
Red Hat Fuse 7.0

Deploying into Spring Boot

Building and running Spring Boot applications in standalone mode

Last Updated: 2018-12-13

Red Hat Fuse 7.0 Deploying into Spring Boot

Building and running Spring Boot applications in standalone mode

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to build Spring Boot applications that are packaged as Jar files and run
directly in a JVM (standalone mode).

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. GETTING STARTED WITH SPRING BOOT
1.1. OVERVIEW OF THE CIRCUIT BREAKER BOOSTER
1.2. PREREQUISITES
1.3. GENERATE THE BOOSTER PROJECT
1.4. BUILD AND RUN THE BOOSTER

CHAPTER 2. DEPLOYMENT OPTIONS
2.1. STANDALONE DEPLOYMENT
2.2. OPENSHIFT DEPLOYMENT

CHAPTER 3. BUILDING WITH MAVEN
3.1. GENERATING A MAVEN PROJECT

3.1.1. Project generator at launch.openshift.io
3.1.2. Fuse tooling wizard in Developer Studio

3.2. DEPEND ON THE BOM FOR SPRING BOOT
3.2.1. BOM file for Spring Boot
3.2.2. Spring Boot Maven plugin

CHAPTER 4. APACHE CAMEL IN SPRING BOOT
4.1. INTRODUCTION TO CAMEL SPRING BOOT
4.2. INTRODUCTION TO CAMEL SPRING BOOT STARTER
4.3. AUTO-CONFIGURED CAMEL CONTEXT
4.4. AUTO-DETECTING CAMEL ROUTES
4.5. CAMEL PROPERTIES
4.6. CUSTOM CAMEL CONTEXT CONFIGURATION
4.7. DISABLING JMX
4.8. AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES
4.9. AUTO-CONFIGURED TYPECONVERTER
4.10. SPRING TYPE CONVERSION API BRIDGE
4.11. DISABLING TYPE CONVERSIONS FEATURES
4.12. ADDING XML ROUTES
4.13. ADDING XML REST-DSL
4.14. TESTING WITH CAMEL SPRING BOOT
4.15. SEE ALSO
4.16. USING SPRING BOOT, APACHE CAMEL AND EXTERNAL MESSAGING BROKERS

4.16.1. Using an external messaging broker.

APPENDIX A. PREPARING TO USE MAVEN
A.1. OVERVIEW
A.2. PREREQUISITES
A.3. ADDING THE RED HAT MAVEN REPOSITORIES
A.4. ARTIFACTS
A.5. MAVEN COORDINATES

APPENDIX B. SPRING BOOT MAVEN PLUG-IN
B.1. SPRING BOOT MAVEN PLUGIN OVERVIEW
B.2. GOALS
B.3. USAGE

3
3
3
3
4

6
6
6

7
7
7
7
7
7
9

10
10
10
11
12
12
13
13
14
14
15
15
15
16
16
17
17
17

19
19
19
19
21
21

23
23
23
23

Table of Contents

1

Red Hat Fuse 7.0 Deploying into Spring Boot

2

CHAPTER 1. GETTING STARTED WITH SPRING BOOT

1.1. OVERVIEW OF THE CIRCUIT BREAKER BOOSTER

The Netflix/Hystrix circuit breaker component enables distributed applications to cope with interruptions
to network connectivity and temporary unavailability of backend services. The basic idea of the circuit
breaker pattern is that the loss of a dependent service is detected automatically and an alternative
behavior can be programmed, in case the backend service is temporarily unavailable.

The Fuse circuit breaker booster consists of two related services:

A name service, which returns a name to greet, and

A greetings service, which invokes the name service to get a name and then returns the string,
Hello, NAME.

In this demonstration, the Hystrix circuit breaker is inserted between the greetings service and the name
service. If the name service becomes unavailable, the greetings service can fall back to an alternative
behavior and respond to the client immediately, instead of blocking while it waits for the name service to
restart.

1.2. PREREQUISITES

To build and run the booster demonstration, install the following prerequisites:

A supported version of the Java Developer Kit (JDK). See the Supported Configurations page for
details.

Apache Maven 3.3.x or later. See the Maven Download page. To learn more about Maven, see
Appendix A, Preparing to use Maven.

1.3. GENERATE THE BOOSTER PROJECT

To generate the circuit breaker booster project, perform the following steps:

1. Navigate to https://developers.redhat.com/launch.

2. Click LAUNCH YOUR PROJECT.

3. The launcher wizard prompts you to log in to your Red Hat account. Click the Log in or register
button to log in.

4. On the Deployment type page, click I will build and run locally.

5. On the Mission page, select the Circuit Breaker mission and click Next.

6. On the Runtime page, select the Fuse runtime (not the Spring Boot runtime) and click Next.

7. On the Project Info page, select the 7.0.0 GA version from the Runtime Version dropdown
menu. Accept the default settings for the other fields on this page.

