
Red Hat Fuse 7.4

Apache CXF Security Guide

Protecting your services and their consumers

Last Updated: 2019-08-07

Red Hat Fuse 7.4 Apache CXF Security Guide

Protecting your services and their consumers

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use the Apache CXF security features.

. .

. .

Table of Contents

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS
OVERVIEW
GENERATING X.509 CERTIFICATES
CERTIFICATE FORMAT
ENABLING HTTPS
HTTPS CLIENT WITH NO CERTIFICATE
HTTPS CLIENT WITH CERTIFICATE
HTTPS SERVER CONFIGURATION

CHAPTER 2. MANAGING CERTIFICATES
2.1. WHAT IS AN X.509 CERTIFICATE?

Role of certificates
Integrity of the public key
Digital signatures
Contents of an X.509 certificate
Distinguished names

2.2. CERTIFICATION AUTHORITIES
2.2.1. Introduction to Certificate Authorities
2.2.2. Commercial Certification Authorities

Signing certificates
Advantages of commercial CAs
Criteria for choosing a CA

2.2.3. Private Certification Authorities
Choosing a CA software package
OpenSSL software package
Setting up a private CA using OpenSSL
Choosing a host for a private certification authority
Security precautions

2.3. CERTIFICATE CHAINING
Certificate chain
Self-signed certificate
Chain of trust
Certificates signed by multiple CAs
Trusted CAs

2.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES
Overview
HTTPS URL integrity check
Reference
How to specify the certificate identity
Using commonName
Using subjectAltName (multi-homed hosts)

2.5. CREATING YOUR OWN CERTIFICATES
2.5.1. Prerequisites

OpenSSL utilities
Sample CA directory structure

2.5.2. Set Up Your Own CA
Substeps to perform
Add the bin directory to your PATH
Create the CA directory hierarchy
Copy and edit the openssl.cnf file
Initialize the CA database

8
8
8
9
9

10
11

12

15
15
15
15
15
15
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
18
18
19
19
19
19
19

20
20
20
20
21
21
21
21
22
22

Table of Contents

1

. .

. .

Create a self-signed CA certificate and private key
2.5.3. Use the CA to Create Signed Certificates in a Java Keystore

Substeps to perform
Add the Java bin directory to your PATH
Generate a certificate and private key pair
Create a certificate signing request
Sign the CSR
Convert to PEM format
Concatenate the files
Update keystore with the full certificate chain
Repeat steps as required

2.5.4. Use the CA to Create Signed PKCS#12 Certificates
Substeps to perform
Add the bin directory to your PATH
Configure the subjectAltName extension (Optional)
Create a certificate signing request
Sign the CSR
Concatenate the files
Create a PKCS#12 file
Repeat steps as required

(OPTIONAL) CLEAR THE SUBJECTALTNAME EXTENSION

CHAPTER 3. CONFIGURING HTTPS
3.1. AUTHENTICATION ALTERNATIVES

3.1.1. Target-Only Authentication
Overview
Security handshake
HTTPS example

3.1.2. Mutual Authentication
Overview
Security handshake
HTTPS example

3.2. SPECIFYING TRUSTED CA CERTIFICATES
3.2.1. When to Deploy Trusted CA Certificates

Overview
Which applications need to specify trusted CA certificates?

3.2.2. Specifying Trusted CA Certificates for HTTPS
CA certificate format
CA certificate deployment in the Apache CXF configuration file

3.3. SPECIFYING AN APPLICATION’S OWN CERTIFICATE
3.3.1. Deploying Own Certificate for HTTPS

Overview
Procedure

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES
4.1. SUPPORTED CIPHER SUITES

Overview
JCE/JSSE and security providers
SunJSSE provider
Cipher suites supported by SunJSSE
JSSE reference guide

4.2. CIPHER SUITE FILTERS
Overview

23
24
24
24
24
25
25
25
25
26
26
26
26
26
27
27
29
29
30
30
30

31
31
31
31
31
32
32
32
33
34
34
34
34
34
35
35
35
36
36
36
36

39
39
39
39
39
39
40
40
40

Red Hat Fuse 7.4 Apache CXF Security Guide

2

. .

. .

Namespaces
sec:cipherSuitesFilter element
Semantics
Regular expression matching
Client conduit example

4.3. SSL/TLS PROTOCOL VERSION
Overview
SSL/TLS protocol versions supported by SunJSSE
Excluding specific SSL/TLS protocol versions
secureSocketProtocol attribute

CHAPTER 5. THE WS-POLICY FRAMEWORK
5.1. INTRODUCTION TO WS-POLICY

Overview
Policies and policy references
Policy subjects
Service policy subject
Endpoint policy subject
Operation policy subject
Message policy subject

5.2. POLICY EXPRESSIONS
Overview
Policy assertions
Policy alternatives
wsp:All element
wsp:ExactlyOne element
The empty policy
The null policy
Normal form

CHAPTER 6. MESSAGE PROTECTION
6.1. TRANSPORT LAYER MESSAGE PROTECTION

Overview
Prerequisites
Policy subject
Syntax
Sample policy
sp:TransportToken
sp:AlgorithmSuite
sp:Layout
sp:IncludeTimestamp
sp:MustSupportRefKeyIdentifier
sp:MustSupportRefIssuerSerial

6.2. SOAP MESSAGE PROTECTION
6.2.1. Introduction to SOAP Message Protection

Overview
Security bindings
Message protection
Specifying parts of the message to protect
Role of configuration

6.2.2. Basic Signing and Encryption Scenario
Overview
Example scenario

41
41
41

42
42
42
43
43
43
44

45
45
45
45
46
46
46
47
47
48
48
48
49
49
49
50
50
51

52
52
52
52
53
54
54
55
55
55
55
55
55
55
55
55
56
56
56
57
57
57
57

Table of Contents

3

Scenario steps
6.2.3. Specifying an AsymmetricBinding Policy

Overview
Policy subject
Syntax
Sample policy
sp:InitiatorToken
sp:RecipientToken
sp:AlgorithmSuite
sp:Layout
sp:IncludeTimestamp
sp:EncryptBeforeSigning
sp:EncryptSignature
sp:ProtectTokens
sp:OnlySignEntireHeadersAndBody

6.2.4. Specifying a SymmetricBinding Policy
Overview
Policy subject
Syntax
Sample policy
sp:ProtectionToken
sp:SignatureToken
sp:EncryptionToken
sp:AlgorithmSuite
sp:Layout
sp:IncludeTimestamp
sp:EncryptBeforeSigning
sp:EncryptSignature
sp:ProtectTokens
sp:OnlySignEntireHeadersAndBody

6.2.5. Specifying Parts of Message to Encrypt and Sign
Overview
Policy subject
Protection assertions
Syntax
Sample policy
sp:Body
sp:Header
sp:Attachments

6.2.6. Providing Encryption Keys and Signing Keys
Overview
Configuring encryption keys and signing keys
Add encryption and signing properties to Blueprint configuration
Define the WSS4J property files
Programming encryption keys and signing keys
WSS4J Crypto interface

6.2.7. Specifying the Algorithm Suite
Overview
Syntax
Algorithm suites
Types of cryptographic algorithm
Symmetric key signature
Asymmetric key signature

57
58
58
58
58
59
60
61

62
62
62
62
62
63
63
63
63
63
64
64
65
65
65
65
65
66
66
66
66
66
66
66
66
67
67
67
68
68
68
68
68
68
69
71
72
73
74
74
74
75
76
77
77

Red Hat Fuse 7.4 Apache CXF Security Guide

4

. .

. .

. .

Digest
Encryption
Symmetric key wrap
Asymmetric key wrap
Computed key
Encryption key derivation
Signature key derivation
Key length properties

CHAPTER 7. AUTHENTICATION
7.1. INTRODUCTION TO AUTHENTICATION

Overview
Steps to set up authentication

7.2. SPECIFYING AN AUTHENTICATION POLICY
Overview
Syntax
Sample policy
Token types
sp:UsernameToken
sp:IncludeToken attribute
SupportingTokens assertions
sp:SupportingTokens
sp:SignedSupportingTokens
sp:EncryptedSupportingTokens
sp:SignedEncryptedSupportingTokens
sp:EndorsingSupportingTokens
sp:SignedEndorsingSupportingTokens
sp:EndorsingEncryptedSupportingTokens
sp:SignedEndorsingEncryptedSupportingTokens

7.3. PROVIDING CLIENT CREDENTIALS
Overview
Client credentials properties
Configuring client credentials in Blueprint XML
Programming a callback handler for passwords
WSPasswordCallback class

7.4. AUTHENTICATING RECEIVED CREDENTIALS
Overview
Configuring a server callback handler in Blueprint XML
Implementing the callback handler to check passwords

CHAPTER 8. FUSE CREDENTIAL STORE
8.1. OVERVIEW
8.2. PREREQUISITES
8.3. SETUP FUSE CREDENTIAL STORE ON KARAF

APPENDIX A. ASN.1 AND DISTINGUISHED NAMES
A.1. ASN.1

Overview
BER
DER
References

A.2. DISTINGUISHED NAMES
Overview
String representation of DN

77
77
78
78
78
79
79
79

80
80
80
80
80
80
81
81

82
82
83
84
84
85
85
85
85
86
86
86
86
86
87
87
87
89
90
90
90
90

92
92
92
92

94
94
94
94
94
94
94
94
95

Table of Contents

5

DN string example
Structure of a DN string
OID
Attribute types
AVA
RDN

95
95
95
95
96
96

Red Hat Fuse 7.4 Apache CXF Security Guide

6

Table of Contents

7

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS

Abstract

This chapter describes the security features supported by the Apache CXF HTTP transport. These
security features are available to any Apache CXF binding that can be layered on top of the HTTP
transport.

OVERVIEW

This section describes how to configure the HTTP transport to use SSL/TLS security, a combination
usually referred to as HTTPS. In Apache CXF, HTTPS security is configured by specifying settings in
XML configuration files.

WARNING

If you enable SSL/TLS security, you must ensure that you explicitly disable the
SSLv3 protocol, in order to safeguard against the Poodle vulnerability (CVE-2014-
3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and JBoss A-MQ
6.x.

The following topics are discussed in this chapter:

the section called “Generating X.509 certificates”

the section called “Enabling HTTPS”

the section called “HTTPS client with no certificate”

the section called “HTTPS client with certificate”

the section called “HTTPS server configuration”

GENERATING X.509 CERTIFICATES

A basic prerequisite for using SSL/TLS security is to have a collection of X.509 certificates available to
identify your server applications and, optionally, to identify your client applications. You can generate
X.509 certificates in one of the following ways:

Use a commercial third-party to tool to generate and manage your X.509 certificates.

Use the free openssl utility (which can be downloaded from http://www.openssl.org) and the
Java keystore utility to generate certificates (see Section 2.5.3, “Use the CA to Create Signed
Certificates in a Java Keystore”).

NOTE



Red Hat Fuse 7.4 Apache CXF Security Guide

8

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613
http://www.openssl.org

NOTE

The HTTPS protocol mandates a URL integrity check, which requires a certificate’s
identity to match the hostname on which the server is deployed. See Section 2.4, “Special
Requirements on HTTPS Certificates” for details.

CERTIFICATE FORMAT

In the Java runtime, you must deploy X.509 certificate chains and trusted CA certificates in the form of
Java keystores. See Chapter 3, Configuring HTTPS for details.

ENABLING HTTPS

A prerequisite for enabling HTTPS on a WSDL endpoint is that the endpoint address must be specified
as a HTTPS URL. There are two different locations where the endpoint address is set and both must be
modified to use a HTTPS URL:

HTTPS specified in the WSDL contract—you must specify the endpoint address in the WSDL
contract to be a URL with the https: prefix, as shown in Example 1.1, “Specifying HTTPS in the
WSDL”.

Example 1.1. Specifying HTTPS in the WSDL

<wsdl:definitions name="HelloWorld"
 targetNamespace="http://apache.org/hello_world_soap_http"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >
 ...
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding"
 name="SoapPort">
 <soap:address location="https://localhost:9001/SoapContext/SoapPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Where the location attribute of the soap:address element is configured to use a HTTPS URL.
For bindings other than SOAP, you edit the URL appearing in the location attribute of the
http:address element.

HTTPS specified in the server code—you must ensure that the URL published in the server code
by calling Endpoint.publish() is defined with a https: prefix, as shown in Example 1.2,
“Specifying HTTPS in the Server Code”.

Example 1.2. Specifying HTTPS in the Server Code

// Java
package demo.hw_https.server;
import javax.xml.ws.Endpoint;

public class Server {
 protected Server() throws Exception {
 Object implementor = new GreeterImpl();
 String address = "https://localhost:9001/SoapContext/SoapPort";
 Endpoint.publish(address, implementor);

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS

9

 }
 ...
 }

HTTPS CLIENT WITH NO CERTIFICATE

For example, consider the configuration for a secure HTTPS client with no certificate, as shown in
Example 1.3, “Sample HTTPS Client with No Certificate” .

Example 1.3. Sample HTTPS Client with No Certificate

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 xsi:schemaLocation="...">

 <http:conduit name="{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
 <http:tlsClientParameters>
 <sec:trustManagers>
 <sec:keyStore type="JKS" password="password"
 file="certs/truststore.jks"/>
 </sec:trustManagers>
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 </http:tlsClientParameters>
 </http:conduit>

</beans>

The preceding client configuration is described as follows:

The TLS security settings are defined on a specific WSDL port. In this example, the WSDL port being
configured has the QName, {http://apache.org/hello_world_soap_http}SoapPort.

The http:tlsClientParameters element contains all of the client’s TLS configuration details.

The sec:trustManagers element is used to specify a list of trusted CA certificates (the client uses this
list to decide whether or not to trust certificates received from the server side).

The file attribute of the sec:keyStore element specifies a Java keystore file, truststore.jks, containing
one or more trusted CA certificates. The password attribute specifies the password required to access
the keystore, truststore.jks. See Section 3.2.2, “Specifying Trusted CA Certificates for HTTPS” .

NOTE

Red Hat Fuse 7.4 Apache CXF Security Guide

10

NOTE

Instead of the file attribute, you can specify the location of the keystore using either the
resource attribute (where the keystore file is provided on the classpath) or the url
attribute. In particular, the resource attribute must be used with applications that are
deployed into an OSGi container. You must be extremely careful not to load the
truststore from an untrustworthy source.

The sec:cipherSuitesFilter element can be used to narrow the choice of cipher suites that the client is
willing to use for a TLS connection. See Chapter 4, Configuring HTTPS Cipher Suites for details.

HTTPS CLIENT WITH CERTIFICATE

Consider a secure HTTPS client that is configured to have its own certificate. Example 1.4, “Sample
HTTPS Client with Certificate” shows how to configure such a sample client.

Example 1.4. Sample HTTPS Client with Certificate

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 xsi:schemaLocation="...">

 <http:conduit name="{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
 <http:tlsClientParameters>
 <sec:trustManagers>
 <sec:keyStore type="JKS" password="password"
 file="certs/truststore.jks"/>
 </sec:trustManagers>
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="JKS" password="password"
 file="certs/wibble.jks"/>
 </sec:keyManagers>
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 </http:tlsClientParameters>
 </http:conduit>

 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

The preceding client configuration is described as follows:

The sec:keyManagers element is used to attach an X.509 certificate and a private key to the client.
The password specified by the keyPasswod attribute is used to decrypt the certificate’s private key.

The sec:keyStore element is used to specify an X.509 certificate and a private key that are stored in a

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS

11

The sec:keyStore element is used to specify an X.509 certificate and a private key that are stored in a
Java keystore. This sample declares that the keystore is in Java Keystore format (JKS).

The file attribute specifies the location of the keystore file, wibble.jks, that contains the client’s X.509
certificate chain and private key in a key entry. The password attribute specifies the keystore password
which is required to access the contents of the keystore.

It is expected that the keystore file contains just one key entry, so it is not necessary to specify a key
alias to identify the entry. If you are deploying a keystore file with multiple key entries, however, it is
possible to specify the key in this case by adding the sec:certAlias element as a child of the
http:tlsClientParameters element, as follows:

<http:tlsClientParameters>
 ...
 <sec:certAlias>CertAlias</sec:certAlias>
 ...
</http:tlsClientParameters>

For details of how to create a keystore file, see Section 2.5.3, “Use the CA to Create Signed Certificates
in a Java Keystore”.

NOTE

Instead of the file attribute, you can specify the location of the keystore using either the
resource attribute (where the keystore file is provided on the classpath) or the url
attribute. In particular, the resource attribute must be used with applications that are
deployed into an OSGi container. You must be extremely careful not to load the
truststore from an untrustworthy source.

HTTPS SERVER CONFIGURATION

Consider a secure HTTPS server that requires clients to present an X.509 certificate. Example 1.5,
“Sample HTTPS Server Configuration” shows how to configure such a server.

Example 1.5. Sample HTTPS Server Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sec="http://cxf.apache.org/configuration/security"
xmlns:http="http://cxf.apache.org/transports/http/configuration"
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemaLocation="...">

 <httpj:engine-factory bus="cxf">
 <httpj:engine port="9001">
 <httpj:tlsServerParameters secureSocketProtocol="TLSv1">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="JKS" password="password"
 file="certs/cherry.jks"/>
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore type="JKS" password="password"
 file="certs/truststore.jks"/>

Red Hat Fuse 7.4 Apache CXF Security Guide

12

 </sec:trustManagers>
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 <sec:clientAuthentication want="true" required="true"/>
 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>

</beans>

The preceding server configuration is described as follows:

The bus attribute references the relevant CXF Bus instance. By default, a CXF Bus instance with the ID,
cxf, is automatically created by the Apache CXF runtime.

On the server side, TLS is not configured for each WSDL port. Instead of configuring each WSDL port,
the TLS security settings are applied to a specific TCP port, which is 9001 in this example. All of the
WSDL ports that share this TCP port are therefore configured with the same TLS security settings.

The http:tlsServerParameters element contains all of the server’s TLS configuration details.

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to protect
against the Poodle vulnerability (CVE-2014-3566)

The sec:keyManagers element is used to attach an X.509 certificate and a private key to the server.
The password specified by the keyPasswod attribute is used to decrypt the certificate’s private key.

The sec:keyStore element is used to specify an X.509 certificate and a private key that are stored in a
Java keystore. This sample declares that the keystore is in Java Keystore format (JKS).

The file attribute specifies the location of the keystore file, cherry.jks, that contains the client’s X.509
certificate chain and private key in a key entry. The password attribute specifies the keystore password,
which is needed to access the contents of the keystore.

It is expected that the keystore file contains just one key entry, so it is not necessary to specify a key
alias to identify the entry. If you are deploying a keystore file with multiple key entries, however, it is
possible to specify the key in this case by adding the sec:certAlias element as a child of the
http:tlsClientParameters element, as follows:

<http:tlsClientParameters>
 ...
 <sec:certAlias>CertAlias</sec:certAlias>
 ...
</http:tlsClientParameters>

NOTE

CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS

13

https://access.redhat.com/articles/1232123

NOTE

Instead of the file attribute, you can specify the location of the keystore using either the
resource attribute or the url attribute. You must be extremely careful not to load the
truststore from an untrustworthy source.

For details of how to create such a keystore file, see Section 2.5.3, “Use the CA to Create Signed
Certificates in a Java Keystore”.

The sec:trustManagers element is used to specify a list of trusted CA certificates (the server uses this
list to decide whether or not to trust certificates presented by clients).

The file attribute of the sec:keyStore element specifies a Java keystore file, truststore.jks, containing
one or more trusted CA certificates. The password attribute specifies the password required to access
the keystore, truststore.jks. See Section 3.2.2, “Specifying Trusted CA Certificates for HTTPS” .

