
Red Hat Customer Content
Services

Red Hat Enterprise MRG
3
Messaging Programming Reference

A Guide to Programming with Red Hat Enterprise Messaging

Red Hat Enterprise MRG 3 Messaging Programming Reference

A Guide to Programming with Red Hat Enterprise Messaging

Red Hat Customer Content Services

Legal Notice

Copyright © 2015 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide provides information for developers writing applications that utilize the Red Hat
Enterprise Messaging Server

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

Table of Contents

Chapter 1. Introduction
1.1. Red Hat Enterprise MRG Messaging
1.2. Apache Qpid
1.3. AMQP - Advanced Message Queuing Protocol
1.4. Differences between AMQP 0-10 and AMQP 1.0

Broker Architecture
Broker Management
Symmetry

1.5. AMQP 1.0 support in MRG-M 3
1.5.1. Support for the C++ qpid::messaging API
1.5.2. Reply-To Addresses and Temporary Queues
1.5.3. Connections, Session and Links
1.5.4. Addresses
1.5.5. On-demand Create Workaround for Legacy Applications
1.5.6. Link-scoped x-declare and x-subscribe
1.5.7. Node- and Link-scoped x-bindings
1.5.8. Delete Policy
1.5.9. Node Lifetime Policies
1.5.10. Message Timestamp
1.5.11. Accessing AMQP Message Properties and Headers
1.5.12. AMQP Support in qpidd
1.5.13. Simple Authentication and Security Layer (SASL) Support
1.5.14. Queues and Exchanges
1.5.15. Filters
1.5.16. Message Conversion Between AMQP 0-10 and AMQP 1.0
1.5.17. Capabilities
1.5.18. Capability Matching and Assert
1.5.19. Configuring Subscription Queues using Topics

1.6. qpid::messaging Message::get/setContentObject()

Chapter 2. AMQP Model Overview
2.1. The Producer - Consumer Model
2.2. Consumer-driven messaging
2.3. Message Producer (Sender)
2.4. Message
2.5. Message Broker
2.6. Routing Key
2.7. Message Subject
2.8. Message Properties
2.9. Connection
2.10. Session
2.11. Exchange
2.12. Binding
2.13. Topic
2.14. Domain
2.15. Message Queue
2.16. Transaction
2.17. Message Consumer (Receiver)

Chapter 3. Getting Started
3.1. Getting Started with Python

3.1.1. Python Messaging Development

8
8
8
8
8
8
8
9
9
9
9
9

10
10
10
11
11
11
11
11
12
12
12
13
13
14
15
15
15

17
17
17
17
18
18
18
18
19
19
19
19
20
20
20
21
21
21

22
22
22

Table of Contents

1

. .

3.1.2. Python Client Libraries
3.1.3. Install Python Client Libraries (Red Hat Enterprise Linux 6)

3.2. Getting Started with .NET
3.2.1. .NET Messaging Development
3.2.2. Windows SDK
3.2.3. Windows SDK Contents
3.2.4. How To Download and Install the Windows SDK

3.2.4.1. Obtain the Windows SDK
3.2.4.2. Install the Windows SDK

3.3. Getting Started with C++
3.3.1. C++ Messaging Development
3.3.2. C++ on Linux

3.3.2.1. C++ Client Libraries
3.3.2.2. Install C++ Client Libraries (Red Hat Enterprise Linux 6)
3.3.2.3. Install C++ Client Libraries for MRG 3

3.3.3. C++ on Windows
3.3.3.1. Windows SDK
3.3.3.2. Windows SDK Contents
3.3.3.3. How To Download and Install the Windows SDK

3.3.3.3.1. Obtain the Windows SDK
3.3.3.3.2. Install the Windows SDK

3.4. Getting Started with Java
3.4.1. Java Client Libraries
3.4.2. Install Java Client Libraries (Red Hat Enterprise Linux 6)

3.5. Getting Started with Ruby
3.5.1. Ruby Messaging Development
3.5.2. Ruby Client Libraries
3.5.3. Install Ruby Client Libraries (Red Hat Enterprise Linux 6)

3.6. Hello World
3.6.1. Red Hat Enterprise Messaging "Hello World"
3.6.2. Java JMS "Hello World" Program Listing
3.6.3. "Hello World" Walk-through

Chapter 4. Beyond "Hello World"
4.1. Subscriptions
4.2. Publishing
4.3. AMQP Exchange Types
4.4. Pre-configured Exchanges
4.5. Exchange Subscription Patterns
4.6. The Default Exchange

4.6.1. Default Exchange
4.6.2. Publish to a Queue using the Default Exchange
4.6.3. Subscribe to the Default Exchange

4.7. Direct Exchange
4.7.1. Direct Exchange
4.7.2. Create a Direct Exchange using qpid-config
4.7.3. Create a Direct Exchange from an application
4.7.4. Publish to a Direct Exchange
4.7.5. Subscribe to a Direct Exchange
4.7.6. Exclusive Bindings for Direct Exchanges

4.8. Fanout Exchange
4.8.1. The pre-configured Fanout Exchange
4.8.2. Fanout Exchange
4.8.3. Create a Fanout Exchange using qpid-config

22
22
23
23
23
23
24
24
24
24
24
25
25
25
25
26
26
26
26
26
27
27
27
27
28
28
28
28
29
29
31
32

38
38
41
42
42
42
44
44
44
44
46
46
47
47
47
49
50
50
51
51
51

Messaging Programming Reference

2

. .

. .

4.8.3. Create a Fanout Exchange using qpid-config
4.8.4. Create a Fanout Exchange from an application
4.8.5. Publish to Multiple Queues using the Fanout Exchange
4.8.6. Subscribe to a Fanout Exchange

4.9. Topic Exchange
4.9.1. The pre-configured Topic Exchange
4.9.2. Topic Exchange
4.9.3. Create a Topic Exchange using qpid-config
4.9.4. Create a Topic Exchange from an application
4.9.5. Publish to a Topic Exchange
4.9.6. Subscribe to a Topic Exchange

4.10. Headers Exchange
4.10.1. The pre-configured Headers Exchange
4.10.2. Headers Exchange
4.10.3. Create a Headers Exchange using qpid-config
4.10.4. Create a Headers Exchange from an application
4.10.5. Publish to a Headers Exchange
4.10.6. Subscribe to a Headers Exchange

4.11. XML Exchange
4.11.1. Custom Exchange Types
4.11.2. The pre-configured XML Exchange Type
4.11.3. Create an XML Exchange
4.11.4. Subscribe to the XML Exchange

Chapter 5. Message Delivery and Acceptance
5.1. The Lifecycle of a Message

5.1.1. Message Delivery Overview
5.1.2. Message Generation
5.1.3. Message Send over Reliable Link
5.1.4. Message Send over Unreliable Link
5.1.5. Message Distribution on the Broker
5.1.6. Message Receive over Reliable Link
5.1.7. Message Receive over Unreliable Link

5.2. Browsing and Consuming Messages
5.2.1. Message Acquisition and Acceptance
5.2.2. Message Acquisition and Acceptance on an Unreliable Link
5.2.3. Message Rejection
5.2.4. Receiving Messages from Multiple Sources
5.2.5. Rejected and Orphaned Messages
5.2.6. Alternate Exchange

Chapter 6. Advanced Queue Features
6.1. Browse-only Queues
6.2. Ignore Locally Published Messages
6.3. Exclusive Queues
6.4. Server-side Selectors

6.4.1. Select messages using a filter
6.4.2. Server-side selector syntax

6.5. Automatically Deleted Queues
6.5.1. Automatically Deleted Queues
6.5.2. Automatically Deleted Queue Example
6.5.3. Queue Deletion Checks

6.6. Last Value (LV) Queues
6.6.1. Last Value Queues

51
52
52
52
53
54
54
54
55
55
55
56
56
56
56
57
57
57
58
58
58
58
59

61
61
61
61
62
62
62
63
63
63
63
67
69
70
71
71

72
72
72
72
73
73
74
75
75
77
79
79
80

Table of Contents

3

. .

. .

6.6.1. Last Value Queues
6.6.2. Declaring a Last Value Queue
6.6.3. Last Value Queue Example
6.6.4. Last Value Queue Command-line Example

6.7. Priority Queuing
6.7.1. Priority Queuing
6.7.2. Declaring a Priority Queue
6.7.3. Considerations when using Priority Queues
6.7.4. Priority Queue Demonstration
6.7.5. Fairshare Feature

6.8. Message Groups
6.8.1. Message Groups
6.8.2. Create a Queue with Message Groups enabled
6.8.3. Message Group Consumer Requirements
6.8.4. Configure a Queue for Message Groups using qpid-config
6.8.5. Default Group
6.8.6. Override the Default Group Name
6.8.7. Message Groups Demonstration

Chapter 7. Asynchronous Messaging
7.1. Asynchronous Operations
7.2. Asynchronous Sending

7.2.1. Synchronous and Asynchronous Send
7.2.2. Sender Capacity
7.2.3. Set Sender Capacity
7.2.4. Query Sender Capacity
7.2.5. Avoiding a Blocked Asynchronous Send
7.2.6. Asynchronous Message Sending Example
7.2.7. Asynchronous Send and Link Reliability

7.3. Asynchronous Receiving
7.3.1. Asynchronous Message Retrieval (Prefetch)
7.3.2. Enable Receiver Prefetch
7.3.3. Asynchronously Acknowledging Received Messages
7.3.4. Asynchronous Receive and Link Reliability

Chapter 8. Reliability and Quality of Service
8.1. Link Reliability

8.1.1. Reliable Link
8.1.2. Unreliable Link

8.2. Queue Sizing
8.2.1. Controlling Queue Size
8.2.2. Queue Threshold Alerts

8.3. Producer Flow Control
8.3.1. Flow Control
8.3.2. Queue Flow State
8.3.3. Broker Default Flow Thresholds
8.3.4. Disable Broker-wide Default Flow Thresholds
8.3.5. Per-Queue Flow Thresholds

8.4. Credit-based Flow Control
8.4.1. Flow Control Using Credit
8.4.2. Credit Allocation Modes

8.5. Durable Queues
8.5.1. Durable Queues
8.5.2. Persistent Messages
8.5.3. Create a durable queue in an application

80
80
80
85
86
86
86
86
87
90
90
90
91
91
92
92
92
92

98
98
98
98
98
99
99

100
101
102
103
103
104
104
105

106
106
106
107
107
107
108
109
109
110
110
110
110
111
111
111
111
111
112
112

Messaging Programming Reference

4

. .

. .

. .

. .

8.5.3. Create a durable queue in an application
8.5.4. Mark a message as persistent
8.5.5. Durable Message State After Restart
8.5.6. Journal Description
8.5.7. Configure the Message Journal in an application

8.6. Transactions
8.6.1. Transactions
8.6.2. Transactions Example

Chapter 9. Qpid Management Framework (QMF)
9.1. QMF - Qpid Management Framework
9.2. QMF Versions
9.3. Creating Exchanges from an Application
9.4. Broker Exchange and Queue Configuration via QMF
9.5. Command Messages
9.6. QMF Command Message Structure
9.7. Create Command
9.8. Delete Command
9.9. List Command
9.10. Queue and Exchange Creation using QMF
9.11. QMF Events
9.12. QMF Client Connection Events
9.13. ACL Lookup Query Methods

Method: Lookup
Method: LookupPublish
Management Properties and Statistics
Example
ACL File acl-test-01-rules.acl
Python Script acl-test-01.py

9.14. Using QMF in a Cluster

Chapter 10. The Qpid Messaging API
10.1. Handling Exceptions

10.1.1. Messaging Exceptions Reference
10.1.2. C++ Messaging Exceptions Class Hierarchy
10.1.3. Connection Exceptions
10.1.4. Session Exceptions
10.1.5. Sender Exceptions
10.1.6. Receiver Exceptions

Chapter 11. Addresses
11.1. x-declare Parameters
11.2. Address String Options Reference
11.3. Node Properties
11.4. Link Properties
11.5. Address String Grammar
11.6. Connection Options
11.7. Setting Connection Options
11.8. Connection Options Reference

Chapter 12. Message Timestamping
12.1. Message Timestamping
12.2. Enable Message Timestamping at Broker Start-up
12.3. Enable Message Timestamping from an Application
12.4. Access a Message Timestamp in Python

112
112
113
113
114
114
114
114

115
115
115
115
115
115
116
116
118
118
119
119
120
121
122
122
122
122
123
124
128

129
129
129
129
130
132
139
141

145
145
145
146
147
148
150
150
151

155
155
155
155
155

Table of Contents

5

. .

. .

. .

. .

. .

. .

. .

. .

12.4. Access a Message Timestamp in Python
12.5. Access a Message Timestamp in C++
12.6. Using AMQ 0-10 Message Property Keys for Timestamping

Chapter 13. Maps and Lists
13.1. Maps and Lists in Message Content
13.2. Map and List Representation in Native Data Types
13.3. Qpid Maps and Lists in Python
13.4. Python Data Types in Maps
13.5. Qpid Maps and Lists in C++
13.6. C++ Data Types in Maps
13.7. Qpid Maps and Lists in .NET C#
13.8. C# Data Types and .NET bindings

Chapter 14. The Request/Response Pattern
14.1. The Request/Response Pattern
14.2. Request/Response C++ Example

Chapter 15. Performance Tips
15.1. Apache Qpid Programming for Performance

Chapter 16. Cluster Failover
16.1. Changes to Clustering in MRG 3
16.2. Active-Passive Messaging Clusters
16.3. Cluster Failover in C++
16.4. Cluster Failover in Python
16.5. Failover Behavior in Java JMS Clients

Chapter 17. Logging
17.1. Logging in C++
17.2. Logging in Python
17.3. Change the logging level at runtime

Chapter 18. Security
18.1. Security features provided by Qpid
18.2. Authentication
18.3. SASL Support in Windows Clients
18.4. Enable Kerberos authentication
18.5. Enable SSL
18.6. SSL Client Environment Variables for C++ Clients

Chapter 19. The AMQP 0-10 mapping
19.1. The AMQP 0-10 mapping
19.2. AMQ 0-10 Message Property Keys
19.3. AMQP Routing Key and Message Subject
19.4. Using AMQ 0-10 Message Property Keys for Timestamping

Chapter 20. Using the qpid-java AMQP 0-10 client
20.1. A Simple Messaging Program in Java JMS
20.2. Apache Qpid JNDI Properties for AMQP Messaging
20.3. JNDI Properties for Apache Qpid
20.4. Durable Subscription Queues in MRG 3
20.5. Connection URLs

Broker list URL
20.6. Java JMS Message Properties
20.7. JMS MapMessage Types
20.8. JMS ListMessage

155
155
156

157
157
157
157
157
158
159
159
162

163
163
163

164
164

165
165
165
165
166
166

168
168
168
168

171
171
171
171
171
171
171

173
173
174
175
178

179
179
181
181
182
182
184
186
187
188

Messaging Programming Reference

6

. .

. .

. .

. .

20.8. JMS ListMessage
20.9. JMS Client Logging
20.10. AMQP 0-10 JMS Client Configuration

20.10.1. Configuration Methods and Granularity
20.10.2. qpid-java JVM Arguments

20.11. Java Message Service with Filters
20.11.1. No Local filter
20.11.2. Selector filter

Chapter 21. Using the qpid-jms AMQP 1.0 client
21.1. QPID AMQP 1.0 JMS Client Configuration
21.2. QPID AMQP 1.0 JMS Client Connection URLs
21.3. QPID AMQP 1.0 JMS Client Logging

Chapter 22. .NET Binding for Qpid C++ Messaging
22.1. .NET Binding for the C++ Messaging Client Examples
22.2. .NET Binding Class Mapping to Underlying C++ Messaging API
22.3. .NET Binding for the C++ Messaging API Class: Address
22.4. .NET Binding for the C++ Messaging API Class: Connection
22.5. .NET Binding for the C++ Messaging API Class: Duration
22.6. .NET Binding for the C++ Messaging API Class: FailoverUpdates
22.7. .NET Binding for the C++ Messaging API Class: Message
22.8. .NET Binding for the C++ Messaging API Class: Receiver
22.9. .NET Binding for the C++ Messaging API Class: Sender
22.10. .NET Binding for the C++ Messaging API Class: Session
22.11. .NET Class: SessionReceiver

Appendix A. Exchange and Queue Declaration Arguments
A.1. Exchange and Queue Argument Reference

Exchange options
Queue options

Appendix B. Revision History

188
189
189
189
190
195
195
195

197
197
198
203

205
205
205
205
207
208
209
210
213
214
215
217

219
219
219
219

222

Table of Contents

7

Chapter 1. Introduction

1.1. Red Hat Enterprise MRG Messaging

Red Hat Enterprise Messaging is a highly scalable AMQP messaging broker and set of client libraries and
tools based on the Apache Qpid open source project. It is integrated, tested, and supported by Red Hat for
Enterprise customers.

Report a bug

1.2. Apache Qpid

Apache Qpid is a cross-platform Enterprise Messaging system that implements the Advanced Messaging
Queue Protocol (AMQP). It is developed as an Apache Software Foundation open source project.

With Apache Qpid we strive to wrap an intuitive and easy to use messaging API around the AMQP model to
handle as much of the complexity as possible (while still allowing you access to the nuts and bolts when you
really need it), so that you can build highly performant and scalable applications with integrated messaging
quickly and easily.

Report a bug

1.3. AMQP - Advanced Message Queuing Protocol

AMQP, the Advanced Message Queuing Protocol, is an open standard for interoperable messaging at the
wire protocol level. Message brokers that implement AMQP can communicate with each other and exchange
messages without the need for adapters or bridges. An AMQP message broker can provide first-class native
language bindings for multiple programming languages; so AMQP-based messaging is a good choice for
cross-platform compatibility across the Enterprise.

The AMQP standard is stewarded by a vendor-neutral OASIS Technical Committee.

Report a bug

1.4. Differences between AMQP 0-10 and AMQP 1.0

AMQP 1.0 is the latest standard for AMQP. The most significant differences between AMQP 0-10 and AMQP
1.0 are described here to provide the context of the AMQP model used in this product.

Broker Architecture

AMQP 0-10 provides a specification for the on-the-wire protocol and the broker architecture (in the form of
exchange, bindings, and queues). AMQP 1.0, on the other hand, provides only a protocol specification,
saying nothing about broker architecture. AMQP 1.0 does not require that there be a broker, exchanges, or
bindings. It does not rule them out either.

Concepts such as "exchange" and "binding" are 0-10 concepts.

Broker Management

Messaging Programming Reference

8

http://qpid.apache.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8121-591820+%5BLatest%5D&comment=Title%3A+Red+Hat+Enterprise+MRG+Messaging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8121-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8109-591822+%5BLatest%5D&comment=Title%3A+Apache+Qpid%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8109-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
http://www.amqp.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8115-591822+%5BLatest%5D&comment=Title%3A+AMQP+-+Advanced+Message+Queuing+Protocol%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8115-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

AMQP 0-10 defines protocol commands that are used to manage the broker. Examples include "Queue
Declare", "Queue Delete", "Queue Query", etc. AMQP 1.0 does not include such commands and assumes
that such capability will be added at a higher layer.

The MRG-M broker has a layered management capability (called Qpid Management Framework, QMF).

Symmetry

The AMQP 0-10 protocol is asymmetric in that each connection is defined to have a "client" end and a
"broker" end. As such, AMQP 0-10 is very broker-oriented.

AMQP 1.0 is symmetric and places no such constraints on the roles of connection endpoints. 1.0 permits
brokerless point-to-point communication. It also permits the creation of servers/intermediaries that are not
brokers in a strict sense.

Report a bug

1.5. AMQP 1.0 support in MRG-M 3

1.5.1. Support for the C++ qpid::messaging API

MRG-M 3 allows C++ and C# applications written in the qpid::messaging API to speak AMQP 1.0 in a
clear and natural way that avoids tying its use to any particular broker.

The API itself is simple. The address syntax, and in particular the more detailed options, contain much of the
complexity of the mapping.

Report a bug

1.5.2. Reply-To Addresses and Temporary Queues

There is one minor change to the way the API works over 1.0. This does not affect existing 0-10 use. The
change involves the creation of temporary queues (or topics), for example, for retrieving replies in a request-
response pattern.

Over 0-10, the Address converts a node name starting with a '#' character by inserting a UUID. This works
well for 0-10 where the name is chosen by clients and must be unique. This transformation of the name is
done when constructing an Address from a single address string (rather than from its constituent parts). The
modified name can then be accessed via Address::getName().

Over 1.0, however, the name for such nodes is determined by the server. In this case the name assigned
needs to be communicated back to the application when the attach succeeds. To handle that a new accessor
- getAddress() - has been added to both Sender and Receiver.

In order to keep backward compatibility for 0-10, the Address constructor still does the transformation, but
applications that want to be able to switch to 1.0 should use these new accessors to obtain the correct
address for setting reply-to on any request messages they send. (This new approach will work for both 0-
10 and 1.0).

Report a bug

1.5.3. Connections, Session and Links

Chapter 1. Introduction

9

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+13327-691186+%5BLatest%5D&comment=Title%3A+Differences+between+AMQP+0-10+and+AMQP+1.0%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13327-691186+07+Aug+2014+12%3A01+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41622-705977+%5BLatest%5D&comment=Title%3A+Support+for+the+C%2B%2B+qpid%3A%3Amessaging+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41622-705977+03+Sep+2014+13%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41621-705979+%5BLatest%5D&comment=Title%3A+Reply-To+Addresses+and+Temporary+Queues%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41621-705979+03+Sep+2014+13%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The protocol used is selected at runtime via the 'protocol' connection property. The recognized values are
'amqp1.0' and 'amqp0-10'. AMQP 0-10 is still the default and the 1.0 support is only available if the required
module (the Apache Proton library) is loaded.

The SASL negotiation is optional in AMQP 1.0. If no SASL layer is desired, the sasl_mechanisms
connection option can be set to NONE.

AMQP 1.0 can be used over SSL, however the messaging client does not use an AMQP negotiated security
layer for that purpose. Peers must expect SSL on the port being used (either exclusively or by being able to
detect an SSL header).

Transactional sessions are not yet supported.

The creation of senders or receivers results in the attaching of a link to the peer. The details of the attach, in
particular the source and/or target, are controlled through the address string.

Report a bug

1.5.4. Addresses

The name specified in the address supplied when creating a sender or receiver is used to set the address of
the target or source respectively.

If the subject is specified for a sender, it is the default subject used for messages sent without an explicit
subject.

If the subject is specified for a receiver it is interpreted as a filter on the set of messages of interest. If it
includes a wildcard (i.e. a '*' or a '#') it is sent as a legacy-amqp-topic-binding, if not it is sent as a
legacy-amqp-direct-binding.

When the name of the address is (or starts with) '#', the dynamic flag is set on the corresponding source or
target and the dynamic-node-properties are populated based on the node properties. Note that when
the dynamic flag is set the address should not be specified.

Report a bug

1.5.5. On-demand Create Workaround for Legacy Applications

AMQP 1.0 does not allow on-demand creation of nodes with a client-specified name. However, the MRG-M
Qpid broker has an extension behavior that allows 'create' behavior similar to that supported over 0-10.
That is, it will create a node with the name specified by the client if it does not already exist. This is provided
to help transition applications that rely on create policy. However, this is non-standard behavior, and new
applications should not rely on this.

If the addressed node is to be created on demand - either through use of '#' as the name, or through the
create policy - the node properties are sent as dynamic-node-properties on the source or target.
These can be specified in a nested map within the node. Additionally, any durable and type properties in
the node map are sent. There is also a translation from the 0-10 style x-declare in the node. All fields
specified in the node are included as if listed in properties.

Report a bug

1.5.6. Link-scoped x-declare and x-subscribe

Link-scoped x-declare and x-subscribe are not supported.

Instead, use a topic node with the desired subscription queue properties configured and the exchange

Messaging Programming Reference

10

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41624-705980+%5BLatest%5D&comment=Title%3A+Connections%2C+Session+and+Links%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41624-705980+03+Sep+2014+13%3A57+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41615-705981+%5BLatest%5D&comment=Title%3A+Addresses%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41615-705981+03+Sep+2014+13%3A59+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41631-705983+%5BLatest%5D&comment=Title%3A+On-demand+Create+Workaround+for+Legacy+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41631-705983+03+Sep+2014+14%3A00+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

desired.

Report a bug

1.5.7. Node- and Link-scoped x-bindings

The x-bindings property is not supported for AMQP 1.0 in nodes or links.

For links, use filters (this only works when creating a receiver).

For nodes, use filters in the link. If the node is a queue, change it to being the exchange to bind to.

Report a bug

1.5.8. Delete Policy

The delete policy is not supported over 1.0. Instead of using a delete policy, specify the lifetime policy of the
node when creating it.

Report a bug

1.5.9. Node Lifetime Policies

The 1.0 specification defines the following policies for nodes created in response to link establishment:
amqp:delete-on-close:list, amqp:delete-on-no-links:list, amqp:delete-on-no-
messages:list, amqp:delete-on-no-links-or-messages:list.

The qpid::messaging API provides the following shortcut names: delete-on-close, delete-if-unused,
delete-if-empty or delete-if-unused-and-empty.

Lifetime Policies can be controlled through the node properties. For example:

"my-queue;{create:always, node: {properties: {lifetime-policy: delete-if-
empty}}}"

Report a bug

1.5.10. Message Timestamp

Message timestamping is not available over AMQP 1.0.

Report a bug

1.5.11. Accessing AMQP Message Properties and Headers

The message-id, correlation-id, user-id, subject, reply-to and content-type fields in the
properties section of a 1.0 message can all be set or retrieved via accessors of the same name on the
Message instance. The same is true of the durable, priority and ttl fields in the header section.

An AMQP 1.0 message has a delivery-count field within the header section. There is no direct accessor
for this field. However if the value is greater than 1, then the Message::getRedelivered() method
returns true. If Message::setRedelivered() is called with a value of true, then the delivery count is set
to 1, else it is set to 0.

Chapter 1. Introduction

11

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41630-705985+%5BLatest%5D&comment=Title%3A+Link-scoped+x-declare+and+x-subscribe%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41630-705985+03+Sep+2014+14%3A02+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41626-705987+%5BLatest%5D&comment=Title%3A+Node-+and+Link-scoped+x-bindings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41626-705987+03+Sep+2014+14%3A03+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41618-705988+%5BLatest%5D&comment=Title%3A+Delete+Policy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41618-705988+03+Sep+2014+14%3A05+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41623-706453+%5BLatest%5D&comment=Title%3A+Node+Lifetime+Policies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41623-706453+04+Sep+2014+13%3A41+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41620-705993+%5BLatest%5D&comment=Title%3A+Message+Timestamp%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41620-705993+03+Sep+2014+14%3A10+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The application-properties section of a received 1.0 message is available via the properties map
of the Message class. The properties map is used to populate the application-properties section
when sending a message.

There are other fields defined in the AMQP 1.0 message format that do not have direct accessors on the
Message class.

The format for the keys is x-amqp-<field-name>. The keys in use are: x-amqp-first-acquirer and
x-amqp-delivery-count for the header section, and x-amqp-to, x-amqp-absolute-expiry-time,
x-amqp-creation-time, x-amqp-group-id, x-amqp-qroup-sequence and x-amqp-reply-to-
group-id for the properties section.

In addition the delivery- and message- annotations sections are available via a nested map with key x-
amqp-delivery-annotations and x-amqp-message-annotations respectively.

Report a bug

1.5.12. AMQP Support in qpidd

To enable 1.0 support in qpidd, the amqp module must be loaded. This allows the broker to recognize the
1.0 protocol header alongside the 0-10 one.

Report a bug

1.5.13. Simple Authentication and Security Layer (SASL) Support

By default, the broker can accept connections with or without an underlying SASL security layer as defined
by the 1.0 specification. However, if authentication is turned on then a SASL security layer must be used.

Report a bug

1.5.14. Queues and Exchanges

The broker allows links in both directions to be attached to queues or exchanges. The address in the source
or target is resolved by checking if it matches the name of a queue or an exchange. If there is a queue and
an exchange with the same name, the queue is used and a warning is logged.

If the node is an exchange, then the broker creates a temporary link-scoped queue, and binds it to the
exchange. This queue is used for the outgoing link.

The incoming and outgoing links attached to the broker can be viewed via the qpid management framework
(aka QMF), using the qpid-config tool:

qpid-config list incoming

or

qpid-config list outgoing

If the dynamic flag is set on the source or target, then the dynamic-node-properties are used to
determine the characteristics of the node created. The properties are the same as the QMF create method
properties: the 0-10 defined options durable, auto-delete, alternate-exchange, exchange-type
and any qpidd specific options, such as qpid.max-count.

Messaging Programming Reference

12

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41616-705994+%5BLatest%5D&comment=Title%3A+Accessing+AMQP+Message+Properties+and+Headers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41616-705994+03+Sep+2014+14%3A11+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41617-705995+%5BLatest%5D&comment=Title%3A+AMQP+Support+in+qpidd%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41617-705995+03+Sep+2014+14%3A12+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41625-705997+%5BLatest%5D&comment=Title%3A+Simple+Authentication+and+Security+Layer+%28SASL%29+Support%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41625-705997+03+Sep+2014+14%3A13+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The AMQP 1.0 supported-dist-modes property determines whether a queue or exchange is desired (the
create method uses the 'type' property). If 'move' is specified a queue is created, if 'copy' is specified an
exchange is created. If this property is not set, then a queue is assumed.

Report a bug

1.5.15. Filters

Outgoing links may have a filter set on their source. The filters supported by the broker are:

legacy-amqp-direct-binding

legacy-amqp-topic-binding

legacy-amqp-headers-binding

selector-filter

xquery-filter

Filters can be specified through the filter property in the link properties specified in the address. The
value of this filter property should be a list of maps, with each map specifying a filter through key-value
pairs for name, descriptor (can be specified as numeric or symbolic) and a value. For example:

my-xml-exchange; {link:{filter:{value:"declare variable $colour external;
colour='red'",name:x,descriptor:"apache.org:xquery-filter:string"}}}

Table 1.1. Filter support by Node type

direct topic fanout headers xml queue
legacy-
amqp-
direct-
binding

Yes Yes No No Yes Yes

legacy-
amqp-
topic-
binding

No Yes No No No Yes

legacy-
amqp-
headers-
binding

No No No Yes No No

xquery-
filter

No No No No Yes No

selector-
filter

Yes Yes Yes Yes Yes Yes

Report a bug

1.5.16. Message Conversion Between AMQP 0-10 and AMQP 1.0

Messages sent over AMQP 0-10 are converted by the broker for sending over AMQP 1.0, and vice versa.

The message-id, correlation-id, userid, content-type and content-encoding map between

Chapter 1. Introduction

13

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41628-705998+%5BLatest%5D&comment=Title%3A+Queues+and+Exchanges%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41628-705998+03+Sep+2014+14%3A15+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41629-705999+%5BLatest%5D&comment=Title%3A+Filters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41629-705999+03+Sep+2014+14%3A16+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

the properties section in 1.0 and the message-properties in an 0-10 header. Note, however, that a 0-
10 message-id must be a UUID. This field is skipped when translating a 1.0 message to 0-10 if it does not
contain a valid UUID.

The priority field in the header section of a 1.0 message maps to the priority field in the delivery-
properties of an 0-10 message. The durable header in a 1.0 message is equivalent to the delivery-
mode in the delivery-properties of an 0-10 message, with a value of true in the former being
equivalent to a value of 2 in the latter and a value of false in the former equivalent to 1 in the latter.

When converting from 0-10 to 1.0, if no exchange is set, then the reply-to is the routing-key. If the
exchange is set then the reply-to address for 1.0 is composed from the exchange and any routing key
(separated by a forward slash).

Note that the client assumes the reply-to address is a queue if no type is specified. To ensure that a 0-10
routing-key for an exchange is correctly converted to a 1.0 reply-to, specify the node type in the 0-10
address, for instance 'amq.direct/rk; {node:{type:topic}}', or set the type on the Address
instance.

When converting from 0-10 to 1.0, if the 0-10 message has a non-empty destination, then the subject field
in the properties of the 1.0 message is set to the value of the routing-key from the message-
properties of the 0-10 message. In the reverse direction, the subject field of the properties section of
the 1.0 message populates the routing-key in the message-properties of the 0-10 message. Note that
the routing-key truncates at 255 characters.

The destination of a 0-10 message is used to populate the 'to' field of the properties section when
converting to 1.0, but the reverse translation is not done (as the destination for messages sent out by the
broker is controlled by the subscription in 0-10).

The application-properties section of a 1.0 message is converted to the application-headers
field in the message-properties of an 0-10 message and vice versa.

When converting reply-to from 1.0 to 0-10, if the address contains a forward slash it is assumed to be of
the form exchange/routing key. If it does not contain a forward slash, it is assumed to be a simple node
name. If that name matches an existing queue, then the resulting 0-10 reply-to will have the exchange
empty and the routing key populated with the queue name. If the name does not match an existing queue,
but the name matches an exchange, then the reply-to has the exchange populated with the node name
and the routing key left empty. If the node refers to neither a known queue nor exchange then the resulting
reply-to will be empty.