8. Click Next.

9. On the Review Summary page, click Download as ZIP File to download the generated project.

CHAPTER 1. GETTING STARTED WITH SPRING BOOT

3

https://github.com/Netflix/Hystrix
https://access.redhat.com/articles/310603
http://maven.apache.org/download.cgi
https://developers.redhat.com/launch

10. After downloading the ZIP file, use an archive utility to extract the generated project to a
convenient location on your local filesystem.

1.4. BUILD AND RUN THE BOOSTER

To build and run the booster project, perform the following steps:

1. Open a shell prompt and build the project from the command line, using Maven:

cd booster-circuit-breaker-spring-boot
mvn clean package

2. Open a new shell prompt and start the name service, as follows:

cd name-service
mvn spring-boot:run -DskipTests -Dserver.port=8081

As Spring Boot starts up, you should see some output like the following:

...
2017-12-08 15:44:24.223 INFO 22758 --- [main]
o.a.camel.spring.SpringCamelContext : Total 1 routes, of which
1 are started
2017-12-08 15:44:24.227 INFO 22758 --- [main]
o.a.camel.spring.SpringCamelContext : Apache Camel 2.20.0
(CamelContext: camel-1) started in 0.776 seconds
2017-12-08 15:44:24.234 INFO 22758 --- [main]
org.jboss.fuse.boosters.cb.Application : Started Application in
4.137 seconds (JVM running for 4.744)

3. Open a new shell prompt and start the greetings service, as follows:

cd greetings-service
mvn spring-boot:run -DskipTests

As Spring Boot starts up, you should see some output like the following:

...
2017-12-08 15:46:58.521 INFO 22887 --- [main]
o.a.c.c.s.CamelHttpTransportServlet : Initialized
CamelHttpTransportServlet[name=CamelServlet, contextPath=]
2017-12-08 15:46:58.524 INFO 22887 --- [main]
s.b.c.e.t.TomcatEmbeddedServletContainer : Tomcat started on
port(s): 8080 (http)
2017-12-08 15:46:58.536 INFO 22887 --- [main]
org.jboss.fuse.boosters.cb.Application : Started Application in
6.263 seconds (JVM running for 6.819)

4. The greetings service exposes a REST endpoint at the URL,
http://localhost:8080/camel/greetings. You can invoke the REST endpoint either
from a Web browser or from a shell prompt, using the curl command, as follows:

Red Hat Fuse 7.0 Deploying into Spring Boot

4

http://localhost:8080/camel/greetings

$ curl http://localhost:8080/camel/greetings
{"greetings":"Hello, Jacopo"}

5. To demonstrate the circuit breaker functionality provided by Camel Hystrix, kill the backend
name service by typing Ctrl-C in the window of the shell prompt where the name service is
running.

6. Now that the name service is unavailable, the circuit breaker kicks in to prevent the greetings
service from hanging when it is invoked. Invoke the greetings REST endpoint using the curl
command, as follows:

$ curl http://localhost:8080/camel/greetings
{"greetings":"Hello, default fallback"}

The log in the window where the greetings service is running shows the following sequence of
messages:

2017-12-08 16:38:30.483 INFO 23579 --- [-CamelHystrix-2] route2
: Try to call name Service
2017-12-08 16:38:30.488 INFO 23579 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : I/O exception
(java.net.ConnectException) caught when processing request:
Connection refused (Connection refused)
2017-12-08 16:38:30.488 INFO 23579 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : Retrying request
2017-12-08 16:38:30.489 INFO 23579 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : I/O exception
(java.net.ConnectException) caught when processing request:
Connection refused (Connection refused)
2017-12-08 16:38:30.489 INFO 23579 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : Retrying request
2017-12-08 16:38:30.489 INFO 23579 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : I/O exception
(java.net.ConnectException) caught when processing request:
Connection refused (Connection refused)
2017-12-08 16:38:30.489 INFO 23579 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : Retrying request
2017-12-08 16:38:30.495 INFO 23579 --- [-CamelHystrix-2] route2
: We are falling back!!!!

7. For more information about this example, visit the Circuit Breaker Mission page at
http://localhost:8080/ (while the greetings-service is running). This page provides a link to
the Hystrix dashboard, which monitors the state of the circuit breaker.

CHAPTER 1. GETTING STARTED WITH SPRING BOOT

5

http://localhost:8080/

CHAPTER 2. DEPLOYMENT OPTIONS
The following Spring Boot deployment options are supported in Fuse:

Section 2.1, “Standalone deployment”

Section 2.2, “OpenShift deployment”

2.1. STANDALONE DEPLOYMENT

In standalone deployment mode, a Spring Boot application is packaged as a Jar file and runs directly
inside the Java Virtual Machine (JVM). That is, the Spring Boot application can be run directly using the
java command with the -jar option — for example:

java -jar SpringBootApplication.jar

Where Spring Boot provides the main class for the executable Jar. This approach to packaging and
running the application is consistent with the microservices philosophy, where a service is packaged with
the minimum set of requirements. The container is also minimal, being just the JVM itself.