NOTE

Instead of the file attribute, you can specify the location of the keystore using either the
resource attribute or the url attribute.

The sec:cipherSuitesFilter element can be used to narrow the choice of cipher suites that the server is
willing to use for a TLS connection. See Chapter 4, Configuring HTTPS Cipher Suites for details.

The sec:clientAuthentication element determines the server’s disposition towards the presentation of
client certificates. The element has the following attributes:

want attribute—If true (the default), the server requests the client to present an X.509
certificate during the TLS handshake; if false, the server does not request the client to present
an X.509 certificate.

required attribute—If true, the server raises an exception if a client fails to present an X.509
certificate during the TLS handshake; if false (the default), the server does not raise an
exception if the client fails to present an X.509 certificate.

Red Hat Fuse 7.4 Apache CXF Security Guide

14

CHAPTER 2. MANAGING CERTIFICATES

Abstract

TLS authentication uses X.509 certificates—a common, secure and reliable method of authenticating
your application objects. You can create X.509 certificates that identify your Red Hat Fuse applications.

2.1. WHAT IS AN X.509 CERTIFICATE?

Role of certificates

An X.509 certificate binds a name to a public key value. The role of the certificate is to associate a public
key with the identity contained in the X.509 certificate.

Integrity of the public key

Authentication of a secure application depends on the integrity of the public key value in the
application’s certificate. If an impostor replaces the public key with its own public key, it can impersonate
the true application and gain access to secure data.

To prevent this type of attack, all certificates must be signed by a certification authority (CA). A CA is a
trusted node that confirms the integrity of the public key value in a certificate.

Digital signatures

A CA signs a certificate by adding its digital signature to the certificate. A digital signature is a message
encoded with the CA’s private key. The CA’s public key is made available to applications by distributing a
certificate for the CA. Applications verify that certificates are validly signed by decoding the CA’s digital
signature with the CA’s public key.

WARNING

The supplied demonstration certificates are self-signed certificates. These
certificates are insecure because anyone can access their private key. To secure
your system, you must create new certificates signed by a trusted CA.

Contents of an X.509 certificate

An X.509 certificate contains information about the certificate subject and the certificate issuer (the CA
that issued the certificate). A certificate is encoded in Abstract Syntax Notation One (ASN.1), a
standard syntax for describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In more detail, a certificate
includes:

A subject distinguished name (DN) that identifies the certificate owner.

The public key associated with the subject.



CHAPTER 2. MANAGING CERTIFICATES

15

X.509 version information.

A serial number that uniquely identifies the certificate.

An issuer DN that identifies the CA that issued the certificate.

The digital signature of the issuer.

Information about the algorithm used to sign the certificate.

Some optional X.509 v.3 extensions; for example, an extension exists that distinguishes
between CA certificates and end-entity certificates.

Distinguished names

A DN is a general purpose X.500 identifier that is often used in the context of security.

See Appendix A, ASN.1 and Distinguished Names for more details about DNs.

2.2. CERTIFICATION AUTHORITIES

2.2.1. Introduction to Certificate Authorities

A CA consists of a set of tools for generating and managing certificates and a database that contains all
of the generated certificates. When setting up a system, it is important to choose a suitable CA that is
sufficiently secure for your requirements.

There are two types of CA you can use:

commercial CAs are companies that sign certificates for many systems.

private CAs are trusted nodes that you set up and use to sign certificates for your system only.

2.2.2. Commercial Certification Authorities

Signing certificates

There are several commercial CAs available. The mechanism for signing a certificate using a commercial
CA depends on which CA you choose.

Advantages of commercial CAs

An advantage of commercial CAs is that they are often trusted by a large number of people. If your
applications are designed to be available to systems external to your organization, use a commercial CA
to sign your certificates. If your applications are for use within an internal network, a private CA might be
appropriate.

Criteria for choosing a CA

Before choosing a commercial CA, consider the following criteria:

What are the certificate-signing policies of the commercial CAs?

Are your applications designed to be available on an internal network only?

What are the potential costs of setting up a private CA compared to the costs of subscribing to

Red Hat Fuse 7.4 Apache CXF Security Guide

16

What are the potential costs of setting up a private CA compared to the costs of subscribing to
a commercial CA?

2.2.3. Private Certification Authorities

Choosing a CA software package

If you want to take responsibility for signing certificates for your system, set up a private CA. To set up a
private CA, you require access to a software package that provides utilities for creating and signing
certificates. Several packages of this type are available.

OpenSSL software package

One software package that allows you to set up a private CA is OpenSSL, http://www.openssl.org. The
OpenSSL package includes basic command line utilities for generating and signing certificates.
Complete documentation for the OpenSSL command line utilities is available at
http://www.openssl.org/docs.

Setting up a private CA using OpenSSL

To set up a private CA, see the instructions in Section 2.5, “Creating Your Own Certificates” .

Choosing a host for a private certification authority

Choosing a host is an important step in setting up a private CA. The level of security associated with the
CA host determines the level of trust associated with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Red Hat Fuse applications, use any
host that the application developers can access. However, when you create the CA certificate and
private key, do not make the CA private key available on any hosts where security-critical applications
run.

Security precautions

If you are setting up a CA to sign certificates for applications that you are going to deploy, make the CA
host as secure as possible. For example, take the following precautions to secure your CA:

Do not connect the CA to a network.

Restrict all access to the CA to a limited set of trusted users.

Use an RF-shield to protect the CA from radio-frequency surveillance.

2.3. CERTIFICATE CHAINING

Certificate chain

A certificate chain is a sequence of certificates, where each certificate in the chain is signed by the
subsequent certificate.

Figure 2.1, “A Certificate Chain of Depth 2” shows an example of a simple certificate chain.

Figure 2.1. A Certificate Chain of Depth 2

CHAPTER 2. MANAGING CERTIFICATES

17

http://www.openssl.org
http://www.openssl.org/docs

Figure 2.1. A Certificate Chain of Depth 2

Self-signed certificate

The last certificate in the chain is normally a self-signed certificate—a certificate that signs itself.

Chain of trust

The purpose of a certificate chain is to establish a chain of trust from a peer certificate to a trusted CA
certificate. The CA vouches for the identity in the peer certificate by signing it. If the CA is one that you
trust (indicated by the presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Certificates signed by multiple CAs

A CA certificate can be signed by another CA. For example, an application certificate could be signed by
the CA for the finance department of Progress Software, which in turn is signed by a self-signed
commercial CA.

Figure 2.2, “A Certificate Chain of Depth 3” shows what this certificate chain looks like.

Figure 2.2. A Certificate Chain of Depth 3

Trusted CAs

An application can accept a peer certificate, provided it trusts at least one of the CA certificates in the
signing chain.

2.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES

Overview

The HTTPS specification mandates that HTTPS clients must be capable of verifying the identity of the

Red Hat Fuse 7.4 Apache CXF Security Guide

18

server. This can potentially affect how you generate your X.509 certificates. The mechanism for
verifying the server identity depends on the type of client. Some clients might verify the server identity
by accepting only those server certificates signed by a particular trusted CA. In addition, clients can
inspect the contents of a server certificate and accept only the certificates that satisfy specific
constraints.

In the absence of an application-specific mechanism, the HTTPS specification defines a generic
mechanism, known as the HTTPS URL integrity check , for verifying the server identity. This is the
standard mechanism used by Web browsers.

HTTPS URL integrity check

The basic idea of the URL integrity check is that the server certificate’s identity must match the server
host name. This integrity check has an important impact on how you generate X.509 certificates for
HTTPS: the certificate identity (usually the certificate subject DN’s common name) must match the
host name on which the HTTPS server is deployed.

The URL integrity check is designed to prevent man-in-the-middle attacks.

Reference

The HTTPS URL integrity check is specified by RFC 2818, published by the Internet Engineering Task
Force (IETF) at http://www.ietf.org/rfc/rfc2818.txt.

How to specify the certificate identity

The certificate identity used in the URL integrity check can be specified in one of the following ways:

Using commonName

Using subectAltName

Using commonName

The usual way to specify the certificate identity (for the purpose of the URL integrity check) is through
the Common Name (CN) in the subject DN of the certificate.

For example, if a server supports secure TLS connections at the following URL:

https://www.redhat.com/secure

The corresponding server certificate would have the following subject DN:

C=IE,ST=Co. Dublin,L=Dublin,O=RedHat,
OU=System,CN=www.redhat.com

Where the CN has been set to the host name, www.redhat.com.

For details of how to set the subject DN in a new certificate, see Section 2.5, “Creating Your Own
Certificates”.

Using subjectAltName (multi-homed hosts)

Using the subject DN’s Common Name for the certificate identity has the disadvantage that only one

CHAPTER 2. MANAGING CERTIFICATES

19

http://www.ietf.org/rfc/rfc2818.txt

host name can be specified at a time. If you deploy a certificate on a multi-homed host, however, you
might find it is practical to allow the certificate to be used with any of the multi-homed host names. In
this case, it is necessary to define a certificate with multiple, alternative identities, and this is only
possible using the subjectAltName certificate extension.

For example, if you have a multi-homed host that supports connections to either of the following host
names:

www.redhat.com
www.jboss.org

Then you can define a subjectAltName that explicitly lists both of these DNS host names. If you
generate your certificates using the openssl utility, edit the relevant line of your openssl.cnf
configuration file to specify the value of the subjectAltName extension, as follows:

subjectAltName=DNS:www.redhat.com,DNS:www.jboss.org

Where the HTTPS protocol matches the server host name against either of the DNS host names listed
in the subjectAltName (the subjectAltName takes precedence over the Common Name).

The HTTPS protocol also supports the wildcard character, *, in host names. For example, you can define
the subjectAltName as follows:

subjectAltName=DNS:*.jboss.org

This certificate identity matches any three-component host name in the domain jboss.org.

WARNING

You must never use the wildcard character in the domain name (and you must take
care never to do this accidentally by forgetting to type the dot, ., delimiter in front
of the domain name). For example, if you specified *jboss.org, your certificate
could be used on *any* domain that ends in the letters jboss.

2.5. CREATING YOUR OWN CERTIFICATES

2.5.1. Prerequisites

OpenSSL utilities

The steps described in this section are based on the OpenSSL command-line utilities from the OpenSSL
project. Further documentation of the OpenSSL command-line utilities can be obtained at
http://www.openssl.org/docs/.

Sample CA directory structure

For the purposes of illustration, the CA database is assumed to have the following directory structure:



Red Hat Fuse 7.4 Apache CXF Security Guide

20

http://www.openssl.org/docs/

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl

Where X509CA is the parent directory of the CA database.

2.5.2. Set Up Your Own CA

Substeps to perform

This section describes how to set up your own private CA. Before setting up a CA for a real deployment,
read the additional notes in Section 2.2.3, “Private Certification Authorities” .

To set up your own CA, perform the following steps:

1. the section called “Add the bin directory to your PATH”

2. the section called “Create the CA directory hierarchy”

3. the section called “Copy and edit the openssl.cnf file”

4. the section called “Initialize the CA database”

5. the section called “Create a self-signed CA certificate and private key”

Add the bin directory to your PATH

On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Create the CA directory hierarchy

Create a new directory, X509CA, to hold the new CA. This directory is used to hold all of the files
associated with the CA. Under the X509CA directory, create the following hierarchy of directories:

X509CA/ca

CHAPTER 2. MANAGING CERTIFICATES

21

X509CA/certs

X509CA/newcerts

X509CA/crl

Copy and edit the openssl.cnf file

Copy the sample openssl.cnf from your OpenSSL installation to the X509CA directory.

Edit the openssl.cnf to reflect the directory structure of the X509CA directory, and to identify the files
used by the new CA.

Edit the [CA_default] section of the openssl.cnf file to look like the following:

###
[CA_default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file
new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand
Private random number file

x509_extensions = usr_cert # The extensions to add to the cert
...

You might decide to edit other details of the OpenSSL configuration at this point—for more details, see
http://www.openssl.org/docs/.

Initialize the CA database

In the X509CA directory, initialize two files, serial and index.txt.

Windows

To initialize the serial file in Windows, enter the following command:

> echo 01 > serial

To create an empty file, index.txt, in Windows start Windows Notepad at the command line in the
X509CA directory, as follows:

> notepad index.txt

In response to the dialog box with the text, Cannot find the text.txt file. Do you want to create a new

Red Hat Fuse 7.4 Apache CXF Security Guide

22

http://www.openssl.org/docs/

In response to the dialog box with the text, Cannot find the text.txt file. Do you want to create a new
file?, click Yes, and close Notepad.

UNIX

To initialize the serial file and the index.txt file in UNIX, enter the following command:

% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of certificate files.

NOTE

The index.txt file must initially be completely empty, not even containing white space.

Create a self-signed CA certificate and private key

Create a new self-signed CA certificate and private key with the following command:

openssl req -x509 -new -config X509CA/openssl.cnf -days 365 -out X509CA/ca/new_ca.pem -keyout
X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and details of the CA distinguished
name. For example:

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
....++
.++
writing new private key to 'new_ca_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:Red Hat
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@redhat.com

NOTE

The security of the CA depends on the security of the private key file and the private key
pass phrase used in this step.

CHAPTER 2. MANAGING CERTIFICATES

23

You must ensure that the file names and location of the CA certificate and private key, new_ca.pem
and new_ca_pk.pem, are the same as the values specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

2.5.3. Use the CA to Create Signed Certificates in a Java Keystore

Substeps to perform

To create and sign a certificate in a Java keystore (JKS), CertName.jks, perform the following substeps:

1. the section called “Add the Java bin directory to your PATH”

2. the section called “Generate a certificate and private key pair”

3. the section called “Create a certificate signing request”

4. the section called “Sign the CSR”

5. the section called “Convert to PEM format”

6. the section called “Concatenate the files”

7. the section called “Update keystore with the full certificate chain”

8. the section called “Repeat steps as required”

Add the Java bin directory to your PATH

If you have not already done so, add the Java bin directory to your path:

Windows

> set PATH=JAVA_HOME\bin;%PATH%

UNIX

% PATH=JAVA_HOME/bin:$PATH; export PATH

This step makes the keytool utility available from the command line.

Generate a certificate and private key pair

Open a command prompt and change directory to the directory where you store your keystore files,
KeystoreDir. Enter the following command:

keytool -genkey -dname "CN=Alice, OU=Engineering, O=Progress, ST=Co. Dublin, C=IE" -validity
365 -alias CertAlias -keypass CertPassword -keystore CertName.jks -storepass CertPassword

This keytool command, invoked with the -genkey option, generates an X.509 certificate and a matching
private key. The certificate and the key are both placed in a key entry in a newly created keystore,
CertName.jks. Because the specified keystore, CertName.jks, did not exist prior to issuing the
command, keytool implicitly creates a new keystore.

The -dname and -validity flags define the contents of the newly created X.509 certificate, specifying

Red Hat Fuse 7.4 Apache CXF Security Guide

24

The -dname and -validity flags define the contents of the newly created X.509 certificate, specifying
the subject DN and the days before expiration respectively. For more details about DN format, see
Appendix A, ASN.1 and Distinguished Names .

Some parts of the subject DN must match the values in the CA certificate (specified in the CA Policy
section of the openssl.cnf file). The default openssl.cnf file requires the following entries to match:

Country Name (C)

State or Province Name (ST)

Organization Name (O)

NOTE

If you do not observe the constraints, the OpenSSL CA will refuse to sign the certificate
(see the section called “Sign the CSR”).

Create a certificate signing request

Create a new certificate signing request (CSR) for the CertName.jks certificate, as follows:

keytool -certreq -alias CertAlias -file CertName_csr.pem -keypass CertPassword -keystore
CertName.jks -storepass CertPassword

This command exports a CSR to the file, CertName_csr.pem.

Sign the CSR

Sign the CSR using your CA, as follows:

openssl ca -config X509CA/openssl.cnf -days 365 -in CertName_csr.pem -out CertName.pem

To sign the certificate successfully, you must enter the CA private key pass phrase (see Section 2.5.2,
“Set Up Your Own CA”).

NOTE

If you want to sign the CSR using a CA certificate other than the default CA, use the -
cert and -keyfile options to specify the CA certificate and its private key file,
respectively.

Convert to PEM format

Convert the signed certificate, CertName.pem, to PEM only format, as follows:

openssl x509 -in CertName.pem -out CertName.pem -outform PEM

Concatenate the files

Concatenate the CA certificate file and CertName.pem certificate file, as follows:

Windows

CHAPTER 2. MANAGING CERTIFICATES

25

copy CertName.pem + X509CA\ca\new_ca.pem CertName.chain

UNIX

cat CertName.pem X509CA/ca/new_ca.pem> CertName.chain

Update keystore with the full certificate chain

Update the keystore, CertName.jks, by importing the full certificate chain for the certificate, as follows:

keytool -import -file CertName.chain -keypass CertPassword -keystore CertName.jks -storepass
CertPassword

Repeat steps as required

Repeat steps 2 through 7, to create a complete set of certificates for your system.

2.5.4. Use the CA to Create Signed PKCS#12 Certificates

Substeps to perform

If you have set up a private CA, as described in Section 2.5.2, “Set Up Your Own CA” , you are now ready
to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName.p12, perform the following substeps:

1. the section called “Add the bin directory to your PATH” .

2. the section called “Configure the subjectAltName extension (Optional)” .

3. the section called “Create a certificate signing request” .

4. the section called “Sign the CSR” .

5. the section called “Concatenate the files” .

6. the section called “Create a PKCS#12 file” .

7. the section called “Repeat steps as required” .

8. the section called “(Optional) Clear the subjectAltName extension” .

Add the bin directory to your PATH

If you have not already done so, add the OpenSSL bin directory to your path, as follows:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

Red Hat Fuse 7.4 Apache CXF Security Guide

26

This step makes the openssl utility available from the command line.

Configure the subjectAltName extension (Optional)

Perform this step, if the certificate is intended for a HTTPS server whose clients enforce URL integrity
check, and if you plan to deploy the server on a multi-homed host or a host with several DNS name
aliases (for example, if you are deploying the certificate on a multi-homed Web server). In this case, the
certificate identity must match multiple host names and this can be done only by adding a
subjectAltName certificate extension (see Section 2.4, “Special Requirements on HTTPS Certificates”).

To configure the subjectAltName extension, edit your CA’s openssl.cnf file as follows:

1. Add the following req_extensions setting to the [req] section (if not already present in your
openssl.cnf file):

openssl Configuration File
...
[req]
req_extensions=v3_req

2. Add the [v3_req] section header (if not already present in your openssl.cnf file). Under the
[v3_req] section, add or modify the subjectAltName setting, setting it to the list of your DNS
host names. For example, if the server host supports the alternative DNS names,
www.redhat.com and jboss.org, set the subjectAltName as follows:

openssl Configuration File
...
[v3_req]
subjectAltName=DNS:www.redhat.com,DNS:jboss.org

3. Add a copy_extensions setting to the appropriate CA configuration section. The CA
configuration section used for signing certificates is one of the following:

The section specified by the -name option of the openssl ca command,

The section specified by the default_ca setting under the [ca] section (usually
[CA_default]).
For example, if the appropriate CA configuration section is [CA_default], set the
copy_extensions property as follows:

openssl Configuration File
...
[CA_default]
copy_extensions=copy

This setting ensures that certificate extensions present in the certificate signing request are
copied into the signed certificate.