Report a bug

1.5.17. Capabilities

The broker recognises particular capabilities for source and targets. When attaching a link to or from a node
in the broker, capabilities can be requested for the target or source respectively. If the broker recognizes the
capability, and that capability is supported on the node in question, it will echo that capability in the attach
response it sends back. This allows the peer initiating the link to verify whether the desired capabilities will be
met.

The 'shared' capability allows subscriptions from an exchange to be shared by multiple receivers. Where
this is specified the subscription queue created takes the name of the link (and does not include the container
id).

The 'durable' capability is added if the queue or exchange referred to by the source or target is durable.
The 'queue' capability is added if the source or target references a queue. The 'topic' capability is added if
the source or target references an exchange. If the source or target references a queue or a direct exchange

Messaging Programming Reference

14

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41632-706004+%5BLatest%5D&comment=Title%3A+Message+Conversion+Between+AMQP+0-10+and+AMQP+1.0%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41632-706004+03+Sep+2014+14%3A30+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

the 'legacy-amqp-direct-binding' is added. If it references a queue or a topic exchange, 'legacy-
amqp-topic-binding' is added.

The 'create-on-demand' capability is an extension that allows legacy applications to use a 'create' policy
in the messaging client. If set in the client and the named node does not exist, the node is created using the
dynamic-node-properties, in the same way as when the dynamic flag is set.

This extension is provided for transition of legacy applications.

Report a bug

1.5.18. Capability Matching and Assert

The assert option is not exactly equivalent to the 0-10 based mechanism. Over AMQP 1.0, the client sets
the capabilities it desires, the broker sets the capabilities it can offer and when the assert option is on, the
client ensures that all the capabilities it requested are supported.

The capabilities sent by the client can be controlled through a nested list within the node map. Note that
capabilities are simple strings (symbols in 1.0), not name-value pairs.

If durable is set in the node properties, then a capability of 'durable' is requested (meaning the node will
not lose messages if its volatile memory is lost).

If the type is set, then that will also be passed as a requested capability. For example: 'queue' means the
node supports queue-like characteristics (stores messages until consumers claim them and allocates
messages between competing consumers), 'topic' means the node supports classic pub-sub
characteristics.

Report a bug

1.5.19. Configuring Subscription Queues using Topics

To configure subscription queues in AMQP 1.0, a new broker entity of type 'topic' has been added.

A topic references an existing exchange and additionally specifies the queue options to use when creating the
subscription queue for any receiver link attached to that topic. Topics can exist with different names, all
referencing the same exchange where different policies apply to each queue.

Topics can be created and deleted using the qpid-config tool, e.g.

qpid-config add topic my-topic --argument exchange=amq.topic\
 --argument qpid.max_count=500 --argument qpid.policy_type=self-destruct

If a receiver is established for address 'my-topic/my-key' over 1.0 now, it will result in a subscription
queue being created with a limit of 500 messages, that deletes itself (thus ending the subscription) if that limit
is exceeded and is bound to 'amq.topic' with the key 'my-key'.

Report a bug

1.6. qpid::messaging Message::get/setContentObject()

Structured AMQP 1.0 messages can have the body of the message encoded in a variety of ways.

The Ruby and Python APIs do not decode the body of structured AMQP 1.0 message. A message sent as an
AMQP 1.0 type can be received by these libraries, but the body is not decoded. Applications using the Ruby
and Python APIs need to decode the body themselves.

Chapter 1. Introduction

15

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41627-706454+%5BLatest%5D&comment=Title%3A+Capabilities%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41627-706454+04+Sep+2014+13%3A43+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41614-705992+%5BLatest%5D&comment=Title%3A+Capability+Matching+and+Assert%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41614-705992+03+Sep+2014+14%3A08+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+41619-706002+%5BLatest%5D&comment=Title%3A+Configuring+Subscription+Queues+using+Topics%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41619-706002+03+Sep+2014+14%3A23+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The C++ and C# APIs have the new methods Message::getContentObject() and
Message::setContentObject() to access the semantic content of structured AMQP 1.0 messages.
These methods allow the body of the message to be accessed or manipulated as a Variant. Using these
methods produces the most widely applicable code as they work for both protocol versions and work with
map-, list-, text- or binary- messages.

The content object is a Variant, allowing the type to be determined, and also allowing the content to be
automatically decoded.

The following C++ example demonstrates the new methods:

bool Formatter::isMapMsg(qpid::messaging::Message& msg) {
 return(msg.getContentObject().getType() == qpid::types::VAR_MAP);
}

bool Formatter::isListMsg(qpid::messaging::Message& msg) {
 return(msg.getContentObject().getType() == qpid::types::VAR_LIST);
}

qpid::types::Variant::Map Formatter::getMsgAsMap(qpid::messaging::Message&
msg) {
 qpid::types::Variant::Map intMap;
 intMap = msg.getContentObject().asMap();
 return(intMap);
}

qpid::types::Variant::List Formatter::getMsgAsList(qpid::messaging::Message&
msg) {
 qpid::types::Variant::List intList;
 intList = msg.getContentObject().asList();
 return(intList);
}

Message::getContent() and Message::setContent() continue to refer to the raw bytes of the
content. The encode() and decode() methods in the API continue to decode map- and list- messages in
the AMQP 0-10 format.

Report a bug

Messaging Programming Reference

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+24466-691421+%5BLatest%5D&comment=Title%3A+qpid%3A%3Amessaging+Message%3A%3Aget%2FsetContentObject%28%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24466-691421+08+Aug+2014+14%3A46+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 2. AMQP Model Overview

2.1. The Producer - Consumer Model

AMQP Messaging uses a Producer - Consumer model. Communication between the message producers and
message consumers is decoupled by a broker that provides exchanges and queues. This allows applications
to produce and consume data at different rates. Producers send messages to exchanges on the message
broker. Consumers subscribe to exchanges that contain messages of interest, creating subscription queues
that buffer messages for the consumer. Message producers can also create subscription queues and publish
them for consuming applications.

The messaging broker functions as a decoupling layer, providing exchanges that distribute messages, the
ability for consumers and producers to create public and private queues and subscribe them to exchanges,
and buffering messages that are sent at-will by producer applications, and delivered on-demand to interested
consumers.

Report a bug

2.2. Consumer-driven messaging

AMQP uses consumer-driven messaging. In traditional point-to-point messaging a message producer
publishes messages to a queue. The message producer is responsible for knowing which queue will receive
the messages. The queue in this model is an endpoint for a single consumer. In the traditional publish-
subscribe model, the queue can be an endpoint for multiple consumers, who can receive individual copies of
the messages sent to queue, or can share access to unique messages, taking them in a round-robin fashion.
In AMQP all of these styles of messaging are supported: sending directly to a known queue for a single
consumer or for multiple consumers, allowing consumers to browse their own copies of messages on the
queue or mandating that they share access to unique instances of messages in a round-robin fashion.

AMQP implements these patterns using a flexible architecture where senders send their messages to an
exchange. The exchange distributes the message to the queues subscribed to the exchange. This allows all
the previously described models, and also provides the opportunity for message consumers to drive the
conversation. Message producing applications do not need to be aware of new applications that come online
and are interested in the message producer's messages. Message consumers can create queues and bind
them to exchanges.

AMQP has a number of exchange types that support different distribution mechanisms. When subscribing to
an exchange, message consumers can bind their queue with parameters that act as a filter on messages. By
choosing which exchange type to use, and using binding keys to filter the messages from that exchange, you
can build extremely flexible, fast, and extensible messaging systems using AMQP.

Report a bug

2.3. Message Producer (Sender)

Message producing applications send messages to an exchange on the message broker. The exchange then
distributes the messages to the queues that are subscribed to the exchange. Depending on the type of
exchange and the parameters used to subscribe the queue, messages are filtered so that each queue
subscribed to the exchange gets only the messages that are of interest.

Message producers can send their messages with no knowledge of or interest in the consumers. Because
they send to an exchange, they are decoupled from the receivers of the messages. Consumers can then
control how and what messages they receive. Producers can also control how their messages are consumed
by creating and subscribing a queue, and route the messages they send to the exchange to that queue. In

Chapter 2. AMQP Model Overview

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8097-591822+%5BLatest%5D&comment=Title%3A+The+Producer+-+Consumer+Model%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8097-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+9990-591906+%5BLatest%5D&comment=Title%3A+Consumer-driven+messaging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9990-591906+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

this way a wide range of designs are possible.

Report a bug

2.4. Message

Applications produce information that is of interest to other applications. To share that information, they can
create a portable unit that wraps the information and makes it transportable - a message.

A message consists of a message content - information of interest to a message receiving application; and
message headers, information about the message itself, such as where it should be routed, how it should be
treated while in transit, and what has happened to it during its transmission.

Report a bug

2.5. Message Broker

Messages can be sent directly between two applications, but this requires the two applications to know about
each other when they are written; it also means that both applications need to be online at the same time and
producing and consuming data at the same rate to communicate. This hard-wiring of communication between
applications does not scale as more and more applications become interested in the information being
shared.

A message broker provides a decoupling layer. By sending messages to a third party - the message broker -
a message-producing application no longer has to know about all the applications that are interested in its
information. The message broker can provide queues that carry the messages to interested message
consuming applications. The message broker also provides a buffer that allows the applications involved to
produce and consume data at different rates.

Red Hat Enterprise Messaging provides a messaging broker based on the Apache Qpid project. It
implements AMQP (Advanced Messaging Queue Protocol) messaging.

Report a bug

2.6. Routing Key

The Routing Key is a string in the message that is used by the message broker to route the message for
delivery. In Red Hat Enterprise Messaging, the message subject is used for routing.

Messages have an internal x-ampq-0.10-routing-key property. However, this is managed by the Qpid
Messaging API, and you do not need to manually access or set this property. The exception to this is if you
are exchanging messages with another AMQP system. In that case you should understand how the Qpid
Messaging API manages this property based on message and sender subject.

See Also:

Section 19.3, “AMQP Routing Key and Message Subject”

Report a bug

2.7. Message Subject

A message has a subject property. This subject is used for message routing, and is synonomous with routing
key.

Messaging Programming Reference

18

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8143-591820+%5BLatest%5D&comment=Title%3A+Message+Producer+%28Sender%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8143-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8120-591820+%5BLatest%5D&comment=Title%3A+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8120-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10194-591915+%5BLatest%5D&comment=Title%3A+Message+Broker%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10194-591915+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8068-591821+%5BLatest%5D&comment=Title%3A+Routing+Key%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8068-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Since the message subject is used for routing, it is not analogous to an email subject. In an email message
the email address is used to route the email message to its recipient, and the email subject is available to
describe the contents of the message. Since the message subject in a Qpid message is used to route a
message, it is somewhat more like an email address, including the ability to send an email to one or multiple
recipients with a single address.

A message's subject can be blank, it can be explicitly set manually, or it can be automatically set when the
message is sent based on where it is to be routed.

Since the message subject can be automatically set when it is sent, you can develop applications where you
never deal with the message subject, allowing it to be set by a sender. Or you can use a more generic
sender, and set the subject of messages to influence their routing. A range of options are possible.

Suffice it to say that the subject of a message, whether set manually by you or automatically by a sender
object, prescribes where the message will go.

Report a bug

2.8. Message Properties

Message properties are a list of key:value pairs that can be set for a message. Some predefined
properties are used by the message broker to determine how to treat messages while they are in transit;
these message properties can be set to ensure quality of service and guaranteed delivery. Other user-
defined message properties can be set for application-specific functionality.

Report a bug

2.9. Connection

Connections in AMQP are network connections between the message broker and a message producer or
message consumer.

Report a bug

2.10. Session

A session is a scoped conversation between a client application and the messaging broker. A session uses
an connection for its communication, and it provides a scope for exclusive access to resources, and for the
lifetime of a resource that is scoped to the session.

Note that multiple distinct sessions can use the same connection.

Report a bug

2.11. Exchange

In AMQP an exchange is a destination on the messaging broker that receives messages from senders. After
receiving a message, the exchange distributes a copy of the message to queues that are bound to the
exchange. Consuming applications retrieve messages from those queues. Queues are bound to exchanges
using binding keys that specify which messages from the exchange are of interest to the consumer. The
queues buffer messages. This allows many consuming applications to receive messages from a single
sender at different rates.

Chapter 2. AMQP Model Overview

19

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10195-591915+%5BLatest%5D&comment=Title%3A+Message+Subject%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10195-591915+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8070-591821+%5BLatest%5D&comment=Title%3A+Message+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8070-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8107-591822+%5BLatest%5D&comment=Title%3A+Connection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8107-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8140-591820+%5BLatest%5D&comment=Title%3A+Session%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8140-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

There are various types of exchanges that provide different distribution algorithms. The parameters used to
bind queues to an exchange interact with the exchange's distribution algorithm to enable sophisticated
routing schemas that are highly-performant.

Report a bug

2.12. Binding

Message queues are bound to exchanges using a binding. The binding is a description of which messages
from the exchange are of interest to this queue. Different exchange types provide different distribution
algorithms, so the content of the binding used to subscribe a queue to an exchange depends on the type of
exchange as well as the interest of the subscriber.

Report a bug

2.13. Topic

To configure subscription queues in AMQP 1.0, a new broker entity of type 'topic' has been added.

A topic references an existing exchange and additionally specifies the queue options to use when creating the
subscription queue for any receiver link attached to that topic. There can be topics with different names all
referencing the same exchange where different policies should be applied to queues.

Topics can be created and deleted using the qpid-config tool, e.g.

 qpid-config add topic my-topic --argument exchange=amq.topic\
 --argument qpid.max_count=500 --argument qpid.policy_type=self-destruct

If a receiver is established for address 'my-topic/my-key' over 1.0 now, it will result in a subscription
queue being created with a limit of 500 messages, that deletes itself (thus ending the subscription) if that limit
is exceeded and is bound to 'amq.topic' with the key 'my-key'.

Report a bug

2.14. Domain

A 'domain' identifies another AMQP 1.0 compatible process and provides qpidd with sufficient information to
connect to it. A domain has a name and a url and may also specify sasl_mechanisms, username,
password.

Domains can be added, deleted and listed using the qpid-config, for example:

qpid-config add domain my-domain --argument url=some.hostname.com:5672

Once a domain has been created, links between nodes within that other process and nodes within qpidd can
be established in either direction, by creating 'incoming' or 'outgoing' link objects. For example:

qpid-config add incoming incoming-name --argument domain=my-domain --
argument source=queue1 --argument target=queue2

This command cause messages to be pulled from queue1 in the process identified by my-domain and
directed into queue2 on the qpidd instance against which the command is run.

Messaging Programming Reference

20

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8047-622586+%5BLatest%5D&comment=Title%3A+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8047-622586+20+Mar+2014+10%3A27+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8072-591821+%5BLatest%5D&comment=Title%3A+Binding%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8072-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+29586-619523+%5BLatest%5D&comment=Title%3A+Topic%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=29586-619523+10+Mar+2014+23%3A27+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Note that incoming and outgoing links are *not* automatically re-established if the connection is lost for any
reason.

Report a bug

2.15. Message Queue

Message Queues are the mechanism for consuming applications to subscribe to messages that are of
interest.

Queues receive messages from exchanges, and buffer those messages until they are consumed by message
consumers. Those message consumers can browse the queue, or can acquire messages from the queue.
Messages can be returned to the queue for redelivery, or they can be rejected by a consumer.

Multiple consumers can share a queue, or a queue may be exclusive to a single consumer.

Message producers can create and bind a queue to an exchange and make it available for consumers, or
they can send to an exchange and leave it up to consumers to create queues and bind them to the exchange
to receive messages of interest.

Temporary private message queues can be created and used as a response channel. Message queues can
be set to be deleted by the broker when the application using them disconnects. They can be configured to
group messages, to update messages in the queue with newly-arriving copies of messages, and to prioritize
certain messages.

Another way of managing message queues, specifically in the area of message Time To Live (TTL), is to use
the --queue-purge-interval. While this is not a qpid-config option, it is worth understanding that
message TTL can be configured, and when the purge attempt is successful the messages are subsequently
removed.

Refer to the Queue Options section of the Messaging Installation and Configuration Guide for details about
this broker option.

Report a bug

2.16. Transaction

Editor initialized empty topic content

some text.

Report a bug

2.17. Message Consumer (Receiver)

Message-consuming applications receive messages from the messaging broker. They do this by creating
queues and binding them to an exchange on the messaging broker with a binding key.

Report a bug

Chapter 2. AMQP Model Overview

21

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+30120-622591+%5BLatest%5D&comment=Title%3A+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30120-622591+20+Mar+2014+11%3A11+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8049-770650+%5BLatest%5D&comment=Title%3A+Message+Queue%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8049-770650+25+Sep+2015+10%3A23+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8076-591821+%5BLatest%5D&comment=Title%3A+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8076-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8159-591823+%5BLatest%5D&comment=Title%3A+Message+Consumer+%28Receiver%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8159-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 3. Getting Started

3.1. Getting Started with Python

3.1.1. Python Messaging Development

Python is a cross-platform dynamically interpreted language that is extremely easy to use for prototyping.
Because it is interpreted and not compiled, the turn around time from coding to testing is fast. This makes it
very good for testing and experimenting. It can be used like a scripting language, and can also be used for
developing fairly large applications.

Many of the examples in this documentation use Python code to illustrate principles of programming
messaging applications using Red Hat Enterprise Messaging. To run these sample programs is as simple as
cutting and pasting the code into a file, then calling the python interpreter to execute the file.

Aside from the light-weight prototyping aspect, perhaps the most useful feature of Python for Messaging
development is the ability to run the Python interpreter interactively. You can try things out and inspect the
effect and state of objects in real-time.

The Python API for Apache Qpid is a first-class supported API in Red Hat Enterprise Messaging.

Report a bug

3.1.2. Python Client Libraries

There are three libraries for Python client development:

python-qpid

Apache Qpid Python client library.

python-qpid-qmf

Queue Management Framework (QMF) Python client library.

python-saslwrapper

Python bindings for the saslwrapper library.

Report a bug

3.1.3. Install Python Client Libraries (Red Hat Enterprise Linux 6)

The Python client libraries for Red Hat Enterprise Linux 6 are available via the Red Hat Customer Portal.

If your machine uses Red Hat Network classic management you can install the Python client libraries via the
yum command.

The Python client libraries are in three base channels:

Red Hat Enterprise Linux Server 6

Red Hat Enterprise Linux Workstation 6

Red Hat Enterprise Linux Client 6

Subscribe your system to one of the base channels.

Messaging Programming Reference

22

http://www.python.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10294-591919+%5BLatest%5D&comment=Title%3A+Python+Messaging+Development%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10294-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+9520-591883+%5BLatest%5D&comment=Title%3A+Python+Client+Libraries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9520-591883+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
http://access.redhat.com

When your system is subscribed to a base channel, with root privileges run the command:

yum install python-qpid python-qpid-qmf python-saslwrapper

Report a bug

3.2. Getting Started with .NET

3.2.1. .NET Messaging Development

All .NET languages are supported using the C++ Messaging API. The most significant difference between
.NET development and the other languages is that in a .NET environment the broker is always running on a
remote server. With Python, C++, and Java development it is possible to run the broker and the client on the
same machine during development, and the example code assumes this. All connections with .NET clients,
however, are to a broker running remotely.

While developing and testing against a remote server it is important to configure the firewall correctly. This
step can be skipped when the broker is running locally, but is crucial when the broker is running on a remote
server.

Report a bug

3.2.2. Windows SDK

The MRG Messaging Windows SDK is a download containing necessary files for developing native C++
(unmanaged) and .NET (managed) clients for Windows.

Report a bug

3.2.3. Windows SDK Contents

Regardless of the version chosen, the Windows SDK contains the following common directories and files:

\bin

Compiled binary (.dll and .exe) files, and the associated debug program database (.pdb) files.

Boost library files.

Microsoft Visual Studio runtime library files.

\docs

Apache Qpid C++ API Reference

\dotnet_examples

A Visual Studio solution file and associated project files to demonstrate using the WinSDK in C#

\examples

A Visual Studio solution file and associated project files to demonstrate using the WinSDK in
unmanaged C++

\include

A directory tree of .h files

Chapter 3. Getting Started

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+9512-591883+%5BLatest%5D&comment=Title%3A+Install+Python+Client+Libraries+%28Red+Hat+Enterprise+Linux+6%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9512-591883+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10293-591919+%5BLatest%5D&comment=Title%3A+.NET+Messaging+Development%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10293-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+6952-591764+%5BLatest%5D&comment=Title%3A+Windows+SDK%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6952-591764+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

\lib

The linker .lib files that correspond to files in /bin

Report a bug

3.2.4. How To Download and Install the Windows SDK

3.2.4.1. Obtain the Windows SDK

Procedure 3.1. How To Obtain the Windows SDK For Your Environment

1. Log in to the Red Hat Customer Portal.

2. Click the A-Z tab to sort the product list alphabetically, and then select Red Hat Enterprise MRG
Messaging to display the downloads screen.

3. Select the desired product version from the Version menu.

4. Select the desired architecture from the Architecture menu.

5. Locate the correct Windows SDK binary for your environment, and then click Download Now to start
the download.

Next Step in How To Download and Install the Windows SDK

Section 3.2.4.2, “Install the Windows SDK”

Report a bug

3.2.4.2. Install the Windows SDK

Previous Step in How To Download and Install the Windows SDK

Section 3.2.4.1, “Obtain the Windows SDK”

1. Unzip the downloaded Windows SDK to your filesystem.

2. Copy all qpid* and boost* files from the /bin/Release/ directory into your enviroment's
/bin/Release/ directory.

Report a bug

3.3. Getting Started with C++

3.3.1. C++ Messaging Development

The open source Apache Qpid broker, on which Red Hat Enterprise Messaging is based, is available as a
Java and as C++ broker. It is the C++ broker that is used to build Red Hat Enterprise Messaging.

There are some small differences between the Python and C++ APIs. Because the broker itself is written in
C++, in those few areas where the C++ API differs from the Python API it is the general rule that the C++ API
is the more fully-featured, and more extensively explored by users.

Report a bug

Messaging Programming Reference

24

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+7063-763462+%5BLatest%5D&comment=Title%3A+Windows+SDK+Contents%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7063-763462+01+Jul+2015+11%3A32+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
http://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+7064-763461+%5BLatest%5D&comment=Title%3A+Obtain+the+Windows+SDK%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7064-763461+01+Jul+2015+11%3A24+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+6953-763463+%5BLatest%5D&comment=Title%3A+Install+the+Windows+SDK%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6953-763463+01+Jul+2015+11%3A51+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10291-591919+%5BLatest%5D&comment=Title%3A+C%2B%2B+Messaging+Development%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10291-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

3.3.2. C++ on Linux

3.3.2.1. C++ Client Libraries

There are five packages for C++ client development:

qpid-cpp-client

Apache Qpid C++ client library.

qpid-cpp-client-ssl

SSL support for clients.

qpid-cpp-client-rdma

RDMA Protocol support (including Infiniband) for Qpid clients.

qpid-cpp-client-devel

Header files and tools for developing Qpid C++ clients.

qpidd-cpp-client-devel-docs

AMQP client development documentation.

Report a bug

3.3.2.2. Install C++ Client Libraries (Red Hat Enterprise Linux 6)

The C++ client libraries for Red Hat Enterprise Linux 6 are available via the Red Hat Customer Portal.

If your machine uses Red Hat Network classic management you can install the C++ client libraries via the
yum command.

Subscribe your system to the Red Hat MRG Messaging v.2 (for RHEL-6 Server) channel.

Once your system is subscribed to this channel, with root privileges run the command:

yum install qpid-cpp-client qpid-cpp-client-rdma qpid-cpp-client-ssl qpid-
cpp-client-devel

Report a bug

3.3.2.3. Install C++ Client Libraries for MRG 3

The C++ client libraries for Red Hat Enterprise Linux 6 are available via the Red Hat Customer Portal.

If your machine uses Red Hat Network classic management you can install the C++ client libraries via the
yum command.

Subscribe your system to the Red Hat MRG Messaging v.3 (for RHEL-6 Server) channel.

Once your system is subscribed to this channel, with root privileges run the command:

yum install qpid-cpp-client qpid-cpp-client-rdma qpid-cpp-client-ssl qpid-
cpp-client-devel

Chapter 3. Getting Started

25

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+9522-591883+%5BLatest%5D&comment=Title%3A+C%2B%2B+Client+Libraries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9522-591883+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+9514-591883+%5BLatest%5D&comment=Title%3A+Install+C%2B%2B+Client+Libraries+%28Red+Hat+Enterprise+Linux+6%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9514-591883+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://access.redhat.com

Report a bug

3.3.3. C++ on Windows

3.3.3.1. Windows SDK

The MRG Messaging Windows SDK is a download containing necessary files for developing native C++
(unmanaged) and .NET (managed) clients for Windows.

Report a bug

3.3.3.2. Windows SDK Contents

Regardless of the version chosen, the Windows SDK contains the following common directories and files:

\bin

Compiled binary (.dll and .exe) files, and the associated debug program database (.pdb) files.

Boost library files.

Microsoft Visual Studio runtime library files.

\docs

Apache Qpid C++ API Reference

\dotnet_examples

A Visual Studio solution file and associated project files to demonstrate using the WinSDK in C#

\examples

A Visual Studio solution file and associated project files to demonstrate using the WinSDK in
unmanaged C++

\include

A directory tree of .h files

\lib

The linker .lib files that correspond to files in /bin

Report a bug

3.3.3.3. How To Download and Install the Windows SDK

3.3.3.3.1. Obtain the Windows SDK

Procedure 3.2. How To Obtain the Windows SDK For Your Environment

1. Log in to the Red Hat Customer Portal.

2. Click the A-Z tab to sort the product list alphabetically, and then select Red Hat Enterprise MRG
Messaging to display the downloads screen.

3. Select the desired product version from the Version menu.

Messaging Programming Reference

26

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+25108-592590+%5BLatest%5D&comment=Title%3A+Install+C%2B%2B+Client+Libraries+for+MRG+3%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=25108-592590+24+Feb+2014+07%3A59+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+6952-591764+%5BLatest%5D&comment=Title%3A+Windows+SDK%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6952-591764+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+7063-763462+%5BLatest%5D&comment=Title%3A+Windows+SDK+Contents%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7063-763462+01+Jul+2015+11%3A32+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
http://access.redhat.com

4. Select the desired architecture from the Architecture menu.

5. Locate the correct Windows SDK binary for your environment, and then click Download Now to start
the download.

Next Step in How To Download and Install the Windows SDK

Section 3.3.3.3.2, “Install the Windows SDK”

Report a bug

3.3.3.3.2. Install the Windows SDK

Previous Step in How To Download and Install the Windows SDK

Section 3.3.3.3.1, “Obtain the Windows SDK”

1. Unzip the downloaded Windows SDK to your filesystem.

2. Copy all qpid* and boost* files from the /bin/Release/ directory into your enviroment's
/bin/Release/ directory.

Report a bug

3.4. Getting Started with Java

3.4.1. Java Client Libraries

There are three libraries for Java client development:

qpid-java-client

The Java implementation of the Qpid client

qpid-java-common

Common files for the Qpid Java client

qpid-java-example

Programming examples

See Also:

Section 3.6.2, “Java JMS "Hello World" Program Listing”

Report a bug

3.4.2. Install Java Client Libraries (Red Hat Enterprise Linux 6)

The Java client development libraries for Red Hat Enterprise Linux 6 are available via the Red Hat Network.

To install the Java development packages:

1. Subscribe your system to the Additional Services Channels for Red Hat Enterprise
Linux 6 / MRG Messaging v.2 (for RHEL-6 Server) channel.

Chapter 3. Getting Started

27

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+7064-763461+%5BLatest%5D&comment=Title%3A+Obtain+the+Windows+SDK%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7064-763461+01+Jul+2015+11%3A24+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+6953-763463+%5BLatest%5D&comment=Title%3A+Install+the+Windows+SDK%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6953-763463+01+Jul+2015+11%3A51+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+9523-591883+%5BLatest%5D&comment=Title%3A+Java+Client+Libraries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9523-591883+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://access.redhat.com

2. Run the following yum command with root privileges:

yum install qpid-java-client qpid-java-common qpid-java-example

Report a bug

3.5. Getting Started with Ruby

3.5.1. Ruby Messaging Development

The Ruby programming language does not have the same level of support as the other languages. There are
libraries that allow you to access the Qpid Management Framework (QMF), but no supported client libraries
for the standard messaging API.

Report a bug

3.5.2. Ruby Client Libraries

There are two libraries for Ruby client development:

ruby-qpid-qmf

Ruby QMF bindings

ruby-saslwrapper

Ruby bindings for the saslwrapper library

Report a bug

3.5.3. Install Ruby Client Libraries (Red Hat Enterprise Linux 6)

The Ruby client development libraries are available via the Red Hat Customer Portal.

The ruby-qpid-qmf package is in the main channel; the ruby-saslwrapper package is in the Optional
child channel.

To install the Ruby client development libraries:

1. Subscribe your system to one of the following channels:

Red Hat Enterprise Linux Server 6

Red Hat Enterprise Linux Client 6

Red Hat Enterprise Linux Workstation 6

2. With root privileges run the command:

yum install ruby-qpid-qmf

3. Subscribe your system one of the following channels:

Red Hat Enterprise Linux Optional Server v 6

Red Hat Enterprise Linux Optional Client 6

Messaging Programming Reference

28

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+9516-591883+%5BLatest%5D&comment=Title%3A+Install+Java+Client+Libraries+%28Red+Hat+Enterprise+Linux+6%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9516-591883+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10292-591919+%5BLatest%5D&comment=Title%3A+Ruby+Messaging+Development%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10292-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+9936-591904+%5BLatest%5D&comment=Title%3A+Ruby+Client+Libraries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9936-591904+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://access.redhat.com

Red Hat Enterprise Linux Optional Workstation 6

4. With root privileges run the command:

yum install ruby-saslwrapper

Report a bug

3.6. Hello World

3.6.1. Red Hat Enterprise Messaging "Hello World"

Here is the "Hello World" example, showing how to send and receive a message with Red Hat Enterprise
Messaging using the Qpid Messaging API.

Python

import sys
from qpid.messaging import *

connection = Connection("localhost:5672")

try:
 connection.open()
 session = connection.session()

 sender = session.sender("amq.topic")
 receiver = session.receiver("amq.topic")

 message = Message("Hello World!")
 sender.send(message)

 fetchedmessage = receiver.fetch(timeout=1)
 print fetchedmessage.content
 session.acknowledge()

except MessagingError,m:
 print m

connection.close()

C#/.NET

using System;
using Org.Apache.Qpid.Messaging;

namespace Org.Apache.Qpid.Messaging {
 class Program {
 static void Main(string[] args) {
 String broker = args.Length > 0 ? args[0] :
"localhost:5672";
 String address = args.Length > 1 ? args[1] :
"amq.topic";

Chapter 3. Getting Started

29

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+9938-591904+%5BLatest%5D&comment=Title%3A+Install+Ruby+Client+Libraries+%28Red+Hat+Enterprise+Linux+6%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9938-591904+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 Connection connection = null;
 try {
 connection = new Connection(broker);
 connection.Open();
 Session session = connection.CreateSession();

 Receiver receiver = session.CreateReceiver(address);
 Sender sender = session.CreateSender(address);

 sender.Send(new Message("Hello world!"));

 Message message = new Message();
 message = receiver.Fetch(DurationConstants.SECOND *
1);
 Console.WriteLine("{0}",
message.GetContentObject());
 session.Acknowledge();

 connection.Close();
 } catch (Exception e) {
 Console.WriteLine("Exception {0}.", e);
 if (connection != null)
 connection.Close();
 }
 }
 }
}

C++

#include <qpid/messaging/Connection.h>
#include <qpid/messaging/Message.h>
#include <qpid/messaging/Receiver.h>
#include <qpid/messaging/Sender.h>
#include <qpid/messaging/Session.h>

#include <iostream>

using namespace qpid::messaging;

int main(int argc, char** argv) {
 std::string broker = argc > 1 ? argv[1] : "localhost:5672";
 std::string address = argc > 2 ? argv[2] : "amq.topic";
 Connection connection(broker);
 try {
 connection.open();
 Session session = connection.createSession();

 Receiver receiver = session.createReceiver(address);
 Sender sender = session.createSender(address);

 sender.send(Message("Hello world!"));

 Message message = receiver.fetch(Duration::SECOND * 1);
 std::cout << message.getContentObject() << std::endl;
 session.acknowledge();

Messaging Programming Reference

30

 connection.close();
 return 0;
 } catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
 connection.close();
 return 1;
 }
}

Report a bug

3.6.2. Java JMS "Hello World" Program Listing

This program is available, along with other examples, in the qpid-java-examples package.

