB 2.2) To specify the character encoding (Charset) used for the generated Java files,
add an encoding element as a child of the configuration element, as follows:

...
<configuration>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 </wsdlOption>
 </wsdlOptions>
 <encoding>UTF-8</encoding>
</configuration>
...

Forking a separate process

You can configure the codegen plug-in to fork a separate JVM for code generation, by adding the fork

CHAPTER 44. MAVEN TOOLING REFERENCE

453

You can configure the codegen plug-in to fork a separate JVM for code generation, by adding the fork
element as a child of the configuration element. The fork element can be set to one of the following
values:

once

Fork a single new JVM to process all of the WSDL files specified in the codegen plug-in’s
configuration.

always

Fork a new JVM to process each WSDL file specified in the codegen plug-in’s configuration.

false

(Default) Disables forking.

If the codegen plug-in is configured to fork a separate JVM (that is, the fork option is set to a non-false
value), you can specify additional JVM arguments to the forked JVM through the additionalJvmArgs
element. For example, the following fragment configures the codegen plug-in to fork a single JVM,
which is restricted to access XML schemas from the local file system only (by setting the
javax.xml.accessExternalSchema system property):

...
<configuration>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 </wsdlOption>
 </wsdlOptions>
 <fork>once</fork>
 <additionalJvmArgs>-Djavax.xml.accessExternalSchema=jar:file,file</additionalJvmArgs>
</configuration>
...

Options reference

The options used to manage the code generation process are reviewed in the following table.

Option Interpretation

[option]`-fe -frontend frontend`

Specifies the front end used by the code generator.
Possible values are jaxws, jaxws21, and cxf. The
jaxws21 frontend is used to generate JAX-WS 2.1
compliant code. The cxf frontend, which can
optionally be used instead of the jaxws frontend,
provides an extra constructor for Service classes. This
constructor conveniently enables you to specify the
Bus instance for configuring the service. Default is
jaxws.

[option]`-db

Red Hat Fuse 7.5 Apache CXF Development Guide

454

-databinding databinding` Specifies the data binding used by the code
generator. Possible values are: jaxb, xmlbeans,
sdo (sdo-static and sdo-dynamic), and jibx.
Default is jaxb.

-wv wsdlVersion Specifies the WSDL version expected by the tool.

Default is 1.1.[a]

-p wsdlNamespace=PackageName Specifies zero, or more, package names to use for
the generated code. Optionally specifies the WSDL
namespace to package name mapping.

-b bindingName Specifies one or more JAXWS or JAXB binding files.
Use a separate -b flag for each binding file.

-sn serviceName Specifies the name of the WSDL service for which
code is to be generated. The default is to generate
code for every service in the WSDL document.

-reserveClass classname Used with -autoNameResolution, defines a class
names for wsdl-to-java not to use when generating
classes. Use this option multiple times for multiple
classes.

-catalog catalogUrl Specifies the URL of an XML catalog to use for
resolving imported schemas and WSDL documents.

-d output-directory Specifies the directory into which the generated
code files are written.

-compile Compiles generated Java files.

-classdir complile-class-dir Specifies the directory into which the compiled class
files are written.

-clientjar jar-file-name Generates the JAR file that contains all the client
classes and the WSDL. The specified wsdlLocation
does not work when this option is specified.

-client Generates starting point code for a client mainline.

-server Generates starting point code for a server mainline.

-impl Generates starting point code for an implementation
object.

Option Interpretation

CHAPTER 44. MAVEN TOOLING REFERENCE

455

-all Generates all starting point code: types, service
proxy, service interface, server mainline, client
mainline, implementation object, and an Ant
build.xml file.

-ant Generates the Ant build.xml file.

-autoNameResolution Automatically resolve naming conflicts without
requiring the use of binding customizations.

-defaultValues=DefaultValueProvider Instructs the tool to generate default values for the
generated client and the generated implementation.
Optionally, you can also supply the name of the class
used to generate the default values. By default, the
RandomValueProvider class is used.

-nexclude schema-namespace=java-packagename Ignore the specified WSDL schema namespace when
generating code. This option may be specified
multiple times. Also, optionally specifies the Java
package name used by types described in the
excluded namespace(s).

-exsh (true/false) Enables or disables processing of extended soap
header message binding. Default is false.

-noTypes Turns off generating types.

-dns (true/false) Enables or disables the loading of the default
namespace package name mapping. Default is true.

-dex (true/false) Enables or disables the loading of the default
excludes namespace mapping. Default is true.

-xjcargs Specifies a comma separated list of arguments to be
passed to directly to the XJC when the JAXB data
binding is being used. To get a list of all possible XJC
arguments use the -xjc-X.

-noAddressBinding Instructs the tool to use the Apache CXF proprietary
WS-Addressing type instead of the JAX-WS 2.1
compliant mapping.

[option]`-validate [=all basic

none]` Instructs the tool to validate the WSDL document
before attempting to generate any code.

-keep Instructs the tool to not overwrite any existing files.

Option Interpretation

Red Hat Fuse 7.5 Apache CXF Development Guide

456

-wsdlLocation wsdlLocation Specifies the value of the @WebService
annotation’s wsdlLocation property.

-v Displays the version number for the tool.

[option]`-verbose -V`

Displays comments during the code generation
process.

-quiet

Suppresses comments during the code generation
process.

-allowElementReferences[=true], -aer[=true]

If true, disregards the rule given in section 2.3.1.2(v)
of the JAX-WS 2.2 specification disallowing element
references when using wrapper-style mapping.
Default is false.

-asyncMethods[=method1,method2,…]

List of subsequently generated Java class methods
to allow for client-side asynchronous calls; similar to
enableAsyncMapping in a JAX-WS binding file.

-bareMethods[=method1,method2,…]

List of subsequently generated Java class methods
to have wrapper style (see below), similar to
enableWrapperStyle in JAX-WS binding file.

-mimeMethods[=method1,method2,…]

List of subsequently generated Java class methods
to enable mime:content mapping, similar to
enableMIMEContent in JAX-WS binding file.

-faultSerialVersionUID fault-serialVersionUID

How to generate suid of fault exceptions. Possible
values are: NONE, TIMESTAMP, FQCN, or a
specific number. Default is NONE.

-encoding encoding

Specifies the Charset encoding to use when
generating Java code.

-exceptionSuper

Superclass for fault beans generated from
wsdl:fault elements (defaults to
java.lang.Exception).

-seiSuper interfaceName

Specifies a base interface for the generated SEI
interfaces. For example, this option can be used to
add the Java 7 AutoCloseable interface as a super
interface.

-mark-generated

Option Interpretation

CHAPTER 44. MAVEN TOOLING REFERENCE

457

[a] Currently, Apache CXF only provides WSDL 1.1 support for the code generator.

Option Interpretation

44.3. JAVA2WS

Abstract

generates a WSDL document from Java code

Synopsis

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>version</version>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <configuration>
 <className>className</className>
 <option>...</option>
 ...
 </configuration>
 <goals>
 <goal>java2ws</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Description

The java2ws task takes a service endpoint implementation (SEI) and generates the support files used
to implement a Web service. It can generate the following:

a WSDL document

the server code needed to deploy the service as a POJO

client code for accessing the service

wrapper and fault beans

Required configuration

The plug-in requires that the className configuration element is present. The element’s value is the
fully qualified name of the SEI to be processed.

Optional configuration

Red Hat Fuse 7.5 Apache CXF Development Guide

458

The configuration element’s listed in the following table can be used to fine tune the WSDL generation.

Element Description

frontend Specifies front end to use for processing the SEI and
generating the support classes. jaxws is the default.
simple is also supported.

databinding Specifies the data binding used for processing the
SEI and generating the support classes. The default
when using the JAX-WS front end is jaxb. The
default when using the simple frontend is aegis.

genWsdl Instructs the tool to generate a WSDL document
when set to true.

genWrapperbean Instructs the tool to generate the wrapper bean and
the fault beans when set to true.

genClient Instructs the tool to generate client code when set to
true.

genServer Instructs the tool to generate server code when set
to true.

outputFile Specifies the name of the generated WSDL file.

classpath Specifies the classpath searched when processing
the SEI.

soap12 Specifies that the generated WSDL document is to
include a SOAP 1.2 binding when set to true.

targetNamespace Specifies the target namespace to use in the
generated WSDL file.

serviceName Specifies the value of the generated service
element’s name attribute.

CHAPTER 44. MAVEN TOOLING REFERENCE

459

PART VI. DEVELOPING RESTFUL WEB SERVICES
This guide describes how to use the JAX-RS APIs to implement Web services.

Red Hat Fuse 7.5 Apache CXF Development Guide

460

CHAPTER 45. INTRODUCTION TO RESTFUL WEB SERVICES

Abstract

Representational State Transfer (REST) is a software architecture style that centers around the
transmission of data over HTTP, using only the four basic HTTP verbs. It also eschews the use of any
additional wrappers such as a SOAP envelope and the use of any state data.

OVERVIEW

Representational State Transfer (REST) is an architectural style first described in a doctoral dissertation
by a researcher named Roy Fielding. In RESTful systems, servers expose resources using a URI, and
clients access these resources using the four HTTP verbs. As clients receive representations of a
resource they are placed in a state. When they access a new resource, typically by following a link, they
change, or transition, their state. In order to work, REST assumes that resources are capable of being
represented using a pervasive standard grammar.

The World Wide Web is the most ubiquitous example of a system designed on REST principles. Web
browsers act as clients accessing resources hosted on Web servers. The resources are represented using
HTML or XML grammars that all Web browsers can consume. The browsers can also easily follow the
links to new resources.

The advantages of RESTful systems is that they are highly scalable and highly flexible. Because the
resources are accessed and manipulated using the four HTTP verbs, the resources are exposed using a
URIs, and the resources are represented using standard grammars, clients are not as affected by
changes to the servers. Also, RESTful systems can take full advantage of the scalability features of
HTTP such as caching and proxies.

BASIC REST PRINCIPLES

RESTful architectures adhere to the following basic principles:

Application state and functionality are divided into resources.

Resources are addressable using standard URIs that can be used as hypermedia links.

All resources use only the four HTTP verbs.

DELETE

GET

POST

PUT

All resources provide information using the MIME types supported by HTTP.

The protocol is stateless.

Responses are cacheable.

The protocol is layered.

CHAPTER 45. INTRODUCTION TO RESTFUL WEB SERVICES

461

RESOURCES

Resources are central to REST. A resource is a source of information that can be addressed using a URI.
In the early days of the Web, resources were largely static documents. In the modern Web, a resource
can be any source of information. For example a Web service can be a resource if it can be accessed
using a URI.

RESTful endpoints exchange representations of the resources they address. A representation is a
document containing the data provided by the resource. For example, the method of a Web service that
provides access to a customer record would be a resource, the copy of the customer record exchanged
between the service and the consumer is a representation of the resource.

REST BEST PRACTICES

When designing RESTful Web services it is helpful to keep in mind the following:

Provide a distinct URI for each resource you wish to expose.
For example, if you are building a system that deals with driving records, each record should
have a unique URI. If the system also provides information on parking violations and speeding
fines, each type of resource should also have a unique base. For example, speeding fines could
be accessed through /speedingfines/driverID and parking violations could be accessed
through /parkingfines/driverID.

Use nouns in your URIs.
Using nouns highlights the fact that resources are things and not actions. URIs such as
/ordering imply an action, whereas /orders implies a thing.

Methods that map to GET should not change any data.

Use links in your responses.
Putting links to other resources in your responses makes it easier for clients to follow a chain of
data. For example, if your service returns a collection of resources, it would be easier for a client
to access each of the individual resources using the provided links. If links are not included, a
client needs to have additional logic to follow the chain to a specific node.

Make your service stateless.
Requiring the client or the service to maintain state information forces a tight coupling between
the two. Tight couplings make upgrading and migrating more difficult. Maintaining state can also
make recovery from communication errors more difficult.

DESIGNING A RESTFUL WEB SERVICE

Regardless of the framework you use to implement a RESTful Web service, there are a number of steps
that should be followed:

1. Define the resources the service will expose.
In general, a service will expose one or more resources that are organized as a tree. For example,
a driving record service could be organized into three resources:

/license/driverID

/license/driverID/speedingfines

/license/driverID/parkingfines

Red Hat Fuse 7.5 Apache CXF Development Guide

462

2. Define what actions you want to be able to perform on each resource.
For example, you may want to be able to update a diver’s address or remove a parking ticket
from a driver’s record.

3. Map the actions to the appropriate HTTP verbs.

Once you have defined the service, you can implement it using Apache CXF.

IMPLEMENTING REST WITH APACHE CXF

Apache CXF provides an implementation of the Java API for RESTFul Web Services (JAX-RS). JAX-RS
provides a standardized way to map POJOs to resources using annotations.

When moving from the abstract service definition to a RESTful Web service implemented using JAX-RS,
you need to do the following:

1. Create a root resource class for the resource that represents the top of the service’s resource
tree.
See Section 46.3, “Root resource classes” .

2. Map the service’s other resources into sub-resources.
See Section 46.5, “Working with sub-resources” .

3. Create methods to implement each of the HTTP verbs used by each of the resources.
See Section 46.4, “Working with resource methods” .

NOTE

Apache CXF continues to support the old HTTP binding to map Java interfaces into
RESTful Web services. The HTTP binding provides basic functionality and has a number
of limitations. Developers are encouraged to update their applications to use JAX-RS.

DATA BINDINGS

By default, Apache CXF uses Java Architecture for XML Binding (JAXB) objects to map the resources
and their representations to Java objects. Provides clean, well defined mappings between Java objects
and XML elements.

The Apache CXF JAX-RS implementation also supports exchanging data using JavaScript Object
Notation (JSON). JSON is a popular data format used by Ajax developers. The marshaling of data
between JSON and JAXB is handled by the Apache CXF runtime.

CHAPTER 45. INTRODUCTION TO RESTFUL WEB SERVICES

463

CHAPTER 46. CREATING RESOURCES

Abstract

In RESTful Web services all requests are handled by resources. The JAX-RS APIs implement resources
as a Java class. A resource class is a Java class that is annotated with one, or more, JAX-RS annotations.
The core of a RESTful Web service implemented using JAX-RS is a root resource class. The root
resource class is the entry point to the resource tree exposed by a service. It may handle all requests
itself, or it may provide access to sub-resources that handle requests.

46.1. INTRODUCTION

Overview

RESTful Web services implemented using JAX-RS APIs provide responses as representations of a
resource implemented by Java classes. A resource class is a class that uses JAX-RS annotations to
implement a resource. For most RESTful Web services, there is a collection of resources that need to be
accessed. The resource class' annotations provide information such as the URI of the resources and
which HTTP verb each operation handles.

Types of resources

The JAX-RS APIs allow you to create two basic types of resources:

A Section 46.3, “Root resource classes” is the entry point to a service’s resource tree. It is
decorated with the @Path annotation to define the base URI for the resources in the service.

Section 46.5, “Working with sub-resources” are accessed through the root resource. They are
implemented by methods that are decorated with the @Path annotation. A sub-resource’s
@Path annotation defines a URI relative to the base URI of a root resource.

Example

Example 46.1, “Simple resource class” shows a simple resource class.

Example 46.1. Simple resource class

package demo.jaxrs.server;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;

@Path("/customerservice")
public class CustomerService
{
 public CustomerService()
 {
 }

 @GET
 public Customer getCustomer(@QueryParam("id") String id)
 {

Red Hat Fuse 7.5 Apache CXF Development Guide

464

 ...
 }

 ...
}

Two items make the class defined in Example 46.1, “Simple resource class” a resource class:

The @Path annotation specifies the base URI for the resource.

The @GET annotation specifies that the method implements the HTTP GET method for the resource.

46.2. BASIC JAX-RS ANNOTATIONS

Overview

The most basic pieces of information required by a RESTful Web service implementation are:

the URI of the service’s resources

how the class' methods are mapped to the HTTP verbs

JAX-RS defines a set of annotations that provide this basic information. All resource classes must have
at least one of these annotations.

Setting the path

The @Path annotation specifies the URI of a resource. The annotation is defined by the javax.ws.rs.Path
interface and it can be used to decorate either a resource class or a resource method. It takes a string
value as its only parameter. The string value is a URI template that specifies the location of an
implemented resource.

The URI template specifies a relative location for the resource. As shown in Example 46.2, “URI template
syntax”, the template can contain the following:

unprocessed path components

parameter identifiers surrounded by { }

NOTE

Parameter identifiers can include regular expressions to alter the default path
processing.

Example 46.2. URI template syntax

@Path("resourceName/{param1}/../{paramN}")

For example, the URI template widgets/{color}/{number} would map to widgets/blue/12. The value of
the color parameter is assigned to blue. The value of the number parameter is assigned 12.

How the URI template is mapped to a complete URI depends on what the @Path annotation is

CHAPTER 46. CREATING RESOURCES

465

How the URI template is mapped to a complete URI depends on what the @Path annotation is
decorating. If it is placed on a root resource class, the URI template is the root URI of all resources in the
tree and it is appended directly to the URI at which the service is published. If the annotation decorates a
sub-resource, it is relative to the root resource URI.

Specifying HTTP verbs

JAX-RS uses five annotations for specifying the HTTP verb that will be used for a method:

javax.ws.rs.DELETE specifies that the method maps to a DELETE.

javax.ws.rs.GET specifies that the method maps to a GET.

javax.ws.rs.POST specifies that the method maps to a POST.

javax.ws.rs.PUT specifies that the method maps to a PUT.

javax.ws.rs.HEAD specifies that the method maps to a HEAD.

When you map your methods to HTTP verbs, you must ensure that the mapping makes sense. For
example, if you map a method that is intended to submit a purchase order, you would map it to a PUT or
a POST. Mapping it to a GET or a DELETE would result in unpredictable behavior.

46.3. ROOT RESOURCE CLASSES

Overview

A root resource class is the entry point into a JAX-RS implemented RESTful Web service. It is decorated
with a @Path that specifies the root URI of the resources implemented by the service. Its methods
either directly implement operations on the resource or provide access to sub-resources.

Requirements

In order for a class to be a root resource class it must meet the following criteria:

The class must be decorated with the @Path annotation.
The specified path is the root URI for all of the resources implemented by the service. If the root
resource class specifies that its path is widgets and one of its methods implements the GET
verb, then a GET on widgets invokes that method. If a sub-resource specifies that its URI is {id},
then the full URI template for the sub-resource is widgets/{id} and it will handle requests made
to URIs like widgets/12 and widgets/42.

The class must have a public constructor for the runtime to invoke.
The runtime must be able to provide values for all of the constructor’s parameters. The
constructor’s parameters can include parameters decorated with the JAX-RS parameter
annotations. For more information on the parameter annotations see Chapter 47, Passing
Information into Resource Classes and Methods.

At least one of the classes methods must either be decorated with an HTTP verb annotation or
the @Path annotation.

Example

Example 46.3, “Root resource class” shows a root resource class that provides access to a sub-resource.

Red Hat Fuse 7.5 Apache CXF Development Guide

466

Example 46.3. Root resource class

package demo.jaxrs.server;

import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.Response;

@Path("/customerservice/")
public class CustomerService
{
 public CustomerService()
 {
 ...
 }

 @GET
 public Customer getCustomer(@QueryParam("id") String id)
 {
 ...
 }

 @DELETE
 public Response deleteCustomer(@QueryParam("id") String id)
 {
 ...
 }

 @PUT
 public Response updateCustomer(Customer customer)
 {
 ...
 }

 @POST
 public Response addCustomer(Customer customer)
 {
 ...
 }

 @Path("/orders/{orderId}/")
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

}

The class in Example 46.3, “Root resource class” meets all of the requirements for a root resource class.

CHAPTER 46. CREATING RESOURCES

467

The class is decorated with the @Path annotation. The root URI for the resources exposed by the
service is customerservice.

The class has a public constructor. In this case the no argument constructor is used for simplicity.

The class implements each of the four HTTP verbs for the resource.

The class also provides access to a sub-resource through the getOrder() method. The URI for the sub-
resource, as specified using the the @Path annotation, is customerservice/order/id. The sub-resource
is implemented by the Order class.

For more information on implementing sub-resources see Section 46.5, “Working with sub-resources” .

46.4. WORKING WITH RESOURCE METHODS

Overview

Resource methods are annotated using JAX-RS annotations. They have one of the HTTP method
annotation specifying the types of requests that the method processes. JAX-RS places several
constraints on resource methods.

General constraints

All resource methods must meet the following conditions:

It must be public.

It must be decorated with one of the HTTP method annotations described in the section called
“Specifying HTTP verbs”.

It must not have more than one entity parameter as described in the section called
“Parameters”.

Parameters

Resource method parameters take two forms:

entity parameters—Entity parameters are not annotated. Their value is mapped from the
request entity body. An entity parameter can be of any type for which your application has an
entity provider. Typically they are JAXB objects.

IMPORTANT

A resource method can have only one entity parameter.

For more information on entity providers see Chapter 51, Entity Support.

annotated parameters—Annotated parameters use one of the JAX-RS annotations that
specify how the value of the parameter is mapped from the request. Typically, the value of the
parameter is mapped from portions of the request URI.
For more information about using the JAX-RS annotations for mapping request data to method
parameters see Chapter 47, Passing Information into Resource Classes and Methods .

Example 46.4, “Resource method with a valid parameter list” shows a resource method with a valid

Red Hat Fuse 7.5 Apache CXF Development Guide

468

Example 46.4, “Resource method with a valid parameter list” shows a resource method with a valid
parameter list.

Example 46.4. Resource method with a valid parameter list

@POST
@Path("disaster/monster/giant/{id}")
public void addDaikaiju(Kaiju kaiju,
 @PathParam("id") String id)
{
 ...
}

Example 46.5, “Resource method with an invalid parameter list” shows a resource method with an invalid
parameter list. It has two parameters that are not annotated.

Example 46.5. Resource method with an invalid parameter list

@POST
@Path("disaster/monster/giant/")
public void addDaikaiju(Kaiju kaiju,
 String id)
{
 ...
}

Return values

Resource methods can return one of the following:

void

any Java class for which the application has an entity provider
For more information on entity providers see Chapter 51, Entity Support.

a Response object
For more information on Response objects see Section 48.3, “Fine tuning an application’s
responses”.

a GenericEntity<T> object
For more information on GenericEntity<T> objects see Section 48.4, “Returning entities with
generic type information”.

All resource methods return an HTTP status code to the requester. When the return type of the method
is void or the value being returned is null, the resource method sets the HTTP status code to 204. When
the resource method returns any value other than null, it sets the HTTP status code to 200.

46.5. WORKING WITH SUB-RESOURCES

Overview

It is likely that a service will need to be handled by more than one resource. For example, in an order

CHAPTER 46. CREATING RESOURCES

469

It is likely that a service will need to be handled by more than one resource. For example, in an order
processing service best-practices suggests that each customer would be handled as a unique resource.
Each order would also be handled as a unique resource.

Using the JAX-RS APIs, you would implement the customer resources and the order resources as sub-
resources. A sub-resource is a resource that is accessed through a root resource class. They are defined
by adding a @Path annotation to a resource class' method. Sub-resources can be implemented in one
of two ways:

Sub-resource method—directly implements an HTTP verb for a sub-resource and is decorated
with one of the annotations described in the section called “Specifying HTTP verbs” .

Sub-resource locator—points to a class that implements the sub-resource.

Specifying a sub-resource

Sub-resources are specified by decorating a method with the @Path annotation. The URI of the sub-
resource is constructed as follows:

1. Append the value of the sub-resource’s @Path annotation to the value of the sub-resource’s
parent resource’s @Path annotation.
The parent resource’s @Path annotation maybe located on a method in a resource class that
returns an object of the class containing the sub-resource.

2. Repeat the previous step until the root resource is reached.

3. The assembled URI is appended to the base URI at which the service is deployed.

For example the URI of the sub-resource shown in Example 46.6, “Order sub-resource” could be
baseURI/customerservice/order/12.

Example 46.6. Order sub-resource

...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }
}

Sub-resource methods

A sub-resource method is decorated with both a @Path annotation and one of the HTTP verb
annotations. The sub-resource method is directly responsible for handling a request made on the
resource using the specified HTTP verb.

Example 46.7, “Sub-resource methods” shows a resource class with three sub-resource methods:

getOrder() handles HTTP GET requests for resources whose URI matches

Red Hat Fuse 7.5 Apache CXF Development Guide

470

getOrder() handles HTTP GET requests for resources whose URI matches
/customerservice/orders/{orderId}/.

updateOrder() handles HTTP PUT requests for resources whose URI matches
/customerservice/orders/{orderId}/.

newOrder() handles HTTP POST requests for the resource at /customerservice/orders/.

Example 46.7. Sub-resource methods

...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 @Path("/orders/{orderId}/")
 @PUT
 public Order updateOrder(@PathParam("orderId") String orderId,
 Order order)
 {
 ...
 }

 @Path("/orders/")
 @POST
 public Order newOrder(Order order)
 {
 ...
 }
}

NOTE

Sub-resource methods with the same URI template are equivalent to resource class
returned by a sub-resource locator.

Sub-resource locators

Sub-resource locators are not decorated with one of the HTTP verb annotations and do not directly
handle are request on the sub-resource. Instead, a sub-resource locator returns an instance of a
resource class that can handle the request.

In addition to not having an HTTP verb annotation, sub-resource locators also cannot have any entity
parameters. All of the parameters used by a sub-resource locator method must use one of the
annotations described in Chapter 47, Passing Information into Resource Classes and Methods .

As shown in Example 46.8, “Sub-resource locator returning a specific class” , sub-resource locator allows

CHAPTER 46. CREATING RESOURCES

471

you to encapsulate a resource as a reusable class instead of putting all of the methods into one super
class. The processOrder() method is a sub-resource locator. When a request is made on a URI matching
the URI template /orders/{orderId}/ it returns an instance of the Order class. The Order class has
methods that are decorated with HTTP verb annotations. A PUT request is handled by the
updateOrder() method.

Example 46.8. Sub-resource locator returning a specific class

...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 public Order processOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 ...
}

public class Order
{
 ...
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 @PUT
 public Order updateOrder(@PathParam("orderId") String orderId,
 Order order)
 {
 ...
 }

}

Sub-resource locators are processed at runtime so that they can support polymorphism. The return
value of a sub-resource locator can be a generic Object, an abstract class, or the top of a class hierarchy.
For example, if your service needed to process both PayPal orders and credit card orders, the
processOrder() method’s signature from Example 46.8, “Sub-resource locator returning a specific
class” could remain unchanged. You would simply need to implement two classes, ppOrder and ccOder,
that extended the Order class. The implementation of processOrder() would instantiate the desired
implementation of the sub-resource based on what ever logic is required.

46.6. RESOURCE SELECTION METHOD

Overview

It is possible for a given URI to map to one or more resource methods. For example the URI

Red Hat Fuse 7.5 Apache CXF Development Guide

472

customerservice/12/ma could match the templates @Path("customerservice/{id}") or
@Path("customerservice/{id}/{state}"). JAX-RS specifies a detailed algorithm for matching a resource
method to a request. The algorithm compares the normalized URI, the HTTP verb, and the media types
of the request and response entities to the annotations on the resource classes.

The basic selection algorithm

The JAX-RS selection algorithm is broken down into three stages:

1. Determine the root resource class.
The request URI is matched against all of the classes decorated with the @Path annotation. The
classes whose @Path annotation matches the request URI are determined.

If the value of the resource class' @Path annotation matches the entire request URI, the class'
methods are used as input into the third stage.

2. Determine the object will handle the request.
If the request URI is longer than the value of the selected class' @Path annotation, the values of
the resource methods' @Path annotations are used to look for a sub-resource that can process
the request.

If one or more sub-resource methods match the request URI, these methods are used as input
for the third stage.

If the only matches for the request URI are sub-resource locaters, the resource methods of the
object created by the sub-resource locater to match the request URI. This stage is repeated
until a sub-resource method matches the request URI.

3. Select the resource method that will handle the request.
The resource method whose HTTP verb annotation matches the HTTP verb in the request. In
addition, the selected resource method must accept the media type of the request entity body
and be capable of producing a response that conforms to the media type(s) specified in the
request.

Selecting from multiple resource classes

The first two stages of the selection algorithm determine the resource that will handle the request. In
some cases the resource is implemented by a resource class. In other cases, it is implemented by one or
more sub-resources that use the same URI template. When there are multiple resources that match a
request URI, resource classes are preferred over sub-resources.

If more than one resource still matches the request URI after sorting between resource classes and sub-
resources, the following criteria are used to select a single resource:

1. Prefer the resource with the most literal characters in its URI template.
Literal characters are characters that are not part of a template variable. For example,
/widgets/{id}/{color} has ten literal characters and /widgets/1/{color} has eleven literal
characters. So, the request URI /widgets/1/red would be matched to the resource with
/widgets/1/{color} as its URI template.

NOTE

A trailing slash (/) counts as a literal character. So /joefred/ will be preferred over
/joefred.

CHAPTER 46. CREATING RESOURCES

473

2. Prefer the resource with the most variables in its URI template.
The request URI /widgets/30/green could match both /widgets/{id}/{color} and
/widgets/{amount}/. However, the resource with the URI template /widgets/{id}/{color} will
be selected because it has two variables.

3. Prefer the resource with the most variables containing regular expressions.
The request URI /widgets/30/green could match both /widgets/{number}/{color} and
/widgets/{id:.}/{color}*. However, the resource with the URI template
*/widgets/{id:.}/{color} will be selected because it has a variable containing a regular
expression.

Selecting from multiple resource methods

In many cases, selecting a resource that matches the request URI results in a single resource method
that can process the request. The method is determined by matching the HTTP verb specified in the
request with a resource method’s HTTP verb annotation. In addition to having the appropriate HTTP
verb annotation, the selected method must also be able to handle the request entity included in the
request and be able to produce the proper type of response specified in the request’s metadata.

NOTE

The type of request entity a resource method can handle is specified by the
@Consumes annotation. The type of responses a resource method can produce are
specified using the @Produces annotation.

When selecting a resource produces multiple methods that can handle a request the following criteria is
used to select the resource method that will handle the request:

1. Prefer resource methods over sub-resources.

2. Prefer sub-resource methods over sub-resource locaters.

3. Prefer methods that use the most specific values in the @Consumes annotation and the
@Produces annotation.
For example, a method that has the annotation @Consumes("text/xml") would be preferred
over a method that has the annotation @Consumes("text/*"). Both methods would be
preferred over a method without an @Consumes annotation or the annotation
@Consumes("*/*").

4. Prefer methods that most closely match the content type of the request body entity.

NOTE

The content type of the request body entity is specified in the HTTP Content-
Type property.

5. Prefer methods that most closely match the content type accepted as a response.

NOTE

The content types accepted as a response are specified in the HTTP Accept
property.

Red Hat Fuse 7.5 Apache CXF Development Guide

474

Customizing the selection process

In some cases, developers have reported the algorithm being somewhat restrictive in the way multiple
resource classes are selected. For example, if a given resource class has been matched and if this class
has no matching resource method, then the algorithm stops executing. It never checks the remaining
matching resource classes.

Apache CXF provides the org.apache.cxf.jaxrs.ext.ResourceComparator interface which can be used to
customize how the runtime handles multiple matching resource classes. The ResourceComparator
interface, shown in Example 46.9, “Interface for customizing resource selection” , has to methods that
need to be implemented. One compares two resource classes and the other compares two resource
methods.

Example 46.9. Interface for customizing resource selection

package org.apache.cxf.jaxrs.ext;

import org.apache.cxf.jaxrs.model.ClassResourceInfo;
import org.apache.cxf.jaxrs.model.OperationResourceInfo;
import org.apache.cxf.message.Message;

public interface ResourceComparator
{
 int compare(ClassResourceInfo cri1,
 ClassResourceInfo cri2,
 Message message);

 int compare(OperationResourceInfo oper1,
 OperationResourceInfo oper2,
 Message message);
}

Custom implementations select between the two resources as follows:

Return 1 if the first parameter is a better match than the second parameter

Return -1 if the second parameter is a better match than the first parameter

If 0 is returned then the runtime will proceed with the default selection algorithm

You register a custom ResourceComparator implementation by adding a resourceComparator child to
the service’s jaxrs:server element.

CHAPTER 46. CREATING RESOURCES

475

CHAPTER 47. PASSING INFORMATION INTO RESOURCE
CLASSES AND METHODS

Abstract

JAX-RS specifies a number of annotations that allow the developer to control where the information
passed into resources come from. The annotations conform to common HTTP concepts such as matrix
parameters in a URI. The standard APIs allow the annotations to be used on method parameters, bean
properties, and resource class fields. Apache CXF provides an extension that allows for the injection of a
sequence of parameters to be injected into a bean.

47.1. BASICS OF INJECTING DATA

Overview

Parameters, fields, and bean properties that are initialized using data from the HTTP request message
have their values injected into them by the runtime. The specific data that is injected is specified by a set
of annotations described in Section 47.2, “Using JAX-RS APIs” .

The JAX-RS specification places a few restrictions on when the data is injected. It also places a few
restrictions on the types of objects into which request data can be injected.

When data is injected

Request data is injected into objects when they are instantiated due to a request. This means that only
objects that directly correspond to a resource can use the injection annotations. As discussed in
Chapter 46, Creating Resources, these objects will either be a root resource decorated with the @Path
annotation or an object returned from a sub-resource locator method.

Supported data types

The specific set of data types that data can be injected into depends on the annotation used to specify
the source of the injected data. However, all of the injection annotations support at least the following
set of data types:

primitives such as int, char, or long

Objects that have a constructor that accepts a single String argument

Objects that have a static valueOf() method that accepts a single String argument

List<T>, Set<T>, or SortedSet<T> objects where T satisfies the other conditions in the list

NOTE

Where injection annotations have different requirements for supported data types, the
differences will be highlighted in the discussion of the annotation.

47.2. USING JAX-RS APIS

47.2.1. JAX-RS Annotation Types

Red Hat Fuse 7.5 Apache CXF Development Guide

476

The standard JAX-RS API specifies annotations that can be used to inject values into fields, bean
properties, and method parameters. The annotations can be split up into three distinct types:

Section 47.2.2, “Injecting data from a request URI”

Section 47.2.3, “Injecting data from the HTTP message header”

Section 47.2.4, “Injecting data from HTML forms”

47.2.2. Injecting data from a request URI

Overview

One of the best practices for designing a RESTful Web service is that each resource should have a
unique URI. A developer can use this principle to provide a good deal of information to the underlying
resource implementation. When designing URI templates for a resource, a developer can build the
templates to include parameter information that can be injected into the resource implementation.
Developers can also leverage query and matrix parameters for feeding information into the resource
implementations.

Getting data from the URI’s path

One of the more common mechanisms for getting information about a resource is through the variables
used in creating the URI templates for a resource. This is accomplished using the
javax.ws.rs.PathParam annotation. The @PathParam annotation has a single parameter that identifies
the URI template variable from which the data will be injected.

In Example 47.1, “Injecting data from a URI template variable” the @PathParam annotation specifies
that the value of the URI template variable color is injected into the itemColor field.

Example 47.1. Injecting data from a URI template variable

import javax.ws.rs.Path;
import javax.ws.rs.PathParam
...

@Path("/boxes/{shape}/{color}")
class Box
{
 ...

 @PathParam("color")
 String itemColor;

 ...
}

The data types supported by the @PathParam annotation are different from the ones described in the
section called “Supported data types”. The entity into which the @PathParam annotation injects data
must be of one of the following types:

PathSegment
The value will be the final segment of the matching part of the path.

CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

477

List<PathSegment>
The value will be a list of PathSegment objects corresponding to the path segment(s) that
matched the named template parameter.

primitives such as int, char, or long

Objects that have a constructor that accepts a single String argument

Objects that have a static valueOf() method that accepts a single String argument

Using query parameters

A common way of passing information on the Web is to use query parameters in a URI. Query
parameters appear at the end of the URI and are separated from the resource location portion of the
URI by a question mark(?). They consist of one, or more, name value pairs where the name and value are
separated by an equal sign(=). When more than one query parameter is specified, the pairs are
separated from each other by either a semicolon(;) or an ampersand(&). Example 47.2, “URI with a query
string” shows the syntax of a URI with query parameters.

Example 47.2. URI with a query string

http://fusesource.org?name=value;name2=value2;...

NOTE

You can use either the semicolon or the ampersand to separate query parameters, but
not both.

The javax.ws.rs.QueryParam annotation extracts the value of a query parameter and injects it into a
JAX-RS resource. The annotation takes a single parameter that identifies the name of the query
parameter from which the value is extracted and injected into the specified field, bean property, or
parameter. The @QueryParam annotation supports the types described in the section called
“Supported data types”.

Example 47.3, “Resource method using data from a query parameter” shows a resource method that
injects the value of the query parameter id into the method’s id parameter.

Example 47.3. Resource method using data from a query parameter

import javax.ws.rs.QueryParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 @Path("/{type}")
 public void updateMonster(@PathParam("type") String type,
 @QueryParam("id") String id)

Red Hat Fuse 7.5 Apache CXF Development Guide

478

http://fusesource.org

 {
 ...
 }
 ...
}

To process an HTTP POST to /monstersforhire/daikaiju?id=jonas the updateMonster() method’s
type is set to daikaiju and the id is set to jonas.

Using matrix parameters

URI matrix parameters, like URI query parameters, are name/value pairs that can provide additional
information selecting a resource. Unlike query parameters, matrix parameters can appear anywhere in a
URI and they are separated from the hierarchical path segments of the URI using a semicolon(;).
/mostersforhire/daikaiju;id=jonas has one matrix parameter called id and
/monstersforhire/japan;type=daikaiju/flying;wingspan=40 has two matrix parameters called type
and wingspan.

NOTE

Matrix parameters are not evaluated when computing a resource’s URI. So, the URI used
to locate the proper resource to handle the request URI
/monstersforhire/japan;type=daikaiju/flying;wingspan=40 is
/monstersforhire/japan/flying.

The value of a matrix parameter is injected into a field, parameter, or bean property using the
javax.ws.rs.MatrixParam annotation. The annotation takes a single parameter that identifies the name
of the matrix parameter from which the value is extracted and injected into the specified field, bean
property, or parameter. The @MatrixParam annotation supports the types described in the section
called “Supported data types”.

Example 47.4, “Resource method using data from matrix parameters” shows a resource method that
injects the value of the matrix parameters type and id into the method’s parameters.

Example 47.4. Resource method using data from matrix parameters

import javax.ws.rs.MatrixParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 public void updateMonster(@MatrixParam("type") String type,
 @MatrixParam("id") String id)
 {
 ...
 }
 ...
}

CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

479

To process an HTTP POST to /monstersforhire;type=daikaiju;id=whale the updateMonster()
method’s type is set to daikaiju and the id is set to whale.

NOTE

JAX-RS evaluates all of the matrix parameters in a URI at once, so it cannot enforce
constraints on a matrix parameters location in a URI. For example
/monstersforhire/japan;type=daikaiju/flying;wingspan=40 ,
/monstersforhire/japan/flying;type=daikaiju;wingspan=40, and
/monstersforhire/japan;type=daikaiju;wingspan=40/flying are all treated as equivalent
by a RESTful Web service implemented using the JAX-RS APIs.

Disabling URI decoding

By default all request URIs are decoded. So the URI /monster/night%20stalker and the URI
/monster/night stalker are equivalent. The automatic URI decoding makes it easy to send characters
outside of the ASCII character set as parameters.

If you do not wish to have URI automatically decoded, you can use the javax.ws.rs.Encoded annotation
to deactivate the URI decoding. The annotation can be used to deactivate URI decoding at the
following levels:

class level—Decorating a class with the @Encoded annotation deactivates the URI decoding for
all parameters, field, and bean properties in the class.

method level—Decorating a method with the @Encoded annotation deactivates the URI
decoding for all parameters of the class.

parameter/field level—Decorating a parameter or field with the @Encoded annotation
deactivates the URI decoding for all parameters of the class.

Example 47.5, “Disabling URI decoding” shows a resource whose getMonster() method does not use
URI decoding. The addMonster() method only disables URI decoding for the type parameter.

Example 47.5. Disabling URI decoding

@Path("/monstersforhire/")
public class MonsterService
{
 ...

 @GET
 @Encoded
 @Path("/{type}")
 public Monster getMonster(@PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }

 @PUT
 @Path("/{id}")
 public void addMonster(@Encoded @PathParam("type") String type,
 @QueryParam("id") String id)

Red Hat Fuse 7.5 Apache CXF Development Guide

480

 {
 ...
 }
 ...
}

Error handling

If an error occurs when attempting to inject data using one of the URI injection annotations a
WebApplicationException exception wrapping the original exception is generated. The
WebApplicationException exception’s status is set to 404.

47.2.3. Injecting data from the HTTP message header

Overview

In normal usage the HTTP headers in a request message pass along generic information about the
message, how it is to be handled in transit, and details about the expected response. While a few
standard headers are commonly recognized and used, the HTTP specification allows for any name/value
pair to be used as an HTTP header. The JAX-RS APIs provide an easy mechanism for injecting HTTP
header information into a resource implementation.

One of the most commonly used HTTP headers is the cookie. Cookies allow HTTP clients and servers to
share static information across multiple request/response sequences. The JAX-RS APIs provide an
annotation inject data directly from a cookie into a resource implementation.