Create a certificate signing request

Create a new certificate signing request (CSR) for the CertName.p12 certificate, as shown:

CHAPTER 2. MANAGING CERTIFICATES

27

openssl req -new -config X509CA/openssl.cnf -days 365 -out X509CA/certs/CertName_csr.pem -
keyout X509CA/certs/CertName_pk.pem

This command prompts you for a pass phrase for the certificate’s private key, and for information about
the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values in the CA certificate
(specified in the CA Policy section of the openssl.cnf file). The default openssl.cnf file requires that
the following entries match:

Country Name

State or Province Name

Organization Name

The certificate subject DN’s Common Name is the field that is usually used to represent the certificate
owner’s identity. The Common Name must comply with the following conditions:

The Common Name must be distinct for every certificate generated by the OpenSSL
certificate authority.

If your HTTPS clients implement the URL integrity check, you must ensure that the Common
Name is identical to the DNS name of the host where the certificate is to be deployed (see
Section 2.4, “Special Requirements on HTTPS Certificates”).

NOTE

For the purpose of the HTTPS URL integrity check, the subjectAltName extension takes
precedence over the Common Name.

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
.++
.++
writing new private key to
 'X509CA/certs/CertName_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:Red Hat
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Artix
Email Address []:info@redhat.com

Red Hat Fuse 7.4 Apache CXF Security Guide

28

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:Red Hat

Sign the CSR

Sign the CSR using your CA, as follows:

openssl ca -config X509CA/openssl.cnf -days 365 -in X509CA/certs/CertName_csr.pem -out
X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with the new_ca.pem CA
certificate. For example:

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'Red Hat'
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Bank Server Certificate'
emailAddress :IA5STRING:'info@redhat.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass phrase (see Section 2.5.2,
“Set Up Your Own CA”).

NOTE

If you did not set copy_extensions=copy under the [CA_default] section in the
openssl.cnf file, the signed certificate will not include any of the certificate extensions
that were in the original CSR.

Concatenate the files

Concatenate the CA certificate file, CertName.pem certificate file, and CertName_pk.pem private key
file as follows:

Windows

copy X509CA\ca\new_ca.pem + X509CA\certspass:quotes[_CertName_].pem +
X509CA\certspass:quotes[_CertName_]_pk.pem X509CA\certspass:quotes[_CertName_]_list.pem

UNIX

CHAPTER 2. MANAGING CERTIFICATES

29

mailto:info@redhat.com

cat X509CA/ca/new_ca.pem X509CA/certs/CertName.pem X509CA/certs/CertName_pk.pem >
X509CA/certs/CertName_list.pem

Create a PKCS#12 file

Create a PKCS#12 file from the CertName_list.pem file as follows:

openssl pkcs12 -export -in X509CA/certs/CertName_list.pem -out X509CA/certs/CertName.p12 -
name "New cert"

You are prompted to enter a password to encrypt the PKCS#12 certificate. Usually this password is the
same as the CSR password (this is required by many certificate repositories).

Repeat steps as required

Repeat steps 3 through 6, to create a complete set of certificates for your system.

(OPTIONAL) CLEAR THE SUBJECTALTNAME EXTENSION

After generating certificates for a particular host machine, it is advisable to clear the subjectAltName
setting in the openssl.cnf file to avoid accidentally assigning the wrong DNS names to another set of
certificates.

In the openssl.cnf file, comment out the subjectAltName setting (by adding a # character at the start
of the line), and also comment out the copy_extensions setting.

Red Hat Fuse 7.4 Apache CXF Security Guide

30

CHAPTER 3. CONFIGURING HTTPS

Abstract

This chapter describes how to configure HTTPS endpoints.

3.1. AUTHENTICATION ALTERNATIVES

3.1.1. Target-Only Authentication

Overview

When an application is configured for target-only authentication, the target authenticates itself to the
client but the client is not authentic to the target object, as shown in Figure 3.1, “Target Authentication
Only”.

Figure 3.1. Target Authentication Only

Security handshake

Prior to running the application, the client and server should be set up as follows:

A certificate chain is associated with the server. The certificate chain is provided in the form of a
Java keystore (ee Section 3.3, “Specifying an Application’s Own Certificate”).

One or more lists of trusted certification authorities (CA) are made available to the client. (see
Section 3.2, “Specifying Trusted CA Certificates”).

During the security handshake, the server sends its certificate chain to the client (see Figure 3.1, “Target

CHAPTER 3. CONFIGURING HTTPS

31

During the security handshake, the server sends its certificate chain to the client (see Figure 3.1, “Target
Authentication Only”). The client then searches its trusted CA lists to find a CA certificate that matches
one of the CA certificates in the server’s certificate chain.

HTTPS example

On the client side, there are no policy settings required for target-only authentication. Simply configure
your client without associating an X.509 certificate with the HTTPS port. You must provide the client
with a list of trusted CA certificates, however (see Section 3.2, “Specifying Trusted CA Certificates”).

On the server side, in the server’s XML configuration file, make sure that the sec:clientAuthentication
element does not require client authentication. This element can be omitted, in which case the default
policy is to not require client authentication. However, if the sec:clientAuthentication element is
present, it should be configured as follows:

<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters secureSocketProtocol="TLSv1">
 ...

 <sec:clientAuthentication want="false" required="false"/>
 </http:tlsServerParameters>
</http:destination>

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to protect
against the Poodle vulnerability (CVE-2014-3566)

Where the want attribute is set to false (the default), specifying that the server does not request an
X.509 certificate from the client during a TLS handshake. The required attribute is also set to false (the
default), specifying that the absence of a client certificate does not trigger an exception during the TLS
handshake.

NOTE

The want attribute can be set either to true or to false. If set to true, the want setting
causes the server to request a client certificate during the TLS handshake, but no
exception is raised for clients lacking a certificate, so long as the required attribute is set
to false.

It is also necessary to associate an X.509 certificate with the server’s HTTPS port (see Section 3.3,
“Specifying an Application’s Own Certificate”) and to provide the server with a list of trusted CA
certificates (see Section 3.2, “Specifying Trusted CA Certificates”).

NOTE

The choice of cipher suite can potentially affect whether or not target-only
authentication is supported (see Chapter 4, Configuring HTTPS Cipher Suites).

3.1.2. Mutual Authentication

Overview

Red Hat Fuse 7.4 Apache CXF Security Guide

32

https://access.redhat.com/articles/1232123

When an application is configured for mutual authentication, the target authenticates itself to the client
and the client authenticates itself to the target. This scenario is illustrated in Figure 3.2, “Mutual
Authentication” . In this case, the server and the client each require an X.509 certificate for the security
handshake.

Figure 3.2. Mutual Authentication

Security handshake

Prior to running the application, the client and server must be set up as follows:

Both client and server have an associated certificate chain (see Section 3.3, “Specifying an
Application’s Own Certificate”).

Both client and server are configured with lists of trusted certification authorities (CA) (see
Section 3.2, “Specifying Trusted CA Certificates”).

CHAPTER 3. CONFIGURING HTTPS

33

During the TLS handshake, the server sends its certificate chain to the client, and the client sends its
certificate chain to the server—see Figure 3.1, “Target Authentication Only” .

HTTPS example

On the client side, there are no policy settings required for mutual authentication. Simply associate an
X.509 certificate with the client’s HTTPS port (see Section 3.3, “Specifying an Application’s Own
Certificate”). You also need to provide the client with a list of trusted CA certificates (see Section 3.2,
“Specifying Trusted CA Certificates”).

On the server side, in the server’s XML configuration file, make sure that the sec:clientAuthentication
element is configured to require client authentication. For example:

<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters secureSocketProtocol="TLSv1">
 ...
 <sec:clientAuthentication want="true" required="true"/>
 </http:tlsServerParameters>
</http:destination>

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to protect
against the Poodle vulnerability (CVE-2014-3566)

Where the want attribute is set to true, specifying that the server requests an X.509 certificate from the
client during a TLS handshake. The required attribute is also set to true, specifying that the absence of
a client certificate triggers an exception during the TLS handshake.

It is also necessary to associate an X.509 certificate with the server’s HTTPS port (see Section 3.3,
“Specifying an Application’s Own Certificate”) and to provide the server with a list of trusted CA
certificates (see Section 3.2, “Specifying Trusted CA Certificates”).

NOTE

The choice of cipher suite can potentially affect whether or not mutual authentication is
supported (see Chapter 4, Configuring HTTPS Cipher Suites).

3.2. SPECIFYING TRUSTED CA CERTIFICATES

3.2.1. When to Deploy Trusted CA Certificates

Overview

When an application receives an X.509 certificate during an SSL/TLS handshake, the application
decides whether or not to trust the received certificate by checking whether the issuer CA is one of a
pre-defined set of trusted CA certificates. If the received X.509 certificate is validly signed by one of the
application’s trusted CA certificates, the certificate is deemed trustworthy; otherwise, it is rejected.

Which applications need to specify trusted CA certificates?

Any application that is likely to receive an X.509 certificate as part of an HTTPS handshake must specify

Red Hat Fuse 7.4 Apache CXF Security Guide

34

https://access.redhat.com/articles/1232123

Any application that is likely to receive an X.509 certificate as part of an HTTPS handshake must specify
a list of trusted CA certificates. For example, this includes the following types of application:

All HTTPS clients.

Any HTTPS servers that support mutual authentication.

3.2.2. Specifying Trusted CA Certificates for HTTPS

CA certificate format

CA certificates must be provided in Java keystore format.

CA certificate deployment in the Apache CXF configuration file

To deploy one or more trusted root CAs for the HTTPS transport, perform the following steps:

1. Assemble the collection of trusted CA certificates that you want to deploy. The trusted CA
certificates can be obtained from public CAs or private CAs (for details of how to generate your
own CA certificates, see Section 2.5, “Creating Your Own Certificates”). The trusted CA
certificates can be in any format that is compatible with the Java keystore utility; for example,
PEM format. All you need are the certificates themselves—the private keys and passwords are
not required.

2. Given a CA certificate, cacert.pem, in PEM format, you can add the certificate to a JKS
truststore (or create a new truststore) by entering the following command:

keytool -import -file cacert.pem -alias CAAlias -keystore truststore.jks -storepass StorePass

Where CAAlias is a convenient tag that enables you to access this particular CA certificate using
the keytool utility. The file, truststore.jks, is a keystore file containing CA certificates—if this
file does not already exist, the keytool utility creates one. The StorePass password provides
access to the keystore file, truststore.jks.

3. Repeat step 2 as necessary, to add all of the CA certificates to the truststore file, truststore.jks.

4. Edit the relevant XML configuration files to specify the location of the truststore file. You must
include the sec:trustManagers element in the configuration of the relevant HTTPS ports.
For example, you can configure a client port as follows:

<!-- Client port configuration -->
<http:conduit id="{Namespace}PortName.http-conduit">
 <http:tlsClientParameters>
 ...
 <sec:trustManagers>
 <sec:keyStore type="JKS"
 password="StorePass"
 file="certs/truststore.jks"/>
 </sec:trustManagers>
 ...
 </http:tlsClientParameters>
</http:conduit>

Where the type attribute specifes that the truststore uses the JKS keystore implementation
and StorePass is the password needed to access the truststore.jks keystore.

CHAPTER 3. CONFIGURING HTTPS

35

Configure a server port as follows:

<!-- Server port configuration -->
<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters secureSocketProtocol="TLSv1">
 ...
 <sec:trustManagers>
 <sec:keyStore type="JKS"
 password="StorePass"
 file="certs/truststore.jks"/>
 </sec:trustManagers>
 ...
 </http:tlsServerParameters>
</http:destination>

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to
protect against the Poodle vulnerability (CVE-2014-3566)

WARNING

The directory containing the truststores (for example,
X509Deploy/truststores/) should be a secure directory (that is, writable
only by the administrator).

3.3. SPECIFYING AN APPLICATION’S OWN CERTIFICATE

3.3.1. Deploying Own Certificate for HTTPS

Overview

When working with the HTTPS transport the application’s certificate is deployed using the XML
configuration file.

Procedure

To deploy an application’s own certificate for the HTTPS transport, perform the following steps:

1. Obtain an application certificate in Java keystore format, CertName.jks. For instructions on how
to create a certificate in Java keystore format, see Section 2.5.3, “Use the CA to Create Signed
Certificates in a Java Keystore”.

NOTE



Red Hat Fuse 7.4 Apache CXF Security Guide

36

https://access.redhat.com/articles/1232123

NOTE

Some HTTPS clients (for example, Web browsers) perform a URL integrity check,
which requires a certificate’s identity to match the hostname on which the server
is deployed. See Section 2.4, “Special Requirements on HTTPS Certificates” for
details.

2. Copy the certificate’s keystore, CertName.jks, to the certificates directory on the deployment
host; for example, X509Deploy/certs.
The certificates directory should be a secure directory that is writable only by administrators and
other privileged users.

3. Edit the relevant XML configuration file to specify the location of the certificate keystore,
CertName.jks. You must include the sec:keyManagers element in the configuration of the
relevant HTTPS ports.
For example, you can configure a client port as follows:

<http:conduit id="{Namespace}PortName.http-conduit">
 <http:tlsClientParameters>
 ...
 <sec:keyManagers keyPassword="CertPassword">
 <sec:keyStore type="JKS"
 password="KeystorePassword"
 file="certs/CertName.jks"/>
 </sec:keyManagers>
 ...
 </http:tlsClientParameters>
</http:conduit>

Where the keyPassword attribute specifies the password needed to decrypt the certificate’s
private key (that is, CertPassword), the type attribute specifes that the truststore uses the JKS
keystore implementation, and the password attribute specifies the password required to
access the CertName.jks keystore (that is, KeystorePassword).

Configure a server port as follows:

<http:destination id="{Namespace}PortName.http-destination">
 <http:tlsServerParameters secureSocketProtocol="TLSv1">
 ...
 <sec:keyManagers keyPassword="CertPassword">
 <sec:keyStore type="JKS"
 password="KeystorePassword"
 file="certs/CertName.jks"/>
 </sec:keyManagers>
 ...
 </http:tlsServerParameters>
</http:destination>

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to
protect against the Poodle vulnerability (CVE-2014-3566)

CHAPTER 3. CONFIGURING HTTPS

37

https://access.redhat.com/articles/1232123

WARNING

The directory containing the application certificates (for example,
X509Deploy/certs/) should be a secure directory (that is, readable and
writable only by the administrator).

WARNING

The directory containing the XML configuration file should be a secure
directory (that is, readable and writable only by the administrator), because
the configuration file contains passwords in plain text.





Red Hat Fuse 7.4 Apache CXF Security Guide

38

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES

Abstract

This chapter explains how to specify the list of cipher suites that are made available to clients and
servers for the purpose of establishing HTTPS connections. During a security handshake, the client
chooses a cipher suite that matches one of the cipher suites available to the server.

4.1. SUPPORTED CIPHER SUITES

Overview

A cipher suite is a collection of security algorithms that determine precisely how an SSL/TLS connection
is implemented.

For example, the SSL/TLS protocol mandates that messages be signed using a message digest
algorithm. The choice of digest algorithm, however, is determined by the particular cipher suite being
used for the connection. Typically, an application can choose either the MD5 or the SHA digest
algorithm.

The cipher suites available for SSL/TLS security in Apache CXF depend on the particular JSSE provider
that is specified on the endpoint.

JCE/JSSE and security providers

The Java Cryptography Extension (JCE) and the Java Secure Socket Extension (JSSE) constitute a
pluggable framework that allows you to replace the Java security implementation with arbitrary third-
party toolkits, known as security providers.

SunJSSE provider

In practice, the security features of Apache CXF have been tested only with SUN’s JSSE provider, which
is named SunJSSE.

Hence, the SSL/TLS implementation and the list of available cipher suites in Apache CXF are effectively
determined by what is available from SUN’s JSSE provider.

Cipher suites supported by SunJSSE

The following cipher suites are supported by SUN’s JSSE provider in the J2SE 1.5.0 Java development
kit (see also Appendix A of SUN’s JSSE Reference Guide):

Standard ciphers:

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_WITH_3DES_EDE_CBC_SHA

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES

39

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
TLS_KRB5_EXPORT_WITH_RC4_40_MD5
TLS_KRB5_EXPORT_WITH_RC4_40_SHA
TLS_KRB5_WITH_3DES_EDE_CBC_MD5
TLS_KRB5_WITH_3DES_EDE_CBC_SHA
TLS_KRB5_WITH_DES_CBC_MD5
TLS_KRB5_WITH_DES_CBC_SHA
TLS_KRB5_WITH_RC4_128_MD5
TLS_KRB5_WITH_RC4_128_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA

Null encryption, integrity-only ciphers:

SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA

Anonymous Diffie-Hellman ciphers (no authentication):

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_RC4_128_MD5
TLS_DH_anon_WITH_AES_128_CBC_SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA

JSSE reference guide

For more information about SUN’s JSSE framework, please consult the JSSE Reference Guide at the
following location:

http://download.oracle.com/javase/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

4.2. CIPHER SUITE FILTERS

Overview

In a typical application, you usually want to restrict the list of available cipher suites to a subset of the
ciphers supported by the JSSE provider.

Generally, you should use the sec:cipherSuitesFilter element, instead of the sec:cipherSuites
element to select the cipher suites you want to use.

The sec:cipherSuites element is not recommended for general use, because it has rather non-intuitive
semantics: you can use it to require that the loaded security provider supports at least the listed cipher

Red Hat Fuse 7.4 Apache CXF Security Guide

40

http://download.oracle.com/javase/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

suites. But the security provider that is loaded might support many more cipher suites than the ones
that are specified. Hence, when you use the sec:cipherSuites element, it is not clear exactly which
cipher suites are supported at run time.

Namespaces

Table 4.1, “Namespaces Used for Configuring Cipher Suite Filters” shows the XML namespaces that are
referenced in this section:

Table 4.1. Namespaces Used for Configuring Cipher Suite Filters

Prefix Namespace URI

http http://cxf.apache.org/transports/http/configurat
ion

httpj http://cxf.apache.org/transports/http-
jetty/configuration

sec http://cxf.apache.org/configuration/security

sec:cipherSuitesFilter element

You define a cipher suite filter using the sec:cipherSuitesFilter element, which can be a child of either a
http:tlsClientParameters element or a httpj:tlsServerParameters element. A typical
sec:cipherSuitesFilter element has the outline structure shown in Example 4.1, “Structure of a
sec:cipherSuitesFilter Element” .

Example 4.1. Structure of a sec:cipherSuitesFilter Element

<sec:cipherSuitesFilter>
 <sec:include>RegularExpression</sec:include>
 <sec:include>RegularExpression</sec:include>
 ...
 <sec:exclude>RegularExpression</sec:exclude>
 <sec:exclude>RegularExpression</sec:exclude>
 ...
</sec:cipherSuitesFilter>

Semantics

The following semantic rules apply to the sec:cipherSuitesFilter element:

1. If a sec:cipherSuitesFilter element does not appear in an endpoint’s configuration (that is, it is
absent from the relevant http:conduit or httpj:engine-factory element), the following default
filter is used:

<sec:cipherSuitesFilter>
 <sec:include>.*_EXPORT_.*</sec:include>
 <sec:include>.*_EXPORT1024.*</sec:include>

CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES

41

http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/configuration/security

 <sec:include>.*_DES_.*</sec:include>
 <sec:include>.*_WITH_NULL_.*</sec:include>
</sec:cipherSuitesFilter>

2. If the sec:cipherSuitesFilter element does appear in an endpoint’s configuration, all cipher
suites are excluded by default.

3. To include cipher suites, add a sec:include child element to the sec:cipherSuitesFilter
element. The content of the sec:include element is a regular expression that matches one or
more cipher suite names (for example, see the cipher suite names in the section called “Cipher
suites supported by SunJSSE”).

4. To refine the selected set of cipher suites further, you can add a sec:exclude element to the
sec:cipherSuitesFilter element. The content of the sec:exclude element is a regular
expression that matches zero or more cipher suite names from the currently included set.