Java

package org.apache.qpid.example.jmsexample.hello;

import javax.jms.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;

public class Hello {

 public Hello() {
 }

 public static void main(String[] args) {
 Hello producer = new Hello();
 producer.runTest();
 }

 private void runTest() {
 try {
 Properties properties = new Properties();

properties.load(this.getClass().getResourceAsStream("hello.properties
"));
 Context context = new InitialContext(properties);

 ConnectionFactory connectionFactory
 = (ConnectionFactory)
context.lookup("qpidConnectionfactory");
 Connection connection = connectionFactory.createConnection();
 connection.start();

 Session
session=connection.createSession(false,Session.AUTO_ACKNOWLEDGE);
 Destination destination = (Destination)
context.lookup("topicExchange");

 MessageProducer messageProducer =
session.createProducer(destination);

Chapter 3. Getting Started

31

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+29466-704742+%5BLatest%5D&comment=Title%3A+Red+Hat+Enterprise+Messaging+%26quot%3BHello+World%26quot%3B%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=29466-704742+01+Sep+2014+12%3A07+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 MessageConsumer messageConsumer =
session.createConsumer(destination);

 TextMessage message = session.createTextMessage("Hello
world!");
 messageProducer.send(message);

 message = (TextMessage)messageConsumer.receive();
 System.out.println(message.getText());

 connection.close();
 context.close();
 }
 catch (Exception exp) {
 exp.printStackTrace();
 }
 }
}

Here is the content of the Hello World example JNDI properties file, hello.properties:

java.naming.factory.initial
 = org.apache.qpid.jndi.PropertiesFileInitialContextFactory

connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory
 = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'
destination.[jndiname] = [address_string]
destination.topicExchange = amq.topic

Report a bug

3.6.3. "Hello World" Walk-through

The Qpid Messaging client development libraries contain the functions we need to communicate with the
messaging broker and create and manage messages, so our first task is to import them to our program:

Python

from qpid.messaging import *

C++

#include <qpid/messaging/Connection.h>
#include <qpid/messaging/Message.h>
#include <qpid/messaging/Receiver.h>
#include <qpid/messaging/Sender.h>
#include <qpid/messaging/Session.h>

using namespace qpid::messaging;

C#/.NET

Messaging Programming Reference

32

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8039-591819+%5BLatest%5D&comment=Title%3A+Java+JMS+%22Hello+World%22+Program+Listing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8039-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

using Org.Apache.Qpid.Messaging;

namespace Org.Apache.Qpid.Messaging {

To communicate with a message broker we need a connection. We get one by creating an instance of a
Connection object. The Connection object constructor takes the url of the broker as its parameter:

Python

connection = Connection("localhost:5672")

C++

Connection connection(broker);

C#/.NET

Connection connection = null;
connection = new Connection(broker);

When you connect to a remote server that requires authentication you can provide a connection url in the
form username/password@serverurl:port. If you try this with a remote server, remember to open the
firewall on the message broker to allow incoming connections for the broker port.

To open a connection using the AMQP 1.0 protocol, specify it like this:

C++

Connection connection(broker, "{protocol:amqp1.0}");

C#/.NET

connection = new Connection(broker, "{protocol:amqp1.0}");

Now that we have a Connection instance configured for our broker, the next step is to open the connection.
The Connection object has an open method, which opens a configured connection.

Opening the connection might fail, if, for example, the message broker is off-line, so for languages that
support it we will wrap it in a try:except block, and catch any exception.

Remember that Python uses indentation, so be careful with your spacing:

Python

try:
 connection.open()

C++

try {
 connection.open();

C#/.NET

Chapter 3. Getting Started

33

http://qpid.apache.org/apis/0.14/python/html/index.html

connection.Open();

Now that we have an open connection to the server, we need to create a session. A session is a scoped
conversation between our application and the server. The server uses the scope of the session to enforce
exclusive access and session-scoped lifetimes of queues.

The Connection object has a createSession method (session in Python) that returns a Session
object, so we get a session from the connection that we created previously:

Python

session = connection.session()

C++

Session session = connection.createSession();

C#/.NET

Session session = connection.CreateSession();

The Session object has sender and receiver methods, which take a target or source address as a
parameter, and return a Sender and a Receiver object, respectively. These are the objects that we need to
send and receive messages, so we will create them by calling the respective methods of our session. We will
use the amq.topic exchange for this demo. This is a pre-configured exchange on the broker, so we don't
need to create it, and we can rely on its presence:

Python

sender = session.sender("amq.topic")
receiver = session.receiver("amq.topic")

C++

Receiver receiver = session.createReceiver(address);
Sender sender = session.createSender(address);

C#/.NET

Receiver receiver = session.CreateReceiver(address);
Sender sender = session.CreateSender(address);

A sender can be thought of as a router. It routes messages from our application to the broker. The parameter
we pass to the sender's constructor is the destination on the broker that our messages will be routed to. In this
case, our sender will route messages to the amq.topic exchange on the broker. Because our routing target
is an exchange, it will be routed further from there by the broker.

A receiver can be thought of as a subscriber. When we create a receiver, the parameter we pass to the
constructor is resolved to an object on the server. If the object is a queue, then our receiver is subscribed to
that queue. If the object is an exchange, as it is in this case, then a queue is created in the background and
subscribed to the exchange for us. We will look in more detail at this later. For now, suffice it to say that our
sender will send a message to the amq.topic exchange, and our receiver will receive it in a queue.

Messaging Programming Reference

34

http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Session-class.html
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Session-class.html#sender
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Receiver-class.html
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Sender-class.html
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Receiver-class.html

Now that we have a sender and a receiver, it's time to create a message to send. The Message object takes
as a parameter to its constructor a string that becomes the message.content:

Python

message = Message("Hello World!")

The Message object constructor sets the correct content-type when you set the message.content
through the constructor. However, if you set it after creating the Message object by assigning a value to the
message.content property, then you also need to set the message.content_type property
appropriately.

We can now use the send method of our sender to send the message to the broker:

Python

sender.send(message)

C++

sender.send(Message("Hello world!"));

C#/.NET

sender.Send(new Message("Hello world!"));

The message is sent to the amq.topic exchange on the message broker.

When we created our receiver, in the background the broker created a private temporary queue and
subscribed it to the amq.topic exchange for us. The message is now waiting in that queue.

The next step is to retrieve the message from the broker using the fetch method of our receiver:

Python

fetchedmessage = receiver.fetch(timeout=1)

C++

Message message = receiver.fetch(Duration::SECOND * 1);

C#/.NET

Message message = new Message();
message = receiver.Fetch(DurationConstants.SECOND * 1);

The timeout parameter tells fetch how long to wait for a message. If we do not set a timeout the receiver
will wait indefinitely for a message to appear on the queue. If we set the timeout to 0, the receiver will check
the queue and return immediately if nothing is there. We set it to timeout in 1 second to ensure ample time
for our message to be routed and appear in the queue.

We should now have a message, so we will print it out. Fetch returns a Message object, so we will print its
content property:

Chapter 3. Getting Started

35

http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.message.Message-class.html
http://qpid.apache.org/apis/0.14/python/html/index.html
http://qpid.apache.org/apis/0.14/python/html/qpid.messaging.endpoints.Receiver-class.html#fetch

Python

print fetchedmessage.content

C++

std::cout << message.getContent() << std::endl;

C#/.NET

Console.WriteLine("{0}", message.GetContent());

To finish the transaction, acknowledge receipt of the message, which allows the message broker to clear it
from the queue (dequeue the message):

Python

session.acknowledge()

C++

session.acknowledge();

C#/.NET

session.Acknowledge();

And finally, catch any exceptions for languages that support exception handling, and print something sensible
to the console if they occur, and close our connection to the message broker:

Python

except MessagingError,m:
 print m

connection.close()

C++

} catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
 connection.close();
 return 1;
}

C#/.NET

} catch (Exception e) {
 Console.WriteLine("Exception {0}.", e);
 if (connection != null)
 connection.Close();
}

Messaging Programming Reference

36

To run the program, save the file as helloworld.py, and then run it using the command python
helloworld.py. If the message broker is running on your local machine, you should see the words: "Hello
World!" printed on your programlisting.

Report a bug

Chapter 3. Getting Started

37

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8094-704744+%5BLatest%5D&comment=Title%3A+%26quot%3BHello+World%26quot%3B+Walk-through%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8094-704744+01+Sep+2014+12%3A12+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 4. Beyond "Hello World"

4.1. Subscriptions

In the "Hello World" example, we sent a message to a topic exchange. AMQP messaging uses exchanges to
provide flexible decoupled routing between message senders and message producers. Message consumers
can subscribe to exchanges by creating a queue and binding it to the exchange. Exchanges and bindings are
covered in more depth in their own sections. Here we will touch briefly on the topic exchange specifically, and
learn something about the difference between exchanges and queues, as we learn how a message
consumer subscribes to an exchange by binding a queue to it.

An exchange differs from a queue in a number of ways. One significant difference is that a queue will queue
messages, and can store them, whereas an exchange will distribute them to queues, but has no local storage
of its own. Message consumers are decoupled from the message producers by the message broker. Queues
provide a mechanism for buffering messages between the two, to allow them to produce and consume data
at different rates. A message consumer does not need to be connected at the point in time that a message is
published to a queue to receive the message. The message remains in the queue until it is removed.

Exchanges, on the other hand, are a mechanism for routing messages to different queues. If a message is
sent to an exchange and there are no queues bound to that exchange, then the message is lost, as there is
no-one is listening and there is nowhere to store the message. Queues are subscriptions, and indicate to the
broker that "I (an application) am interested in these messages", in the case of a queue created by a
consumer, or "I want these messages to be here for interested applications that are coming", in the case of a
queue created by a producer. To subscribe to messages of interest, an consumer application creates a
queue and binds it to an exchange, or connects to an existing queue (subscribe). To provide messages that
are of interest to applications, an application creates a queue and binds it to an exchange (publish).
Consuming applications can then use that queue.

In our "Hello World" example program we created a receiver listening to the amq.topic exchange. In the
background this creates a queue and subscribes it to the amq.topic exchange. Our Hello World program
sender publishes to the amq.topic exchange. The amq.topic exchange is a good one to use for the
demo. A topic exchange allows queues to be subscribed (to bind to the exchange) with a binding key that
acts as a filter on the subject of messages sent to the exchange. Since we bind to the exchange with no
binding key, we signal that we're interested in all messages coming through the exchange.

When our sender sends its message to the amq.topic exchange, the message is delivered to the
subscription queue for our receiver. Our receiver then calls fetch() to retrieve the message from its
subscription queue.

We will make two modifications to our Hello World program to demonstrate this.

First of all, we will send our message to the amq.topic exchange and after we send the message, register
our receiver with the exchange.

We need to change the order of these operations:

Python

sender = session.sender("amq.topic")
receiver = session.receiver("amq.topic")

message = Message("Hello World!")
sender.send(message)

C++

Messaging Programming Reference

38

Session session = connection.createSession();

Receiver receiver = session.createReceiver(address);
Sender sender = session.createSender(address);

sender.send(Message("Hello world!"));

C#/.NET

Session session = connection.CreateSession();

Receiver receiver = session.CreateReceiver(address);
Sender sender = session.CreateSender(address);

sender.Send(new Message("Hello world!"));

At the moment we register a receiver with the exchange before sending the message. Let's instead send the
message, then register the receiver:

Python

sender = session.sender("amq.topic")

message = Message("Hello World!")
sender.send(message)

receiver = session.receiver("amq.topic")

C++

Session session = connection.createSession();

Sender sender = session.createSender(address);
sender.send(Message("Hello world!"));

Receiver receiver = session.createReceiver(address);

C#/.NET

Session session = connection.CreateSession();

Sender sender = session.CreateSender(address);
sender.Send(new Message("Hello world!"));

Receiver receiver = session.CreateReceiver(address);

When you run the modified Hello World program, you will not see the "Hello World!" message this time. What
happened? The sender published the message to the amq.topic exchange. The exchange then delivered
the message to all the subscribed queues... which was none. When our receiver subscribes to the exchange
it's too late to receive the message. In the original version of the program the receiver subscribes to the
exchange before the message is sent, so it receives a copy of the message in its subscription queue.

Chapter 4. Beyond "Hello World"

39

Let's now examine the subscription queues that are created when we create the sender and receiver. We'll
do that using the qpid-config command. Restart the broker to clear all the queues (all non-durable
queues are destroyed when the broker restarts). Then run the command:

qpid-config queues

You see the list of queues on the broker.

Now modify the Hello World program back to its original form, where the receiver is created (subscribed to the
exchange) before the message is sent. In order to see what happens, we'll pause the application between
creating the exchange subscriptions and sending the message. We'll do that in Python by asking the user to
press Enter, and using the raw_input method to grab some keyboard input.

Python

sender = session.sender("amq.topic")
receiver = session.receiver("amq.topic")

print "Press Enter to continue"
x= raw_input()

message = Message("Hello World!")
sender.send(message)

Now we run the program, and while it is paused, we use qpid-config queues to examine the queues on
the broker.

Run the program, and while it is paused, issue the command:

qpid-config queues

You will see an exclusive queue with a unique random ID. This is the queue created and bound to the
amq.topic exchange for us,to allow our receiver to receive messages from the exchange. You'll also see a
number of other queues with the same ID number at the end of them. These are the queues that the qpid-
config utility uses to query the message broker and receive the queue list you run the command. If you run
the command again, you'll see that our receiver queue remains the same, and the other queues have a new
ID - each time you run a qpid-config command it creates it own queues to receive a response from the
server. You won't be able to see that those queues aren't there when you're not running qpid-config,
because you need to run qpid-config to see the queues, but you can take my word for it.

Since the receiver's queue is bound to the exchange (subscribed) when the sender sends its message to the
exchange, the "Hello World!" message is delivered to the subscription queue by the exchange, and is
available for the receiver to fetch when it is ready.

The queue created for the receiver is an exclusive queue, which means that only one session can access it at
a time.

Version 2.2 and below

To see the queue-exchange bindings, run:

qpid-config queues -b

The -b switch displays bindings. You'll see that the two dynamically created queues are bound to
the amq.topic exchange.

Messaging Programming Reference

40

Version 2.3 and above

To see the queue-exchange bindings, run:

qpid-config queues -r

The -r switch displays bindings. You'll see that the two dynamically created queues are bound to
the amq.topic exchange.

When the application wakes up and completes execution, the call to connection.close() ends the
session, and the two exclusive queues on the broker are deleted. You can run qpid-config queues again
to verify that.

Another experiment you can try: create one receiver before the message is sent, and another receiver after
the message is sent. We would expect the receiver created before the message is sent to receive the
message, and the receiver created after the message is sent to not receive it.

Our simple application uses a dynamically created queue to interact with the amq.topic exchange. This
queue is private (randomly named and exclusive), and deleted when the consumer disconnects, so it is
not suitable for publishing. In order to make messages available to consumers who may or may not be
connected to the exchange when the message is sent, a message-producing application needs to create a
publicly-accessible queue (publishing). Consuming applications can then subscribe to this published queue
and receive messages in a decoupled fashion.

Of course, if it's not important that your messages are buffered somewhere when no-one is listening, you can
use the "Hello World" pattern of simply publishing to an exchange, and leave it to the consumers to create
their own queues by subscribing to the exchange. AMQP messaging gives a lot of flexibility in messaging
system design.

Report a bug

4.2. Publishing

As a message producer there are a number of different publishing strategies that you can use with AMQP
messaging.

You can publish messages to an exchange, and message consuming applications can subscribe to the
exchange, creating their own queues. There are a number of different exchange types that you can use,
depending on how you want to distribute the information your application produces. One thing to note when
publishing to an exchange is that if your message falls in the woods while no-one is listening, it doesn't make
a sound: if no consumers are subscribed to the exchange when you send a message to it, the message
disappears into the ether. It is not stored. If you need your messages to be stored whether consumers are
listening or not, then you want to publish to a queue.

You can publish messages to a queue by creating a queue and subscribing it to an exchange. You then send
messages to that exchange routed to that queue, and consuming applications can connect to your published
queue and collect messages. This method of publishing is the one to use when your messages need to be
stored on the broker whether someone is listening or not. Using this method of publishing, you can still allow
consumers to create their own subscriptions to the exchange, or you can publish exclusively to your queue.

To publish to an exclusive queue, you would publish to a Direct Exchange, and bind your publishing queue to
the exchange with an exclusive binding key. This means that you can route messages directly to your queue,
and no-one else can bind a queue to the exchange that can receive those messages.

To publish to a queue and also allow consumers to create their own queues that receive your messages, you
could publish to a Fanout or Topic exchange, and create and bind a queue with the appropriate binding key
to receive your messages. Consumers can then subscribe to your queue, and can also create their own

Chapter 4. Beyond "Hello World"

41

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10134-704754+%5BLatest%5D&comment=Title%3A+Subscriptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10134-704754+01+Sep+2014+12%3A25+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

queues and bind them to the exchange.

Report a bug

4.3. AMQP Exchange Types

There are five AMQP Exchange types. The different exchanges provide different means of routing messages
so that consumers can subscribe to the particular flow of information that is of interest to them.

The AMQP Exchange types are:

Direct

A Direct Exchange allows a consumer to bind a queue to it with a key. When a message is
received by a direct-type exchange, the message is routed to any queues whose binding key
matches the subject of the message. The Direct Exchange also supports exclusive bindings, which
allow a queue to monopolize messages sent to an exchange, and implement a simple direct-to-
queue model.

Topic

A Topic Exchange allows a consumer to bind a queue to it with a key that specifies wildcard
matching. The wildcard is then matched against the subject of messages sent to the exchange.
This allows you to implement message filtering patterns using a topic exchange and various
queues with different binding keys.

Report a bug

4.4. Pre-configured Exchanges

Out of the box, the Red Hat Enterprise Messaging broker has five pre-configured exchanges that you can use
for messaging. These exchanges are all configured as durable, so they are available whenever the broker is
started:

Default exchange

A nameless direct exchange. All queues are bound to this exchange by default, allowing them to
be accessed by queue name.

amq.direct

The pre-configured named direct exchange.

amq.fanout

The pre-configured fanout exchange.

amq.match

The pre-configured headers exchange.

amq.topic

The pre-configured topic exchange.

Report a bug

4.5. Exchange Subscription Patterns

Messaging Programming Reference

42

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10135-591911+%5BLatest%5D&comment=Title%3A+Publishing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10135-591911+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8037-591819+%5BLatest%5D&comment=Title%3A+AMQP+Exchange+Types%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8037-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10230-591917+%5BLatest%5D&comment=Title%3A+Pre-configured+Exchanges%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10230-591917+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

4.5. Exchange Subscription Patterns

There are three different patterns for subscribing to an Exchange:

1. copy of messages

2. move of messages

3. exclusive binding

Copy of Messages

A copy of messages is where each consumer gets their own copy of every message.

Note

This approach is also known as a publish-subscribe pattern, ephemeral or private subscription.

This case creates and binds a temporary private queue that is destroyed when your application disconnects.
This approach makes sense when you do not need to share responsibility for the messages between multiple
consumers, and you do not care about messages that are sent when your application is not running or is
disconnected.

This arrangement makes sense, for example, when a service is logging activity based on messages, or when
multiple consumers want notification of events.

Move of Messages

A move of messages is where multiple consumers connect to the same queue and take messages from the
queue in a round-robin fashion.

Note

This approach is also known as a Shared Queue.

If consumer A and consumer B are accessing the same shared queue, then consumer A will not see the
messages that consumer B takes from the queue. This arrangement makes sense, for example, in a scenario
where worker nodes are dispatching jobs from a work queue. You want one node only to see each message.

This allows messages to be buffered in the queue when your application is disconnected, and allows several
consumers to share responsibility for the messages in the queue.

This arrangement makes sense, for example, in a scenario where worker nodes are dispatching jobs from a
work queue. You want one node only to see each message.

These two patterns are not mutually exclusive - for example, three worker nodes could share a queue in
round-robin fashion while another process gets its own copy of the messages in the queue to create an
archive.

Exclusive Binding

The third pattern, exclusive binding, is where a consumer mandates that only the consumer may have access
to messages routed to an endpoint.

Chapter 4. Beyond "Hello World"

43

Note

Exclusive binding is not supported by AMQP 1.0

Report a bug

4.6. The Default Exchange

4.6.1. Default Exchange

The Default Exchange is a pre-configured nameless direct exchange.

All queues are bound to the Default Exchange by default. This means that a queue can be targeted by using
the queue name as a target address, since a queue name unqualified with an exchange resolves to the
nameless exchange.

Report a bug

4.6.2. Publish to a Queue using the Default Exchange

All queues automatically bind to the default exchange using the queue name as the binding key. So all you
need to do to publish to a queue bound to the default exchange is to declare a queue. The binding to the
Default Exchange is created automatically. Since the Default Exchange is a direct exchange, and is
nameless, sending a message to the queue name is sufficient for it to arrive in your queue.

To create a queue named "quick-publish" bound to the Default Exchange using qpid-config:

qpid-config add queue quick-publish

In an application, queues can be created as a side-effect of creating a sender object. If the address contains
the parameter {create: always} then the queue will be created if it does not already exist. In addition to
always, the create command can also take the arguments sender and receiver, to indicate that the
queue should be created only when a sender connects to the address, or only when a receiver connects to
the address.

Here is the creation of the "quick-publish" example queue:

Python

sender = session.sender("quick-publish; {create: always}")

C++

Sender sender = session.createSender("quick-publish; {create:
always}")

Report a bug

4.6.3. Subscribe to the Default Exchange

To subscribe to the Default Exchange, create a receiver and pass the name of the queue to the constructor.
For example, to subscribe to the queue "quick-publish", using the Python API:

Messaging Programming Reference

44

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+44611-764921+%5BLatest%5D&comment=Title%3A+Exchange+Subscription+Patterns%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44611-764921+14+Jul+2015+14%3A26+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8042-591819+%5BLatest%5D&comment=Title%3A+Default+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8042-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10228-591916+%5BLatest%5D&comment=Title%3A+Publish+to+a+Queue+using+the+Default+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10228-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

C++

Receiver receiver = session.createReceiver('quick-publish');

Python

receiver = session.receiver('quick-publish')

This receiver can now be used to retrieve messages from the quick-publish queue.

To obtain a browse-only view that does not remove messages from the queue:

C++

Receiver receiver = session.createReceiver('quick-publish; {mode:
browse}');

Python

receiver = session.receiver('quick-publish; {mode: browse}')

If you want to create and subscribe a queue that does not yet exist, for example for your application to
request its own copies of messages, use the create parameter:

C++

Receiver receiver = session.createReceiver("my-own-copies-please;
{create: always, node: {type: 'queue'}}");

Python

receiver = session.receiver("my-own-copies-please; {create: always,
node: {type: 'queue'}}")

If the queue "my-own-copies-please" already exists, then your receiver will connect to that queue. If the
queue does not exist, then it will be created (all of this assumes sufficient privileges, of course).

One thing to bear in mind is that if an exchange named "my-own-copies-please" exists, your receiver will
silently connect to that in preference to creating a queue. This is not what you intended, and will have
unpredictable results. To avoid this, you can use the assert parameter, like this:

C++

try {
 Receiver receiver = session.createReceiver("my-own-copies-please;
{create: always, assert: always, node: {type: 'queue'}}");
} catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
}

Python

try:
 receiver = session.receiver("my-own-copies-please; {create: always,

Chapter 4. Beyond "Hello World"

45

assert: always, node: {type: 'queue'}}")
except MessagingError m:
 print m

Now if "my-own-copies-please" already exists and is an exchange, the receiver constructor will raise an
exception: "expected queue, got topic".

Note that although it is an instance of a Direct Exchange, the Default Exchange does not allow multiple
bindings using the same key. Each queue is bound to the Default Exchange uniquely. This means that you
can only connect to a queue to get messages sent to it; you cannot bind another queue to the exchange in
parallel to receive copies of the messages, as you can with other Direct Exchanges.

See Also:

Section 4.5, “Exchange Subscription Patterns”

Report a bug

4.7. Direct Exchange

4.7.1. Direct Exchange

A Direct Exchange routes messages to queues where there is an exact match between the binding key of the
queue and the subject of the message (routing key).

Note as you look at this picture that multiple queues can bind to a Direct Exchange with the same binding
key. In the diagram we see one message going to one queue, but if other queues on that exchange have the
same binding key, they will also receive the message.

Figure 4.1. Direct Exchange

Messaging Programming Reference

46

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10227-591916+%5BLatest%5D&comment=Title%3A+Subscribe+to+the+Default+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10227-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

A Direct Exchange is a specialization of the Topic Exchange. Effectively, a Direct Exchange is a Topic
Exchange where there are no wildcards used, or allowed, on the binding key.

The Direct Exchange also supports exclusive binding, so that a queue can guarantee that it is the only
recipient of messages sent to the Direct Exchange with the routing key used to exclusively bind the queue to
the exchange.

Report a bug

4.7.2. Create a Direct Exchange using qpid-config

The command qpid-config add exchange direct exchange name creates a new direct exchange.

The following example qpid-config command creates a new direct exchange called engineering:

qpid-config add exchange direct engineering

Report a bug

4.7.3. Create a Direct Exchange from an application

You can create a Direct Exchange in an application as a side effect of creating a sender or a receiver. For
example, the following example creates a direct exchange called engineering:

Python

sender = session.sender('engineering;{create: always, node:
{type:topic, x-declare:{type:direct}}}')

In the case where an exchange named engineering already exists, the sender will not try to create a new
one, but will connect to the existing one. You need to be careful, however, because if a queue with the name
engineering already exists, then your sender will silently connect to that queue.

To ensure that your sender will connect to a new or existing exchange called engineering, you can use
assert, as in this example:

Python

try:
 sender = session.sender('engineering;{create: always, node:
{type:topic, x-declare:{type:direct}}, assert: always}')
except MessagingError, m:
 print m

When you use assert: always, node: {type: topic}; if engineering exists and is a queue,
rather than an exchange, the sender constructor will raise an exception: "expected topic, got queue".

Note that while you can use assert to verify that it is an exchange and not a queue, you cannot verify what
type of exchange it is.

Report a bug

4.7.4. Publish to a Direct Exchange

To publish to a direct exchange you have two options.

Chapter 4. Beyond "Hello World"

47

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8030-591819+%5BLatest%5D&comment=Title%3A+Direct+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8030-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10224-591916+%5BLatest%5D&comment=Title%3A+Create+a+Direct+Exchange+using+qpid-config%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10224-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10225-591916+%5BLatest%5D&comment=Title%3A+Create+a+Direct+Exchange+from+an+application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10225-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Create a sender that targets a specific endpoint

The first is to create a sender that routes messages directly to the endpoint that you wish to publish to.
Remember that a Direct Exchange requires an exact match, so you are sending to a specific destination. At
the same time, bear in mind that multiple queues can bind to the exchange to receive messages routed to the
same destination. So it is a specific endpoint that may have multiple consumers.

First, create the endpoint with the following command on the server:

qpid-config add exchange direct finance

Or with the following code:

Python

sender = session.sender('finance;{create:always, node: {type: topic,
x-declare: {type: direct}}}')

This example creates a sender that will route messages to the reports endpoint on the finance exchange.

Python

sender = session.sender('finance/reports')
sender.send('Message to all consumers bound to finance with key
reports')

Any messages now sent using sender will go to queues that have bound to the finance direct exchange
using the key reports; with one caveat.

Let's look at our second option for publishing to a Direct Exchange, as it will help to explain this caveat.

Create a sender that targets the exchange

The second option is to create a sender that routes messages to the exchange, and use the message subject
to control the routing to the specific endpoint. This way you can dynamically decide where messages will go,
for example based on the names of keys that are provided at run-time, perhaps in the body of other
messages.

This example demonstrates how this is done:

Python

sender = session.sender('finance; {assert: always, node: {type:
topic}}')
msg = Message('Message to all consumers bound to finance with key
reports')
msg.subject = 'reports'
sender.send(msg)

With a sender that targets the exchange, we specify where our message will go in the exchange by setting
the subject. You can target different endpoints on that exchange by changing the subject before sending
the message. For example, to send copies of the same message to finance/reports and
finance/records:

Python

Messaging Programming Reference

48

sender = session.sender('finance; {assert: always, node: {type:
topic}}')
msg = Message('Message for reports and records')

msg.subject = 'reports'
sender.send(msg)

msg.subject = 'records'
sender.send(msg)

{assert: always, node: {type: topic}} is used to ensure that we don't inadvertently connect to a
queue with the name finance bound to the default exchange. Queues and exchanges have separate
namespaces, but remember that the default exchange is nameless.

A Caveat

As you can observe in the second case, setting the subject influences where the message is routed. If you
use the first method — the sender with the subject in its address — you must be careful not to set the
message subject inadvertently. The sender will write the correct subject into the message when you send it if
the message subject is blank, but it will not overwrite any message subject that you provide. The first method
— the sender with a subject in its address — provides a "default destination" for all messages it sends that
do not have a message subject set. You can target other endpoints on the exchange by explicitly setting a
subject before sending the message - in which case they go to the exchange for further routing based on
your custom subject. Just be aware that setting the message subject determines its routing.

Report a bug

4.7.5. Subscribe to a Direct Exchange

Subscribing to the Default Exchange using a Copy of Messages

This is the most straight-forward method to implement. Create a receiver using an address comprised of the
exchange name and the routing key. For example, create a receiver on direct exchange "finance" using the
"reports" key of interest:

C++

Receiver receiver = session.createReceiver("finance/reports")

Python

receiver = session.receiver('finance/reports')

Subscribing to a Direct Exchange using a Shared Queue

Subscription using a shared queue may be created by naming the subscription queue and defining it non-
exclusive. For example:

C++

Receiver receiver = session.createReceiver("finance/quick-publish;
{link:{name:my-subscription, x-declare:{exclusive:False}}}");

Python

Chapter 4. Beyond "Hello World"

49

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10226-705694+%5BLatest%5D&comment=Title%3A+Publish+to+a+Direct+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10226-705694+02+Sep+2014+13%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

receiver = session.receiver('finance/quick-publish;{link:{name:my-
subscription, x-declare:{exclusive:False}}}')

Alternatively, you may create a queue and bind it to the direct exchange using a routing key. You can do that
using x-bindings. For example:

C++

Receiver receiver = session.createReceiver("my-subscription;{create:
always, node:{x-bindings: [{exchange: 'finance', key: 'quick-
publish'}]}}");

Python

receiver = session.receiver('my-subscription;{create: always, node:
{x-bindings: [{exchange: 'finance', key: 'quick-publish'}]}}')

We have created a shared queue named "my-subscription" and bound it to the direct exchange
"finance" with the key "quick-publish".

AMQP 1.0

Both Link-scoped x-declare and Node-scoped x-bindings clauses are not supported in AMQP 1.0,
hence we request the capability of a shared subscription:

C++

Receiver receiver = session.createReceiver("finance/quick-publish;
{node: {capabilities:[shared]}, link: {name: 'my-subscription'}}");

See Also:

Section 4.5, “Exchange Subscription Patterns”

Report a bug

4.7.6. Exclusive Bindings for Direct Exchanges

Declaring an exclusive binding on a direct exchange ensures that a maximum of one consumer is bound to
the exchange using this key at any time. When a new consumer is subscribed to the exchange using this key,
the previous consumer's binding is dropped synchronously. This allows messaging routing to be switched
between consumers with guaranteed message atomicity, with no possibility of dropped messages or
duplicate delivery while the composite bind/unbind operation is taking place.

The exchange-bind argument qpid.exclusive-binding is used to declare an exclusive binding.

drain -f "amq.direct; {create:always, link: {name:one, x-bindings:
[{key:unique, arguments: {qpid.exclusive-binding:True}}]}}"

Note that exclusive bindings are not available over AMQP 1.0.

Report a bug

4.8. Fanout Exchange

Messaging Programming Reference

50

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10219-764911+%5BLatest%5D&comment=Title%3A+Subscribe+to+a+Direct+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10219-764911+14+Jul+2015+13%3A52+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8092-631282+%5BLatest%5D&comment=Title%3A+Exclusive+Bindings+for+Direct+Exchanges%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8092-631282+15+Apr+2014+14%3A25+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

4.8. Fanout Exchange

4.8.1. The pre-configured Fanout Exchange

Red Hat Enterprise Messaging ships with a pre-configured Fanout exchange named amq.fanout.

Report a bug

4.8.2. Fanout Exchange

A Fanout Exchange routes all messages to all queues bound to the exchange.

Figure 4.2. Fanout Exchange

A Fanout exchange is a specialization of the Topic Exchange. Effectively, a Fanout Exchange is a Topic
Exchange where all queues bound to the exchange use a wildcard of # as their binding key.

Report a bug

4.8.3. Create a Fanout Exchange using qpid-config

The following example creates a new fanout exchange using qpid-config:

qpid-config add exchange fanout my-fanout-exchange

To make the exchange durable (persistent between restarts of the broker), use the --durable option:

qpid-config add exchange fanout my-fanout-exchange --durable

Chapter 4. Beyond "Hello World"

51

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10214-591916+%5BLatest%5D&comment=Title%3A+The+pre-configured+Fanout+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10214-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8085-704176+%5BLatest%5D&comment=Title%3A+Fanout+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8085-704176+28+Aug+2014+10%3A15+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The qpid-config exchanges command lists the exchanges on the broker.

Report a bug

4.8.4. Create a Fanout Exchange from an application

A fanout exchange can be declared in an application by using the following parameters in the address of a
sender or receiver:

create: always

node: {type: topic, x-declare: {exchange: exchange-name, type: fanout}}

The following example presents the address to create a new fanout exchange named myfanout.

Python

tx = ssn.sender("myfanout; {create: always, node: {type: topic, x-
declare: {exchange: myfanout, type: fanout}}}")

Report a bug

4.8.5. Publish to Multiple Queues using the Fanout Exchange

All queues bound to a fanout exchange receive a copy of all messages sent to the exchange; so to publish to
all consumers on a fanout exchange, send a message to the exchange.