The following elements are required for building a Spring Boot standalone application in Fuse:

The Fuse Bill of Materials (BOM) — defines a carefully curated set of dependencies from the Red
Hat Maven repository. The BOM exploits Maven’s dependency management mechanism to
define the appropriate versions of Maven dependencies.

NOTE

Only dependencies defined in the Fuse BOM are supported by Red hat.

The Spring Boot Maven Plug-In  — implements the build process for a standalone Spring Boot
application in Maven. This plug-in is responsible for packaging your Spring Boot application as
an executable Jar file.

2.2. OPENSHIFT DEPLOYMENT

In OpenShift deployment mode, a Spring Boot application is packaged as an OpenShift application and
then uploaded to an OpenShift cluster, where it runs in one or more pods. This mode of deployment has
the advantage of being highly scalable, exploiting the on-premises cloud provided by the OpenShift
Container Platform (OCP) product.

For more details about the OpenShift mode of deployment, see the "Fuse Integration Services" guide.

The following elements are required for building a Spring Boot application for OpenShift in Fuse:

The Fuse Bill of Materials (BOM) — only dependencies defined in the Fuse BOM are supported
by Red hat.

The Spring Boot Maven plug-in — builds the Spring Boot executable Jar file, which is an
intermediate step in the process of building an application for OpenShift.

The Fabric8 Maven plug-in — automates the entire process of building, packaging, and
deploying an application to OpenShift.

Red Hat Fuse 7.0 Deploying into Spring Boot

6

CHAPTER 3. BUILDING WITH MAVEN
The standard approach to developing applications for Spring Boot in Fuse is to use the Apache Maven
build tool and to structure your source code as a Maven project. Fuse provides Maven quickstarts to get
you started quickly and many of the Fuse buld tools are provided as Maven plug-ins. For this reason, it is
highly recommended that you adopt Maven as the build tool for Spring Boot projects in Fuse.

3.1. GENERATING A MAVEN PROJECT

Fuse provides a selection of quickstarts, based on Maven archetypes, which you can use to generate an
initial Maven project for a Spring Boot application. To save you having to remember the location
information and versions for various Maven archetypes, Fuse provides tooling to help you generate
Maven projects for standalone Spring Boot projects.

3.1.1. Project generator at launch.openshift.io

The quickest way to get started with Spring Boot standalone in Fuse is to navigate to launch.openshift.io
and follow the instructions for the Spring Boot standalone runtime, to generate a new Maven project.
After following the on-screen instructions, you will be prompted to download an archive file, which
contains a complete Maven project that you can build and run locally.

3.1.2. Fuse tooling wizard in Developer Studio

Alternatively, you can download and install Red Hat JBoss Developer Studio (which includes Fuse
Tooling). Using the Fuse New Integration Project wizard, you can generate a new Spring Boot
standalone project and continue to develop inside the Eclipse-based IDE.

3.2. DEPEND ON THE BOM FOR SPRING BOOT

After creating and building your first Spring Boot project, you will soon want to add more components.
But how do you know which versions of the Maven dependencies to add to your project? The simplest
(and recommended) approach is to use the relevant Bill of Materials (BOM) file, which automatically
defines all of the version dependencies for you.

3.2.1. BOM file for Spring Boot

The purpose of a Maven Bill of Materials (BOM) file is to provide a curated set of Maven dependency
versions that work well together, saving you from having to define versions individually for every Maven
artifact.

The Fuse BOM for Spring Boot offers the following advantages:

Defines versions for Maven dependencies, so that you do not need to specify the version when
you add a dependency to your POM.

Defines a set of curated dependencies that are fully tested and supported for a specific version
of Fuse.

Simplifies upgrades of Fuse.

IMPORTANT

Only the set of dependencies defined by a Fuse BOM are supported by Red Hat.

CHAPTER 3. BUILDING WITH MAVEN

7

https://launch.openshift.io/
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

To incorporate a BOM file into your Maven project, specify a dependencyManagement element in your
project’s pom.xml file (or, possibly, in a parent POM file), as shown in the following example:

NOTE

The org.jboss.redhat-fuse BOM is new in Fuse 7.0 and has been designed to
simplify BOM versioning. The Fuse quickstarts and Maven archetypes still use the old
style of BOM, however, as they have not yet been refactored to use the new one. Both
BOMs are correct and you can use either one in your Maven projects. In an upcoming
Fuse release, the quickstarts and Maven archetypes will be refactored to use the new
BOM.