NOTE

Sometimes it makes sense to explicitly exclude cipher suites that are currently
not included, in order to future-proof against accidental inclusion of undesired
cipher suites.

Regular expression matching

The grammar for the regular expressions that appear in the sec:include and sec:exclude elements is
defined by the Java regular expression utility, java.util.regex.Pattern. For a detailed description of the
grammar, please consult the Java reference guide,
http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html.

Client conduit example

The following XML configuration shows an example of a client that applies a cipher suite filter to the
remote endpoint, {WSDLPortNamespace}PortName. Whenever the client attempts to open an SSL/TLS
connection to this endpoint, it restricts the available cipher suites to the set selected by the
sec:cipherSuitesFilter element.

<beans ... >
 <http:conduit name="{WSDLPortNamespace}PortName.http-conduit">
 <http:tlsClientParameters>
 ...
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 </http:tlsClientParameters>
 </http:conduit>

 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
</beans>

4.3. SSL/TLS PROTOCOL VERSION

Red Hat Fuse 7.4 Apache CXF Security Guide

42

http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

Overview

The versions of the SSL/TLS protocol that are supported by Apache CXF depend on the particular
JSSE provider configured. By default, the JSSE provider is configured to be SUN’s JSSE provider
implementation.

WARNING

If you enable SSL/TLS security, you must ensure that you explicitly disable the
SSLv3 protocol, in order to safeguard against the Poodle vulnerability (CVE-2014-
3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and JBoss A-MQ
6.x.

SSL/TLS protocol versions supported by SunJSSE

Table 4.2, “SSL/TLS Protocols Supported by SUN’s JSSE Provider” shows the SSL/TLS protocol
versions supported by SUN’s JSSE provider.

Table 4.2. SSL/TLS Protocols Supported by SUN’s JSSE Provider

Protocol Description

SSLv2Hello Do not use! (POODLE security vulnerability)

SSLv3 Do not use! (POODLE security vulnerability)

TLSv1 Supports TLS version 1

TLSv1.1 Supports TLS version 1.1 (JDK 7 or later)

TLSv1.2 Supports TLS version 1.2 (JDK 7 or later)

Excluding specific SSL/TLS protocol versions

By default, all of the SSL/TLS protocols provided by the JSSE provider are available to the CXF
endpoints (except for the SSLv2Hello and SSLv3 protocols, which have been specifically excluded by
the CXF runtime since Fuse version 6.2.0, because of the Poodle vulnerability (CVE-2014-3566)).

To exclude specific SSL/TLS protocols, use the sec:excludeProtocols element in the endpoint
configuration. You can configure the sec:excludeProtocols element as a child of the
httpj:tlsServerParameters element (server side).

To exclude all protocols except for TLS version 1.2, configure the sec:excludeProtocols element as
follows (assuming you are using JDK 7 or later):

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
 ...



CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES

43

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613
https://access.redhat.com/articles/1232123

 <httpj:engine-factory bus="cxf">
 <httpj:engine port="9001">
 ...
 <httpj:tlsServerParameters>
 ...
 <sec:excludeProtocols>
 <sec:excludeProtocol>SSLv2Hello</sec:excludeProtocol>
 <sec:excludeProtocol>SSLv3</sec:excludeProtocol>
 <sec:excludeProtocol>TLSv1</sec:excludeProtocol>
 <sec:excludeProtocol>TLSv1.1</sec:excludeProtocol>
 </sec:excludeProtocols>
 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>
 ...
</beans>

IMPORTANT

It is recommended that you always exclude the SSLv2Hello and SSLv3 protocols, to
protect against the Poodle vulnerability (CVE-2014-3566).

secureSocketProtocol attribute

Both the http:tlsClientParameters element and the httpj:tlsServerParameters element support the
secureSocketProtocol attribute, which enables you to specify a particular protocol.

The semantics of this attribute are confusing, however: this attribute forces CXF to pick an SSL provider
that supports the specified protocol, but it does not restrict the provider to use only the specified
protocol. Hence, the endpoint could end up using a protocol that is different from the one specified. For
this reason, the recommendation is that you do not use the secureSocketProtocol attribute in your
code.

Red Hat Fuse 7.4 Apache CXF Security Guide

44

https://access.redhat.com/articles/1232123

CHAPTER 5. THE WS-POLICY FRAMEWORK

Abstract

This chapter provides an introduction to the basic concepts of the WS-Policy framework, defining policy
subjects and policy assertions, and explaining how policy assertions can be combined to make policy
expressions.

5.1. INTRODUCTION TO WS-POLICY

Overview

The WS-Policy specification provides a general framework for applying policies that modify the
semantics of connections and communications at runtime in a Web services application. Apache CXF
security uses the WS-Policy framework to configure message protection and authentication
requirements.

Policies and policy references

The simplest way to specify a policy is to embed it directly where you want to apply it. For example, to
associate a policy with a specific port in the WSDL contract, you can specify it as follows:

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:service name="PingService10">
 <wsdl:port name="UserNameOverTransport_IPingService" binding="BindingName">
 <wsp:Policy> <!-- Policy expression comes here! --> </wsp:Policy>
 <soap:address location="SOAPAddress"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

An alternative way to specify a policy is to insert a policy reference element, wsp:PolicyReference, at
the point where you want to apply the policy and then insert the policy element, wsp:Policy, at some
other point in the XML file. For example, to associate a policy with a specific port using a policy
reference, you could use a configuration like the following:

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:service name="PingService10">
 <wsdl:port name="UserNameOverTransport_IPingService" binding="BindingName">
 <wsp:PolicyReference URI="#PolicyID"/>
 <soap:address location="SOAPAddress"/>
 </wsdl:port>
 </wsdl:service>

CHAPTER 5. THE WS-POLICY FRAMEWORK

45

http://www.w3.org/TR/ws-policy/

 ...
 <wsp:Policy wsu:Id="PolicyID">
 <!-- Policy expression comes here ... -->
 </wsp:Policy>
</wsdl:definitions>

Where the policy reference, wsp:PolicyReference, locates the referenced policy using the ID, PolicyID
(note the addition of the # prefix character in the URI attribute). The policy itself, wsp:Policy, must be
identified by adding the attribute, wsu:Id="PolicyID".

Policy subjects

The entities with which policies are associated are called policy subjects. For example, you can associate
a policy with an endpoint, in which case the endpoint is the policy subject. It is possible to associate
multiple policies with any given policy subject. The WS-Policy framework supports the following kinds of
policy subject:

the section called “Service policy subject” .

the section called “Endpoint policy subject” .

the section called “Operation policy subject” .

the section called “Message policy subject” .

Service policy subject

To associate a policy with a service, insert either a <wsp:Policy> element or a <wsp:PolicyReference>
element as a sub-element of the following WSDL 1.1 element:

wsdl:service—apply the policy to all of the ports (endpoints) offered by this service.

Endpoint policy subject

To associate a policy with an endpoint, insert either a <wsp:Policy> element or a
<wsp:PolicyReference> element as a sub-element of any of the following WSDL 1.1 elements:

wsdl:portType—apply the policy to all of the ports (endpoints) that use this port type.

wsdl:binding—apply the policy to all of the ports that use this binding.

wsdl:port—apply the policy to this endpoint only.

For example, you can associate a policy with an endpoint binding as follows (using a policy reference):

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:binding name="EndpointBinding" type="i0:IPingService">
 <wsp:PolicyReference URI="#PolicyID"/>
 ...
 </wsdl:binding>
 ...

Red Hat Fuse 7.4 Apache CXF Security Guide

46

 <wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>
 ...
</wsdl:definitions>

Operation policy subject

To associate a policy with an operation, insert either a <wsp:Policy> element or a
<wsp:PolicyReference> element as a sub-element of any of the following WSDL 1.1 elements:

wsdl:portType/wsdl:operation

wsdl:binding/wsdl:operation

For example, you can associate a policy with an operation in a binding as follows (using a policy
reference):

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:binding name="EndpointBinding" type="i0:IPingService">
 <wsdl:operation name="Ping">
 <wsp:PolicyReference URI="#PolicyID"/>
 <soap:operation soapAction="http://xmlsoap.org/Ping" style="document"/>
 <wsdl:input name="PingRequest"> ... </wsdl:input>
 <wsdl:output name="PingResponse"> ... </wsdl:output>
 </wsdl:operation>
 ...
 </wsdl:binding>
 ...
 <wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>
 ...
</wsdl:definitions>

Message policy subject

To associate a policy with a message, insert either a <wsp:Policy> element or a
<wsp:PolicyReference> element as a sub-element of any of the following WSDL 1.1 elements:

wsdl:message

wsdl:portType/wsdl:operation/wsdl:input

wsdl:portType/wsdl:operation/wsdl:output

wsdl:portType/wsdl:operation/wsdl:fault

wsdl:binding/wsdl:operation/wsdl:input

wsdl:binding/wsdl:operation/wsdl:output

wsdl:binding/wsdl:operation/wsdl:fault

CHAPTER 5. THE WS-POLICY FRAMEWORK

47

For example, you can associate a policy with a message in a binding as follows (using a policy reference):

<wsdl:definitions targetNamespace="http://tempuri.org/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" ... >
 ...
 <wsdl:binding name="EndpointBinding" type="i0:IPingService">
 <wsdl:operation name="Ping">
 <soap:operation soapAction="http://xmlsoap.org/Ping" style="document"/>
 <wsdl:input name="PingRequest">
 <wsp:PolicyReference URI="#PolicyID"/>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="PingResponse"> ... </wsdl:output>
 </wsdl:operation>
 ...
 </wsdl:binding>
 ...
 <wsp:Policy wsu:Id="PolicyID"> ... </wsp:Policy>
 ...
</wsdl:definitions>

5.2. POLICY EXPRESSIONS

Overview

In general, a wsp:Policy element is composed of multiple different policy settings (where individual
policy settings are specified as policy assertions). Hence, the policy defined by a wsp:Policy element is
really a composite object. The content of the wsp:Policy element is called a policy expression, where the
policy expression consists of various logical combinations of the basic policy assertions. By tailoring the
syntax of the policy expression, you can determine what combinations of policy assertions must be
satisfied at runtime in order to satisfy the policy overall.

This section describes the syntax and semantics of policy expressions in detail.

Policy assertions

Policy assertions are the basic building blocks that can be combined in various ways to produce a policy.
A policy assertion has two key characteristics: it adds a basic unit of functionality to the policy subject
and it represents a boolean assertion to be evaluated at runtime. For example, consider the following
policy assertion that requires a WS-Security username token to be propagated with request messages:

<sp:SupportingTokens xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
</sp:SupportingTokens>

When associated with an endpoint policy subject, this policy assertion has the following effects:

The Web service endpoint marshales/unmarshals the UsernameToken credentials.

At runtime, the policy assertion returns true, if UsernameToken credentials are provided (on the

Red Hat Fuse 7.4 Apache CXF Security Guide

48

At runtime, the policy assertion returns true, if UsernameToken credentials are provided (on the
client side) or received in the incoming message (on the server side); otherwise the policy
assertion returns false.

Note that if a policy assertion returns false, this does not necessarily result in an error. The net effect of
a particular policy assertion depends on how it is inserted into a policy and on how it is combined with
other policy assertions.

Policy alternatives

A policy is built up using policy assertions, which can additionally be qualified using the wsp:Optional
attribute, and various nested combinations of the wsp:All and wsp:ExactlyOne elements. The net
effect of composing these elements is to produce a range of acceptable policy alternatives. As long as
one of these acceptable policy alternatives is satisfied, the overall policy is also satisified (evaluates to
true).

wsp:All element

When a list of policy assertions is wrapped by the wsp:All element, all of the policy assertions in the list
must evaluate to true. For example, consider the following combination of authentication and
authorization policy assertions:

<wsp:Policy wsu:Id="AuthenticateAndAuthorizeWSSUsernameTokenPolicy">
 <wsp:All>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 </wsp:All>
</wsp:Policy>

The preceding policy will be satisfied for a particular incoming request, if the following conditions both
hold:

WS-Security UsernameToken credentials must be present; and

A SAML token must be present.

NOTE

The wsp:Policy element is semantically equivalent to wsp:All. Hence, if you removed the
wsp:All element from the preceding example, you would obtain a semantically equivalent
example

wsp:ExactlyOne element

When a list of policy assertions is wrapped by the wsp:ExactlyOne element, at least one of the policy
assertions in the list must evaluate to true. The runtime goes through the list, evaluating policy
assertions until it finds a policy assertion that returns true. At that point, the wsp:ExactlyOne

CHAPTER 5. THE WS-POLICY FRAMEWORK

49

expression is satisfied (returns true) and any remaining policy assertions from the list will not be
evaluated. For example, consider the following combination of authentication policy assertions:

<wsp:Policy wsu:Id="AuthenticateUsernamePasswordPolicy">
 <wsp:ExactlyOne>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 <sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken/>
 </wsp:Policy>
 </sp:SupportingTokens>
 </wsp:ExactlyOne>
</wsp:Policy>

The preceding policy will be satisfied for a particular incoming request, if either of the following
conditions hold:

WS-Security UsernameToken credentials are present; or

A SAML token is present.

Note, in particular, that if both credential types are present, the policy would be satisfied after
evaluating one of the assertions, but no guarantees can be given as to which of the policy assertions
actually gets evaluated.

The empty policy

A special case is the empty policy, an example of which is shown in Example 5.1, “The Empty Policy” .

Example 5.1. The Empty Policy

<wsp:Policy ... >
 <wsp:ExactlyOne>
 <wsp:All/>
 </wsp:ExactlyOne>
</wsp:Policy>

Where the empty policy alternative, <wsp:All/>, represents an alternative for which no policy assertions
need be satisfied. In other words, it always returns true. When <wsp:All/> is available as an alternative,
the overall policy can be satisified even when no policy assertions are true.

The null policy

A special case is the null policy, an example of which is shown in Example 5.2, “The Null Policy” .

Example 5.2. The Null Policy

Red Hat Fuse 7.4 Apache CXF Security Guide

50

<wsp:Policy ... >
 <wsp:ExactlyOne/>
</wsp:Policy>

Where the null policy alternative, <wsp:ExactlyOne/>, represents an alternative that is never satisfied. In
other words, it always returns false.

Normal form

In practice, by nesting the <wsp:All> and <wsp:ExactlyOne> elements, you can produce fairly complex
policy expressions, whose policy alternatives might be difficult to work out. To facilitate the comparison
of policy expressions, the WS-Policy specification defines a canonical or normal form for policy
expressions, such that you can read off the list of policy alternatives unambiguously. Every valid policy
expression can be reduced to the normal form.

In general, a normal form policy expression conforms to the syntax shown in Example 5.3, “Normal Form
Syntax”.

Example 5.3. Normal Form Syntax

<wsp:Policy ... >
 <wsp:ExactlyOne>
 <wsp:All> <Assertion .../> ... <Assertion .../> </wsp:All>
 <wsp:All> <Assertion .../> ... <Assertion .../> </wsp:All>
 ...
 </wsp:ExactlyOne>
</wsp:Policy>

Where each line of the form, <wsp:All>… ​</wsp:All>, represents a valid policy alternative. If one of
these policy alternatives is satisfied, the policy is satisfied overall.

CHAPTER 5. THE WS-POLICY FRAMEWORK

51

CHAPTER 6. MESSAGE PROTECTION

Abstract

The following message protection mechanisms are described in this chapter: protection against
eavesdropping (by employing encryption algorithms) and protection against message tampering (by
employing message digest algorithms). The protection can be applied at various levels of granularity
and to different protocol layers. At the transport layer, you have the option of applying protection to the
entire contents of the message; while at the SOAP layer, you have the option of applying protection to
various parts of the message (bodies, headers, or attachments).

6.1. TRANSPORT LAYER MESSAGE PROTECTION

Overview

Transport layer message protection refers to the message protection (encryption and signing) that is
provided by the transport layer. For example, HTTPS provides encryption and message signing features
using SSL/TLS. In fact, WS-SecurityPolicy does not add much to the HTTPS feature set, because
HTTPS is already fully configurable using Blueprint XML configuration (see Chapter 3, Configuring
HTTPS). An advantage of specifying a transport binding policy for HTTPS, however, is that it enables
you to embed security requirements in the WSDL contract. Hence, any client that obtains a copy of the
WSDL contract can discover what the transport layer security requirements are for the endpoints in the
WSDL contract.

WARNING

If you enable SSL/TLS security in the transport layer, you must ensure that you
explicitly disable the SSLv3 protocol, in order to safeguard against the Poodle
vulnerability (CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss
Fuse 6.x and JBoss A-MQ 6.x.

Prerequisites

If you use WS-SecurityPolicy to configure the HTTPS transport, you must also configure HTTPS
security appropriately in the Blueprint configuration.

Example 6.1, “Client HTTPS Configuration in Blueprint” shows how to configure a client to use the
HTTPS transport protocol. The sec:keyManagers element specifies the client’s own certificate,
alice.pfx, and the sec:trustManagers element specifies the trusted CA list. Note how the http:conduit
element’s name attribute uses wildcards to match the endpoint address. For details of how to configure
HTTPS on the client side, see Chapter 3, Configuring HTTPS.

Example 6.1. Client HTTPS Configuration in Blueprint

<beans xmlns="https://osgi.org/xmlns/blueprint/v1.0.0/"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:sec="http://cxf.apache.org/configuration/security" ... >

 <http:conduit name="https://.*/UserNameOverTransport.*">



Red Hat Fuse 7.4 Apache CXF Security Guide

52

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

 <http:tlsClientParameters disableCNCheck="true">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="pkcs12" password="password" resource="certs/alice.pfx"/>
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore type="pkcs12" password="password" resource="certs/bob.pfx"/>
 </sec:trustManagers>
 </http:tlsClientParameters>
 </http:conduit>
 ...
</beans>

Example 6.2, “Server HTTPS Configuration in Blueprint” shows how to configure a server to use the
HTTPS transport protocol. The sec:keyManagers element specifies the server’s own certificate,
bob.pfx, and the sec:trustManagers element specifies the trusted CA list. For details of how to
configure HTTPS on the server side, see Chapter 3, Configuring HTTPS.

Example 6.2. Server HTTPS Configuration in Blueprint

<beans xmlns="https://osgi.org/xmlns/blueprint/v1.0.0/"
 xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
 xmlns:sec="http://cxf.apache.org/configuration/security" ... >

 <httpj:engine-factory id="tls-settings">
 <httpj:engine port="9001">
 <httpj:tlsServerParameters secureSocketProtocol="TLSv1">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="pkcs12" password="password" resource="certs/bob.pfx"/>
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore type="pkcs12" password="password" resource="certs/alice.pfx"/>
 </sec:trustManagers>
 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>
 ...
</beans>

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to protect
against the Poodle vulnerability (CVE-2014-3566)

Policy subject

A transport binding policy must be applied to an endpoint policy subject (see the section called
“Endpoint policy subject”). For example, given the transport binding policy with ID,
UserNameOverTransport_IPingService_policy, you could apply the policy to an endpoint binding as
follows:

<wsdl:binding name="UserNameOverTransport_IPingService" type="i0:IPingService">
 <wsp:PolicyReference URI="#UserNameOverTransport_IPingService_policy"/>

CHAPTER 6. MESSAGE PROTECTION

53

https://access.redhat.com/articles/1232123

 ...
</wsdl:binding>

Syntax

The TransportBinding element has the following syntax:

<sp:TransportBinding xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 <sp:TransportToken ... >
 <wsp:Policy> ... </wsp:Policy>
 ...
 </sp:TransportToken>
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
 <sp:Layout ... > ... </sp:Layout> ?
 <sp:IncludeTimestamp ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:TransportBinding>

Sample policy

Example 6.3, “Example of a Transport Binding” shows an example of a transport binding that requires
confidentiality and integrity using the HTTPS transport (specified by the sp:HttpsToken element) and a
256-bit algorithm suite (specified by the sp:Basic256 element).