Python

import sys
from qpid.messaging import *
con = Connection("localhost:5672")
con.open()
try:
 ssn = con.session()
 tx = ssn.sender("amq.fanout")
 tx.send("Hello to all consumers bound to the amq.fanout exchange")
finally:
 con.close()

Report a bug

4.8.6. Subscribe to a Fanout Exchange

When subscribing to a fanout exchange you have two options:

1. Subscribe to the exchange using an ephemeral subscription. This creates and binds a temporary
private queue that is destroyed when your application disconnects. This approach makes sense
when you do not need to share responsibility for the messages between multiple consumers, and
you do not care about messages that are sent when your application is not running or is
disconnected.

2. Subscribe to a queue that is bound to the exchange. This allows messages to be buffered in the
queue when your application is disconnected, and allows several consumers to share responsibility
for the messages in the queue.

Messaging Programming Reference

52

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10217-591916+%5BLatest%5D&comment=Title%3A+Create+a+Fanout+Exchange+using+qpid-config%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10217-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10211-591916+%5BLatest%5D&comment=Title%3A+Create+a+Fanout+Exchange+from+an+application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10211-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10215-591916+%5BLatest%5D&comment=Title%3A+Publish+to+Multiple+Queues+using+the+Fanout+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10215-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Private, ephemeral subscription

To implement the private, ephemeral subscription, create a receiver using the name of the fanout exchange
as the receiver's address. For example:

Python

rx = receiver("amq.fanout")

Shareable subscription

To implement a shareable subscription that persists across consumer application restarts, create a queue,
and subscribe to that queue.

You can create and bind the queue using qpid-config:

qpid-config add queue shared-q
qpid-config bind amq.fanout shared-q

Note: To make the queue persistent across broker restarts, use the --durable option.

Use the qpid-config command to view the exchange bindings after issuing these commands. On MRG
Messaging 2.2 and below use the command qpid-config exchanges -b. On MRG Messaging 2.3 and
above use the command qpid-config exchanges -r.

Once you have created and bound the queue, in your application create a receiver that listens to this queue:

Python

rx = receiver("shared-q")

You could also create and bind the queue in the application code, rather than using qpid-config:

AMQP 0-10

Python

rx = receiver("shared-q;{create: always, link: {x-bindings:
[{exchange: 'amq.fanout', queue: 'shared-q'}]}}")

AMQP 1.0

C++

Receiver receiver = session.createReceiver("amq.fanout;{node:
{capabilities:[shared]}, link: {name: 'shared-q'}}");

See Also:

Section 4.5, “Exchange Subscription Patterns”

Report a bug

4.9. Topic Exchange

Chapter 4. Beyond "Hello World"

53

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10220-626748+%5BLatest%5D&comment=Title%3A+Subscribe+to+a+Fanout+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10220-626748+01+Apr+2014+18%3A05+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

4.9.1. The pre-configured Topic Exchange

Red Hat Enterprise Messaging ships with a pre-configured durable topic exchange named amq.topic.

Report a bug

4.9.2. Topic Exchange

A Topic Exchange routes messages based on the routing key (subject) of the message and the binding key of
the subscription, just as a direct exchange does. The difference is that a topic exchange supports the use of
wildcards in binding keys, allowing you to implement flexible routing schemas.

Figure 4.3. Topic Exchange

Wildcard matching and Topic Exchanges

In the binding key, # matches any number of period-separated terms, and * matches a single term.

So a binding key of #.news will match messages with subjects such as usa.news and
germany.europe.news, while a binding key of *.news will match messages with the subject usa.news,
but not germany.europe.news.

Report a bug

4.9.3. Create a Topic Exchange using qpid-config

The following qpid-config command creates a topic exchange called news:

qpid-config add exchange topic news

Report a bug

Messaging Programming Reference

54

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10216-591916+%5BLatest%5D&comment=Title%3A+The+pre-configured+Topic+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10216-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8082-591821+%5BLatest%5D&comment=Title%3A+Topic+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8082-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10229-591917+%5BLatest%5D&comment=Title%3A+Create+a+Topic+Exchange+using+qpid-config%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10229-591917+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

4.9.4. Create a Topic Exchange from an application

The following example creates a topic exchange called news:

Python

txtopic = ssn.sender("news; {create: always, node: {type: topic}}")

Report a bug

4.9.5. Publish to a Topic Exchange

To publish to a topic exchange, create a sender whose address is the exchange, then set the subject of the
message to the routing key.

In the following example, messages are sent to the news topic exchange with routing keys that allow
geography-based subscriptions by consumers:

Python

import sys
from qpid.messaging import *
conn = Connection("localhost:5672")
conn.open()
try:
 ssn = conn.session()
 txnews = ssn.sender("news; {create: always, node: {type: topic}}")
 msg = Message("News about Europe")
 msg.subject = "europe.news"
 txnews.send(msg)
 msg = Message("News about the US")
 msg.subject = "usa.news"
 txnews.send(msg)
finally:
 conn.close()

Report a bug

4.9.6. Subscribe to a Topic Exchange

To subscribe to topic exchange, create a queue and bind it to the exchange with the desired routing key.

The following example uses qpid-config to create a queue named news and bind it to the amq.topic
exchange with a wildcard that matches everything.news, where everything is any number of period-
separated terms:

qpid-config add queue news
qpid-config bind amq.topic news "#.news"

Now you can listen to the news queue for all messages whose routing key ends with .news:

Python

rxnews = ssn.receiver("news")

Chapter 4. Beyond "Hello World"

55

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10223-591916+%5BLatest%5D&comment=Title%3A+Create+a+Topic+Exchange+from+an+application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10223-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10906-591948+%5BLatest%5D&comment=Title%3A+Publish+to+a+Topic+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10906-591948+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

You can also do the entire operation (create, bind, and listen) in code, by using an address like the one in the
following example:

AMQP 0-10

Python

rxnews = ssn.receiver("news;{create: always, node: {type:queue},
link:{x-bindings:[{exchange: 'amq.topic', queue: 'news', key:
'#.news'}]}}")

AMQP 1.0

C++

Receiver rxnews = ssn.createReceiver("amq.topic/#.news;{node:
{capabilities:[shared]}, link:{name: 'news'}}");

You could also create an ephemeral subscription for your application, if you do not care about queuing
messages when your application is disconnected or sharing responsibility for messages. This method
creates and binds a temporary private queue for your application:

Python

rxnews = ssn.receiver("amq.topic/#.news");

In topic exchange binding key wildcard matching, the # symbol will match any number of period-separated
terms. The # will match exactly one term.

See Also:

Section 4.5, “Exchange Subscription Patterns”

Report a bug

4.10. Headers Exchange

4.10.1. The pre-configured Headers Exchange

Red Hat Enterprise Messaging ships with a pre-configured durable headers exchange named amq.match.

Report a bug

4.10.2. Headers Exchange

The Headers Exchange allows routing based on matches with properties in the message header. This allows
flexible routing schemas based on arbitrary domain-specific attributes of messages.

Report a bug

4.10.3. Create a Headers Exchange using qpid-config

The following example qpid-config command creates a headers exchange called property-match:

Messaging Programming Reference

56

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10221-704161+%5BLatest%5D&comment=Title%3A+Subscribe+to+a+Topic+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10221-704161+28+Aug+2014+08%3A43+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10209-591916+%5BLatest%5D&comment=Title%3A+The+pre-configured+Headers+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10209-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8137-591820+%5BLatest%5D&comment=Title%3A+Headers+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8137-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

qpid-config add exchange headers property-match

Report a bug

4.10.4. Create a Headers Exchange from an application

The following code creates a headers exchange called headers-match:

Python

txheaders = ssn.sender("headers-match;{create: always, node: {type:
topic, x-declare: {exchange: headers-match, type: headers}}}")

Report a bug

4.10.5. Publish to a Headers Exchange

To publish to a headers exchange, pass the name of the exchange to the sender constructor, and add the
header keys and value to the message properties. For example:

Python

import sys
from qpid.messaging import *
conn = Connection("localhost:5672")
conn.open()
try:
 ssn = conn.session()
 txheaders = ssn.sender("amq.match")
 msg = Message("Headers Exchange message")
 msg.properties['header1'] = 'value1'
 txheaders.send(msg)
finally:
 ssn.close()

Report a bug

4.10.6. Subscribe to a Headers Exchange

Changes

Updated April 2013.

Updated July 2013.

The following code creates a queue match-q, and subscribes it to the amq.match exchange using a
binding key that matches messages that have a header key header1 with a value of value1:

AMQP 0-10

Python

rxheaders = ssn.receiver("match-q;{create: always, node: {type:
queue}, link:{x-bindings:[{key: 'binding-name', exchange:
'amq.match', queue: 'match-q', arguments:{'x-match': 'any',

Chapter 4. Beyond "Hello World"

57

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10222-591916+%5BLatest%5D&comment=Title%3A+Create+a+Headers+Exchange+using+qpid-config%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10222-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10907-591948+%5BLatest%5D&comment=Title%3A+Create+a+Headers+Exchange+from+an+application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10907-591948+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10213-704177+%5BLatest%5D&comment=Title%3A+Publish+to+a+Headers+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10213-704177+28+Aug+2014+10%3A16+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

'amq.match', queue: 'match-q', arguments:{'x-match': 'any',
'header1': 'value1'}}]}}")

AMQP 1.0

C++

Receiver rxheaders = ssn.createReceiver("amq.match; {link:
{name:match-q, filter:{value:{'x-match': 'any', 'header1': 'value1'},
name: headers, descriptor:'apache.org:legacy-amqp-headers-
binding:map'}}}");

The x-match argument can take the values any, which matches messages with any of the key value pairs
in the binding, or all, which matches messages that have all the key value pairs from the binding key in their
header.

Note that you cannot match against multiple values for the same header. You can use multiple headers with
different values, but only one value can be matched against a particular header.

AMQP 1.0 does not support link-scoped x-binding, and so a filter is used.

AMQP 0-10 uses a link-scoped x-binding. Note the x-bindings argument key. This argument creates a
named handle for the binding, which is visible when running qpid-config exchanges -r. Without a
handle, a binding cannot be deleted by name. A null key is valid, but in addition to not being able to be
deleted by name, when a binding is created with a null handle, any further attempt to create a binding with
a null handle on that exchange will be update the existing binding rather than create a new one.

Report a bug

4.11. XML Exchange

4.11.1. Custom Exchange Types

AMQP Messaging supports custom exchange types. Custom exchanges allow you to manipulate or match
messages based on any criteria.

Red Hat Enterprise Messaging ships with one custom exchange type, the XML Exchange.

Report a bug

4.11.2. The pre-configured XML Exchange Type

Red Hat Enterprise Messaging ships with a custom XML Exchange type.

The XML Exchange matches messages based on a XQuery applied to the headers or message content.
Messages containing XML data can be sent to this exchange and filtered based on the message contents, as
well as on the message headers.

Report a bug

4.11.3. Create an XML Exchange

The following example qpid-config command creates an XML exchange called myxml:

qpid-config add exchange xml myxml

Messaging Programming Reference

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10218-691199+%5BLatest%5D&comment=Title%3A+Subscribe+to+a+Headers+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10218-691199+07+Aug+2014+12%3A51+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8114-591822+%5BLatest%5D&comment=Title%3A+Custom+Exchange+Types%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8114-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8106-591822+%5BLatest%5D&comment=Title%3A+The+pre-configured+XML+Exchange+Type%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8106-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The following example code demonstrates how to achieve the same in an application:

Python

tx = ssn.sender("myxml; {create: always, node: {type: topic, x-
declare: {exchange: myxml, type: xml}}}")

Report a bug

4.11.4. Subscribe to the XML Exchange

The following code subscribes to an XML exchange myxml by creating a queue xmlq and binding it to the
exchange with an XQuery.

AMQP 0-10

Python

rxXML = ssn.receiver("myxmlq; {create:always, link: { x-bindings:
[{exchange:myxml, key:weather, arguments:{xquery:'./weather'} }]}}")

AMQP 1.0

C++

Receiver rxXML = ssn.createReceiver("myxml/weather; {link:
{name:myxmlq, filter:{name:myfilter, descriptor:'apache.org:query-
filter:string', value:'./weather'}}}");

The XQuery ./weather will match any messages whose body content has the root XML element
<weather>.

Note the use of the key argument for x-bindings. This ensures that the binding has a unique name,
allowing it to be deleted and updated by name, and ensuring that it is not accidentally updated, as might be
the case if it were anonymous in the namespace of the exchange.

The following code demonstrates using the XML exchange with a more complex XQuery (using AMQP 0-10
addressing):

Python

#!/usr/bin/python
import sys
from qpid.messaging import *

conn = Connection("localhost:5672")
conn.open()
try:
 ssn = conn.session()
 tx = ssn.sender("myxml/weather; {create: always, node: {type:
topic, x-declare: {exchange: myxml, type: xml}}}")

 xquerystr = 'let $w := ./weather '
 xquerystr += "return $w/station = 'Raleigh-Durham International

Chapter 4. Beyond "Hello World"

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10908-591948+%5BLatest%5D&comment=Title%3A+Create+an+XML+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10908-591948+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Airport (KRDU)' "
 xquerystr += 'and $w/temperature_f > 50 '
 xquerystr += 'and $w/temperature_f - $w/dewpoint > 5 '
 xquerystr += 'and $w/wind_speed_mph > 7 '
 xquerystr += 'and $w/wind_speed_mph < 20'

 rxaddr = 'myxmlq; {create: always, '
 rxaddr += 'link: {x-bindings: [{exchange: myxml, '
 rxaddr += 'key: weather, '
 rxaddr += 'arguments: {xquery: "' + xquerystr + '"'
 rxaddr += '}}]}}'

 rx = ssn.receiver(rxaddr)

 msgstr = '<weather>'
 msgstr += '<station>Raleigh-Durham International Airport (KRDU)
</station>'
 msgstr += '<wind_speed_mph>16</wind_speed_mph>'
 msgstr += '<temperature_f>70</temperature_f>'
 msgstr += '<dewpoint>35</dewpoint>'
 msgstr += '</weather>'

 msg = Message(msgstr)

 tx.send(msg)

 rxmsg = rx.fetch(timeout=1)
 print rxmsg

 ssn.acknowledge()

finally:
 conn.close()

Report a bug

Messaging Programming Reference

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10208-691200+%5BLatest%5D&comment=Title%3A+Subscribe+to+the+XML+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10208-691200+07+Aug+2014+12%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 5. Message Delivery and Acceptance

5.1. The Lifecycle of a Message

5.1.1. Message Delivery Overview

The following diagram illustrates the message delivery lifecycle.

Figure 5.1. Fanout Exchange

A message producer generates a message. A message is an object with content, a subject, and headers. At
the minimum, a message producer will produce a message with message content.

The message producer may send the message to the broker and let the routing be taken care of by the
properties of the message or by the address of the sender object used to send the message (1).

Or the message producer may set the message.subject, which acts as the routing key (2), and then send
the message to the broker (3).

Consumers subscribed to exchanges (which uses a temporary, private queue in the background) receive
messages when they are connected (4).

Messages are buffered in queues that are subscribed to exchanges (5). Consumers can subscribe to queues
and receive messages that were buffered while the consumer was disconnected (6). These queues can also
be used to share responsibility for messages between consumers.

Report a bug

5.1.2. Message Generation

Chapter 5. Message Delivery and Acceptance

61

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8238-591826+%5BLatest%5D&comment=Title%3A+Message+Delivery+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8238-591826+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The Message object is used to generate a message.

Python

import sys
from qpid.messaging import *
...
msg = Message('This is the message content')
msg.content = 'Message content can be assigned like this'
msg.properties['header-key'] = 'value'

tx = ssn.sender('amq.topic')

msg.subject set by sender for routing purposes
tx.send(msg)

msg.subject = 'Messaging Routing Key can also be manually set'
beware that this will interfere with sender-object-based routing

Report a bug

5.1.3. Message Send over Reliable Link

When sent over a reliable link:

1. The sender passes the message to the broker.

2. The broker responds with an acknowledgement that it takes responsibility for delivery of the
message.

3. The sender deletes its local copy of the message.

In synchronous operation the thread is blocked while this acknowledgement round-trip occurs. When sending
using asynchronous operation, the acknowledgement and deletion is performed in the background, and sent
but unacknowledged messages are buffered in the sender replay buffer until they are acknowledged.

Report a bug

5.1.4. Message Send over Unreliable Link

When sent over an unreliable link:

1. The sender passes the message to the broker.

2. The sender deletes the local copy of the message.

Messages may be lost between the sender and the broker in this mode.

Report a bug

5.1.5. Message Distribution on the Broker

When the broker receives a message, it examines the message and the routing information associated with it
to determine how to deliver it.

The bindings on the exchanges that receive the message are examined, and when there is a match between
the message and a binding, the message is delivered to any queue with that binding.

Messaging Programming Reference

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10288-591919+%5BLatest%5D&comment=Title%3A+Message+Generation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10288-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10284-591919+%5BLatest%5D&comment=Title%3A+Message+Send+over+Reliable+Link%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10284-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10286-591919+%5BLatest%5D&comment=Title%3A+Message+Send+over+Unreliable+Link%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10286-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Report a bug

5.1.6. Message Receive over Reliable Link

When a message is received over a reliable link:

1. The broker passes the message to the receiver.

From this point a number of possibilities exist when the receiver is an acquiring consumer:

1. The receiver acknowledges responsibility for the message. In this case the broker deletes the server-
side copy of the message.

2. The receiver rejects the message. In this case the broker routes the message to an alternate-
exchange if one is defined for the queue, or else discards the message.

3. The receiver releases the message. In this case the broker returns the message to the queue with a
message header redelivered:true.

4. The receiver disconnects without acknowledging or rejecting the message. In this case the broker
returns the message to the queue with a message header redelivered:true.

Report a bug

5.1.7. Message Receive over Unreliable Link

When a message is received over an unreliable link:

1. The broker passes the message to the receiver.

2. The broker deletes the server-side copy of the message.

There is no opportunity for the receiver to reject the message, and no opportunity for the broker to redeliver it
when using an unreliable link.

Report a bug

5.2. Browsing and Consuming Messages

5.2.1. Message Acquisition and Acceptance

A message consumer can browse the messages in a queue, or consume them.

Browsing means that the consuming application reads the messages, but the messages remain on the queue
for other consumers. Consuming means that the consuming application removes the message from the
queue. This is also known as acquiring a message.

We will first look at the broad distinction between browsing and acquiring messages, then in Acquired and
Acknowledged we'll look in more detail at the acquisition process, which has two phases that we need to
understand.

Browsing

The included drain program can be used in either browse or acquisition mode.

The drain source code is part of the C++ and the Python client library packages. You can compile the C++
source code, or run the Python source uncompiled using a Python interpreter.

Chapter 5. Message Delivery and Acceptance

63

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10287-591919+%5BLatest%5D&comment=Title%3A+Message+Distribution+on+the+Broker%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10287-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10285-591919+%5BLatest%5D&comment=Title%3A+Message+Receive+over+Reliable+Link%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10285-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10283-591919+%5BLatest%5D&comment=Title%3A+Message+Receive+over+Unreliable+Link%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10283-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

When the client library packages are installed, drain can be found in:

/usr/share/doc/python-qpid-0.14/examples/api/drain
/usr/share/qpidc/examples/messaging/drain.cpp

To demonstrate the difference between browsing and acquisition, you can try the following:

With the broker installed and running, create a queue with the qpid-config command:

qpid-config add queue browse-acquire-demo

You should now see your browse-acquire-demo queue when you run qpid-config queues.

Now let's send a message to the browse-acquire-demo using spout. Spout is included in the same
packages as drain, and can be found in the same directories. Run spout to send a message to the queue:

./spout browse-acquire-demo "Hello World"

Our "Hello World" message has now been sent to the browse-acquire-demo queue. Let's use drain to
browse it first of all:

./drain -c 0 "browse-acquire-demo; {mode:browse}"

You will now see the "Hello World" message. Run the above drain a second time, and you'll see the
message again. Running the drain program twice simulates two different browsing consumers accessing the
queue. The message is read and remains available for other consuming applications when it is browsed.

Try deleting the browse-acquire-demo queue using qpid-config:

qpid-config del queue browse-acquire-demo

qpid-config responds with an error because a message remains in the queue.

Now run this drain command:

./drain -c 0 "browse-acquire-demo"

The default mode is acquisition. When drain is run like this with no mode specified, it acquires the message.
You will see the "Hello World" message just as you did on the previous browsing accesses. However, this
time the message has been removed. Try browsing it again using drain. The queue is empty.

You can delete the now-empty queue using qpid-config:

qpid-config del queue browse-acquire-demo

One thing you will not see with the drain demo is the fact that browsers see a message only once. Because
each time drain is run it creates a different browser, it sees the message in the queue each time. The same
browser, however, sees the message only once, no matter how many times it looks.

The following Python code demonstrates browsing and acquiring, and demonstrates how a browser sees
each message once:

Python

import sys

Messaging Programming Reference

64

import sys
from qpid.messaging import *

def msgfetch(rx):
 try:
 msg = rx.fetch(timeout=1)
 except MessagingError, m:
 msg = m
 return msg

connection = Connection("localhost:5672")
connection.open()
try:
 session = connection.session()
 tx = session.sender("browse-acquire-demo;{create:always}")
 rxbrowse1 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxbrowse2 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxbrowse3 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxacquire = session.receiver("browse-acquire-demo")

 tx.send("Hello World")

 print "\nBrowser 1 saw message:"
 print msgfetch(rxbrowse1)

 print "Browser 1 then saw message:"
 print msgfetch(rxbrowse1)

 print "\nBrowser 2 saw message:"
 print msgfetch(rxbrowse2)

 print "Browser 2 then saw message:"
 print msgfetch(rxbrowse2)

 print "\nAcquired message:"
 print msgfetch(rxacquire)

 print "\nBrowser 3 saw message:"
 print msgfetch(rxbrowse3)

except MessagingError, m:
 print m
finally:
 connection.close()

Browser 1 and Browser 2 both see the message, and only see it once each. Because the message is
acquired before Browser 3 looks at the queue, Browser 3 sees no message on the queue.

However, now run drain to examine the queue:

./drain -c 0 browse-acquire-demo

You may be surprised to see the message still on the queue (you just removed it, by the way). What
happened?

Acquired and Acknowledged

Chapter 5. Message Delivery and Acceptance

65

When our receiver acquired the message from the queue, the broker set the message to acquired. When a
message is acquired, the broker treats the message as if it has been delivered, but it does not delete it
from the queue. One of a number of things happen from here: the consumer who acquired the message
acknowledges the message, releases the message, or rejects the message, or the consumer might
disconnect through a network failure.

In our case, our application is disconnecting from the broker without acknowledging receipt of the message.
While our application is connected the message is acquired, and message consumers browsing or fetching
from the queue will not see the message. When our application disconnects without acknowledging receipt,
the broker switches the message out of acquired state and sets a header redelivered=True. The
message is then made available to other consumers, such as the drain browser that we ran after our
application closed.

This goal of the "acquire, acknowledge" pattern is to provide reliable delivery of messages. Imagine a
situation where a group of nodes are performing a service that is driven by messages. Each node in the
workgroup grabs a bunch of messages from the queue when it has the capacity to perform some work. A
node might grab a handful of messages from the queue, and then suffer a power outage. In this case those
messages would be missing, if the broker did not have the concept of acquire and acknowledge. With this
pattern, the worker node can acquire the messages, perform some work, and then acknowledge ownership at
a point in time where it is safe to say that the message has been delivered and acted on. This narrows the
window for exceptions. Even in the case where the node fails right at the critical moment after it has acted on
the messages but before it can acknowledge receipt, the other nodes will retrieve the messages from the
queue with the header 'redelivered=true'. This alerts the other nodes that this message may have
already been acted on, and they can perform checks to see if that is so. This narrows the window for
exceptions even further, when the applications are designed to take advantage of these features.

To see a message returning to the queue when a consumer disconnects without acquiring the message
demonstrated inside the application, add the following code to the end of the application, after the final
connection.close() line:

Python

connection.open()
try:
 session=connection.session()

 rxacquire2 = session.receiver("browse-acquire-demo")
 print "\nAcquirer 2 saw message:"
 print msgfetch(rxacquire2)
except MessagingError, m:
 print m
finally:
 session.acknowledge()
 connection.close()

Our application closes its connection, disconnecting the consumer from the broker without acknowledging
receipt of the message. We then open a new connection to broker, effectively appearing as a new consumer.
Our receiver now sees the message, which has been marked by the broker as redelivered to inform us
that another consumer acquired this message previously. We have now acquired this message, and it will
again disappear for other consumers browsing or fetching from this queue. This time, however, we call
session.acknowledge() before closing the connection. This method acknowledges receipt of the
message (it acknowledges all messages as-yet unacknowledged for the session). Since we have
acknowledged receipt of the message, the message is acquired, and it is removed from the queue.

If you run drain now, you will see that there are no messages in the queue.

Messaging Programming Reference

66

Releasing a message

A consumer can explicitly release a message. When this happens, the message is returned to the queue for
redelivery. The effect is the same as if the consumer lost its connection to the broker.

To release the message explicitly with the Python API, call the acknowledge() method with the message
and Disposition(RELEASED) as parameters:

session.acknowledge(msg, Disposition(RELEASED))

To release the message explicitly with the C++ API, call the session's release() method.

Link Reliability

Note that this two-phase acquisition and acceptance behavior is the behavior over a reliable link (technically
an at-least-once link), which is the default link for receiver connections to the broker. If you explicitly connect
your receiver to a queue using an unreliable link, or directly connect to an exchange, then received
messages are immediately acquired with no need to acknowledge them.

Cleaning up the demo queue

To delete the queue we used for this demo, you can either restart the broker (all non-durable queues are
deleted when the broker is restarted), or you can use qpid-config:

qpid-config del queue browse-acquire-demo

If there are messages remaining in the queue this command will fail with an message informing you that the
queue is not empty. You can use the --force switch to override this check and delete a queue with
messages in it, or you can use drain to empty the queue, and then reissue the command on the now-empty
queue.

Report a bug

5.2.2. Message Acquisition and Acceptance on an Unreliable Link

The default link between a receiver and the broker is a reliable link (technically known as a link with at-least-
once reliability). This link uses a two-phase acquire and acknowlege behavior to ensure that the responsibility
for a message is explicitly accepted by a consumer before the broker deletes it from the queue.

You can also request an unreliable link between the receiver and the broker. Over an unreliable link,
messages are considered acknowledged and acquired as soon as the consumer fetches them from the
queue. There is no acquired phase where a message will return to the queue if the receiver does not
explicitly acknowledge it. The broker considers that the consumer has acknowledged the acquisition and
deletes the message when the consumer fetches it, without waiting for an acquisition acknowledgement. This
link has reduced reliability, but can result in increased throughput. It is useful when you can afford to lose
messages in the event of consumer failure.

To request an unreliable link, specify link: {reliability: unreliable} in the address. For example,
to create a receiver with an unreliable link to a queue named "browse-acquire-demo":

Python

rxacquire = session.receiver("browse-acquire-demo; {link:
{reliability: unreliable}")

Chapter 5. Message Delivery and Acceptance

67

http://qpid.apache.org/apis/0.16/cpp/html/a00294.html#a305fa96f24660aa8aceea4c26a2db259
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8241-591826+%5BLatest%5D&comment=Title%3A+Message+Acquisition+and+Acceptance%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8241-591826+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The following program demonstrates the use and behavior of receivers using an unreliable link:

Python

import sys
from qpid.messaging import *

def msgfetch(rx):
 try:
 msg = rx.fetch(timeout=1)
 except MessagingError, m:
 msg = m
 return msg

linktype=""
while linktype != "R" and linktype !="U":
 response = raw_input("Use (R)eliable or (U)nreliable link [R/U]?")
 linktype = response.upper()

connection = Connection("localhost:5672")
connection.open()
try:
 session = connection.session()
 tx = session.sender("browse-acquire-demo;{create: always}")
 rxbrowse1 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxbrowse2 = session.receiver("browse-acquire-demo;{mode:browse}")
 rxbrowse3 = session.receiver("browse-acquire-demo;{mode:browse}")
 if linktype == "R":
 rxacquire = session.receiver("browse-acquire-demo")
 else:
 rxacquire = session.receiver("browse-acquire-demo; {link:
{reliability:unreliable}}")

 tx.send("Hello World")

 print "\nBrowser 1 saw message:"
 print msgfetch(rxbrowse1)

 print "Browser 1 then saw message:"
 print msgfetch(rxbrowse1)

 print "\nBrowser 2 saw message:"
 print msgfetch(rxbrowse2)

 print "Browser 2 then saw message:"
 print msgfetch(rxbrowse2)

 print "\nAcquired message:"
 print msgfetch(rxacquire)

 rxacquire.close()

 print "\nBrowser 3 saw message:"
 print msgfetch(rxbrowse3)

except MessagingError, m:

Messaging Programming Reference

68

 print m
finally:
 connection.close()

connection.open()
try:
 session=connection.session()

 rxacquire2 = session.receiver("browse-acquire-demo")
 print "\nAcquirer 2 saw message:"
 print msgfetch(rxacquire2)

except MessagingError, m:
 print m
finally:
 session.acknowledge()
 connection.close()

When you select a reliable link for the demonstration, Acquirer 2 sees a redelivered message:

Acquirer 2 saw message:
Message(redelivered=True, properties={'x-amqp-0-10.routing-key': u'browse-
acquire-demo'}, content='Hello World')

Because the first acquirer did not acknowledge the message acquisition before disconnecting, the broker has
returned the message to the queue for redelivery.

When you select an unreliable link for the demonstration, Acquirer 2 does not see any message:

Acquirer 2 saw message:
None

On an unreliable link, even though the first acquirer did not explicitly accept responsibility for the message by
acknowledging acquisition, the broker has deleted the message from the queue. That's the meaning of
unreliable.

Releasing and Rejecting messages over an unreliable link

It is not possible to release or reject messages acquired over an unreliable link. Over an unreliable link
messages are implicitly acknowledged when they are fetched.

Report a bug

5.2.3. Message Rejection

After acquiring a message on a reliable link your application can reject it. When a message is rejected the
broker will delete it from the queue. If the queue is configured with an alternate exchange, then the
rejected message is routed there; otherwise it is discarded.

To reject a message using the Python API, call the acknowledge() method of the session, passing in the
message that you wish to reject, and specify REJECTED as the Disposition parameter:

Python

msg = rx.fetch(timeout = 1)

Chapter 5. Message Delivery and Acceptance

69

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10258-591920+%5BLatest%5D&comment=Title%3A+Message+Acquisition+and+Acceptance+on+an+Unreliable+Link%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10258-591920+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

if msg.content == "something we don't like":
 ssn.acknowledge(msg, Disposition(REJECTED))
else:
 ssn.acknowledge(msg)

Note that this is only possible when using a reliable link. When using an unreliable link, mesages are
implicitly acknowledged when they are fetched.

Report a bug

5.2.4. Receiving Messages from Multiple Sources

Prerequisites:

Section 7.3.2, “Enable Receiver Prefetch”

A Receiver object receives messages from a single subscription. An application can create many receivers,
and may wish to deal with messages from these various receivers in the order that the messages are
received. The session object provides a method nextReceiver that allows an application to read
messages from multiple receivers in a federated order.

Note: To use the Next Receiver feature, prefetch must be enabled for the receivers, and the receivers
must be using the same session.

Python

receiver1 = session.receiver(address1)
receiver1.capacity = 10
receiver2 = session.receiver(address)
receiver2.capacity = 10
message = session.next_receiver().fetch()
print message.content
session.acknowledge()

C++

Receiver receiver1 = session.createReceiver(address1);
receiver1.setCapacity(10);
Receiver receiver2 = session.createReceiver(address2);
receiver2.setCapacity(10);

Message message = session.nextReceiver().fetch();
std::cout << message.getContent() << std::endl;
session.acknowledge(); // acknowledge message receipt

.NET/C#

Receiver receiver1 = session.CreateReceiver(address1);
receiver1.SetCapacity(10);
Receiver receiver2 = session.CreateReceiver(address2);
receiver2.SetCapacity(10);

Messaging Programming Reference

70

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10212-591916+%5BLatest%5D&comment=Title%3A+Message+Rejection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10212-591916+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Message message = new Message();
message = session.NextReceiver().Fetch();
Console.WriteLine("{0}", message.GetContent());
session.Acknowledge();

Report a bug

5.2.5. Rejected and Orphaned Messages

Messages can be explicitly rejected by a consumer. When a message is fetched over a reliable link, the
consumer must acknowledge the message for the broker to release it. Instead of acknowledging a message,
the consumer can reject the message. The broker discards rejected messages, unless an alternate exchange
has been specified for the queue, in which case the broker routes rejected messages to the alternate
exchange.

Messages are orphaned when they are in a queue that is deleted. Orphaned messages are discarded,
unless an alternate exchange is configured for the queue, in which case they are routed to the alternate
exchange.

Report a bug

5.2.6. Alternate Exchange

An alternate exchange provides a delivery alternative for messages that cannot be delivered via their initial
routing.