Injecting information from the HTTP headers

The javax.ws.rs.HeaderParam annotation is used to inject the data from an HTTP header field into a
parameter, field, or bean property. It has a single parameter that specifies the name of the HTTP header
field from which the value is extracted and injected into the resource implementation. The associated
parameter, field, or bean property must conform to the data types described in the section called
“Supported data types”.

Injecting the If-Modified-Since header shows code for injecting the value of the HTTP If-Modified-
Since header into a class' oldestDate field.

Injecting the If-Modified-Since header

import javax.ws.rs.HeaderParam;
...
class RecordKeeper
{
 ...
 @HeaderParam("If-Modified-Since")
 String oldestDate;
 ...
}

Injecting information from a cookie

Cookies are a special type of HTTP header. They are made up of one or more name/value pairs that are

CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

481

passed to the resource implementation on the first request. After the first request, the cookie is passes
back and forth between the provider and consumer with each message. Only the consumer, because
they generate requests, can change the cookie. Cookies are commonly used to maintain session across
multiple request/response sequences, storing user settings, and other data that can persist.

The javax.ws.rs.CookieParam annotation extracts the value from a cookie’s field and injects it into a
resource implementation. It takes a single parameter that specifies the name of the cookie’s field from
which the value is to be extracted. In addition to the data types listed in the section called “Supported
data types”, entities decorated with the @CookieParam can also be a Cookie object.

Example 47.6, “Injecting a cookie” shows code for injecting the value of the handle cookie into a field in
the CB class.

Example 47.6. Injecting a cookie

import javax.ws.rs.CookieParam;
...
class CB
{
 ...
 @CookieParam("handle")
 String handle;
 ...
}

Error handling

If an error occurs when attempting to inject data using one of the HTTP message injection annotations a
WebApplicationException exception wrapping the original exception is generated. The
WebApplicationException exception’s status is set to 400.

47.2.4. Injecting data from HTML forms

Overview

HTML forms are an easy means of getting information from a user and they are also easy to create.
Form data can be used for HTTP GET requests and HTTP POST requests:

GET

When form data is sent as part of an HTTP GET request the data is appended to the URI as a set of
query parameters. Injecting data from query parameters is discussed in the section called “Using
query parameters”.

POST

When form data is sent as part of an HTTP POST request the data is placed in the HTTP message
body. The form data can be handled using a regular entity parameter that supports the form data. It
can also be handled by using the @FormParam annotation to extract the data and inject the pieces
into resource method parameters.

Using the @FormParam annotation to inject form data

The javax.ws.rs.FormParam annotation extracts field values from form data and injects the value into
resource method parameters. The annotation takes a single parameter that specifies the key of the field

Red Hat Fuse 7.5 Apache CXF Development Guide

482

from which it extracts the values. The associated parameter must conform to the data types described
in the section called “Supported data types” .

IMPORTANT

The JAX-RS API Javadoc states that the @FormParam annotation can be placed on
fields, methods, and parameters. However, the @FormParam annotation is only
meaningful when placed on resource method parameters.

Example

Injecting form data into resource method parameters shows a resource method that injects form data
into its parameters. The method assumes that the client’s form includes three fields—title, tags, and
body—that contain string data.

Injecting form data into resource method parameters

import javax.ws.rs.FormParam;
import javax.ws.rs.POST;

...
@POST
public boolean updatePost(@FormParam("title") String title,
 @FormParam("tags") String tags,
 @FormParam("body") String post)
{
 ...
}

47.2.5. Specifying a default value to inject

Overview

To provide for a more robust service implementation, you may want to ensure that any optional
parameters can be set to a default value. This can be particularly useful for values that are taken from
query parameters and matrix parameters since entering long URI strings is highly error prone. You may
also want to set a default value for a parameter extracted from a cookie since it is possible for a
requesting system not have the proper information to construct a cookie with all the values.

The javax.ws.rs.DefaultValue annotation can be used in conjunction with the following injection
annotations:

@PathParam

@QueryParam

@MatrixParam

@FormParam

@HeaderParam

@CookieParam

The @DefaultValue annotation specifies a default value to be used when the data corresponding to the

CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

483

The @DefaultValue annotation specifies a default value to be used when the data corresponding to the
injection annotation is not present in the request.

Syntax

Syntax for setting the default value of a parameter shows the syntax for using the @DefaultValue
annotation.

Syntax for setting the default value of a parameter

import javax.ws.rs.DefaultValue;
 ...
 void resourceMethod(@MatrixParam("matrix")
 @DefaultValue("value)
 int someValue, ...)
 ...

The annotation must come before the parameter, bean, or field, it will effect. The position of the
@DefaultValue annotation relative to the accompanying injection annotation does not matter.

The @DefaultValue annotation takes a single parameter. This parameter is the value that will be
injected into the field if the proper data cannot be extracted based on the injection annotation. The
value can be any String value. The value should be compatible with type of the associated field. For
example, if the associated field is of type int, a default value of blue results in an exception.

Dealing with lists and sets

If the type of the annotated parameter, bean or field is List, Set, or SortedSet then the resulting
collection will have a single entry mapped from the supplied default value.

Example

Setting default values shows two examples of using the @DefaultValue to specify a default value for a
field whose value is injected.

Setting default values

import javax.ws.rs.DefaultValue;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

@Path("/monster")
public class MonsterService
{

 @Get
 public Monster getMonster(@QueryParam("id") @DefaultValue("42") int id,
 @QueryParam("type") @DefaultValue("bogeyman") String type)
 {
 ...
 }

Red Hat Fuse 7.5 Apache CXF Development Guide

484

 ...
}

The getMonster() method in Setting default values is invoked when a GET request is sent to
baseURI/monster. The method expects two query parameters, id and type, appended to the URI. So a
GET request using the URI baseURI/monster?id=1&type=fomóiri would return the Fomóiri with the id
of one.

Because the @DefaultValue annotation is placed on both parameters, the getMonster() method can
function if the query parameters are omitted. A GET request sent to baseURI/monster is equivalent to
a GET request using the URI baseURI/monster?id=42&type=bogeyman.

47.2.6. Injecting Parameters into a Java Bean

Overview

When posting HTML forms over REST, a common pattern on the server side is to create a Java bean to
encapsulate all of the data received in the form (and possibly data from other parameters and HTML
headers, as well). Normally, creating this Java bean would be a two step process: a resource method
receives the form values by injection (for example, by adding @FormParam annotations to its method
parameters), and the resource method then calls the bean’s constructor, passing in the form data.

Using the JAX-RS 2.0 @BeanParam annotation, it is possible to implement this pattern in a single step.
The form data can be injected directly into the fields of the bean class and the bean itself is created
automatically by the JAX-RS runtime. This is most easily explained by example.

Injection target

The @BeanParam annotation can be attached to resource method parameters, resource fields, or bean
properties. A parameter target is the only kind of target that can be used with all resource class
lifecycles, however. The other kinds of target are restricted to the per-request lifecycle. This situation is
summarized in Table 47.1, “@BeanParam Injection Targets” .

Table 47.1. @BeanParam Injection Targets

Target Resource Class Lifecycles

PARAMETER All

FIELD Per-request (default)

METHOD (bean property) Per-request (default)

Example without BeanParam annotation

The following example shows how you might go about capturing form data in a Java bean using the
conventional approach (without using @BeanParam):

// Java
import javax.ws.rs.POST;
import javax.ws.rs.FormParam;

CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

485

import javax.ws.rs.core.Response;
...
@POST
public Response orderTable(@FormParam("orderId") String orderId,
 @FormParam("color") String color,
 @FormParam("quantity") String quantity,
 @FormParam("price") String price)
{
 ...
 TableOrder bean = new TableOrder(orderId, color, quantity, price);
 ...
 return Response.ok().build();
}

In this example, the orderTable method processes a form that is used to order a quantity of tables from
a furniture Web site. When the order form is posted, the form values are injected into the parameters of
the orderTable method, and the orderTable method explicitly creates an instance of the TableOrder
class, using the injected form data.

Example with BeanParam annotation

The previous example can be refactored to take advantage of the @BeanParam annotation. When
using the @BeanParam approach, the form parameters can be injected directly into the fields of the
bean class, TableOrder. In fact, you can use any of the standard JAX-RS parameter annotations in the
bean class: including @PathParam, @QueryParam, @FormParam, @MatrixParam, @CookieParam,
and @HeaderParam. The code for processing the form can be refactored as follows:

// Java
import javax.ws.rs.POST;
import javax.ws.rs.FormParam;
import javax.ws.rs.core.Response;
...
public class TableOrder {
 @FormParam("orderId")
 private String orderId;

 @FormParam("color")
 private String color;

 @FormParam("quantity")
 private String quantity;

 @FormParam("price")
 private String price;

 // Define public getter/setter methods
 // (Not shown)
 ...
}
...
@POST
public Response orderTable(@BeanParam TableOrder orderBean)
{
 ...
 // Do whatever you like with the 'orderBean' bean

Red Hat Fuse 7.5 Apache CXF Development Guide

486

 ...
 return Response.ok().build();
}

Now that the form annotations have been added to the bean class, TableOrder, you can replace all of
the @FormParam annotations in the signature of the resource method with just a single @BeanParam
annotation, as shown. Now, when the form is posted to the orderTable resource method, the JAX-RS
runtime automatically creates a TableOrder instance, orderBean, and injects all of the data specified by
the parameter annotations on the bean class.

47.3. PARAMETER CONVERTERS

Overview

Using parameter converters, it is possible to inject a parameter (of String type) into any type of field,
bean property, or resource method argument. By implementing and binding a suitable parameter
converter, you can extend the JAX-RS runtime so that it is capable of converting the parameter String
value to the target type.

Automatic conversions

Parameters are received as instances of String, so you can always inject them directly into fields, bean
properties, and method parameters of String type. In addition, the JAX-RS runtime has the capability to
convert parameter strings automatically to the following types:

1. Primitive types.

2. Types that have a constructor that accepts a single String argument.

3. Types that have a static method named valueOf or fromString with a single String argument
that returns an instance of the type.

4. List<T>, Set<T>, or SortedSet<T>, if T is one of the types described in 2 or 3.

Parameter converters

In order to inject a parameter into a type not covered by automatic conversion, you can define a custom
parameter converter for the type. A parameter converter is a JAX-RS extension that enables you to
define conversion from String to a custom type, and also in the reverse direction, from the custom type
to a String.

Factory pattern

The JAX-RS parameter converter mechanism uses a factory pattern. So, instead of registering a
parameter converter directly, you must register a parameter converter provider (of type,
javax.ws.rs.ext.ParamConverterProvider), which creates a parameter converter (of type,
javax.ws.rs.ext.ParamConverter) on demand.

ParamConverter interface

The javax.ws.rs.ext.ParamConverter interface is defined as follows:

// Java

CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

487

package javax.ws.rs.ext;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import javax.ws.rs.DefaultValue;

public interface ParamConverter<T> {

 @Target({ElementType.TYPE})
 @Retention(RetentionPolicy.RUNTIME)
 @Documented
 public static @interface Lazy {}

 public T fromString(String value);

 public String toString(T value);
}

To implement your own ParamConverter class, you must implement this interface, overriding the
fromString method (to convert the parameter string to your target type) and the toString method (to
convert your target type back to a string).

ParamConverterProvider interface

The javax.ws.rs.ext.ParamConverterProvider interface is defined as follows:

// Java
package javax.ws.rs.ext;

import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

public interface ParamConverterProvider {
 public <T> ParamConverter<T> getConverter(Class<T> rawType, Type genericType, Annotation
annotations[]);
}

To implement your own ParamConverterProvider class, you must implement this interface, overriding
the getConverter method, which is a factory method that creates ParamConverter instances.

Binding the parameter converter provider

To bind the parameter converter provider to the JAX-RS runtime (thus making it available to your
application), you must annotate your implementation class with the @Provider annotation, as follows:

// Java
...
import javax.ws.rs.ext.ParamConverterProvider;
import javax.ws.rs.ext.Provider;

@Provider

Red Hat Fuse 7.5 Apache CXF Development Guide

488

public class TargetTypeProvider implements ParamConverterProvider {
 ...
}

This annotation ensures that your parameter converter provider is automatically registered during the
scanning phase of deployment.

Example

The following example shows how to implement a ParamConverterProvider and a ParamConverter
which has the capability to convert parameter strings to and from the TargetType type:

// Java
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.ext.ParamConverter;
import javax.ws.rs.ext.ParamConverterProvider;
import javax.ws.rs.ext.Provider;

@Provider
public class TargetTypeProvider implements ParamConverterProvider {

 @Override
 public <T> ParamConverter<T> getConverter(
 Class<T> rawType,
 Type genericType,
 Annotation[] annotations
) {
 if (rawType.getName().equals(TargetType.class.getName())) {
 return new ParamConverter<T>() {

 @Override
 public T fromString(String value) {
 // Perform conversion of value
 // ...
 TargetType convertedValue = // ... ;
 return convertedValue;
 }

 @Override
 public String toString(T value) {
 if (value == null) { return null; }
 // Assuming that TargetType.toString is defined
 return value.toString();
 }
 };
 }
 return null;
 }

}

Using the parameter converter

CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

489

Now that you have defined a parameter converter for TargetType, it is possible to inject parameters
directly into TargetType fields and arguments, for example:

// Java
import javax.ws.rs.FormParam;
import javax.ws.rs.POST;
...
@POST
public Response updatePost(@FormParam("target") TargetType target)
{
 ...
}

Lazy conversion of default value

If you specify default values for your parameters (using the @DefaultValue annotation), you can choose
whether the default value is converted to the target type right away (default behaviour), or whether the
default value should be converted only when required (lazy conversion). To select lazy conversion, add
the @ParamConverter.Lazy annotation to the target type. For example:

// Java
import javax.ws.rs.FormParam;
import javax.ws.rs.POST;
import javax.ws.rs.DefaultValue;
import javax.ws.rs.ext.ParamConverter.Lazy;
...
@POST
public Response updatePost(
 @FormParam("target")
 @DefaultValue("default val")
 @ParamConverter.Lazy
 TargetType target)
{
 ...
}

47.4. USING APACHE CXF EXTENSIONS

Overview

Apache CXF provides an extension to the standard JAX-WS injection mechanism that allows developers
to replace a sequence of injection annotations with a single annotation. The single annotation is placed
on a bean containing fields for the data that is extracted using the annotation. For example, if a resource
method is expecting a request URI to include three query parameters called id, type, and size, it could
use a single @QueryParam annotation to inject all of the parameters into a bean with corresponding
fields.

NOTE

Consider using the @BeanParam annotation instead (available since JAX-RS 2.0). The
standardized @BeanParam approach is more flexible than the proprietary Apache CXF
extension, and is thus the recommended alternative. For details, see Section 47.2.6,
“Injecting Parameters into a Java Bean”.

Red Hat Fuse 7.5 Apache CXF Development Guide

490

Supported injection annotations

This extension does not support all of the injection parameters. It only supports the following ones:

@PathParam

@QueryParam

@MatrixParam

@FormParam

Syntax

To indicate that an annotation is going to use serial injection into a bean, you need to do two things:

1. Specify the annotation’s parameter as an empty string. For example @PathParam("") specifies
that a sequence of URI template variables are to be serialized into a bean.

2. Ensure that the annotated parameter is a bean with fields that match the values being injected.

Example

Example 47.7, “Injecting query parameters into a bean” shows an example of injecting a number of
Query parameters into a bean. The resource method expect the request URI to include two query
parameters: type and id. Their values are injected into the corresponding fields of the Monster bean.

Example 47.7. Injecting query parameters into a bean

import javax.ws.rs.QueryParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 public void updateMonster(@QueryParam("") Monster bean)
 {
 ...
 }
 ...
}

public class Monster
{
 String type;
 String id;

 ...
}

CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

491

CHAPTER 48. RETURNING INFORMATION TO THE
CONSUMER

Abstract

RESTful requests require that at least an HTTP response code be returned to the consumer. In many
cases, a request can be satisfied by returning a plain JAXB object or a GenericEntity object. When the
resource method needs to return additional metadata along with the response entity, JAX-RS resource
methods can return a Response object containing any needed HTTP headers or other metadata.

48.1. RETURN TYPES

The information returned to the consumer determines the exact type of object a resource method
returns. This may seem obvious, but the mapping between Java return objects and what is returned to a
RESTful consumer is not one-to-one. At a minimum, RESTful consumers need to be returned a valid
HTTP return code in addition to any response entity body. The mapping of the data contained within a
Java object to a response entity is effected by the MIME types a consumer is willing to accept.

To address the issues involved in mapping Java object to RESTful response messages, resource
methods are allowed to return four types of Java constructs:

Section 48.2, “Returning plain Java constructs” return basic information with HTTP return
codes determined by the JAX-RS runtime.

Section 48.2, “Returning plain Java constructs” return complex information with HTTP return
codes determined by the JAX-RS runtime.

Section 48.3, “Fine tuning an application’s responses” return complex information with a
programmatically determined HTTP return status. The Response object also allows HTTP
headers to be specified.

Section 48.4, “Returning entities with generic type information” return complex information with
HTTP return codes determined by the JAX-RS runtime. The GenericEnitity object provides
more information to the runtime components serializing the data.

48.2. RETURNING PLAIN JAVA CONSTRUCTS

Overview

In many cases a resource class can return a standard Java type, a JAXB object, or any object for which
the application has an entity provider. In these cases the runtime determines the MIME type information
using the Java class of the object being returned. The runtime also determines the appropriate HTTP
return code to send to the consumer.

Returnable types

Resource methods can return void or any Java type for which an entity writer is provided. By default,
the runtime has providers for the following:

the Java primitives

the Number representations of the Java primitives

Red Hat Fuse 7.5 Apache CXF Development Guide

492

JAXB objects

the section called “Natively supported types” lists all of the return types supported by default. the
section called “Custom writers” describes how to implement a custom entity writer.

MIME types

The runtime determines the MIME type of the returned entity by first checking the resource method
and resource class for a @Produces annotation. If it finds one, it uses the MIME type specified in the
annotation. If it does not find one specified by the resource implementation, it relies on the entity
providers to determine the proper MIME type.

By default the runtime assign MIME types as follows:

Java primitives and their Number representations are assigned a MIME type of
application/octet-stream.

JAXB objects are assigned a MIME type of application/xml.

Applications can use other mappings by implementing custom entity providers as described in the
section called “Custom writers”.

Response codes

When resource methods return plain Java constructs, the runtime automatically sets the response’s
status code if the resource method completes without throwing an exception. The status code is set as
follows:

204(No Content)—the resource method’s return type is void

204(No Content)—the value of the returned entity is null

200(OK)—the value of the returned entity is not null

If an exception is thrown before the resource method completes the return status code is set as
described in Chapter 50, Handling Exceptions.

48.3. FINE TUNING AN APPLICATION’S RESPONSES

48.3.1. Basics of building responses

Overview

RESTful services often need more precise control over the response returned to a consumer than is
allowed when a resource method returns a plain Java construct. The JAX-RS Response class allows a
resource method to have some control over the return status sent to the consumer and to specify HTTP
message headers and cookies in the response.

Response objects wrap the object representing the entity that is returned to the consumer. Response
objects are instantiated using the ResponseBuilder class as a factory.

The ResponseBuilder class also has many of the methods used to manipulate the response’s metadata.
For instance the ResonseBuilder class contains the methods for setting HTTP headers and cache
control directives.

CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER

493

Relationship between a response and a response builder

The Response class has a protected constructor, so they cannot be instantiated directly. They are
created using the ResponseBuilder class enclosed by the Response class. The ResponseBuilder
class is a holder for all of the information that will be encapsulated in the response created from it. The
ResponseBuilder class also has all of the methods responsible for setting HTTP header properties on
the message.

The Response class does provide some methods that ease setting the proper response code and
wrapping the entity. There are methods for each of the common response status codes. The methods
corresponding to status that include an entity body, or required metadata, include versions that allow
for directly setting the information into the associated response builder.

The ResponseBuilder class' build() method returns a response object containing the information
stored in the response builder at the time the method is invoked. After the response object is returned,
the response builder is returned to a clean state.

Getting a response builder

There are two ways to get a response builder:

Using the static methods of the Response class as shown in Getting a response builder using
the Response class.

Getting a response builder using the Response class

import javax.ws.rs.core.Response;

Response r = Response.ok().build();

When getting a response builder this way you do not get access to an instance you can
manipulate in multiple steps. You must string all of the actions into a single method call.

Using the Apache CXF specific ResponseBuilderImpl class. This class allows you to work
directly with a response builder. However, it requires that you manually set all of the response
builders information manually.
Example 48.1, “Getting a response builder using the ResponseBuilderImpl class” shows how
Getting a response builder using the Response class could be rewritten using the
ResponseBuilderImpl class.

Example 48.1. Getting a response builder using the ResponseBuilderImpl class

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(200);
Response r = builder.build();

NOTE

You could also simply assign the ResponseBuilder returned from a Response
class' method to a ResponseBuilderImpl object.

Red Hat Fuse 7.5 Apache CXF Development Guide

494

More information

For more information about the Response class see the Response class' Javadoc.

For more information about the ResponseBuilder class see the ResponseBuilder class' Javadoc.

For more information on the Apache CXF ResponseBuilderIml class see the ResponseBuilderImpl
Javadoc.

48.3.2. Creating responses for common use cases

Overview

The Response class provides shortcut methods for handling the more common responses that a
RESTful service will need. These methods handle setting the proper headers using either provided
values or default values. They also handle populating the entity body when appropriate.

Creating responses for successful requests

When a request is successfully processed the application needs to send a response to acknowledge that
the request has been fulfilled. That response may contain an entity.

The most common response when successfully completing a response is OK. An OK response typically
contains an entity that corresponds to the request. The Response class has an overloaded ok() method
that sets the response status to 200 and adds a supplied entity to the enclosed response builder. There
are five versions of the ok() method. The most commonly used variant are:

Response.ok()—creates a response with a status of 200 and an empty entity body.

Response.ok(java.lang.Object entity)—creates a response with a status of 200, stores the
supplied object in the responses entity body, and determines the entities media type by
introspecting the object.

Creating a response with an 200 response shows an example of creating a response with an OK status.

Creating a response with an 200 response

import javax.ws.rs.core.Response;
import demo.jaxrs.server.Customer;
...

Customer customer = new Customer("Jane", 12);

return Response.ok(customer).build();

For cases where the requester is not expecting an entity body, it may be more appropriate to send a 204
No Content status instead of an 200 OK status. The Response.noContent() method will create an
appropriate response object.

Creating a response with a 204 status shows an example of creating a response with an 204 status.

Creating a response with a 204 status

CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER

495

https://docs.oracle.com/javaee/6/api/javax/ws/rs/core/Response.html
https://docs.oracle.com/javaee/6/api/javax/ws/rs/core/Response.ResponseBuilder.html
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/jaxrs/impl/ResponseBuilderImpl.html

import javax.ws.rs.core.Response;

return Response.noContent().build();

Creating responses for redirection

The Response class provides methods for handling three of the redirection response statuses.

303 See Other

The 303 See Other status is useful when the requested resource needs to permanently redirect the
consumer to a new resource to process the request.
The Response classes seeOther() method creates a response with a 303 status and places the new
resource URI in the message’s Location field. The seeOther() method takes a single parameter that
specifies the new URI as a java.net.URI object.

304 Not Modified

The 304 Not Modified status can be used for different things depending on the nature of the
request. It can be used to signify that the requested resource has not changed since a previous GET
request. It can also be used to signify that a request to modify the resource did not result in the
resource being changed.
The Response classes notModified() methods creates a response with a 304 status and sets the
modified date property on the HTTP message. There are three versions of the notModified()
method:

notModified

notModifiedjavax.ws.rs.core.Entitytag

notModifiedjava.lang.Stringtag

307 Temporary Redirect

The 307 Temporary Redirect status is useful when the requested resource needs to direct the
consumer to a new resource, but wants the consumer to continue using this resource to handle future
requests.
The Response classes temporaryRedirect() method creates a response with a 307 status and
places the new resource URI in the message’s Location field. The temporaryRedirect() method
takes a single parameter that specifies the new URI as a java.net.URI object.

Creating a response with a 304 status shows an example of creating a response with an 304 status.

Creating a response with a 304 status

import javax.ws.rs.core.Response;

return Response.notModified().build();

Creating responses to signal errors

The Response class provides methods to create responses for two basic processing errors:

serverError—creates a response with a status of 500 Internal Server Error.

Red Hat Fuse 7.5 Apache CXF Development Guide

496

notAcceptablejava.util.List<javax.ws.rs.core.Variant>variants—creates a response with a
406 Not Acceptable status and an entity body containing a list of acceptable resource types.

Creating a response with a 500 status shows an example of creating a response with an 500 status.

Creating a response with a 500 status

import javax.ws.rs.core.Response;

return Response.serverError().build();

48.3.3. Handling more advanced responses

Overview

The Response class methods provide short cuts for creating responses for common cases. When you
need to address more complicated cases such as specifying cache control directives, adding custom
HTTP headers, or sending a status not handled by the Response class, you need to use the
ResponseBuilder classes methods to populate the response before using the build() method to
generate the response object.

As discussed in the section called “Getting a response builder” , you can use the Apache CXF
ResponseBuilderImpl class to create a response builder instance that can be manipulated directly.

Adding custom headers

Custom headers are added to a response using the ResponseBuilder class' header() method. The
header() method takes two parameters:

name—a string specifying the name of the header

value—a Java object containing the data stored in the header

You can set multiple headers on the message by calling the header() method repeatedly.

Adding a header to a response shows code for adding a header to a response.

Adding a header to a response

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.header("username", "joe");
Response r = builder.build();

Adding a cookie

Custom headers are added to a response using the ResponseBuilder class' cookie() method. The
cookie() method takes one or more cookies. Each cookie is stored in a javax.ws.rs.core.NewCookie
object. The easiest of the NewCookie class' contructors to use takes two parameters:

name—a string specifying the name of the cookie

CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER

497

value—a string specifying the value of the cookie

You can set multiple cookies by calling the cookie() method repeatedly.

Adding a cookie to a response shows code for adding a cookie to a response.

Adding a cookie to a response

import javax.ws.rs.core.Response;
import javax.ws.rs.core.NewCookie;

NewCookie cookie = new NewCookie("username", "joe");

Response r = Response.ok().cookie(cookie).build();

WARNING

Calling the cookie() method with a null parameter list erases any cookies already
associated with the response.

Setting the response status

When you want to return a status other than one of the statuses supported by the Response class'
helper methods, you can use the ResponseBuilder class' status() method to set the response’s status
code. The status() method has two variants. One takes an int that specifies the response code. The
other takes a Response.Status object to specify the response code.

The Response.Status class is an enumeration enclosed in the Response class. It has entries for most of
the defined HTTP response codes.

Adding a header to a response shows code for setting the response status to 404 Not Found.

Adding a header to a response

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(404);
Response r = builder.build();

Setting cache control directives

The ResponseBuilder class' cacheControl() method allows you to set the cache control headers on
the response. The cacheControl() method takes a javax.ws.rs.CacheControl object that specifies the
cache control directives for the response.

The CacheControl class has methods that correspond to all of the cache control directives supported
by the HTTP specification. Where the directive is a simple on or off value the setter method takes a
boolean value. Where the directive requires a numeric value, such as the max-age directive, the setter

Red Hat Fuse 7.5 Apache CXF Development Guide

498

takes an int value.

Adding a header to a response shows code for setting the no-store cache control directive.

Adding a header to a response

import javax.ws.rs.core.Response;
import javax.ws.rs.core.CacheControl;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

CacheControl cache = new CacheControl();
cache.setNoCache(true);

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.cacheControl(cache);
Response r = builder.build();

48.4. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION

Overview

There are occasions where the application needs more control over the MIME type of the returned
object or the entity provider used to serialize the response. The JAX-RS
javax.ws.rs.core.GenericEntity<T> class provides finer control over the serializing of entities by
providing a mechanism for specifying the generic type of the object representing the entity.

Using a GenericEntity<T> object

One of the criteria used for selecting the entity provider that serializes a response is the generic type of
the object. The generic type of an object represents the Java type of the object. When a common Java
type or a JAXB object is returned, the runtime can use Java reflection to determine the generic type.
However, when a JAX-RS Response object is returned, the runtime cannot determine the generic type
of the wrapped entity and the actual Java class of the object is used as the Java type.

To ensure that the entity provider is provided with correct generic type information, the entity can be
wrapped in a GenericEntity<T> object before being added to the Response object being returned.

Resource methods can also directly return a GenericEntity<T> object. In practice, this approach is rarely
used. The generic type information determined by reflection of an unwrapped entity and the generic
type information stored for an entity wrapped in a GenericEntity<T> object are typically the same.

Creating a GenericEntity<T> object

There are two ways to create a GenericEntity<T> object:

1. Create a subclass of the GenericEntity<T> class using the entity being wrapped. Creating a
GenericEntity<T> object using a subclass shows how to create a GenericEntity<T> object
containing an entity of type List<String> whose generic type will be available at runtime.

Creating a GenericEntity<T> object using a subclass

import javax.ws.rs.core.GenericEntity;

List<String> list = new ArrayList<String>();

CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER

499

...
GenericEntity<List<String>> entity =
 new GenericEntity<List<String>>(list) {};
Response response = Response.ok(entity).build();

The subclass used to create a GenericEntity<T> object is typically anonymous.

2. Create an instance directly by supplying the generic type information with the entity.
Example 48.2, “Directly instantiating a GenericEntity<T> object” shows how to create a response
containing an entity of type AtomicInteger.

Example 48.2. Directly instantiating a GenericEntity<T> object

import javax.ws.rs.core.GenericEntity;

AtomicInteger result = new AtomicInteger(12);
GenericEntity<AtomicInteger> entity =
 new GenericEntity<AtomicInteger>(result,
 result.getClass().getGenericSuperclass());
Response response = Response.ok(entity).build();

48.5. ASYNCHRONOUS RESPONSE

48.5.1. Asynchronous Processing on the Server

Overview

The purpose of asynchronous processing of invocations on the server side is to enable more efficient
use of threads and, ultimately, to avoid the scenario where client connection attempts are refused
because all of the server’s request threads are blocked. When an invocation is processed
asynchronously, the request thread is freed up almost immediately.

NOTE

Note that even when asynchronous processing is enabled on the server side, a client will
still remain blocked until it receives a response from the server. If you want to see
asynchronous behaviour on the client side, you must implement client-side asynchronous
processing. See Section 49.6, “Asynchronous Processing on the Client”.

Basic model for asynchronous processing

Figure 48.1, “Threading Model for Asynchronous Processing” shows an overview of the basic model for
asynchronous processing on the server side.

Figure 48.1. Threading Model for Asynchronous Processing

Red Hat Fuse 7.5 Apache CXF Development Guide

500

Figure 48.1. Threading Model for Asynchronous Processing

In outline, a request is processed as follows in the asynchronous model:

1. An asynchronous resource method is invoked within a request thread (and receives a reference
to an AsyncResponse object, which will be needed later to send back the response).

2. The resource method encapsulates the suspended request in a Runnable object, which
contains all of the information and processing logic required to process the request.

3. The resource method pushes the Runnable object onto the blocking queue of the executor
thread pool.

4. The resource method can now return, thus freeing up the request thread.

5. When the Runnable object gets to the top of the queue, it is processed by one of the threads in
the executor thread pool. The encapsulated AsyncResponse object is then used to send the
response back to the client.

Thread pool implementation with Java executor

The java.util.concurrent API is a powerful API that enables you to create a complete thread pool
implementation very easily. In the terminology of the Java concurrency API, a thread pool is called an
executor. It requires only a single line of code to create a complete working thread pool, including the
working threads and the blocking queue that feeds them.

For example, to create a complete working thread pool like the Executor Thread Pool shown in
Figure 48.1, “Threading Model for Asynchronous Processing” , create a java.util.concurrent.Executor
instance, as follows:

Executor executor = new ThreadPoolExecutor(
 5, // Core pool size
 5, // Maximum pool size
 0, // Keep-alive time
 TimeUnit.SECONDS, // Time unit
 new ArrayBlockingQueue<Runnable>(10) // Blocking queue
);

This constructor creates a new thread pool with five threads, fed by a single blocking queue with which
can hold up to 10 Runnable objects. To submit a task to the thread pool, call the executor.execute
method, passing in a reference to a Runnable object (which encapsulates the asynchronous task).

CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER

501

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html

Defining an asynchronous resource method

To define a resource method that is asynchronous, inject an argument of type
javax.ws.rs.container.AsyncResponse using the @Suspended annotation and make sure that the
method returns void. For example:

// Java
...
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;

@Path("/bookstore")
public class BookContinuationStore {
 ...
 @GET
 @Path("{id}")
 public void handleRequestInPool(@PathParam("id") String id,
 @Suspended AsyncResponse response) {
 ...
 }
 ...
}

Note that the resource method must return void, because the injected AsyncResponse object will be
used to return the response at a later time.

AsyncResponse class

The javax.ws.rs.container.AsyncResponse class provides an a abstract handle on an incoming client
connection. When an AsyncResponse object is injected into a resource method, the underlying TCP
client connection is initially in a suspended state. At a later time, when you are ready to return the
response, you can re-activate the underlying TCP client connection and pass back the response, by
calling resume on the AsyncResponse instance. Alternatively, if you need to abort the invocation, you
could call cancel on the AsyncResponse instance.

Encapsulating a suspended request as a Runnable

In the asynchronous processing scenario shown in Figure 48.1, “Threading Model for Asynchronous
Processing”, you push the suspended request onto a queue, from where it can be processed at a later
time by a dedicated thread pool. In order for this approach to work, however, you need to have some way
of encapsulating the suspended request in an object. The suspended request object needs to
encapsulate the following things:

Parameters from the incoming request (if any).

The AsyncResponse object, which provides a handle on the incoming client connection and a
way of sending back the response.

The logic of the invocation.

A convenient way to encapsulate these things is to define a Runnable class to represent the suspended
request, where the Runnable.run() method encapsulates the logic of the invocation. The most elegant
way to do this is to implement the Runnable as a local class, as shown in the following example.

Red Hat Fuse 7.5 Apache CXF Development Guide

502

https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/container/AsyncResponse.html#cancel%28int%29

Example of asynchronous processing

To implement the asynchronous processing scenario, the implementation of the resource method must
pass a Runnable object (representing the suspended request) to the executor thread pool. In Java 7
and 8, you can exploit some novel syntax to define the Runnable class as a local class, as shown in the
following example:

// Java
package org.apache.cxf.systest.jaxrs;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Executor;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

import javax.ws.rs.GET;
import javax.ws.rs.NotFoundException;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.CompletionCallback;
import javax.ws.rs.container.ConnectionCallback;
import javax.ws.rs.container.Suspended;
import javax.ws.rs.container.TimeoutHandler;

import org.apache.cxf.phase.PhaseInterceptorChain;

@Path("/bookstore")
public class BookContinuationStore {

 private Map<String, String> books = new HashMap<String, String>();
 private Executor executor = new ThreadPoolExecutor(5, 5, 0, TimeUnit.SECONDS,
 new ArrayBlockingQueue<Runnable>(10));

 public BookContinuationStore() {
 init();
 }
 ...
 @GET
 @Path("{id}")
 public void handleRequestInPool(final @PathParam("id") String id,
 final @Suspended AsyncResponse response) {
 executor.execute(new Runnable() {
 public void run() {
 // Retrieve the book data for 'id'
 // which is presumed to be a very slow, blocking operation
 // ...
 bookdata = ...
 // Re-activate the client connection with 'resume'
 // and send the 'bookdata' object as the response
 response.resume(bookdata);
 }

CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER

503

 });
 }
 ...
}

Note how the resource method arguments, id and response, are passed straight into the definition of
the Runnable local class. This special syntax enables you to use the resource method arguments directly
in the Runnable.run() method, without having to define corresponding fields in the local class.

IMPORTANT

In order for this special syntax to work, the resource method parameters must be
declared as final (which implies that they must not be changed in the method
implementation).

48.5.2. Timeouts and Timeout Handlers

Overview

The asynchronous processing model also provides support for imposing timeouts on REST invocations.
By default, a timeout results in a HTTP error response being sent back to the client. But you also have
the option of registering a timeout handler callback, which enables you to customize the response to a
timeout event.

Example of setting a timeout without a handler

To define a simple invocation timeout, without specifying a timeout handler, call the setTimeout
method on the AsyncResponse object, as shown in the following example:

// Java
// Java
...
import java.util.concurrent.TimeUnit;
...
import javax.ws.rs.GET;
import javax.ws.rs.NotFoundException;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;
import javax.ws.rs.container.TimeoutHandler;

@Path("/bookstore")
public class BookContinuationStore {
 ...
 @GET
 @Path("/books/defaulttimeout")
 public void getBookDescriptionWithTimeout(@Suspended AsyncResponse async) {
 async.setTimeout(2000, TimeUnit.MILLISECONDS);
 // Optionally, send request to executor queue for processing
 // ...

Red Hat Fuse 7.5 Apache CXF Development Guide

504

 }
 ...
}

Note that you can specify the timeout value using any time unit from the java.util.concurrent.TimeUnit
class. The preceding example does not show the code for sending the request to the executor thread
pool. If you just wanted to test the timeout behaviour, you could include just the call to
async.SetTimeout in the resource method body, and the timeout would be triggered on every
invocation.

The AsyncResponse.NO_TIMEOUT value represents an infinite timeout.

Default timeout behaviour

By default, if the invocation timeout is triggered, the JAX-RS runtime raises a
ServiceUnavailableException exception and sends back a HTTP error response with the status 503.

TimeoutHandler interface

If you want to customize the timeout behaviour, you must define a timeout handler, by implementing the
TimeoutHandler interface:

// Java
package javax.ws.rs.container;

public interface TimeoutHandler {
 public void handleTimeout(AsyncResponse asyncResponse);
}

When you override the handleTimeout method in your implementation class, you can choose between
the following approaches to dealing with the timeout:

Cancel the response, by calling the asyncResponse.cancel method.

Send a response, by calling the asyncResponse.resume method with the response value.

Extend the waiting period, by calling the asyncResponse.setTimeout method. (For example,
to wait for a further 10 seconds, you could call asyncResponse.setTimeout(10,
TimeUnit.SECONDS)).

Example of setting a timeout with a handler

To define an invocation timeout with a timeout handler, call both the setTimeout method and the
setTimeoutHandler method on the AsyncResponse object, as shown in the following example:

// Java
...
import javax.ws.rs.GET;
import javax.ws.rs.NotFoundException;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;
import javax.ws.rs.container.TimeoutHandler;

CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER

505

@Path("/bookstore")
public class BookContinuationStore {
 ...
 @GET
 @Path("/books/cancel")
 public void getBookDescriptionWithCancel(@PathParam("id") String id,
 @Suspended AsyncResponse async) {
 async.setTimeout(2000, TimeUnit.MILLISECONDS);
 async.setTimeoutHandler(new CancelTimeoutHandlerImpl());
 // Optionally, send request to executor queue for processing
 // ...
 }
 ...
}

Where this example registers an instance of the CancelTimeoutHandlerImpl timeout handler to handle
the invocation timeout.

Using a timeout handler to cancel the response

The CancelTimeoutHandlerImpl timeout handler is defined as follows:

// Java
...
import javax.ws.rs.container.AsyncResponse;
...
import javax.ws.rs.container.TimeoutHandler;

@Path("/bookstore")
public class BookContinuationStore {
 ...
 private class CancelTimeoutHandlerImpl implements TimeoutHandler {

 @Override
 public void handleTimeout(AsyncResponse asyncResponse) {
 asyncResponse.cancel();
 }

 }
 ...
}

The effect of calling cancel on the AsyncResponse object is to send a HTTP 503 (Service
unavailable) error response to the client. You can optionally specify an argument to the cancel method
(either an int or a java.util.Date value), which would be used to set a Retry-After: HTTP header in the
response message. Clients often ignore the Retry-After: header, however.

Dealing with a cancelled response in the Runnable instance

If you have encapsulated a suspended request as a Runnable instance, which is queued for processing in
an executor thread pool, you might find that the AsyncResponse has been cancelled by the time the
thread pool gets around to processing the request. For this reason, you ought to add some code to your
Runnable instance, which enables it to cope with a cancelled AsyncResponse object. For example:

Red Hat Fuse 7.5 Apache CXF Development Guide

506

// Java
...
@Path("/bookstore")
public class BookContinuationStore {
 ...
 private void sendRequestToThreadPool(final String id, final AsyncResponse response) {

 executor.execute(new Runnable() {
 public void run() {
 if (!response.isCancelled()) {
 // Process the suspended request ...
 // ...
 }
 }
 });

 }
 ...
}

48.5.3. Handling Dropped Connections

Overview

It is possible to add a callback to deal with the case where the client connection is lost.

ConnectionCallback interface

To add a callback for dropped connections, you must implement the
javax.ws.rs.container.ConnectionCallback interface, which is defined as follows:

// Java
package javax.ws.rs.container;

public interface ConnectionCallback {
 public void onDisconnect(AsyncResponse disconnected);
}

Registering a connection callback

After implementing a connection callback, you must register it with the current AsyncResponse object,
by calling one of the register methods. For example, to register a connection callback of type,
MyConnectionCallback:

asyncResponse.register(new MyConnectionCallback());

Typical scenario for connection callback

Typically, the main reason for implementing a connection callback would be to free up resources
associated with the dropped client connection (where you could use the AsyncResponse instance as
the key to identify the resources that need to be freed).

CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER

507

https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/container/ConnectionCallback.html

48.5.4. Registering Callbacks

Overview

You can optionally add a callback to an AsyncResponse instance, in order to be notified when the
invocation has completed. There are two alternative points in the processing when this callback can be
invoked, either:

After the request processing is finished and the response has already been sent back to the
client, or

After the request processing is finished and an unmapped Throwable has been propagated to
the hosting I/O container.

CompletionCallback interface

To add a completion callback, you must implement the javax.ws.rs.container.CompletionCallback
interface, which is defined as follows:

// Java
package javax.ws.rs.container;

public interface CompletionCallback {
 public void onComplete(Throwable throwable);
}

Usually, the throwable argument is null. However, if the request processing resulted in an unmapped
exception, throwable contains the unmapped exception instance.

Registering a completion callback

After implementing a completion callback, you must register it with the current AsyncResponse object,
by calling one of the register methods. For example, to register a completion callback of type,
MyCompletionCallback:

asyncResponse.register(new MyCompletionCallback());

Red Hat Fuse 7.5 Apache CXF Development Guide

508

https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/container/CompletionCallback.html

CHAPTER 49. JAX-RS 2.0 CLIENT API

Abstract

JAX-RS 2.0 defines a full-featured client API which can be used for making REST invocations or any
HTTP client invocations. This includes a fluent API (to simplify building up requests), a framework for
parsing messages (based on a type of plug-in known as an entity provider), and support for
asynchronous invocations on the client side.

49.1. INTRODUCTION TO THE JAX-RS 2.0 CLIENT API

Overview

JAX-RS 2.0 defines a fluent API for JAX-RS clients, which enables you to build up a HTTP request step-
by-step and then invoke the request using the appropriate HTTP verb (GET, POST, PUT, or DELETE).

NOTE

It is also possible to define a JAX-RS client in Blueprint XML or Spring XML (using the
jaxrs:client element). For details of this approach, see Section 18.2, “Configuring JAX-
RS Client Endpoints”.

Dependencies

To use the JAX-RS 2.0 client API in your application, you must add the following Maven dependency to
your project’s pom.xml file:

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-rs-client</artifactId>
 <version>3.2.7.fuse-750027-redhat-00001</version>
</dependency>

If you plan to use the asynchronous invocation feature (see Section 49.6, “Asynchronous Processing on
the Client”), you also need the following Maven dependency:

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-hc</artifactId>
 <version>3.2.7.fuse-750027-redhat-00001</version>
</dependency>

Client API package

The JAX-RS 2.0 client interfaces and classes are located in the following Java package:

javax.ws.rs.client

When developing JAX-RS 2.0 Java clients, you also typically need to access classes from the core
package:

CHAPTER 49. JAX-RS 2.0 CLIENT API

509

javax.ws.rs.core

Example of a simple client request

The following code fragment shows a simple example, where the JAX-RS 2.0 client API is used to make
an invocation on the http://example.org/bookstore JAX-RS service, invoking with the GET HTTP
method:

// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
Response res = client.target("http://example.org/bookstore/books/123")
 .request("application/xml").get();

Fluent API

The JAX-RS 2.0 client API is designed as a fluent API (sometimes called a Domain Specific Language).
In the fluent API, a chain of Java methods is invoked in a single statement, in such a way that the Java
methods look like the commands from a simple language. In JAX-RS 2.0, the fluent API is used to build
and invoke a REST request.

Steps to make a REST invocation

Using the JAX-RS 2.0 client API, a client invocation is built and invoked in a series of steps, as follows:

1. Bootstrap the client.

2. Configure the target.

3. Build and make the invocation.

4. Parse the response.

Bootstrap the client

The first step is to bootstrap the client, by creating a javax.ws.rs.client.Client object. This Client
instance is a relatively heavyweight object, which represents the stack of technologies required to
support a JAX-RS client (possibly including, interceptors and additional CXF features). Ideally, you
should re-use client objects when you can, instead of creating new ones.

To create a new Client object, invoke a static method on the ClientBuilder class, as follows:

// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
...
Client client = ClientBuilder.newClient();
...

Configure the target
By configuring the target, you effectively define the URI that will be used for the REST invocation. The

Red Hat Fuse 7.5 Apache CXF Development Guide

510

http://example.org/bookstore

By configuring the target, you effectively define the URI that will be used for the REST invocation. The
following example shows how you can define a base URI, base, and then add additional path segments
to the base URI, using the path(String) method:

// Java
import javax.ws.rs.client.WebTarget;
...
WebTarget base = client.target("http://example.org/bookstore/");
WebTarget books = base.path("books").path("{id}");
...

Build and make the invocation

This is really two steps rolled up into one: firstly, you build up the HTTP request (including headers,
accepted media types, and so on); and secondly, you invoke the relevant HTTP method (optionally
providing a request message body, if one is required).

For example, to create and invoke a request that accepts the application/xml media type:

// Java
import javax.ws.rs.core.Response;
...
Response resp = books.resolveTemplate("id", "123").request("application/xml").get();

Parse the response

Finally, you need to parse the respose, resp, obtained in the previous step. Usually, the response is
returned in the form of a javax.ws.rs.core.Response object, which encapsulates HTTP headers, along
with other HTTP metadata, and the HTTP message body (if any).

If you want to access the returned HTTP message in String format, you can easily do so by invoking the
readEntity method with a String.class argument, as follows:

// Java
...
String msg = resp.readEntity(String.class);

You can always access the message body of a response as a String, by specifying String.class as the
argument to readEntity. For more general transformations or conversions of the message body, you
can provide an entity provider to perform the conversion. For more details, see Section 49.4, “Parsing
Requests and Responses”.

49.2. BUILDING THE CLIENT TARGET

Overview

After creating the initial Client instance, the next step is to build up the request URI. The WebTarget
builder class enables you to configure all aspects of the URI, including the URI path and query
parameters.

WebTarget builder class

The javax.ws.rs.client.WebTarget builder class provides the part of the fluent API that enables you to

CHAPTER 49. JAX-RS 2.0 CLIENT API

511

The javax.ws.rs.client.WebTarget builder class provides the part of the fluent API that enables you to
build up the REST URI for the request.

Create the client target

To create a WebTarget instance, invoke one of the target methods on a javax.ws.rs.client.Client
instance. For example:

// Java
import javax.ws.rs.client.WebTarget;
...
WebTarget base = client.target("http://example.org/bookstore/");

Base path and path segments

You can specify the complete path all in one go, using the target method; or you can specify a base
path, and then add path segments piece by piece, using a combination of the target method and the
path methods. The advantage of combining a base path with path segments is that you can easily re-
use the base path WebTarget object for multiple invocations on slightly different targets. For example:

// Java
import javax.ws.rs.client.WebTarget;
...
WebTarget base = client.target("http://example.org/bookstore/");
WebTarget headers = base.path("bookheaders");
// Now make some invocations on the 'headers' target...
...
WebTarget collections = base.path("collections");
// Now make some invocations on the 'collections' target...
...

URI template parameters

The syntax of the target path also supports URI template parameters. That is, a path segment can be
initialized with a template parameter, {param}, which subsequently gets resolved to a specify value. For
example:

// Java
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
WebTarget base = client.target("http://example.org/bookstore/");
WebTarget books = base.path("books").path("{id}");
...
Response resp = books.resolveTemplate("id", "123").request("application/xml").get();

Where the resolveTemplate method replaces the path segment, {id}, with the value 123.

Define query parameters

Query parameters can be appended to the URI path, where the beginning of the query parameters is
marked by a single ? character. This mechanism enables you to set a series of name/value pairs, using
the syntax: ?name1=value1&name2=value2&…

Red Hat Fuse 7.5 Apache CXF Development Guide

512

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/client/WebTarget.html

A WebTarget instance enables you to define query parameters using the queryParam method, as
follows:

// Java
WebTarget target = client.target("http://example.org/bookstore/")
 .queryParam("userId","Agamemnon")
 .queryParam("lang","gr");

Define matrix parameters

Matrix parameters are somewhat similar to query parameters, but are not as widely supported and use a
different syntax. To define a matrix parameter on a WebTarget instance, invoke the
matrixParam(String, Object) method.

49.3. BUILDING THE CLIENT INVOCATION

Overview

After building the target URI, using the WebTarget builder class, the next step is to configure the other
aspects of the request—such as HTTP headers, cookies, and so on—using the Invocation.Builder class.
The final step in building the invocation is to invoke the appropriate HTTP verb (GET, POST, PUT, or
DELETE) and provide a message body, if required.

Invocation.Builder class

The javax.ws.rs.client.Invocation.Builder builder class provides the part of the fluent API that enables
you to build up the contents of the HTTP message and to invoke a HTTP method.

Create the invocation builder

To create an Invocation.Builder instance, invoke one of the request methods on a
javax.ws.rs.client.WebTarget instance. For example:

// Java
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.client.Invocation.Builder;
...
WebTarget books = client.target("http://example.org/bookstore/books/123");
Invocation.Builder invbuilder = books.request();

Define HTTP headers

You can add a HTTP header to the request message using the header method, as follows:

Invocation.Builder invheader = invbuilder.header("From", "fionn@example.org");

Define cookies

You can add a cookie to the request message using the cookie method, as follows:

Invocation.Builder invcookie = invbuilder.cookie("myrestclient", "123xyz");

CHAPTER 49. JAX-RS 2.0 CLIENT API

513

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/client/Invocation.Builder.html

Define properties

You can set a property in the context of this request using the property method, as follows:

Invocation.Builder invproperty = invbuilder.property("Name", "Value");

Define accepted media types, languages, or encodings

You can define accepted media types, languages, or encodings, as follows:

Invocation.Builder invmedia = invbuilder.accept("application/xml")
 .acceptLanguage("en-US")
 .acceptEncoding("gzip");

Invoke HTTP method

The process of building a REST invocation is terminated by invoking a HTTP method, which performs the
HTTP invocation. The following methods (inherited from the javax.ws.rs.client.SyncInvoker base
class) can be invoked:

get
post
delete
put
head
trace
options

If the specific HTTP verb you want to invoke is not on this list, you can use the generic method method
to invoke any HTTP method.

Typed responses

All of the HTTP invocation methods are provided with an untyped variant and a typed variant (which
takes an extra argument). If you invoke a request using the default get() method (taking no arguments),
a javax.ws.rs.core.Response object is returned from the invocation. For example:

Response res = client.target("http://example.org/bookstore/books/123")
 .request("application/xml").get();

It is also possible, however, to ask for the response to be returned as a specific type, using the
get(Class<T>) method. For example, to invoke a request and ask for the response to be returned as a
BookInfo object:

BookInfo res = client.target("http://example.org/bookstore/books/123")
 .request("application/xml").get(BookInfo.class);

In order for this to work, however, you must register a suitable entity provider with the Client instance,
which is capable of mapping the response format, application/xml, to the requested type. For more
details about entity providers, see Section 49.4, “Parsing Requests and Responses” .

Specifying the outgoing message in post or put

Red Hat Fuse 7.5 Apache CXF Development Guide

514

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/client/SyncInvoker.html

For HTTP methods that include a message body in the request (such as POST or PUT), you must
specify the message body as the first argument of the method. The message body must be specified as
a javax.ws.rs.client.Entity object, where the Entity encapsulates the message contents and its
associated media type. For example, to invoke a POST method, where the message contents are
provided as a String type:

import javax.ws.rs.client.Entity;
...
Response res = client.target("http://example.org/bookstore/registerbook")
 .request("application/xml")
 .put(Entity.entity("Red Hat Install Guide", "text/plain"));

If necessary, the Entity.entity() constructor method will automatically map the supplied message
instance to the specified media type, using the registered entity providers. It is always possible to
specify the message body as a simple String type.

Delayed invocation

Instead of invoking the HTTP request right away (for example, by invoking the get() method), you have
the option of creating an javax.ws.rs.client.Invocation object, which can be invoked at a later time. The
Invocation object encapsulates all of the details of the pending invocation, including the HTTP method.

The following methods can be used to build an Invocation object:

buildGet
buildPost
buildDelete
buildPut
build

For example, to create a GET Invocation object and invoke it at a later time, you can use code like the
following:

import javax.ws.rs.client.Invocation;
import javax.ws.rs.core.Response;
...
Invocation getBookInfo = client.target("http://example.org/bookstore/books/123")
 .request("application/xml").buildGet();
...
// Later on, in some other part of the application:
Response = getBookInfo.invoke();

Asynchronous invocation

The JAX-RS 2.0 client API supports asynchronous invocations on the client side. To make an
asynchronous invocation, simply invoke the async() method in the chain of methods following
request(). For example:

Future<Response> res = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get();

When you make an asynchronous invocation, the returned value is a java.util.concurrent.Future object.

CHAPTER 49. JAX-RS 2.0 CLIENT API

515

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/client/Invocation.html

When you make an asynchronous invocation, the returned value is a java.util.concurrent.Future object.
For more details about asynchronous invocations, see Section 49.6, “Asynchronous Processing on the
Client”.

49.4. PARSING REQUESTS AND RESPONSES

Overview

An essential aspect of making HTTP invocations is that the client must be able to parse the outgoing
request messages and the incoming responses. In JAX-RS 2.0, the key concept is the Entity class,
which represents a raw message tagged with a media type. In order to parse the raw message, you can
register multiple entity providers, which have the capability to convert media types to and from
particular Java types.

In other words, in the context of JAX-RS 2.0, an Entity is the representation of a raw message and an
entity provider is the plug-in that provides the capability to parse the raw message (based on the media
type).

Entities

An Entity is a message body augmented by metadata (media type, language, and encoding). An Entity
instance holds the message in a raw format and is associated with a specific media type. To convert the
contents of an Entity object to a Java object you require an entity provider, which is capable of mapping
the given media type to the required Java type.

Variants

A javax.ws.rs.core.Variant object encapsulates the metadata associated with an Entity, as follows:

Media type,

Language,

Encoding.

Effectively, you can think of an Entity as consisting of the HTTP message contents, augmented by
Variant metadata.

Entity providers

An entity provider is a class that provides the capability of mapping between a media type and a Java
type. Effectively, you can think of an entity provider as a class that provides the ability to parse
messages of a particular media type (or possibly of multiple media types). There are two different
varieties of entity provider:

MessageBodyReader

Provides the capability of mapping from media type(s) to a Java type.

MessageBodyWriter

Provides the capability of mapping from a Java type to a media type.

Standard entity providers

Entity providers for the following Java and media type combinations are provided as standard:

Red Hat Fuse 7.5 Apache CXF Development Guide

516

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/core/Variant.html

byte[]

All media types (*/*).

java.lang.String

All media types (*/*).

java.io.InputStream

All media types (*/*).

java.io.Reader

All media types (*/*).

java.io.File

All media types (*/*).

javax.activation.DataSource

All media types (*/*).

javax.xml.transform.Source

XML types (text/xml, application/xml, and media types of the form application/*+xml).

javax.xml.bind.JAXBElement and application-supplied JAXB classes

XML types (text/xml, application/xml, and media types of the form application/*+xml).

MultivaluedMap<String,String>

Form content (application/x-www-form-urlencoded).

StreamingOutput

All media types (*/*), MessageBodyWriter only.

java.lang.Boolean, java.lang.Character, java.lang.Number

Only for text/plain. Corresponding primitive types supported through boxing/unboxing conversion.

Response object

The default return type is the javax.ws.rs.core.Response type, which represents an untyped response.
The Response object provides access to the complete HTTP response, including the message body,
HTTP status, HTTP headers, media type, and so on.

Accessing the response status

You can access the response status, either through the getStatus method (which returns the HTTP
status code):

int status = resp.getStatus();

Or though the getStatusInfo method, which also provides a description string:

String statusReason = resp.getStatusInfo().getReasonPhrase();

Accessing the returned headers

You can access the HTTP headers using any of the following methods:

MultivaluedMap<String,Object>
getHeaders()

CHAPTER 49. JAX-RS 2.0 CLIENT API

517

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/core/Response.html

MultivaluedMap<String,String>
getStringHeaders()

String
getHeaderString(String name)

For example, if you know that the Response has a Date header, you could access it as follows:

String dateAsString = resp.getHeaderString("Date");

Accessing the returned cookies

You can access any new cookies set on the Response using the getCookies method, as follows:

import javax.ws.rs.core.NewCookie;
...
java.util.Map<String,NewCookie> cookieMap = resp.getCookies();
java.util.Collection<NewCookie> cookieCollection = cookieMap.values();

Accessing the returned message content

You can access the returned message content by invoking one of the readEntity methods on the
Response object. The readEntity method automatically invokes the available entity providers to
convert the message to the requested type (specified as the first argument of readEntity). For
example, to access the message content as a String type:

String messageBody = resp.readEntity(String.class);

Collection return value

If you need to access the returned message as a Java generic type—for example, as a List or Collection
type—you can specify the request message type using the javax.ws.rs.core.GenericType<T>
construction. For example:

import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import javax.ws.rs.core.GenericType;
import java.util.List;
...
GenericType<List<String>> stringListType = new GenericType<List<String>>() {};

Client client = ClientBuilder.newClient();
List<String> bookNames = client.target("http://example.org/bookstore/booknames")
 .request("text/plain")
 .get(stringListType);

49.5. CONFIGURING THE CLIENT ENDPOINT

Overview

It is possible to augment the functionality of the base javax.ws.rs.client.Client object by registering

Red Hat Fuse 7.5 Apache CXF Development Guide

518

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/core/GenericType.html

It is possible to augment the functionality of the base javax.ws.rs.client.Client object by registering
and configuring features and providers.

Example

The following example shows a client configured to have a logging feature, a custom entity provider, and
to set the prettyLogging property to true:

// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import org.apache.cxf.feature.LoggingFeature;
...
Client client = ClientBuilder.newClient();
client.register(LoggingFeature.class)
 .register(MyCustomEntityProvider.class)
 .property("LoggingFeature.prettyLogging","true");

Configurable API for registering objects

The Client class supports the Configurable API for registering objects, which provides several variants
of the register method. In most cases, you would register either a class or an object instance, as shown in
the following examples:

client.register(LoggingFeature.class)
client.register(new LoggingFeature())

For more details about the register variants, see the reference documentation for Configurable.

What can you configure on the client?

You can configure the following aspects of a client endpoint:

Features

Providers

Properties

Filters

Interceptors

Features

A javax.ws.rs.core.Feature is effectively a plug-in that adds an extra feature or functionality to a JAX-
RS client. Often, a feature installs one or more interceptors in order to provide the required
functionality.

Providers

A provider is a particular kind of client plug-in that provides a mapping capability. The JAX-RS 2.0
specification defines the following kinds of provider:

CHAPTER 49. JAX-RS 2.0 CLIENT API

519

https://docs.oracle.com/javaee/7/api/javax/ws/rs/core/Configurable.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/core/Feature.html

Entity providers

An entity provider provides the capability of mapping between a specific media type a Java type. For
more details, see Section 49.4, “Parsing Requests and Responses” .

Exception mapping providers

An exception mapping provider maps a checked runtime exception to an instance of Response.

Context providers

A context provider is used on the server side, to supply context to resource classes and other service
providers.

Filters

A JAX-RS 2.0 filter is a plug-in that gives you access to the URI, headers, and miscellaneous context
data at various points (extension points) of the message processing pipeline. For details, see
Chapter 61, JAX-RS 2.0 Filters and Interceptors .

Interceptors

A JAX-RS 2.0 interceptor is a plug-in that gives you access to the message body of a request or
response as it is being read or written. For details, see Chapter 61, JAX-RS 2.0 Filters and Interceptors .

Properties

By setting one or more properties on the client, you can customize the configuration of a registered
feature or a registered provider.

Other configurable types

It is possible, not only to configure a javax.ws.rs.client.Client (and javax.ws.rs.client.ClientBuilder)
object, but also a WebTarget object. When you change the configuration of a WebTarget object, the
underlying client configuration is deep copied to give the new WebTarget configuration. Hence, it is
possible to change the configuration of the WebTarget object without changing the configuration of
the original Client object.

49.6. ASYNCHRONOUS PROCESSING ON THE CLIENT

Overview

JAX-RS 2.0 supports asynchronous processing of invocations on the client side. Two different styles of
asynchronous processing are supported: either using a java.util.concurrent.Future<V> return value; or
by registering an invocation callback.

Asynchronous invocation with Future<V> return value

Using the Future<V> approach to asynchronous processing, you can invoke a client request
asynchronously, as follows:

// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import java.util.concurrent.Future;
import javax.ws.rs.core.Response;

Red Hat Fuse 7.5 Apache CXF Development Guide

520

...
Client client = ClientBuilder.newClient();
Future<Response> futureResp = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get();
...
// At a later time, check (and wait) for the response:
Response resp = futureResp.get();

You can use a similar approach for typed responses. For example, to get a response of type, BookInfo:

Client client = ClientBuilder.newClient();
Future<BookInfo> futureResp = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get(BookInfo.class);
...
// At a later time, check (and wait) for the response:
BookInfo resp = futureResp.get();

Asynchronous invocation with invocation callback

Instead of accessing the return value using a Future<V> object, you can define an invocation callback
(using javax.ws.rs.client.InvocationCallback<RESPONSE>), as follows:

// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import java.util.concurrent.Future;
import javax.ws.rs.core.Response;
import javax.ws.rs.client.InvocationCallback;
...
Client client = ClientBuilder.newClient();
Future<Response> futureResp = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get(
 new InvocationCallback<Response>() {
 @Override
 public void completed(final Response resp) {
 // Do something when invocation is complete
 ...
 }

 @Override
 public void failed(final Throwable throwable) {
 throwable.printStackTrace();
 }
 });
...

You can use a similar approach for typed responses:

CHAPTER 49. JAX-RS 2.0 CLIENT API

521

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/client/InvocationCallback.html

// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import java.util.concurrent.Future;
import javax.ws.rs.core.Response;
import javax.ws.rs.client.InvocationCallback;
...
Client client = ClientBuilder.newClient();
Future<BookInfo> futureResp = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get(
 new InvocationCallback<BookInfo>() {
 @Override
 public void completed(final BookInfo resp) {
 // Do something when invocation is complete
 ...
 }

 @Override
 public void failed(final Throwable throwable) {
 throwable.printStackTrace();
 }
 });
...

Red Hat Fuse 7.5 Apache CXF Development Guide

522

CHAPTER 50. HANDLING EXCEPTIONS

Abstract

When possible, exceptions caught by a resource method should cause a useful error to be returned to
the requesting consumer. JAX-RS resource methods can throw a WebApplicationException exception.
You can also provide ExceptionMapper<E> implementations to map exceptions to appropriate
responses.

50.1. OVERVIEW OF JAX-RS EXCEPTION CLASSES

Overview

In JAX-RS 1.x, the only available exception class is WebApplicationException. Since JAX-WS 2.0,
however, a number of additional JAX-RS exception classes have been defined.

JAX-RS runtime level exceptions

The following exceptions are meant to be thrown by the JAX-RS runtime only (that is, you must not
throw these exceptions from your application level code):

ProcessingException

(JAX-RS 2.0 only) The javax.ws.rs.ProcessingException can be thrown during request
processing or during response processing in the JAX-RS runtime. For example, this error could be
thrown due to errors in the filter chain or interceptor chain processing.

ResponseProcessingException

(JAX-RS 2.0 only) The javax.ws.rs.client.ResponseProcessingException is a subclass of
ProcessingException, which can be thrown when errors occur in the JAX-RS runtime on the client
side.

JAX-RS application level exceptions

The following exceptions are intended to be thrown (and caught) in your application level code:

WebApplicationException

The javax.ws.rs.WebApplicationException is a generic application level JAX-RS exception, which
can be thrown in application code on the server side. This exception type can encapsulate a HTTP
status code, an error message, and (optionally) a response message. For details, see Section 50.2,
“Using WebApplicationException exceptions to report”.

ClientErrorException

(JAX-RS 2.0 only) The javax.ws.rs.ClientErrorException exception class inherits from
WebApplicationException and is used to encapsulate HTTP 4xx status codes.

ServerErrorException

(JAX-RS 2.0 only) The javax.ws.rs.ServerErrorException exception class inherits from
WebApplicationException and is used to encapsulate HTTP 5xx status codes.

RedirectionException

(JAX-RS 2.0 only) The javax.ws.rs.RedirectionException exception class inherits from
WebApplicationException and is used to encapsulate HTTP 3xx status codes.

CHAPTER 50. HANDLING EXCEPTIONS

523

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/ProcessingException.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/javax/ws/rs/client/ResponseProcessingException.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html?javax/ws/rs/WebApplicationException.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html?javax/ws/rs/ClientErrorException.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html?javax/ws/rs/ServerErrorException.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html?javax/ws/rs/RedirectionException.html

50.2. USING WEBAPPLICATIONEXCEPTION EXCEPTIONS TO REPORT

 errors
indexterm:[WebApplicationException]

Overview

The JAX-RS API introduced the WebApplicationException runtime exception to provide an easy way for
resource methods to create exceptions that are appropriate for RESTful clients to consume.
WebApplicationException exceptions can include a Response object that defines the entity body to
return to the originator of the request. It also provides a mechanism for specifying the HTTP status code
to be returned to the client if no entity body is provided.

Creating a simple exception

The easiest means of creating a WebApplicationException exception is to use either the no argument
constructor or the constructor that wraps the original exception in a WebApplicationException
exception. Both constructors create a WebApplicationException with an empty response.

When an exception created by either of these constructors is thrown, the runtime returns a response
with an empty entity body and a status code of 500 Server Error.

Setting the status code returned to the client

When you want to return an error code other than 500, you can use one of the four
WebApplicationException constructors that allow you to specify the status. Two of these constructors,
shown in Example 50.1, “Creating a WebApplicationException with a status code” , take the return status
as an integer.

Example 50.1. Creating a WebApplicationException with a status code

WebApplicationExceptionintstatusWebApplicationExceptionjava.lang.Throwablecauseintstatu
s

The other two, shown in Example 50.2, “Creating a WebApplicationException with a status code” take
the response status as an instance of Response.Status.

Example 50.2. Creating a WebApplicationException with a status code

WebApplicationExceptionjavax.ws.rs.core.Response.StatusstatusWebApplicationExceptionja
va.lang.Throwablecausejavax.ws.rs.core.Response.Statusstatus

When an exception created by either of these constructors is thrown, the runtime returns a response
with an empty entity body and the specified status code.

Providing an entity body

If you want a message to be sent along with the exception, you can use one of the
WebApplicationException constructors that takes a Response object. The runtime uses the Response
object to create the response sent to the client. The entity stored in the response is mapped to the

Red Hat Fuse 7.5 Apache CXF Development Guide

524

entity body of the message and the status field of the response is mapped to the HTTP status of the
message.

Example 50.3, “Sending a message with an exception” shows code for returning a text message to a
client containing the reason for the exception and sets the HTTP message status to 409 Conflict.

Example 50.3. Sending a message with an exception

import javax.ws.rs.core.Response;
import javax.ws.rs.WebApplicationException;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

...
ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(Response.Status.CONFLICT);
builder.entity("The requested resource is conflicted.");
Response response = builder.build();
throw WebApplicationException(response);

Extending the generic exception

It is possible to extend the WebApplicationException exception. This would allow you to create custom
exceptions and eliminate some boiler plate code.

Example 50.4, “Extending WebApplicationException” shows a new exception that creates a similar
response to the code in Example 50.3, “Sending a message with an exception” .

Example 50.4. Extending WebApplicationException

public class ConflicteddException extends WebApplicationException
{
 public ConflictedException(String message)
 {
 ResponseBuilderImpl builder = new ResponseBuilderImpl();
 builder.status(Response.Status.CONFLICT);
 builder.entity(message);
 super(builder.build());
 }
}

...
throw ConflictedException("The requested resource is conflicted.");

50.3. JAX-RS 2.0 EXCEPTION TYPES

Overview

JAX-RS 2.0 introduces a number of specific HTTP exception types that you can throw (and catch) in
your application code (in addition to the existing WebApplicationException exception type). These
exception types can be used to wrap standard HTTP status codes, either for HTTP client errors (HTTP
4xx status codes), or HTTP server errors (HTTP 5xx status codes).

CHAPTER 50. HANDLING EXCEPTIONS

525

Exception hierarchy

Figure 50.1, “JAX-RS 2.0 Application Exception Hierarchy” shows the hierarchy of application level
exceptions supported in JAX-RS 2.0.

Figure 50.1. JAX-RS 2.0 Application Exception Hierarchy

WebApplicationException class

The javax.ws.rs.WebApplicationException exception class (which has been available since JAX-RS
1.x) is at the base of the JAX-RS 2.0 exception hierarchy, and is described in detail in Section 50.2,
“Using WebApplicationException exceptions to report”.

ClientErrorException class

The javax.ws.rs.ClientErrorException exception class is used to encapsulate HTTP client errors
(HTTP 4xx status codes). In your application code, you can throw this exception or one of its subclasses.

ServerErrorException class

The javax.ws.rs.ServerErrorException exception class is used to encapsulate HTTP server errors
(HTTP 5xx status codes). In your application code, you can throw this exception or one of its subclasses.

RedirectionException class

The javax.ws.rs.RedirectionException exception class is used to encapsulate HTTP request
redirection (HTTP 3xx status codes). The constructors of this class take a URI argument, which specifies
the redirect location. The redirect URI is accessible through the getLocation() method. Normally, HTTP
redirection is transparent on the client side.

Client exception subclasses

You can raise the following HTTP client exceptions (HTTP 4xx status codes) in a JAX-RS 2.0

Red Hat Fuse 7.5 Apache CXF Development Guide

526

https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html?javax/ws/rs/WebApplicationException.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html?javax/ws/rs/ClientErrorException.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html?javax/ws/rs/ServerErrorException.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html?javax/ws/rs/RedirectionException.html

You can raise the following HTTP client exceptions (HTTP 4xx status codes) in a JAX-RS 2.0
application:

BadRequestException

Encapsulates the 400 Bad Request HTTP error status.

ForbiddenException

Encapsulates the 403 Forbidden HTTP error status.

NotAcceptableException

Encapsulates the 406 Not Acceptable HTTP error status.

NotAllowedException

Encapsulates the 405 Method Not Allowed HTTP error status.

NotAuthorizedException

Encapsulates the 401 Unauthorized HTTP error status. This exception could be raised in either of the
following cases:

The client did not send the required credentials (in a HTTP Authorization header), or

The client presented the credentials, but the credentials were not valid.

NotFoundException

Encapsulates the 404 Not Found HTTP error status.

NotSupportedException

Encapsulates the 415 Unsupported Media Type HTTP error status.

Server exception subclasses

You can raise the following HTTP server exceptions (HTTP 5xx status codes) in a JAX-RS 2.0
application:

InternalServerErrorException

Encapsulates the 500 Internal Server Error HTTP error status.

ServiceUnavailableException

Encapsulates the 503 Service Unavailable HTTP error status.

50.4. MAPPING EXCEPTIONS TO RESPONSES

Overview

There are instances where throwing a WebApplicationException exception is impractical or impossible.
For example, you may not want to catch all possible exceptions and then create a
WebApplicationException for them. You may also want to use custom exceptions that make working
with your application code easier.

To handle these cases the JAX-RS API allows you to implement a custom exception provider that
generates a Response object to send to a client. Custom exception providers are created by
implementing the ExceptionMapper<E> interface. When registered with the Apache CXF runtime, the
custom provider will be used whenever an exception of type E is thrown.

How exception mappers are selected

CHAPTER 50. HANDLING EXCEPTIONS

527

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

Exception mappers are used in two cases:

When any exception or one of its subclasses, is thrown, the runtime will check for an appropriate
exception mapper. An exception mapper is selected if it handles the specific exception thrown. If
there is not an exception mapper for the specific exception that was thrown, the exception
mapper for the nearest superclass of the exception is selected.

By default, a WebApplicationException will be handled by the default mapper,
WebApplicationExceptionMapper. Even if an additional custom mapper is registered, which
could potentially handle a WebApplicationException exception (for example, a custom
RuntimeException mapper), the custom mapper will not be used and the
WebApplicationExceptionMapper will be used instead.
This behaviour can be changed, however, by setting the default.wae.mapper.least.specific
property to true on a Message object. When this option is enabled, the default
WebApplicationExceptionMapper is relegated to the lowest priority, so that it becomes
possible to handle a WebApplicationException exception with a custom exception mapper. For
example, if this option is enabled, it would be possible to catch a WebApplicationException
exception by registering a custom RuntimeException mapper. See the section called
“Registering an exception mapper for WebApplicationException”.

If an exception mapper is not found for an exception, the exception is wrapped in an ServletException
exception and passed onto the container runtime. The container runtime will then determine how to
handle the exception.

Implementing an exception mapper

Exception mappers are created by implementing the javax.ws.rs.ext.ExceptionMapper<E> interface. As
shown in Example 50.5, “Exception mapper interface”, the interface has a single method, toResponse(),
that takes the original exception as a parameter and returns a Response object.

Example 50.5. Exception mapper interface

public interface ExceptionMapper<E extends java.lang.Throwable>
{
 public Response toResponse(E exception);
}

The Response object created by the exception mapper is processed by the runtime just like any other
Response object. The resulting response to the consumer will contain the status, headers, and entity
body encapsulated in the Response object.

Exception mapper implementations are considered providers by the runtime. Therefore they must be
decorated with the @Provider annotation.

If an exception occurs while the exception mapper is building the Response object, the runtime will
send a response with a status of 500 Server Error to the consumer.

Example 50.6, “Mapping an exception to a response” shows an exception mapper that intercepts Spring
AccessDeniedException exceptions and generates a response with a 403 Forbidden status and an
empty entity body.

Example 50.6. Mapping an exception to a response

import javax.ws.rs.core.Response;

Red Hat Fuse 7.5 Apache CXF Development Guide

528

import javax.ws.rs.ext.ExceptionMapper;

import org.springframework.security.AccessDeniedException;

@Provider
public class SecurityExceptionMapper implements ExceptionMapper<AccessDeniedException>
{

 public Response toResponse(AccessDeniedException exception)
 {
 return Response.status(Response.Status.FORBIDDEN).build();
 }

}

The runtime will catch any AccessDeniedException exceptions and create a Response object with no
entity body and a status of 403. The runtime will then process the Response object as it would for a
normal response. The result is that the consumer will receive an HTTP response with a status of 403.

Registering an exception mapper

Before a JAX-RS application can use an exception mapper, the exception mapper must be registered
with the runtime. Exception mappers are registered with the runtime using the jaxrs:providers element
in the application’s configuration file.

The jaxrs:providers element is a child of the jaxrs:server element and contains a list of bean elements.
Each bean element defines one exception mapper.

Example 50.7, “Registering exception mappers with the runtime” shows a JAX-RS server configured to
use a custom exception mapper, SecurityExceptionMapper.

Example 50.7. Registering exception mappers with the runtime

<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="securityException" class="com.bar.providers.SecurityExceptionMapper"/>
 </jaxrs:providers>
 </jaxrs:server>
</beans>

Registering an exception mapper for WebApplicationException

Registering an exception mapper for a WebApplicationException exception is a special case, because
this exception type is automatically handled by the default WebApplicationExceptionMapper.
Normally, even when you register a custom mapper that you would expect to handle
WebApplicationException, it will continue to be handled by the default
WebApplicationExceptionMapper. To change this default behaviour, you need to set the
default.wae.mapper.least.specific property to true.

For example, the following XML code shows how to enable the default.wae.mapper.least.specific

CHAPTER 50. HANDLING EXCEPTIONS

529

For example, the following XML code shows how to enable the default.wae.mapper.least.specific
property on a JAX-RS endpoint:

<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="securityException" class="com.bar.providers.SecurityExceptionMapper"/>
 </jaxrs:providers>
 <jaxrs:properties>
 <entry key="default.wae.mapper.least.specific" value="true"/>
 </jaxrs:properties>
 </jaxrs:server>
</beans>

You can also set the default.wae.mapper.least.specific property in an interceptor, as shown in the
following example:

// Java
public void handleMessage(Message message)
{
 m.put("default.wae.mapper.least.specific", true);
 ...

Red Hat Fuse 7.5 Apache CXF Development Guide

530

CHAPTER 51. ENTITY SUPPORT

Abstract

The Apache CXF runtime supports a limited number of mappings between MIME types and Java objects
out of the box. Developers can extend the mappings by implementing custom readers and writers. The
custom readers and writers are registered with the runtime at start-up.

OVERVIEW

The runtime relies on JAX-RS MessageBodyReader and MessageBodyWriter implementations to
serialize and de-serialize data between the HTTP messages and their Java representations. The readers
and writers can restrict the MIME types they are capable of processing.

The runtime provides readers and writers for a number of common mappings. If an application requires
more advanced mappings, a developer can provide custom implementations of the
MessageBodyReader interface and/or the MessageBodyWriter interface. Custom readers and writers
are registered with the runtime when the application is started.

NATIVELY SUPPORTED TYPES

Table 51.1, “Natively supported entity mappings” lists the entity mappings provided by Apache CXF out
of the box.

Table 51.1. Natively supported entity mappings

Java Type MIME Type

primitive types text/plain

java.lang.Number text/plain

byte[] */*

java.lang.String */*

java.io.InputStream */*

java.io.Reader */*

java.io.File */*

javax.activation.DataSource */*

javax.xml.transform.Source text/xml, application/xml, application/*+xml

javax.xml.bind.JAXBElement text/xml, application/xml, application/*+xml

JAXB annotated objects text/xml, application/xml, application/*+xml

CHAPTER 51. ENTITY SUPPORT

531

javax.ws.rs.core.MultivaluedMap<String, String> application/x-www-form-urlencoded [a]

javax.ws.rs.core.StreamingOutput */* [b]

[a] This mapping is used for handling HTML form data.

[b] This mapping is only supported for returning data to a consumer.

Java Type MIME Type

CUSTOM READERS

Custom entity readers are responsible for mapping incoming HTTP requests into a Java type that a
service’s implementation can manipulate. They implement the javax.ws.rs.ext.MessageBodyReader
interface.

The interface, shown in Example 51.1, “Message reader interface” , has two methods that need
implementing:

Example 51.1. Message reader interface

package javax.ws.rs.ext;

public interface MessageBodyReader<T>
{
 public boolean isReadable(java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType);

 public T readFrom(java.lang.Class<T> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType,
 javax.ws.rs.core.MultivaluedMap<String, String> httpHeaders,
 java.io.InputStream entityStream)
 throws java.io.IOException, WebApplicationException;
}

isReadable()

The isReadable() method determines if the reader is capable of reading the data stream and
creating the proper type of entity representation. If the reader can create the proper type of entity
the method returns true.
Table 51.2, “Parameters used to determine if a reader can produce an entity” describes the
isReadable() method’s parameters.

Table 51.2. Parameters used to determine if a reader can produce an entity

Red Hat Fuse 7.5 Apache CXF Development Guide

532

Parameter Type Description

type Class<T> Specifies the actual Java class of
the object used to store the
entity.

genericType Type Specifies the Java type of the
object used to store the entity.
For example, if the message
body is to be converted into a
method parameter, the value will
be the type of the method
parameter as returned by the
Method.getGenericParamet
erTypes() method.

annotations Annotation[] Specifies the list of annotations
on the declaration of the object
created to store the entity. For
example if the message body is
to be converted into a method
parameter, this will be the
annotations on that parameter
returned by the
Method.getParameterAnnot
ations() method.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

readFrom()

The readFrom() method reads the HTTP entity and coverts it into the desired Java object. If the
reading is successful the method returns the created Java object containing the entity. If an error
occurs when reading the input stream the method should throw an IOException exception. If an error
occurs that requires an HTTP error response, an WebApplicationException with the HTTP response
should be thrown.
Table 51.3, “Parameters used to read an entity” describes the readFrom() method’s parameters.

Table 51.3. Parameters used to read an entity

Parameter Type Description

type Class<T> Specifies the actual Java class of
the object used to store the
entity.

CHAPTER 51. ENTITY SUPPORT

533

genericType Type Specifies the Java type of the
object used to store the entity.
For example, if the message
body is to be converted into a
method parameter, the value will
be the type of the method
parameter as returned by the
Method.getGenericParamet
erTypes() method.

annotations Annotation[] Specifies the list of annotations
on the declaration of the object
created to store the entity. For
example if the message body is
to be converted into a method
parameter, this will be the
annotations on that parameter
returned by the
Method.getParameterAnnot
ations() method.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

httpHeaders MultivaluedMap<String, String> Specifies the HTTP message
headers associated with the
entity.

entityStream InputStream Specifies the input stream
containing the HTTP entity.

Parameter Type Description

IMPORTANT

This method should not close the input stream.

Before an MessageBodyReader implementation can be used as an entity reader, it must be decorated
with the javax.ws.rs.ext.Provider annotation. The @Provider annotation alerts the runtime that the
supplied implementation provides additional functionality. The implementation must also be registered
with the runtime as described in the section called “Registering readers and writers” .

By default a custom entity provider handles all MIME types. You can limit the MIME types that a custom
entity reader will handle using the javax.ws.rs.Consumes annotation. The @Consumes annotation
specifies a comma separated list of MIME types that the custom entity provider reads. If an entity is not
of a specified MIME type, the entity provider will not be selected as a possible reader.

Example 51.2, “XML source entity reader” shows an entity reader the consumes XML entities and stores
them in a Source object.