Example 6.3. Example of a Transport Binding

<wsp:Policy wsu:Id="UserNameOverTransport_IPingService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:TransportBinding xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken RequireClientCertificate="false"/>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 </wsp:Policy>
 </sp:TransportBinding>
 ...
 <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

Red Hat Fuse 7.4 Apache CXF Security Guide

54

 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

sp:TransportToken

This element has a two-fold effect: it requires a particular type of security token and it indicates how the
transport is secured. For example, by specifying the sp:HttpsToken, you indicate that the connection is
secured by the HTTPS protocol and the security tokens are X.509 certificates.

sp:AlgorithmSuite

This element specifies the suite of cryptographic algorithms to use for signing and encryption. For
details of the available algorithm suites, see Section 6.2.7, “Specifying the Algorithm Suite” .

sp:Layout

This element specifies whether to impose any conditions on the order in which security headers are
added to the SOAP message. The sp:Lax element specifies that no conditions are imposed on the
order of security headers. The alternatives to sp:Lax are sp:Strict, sp:LaxTimestampFirst, or
sp:LaxTimestampLast.

sp:IncludeTimestamp

If this element is included in the policy, the runtime adds a wsu:Timestamp element to the
wsse:Security header. By default, the timestamp is not included.

sp:MustSupportRefKeyIdentifier

This element specifies that the security runtime must be able to process Key Identifier token references,
as specified in the WS-Security 1.0 specification. A key identifier is a mechanism for identifying a key
token, which may be used inside signature or encryption elements. Apache CXF requires this feature.

sp:MustSupportRefIssuerSerial

This element specifies that the security runtime must be able to process Issuer and Serial Number token
references, as specified in the WS-Security 1.0 specification. An issuer and serial number is a mechanism
for identifying a key token, which may be used inside signature or encryption elements. Apache CXF
requires this feature.

6.2. SOAP MESSAGE PROTECTION

6.2.1. Introduction to SOAP Message Protection

Overview

CHAPTER 6. MESSAGE PROTECTION

55

By applying message protection at the SOAP encoding layer, instead of at the transport layer, you have
access to a more flexible range of protection policies. In particular, because the SOAP layer is aware of
the message structure, you can apply protection at a finer level of granularity—for example, by
encrypting and signing only those headers that actually require protection. This feature enables you to
support more sophisticated multi-tier architectures. For example, one plaintext header might be aimed
at an intermediate tier (located within a secure intranet), while an encrypted header might be aimed at
the final destination (reached through an insecure public network).

Security bindings

As described in the WS-SecurityPolicy specification, one of the following binding types can be used to
protect SOAP messages:

sp:TransportBinding—the transport binding refers to message protection provided at the
transport level (for example, through HTTPS). This binding can be used to secure any message
type, not just SOAP, and it is described in detail in the preceding section, Section 6.1, “Transport
Layer Message Protection”.

sp:AsymmetricBinding—the asymmetric binding refers to message protection provided at the
SOAP message encoding layer, where the protection features are implemented using
asymmetric cryptography (also known as public key cryptography).

sp:SymmetricBinding—the symmetric binding refers to message protection provided at the
SOAP message encoding layer, where the protection features are implemented using symmetric
cryptography. Examples of symmetric cryptography are the tokens provided by WS-
SecureConversation and Kerberos tokens.

Message protection

The following qualities of protection can be applied to part or all of a message:

Encryption.

Signing.

Signing+encryption (sign before encrypting).

Encryption+signing (encrypt before signing).

These qualities of protection can be arbitrarily combined in a single message. Thus, some parts of a
message can be just encrypted, while other parts of the message are just signed, and other parts of the
message can be both signed and encrypted. It is also possible to leave parts of the message
unprotected.

The most flexible options for applying message protection are available at the SOAP layer
(sp:AsymmetricBinding or sp:SymmetricBinding). The transport layer (sp:TransportBinding) only
gives you the option of applying protection to the whole message.

Specifying parts of the message to protect

Currently, Apache CXF enables you to sign or encrypt the following parts of a SOAP message:

Body—sign and/or encrypt the whole of the soap:BODY element in a SOAP message.

Header(s)—sign and/or encrypt one or more SOAP message headers. You can specify the
quality of protection for each header individually.

Red Hat Fuse 7.4 Apache CXF Security Guide

56

Attachments—sign and/or encrypt all of the attachments in a SOAP message.

Elements—sign and/or encrypt specific XML elements in a SOAP message.

Role of configuration

Not all of the details required for message protection are specified using policies. The policies are
primarily intended to provide a way of specifying the quality of protection required for a service.
Supporting details, such as security tokens, passwords, and so on, must be provided using a separate,
product-specific mechanism. In practice, this means that in Apache CXF, some supporting configuration
details must be provided in Blueprint XML configuration files. For details, see Section 6.2.6, “Providing
Encryption Keys and Signing Keys”.

6.2.2. Basic Signing and Encryption Scenario

Overview

The scenario described here is a client-server application, where an asymmetric binding policy is set up
to encrypt and sign the SOAP body of messages that pass back and forth between the client and the
server.

Example scenario

Figure 6.1, “Basic Signing and Encryption Scenario” shows an overview of the basic signing and
encryption scenario, which is specified by associating an asymmetric binding policy with an endpoint in
the WSDL contract.

Figure 6.1. Basic Signing and Encryption Scenario

Scenario steps

When the client in Figure 6.1, “Basic Signing and Encryption Scenario” invokes a synchronous operation
on the recipient’s endpoint, the request and reply message are processed as follows:

1. As the outgoing request message passes through the WS-SecurityPolicy handler, the handler

CHAPTER 6. MESSAGE PROTECTION

57

1. As the outgoing request message passes through the WS-SecurityPolicy handler, the handler
processes the message in accordance with the policies specified in the client’s asymmetric
binding policy. In this example, the handler performs the following processing:

a. Encrypt the SOAP body of the message using Bob’s public key.

b. Sign the encrypted SOAP body using Alice’s private key.

2. As the incoming request message passes through the server’s WS-SecurityPolicy handler, the
handler processes the message in accordance with the policies specified in the server’s
asymmetric binding policy. In this example, the handler performs the following processing:

a. Verify the signature using Alice’s public key.

b. Decrypt the SOAP body using Bob’s private key.

3. As the outgoing reply message passes back through the server’s WS-SecurityPolicy handler, the
handler performs the following processing:

a. Encrypt the SOAP body of the message using Alice’s public key.

b. Sign the encrypted SOAP body using Bob’s private key.

4. As the incoming reply message passes back through the client’s WS-SecurityPolicy handler, the
handler performs the following processing:

a. Verify the signature using Bob’s public key.

b. Decrypt the SOAP body using Alice’s private key.

6.2.3. Specifying an AsymmetricBinding Policy

Overview

The asymmetric binding policy implements SOAP message protection using asymmetric key algorithms
(public/private key combinations) and does so at the SOAP layer. The encryption and signing
algorithms used by the asymmetric binding are similar to the encryption and signing algorithms used by
SSL/TLS. A crucial difference, however, is that SOAP message protection enables you to select
particular parts of a message to protect (for example, individual headers, body, or attachments),
whereas transport layer security can operate only on the whole message.

Policy subject

An asymmetric binding policy must be applied to an endpoint policy subject (see the section called
“Endpoint policy subject”). For example, given the asymmetric binding policy with ID,
MutualCertificate10SignEncrypt_IPingService_policy, you could apply the policy to an endpoint
binding as follows:

<wsdl:binding name="MutualCertificate10SignEncrypt_IPingService" type="i0:IPingService">
 <wsp:PolicyReference URI="#MutualCertificate10SignEncrypt_IPingService_policy"/>
 ...
</wsdl:binding>

Syntax

Red Hat Fuse 7.4 Apache CXF Security Guide

58

The AsymmetricBinding element has the following syntax:

<sp:AsymmetricBinding xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:InitiatorToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:InitiatorToken>
) | (
 <sp:InitiatorSignatureToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:InitiatorSignatureToken>
 <sp:InitiatorEncryptionToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:InitiatorEncryptionToken>
)
 (
 <sp:RecipientToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:RecipientToken>
) | (
 <sp:RecipientSignatureToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:RecipientSignatureToken>
 <sp:RecipientEncryptionToken>
 <wsp:Policy> ... </wsp:Policy>
 </sp:RecipientEncryptionToken>
)
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
 <sp:Layout ... > ... </sp:Layout> ?
 <sp:IncludeTimestamp ... /> ?
 <sp:EncryptBeforeSigning ... /> ?
 <sp:EncryptSignature ... /> ?
 <sp:ProtectTokens ... /> ?
 <sp:OnlySignEntireHeadersAndBody ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:AsymmetricBinding>

Sample policy

Example 6.4, “Example of an Asymmetric Binding” shows an example of an asymmetric binding that
supports message protection with signatures and encryption, where the signing and encryption is done
using pairs of public/private keys (that is, using asymmetric cryptography). This example does not
specify which parts of the message should be signed and encrypted, however. For details of how to do
that, see Section 6.2.5, “Specifying Parts of Message to Encrypt and Sign” .

Example 6.4. Example of an Asymmetric Binding

<wsp:Policy wsu:Id="MutualCertificate10SignEncrypt_IPingService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding
 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

CHAPTER 6. MESSAGE PROTECTION

59

 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRec
ipient">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:EncryptSignature/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

sp:InitiatorToken

The initiator token refers to the public/private key-pair owned by the initiator. This token is used as
follows:

Red Hat Fuse 7.4 Apache CXF Security Guide

60

The token’s private key signs messages sent from initiator to recipient.

The token’s public key verifies signatures received by the recipient.

The token’s public key encrypts messages sent from recipient to initiator.

The token’s private key decrypts messages received by the initiator.

Confusingly, this token is used both by the initiator and by the recipient. However, only the initiator has
access to the private key so, in this sense, the token can be said to belong to the initiator. In
Section 6.2.2, “Basic Signing and Encryption Scenario” , the initiator token is the certificate, Alice.

This element should contain a nested wsp:Policy element and sp:X509Token element as shown. The
sp:IncludeToken attribute is set to AlwaysToRecipient, which instructs the runtime to include Alice’s
public key with every message sent to the recipient. This option is useful, in case the recipient wants to
use the initiator’s certificate to perform authentication. The most deeply nested element,
WssX509V3Token10 is optional. It specifies what specification version the X.509 certificate should
conform to. The following alternatives (or none) can be specified here:

sp:WssX509V3Token10

This optional element is a policy assertion that indicates that an X509 Version 3 token should be
used.

sp:WssX509Pkcs7Token10

This optional element is a policy assertion that indicates that an X509 PKCS7 token should be used.

sp:WssX509PkiPathV1Token10

This optional element is a policy assertion that indicates that an X509 PKI Path Version 1 token
should be used.

sp:WssX509V1Token11

This optional element is a policy assertion that indicates that an X509 Version 1 token should be
used.

sp:WssX509V3Token11

This optional element is a policy assertion that indicates that an X509 Version 3 token should be
used.

sp:WssX509Pkcs7Token11

This optional element is a policy assertion that indicates that an X509 PKCS7 token should be used.

sp:WssX509PkiPathV1Token11

This optional element is a policy assertion that indicates that an X509 PKI Path Version 1 token
should be used.

sp:RecipientToken

The recipient token refers to the public/private key-pair owned by the recipient. This token is used as
follows:

The token’s public key encrypts messages sent from initiator to recipient.

The token’s private key decrypts messages received by the recipient.

The token’s private key signs messages sent from recipient to initiator.

The token’s public key verifies signatures received by the initiator.

Confusingly, this token is used both by the recipient and by the initiator. However, only the recipient has

CHAPTER 6. MESSAGE PROTECTION

61

Confusingly, this token is used both by the recipient and by the initiator. However, only the recipient has
access to the private key so, in this sense, the token can be said to belong to the recipient. In
Section 6.2.2, “Basic Signing and Encryption Scenario” , the recipient token is the certificate, Bob.

This element should contain a nested wsp:Policy element and sp:X509Token element as shown. The
sp:IncludeToken attribute is set to Never, because there is no need to include Bob’s public key in the
reply messages.

NOTE

In Apache CXF, there is never a need to send Bob’s or Alice’s token in a message,
because both Bob’s certificate and Alice’s certificate are provided at both ends of the
connection—see Section 6.2.6, “Providing Encryption Keys and Signing Keys” .

sp:AlgorithmSuite

This element specifies the suite of cryptographic algorithms to use for signing and encryption. For
details of the available algorithm suites, see Section 6.2.7, “Specifying the Algorithm Suite” .

sp:Layout

This element specifies whether to impose any conditions on the order in which security headers are
added to the SOAP message. The sp:Lax element specifies that no conditions are imposed on the
order of security headers. The alternatives to sp:Lax are sp:Strict, sp:LaxTimestampFirst, or
sp:LaxTimestampLast.

sp:IncludeTimestamp

If this element is included in the policy, the runtime adds a wsu:Timestamp element to the
wsse:Security header. By default, the timestamp is not included.

sp:EncryptBeforeSigning

If a message part is subject to both encryption and signing, it is necessary to specify the order in which
these operations are performed. The default order is to sign before encrypting. But if you include this
element in your asymmetric policy, the order is changed to encrypt before signing.

NOTE

Implicitly, this element also affects the order of the decryption and signature verification
operations. For example, if the sender of a message signs before encrypting, the receiver
of the message must decrypt before verifying the signature.

sp:EncryptSignature

This element specifies that the message signature must be encrypted (by the encryption token,
specified as described in Section 6.2.6, “Providing Encryption Keys and Signing Keys”). Default is false.

NOTE

Red Hat Fuse 7.4 Apache CXF Security Guide

62

NOTE

The message signature is the signature obtained directly by signing various parts of the
message, such as message body, message headers, or individual elements (see
Section 6.2.5, “Specifying Parts of Message to Encrypt and Sign”). Sometimes the
message signature is referred to as the primary signature, because the WS-SecurityPolicy
specification also supports the concept of an endorsing supporting token, which is used
to sign the primary signature. Hence, if an sp:EndorsingSupportingTokens element is
applied to an endpoint, you can have a chain of signatures: the primary signature, which
signs the message itself, and the secondary signature, which signs the primary signature.

For more details about the various kinds of endorsing supporting token, see the section
called “SupportingTokens assertions”.

sp:ProtectTokens

This element specifies that signatures must cover the token used to generate that signature. Default is
false.

sp:OnlySignEntireHeadersAndBody

This element specifies that signatures can be applied only to an entire body or to entire headers, not to
sub-elements of the body or sub-elements of a header. When this option is enabled, you are effectively
prevented from using the sp:SignedElements assertion (see Section 6.2.5, “Specifying Parts of
Message to Encrypt and Sign”).

6.2.4. Specifying a SymmetricBinding Policy

Overview

The symmetric binding policy implements SOAP message protection using symmetric key algorithms
(shared secret key) and does so at the SOAP layer. Examples of a symmetric binding are the Kerberos
protocol and the WS-SecureConversation protocol.

NOTE

Currently, Apache CXF supports only WS-SecureConversation tokens in a symmetric
binding.

Policy subject

A symmetric binding policy must be applied to an endpoint policy subject (see the section called
“Endpoint policy subject”). For example, given the symmetric binding policy with ID,
SecureConversation_MutualCertificate10SignEncrypt_IPingService_policy, you could apply the
policy to an endpoint binding as follows:

<wsdl:binding name="SecureConversation_MutualCertificate10SignEncrypt_IPingService"
type="i0:IPingService">
 <wsp:PolicyReference
URI="#SecureConversation_MutualCertificate10SignEncrypt_IPingService_policy"/>
 ...
</wsdl:binding>

CHAPTER 6. MESSAGE PROTECTION

63

Syntax

The SymmetricBinding element has the following syntax:

<sp:SymmetricBinding xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:EncryptionToken ... >
 <wsp:Policy> ... </wsp:Policy>
 </sp:EncryptionToken>
 <sp:SignatureToken ... >
 <wsp:Policy> ... </wsp:Policy>
 </sp:SignatureToken>
) | (
 <sp:ProtectionToken ... >
 <wsp:Policy> ... </wsp:Policy>
 </sp:ProtectionToken>
)
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>
 <sp:Layout ... > ... </sp:Layout> ?
 <sp:IncludeTimestamp ... /> ?
 <sp:EncryptBeforeSigning ... /> ?
 <sp:EncryptSignature ... /> ?
 <sp:ProtectTokens ... /> ?
 <sp:OnlySignEntireHeadersAndBody ... /> ?
 ...
 </wsp:Policy>
 ...
</sp:SymmetricBinding>

Sample policy

Example 6.5, “Example of a Symmetric Binding” shows an example of a symmetric binding that supports
message protection with signatures and encryption, where the signing and encryption is done using a
single symmetric key (that is, using symmetric cryptography). This example does not specify which parts
of the message should be signed and encrypted, however. For details of how to do that, see
Section 6.2.5, “Specifying Parts of Message to Encrypt and Sign” .

Example 6.5. Example of a Symmetric Binding

<wsp:Policy wsu:Id="SecureConversation_MutualCertificate10SignEncrypt_IPingService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:SecureConversationToken>
 ...
 </sp:SecureConversationToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>

Red Hat Fuse 7.4 Apache CXF Security Guide

64

 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:EncryptSignature/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

sp:ProtectionToken

This element specifies a symmetric token to use for both signing and encrypting messages. For
example, you could specify a WS-SecureConversation token here.

If you want to use distinct tokens for signing and encrypting operations, use the sp:SignatureToken
element and the sp:EncryptionToken element in place of this element.

sp:SignatureToken

This element specifies a symmetric token to use for signing messages. It should be used in combination
with the sp:EncryptionToken element.

sp:EncryptionToken

This element specifies a symmetric token to use for encrypting messages. It should be used in
combination with the sp:SignatureToken element.

sp:AlgorithmSuite

This element specifies the suite of cryptographic algorithms to use for signing and encryption. For
details of the available algorithm suites, see Section 6.2.7, “Specifying the Algorithm Suite” .

sp:Layout

This element specifies whether to impose any conditions on the order in which security headers are
added to the SOAP message. The sp:Lax element specifies that no conditions are imposed on the
order of security headers. The alternatives to sp:Lax are sp:Strict, sp:LaxTimestampFirst, or
sp:LaxTimestampLast.

CHAPTER 6. MESSAGE PROTECTION

65

sp:IncludeTimestamp

If this element is included in the policy, the runtime adds a wsu:Timestamp element to the
wsse:Security header. By default, the timestamp is not included.

sp:EncryptBeforeSigning

When a message part is subject to both encryption and signing, it is necessary to specify the order in
which these operations are performed. The default order is to sign before encrypting. But if you include
this element in your symmetric policy, the order is changed to encrypt before signing.

NOTE

Implicitly, this element also affects the order of the decryption and signature verification
operations. For example, if the sender of a message signs before encrypting, the receiver
of the message must decrypt before verifying the signature.

sp:EncryptSignature

This element specifies that the message signature must be encrypted. Default is false.

sp:ProtectTokens

This element specifies that signatures must cover the token used to generate that signature. Default is
false.

sp:OnlySignEntireHeadersAndBody

This element specifies that signatures can be applied only to an entire body or to entire headers, not to
sub-elements of the body or sub-elements of a header. When this option is enabled, you are effectively
prevented from using the sp:SignedElements assertion (see Section 6.2.5, “Specifying Parts of
Message to Encrypt and Sign”).