For an alternate exchange specified for a queue, two types of unroutable messages are sent to the alternate
exchange:

1. Messages that are acquired and then rejected by a message consumer (rejected messages).

2. Unacknowledged messages in a queue that is deleted (orphaned messages).

For an alternate exchange specified for an exchange, one type of unroutable messages is sent to the
alternate exchange:

1. Messages sent to the exchange with a routing key for which there is no matching binding on the
exchange.

Note that a message will not be re-routed a second time to an alternate exchange if it is orphaned or rejected
after previously being routed to an alternate exchange. This prevents the possibility of an infinite loop of re-
routing.

However, if a message is routed to an alternate exchange and is unable to be delivered by that exchange
because there is no matching binding, then it will be re-routed to that exchange's alternate exchange, if one is
configured. This ensures that fail-over to a dead letter queue is possible.

Report a bug

Chapter 5. Message Delivery and Acceptance

71

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8057-591818+%5BLatest%5D&comment=Title%3A+Receiving+Messages+from+Multiple+Sources%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8057-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8111-591822+%5BLatest%5D&comment=Title%3A+Rejected+and+Orphaned+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8111-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8056-591818+%5BLatest%5D&comment=Title%3A+Alternate+Exchange%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8056-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 6. Advanced Queue Features

6.1. Browse-only Queues

Queues declared "browse-only" allow subscribers to access them and acquire their messages normally, but
message acquisition transparently results only in a browse. The message will remain on the queue, and
accessible to other subscribers.

Messages can only be removed from a browse-only queue by some non-acquisition mechanism: for
example, when the message's TTL (time-to-live) duration expires.

The spout and drain programs are part of the client libraries package and when installed can be found at:

/usr/share/doc/python-qpid-${version}/examples/api/

Here is an example of the creation and use of a browse-only queue by the spout and drain clients.

./spout \
 -c 10 \
 --broker "localhost:${PORT}" \
 'q; {create: always, node:{type:queue , x-declare:{arguments:
{"qpid.browse-only":1}}}}' \
 "All work and no play makes Mick a dull boy."

 ./drain --broker 'localhost:${PORT}' 'q'

See Also:

Section 5.2, “Browsing and Consuming Messages”

Report a bug

6.2. Ignore Locally Published Messages

You can configure a queue to discard all messages published using the same connection as the session that
owns the queue. This suppresses a message loop-back when an application publishes messages to an
exchange that it is also subscribed to.

To configure a queue to ignore locally published messages, use the no-local key in the queue declaration
as a key:value pair. The value of the key is ignored; the presence of the key is sufficient.

For example, to create a queue that discards locally published messages using qpid-config:

qpid-config add queue noloopbackqueue1 --argument no-local=true

Note that multiple distinct sessions can share the same connection. A queue set to ignore locally published
messages will ignore all messages from the connection that declared the queue, so all sessions using that
connection are local in this context.

Report a bug

6.3. Exclusive Queues

Messaging Programming Reference

72

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+13173-592059+%5BLatest%5D&comment=Title%3A+Browse-only+Queues%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13173-592059+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8053-591818+%5BLatest%5D&comment=Title%3A+Ignore+Locally+Published+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8053-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Exclusive queues can only be used in one session at a time. When a queue is declared with the exclusive
property set, that queue is not available for use in any other session until the session that declared the queue
has been closed.

If the server receives a declare, bind, delete or subscribe request for a queue that has been declared as
exclusive, an exception will be raised and the requesting session will be ended.

Note that a session close is not detected immediately. If clients enable heartbeats, then session closes will be
determined within a guaranteed time. See the client APIs for details on how to set heartbeats in a given API.

Report a bug

6.4. Server-side Selectors

6.4.1. Select messages using a filter

MRG 3 supports selecting messages from a queue using a server-side selector. This allows you to specify a
filter using a SQL-like syntax. This filter is applied to the headers and properties of messages on the server.
Messages that match the filter are delivered to the client.

To use server-side selectors, specify a selector in the link portion of the connection URL.

The following example will cause the server to select and deliver messages that have green, red, or blue
as the value of the color property:

queue_name;{link:{selector:"color in ('green', 'red', 'blue')"}}

The following examples demonstrate selectors to filter messages on various header properties:

queue_name;{link:{selector:"amqp.priority = 1"}}
queue_name;{link:{selector:"amqp.priority IS BETWEEN 3 AND 6"}}
queue_name;{link:{selector:"myflag AND amqp.redelivered"}}
queue_name;{link:{selector:"msg_title LIKE '%news%'"}

Python and temporary syntax

With Python, selectors can be used by temporary syntax. For example, the C++ address with selector:

queue_name;{link:{selector:"myproperty = 1"}}

in Python is temporarily used as:

queue_name;{link:{'x-subscribe': {'arguments': {'x-apache-selector':
"myproperty = 1"}}}}

The Java and server-side selectors

The Qpid Java client does not currently support server-side selectors, only JMS selectors. JMS selectors
function differently than server-side selectors. Consult the JMS specification for more detail on JMS slectors.

See Also:

Section 20.11, “Java Message Service with Filters”

Chapter 6. Advanced Queue Features

73

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8103-591822+%5BLatest%5D&comment=Title%3A+Exclusive+Queues%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8103-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Report a bug

6.4.2. Server-side selector syntax

Following is the informal syntax for server-side selectors:

SelectExpression ::= OrExpression? // Note 0

// Lexical Elements
Alpha ::= [a-zA-Z]
Digit ::= [0-9]

IdentifierInitial ::= Alpha | "_" | "$"
IdentifierPart ::= IdentifierInitial | Digit | "."
Identifier ::= IdentifierInitial IdentifierPart*
Constraint : Identifier NOT IN ("NULL", "TRUE", "FALSE", "NOT", "AND", "OR",
"BETWEEN", "LIKE", "IN", "IS", "ESCAPE") // Note 1

LiteralString ::= ("'" [^']* "'")+ // Note 2
LiteralExactNumeric ::= Digit+
Exponent ::= ("+"|"-")? LiteralExactNumeric
LiteralApproxNumeric ::= Digit "." Digit* ("E" Exponent)? |
 "." Digit+ ("E" Exponent)? |
 Digit+ "E" Exponent // Note 1
LiteralBool ::= "TRUE" | "FALSE" // Note 1
Literal ::= LiteralBool | LiteralString | LiteralApproxNumeric |
LiteralExactNumeric

EqOps ::= "=" | "<>"
ComparisonOps ::= EqOps | ">" | ">=" | "<" | "<="
AddOps ::= "+" | "-"
MultiplyOps ::= "*" | "/"

// Expression syntax
OrExpression ::= AndExpression ("OR" AndExpression)*
AndExpression ::= ComparisonExpression ("AND" ComparisonExpression)*
ComparisonExpression ::= AddExpression "IS" "NOT"? "NULL" |
 AddExpression "NOT"? "LIKE" LiteralString (
"ESCAPE" LiteralString)? |
 AddExpression "NOT"? "BETWEEN" AddExpression "AND"
AddExpression |
 AddExpression "NOT"? "IN" "(" PrimaryExpression
("," PrimaryExpression)* ")" |
 AddExpression ComparisonOps AddExpression |
 "NOT" ComparisonExpression |
 AddExpression // Note 3

AddExpression ::= MultiplyExpression (AddOps MultiplyExpression)*
MultiplyExpression ::= UnaryArithExpression (MultiplyOps
UnaryArithExpression)*
UnaryArithExpression ::= AddOps AddExpression |

Messaging Programming Reference

74

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+22423-691214+%5BLatest%5D&comment=Title%3A+Select+messages+using+a+filter%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22423-691214+07+Aug+2014+13%3A38+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 "(" OrExpression ")" |
 PrimaryExpression
PrimaryExpression ::= Identifier |
 Literal

Note 0: If the overall expression is empty it evaluates to true; whitespace is ignored; and an empty selector
will be interpreted as always true.

Note 1: All reserved words, including the "E" for exponent and the boolean values true and false, are case-
insensitive.

Note 2: The continuation of this pattern enables embedded single quotes. Single quotes can be embedded
so: '' becomes '.

Note 3: In the ("ESCAPE" LiteralString) clause, LiteralString is limited to a one character
string. The characters % and _ are not allowed.

Report a bug

6.5. Automatically Deleted Queues

6.5.1. Automatically Deleted Queues

Queues can be configured to auto-delete. The broker will delete an auto-delete queue when it has no more
subscribers, or if it is auto-delete and exclusive, when the declaring session ends.

Applications can delete queues themselves, but if an application fails or loses its connection it may not get
the opportunity to clean up its queues. Specifying a queue as auto-delete delegates the responsibility to the
broker to clean up the queue when it is no longer needed.

Auto-deleted queues are generally created by an application to receive messages, for example: a response
queue to specify in the "reply-to" property of a message when requesting information from a service. In this
scenario, an application creates a queue for its own use and subscribes it to an exchange. When the
consuming application shuts down, the queue is deleted automatically. The queues created by the qpid-
config utility to receive information from the message broker are an example of this pattern.

A queue configured to auto-delete is deleted by the broker after the last consumer has released its
subscription to the queue. After the auto-delete queue is created, it becomes eligible for deletion as soon
as a consumer subscribes to the queue. When the number of consumers subscribed to the queue reaches
zero, the queue is deleted.

Here is an example using the Python API to create an auto-delete queue with the name "my-response-
queue":

Python

responsequeue = session.receiver('my-response-queue; {create:always,
node:{x-declare:{auto-delete:True}}}')

Note

Because no bindings are specified in this queue creation, it is bound to the server's default
exchange: a pre-configured nameless direct exchange.

Chapter 6. Advanced Queue Features

75

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+22422-700034+%5BLatest%5D&comment=Title%3A+Server-side+selector+syntax%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22422-700034+19+Aug+2014+22%3A13+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Custom Timeout

A custom timeout can be configured to provide a grace period before the deletion occurs.

Note

Starting from MRG-M 3.1.0, the C++ client adds a default value of 120 seconds to all durable
subscriptions. The qpid python and Java clients do not have a default set, and must be configured
manually.

If qpid.auto_delete_timeout:0 is specified, the parameter has no effect: setting the parameter
to 0 turns off the delayed auto-delete function.

If a timeout of 120 seconds is specified, the broker will wait for 120 seconds after the last consumer
disconnects from the queue before deleting it. If a consumer subscribes to the queue within that grace
period, the queue is not deleted. This is useful to allow for a consumer to drop its connection and reconnect
without losing the information in its queue.

Here is an example using the Python API to create an auto-delete queue with the name "my-response-
queue" and an auto-delete timeout of 120 seconds:

Python

responsequeue = session.receiver("my-response-queue; {create:always,
node:{x-declare:{auto-delete:True, arguments:
{'qpid.auto_delete_timeout':120}}}}")

Be aware that a public auto-deleted queue can be deleted while your application is still sending to it, if your
application is not holding it open with a receiver. You will not receive an error because you are sending to an
exchange, which continues to exist; however your messages will not go to the now non-existent queue.

If you are publishing to a self-created auto-deleted queue, carefully consider whether using an auto-deleted
queue is the correct approach. If the answer is "yes" (it can be useful for tests that clean up after themselves),
then subscribe to the queue when you create it. Your subscription will then act as a handle, and the queue
will not be deleted until you release it.

Using the Python API:

Python

testqueue = session.sender("my-test-queue; {create:always, node:{x-
declare:{auto-delete:True}}}")
testqueuehandle = session.receiver("my-test-queue")

connection.close()
testqueuehandle is now released

An exception to the requirement that a consumer subscribe and then unsubscribe to invoke the auto-deletion
is a queue configured to be exclusive and auto-delete; these queues are deleted by the broker when
the session that declared the queue ends, since the session that declared the queue is only possible
subscriber.

Report a bug

Messaging Programming Reference

76

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8040-746437+%5BLatest%5D&comment=Title%3A+Automatically+Deleted+Queues%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8040-746437+10+Mar+2015+13%3A11+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

6.5.2. Automatically Deleted Queue Example

The following Python code demonstrates the behavior of an auto-delete queue. Auto-delete queues are
cleaned up by the broker when an application quits. They are usually used to subscribe to an exchange, and
a typical use-case is to create an auto-delete queue to specify in the "reply-to" field of a message, to get a
response back.

This demonstration uses an auto-delete queue to publish information to a subscriber. This is not a typical use
of auto-delete queue, for reasons that we will discover.

Copy the code below and save it as auto-delete-producer.py. It can be run using a Python interpreter.

Python

import sys
from qpid.messaging import *

connection=Connection("localhost:5672")
connection.open()
try:
 session=connection.session()
 tx=session.sender("test-queue; {create:always, node:{x-declare:
{auto-delete:True}}}")
 tx.send("test message!")
 x = raw_input("Press Enter to continue")
 tx.send("test message 2")
except MessagingError, m:
 print m
connection.close()

Restart the broker on the local machine. Whenever the broker is restarted, all non-durable queues are
deleted. This allows you to start this test with a clean slate.

Run the command:

qpid-config queues

This lists all the queues on the broker. There will be a dynamically generated queue with a random name with
exclusive and auto-del. This is the queue that qpid-config is using to retrieve the list of queues, and
will change each time you run the command.

Now start the auto-delete-producer.py program using a Python interpreter:

python auto-delete-producer.py

The program pauses and prompts you to press Enter. Press Enter to continue.

Now run qpid-config queues again to list the queues on the broker. This time you will see the test-
queue that our program created. Our program has exited, but the queue has not been deleted because so
far no-one has subscribed to it.

Note that there is a difference in the amqp1.0 behaviour. Using amqp0-10 the queue is deleted when not in
use only if there have been consumers, using amqp1.0 the queue is deleted when not in use even if there
have never been any consumers.

Chapter 6. Advanced Queue Features

77

We will now use the drain utility to examine the messages on the queue. The drain utility is part of the C++
and Python client library packages.

When drain runs, it subscribes to the queue, retrieves messages, and then unsubscribes. Run:

drain -c 0 test-queue

The messages from the test-queue will be displayed on the screen. When you run qpid-config queues
now, you will see that the test-queue has been deleted. A consumer subscribed to the queue, and then
unsubscribed.

Try the process again, and this time use drain to browse the queue, rather than acquire the messages:

drain -c 0 "test-queue;{mode:browse}"

You will observe that the queue is deleted even when it is browsed. Browsing counts as a subscription as
much as acquiring.

Now, to see something very interesting, we will subscribe to the queue and then unsubscribe while our
program is running.

Copy the following code into a file auto-delete-subscribe.py:

Python

import sys
from qpid.messaging import *

connection=Connection("localhost:5672")
connection.open()
try:
 session=connection.session()
 rx=session.receiver("test-queue")
 print rx.fetch(timeout = 1)
 session.acknowledge()
except MessagingError,m:
 print m
connection.close()

Now run auto-delete-producer.py. When it pauses, run auto-delete-subscriber.py, then check
qpid-config queues. You'll see that the queue has been deleted.

Now press Enter to continue. When the program finishes, use drain to browse the test-queue. It doesn't
exist.

The test-queue created by auto-delete-producer.py was deleted when our consumer program
subscribed to the queue by creating and attaching a receiver, and then unsubscribed by closing the
connection. The second message sent by our message producer was never delivered and no exception was
raised.

This is something to be aware of: a sender is a handle to a local router that routes messages to the message
broker. The constructor parameter of the sender is a routing key. Our constructor is the name of a queue, but
a sender always routes messages to an exchange. When no exchange is specified, the default exchange is
used: a nameless direct exchange on the broker. The sender's constructor checks that the routing key it is
given refers to a valid target on the message broker, so it checks that there is a "test-queue" on the default
exchange. At the time the sender is created this queue exists. After that, the sender's send method routes

Messaging Programming Reference

78

messages to the default exchange on the broker with a routing key set to "test-queue". Since the target
exchange still exists no exception is raised when we send. The message arrives at the default exchange on
the broker, where it is discarded because there is no queue subscribed to the exchange that matches the
routing key.

To avoid this scenario, you should either use a non-auto-deleting queue for publishing, or you can create and
subscribe a receiver alongside the sender. This guarantees that the queue will continue to exist for the
lifetime of your sender. To do this in our program, we will create and subscribe a receiver directly after the
sender creates the queue. We will also add a second pause where we can check the existence and state of
the test-queue. Here's the updated program:

Python

import sys
from qpid.messaging import *

connection=Connection("localhost:5672")
connection.open()
try:
 session=connection.session()
 tx=session.sender("test-queue; {create:always, node:{x-declare:
{auto-delete:True}}}")
 rx=session.receiver("test-queue")
 tx.send("test message!")
 x = raw_input("Press Enter to continue")
 tx.send("test message 2")
 x = raw_input("Press Enter to continue")
except MessagingError, m:
 print m
connection.close()

Now start the auto-delete-producer.py program. Run auto-delete-subscriber.py in the first
pause. Previously, this would delete the queue, and the second message would go nowhere. This time our
producer's own subscription is keeping the queue alive. Press Enter to have auto-delete-producer.py
send the second message. Now check the queue using either drain or auto-delete-subscriber.py.
This time you'll see that the queue exists and the message has been delivered as expected.

Report a bug

6.5.3. Queue Deletion Checks

When a queue deletion is requested, the following checks occur:

If ACL is enabled, the broker will check that the user who initiated the deletion has permission to do so.

If the ifEmpty flag is passed the broker will raise an exception if the queue is not empty

If the ifUnused flag is passed the broker will raise an exception if the queue has subscribers

If the queue is exclusive the broker will check that the user who initiated the deletion owns the queue

Report a bug

6.6. Last Value (LV) Queues

Chapter 6. Advanced Queue Features

79

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10206-704178+%5BLatest%5D&comment=Title%3A+Automatically+Deleted+Queue+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10206-704178+28+Aug+2014+10%3A21+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8035-591819+%5BLatest%5D&comment=Title%3A+Queue+Deletion+Checks%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8035-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

6.6.1. Last Value Queues

Last Value Queues allow messages in the queue to be overwritten with updated versions. Messages sent to
a Last Value Queue use a header key to identify themselves as a version of a message. New messages with
a matching key value arriving on the queue cause any earlier message with that key to be discarded. The
result is that message consumers who browse the queue receive the latest version of a message only.

Report a bug

6.6.2. Declaring a Last Value Queue

Last Value Queues are created by supplying a qpid.last_value_queue_key when creating the queue.

For example, to create a last value queue called stock-ticker that uses stock-symbol as the key,
using qpid-config:

qpid-config add queue stock-ticker --argument
qpid.last_value_queue_key=stock-symbol

To create the same queue in an application:

Python

myLastValueQueue = mySession.sender("stock-ticker;{create:always,
node:{type:queue, x-declare:{arguments:{'qpid.last_value_queue_key':
'stock-symbol'}}}}")

Both string and integer values can be provide as the last value. Using the example queue created above,
valid values for the stock-symbol key would include "RHT", "JAVA", and other string values; and also 3, 15,
and other integer values.

Report a bug

6.6.3. Last Value Queue Example

This example demonstrates how to create and use a Last Value Queue. The language bindings and
programming details differ between languages, but the principles are the same.

We will create a messaging queue that provides regular stock price updates. Message consumers are
interested in the current stock price, and do not wish or need to receive messages with historical information.
A last value queue is perfect for this application: newly arriving messages can update and replace older ones.

We will call our queue "stock-ticker". Our stock-ticker queue will use "stock-symbol" as the last value queue
key. The value of this key in the message header will identify a message as a new message to the queue, or
an update to a message already in the queue.

First we import the Qpid Messaging client library:

Python

import sys
from qpid.messaging import *

Now we create a Connection to the broker running on the standard AMQP port, 5672, on the local machine:

Python

Messaging Programming Reference

80

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8099-591822+%5BLatest%5D&comment=Title%3A+Last+Value+Queues%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8099-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8116-591820+%5BLatest%5D&comment=Title%3A+Declaring+a+Last+Value+Queue%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8116-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

connection = Connection("localhost:5672")
connection.open()

And now we use this connection to create a session:

Python

session = connection.session()

Now we create a sender and declare a last value queue at the same time. We will create a queue called
"stock-ticker", and use "stock-symbol" as the last value queue key. Messages sent to this queue will identify
themselves as an update to a previous message by specifying the same "stock-symbol" in their headers.

The following statement is a single line of code. It may break across lines in display, but it should be entered
as a single line.

Python

stockSender = session.sender("stock-ticker;{create:always, node:
{type:queue, x-declare:{arguments:{'qpid.last_value_queue_key':
'stock-symbol'}}}}")

Sidenote: We could also create the queue using the qpid-config command line tool:

qpid-config add queue stock-ticker --argument
qpid.last_value_queue_key=stock-symbol

Now let's create and send some messages to the queue. We use the "stock-symbol" key in the header to
identify which stock a message describes. Our last value queue uses this header key to match our message
with messages already in the queue.

Python

msg1 = Message("10")
msg1.properties = {'stock-symbol':'RHT'}

msg2 = Message("10")
msg2.properties = {'stock-symbol':'JAVA'}

msg3 = Message("10")
msg3.properties = {'stock-symbol':'MSFT'}

msg4 = Message("12")
msg4.properties = {'stock-symbol':'RHT'}

After sending these messages to our last value queue a new consumer should see three messages in the
queue, one for each stock symbol, with msg4 updating msg1. To contrast the behavior of the last value queue
with a standard FIFO queue, we'll send our messages to a control queue, called control-queue at the same
time:

Python

controlSender = session.sender("control-queue;{create:always, node:
{type:queue}}")

Chapter 6. Advanced Queue Features

81

Now we send our messages to the two queues:

Python

stockSender.send(msg1)
controlSender.send(msg1)

stockSender.send(msg2)
controlSender.send(msg2)

stockSender.send(msg3)
controlSender.send(msg3)

stockSender.send(msg4)
controlSender.send(msg4)

Our messages are now in the queues. We create two receivers to now examine the content of the queues:

Python

stockBrowser = session.receiver("stock-ticker; {mode:browse}")
controlBrowser = session.receiver("control-queue; {mode:browse}")

These are browsing receivers, so they do not acquire messages and remove them from the queue. To clear
the queues, remove the browse property from the receiver declarations, like so:
session.receiver("stock-ticker"), and run the demo again. With the receivers browsing, you will be
able to see more distinctly the effect of a Last Value Queue over time by running the demo several times in
succession without clearing the queues.

We will use the prefetch capability of the receivers to browse messages on the queue, and to allow us to
count how many messages are in the queue using the available() method. We do this by setting the
receivers' prefetch capacity to a value higher than the default of 0:

Python

stockBrowser.capacity = 20
controlBrowser.capacity = 20

Once the prefetch capacity of the receiver is set to 20, up to 20 available messages are retrieved
asynchronously from the queue. Because the operation is asynchronous we need to wait for it to complete.
We will put our application to sleep for 10 seconds before examining the prefetched messages:

Python

sleep 10

We need to import sleep from the time library:

Python

from time import sleep

Note that we do this in order to examine the available() property of the receiver with certainty that this
represents the number of messages in the queue. When operating asynchronously available() reports
the number of messages available locally. After a ten second delay, we can be reasonably certain that this is

Messaging Programming Reference

82

the total number of messages in the queue. In an actual asynchronous operation you would not want to block
execution of your application. Instead you would use a pattern like this:

Python

while True:
 try:
 msg = stockBrowser.fetch(timeout = 10)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except Empty:
 break

When our application finishes its sleep cycle, we will examine the number of messages in the queue, and
print them out:

Python

print "Last Value Queue has " + str(stockBrowser.available()) + "
messages"

print "\nLast Value Queue messages:"

for x in range(stockBrowser.available()):
 try:
 msg = stockBrowser.fetch(timeout = 1)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except MessagingError, m:
 pass

print "Control Queue has " + str(controlBrowser.available()) + "
messages"

print "\nControl Queue messages:"
for x in range(controlBrowser.available()):
 try:
 msg = controlBrowser.fetch(timeout = 1)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except MessagingError, m:
 pass

And finally we acknowledge our session and close the connection:

Python

session.acknowledge()
connection.close()

We are now ready to run our test. Here's the complete program listing:

Python

import sys
from qpid.messaging import *
from time import sleep

connection = Connection("localhost:5672")

Chapter 6. Advanced Queue Features

83

try:
 connection.open()
 session = connection.session()

 stockSender = session.sender("stock-ticker;{create:always, node:
{type:queue, x-declare:{arguments:{'qpid.last_value_queue_key':
'stock-symbol'}}}}")
 controlSender = session.sender("control-queue;{create:always, node:
{type:queue}}")

 stockBrowser = session.receiver("stock-ticker;{mode:browse}")
 controlBrowser = session.receiver("control-queue;{mode:browse}")
 controlBrowser = session.receiver("control-queue")

 msg1 = Message("10")
 msg1.properties = {'stock-symbol':'RHT'}

 msg2 = Message("10")
 msg2.properties = {'stock-symbol':'JAVA'}

 msg3 = Message("10")
 msg3.properties = {'stock-symbol':'MSFT'}

 msg4 = Message("12")
 msg4.properties = {'stock-symbol':'RHT'}

 stockSender.send(msg1)
 controlSender.send(msg1)

 stockSender.send(msg2)
 controlSender.send(msg2)

 stockSender.send(msg3)
 controlSender.send(msg3)

 stockSender.send(msg4)
 controlSender.send(msg4)

 stockBrowser.capacity = 20
 controlBrowser.capacity = 20

 sleep(10)

 print "\nLast Value Queue has " + str(stockBrowser.available()) + "
messages"

 print "Last Value Queue messages:"

 for x in range(stockBrowser.available()):
 try:
 msg = stockBrowser.fetch(timeout = 1)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except MessagingError, m:
 pass

 print "\nControl Queue has " + str(controlBrowser.available()) + "

Messaging Programming Reference

84

messages"

 print "Control Queue messages:"

 for x in range(controlBrowser.available()):
 try:
 msg = controlBrowser.fetch(timeout = 1)
 print msg.properties["stock-symbol"] + ":" + msg.content
 except MessagingError, m:
 pass

 session.acknowledge()

except MessagingError,m:
 print m
finally:
 connection.close()

Report a bug

6.6.4. Last Value Queue Command-line Example

The included programs drain and spout can be used for sending and receiving messages for testing
purposes. The source code for the two utilities is included in the Python and C++ client library packages. The
Python version can be run uncompiled using a Python interpreter.

Run the following qpid-config command to create a Last Value Queue:

qpid-config add queue my-queue --argument qpid.last_value_queue_key=type

The header key 'type' is used to match messages in the queue.

Now start one or more browsers using the drain command:

./drain -f -c 0 'my-queue; {mode: browse}'

These browsers will see all the messages as they arrive in the queue in real-time.

Now use spout to send messages to the queue, setting a header value for the key 'type':

./spout -P type=a my-queue a1

./spout -P type=a my-queue a2

./spout -P type=a my-queue a3

./spout -P type=b my-queue b1

./spout -P type=c my-queue c1

./spout -P type=c my-queue c2

./spout -P type=a my-queue a4

The browsers started before these messages were published will see all messages as they arrive.

Now start a new browser:

./drain -c 0 'my-queue; {mode: browse}'

Chapter 6. Advanced Queue Features

85

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8393-591834+%5BLatest%5D&comment=Title%3A+Last+Value+Queue+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8393-591834+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

This browser will see only the last messages for each of the unique 'type' values.

Report a bug

6.7. Priority Queuing

6.7.1. Priority Queuing

Priority queues deliver messages based on their priority. Higher priority messages are delivered before lower
priority messages. A total of 10 distinct priority levels are possible.

A priority queue is declared with a qpid.priority attribute. This attribute is an integer value between 1
and 10, and defines the number of distinct priority levels for the queue.

For example, when the qpid.priority attribute of a queue is set to 10, there are ten distinct priority levels
for the queue. In this case a message with a priority level of 10 is delivered before a message with a priority
of 9, which is delivered before a message with a priority level of 5, which is delivered before a message with
a priority level of 1.

If the qpid.priority attribute of a queue is set to 2, there are two distinct priority levels for the queue. In
this case message priorities 6-10 is the queue priority level 1, and message priorities 1-5 is the queue priority
level 2. Messages in the same priority band are delivered based on their priority and the order in which they
are received.

Report a bug

6.7.2. Declaring a Priority Queue

To declare a priority queue, specify a value for qpid.priorities in the x-declare arguments of the node
declaration. For example:

Python

sender = session.sender('my-queue; {create: always, node:{x-declare:
{arguments:{qpid.priorities:10}}}}')

Using qpid-config:

qpid-config add queue 'my-queue; {create: always, node:{x-declare:
{arguments:{qpid.priorities:10}}}}'

Report a bug

6.7.3. Considerations when using Priority Queues

Browsing Consumers and Priority Queues

Priority Queues deliver messages to acquiring consumers in order of priority, rather than the usual First-In-
First-Out (FIFO) order of a queue. The delivery order for browsing consumers is "undefined". At the time of
writing, browsing consumers receive messages from a priority queue in FIFO order; however, you should not
rely on this behavior in your applications, as it may change in the future.

Fairshare feature

Messaging Programming Reference

86

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10133-591911+%5BLatest%5D&comment=Title%3A+Last+Value+Queue+Command-line+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10133-591911+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8403-591834+%5BLatest%5D&comment=Title%3A+Priority+Queuing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8403-591834+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8401-591834+%5BLatest%5D&comment=Title%3A+Declaring+a+Priority+Queue%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8401-591834+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

If the message enqueue rate sufficient outpaces the dequeue rate in a priority queue, it is possible that lower
priority messages may never be removed from the queue. To avoid this situation the Fairshare feature allows
a consumer to take a specified block of message from each priority level in turn.

Report a bug

6.7.4. Priority Queue Demonstration

The following program demonstrates the use and behavior of a priority queue.

Python

#!/usr/bin/python

import sys
from qpid.messaging import *

connection = Connection("localhost:5672")
connection.open()
try:
 ssn = connection.session()

 x = 0
 print "\n"
 while True:
 print "Create queue with 2 or 10 priority levels?"
 x = raw_input()
 if (x == "2") or (x == "10"):
 break

 tx = ssn.sender("nonpriority-demo-queue; {create: always, node:
{type: 'queue'}}")
 print "Creating a priority queue with " + x + " priority levels:"
 address = "priority-demo-queue; {create: always, "
 address = address + "node:{x-declare: {auto-delete:True, "
 address = address + "arguments: {'qpid.priorities': "
 address = address + x + "}}}}"
 print address
 txpriority = ssn.sender(address)

 rx = ssn.receiver('nonpriority-demo-queue')
 rxpriority = ssn.receiver("priority-demo-queue")
 rxbrowse = ssn.receiver("priority-demo-queue; {mode: browse}")

 print "\nPress Enter to continue\n"
 x = raw_input()

 print "First message sent:"
 msg = Message("priority 1")
 msg.priority = 1
 tx.send(msg)
 txpriority.send(msg)
 print msg

 print "Second message sent:"
 msg = Message('priority 4')

Chapter 6. Advanced Queue Features

87

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10780-591943+%5BLatest%5D&comment=Title%3A+Considerations+when+using+Priority+Queues%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10780-591943+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 msg.priority = 4
 tx.send(msg)
 txpriority.send(msg)
 print msg

 print "\nPress Enter to continue\n"
 x = raw_input()
 print "BROWSE PRIORITY QUEUE"
 print "First browse in priority queue:"
 print rxbrowse.fetch()

 print "Second browse in priority queue:"
 print rxbrowse.fetch()

 print "\nPress Enter to continue\n"
 x = raw_input()

 print "ACQUIRE PRIORITY QUEUE"
 print "First message in priority queue:"
 print rxpriority.fetch()

 print "Second message in priority queue:"
 print rxpriority.fetch()

 print "\nPress Enter to continue\n"
 x = raw_input()

 print "ACQUIRE NON-PRIORITY QUEUE"
 print "First message in non-priority queue:"
 print rx.fetch()

 print "Second message in non-priority queue:"
 print rx.fetch()

 ssn.acknowledge()
finally:
 connection.close()

When run, this program allows you to create a priority queue with 2 or 10 priority levels. It then sends two
messages to this queue, with priorities 1 and 4. It then demonstrates the behavior of browsing and acquiring
from the priority queue, and contrasts this with acquiring from a non-priority queue.

Here is the output when the program is run and a priority queue with 10 distinct priority levels is created:

Create queue with 2 or 10 priority levels?
10
Creating a priority queue with 10 priority levels:
priority-demo-queue; {create: always, node:{x-declare: {auto-delete:True,
arguments: {'qpid.priorities': 10}}}}

The queue is declared as auto-delete: True to allow the program to be run multiple times with different
values for qpid.priorities. If the queue already exists when the sender is created, the value given for
qpid.priorities has no effect. This value only has an effect when the queue is created.

First message sent:
Message(priority=1, content='priority 1')

Messaging Programming Reference

88

Second message sent:
Message(priority=4, content='priority 4')

Two messages are sent, one with priority 1 (the lowest priority), and one with priority 4 (a higher priority).