Example 51.2. XML source entity reader

Red Hat Fuse 7.5 Apache CXF Development Guide

534

import java.io.IOException;
import java.io.InputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.Consumes;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.ext.MessageBodyReader;
import javax.ws.rs.ext.Provider;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.Source;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;

import org.w3c.dom.Document;
import org.apache.cxf.jaxrs.ext.xml.XMLSource;

@Provider
@Consumes({"application/xml", "application/*+xml", "text/xml", "text/html" })
public class SourceProvider implements MessageBodyReader<Object>
{
 public boolean isReadable(Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return Source.class.isAssignableFrom(type) || XMLSource.class.isAssignableFrom(type);
 }

 public Object readFrom(Class<Object> source,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType,
 MultivaluedMap<String, String> httpHeaders,
 InputStream is)
 throws IOException
 {
 if (DOMSource.class.isAssignableFrom(source))
 {
 Document doc = null;
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder;
 try
 {
 builder = factory.newDocumentBuilder();
 doc = builder.parse(is);
 }
 catch (Exception e)
 {
 IOException ioex = new IOException("Problem creating a Source object");
 ioex.setStackTrace(e.getStackTrace());
 throw ioex;
 }

CHAPTER 51. ENTITY SUPPORT

535

 return new DOMSource(doc);
 }
 else if (StreamSource.class.isAssignableFrom(source) ||
Source.class.isAssignableFrom(source))
 {
 return new StreamSource(is);
 }
 else if (XMLSource.class.isAssignableFrom(source))
 {
 return new XMLSource(is);
 }

 throw new IOException("Unrecognized source");
 }
}

CUSTOM WRITERS

Custom entity writers are responsible for mapping Java types into HTTP entities. They implement the
javax.ws.rs.ext.MessageBodyWriter interface.

The interface, shown in Example 51.3, “Message writer interface” , has three methods that need
implementing:

Example 51.3. Message writer interface

package javax.ws.rs.ext;

public interface MessageBodyWriter<T>
{
 public boolean isWriteable(java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType);

 public long getSize(T t,
 java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType);

 public void writeTo(T t,
 java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType,
 javax.ws.rs.core.MultivaluedMap<String, Object> httpHeaders,
 java.io.OutputStream entityStream)
 throws java.io.IOException, WebApplicationException;
}

Red Hat Fuse 7.5 Apache CXF Development Guide

536

isWriteable()

The isWriteable() method determines if the entity writer can map the Java type to the proper entity
type. If the writer can do the mapping, the method returns true.
Table 51.4, “Parameters used to read an entity” describes the isWritable() method’s parameters.

Table 51.4. Parameters used to read an entity

Parameter Type Description

type Class<T> Specifies the Java class of the
object being written.

genericType Type Specifies the Java type of object
to be written, obtained either by
reflection of a resource method
return type or via inspection of
the returned instance. The
GenericEntity class, described
in Section 48.4, “Returning
entities with generic type
information”, provides support
for controlling this value.

annotations Annotation[] Specifies the list of annotations
on the method returning the
entity.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

getSize()

The getSize() method is called before the writeTo(). It returns the length, in bytes, of the entity
being written. If a positive value is returned the value is written into the HTTP message’s Content-
Length header.
Table 51.5, “Parameters used to read an entity” describes the getSize() method’s parameters.

Table 51.5. Parameters used to read an entity

Parameter Type Description

t generic Specifies the instance being
written.

type Class<T> Specifies the Java class of the
object being written.

CHAPTER 51. ENTITY SUPPORT

537

genericType Type Specifies the Java type of object
to be written, obtained either by
reflection of a resource method
return type or via inspection of
the returned instance. The
GenericEntity class, described
in Section 48.4, “Returning
entities with generic type
information”, provides support
for controlling this value.

annotations Annotation[] Specifies the list of annotations
on the method returning the
entity.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

Parameter Type Description

writeTo()

The writeTo() method converts a Java object into the desired entity type and writes the entity to the
output stream. If an error occurs when writing the entity to the output stream the method should
throw an IOException exception. If an error occurs that requires an HTTP error response, an
WebApplicationException with the HTTP response should be thrown.
Table 51.6, “Parameters used to read an entity” describes the writeTo() method’s parameters.

Table 51.6. Parameters used to read an entity

Parameter Type Description

t generic Specifies the instance being
written.

type Class<T> Specifies the Java class of the
object being written.

genericType Type Specifies the Java type of object
to be written, obtained either by
reflection of a resource method
return type or via inspection of
the returned instance. The
GenericEntity class, described
in Section 48.4, “Returning
entities with generic type
information”, provides support
for controlling this value.

Red Hat Fuse 7.5 Apache CXF Development Guide

538

annotations Annotation[] Specifies the list of annotations
on the method returning the
entity.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

httpHeaders MultivaluedMap<String, Object> Specifies the HTTP response
headers associated with the
entity.

entityStream OutputStream Specifies the output stream into
which the entity is written.

Parameter Type Description

Before a MessageBodyWriter implementation can be used as an entity writer, it must be decorated with
the javax.ws.rs.ext.Provider annotation. The @Provider annotation alerts the runtime that the
supplied implementation provides additional functionality. The implementation must also be registered
with the runtime as described in the section called “Registering readers and writers” .

By default a custom entity provider handles all MIME types. You can limit the MIME types that a custom
entity writer will handle using the javax.ws.rs.Produces annotation. The @Produces annotation
specifies a comma separated list of MIME types that the custom entity provider generates. If an entity is
not of a specified MIME type, the entity provider will not be selected as a possible writer.

Example 51.4, “XML source entity writer” shows an entity writer that takes Source objects and produces
XML entities.

Example 51.4. XML source entity writer

import java.io.IOException;
import java.io.OutputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.Produces;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.ext.MessageBodyWriter;
import javax.ws.rs.ext.Provider;
import javax.xml.transform.Source;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;

import org.apache.cxf.jaxrs.ext.xml.XMLSource;

CHAPTER 51. ENTITY SUPPORT

539

@Provider
@Produces({"application/xml", "application/*+xml", "text/xml" })
public class SourceProvider implements MessageBodyWriter<Source>
{

 public boolean isWriteable(Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return Source.class.isAssignableFrom(type);
 }

 public void writeTo(Source source,
 Class<?> clazz,
 Type genericType,
 Annotation[] annotations,
 MediaType mediatype,
 MultivaluedMap<String, Object> httpHeaders,
 OutputStream os)
 throws IOException
 {
 StreamResult result = new StreamResult(os);
 TransformerFactory tf = TransformerFactory.newInstance();
 try
 {
 Transformer t = tf.newTransformer();
 t.transform(source, result);
 }
 catch (TransformerException te)
 {
 te.printStackTrace();
 throw new WebApplicationException(te);
 }
 }

 public long getSize(Source source,
 Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return -1;
 }
}

REGISTERING READERS AND WRITERS

Before a JAX-RS application can use any custom entity providers, the custom providers must be
registered with the runtime. Providers are registered with the runtime using either the jaxrs:providers
element in the application’s configuration file or using the JAXRSServerFactoryBean class.

The jaxrs:providers element is a child of the jaxrs:server element and contains a list of bean elements.
Each bean element defines one entity provider.

Red Hat Fuse 7.5 Apache CXF Development Guide

540

Example 51.5, “Registering entity providers with the runtime” show a JAX-RS server configured to use a
set of custom entity providers.

Example 51.5. Registering entity providers with the runtime

<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="isProvider" class="com.bar.providers.InputStreamProvider"/>
 <bean id="longProvider" class="com.bar.providers.LongProvider"/>
 </jaxrs:providers>
 </jaxrs:server>
</beans>

The JAXRSServerFactoryBean class is a Apache CXF extension that provides access to the
configuration APIs. It has a setProvider() method that allows you to add instantiated entity providers to
an application. Example 51.6, “Programmatically registering an entity provider” shows code for
registering an entity provider programmatically.

Example 51.6. Programmatically registering an entity provider

import org.apache.cxf.jaxrs.JAXRSServerFactoryBean;
...
JAXRSServerFactoryBean sf = new JAXRSServerFactoryBean();
...
SourceProvider provider = new SourceProvider();
sf.setProvider(provider);
...

CHAPTER 51. ENTITY SUPPORT

541

CHAPTER 52. GETTING AND USING CONTEXT INFORMATION

Abstract

Context information includes detailed information about a resource’s URI, the HTTP headers, and other
details that are not readily available using the other injection annotations. Apache CXF provides special
class that amalgamates the all possible context information into a single object.

52.1. INTRODUCTION TO CONTEXTS

Context annotation

You specify that context information is to be injected into a field or a resource method parameter using
the javax.ws.rs.core.Context annotation. Annotating a field or parameter of one of the context types
will instruct the runtime to inject the appropriate context information into the annotated field or
parameter.

Types of contexts

Table 52.1, “Context types” lists the types of context information that can be injected and the objects
that support them.

Table 52.1. Context types

Object Context information

UriInfo The full request URI

HttpHeaders The HTTP message headers

Request Information that can be used to determine the best
representation variant or to determine if a set of
preconditions have been set

SecurityContext Information about the security of the requester
including the authentication scheme in use, if the
request channel is secure, and the user principle

Where context information can be used

Context information is available to the following parts of a JAX-RS application:

resource classes

resource methods

entity providers

exception mappers

Scope

Red Hat Fuse 7.5 Apache CXF Development Guide

542

All context information injected using the @Context annotation is specific to the current request. This is
true in all cases including entity providers and exception mappers.

Adding contexts

The JAX-RS framework allows developers to extend the types of information that can be injected using
the context mechanism. You add custom contexts by implementing a Context<T> object and registering
it with the runtime.

52.2. WORKING WITH THE FULL REQUEST URI

Abstract

The request URI contains a significant amount of information. Most of this information can be accessed
using method parameters as described in Section 47.2.2, “Injecting data from a request URI” , however
using parameters forces certain constraints on how the URI is processed. Using parameters to access
the segments of a URI also does not provide a resource access to the full request URI.

You can provide access to the complete request URI by injecting the URI context into a resource. The
URI is provided as a UriInfo object. The UriInfo interface provides functions for decomposing the URI in a
number of ways. It can also provide the URI as a UriBuilder object that allows you to construct URIs to
return to clients.

:experimental:

52.2.1. Injecting the URI information

Overview

When a class field or method parameter that is a UriInfo object is decorated with the @Context
annotation, the URI context for the current request is injected into the UriInfo object.

Example

Injecting the URI context into a class field shows a class with a field populated by injecting the URI
context.

Injecting the URI context into a class field

import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.Path;
...
@Path("/monstersforhire/")
public class MonsterService
{
 @Context
 UriInfo requestURI;
 ...
}

52.2.2. Working with the URI

CHAPTER 52. GETTING AND USING CONTEXT INFORMATION

543

Overview

One of the main advantages of using the URI context is that it provides access to the base URI of the
service and the path segment of the URI for the selected resource. This information can be useful for a
number of purposes such as making processing decisions based on the URI or calculating URIs to return
as part of the response. For example if the base URI of the request contains a .com extension the
service may decide to use US dollars and if the base URI contains a .co.uk extension is may decide to us
British Pounds.

The UriInfo interface provides methods for accessing the parts of the URI:

the base URI

the resource path

the full URI

Getting the Base URI

The base URI is the root URI on which the service is published. It does not contain any portion of the URI
specified in any of the service’s @Path annotations. For example if a service implementing the resource
defined in Example 47.5, “Disabling URI decoding” were published to http://fusesource.org and a
request was made on http://fusesource.org/montersforhire/nightstalker?12 the base URI would be
http://fusesource.org.

Table 52.2, “Methods for accessing a resource’s base URI” describes the methods that return the base
URI.

Table 52.2. Methods for accessing a resource’s base URI

Method Desription

URIgetBaseUri Returns the service’s base URI as a URI object.

UriBuildergetBaseUriBuilder Returns the base URI as a
javax.ws.rs.core.UriBuilder object. The
UriBuilder class is useful for creating URIs for other
resources implemented by the service.

Getting the path

The path portion of the request URI is the portion of the URI that was used to select the current
resource. It does not include the base URI, but does include any URI template variable and matrix
parameters included in the URI.

The value of the path depends on the resource selected. For example, the paths for the resources
defined in Getting a resource’s path would be:

rootPath — /monstersforhire/

getterPath — /mostersforhire/nightstalker
The GET request was made on /monstersforhire/nightstalker.

putterPath — /mostersforhire/911
The PUT request was made on /monstersforhire/911.

Red Hat Fuse 7.5 Apache CXF Development Guide

544

http://fusesource.org
http://fusesource.org/montersforhire/nightstalker?12
http://fusesource.org

Getting a resource’s path

@Path("/monstersforhire/")
public class MonsterService
{
 @Context
 UriInfo rootUri;

 ...

 @GET
 public List<Monster> getMonsters(@Context UriInfo getUri)
 {
 String rootPath = rootUri.getPath();
 ...
 }

 @GET
 @Path("/{type}")
 public Monster getMonster(@PathParam("type") String type,
 @Context UriInfo getUri)
 {
 String getterPath = getUri.getPath();
 ...
 }

 @PUT
 @Path("/{id}")
 public void addMonster(@Encoded @PathParam("type") String type,
 @Context UriInfo putUri)
 {
 String putterPath = putUri.getPath();
 ...
 }
 ...
}

Table 52.3, “Methods for accessing a resource’s path” describes the methods that return the resource
path.

Table 52.3. Methods for accessing a resource’s path

Method Desription

StringgetPath Returns the resource’s path as a decoded URI.

StringgetPathbooleandecode Returns the resource’s path. Specifying false
disables URI decoding.

CHAPTER 52. GETTING AND USING CONTEXT INFORMATION

545

List<PathSegment>getPathSegments
Returns the decoded path as a list of
javax.ws.rs.core.PathSegment objects. Each portion
of the path, including matrix parameters, is placed
into a unique entry in the list.

For example the resource path box/round#tall
would result in a list with three entries: box, round,
and tall.

List<PathSegment>getPathSegmentsboolea
ndecode Returns the path as a list of

javax.ws.rs.core.PathSegment objects. Each portion
of the path, including matrix parameters, is placed
into a unique entry in the list. Specifying false
disables URI decoding.

For example the resource path box#tall/round
would result in a list with three entries: box, tall, and
round.

Method Desription

Getting the full request URI

Table 52.4, “Methods for accessing the full request URI” describes the methods that return the full
request URI. You have the option of returning the request URI or the absolute path of the resource. The
difference is that the request URI includes the any query parameters appended to the URI and the
absolute path does not include the query parameters.

Table 52.4. Methods for accessing the full request URI

Method Desription

URIgetRequestUri Returns the complete request URI, including query
parameters and matrix parameters, as a
java.net.URI object.

UriBuildergetRequestUriBuilder Returns the complete request URI, including query
parameters and matrix parameters, as a
javax.ws.rs.UriBuilder object. The UriBuilder
class is useful for creating URIs for other resources
implemented by the service.

URIgetAbsolutePath Returns the complete request URI, including matrix
parameters, as a java.net.URI object. The absolute
path does not include query parameters.

UriBuildergetAbsolutePathBuilder Returns the complete request URI, including matrix
parameters, as a javax.ws.rs.UriBuilder object.
The absolute path does not include query
parameters.

Red Hat Fuse 7.5 Apache CXF Development Guide

546

For a request made using the URI http://fusesource.org/montersforhire/nightstalker?12, the
getRequestUri() methods would return http://fusesource.org/montersforhire/nightstalker?12. The
getAbsolutePath() method would return http://fusesource.org/montersforhire/nightstalker.

52.2.3. Getting the value of URI template variables

Overview

As described in the section called “Setting the path” , resource paths can contain variable segments that
are bound to values dynamically. Often these variable path segments are used as parameters to a
resource method as described in the section called “Getting data from the URI’s path” . You can,
however, also access them through the URI context.

Methods for getting the path parameters

The UriInfo interface provides two methods, shown in Example 52.1, “Methods for returning path
parameters from the URI context”, that return a list of the path parameters.

Example 52.1. Methods for returning path parameters from the URI context

MultivaluedMap<java.lang.String,
java.lang.String>getPathParametersMultivaluedMap<java.lang.String,
java.lang.String>getPathParametersbooleandecode

The getPathParameters() method that does not take any parameters automatically decodes the path
parameters. If you want to disable URI decoding use getPathParameters(false).

The values are stored in the map using their template identifiers as keys. For example if the URI template
for the resource is /{color}/box/{note} the returned map will have two entries with the keys color and
note.

Example

Example 52.2, “Extracting path parameters from the URI context” shows code for retrieving the path
parameters using the URI context.

Example 52.2. Extracting path parameters from the URI context

import javax.ws.rs.Path;
import javax.ws.rs.Get;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.core.MultivaluedMap;

@Path("/monstersforhire/")
public class MonsterService

 @GET
 @Path("/{type}/{size}")
 public Monster getMonster(@Context UriInfo uri)
 {
 MultivaluedMap paramMap = uri.getPathParameters();
 String type = paramMap.getFirst("type");

CHAPTER 52. GETTING AND USING CONTEXT INFORMATION

547

http://fusesource.org/montersforhire/nightstalker?12
http://fusesource.org/montersforhire/nightstalker?12
http://fusesource.org/montersforhire/nightstalker

 String size = paramMap.getFirst("size");
 }
}

Red Hat Fuse 7.5 Apache CXF Development Guide

548

CHAPTER 53. ANNOTATION INHERITANCE

Abstract

JAX-RS annotations can be inherited by subclasses and classes implementing annotated interfaces. The
inheritance mechanism allows for subclasses and implementation classes to override the annotations
inherited from its parents.

OVERVIEW

Inheritance is one of the more powerful mechanisms in Java because it allows developers to create
generic objects that can then be specialized to meet particular needs. JAX-RS keeps this power by
allowing the annotations used in mapping classes to resources to be inherited from super classes.

JAX-RS’s annotation inheritance also extends to support for interfaces. Implementation classes inherit
the JAX-RS annotations used in the interface they implement.

The JAX-RS inheritance rules do provide a mechanism for overriding inherited annotations. However, it
is not possible to completely remove JAX-RS annotations from a construct that inherits them from a
super class or interface.

INHERITANCE RULES

Resource classes inherit any JAX-RS annotations from the interface(s) it implements. Resource classes
also inherit any JAX-RS annotations from any super classes they extend. Annotations inherited from a
super class take precedence over annotations inherited from am interface.

In the code sample shown in Example 53.1, “Annotation inheritance” , the Kaijin class' getMonster()
method inherits the @Path, @GET, and @PathParam annotations from the Kaiju interface.

Example 53.1. Annotation inheritance

public interface Kaiju
{
 @GET
 @Path("/{id}")
 public Monster getMonster(@PathParam("id") int id);
 ...
}

@Path("/kaijin")
public class Kaijin implements Kaiju
{
 public Monster getMonster(int id)
 {
 ...
 }
 ...
}

OVERRIDING INHERITED ANNOTATIONS

CHAPTER 53. ANNOTATION INHERITANCE

549

Overriding inherited annotations is as easy as providing new annotations. If the subclass, or
implementation class, provides any of its own JAX-RS annotations for a method then all of the JAX-RS
annotations for that method are ignored.

In the code sample shown in Example 53.2, “Overriding annotation inheritance”, the Kaijin class'
getMonster() method does not inherit any of the annotations from the Kaiju interface. The
implementation class overrides the @Produces annotation which causes all of the annotations from the
interface to be ignored.

Example 53.2. Overriding annotation inheritance

public interface Kaiju
{
 @GET
 @Path("/{id}")
 @Produces("text/xml");
 public Monster getMonster(@PathParam("id") int id);
 ...
}

@Path("/kaijin")
public class Kaijin implements Kaiju
{

 @GET
 @Path("/{id}")
 @Produces("application/octect-stream");
 public Monster getMonster(@PathParam("id") int id)
 {
 ...
 }
 ...
}

Red Hat Fuse 7.5 Apache CXF Development Guide

550

CHAPTER 54. EXTENDING JAX-RS ENDPOINTS WITH
SWAGGER SUPPORT

Abstract

The CXF Swagger2Feature (org.apache.cxf.jaxrs.swagger.Swagger2Feature) allows you to generate
Swagger 2.0 documents by extending published JAX-RS service endpoints with a simple configuration.

The Swagger2Feature is supported in both Spring Boot and Karaf implementations.

54.1. SWAGGER2FEATURE OPTIONS

You can use the following options in Swagger2Feature.

Table 54.1. Swagger2Feature operations

Name Description Default

basePath The context root path+ (see also
the usePathBasedConfig
option)

null

contact Your contact information+ "users@cxf.apache.org"

description A description+ "The Application"

filterClass A security filter+ null

host The host and port information+ null

ignoreRoutes Excludes specific paths when
scanning all resources (see the
scanAllResources option)++

null

license The license+ "Apache 2.0 License"

licenceUrl The license URL+ http://www.apache.org/licens
es/LICENSE-2.0.html

prettyPrint When generating swagger.json,
specifies to pretty-print the
JSON document+

false

resourcePackage A list of comma separated
package names where resources
must be scanned+

A list of service classes
configured at the endpoint

runAsFilter Runs the feature as a filter false

CHAPTER 54. EXTENDING JAX-RS ENDPOINTS WITH SWAGGER SUPPORT

551

mailto:users@cxf.apache.org
http://www.apache.org/licenses/LICENSE-2.0.html

scan Generates the swagger
documentation+

true

scanAllResources Scans all resources including non-
annotated JAX-RS resources
(see also the ignoreRoutes
option)++

false

schemes The protocol schemes+ null

swaggerUiConfig Swagger UI configuration null

termsOfServiceUrl The terms of service URL+ null

title The title+ "Sample REST Application"

usePathBasedConfig Prevents Swagger from caching
the value of the basePath
option.

false

version The version+ "1.0.0"

Name Description Default

+ The option is defined in Swagger’s BeanConfig

++ The option is defined in Swagger’s ReaderConfig

54.2. KARAF IMPLEMENTATIONS

This section describes how to use the Swagger2Feature in which REST services are defined inside JAR
files and deployed to a Fuse on Karaf container.

54.2.1. Quickstart example

You can download Red Hat Fuse quickstarts from the Fuse Software Downloads page.

The Quickstart zip file contains a /cxf/rest/ directory for a quickstart that demonstrates how to create a
RESTful (JAX-RS) web service using CXF and how to enable Swagger and annotate the JAX-RS
endpoints.

54.2.2. Enabling Swagger

Enabling Swagger involves:

Modifying the XML file that defines the CXF service by adding the CXF class
(org.apache.cxf.jaxrs.swagger.Swagger2Feature) to the <jaxrs:server> definition.
For an example, see Example 55.4 Example XML file .

Red Hat Fuse 7.5 Apache CXF Development Guide

552

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.fuse&downloadType=distributions

In the REST resource class:

Importing the Swagger API annotations for each annotation required by the service:

import io.swagger.annotations.*

where * = Api, ApiOperation, ApiParam, ApiResponse, ApiResponses, and so on.

For details, go to https://github.com/swagger-api/swagger-core/wiki/Annotations.

For an example, see Example 55.5 Example Resource class .

Adding Swagger annotations to the JAX-RS annotated endpoints (@PATH, @PUT,
@POST, @GET, @Produces, @Consumes, @DELETE, @PathParam, and so on).

For an example, see Example 55.5 Example Resource class .

Example 55.4 Example XML file

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://cxf.apache.org/blueprint/jaxrs
http://cxf.apache.org/schemas/blueprint/jaxrs.xsd
 http://cxf.apache.org/blueprint/core
http://cxf.apache.org/schemas/blueprint/core.xsd">

 <jaxrs:server id="customerService" address="/crm">
 <jaxrs:serviceBeans>
 <ref component-id="customerSvc"/>
 </jaxrs:serviceBeans>
 <jaxrs:providers>
 <bean class="com.fasterxml.jackson.jaxrs.json.JacksonJsonProvider"/>
 </jaxrs:providers>
 <jaxrs:features>
 <bean class="org.apache.cxf.jaxrs.swagger.Swagger2Feature">
 <property name="title" value="Fuse:CXF:Quickstarts - Customer Service" />
 <property name="description" value="Sample REST-based Customer Service" />
 <property name="version" value="${project.version}" />
 </bean>
 </jaxrs:features>
 </jaxrs:server>

 <cxf:bus>
 <cxf:features>
 <cxf:logging />
 </cxf:features>
 <cxf:properties>
 <entry key="skip.default.json.provider.registration" value="true" />
 </cxf:properties>
 </cxf:bus>

CHAPTER 54. EXTENDING JAX-RS ENDPOINTS WITH SWAGGER SUPPORT

553

https://github.com/swagger-api/swagger-core/wiki/Annotations

 <bean id="customerSvc" class="org.jboss.fuse.quickstarts.cxf.rest.CustomerService"/>

</blueprint>

Example 55.5 Example Resource class

.

.

.

import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.Response;

import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import io.swagger.annotations.ApiParam;
import io.swagger.annotations.ApiResponse;
import io.swagger.annotations.ApiResponses;

.

.

.

@Path("/customerservice/")
@Api(value = "/customerservice", description = "Operations about customerservice")
public class CustomerService {

 private static final Logger LOG =
 LoggerFactory.getLogger(CustomerService.class);

 private MessageContext jaxrsContext;
 private long currentId = 123;
 private Map<Long, Customer> customers = new HashMap<>();
 private Map<Long, Order> orders = new HashMap<>();

 public CustomerService() {
 init();
 }

 @GET
 @Path("/customers/{id}/")
 @Produces("application/xml")
 @ApiOperation(value = "Find Customer by ID", notes = "More notes about this
 method", response = Customer.class)
 @ApiResponses(value = {
 @ApiResponse(code = 500, message = "Invalid ID supplied"),
 @ApiResponse(code = 204, message = "Customer not found")

Red Hat Fuse 7.5 Apache CXF Development Guide

554

 })
 public Customer getCustomer(@ApiParam(value = "ID of Customer to fetch",
 required = true) @PathParam("id") String id) {
 LOG.info("Invoking getCustomer, Customer id is: {}", id);
 long idNumber = Long.parseLong(id);
 return customers.get(idNumber);
 }

 @PUT
 @Path("/customers/")
 @Consumes({ "application/xml", "application/json" })
 @ApiOperation(value = "Update an existing Customer")
 @ApiResponses(value = {
 @ApiResponse(code = 500, message = "Invalid ID supplied"),
 @ApiResponse(code = 204, message = "Customer not found")
 })
 public Response updateCustomer(@ApiParam(value = "Customer object that needs
 to be updated", required = true) Customer customer) {
 LOG.info("Invoking updateCustomer, Customer name is: {}", customer.getName());
 Customer c = customers.get(customer.getId());
 Response r;
 if (c != null) {
 customers.put(customer.getId(), customer);
 r = Response.ok().build();
 } else {
 r = Response.notModified().build();
 }

 return r;
 }

 @POST
 @Path("/customers/")
 @Consumes({ "application/xml", "application/json" })
 @ApiOperation(value = "Add a new Customer")
 @ApiResponses(value = { @ApiResponse(code = 500, message = "Invalid ID
 supplied"), })
 public Response addCustomer(@ApiParam(value = "Customer object that needs to
 be updated", required = true) Customer customer) {
 LOG.info("Invoking addCustomer, Customer name is: {}", customer.getName());
 customer.setId(++currentId);

 customers.put(customer.getId(), customer);
 if (jaxrsContext.getHttpHeaders().getMediaType().getSubtype().equals("json"))
 {
 return Response.ok().type("application/json").entity(customer).build();
 } else {
 return Response.ok().type("application/xml").entity(customer).build();
 }
 }

 @DELETE
 @Path("/customers/{id}/")
 @ApiOperation(value = "Delete Customer")
 @ApiResponses(value = {

CHAPTER 54. EXTENDING JAX-RS ENDPOINTS WITH SWAGGER SUPPORT

555

 @ApiResponse(code = 500, message = "Invalid ID supplied"),
 @ApiResponse(code = 204, message = "Customer not found")
 })
 public Response deleteCustomer(@ApiParam(value = "ID of Customer to delete",
 required = true) @PathParam("id") String id) {
 LOG.info("Invoking deleteCustomer, Customer id is: {}", id);
 long idNumber = Long.parseLong(id);
 Customer c = customers.get(idNumber);

 Response r;
 if (c != null) {
 r = Response.ok().build();
 customers.remove(idNumber);
 } else {
 r = Response.notModified().build();
 }

 return r;
 }

.

.

.

}

54.3. SPRING BOOT IMPLEMENTATIONS

This section describes how to use the Swagger2Feature in Spring Boot.

54.3.1. Quickstart example

The Quickstart example (https://github.com/fabric8-quickstarts/spring-boot-cxf-jaxrs)
demonstrates how you can use Apache CXF with Spring Boot. The Quickstart uses Spring Boot to
configure an application that includes a CXF JAX-RS endpoint with Swagger enabled.

54.3.2. Enabling Swagger

Enabling Swagger involves:

In the REST application:

Importing Swagger2Feature:

import org.apache.cxf.jaxrs.swagger.Swagger2Feature;

Adding Swagger2Feature to a CXF endpoint:

endpoint.setFeatures(Arrays.asList(new Swagger2Feature()));

For an example, see Example 55.1 Example REST application .

In the Java implementation file, importing the Swagger API annotations for each annotation
required by the service:

Red Hat Fuse 7.5 Apache CXF Development Guide

556

https://github.com/fabric8-quickstarts/spring-boot-cxf-jaxrs

import io.swagger.annotations.*

where * = Api, ApiOperation, ApiParam, ApiResponse, ApiResponses, and so on.

For details, see https://github.com/swagger-api/swagger-core/wiki/Annotations.

For an example, see Example 55.2 Example Java implementation file .

In the Java file, adding Swagger annotations to the JAX-RS annotated endpoints (@PATH,
@PUT, @POST, @GET, @Produces, @Consumes, @DELETE, @PathParam, and so on).
For an example, see Example 55.3 Example Java file .

Example 55.1 Example REST application

package io.fabric8.quickstarts.cxf.jaxrs;

import java.util.Arrays;

import org.apache.cxf.Bus;
import org.apache.cxf.endpoint.Server;
import org.apache.cxf.jaxrs.JAXRSServerFactoryBean;
import org.apache.cxf.jaxrs.swagger.Swagger2Feature;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class SampleRestApplication {

 @Autowired
 private Bus bus;

 public static void main(String[] args) {
 SpringApplication.run(SampleRestApplication.class, args);
 }

 @Bean
 public Server rsServer() {
 // setup CXF-RS
 JAXRSServerFactoryBean endpoint = new JAXRSServerFactoryBean();
 endpoint.setBus(bus);
 endpoint.setServiceBeans(Arrays.<Object>asList(new HelloServiceImpl()));
 endpoint.setAddress("/");
 endpoint.setFeatures(Arrays.asList(new Swagger2Feature()));
 return endpoint.create();
 }
}

Example 55.2 Example Java implementation file

import io.swagger.annotations.Api;

@Api("/sayHello")
public class HelloServiceImpl implements HelloService {

CHAPTER 54. EXTENDING JAX-RS ENDPOINTS WITH SWAGGER SUPPORT

557

https://github.com/swagger-api/swagger-core/wiki/Annotations

 public String welcome() {
 return "Welcome to the CXF RS Spring Boot application, append /{name} to call the hello
service";
 }

 public String sayHello(String a) {
 return "Hello " + a + ", Welcome to CXF RS Spring Boot World!!!";
 }

}

Example 55.3 Example Java file

package io.fabric8.quickstarts.cxf.jaxrs;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.springframework.stereotype.Service;

@Path("/sayHello")
@Service
public interface HelloService {

 @GET
 @Path("")
 @Produces(MediaType.TEXT_PLAIN)
 String welcome();

 @GET
 @Path("/{a}")
 @Produces(MediaType.TEXT_PLAIN)
 String sayHello(@PathParam("a") String a);

}

54.4. ACCESSING SWAGGER DOCUMENTS

When Swagger is enabled by Swagger2Feature, the Swagger documents are available at the location
URL constructed of the service endpoint location followed by /swagger.json or /swagger.yaml.

For example, for a JAX-RS endpoint that is published at http://host:port/context/services/ where
context is a web application context and /services is a servlet URL, its Swagger documents are available
at http://host:port/context/services/swagger.json and
http://host:port/context/services/swagger.yaml.

If Swagger2Feature is active, the CXF Services page links to Swagger documents.

In the above example, you would go to http://host:port/context/services/services and then follow a
Swagger link which returns a Swagger JSON document.

Red Hat Fuse 7.5 Apache CXF Development Guide

558

If CORS support is needed to access the definition from a Swagger UI on another host, you can add the
CrossOriginResourceSharingFilter from cxf-rt-rs-security-cors.

54.5. ACCESSING SWAGGER THROUGH A REVERSE PROXY

If you want to access a Swagger JSON document or a Swagger UI through a reverse proxy, set the
following options:

Set the CXFServlet use-x-forwarded-headers init parameter to true.

In Spring Boot, prefix the parameter name with cxf.servlet.init:

cxf.servlet.init.use-x-forwarded-headers=true

In Karaf, add the following line to the installDir/etc/org.apache.cxf.osgi.cfg configuration
file:

cxf.servlet.init.use-x-forwarded-headers=true

Note: If you do not already have an org.apache.cxf.osgi.cfg file in your etc directory, you
can create one.

If you specify a value for the Swagger2Feature basePath option and you want to prevent
Swagger from caching the basePath value, set the Swagger2Feature usePathBasedConfig
option to TRUE:

<bean class="org.apache.cxf.jaxrs.swagger.Swagger2Feature">
 <property name="usePathBasedConfig" value="TRUE" />
</bean>

CHAPTER 54. EXTENDING JAX-RS ENDPOINTS WITH SWAGGER SUPPORT

559

PART VII. DEVELOPING APACHE CXF INTERCEPTORS
This guide describes how to write Apache CXF interceptors that can perform pre and post processing
on messages.

Red Hat Fuse 7.5 Apache CXF Development Guide

560

CHAPTER 55. INTERCEPTORS IN THE APACHE CXF RUNTIME

Abstract

Most of the functionality in the Apache CXF runtime is implemented by interceptors. Every endpoint
created by the Apache CXF runtime has three potential interceptor chains for processing messages.
The interceptors in the these chains are responsible for transforming messages between the raw data
transported across the wire and the Java objects handled by the endpoint’s implementation code. The
interceptors are organized into phases to ensure that processing happens on the proper order.

OVERVIEW

A large part of what Apache CXF does entails processing messages. When a consumer makes a
invocation on a remote service the runtime needs to marshal the data into a message the service can
consume and place it on the wire. The service provider must unmarshal the message, execute its
business logic, and marshal the response into the appropriate message format. The consumer must then
unmarshal the response message, correlate it to the proper request, and pass it back to the consumer’s
application code. In addition to the basic marshaling and unmarshaling, the Apache CXF runtime may do
a number of other things with the message data. For example, if WS-RM is activated, the runtime must
process the message chunks and acknowledgement messages before marshaling and unmarshaling the
message. If security is activated, the runtime must validate the message’s credentials as part of the
message processing sequence.

Figure 55.1, “Apache CXF interceptor chains” shows the basic path that a request message takes when it
is received by a service provider.

Figure 55.1. Apache CXF interceptor chains

CHAPTER 55. INTERCEPTORS IN THE APACHE CXF RUNTIME

561

Figure 55.1. Apache CXF interceptor chains

MESSAGE PROCESSING IN APACHE CXF

When a Apache CXF developed consumer invokes a remote service the following message processing
sequence is started:

1. The Apache CXF runtime creates an outbound interceptor chain to process the request.

2. If the invocation starts a two-way message exchange, the runtime creates an inbound
interceptor chain and a fault processing interceptor chain.

3. The request message is passed sequentially through the outbound interceptor chain.
Each interceptor in the chain performs some processing on the message. For example, the
Apache CXF supplied SOAP interceptors package the message in a SOAP envelope.

4. If any of the interceptors on the outbound chain create an error condition the chain is unwound
and control is returned to the application level code.
An interceptor chain is unwound by calling the fault processing method on all of the previously
invoked interceptors.

5. The request is dispatched to the appropriate service provider.

6. When the response is received, it is passed sequentially through the inbound interceptor chain.

NOTE

Red Hat Fuse 7.5 Apache CXF Development Guide

562

NOTE

If the response is an error message, it is passed into the fault processing
interceptor chain.

7. If any of the interceptors on the inbound chain create an error condition, the chain is unwound.

8. When the message reaches the end of the inbound interceptor chain, it is passed back to the
application code.

When a Apache CXF developed service provider receives a request from a consumer, a similar process
takes place:

1. The Apache CXF runtime creates an inbound interceptor chain to process the request message.

2. If the request is part of a two-way message exchange, the runtime also creates an outbound
interceptor chain and a fault processing interceptor chain.

3. The request is passed sequentially through the inbound interceptor chain.

4. If any of the interceptors on the inbound chain create an error condition, the chain is unwound
and a fault is dispatched to the consumer.
An interceptor chain is unwound by calling the fault processing method on all of the previously
invoked interceptors.

5. When the request reaches the end of the inbound interceptor chain, it is passed to the service
implementation.

6. When the response is ready it is passed sequentially through the outbound interceptor chain.

NOTE

If the response is an exception, it is passed through the fault processing
interceptor chain.

7. If any of the interceptors on the outbound chain create an error condition, the chain is unwound
and a fault message is dispatched.

8. Once the request reaches the end of the outbound chain, it is dispatched to the consumer.

INTERCEPTORS

All of the message processing in the Apache CXF runtime is done by interceptors. Interceptors are
POJOs that have access to the message data before it is passed to the application layer. They can do a
number of things including: transforming the message, stripping headers off of the message, or
validating the message data. For example, an interceptor could read the security headers off of a
message, validate the credentials against an external security service, and decide if message processing
can continue.

The message data available to an interceptor is determined by several factors:

the interceptor’s chain

the interceptor’s phase

CHAPTER 55. INTERCEPTORS IN THE APACHE CXF RUNTIME

563

the other interceptors that occur earlier in the chain

PHASES

Interceptors are organized into phases. A phase is a logical grouping of interceptors with common
functionality. Each phase is responsible for a specific type of message processing. For example,
interceptors that process the marshaled Java objects that are passed to the application layer would all
occur in the same phase.

INTERCEPTOR CHAINS

Phases are aggregated into interceptor chains. An interceptor chain is a list of interceptor phases that
are ordered based on whether messages are inbound or outbound.

Each endpoint created using Apache CXF has three interceptor chains:

a chain for inbound messages

a chain for outbound messages

a chain for error messages

Interceptor chains are primarily constructed based on the choose of binding and transport used by the
endpoint. Adding other runtime features, such as security or logging, also add interceptors to the chains.
Developers can also add custom interceptors to a chain using configuration.

DEVELOPING INTERCEPTORS

Developing an interceptor, regardless of its functionality, always follows the same basic procedure:

1. Chapter 56, The Interceptor APIs
Apache CXF provides a number of abstract interceptors to make it easier to develop custom
interceptors.

2. Section 57.2, “Specifying an interceptor’s phase”
Interceptors require certain parts of a message to be available and require the data to be in a
certain format. The contents of the message and the format of the data is partially determined
by an interceptor’s phase.

3. Section 57.3, “Constraining an interceptors placement in a phase”
In general, the ordering of interceptors within a phase is not important. However, in certain
situations it may be important to ensure that an interceptor is executed before, or after, other
interceptors in the same phase.

4. Section 58.2, “Processing messages”

5. Section 58.3, “Unwinding after an error”
If an error occurs in the active interceptor chain after the interceptor has executed, its fault
processing logic is invoked.

6. Chapter 59, Configuring Endpoints to Use Interceptors

Red Hat Fuse 7.5 Apache CXF Development Guide

564

CHAPTER 56. THE INTERCEPTOR APIS

Abstract

Interceptors implement the PhaseInterceptor interface which extends the base Interceptor interface.
This interface defines a number of methods used by the Apache CXF’s runtime to control interceptor
execution and are not appropriate for application developers to implement. To simplify interceptor
development, Apache CXF provides a number of abstract interceptor implementations that can be
extended.

INTERFACES

All of the interceptors in Apache CXF implement the base Interceptor interface shown in Example 56.1,
“Base interceptor interface”.

Example 56.1. Base interceptor interface

package org.apache.cxf.interceptor;

public interface Interceptor<T extends Message>
{

 void handleMessage(T message) throws Fault;

 void handleFault(T message);

}

The Interceptor interface defines the two methods that a developer needs to implement for a custom
interceptor:

handleMessage()

The handleMessage() method does most of the work in an interceptor. It is called on each
interceptor in a message chain and receives the contents of the message being processed.
Developers implement the message processing logic of the interceptor in this method. For detailed
information about implementing the handleMessage() method, see Section 58.2, “Processing
messages”.

handleFault()

The handleFault() method is called on an interceptor when normal message processing has been
interrupted. The runtime calls the handleFault() method of each invoked interceptor in reverse
order as it unwinds an interceptor chain. For detailed information about implementing the
handleFault() method, see Section 58.3, “Unwinding after an error” .

Most interceptors do not directly implement the Interceptor interface. Instead, they implement the
PhaseInterceptor interface shown in Example 56.2, “The phase interceptor interface” . The
PhaseInterceptor interface adds four methods that allow an interceptor the participate in interceptor
chains.