After specifying the BOM using the dependency management mechanism, it becomes possible to add
Maven dependencies to your POM without specifying the version of the artifact. For example, to add a
dependency for the camel-hystrix component, you would add the following XML fragment to the
dependencies element in your POM:

Note how the Camel artifact ID is specified with the -starter suffix — that is, you specify the Camel
Hystrix component as camel-hystrix-starter, not as camel-hystrix. The Camel starter
components are packaged in a way that is optimized for the Spring Boot environment.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>
 <spring-boot.version>1.5.13.RELEASE</spring-boot.version>

 <maven-compiler-plugin.version>3.3</maven-compiler-plugin.version>
 <maven-surefire-plugin.version>2.18.1</maven-surefire-plugin.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hystrix-starter</artifactId>
</dependency>

Red Hat Fuse 7.0 Deploying into Spring Boot

8

3.2.2. Spring Boot Maven plugin

The Spring Boot Maven plugin is provided by Spring Boot and it is a developer utility for building and
running a Spring Boot project:

Building — create an executable Jar package for your Spring Boot application by entering the
command mvn package in the project directory. The output of the build is placed in the
target/ subdirectory of your Maven project.

Running — for convenience, you can run the newly-built application with the command, mvn
spring-boot:start.

To incorporate the Spring Boot Maven plugin into your project POM file, add the plugin configuration to
the project/build/plugins section of your pom.xml file, as shown in the following example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>

 </properties>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${bom.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 ...
</project>

CHAPTER 3. BUILDING WITH MAVEN

9

CHAPTER 4. APACHE CAMEL IN SPRING BOOT

4.1. INTRODUCTION TO CAMEL SPRING BOOT

The Camel Spring Boot component provides auto configuration for Apache Camel. Auto-configuration of
the Camel context auto-detects Camel routes available in the Spring context and registers the key Camel
utilities such as producer template, consumer template, and the type converter as beans.

Every Camel Spring Boot application should use dependencyManagement with productized versions,
see quickstart pom. Versions that are tagged later can be omitted to not override the versions from BOM.

NOTE

camel-spring-boot jar comes with the spring.factories file which allows you to
add that dependency into your classpath and hence Spring Boot will automatically auto-
configure Camel.

4.2. INTRODUCTION TO CAMEL SPRING BOOT STARTER

Apache Camel includes a Spring Boot starter module that allows you to develop Spring Boot
applications using starters.

NOTE

For more details, see sample application in the source code.

To use the starter, add the following snippet to your Spring Boot pom.xml file:

<project>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>
 ...
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

Red Hat Fuse 7.0 Deploying into Spring Boot

10

https://github.com/fabric8-quickstarts/spring-boot-camel-amq/blob/fuse-7.0.x.redhat/pom.xml#L28-L38
https://github.com/apache/camel/tree/master/examples/camel-example-spring-boot

The starter allows you to add classes with your Camel routes, as shown in the snippet below. Once
these routes are added to the class path the routes are started automatically.

You can customize the Camel application in the application.properties or application.yml
file.

Camel Spring Boot now supports referring to bean by the id name in the configuration files
(application.properties or yaml file) when you configure any of the Camel starter components. In the
src/main/resources/application.properties (or yaml) file you can now easily configure the
options on the Camel that refers to other beans by refering to the beans ID name. For example, the xslt
component can refer to a custom bean using the bean ID as follows:

Refer to a custom bean by the id myExtensionFactory as follows:

Which you can then create using Spring Boot @Bean annotation as follows:

Or, in case of a Jackson ObjectMapper in the camel-jackson data-format:

4.3. AUTO-CONFIGURED CAMEL CONTEXT

Camel auto-configuration provides a CamelContext instance and creates a SpringCamelContext. It
also initializes and performs shutdown of that context. This Camel context is registered in the Spring
application context under camelContext bean name and you can access it like other Spring bean.

For example, you can access the camelContext as shown below:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring-boot-starter</artifactId>
</dependency>

package com.example;

import org.apache.camel.builder.RouteBuilder;
import org.springframework.stereotype.Component;

@Component
public class MyRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("timer:foo").to("log:bar");
 }
}

camel.component.xslt.saxon-extension-functions=myExtensionFactory

@Bean(name = "myExtensionFactory")
public ExtensionFunctionDefinition myExtensionFactory() {
 }

camel.dataformat.json-jackson.object-mapper=myJacksonMapper

CHAPTER 4. APACHE CAMEL IN SPRING BOOT

11

4.4. AUTO-DETECTING CAMEL ROUTES

Camel auto configuration collects all the RouteBuilder instances from the Spring context and
automatically injects them into the CamelContext. It simplifies the process of creating new Camel route
with the Spring Boot starter. You can create the routes by adding the @Component annotated class to
your classpath.