The first examination is of a browsing receiver. Priority queuing has no effect for browsers, only acquiring
consumers, so we see our messages in the order they were sent - FIFO First In, First Out:

BROWSE PRIORITY QUEUE
First browse in priority queue:
Message(priority=1, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 1')
Second browse in priority queue:
Message(priority=4, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 4')

However, when we acquire the messages from the priority queue, we see that they are dequeued in order of
descending priority - our priority 4 message is delivered before the priority 1 message, even though it was
sent later:

ACQUIRE PRIORITY QUEUE
First message in priority queue:
Message(priority=4, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 4')
Second message in priority queue:
Message(priority=1, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 1')

Finally, for contrast, the messages are dequeued from a non-priority queue, where they are delivered in the
order they were received by the broker:

ACQUIRE NON-PRIORITY QUEUE
First message in non-priority queue:
Message(priority=1, properties={'x-amqp-0-10.routing-key': u'nonpriority-
demo-queue'}, content='priority 1')
Second message in non-priority queue:
Message(priority=4, properties={'x-amqp-0-10.routing-key': u'nonpriority-
demo-queue'}, content='priority 4')

When the demonstration is run and a priority queue with only 2 distinct levels is select, you will observe that
the priority queue delivers the message in the same order they were delivered:

Create queue with 2 or 10 priority levels?
2
Creating a priority queue with 2 priority levels:
priority-demo-queue; {create: always, node:{x-declare: {auto-delete:True,
arguments: {'qpid.priorities': 2}}}}

....

ACQUIRE PRIORITY QUEUE
First message in priority queue:
Message(priority=1, properties={'x-amqp-0-10.routing-key': u'priority-demo-

Chapter 6. Advanced Queue Features

89

queue'}, content='priority 1')
Second message in priority queue:
Message(priority=4, properties={'x-amqp-0-10.routing-key': u'priority-demo-
queue'}, content='priority 4')

When a queue has only two distinct priority levels, those levels are the message priority bands 1-5 and 6-10.
Since our messages both have priorities in the band 1-5, they are considered to have the same priority, and
are delivered based on the order they were received by the broker.

Report a bug

6.7.5. Fairshare Feature

When using a priority queue, a velocity mismatch between message producers and consumers can result in
lower priority messages remaining in the queue indefinitely. To ensure that messages of all priorities are
serviced, the fairshare feature can be used to grab a predetermined number of messages for each priority
level.

The x-qpid-fairshare argument of the x-declare: argument can be used to enforce either a
common number of messages to be grabbed per-priority-level, or a custom number of messages per-priority-
level

The following example creates a queue with 10 priority levels, and will grab 5 messages from each priority in
turn:

C++

Sender sender = session.createSender('my-queue; {create: always,
node:{x-declare:{arguments:{qpid.priorities:10, x-qpid-fairshare:
5}}}}')

The following example creates a queue with 10 priority levels, with custom fairshare amounts per-priority-
level:

C++

Sender sender = session.createSender('my-queue; {create: always,
node:{x-declare:{arguments:{qpid.priorities:10, x-qpid-fairshare-0:
3, x-qpid-fairshare-1: 5, x-qpid-fairshare-2: 3, x-qpid-fairshare-3:
2, x-qpid-fairshare-4: 4, x-qpid-fairshare-5: 5, x-qpid-fairshare-6:
5, x-qpid-fairshare-7: 3, x-qpid-fairshare-8: 5, x-qpid-fairshare-9:
4, x-qpid-priorities: 10}}}}')

Report a bug

6.8. Message Groups

6.8.1. Message Groups

Message Groups allow a sender to indicate that a group of messages should all be handled by the same
consumer. The sender sets the header of messages to identify them as part of the same group, then sends
the messages to a queue that has message grouping enabled.

The broker ensures that a single consumer gets exclusive access to the messages in a group, and that the
messages in a group are delivered and re-delivered in the order they were received.

Messaging Programming Reference

90

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10779-591943+%5BLatest%5D&comment=Title%3A+Priority+Queue+Demonstration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10779-591943+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8402-706024+%5BLatest%5D&comment=Title%3A+Fairshare+Feature%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8402-706024+03+Sep+2014+15%3A18+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Note that Message Grouping cannot be used in conjunction with Last Value Queue or Priority Queuing.

The implementation of Message Groups is described in a specification attached to its feature request: QPID-
3346: Support message grouping with strict sequence consumption across multiple consumers.

Report a bug

6.8.2. Create a Queue with Message Groups enabled

To create a queue with message groups enabled, specify values for qpid.group_header_key and
qpid.shared_msg_group in the queue creation arguments.

The qpid.group_header_key is the header key that will be used to match messages on. Messages with
the same value for this key in their header belong to the same group.

qpid.shared_msg_group should be set to 1.

The following example creates an auto-deleting queue that uses the header field "msgGroupID" to group
messages:

Python

groupedSender = session.sender("my-grouped-msg-queue; {create:
always, node: {x-declare: {auto-delete: True, arguments:
{'qpid.group_header_key': 'msgGroupID', 'qpid.shared_msg_group':
1}}}}")

C++

Sender groupedSender = session.createSender("my-grouped-msg-queue;
{create:always, node: {x-declare: {auto-delete: True, arguments:
{'qpid.group_header_key':'msgGroupID',
'qpid.shared_msg_group':1}}}}")

Report a bug

6.8.3. Message Group Consumer Requirements

The correct handling of group messages is the responsibility of both the broker and the consumer. When a
consumer fetches a message that is part of a group, the broker makes that consumer the owner of that
message group. All of the messages in that group will be visible only to that consumer until the consumer
acknowledges receipt of all the messages it has fetched from that group. When the consumer acknowledges
all the messages it has fetched from the group, the broker releases its ownership of the group.

The consumer should acknowledge all of the fetched messages in the group at once. The purpose of
message grouping is to ensure that all the messages in the group are dealt with by the same consumer. If a
consumer takes grouped messages from the queue, acknowledges some of them and then disconnects due
to a failure, the unacknowledged messages in the group will be released and become available to other
consumers. However, the acknowledged messages in the group have been removed from the queue, so now
part of the group is available on the queue with the header redelivered=True, and the rest of the group is
missing.

For this reason, consuming applications should be careful to acknowledge all grouped messages at once.

Report a bug

Chapter 6. Advanced Queue Features

91

https://issues.apache.org/jira/secure/attachment/12485647/msg_groups_0.2.txt
https://issues.apache.org/jira/browse/QPID-3346
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8226-591826+%5BLatest%5D&comment=Title%3A+Message+Groups%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8226-591826+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8227-704181+%5BLatest%5D&comment=Title%3A+Create+a+Queue+with+Message+Groups+enabled%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8227-704181+28+Aug+2014+10%3A27+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8228-591826+%5BLatest%5D&comment=Title%3A+Message+Group+Consumer+Requirements%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8228-591826+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

6.8.4. Configure a Queue for Message Groups using qpid-config

This example qpid-config command creates a queue called "MyMsgQueue", with message grouping
enabled and using the header key "GROUP_KEY" to identify message groups.

qpid-config add queue MyMsgQueue --group-header="GROUP_KEY" --shared-groups

Report a bug

6.8.5. Default Group

All messages arriving to a queue with message groups enabled with no group identifier in their header are
considered to belong to the same "default" group. This group is qpid.no-group. If a message cannot be
assigned to any other group, it is assigned to this group.

Report a bug

6.8.6. Override the Default Group Name

When a queue has message groups enabled, messages are grouped based on a match with a header field.
Messages that have no match in their headers for a group are assigned to the default group. The default
group is preconfigured as qpid.no-group. You can change this default group name by supplying a value
for the default-message-group configuration parameter to the broker at start-up. For example, using the
command line:

qpidd --default-message-group "EMPTY-GROUP"

Report a bug

6.8.7. Message Groups Demonstration

The following Python program demonstrates the use and behavior of message groups. To run this program,
copy and paste the code into a text file and save it as message-groups.py, then run it using Python on a
machine with the messaging broker started.

The program creates an auto-deleting queue with messaging enabled or disabled, then sends messages to
the queue with a message group header that matches the group header for the queue. When messaging is
enabled it demonstrates how consumers are given ownership of a message group by the broker, and how
this affects what they see and do not see on the queue. It also demonstrates how consumers release
ownership of a group by acknowledging all the messages they have fetched from that group, and how group
ownership is not released by partially acknowledging the fetched messages.

The program uses two different connections to simulate two consumers, who would usually be running as
separate processes, perhaps on different machines.

Python

import sys
from qpid.messaging import *

def sendmsg(group, num):
send the message to the broker and add it to our in-memory
representation of the broker queue
 global memoryqueue

Messaging Programming Reference

92

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8231-591826+%5BLatest%5D&comment=Title%3A+Configure+a+Queue+for+Message+Groups+using+qpid-config%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8231-591826+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8230-591826+%5BLatest%5D&comment=Title%3A+Default+Group%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8230-591826+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8229-591826+%5BLatest%5D&comment=Title%3A+Override+the+Default+Group+Name%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8229-591826+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 global tx

 msg = Message(group + num)
 msg.properties = {'ourGroupID': group}

 tx.send(msg)
 memoryqueue.append(group + num)

def pullmsg(consumer):
fetch a message from the broker and print it to the console
 global counter
 global memoryqueue

 msg = consumers[consumer - 1].fetch(timeout = 1)

 print "\nQueued message: " + memoryqueue[counter]
 print "Consumer " + str(consumer) + " got: " + msg.content

 counter +=1
 return msg

Two connections are used to simulate two distinct consumers
connection = Connection("localhost:5672")
connection2 = Connection("localhost:5672")
connection.open()
connection2.open()

try:
 session = connection.session()
 session2 = connection2.session()

 x = raw_input('Enable message grouping [Y/n]?')

 if x == 'N' or x == 'n':

 # Create the queue without message groups
 tx = session.sender("test-nogroup-queue; {create: always, node:
{x-declare:{auto-delete:True}}}")
 rx1 = session.receiver("test-nogroup-queue")
 rx2 = session2.receiver("test-nogroup-queue")

 print "\nMessage grouping is disabled"
 msggroup = False

 else:

 # Create the queue with message groups enabled
 tx = session.sender("test-group-queue; {create: always, node:{x-
declare:{auto-delete: True, arguments: {'qpid.group_header_key':
'ourGroupID', 'qpid.shared_msg_group' : 1}}}}")
 rx1 = session.receiver("test-group-queue")
 rx2 = session2.receiver("test-group-queue")

 print "\nMessage grouping is enabled"
 msggroup = True

Chapter 6. Advanced Queue Features

93

Put the receivers in an array so we can use a function to fetch
messages
 consumers = []
 consumers.append(rx1)
 consumers.append(rx2)

 print "Sending interleaved messages from two different groups to
the queue..."

We create an in-memory picture of the queue, to see what order the
messages are on the broker
 memoryqueue = []

 sendmsg('A', '1')
 sendmsg('B', '1')
 sendmsg('B', '2')
 sendmsg('A', '2')
 sendmsg('B', '3')
 sendmsg('A', '3')

 counter = 0
 pullmsg(1)
 pullmsg(2)

 if msggroup:
 print "\nConsumer 1 now owns message group A. Consumer 2 now owns
message group B."

 msgc1 = pullmsg(1)
 msgc2 = pullmsg(2)

 if msggroup:
 print "\nThe consumers will now acknowledge all the messages, or
only the last one."
 resp = raw_input('Should they acknowlege all messages? [Y/n]')

 if resp == 'N' or resp == 'n':
 print "\nAcknowledging only part of the group. The consumers
retain ownership of the group. This is an anti-pattern! See the
source code comments for details."

 session.acknowledge(msgc1)
 session2.acknowledge(msgc2)
 antipattern = True

 # Acknowledging only part of a group is an anti-pattern.
Messages are grouped to ensure that a single consumer can deal with
the whole group. If this consumer now fails before completing the
rest of the group, the unacknowledged messages in the group will be
released and redelivered by the broker, but the acknowledged messages
in the group are now missing in action!

 else:
 print "\nAcknowledging all fetched messages. The consumers
will release ownership of the groups."
 session.acknowledge()

Messaging Programming Reference

94

 session2.acknowledge()
 antipattern = False

 print "\nPulling more messages from the queue:"

 pullmsg(1)
 pullmsg(2)
 if msggroup:
 if antipattern == False:
 print "\nConsumer 1 now owns message group B. Consumer 2 now
owns message group A."
 print "\nSending some more messages to the queue..."

 sendmsg('B', '4')
 sendmsg('B', '5')
 sendmsg('A', '4')
 sendmsg('A', '5')

 pullmsg(1)
 pullmsg(2)
 pullmsg(1)
 pullmsg(2)

finally:
 connection.close()
 connection2.close()

Example program output

The program sends messages from two different Groups - A and B - to a queue. Here is an example of the
output when message groups are disabled:

$ python message-groups.py
Enable message grouping [Y/n]?n

Message grouping is disabled
Sending interleaved messages from two different groups to the queue...

Queued message: A1
Consumer 1 got: A1

Queued message: B1
Consumer 2 got: B1

Queued message: B2
Consumer 1 got: B2

Queued message: A2
Consumer 2 got: A2

Queued message: B3
Consumer 1 got: B3

Queued message: A3
Consumer 2 got: A3

Chapter 6. Advanced Queue Features

95

Queued message: B4
Consumer 1 got: B4

Queued message: B5
Consumer 2 got: B5

Queued message: A4
Consumer 1 got: A4

Queued message: A5
Consumer 2 got: A5

The consumers are pulling messages from the queue in a round-robin fashion, and they see the messages
on the queue in the order the messages were sent there.

Running the program with message groups enabled demonstrates how message groups influence how
consumers see the messages on the queue:

$ python message-groups.py
Enable message grouping [Y/n]?y

Message grouping is enabled
Sending interleaved messages from two different groups to the queue...

Queued message: A1
Consumer 1 got: A1

Queued message: B1
Consumer 2 got: B1

Consumer 1 now owns message group A. Consumer 2 now owns message group B.

Queued message: B2
Consumer 1 got: A2

Queued message: A2
Consumer 2 got: B2

At this point of the program you can choose to acknowledge all of the acquired messages, or only some of
them. Acknowledging all of the messages that have been acquired so far releases ownership of the group,
and the next messages that the consumers see will be the next messages on the queue:

The consumers will now acknowledge all the messages, or only the last one.
Should they acknowlege all messages? [Y/n]y

Acknowledging all fetched messages. The consumers will release ownership of
the groups.

Pulling more messages from the queue:

Queued message: B3
Consumer 1 got: B3

Queued message: A3
Consumer 2 got: A3

Messaging Programming Reference

96

They will then take ownership of the groups of those messages:

Consumer 1 now owns message group B. Consumer 2 now owns message group A.

Sending some more messages to the queue...

Queued message: B4
Consumer 1 got: B4

Queued message: B5
Consumer 2 got: A4

Queued message: A4
Consumer 1 got: B5

Queued message: A5
Consumer 2 got: A5

If you instead choose to acknowledge only the last message, rather than all the acquired messages in the
group, then the program will warn you that this is an anti-pattern, and demonstrate that the consumers retain
ownership of the group:

The consumers will now acknowledge all the messages, or only the last one.
Should they acknowlege all messages? [Y/n]n

Acknowledging only part of the group. The consumers retain ownership of the
group. This is an anti-pattern! See the source code comments for details.

Pulling more messages from the queue:

Queued message: B3
Consumer 1 got: A3

Queued message: A3
Consumer 2 got: B3

Sending some more messages to the queue...

Queued message: B4
Consumer 1 got: A4

Queued message: B5
Consumer 2 got: B4

Queued message: A4
Consumer 1 got: A5

Queued message: A5
Consumer 2 got: B5

Report a bug

Chapter 6. Advanced Queue Features

97

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10139-591911+%5BLatest%5D&comment=Title%3A+Message+Groups+Demonstration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10139-591911+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 7. Asynchronous Messaging

7.1. Asynchronous Operations

Asynchronous operations allows some communication with the broker to take place in the background, while
your program continues to execute. When send and receive operations are performed synchronously
execution is blocked while communication takes place between the client and the broker.

Asynchronous send allow execution to continue without waiting on acknowledgement from the server.
Asynchronous receive enables receivers to retrieve messages in the background, so that when you wish to
retrieve a message using a receiver in your code, the message has already been fetched and is available
locally.

Asynchronous operations significantly improve throughput; but you should understand the behavior of
asynchronous operations and carefully manage it in your code.

Report a bug

7.2. Asynchronous Sending

7.2.1. Synchronous and Asynchronous Send

When a sender sends synchronously over a reliable link, execution in the sender's thread is blocked until the
sender receives an acknowledgement from the broker. This is useful for testing and troubleshooting, but by
introducing a round-trip for every message, this reduces the potential throughput of the system.

When using the C++ API, all calls are asynchronous by default. When using the Python API, however, the
opposite is true - by default, a sender sends a message synchronously.

You can send messages asynchronously, which allows you to maximise your network bandwidth usage and
throughput. When invoked asynchronously, a send call will return immediately, without waiting for a receipt
from the broker.

For example, the following call to the send() method of a send object is asynchronous - it returns
immediately, without waiting for a receipt from the broker:

Python

sender.send(message, sync = False)

C++

sender.send(message, false)

Note that this is the default behavior for the C++ API.

Report a bug

7.2.2. Sender Capacity

Sender capacity is the property of a sender object that controls the number of asynchronous sends pending
acknowledgement from the server that the sender will permit. These unacknowledged messages are
buffered in memory for retransmission in the event of a link failure, so the sender capacity is also known as
the sender replay buffer size.

Messaging Programming Reference

98

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10272-591919+%5BLatest%5D&comment=Title%3A+Asynchronous+Operations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10272-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8100-591822+%5BLatest%5D&comment=Title%3A+Synchronous+and+Asynchronous+Send%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8100-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

By default, sender capacity is set to UNLIMITED, meaning that the sender will allow an unlimited number of
asynchronous calls to be made, and buffer a number of messages that is limited only by the memory limits of
the system.

When the sender capacity is set to a number other than UNLIMITED, the sender will allow only that many
asynchronous send operations to be outstanding at the same time.

For example: if a sender's capacity is set to 10, then a maximum of 10 asynchronous send operations can
be awaiting acknowledgement at the same time for the sender. If 10 asynchronous send operations are
invoked, and an 11th operation is attempted before any of those 10 are acknowledged by the broker, then the
sender will block until one of the asynchronous send operations is acknowledged by the broker.

Be aware of two things: unbounded sender capacity can have an impact on resources if your sender
outpaces the server significantly. Be aware also that upon reaching its capacity a sender will switch from
asynchronous to synchronous send behavior, and message sends will block. You should tune your sender
capacity with this in mind, and also carefully program your send operations to check the sender's capacity
and availability if blocking will be problematic.

Report a bug

7.2.3. Set Sender Capacity

In Python, the sender capacity is set by assigning a value to the capacity property of a sender. In C++, the
sender capacity is set using the setCapacity method.

Python

sender.capacity = 20

C++

sender.setCapacity(20)

Report a bug

7.2.4. Query Sender Capacity

When using asynchronous message sending, three sender properties are available to ascertain the state of
the asynchronous calls. They are:

Sender Capacity

The maximum number of asynchronously sent messages that can be pending acknowledgement at
any given time. By default this is UNLIMITED, but it can be changed to constrain the number of
unsettled asynchronous calls. An attempt to make a further asynchronous call when the sender is
at capacity will block until another sent message is acknowledged by the broker.

C++

sender.getCapacity()

Python

sender.capacity

Chapter 7. Asynchronous Messaging

99

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8026-591819+%5BLatest%5D&comment=Title%3A+Sender+Capacity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8026-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
http://qpid.apache.org/apis/0.14/cpp/html/a00319.html#a18601272c6638a15a383d8c8b620f50b
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8124-591820+%5BLatest%5D&comment=Title%3A+Set+Sender+Capacity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8124-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Sender Unsettled

The number of asynchronous sends pending acknowledgement from the broker.

C++

sender.getUnsettled()

Python

sender.unsettled()

Sender Available

The number of additional asynchronous calls that the sender can accept at the moment. This value
is available as a property, but can also be computed from sender.capacity -
sender.unsettled.

C++

sender.getAvailable()

Python

sender.available()

Report a bug

7.2.5. Avoiding a Blocked Asynchronous Send

An asynchronous send call will place the message into the send buffer and return to execution immediately.
However, if the send buffer is full the call will block until space is available.

If you need to ensure that an asynchronous send call does not block on a full buffer, you should query the
buffer state before making the call. For example, in C++:

C++

 if (sender.getAvailable() > 0)
 sender.send(message, false)
 // else drop the message

Python

if sender.available() > 0:
 sender.send(message, sync=False)
else:
 # drop the message

You can also increase the size of the sender's replay buffer to reduce the chances of it filling up:

C++

sender.setCapacity(SOME_LARGE_NUMBER)

Messaging Programming Reference

100

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8054-591818+%5BLatest%5D&comment=Title%3A+Query+Sender+Capacity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8054-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Python

sender.capacity = SOME_LARGE_NUMBER

Report a bug

7.2.6. Asynchronous Message Sending Example

The following code demonstrates using the properties of a sender to manage asynchronous send operations,
with the option to avoid synchronous blocking when the sender is at capacity:

C++

sender.setCapacity(MY_CAPACITY);

// Later
bool resend = true;
while (resend)
{
 if (sender.getAvailable()>0)
 {
 sender.send(message,false);
 resend = false;
 }
 else
 {
 // May wish to do nothing here
 // or send to log file
 std::cout << "Warning: Capacity \ full. Retry" << std::endl;
 }
}
// Later
if (sender.getUnsettled())
{
 session.sync();
}

Python

snd.capacity = MY_CAPACITY

Later

resend = True
while (resend):
 if (snd.available()>0):
 snd.send(msg, sync = False)
 resend = False
 else:
 print "Warning: Capacity full"

Later
 if (snd.unsettled()):
 ssn.sync()

Chapter 7. Asynchronous Messaging

101

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8381-591833+%5BLatest%5D&comment=Title%3A+Avoiding+a+Blocked+Asynchronous+Send%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8381-591833+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Report a bug

7.2.7. Asynchronous Send and Link Reliability

The sender.capacity is the number of unacknowledged sends that a sender will allow when sending
asynchronously. The two-phase send/acknowledge behavior is a characteristic of a reliable link (technically
known as a link with at-least-once reliability). The sender sends a message, and buffers that message locally
until the server responds to acknowledge receipt of the message. This buffering of unacknowledged sent
messages enables the sender to resend messages (sender replay) if the link is dropped and then re-
established. When a reliable link is dropped and then transparently re-established, messages that were sent
asynchronously but not acknowledged by the server are resent from the sender replay buffer.

A reliable link is the default link used when creating a sender with no explicit link reliability specified. You can
explicitly request an unreliable link when creating a sender. For example:

Python

sender = session.sender("amq.topic;{link: {'reliability':
'unreliable'}}")

When using an unreliable link, sender capacity has no meaning. On an unreliable link the server does not
acknowledge receipt of messages. All messages are considered as good as acknowledged once they are
sent. This is the meaning of unreliable for a sender. If the link is dropped there is no way for the sender to
know which messages made it to the broker and which were lost. This also means that over an unreliable link
asynchronous senders will not block, as their capacity is never utilized.

Sender.capacity is used to limit the exposure of an application to data loss, and the amount of memory
that senders can consume with their replay buffer. It can also be used to throttle producers. You can use an
unreliable link along with asynchronous send to maximize throughput without the implications of local
memory required for the sender replay buffer, and no throttling of producers. However, you must be aware of
the reduced reliability and employ this pattern in situations where the potential for data loss is not important.

The following program demonstrates the difference between asynchronous sending over reliable and
unreliable links:

Python

import sys
from qpid.messaging import *

connection = Connection("localhost:5672")

try:
 connection.open()
 session = connection.session()

 linktype=""
 while linktype != "R" and linktype !="U":
 response = raw_input("Use (R)eliable or (U)nreliable link [R/U]?
")
 linktype = response.upper()

 if linktype == "U":
 sender = session.sender("amq.topic;{link: {'reliability':
'unreliable'}}")
 else:

Messaging Programming Reference

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8384-591833+%5BLatest%5D&comment=Title%3A+Asynchronous+Message+Sending+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8384-591833+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 sender = session.sender("amq.topic")

 message = Message("Hello World:")
 print sender.capacity
 sender.capacity = 5
 for x in range (1000):
 if sender.available() == 0:
 print "Sender is blocking..."
 sender.send("Hello World: " + str(x), sync=False)
 print str(x) +" : " + str(sender.unsettled()) + " : " +
str(sender.available())

except MessagingError,m:
 print m
finally:
 connection.close()

The program sends 1000 messages asynchronously over a link using a sender with a capacity of 5
unacknowledged messages. The output takes the form:

message number : unacknowledged messages : further async send capacity

When run over a reliable link you will see the number of unacknowledged messages and the remaining async
send capacity vary, including occasions where the asynchronous sender will block:

Use (R)eliable or (U)nreliable link [R/U]? R
...
918 : 1 : 4
919 : 2 : 3
920 : 3 : 2
921 : 4 : 1
922 : 5 : 0
Sender is blocking...

You can experiment with the value for sender.capacity (set to 5 in the program code) to see the impact it
has on sender blocking.

When run over an unreliable link, you will see that sender.capacity has no impact on the performance of
the sender. Remember, however, that it is now unreliable:

Use (R)eliable or (U)nreliable link [R/U]? U
...
984 : 0 : 5
985 : 0 : 5
986 : 0 : 5
987 : 0 : 5
988 : 0 : 5
989 : 0 : 5

Report a bug

7.3. Asynchronous Receiving

7.3.1. Asynchronous Message Retrieval (Prefetch)

Chapter 7. Asynchronous Messaging

103

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10136-746158+%5BLatest%5D&comment=Title%3A+Asynchronous+Send+and+Link+Reliability%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10136-746158+09+Mar+2015+11%3A53+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

By default, a receiver retrieves a single message synchronously in response to a fetch() call. The
receiver's capacity to prefetch messages is 0 by default.

When the receiver's capacity is set to a value greater than 0, the receiver will asynchronously retrieve up to
that number of messages from the queue. This asynchronous retrieval is called prefetch, and it is enabled
and controlled by setting the capacity property of a receiver.

Prefetching messages has two advantages:

Prefetched messages are available locally when requested by the application, without the overhead of a
synchronous call to retrieve a message from the broker.

A receiver with prefetching enabled has an available() method that can be invoked to determine how
many prefetched messages are available.

Note two things about the available() method:

Prefetching is asynchronous, which means that you cannot rely on the number returned by a call to
available() as an absolute indicator of the state of the queue. For example, calling available()
immediately after setting the capacity of a receiver to something other than 0 is likely to return a value of 0
messages available. This does not necessarily mean that the queue has no messages, but rather that no
prefetched messages are locally available yet.

Note also that the maximum value reported by the available method of a receiver with prefetching enabled
will be the capacity of the receiver. The available() method reports the number of prefetched
messages available, not the number of messages in the queue. If the number of available messages is less
than the capacity of the receiver, however, you can infer that this is the number of messages in the queue,
with the above caveat about the asynchronous nature of prefetching.

Report a bug

7.3.2. Enable Receiver Prefetch

To enable a receiver to prefetch messages, set its capacity to a value greater than 0.

For example, the following code creates a receiver and enables prefetching of up to 100 messages:

Python

import sys
from qpid.messaging import *

connection = Connection("localhost:5672")
connection.open()
ssn = connection.session()

prefetchingReceiver = ssn.receiver("testqueue; {create:always}");
prefetchingReceiver.capacity = 100

Report a bug

7.3.3. Asynchronously Acknowledging Received Messages

A reliable link (technically called a link with at-least-once reliablity) is the default link used when a receiver is
created without specifying a link reliability. For message acknowledgement on unreliable links refer to
Acknowledging Messages Received Over an Unreliable Link. Messages received over a reliable link are set

Messaging Programming Reference

104

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8112-746159+%5BLatest%5D&comment=Title%3A+Asynchronous+Message+Retrieval+%28Prefetch%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8112-746159+09+Mar+2015+11%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8048-591818+%5BLatest%5D&comment=Title%3A+Enable+Receiver+Prefetch%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8048-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

to acquired on the broker until they are acknowledged by the consumer. When a message is in acquired
mode it is not visible in the queue. If the consumer disconnects without acknowledging receipt, the message
will be moved out of acquired and again become available to consumers, with the header
redelivered=true.

To remove the message from the queue, a consumer needs to acknowledge receipt of the message.

In Python, this is done by calling the acknowledge() method of the session object:

Python

session.acknowledge()

Calling the acknowledge() method with no arguments acknowledges receipt of all as-yet-unacknowledged
messages fetched using that session. To acknowledge a specific message, pass the message as an
argument. For example:

Python

msg = rx.fetch(timeout = 1)
session.acknowledge(msg)

This method executes synchronously by default, and will wait for the broker to respond before returning. It
can also be invoked asynchronously, by supplying the sync = False parameter:

Python

session.acknowledge(msg, sync = False)

Acknowledging Messages Received Over an Unreliable Link

When an unreliable link is requested for a receiver, acknowledgement is implicit when a message is
fetched. This means that the broker marks the message as acquired as soon as the receiver fetches it. No
acknowledgement is necessary, and no release or rejection of messages is possible.

Report a bug

7.3.4. Asynchronous Receive and Link Reliability

Bear in mind that the combination of asynchronous receive (prefetch) and an unreliable link is a
potentially lossy situation. Over an unreliable link, when an application is consuming (as opposed to
browsing the queue) the broker deletes the message from the queue as soon as it is prefetched. It does not
wait for acknowledgement from the consumer. If the consumer fails before it dispatches prefetched
messages, the broker will not redeliver them.

When using this combination - asynchronous receive (prefetch) and unreliable link - be aware of the
implications.

Report a bug

Chapter 7. Asynchronous Messaging

105

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8157-591823+%5BLatest%5D&comment=Title%3A+Asynchronously+Acknowledging+Received+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8157-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10257-591920+%5BLatest%5D&comment=Title%3A+Asynchronous+Receive+and+Link+Reliability%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10257-591920+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 8. Reliability and Quality of Service

8.1. Link Reliability

8.1.1. Reliable Link

The link established when connecting to a queue is reliable by default. Technically, this is at-least-once
reliability.

Receiving messages over a reliable link

An acquiring message consumer (also known as a competing message consumer) is a message consumer
who removes messages from a queue, and makes them unavailable to other consumers. When an acquiring
message consumer fetches a message from the broker over a reliable link, the message is set to acquired.
In the acquired state the message is not visible to other consumers. It is to all intents and purposes acquired
by the consumer, but the broker maintains its copy in acquired state until the consumer acknowledges
acquisition. At that point the broker considers the message reliably delivered, and will delete its copy.

The reliable link enables several behaviors. If a consumer closes its connection to the server without
acknowledging the message, the broker will assume that the consumer has failed. In this case the acquired
message is returned to the queue, with a header redelivered: true.

Additionally, the consumer may choose to explicitly release the message, in which case the broker will
perform the same action; or the consumer may choose to reject the message. When a message is rejected,
the broker will route the message to the alternate exchange, if one has been configured for this queue or
exchange. If no alternate exchange is configured, the message will be discarded.

Sending messages over a reliable link

When a message is sent to the broker over a reliable link, the sender maintains its local copy until the broker
acknowledges receipt. At that time the sender deletes the local copy. When sending synchronously this
causes the application to block until this exchange has taken place. When sending asynchronously these
unacknowledged sent messages are stored in the sender replay buffer.

When a reliable link is dropped momentarily and then re-established, the sender will resend unacknowledged
messages from its buffer, ensuring that no data is lost. This may result in messages being sent more than
once, hence the term at-least-once.

Specifying a reliable link

All links to queues are reliable by default. It is not necessary to explicitly request a reliable link when
connecting to a queue.

When connecting to an exchange the link is unreliable by default. To specify a reliable link to an exchange,
include link: {'reliability': 'at-least-once'} in the address. For example:

sender = session.sender("amq.topic;{link: {'reliability': 'at-least-
once'}}")

In this case, the sender will follow the reliable link behavior, buffering messages locally until they are
acknowledged by the broker.

Report a bug

Messaging Programming Reference

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10274-591919+%5BLatest%5D&comment=Title%3A+Reliable+Link%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10274-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

8.1.2. Unreliable Link

The link established when connecting to an exchange is unreliable by default. Additionally, an application can
explicitly request an unreliable link when establishing a connection to a queue.

An unreliable link sends data fast and loose. There is no buffering either on the server or on the local client to
guard against lost connections. When a client takes a message from a queue over an unreliable link, the
broker deletes it immediately, without waiting for the consumer to acknowledge that it received and
successfully actioned a message.

In some scenarios you may see an increase in throughput when using an unreliable link, although this is
be no means certain. The most obvious use for an unreliable link is when a large volume of data is being
transmitted at high speed and data loss is not an issue.

Most applications benefit from the guarantees provided by the reliable link, and it is the default for all links.

Requesting an unreliable link

To request an unreliable link, specify link: {'reliability': 'unreliable'} in the address for
the receiver or sender. For example:

Python

sender = session.sender("amq.topic;{link: {'reliability':
'unreliable'}}")

Report a bug

8.2. Queue Sizing

8.2.1. Controlling Queue Size

Controlling the size of queues is an important part of performance management in a messaging system.

When queues are created, you can specify a maximum queue size (qpid.max_size) and maximum
message count (qpid.max_count) for the queue.

qpid.max_size is specified in bytes. qpid.max_count is specified as the number of messages.