Example 56.2. The phase interceptor interface

package org.apache.cxf.phase;

CHAPTER 56. THE INTERCEPTOR APIS

565

...

public interface PhaseInterceptor<T extends Message> extends Interceptor<T>
{

 Set<String> getAfter();

 Set<String> getBefore();

 String getId();

 String getPhase();

}

ABSTRACT INTERCEPTOR CLASS

Instead of directly implementing the PhaseInterceptor interface, developers should extend the
AbstractPhaseInterceptor class. This abstract class provides implementations for the phase
management methods of the PhaseInterceptor interface. The AbstractPhaseInterceptor class also
provides a default implementation of the handleFault() method.

Developers need to provide an implementation of the handleMessage() method. They can also provide
a different implementation for the handleFault() method. The developer-provided implementations
can manipulate the message data using the methods provided by the generic
org.apache.cxf.message.Message interface.

For applications that work with SOAP messages, Apache CXF provides an AbstractSoapInterceptor
class. Extending this class provides the handleMessage() method and the handleFault() method with
access to the message data as an org.apache.cxf.binding.soap.SoapMessage object. SoapMessage
objects have methods for retrieving the SOAP headers, the SOAP envelope, and other SOAP metadata
from the message.

Red Hat Fuse 7.5 Apache CXF Development Guide

566

CHAPTER 57. DETERMINING WHEN THE INTERCEPTOR IS
INVOKED

Abstract

Interceptors are organized into phases. The phase in which an interceptor runs determines what portions
of the message data it can access. An interceptor can determine its location in relationship to the other
interceptors in the same phase. The interceptor’s phase and its location within the phase are set as part
of the interceptor’s constructor logic.

57.1. SPECIFYING THE INTERCEPTOR LOCATION

When developing a custom interceptor, the first thing to consider is where in the message processing
chain the interceptor belongs. The developer can control an interceptor’s position in the message
processing chain in one of two ways:

Specifying the interceptor’s phase

Specifying constraints on the location of the interceptor within the phase

Typically, the code specifying an interceptor’s location is placed in the interceptor’s constructor. This
makes it possible for the runtime to instantiate the interceptor and put in the proper place in the
interceptor chain without any explicit action in the application level code.

57.2. SPECIFYING AN INTERCEPTOR’S PHASE

Overview

Interceptors are organized into phases. An interceptor’s phase determines when in the message
processing sequence it is called. Developers specify an interceptor’s phase its constructor. Phases are
specified using constant values provided by the framework.

Phase

Phases are a logical collection of interceptors. As shown in Figure 57.1, “An interceptor phase” , the
interceptors within a phase are called sequentially.

Figure 57.1. An interceptor phase

The phases are linked together in an ordered list to form an interceptor chain and provide defined

CHAPTER 57. DETERMINING WHEN THE INTERCEPTOR IS INVOKED

567

The phases are linked together in an ordered list to form an interceptor chain and provide defined
logical steps in the message processing procedure. For example, a group of interceptors in the RECEIVE
phase of an inbound interceptor chain processes transport level details using the raw message data
picked up from the wire.

There is, however, no enforcement of what can be done in any of the phases. It is recommended that
interceptors within a phase adhere to tasks that are in the spirit of the phase.

The complete list of phases defined by Apache CXF can be found in Chapter 62, Apache CXF Message
Processing Phases.

Specifying a phase

Apache CXF provides the org.apache.cxf.Phase class to use for specifying a phase. The class is a
collection of constants. Each phase defined by Apache CXF has a corresponding constant in the Phase
class. For example, the RECEIVE phase is specified by the value Phase.RECEIVE.

Setting the phase

An interceptor’s phase is set in the interceptor’s constructor. The AbstractPhaseInterceptor class
defines three constructors for instantiating an interceptor:

public AbstractPhaseInterceptor(String phase)—sets the phase of the interceptor to the
specified phase and automatically sets the interceptor’s id to the interceptor’s class name.
This constructor will satisfy most use cases.

public AbstractPhaseInterceptor(String id, String phase)—sets the interceptor’s id to the
string passed in as the first parameter and the interceptor’s phase to the second string.

public AbstractPhaseInterceptor(String phase, boolean uniqueId)—specifies if the
interceptor should use a unique, system generated id. If the uniqueId parameter is true, the
interceptor’s id will be calculated by the system. If the uniqueId parameter is false the
interceptor’s id is set to the interceptor’s class name.

The recommended way to set a custom interceptor’s phase is to pass the phase to the
AbstractPhaseInterceptor constructor using the super() method as shown in Example 57.1, “Setting an
interceptor’s phase”.

Example 57.1. Setting an interceptor’s phase

import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
 {

 public StreamInterceptor()
 {
 super(Phase.PRE_STREAM);
 }
}

The StreamInterceptor interceptor shown in Example 57.1, “Setting an interceptor’s phase” is placed

Red Hat Fuse 7.5 Apache CXF Development Guide

568

The StreamInterceptor interceptor shown in Example 57.1, “Setting an interceptor’s phase” is placed
into the PRE_STREAM phase.

57.3. CONSTRAINING AN INTERCEPTORS PLACEMENT IN A PHASE

Overview

Placing an interceptor into a phase may not provide fine enough control over its placement to ensure
that the interceptor works properly. For example, if an interceptor needed to inspect the SOAP headers
of a message using the SAAJ APIs, it would need to run after the interceptor that converts the message
into a SAAJ object. There may also be cases where one interceptor consumes a part of the message
needed by another interceptor. In these cases, a developer can supply a list of interceptors that must be
executed before their interceptor. A developer can also supply a list of interceptors that must be
executed after their interceptor.

IMPORTANT

The runtime can only honor these lists within the interceptor’s phase. If a developer
places an interceptor from an earlier phase in the list of interceptors that must execute
after the current phase, the runtime will ignore the request.

Add to the chain before

One issue that arises when developing an interceptor is that the data required by the interceptor is not
always present. This can occur when one interceptor in the chain consumes message data required by a
later interceptor. Developers can control what a custom interceptor consumes and possibly fix the
problem by modifying their interceptors. However, this is not always possible because a number of
interceptors are used by Apache CXF and a developer cannot modify them.

An alternative solution is to ensure that a custom interceptor is placed before any interceptors that will
consume the message data the custom interceptor requires. The easiest way to do that would be to
place it in an earlier phase, but that is not always possible. For cases where an interceptor needs to be
placed before one or more other interceptors the Apache CXF’s AbstractPhaseInterceptor class
provides two addBefore() methods.

As shown in Example 57.2, “Methods for adding an interceptor before other interceptors” , one takes a
single interceptor id and the other takes a collection of interceptor ids. You can make multiple calls to
continue adding interceptors to the list.

Example 57.2. Methods for adding an interceptor before other interceptors

publicaddBeforeStringipublicaddBeforeCollection<String>i

As shown in Example 57.3, “Specifying a list of interceptors that must run after the current interceptor” ,
a developer calls the addBefore() method in the constuctor of a custom interceptor.

Example 57.3. Specifying a list of interceptors that must run after the current interceptor

public class MyPhasedOutInterceptor extends AbstractPhaseInterceptor
{

 public MyPhasedOutInterceptor() {
 super(Phase.PRE_LOGICAL);

CHAPTER 57. DETERMINING WHEN THE INTERCEPTOR IS INVOKED

569

 addBefore(HolderOutInterceptor.class.getName());
 }

...

}

Most interceptors use their class name for an interceptor id.

Add to the chain after

Another reason the data required by the interceptor is not present is that the data has not been placed
in the message object. For example, an interceptor may want to work with the message data as a SOAP
message, but it will not work if it is placed in the chain before the message is turned into a SOAP
message. Developers can control what a custom interceptor consumes and possibly fix the problem by
modifying their interceptors. However, this is not always possible because a number of interceptors are
used by Apache CXF and a developer cannot modify them.

An alternative solution is to ensure that a custom interceptor is placed after the interceptor, or
interceptors, that generate the message data the custom interceptor requires. The easiest way to do
that would be to place it in a later phase, but that is not always possible. The AbstractPhaseInterceptor
class provides two addAfter() methods for cases where an interceptor needs to be placed after one or
more other interceptors.

As shown in Example 57.4, “Methods for adding an interceptor after other interceptors” , one method
takes a single interceptor id and the other takes a collection of interceptor ids. You can make multiple
calls to continue adding interceptors to the list.

Example 57.4. Methods for adding an interceptor after other interceptors

publicaddAfterStringipublicaddAfterCollection<String>i

As shown in Example 57.5, “Specifying a list of interceptors that must run before the current
interceptor”, a developer calls the addAfter() method in the constuctor of a custom interceptor.

Example 57.5. Specifying a list of interceptors that must run before the current interceptor

public class MyPhasedOutInterceptor extends AbstractPhaseInterceptor
{

 public MyPhasedOutInterceptor() {
 super(Phase.PRE_LOGICAL);
 addAfter(StartingOutInterceptor.class.getName());
 }

...

}

Most interceptors use their class name for an interceptor id.

Red Hat Fuse 7.5 Apache CXF Development Guide

570

CHAPTER 58. IMPLEMENTING THE INTERCEPTORS
PROCESSING LOGIC

Abstract

Interceptors are straightforward to implement. The bulk of their processing logic is in the
handleMessage() method. This method receives the message data and manipulates it as needed.
Developers may also want to add some special logic to handle fault processing cases.

58.1. INTERCEPTOR FLOW

Figure 58.1, “Flow through an interceptor” shows the process flow through an interceptor.

Figure 58.1. Flow through an interceptor

In normal message processing, only the handleMessage() method is called. The handleMessage()
method is where the interceptor’s message processing logic is placed.

If an error occurs in the handleMessage() method of the interceptor, or any subsequent interceptor in
the interceptor chain, the handleFault() method is called. The handleFault() method is useful for
cleaning up after an interceptor in the event of an error. It can also be used to alter the fault message.

58.2. PROCESSING MESSAGES

Overview

In normal message processing, an interceptor’s handleMessage() method is invoked. It receives that
message data as a Message object. Along with the actual contents of the message, the Message object
may contain a number of properties related to the message or the message processing state. The exact
contents of the Message object depends on the interceptors preceding the current interceptor in the
chain.

Getting the message contents

The Message interface provides two methods that can be used in extracting the message contents:

public<T> TgetContentjava.lang.Class<T> format The getContent() method returns the
content of the message in an object of the specified class. If the contents are not available as an
instance of the specified class, null is returned. The list of available content types is determined
by the interceptor’s location on the interceptor chain and the direction of the interceptor chain.

CHAPTER 58. IMPLEMENTING THE INTERCEPTORS PROCESSING LOGIC

571

publicCollection<Attachment>getAttachments The getAttachments() method returns a Java
Collection object containing any binary attachments associated with the message. The
attachments are stored in org.apache.cxf.message.Attachment objects. Attachment objects
provide methods for managing the binary data.

IMPORTANT

Attachments are only available after the attachment processing interceptors
have executed.

Determining the message’s direction

The direction of a message can be determined by querying the message exchange. The message
exchange stores the inbound message and the outbound message in separate properties.[3]

The message exchange associated with a message is retrieved using the message’s getExchange()
method. As shown in Example 58.1, “Getting the message exchange” , getExchange() does not take any
parameters and returns the message exchange as a org.apache.cxf.message.Exchange object.

Example 58.1. Getting the message exchange

ExchangegetExchange

The Exchange object has four methods, shown in Example 58.2, “Getting messages from a message
exchange”, for getting the messages associated with an exchange. Each method will either return the
message as a org.apache.cxf.Message object or it will return null if the message does not exist.

Example 58.2. Getting messages from a message exchange

MessagegetInMessageMessagegetInFaultMessageMessagegetOutMessageMessagegetOutFau
ltMessage

Example 58.3, “Checking the direction of a message chain” shows code for determining if the current
message is outbound. The method gets the message exchange and checks to see if the current
message is the same as the exchange’s outbound message. It also checks the current message against
the exchanges outbound fault message to error messages on the outbound fault interceptor chain.

Example 58.3. Checking the direction of a message chain

public static boolean isOutbound()
{
 Exchange exchange = message.getExchange();
 return message != null
 && exchange != null
 && (message == exchange.getOutMessage()
 || message == exchange.getOutFaultMessage());
}

Example

Example 58.4, “Example message processing method” shows code for an interceptor that processes zip

Red Hat Fuse 7.5 Apache CXF Development Guide

572

Example 58.4, “Example message processing method” shows code for an interceptor that processes zip
compressed messages. It checks the direction of the message and then performs the appropriate
actions.

Example 58.4. Example message processing method

import java.io.IOException;
import java.io.InputStream;
import java.util.zip.GZIPInputStream;

import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
{

 ...

 public void handleMessage(Message message)
 {

 boolean isOutbound = false;
 isOutbound = message == message.getExchange().getOutMessage()
 || message == message.getExchange().getOutFaultMessage();

 if (!isOutbound)
 {
 try
 {
 InputStream is = message.getContent(InputStream.class);
 GZIPInputStream zipInput = new GZIPInputStream(is);
 message.setContent(InputStream.class, zipInput);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 else
 {
 // zip the outbound message
 }
 }
 ...
}

58.3. UNWINDING AFTER AN ERROR

Overview

When an error occurs during the execution of an interceptor chain, the runtime stops traversing the

CHAPTER 58. IMPLEMENTING THE INTERCEPTORS PROCESSING LOGIC

573

When an error occurs during the execution of an interceptor chain, the runtime stops traversing the
interceptor chain and unwinds the chain by calling the handleFault() method of any interceptors in the
chain that have already been executed.

The handleFault() method can be used to clean up any resources used by an interceptor during normal
message processing. It can also be used to rollback any actions that should only stand if message
processing completes successfully. In cases where the fault message will be passed on to an outbound
fault processing interceptor chain, the handleFault() method can also be used to add information to the
fault message.

Getting the message payload

The handleFault() method receives the same Message object as the handleMessage() method used in
normal message processing. Getting the message contents from the Message object is described in the
section called “Getting the message contents”.

Example

Example 58.5, “Handling an unwinding interceptor chain” shows code used to ensure that the original
XML stream is placed back into the message when the interceptor chain is unwound.

Example 58.5. Handling an unwinding interceptor chain

@Override
public void handleFault(SoapMessage message)
{
 super.handleFault(message);
 XMLStreamWriter writer = (XMLStreamWriter)message.get(ORIGINAL_XML_WRITER);
 if (writer != null)
 {
 message.setContent(XMLStreamWriter.class, writer);
 }
}

[3] It also stores inbound and outbound faults separately.

Red Hat Fuse 7.5 Apache CXF Development Guide

574

CHAPTER 59. CONFIGURING ENDPOINTS TO USE
INTERCEPTORS

Abstract

Interceptors are added to an endpoint when it is included in a message exchange. The endpoint’s
interceptor chains are constructed from a the interceptor chains of a number of components in the
Apache CXF runtime. Interceptors are specified in either the endpoint’s configuration or the
configuration of one of the runtime components. Interceptors can be added using either the
configuration file or the interceptor API.

59.1. DECIDING WHERE TO ATTACH INTERCEPTORS

Overview

There are a number of runtime objects that host interceptor chains. These include:

the endpoint object

the service object

the proxy object

the factory object used to create the endpoint or the proxy

the binding

the central Bus object

A developer can attach their own interceptors to any of these objects. The most common objects to
attach interceptors are the bus and the individual endpoints. Choosing the correct object requires
understanding how these runtime objects are combined to make an endpoint. As per the design, each
cxf related bundle has its own cxf bus. Hence, if the interceptors are configured in the bus and the
service at the same Blueprint context is imported or created into another bundle, the interceptor won’t
be processed. Instead you can configure the interceptors directly into the JAXWS client or endpoint in
the imported service.

Endpoints and proxies

Attaching interceptors to either the endpoint or the proxy is the most fine grained way to place an
interceptor. Any interceptors attached directly to an endpoint or a proxy only effect the specific
endpoint or proxy. This is a good place to attach interceptors that are specific to a particular incarnation
of a service. For example, if a developer wants to expose one instance of a service that converts units
from metric to imperial they could attach the interceptors directly to one endpoint.

Factories

Using the Spring configuration to attach interceptors to the factories used to create an endpoint or a
proxy has the same effect as attaching the interceptors directly to the endpoint or proxy. However,
when interceptors are attached to a factory programmatically the interceptors attached to the factory
are propagated to every endpoint or proxy created by the factory.

Bindings

CHAPTER 59. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

575

Attaching interceptors to the binding allows the developer to specify a set of interceptors that are
applied to all endpoints that use the binding. For example, if a developer wants to force all endpoints
that use the raw XML binding to include a special ID element, they could attach the interceptor
responsible for adding the element to the XML binding.

Buses

The most general place to attach interceptors is the bus. When interceptors are attached to the bus, the
interceptors are propagated to all of the endpoints managed by that bus. Attaching interceptors to the
bus is useful in applications that create multiple endpoints that share a similar set of interceptors.

Combining attachment points

Because an endpoint’s final set of interceptor chains is an amalgamation of the interceptor chains
contributed by the listed objects, several of the listed object can be combined in a single endpoint’s
configuration. For example, if an application spawned multiple endpoints that all required an interceptor
that checked for a validation token, that interceptor would be attached to the application’s bus. If one of
those endpoints also required an interceptor that converted Euros into dollars, the conversion
interceptor would be attached directly to the specific endpoint.

59.2. ADDING INTERCEPTORS USING CONFIGURATION

Overview

The easiest way to attach interceptors to an endpoint is using the configuration file. Each interceptor to
be attached to an endpoint is configured using a standard Spring bean. The interceptor’s bean can then
be added to the proper interceptor chain using Apache CXF configuration elements.

Each runtime component that has an associated interceptor chain is configurable using specialized
Spring elements. Each of the component’s elements have a standard set of children for specifying their
interceptor chains. There is one child for each interceptor chain associated with the component. The
children list the beans for the interceptors to be added to the chain.

Configuration elements

Table 59.1, “Interceptor chain configuration elements” describes the four configuration elements for
attaching interceptors to a runtime component.

Table 59.1. Interceptor chain configuration elements

Element Description

inInterceptors Contains a list of beans configuring interceptors to
add to an endpoint’s inbound interceptor chain.

outInterceptors Contains a list of beans configuring interceptors to
add to an endpoint’s outbound interceptor chain.

inFaultInterceptors Contains a list of beans configuring interceptors to
add to an endpoint’s inbound fault processing
interceptor chain.

Red Hat Fuse 7.5 Apache CXF Development Guide

576

outFaultInterceptors Contains a list of beans configuring interceptors to
add to an endpoint’s outbound fault processing
interceptor chain.

Element Description

All of the interceptor chain configuration elements take a list child element. The list element has one
child for each of the interceptors being attached to the chain. Interceptors can be specified using either
a bean element directly configuring the interceptor or a ref element that refers to a bean element that
configures the interceptor.

Examples

Example 59.1, “Attaching interceptors to the bus” shows configuration for attaching interceptors to a
bus' inbound interceptor chain.

Example 59.1. Attaching interceptors to the bus

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="
 http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd
 http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
 ...
 <bean id="GZIPStream" class="demo.stream.interceptor.StreamInterceptor"/>

 <cxf:bus>
 *<cxf:inInterceptors>
 <list>
 <ref bean="GZIPStream"/>
 </list>
 </cxf:inInterceptors>*
 </cxf:bus>
</beans>

Example 59.2, “Attaching interceptors to a JAX-WS service provider” shows configuration for attaching
an interceptor to a JAX-WS service’s outbound interceptor chain.

Example 59.2. Attaching interceptors to a JAX-WS service provider

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"

CHAPTER 59. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

577

 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint ...>
 *<jaxws:outInterceptors>
 <list>
 <bean id="GZIPStream" class="demo.stream.interceptor.StreamInterceptor" />
 </list>
 </jaxws:outInterceptors>*
 </jaxws:endpoint>
</beans>

More information

For more information about configuring endpoints using the Spring configuration see Part IV,
“Configuring Web Service Endpoints”.

59.3. ADDING INTERCEPTORS PROGRAMMATICALLY

59.3.1. Approaches to Adding Interceptors

Interceptors can be attached to endpoints programmatically using either one of two approaches:

the InterceptorProvider API

Java annotations

Using the InterceptorProvider API allows the developer to attach interceptors to any of the runtime
components that have interceptor chains, but it requires working with the underlying Apache CXF
classes. The Java annotations can only be added to service interfaces or service implementations, but
they allow developers to stay within the JAX-WS API or the JAX-RS API.

59.3.2. Using the interceptor provider API

Overview

Interceptors can be registered with any component that implements the InterceptorProvider interface
shown in The interceptor provider interface.

The interceptor provider interface

package org.apache.cxf.interceptor;

import java.util.List;

public interface InterceptorProvider
{
 List<Interceptor<? extends Message>> getInInterceptors();

 List<Interceptor<? extends Message>> getOutInterceptors();

Red Hat Fuse 7.5 Apache CXF Development Guide

578

 List<Interceptor<? extends Message>> getInFaultInterceptors();

 List<Interceptor<? extends Message>> getOutFaultInterceptors();
}

The four methods in the interface allow you to retrieve each of an endpoint’s interceptor chains as a
Java List object. Using the methods offered by the Java List object, developers can add and remove
interceptors to any of the chains.

Procedure

To use the InterceptorProvider API to attach an interceptor to a runtime component’s interceptor chain,
you must:

1. Get access to the runtime component with the chain to which the interceptor is being attached.
Developers must use Apache CXF specific APIs to access the runtime components from
standard Java application code. The runtime components are usually accessible by casting the
JAX-WS or JAX-RS artifacts into the underlying Apache CXF objects.

2. Create an instance of the interceptor.

3. Use the proper get method to retrieve the desired interceptor chain.

4. Use the List object’s add() method to attach the interceptor to the interceptor chain.
This step is usually combined with retrieving the interceptor chain.

Attaching an interceptor to a consumer

Attaching an interceptor to a consumer programmatically shows code for attaching an interceptor to
the inbound interceptor chain of a JAX-WS consumer.

Attaching an interceptor to a consumer programmatically

package com.fusesource.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import org.apache.cxf.endpoint.Client;

public class Client
{
 public static void main(String args[])
 {
 QName serviceName = new QName("http://demo.eric.org", "stockQuoteReporter");
 Service s = Service.create(serviceName);

 QName portName = new QName("http://demo.eric.org", "stockQuoteReporterPort");
 s.addPort(portName, "http://schemas.xmlsoap.org/soap/", "http://localhost:9000/EricStockQuote");

 quoteReporter proxy = s.getPort(portName, quoteReporter.class);

 Client cxfClient = (Client) proxy;

CHAPTER 59. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

579

 ValidateInterceptor validInterceptor = new ValidateInterceptor();
 cxfClient.getInInterceptor().add(validInterceptor);

 ...
 }
}

The code in Attaching an interceptor to a consumer programmatically does the following:

Creates a JAX-WS Service object for the consumer.

Adds a port to the Service object that provides the consumer’s target address.

Creates the proxy used to invoke methods on the service provider.

Casts the proxy to the org.apache.cxf.endpoint.Client type.

Creates an instance of the interceptor.

Attaches the interceptor to the inbound interceptor chain.

Attaching an interceptor to a service provider

Attaching an interceptor to a service provider programmatically shows code for attaching an interceptor
to a service provider’s outbound interceptor chain.

Attaching an interceptor to a service provider programmatically

package com.fusesource.demo;
import java.util.*;

import org.apache.cxf.endpoint.Server;
import org.apache.cxf.frontend.ServerFactoryBean;
import org.apache.cxf.frontend.EndpointImpl;

public class stockQuoteReporter implements quoteReporter
{
 ...
 public stockQuoteReporter()
 {
 ServerFactoryBean sfb = new ServerFactoryBean();
 Server server = sfb.create();
 EndpointImpl endpt = server.getEndpoint();

 AuthTokenInterceptor authInterceptor = new AuthTokenInterceptor();

 endpt.getOutInterceptor().add(authInterceptor);
 }
}

The code in Attaching an interceptor to a service provider programmatically does the following:

Creates a ServerFactoryBean object that will provide access to the underlying Apache CXF objects.

Gets the Server object that Apache CXF uses to represent the endpoint.

Red Hat Fuse 7.5 Apache CXF Development Guide

580

Gets the Apache CXF EndpointImpl object for the service provider.

Creates an instance of the interceptor.

Attaches the interceptor to the endpoint;s outbound interceptor chain.

Attaching an interceptor to a bus

Attaching an interceptor to a bus shows code for attaching an interceptor to a bus' inbound interceptor
chain.

Attaching an interceptor to a bus

import org.apache.cxf.BusFactory;
org.apache.cxf.Bus;

...

Bus bus = BusFactory.getDefaultBus();

WatchInterceptor watchInterceptor = new WatchInterceptor();

bus..getInInterceptor().add(watchInterceptor);

...

The code in Attaching an interceptor to a bus does the following:

Gets the default bus for the runtime instance.

Creates an instance of the interceptor.

Attaches the interceptor to the inbound interceptor chain.

The WatchInterceptor will be attached to the inbound interceptor chain of all endpoints created by the
runtime instance.

59.3.3. Using Java annotations

Overview

Apache CXF provides four Java annotations that allow a developer to specify the interceptor chains
used by an endpoint. Unlike the other means of attaching interceptors to endpoints, the annotations are
attached to application-level artifacts. The artifact that is used determines the scope of the
annotation’s effect.

Where to place the annotations

The annotations can be placed on the following artifacts:

the service endpoint interface(SEI) defining the endpoint
If the annotations are placed on an SEI, all of the service providers that implement the interface
and all of the consumers that use the SEI to create proxies will be affected.

a service implementation class
If the annotations are placed on an implementation class, all of the service providers using the

CHAPTER 59. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

581

If the annotations are placed on an implementation class, all of the service providers using the
implementation class will be affected.

The annotations

The annotations are all in the org.apache.cxf.interceptor package and are described in Table 59.2,
“Interceptor chain annotations”.

Table 59.2. Interceptor chain annotations

Annotation Description

InInterceptors Specifies the interceptors for the inbound
interceptor chain.

OutInterceptors Specifies the interceptors for the outbound
interceptor chain.

InFaultInterceptors Specifies the interceptors for the inbound fault
interceptor chain.

OutFaultInterceptors Specifies the interceptors for the outbound fault
interceptor chain.

Listing the interceptors

The list of interceptors is specified as a list of fully qualified class names using the syntax shown in
Syntax for listing interceptors in a chain annotation .

Syntax for listing interceptors in a chain annotation

interceptors={"interceptor1", "interceptor2", ..., "interceptorN"}

Example

Attaching interceptors to a service implementation shows annotations that attach two interceptors to
the inbound interceptor chain of endpoints that use the logic provided by SayHiImpl.

Attaching interceptors to a service implementation

import org.apache.cxf.interceptor.InInterceptors;

@InInterceptors(interceptors={"com.sayhi.interceptors.FirstLast",
"com.sayhi.interceptors.LogName"})
public class SayHiImpl implements SayHi
{
 ...
}

Red Hat Fuse 7.5 Apache CXF Development Guide

582

CHAPTER 60. MANIPULATING INTERCEPTOR CHAINS ON
THE FLY

Abstract

Interceptors can reconfigure an endpoint’s interceptor chain as part of its message processing logic. It
can add new interceptors, remove interceptors, reorder interceptors, and even suspend the interceptor
chain. Any on-the-fly manipulation is invocation-specific, so the original chain is used each time an
endpoint is involved in a message exchange.

OVERVIEW

Interceptor chains only live as long as the message exchange that sparked their creation. Each message
contains a reference to the interceptor chain responsible for processing it. Developers can use this
reference to alter the message’s interceptor chain. Because the chain is per-exchange, any changes
made to a message’s interceptor chain will not effect other message exchanges.

CHAIN LIFE-CYCLE

Interceptor chains and the interceptors in the chain are instantiated on a per-invocation basis. When an
endpoint is invoked to participate in a message exchange, the required interceptor chains are
instantiated along with instances of its interceptors. When the message exchange that caused the
creation of the interceptor chain is completed, the chain and its interceptor instances are destroyed.

This means that any changes you make to the interceptor chain or to the fields of an interceptor do not
persist across message exchanges. So, if an interceptor places another interceptor in the active chain
only the active chain is effected. Any future message exchanges will be created from a pristine state as
determined by the endpoint’s configuration. It also means that a developer cannot set flags in an
interceptor that will alter future message processing.

If an interceptor needs to pass information along to future instances, it can set a property in the
message context. The context does persist across message exchanges.

GETTING THE INTERCEPTOR CHAIN

The first step in changing a message’s interceptor chain is getting the interceptor chain. This is done
using the Message.getInterceptorChain() method shown in Example 60.1, “Method for getting an
interceptor chain”. The interceptor chain is returned as a org.apache.cxf.interceptor.InterceptorChain
object.

Example 60.1. Method for getting an interceptor chain

InterceptorChaingetInterceptorChain

ADDING INTERCEPTORS

The InterceptorChain object has two methods, shown in Example 60.2, “Methods for adding
interceptors to an interceptor chain”, for adding interceptors to an interceptor chain. One allows you to
add a single interceptor and the other allows you to add multiple interceptors.

Example 60.2. Methods for adding interceptors to an interceptor chain

CHAPTER 60. MANIPULATING INTERCEPTOR CHAINS ON THE FLY

583

addInterceptor<? extends Message>iaddCollection<Interceptor<? extends Message>>i

Example 60.3, “Adding an interceptor to an interceptor chain on-the-fly” shows code for adding a single
interceptor to a message’s interceptor chain.

Example 60.3. Adding an interceptor to an interceptor chain on-the-fly

void handleMessage(Message message)
{
 ...
 AddledIntereptor addled = new AddledIntereptor();
 InterceptorChain chain = message.getInterceptorChain();
 chain.add(addled);
 ...
}

The code in Example 60.3, “Adding an interceptor to an interceptor chain on-the-fly” does the following:

Instantiates a copy of the interceptor to be added to the chain.

IMPORTANT

The interceptor being added to the chain should be in either the same phase as the
current interceptor or a latter phase than the current interceptor.

Gets the interceptor chain for the current message.

Adds the new interceptor to the chain.

REMOVING INTERCEPTORS

The InterceptorChain object has one method, shown in Example 60.4, “Methods for removing
interceptors from an interceptor chain”, for removing an interceptor from an interceptor chain.

Example 60.4. Methods for removing interceptors from an interceptor chain

removeInterceptor<? extends Message>i

Example 60.5, “Removing an interceptor from an interceptor chain on-the-fly” shows code for removing
an interceptor from a message’s interceptor chain.

Example 60.5. Removing an interceptor from an interceptor chain on-the-fly

void handleMessage(Message message)
{
 ...
 Iterator<Interceptor<? extends Message>> iterator =
 message.getInterceptorChain().iterator();
 Interceptor<?> removeInterceptor = null;
 for (; iterator.hasNext();) {

Red Hat Fuse 7.5 Apache CXF Development Guide

584

 Interceptor<?> interceptor = iterator.next();
 if (interceptor.getClass().getName().equals("InterceptorClassName")) {
 removeInterceptor = interceptor;
 break;
 }
 }

 if (removeInterceptor != null) {
 log.debug("Removing interceptor {}",removeInterceptor.getClass().getName());
 message.getInterceptorChain().remove(removeInterceptor);
 }
 ...
}

Where InterceptorClassName is the class name of the interceptor you want to remove from the chain.

CHAPTER 60. MANIPULATING INTERCEPTOR CHAINS ON THE FLY

585

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

Abstract

JAX-RS 2.0 defines standard APIs and semantics for installing filters and interceptors in the processing
pipeline for REST invocations. Filters and interceptors are typically used to provide such capabilities as
logging, authentication, authorization, message compression, message encryption, and so on.

61.1. INTRODUCTION TO JAX-RS FILTERS AND INTERCEPTORS

Overview

This section provides an overview of the processing pipeline for JAX-RS filters and interceptors,
highlighting the extension points where it is possible to install a filter chain or an interceptor chain.

Filters

A JAX-RS 2.0 filter is a type of plug-in that gives a developer access to all of the JAX-RS messages
passing through a CXF client or server. A filter is suitable for processing the metadata associated with a
message: HTTP headers, query parameters, media type, and other metadata. Filters have the capability
to abort a message invocation (useful for security plug-ins, for example).

If you like, you can install multiple filters at each extension point, in which case the filters are executed in
a chain (the order of execution is undefined, however, unless you specify a priority value for each
installed filter).

Interceptors

A JAX-RS 2.0 interceptor is a type of plug-in that gives a developer access to a message body as it is
being read or written. Interceptors are wrapped around either the MessageBodyReader.readFrom
method invocation (for reader interceptors) or the MessageBodyWriter.writeTo method invocation
(for writer interceptors).

If you like, you can install multiple interceptors at each extension point, in which case the interceptors are
executed in a chain (the order of execution is undefined, however, unless you specify a priority value for
each installed interceptor).

Server processing pipeline

Figure 61.1, “Server-Side Filter and Interceptor Extension Points” shows an outline of the processing
pipeline for JAX-RS filters and interceptors installed on the server side.

Figure 61.1. Server-Side Filter and Interceptor Extension Points

Red Hat Fuse 7.5 Apache CXF Development Guide

586

Server extension points

In the server processing pipeline, you can add a filter (or interceptor) at any of the following extension
points:

1. PreMatchContainerRequest filter

2. ContainerRequest filter

3. ReadInterceptor

4. ContainerResponse filter

5. WriteInterceptor

Note that the PreMatchContainerRequest extension point is reached before resource matching has
occurred, so some of the context metadata will not be available at this point.

Client processing pipeline

Figure 61.2, “Client-Side Filter and Interceptor Extension Points” shows an outline of the processing
pipeline for JAX-RS filters and interceptors installed on the client side.

Figure 61.2. Client-Side Filter and Interceptor Extension Points

Client extension points

In the client processing pipeline, you can add a filter (or interceptor) at any of the following extension
points:

1. ClientRequest filter

2. WriteInterceptor

3. ClientResponse filter

4. ReadInterceptor

Filter and interceptor order

If you install multiple filters or interceptors at the same extension point, the execution order of the

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

587

If you install multiple filters or interceptors at the same extension point, the execution order of the
filters depends on the priority assigned to them (using the @Priority annotation in the Java source). A
priority is represented as an integer value. In general, a filter with a higher priority number is placed
closer to the resource method invocation on the server side; while a filter with a lower priority number is
placed closer to the client invocation. In other words, the filters and interceptors acting on a request
message are executed in ascending order of priority number; while the filters and interceptors acting
on a response message are executed in descending order of priority number.

Filter classes

The following Java interfaces can be implemented in order to create custom REST message filters:

javax.ws.rs.container.ContainerRequestFilter

javax.ws.rs.container.ContainerResponseFilter

javax.ws.rs.client.ClientRequestFilter

javax.ws.rs.client.ClientResponseFilter

Interceptor classes

The following Java interfaces can be implemented in order to create custom REST message
interceptors:

javax.ws.rs.ext.ReaderInterceptor

javax.ws.rs.ext.WriterInterceptor

61.2. CONTAINER REQUEST FILTER

Overview

This section explains how to implement and register a container request filter , which is used to intercept
an incoming request message on the server (container) side. Container request filters are often used to
process headers on the server side and can be used for any kind of generic request processing (that is,
processing that is independent of the particular resource method called).

Moreover, the container request filter is something of a special case, because it can be installed at two
distinct extension points: PreMatchContainerRequest (before the resource matching step); and
ContainerRequest (after the resource matching step).

ContainerRequestFilter interface

The javax.ws.rs.container.ContainerRequestFilter interface is defined as follows:

// Java
...
package javax.ws.rs.container;

import java.io.IOException;

Red Hat Fuse 7.5 Apache CXF Development Guide

588

https://docs.oracle.com/javaee/7/api/javax/ws/rs/container/ContainerRequestFilter.html
https://docs.oracle.com/javaee/7/api/javax/ws/rs/container/ContainerResponseFilter.html
https://docs.oracle.com/javaee/7/api/javax/ws/rs/client/ClientRequestFilter.html
https://docs.oracle.com/javaee/7/api/javax/ws/rs/client/ClientResponseFilter.html
https://docs.oracle.com/javaee/7/api/javax/ws/rs/ext/ReaderInterceptor.html
https://docs.oracle.com/javaee/7/api/javax/ws/rs/ext/WriterInterceptor.html

public interface ContainerRequestFilter {
 public void filter(ContainerRequestContext requestContext) throws IOException;
}

By implementing the ContainerRequestFilter interface, you can create a filter for either of the
following extension points on the server side:

PreMatchContainerRequest

ContainerRequest

ContainerRequestContext interface

The filter method of ContainerRequestFilter receives a single argument of type
javax.ws.rs.container.ContainerRequestContext, which can be used to access the incoming request
message and its related metadata. The ContainerRequestContext interface is defined as follows:

// Java
...
package javax.ws.rs.container;

import java.io.InputStream;
import java.net.URI;
import java.util.Collection;
import java.util.Date;
import java.util.List;
import java.util.Locale;
import java.util.Map;

import javax.ws.rs.core.Cookie;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.core.Request;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.SecurityContext;
import javax.ws.rs.core.UriInfo;

public interface ContainerRequestContext {

 public Object getProperty(String name);

 public Collection getPropertyNames();

 public void setProperty(String name, Object object);

 public void removeProperty(String name);

 public UriInfo getUriInfo();

 public void setRequestUri(URI requestUri);

 public void setRequestUri(URI baseUri, URI requestUri);

 public Request getRequest();

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

589

https://docs.oracle.com/javaee/7/api/javax/ws/rs/container/ContainerRequestContext.html

 public String getMethod();

 public void setMethod(String method);

 public MultivaluedMap getHeaders();

 public String getHeaderString(String name);

 public Date getDate();

 public Locale getLanguage();

 public int getLength();

 public MediaType getMediaType();

 public List getAcceptableMediaTypes();

 public List getAcceptableLanguages();

 public Map getCookies();

 public boolean hasEntity();

 public InputStream getEntityStream();

 public void setEntityStream(InputStream input);

 public SecurityContext getSecurityContext();

 public void setSecurityContext(SecurityContext context);

 public void abortWith(Response response);
}

Sample implementation for PreMatchContainerRequest filter

To implement a container request filter for the PreMatchContainerRequest extension point (that is,
where the filter is executed prior to resource matching), define a class that implements the
ContainerRequestFilter interface, making sure to annotate the class with the @PreMatching
annotation (to select the PreMatchContainerRequest extension point).

For example, the following code shows an example of a simple container request filter that gets installed
in the PreMatchContainerRequest extension point, with a priority of 20:

// Java
package org.jboss.fuse.example;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.PreMatching;
import javax.annotation.Priority;
import javax.ws.rs.ext.Provider;

@PreMatching

Red Hat Fuse 7.5 Apache CXF Development Guide

590

@Priority(value = 20)
@Provider
public class SamplePreMatchContainerRequestFilter implements
 ContainerRequestFilter {

 public SamplePreMatchContainerRequestFilter() {
 System.out.println("SamplePreMatchContainerRequestFilter starting up");
 }

 @Override
 public void filter(ContainerRequestContext requestContext) {
 System.out.println("SamplePreMatchContainerRequestFilter.filter() invoked");
 }
}

Sample implementation for ContainerRequest filter

To implement a container request filter for the ContainerRequest extension point (that is, where the
filter is executed after resource matching), define a class that implements the ContainerRequestFilter
interface, without the @PreMatching annotation.

For example, the following code shows an example of a simple container request filter that gets installed
in the ContainerRequest extension point, with a priority of 30:

// Java
package org.jboss.fuse.example;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.ext.Provider;
import javax.annotation.Priority;

@Provider
@Priority(value = 30)
public class SampleContainerRequestFilter implements ContainerRequestFilter {

 public SampleContainerRequestFilter() {
 System.out.println("SampleContainerRequestFilter starting up");
 }

 @Override
 public void filter(ContainerRequestContext requestContext) {
 System.out.println("SampleContainerRequestFilter.filter() invoked");
 }
}

Injecting ResourceInfo

At the ContainerRequest extension point (that is, after resource matching has occurred), it is possible
to access the matched resource class and resource method by injecting the ResourceInfo class. For
example, the following code shows how to inject the ResourceInfo class as a field of the
ContainerRequestFilter class:

// Java

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

591

package org.jboss.fuse.example;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.ResourceInfo;
import javax.ws.rs.ext.Provider;
import javax.annotation.Priority;
import javax.ws.rs.core.Context;

@Provider
@Priority(value = 30)
public class SampleContainerRequestFilter implements ContainerRequestFilter {

 @Context
 private ResourceInfo resinfo;

 public SampleContainerRequestFilter() {
 ...
 }

 @Override
 public void filter(ContainerRequestContext requestContext) {
 String resourceClass = resinfo.getResourceClass().getName();
 String methodName = resinfo.getResourceMethod().getName();
 System.out.println("REST invocation bound to resource class: " + resourceClass);
 System.out.println("REST invocation bound to resource method: " + methodName);
 }
}

Aborting the invocation

It is possible to abort a server-side invocation by creating a suitable implementation of a container
request filter. Typically, this is useful for implementing security features on the server side: for example,
to implement an authentication feature or an authorization feature. If an incoming request fails to
authenticate successfully, you could abort the invocation from within the container request filter.

For example, the following pre-matching feature attempts to extract a username and password from
the URI’s query parameters and calls an authenticate method to check the username and password
credentials. If the authentication fails, the invocation is aborted by calling abortWith on the
ContainerRequestContext object, passing the error response that is to be returned to the client.