6.2.5. Specifying Parts of Message to Encrypt and Sign

Overview

Encryption and signing provide two kinds of protection: confidentiality and integrity, respectively. The
WS-SecurityPolicy protection assertions are used to specify which parts of a message are subject to
protection. Details of the protection mechanisms, on the other hand, are specified separately in the
relevant binding policy (see xSection 6.2.3, “Specifying an AsymmetricBinding Policy” , Section 6.2.4,
“Specifying a SymmetricBinding Policy”, and Section 6.1, “Transport Layer Message Protection”).

The protection assertions described here are really intended to be used in combination with SOAP
security, because they apply to features of a SOAP message. Nonetheless, these policies can also be
satisfied by a transport binding (such as HTTPS), which applies protection to the entire message, rather
than to specific parts.

Policy subject

A protection assertion must be applied to a message policy subject (see the section called “Message
policy subject”). In other words, it must be placed inside a wsdl:input, wsdl:output, or wsdl:fault
element in a WSDL binding. For example, given the protection policy with ID,

Red Hat Fuse 7.4 Apache CXF Security Guide

66

MutualCertificate10SignEncrypt_IPingService_header_Input_policy, you could apply the policy to a
wsdl:input message part as follows:

<wsdl:operation name="header">
 <soap:operation soapAction="http://InteropBaseAddress/interop/header" style="document"/>
 <wsdl:input name="headerRequest">
 <wsp:PolicyReference
 URI="#MutualCertificate10SignEncrypt_IPingService_header_Input_policy"/>
 <soap:header message="i0:headerRequest_Headers" part="CustomHeader" use="literal"/>
 <soap:body use="literal"/>
 </wsdl:input>
 ...
</wsdl:operation>

Protection assertions

The following WS-SecurityPolicy protection assertions are supported by Apache CXF:

SignedParts

EncryptedParts

SignedElements

EncryptedElements

ContentEncryptedElements

RequiredElements

RequiredParts

Syntax

The SignedParts element has the following syntax:

<sp:SignedParts xmlns:sp="..." ... >
 <sp:Body />?
 <sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*
 <sp:Attachments />?
 ...
</sp:SignedParts>

The EncryptedParts element has the following syntax:

<sp:EncryptedParts xmlns:sp="..." ... >
 <sp:Body/>?
 <sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*
 <sp:Attachments />?
 ...
</sp:EncryptedParts>

Sample policy

Example 6.6, “Integrity and Encryption Policy Assertions” shows a policy that combines two protection

CHAPTER 6. MESSAGE PROTECTION

67

Example 6.6, “Integrity and Encryption Policy Assertions” shows a policy that combines two protection
assertions: a signed parts assertion and an encrypted parts assertion. When this policy is applied to a
message part, the affected message bodies are signed and encrypted. In addition, the message header
named CustomHeader is signed.

Example 6.6. Integrity and Encryption Policy Assertions

<wsp:Policy wsu:Id="MutualCertificate10SignEncrypt_IPingService_header_Input_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 <sp:Header Name="CustomHeader" Namespace="http://InteropBaseAddress/interop"/>
 </sp:SignedParts>
 <sp:EncryptedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 </sp:EncryptedParts>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

sp:Body

This element specifies that protection (encryption or signing) is applied to the body of the message.
The protection is applied to the entire message body: that is, the soap:Body element, its attributes,
and its content.

sp:Header

This element specifies that protection is applied to the SOAP header specified by the header’s local
name, using the Name attribute, and namespace, using the Namespace attribute. The protection is
applied to the entire message header, including its attributes and its content.

sp:Attachments

This element specifies that all SOAP with Attachments (SwA) attachments are protected.

6.2.6. Providing Encryption Keys and Signing Keys

Overview

The standard WS-SecurityPolicy policies are designed to specify security requirements in some detail:
for example, security protocols, security algorithms, token types, authentication requirements, and so
on, are all described. But the standard policy assertions do not provide any mechanism for specifying
associated security data, such as keys and credentials. WS-SecurityPolicy expects that the requisite
security data is provided through a proprietary mechanism. In Apache CXF, the associated security data
is provided through Blueprint XML configuration.

Configuring encryption keys and signing keys

You can specify an application’s encryption keys and signing keys by setting properties on a client’s
request context or on an endpoint context (see the section called “Add encryption and signing

Red Hat Fuse 7.4 Apache CXF Security Guide

68

properties to Blueprint configuration”). The properties you can set are shown in Table 6.1, “Encryption
and Signing Properties”.

Table 6.1. Encryption and Signing Properties

Property Description

security.signature.properties The WSS4J properties file/object that contains the
WSS4J properties for configuring the signature
keystore (which is also used for decrypting) and
Crypto objects.

security.signature.username (Optional) The username or alias of the key in the
signature keystore to use. If not specified, the alias
set in the properties file is used. If that is also not set,
and the keystore only contains a single key, that key
will be used.

security.encryption.properties The WSS4J properties file/object that contains the
WSS4J properties for configuring the encryption
keystore (which is also used for validating signatures)
and Crypto objects.

security.encryption.username (Optional) The username or alias of the key in the
encryption keystore to use. If not specified, the alias
set in the properties file is used. If that is also not set,
and the keystore only contains a single key, that key
will be used.

The names of the preceding properties are not so well chosen, because they do not accurately reflect
what they are used for. The key specified by security.signature.properties is actually used both for
signing and decrypting. The key specified by security.encryption.properties is actually used both for
encrypting and for validating signatures.

Add encryption and signing properties to Blueprint configuration

Before you can use any WS-Policy policies in a Apache CXF application, you must add the policies
feature to the default CXF bus. Add the p:policies element to the CXF bus, as shown in the following
Blueprint configuration fragment:

<beans xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:p="http://cxf.apache.org/policy" ... >

 <cxf:bus>
 <cxf:features>
 <p:policies/>
 <cxf:logging/>
 </cxf:features>
 </cxf:bus>
 ...
</beans>

CHAPTER 6. MESSAGE PROTECTION

69

The following example shows how to add signature and encryption properties to proxies of the specified
service type (where the service name is specified by the name attribute of the jaxws:client element).
The properties are stored in WSS4J property files, where alice.properties contains the properties for
the signature key and bob.properties contains the properties for the encryption key.

<beans ... >
 <jaxws:client name="
{http://InteropBaseAddress/interop}MutualCertificate10SignEncrypt_IPingService"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="ws-security.signature.properties" value="etc/alice.properties"/>
 <entry key="ws-security.encryption.properties" value="etc/bob.properties"/>
 </jaxws:properties>
 </jaxws:client>
 ...
</beans>

In fact, although it is not obvious from the property names, each of these keys is used for two distinct
purposes on the client side:

alice.properties (that is, the key specified by security.signature.properties) is used on the
client side as follows:

For signing outgoing messages.

For decrypting incoming messages.

bob.properties (that is, the key specified by security.encryption.properties) is used on the
client side as follows:

For encrypting outgoing messages.

For verifying signatures on incoming messages.

If you find this confusing, see Section 6.2.2, “Basic Signing and Encryption Scenario” for a more detailed
explanation.

The following example shows how to add signature and encryption properties to a JAX-WS endpoint.
The properties file, bob.properties, contains the properties for the signature key and the properties file,
alice.properties, contains the properties for the encryption key (this is the inverse of the client
configuration).

<beans ... >
 <jaxws:endpoint
 name="{http://InteropBaseAddress/interop}MutualCertificate10SignEncrypt_IPingService"
 id="MutualCertificate10SignEncrypt"
 address="http://localhost:9002/MutualCertificate10SignEncrypt"
 serviceName="interop:PingService10"
 endpointName="interop:MutualCertificate10SignEncrypt_IPingService"
 implementor="interop.server.MutualCertificate10SignEncrypt">

 <jaxws:properties>
 <entry key="security.signature.properties" value="etc/bob.properties"/>
 <entry key="security.encryption.properties" value="etc/alice.properties"/>
 </jaxws:properties>

Red Hat Fuse 7.4 Apache CXF Security Guide

70

 </jaxws:endpoint>
 ...
</beans>

Each of these keys is used for two distinct purposes on the server side:

bob.properties (that is, the key specified by security.signature.properties) is used on the
server side as follows:

For signing outgoing messages.

For decrypting incoming messages.

alice.properties (that is, the key specified by security.encryption.properties) is used on the
server side as follows:

For encrypting outgoing messages.

For verifying signatures on incoming messages.

Define the WSS4J property files

Apache CXF uses WSS4J property files to load the public keys and the private keys needed for
encryption and signing. Table 6.2, “WSS4J Keystore Properties” describes the properties that you can
set in these files.

Table 6.2. WSS4J Keystore Properties

Property Description

org.apache.ws.security.crypto.provider Specifies an implementation of the Crypto interface
(see the section called “WSS4J Crypto interface”).
Normally, you specify the default WSS4J
implementation of Crypto,
org.apache.ws.security.components.crypto.
Merlin.

The rest of the properties in this table are specific
to the Merlin implementation of the
Cryptointerface.

org.apache.ws.security.crypto.merlin.keystor
e.provider

(Optional) The name of the JSSE keystore provider
to use. The default keystore provider is Bouncy
Castle. You can switch provider to Sun’s JSSE
keystore provider by setting this property to
SunJSSE.

org.apache.ws.security.crypto.merlin.keystor
e.type

The Bouncy Castle keystore provider supports the
following types of keystore: JKS and PKCS12. In
addition, Bouncy Castle supports the following
proprietary keystore types: BKS and UBER.

CHAPTER 6. MESSAGE PROTECTION

71

http://www.bouncycastle.org/specifications.html

org.apache.ws.security.crypto.merlin.keystor
e.file

Specifies the location of the keystore file to load,
where the location is specified relative to the
Classpath.

org.apache.ws.security.crypto.merlin.keystor
e.alias

(Optional) If the keystore type is JKS (Java
keystore), you can select a specific key from the
keystore by specifying its alias. If the keystore
contains only one key, there is no need to specify an
alias.

org.apache.ws.security.crypto.merlin.keystor
e.password

The password specified by this property is used for
two purposes: to unlock the keystore (keystore
password) and to decrypt a private key that is stored
in the keystore (private key password). Hence, the
keystore password must be same as the private key
password.

Property Description

For example, the etc/alice.properties file contains property settings to load the PKCS#12 file,
certs/alice.pfx, as follows:

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=PKCS12
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.keystore.file=certs/alice.pfx

The etc/bob.properties file contains property settings to load the PKCS#12 file, certs/bob.pfx, as
follows:

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.password=password

for some reason, bouncycastle has issues with bob.pfx
org.apache.ws.security.crypto.merlin.keystore.provider=SunJSSE
org.apache.ws.security.crypto.merlin.keystore.type=PKCS12
org.apache.ws.security.crypto.merlin.keystore.file=certs/bob.pfx

Programming encryption keys and signing keys

An alternative approach to loading encryption keys and signing keys is to use the properties shown in
Table 6.3, “Properties for Specifying Crypto Objects” to specify Crypto objects that load the relevant
keys. This requires you to provide your own implementation of the WSS4J Crypto interface,
org.apache.ws.security.components.crypto.Crypto.

Table 6.3. Properties for Specifying Crypto Objects

Red Hat Fuse 7.4 Apache CXF Security Guide

72

Property Description

security.signature.crypto Specifies an instance of a Crypto object that is
responsible for loading the keys for signing and
decrypting messages.

security.encryption.crypto Specifies an instance of a Crypto object that is
responsible for loading the keys for encrypting
messages and verifying signatures.

WSS4J Crypto interface

Example 6.7, “WSS4J Crypto Interface” shows the definition of the Crypto interface that you can
implement, if you want to provide encryption keys and signing keys by programming. For more
information, see the WSS4J home page .

Example 6.7. WSS4J Crypto Interface

// Java
package org.apache.ws.security.components.crypto;

import org.apache.ws.security.WSSecurityException;

import java.io.InputStream;
import java.math.BigInteger;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.cert.Certificate;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;

public interface Crypto {
 X509Certificate loadCertificate(InputStream in)
 throws WSSecurityException;

 X509Certificate[] getX509Certificates(byte[] data, boolean reverse)
 throws WSSecurityException;

 byte[] getCertificateData(boolean reverse, X509Certificate[] certs)
 throws WSSecurityException;

 public PrivateKey getPrivateKey(String alias, String password)
 throws Exception;

 public X509Certificate[] getCertificates(String alias)
 throws WSSecurityException;

 public String getAliasForX509Cert(Certificate cert)
 throws WSSecurityException;

 public String getAliasForX509Cert(String issuer)
 throws WSSecurityException;

CHAPTER 6. MESSAGE PROTECTION

73

http://ws.apache.org/wss4j/

 public String getAliasForX509Cert(String issuer, BigInteger serialNumber)
 throws WSSecurityException;

 public String getAliasForX509Cert(byte[] skiBytes)
 throws WSSecurityException;

 public String getDefaultX509Alias();

 public byte[] getSKIBytesFromCert(X509Certificate cert)
 throws WSSecurityException;

 public String getAliasForX509CertThumb(byte[] thumb)
 throws WSSecurityException;

 public KeyStore getKeyStore();

 public CertificateFactory getCertificateFactory()
 throws WSSecurityException;

 public boolean validateCertPath(X509Certificate[] certs)
 throws WSSecurityException;

 public String[] getAliasesForDN(String subjectDN)
 throws WSSecurityException;
}

6.2.7. Specifying the Algorithm Suite

Overview

An algorithm suite is a coherent collection of cryptographic algorithms for performing operations such as
signing, encryption, generating message digests, and so on.

For reference purposes, this section describes the algorithm suites defined by the WS-SecurityPolicy
specification. Whether or not a particular algorithm suite is available, however, depends on the
underlying security provider. Apache CXF security is based on the pluggable Java Cryptography
Extension (JCE) and Java Secure Socket Extension (JSSE) layers. By default, Apache CXF is
configured with Sun’s JSSE provider, which supports the cipher suites described in Appendix A of Sun’s
JSSE Reference Guide.

Syntax

The AlgorithmSuite element has the following syntax:

<sp:AlgorithmSuite xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 (<sp:Basic256 ... /> |
 <sp:Basic192 ... /> |
 <sp:Basic128 ... /> |
 <sp:TripleDes ... /> |
 <sp:Basic256Rsa15 ... /> |
 <sp:Basic192Rsa15 ... /> |

Red Hat Fuse 7.4 Apache CXF Security Guide

74

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html#AppA

 <sp:Basic128Rsa15 ... /> |
 <sp:TripleDesRsa15 ... /> |
 <sp:Basic256Sha256 ... /> |
 <sp:Basic192Sha256 ... /> |
 <sp:Basic128Sha256 ... /> |
 <sp:TripleDesSha256 ... /> |
 <sp:Basic256Sha256Rsa15 ... /> |
 <sp:Basic192Sha256Rsa15 ... /> |
 <sp:Basic128Sha256Rsa15 ... /> |
 <sp:TripleDesSha256Rsa15 ... /> |
 ...)
 <sp:InclusiveC14N ... /> ?
 <sp:SOAPNormalization10 ... /> ?
 <sp:STRTransform10 ... /> ?
 (<sp:XPath10 ... /> |
 <sp:XPathFilter20 ... /> |
 <sp:AbsXPath ... /> |
 ...)?
 ...
 </wsp:Policy>
 ...
</sp:AlgorithmSuite>

The algorithm suite assertion supports a large number of alternative algorithms (for example, Basic256).
For a detailed description of the algorithm suite alternatives, see Table 6.4, “Algorithm Suites” .

Algorithm suites

Table 6.4, “Algorithm Suites” provides a summary of the algorithm suites supported by WS-
SecurityPolicy. The column headings refer to different types of cryptographic algorithm, as follows: \
[Dig] is the digest algorithm; \[Enc] is the encryption algorithm; \[Sym KW] is the symmetric key-wrap
algorithm; \[Asym KW] is the asymmetric key-wrap algorithm; \[Enc KD] is the encryption key derivation
algorithm; \[Sig KD] is the signature key derivation algorithm.

Table 6.4. Algorithm Suites

Algorithm
Suite

\[Dig] \[Enc] \[Sym KW] \[Asym
KW]

\[Enc KD] \[Sig KD]

Basic256 Sha1 Aes256 KwAes256 KwRsaOa
ep

PSha1L25
6

PSha1L19
2

Basic192 Sha1 Aes192 KwAes192 KwRsaOa
ep

PSha1L19
2

PSha1L19
2

Basic128 Sha1 Aes128 KwAes128 KwRsaOa
ep

PSha1L12
8

PSha1L12
8

TripleDes Sha1 TripleDes KwTripleD
es

KwRsaOa
ep

PSha1L19
2

PSha1L19
2

Basic256R
sa15

Sha1 Aes256 KwAes256 KwRsa15 PSha1L25
6

PSha1L19
2

CHAPTER 6. MESSAGE PROTECTION

75

Basic192R
sa15

Sha1 Aes192 KwAes192 KwRsa15 PSha1L19
2

PSha1L19
2

Basic128R
sa15

Sha1 Aes128 KwAes128 KwRsa15 PSha1L12
8

PSha1L12
8

TripleDes
Rsa15

Sha1 TripleDes KwTripleD
es

KwRsa15 PSha1L19
2

PSha1L19
2

Basic256S
ha256

Sha256 Aes256 KwAes256 KwRsaOa
ep

PSha1L25
6

PSha1L19
2

Basic192S
ha256

Sha256 Aes192 KwAes192 KwRsaOa
ep

PSha1L19
2

PSha1L19
2

Basic128S
ha256

Sha256 Aes128 KwAes128 KwRsaOa
ep

PSha1L12
8

PSha1L12
8

TripleDes
Sha256

Sha256 TripleDes KwTripleD
es

KwRsaOa
ep

PSha1L19
2

PSha1L19
2

Basic256S
ha256Rsa
15

Sha256 Aes256 KwAes256 KwRsa15 PSha1L25
6

PSha1L19
2

Basic192S
ha256Rsa
15

Sha256 Aes192 KwAes192 KwRsa15 PSha1L19
2

PSha1L19
2

Basic128S
ha256Rsa
15

Sha256 Aes128 KwAes128 KwRsa15 PSha1L12
8

PSha1L12
8

TripleDes
Sha256Rs
a15

Sha256 TripleDes KwTripleD
es

KwRsa15 PSha1L19
2

PSha1L19
2

Algorithm
Suite

\[Dig] \[Enc] \[Sym KW] \[Asym
KW]

\[Enc KD] \[Sig KD]

Types of cryptographic algorithm

The following types of cryptographic algorithm are supported by WS-SecurityPolicy:

the section called “Symmetric key signature”

the section called “Asymmetric key signature”

the section called “Digest”

Red Hat Fuse 7.4 Apache CXF Security Guide

76

the section called “Encryption”

the section called “Symmetric key wrap”

the section called “Asymmetric key wrap”

the section called “Computed key”

the section called “Encryption key derivation”

the section called “Signature key derivation”

Symmetric key signature

The symmetric key signature property, [Sym Sig], specifies the algorithm for generating a signature
using a symmetric key. WS-SecurityPolicy specifies that the HmacSha1 algorithm is always used.

The HmacSha1 algorithm is identified by the following URI:

http://www.w3.org/2000/09/xmldsig#hmac-sha1

Asymmetric key signature

The asymmetric key signature property, [Asym Sig], specifies the algorithm for generating a signature
using an asymmetric key. WS-SecurityPolicy specifies that the RsaSha1 algorithm is always used.