The following qpid-config creates a queue with a maximum size in memory of 200MB, and a maximum
number of 5000 messages:

qpid-config add queue my-queue --max-queue-size=204800000 --max-queue-count
5000

In an application, the qpid.max_count and qpid.max_size directives go inside the arguments of the x-
declare of the node. For example, the following address will create the queue as the qpid-config
command above:

Python

tx = ssn.sender("my-queue; {create: always, node: {x-declare: {'auto-
delete': True, arguments:{'qpid.max_count': 5000, 'qpid.max_size':
204800000}}}}")

Chapter 8. Reliability and Quality of Service

107

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10273-591919+%5BLatest%5D&comment=Title%3A+Unreliable+Link%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10273-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Note that the qpid.max_count attribute will only be applied if the queue does not exist when this code is
executed.

Behavior when limits are reached: qpid.policy_type

The behavior when a queue reaches these limits is configurable. By default, on non-durable queues the
behavior is reject: further attempts to send to the queue result in a TargetCapacityExceeded exception
being thrown at the sender.

The configurable behavior is set using the qpid.policy_type option. The possible values are:

reject

Message publishers throw an exception TargetCapacityExceeded. This is the default behavior
for non-durable queues.

ring

The oldest messages are removed to make room for newer messages.

The following example qpid-config command sets the limit policy to ring:

qpid-config add queue my-queue --max-queue-size=204800 --max-queue-count
5000 --limit-policy ring

The same thing is achieved in an application like so:

Python

tx = ssn.sender("my-queue; {create: always, node: {x-declare: {'auto-
delete': True, arguments:{'qpid.max_count': 5000, 'qpid.max_size':
204800, 'qpid.policy_type': 'ring'}}}}")

See Also:

Section 8.3, “Producer Flow Control”

Report a bug

8.2.2. Queue Threshold Alerts

Queue Threshold Alerts are issued by the broker when a queue with a capacity limit set (either
qpid.max_size or qpid.max_count) approaches 80% of its limit. The figure of 80% is configurable
across the server using the broker option --default-event-threshold-ratio. If you set this to zero,
alerts are disabled for all queues by default. Additionally, you can override the default alert threshold per-
queue using qpid.alert_count and qpid.alert_size when creating the queue.

The Alerts are sent via the QMF framework. You can subscribe to the alert messages by listening to the
address
qmf.default.topic/agent.ind.event.org_apache_qpid_broker.queueThresholdExceeded.
#. Alerts are sent as map messages.

The following code demonstrates subscribing to and consuming alert messages:

Python

Messaging Programming Reference

108

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8170-704182+%5BLatest%5D&comment=Title%3A+Controlling+Queue+Size%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8170-704182+28+Aug+2014+10%3A29+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

conn = Connection.establish("localhost:5672")
session = conn.session()
rcv =
session.receiver("qmf.default.topic/agent.ind.event.org_apache_qpid_b
roker.queueThresholdExceeded.#")
while True:
 event = rcv.fetch()
 print "Threshold exceeded on queue %s" % event.content[0]
["_values"]["qName"]
 print " at a depth of %s messages, %s bytes" %
(event.content[0]["_values"]["msgDepth"], event.content[0]
["_values"]["byteDepth"])
 session.acknowledge()

Alert Repeat Gap

To avoid alert message flooding, there is a 60 second gap between alert messages. This can be overridden
on a per-queue basis using the qpid.alert_repeat_gap to specify a different value in seconds.

Backwards-compatible aliases

The following aliases are maintained for compatibility with earlier clients:

x-qpid-maximum-message-count is equivalent to qpid.alert_count

x-qpid-maximum-message-size is equivalent to qpid.alert_size

x-qpid-minimum-alert-repeat-gap is equivalent to qpid.alert_repeat_gap

Report a bug

8.3. Producer Flow Control

8.3.1. Flow Control

The broker implements producer flow control on queues that have limits set. This blocks message producers
that risk overflowing a destination queue. The queue will become unblocked when enough messages are
delivered and acknowledged.

Flow control relies on a reliable link between the sender and the broker. It works by holding off acknowledging
sent messages, causing message producers to reach their sender replay buffer capacity and stop sending.

Queues that have been configured with a Limit Policy of type ring do not have queue flow thresholds
enabled. These queues deal with reaching capacity through the ring mechanism. All other queues with
limits have two threshold values that are set by the broker when the queue is created:

flow_stop_threshold

the queue resource utilization level that enables flow control when exceeded. Once crossed, the
queue is considered in danger of overflow, and the broker will cease acknowledging sent
messages to induce producer flow control. Note that either queue size or message count capacity
utilization can trigger this.

flow_resume_threshold

Chapter 8. Reliability and Quality of Service

109

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8080-591821+%5BLatest%5D&comment=Title%3A+Queue+Threshold+Alerts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8080-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

the queue resource utilization level that disables flow control when dropped below. Once crossed,
the queue is no longer considered in danger of overflow, and the broker again acknowledges sent
messages. Note that once trigger by either, both queue size and message count must fall below
this threshold before producer flow control is deactivated.

The values for these two parameters are percentages of the capacity limits. For example, if a queue has a
qpid.max_size of 204800 (200MB), and a flow_stop_threshold of 80, then the broker will initiate
producer flow control if the queue reaches 80% of 204800, or 163840 bytes of enqueued messages.

When the resource utilization of the queue falls below the flow_resume_threshold, producer flow control
is stopped. Setting the flow_resume_threshold above the flow_stop_threshold has the obvious
consequence of locking producer flow control on, so don't do it.

Report a bug

8.3.2. Queue Flow State

The flow control state of a queue can be determined by the flowState boolean in the queue's QMF
management object. When this is true flow control is active.

The queue's management object also contains a counter flowStoppedCount that increments each time
flow control becomes active for the queue.

Report a bug

8.3.3. Broker Default Flow Thresholds

The default flow Control Thresholds can be set for the broker using the following two broker options:

--default-flow-stop-threshold = flow control activated at this percentage of capacity (size or
count)

--default-flow-resume-threshold = flow control de-activated at this percentage of capacity (size
or count)

For example, the following command starts the broker with flow control set to activate by default at 90% of
queue capacity, and deactivate when the queue drops back to 75% capacity:

qpidd --default-flow-stop-threshold=90 --default-flow-resume-threshold=75

Report a bug

8.3.4. Disable Broker-wide Default Flow Thresholds

To turn off flow control on all queues on the broker by default, start the broker with the default flow control
parameters set to 100%:

qpidd --default-flow-stop-threshold=100 --default-flow-resume-threshold=100

Report a bug

8.3.5. Per-Queue Flow Thresholds

You can set specific flow thresholds for a queue using the following arguments:

Messaging Programming Reference

110

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8175-591823+%5BLatest%5D&comment=Title%3A+Flow+Control%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8175-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8182-591825+%5BLatest%5D&comment=Title%3A+Queue+Flow+State%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8182-591825+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8178-591825+%5BLatest%5D&comment=Title%3A+Broker+Default+Flow+Thresholds%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8178-591825+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8176-591825+%5BLatest%5D&comment=Title%3A+Disable+Broker-wide+Default+Flow+Thresholds%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8176-591825+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

qpid.flow_stop_size

integer flow stop threshold value in bytes.

qpid.flow_resume_size

integer flow resume threshold value in bytes.

qpid.flow_stop_count

integer flow stop threshold value as a message count.

qpid.flow_resume_count

integer flow resume threshold value as a message count.

To disable flow control for a specific queue, set the flow control parameters for that queue to zero.

Report a bug

8.4. Credit-based Flow Control

8.4.1. Flow Control Using Credit

A subscriber can control the flow of messages from a subscribed queue by allocating credit to the broker for a
particular number of messages or a total size of message content. As the broker delivers messages it spends
this credit by decrementing the message credit by one and decrementing the size credit by the size of the
content of the message. The broker cannot send a message to a subscription for which it does not have
sufficient credit.

Report a bug

8.4.2. Credit Allocation Modes

There are two modes of credit allocation defined by the AMQP specification:

In credit mode, credit must be explicitly re-issued by the subscriber before the broker can recommence
sending messages

In window mode, the credit is automatically reissued for received messages. In this mode, the client
indicates that a message has been received by informing the broker of the completion of the transfer.
Though completion is essentially a form of acknowledgment, it should not be confused with acceptance
which is an confirmation of ownership transfer.

In both modes, unlimited credit can be allocated for the message count and the total content size.

Report a bug

8.5. Durable Queues

8.5.1. Durable Queues

By default, the lifetime of a queue is bound to the execution of the server process. When the server shuts
down the queues are destroyed, and need to be re-created when the broker is restarted. A durable queue is a
queue that is automatically re-established after a broker is restarted due to a planned or unplanned shutdown.

Chapter 8. Reliability and Quality of Service

111

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8184-591825+%5BLatest%5D&comment=Title%3A+Per-Queue+Flow+Thresholds%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8184-591825+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8242-591826+%5BLatest%5D&comment=Title%3A+Flow+Control+Using+Credit%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8242-591826+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8239-591826+%5BLatest%5D&comment=Title%3A+Credit+Allocation+Modes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8239-591826+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

When the server shuts down and the queues are destroyed, any messages in those queues are lost. As well
as automatic re-creation on server restart, durable queues provide message persistence for messages that
request it. Messages that are marked as persistent and sent to a durable queue are stored and re-delivered
when the durable queue is re-established after a shutdown.

Note that not all messages sent to a durable queue are persistent - only those that are marked as persistent.
Note also that marking a message as persistent has no effect if it is sent to a queue that is non-durable. A
message must be marked as persistent and sent to a durable queue to be persistent.

Report a bug

8.5.2. Persistent Messages

A persistent message is a message that must not be lost, even if the broker fails.

When a message is marked as persistent and sent to a durable queue, it will be written to disk, and resent on
restart if the broker fails or shutdowns.

Messages marked as persistent and sent to non-durable queues will not be persisted by the broker.

Note that messages sent using the JMS API are marked persistent by default. If you are sending a message
using the JMS API to a durable queue, and do not wish to incur the overhead of persistence, set the message
persistence to false.

Messages sent using the C++ API are not persistent by default. To mark a message persistent when using
the C++ API, use Message.setDurable(true) to mark a message as persistent.

Report a bug

8.5.3. Create a durable queue in an application

The following example code creates a durable queue called "important-messages":

C++

Sender sender = session.createSender("important-messages;
{create:always, node:{durable: True}")

Python

newqueue = session.sender("important-messages; {create:always, node:
{durable: True}")

Note that if a queue is declared durable and auto-delete, it is only durable until it gets auto-deleted!
Carefully consider if this is the behavior that you want.

Report a bug

8.5.4. Mark a message as persistent

A persistent message is a message that must not be lost even if the broker fails. To make a message
persistent, set the delivery mode to PERSISTENT. For instance, in C++, the following code makes a
message persistent:

message.getDeliveryProperties().setDeliveryMode(PERSISTENT);

Messaging Programming Reference

112

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+6974-591765+%5BLatest%5D&comment=Title%3A+Durable+Queues%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6974-591765+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+6991-591766+%5BLatest%5D&comment=Title%3A+Persistent+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6991-591766+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+6976-704183+%5BLatest%5D&comment=Title%3A+Create+a+durable+queue+in+an+application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6976-704183+28+Aug+2014+10%3A31+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

If a persistent message is delivered to a durable queue, it is written to disk when it is placed on the queue.

When a message producer sends a persistent message to an exchange, the broker routes it to any durable
queues, and waits for the message to be written to the persistent store, before acknowledging delivery to the
message producer. At this point, the durable queue has assumed responsibility for the message, and can
ensure that it is not lost even if the broker fails. If a queue is not durable, messages on the queue are not
written to disk. If a message is not marked as persistent, it is not written to disk even if it is on a durable
queue.

Table 8.1. Persistent Message and Durable Queue Disk States

A persistent message AND durable queue Written to disk
A persistent message AND non-durable queue Not written to disk
A non-persistent message AND non-durable queue Not written to disk
A non-persistent message AND durable queue Not written to disk

When a message consumer reads a message from a queue, it is not removed from the queue until the
consumer acknowledges the message (this is true whether or not the message is persistent or the queue is
durable). By acknowledging a message, the consumer takes responsibility for the message, and the queue is
no longer responsible for it.

Report a bug

8.5.5. Durable Message State After Restart

When a durable queue is re-established after a restart of the broker, any messages that were marked as
persistent and were not reliably delivered before the broker shut down are recovered. The broker does not
have information about the delivery status of these messages. They may have been delivered but not
acknowledged before the shutdown occurred. To warn receivers that these messages have potentially been
previously delivered, the broker sets the redelivered flag on all recovered persistent messages.

Consuming applications should treat the redelivered flag as a suggestion.

Report a bug

8.5.6. Journal Description

Red Hat Enterprise Messaging allows the size and number of files and caches used for persistence to be
configured. There is one journal for each queue; it records each enqueue, dequeue, or transaction event, in
order.

Each journal is implemented as a circular queue on disk, with a read cache and a write cache in memory. On
disk, each circular queue consists of a set of files. The caches are page-oriented. When persistent messages
are written to a durable queue, the associated events accumulate in the write cache until a page is filled or a
timeout occurs, then the page is written to the circular queue using AIO. Messages in the write cache have not
yet been acknowledged to the publisher, and can not be read by a consumer until they have been written to
the journal. The page size affects performance - smaller page sizes reduce latency, larger page sizes
increase throughput by reducing the number of write operations.

The journal files are prepared and formatted when the associated queue is first declared. This doubles
throughput with AIO on the first pass, and also guarantees that needed space is allocated. However, this can
result in a noticeable delay when durable queues are declared. When file size is increased, the delay is
greater.

Report a bug

Chapter 8. Reliability and Quality of Service

113

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+7065-591770+%5BLatest%5D&comment=Title%3A+Mark+a+message+as+persistent%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7065-591770+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8397-591834+%5BLatest%5D&comment=Title%3A+Durable+Message+State+After+Restart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8397-591834+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+6986-622140+%5BLatest%5D&comment=Title%3A+Journal+Description%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6986-622140+19+Mar+2014+08%3A59+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

8.5.7. Configure the Message Journal in an application

You can set the file count and file size of the message journal for a queue by specifying qpid.file_size
and qpid.file_count in the x-declare arguments of the address used to create a queue:

Python

tx = ssn.sender("my-queue;{create: always, node: {durable: True, x-
declare: {arguments: {'qpid.file_size': 20, 'qpid.file_count':
12}}}}")

Report a bug

8.6. Transactions

8.6.1. Transactions

Transactional sessions support message transactions - groups of messages whose transmission must
succeed or fail atomically. On a transactional session sent messages only become available at the target
address on commit. Likewise, received and acknowledged messages are only discarded at their source on
commit.

Note that transactions require a reliable link to function.

Report a bug

8.6.2. Transactions Example

The following code demonstrates transactional sessions:

.NET/C#

Connection connection = new Connection(broker);
Session session = connection.createTransactionalSession();
...
if (smellsOk())
 session.Commit();
else
 session.Rollback();

C++

Connection connection(broker);
Session session = connection.createTransactionalSession();
...
if (smellsOk())
 session.commit();
else
 session.rollback();

Report a bug

Messaging Programming Reference

114

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+6989-591766+%5BLatest%5D&comment=Title%3A+Configure+the+Message+Journal+in+an+application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6989-591766+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8073-591821+%5BLatest%5D&comment=Title%3A+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8073-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8038-591819+%5BLatest%5D&comment=Title%3A+Transactions+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8038-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 9. Qpid Management Framework (QMF)

9.1. QMF - Qpid Management Framework

The Qpid Management Framework allows the broker to be administered using command messages.
Command messages are map messages that are sent to the address qmf.default.direct/broker
where qmf.default.direct is the exchange, with a routing key or subject of broker. The message
should contain a reply-to address from which the sender can receive responses.

Report a bug

9.2. QMF Versions

Red Hat Enterprise Messaging supports Qpid Management Framework version 2.

QMFv2 offers a number of benefits over QMFv1, including the ability to send QMF messages between nodes
in a cluster and across federated links.

For more information on QMFv2, refer to the Apache Qpid QMFv2 Project Page.

QMFv1 is no longer supported in Red Hat Enterprise Messaging.

Report a bug

9.3. Creating Exchanges from an Application

You can use QMF messages to create exchanges from an application. The following QMF message creates
a fanout exchange called test-fanout

Message(subject='broker', reply_to='qmf.default.topic/direct.6da5bfc3-44fb-
4441-b834-6c5897b9606a;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties={'qmf.opcode':
'_method_request', 'x-amqp-0-10.app-id': 'qmf2', 'method': 'request'},
content={'_object_id': {'_object_name': 'org.apache.qpid.broker:broker:amqp-
broker'}, '_method_name': 'create', '_arguments': {'strict': True, 'type':
'exchange', 'name': u'test-fanout', 'properties': {'exchange-type':
u'fanout'}}})

Report a bug

9.4. Broker Exchange and Queue Configuration via QMF

QMF Command messages can be used to create and configure exchanges and queues. The qpid-config
command-line utility uses QMF messages to perform many of its administration tasks.

Report a bug

9.5. Command Messages

QMF Command Messages are specially formatted map messages sent to the broker's QMF address
qmf.default.direct/broker.

Chapter 9. Qpid Management Framework (QMF)

115

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8126-591820+%5BLatest%5D&comment=Title%3A+QMF+-+Qpid+Management+Framework%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8126-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://cwiki.apache.org/confluence/display/qpid/QMFv2+Project+Page
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8374-704186+%5BLatest%5D&comment=Title%3A+QMF+Versions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8374-704186+28+Aug+2014+10%3A33+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8050-591818+%5BLatest%5D&comment=Title%3A+Creating+Exchanges+from+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8050-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8102-591822+%5BLatest%5D&comment=Title%3A+Broker+Exchange+and+Queue+Configuration+via+QMF%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8102-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

See Also:

Chapter 13, Maps and Lists

Report a bug

9.6. QMF Command Message Structure

QMF Command Message Content

QMF Command Messages are map messages. A QMF command message contains the keys _object_id,
_method_name and _arguments.

The key _object_id is mandatory. Its value is a nested map identifying the target of the command. For
QMF commands that administer the broker and its resources, the _object_id map contains a single value
with the key _object_name containing the value org.apache.qpid.broker:broker:amqp-broker.
The _object_name value has the following syntax 'package:class:id'. The desired value may be
obtained from the schema, using qpid-tool.

The key _method_name has the name of the command as its value and the key _arguments contains a
nested map of command arguments.

QMF Command Message Properties

Two message properties, x-amqp-0-10.app-id and qmf.opcode must be set. The property x-amqp-0-
10.app-id should always have the value qmf2 and qmf.opcode contains the value _method_request.

QMF Command Response

To receive a response from the server, set the reply-to address of the QMF command message to an
address where you can receive messages. After the command message is sent to the broker's QMF address,
the response arrives from the reply-to address specified. The response message has the x-amqp-0-
10.app-id property set to qmf2 when using amqp0-10.

If the command message is processed as expected, the response message qmf.opcode property is set to
_method_response. If an error was encountered, qmf.opcode property will contain the value
_exception.

The response message content is a map. In the case of a valid response, return values are presented as a
nested map against the key _arguments. In the case of an exception, details of the exception are within a
nested map against the key _values.

Report a bug

9.7. Create Command

The QMF create command takes five arguments:

type

The type of object to be created, this can be a queue, exchange or binding.

name

The name of the object to be created. The name argument of a queue or exchange is a single

Messaging Programming Reference

116

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8078-591821+%5BLatest%5D&comment=Title%3A+Command+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8078-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8081-704188+%5BLatest%5D&comment=Title%3A+QMF+Command+Message+Structure%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8081-704188+28+Aug+2014+10%3A37+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

value, for example a queue named my-queue sets the name argument to a string of that value.
The name of a binding uses the pattern exchange/queue/key, for example: amq.topic/my-
queue/my-key identifies a binding between my-queue and the exchange amq.topic with the
binding key my-key.

properties

The specific properties for the object to be created, value is a nested map.

strict

The strict argument takes a boolean value that is presently ignored. This value is intended to
indicate whether the command will fail if any unrecognized properties have been specified.

auto_delete_timeout

Optional. If specified upon first declaring an auto-delete queue, specifies a delay, in seconds, after
which the deletion will take place. Note: If the queue is re-declared after becoming eligible for
deletion, but before the delay expires, then the queue will be not be deleted.

The following code example uses QMF to create a queue named my-queue. In this example my-queue is
configured to be auto-deleted after 10 seconds.

Python

conn = Connection(opts.broker)
try:
 conn.open()
 ssn = conn.session()
 snd = ssn.sender("qmf.default.direct/broker")
 reply_to = "reply-queue; {create:always, node:{x-declare:{auto-
delete:true}}}"
 rcv = ssn.receiver(reply_to)

 content = {
 "_object_id": {"_object_name":
"org.apache.qpid.broker:broker:amqp-broker"},
 "_method_name": "create",
 "_arguments": {"type":"queue", "name":"my-queue",
"properties":{"auto-delete":True, "qpid.auto_delete_timeout":10}}
 }
 request = Message(reply_to=reply_to, content=content)
 request.properties["x-amqp-0-10.app-id"] = "qmf2"
 request.properties["qmf.opcode"] = "_method_request"
 snd.send(request)

 try:
 response = rcv.fetch(timeout=opts.timeout)
 if response.properties['x-amqp-0-10.app-id'] == 'qmf2':
 if response.properties['qmf.opcode'] == '_method_response':
 return response.content['_arguments']
 elif response.properties['qmf.opcode'] == '_exception':
 raise Exception("Error: %s" % response.content['_values'])
 else: raise Exception("Invalid response received, unexpected
opcode: %s" % m)
 else: raise Exception("Invalid response received, not a qmfv2
method: %s" % m)
 except Empty:

Chapter 9. Qpid Management Framework (QMF)

117

 print "No response received!"
 except Exception, e:
 print e
except ReceiverError, e:
 print e
except KeyboardInterrupt:
 pass

conn.close()

Report a bug

9.8. Delete Command

The QMF delete command takes three arguments:

type

The type of object to be deleted, this can be a queue, exchange or binding.

name

The name of the object to be deleted. The name argument of a queue or exchange is a single
value, for example my-queue. The name of a binding uses the pattern exchange/queue/key, for
example: amq.topic/my-queue/my-key identifies a binding between my-queue and the
exchange amq.topic with the binding key my-key.

options

A nested map with the key options. This is presently unused.

Report a bug

9.9. List Command

The following example QMF message requests a list of exchanges from the broker:

Python

Message(subject='broker',
reply_to='qmf.default.topic/direct.8b59a7ae-93f1-4450-9e43-
1b0665bf622b;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties=
{'qmf.opcode': '_query_request', 'x-amqp-0-10.app-id': 'qmf2',
'method': 'request'}, content={'_what': 'OBJECT', '_schema_id':
{'_class_name': 'exchange'}})

The following example QMF message requests a list of queues from the server:

Python

Message(subject='broker',
reply_to='qmf.default.topic/direct.7f703720-c815-4c79-986c-
354b3963bc76;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties=

Messaging Programming Reference

118

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8031-591819+%5BLatest%5D&comment=Title%3A+Create+Command%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8031-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8028-641500+%5BLatest%5D&comment=Title%3A+Delete+Command%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8028-641500+19+May+2014+14%3A38+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

{'qmf.opcode': '_query_request', 'x-amqp-0-10.app-id': 'qmf2',
'method': 'request'}, content={'_what': 'OBJECT', '_schema_id':
{'_class_name': 'queue'}})

Report a bug

9.10. Queue and Exchange Creation using QMF

The following QMF message creates a new queue named test:

Python

Message(subject='broker',
reply_to='qmf.default.topic/direct.8702f596-b112-427d-b93e-
7e0ae28f2ae8;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties=
{'qmf.opcode': '_method_request', 'x-amqp-0-10.app-id': 'qmf2',
'method': 'request'}, content={'_object_id': {'_object_name':
'org.apache.qpid.broker:broker:amqp-broker'}, '_method_name':
'create', '_arguments': {'strict': True, 'type': 'queue', 'name':
u'test', 'properties': {}}})

The following QMF message creates a new fanout exchange called test-fanout:

Python

Message(subject='broker',
reply_to='qmf.default.topic/direct.81915d0a-d2e1-4cf9-9369-
921bac725aab;{node:{type:topic}, link:{x-declare:{auto-
delete:True,exclusive:True}}}', correlation_id='1', properties=
{'qmf.opcode': '_method_request', 'x-amqp-0-10.app-id': 'qmf2',
'method': 'request'}, content={'_object_id': {'_object_name':
'org.apache.qpid.broker:broker:amqp-broker'}, '_method_name':
'create', '_arguments': {'strict': True, 'type': 'exchange', 'name':
u'test-fanout', 'properties': {'exchange-type': u'fanout'}}})

Report a bug

9.11. QMF Events

QMF Events are messages sent to QMF topics to provide notification of broker events. Queue Threshold
Alerts are implemented as QMF Events.

The QMF topics are
qmf.default.topic/agent.ind.event.org_apache_qpid_broker.$QMF_Event.#, where
$QMF_Event is one of the provided QMF Events from the following table:

Table 9.1. QMF Events

QMF Event Severity Arguments
clientConnect inform rhost, user, properties
clientConnectFail warn rhost, user, reason, properties
clientDisconnect inform rhost, user, properties

Chapter 9. Qpid Management Framework (QMF)

119

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8164-591823+%5BLatest%5D&comment=Title%3A+List+Command%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8164-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8029-591819+%5BLatest%5D&comment=Title%3A+Queue+and+Exchange+Creation+using+QMF%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8029-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

brokerLinkUp inform rhost
brokerLinkDown warn rhost
queueDeclare inform rhost, user, qName, durable, excl,

autoDel, altEx, args, disp
queueDelete inform rhost, user, qName
exchangeDeclare inform rhost, user, exName, exType,

altEx, durable, autoDel, args, disp
exchangeDelete inform rhost, user, exName
bind inform rhost, user, exName, qName, key,

args
unbind inform rhost, user, exName, qName, key
subscribe inform rhost, user, qName, dest, excl,

args
unsubscribe inform rhost, user, dest
queueThresholdExceeded warn qName, msgDepth, byteDepth

QMF Event Severity Arguments

See Also:

Section 8.2.2, “Queue Threshold Alerts”

Report a bug

9.12. QMF Client Connection Events

Whenever a client connects to or disconnects from the broker, a QMF Event message is generated and sent
to a QMF topic.

The QMF topics for these events are:

Table 9.2. QMF Client Connection Event Topics

QMF queue Purpose
qmf.default.topic/agent.ind.event.org_apache_qpid_
broker.clientConnect.#

Client connections

qmf.default.topic/agent.ind.event.org_apache_qpid_
broker.clientConnectFail.#

Failed connection attempts

qmf.default.topic/agent.ind.event.org_apache_qpid_
broker.clientDisconnect.#

Client disconnections

Additional properties in the QMF Client Connection and Disconnection event messages match connections
and disconnections to specific clients to enable auditing and troubleshooting:

client_ppid

client_pid

client_process

Here is an example of a QMF client connection event message, demonstrating the client connection
information:

Fetched Message(

[1]

Messaging Programming Reference

120

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+13359-592067+%5BLatest%5D&comment=Title%3A+QMF+Events%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13359-592067+24+Feb+2014+07%3A57+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 properties={
 u'qmf.agent': u'apache.org:qpidd:a2ff61bc-19b2-4078-8a7e-
9c007151c79c',
 'x-amqp-0-10.routing-key':
u'agent.ind.event.org_apache_qpid_broker.clientConnect.info.apache_org.qpidd
.a2ff61bc-19b2-4078-8a7e-9c007151c79c',
 'x-amqp-0-10.app-id': 'qmf2',
 u'qmf.content': u'_event',
 u'qmf.opcode': u'_data_indication',
 u'method': u'indication'},
 content=[{
 u'_schema_id': {
 u'_package_name': 'org.apache.qpid.broker',
 u'_class_name': 'clientConnect',
 u'_type': '_event',
 u'_hash': UUID('476930ed-01dd-9629-7f84-f42b4b0bc410')},
 u'_timestamp': 1347032560197086881,
 u'_values': {
 u'user': 'anonymous',
 u'properties': {
 u'qpid.session_flow': 1,
 u'qpid.client_ppid': 26139,
 u'qpid.client_pid': 26876,
 u'qpid.client_process': u'spout'},
 u'rhost': '127.0.0.1:5672-127.0.0.1:43276'},
 u'_severity': 6}])

Fri Sep 7 15:42:40 2012 org.apache.qpid.broker:clientConnect user=anonymous
properties={
 u'qpid.session_flow': 1,
 u'qpid.client_ppid': 26139,
 u'qpid.client_pid': 26876,
 u'qpid.client_process': u'spout'}
rhost=127.0.0.1:5672-127.0.0.1:43276

Report a bug

9.13. ACL Lookup Query Methods

QMF methods are available to query the ACL Authorization interface.

The Broker must be started with the ACL file that you wish to query, and that ACL file must include sufficient
permissions to allow the lookup operations:

Catch 22: allow anonymous to access the lookup debug functions
acl allow-log anonymous create queue
acl allow-log anonymous all exchange name=qmf.*
acl allow-log anonymous all exchange name=amq.direct
acl allow-log anonymous all exchange name=qpid.management
acl allow-log anonymous access method name=Lookup*

The QMF methods to query the ACL Authorization interface are Lookup and LookupPublish.

The Lookup method is a general query for any action, object, and set of properties. The LookupPublish
method is the optimized, per-message fastpath query.

Chapter 9. Qpid Management Framework (QMF)

121

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+13360-592067+%5BLatest%5D&comment=Title%3A+QMF+Client+Connection+Events%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13360-592067+24+Feb+2014+07%3A57+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

In both methods the result is one of: allow, deny, allow-log, or deny-log.

Method: Lookup

Table 9.3. Method: Lookup

Argument Type Direction
userId long-string I
action long-string I
object long-string I
objectName long-string I
propertyMap field-table I
result long-string O

Method: LookupPublish

Table 9.4. Method: LookupPublish

Argument Type Direction
userId long-string I
exchangeName long-string I
routingKey long-string I
result long-string O

Management Properties and Statistics

The following properties and statistics have been added to reflect command line settings in effect and Acl
quota denial activity.

Table 9.5. Broker Management Quota Property

Element Type Access Description
maxConnections uint16 ReadOnly Maximum allowed

connections

Table 9.6. ACL Management Properties

Element Type Access Description
maxConnectionsPerIp uint16 ReadOnly Maximum allowed

connections
maxConnectionsPerUse
r

uint16 ReadOnly Maximum allowed
connections

maxQueuesPerUser uint16 ReadOnly Maximum allowed
queues

connectionDenyCount uint64 Number of connections
denied

queueQuotaDenyCount uint64 Number of queue
creations denied

Example

Messaging Programming Reference

122

Procedure 9.1. ACL Lookup Example

To see a practical example, follow these steps.

1. Start the broker using the example ACL file acl-test-01-rules.acl reproduced below, and with
QPID_LOG_ENABLE=debug+:acl.