// Java
package org.jboss.fuse.example;

import javax.annotation.Priority;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.PreMatching;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.ResponseBuilder;
import javax.ws.rs.core.Response.Status;
import javax.ws.rs.ext.Provider;

@PreMatching
@Priority(value = 20)

Red Hat Fuse 7.5 Apache CXF Development Guide

592

@Provider
public class SampleAuthenticationRequestFilter implements
 ContainerRequestFilter {

 public SampleAuthenticationRequestFilter() {
 System.out.println("SampleAuthenticationRequestFilter starting up");
 }

 @Override
 public void filter(ContainerRequestContext requestContext) {
 ResponseBuilder responseBuilder = null;
 Response response = null;

 String userName = requestContext.getUriInfo().getQueryParameters().getFirst("UserName");
 String password = requestContext.getUriInfo().getQueryParameters().getFirst("Password");
 if (authenticate(userName, password) == false) {
 responseBuilder = Response.serverError();
 response = responseBuilder.status(Status.BAD_REQUEST).build();
 requestContext.abortWith(response);
 }
 }

 public boolean authenticate(String userName, String password) {
 // Perform authentication of 'user'
 ...
 }
}

Binding the server request filter

To bind a server request filter (that is, to install it into the Apache CXF runtime), perform the following
steps:

1. Add the @Provider annotation to the container request filter class, as shown in the following
code fragment:

// Java
package org.jboss.fuse.example;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.ext.Provider;
import javax.annotation.Priority;

@Provider
@Priority(value = 30)
public class SampleContainerRequestFilter implements ContainerRequestFilter {
 ...
}

When the container request filter implementation is loaded into the Apache CXF runtime, the
REST implementation automatically scans the loaded classes to search for the classes marked
with the @Provider annotation (the scanning phase).

2. When defining a JAX-RS server endpoint in XML (for example, see Section 18.1, “Configuring

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

593

2. When defining a JAX-RS server endpoint in XML (for example, see Section 18.1, “Configuring
JAX-RS Server Endpoints”), add the server request filter to the list of providers in the
jaxrs:providers element.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <jaxrs:server id="customerService" address="/customers">
 ...
 <jaxrs:providers>
 <ref bean="filterProvider" />
 </jaxrs:providers>
 <bean id="filterProvider"
class="org.jboss.fuse.example.SampleContainerRequestFilter"/>

 </jaxrs:server>

</blueprint>

NOTE

This step is a non-standard requirement of Apache CXF. Strictly speaking,
according to the JAX-RS standard, the @Provider annotation should be all that
is required to bind the filter. But in practice, the standard approach is somewhat
inflexible and can lead to clashing providers when many libraries are included in a
large project.

61.3. CONTAINER RESPONSE FILTER

Overview

This section explains how to implement and register a container response filter , which is used to intercept
an outgoing response message on the server side. Container response filters can be used to populate
headers automatically in a response message and, in general, can be used for any kind of generic
response processing.

ContainerResponseFilter interface

The javax.ws.rs.container.ContainerResponseFilter interface is defined as follows:

// Java
...
package javax.ws.rs.container;

import java.io.IOException;

public interface ContainerResponseFilter {
 public void filter(ContainerRequestContext requestContext, ContainerResponseContext

Red Hat Fuse 7.5 Apache CXF Development Guide

594

responseContext)
 throws IOException;
}

By implementing the ContainerResponseFilter, you can create a filter for the ContainerResponse
extension point on the server side, which filters the response message after the invocation has
executed.

NOTE

The container response filter gives you access both to the request message (through the
requestContext argument) and the response message (through the responseContext
message), but only the response can be modified at this stage.

ContainerResponseContext interface

The filter method of ContainerResponseFilter receives two arguments: an argument of type
javax.ws.rs.container.ContainerRequestContext (see the section called “ContainerRequestContext
interface”); and an argument of type javax.ws.rs.container.ContainerResponseContext, which can be
used to access the outgoing response message and its related metadata.

The ContainerResponseContext interface is defined as follows:

// Java
...
package javax.ws.rs.container;

import java.io.OutputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;
import java.net.URI;
import java.util.Date;
import java.util.Locale;
import java.util.Map;
import java.util.Set;

import javax.ws.rs.core.EntityTag;
import javax.ws.rs.core.Link;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.core.NewCookie;
import javax.ws.rs.core.Response;
import javax.ws.rs.ext.MessageBodyWriter;

public interface ContainerResponseContext {

 public int getStatus();

 public void setStatus(int code);

 public Response.StatusType getStatusInfo();

 public void setStatusInfo(Response.StatusType statusInfo);

 public MultivaluedMap<String, Object> getHeaders();

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

595

https://docs.oracle.com/javaee/7/api/javax/ws/rs/container/ContainerResponseContext.html

 public abstract MultivaluedMap<String, String> getStringHeaders();

 public String getHeaderString(String name);

 public Set<String> getAllowedMethods();

 public Date getDate();

 public Locale getLanguage();

 public int getLength();

 public MediaType getMediaType();

 public Map<String, NewCookie> getCookies();

 public EntityTag getEntityTag();

 public Date getLastModified();

 public URI getLocation();

 public Set<Link> getLinks();

 boolean hasLink(String relation);

 public Link getLink(String relation);

 public Link.Builder getLinkBuilder(String relation);

 public boolean hasEntity();

 public Object getEntity();

 public Class<?> getEntityClass();

 public Type getEntityType();

 public void setEntity(final Object entity);

 public void setEntity(
 final Object entity,
 final Annotation[] annotations,
 final MediaType mediaType);

 public Annotation[] getEntityAnnotations();

 public OutputStream getEntityStream();

 public void setEntityStream(OutputStream outputStream);
}

Sample implementation

To implement a container response filter for the ContainerResponse extension point (that is, where the

Red Hat Fuse 7.5 Apache CXF Development Guide

596

To implement a container response filter for the ContainerResponse extension point (that is, where the
filter is executed after the invocation has been executed on the server side), define a class that
implements the ContainerResponseFilter interface.

For example, the following code shows an example of a simple container response filter that gets
installed in the ContainerResponse extension point, with a priority of 10:

// Java
package org.jboss.fuse.example;

import javax.annotation.Priority;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerResponseContext;
import javax.ws.rs.container.ContainerResponseFilter;
import javax.ws.rs.ext.Provider;

@Provider
@Priority(value = 10)
public class SampleContainerResponseFilter implements ContainerResponseFilter {

 public SampleContainerResponseFilter() {
 System.out.println("SampleContainerResponseFilter starting up");
 }

 @Override
 public void filter(
 ContainerRequestContext requestContext,
 ContainerResponseContext responseContext
)
 {
 // This filter replaces the response message body with a fixed string
 if (responseContext.hasEntity()) {
 responseContext.setEntity("New message body!");
 }
 }
}

Binding the server response filter

To bind a server response filter (that is, to install it into the Apache CXF runtime), perform the following
steps:

1. Add the @Provider annotation to the container response filter class, as shown in the following
code fragment:

// Java
package org.jboss.fuse.example;

import javax.annotation.Priority;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerResponseContext;
import javax.ws.rs.container.ContainerResponseFilter;
import javax.ws.rs.ext.Provider;

@Provider

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

597

@Priority(value = 10)
public class SampleContainerResponseFilter implements ContainerResponseFilter {
 ...
}

When the container response filter implementation is loaded into the Apache CXF runtime, the
REST implementation automatically scans the loaded classes to search for the classes marked
with the @Provider annotation (the scanning phase).

2. When defining a JAX-RS server endpoint in XML (for example, see Section 18.1, “Configuring
JAX-RS Server Endpoints”), add the server response filter to the list of providers in the
jaxrs:providers element.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <jaxrs:server id="customerService" address="/customers">
 ...
 <jaxrs:providers>
 <ref bean="filterProvider" />
 </jaxrs:providers>
 <bean id="filterProvider"
class="org.jboss.fuse.example.SampleContainerResponseFilter"/>

 </jaxrs:server>

</blueprint>

NOTE

This step is a non-standard requirement of Apache CXF. Strictly speaking,
according to the JAX-RS standard, the @Provider annotation should be all that
is required to bind the filter. But in practice, the standard approach is somewhat
inflexible and can lead to clashing providers when many libraries are included in a
large project.

61.4. CLIENT REQUEST FILTER

Overview

This section explains how to implement and register a client request filter , which is used to intercept an
outgoing request message on the client side. Client request filters are often used to process headers
and can be used for any kind of generic request processing.

ClientRequestFilter interface

The javax.ws.rs.client.ClientRequestFilter interface is defined as follows:

// Java

Red Hat Fuse 7.5 Apache CXF Development Guide

598

package javax.ws.rs.client;
...
import javax.ws.rs.client.ClientRequestFilter;
import javax.ws.rs.client.ClientRequestContext;
...
public interface ClientRequestFilter {
 void filter(ClientRequestContext requestContext) throws IOException;
}

By implementing the ClientRequestFilter, you can create a filter for the ClientRequest extension point
on the client side, which filters the request message before sending the message to the server.

ClientRequestContext interface

The filter method of ClientRequestFilter receives a single argument of type
javax.ws.rs.client.ClientRequestContext, which can be used to access the outgoing request message
and its related metadata. The ClientRequestContext interface is defined as follows:

// Java
...
package javax.ws.rs.client;

import java.io.OutputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;
import java.net.URI;
import java.util.Collection;
import java.util.Date;
import java.util.List;
import java.util.Locale;
import java.util.Map;

import javax.ws.rs.core.Configuration;
import javax.ws.rs.core.Cookie;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.core.Response;
import javax.ws.rs.ext.MessageBodyWriter;

public interface ClientRequestContext {

 public Object getProperty(String name);

 public Collection<String> getPropertyNames();

 public void setProperty(String name, Object object);

 public void removeProperty(String name);

 public URI getUri();

 public void setUri(URI uri);

 public String getMethod();

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

599

https://docs.oracle.com/javaee/7/api/javax/ws/rs/client/ClientRequestContext.html

 public void setMethod(String method);

 public MultivaluedMap<String, Object> getHeaders();

 public abstract MultivaluedMap<String, String> getStringHeaders();

 public String getHeaderString(String name);

 public Date getDate();

 public Locale getLanguage();

 public MediaType getMediaType();

 public List<MediaType> getAcceptableMediaTypes();

 public List<Locale> getAcceptableLanguages();

 public Map<String, Cookie> getCookies();

 public boolean hasEntity();

 public Object getEntity();

 public Class<?> getEntityClass();

 public Type getEntityType();

 public void setEntity(final Object entity);

 public void setEntity(
 final Object entity,
 final Annotation[] annotations,
 final MediaType mediaType);

 public Annotation[] getEntityAnnotations();

 public OutputStream getEntityStream();

 public void setEntityStream(OutputStream outputStream);

 public Client getClient();

 public Configuration getConfiguration();

 public void abortWith(Response response);
}

Sample implementation

To implement a client request filter for the ClientRequest extension point (that is, where the filter is
executed prior to sending the request message), define a class that implements the
ClientRequestFilter interface.

For example, the following code shows an example of a simple client request filter that gets installed in
the ClientRequest extension point, with a priority of 20:

Red Hat Fuse 7.5 Apache CXF Development Guide

600

// Java
package org.jboss.fuse.example;

import javax.ws.rs.client.ClientRequestContext;
import javax.ws.rs.client.ClientRequestFilter;
import javax.annotation.Priority;

@Priority(value = 20)
public class SampleClientRequestFilter implements ClientRequestFilter {

 public SampleClientRequestFilter() {
 System.out.println("SampleClientRequestFilter starting up");
 }

 @Override
 public void filter(ClientRequestContext requestContext) {
 System.out.println("ClientRequestFilter.filter() invoked");
 }
}

Aborting the invocation

It is possible to abort a client-side invocation by implementing a suitable client request filter. For
example, you might implement a client-side filter to check whether a request is correctly formatted and,
if necessary, abort the request.

The following test code always aborts the request, returning the BAD_REQUEST HTTP status to the
client calling code:

// Java
package org.jboss.fuse.example;

import javax.ws.rs.client.ClientRequestContext;
import javax.ws.rs.client.ClientRequestFilter;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.Status;
import javax.annotation.Priority;

@Priority(value = 10)
public class TestAbortClientRequestFilter implements ClientRequestFilter {

 public TestAbortClientRequestFilter() {
 System.out.println("TestAbortClientRequestFilter starting up");
 }

 @Override
 public void filter(ClientRequestContext requestContext) {
 // Test filter: aborts with BAD_REQUEST status
 requestContext.abortWith(Response.status(Status.BAD_REQUEST).build());
 }
}

Registering the client request filter

Using the JAX-RS 2.0 client API, you can register a client request filter directly on a

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

601

Using the JAX-RS 2.0 client API, you can register a client request filter directly on a
javax.ws.rs.client.Client object or on a javax.ws.rs.client.WebTarget object. Effectively, this means
that the client request filter can optionally be applied to different scopes, so that only certain URI paths
are affected by the filter.

For example, the following code shows how to register the SampleClientRequestFilter filter so that it
applies to all invocations made using the client object; and how to register the
TestAbortClientRequestFilter filter, so that it applies only to sub-paths of
rest/TestAbortClientRequest.

// Java
...
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Invocation;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
client.register(new SampleClientRequestFilter());
WebTarget target = client
 .target("http://localhost:8001/rest/TestAbortClientRequest");
target.register(new TestAbortClientRequestFilter());

61.5. CLIENT RESPONSE FILTER

Overview

This section explains how to implement and register a client response filter , which is used to intercept an
incoming response message on the client side. Client response filters can be used for any kind of generic
response processing on the client side.

ClientResponseFilter interface

The javax.ws.rs.client.ClientResponseFilter interface is defined as follows:

// Java
package javax.ws.rs.client;
...
import java.io.IOException;

public interface ClientResponseFilter {
 void filter(ClientRequestContext requestContext, ClientResponseContext responseContext)
 throws IOException;
}

By implementing the ClientResponseFilter, you can create a filter for the ClientResponse extension
point on the client side, which filters the response message after it is received from the server.

ClientResponseContext interface

The filter method of ClientResponseFilter receives two arguments: an argument of type
javax.ws.rs.client.ClientRequestContext (see the section called “ClientRequestContext interface”);

Red Hat Fuse 7.5 Apache CXF Development Guide

602

and an argument of type javax.ws.rs.client.ClientResponseContext, which can be used to access the
outgoing response message and its related metadata.

The ClientResponseContext interface is defined as follows:

// Java
...
package javax.ws.rs.client;

import java.io.InputStream;
import java.net.URI;
import java.util.Date;
import java.util.Locale;
import java.util.Map;
import java.util.Set;

import javax.ws.rs.core.EntityTag;
import javax.ws.rs.core.Link;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.core.NewCookie;
import javax.ws.rs.core.Response;

public interface ClientResponseContext {

 public int getStatus();

 public void setStatus(int code);

 public Response.StatusType getStatusInfo();

 public void setStatusInfo(Response.StatusType statusInfo);

 public MultivaluedMap<String, String> getHeaders();

 public String getHeaderString(String name);

 public Set<String> getAllowedMethods();

 public Date getDate();

 public Locale getLanguage();

 public int getLength();

 public MediaType getMediaType();

 public Map<String, NewCookie> getCookies();

 public EntityTag getEntityTag();

 public Date getLastModified();

 public URI getLocation();

 public Set<Link> getLinks();

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

603

https://docs.oracle.com/javaee/7/api/javax/ws/rs/client/ClientResponseContext.html

 boolean hasLink(String relation);

 public Link getLink(String relation);

 public Link.Builder getLinkBuilder(String relation);

 public boolean hasEntity();

 public InputStream getEntityStream();

 public void setEntityStream(InputStream input);
}

Sample implementation

To implement a client response filter for the ClientResponse extension point (that is, where the filter is
executed after receiving a response message from the server), define a class that implements the
ClientResponseFilter interface.

For example, the following code shows an example of a simple client response filter that gets installed in
the ClientResponse extension point, with a priority of 20:

// Java
package org.jboss.fuse.example;

import javax.ws.rs.client.ClientRequestContext;
import javax.ws.rs.client.ClientResponseContext;
import javax.ws.rs.client.ClientResponseFilter;
import javax.annotation.Priority;

@Priority(value = 20)
public class SampleClientResponseFilter implements ClientResponseFilter {

 public SampleClientResponseFilter() {
 System.out.println("SampleClientResponseFilter starting up");
 }

 @Override
 public void filter(
 ClientRequestContext requestContext,
 ClientResponseContext responseContext
)
 {
 // Add an extra header on the response
 responseContext.getHeaders().putSingle("MyCustomHeader", "my custom data");
 }
}

Registering the client response filter

Using the JAX-RS 2.0 client API, you can register a client response filter directly on a
javax.ws.rs.client.Client object or on a javax.ws.rs.client.WebTarget object. Effectively, this means
that the client request filter can optionally be applied to different scopes, so that only certain URI paths
are affected by the filter.

Red Hat Fuse 7.5 Apache CXF Development Guide

604

For example, the following code shows how to register the SampleClientResponseFilter filter so that it
applies to all invocations made using the client object:

// Java
...
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Invocation;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
client.register(new SampleClientResponseFilter());

61.6. ENTITY READER INTERCEPTOR

Overview

This section explains how to implement and register an entity reader interceptor, which enables you to
intercept the input stream when reading a message body either on the client side or on the server side.
This is typically useful for generic transformations of the request body, such as encryption and
decryption, or compressing and decompressing.

ReaderInterceptor interface

The javax.ws.rs.ext.ReaderInterceptor interface is defined as follows:

// Java
...
package javax.ws.rs.ext;

public interface ReaderInterceptor {
 public Object aroundReadFrom(ReaderInterceptorContext context)
 throws java.io.IOException, javax.ws.rs.WebApplicationException;
}

By implementing the ReaderInterceptor interface, you can intercept the message body (Entity object)
as it is being read either on the server side or the client side. You can use an entity reader interceptor in
either of the following contexts:

Server side—if bound as a server-side interceptor, the entity reader interceptor intercepts the
request message body when it is accessed by the application code (in the matched resource).
Depending on the semantics of the REST request, the message body might not be accessed by
the matched resource, in which case the reader interceptor is not called.

Client side—if bound as a client-side interceptor, the entity reader interceptor intercepts the
response message body when it is accessed by the client code. If the client code does not
explicitly access the response message (for example, by calling the Response.getEntity
method), the reader interceptor is not called.

ReaderInterceptorContext interface

The aroundReadFrom method of ReaderInterceptor receives one argument of type

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

605

The aroundReadFrom method of ReaderInterceptor receives one argument of type
javax.ws.rs.ext.ReaderInterceptorContext, which can be used to access both the message body
(Entity object) and message metadata.

The ReaderInterceptorContext interface is defined as follows:

// Java
...
package javax.ws.rs.ext;

import java.io.IOException;
import java.io.InputStream;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MultivaluedMap;

public interface ReaderInterceptorContext extends InterceptorContext {

 public Object proceed() throws IOException, WebApplicationException;

 public InputStream getInputStream();

 public void setInputStream(InputStream is);

 public MultivaluedMap<String, String> getHeaders();
}

InterceptorContext interface

The ReaderInterceptorContext interface also supports the methods inherited from the base
InterceptorContext interface.

The InterceptorContext interface is defined as follows:

// Java
...
package javax.ws.rs.ext;

import java.lang.annotation.Annotation;
import java.lang.reflect.Type;
import java.util.Collection;

import javax.ws.rs.core.MediaType;

public interface InterceptorContext {

 public Object getProperty(String name);

 public Collection<String> getPropertyNames();

 public void setProperty(String name, Object object);

 public void removeProperty(String name);

 public Annotation[] getAnnotations();

Red Hat Fuse 7.5 Apache CXF Development Guide

606

https://docs.oracle.com/javaee/7/api/javax/ws/rs/ext/ReaderInterceptorContext.html

 public void setAnnotations(Annotation[] annotations);

 Class<?> getType();

 public void setType(Class<?> type);

 Type getGenericType();

 public void setGenericType(Type genericType);

 public MediaType getMediaType();

 public void setMediaType(MediaType mediaType);
}

Sample implementation on the client side

To implement an entity reader interceptor for the client side, define a class that implements the
ReaderInterceptor interface.

For example, the following code shows an example of an entity reader interceptor for the client side
(with a priority of 10), which replaces all instances of COMPANY_NAME by Red Hat in the message
body of the incoming response:

// Java
package org.jboss.fuse.example;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;

import javax.annotation.Priority;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.ReaderInterceptor;
import javax.ws.rs.ext.ReaderInterceptorContext;

@Priority(value = 10)
public class SampleClientReaderInterceptor implements ReaderInterceptor {

 @Override
 public Object aroundReadFrom(ReaderInterceptorContext interceptorContext)
 throws IOException, WebApplicationException
 {
 InputStream inputStream = interceptorContext.getInputStream();
 byte[] bytes = new byte[inputStream.available()];
 inputStream.read(bytes);
 String responseContent = new String(bytes);
 responseContent = responseContent.replaceAll("COMPANY_NAME", "Red Hat");
 interceptorContext.setInputStream(new ByteArrayInputStream(responseContent.getBytes()));

 return interceptorContext.proceed();
 }
}

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

607

Sample implementation on the server side

To implement an entity reader interceptor for the server side, define a class that implements the
ReaderInterceptor interface and annotate it with the @Provider annotation.

For example, the following code shows an example of an entity reader interceptor for the server side
(with a priority of 10), which replaces all instances of COMPANY_NAME by Red Hat in the message
body of the incoming request:

// Java
package org.jboss.fuse.example;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;

import javax.annotation.Priority;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.ReaderInterceptor;
import javax.ws.rs.ext.ReaderInterceptorContext;

@Priority(value = 10)
@Provider
public class SampleServerReaderInterceptor implements ReaderInterceptor {

 @Override
 public Object aroundReadFrom(ReaderInterceptorContext interceptorContext)
 throws IOException, WebApplicationException {
 InputStream inputStream = interceptorContext.getInputStream();
 byte[] bytes = new byte[inputStream.available()];
 inputStream.read(bytes);
 String requestContent = new String(bytes);
 requestContent = requestContent.replaceAll("COMPANY_NAME", "Red Hat");
 interceptorContext.setInputStream(new ByteArrayInputStream(requestContent.getBytes()));

 return interceptorContext.proceed();
 }
}

Binding a reader interceptor on the client side

Using the JAX-RS 2.0 client API, you can register an entity reader interceptor directly on a
javax.ws.rs.client.Client object or on a javax.ws.rs.client.WebTarget object. Effectively, this means
that the reader interceptor can optionally be applied to different scopes, so that only certain URI paths
are affected by the interceptor.

For example, the following code shows how to register the SampleClientReaderInterceptor interceptor
so that it applies to all invocations made using the client object:

// Java
...
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Invocation;

Red Hat Fuse 7.5 Apache CXF Development Guide

608

import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
client.register(SampleClientReaderInterceptor.class);

For more details about registering interceptors with a JAX-RS 2.0 client, see Section 49.5, “Configuring
the Client Endpoint”.

Binding a reader interceptor on the server side

To bind a reader interceptor on the server side (that is, to install it into the Apache CXF runtime),
perform the following steps:

1. Add the @Provider annotation to the reader interceptor class, as shown in the following code
fragment:

// Java
package org.jboss.fuse.example;
...
import javax.annotation.Priority;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.ReaderInterceptor;
import javax.ws.rs.ext.ReaderInterceptorContext;

@Priority(value = 10)
@Provider
public class SampleServerReaderInterceptor implements ReaderInterceptor {
 ...
}

When the reader interceptor implementation is loaded into the Apache CXF runtime, the REST
implementation automatically scans the loaded classes to search for the classes marked with the
@Provider annotation (the scanning phase).

2. When defining a JAX-RS server endpoint in XML (for example, see Section 18.1, “Configuring
JAX-RS Server Endpoints”), add the reader interceptor to the list of providers in the
jaxrs:providers element.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <jaxrs:server id="customerService" address="/customers">
 ...
 <jaxrs:providers>
 <ref bean="interceptorProvider" />
 </jaxrs:providers>
 <bean id="interceptorProvider"
class="org.jboss.fuse.example.SampleServerReaderInterceptor"/>

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

609

 </jaxrs:server>

</blueprint>

NOTE

This step is a non-standard requirement of Apache CXF. Strictly speaking,
according to the JAX-RS standard, the @Provider annotation should be all that
is required to bind the interceptor. But in practice, the standard approach is
somewhat inflexible and can lead to clashing providers when many libraries are
included in a large project.

61.7. ENTITY WRITER INTERCEPTOR

Overview

This section explains how to implement and register an entity writer interceptor , which enables you to
intercept the output stream when writing a message body either on the client side or on the server side.
This is typically useful for generic transformations of the request body, such as encryption and
decryption, or compressing and decompressing.

WriterInterceptor interface

The javax.ws.rs.ext.WriterInterceptor interface is defined as follows:

// Java
...
package javax.ws.rs.ext;

public interface WriterInterceptor {
 void aroundWriteTo(WriterInterceptorContext context)
 throws java.io.IOException, javax.ws.rs.WebApplicationException;
}

By implementing the WriterInterceptor interface, you can intercept the message body (Entity object)
as it is being written either on the server side or the client side. You can use an entity writer interceptor
in either of the following contexts:

Server side—if bound as a server-side interceptor, the entity writer interceptor intercepts the
response message body just before it is marshalled and sent back to the client.

Client side—if bound as a client-side interceptor, the entity writer interceptor intercepts the
request message body just before it is marshalled and sent out to the server.

WriterInterceptorContext interface

The aroundWriteTo method of WriterInterceptor receives one argument of type
javax.ws.rs.ext.WriterInterceptorContext, which can be used to access both the message body (Entity
object) and message metadata.

The WriterInterceptorContext interface is defined as follows:

// Java

Red Hat Fuse 7.5 Apache CXF Development Guide

610

https://docs.oracle.com/javaee/7/api/javax/ws/rs/ext/WriterInterceptorContext.html

...
package javax.ws.rs.ext;

import java.io.IOException;
import java.io.OutputStream;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MultivaluedMap;

public interface WriterInterceptorContext extends InterceptorContext {

 void proceed() throws IOException, WebApplicationException;

 Object getEntity();

 void setEntity(Object entity);

 OutputStream getOutputStream();

 public void setOutputStream(OutputStream os);

 MultivaluedMap<String, Object> getHeaders();
}

InterceptorContext interface

The WriterInterceptorContext interface also supports the methods inherited from the base
InterceptorContext interface. For the definition of InterceptorContext, see the section called
“InterceptorContext interface”.

Sample implementation on the client side

To implement an entity writer interceptor for the client side, define a class that implements the
WriterInterceptor interface.

For example, the following code shows an example of an entity writer interceptor for the client side (with
a priority of 10), which appends an extra line of text to the message body of the outgoing request:

// Java
package org.jboss.fuse.example;

import java.io.IOException;
import java.io.OutputStream;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.WriterInterceptor;
import javax.ws.rs.ext.WriterInterceptorContext;
import javax.annotation.Priority;

@Priority(value = 10)
public class SampleClientWriterInterceptor implements WriterInterceptor {

 @Override
 public void aroundWriteTo(WriterInterceptorContext interceptorContext)
 throws IOException, WebApplicationException {

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

611

 OutputStream outputStream = interceptorContext.getOutputStream();
 String appendedContent = "\nInterceptors always get the last word in.";
 outputStream.write(appendedContent.getBytes());
 interceptorContext.setOutputStream(outputStream);

 interceptorContext.proceed();
 }
}

Sample implementation on the server side

To implement an entity writer interceptor for the server side, define a class that implements the
WriterInterceptor interface and annotate it with the @Provider annotation.

For example, the following code shows an example of an entity writer interceptor for the server side
(with a priority of 10), which appends an extra line of text to the message body of the outgoing request:

// Java
package org.jboss.fuse.example;

import java.io.IOException;
import java.io.OutputStream;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.WriterInterceptor;
import javax.ws.rs.ext.WriterInterceptorContext;
import javax.annotation.Priority;

@Priority(value = 10)
@Provider
public class SampleServerWriterInterceptor implements WriterInterceptor {

 @Override
 public void aroundWriteTo(WriterInterceptorContext interceptorContext)
 throws IOException, WebApplicationException {
 OutputStream outputStream = interceptorContext.getOutputStream();
 String appendedContent = "\nInterceptors always get the last word in.";
 outputStream.write(appendedContent.getBytes());
 interceptorContext.setOutputStream(outputStream);

 interceptorContext.proceed();
 }
}

Binding a writer interceptor on the client side

Using the JAX-RS 2.0 client API, you can register an entity writer interceptor directly on a
javax.ws.rs.client.Client object or on a javax.ws.rs.client.WebTarget object. Effectively, this means
that the writer interceptor can optionally be applied to different scopes, so that only certain URI paths
are affected by the interceptor.

For example, the following code shows how to register the SampleClientReaderInterceptor interceptor
so that it applies to all invocations made using the client object:

Red Hat Fuse 7.5 Apache CXF Development Guide

612

// Java
...
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Invocation;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
client.register(SampleClientReaderInterceptor.class);

For more details about registering interceptors with a JAX-RS 2.0 client, see Section 49.5, “Configuring
the Client Endpoint”.

Binding a writer interceptor on the server side

To bind a writer interceptor on the server side (that is, to install it into the Apache CXF runtime),
perform the following steps:

1. Add the @Provider annotation to the writer interceptor class, as shown in the following code
fragment:

// Java
package org.jboss.fuse.example;
...
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.WriterInterceptor;
import javax.ws.rs.ext.WriterInterceptorContext;
import javax.annotation.Priority;

@Priority(value = 10)
@Provider
public class SampleServerWriterInterceptor implements WriterInterceptor {
 ...
}

When the writer interceptor implementation is loaded into the Apache CXF runtime, the REST
implementation automatically scans the loaded classes to search for the classes marked with the
@Provider annotation (the scanning phase).

2. When defining a JAX-RS server endpoint in XML (for example, see Section 18.1, “Configuring
JAX-RS Server Endpoints”), add the writer interceptor to the list of providers in the
jaxrs:providers element.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <jaxrs:server id="customerService" address="/customers">
 ...
 <jaxrs:providers>

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

613

 <ref bean="interceptorProvider" />
 </jaxrs:providers>
 <bean id="interceptorProvider"
class="org.jboss.fuse.example.SampleServerWriterInterceptor"/>

 </jaxrs:server>

</blueprint>

NOTE

This step is a non-standard requirement of Apache CXF. Strictly speaking,
according to the JAX-RS standard, the @Provider annotation should be all that
is required to bind the interceptor. But in practice, the standard approach is
somewhat inflexible and can lead to clashing providers when many libraries are
included in a large project.

61.8. DYNAMIC BINDING

Overview

The standard approach to binding container filters and container interceptors to resources is to
annotate the filters and interceptors with the @Provider annotation. This ensures that the binding is
global: that is, the filters and interceptors are bound to every resource class and resource method on
the server side.

Dynamic binding is an alternative approach to binding on the server side, which enables you to pick and
choose which resource methods your interceptors and filters are applied to. To enable dynamic binding
for your filters and interceptors, you must implement a custom DynamicFeature interface, as described
here.

DynamicFeature interface

The DynamicFeature interface is defined in the javax.ws.rx.container package, as follows:

// Java
package javax.ws.rs.container;

import javax.ws.rs.core.FeatureContext;
import javax.ws.rs.ext.ReaderInterceptor;
import javax.ws.rs.ext.WriterInterceptor;

public interface DynamicFeature {
 public void configure(ResourceInfo resourceInfo, FeatureContext context);
}

Implementing a dynamic feature

You implement a dynamic feature, as follows:

1. Implement one or more container filters or container interceptors, as described previously. But
do not annotate them with the @Provider annotation (otherwise, they would be bound
globally, making the dynamic feature effectively irrelevant).

Red Hat Fuse 7.5 Apache CXF Development Guide

614

https://docs.oracle.com/javaee/7/api/javax/ws/rs/container/DynamicFeature.html

2. Create your own dynamic feature by implementing the DynamicFeature class, overriding the
configure method.

3. In the configure method, you can use the resourceInfo argument to discover which resource
class and which resource method this feature is being called for. You can use this information as
the basis for deciding whether or not to register some of the filters or interceptors.

4. If you decide to register a filter or an interceptor with the current resource method, you can do
so by invoking one of the context.register methods.

5. Remember to annotate your dynamic feature class with the @Provider annotation, to ensure
that it gets picked up during the scanning phase of deployment.

Example dynamic feature

The following example shows you how to define a dynamic feature that registers the LoggingFilter
filter for any method of the MyResource class (or subclass) that is annotated with @GET:

// Java
...
import javax.ws.rs.container.DynamicFeature;
import javax.ws.rs.container.ResourceInfo;
import javax.ws.rs.core.FeatureContext;
import javax.ws.rs.ext.Provider;

@Provider
public class DynamicLoggingFilterFeature implements DynamicFeature {
 @Override
 void configure(ResourceInfo resourceInfo, FeatureContext context) {
 if (MyResource.class.isAssignableFrom(resourceInfo.getResourceClass())
 && resourceInfo.getResourceMethod().isAnnotationPresent(GET.class)) {
 context.register(new LoggingFilter());
 }
}

Dynamic binding process

The JAX-RS standard requires that the DynamicFeature.configure method is called exactly once for
each resource method. This means that every resource method could potentially have filters or
interceptors installed by the dynamic feature, but it is up to the dynamic feature to decide whether to
register the filters or interceptors in each case. In other words, the granularity of binding supported by
the dynamic feature is at the level of individual resource methods.

FeatureContext interface

The FeatureContext interface (which enables you to register filters and interceptors in the configure
method) is defined as a sub-interface of Configurable<>, as follows:

// Java
package javax.ws.rs.core;

public interface FeatureContext extends Configurable<FeatureContext> {
}

The Configurable<> interface defines a variety of methods for registering filters and interceptors on a

CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS

615

The Configurable<> interface defines a variety of methods for registering filters and interceptors on a
single resource method, as follows:

// Java
...
package javax.ws.rs.core;

import java.util.Map;

public interface Configurable<C extends Configurable> {
 public Configuration getConfiguration();
 public C property(String name, Object value);
 public C register(Class<?> componentClass);
 public C register(Class<?> componentClass, int priority);
 public C register(Class<?> componentClass, Class<?>... contracts);
 public C register(Class<?> componentClass, Map<Class<?>, Integer> contracts);
 public C register(Object component);
 public C register(Object component, int priority);
 public C register(Object component, Class<?>... contracts);
 public C register(Object component, Map<Class<?>, Integer> contracts);
}

Red Hat Fuse 7.5 Apache CXF Development Guide

616

CHAPTER 62. APACHE CXF MESSAGE PROCESSING PHASES

INBOUND PHASES

Table 62.1, “Inbound message processing phases” lists the phases available in inbound interceptor
chains.

Table 62.1. Inbound message processing phases

Phase Description

RECEIVE Performs transport specific processing, such as
determining MIME boundaries for binary
attachments.

PRE_STREAM Processes the raw data stream received by the
transport.

USER_STREAM

POST_STREAM

READ Determines if a request is a SOAP or XML message
and builds adds the proper interceptors. SOAP
message headers are also processed in this phase.

PRE_PROTOCOL Performs protocol level processing. This includes
processing of WS-* headers and processing of the
SOAP message properties.

USER_PROTOCOL

POST_PROTOCOL

UNMARSHAL Unmarshals the message data into the objects used
by the application level code.

PRE_LOGICAL Processes the unmarshalled message data.

USER_LOGICAL

POST_LOGICAL

PRE_INVOKE

INVOKE Passes the message to the application code. On the
server side, the service implementation is invoked in
this phase. On the client side, the response is handed
back to the application.

CHAPTER 62. APACHE CXF MESSAGE PROCESSING PHASES

617

POST_INVOKE Invokes the outbound interceptor chain.

Phase Description

OUTBOUND PHASES

Table 62.2, “Inbound message processing phases” lists the phases available in inbound interceptor
chains.

Table 62.2. Inbound message processing phases

Phase Description

SETUP Performs any set up that is required by later phases
in the chain.

PRE_LOGICAL Performs processing on the unmarshalled data
passed from the application level.

USER_LOGICAL

POST_LOGICAL

PREPARE_SEND Opens the connection for writing the message on the
wire.

PRE_STREAM Performs processing required to prepare the
message for entry into a data stream.

PRE_PROTOCOL Begins processing protocol specific information.

WRITE Writes the protocol message.

PRE_MARSHAL Marshals the message.

MARSHAL

POST_MARSHAL

USER_PROTOCOL Process the protocol message.

POST_PROTOCOL

USER_STREAM Process the byte-level message.

POST_STREAM

Red Hat Fuse 7.5 Apache CXF Development Guide

618

SEND Sends the message and closes the transport stream.

Phase Description

IMPORTANT

Outbound interceptor chains have a mirror set of ending phases whose names are
appended with _ENDING. The ending phases are used interceptors that require some
terminal action to occur before data is written on the wire.

CHAPTER 62. APACHE CXF MESSAGE PROCESSING PHASES

619

CHAPTER 63. APACHE CXF PROVIDED INTERCEPTORS

63.1. CORE APACHE CXF INTERCEPTORS

Inbound

Table 63.1, “Core inbound interceptors” lists the core inbound interceptors that are added to all Apache
CXF endpoints.

Table 63.1. Core inbound interceptors

Class Phase Description

ServiceInvokerInterceptor INVOKE Invokes the proper method on the
service.

Outbound

The Apache CXF does not add any core interceptors to the outbound interceptor chain by default. The
contents of an endpoint’s outbound interceptor chain depend on the features in use.

63.2. FRONT-ENDS

JAX-WS

Table 63.2, “Inbound JAX-WS interceptors” lists the interceptors added to a JAX-WS endpoint’s
inbound message chain.

Table 63.2. Inbound JAX-WS interceptors

Class Phase Description

HolderInInterceptor PRE_INVOKE Creates holder objects for any out
or in/out parameters in the
message.

WrapperClassInInterceptor POST_LOGICAL Unwraps the parts of a wrapped
doc/literal message into the
appropriate array of objects.

LogicalHandlerInInterceptor PRE_PROTOCOL Passes message processing to
the JAX-WS logical handlers used
by the endpoint. When the JAX-
WS handlers complete, the
message is passed along to the
next interceptor on the inbound
chain.

Red Hat Fuse 7.5 Apache CXF Development Guide

620

SOAPHandlerInterceptor PRE_PROTOCOL Passes message processing to
the JAX-WS SOAP handlers used
by the endpoint. When the SOAP
handlers finish with the message,
the message is passed along to
the next interceptor in the chain.

Class Phase Description

Table 63.3, “Outbound JAX-WS interceptors” lists the interceptors added to a JAX-WS endpoint’s
outbound message chain.

Table 63.3. Outbound JAX-WS interceptors

Class Phase Description

HolderOutInterceptor PRE_LOGICAL Removes the values of any out
and in/out parameters from their
holder objects and adds the
values to the message’s
parameter list.

WebFaultOutInterceptor PRE_PROTOCOL Processes outbound fault
messages.

WrapperClassOutInterceptor PRE_LOGICAL Makes sure that wrapped
doc/literal messages and
rpc/literal messages are properly
wrapped before being added to
the message.

LogicalHandlerOutIntercepto
r

PRE_MARSHAL Passes message processing to
the JAX-WS logical handlers used
by the endpoint. When the JAX-
WS handlers complete, the
message is passed along to the
next interceptor on the outbound
chain.

SOAPHandlerInterceptor PRE_PROTOCOL Passes message processing to
the JAX-WS SOAP handlers used
by the endpoint. When the SOAP
handlers finish processing the
message, it is passed along to the
next interceptor in the chain.

MessageSenderInterceptor PREPARE_SEND Calls back to the Destination
object to have it setup the output
streams, headers, etc. to prepare
the outgoing transport.

CHAPTER 63. APACHE CXF PROVIDED INTERCEPTORS

621

JAX-RS

Table 63.4, “Inbound JAX-RS interceptors” lists the interceptors added to a JAX-RS endpoint’s
inbound message chain.

Table 63.4. Inbound JAX-RS interceptors

Class Phase Description

JAXRSInInterceptor PRE_STREAM Selects the root resource class,
invokes any configured JAX-RS
request filters, and determines
the method to invoke on the root
resource.

IMPORTANT

The inbound chain for a JAX-RS endpoint skips straight to the
ServiceInvokerInInterceptor interceptor. No other interceptors will be invoked after the
JAXRSInInterceptor.

Table 63.5, “Outbound JAX-RS interceptors” lists the interceptors added to a JAX-RS endpoint’s
outbound message chain.

Table 63.5. Outbound JAX-RS interceptors

Class Phase Description

JAXRSOutInterceptor MARSHAL Marshals the response into the
proper format for transmission.

63.3. MESSAGE BINDINGS

SOAP

Table 63.6, “Inbound SOAP interceptors” lists the interceptors added to a endpoint’s inbound message
chain when using the SOAP Binding.

Table 63.6. Inbound SOAP interceptors

Class Phase Description

CheckFaultInterceptor POST_PROTOCOL Checks if the message is a fault
message. If the message is a fault
message, normal processing is
aborted and fault processing is
started.

MustUnderstandInterceptor PRE_PROTOCOL Processes the must understand
headers.