To create a new route RouteBuilder bean in your @Configuration class, see below:

4.5. CAMEL PROPERTIES

Spring Boot auto configuration automatically connects to Spring Boot external configuration such as
properties placeholders, OS environment variables, or system properties with Camel properties support.

@Configuration
public class MyAppConfig {

 @Autowired
 CamelContext camelContext;

 @Bean
 MyService myService() {
 return new DefaultMyService(camelContext);
 }

}

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

}

@Configuration
public class MyRouterConfiguration {

 @Bean
 RoutesBuilder myRouter() {
 return new RouteBuilder() {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

 };
 }

}

Red Hat Fuse 7.0 Deploying into Spring Boot

12

These properties are defined in application.properties file:

Use as system property

Use as placeholders in Camel route:

4.6. CUSTOM CAMEL CONTEXT CONFIGURATION

To perform operations on CamelContext bean created by Camel auto configuration, you need to
register CamelContextConfiguration instance in your Spring context as shown below:

NOTE

The method CamelContextConfiguration and
beforeApplicationStart(CamelContext) will be called before the Spring context
is started, so the CamelContext instance passed to this callback is fully auto-configured.
You can add many instances of CamelContextConfiguration into your Spring
context and all of them will be executed.

4.7. DISABLING JMX

route.from = jms:invoices

java -Droute.to=jms:processed.invoices -jar mySpringApp.jar

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("{{route.from}}").to("{{route.to}}");
 }

}

@Configuration
public class MyAppConfig {

 ...

 @Bean
 CamelContextConfiguration contextConfiguration() {
 return new CamelContextConfiguration() {
 @Override
 void beforeApplicationStart(CamelContext context) {
 // your custom configuration goes here
 }
 };
 }

}

CHAPTER 4. APACHE CAMEL IN SPRING BOOT

13

To disable JMX of the auto-configured CamelContext use camel.springboot.jmxEnabled
property as JMX is enabled by default.

For example, you could add the following property to your application.properties file:

4.8. AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES

Camel auto configuration provides pre-configured ConsumerTemplate and ProducerTemplate
instances. You can inject them into your Spring-managed beans:

By default consumer templates and producer templates come with the endpoint cache sizes set to 1000.
You can change those values using the following Spring properties:

4.9. AUTO-CONFIGURED TYPECONVERTER

Camel auto configuration registers a TypeConverter instance named typeConverter in the Spring
context.

camel.springboot.jmxEnabled = false

@Component
public class InvoiceProcessor {

 @Autowired
 private ProducerTemplate producerTemplate;

 @Autowired
 private ConsumerTemplate consumerTemplate;
 public void processNextInvoice() {
 Invoice invoice = consumerTemplate.receiveBody("jms:invoices",
Invoice.class);
 ...
 producerTemplate.sendBody("netty-http:http://invoicing.com/received/"
+ invoice.id());
 }

}

camel.springboot.consumerTemplateCacheSize = 100
camel.springboot.producerTemplateCacheSize = 200

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public long parseInvoiceValue(Invoice invoice) {
 String invoiceValue = invoice.grossValue();
 return typeConverter.convertTo(Long.class, invoiceValue);
 }

}

Red Hat Fuse 7.0 Deploying into Spring Boot

14

4.10. SPRING TYPE CONVERSION API BRIDGE

Spring consist of type conversion API. Spring API is similar to the Camel type converter API. Due to the
similarities between the two APIs Camel Spring Boot automatically registers a bridge converter
(SpringTypeConverter) that delegates to the Spring conversion API. That means that out-of-the-box
Camel will treat Spring Converters similar to Camel.

This allows you to access both Camel and Spring converters using the Camel TypeConverter API, as
shown below:

Here, Spring Boot delegates conversion to the Spring’s ConversionService instances available in the
application context. If no ConversionService instance is available, Camel Spring Boot auto
configuration creates an instance of ConversionService.

4.11. DISABLING TYPE CONVERSIONS FEATURES

To disable registering type conversion features of Camel Spring Boot such as TypeConverter
instance or Spring bridge, set the camel.springboot.typeConversion property to false as
shown below:

4.12. ADDING XML ROUTES

By default, you can put Camel XML routes in the classpath under the directory camel, which camel-
spring-boot will auto detect and include. From Camel version 2.17 onwards you can configure the
directory name or disable this feature using the configuration option, as shown below:

NOTE

The XML files should be Camel XML routes and not CamelContext such as:

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public UUID parseInvoiceId(Invoice invoice) {
 // Using Spring's StringToUUIDConverter
 UUID id = invoice.typeConverter.convertTo(UUID.class,
invoice.getId());
 }