The RsaSha1 algorithm is identified by the following URI:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

Digest

The digest property, [Dig], specifies the algorithm used for generating a message digest value. WS-
SecurityPolicy supports two alternative digest algorithms: Sha1 and Sha256.

The Sha1 algorithm is identified by the following URI:

http://www.w3.org/2000/09/xmldsig#sha1

The Sha256 algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#sha256

Encryption

The encryption property, [Enc], specifies the algorithm used for encrypting data. WS-SecurityPolicy
supports the following encryption algorithms: Aes256, Aes192, Aes128, TripleDes.

The Aes256 algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#aes256-cbc

The Aes192 algorithm is identified by the following URI:

CHAPTER 6. MESSAGE PROTECTION

77

http://www.w3.org/2001/04/xmlenc#aes192-cbc

The Aes128 algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#aes128-cbc

The TripleDes algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Symmetric key wrap

The symmetric key wrap property, [Sym KW], specifies the algorithm used for signing and encrypting
symmetric keys. WS-SecurityPolicy supports the following symmetric key wrap algorithms: KwAes256,
KwAes192, KwAes128, KwTripleDes.

The KwAes256 algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#kw-aes256

The KwAes192 algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#kw-aes192

The KwAes128 algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#kw-aes128

The KwTripleDes algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Asymmetric key wrap

The asymmetric key wrap property, [Asym KW], specifies the algorithm used for signing and encrypting
asymmetric keys. WS-SecurityPolicy supports the following asymmetric key wrap algorithms:
KwRsaOaep, KwRsa15.

The KwRsaOaep algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

The KwRsa15 algorithm is identified by the following URI:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

Computed key

The computed key property, [Comp Key], specifies the algorithm used to compute a derived key. When
secure parties communicate with the aid of a shared secret key (for example, when using WS-
SecureConversation), it is recommended that a derived key is used instead of the original shared key, in

Red Hat Fuse 7.4 Apache CXF Security Guide

78

order to avoid exposing too much data for analysis by hostile third parties. WS-SecurityPolicy specifies
that the PSha1 algorithm is always used.

The PSha1 algorithm is identified by the following URI:

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/dk/p_sha1

Encryption key derivation

The encryption key derivation property, [Enc KD], specifies the algorithm used to compute a derived
encryption key. WS-SecurityPolicy supports the following encryption key derivation algorithms:
PSha1L256, PSha1L192, PSha1L128.

The PSha1 algorithm is identified by the following URI (the same algorithm is used for PSha1L256,
PSha1L192, and PSha1L128; just the key lengths differ):

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/dk/p_sha1

Signature key derivation

The signature key derivation property, [Sig KD], specifies the algorithm used to compute a derived
signature key. WS-SecurityPolicy supports the following signature key derivation algorithms:
PSha1L192, PSha1L128.

Key length properties

Table 6.5, “Key Length Properties” shows the minimum and maximum key lengths supported in WS-
SecurityPolicy.

Table 6.5. Key Length Properties

Property Key Length

Minimum symmetric key length [Min SKL] 128, 192, 256

Maximum symmetric key length [Max SKL] 256

Minimum asymmetric key length [Min AKL] 1024

Maximum asymmetric key length [Max AKL] 4096

The value of the minimum symmetric key length, [Min SKL], depends on which algorithm suite is
selected.

CHAPTER 6. MESSAGE PROTECTION

79

CHAPTER 7. AUTHENTICATION

Abstract

This chapter describes how to use policies to configure authentication in a Apache CXF application.
Currently, the only credentials type supported in the SOAP layer is the WS-Security UsernameToken.

7.1. INTRODUCTION TO AUTHENTICATION

Overview

In Apache CXF, an application can be set up to use authentication through a combination of policy
assertions in the WSDL contract and configuration settings in Blueprint XML.

NOTE

Remember, you can also use the HTTPS protocol as the basis for authentication and, in
some cases, this might be easier to configure. See Section 3.1, “Authentication
Alternatives”.

Steps to set up authentication

In outline, you need to perform the following steps to set up an application to use authentication:

1. Add a supporting tokens policy to an endpoint in the WSDL contract. This has the effect of
requiring the endpoint to include a particular type of token (client credentials) in its request
messages.

2. On the client side, provide credentials to send by configuring the relevant endpoint in Blueprint
XML.

3. (Optional) On the client side, if you decide to provide passwords using a callback handler,
implement the callback handler in Java.

4. On the server side, associate a callback handler class with the endpoint in Blueprint XML. The
callback handler is then responsible for authenticating the credentials received from remote
clients.

7.2. SPECIFYING AN AUTHENTICATION POLICY

Overview

If you want an endpoint to support authentication, associate a supporting tokens policy assertion with
the relevant endpoint binding. There are several different kinds of supporting tokens policy assertions,
whose elements all have names of the form *SupportingTokens (for example, SupportingTokens,
SignedSupportingTokens, and so on). For a complete list, see the section called “SupportingTokens
assertions”.

Associating a supporting tokens assertion with an endpoint has the following effects:

Messages to or from the endpoint are required to include the specified token type (where the
token’s direction is specified by the sp:IncludeToken attribute).

Depending on the particular type of supporting tokens element you use, the endpoint might be

Red Hat Fuse 7.4 Apache CXF Security Guide

80

Depending on the particular type of supporting tokens element you use, the endpoint might be
required to sign and/or encrypt the token.

The supporting tokens assertion implies that the runtime will check that these requirements are
satisified. But the WS-SecurityPolicy policies do not define the mechanism for providing credentials to
the runtime. You must use Blueprint XML configuration to specify the credentials (see Section 7.3,
“Providing Client Credentials”).

Syntax

The *SupportingTokens elements (that is, all elements with the SupportingTokens suffix—see the
section called “SupportingTokens assertions”) have the following syntax:

<sp:SupportingTokensElement xmlns:sp="..." ... >
 <wsp:Policy xmlns:wsp="...">
 [Token Assertion]+
 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite> ?
 (
 <sp:SignedParts ... > ... </sp:SignedParts> |
 <sp:SignedElements ... > ... </sp:SignedElements> |
 <sp:EncryptedParts ... > ... </sp:EncryptedParts> |
 <sp:EncryptedElements ... > ... </sp:EncryptedElements> |
) *
 ...
 </wsp:Policy>
 ...
</sp:SupportingTokensElement>

Where SupportingTokensElement stands for one of the supporting token elements,
*SupportingTokens.Typically, if you simply want to include a token (or tokens) in the security header,
you would include one or more token assertions, [Token Assertion], in the policy. In particular, this is all
that is required for authentication.

If the token is of an appropriate type (for example, an X.509 certificate or a symmetric key), you could
theoretically also use it to sign or encrypt specific parts of the current message using the
sp:AlgorithmSuite, sp:SignedParts, sp:SignedElements, sp:EncryptedParts, and
sp:EncryptedElements elements. This functionality is currently not supported by Apache CXF,
however.

Sample policy

Example 7.1, “Example of a Supporting Tokens Policy” shows an example of a policy that requires a WS-
Security UsernameToken token (which contains username/password credentials) to be included in the
security header. In addition, because the token is specified inside an sp:SignedSupportingTokens
element, the policy requires that the token is signed. This example uses a transport binding, so it is the
underlying transport that is responsible for signing the message.

For example, if the underlying transport is HTTPS, the SSL/TLS protocol (configured with an
appropriate algorithm suite) is responsible for signing the entire message, including the security header
that contains the specified token. This is sufficient to satisfy the requirement that the supporting token
is signed.

Example 7.1. Example of a Supporting Tokens Policy

<wsp:Policy wsu:Id="UserNameOverTransport_IPingService_policy">

CHAPTER 7. AUTHENTICATION

81

 <wsp:ExactlyOne>
 <wsp:All>
 <sp:TransportBinding> ... </sp:TransportBinding>
 <sp:SignedSupportingTokens
 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:UsernameToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRec
ipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Where the presence of the sp:WssUsernameToken10 sub-element indicates that the UsernameToken
header should conform to version 1.0 of the WS-Security UsernameToken specification.

Token types

In principle, you can specify any of the WS-SecurityPolicy token types in a supporting tokens assertion.
For SOAP-level authentication, however, only the sp:UsernameToken token type is relevant.

sp:UsernameToken

In the context of a supporting tokens assertion, this element specifies that a WS-Security
UsernameToken is to be included in the security SOAP header. Essentially, a WS-Security
UsernameToken is used to send username/password credentials in the WS-Security SOAP header. The
sp:UsernameToken element has the following syntax:

<sp:UsernameToken sp:IncludeToken="xs:anyURI"? xmlns:sp="..." ... >
 (
 <sp:Issuer>wsa:EndpointReferenceType</sp:Issuer> |
 <sp:IssuerName>xs:anyURI</sp:IssuerName>
) ?
 <wst:Claims Dialect="..."> ... </wst:Claims> ?
 <wsp:Policy xmlns:wsp="...">
 (
 <sp:NoPassword ... /> |
 <sp:HashPassword ... />
) ?
 (
 <sp:RequireDerivedKeys /> |
 <sp:RequireImpliedDerivedKeys ... /> |
 <sp:RequireExplicitDerivedKeys ... />
) ?
 (
 <sp:WssUsernameToken10 ... /> |

Red Hat Fuse 7.4 Apache CXF Security Guide

82

 <sp:WssUsernameToken11 ... />
) ?
 ...
 </wsp:Policy>
 ...
</sp:UsernameToken>

The sub-elements of sp:UsernameToken are all optional and are not needed for ordinary
authentication. Normally, the only part of this syntax that is relevant is the sp:IncludeToken attribute.

NOTE

Currently, in the sp:UsernameToken syntax, only the sp:WssUsernameToken10 sub-
element is supported in Apache CXF.

sp:IncludeToken attribute

The value of the sp:IncludeToken must match the WS-SecurityPolicy version from the enclosing policy.
The current version is 1.2, but legacy WSDL might use version 1.1. Valid values of the sp:IncludeToken
attribute are as follows:

Never

The token MUST NOT be included in any messages sent between the initiator and the recipient;
rather, an external reference to the token should be used. Valid URI values are:

1.2 http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never

1.1 http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never

Once

The token MUST be included in only one message sent from the initiator to the recipient. References
to the token MAY use an internal reference mechanism. Subsequent related messages sent between
the recipient and the initiator may refer to the token using an external reference mechanism. Valid
URI values are:

1.2 http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Once

1.1 http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Once

AlwaysToRecipient

The token MUST be included in all messages sent from initiator to the recipient. The token MUST
NOT be included in messages sent from the recipient to the initiator. Valid URI values are:

1.2 http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient

1.1 http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRe
cipient

AlwaysToInitiator

CHAPTER 7. AUTHENTICATION

83

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Once
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Once
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient

The token MUST be included in all messages sent from the recipient to the initiator. The token MUST
NOT be included in messages sent from the initiator to the recipient. Valid URI values are:

1.2 http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToInitiator

1.1 http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToInit
iator

Always

The token MUST be included in all messages sent between the initiator and the recipient. This is the
default behavior. Valid URI values are:

1.2 http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Always

1.1 http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Always

SupportingTokens assertions

The following kinds of supporting tokens assertions are supported:

the section called “sp:SupportingTokens” .

the section called “sp:SignedSupportingTokens” .

the section called “sp:EncryptedSupportingTokens” .

the section called “sp:SignedEncryptedSupportingTokens” .

the section called “sp:EndorsingSupportingTokens” .

the section called “sp:SignedEndorsingSupportingTokens”.

the section called “sp:EndorsingEncryptedSupportingTokens” .

the section called “sp:SignedEndorsingEncryptedSupportingTokens” .

sp:SupportingTokens

This element requires a token (or tokens) of the specified type to be included in the wsse:Security
header. No additional requirements are imposed.

WARNING

This policy does not explicitly require the tokens to be signed or encrypted. It is
normally essential, however, to protect tokens by signing and encryption.

Red Hat Fuse 7.4 Apache CXF Security Guide

84

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToInitiator
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToInitiator
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Always
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Always

sp:SignedSupportingTokens

This element requires a token (or tokens) of the specified type to be included in the wsse:Security
header. In addition, this policy requires that the token is signed, in order to guarantee token integrity.

WARNING

This policy does not explicitly require the tokens to be encrypted. It is normally
essential, however, to protect tokens both by signing and encryption.

sp:EncryptedSupportingTokens

This element requires a token (or tokens) of the specified type to be included in the wsse:Security
header. In addition, this policy requires that the token is encrypted, in order to guarantee token
confidentiality.

WARNING

This policy does not explicitly require the tokens to be signed. It is normally essential,
however, to protect tokens both by signing and encryption.

sp:SignedEncryptedSupportingTokens

This element requires a token (or tokens) of the specified type to be included in the wsse:Security
header. In addition, this policy requires that the token is both signed and encrypted, in order to
guarantee token integrity and confidentiality.

sp:EndorsingSupportingTokens

An endorsing supporting token is used to sign the message signature (primary signature). This signature
is known as an endorsing signature or secondary signature . Hence, by applying an endorsing supporting
tokens policy, you can have a chain of signatures: the primary signature, which signs the message itself,
and the secondary signature, which signs the primary signature.

NOTE

If you are using a transport binding (for example, HTTPS), the message signature is not
actually part of the SOAP message, so it is not possible to sign the message signature in
this case. If you specify this policy with a transport binding, the endorsing token signs the
timestamp instead.





CHAPTER 7. AUTHENTICATION

85

WARNING

This policy does not explicitly require the tokens to be signed or encrypted. It is
normally essential, however, to protect tokens by signing and encryption.

sp:SignedEndorsingSupportingTokens

This policy is the same as the endorsing supporting tokens policy, except that the tokens are required to
be signed, in order to guarantee token integrity.

WARNING

This policy does not explicitly require the tokens to be encrypted. It is normally
essential, however, to protect tokens both by signing and encryption.

sp:EndorsingEncryptedSupportingTokens

This policy is the same as the endorsing supporting tokens policy, except that the tokens are required to
be encrypted, in order to guarantee token confidentiality.

WARNING

This policy does not explicitly require the tokens to be signed. It is normally essential,
however, to protect tokens both by signing and encryption.

sp:SignedEndorsingEncryptedSupportingTokens

This policy is the same as the endorsing supporting tokens policy, except that the tokens are required to
be signed and encrypted, in order to guarantee token integrity and confidentiality.

7.3. PROVIDING CLIENT CREDENTIALS

Overview

There are essentially two approaches to providing UsernameToken client credentials: you can either set
both the username and the password directly in the client’s Blueprint XML configuration; or you can set
the username in the client’s configuration and implement a callback handler to provide passwords
programmatically. The latter approach (by programming) has the advantage that passwords are easier
to hide from view.







Red Hat Fuse 7.4 Apache CXF Security Guide

86

Client credentials properties

Table 7.1, “Client Credentials Properties” shows the properties you can use to specify WS-Security
username/password credentials on a client’s request context in Blueprint XML.

Table 7.1. Client Credentials Properties

Properties Description

security.username Specifies the username for UsernameToken policy
assertions.

security.password Specifies the password for UsernameToken policy
assertions. If not specified, the password is obtained
by calling the callback handler.

security.callback-handler Specifies the class name of the WSS4J callback
handler that retrieves passwords for UsernameToken
policy assertions. Note that the callback handler can
also handle other kinds of security events.

Configuring client credentials in Blueprint XML

To configure username/password credentials in a client’s request context in Blueprint XML, set the
security.username and security.password properties as follows:

<beans ... >
 <jaxws:client name="{NamespaceName}LocalPortName"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="security.username" value="Alice"/>
 <entry key="security.password" value="abcd!1234"/>
 </jaxws:properties>
 </jaxws:client>
 ...
</beans>

If you prefer not to store the password directly in Blueprint XML (which might potentially be a security
hazard), you can provide passwords using a callback handler instead.

Programming a callback handler for passwords

If you want to use a callback handler to provide passwords for the UsernameToken header, you must first
modify the client configuration in Blueprint XML, replacing the security.password setting by a
security.callback-handler setting, as follows:

<beans ... >
 <jaxws:client name="{NamespaceName}LocalPortName"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="security.username" value="Alice"/>
 <entry key="security.callback-handler" value="interop.client.UTPasswordCallback"/>
 </jaxws:properties>

CHAPTER 7. AUTHENTICATION

87

 </jaxws:client>
 ...
</beans>

In the preceding example, the callback handler is implemented by the UTPasswordCallback class. You
can write a callback handler by implementing the javax.security.auth.callback.CallbackHandler
interface, as shown in Example 7.2, “Callback Handler for UsernameToken Passwords” .

Example 7.2. Callback Handler for UsernameToken Passwords

package interop.client;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class UTPasswordCallback implements CallbackHandler {

 private Map<String, String> passwords =
 new HashMap<String, String>();

 public UTPasswordCallback() {
 passwords.put("Alice", "ecilA");
 passwords.put("Frank", "invalid-password");
 //for MS clients
 passwords.put("abcd", "dcba");
 }

 public void handle(Callback[] callbacks) throws IOException, UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 WSPasswordCallback pc = (WSPasswordCallback)callbacks[i];

 String pass = passwords.get(pc.getIdentifier());
 if (pass != null) {
 pc.setPassword(pass);
 return;
 }
 }

 throw new IOException();
 }

 // Add an alias/password pair to the callback mechanism.
 public void setAliasPassword(String alias, String password) {
 passwords.put(alias, password);
 }
}

Red Hat Fuse 7.4 Apache CXF Security Guide

88

The callback functionality is implemented by the CallbackHandler.handle() method. In this example, it
assumed that the callback objects passed to the handle() method are all of
org.apache.ws.security.WSPasswordCallback type (in a more realistic example, you would check the type
of the callback objects).

A more realistic implementation of a client callback handler would probably consist of prompting the
user to enter their password.

WSPasswordCallback class

When a CallbackHandler is called in a Apache CXF client for the purpose of setting a UsernameToken
password, the corresponding WSPasswordCallback object has the USERNAME_TOKEN usage code.

For more details about the WSPasswordCallback class, see
org.apache.ws.security.WSPasswordCallback.

The WSPasswordCallback class defines several different usage codes, as follows:

USERNAME_TOKEN

Obtain the password for UsernameToken credentials. This usage code is used both on the client side
(to obtain a password to send to the server) and on the server side (to obtain a password in order to
compare it with the password received from the client).
On the server side, this code is set in the following cases:

Digest password—if the UsernameToken contains a digest password, the callback must
return the corresponding password for the given user name (given by
WSPasswordCallback.getIdentifier()). Verification of the password (by comparing with the
digest password) is done by the WSS4J runtime.

Plaintext password—implemented the same way as the digest password case (since Apache
CXF 2.4.0).

Custom password type—if getHandleCustomPasswordTypes() is true on
org.apache.ws.security.WSSConfig, this case is implemented the same way as the digest
password case (since Apache CXF 2.4.0). Otherwise, an exception is thrown.
If no Password element is included in a received UsernameToken on the server side, the
callback handler is not called (since Apache CXF 2.4.0).

DECRYPT

Need a password to retrieve a private key from a Java keystore, where
WSPasswordCallback.getIdentifier() gives the alias of the keystore entry. WSS4J uses this private
key to decrypt the session (symmetric) key.

SIGNATURE

Need a password to retrieve a private key from a Java keystore, where
WSPasswordCallback.getIdentifier() gives the alias of the keystore entry. WSS4J uses this private
key to produce a signature.

SECRET_KEY

Need a secret key for encryption or signature on the outbound side, or for decryption or verification
on the inbound side. The callback handler must set the key using the setKey(byte[]) method.