Red Hat Fuse 7.5 Apache CXF Development Guide

622

RPCInInterceptor UNMARSHAL Unmarshals rpc/literal messages.
If the message is bare, the
message is passed to a
BareInInterceptor object to
deserialize the message parts.

ReadsHeadersInterceptor READ Parses the SOAP headers and
stores them in the message
object.

SoapActionInInterceptor READ Parses the SOAP action header
and attempts to find a unique
operation for the action.

SoapHeaderInterceptor UNMARSHAL Binds the SOAP headers that
map to operation parameters to
the appropriate objects.

AttachmentInInterceptor RECEIVE Parses the mime headers for
mime boundaries, finds the root
part and resets the input stream
to it, and stores the other parts in
a collection of Attachment
objects.

DocLiteralInInterceptor UNMARSHAL Examines the first element in the
SOAP body to determine the
appropriate operation and calls
the data binding to read in the
data.

StaxInInterceptor POST_STREAM Creates an XMLStreamReader
object from the message.

URIMappingInterceptor UNMARSHAL Handles the processing of HTTP
GET methods.

SwAInInterceptor PRE_INVOKE Creates the required MIME
handlers for binary SOAP
attachments and adds the data to
the parameter list.

Class Phase Description

Table 63.7, “Outbound SOAP interceptors” lists the interceptors added to a endpoint’s outbound
message chain when using the SOAP Binding.

Table 63.7. Outbound SOAP interceptors

CHAPTER 63. APACHE CXF PROVIDED INTERCEPTORS

623

Class Phase Description

RPCOutInterceptor MARSHAL Marshals rpc style messages for
transmission.

SoapHeaderOutFilterIntercep
tor

PRE_LOGICAL Removes all SOAP headers that
are marked as inbound only.

SoapPreProtocolOutIntercep
tor

POST_LOGICAL Sets up the SOAP version and the
SOAP action header.

AttachmentOutInterceptor PRE_STREAM Sets up the attachment
marshalers and the mime stuff
required to process any
attachments that might be in the
message.

BareOutInterceptor MARSHAL Writes the message parts.

StaxOutInterceptor PRE_STREAM Creates an XMLStreamWriter
object from the message.

WrappedOutInterceptor MARSHAL Wraps the outbound message
parameters.

SoapOutInterceptor WRITE Writes the soap:envelope
element and the elements for the
header blocks in the message.
Also writes an empty soap:body
element for the remaining
interceptors to populate.

SwAOutInterceptor PRE_LOGICAL Removes any binary data that will
be packaged as a SOAP
attachment and stores it for later
processing.

XML

Table 63.8, “Inbound XML interceptors” lists the interceptors added to a endpoint’s inbound message
chain when using the XML Binding.

Table 63.8. Inbound XML interceptors

Class Phase Description

Red Hat Fuse 7.5 Apache CXF Development Guide

624

AttachmentInInterceptor RECEIVE Parses the mime headers for
mime boundaries, finds the root
part and resets the input stream
to it, and then stores the other
parts in a collection of
Attachment objects.

DocLiteralInInterceptor UNMARSHAL Examines the first element in the
message body to determine the
appropriate operation and then
calls the data binding to read in
the data.

StaxInInterceptor POST_STREAM Creates an XMLStreamReader
object from the message.

URIMappingInterceptor UNMARSHAL Handles the processing of HTTP
GET methods.

XMLMessageInInterceptor UNMARSHAL Unmarshals the XML message.

Class Phase Description

Table 63.9, “Outbound XML interceptors” lists the interceptors added to a endpoint’s outbound
message chain when using the XML Binding.

Table 63.9. Outbound XML interceptors

Class Phase Description

StaxOutInterceptor PRE_STREAM Creates an XMLStreamWriter
objects from the message.

WrappedOutInterceptor MARSHAL Wraps the outbound message
parameters.

XMLMessageOutInterceptor MARSHAL Marshals the message for
transmission.

CORBA

Table 63.10, “Inbound CORBA interceptors” lists the interceptors added to a endpoint’s inbound
message chain when using the CORBA Binding.

Table 63.10. Inbound CORBA interceptors

CHAPTER 63. APACHE CXF PROVIDED INTERCEPTORS

625

Class Phase Description

CorbaStreamInInterceptor PRE_STREAM Deserializes the CORBA message.

BareInInterceptor UNMARSHAL Deserializes the message parts.

Table 63.11, “Outbound CORBA interceptors” lists the interceptors added to a endpoint’s outbound
message chain when using the CORBA Binding.

Table 63.11. Outbound CORBA interceptors

Class Phase Description

CorbaStreamOutInterceptor PRE_STREAM Serializes the message.

BareOutInterceptor MARSHAL Writes the message parts.

CorbaStreamOutEndingInter
ceptor

USER_STREAM Creates a streamable object for
the message and stores it in the
message context.

63.4. OTHER FEATURES

Logging

Table 63.12, “Inbound logging interceptors” lists the interceptors added to a endpoint’s inbound
message chain to support logging.

Table 63.12. Inbound logging interceptors

Class Phase Description

LoggingInInterceptor RECEIVE Writes the raw message data to
the logging system.

Table 63.13, “Outbound logging interceptors” lists the interceptors added to a endpoint’s outbound
message chain to support logging.

Table 63.13. Outbound logging interceptors

Class Phase Description

LoggingOutInterceptor PRE_STREAM Writes the outbound message to
the logging system.

For more information about logging see Chapter 19, Apache CXF Logging.

Red Hat Fuse 7.5 Apache CXF Development Guide

626

WS-Addressing

Table 63.14, “Inbound WS-Addressing interceptors” lists the interceptors added to a endpoint’s inbound
message chain when using WS-Addressing.

Table 63.14. Inbound WS-Addressing interceptors

Class Phase Description

MAPCodec PRE_PROTOCOL Decodes the message addressing
properties.

Table 63.15, “Outbound WS-Addressing interceptors” lists the interceptors added to a endpoint’s
outbound message chain when using WS-Addressing.

Table 63.15. Outbound WS-Addressing interceptors

Class Phase Description

MAPAggregator PRE_LOGICAL Aggregates the message
addressing properties for a
message.

MAPCodec PRE_PROTOCOL Encodes the message addressing
properties.

For more information about WS-Addressing see Chapter 20, Deploying WS-Addressing .

WS-RM

IMPORTANT

WS-RM relies on WS-Addressing so all of the WS-Addressing interceptors will also be
added to the interceptor chains.

Table 63.16, “Inbound WS-RM interceptors” lists the interceptors added to a endpoint’s inbound
message chain when using WS-RM.

Table 63.16. Inbound WS-RM interceptors

Class Phase Description

RMInInterceptor PRE_LOGICAL Handles the aggregation of
message parts and
acknowledgement messages.

RMSoapInterceptor PRE_PROTOCOL Encodes and decodes the WS-RM
properties from messages.

Table 63.17, “Outbound WS-RM interceptors” lists the interceptors added to a endpoint’s outbound

CHAPTER 63. APACHE CXF PROVIDED INTERCEPTORS

627

Table 63.17, “Outbound WS-RM interceptors” lists the interceptors added to a endpoint’s outbound
message chain when using WS-RM.

Table 63.17. Outbound WS-RM interceptors

Class Phase Description

RMOutInterceptor PRE_LOGICAL Handles the chunking of
messages and the transmission of
the chunks. Also handles the
processing of acknowledgements
and resend requests.

RMSoapInterceptor PRE_PROTOCOL Encodes and decodes the WS-RM
properties from messages.

For more information about WS-RM see Chapter 21, Enabling Reliable Messaging .

Red Hat Fuse 7.5 Apache CXF Development Guide

628

CHAPTER 64. INTERCEPTOR PROVIDERS

OVERVIEW

Interceptor providers are objects in the Apache CXF runtime that have interceptor chains attached to
them. They all implement the org.apache.cxf.interceptor.InterceptorProvider interface. Developers can
attach their own interceptors to any interceptor provider.

LIST OF PROVIDERS

The following objects are interceptor providers:

AddressingPolicyInterceptorProvider

ClientFactoryBean

ClientImpl

ClientProxyFactoryBean

CorbaBinding

CXFBusImpl

org.apache.cxf.jaxws.EndpointImpl

org.apache.cxf.endpoint.EndpointImpl

ExtensionManagerBus

JAXRSClientFactoryBean

JAXRSServerFactoryBean

JAXRSServiceImpl

JaxWsClientEndpointImpl

JaxWsClientFactoryBean

JaxWsEndpointImpl

JaxWsProxyFactoryBean

JaxWsServerFactoryBean

JaxwsServiceBuilder

MTOMPolicyInterceptorProvider

NoOpPolicyInterceptorProvider

ObjectBinding

RMPolicyInterceptorProvider

CHAPTER 64. INTERCEPTOR PROVIDERS

629

ServerFactoryBean

ServiceImpl

SimpleServiceBuilder

SoapBinding

WrappedEndpoint

WrappedService

XMLBinding

Red Hat Fuse 7.5 Apache CXF Development Guide

630

PART VIII. APACHE CXF FEATURES
This guide describes how to enable various advanced features of Apache CXF.

PART VIII. APACHE CXF FEATURES

631

CHAPTER 65. BEAN VALIDATION

Abstract

Bean validation is a Java standard that enables you to define runtime constraints by adding Java
annotations to service classes or interfaces. Apache CXF uses interceptors to integrate this feature with
Web service method invocations.

65.1. INTRODUCTION

Overview

Bean Validation 1.1 (JSR-349)—which is an evolution of the original Bean Validation 1.0 (JSR-303)
standard—enables you to declare constraints that can be checked at run time, using Java annotations.
You can use annotations to define constraints on the following parts of the Java code:

Fields in a bean class.

Method and constructor parameters.

Method return values.

Example of annotated class

The following example shows a Java class annotated with some standard bean validation constraints:

// Java
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Max;
import javax.validation.Valid;
...
public class Person {
 @NotNull private String firstName;
 @NotNull private String lastName;
 @Valid @NotNull private Person boss;

 public @NotNull String saveItem(@Valid @NotNull Person person, @Max(23) BigDecimal age)
{
 // ...
 }
}

Bean validation or schema validation?

In some respects, bean validation and schema validation are quite similar. Configuring an endpoint with
an XML schema is a well established way to validate messages at run time on a Web services endpoint.
An XML schema can check many of the same constraints as bean validation on incoming and outgoing
messages. Nevertheless, bean validation can sometimes be a useful alternative for one or more of the
following reasons:

Bean validation enables you to define constraints independently of the XML schema (which is
useful, for example, in the case of code-first service development).

Red Hat Fuse 7.5 Apache CXF Development Guide

632

https://jcp.org/en/jsr/detail?id=349

If your current XML schema is too lax, you can use bean validation to define stricter constraints.

Bean validation lets you define custom constraints, which might be impossible to define using
XML schema language.

Dependencies

The Bean Validation 1.1 (JSR-349) standard defines just the API, not the implementation. Dependencies
must therefore be provided in two parts:

Core dependencies—provide the bean validation 1.1 API, Java unified expression language API
and implementation.

Hibernate Validator dependencies—provides the implementation of bean validation 1.1.

Core dependencies

To use bean validation, you must add the following core dependencies to your project’s Maven pom.xml
file:

<dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>1.1.0.Final</version>
</dependency>
<dependency>
 <groupId>javax.el</groupId>
 <artifactId>javax.el-api</artifactId>
 <!-- use 3.0-b02 version for Java 6 -->
 <version>3.0.0</version>
</dependency>
<dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.el</artifactId>
 <!-- use 3.0-b01 version for Java 6 -->
 <version>3.0.0</version>
</dependency>

NOTE

The javax.el/javax.el-api and org.glassfish/javax.el dependencies provide the API and
implementation of Java’s unified expression language. This expression language is used
internally by bean validation, but is not important at the application programming level.

Hibernate Validator dependencies

To use the Hibernate Validator implementation of bean validation, you must add the following additional
dependencies to your project’s Maven pom.xml file:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>5.0.3.Final</version>
</dependency>

CHAPTER 65. BEAN VALIDATION

633

http://hibernate.org/validator/

Resolving the validation provider in an OSGi environment

The default mechanism for resolving a validation provider involves scanning the classpath to find the
provider resource. In the case of an OSGi (Apache Karaf) environment, however, this mechanism does
not work, because the validation provider (for example, the Hibernate validator) is packaged in a
separate bundle and is thus not automatically available in your application classpath. In the context of
OSGi, the Hibernate validator needs to be wired to your application bundle, and OSGi needs a bit of help
to do this successfully.

Configuring the validation provider explicitly in OSGi

In the context of OSGi, you need to configure the validation provider explicitly, instead of relying on
automatic discovery. For example, if you are using the common validation feature (see the section called
“Bean validation feature”) to enable bean validation, you must configure it with a validation provider, as
follows:

<bean id="commonValidationFeature" class="org.apache.cxf.validation.BeanValidationFeature">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

Where the HibernateValidationProviderResolver is a custom class that wraps the Hibernate validation
provider.

Example HibernateValidationProviderResolver class

The following code example shows how to define a custom HibernateValidationProviderResolver,
which resolves the Hibernate validator:

// Java
package org.example;

import static java.util.Collections.singletonList;
import org.hibernate.validator.HibernateValidator;
import javax.validation.ValidationProviderResolver;
import java.util.List;

/**
 * OSGi-friendly implementation of {@code javax.validation.ValidationProviderResolver} returning
 * {@code org.hibernate.validator.HibernateValidator} instance.
 *
 */
public class HibernateValidationProviderResolver implements ValidationProviderResolver {

 @Override
 public List getValidationProviders() {
 return singletonList(new HibernateValidator());
 }
}

Red Hat Fuse 7.5 Apache CXF Development Guide

634

When you build the preceding class in a Maven build system, which is configured to use the Maven
bundle plug-in, your application will be wired to the Hibernate validator bundle at deploy time (assuming
you have already deployed the Hibernate validator bundle to the OSGi container).

65.2. DEVELOPING SERVICES WITH BEAN VALIDATION

65.2.1. Annotating a Service Bean

Overview

The first step in developing a service with bean validation is to apply the relevant validation annotations
to the Java classes or interfaces that represent your services. The validation annotations enable you to
apply constraints to method parameters, return values, and class fields, which are then checked at run
time, every time the service is invoked.

Validating simple input parameters

To validate the parameters of a service method—where the parameters are simple Java types—you can
apply any of the constraint annotations from the bean validation API (javax.validation.constraints
package). For example, the following code example tests both parameters for nullness (@NotNull
annotation), whether the id string matches the \\d+ regular expression (@Pattern annotation), and
whether the length of the name string lies in the range 1 to 50:

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Pattern;
import javax.validation.constraints.Size;
...
@POST
@Path("/books")
public Response addBook(
 @NotNull @Pattern(regexp = "\\d+") @FormParam("id") String id,
 @NotNull @Size(min = 1, max = 50) @FormParam("name") String name) {
 // do some work
 return Response.created().build();
}

Validating complex input parameters

To validate complex input parameters (object instances), apply the @Valid annotation to the
parameter, as shown in the following example:

import javax.validation.Valid;
...
@POST
@Path("/books")
public Response addBook(@Valid Book book) {
 // do some work
 return Response.created().build();
}

The @Valid annotation does not specify any constraints by itself. When you annotate the Book
parameter with @Valid, you are effectively telling the validation engine to look inside the definition of
the Book class (recursively) to look for validation constraints. In this example, the Book class is defined

CHAPTER 65. BEAN VALIDATION

635

with validation constraints on its id and name fields, as follows:

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Pattern;
import javax.validation.constraints.Size;
...
public class Book {
 @NotNull @Pattern(regexp = "\\d+") private String id;
 @NotNull @Size(min = 1, max = 50) private String name;

 // ...
}

Validating return values (non-Response)

To apply validation to regular method return values (non-Response), add the annotations in front of the
method signature. For example, to test the return value for nullness (@NotNull annotation) and to test
validation constraints recursively (@Valid annotation), annotate the getBook method as follows:

import javax.validation.constraints.NotNull;
import javax.validation.Valid;
...
@GET
@Path("/books/{bookId}")
@Override
@NotNull @Valid
public Book getBook(@PathParam("bookId") String id) {
 return new Book(id);
}

Validating return values (Response)

To apply validation to a method that returns a javax.ws.rs.core.Response object, you can use the
same annotations as in the non-Response case. For example:

import javax.validation.constraints.NotNull;
import javax.validation.Valid;
import javax.ws.rs.core.Response;
...
@GET
@Path("/books/{bookId}")
@Valid @NotNull
public Response getBookResponse(@PathParam("bookId") String id) {
 return Response.ok(new Book(id)).build();
}

65.2.2. Standard Annotations

Bean validation constraints

Table 65.1, “Standard Annotations for Bean Validation” shows the standard annotations defined in the
Bean Validation specification, which can be used to define constraints on fields and on method return
values and parameters (none of the standard annotations can be applied at the class level).

Red Hat Fuse 7.5 Apache CXF Development Guide

636

Table 65.1. Standard Annotations for Bean Validation

Annotation Applicable to Description

@AssertFalse Boolean, boolean Checks that the annotated
element is false.

@AssertTrue Boolean, boolean Checks that the annotated
element is true.

@DecimalMax(value=,
inclusive=)

BigDecimal, BigInteger,
CharSequence, byte, short,
int, long and primitive type
wrappers

When inclusive=false, checks
that the annotated value is less
than the specified maximum.
Otherwise, checks that the value
is less than or equal to the
specified maximum. The value
parameter specifies the maximum
in BigDecimal string format.

@DecimalMin(value=,
inclusive=)

BigDecimal, BigInteger,
CharSequence, byte, short,
int, long and primitive type
wrappers

When inclusive=false, checks
that the annotated value is
greater than the specified
minimum. Otherwise, checks that
the value is greater than or equal
to the specified minimum. The
value parameter specifies the
minimum in BigDecimal string
format.

@Digits(integer=, fraction=) BigDecimal, BigInteger,
CharSequence, byte, short,
int, long and primitive type
wrappers

Checks whether the annotated
value is a number having up to
integer digits and fraction
fractional digits.

@Future java.util.Date,
java.util.Calendar

Checks whether the annotated
date is in the future.

@Max(value=) BigDecimal, BigInteger,
CharSequence, byte, short,
int, long and primitive type
wrappers

Checks whether the annotated
value is less than or equal to the
specified maximum.

@Min(value=) BigDecimal, BigInteger,
CharSequence, byte, short,
int, long and primitive type
wrappers

Checks whether the annotated
value is greater than or equal to
the specified minimum.

@NotNull Any type Checks that the annotated value
is not null.

@Null Any type Checks that the annotated value
is null.

CHAPTER 65. BEAN VALIDATION

637

@Past java.util.Date,
java.util.Calendar

Checks whether the annotated
date is in the past.

@Pattern(regex=, flag=) CharSequence Checks whether the annotated
string matches the regular
expression regex considering the
given flag match.

@Size(min=, max=) CharSequence, Collection,
Map and arrays

Checks whether the size of the
annotated collection, map, or
array lies between min and max
(inclusive).

@Valid Any non-primitive type Performs validation recursively on
the annotated object. If the
object is a collection or an array,
the elements are validated
recursively. If the object is a map,
the value elements are validated
recursively.

Annotation Applicable to Description

65.2.3. Custom Annotations

Defining custom constraints in Hibernate

It is possible to define your own custom constraints annotations with the bean validation API. For details
of how to do this in the Hibernate validator implementation, see the Creating custom constraints
chapter of the Hibernate Validator Reference Guide.

65.3. CONFIGURING BEAN VALIDATION

65.3.1. JAX-WS Configuration

Overview

This section describes how to enable bean validation on a JAX-WS service endpoint, which is defined
either in Blueprint XML or in Spring XML. The interceptors used to perform bean validation are common
to both JAX-WS endpoints and JAX-RS 1.1 endpoints (JAX-RS 2.0 endpoints use different interceptor
classes, however).

Namespaces

In the XML examples shown in this section, you must remember to map the jaxws namespace prefix to
the appropriate namespace, either for Blueprint or Spring, as shown in the following table:

Red Hat Fuse 7.5 Apache CXF Development Guide

638

http://docs.jboss.org/hibernate/validator/5.1/reference/en-US/html/validator-customconstraints.html
http://docs.jboss.org/hibernate/validator/5.1/reference/en-US/html/index.html

XML Language Namespace

Blueprint http://cxf.apache.org/blueprint/jaxws

Spring http://cxf.apache.org/jaxws

Bean validation feature

The simplest way to enable bean validation on a JAX-WS endpoint is to add the bean validation feature
to the endpoint. The bean validation feature is implemented by the following class:

org.apache.cxf.validation.BeanValidationFeature

By adding an instance of this feature class to the JAX-WS endpoint (either through the Java API or
through the jaxws:features child element of jaxws:endpoint in XML), you can enable bean
validation on the endpoint. This feature installs two interceptors: an In interceptor that validates
incoming message data; and an Out interceptor that validates return values (where the interceptors
are created with default configuration parameters).

Sample JAX-WS configuration with bean validation feature

The following XML example shows how to enable bean validation functionality in a JAX-WS endpoint,
by adding the commonValidationFeature bean to the endpoint as a JAX-WS feature:

<jaxws:endpoint xmlns:s="http://bookworld.com"
 serviceName="s:BookWorld"
 endpointName="s:BookWorldPort"
 implementor="#bookWorldValidation"
 address="/bwsoap">
 <jaxws:features>
 <ref bean="commonValidationFeature" />
 </jaxws:features>
</jaxws:endpoint>

<bean id="bookWorldValidation"
class="org.apache.cxf.systest.jaxrs.validation.spring.BookWorldImpl"/>

<bean id="commonValidationFeature" class="org.apache.cxf.validation.BeanValidationFeature">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

For a sample implementation of the HibernateValidationProviderResolver class, see the section called
“Example HibernateValidationProviderResolver class”. It is only necessary to configure the
beanValidationProvider in the context of an OSGi environment (Apache Karaf).

NOTE

CHAPTER 65. BEAN VALIDATION

639

http://cxf.apache.org/blueprint/jaxws
http://cxf.apache.org/jaxws

NOTE

Remember to map the jaxws prefix to the appropriate XML namespace for either
Blueprint or Spring, depending on the context.

Common bean validation 1.1 interceptors

If you want to have more fine-grained control over the configuration of the bean validation, you can
install the interceptors individually, instead of using the bean validation feature. In place of the bean
validation feature, you can configure one or both of the following interceptors:

org.apache.cxf.validation.BeanValidationInInterceptor

When installed in a JAX-WS (or JAX-RS 1.1) endpoint, validates resource method parameters against
validation constraints. If validation fails, raises the javax.validation.ConstraintViolationException
exception. To install this interceptor, add it to the endpoint through the jaxws:inInterceptors child
element in XML (or the jaxrs:inInterceptors child element in XML).

org.apache.cxf.validation.BeanValidationOutInterceptor

When installed in a JAX-WS (or JAX-RS 1.1) endpoint, validates response values against validation
constraints. If validation fails, raises the javax.validation.ConstraintViolationException exception.
To install this interceptor, add it to the endpoint through the jaxws:outInterceptors child element in
XML (or the jaxrs:outInterceptors child element in XML).

Sample JAX-WS configuration with bean validation interceptors

The following XML example shows how to enable bean validation functionality in a JAX-WS endpoint,
by explicitly adding the relevant In interceptor bean and Out interceptor bean to the endpoint:

<jaxws:endpoint xmlns:s="http://bookworld.com"
 serviceName="s:BookWorld"
 endpointName="s:BookWorldPort"
 implementor="#bookWorldValidation"
 address="/bwsoap">
 <jaxws:inInterceptors>
 <ref bean="validationInInterceptor" />
 </jaxws:inInterceptors>

 <jaxws:outInterceptors>
 <ref bean="validationOutInterceptor" />
 </jaxws:outInterceptors>
</jaxws:endpoint>

<bean id="bookWorldValidation"
class="org.apache.cxf.systest.jaxrs.validation.spring.BookWorldImpl"/>

<bean id="validationInInterceptor" class="org.apache.cxf.validation.BeanValidationInInterceptor">
 <property name="provider" ref="beanValidationProvider"/>
</bean>
<bean id="validationOutInterceptor" class="org.apache.cxf.validation.BeanValidationOutInterceptor">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>

Red Hat Fuse 7.5 Apache CXF Development Guide

640

</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

For a sample implementation of the HibernateValidationProviderResolver class, see the section called
“Example HibernateValidationProviderResolver class”. It is only necessary to configure the
beanValidationProvider in the context of an OSGi environment (Apache Karaf).

Configuring a BeanValidationProvider

The org.apache.cxf.validation.BeanValidationProvider is a simple wrapper class that wraps the bean
validation implementation (validation provider). By overriding the default BeanValidationProvider
class, you can customize the implementation of bean validation. The BeanValidationProvider bean
enables you to override one or more of the following provider classes:

javax.validation.ParameterNameProvider

Provides names for method and constructor parameters. Note that this class is needed, because the
Java reflection API does not give you access to the names of method parameters or constructor
parameters.

javax.validation.spi.ValidationProvider<T>

Provides an implementation of bean validation for the specified type, T. By implementing your own
ValidationProvider class, you can define custom validation rules for your own classes. This
mechanism effectively enables you to extend the bean validation framework.

javax.validation.ValidationProviderResolver

Implements a mechanism for discovering ValidationProvider classes and returns a list of the
discovered classes. The default resolver looks for a META-
INF/services/javax.validation.spi.ValidationProvider file on the classpath, which should contain a
list of ValidationProvider classes.

javax.validation.ValidatorFactory

A factory that returns javax.validation.Validator instances.

org.apache.cxf.validation.ValidationConfiguration

A CXF wrapper class that enables you override more classes from the validation provider layer.

To customize the BeanValidationProvider, pass a custom BeanValidationProvider instance to the
constructor of the validation In interceptor and to the constructor of the validation Out interceptor. For
example:

<bean id="validationProvider" class="org.apache.cxf.validation.BeanValidationProvider" />

<bean id="validationInInterceptor" class="org.apache.cxf.validation.BeanValidationInInterceptor">
 <property name="provider" ref="validationProvider" />
</bean>

<bean id="validationOutInterceptor" class="org.apache.cxf.validation.BeanValidationOutInterceptor">
 <property name="provider" ref="validationProvider" />
</bean>

65.3.2. JAX-RS Configuration

Overview

CHAPTER 65. BEAN VALIDATION

641

http://docs.jboss.org/hibernate/beanvalidation/spec/1.1/api/javax/validation/ParameterNameProvider.html
http://docs.jboss.org/hibernate/beanvalidation/spec/1.1/api/javax/validation/spi/ValidationProvider.html
http://docs.jboss.org/hibernate/beanvalidation/spec/1.1/api/javax/validation/ValidationProviderResolver.html
http://docs.jboss.org/hibernate/beanvalidation/spec/1.1/api/javax/validation/ValidatorFactory.html

This section describes how to enable bean validation on a JAX-RS service endpoint, which is defined
either in Blueprint XML or in Spring XML. The interceptors used to perform bean validation are common
to both JAX-WS endpoints and JAX-RS 1.1 endpoints (JAX-RS 2.0 endpoints use different interceptor
classes, however).

Namespaces

In the XML examples shown in this section, you must remember to map the jaxws namespace prefix to
the appropriate namespace, either for Blueprint or Spring, as shown in the following table:

XML Language Namespace

Blueprint http://cxf.apache.org/blueprint/jaxws

Spring http://cxf.apache.org/jaxws

Bean validation feature

The simplest way to enable bean validation on a JAX-RS endpoint is to add the bean validation feature
to the endpoint. The bean validation feature is implemented by the following class:

org.apache.cxf.validation.BeanValidationFeature

By adding an instance of this feature class to the JAX-RS endpoint (either through the Java API or
through the jaxrs:features child element of jaxrs:server in XML), you can enable bean validation on
the endpoint. This feature installs two interceptors: an In interceptor that validates incoming
message data; and an Out interceptor that validates return values (where the interceptors are
created with default configuration parameters).

Validation exception mapper

A JAX-RS endpoint also requires you to configure a validation exception mapper , which is responsible
for mapping validation exceptions to HTTP error responses. The following class implements validation
exception mapping for JAX-RS:

org.apache.cxf.jaxrs.validation.ValidationExceptionMapper

Implements validation exception mapping in accordance with the JAX-RS 2.0 specification: any input
parameter validation violations are mapped to HTTP status code 400 Bad Request; and any return
value validation violation (or internal validation violation) is mapped to HTTP status code 500
Internal Server Error.

Sample JAX-RS configuration

The following XML example shows how to enable bean validation functionality in a JAX-RS endpoint, by
adding the commonValidationFeature bean as a JAX-RS feature and by adding the exceptionMapper
bean as a JAX-RS provider:

<jaxrs:server address="/bwrest">
 <jaxrs:serviceBeans>
 <ref bean="bookWorldValidation"/>
 </jaxrs:serviceBeans>
 <jaxrs:providers>
 <ref bean="exceptionMapper"/>

Red Hat Fuse 7.5 Apache CXF Development Guide

642

http://cxf.apache.org/blueprint/jaxws
http://cxf.apache.org/jaxws

 </jaxrs:providers>
 <jaxrs:features>
 <ref bean="commonValidationFeature" />
 </jaxrs:features>
</jaxrs:server>

<bean id="bookWorldValidation"
class="org.apache.cxf.systest.jaxrs.validation.spring.BookWorldImpl"/>
<beanid="exceptionMapper"class="org.apache.cxf.jaxrs.validation.ValidationExceptionMapper"/>

<bean id="commonValidationFeature" class="org.apache.cxf.validation.BeanValidationFeature">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

For a sample implementation of the HibernateValidationProviderResolver class, see the section called
“Example HibernateValidationProviderResolver class”. It is only necessary to configure the
beanValidationProvider in the context of an OSGi environment (Apache Karaf).

NOTE

Remember to map the jaxrs prefix to the appropriate XML namespace for either
Blueprint or Spring, depending on the context.

Common bean validation 1.1 interceptors

Instead of using the bean validation feature, you can optionally install bean validation interceptors to get
more fine-grained control over the validation implementation. JAX-RS uses the same interceptors as
JAX-WS for this purpose—see the section called “Common bean validation 1.1 interceptors”

Sample JAX-RS configuration with bean validation interceptors

The following XML example shows how to enable bean validation functionality in a JAX-RS endpoint, by
explicitly adding the relevant In interceptor bean and Out interceptor bean to the server endpoint:

<jaxrs:server address="/">
 <jaxrs:inInterceptors>
 <ref bean="validationInInterceptor" />
 </jaxrs:inInterceptors>

 <jaxrs:outInterceptors>
 <ref bean="validationOutInterceptor" />
 </jaxrs:outInterceptors>

 <jaxrs:serviceBeans>
 ...
 </jaxrs:serviceBeans>

 <jaxrs:providers>
 <ref bean="exceptionMapper"/>

CHAPTER 65. BEAN VALIDATION

643

 </jaxrs:providers>
</jaxrs:server>

<bean id="exceptionMapper" class="org.apache.cxf.jaxrs.validation.ValidationExceptionMapper"/>

<bean id="validationInInterceptor" class="org.apache.cxf.validation.BeanValidationInInterceptor">
 <property name="provider" ref="beanValidationProvider" />
</bean>

<bean id="validationOutInterceptor" class="org.apache.cxf.validation.BeanValidationOutInterceptor">
 <property name="provider" ref="beanValidationProvider" />
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

For a sample implementation of the HibernateValidationProviderResolver class, see the section called
“Example HibernateValidationProviderResolver class”. It is only necessary to configure the
beanValidationProvider in the context of an OSGi environment (Apache Karaf).

Configuring a BeanValidationProvider

You can inject a custom BeanValidationProvider instance into the validation interceptors, as described
in the section called “Configuring a BeanValidationProvider” .

65.3.3. JAX-RS 2.0 Configuration

Overview

Unlike JAX-RS 1.1 (which shares common validation interceptors with JAX-WS), the JAX-RS 2.0
configuration relies on dedicated validation interceptor classes that are specific to JAX-RS 2.0.

Bean validation feature

For JAX-RS 2.0, there is a dedicated bean validation feature, which is implemented by the following
class:

org.apache.cxf.validation.JAXRSBeanValidationFeature

By adding an instance of this feature class to the JAX-RS endpoint (either through the Java API or
through the jaxrs:features child element of jaxrs:server in XML), you can enable bean validation on
a JAX-RS 2.0 server endpoint. This feature installs two interceptors: an In interceptor that validates
incoming message data; and an Out interceptor that validates return values (where the interceptors
are created with default configuration parameters).

Validation exception mapper

JAX-RS 2.0 uses the same validation exception mapper class as JAX-RS 1.x:

org.apache.cxf.jaxrs.validation.ValidationExceptionMapper

Implements validation exception mapping in accordance with the JAX-RS 2.0 specification: any input
parameter validation violations are mapped to HTTP status code 400 Bad Request; and any return

Red Hat Fuse 7.5 Apache CXF Development Guide

644

value validation violation (or internal validation violation) is mapped to HTTP status code 500
Internal Server Error.

Bean validation invoker

If you configure the JAX-RS service with a non-default lifecycle policy (for example, using Spring
lifecycle management), you should also register a
org.apache.cxf.jaxrs.validation.JAXRSBeanValidationInvoker instance—using the jaxrs:invoker
element in the endpoint configuration—with the service endpoint, to ensure that bean validation is
invoked correctly.

For more details about JAX-RS service lifecycle management, see the section called “Lifecycle
management in Spring XML”.

Sample JAX-RS 2.0 configuration with bean validation feature

The following XML example shows how to enable bean validation functionality in a JAX-RS 2.0
endpoint, by adding the jaxrsValidationFeature bean as a JAX-RS feature and by adding the
exceptionMapper bean as a JAX-RS provider:

<jaxrs:server address="/">
 <jaxrs:serviceBeans>
 ...
 </jaxrs:serviceBeans>
 <jaxrs:providers>
 <ref bean="exceptionMapper"/>
 </jaxrs:providers>
 <jaxrs:features>
 <ref bean="jaxrsValidationFeature" />
 </jaxrs:features>
</jaxrs:server>

<bean id="exceptionMapper" class="org.apache.cxf.jaxrs.validation.ValidationExceptionMapper"/>
<bean id="jaxrsValidationFeature" class="org.apache.cxf.validation.JAXRSBeanValidationFeature">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

For a sample implementation of the HibernateValidationProviderResolver class, see the section called
“Example HibernateValidationProviderResolver class”. It is only necessary to configure the
beanValidationProvider in the context of an OSGi environment (Apache Karaf).

NOTE

Remember to map the jaxrs prefix to the appropriate XML namespace for either
Blueprint or Spring, depending on the context.

Common bean validation 1.1 interceptors

If you want to have more fine-grained control over the configuration of the bean validation, you can

CHAPTER 65. BEAN VALIDATION

645

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/API_Reference/files/cxf/org/apache/cxf/jaxrs/validation/JAXRSBeanValidationInvoker.html

If you want to have more fine-grained control over the configuration of the bean validation, you can
install the JAX-RS interceptors individually, instead of using the bean validation feature. Configure one
or both of the following JAX-RS interceptors:

org.apache.cxf.validation.JAXRSBeanValidationInInterceptor

When installed in a JAX-RS 2.0 server endpoint, validates resource method parameters against
validation constraints. If validation fails, raises the javax.validation.ConstraintViolationException
exception. To install this interceptor, add it to the endpoint through the jaxrs:inInterceptors child
element in XML.

org.apache.cxf.validation.JAXRSBeanValidationOutInterceptor

When installed in a JAX-RS 2.0 endpoint, validates response values against validation constraints. If
validation fails, raises the javax.validation.ConstraintViolationException exception. To install this
interceptor, add it to the endpoint through the jaxrs:inInterceptors child element in XML.

Sample JAX-RS 2.0 configuration with bean validation interceptors

The following XML example shows how to enable bean validation functionality in a JAX-RS 2.0
endpoint, by explicitly adding the relevant In interceptor bean and Out interceptor bean to the server
endpoint:

<jaxrs:server address="/">
 <jaxrs:inInterceptors>
 <ref bean="validationInInterceptor" />
 </jaxrs:inInterceptors>

 <jaxrs:outInterceptors>
 <ref bean="validationOutInterceptor" />
 </jaxrs:outInterceptors>

 <jaxrs:serviceBeans>
 ...
 </jaxrs:serviceBeans>

 <jaxrs:providers>
 <ref bean="exceptionMapper"/>
 </jaxrs:providers>
</jaxrs:server>

<bean id="exceptionMapper" class="org.apache.cxf.jaxrs.validation.ValidationExceptionMapper"/>

<bean id="validationInInterceptor"
class="org.apache.cxf.jaxrs.validation.JAXRSBeanValidationInInterceptor">
 <property name="provider" ref="beanValidationProvider" />
</bean>

<bean id="validationOutInterceptor"
class="org.apache.cxf.jaxrs.validation.JAXRSBeanValidationOutInterceptor">
 <property name="provider" ref="beanValidationProvider" />
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

Red Hat Fuse 7.5 Apache CXF Development Guide

646

For a sample implementation of the HibernateValidationProviderResolver class, see the section called
“Example HibernateValidationProviderResolver class”. It is only necessary to configure the
beanValidationProvider in the context of an OSGi environment (Apache Karaf).

Configuring a BeanValidationProvider

You can inject a custom BeanValidationProvider instance into the validation interceptors, as described
in the section called “Configuring a BeanValidationProvider” .

Configuring a JAXRSParameterNameProvider

The org.apache.cxf.jaxrs.validation.JAXRSParameterNameProvider class is an implementation of
the javax.validation.ParameterNameProvider interface, which can be used to provide the names for
method and constructor parameters in the context of JAX-RS 2.0 endpoints.