}

camel.springboot.typeConversion = false

// turn off
camel.springboot.xmlRoutes = false
// scan in the com/foo/routes classpath
camel.springboot.xmlRoutes = classpath:com/foo/routes/*.xml

 <routes xmlns="http://camel.apache.org/schema/spring">

CHAPTER 4. APACHE CAMEL IN SPRING BOOT

15

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert
http://camel.apache.org/type-converter.html

When using Spring XML files with <camelContext>, you can configure Camel in the Spring XML file as
well as in the application.properties file. For example, to set a name on Camel and turn On the stream
caching, add:

4.13. ADDING XML REST-DSL

By default, you can put Camel Rest-DSL XML routes in the classpath under the directory camel-rest,
which camel-spring-boot will auto detect and include. You can configure the directory name or
disable this feature using the configuration option, as shown below:

NOTE

The Rest-DSL XML files should be Camel XML rests and not CamelContext such as:

4.14. TESTING WITH CAMEL SPRING BOOT

 <route id="test">
 <from uri="timer://trigger"/>
 <transform>
 <simple>ref:myBean</simple>
 </transform>
 <to uri="log:out"/>
 </route>
 </routes>

camel.springboot.name = MyCamel
camel.springboot.stream-caching-enabled=true

// turn off
camel.springboot.xmlRests = false
// scan in the com/foo/routes classpath
camel.springboot.xmlRests = classpath:com/foo/rests/*.xml

 <rests xmlns="http://camel.apache.org/schema/spring">
 <rest>
 <post uri="/persons">
 <to uri="direct:postPersons"/>
 </post>
 <get uri="/persons">
 <to uri="direct:getPersons"/>
 </get>
 <get uri="/persons/{personId}">
 <to uri="direct:getPersionId"/>
 </get>
 <put uri="/persons/{personId}">
 <to uri="direct:putPersionId"/>
 </put>
 <delete uri="/persons/{personId}">
 <to uri="direct:deletePersionId"/>
 </delete>
 </rest>
 </rests>

Red Hat Fuse 7.0 Deploying into Spring Boot

16

In case on Camel running on Spring Boot, Spring Boot automatically embeds Camel and all its routes,
which are annotated with @Component. When testing with Spring boot you use @SpringBootTest
instead of @ContextConfiguration to specify which configuration class to use.

When you have multiple Camel routes in different RouteBuilder classes, Camel Spring Boot will include
all these routes. Hence, when you wish to test routes from only one RouteBuilder class you can use the
following patterns to include or exclude which RouteBuilders to enable:

java-routes-include-pattern: Used for including RouteBuilder classes that match the pattern.

java-routes-exclude-pattern: Used for excluding RouteBuilder classes that match the pattern.
Exclude takes precedence over include.

You can specify these patterns in your unit test classes as properties to @SpringBootTest
annonation, as shown below:

@RunWith(CamelSpringBootRunner.class)
@SpringBootTest(classes = {MyApplication.class);
 properties = {"camel.springboot.java-routes-include-pattern=**/Foo*"})
public class FooTest {

In the FooTest class, the include pattern is **/Foo*, which represents an Ant style pattern. Here, the
pattern starts with double asterisk, which matches with any leading package name. /Foo* means the
class name must start with Foo, for example, FooRoute. You can run a test using following maven
command:

mvn test -Dtest=FooTest

4.15. SEE ALSO

Configuring Camel

Component

Endpoint

Getting Started

4.16. USING SPRING BOOT, APACHE CAMEL AND EXTERNAL
MESSAGING BROKERS

4.16.1. Using an external messaging broker.

Fuse uses external messaging brokers. See Supported Configurations for more information about the
supported broker, client and Camel component combinations.

The Camel component must be connected to the JMS connection-factory. The example below shows
how to connect the camel-amqp component to a JMS connection-factory.

import org.apache.activemq.jms.pool.PooledConnectionFactory;
import org.apache.camel.component.amqp.AMQPComponent;
import org.apache.qpid.jms.JmsConnectionFactory;
...

CHAPTER 4. APACHE CAMEL IN SPRING BOOT

17

http://camel.apache.org/configuring-camel.html
https://camel.apache.org/components.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
https://access.redhat.com/articles/310603

AMQPComponent amqpComponent(AMQPConfiguration config) {
 JmsConnectionFactory qpid = new
JmsConnectionFactory(config.getUsername(), config.getPassword(),
"amqp://"+ config.getHost() + ":" + config.getPort());
 qpid.setTopicPrefix("topic://");

 PooledConnectionFactory factory = new PooledConnectionFactory();
 factory.setConnectionFactory(qpid);

AMQPComponent amqpcomp = new AMQPComponent(factory);

Red Hat Fuse 7.0 Deploying into Spring Boot

18

APPENDIX A. PREPARING TO USE MAVEN

A.1. OVERVIEW

This section gives a brief overview of how to prepare Maven for building Red Hat JBoss Fuse projects
and introduces the concept of Maven coordinates, which are used to locate Maven artifacts.