SECURITY_CONTEXT_TOKEN

Need the key for a wsc:SecurityContextToken, which you provide by calling the setKey(byte[])
method.

CUSTOM_TOKEN

CHAPTER 7. AUTHENTICATION

89

https://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/ext/WSPasswordCallback.html
https://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/ext/WSPasswordCallback.html

Need a token as a DOM element. For example, this is used for the case of a reference to a SAML
Assertion or SecurityContextToken that is not in the message. The callback handler must set the
token using the setCustomToken(Element) method.

KEY_NAME

(Obsolete) Since Apache CXF 2.4.0, this usage code is obsolete.

USERNAME_TOKEN_UNKNOWN

(Obsolete) Since Apache CXF 2.4.0, this usage code is obsolete.

UNKNOWN

Not used by WSS4J.

7.4. AUTHENTICATING RECEIVED CREDENTIALS

Overview

On the server side, you can verify that received credentials are authentic by registering a callback
handler with the Apache CXF runtime. You can either write your own custom code to perform
credentials verification or you can implement a callback handler that integrates with a third-party
enterprise security system (for example, an LDAP server).

Configuring a server callback handler in Blueprint XML

To configure a server callback handler that verifies UsernameToken credentials received from clients,
set the security.callback-handler property in the server’s Blueprint XML configuration, as follows:

<beans ... >
 <jaxws:endpoint
 id="UserNameOverTransport"
 address="https://localhost:9001/UserNameOverTransport"
 serviceName="interop:PingService10"
 endpointName="interop:UserNameOverTransport_IPingService"
 implementor="interop.server.UserNameOverTransport"
 depends-on="tls-settings">

 <jaxws:properties>
 <entry key="security.username" value="Alice"/>
 <entry key="security.callback-handler" value="interop.client.UTPasswordCallback"/>
 </jaxws:properties>

 </jaxws:endpoint>
 ...
</beans>

In the preceding example, the callback handler is implemented by the UTPasswordCallback class.

Implementing the callback handler to check passwords

To implement a callback handler for checking passwords on the server side, implement the
javax.security.auth.callback.CallbackHandler interface. The general approach to implementing the
CallbackHandler interface for a server is similar to implementing a CallbackHandler for a client. The
interpretation given to the returned password on the server side is different, however: the password
from the callback handler is compared against the received client password in order to verify the client’s
credentials.

Red Hat Fuse 7.4 Apache CXF Security Guide

90

For example, you could use the sample implementation shown in Example 7.2, “Callback Handler for
UsernameToken Passwords” to obtain passwords on the server side. On the server side, the WSS4J
runtime would compare the password obtained from the callback with the password in the received
client credentials. If the two passwords match, the credentials are successfully verified.

A more realistic implementation of a server callback handler would involve writing an integration with a
third-party database that is used to store security data (for example, integration with an LDAP server).

CHAPTER 7. AUTHENTICATION

91

CHAPTER 8. FUSE CREDENTIAL STORE

8.1. OVERVIEW

Fuse Credential Store feature allows to include passwords and other sensitive strings as masked strings.
These strings are resolved from an JBoss EAP Elytron Credential store .

The Credential store has built-in support for OSGI environment, specifically for Apache Karaf and for
Java system properties.

You might have specified passwords, for example javax.net.ssl.keyStorePassword, as system
properties in clear text this project allows you to specify these values as references to a credential store.

Fuse Credential Store allows to specify the sensitive strings as references to a value stored in Credential
Store. The clear text value is replaced with an alias reference, for example CS:alias referencing the
value stored under the alias in a configured Credential Store.

The convention CS:alias should be followed. The CS: in the Java System property value is a prefix and
alias following it will be used for looking up the value.

8.2. PREREQUISITES

The Karaf container is running.

8.3. SETUP FUSE CREDENTIAL STORE ON KARAF

1. Create a credential store using credential-store:create command:

karaf@root()> credential-store:create -a location=credential.store -k password="my
password" -k algorithm=masked-MD5-DES
In order to use this credential store set the following environment variables
Variable | Value

CREDENTIAL_STORE_PROTECTION_ALGORITHM | masked-MD5-DES
CREDENTIAL_STORE_PROTECTION_PARAMS |
MDkEKXNvbWVhcmJpdHJhcnljcmF6eXN0cmluZ3RoYXRkb2Vzbm90bWF0dGVyAgID6AQIsU
OEqvog6XI=
CREDENTIAL_STORE_PROTECTION | Sf6sYy7gNpygs311zcQh8Q==
CREDENTIAL_STORE_ATTR_location | credential.store
Or simply use this:
export CREDENTIAL_STORE_PROTECTION_ALGORITHM=masked-MD5-DES
export
CREDENTIAL_STORE_PROTECTION_PARAMS=MDkEKXNvbWVhcmJpdHJhcnljcmF6eXN0
cmluZ3RoYXRkb2Vzbm90bWF0dGVyAgID6AQIsUOEqvog6XI=
export CREDENTIAL_STORE_PROTECTION=Sf6sYy7gNpygs311zcQh8Q==
export CREDENTIAL_STORE_ATTR_location=credential.store

This should the file credential.store which is a JCEKS KeyStore for storing the secrets.

2. Exit the Karaf container:

karaf@root()> logout

Red Hat Fuse 7.4 Apache CXF Security Guide

92

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html/migration_guide/migrating_to_elytron

3. Set the environment variables presented when creating the credential store:

$ export CREDENTIAL_STORE_PROTECTION_ALGORITHM=masked-MD5-DES
$ export
CREDENTIAL_STORE_PROTECTION_PARAMS=MDkEKXNvbWVhcmJpdHJhcnljcmF6eXN0
cmluZ3RoYXRkb2Vzbm90bWF0dGVyAgID6AQIsUOEqvog6XI=
$ export CREDENTIAL_STORE_PROTECTION=Sf6sYy7gNpygs311zcQh8Q==
$ export CREDENTIAL_STORE_ATTR_location=credential.store

IMPORTANT

You are required to set the CREDENTIAL_STORE_* environment variables
before starting the Karaf container.

4. Start the Karaf container:

bin/karaf

5. Add your secrets to the credential store by using credential-store:store:

karaf@root()> credential-store:store -a javax.net.ssl.keyStorePassword -s "alias is set"
Value stored in the credential store to reference it use: CS:javax.net.ssl.keyStorePassword

6. Exit the Karaf container again:

karaf@root()> logout

7. Run the Karaf container again specifying the reference to your secret instead of the value:

$ EXTRA_JAVA_OPTS="-
Djavax.net.ssl.keyStorePassword=CS:javax.net.ssl.keyStorePassword" bin/karaf

The value of javax.net.ssl.keyStorePassword when accessed using System::getProperty should
contain the string "alias is set".

NOTE

The EXTRA_JAVA_OPTS is one of the many ways to specify system properties. These
system properties are defined at the start of the Karaf container.

IMPORTANT

When the environment variables are leaked outside of your environment or intended use
along with the content of the credential store file, your secretes are compromised. The
value of the property when accessed through JMX gets replaced with the string "
<sensitive>", but there are many code paths that lead to System::getProperty, for
instance diagnostics or monitoring tools might access it along with any 3rd party software
for debugging purposes.

CHAPTER 8. FUSE CREDENTIAL STORE

93

APPENDIX A. ASN.1 AND DISTINGUISHED NAMES

Abstract

The OSI Abstract Syntax Notation One (ASN.1) and X.500 Distinguished Names play an important role
in the security standards that define X.509 certificates and LDAP directories.

A.1. ASN.1

Overview

The Abstract Syntax Notation One (ASN.1) was defined by the OSI standards body in the early 1980s to
provide a way of defining data types and structures that are independent of any particular machine
hardware or programming language. In many ways, ASN.1 can be considered a forerunner of modern
interface definition languages, such as the OMG’s IDL and WSDL, which are concerned with defining
platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards (for example, SNMP, X.509,
and LDAP). In particular, ASN.1 is ubiquitous in the field of security standards. The formal definitions of
X.509 certificates and distinguished names are described using ASN.1 syntax. You do not require
detailed knowledge of ASN.1 syntax to use these security standards, but you need to be aware that
ASN.1 is used for the basic definitions of most security-related data types.

BER

The OSI’s Basic Encoding Rules (BER) define how to translate an ASN.1 data type into a sequence of
octets (binary representation). The role played by BER with respect to ASN.1 is, therefore, similar to the
role played by GIOP with respect to the OMG IDL.

DER

The OSI’s Distinguished Encoding Rules (DER) are a specialization of the BER. The DER consists of the
BER plus some additional rules to ensure that the encoding is unique (BER encodings are not).

References

You can read more about ASN.1 in the following standards documents:

ASN.1 is defined in X.208.

BER is defined in X.209.

A.2. DISTINGUISHED NAMES

Overview

Historically, distinguished names (DN) are defined as the primary keys in an X.500 directory structure.
However, DNs have come to be used in many other contexts as general purpose identifiers. In Apache
CXF, DNs occur in the following contexts:

X.509 certificates—for example, one of the DNs in a certificate identifies the owner of the
certificate (the security principal).

Red Hat Fuse 7.4 Apache CXF Security Guide

94

LDAP—DNs are used to locate objects in an LDAP directory tree.

String representation of DN

Although a DN is formally defined in ASN.1, there is also an LDAP standard that defines a UTF-8 string
representation of a DN (see RFC 2253). The string representation provides a convenient basis for
describing the structure of a DN.

NOTE

The string representation of a DN does not provide a unique representation of DER-
encoded DN. Hence, a DN that is converted from string format back to DER format does
not always recover the original DER encoding.

DN string example

The following string is a typical example of a DN:

C=US,O=IONA Technologies,OU=Engineering,CN=A. N. Other

Structure of a DN string

A DN string is built up from the following basic elements:

OID .

Attribute Types .

AVA .

RDN .

OID

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely identifies a grammatical construct in
ASN.1.

Attribute types

The variety of attribute types that can appear in a DN is theoretically open-ended, but in practice only a
small subset of attribute types are used. Table A.1, “Commonly Used Attribute Types” shows a selection
of the attribute types that you are most likely to encounter:

Table A.1. Commonly Used Attribute Types

String Representation X.500 Attribute Type Size of Data Equivalent OID

C countryName 2 2.5.4.6

O organizationName 1…​64 2.5.4.10

OU organizationalUnitName 1…​64 2.5.4.11

APPENDIX A. ASN.1 AND DISTINGUISHED NAMES

95

CN commonName 1…​64 2.5.4.3

ST stateOrProvinceName 1…​64 2.5.4.8

L localityName 1…​64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid

String Representation X.500 Attribute Type Size of Data Equivalent OID

AVA

An attribute value assertion (AVA) assigns an attribute value to an attribute type. In the string
representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute type in the string representation
(see Table A.1, “Commonly Used Attribute Types”). For example:

2.5.4.3=A. N. Other

RDN

A relative distinguished name (RDN) represents a single node of a DN (the bit that appears between the
commas in the string representation). Technically, an RDN might contain more than one AVA (it is
formally defined as a set of AVAs). However, this almost never occurs in practice. In the string
representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:

OU=Eng1+OU=Eng2+OU=Eng3

Here is an example of a single-value RDN:

OU=Engineering

Red Hat Fuse 7.4 Apache CXF Security Guide

96

APPENDIX A. ASN.1 AND DISTINGUISHED NAMES

97

	Table of Contents
	CHAPTER 1. SECURITY FOR HTTP-COMPATIBLE BINDINGS
	OVERVIEW
	GENERATING X.509 CERTIFICATES
	CERTIFICATE FORMAT
	ENABLING HTTPS
	HTTPS CLIENT WITH NO CERTIFICATE
	HTTPS CLIENT WITH CERTIFICATE
	HTTPS SERVER CONFIGURATION

	CHAPTER 2. MANAGING CERTIFICATES
	2.1. WHAT IS AN X.509 CERTIFICATE?
	Role of certificates
	Integrity of the public key
	Digital signatures
	Contents of an X.509 certificate
	Distinguished names

	2.2. CERTIFICATION AUTHORITIES
	2.2.1. Introduction to Certificate Authorities
	2.2.2. Commercial Certification Authorities
	Signing certificates
	Advantages of commercial CAs
	Criteria for choosing a CA

	2.2.3. Private Certification Authorities
	Choosing a CA software package
	OpenSSL software package
	Setting up a private CA using OpenSSL
	Choosing a host for a private certification authority
	Security precautions

	2.3. CERTIFICATE CHAINING
	Certificate chain
	Self-signed certificate
	Chain of trust
	Certificates signed by multiple CAs
	Trusted CAs

	2.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES
	Overview
	HTTPS URL integrity check
	Reference
	How to specify the certificate identity
	Using commonName
	Using subjectAltName (multi-homed hosts)

	2.5. CREATING YOUR OWN CERTIFICATES
	2.5.1. Prerequisites
	OpenSSL utilities
	Sample CA directory structure

	2.5.2. Set Up Your Own CA
	Substeps to perform
	Add the bin directory to your PATH
	Create the CA directory hierarchy
	Copy and edit the openssl.cnf file
	Initialize the CA database
	Create a self-signed CA certificate and private key

	2.5.3. Use the CA to Create Signed Certificates in a Java Keystore
	Substeps to perform
	Add the Java bin directory to your PATH
	Generate a certificate and private key pair
	Create a certificate signing request
	Sign the CSR
	Convert to PEM format
	Concatenate the files
	Update keystore with the full certificate chain
	Repeat steps as required

	2.5.4. Use the CA to Create Signed PKCS#12 Certificates
	Substeps to perform
	Add the bin directory to your PATH
	Configure the subjectAltName extension (Optional)
	Create a certificate signing request
	Sign the CSR
	Concatenate the files
	Create a PKCS#12 file
	Repeat steps as required

	(OPTIONAL) CLEAR THE SUBJECTALTNAME EXTENSION

	CHAPTER 3. CONFIGURING HTTPS
	3.1. AUTHENTICATION ALTERNATIVES
	3.1.1. Target-Only Authentication
	Overview
	Security handshake
	HTTPS example

	3.1.2. Mutual Authentication
	Overview
	Security handshake
	HTTPS example

	3.2. SPECIFYING TRUSTED CA CERTIFICATES
	3.2.1. When to Deploy Trusted CA Certificates
	Overview
	Which applications need to specify trusted CA certificates?

	3.2.2. Specifying Trusted CA Certificates for HTTPS
	CA certificate format
	CA certificate deployment in the Apache CXF configuration file

	3.3. SPECIFYING AN APPLICATION’S OWN CERTIFICATE
	3.3.1. Deploying Own Certificate for HTTPS
	Overview
	Procedure

	CHAPTER 4. CONFIGURING HTTPS CIPHER SUITES
	4.1. SUPPORTED CIPHER SUITES
	Overview
	JCE/JSSE and security providers
	SunJSSE provider
	Cipher suites supported by SunJSSE
	JSSE reference guide

	4.2. CIPHER SUITE FILTERS
	Overview
	Namespaces
	sec:cipherSuitesFilter element
	Semantics
	Regular expression matching
	Client conduit example

	4.3. SSL/TLS PROTOCOL VERSION
	Overview
	SSL/TLS protocol versions supported by SunJSSE
	Excluding specific SSL/TLS protocol versions
	secureSocketProtocol attribute

	CHAPTER 5. THE WS-POLICY FRAMEWORK
	5.1. INTRODUCTION TO WS-POLICY
	Overview
	Policies and policy references
	Policy subjects
	Service policy subject
	Endpoint policy subject
	Operation policy subject
	Message policy subject

	5.2. POLICY EXPRESSIONS
	Overview
	Policy assertions
	Policy alternatives
	wsp:All element
	wsp:ExactlyOne element
	The empty policy
	The null policy
	Normal form

	CHAPTER 6. MESSAGE PROTECTION
	6.1. TRANSPORT LAYER MESSAGE PROTECTION
	Overview
	Prerequisites
	Policy subject
	Syntax
	Sample policy
	sp:TransportToken
	sp:AlgorithmSuite
	sp:Layout
	sp:IncludeTimestamp
	sp:MustSupportRefKeyIdentifier
	sp:MustSupportRefIssuerSerial

	6.2. SOAP MESSAGE PROTECTION
	6.2.1. Introduction to SOAP Message Protection
	Overview
	Security bindings
	Message protection
	Specifying parts of the message to protect
	Role of configuration

	6.2.2. Basic Signing and Encryption Scenario
	Overview
	Example scenario
	Scenario steps

	6.2.3. Specifying an AsymmetricBinding Policy
	Overview
	Policy subject
	Syntax
	Sample policy
	sp:InitiatorToken
	sp:RecipientToken
	sp:AlgorithmSuite
	sp:Layout
	sp:IncludeTimestamp
	sp:EncryptBeforeSigning
	sp:EncryptSignature
	sp:ProtectTokens
	sp:OnlySignEntireHeadersAndBody

	6.2.4. Specifying a SymmetricBinding Policy
	Overview
	Policy subject
	Syntax
	Sample policy
	sp:ProtectionToken
	sp:SignatureToken
	sp:EncryptionToken
	sp:AlgorithmSuite
	sp:Layout
	sp:IncludeTimestamp
	sp:EncryptBeforeSigning
	sp:EncryptSignature
	sp:ProtectTokens
	sp:OnlySignEntireHeadersAndBody

	6.2.5. Specifying Parts of Message to Encrypt and Sign
	Overview
	Policy subject
	Protection assertions
	Syntax
	Sample policy
	sp:Body
	sp:Header
	sp:Attachments

	6.2.6. Providing Encryption Keys and Signing Keys
	Overview
	Configuring encryption keys and signing keys
	Add encryption and signing properties to Blueprint configuration
	Define the WSS4J property files
	Programming encryption keys and signing keys
	WSS4J Crypto interface

	6.2.7. Specifying the Algorithm Suite
	Overview
	Syntax
	Algorithm suites
	Types of cryptographic algorithm
	Symmetric key signature
	Asymmetric key signature
	Digest
	Encryption
	Symmetric key wrap
	Asymmetric key wrap
	Computed key
	Encryption key derivation
	Signature key derivation
	Key length properties

	CHAPTER 7. AUTHENTICATION
	7.1. INTRODUCTION TO AUTHENTICATION
	Overview
	Steps to set up authentication

	7.2. SPECIFYING AN AUTHENTICATION POLICY
	Overview
	Syntax
	Sample policy
	Token types
	sp:UsernameToken
	sp:IncludeToken attribute
	SupportingTokens assertions
	sp:SupportingTokens
	sp:SignedSupportingTokens
	sp:EncryptedSupportingTokens
	sp:SignedEncryptedSupportingTokens
	sp:EndorsingSupportingTokens
	sp:SignedEndorsingSupportingTokens
	sp:EndorsingEncryptedSupportingTokens
	sp:SignedEndorsingEncryptedSupportingTokens

	7.3. PROVIDING CLIENT CREDENTIALS
	Overview
	Client credentials properties
	Configuring client credentials in Blueprint XML
	Programming a callback handler for passwords
	WSPasswordCallback class

	7.4. AUTHENTICATING RECEIVED CREDENTIALS
	Overview
	Configuring a server callback handler in Blueprint XML
	Implementing the callback handler to check passwords

	CHAPTER 8. FUSE CREDENTIAL STORE
	8.1. OVERVIEW
	8.2. PREREQUISITES
	8.3. SETUP FUSE CREDENTIAL STORE ON KARAF

	APPENDIX A. ASN.1 AND DISTINGUISHED NAMES
	A.1. ASN.1
	Overview
	BER
	DER
	References

	A.2. DISTINGUISHED NAMES
	Overview
	String representation of DN
	DN string example
	Structure of a DN string
	OID
	Attribute types
	AVA
	RDN