CHAPTER 65. BEAN VALIDATION

647

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/API_Reference/files/cxf/org/apache/cxf/jaxrs/validation/JAXRSParameterNameProvider.html
http://docs.jboss.org/hibernate/beanvalidation/spec/1.1/api/javax/validation/ParameterNameProvider.html

	Table of Contents
	PART I. WRITING WSDL CONTRACTS
	CHAPTER 1. INTRODUCING WSDL CONTRACTS
	1.1. STRUCTURE OF A WSDL DOCUMENT
	Overview
	The logical part
	The concrete part

	1.2. WSDL ELEMENTS
	1.3. DESIGNING A CONTRACT

	CHAPTER 2. DEFINING LOGICAL DATA UNITS
	2.1. INTRODUCTION TO LOGICAL DATA UNITS
	2.2. MAPPING DATA INTO LOGICAL DATA UNITS
	Overview
	Available type systems for defining service data units
	XML Schema as a type system
	Considerations for creating your data units

	2.3. ADDING DATA UNITS TO A CONTRACT
	Overview
	Procedure

	2.4. XML SCHEMA SIMPLE TYPES
	Overview
	Entering simple types
	Supported XSD simple types

	2.5. DEFINING COMPLEX DATA TYPES
	2.5.1. Defining data structures
	Overview
	Complex type varieties
	Defining the parts of a structure
	Defining attributes

	2.5.2. Defining arrays
	Overview
	Complex type arrays
	SOAP arrays

	2.5.3. Defining types by extension
	2.5.4. Defining types by restriction
	Overview
	Specifying the base type
	Defining the restrictions
	Example

	2.5.5. Defining enumerated types
	Overview
	Defining an enumeration in XML Schema
	Example

	2.6. DEFINING ELEMENTS

	CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE
	OVERVIEW
	MESSAGES AND PARAMETER LISTS
	MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS
	MESSAGE DESIGN FOR SOAP SERVICES
	MESSAGE NAMING
	MESSAGE PARTS
	EXAMPLE

	CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES
	OVERVIEW
	PROCESS
	PORT TYPES
	OPERATIONS
	OPERATION MESSAGES
	RETURN VALUES
	EXAMPLE

	PART II. WEB SERVICES BINDINGS
	CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL
	OVERVIEW
	PORT TYPES AND BINDINGS
	THE WSDL ELEMENTS
	ADDING TO A CONTRACT
	SUPPORTED BINDINGS

	CHAPTER 6. USING SOAP 1.1 MESSAGES
	6.1. ADDING A SOAP 1.1 BINDING
	Using wsdl2soap
	Example

	6.2. ADDING SOAP HEADERS TO A SOAP 1.1 BINDING
	Overview
	Syntax
	Splitting messages between body and header
	Example

	CHAPTER 7. USING SOAP 1.2 MESSAGES
	7.1. ADDING A SOAP 1.2 BINDING TO A WSDL DOCUMENT
	Using wsdl2soap
	Example

	7.2. ADDING HEADERS TO A SOAP 1.2 MESSAGE
	Overview
	Syntax
	Splitting messages between body and header
	Example

	CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS
	OVERVIEW
	NAMESPACE
	CHANGING THE MESSAGE BINDING
	DESCRIBING A MIME MULTIPART MESSAGE
	EXAMPLE

	CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM
	9.1. OVERVIEW OF MTOM
	9.2. ANNOTATING DATA TYPES TO USE MTOM
	Overview
	WSDL first
	Java first

	9.3. ENABLING MTOM
	9.3.1. Using JAX-WS APIs
	Overview
	Service provider
	Consumer

	9.3.2. Using configuration
	Overview
	Procedure
	Example

	CHAPTER 10. USING XML DOCUMENTS
	XML BINDING NAMESPACE
	HAND EDITING
	XML MESSAGES ON THE WIRE
	OVERRIDING THE BINDING’S ROOTNODE ATTRIBUTE SETTING

	PART III. WEB SERVICES TRANSPORTS
	CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE DEFINED IN WSDL
	OVERVIEW
	ENDPOINTS AND SERVICES
	THE WSDL ELEMENTS
	ADDING ENDPOINTS TO A CONTRACT
	SUPPORTED TRANSPORTS

	CHAPTER 12. USING HTTP
	12.1. ADDING A BASIC HTTP ENDPOINT
	Alternative HTTP runtimes
	Netty HTTP URL
	Payload types
	SOAP 1.1
	SOAP 1.2
	Other messages types

	12.2. CONFIGURING A CONSUMER
	12.2.1. Mechanisms for HTTP Consumer Endpoints
	12.2.2. Using Configuration
	Namespace
	Undertow runtime or Netty runtime
	The conduit element
	The client element
	Example
	More information

	12.2.3. Using WSDL
	Namespace
	Undertow runtime or Netty runtime
	The client element
	Example

	12.2.4. Consumer Cache Control Directives

	12.3. CONFIGURING A SERVICE PROVIDER
	12.3.1. Mechanisms for a HTTP Service Provider
	12.3.2. Using Configuration
	Namespace
	Undertow runtime or Netty runtime
	The destination element
	The server element
	Example

	12.3.3. Using WSDL
	Namespace
	Undertow runtime or Netty runtime
	The server element
	Example

	12.3.4. Service Provider Cache Control Directives

	12.4. CONFIGURING THE UNDERTOW RUNTIME
	Overview
	Maven dependency
	Namespace
	The engine-factory element
	The engine element
	Configuring the thread pool
	Example

	12.5. CONFIGURING THE NETTY RUNTIME
	Overview
	Maven dependencies
	Namespace
	The engine-factory element
	The engine element
	Configuring the thread pool
	Example

	12.6. USING THE HTTP TRANSPORT IN DECOUPLED MODE
	Overview
	Configuring decoupled interactions
	Configuring an endpoint to use WS-Addressing
	Configuring the consumer
	How messages are processed

	CHAPTER 13. USING SOAP OVER JMS
	13.1. BASIC CONFIGURATION
	Overview
	Specifying the JMS transport type
	Specifying the target destination
	Configuring JNDI and the JMS transport

	13.2. JMS URIS
	Overview
	Syntax
	JMS properties
	JNDI properties
	Additional JNDI properties
	Example
	Publishing a service
	Consuming a service

	13.3. WSDL EXTENSIONS
	Overview
	SOAP/JMS namespace
	WSDL extension elements
	Configuration scopes
	Example

	CHAPTER 14. USING GENERIC JMS
	14.1. APPROACHES TO CONFIGURING JMS
	14.2. USING THE JMS CONFIGURATION BEAN
	Overview
	Configuration namespace
	Specifying the configuration
	Applying the configuration to an endpoint
	Applying the configuration to the transport

	14.3. OPTIMIZING CLIENT-SIDE JMS PERFORMANCE
	Overview
	Pooling
	Avoiding synchronous receives

	14.4. CONFIGURING JMS TRANSACTIONS
	Overview
	Local transactions
	JTA transactions

	14.5. USING WSDL TO CONFIGURE JMS
	14.5.1. JMS WSDL Extension Namespance
	14.5.2. Basic JMS configuration
	Overview
	Specifying the JMS address
	Specifying JNDI properties
	Example

	14.5.3. JMS client configuration
	Overview
	Specifying the message type
	Example

	14.5.4. JMS provider configuration
	Overview
	Specifying the configuration
	Example

	14.6. USING A NAMED REPLY DESTINATION
	Overview
	Setting the reply destination name
	Example

	CHAPTER 15. INTEGRATING WITH APACHE ACTIVEMQ
	OVERVIEW
	THE INITIAL CONTEXT FACTORY
	LOOKING UP THE CONNECTION FACTORY
	SYNTAX FOR DYNAMIC DESTINATIONS

	CHAPTER 16. CONDUITS
	OVERVIEW
	CONDUIT LIFE-CYCLE
	CONDUIT WEIGHT

	PART IV. CONFIGURING WEB SERVICE ENDPOINTS
	CHAPTER 17. CONFIGURING JAX-WS ENDPOINTS
	17.1. CONFIGURING SERVICE PROVIDERS
	17.1.1. Elements for Configuring Service Providers
	17.1.2. Using the jaxws:endpoint Element
	Overview
	Identifying the endpoint being configured
	Attributes
	Example

	17.1.3. Using the jaxws:server Element
	Overview
	Identifying the endpoint being configured
	Attributes
	Example

	17.1.4. Adding Functionality to Service Providers
	Overview
	Elements

	17.1.5. Enable Schema Validation on a JAX-WS Endpoint
	Overview
	Example

	17.2. CONFIGURING CONSUMER ENDPOINTS
	Overview
	Basic Configuration Properties
	Adding functionality
	Example
	Enable schema validation on a JAX-WS consumer

	CHAPTER 18. CONFIGURING JAX-RS ENDPOINTS
	18.1. CONFIGURING JAX-RS SERVER ENDPOINTS
	18.1.1. Defining a JAX-RS Server Endpoint
	Basic server endpoint definition
	Blueprint example
	Blueprint XML namespaces
	Spring example
	Spring XML namespaces
	Auto-discovery in Spring XML
	Lifecycle management in Spring XML
	Attaching a WADL document
	Schema validation
	Specifying the data binding
	Using the JMS transport
	Extension mappings and language mappings

	18.1.2. jaxrs:server Attributes
	Attributes

	18.1.3. jaxrs:server Child Elements
	Child elements

	18.2. CONFIGURING JAX-RS CLIENT ENDPOINTS
	18.2.1. Defining a JAX-RS Client Endpoint
	Injecting client proxies
	Namespaces
	Basic client endpoint definition
	Specifying headers

	18.2.2. jaxrs:client Attributes
	Attributes

	18.2.3. jaxrs:client Child Elements
	Child elements

	18.3. DEFINING REST SERVICES WITH THE MODEL SCHEMA
	RESTful services without annotations
	Example model schema
	Namespaces
	How to attach a model schema to an endpoint
	Configuration of model schema referencing a class
	Configuration of model schema referencing an interface
	Model Schema Reference

	CHAPTER 19. APACHE CXF LOGGING
	19.1. OVERVIEW OF APACHE CXF LOGGING
	Overview
	Default properties file
	Logging feature
	Where to begin?
	More information on java.util.logging

	19.2. SIMPLE EXAMPLE OF USING LOGGING
	Changing the log levels and output destination

	19.3. DEFAULT LOGGING CONFIGURATION FILE
	19.3.1. Overview of Logging Configuration
	19.3.2. Configuring Logging Output
	Overview
	Configuring the console handler
	Configuring the file handler
	Configuring both the console handler and the file handler

	19.3.3. Configuring Logging Levels
	Logging levels
	Configuring the global logging level
	Configuring logging at an individual package

	19.4. ENABLING LOGGING AT THE COMMAND LINE
	Overview
	Specifying the log configuration file on application

	19.5. LOGGING FOR SUBSYSTEMS AND SERVICES
	Overview
	Apache CXF logging subsystems
	Example

	19.6. LOGGING MESSAGE CONTENT
	Overview
	Configuring message content logging
	Adding the logging feature to an endpoint
	Adding the logging feature to a consumer
	Set logging to log INFO level messages
	Logging SOAP messages

	CHAPTER 20. DEPLOYING WS-ADDRESSING
	20.1. INTRODUCTION TO WS-ADDRESSING
	Overview
	Supported specifications
	Further information

	20.2. WS-ADDRESSING INTERCEPTORS
	Overview
	WS-Addressing Interceptors

	20.3. ENABLING WS-ADDRESSING
	Overview
	Adding WS-Addressing as a Feature

	20.4. CONFIGURING WS-ADDRESSING ATTRIBUTES
	Overview
	Configuring WS-Addressing attributes
	Using a WS-Policy assertion embedded in a feature

	CHAPTER 21. ENABLING RELIABLE MESSAGING
	21.1. INTRODUCTION TO WS-RM
	Overview
	How WS-RM works
	WS-RM delivery assurances
	Supported specifications
	Selecting the WS-RM version

	21.2. WS-RM INTERCEPTORS
	Overview
	Apache CXF WS-RM Interceptors
	Enabling WS-RM
	Configuring WS-RM Attributes

	21.3. ENABLING WS-RM
	Overview
	Spring beans: explicitly adding interceptors
	WS-Policy framework: implicitly adding interceptors

	21.4. RUNTIME CONTROL
	Overview
	Runtime control options
	Controlling WS-RM through JMX
	Example of JMX control

	21.5. CONFIGURING WS-RM
	21.5.1. Configuring Apache CXF-Specific WS-RM Attributes
	Overview
	Children of the rmManager Spring bean
	Example

	21.5.2. Configuring Standard WS-RM Policy Attributes
	Overview
	WS-Policy RMAssertion Children
	More detailed reference information
	RMAssertion in rmManager Spring bean
	Policy within a feature
	WSDL file
	External attachment

	21.5.3. WS-RM Configuration Use Cases
	Overview
	Base retransmission interval
	Exponential backoff for retransmission
	Acknowledgement interval
	Maximum unacknowledged messages threshold
	Maximum length of an RM sequence
	Message delivery assurance policies

	21.6. CONFIGURING WS-RM PERSISTENCE
	Overview
	How it works
	Enabling WS-persistence
	Configuring WS-persistence

	CHAPTER 22. ENABLING HIGH AVAILABILITY
	22.1. INTRODUCTION TO HIGH AVAILABILITY
	Overview
	HA with static failover

	22.2. ENABLING HA WITH STATIC FAILOVER
	Overview
	Encode replica details in your service WSDL file
	Add the clustering feature to your client configuration

	22.3. CONFIGURING HA WITH STATIC FAILOVER
	Overview
	Configuring a random strategy

	CHAPTER 23. APACHE CXF BINDING IDS
	TABLE OF BINDING IDS

	APPENDIX A. USING THE MAVEN OSGI TOOLING
	A.1. THE MAVEN BUNDLE PLUG-IN
	A.2. SETTING UP A RED HAT FUSE OSGI PROJECT
	Overview
	Directory structure
	Adding a bundle plug-in
	Activating a bundle plug-in
	Useful Maven archetypes
	Spring OSGi archetype
	Apache CXF code-first archetype
	Apache CXF wsdl-first archetype
	Apache Camel archetype

	A.3. CONFIGURING THE BUNDLE PLUG-IN
	Overview
	Configuration properties
	Setting a bundle’s symbolic name
	Setting a bundle’s name
	Setting a bundle’s version
	Specifying exported packages
	Specifying private packages
	Specifying imported packages
	More information

	PART V. DEVELOPING APPLICATIONS USING JAX-WS
	CHAPTER 24. BOTTOM-UP SERVICE DEVELOPMENT
	24.1. INTRODUCTION TO JAX-WS SERVICE DEVELOPMENT
	24.2. CREATING THE SEI
	Overview
	Writing the interface
	Implementing the interface

	24.3. ANNOTATING THE CODE
	24.3.1. Overview of JAX-WS Annotations
	24.3.2. Required Annotations
	Overview
	The @WebService annotation
	Annotating the SEI
	Annotating the service implementation

	24.3.3. Optional Annotations
	Overview
	The @SOAPBinding annotation
	Document bare style parameters
	Document wrapped parameters
	Example
	Overview
	The @WebMethod annotation
	The @RequestWrapper annotation
	The @ResponseWrapper annotation
	The @WebFault annotation
	The @Oneway annotation
	Example
	Overview
	The @WebParam annotation
	The @WebResult annotation
	Example

	24.3.4. Apache CXF Annotations
	24.3.4.1. WSDL Documentation
	24.3.4.2. @WSDLDocumentation properties
	24.3.4.3. Using @WSDLDocumentation
	24.3.4.4. WSDL generated with documentation
	24.3.4.5. Using @WSDLDocumentationCollection
	24.3.4.6. Schema Validation of Messages
	24.3.4.7. Schema Validation Type Values
	24.3.4.8. Specifying the Data Binding
	24.3.4.9. Setting the data binding
	24.3.4.10. Compressing Messages
	24.3.4.11. @GZIP Properties
	24.3.4.12. @FastInfoset Properties
	24.3.4.13. Enabling GZIP
	24.3.4.14. Enabling FastInfoset
	24.3.4.15. Enable Logging on an Endpoint
	24.3.4.16. @Logging Properties
	24.3.4.17. Logging configuration using annotations
	24.3.4.18. Adding Properties and Policies to an Endpoint
	24.3.4.19. Adding properties
	24.3.4.20. Configuring WS-Security Using @EndpointProperty Annotations
	24.3.4.21. Configuring WS-Security Using an @EndpointProperties Annotation
	24.3.4.22. Adding policies
	24.3.4.23. @Policy Properties

	24.4. GENERATING WSDL
	Using Maven
	Example

	CHAPTER 25. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT
	25.1. JAVA-FIRST CONSUMER DEVELOPMENT
	25.2. CREATING A SERVICE OBJECT
	Overview
	The create() methods
	Example

	25.3. ADDING A PORT TO A SERVICE
	Overview
	The addPort() method
	Example

	25.4. GETTING A PROXY FOR AN ENDPOINT
	Overview
	The getPort() method
	Example

	25.5. IMPLEMENTING THE CONSUMER’S BUSINESS LOGIC
	Overview
	Example

	CHAPTER 26. A STARTING POINT WSDL CONTRACT
	26.1. SAMPLE WSDL CONTRACT

	CHAPTER 27. TOP-DOWN SERVICE DEVELOPMENT
	27.1. OVERVIEW OF JAX-WS SERVICE PROVIDER DEVELOPMENT
	27.2. GENERATING THE STARTING POINT CODE
	Overview
	Running the code generator
	Generated code
	Generated packages

	27.3. IMPLEMENTING THE SERVICE PROVIDER
	Generating the implementation code
	Generated code
	Implement the operation’s logic
	Example

	CHAPTER 28. DEVELOPING A CONSUMER FROM A WSDL CONTRACT
	28.1. GENERATING THE STUB CODE
	Overview
	Generating the consumer code
	Generated code

	28.2. IMPLEMENTING A CONSUMER
	Overview
	Generated service class
	Service endpoint interface
	Consumer main function
	Client proxy generated with -fe cxf option

	CHAPTER 29. FINDING WSDL AT RUNTIME
	29.1. MECHANISMS FOR LOCATING THE WSDL DOCUMENT
	29.2. INSTANTIATING A PROXY BY INJECTION
	Overview
	Procedure
	Configuring the proxy
	Coding the provider implementation

	29.3. USING A JAX-WS CATALOG
	Overview
	Writing the catalog
	Packaging the catalog

	29.4. USING A CONTRACT RESOLVER
	Overview
	Implementing the contract resolver
	Registering the contract resolver programmatically
	Registering a contract resolver using configuration
	Contract resolution order

	CHAPTER 30. GENERIC FAULT HANDLING
	30.1. RUNTIME FAULTS
	Overview
	APIs that throw WebServiceException

	30.2. PROTOCOL FAULTS
	Overview
	Types of protocol exceptions
	Using the SOAP protocol exception

	CHAPTER 31. PUBLISHING A SERVICE
	31.1. WHEN TO PUBLISH A SERVICE
	31.2. APIS USED TO PUBLISH A SERVICE
	Overview
	Instantiating an service provider
	Publishing a service provider
	Stopping a published service provider

	31.3. PUBLISHING A SERVICE IN A PLAIN JAVA APPLICATION
	Overview
	Generating a Server Mainline
	Writing a Server Mainline

	31.4. PUBLISHING A SERVICE IN AN OSGI CONTAINER
	Overview
	The bundle activator interface
	Implementing the start method
	Implementing the stop method
	Informing the container

	CHAPTER 32. BASIC DATA BINDING CONCEPTS
	32.1. INCLUDING AND IMPORTING SCHEMA DEFINITIONS
	Overview
	xsd:include syntax
	xsd:import syntax
	Using non-referenced schema documents

	32.2. XML NAMESPACE MAPPING
	Overview
	Package naming
	Package contents

	32.3. THE OBJECT FACTORY
	Overview
	Complex type factory methods
	Element factory methods

	32.4. ADDING CLASSES TO THE RUNTIME MARSHALLER
	Overview
	Using the @XmlSeeAlso annotation
	Example

	CHAPTER 33. USING XML ELEMENTS
	OVERVIEW
	XML SCHEMA MAPPING
	JAVA MAPPING OF ELEMENTS WITH A NAMED TYPE
	USING ELEMENTS WITH NAMED TYPES IN WSDL
	JAVA MAPPING OF ELEMENTS WITH AN IN-LINE TYPE
	JAVA MAPPING OF ABSTRACT ELEMENTS
	JAVA MAPPING OF ELEMENTS WITH A DEFAULT VALUE

	CHAPTER 34. USING SIMPLE TYPES
	34.1. PRIMITIVE TYPES
	Overview
	Mappings
	Wrapper classes

	34.2. SIMPLE TYPES DEFINED BY RESTRICTION
	Overview
	Procedure
	Defining a simple type in XML Schema
	Mapping to Java
	Enforcing facets

	34.3. ENUMERATIONS
	Overview
	Defining an enumerated type in XML Schema
	Mapping to Java

	34.4. LISTS
	Overview
	Defining list types in XML Schema
	Mapping list type elements to Java
	Mapping list type parameters to Java

	34.5. UNIONS
	Overview
	Defining in XML Schema
	Mapping to Java

	34.6. SIMPLE TYPE SUBSTITUTION
	Overview
	Default mapping and marshaling
	Supporting lossless type substitution

	CHAPTER 35. USING COMPLEX TYPES
	35.1. BASIC COMPLEX TYPE MAPPING
	Overview
	Defining in XML Schema
	Mapping to Java

	35.2. ATTRIBUTES
	Overview
	Defining an attribute in XML Schema
	Using an attribute group in XML Schema
	Mapping attributes to Java
	Mapping attribute groups to Java

	35.3. DERIVING COMPLEX TYPES FROM SIMPLE TYPES
	Overview
	Derivation by extension
	Derivation by restriction
	Mapping to Java

	35.4. DERIVING COMPLEX TYPES FROM COMPLEX TYPES
	Overview
	Schema syntax
	Extending a complex type
	Restricting a complex type
	Mapping to Java

	35.5. OCCURRENCE CONSTRAINTS
	35.5.1. Schema Elements Supporting Occurrence Constraints
	35.5.2. Occurrence Constraints on the All Element
	XML Schema
	Mapping to Java

	35.5.3. Occurrence Constraints on the Choice Element
	Overview
	Using in XML Schema
	Mapping to Java
	minOccurs set to 0

	35.5.4. Occurrence Constraints on Elements
	Overview
	minOccurs set to 0
	minOccurs set to a value greater than 1
	Elements with maxOccurs set

	35.5.5. Occurrence Constraints on Sequences
	Overview
	Using XML Schema
	Mapping to Java
	minOccurs set to 0

	35.6. USING MODEL GROUPS
	Overview
	Defining a model group in XML Schema
	Using a model group in a type definition
	Mapping to Java
	Multiple occurrences

	CHAPTER 36. USING WILD CARD TYPES
	36.1. USING ANY ELEMENTS
	Overview
	Specifying in XML Schema
	Mapping to Java
	Marshalling
	Unmarshalling

	36.2. USING THE XML SCHEMA ANYTYPE TYPE
	Overview
	Using in XML Schema
	Mapping to Java
	Marshalling
	Unmarshalling

	36.3. USING UNBOUND ATTRIBUTES
	Overview
	Defining in XML Schema
	Mapping to Java
	Working with undeclared attributes

	CHAPTER 37. ELEMENT SUBSTITUTION
	37.1. SUBSTITUTION GROUPS IN XML SCHEMA
	Overview
	Syntax
	Type restrictions
	Abstract head elements

	37.2. SUBSTITUTION GROUPS IN JAVA
	Overview
	Generated object factory methods
	Substitution groups in interfaces
	Substitution groups in complex types
	Setting a substitution group property
	Getting the value of a substitution group property

	37.3. WIDGET VENDOR EXAMPLE
	37.3.1. Widget Ordering Interface
	37.3.2. The checkWidgets Operation
	Overview
	Consumer implementation
	Service implementation

	37.3.3. The placeWidgetOrder Operation
	Overview
	Consumer implementation
	Service implementation

	CHAPTER 38. CUSTOMIZING HOW TYPES ARE GENERATED
	38.1. BASICS OF CUSTOMIZING TYPE MAPPINGS
	Overview
	Namespace
	Version declaration
	Using in-line customization
	Using an external binding declaration

	38.2. SPECIFYING THE JAVA CLASS OF AN XML SCHEMA PRIMITIVE
	Overview
	Syntax
	Specifying the converters
	What is generated
	Implementing converters
	Default primitive type converters

	38.3. GENERATING JAVA CLASSES FOR SIMPLE TYPES
	Overview
	Adding the customization
	Generated classes

	38.4. CUSTOMIZING ENUMERATION MAPPING
	Overview
	Member name customizer
	Class customizer
	Member customizer
	Examples

	38.5. CUSTOMIZING FIXED VALUE ATTRIBUTE MAPPING
	Overview
	Global customization
	Local mapping
	Java mapping

	38.6. SPECIFYING THE BASE TYPE OF AN ELEMENT OR AN ATTRIBUTE
	Overview
	Customization usage
	Specializing or generalizing the default mapping
	Usage with javaType

	CHAPTER 39. USING A JAXBCONTEXT OBJECT
	OVERVIEW
	BEST PRACTICES
	GETTING A JAXBCONTEXT OBJECT USING AN OBJECT FACTORY
	GETTING A JAXBCONTEXT OBJECT USING PACKAGE NAMES

	CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS
	40.1. TYPES OF ASYNCHRONOUS INVOCATION
	40.2. WSDL FOR ASYNCHRONOUS EXAMPLES
	40.3. GENERATING THE STUB CODE
	Overview
	Using an external binding declaration
	Using an embedded binding declaration
	Generated interface

	40.4. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE POLLING APPROACH
	Overview
	Using the non-blocking pattern
	Using the blocking pattern

	40.5. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE CALLBACK APPROACH
	Overview
	Implementing the callback
	Implementing the consumer

	40.6. CATCHING EXCEPTIONS RETURNED FROM A REMOTE SERVICE
	Overview
	Catching the exception
	Getting the exception details
	Example

	CHAPTER 41. USING RAW XML MESSAGES
	41.1. USING XML IN A CONSUMER
	41.1.1. Usage Modes
	Overview
	Message mode
	Payload mode

	41.1.2. Data Types
	Overview
	Using Source objects
	Using SOAPMessage objects
	Using DataSource objects
	Using JAXB objects

	41.1.3. Working with Dispatch Objects
	Procedure
	Creating a Dispatch object
	Constructing request messages
	Synchronous invocation
	Asynchronous invocation
	Oneway invocation

	41.2. USING XML IN A SERVICE PROVIDER
	41.2.1. Messaging Modes
	Overview
	Message mode
	Payload mode

	41.2.2. Data Types
	Overview
	Using Source objects
	Using SOAPMessage objects
	Using DataSource objects

	41.2.3. Implementing a Provider Object
	Overview
	Working with messages
	The @WebServiceProvider annotation
	Implementing the invoke() method
	Examples

	CHAPTER 42. WORKING WITH CONTEXTS
	42.1. UNDERSTANDING CONTEXTS
	Overview
	How properties are stored in a context
	Property scopes
	Overview of contexts in handlers
	Overview of contexts in service implementations
	Overview of contexts in consumer implementations

	42.2. WORKING WITH CONTEXTS IN A SERVICE IMPLEMENTATION
	Overview
	Obtaining a context
	Reading a property from a context
	Setting properties in a context
	Supported contexts

	42.3. WORKING WITH CONTEXTS IN A CONSUMER IMPLEMENTATION
	Overview
	Obtaining a context
	Reading a property from a context
	Setting properties in a context
	Supported contexts

	42.4. WORKING WITH JMS MESSAGE PROPERTIES
	42.4.1. Inspecting JMS Message Headers
	Getting the JMS Message Headers in a Service
	Getting JMS Message Header Properties in a Consumer

	42.4.2. Inspecting the Message Header Properties
	Standard JMS Header Properties
	Optional Header Properties
	Example

	42.4.3. Setting JMS Properties
	JMS Header Properties
	Optional JMS Header Properties
	Client Receive Timeout
	Example

	CHAPTER 43. WRITING HANDLERS
	43.1. HANDLERS: AN INTRODUCTION
	Overview
	Handler types
	Implementation of handlers
	Adding handlers to an application

	43.2. IMPLEMENTING A LOGICAL HANDLER
	Overview
	Procedure

	43.3. HANDLING MESSAGES IN A LOGICAL HANDLER
	Overview
	Getting the message data
	Working with the message body as an XML object
	Working with the message body as a JAXB object
	Working with context properties
	Determining the direction of the message
	Determining the return value
	Example

	43.4. IMPLEMENTING A PROTOCOL HANDLER
	Overview
	Procedure
	Implementing the getHeaders() method

	43.5. HANDLING MESSAGES IN A SOAP HANDLER
	Overview
	Working with the message body
	Getting the SOAP headers
	Working with context properties
	Determining the direction of the message
	Determining the return value
	Example

	43.6. INITIALIZING A HANDLER
	Overview
	Order of initialization

	43.7. HANDLING FAULT MESSAGES
	Overview
	Getting the message payload
	Determining the return value
	Example

	43.8. CLOSING A HANDLER
	43.9. RELEASING A HANDLER
	Overview
	Order of release

	43.10. CONFIGURING ENDPOINTS TO USE HANDLERS
	43.10.1. Programmatic Configuration
	43.10.1.1. Adding a Handler Chain to a Consumer
	43.10.1.2. Adding a Handler Chain to a Service Provider

	43.10.2. Spring Configuration
	Overview
	Procedure
	The handlers element
	Example

	CHAPTER 44. MAVEN TOOLING REFERENCE
	44.1. PLUG-IN SETUP
	Dependencies

	44.2. CXF-CODEGEN-PLUGIN
	Overview
	Basic example
	Basic configuration settings
	Description
	WSDL options
	Default options
	Specifying code generation options
	Specifying binding files
	Generating code for a specific WSDL service
	Generating code for multiple WSDL files
	Downloading WSDL from a Maven repository
	Encoding
	Forking a separate process
	Options reference

	44.3. JAVA2WS
	Synopsis
	Description
	Required configuration
	Optional configuration

	PART VI. DEVELOPING RESTFUL WEB SERVICES
	CHAPTER 45. INTRODUCTION TO RESTFUL WEB SERVICES
	OVERVIEW
	BASIC REST PRINCIPLES
	RESOURCES
	REST BEST PRACTICES
	DESIGNING A RESTFUL WEB SERVICE
	IMPLEMENTING REST WITH APACHE CXF
	DATA BINDINGS

	CHAPTER 46. CREATING RESOURCES
	46.1. INTRODUCTION
	Overview
	Types of resources
	Example

	46.2. BASIC JAX-RS ANNOTATIONS
	Overview
	Setting the path
	Specifying HTTP verbs

	46.3. ROOT RESOURCE CLASSES
	Overview
	Requirements
	Example

	46.4. WORKING WITH RESOURCE METHODS
	Overview
	General constraints
	Parameters
	Return values

	46.5. WORKING WITH SUB-RESOURCES
	Overview
	Specifying a sub-resource
	Sub-resource methods
	Sub-resource locators

	46.6. RESOURCE SELECTION METHOD
	Overview
	The basic selection algorithm
	Selecting from multiple resource classes
	Selecting from multiple resource methods
	Customizing the selection process

	CHAPTER 47. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS
	47.1. BASICS OF INJECTING DATA
	Overview
	When data is injected
	Supported data types

	47.2. USING JAX-RS APIS
	47.2.1. JAX-RS Annotation Types
	47.2.2. Injecting data from a request URI
	Overview
	Getting data from the URI’s path
	Using query parameters
	Using matrix parameters
	Disabling URI decoding
	Error handling

	47.2.3. Injecting data from the HTTP message header
	Overview
	Injecting information from the HTTP headers
	Injecting information from a cookie
	Error handling

	47.2.4. Injecting data from HTML forms
	Overview
	Using the @FormParam annotation to inject form data
	Example

	47.2.5. Specifying a default value to inject
	Overview
	Syntax
	Dealing with lists and sets
	Example

	47.2.6. Injecting Parameters into a Java Bean
	Overview
	Injection target
	Example without BeanParam annotation
	Example with BeanParam annotation

	47.3. PARAMETER CONVERTERS
	Overview
	Automatic conversions
	Parameter converters
	Factory pattern
	ParamConverter interface
	ParamConverterProvider interface
	Binding the parameter converter provider
	Example
	Using the parameter converter
	Lazy conversion of default value

	47.4. USING APACHE CXF EXTENSIONS
	Overview
	Supported injection annotations
	Syntax
	Example

	CHAPTER 48. RETURNING INFORMATION TO THE CONSUMER
	48.1. RETURN TYPES
	48.2. RETURNING PLAIN JAVA CONSTRUCTS
	Overview
	Returnable types
	MIME types
	Response codes

	48.3. FINE TUNING AN APPLICATION’S RESPONSES
	48.3.1. Basics of building responses
	Overview
	Relationship between a response and a response builder
	Getting a response builder
	More information

	48.3.2. Creating responses for common use cases
	Overview
	Creating responses for successful requests
	Creating responses for redirection
	Creating responses to signal errors

	48.3.3. Handling more advanced responses
	Overview
	Adding custom headers
	Adding a cookie
	Setting the response status
	Setting cache control directives

	48.4. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION
	Overview
	Using a GenericEntity<T> object
	Creating a GenericEntity<T> object

	48.5. ASYNCHRONOUS RESPONSE
	48.5.1. Asynchronous Processing on the Server
	Overview
	Basic model for asynchronous processing
	Thread pool implementation with Java executor
	Defining an asynchronous resource method
	AsyncResponse class
	Encapsulating a suspended request as a Runnable
	Example of asynchronous processing

	48.5.2. Timeouts and Timeout Handlers
	Overview
	Example of setting a timeout without a handler
	Default timeout behaviour
	TimeoutHandler interface
	Example of setting a timeout with a handler
	Using a timeout handler to cancel the response
	Dealing with a cancelled response in the Runnable instance

	48.5.3. Handling Dropped Connections
	Overview
	ConnectionCallback interface
	Registering a connection callback
	Typical scenario for connection callback

	48.5.4. Registering Callbacks
	Overview
	CompletionCallback interface
	Registering a completion callback

	CHAPTER 49. JAX-RS 2.0 CLIENT API
	49.1. INTRODUCTION TO THE JAX-RS 2.0 CLIENT API
	Overview
	Dependencies
	Client API package
	Example of a simple client request
	Fluent API
	Steps to make a REST invocation
	Bootstrap the client
	Configure the target
	Build and make the invocation
	Parse the response

	49.2. BUILDING THE CLIENT TARGET
	Overview
	WebTarget builder class
	Create the client target
	Base path and path segments
	URI template parameters
	Define query parameters
	Define matrix parameters

	49.3. BUILDING THE CLIENT INVOCATION
	Overview
	Invocation.Builder class
	Create the invocation builder
	Define HTTP headers
	Define cookies
	Define properties
	Define accepted media types, languages, or encodings
	Invoke HTTP method
	Typed responses
	Specifying the outgoing message in post or put
	Delayed invocation
	Asynchronous invocation

	49.4. PARSING REQUESTS AND RESPONSES
	Overview
	Entities
	Variants
	Entity providers
	Standard entity providers
	Response object
	Accessing the response status
	Accessing the returned headers
	Accessing the returned cookies
	Accessing the returned message content
	Collection return value

	49.5. CONFIGURING THE CLIENT ENDPOINT
	Overview
	Example
	Configurable API for registering objects
	What can you configure on the client?
	Features
	Providers
	Filters
	Interceptors
	Properties
	Other configurable types

	49.6. ASYNCHRONOUS PROCESSING ON THE CLIENT
	Overview
	Asynchronous invocation with Future<V> return value
	Asynchronous invocation with invocation callback

	CHAPTER 50. HANDLING EXCEPTIONS
	50.1. OVERVIEW OF JAX-RS EXCEPTION CLASSES
	Overview
	JAX-RS runtime level exceptions
	JAX-RS application level exceptions

	50.2. USING WEBAPPLICATIONEXCEPTION EXCEPTIONS TO REPORT
	Overview
	Creating a simple exception
	Setting the status code returned to the client
	Providing an entity body
	Extending the generic exception

	50.3. JAX-RS 2.0 EXCEPTION TYPES
	Overview
	Exception hierarchy
	WebApplicationException class
	ClientErrorException class
	ServerErrorException class
	RedirectionException class
	Client exception subclasses
	Server exception subclasses

	50.4. MAPPING EXCEPTIONS TO RESPONSES
	Overview
	How exception mappers are selected
	Implementing an exception mapper
	Registering an exception mapper
	Registering an exception mapper for WebApplicationException

	CHAPTER 51. ENTITY SUPPORT
	OVERVIEW
	NATIVELY SUPPORTED TYPES
	CUSTOM READERS
	CUSTOM WRITERS
	REGISTERING READERS AND WRITERS

	CHAPTER 52. GETTING AND USING CONTEXT INFORMATION
	52.1. INTRODUCTION TO CONTEXTS
	Context annotation
	Types of contexts
	Where context information can be used
	Scope
	Adding contexts

	52.2. WORKING WITH THE FULL REQUEST URI
	52.2.1. Injecting the URI information
	Overview
	Example

	52.2.2. Working with the URI
	Overview
	Getting the Base URI
	Getting the path
	Getting the full request URI

	52.2.3. Getting the value of URI template variables
	Overview
	Methods for getting the path parameters
	Example

	CHAPTER 53. ANNOTATION INHERITANCE
	OVERVIEW
	INHERITANCE RULES
	OVERRIDING INHERITED ANNOTATIONS

	CHAPTER 54. EXTENDING JAX-RS ENDPOINTS WITH SWAGGER SUPPORT
	54.1. SWAGGER2FEATURE OPTIONS
	54.2. KARAF IMPLEMENTATIONS
	54.2.1. Quickstart example
	54.2.2. Enabling Swagger

	54.3. SPRING BOOT IMPLEMENTATIONS
	54.3.1. Quickstart example
	54.3.2. Enabling Swagger

	54.4. ACCESSING SWAGGER DOCUMENTS
	54.5. ACCESSING SWAGGER THROUGH A REVERSE PROXY

	PART VII. DEVELOPING APACHE CXF INTERCEPTORS
	CHAPTER 55. INTERCEPTORS IN THE APACHE CXF RUNTIME
	OVERVIEW
	MESSAGE PROCESSING IN APACHE CXF
	INTERCEPTORS
	PHASES
	INTERCEPTOR CHAINS
	DEVELOPING INTERCEPTORS

	CHAPTER 56. THE INTERCEPTOR APIS
	INTERFACES
	ABSTRACT INTERCEPTOR CLASS

	CHAPTER 57. DETERMINING WHEN THE INTERCEPTOR IS INVOKED
	57.1. SPECIFYING THE INTERCEPTOR LOCATION
	57.2. SPECIFYING AN INTERCEPTOR’S PHASE
	Overview
	Phase
	Specifying a phase
	Setting the phase

	57.3. CONSTRAINING AN INTERCEPTORS PLACEMENT IN A PHASE
	Overview
	Add to the chain before
	Add to the chain after

	CHAPTER 58. IMPLEMENTING THE INTERCEPTORS PROCESSING LOGIC
	58.1. INTERCEPTOR FLOW
	58.2. PROCESSING MESSAGES
	Overview
	Getting the message contents
	Determining the message’s direction
	Example

	58.3. UNWINDING AFTER AN ERROR
	Overview
	Getting the message payload
	Example

	CHAPTER 59. CONFIGURING ENDPOINTS TO USE INTERCEPTORS
	59.1. DECIDING WHERE TO ATTACH INTERCEPTORS
	Overview
	Endpoints and proxies
	Factories
	Bindings
	Buses
	Combining attachment points

	59.2. ADDING INTERCEPTORS USING CONFIGURATION
	Overview
	Configuration elements
	Examples
	More information

	59.3. ADDING INTERCEPTORS PROGRAMMATICALLY
	59.3.1. Approaches to Adding Interceptors
	59.3.2. Using the interceptor provider API
	Overview
	Procedure
	Attaching an interceptor to a consumer
	Attaching an interceptor to a service provider
	Attaching an interceptor to a bus

	59.3.3. Using Java annotations
	Overview
	Where to place the annotations
	The annotations
	Listing the interceptors
	Example

	CHAPTER 60. MANIPULATING INTERCEPTOR CHAINS ON THE FLY
	OVERVIEW
	CHAIN LIFE-CYCLE
	GETTING THE INTERCEPTOR CHAIN
	ADDING INTERCEPTORS
	REMOVING INTERCEPTORS

	CHAPTER 61. JAX-RS 2.0 FILTERS AND INTERCEPTORS
	61.1. INTRODUCTION TO JAX-RS FILTERS AND INTERCEPTORS
	Overview
	Filters
	Interceptors
	Server processing pipeline
	Server extension points
	Client processing pipeline
	Client extension points
	Filter and interceptor order
	Filter classes
	Interceptor classes

	61.2. CONTAINER REQUEST FILTER
	Overview
	ContainerRequestFilter interface
	ContainerRequestContext interface
	Sample implementation for PreMatchContainerRequest filter
	Sample implementation for ContainerRequest filter
	Injecting ResourceInfo
	Aborting the invocation
	Binding the server request filter

	61.3. CONTAINER RESPONSE FILTER
	Overview
	ContainerResponseFilter interface
	ContainerResponseContext interface
	Sample implementation
	Binding the server response filter

	61.4. CLIENT REQUEST FILTER
	Overview
	ClientRequestFilter interface
	ClientRequestContext interface
	Sample implementation
	Aborting the invocation
	Registering the client request filter

	61.5. CLIENT RESPONSE FILTER
	Overview
	ClientResponseFilter interface
	ClientResponseContext interface
	Sample implementation
	Registering the client response filter

	61.6. ENTITY READER INTERCEPTOR
	Overview
	ReaderInterceptor interface
	ReaderInterceptorContext interface
	InterceptorContext interface
	Sample implementation on the client side
	Sample implementation on the server side
	Binding a reader interceptor on the client side
	Binding a reader interceptor on the server side

	61.7. ENTITY WRITER INTERCEPTOR
	Overview
	WriterInterceptor interface
	WriterInterceptorContext interface
	InterceptorContext interface
	Sample implementation on the client side
	Sample implementation on the server side
	Binding a writer interceptor on the client side
	Binding a writer interceptor on the server side

	61.8. DYNAMIC BINDING
	Overview
	DynamicFeature interface
	Implementing a dynamic feature
	Example dynamic feature
	Dynamic binding process
	FeatureContext interface

	CHAPTER 62. APACHE CXF MESSAGE PROCESSING PHASES
	INBOUND PHASES
	OUTBOUND PHASES

	CHAPTER 63. APACHE CXF PROVIDED INTERCEPTORS
	63.1. CORE APACHE CXF INTERCEPTORS
	Inbound
	Outbound

	63.2. FRONT-ENDS
	JAX-WS
	JAX-RS

	63.3. MESSAGE BINDINGS
	SOAP
	XML
	CORBA

	63.4. OTHER FEATURES
	Logging
	WS-Addressing
	WS-RM

	CHAPTER 64. INTERCEPTOR PROVIDERS
	OVERVIEW
	LIST OF PROVIDERS

	PART VIII. APACHE CXF FEATURES
	CHAPTER 65. BEAN VALIDATION
	65.1. INTRODUCTION
	Overview
	Example of annotated class
	Bean validation or schema validation?
	Dependencies
	Core dependencies
	Hibernate Validator dependencies
	Resolving the validation provider in an OSGi environment
	Configuring the validation provider explicitly in OSGi
	Example HibernateValidationProviderResolver class

	65.2. DEVELOPING SERVICES WITH BEAN VALIDATION
	65.2.1. Annotating a Service Bean
	Overview
	Validating simple input parameters
	Validating complex input parameters
	Validating return values (non-Response)
	Validating return values (Response)

	65.2.2. Standard Annotations
	Bean validation constraints

	65.2.3. Custom Annotations
	Defining custom constraints in Hibernate

	65.3. CONFIGURING BEAN VALIDATION
	65.3.1. JAX-WS Configuration
	Overview
	Namespaces
	Bean validation feature
	Sample JAX-WS configuration with bean validation feature
	Common bean validation 1.1 interceptors
	Sample JAX-WS configuration with bean validation interceptors
	Configuring a BeanValidationProvider

	65.3.2. JAX-RS Configuration
	Overview
	Namespaces
	Bean validation feature
	Validation exception mapper
	Sample JAX-RS configuration
	Common bean validation 1.1 interceptors
	Sample JAX-RS configuration with bean validation interceptors
	Configuring a BeanValidationProvider

	65.3.3. JAX-RS 2.0 Configuration
	Overview
	Bean validation feature
	Validation exception mapper
	Bean validation invoker
	Sample JAX-RS 2.0 configuration with bean validation feature
	Common bean validation 1.1 interceptors
	Sample JAX-RS 2.0 configuration with bean validation interceptors
	Configuring a BeanValidationProvider
	Configuring a JAXRSParameterNameProvider