A.2. PREREQUISITES

In order to build a project using Maven, you must have the following prerequisites:

Maven installation — Maven is a free, open source build tool from Apache. You can download
the latest version from the Maven download page.

Network connection — whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. By default, Maven looks for
repositories that are accessed over the Internet. You can change this behavior so that Maven will
prefer searching repositories that are on a local network.

NOTE

Maven can run in an offline mode. In offline mode Maven only looks for artifacts
in its local repository.

A.3. ADDING THE RED HAT MAVEN REPOSITORIES

In order to access artifacts from the Red Hat Maven repositories, you need to add them to Maven’s
settings.xml file. Maven looks for your settings.xml file in the .m2 directory of the user’s home
directory. If there is not a user specified settings.xml file, Maven will use the system-level
settings.xml file at M2_HOME/conf/settings.xml.

To add the Red Hat repositories to Maven’s list of repositories, you can either create a new
.m2/settings.xml file or modify the system-level settings. In the settings.xml file, add
repository elements for the Red Hat repositories as shown in Adding the Red Hat JBoss Fuse
Repositories to Maven.

Adding the Red Hat JBoss Fuse Repositories to Maven

<?xml version="1.0"?>
<settings>

 <profiles>
 <profile>
 <id>extra-repos</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>

APPENDIX A. PREPARING TO USE MAVEN

19

http://maven.apache.org/download.html

 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>redhat-ea-repository</id>

<url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>jboss-public</id>
 <name>JBoss Public Repository Group</name>

<url>https://repository.jboss.org/nexus/content/groups/public/</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>redhat-ea-repository</id>

<url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>jboss-public</id>
 <name>JBoss Public Repository Group</name>

<url>https://repository.jboss.org/nexus/content/groups/public</url>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>

 <activeProfiles>

Red Hat Fuse 7.0 Deploying into Spring Boot

20

A.4. ARTIFACTS

The basic building block in the Maven build system is an artifact. The output of an artifact, after
performing a Maven build, is typically an archive, such as a JAR or a WAR.

A.5. MAVEN COORDINATES

A key aspect of Maven functionality is the ability to locate artifacts and manage the dependencies
between them. Maven defines the location of an artifact using the system of Maven coordinates, which
uniquely define the location of a particular artifact. A basic coordinate tuple has the form, {groupId,
artifactId, version}. Sometimes Maven augments the basic set of coordinates with the additional
coordinates, packaging and classifier. A tuple can be written with the basic coordinates, or with the
additional packaging coordinate, or with the addition of both the packaging and classifier coordinates, as
follows:

groupdId:artifactId:version
groupdId:artifactId:packaging:version
groupdId:artifactId:packaging:classifier:version

Each coordinate can be explained as follows:

groupdId

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID — for example, org.fusesource.example.

artifactId

Defines the artifact name (relative to the group ID).

version

Specifies the artifact’s version. A version number can have up to four parts: n.n.n.n, where the last
part of the version number can contain non-numeric characters (for example, the last part of 1.0-
SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT).

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

The group ID, artifact ID, packaging, and version are defined by the corresponding elements in an
artifact’s POM file. For example:

 <activeProfile>extra-repos</activeProfile>
 </activeProfiles>

</settings>

<project ... >
 ...
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <packaging>bundle</packaging>
 <version>1.0-SNAPSHOT</version>

APPENDIX A. PREPARING TO USE MAVEN

21

For example, to define a dependency on the preceding artifact, you could add the following dependency
element to a POM:

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven
package type. If you do need to specify the packaging type explicitly in a dependency,
however, you can use the type element.

 ...
</project>

<project ... >
 ...
 <dependencies>
 <dependency>
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 ...
</project>

Red Hat Fuse 7.0 Deploying into Spring Boot

22

APPENDIX B. SPRING BOOT MAVEN PLUG-IN

B.1. SPRING BOOT MAVEN PLUGIN OVERVIEW

This appendix describes the Spring Boot Maven Plugin. It provides the Spring Boot support in Maven
and allows you to package the executable jar or war archives and run an application in-place.

B.2. GOALS

The Spring Boot Plugin includes the following goals:

1. spring-boot:run runs your Spring Boot application.

2. spring-boot:repackage repackages your .jar and .war files to be executable.

3. spring-boot:start and spring-boot:stop both are used to manage the lifecycle of your
Spring Boot application.

4. spring-boot:build-info generates build information that can be used by the Actuator.

B.3. USAGE

You can find general instructions on how to use the Spring Boot Plugin at:
http://docs.spring.io/spring-boot/docs/current/maven-plugin/usage.html.
Following is an example that illustrates the usage of the spring-boot-maven-plugin plugin:

<project>
 <modelVersion>4.0.0</modelVersion>

 <groupId>io.fabric8.quickstarts</groupId>
 <artifactId>spring-boot-camel</artifactId>
 <version>1.0-SNAPSHOT</version>

 <name>Fabric8 :: Quickstarts :: Spring-Boot :: Camel</name>
 <description>Spring Boot example running a Camel route</description>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.0.0.fuse-000191-redhat-1</fuse.version>
 <bom.version>7.0.0.fuse-000027-redhat-1</bom.version>
 <fabric8.version>3.0.11.fuse-000039-redhat-1</fabric8.version>
 <spring-boot.version>1.5.13.RELEASE</spring-boot.version>

 <!-- maven plugin versions -->
 <fabric8.maven.plugin.version>3.5.33.fuse-000067-redhat-
1</fabric8.maven.plugin.version>
 <maven-compiler-plugin.version>3.3</maven-compiler-plugin.version>
 <maven-surefire-plugin.version>2.18.1</maven-surefire-plugin.version>
 </properties>

 <dependencyManagement>
 <dependencies>

APPENDIX B. SPRING BOOT MAVEN PLUG-IN

23

http://docs.spring.io/spring-boot/docs/current/maven-plugin/usage.html

 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>

 <!-- Enabling health checks -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring-boot-starter</artifactId>
 </dependency>

 <!-- testing -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.arquillian.junit</groupId>
 <artifactId>arquillian-junit-container</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-arquillian</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>

Red Hat Fuse 7.0 Deploying into Spring Boot

24

For more information on Spring Boot Maven Plugin, refer the http://docs.spring.io/spring-
boot/docs/current/maven-plugin link.

 <defaultGoal>spring-boot:run</defaultGoal>

 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>${maven-compiler-plugin.version}</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${maven-surefire-plugin.version}</version>
 <inherited>true</inherited>
 <configuration>
 <excludes>
 <exclude>**/*KT.java</exclude>
 </excludes>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${bom.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>${fabric8.maven.plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

APPENDIX B. SPRING BOOT MAVEN PLUG-IN

25

http://docs.spring.io/spring-boot/docs/current/maven-plugin

Red Hat Fuse 7.0 Deploying into Spring Boot

26

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH SPRING BOOT
	1.1. OVERVIEW OF THE CIRCUIT BREAKER BOOSTER
	1.2. PREREQUISITES
	1.3. GENERATE THE BOOSTER PROJECT
	1.4. BUILD AND RUN THE BOOSTER

	CHAPTER 2. DEPLOYMENT OPTIONS
	2.1. STANDALONE DEPLOYMENT
	2.2. OPENSHIFT DEPLOYMENT

	CHAPTER 3. BUILDING WITH MAVEN
	3.1. GENERATING A MAVEN PROJECT
	3.1.1. Project generator at launch.openshift.io
	3.1.2. Fuse tooling wizard in Developer Studio

	3.2. DEPEND ON THE BOM FOR SPRING BOOT
	3.2.1. BOM file for Spring Boot
	3.2.2. Spring Boot Maven plugin

	CHAPTER 4. APACHE CAMEL IN SPRING BOOT
	4.1. INTRODUCTION TO CAMEL SPRING BOOT
	4.2. INTRODUCTION TO CAMEL SPRING BOOT STARTER
	4.3. AUTO-CONFIGURED CAMEL CONTEXT
	4.4. AUTO-DETECTING CAMEL ROUTES
	4.5. CAMEL PROPERTIES
	4.6. CUSTOM CAMEL CONTEXT CONFIGURATION
	4.7. DISABLING JMX
	4.8. AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES
	4.9. AUTO-CONFIGURED TYPECONVERTER
	4.10. SPRING TYPE CONVERSION API BRIDGE
	4.11. DISABLING TYPE CONVERSIONS FEATURES
	4.12. ADDING XML ROUTES
	4.13. ADDING XML REST-DSL
	4.14. TESTING WITH CAMEL SPRING BOOT
	4.15. SEE ALSO
	4.16. USING SPRING BOOT, APACHE CAMEL AND EXTERNAL MESSAGING BROKERS
	4.16.1. Using an external messaging broker.

	APPENDIX A. PREPARING TO USE MAVEN
	A.1. OVERVIEW
	A.2. PREREQUISITES
	A.3. ADDING THE RED HAT MAVEN REPOSITORIES
	A.4. ARTIFACTS
	A.5. MAVEN COORDINATES

	APPENDIX B. SPRING BOOT MAVEN PLUG-IN
	B.1. SPRING BOOT MAVEN PLUGIN OVERVIEW
	B.2. GOALS
	B.3. USAGE