2. Run the Python script acl-test-01.py.

3. Examine the Python program output and the broker log.

ACL File acl-test-01-rules.acl

acl-test-rules-00.acl
27-march-2012

group admins moe@COMPANY.COM \
 larry@COMPANY.COM \
 curly@COMPANY.COM \
 shemp@COMPANY.COM

group auditors aaudit@COMPANY.COM baudit@COMPANY.COM caudit@COMPANY.COM \
 daudit@COMPANY.COM eaduit@COMPANY.COM eaudit@COMPANY.COM

group tatunghosts tatung01@COMPANY.COM \
 tatung02/x86.build.company.com@COMPANY.COM \
 tatung03/x86.build.company.com@COMPANY.COM \
 tatung04/x86.build.company.com@COMPANY.COM \
 HTTP/tatung-test1.eng.company.com@COMPANY.COM

group publishusers publish@COMPANY.COM x-pubs@COMPANY.COM

Admins: This should be the *only* group which ever gets "all" access
to anything. Everything/everyone else must not be as permissive
acl allow-log admins all all

Catch 22: allow anonymous to access the lookup debug functions
acl allow-log anonymous create queue
acl allow-log anonymous all exchange name=qmf.*
acl allow-log anonymous all exchange name=amq.direct
acl allow-log anonymous all exchange name=qpid.management
acl allow-log anonymous access method name=Lookup*

acl allow all publish exchange name=''

Auditors
acl allow-log auditors all exchange name=company.topic
routingkey=private.audit.*

Tatung
acl allow-log tatunghosts publish exchange name=company.topic
routingkey=tatung.*
acl allow-log tatunghosts publish exchange name=company.direct
routingkey=tatung-service-queue

Publish

Chapter 9. Qpid Management Framework (QMF)

123

acl allow-log publishusers create queue
acl allow-log publishusers publish exchange name=qpid.management
routingkey=broker
acl allow-log publishusers publish exchange name=qmf.default.topic
routingkey=*
acl allow-log publishusers publish exchange name=qmf.default.direct
routingkey=*

Consumers - everyone
acl allow-log all bind exchange name=company.topic routingkey=tatung.*
acl allow-log all bind exchange name=company.direct routingkey=tatung-
service-queue

acl allow-log all consume queue

acl allow-log all access exchange
acl allow-log all access queue

acl allow-log all create queue name=tmp.* durable=false autodelete=true
exclusive=true policytype=ring

All else is denied
acl deny-log all all

Python Script acl-test-01.py

acl-test-00.py
test driver for QPID-3918 lookup hooks.
#
The broker is to use acl-test-00-rules.acl.

import sys
import qpid
import qmf

totalLookups = 0
failLookups = 0
exitOnError = True

#
Run a type 1 lookup
This is the general lookup
#
def Lookup(acl, userName, action, aclObj, aclObjName, propMap,
expectedResult = ''):
 global totalLookups
 global failLookups
 totalLookups += 1
 result = acl.Lookup(userName, action, aclObj, aclObjName, propMap)
 suffix = ''
 if (expectedResult != ''):
 if (result.result != expectedResult):
 failLookups += 1
 suffix = ', [ERROR: Expected ' + expectedResult + "]"
 if (result.result is None):

Messaging Programming Reference

124

 suffix = suffix + ', [' + result.text + ']'
 print 'Lookup : [name:', userName, ", action: ", action, ", object: ",
aclObj, \
 ", objName: '", aclObjName, "', properties: ", propMap, \
 "], [Result: ", result.result, "]", suffix
 if (exitOnError and failLookups > 0):
 sys.exit()

#
Run a type 2 lookup
This is a specific PUBLISH EXCHANGE ['user', 'exchangeName', 'routingKey']
lookup
#
def LookupPublish(acl, userName, exchName, keyName, expectedResult = ''):
 global totalLookups
 global failLookups
 totalLookups += 1
 result = acl.LookupPublish(userName, exchName, keyName)
 suffix = ''
 if (expectedResult != ''):
 if (result.result != expectedResult):
 failLookups += 1
 suffix = ', [ERROR: Expected ' + expectedResult + "]"
 if (result.result is None):
 suffix = suffix + ', [' + result.text + ']'
 print 'LookupPublish : [name:', userName, \
 ", exchName: '", exchName, "', key: ", keyName, \
 "], [Result: ", result.result, "]", suffix
 if (exitOnError and failLookups > 0):
 sys.exit()

#
AllBut
#
Given All names and some names we don't want,
return the All list with the targets removed
#
def AllBut(allList, removeList):
 tmpList = allList[:]
 for item in removeList:
 try:
 tmpList.remove(item)
 except Exception, e:
 print "ERROR in AllBut() \nallList = %s \nremoveList = %s
\nerror = %s " \
 % (allList, removeList, e)
 return tmpList

#
Main
#
Fire up a session and get the acl methods
#

from qmf.console import Session

Chapter 9. Qpid Management Framework (QMF)

125

sess = Session()
broker = sess.addBroker()
acls = sess.getObjects(_class="acl", _package="org.apache.qpid.acl")
acl = acls[0]
print acl.getMethods() # just to see the method names available

#
define some group lists
#
g_admins = ['moe@COMPANY.COM', \
 'larry@COMPANY.COM', \
 'curly@COMPANY.COM', \
 'shemp@COMPANY.COM']

g_auditors = [
'aaudit@COMPANY.COM','baudit@COMPANY.COM','caudit@COMPANY.COM', \

'daudit@COMPANY.COM','eaduit@COMPANY.COM','eaudit@COMPANY.COM']

g_tatunghosts = ['tatung01@COMPANY.COM', \
 'tatung02/x86.build.company.com@COMPANY.COM', \
 'tatung03/x86.build.company.com@COMPANY.COM', \
 'tatung04/x86.build.company.com@COMPANY.COM', \
 'HTTP/tatung-test1.eng.company.com@COMPANY.COM']

g_publishusers = ['publish@COMPANY.COM', 'x-pubs@COMPANY.COM']

g_public = ['jpublic@COMPANY.COM', 'me@yahoo.com']

g_all = g_admins + g_auditors + g_tatunghosts + g_publishusers + g_public

action_all =
['consume','publish','create','access','bind','unbind','delete','purge','upd
ate']

#
Run some tests
#
print '#'
print '# admin'
print '#'

for u in g_admins:
 Lookup(acl, u, "create", "queue", "anything", {"durable":"true"},
"allow-log")

print '#'
print '# auditors'
print '#'

uInTest = g_auditors + g_admins
uOutTest = AllBut(g_all, uInTest)

for u in uInTest:
 LookupPublish(acl, u, "company.topic", "private.audit.This", "allow-
log")

Messaging Programming Reference

126

for u in uInTest:
 for a in action_all:
 Lookup(acl, u, a, "exchange", "company.topic",
{"routingkey":"private.audit.This"}, "allow-log")

for u in uOutTest:
 LookupPublish(acl, u, "company.topic", "private.audit.This", "deny-log")
 Lookup(acl, u, "bind", "exchange", "company.topic",
{"routingkey":"private.audit.This"}, "deny-log")

print '#'
print '# tatungs'
print '#'

uInTest = g_admins + g_tatunghosts
uOutTest = AllBut(g_all, uInTest)

for u in uInTest:
 LookupPublish(acl, u, "company.topic", "tatung.this2", "allow-
log")
 LookupPublish(acl, u, "company.direct", "tatung-service-queue", "allow-
log")

for u in uOutTest:
 LookupPublish(acl, u, "company.topic", "tatung.this2", "deny-
log")
 LookupPublish(acl, u, "company.direct", "tatung-service-queue", "deny-
log")

for u in uOutTest:
 for a in ["bind", "access"]:
 Lookup(acl, u, a, "exchange", "company.topic",
{"routingkey":"tatung.this2"}, "allow-log")
 Lookup(acl, u, a, "exchange", "company.direct",
{"routingkey":"tatung-service-queue"}, "allow-log")

print '#'
print '# publishusers'
print '#'

uInTest = g_admins + g_publishusers
uOutTest = AllBut(g_all, uInTest)

for u in uInTest:
 LookupPublish(acl, u, "qpid.management", "broker", "allow-log")
 LookupPublish(acl, u, "qmf.default.topic", "this3", "allow-log")
 LookupPublish(acl, u, "qmf.default.direct", "this4", "allow-log")

for u in uOutTest:
 LookupPublish(acl, u, "qpid.management", "broker", "deny-log")
 LookupPublish(acl, u, "qmf.default.topic", "this3", "deny-log")
 LookupPublish(acl, u, "qmf.default.direct", "this4", "deny-log")

for u in uOutTest:
 for a in ["bind"]:

Chapter 9. Qpid Management Framework (QMF)

127

 Lookup(acl, u, a, "exchange", "qpid.management",
{"routingkey":"broker"}, "deny-log")
 Lookup(acl, u, a, "exchange", "qmf.default.topic",
{"routingkey":"this3"}, "deny-log")
 Lookup(acl, u, a, "exchange", "qmf.default.direct",
{"routingkey":"this4"}, "deny-log")
 for a in ["access"]:
 Lookup(acl, u, a, "exchange", "qpid.management",
{"routingkey":"broker"}, "allow-log")
 Lookup(acl, u, a, "exchange", "qmf.default.topic",
{"routingkey":"this3"}, "allow-log")
 Lookup(acl, u, a, "exchange", "qmf.default.direct",
{"routingkey":"this4"}, "allow-log")

#
Report statistics
#
print 'Total Lookups: ', totalLookups
print 'Failed Lookups: ', failLookups

#
Close the session
#
sess.close()

Report a bug

9.14. Using QMF in a Cluster

To use QMF messages in a cluster, use QMF version 2. QMF version 1 messages cannot be used in a
cluster.

Report a bug

[1] Not available in the Java client

Messaging Programming Reference

128

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+13100-592053+%5BLatest%5D&comment=Title%3A+ACL+Lookup+Query+Methods%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13100-592053+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8377-591833+%5BLatest%5D&comment=Title%3A+Using+QMF+in+a+Cluster%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8377-591833+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 10. The Qpid Messaging API

10.1. Handling Exceptions

10.1.1. Messaging Exceptions Reference

In the asynchronous and decoupled environment of a messaging application, exceptions are thrown for both
local error conditions and error conditions or failures that occur remotely. Developing a robust application
requires that you anticipate and handle a wide range of possible exceptions, some of which are not
immediately obvious from the context of the method itself.

Report a bug

10.1.2. C++ Messaging Exceptions Class Hierarchy

The following are the exceptions thrown by the C++ API, and the circumstances under which they are thrown.
The source code for the exceptions can be viewed in the Apache Qpid svn repository.

MessagingException

The base class for Messaging exceptions.

InvalidOptionString : public MessagingException

Thrown when the syntax of the option string used to configure a connection is not valid.

KeyError : public MessagingException

Thrown to indicate a failed lookup of some local object. For example when attempting to retrieve a
session, sender or receiver by name.

LinkError : public MessagingException

Base class for exceptions thrown to indicate a failed lookup of some local object.

AddressError : public LinkError

Thrown to indicate a failed lookup of some local object. For example when attempting to retrieve a
session, sender or receiver by name.

ResolutionError : public AddressError

Thrown when a syntactically correct address cannot be resolved or used.

AssertionFailed : public ResolutionError

Thrown when creating a sender or receiver for an address for which some asserted property of the
node is not matched.

NotFound : public ResolutionError

Thrown on attempts to create a sender or receiver to a non-existent node.

MalformedAddress : public AddressError

Thrown when an address string with invalid syntax is used.

ReceiverError : public LinkError

Chapter 10. The Qpid Messaging API

129

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10853-591946+%5BLatest%5D&comment=Title%3A+Messaging+Exceptions+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10853-591946+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
http://svn.apache.org/viewvc/qpid/trunk/qpid/cpp/include/qpid/messaging/exceptions.h?view=markup&pathrev=1165391

FetchError : public ReceiverError

NoMessageAvailable : public FetchError

Thrown by Receiver::fetch(), Receiver::get() and Session::nextReceiver() to indicate that there no
message was available before the timeout specified.

SenderError : public LinkError

SendError : public SenderError

TargetCapacityExceeded : public SendError

Thrown to indicate that the sender attempted to send a message that would result in the target
node on the peer exceeding a preconfigured capacity.

SessionError : public MessagingException

TransactionError : public SessionError

TransactionAborted : public TransactionError

Thrown on Session::commit() if reconnection results in the transaction being automatically aborted.

TransactionUnknown : public TransactionError

The outcome of the transaction on the broker (commit or roll-back) is not known. This occurs when
the connection fails after the commit was sent, but before a response is received.

UnauthorizedAccess : public SessionError

Thrown to indicate that the application attempted to do something for which it was not authorized
by its peer.

UnauthorizedAccess : public SessionError

ConnectionError : public MessagingException

TransportFailure : public MessagingException

Thrown to indicate loss of underlying connection. When auto-reconnect is used this will be caught
by the library and used to trigger reconnection attempts. If reconnection fails (according to
whatever settings have been configured), then an instance of this class will be thrown to signal that.

Report a bug

10.1.3. Connection Exceptions

Note: Unless fully qualified, all exceptions listed are in the qpid::messaging namespace.

Connection::Connection(const std::string&, const qpid::types::Variant::Map&)

MessagingException if any of the options in the supplied map are not recognised.

qpid::types::InvalidConversion if any of the option values are of the wrong type.

Connection::Connection(const std::string& url, const std::string& options)

MessagingException if any of the options in the supplied map are not recognised.

qpid::types::InvalidConversion if any of the option values are of the wrong type.

Messaging Programming Reference

130

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8400-707043+%5BLatest%5D&comment=Title%3A+C%2B%2B+Messaging+Exceptions+Class+Hierarchy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8400-707043+08+Sep+2014+11%3A06+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

InvalidOptionString if the format of the option string is invalid.

Connection::setOption(const std::string& name, const qpid::types::Variant& value)

MessagingException if the named option is not recognised.

qpid::types::InvalidConversion if the option value is of the wrong type.

Connection::open()

qpid::Url::Invalid if the url is not valid (this may be the url supplied on construction or any of
the reconnect_urls supplied via options).

TransportFailure if a connection could not be established.

ConnectionError for any other failure, including where the broker sends a connection.close
control before the AMQP 0-10 defined connection handshake completes.

qpid::types::InvalidConversion if the broker sends an improperly encoded value for the
'known-host' field of the connection.open-ok control as defined by AMQP 0-10
specification.

Connection::isOpen()

Does not throw exceptions.

Connection::close()

TargetCapacityExceeded if any of the sessions established for the connection have attempted
to send a message that would result in a queue exceeding configured limits.

UnauthorizedAccess if any of the sessions established for the connection have attempted to
perform an operation for which it has not been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close control
(i.e. if broker initiates closing of an active connection just before the client does).

MessagingException if the broker to which the client is connected sends a session.detached
control (i.e. if broker initiates closing of an active session while the close is in progress).

TransportFailure if a connection was lost while trying to perform the close 'handshake' with
the broker.

Connection::createTransactionalSession(const std::string& name)

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected which could happen on enabling transactions for
the session (e.g. if the broker in question did not support transactions).

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a session.detached
control (i.e. if broker initiates closing of the session before it becomes active).

TransportFailure if the connection was lost (and if automatic reconnect is enabled could not
be re-established).

Chapter 10. The Qpid Messaging API

131

qpid::Url::Invalid if reconnect is enabled and a url in the reconnect_urls option list is
invalid.

qpid::types::InvalidConversion if the broker were to send an improperly encoded value
for the 'known-host' field of the connection.open-ok control as defined by AMQP 0-10
specification.

Connection::createSession(const std::string&)

ConnectionError if the broker to which the client is connected sends a connection.close control
(i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of the session before it becomes
active).

TransportFailure if the connection was lost (and if automatic reconnect is enabled could not
be re-established).

qpid::Url::Invalid if reconnect is enabled and a url in the reconnect_urls option list is
invalid.

qpid::types::InvalidConversion if the broker were to send an improperly encoded value
for the 'known-host' field of the connection.open-ok control as defined by AMQP 0-10
specification.

Connection::getSession(const std::string&)

KeyError if no session for the specified name exists.

Connection::getAuthenticatedUsername()

Does not throw any exception.

Report a bug

10.1.4. Session Exceptions

Note: Unless fully qualified, all exceptions listed are in the qpid::messaging namespace.

Session::close()

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Messaging Programming Reference

132

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10856-591946+%5BLatest%5D&comment=Title%3A+Connection+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10856-591946+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Session::commit()

TransactionAborted if the original AMQP 0-10 session is lost, e.g. due to failover, forcing an
automatic rollback.

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a session.detached
control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::rollback()

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received from
the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::acknowledge(bool)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received from
the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

Chapter 10. The Qpid Messaging API

133

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::acknowledge(Message&, bool)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received from
the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::acknowledgeUpTo(Message&, bool)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::reject(Message&)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

Throws SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

Messaging Programming Reference

134

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::release(Message&)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be re-
established).

Session::sync(bool)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::getReceivable()

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

Chapter 10. The Qpid Messaging API

135

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::getUnsettledAcks()

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be re-
established).

Session::nextReceiver(Receiver&, Duration)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a session.detached
control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::nextReceiver(Duration)

Receiver::NoMessageAvailable if no message became available in time.

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

Throws SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

Messaging Programming Reference

136

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::createSender(const Address&)

ResolutionError if there is an error in resolving the address.

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a session.detached
control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::createSender(const std::string&)

ResolutionError if there is an error in resolving the address.

MalformedAddress if the syntax of the address string is not valid.

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received from
the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::createReceiver(const Address&)

ResolutionError if there is an error in resolving the address.

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

Chapter 10. The Qpid Messaging API

137

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received from
the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close control
(i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a session.detached
control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::createReceiver(const std::string&)

ResolutionError if there is an error in resolving the address.

MalformedAddress if the syntax of the address string is not valid.

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received from
the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Session::getSender(const std::string&)

KeyError if there is no sender for the specified name.

Session::getReceiver(const std::string&)

KeyError if there is no receiver for the specified name.

Session::checkError()

qpid::messaging::SessionError if an execution.exception command, as defined in AMQP
0-10, is received from the broker to which the client is connected.

qpid::messaging::ConnectionError if the broker to which the client is connected sends a
connection.close control (i.e. if broker initiates closing of an active connection).

qpid::messaging::MessagingException if the broker to which the client is connected sends
a session.detached control (i.e. if broker initiates closing of an active session).

Session::getConnection()

Does not throw exceptions.

Messaging Programming Reference

138

Does not throw exceptions.

Session::hasError()

Does not throw exceptions.

Report a bug

10.1.5. Sender Exceptions

Note: Unless fully qualified, all exceptions listed are in the qpid::messaging namespace.

Sender::send(const Message& message, bool)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a session.detached
control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Sender::close()

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Sender::setCapacity(uint32_t)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

Chapter 10. The Qpid Messaging API

139

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10855-591946+%5BLatest%5D&comment=Title%3A+Session+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10855-591946+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Sender::getUnsettled()

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Sender::getAvailable()

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Sender::getCapacity()

Does not throw exceptions.

Sender::getName()

Does not throw exceptions.

Messaging Programming Reference

140

Sender::getSession()

Does not throw exceptions.

Report a bug

10.1.6. Receiver Exceptions

Note: Unless fully qualified, all exceptions listed are in the qpid::messaging namespace.

Receiver::get(Message& message, Duration timeout=Duration::FOREVER)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Receiver::Message get(Duration timeout=Duration::FOREVER)

NoMessageAvailable if there is no message to give after waiting for the specified timeout, or if
the Receiver is closed, in which case isClose() will be true.

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received from
the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Receiver::fetch(Message& message, Duration timeout=Duration::FOREVER)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

Chapter 10. The Qpid Messaging API

141

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10858-591946+%5BLatest%5D&comment=Title%3A+Sender+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10858-591946+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received from
the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Receiver::fetch(Duration timeout=Duration::FOREVER)

NoMessageAvailable if there is no message to give after waiting for the specified timeout, or if
the Receiver is closed, in which case isClose() will be true.

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Receiver::setCapacity(uint32_t)

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Receiver::getAvailable()

Messaging Programming Reference

142

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Receiver::getUnsettled()

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Receiver::close()

TargetCapacityExceeded if the session has attempted to send a message that would result in
a queue exceeding configured limits.

UnauthorizedAccess if the session has attempted to perform an operation for which it has not
been granted permission.

SessionError if an execution.exception command, as defined in AMQP 0-10, is received
from the broker to which the client is connected.

ConnectionError if the broker to which the client is connected sends a connection.close
control (i.e. if broker initiates closing of an active connection).

MessagingException if the broker to which the client is connected sends a
session.detached control (i.e. if broker initiates closing of an active session).

TransportFailure if a connection was lost (and if automatic reconnect is enabled could not be
re-established).

Receiver::isClosed()

Chapter 10. The Qpid Messaging API

143

Does not throw exceptions.

Receiver::getCapacity()

Does not throw exceptions.

Receiver::getName()

Does not throw exceptions.

Receiver::getSession()

Does not throw exceptions.

Report a bug

Messaging Programming Reference

144

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10857-591946+%5BLatest%5D&comment=Title%3A+Receiver+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10857-591946+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 11. Addresses

11.1. x-declare Parameters

The following parameters may be supplied in the x-declare part of an address string:

Table 11.1.

Parameter Usage
auto-delete boolean specifying if the queue/exchange should

be auto-deleted
exclusive boolean specifying exclusiveness of the

queue/exchange
alternate-exchange alternate exchange where messages shall be routed

to when this queue is deleted / the exchange fails to
find a matching bind for a message

arguments a nested map with arguments available specifically
for the queue / exchange. Refer to
https://cwiki.apache.org/confluence/display/qpid/Qpi
d+extensions+to+AMQP for further details.

Report a bug

11.2. Address String Options Reference

Table 11.2.

Option Value Semantics
assert one of: always, never, sender

or receiver
Asserts that the properties
specified in the node option match
whatever the address resolves to.
If they do not, resolution fails and
an exception is raised.

create one of: always, never, sender
or receiver

Creates the node to which an
address refers if it does not exist.
No error is raised if the node does
exist. The details of the node may
be specified in the node option.

delete one of: always, never, sender
or receiver

Delete the node when the sender
or receiver is closed.

node A nested map containing node
properties.

Specifies properties of the node to
which the address refers. These
are used in conjunction with the
assert or create options.

link A nested map containing link
properties.

Used to control the establishment
of a conceptual link from the client
application to or from the
target/source address.

Chapter 11. Addresses

145

https://cwiki.apache.org/confluence/display/qpid/Qpid+extensions+to+AMQP
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+11981-592001+%5BLatest%5D&comment=Title%3A+x-declare+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11981-592001+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

mode one of: browse, consume This option is only of relevance for
source addresses that resolve to a
queue. If browse is specified the
messages delivered to the
receiver are left on the queue
rather than being removed. If
consume is specified the normal
behavior applies; messages are
removed from the queue once the
client acknowledges their receipt.

Option Value Semantics

Report a bug

11.3. Node Properties

Table 11.3.

Property Value Semantics
type one of: topic, queue Indicates the type of the node.

durable one of: True, False Indicates whether the node
survives a loss of volatile storage
e.g. if the broker is restarted.

x-declare A nested map whose values
correspond to the valid fields on
an AMQP 0-10 queue-declare
or exchange-declare
command.

These values are used to fine
tune the creation or assertion
process. Note however that they
are protocol specific.

x-bindings A nested list in which each binding
is represented by a map. The
entries of the map for a binding
contain the fields that describe an
AMQP 0-10 binding. Here is the
format for x-bindings:

[
 {
 exchange:
<exchange>,
 queue: <queue>,
 key: <key>,
 arguments: {
 <key_1>:
<value_1>,
 ...,
 <key_n>:
<value_n> }
 },
 ...
]

In conjunction with the create
option, each of these bindings is
established as the address is
resolved. In conjunction with the
assert option, the existence of
each of these bindings is verified
during resolution. Again, these
are protocol specific.

Messaging Programming Reference

146

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8086-591821+%5BLatest%5D&comment=Title%3A+Address+String+Options+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8086-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

properties A nested map of AMQP 1.0
properties.

A nested map of properties
specified through properties is
recommended over use of x-
declare, which generates the
nested map of properties when it
is used.

capabilities A single string or list of strings
representing AMQP 1.0
capabilities.

A list containing the AMQP 1.0
capabilities requested from the
source or target.

Property Value Semantics

Report a bug

11.4. Link Properties

Table 11.4.

Option Value Semantics
reliability one of: unreliable, at-

least-once, at-most-once

, exactly-once

Currently only unreliable and
at-least-once are supported.
See the footnotes for further
details.

Reliability indicates the level of
link reliability requested by the
sender or receiver. unreliable
and at-most-once are currently
treated as synonyms, and allow
messages to be lost if a broker
crashes or the connection to a
broker is lost. at-least-once
guarantees that a message is not
lost, but duplicates may be
received. exactly-once
guarantees that a message is not
lost, and is delivered precisely
once.

durable One of: True, False. Indicates whether the link survives
a loss of volatile storage e.g. if the
broker is restarted.

x-declare A nested map whose values
correspond to the valid fields of an
AMQP 0-10 queue-declare
command.

These values can be used to
customize the subscription queue
in the case of receiving from an
exchange. Note however that they
are protocol specific.

x-subscribe A nested map whose values
correspond to the valid fields of an
AMQP 0-10 message-
subscribe command.

These values can be used to
customize the subscription.

[a] [b]

Chapter 11. Addresses

147

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8098-591822+%5BLatest%5D&comment=Title%3A+Node+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8098-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

x-bindings A nested list each of whose
entries is a map that may contain
fields (queue, exchange, key
and arguments) describing an
AMQP 0-10 binding.

These bindings are established
during resolution independent of
the create option. They are
considered logically part of the
linking process rather than of
node creation.

filter A map containing name,
descriptor, and value,
describing an AMQP 1.0 filter.

name is an application chosen
name; descriptor is a string
descriptor identifying the filter
type; value is value for the filter,
whose type is dictated by the type
of filter (for example: string for
legacy-amqp-direct-
binding, and map for legacy-
amqp-headers-binding).

Option Value Semantics

Report a bug

11.5. Address String Grammar

Tokens

The following regular expressions define the tokens used to parse address strings:

LBRACE: \\{
RBRACE: \\}
LBRACK: \\[
RBRACK: \\]
COLON: :
SEMI: ;
SLASH: /
COMMA: ,
NUMBER: [+-]?[0-9]*\\.?[0-9]+
ID: [a-zA-Z_](?:[a-zA-Z0-9_-]*[a-zA-Z0-9_])?
STRING: "(?:[^\\\\"]|\\\\.)*"|\'(?:[^\\\\\']|\\\\.)*\'
ESC: \\\\[^ux]|\\\\x[0-9a-fA-F][0-9a-fA-F]|\\\\u[0-9a-fA-F][0-9a-fA-F][0-
9a-fA-F][0-9a-fA-F]
SYM: [.#*%@$^!+-]
WSPACE: [\\n\\r\\t]+

Grammar

The formal grammar for addresses is given below:

address := name [SLASH subject] [";" options]
 name := (part | quoted)+
subject := (part | quoted | SLASH)*
 quoted := STRING / ESC
 part := LBRACE / RBRACE / COLON / COMMA / NUMBER / ID / SYM
options := map

[a] If at-most-once is requested, unreliable is used.
[b] If exactly-once is requested, at-least-once is used.

Messaging Programming Reference

148

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8104-733900+%5BLatest%5D&comment=Title%3A+Link+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8104-733900+22+Dec+2014+10%3A30+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 map := "{" (keyval ("," keyval)*)? "}"
 keyval "= ID ":" value
 value := NUMBER / STRING / ID / map / list
 list := "[" (value ("," value)*)? "]"

Address String Options

The address string options map supports the following parameters:

AMQP 0-10

<name> [/ <subject>] ; {
 create: always | sender | receiver | never,
 delete: always | sender | receiver | never,
 assert: always | sender | receiver | never,
 mode: browse | consume,
 node: {
 type: queue | topic,
 durable: True | False,
 x-declare: { ... <declare-overrides> ... },
 x-bindings: [<binding_1>, ... <binding_n>]
 },
 link: {
 name: <link-name>,
 durable: True | False,
 reliability: unreliable | at-most-once | at-least-once | exactly-once,
 x-declare: { ... <declare-overrides> ... },
 x-bindings: [<binding_1>, ... <binding_n>],
 x-subscribe: { ... <subscribe-overrides> ... }
 }
}

AMQP 1.0

<name> [/ <subject>] ; {
 create: always | sender | receiver | never,
 assert: always | sender | receiver | never,
 mode: browse | consume,
 node: {
 type: queue | topic,
 durable: True | False,

 properties: { ... <nested-map> ... } ,
 capabilities: [<capability_1>, ... <capability_n>]
 },
 link: {
 name: <link-name>,
 durable: True | False,
 reliability: unreliable | at-most-once | at-least-once | exactly-once,
 filter: { name: <name>, descriptor: <filter-descriptor>, value: <filter-
value> }
 }
}

Create, Delete, and Assert Policies

[2]

Chapter 11. Addresses

149

The create, delete (AMQP 0-10 only), and assert policies specify who should perform the associated
action:

always

the action is performed by any messaging client

sender

the action is only performed by a sender

receiver

the action is only performed by a receiver

never

the action is never performed (this is the default)

Node-Type

The node-type is one of:

topic

in the AMQP 0-10 mapping, a topic node defaults to the topic exchange, x-declare may be used to
specify other exchange types

queue

this is the default node-type

Filter Descriptor

The following AMQP 1.0 filters are implemented in MRG 3:

legacy-amqp-direct-binding

legacy-amqp-topic-binding

legacy-amqp-headers-binding

selector-filter

xquery-filter

Report a bug

11.6. Connection Options

Aspects of the connection behavior can be controlled through connection options. For example, connections
can be configured to automatically reconnect if the connection to a broker is lost.

Report a bug

11.7. Setting Connection Options

There are two different ways to set connection options. The first is to do it in the Connection constructor:

Messaging Programming Reference

150

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8165-641553+%5BLatest%5D&comment=Title%3A+Address+String+Grammar%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8165-641553+19+May+2014+16%3A57+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8090-591821+%5BLatest%5D&comment=Title%3A+Connection+Options%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8090-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Python

connection = Connection("localhost:5672", reconnect = True,
reconnect_urls = "amqp:tcp:127.0.0.1:5674", heartbeat = 1)
try:
 connection.open()

C++

Connection connection("localhost:5672", "{reconnect: true,
reconnect_urls:'amqp:tcp:127.0.0.1:5674', reconnect:true, heartbeat:
1}");
try {
 connection.open();

.NET/C#

Connection connection= new Connection("localhost:5672", "{reconnect:
true, reconnect_urls:'amqp:tcp:127.0.0.1:5674', reconnect:true,
heartbeat: 1}");
try {
 connection.Open();

The second approach is to do it through the Connection properties:

Python

connection = Connection("localhost:5672")
connection.reconnect = True
try:
 connection.Open()

C++

Connection connection("localhost:5672");
connection.setOption("reconnect", true);
try {
 connection.open();

.NET/C#

Connection connection = new Connection("localhost:5672");
connection.SetOption("reconnect", true);
try {
 connection.Open();

Report a bug

11.8. Connection Options Reference

Table 11.5. Connection Options (General)

Chapter 11. Addresses

151

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8036-591819+%5BLatest%5D&comment=Title%3A+Setting+Connection+Options%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8036-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Option name Value type Semantics
username string The username to use when

authenticating to the broker.
password string The password to use when

authenticating to the broker.
heartbeat integer Requests that heartbeats be sent

every N seconds. If two
successive heartbeats are
missed, the connection is
considered lost and will fail or start
the reconnect process if
configured to do so.

max-channels integer Restricts the maximum number of
supported channels, to assist with
tuning the Messaging API. Not
supported in AMPQ 1.0.

max-frame-size integer Restricts the maximum frame
size, to assist with tuning the
Messaging API. Not supported in
AMPQ 1.0.

The minimum value should be
at least 4096B; anything lower
will cause authentication
failures. The product does not
enforce this restriction.

protocol string The AMQP protocol to use. The
recognized values are 'amqp1.0'
and 'amqp0-10'. AMQP 0-10 is
the default. Note: Not supported in
Python client.

reconnect boolean Transparently reconnect if the
connection is lost.

reconnect_urls Broker address list A list of one or more brokers to
attempt communication with when
a connection fails.

reconnect_urls_replace boolean Controls how setting the
reconnect_urls option is
treated. If true, setting
reconnect_urls causes the old
list to be replaced with the new
one. If false, the new list is
appended to the old list. The
default value is false.

reconnect_timeout float Total number of seconds to
continue reconnection attempts
before giving up and raising an
exception.

reconnect_limit integer Maximum number of reconnection
attempts before giving up and
raising an exception.

Messaging Programming Reference

152

reconnect_interval_min float Minimum number of seconds
between reconnection attempts.
The first reconnection attempt is
made immediately; if that fails, the
first reconnection delay is set to
the value of
reconnect_interval_min; if
that attempt fails, the reconnect
interval increases exponentially
until a reconnection attempt
succeeds or
reconnect_interval_max is
reached. This value can be
fractional. For example, 0.001
sets the maximum reconnect
interval to one millisecond.

reconnect_interval_max float Maximum reconnect interval in
seconds. This value can be
fractional. For example, 0.001
sets the maximum reconnect
interval to one millisecond.

reconnect_interval float Sets both
reconnection_interval_min
and
reconnection_interval_max
to the same number of seconds.

sasl_mechanisms string The specific SASL mechanisms to
use when authenticating to the
broker as a space separated list.

sasl_service string The service name if needed by
the SASL mechanism in use.

sasl_min_ssf integer The minimum acceptable security
strength factor.

sasl_max_ssf integer The maximum acceptable security
strength factor.

ssl_cert_name string Name of the certificate to use for a
given client.

ssl_ignore_hostname_verif
ication_failure

boolean Disables authentication of the
server to the client (and should be
used only as a last resort). If set
to true, the client can connect to
the server even if the hostname
used (or IP address) does not
match what is in the servers
certificate.

tcp_nodelay boolean Set tcp_no_delay, i.e. disable
Nagle algorithm. Note: Not
Supported in Python client.

transport string Sets the underlying transport
protocol used. The default option
is tcp. To enable ssl, set to ssl.
The C++ client additionally
supports rdma.

Option name Value type Semantics

Chapter 11. Addresses

153

Table 11.6. Connection Options (Python Client Only)

Option name Value type Semantics
address_ttl float Time until cached address

resolution expires.
host string The name or ip address of the

remote host (overridden by url).

port integer The port number of the remote
host (overridden by url).

ssl_certfile string File with client's public key (PEM
format).

ssl_keyfile string File with client's private key (PEM
format).

ssl_trustfile string File with trusted certificates to
validate the server.

url string [<username> [/ <password>] @
] <host> [: <port>].

Table 11.7. Connection Options (AMPQ 1.0 Only)

Option name Value type Semantics
container_id string The container ID to use for the

connection.
nest_annotations boolean If true, annotations in received

messages are presented as
properties with keys x-amqp-
delivery-annotations or x-amqp-
delivery-annotations. The values
consist of nested maps containing
the annotations. If false, the
annotations are merged in with
the properties.

set_to_on_send boolean If true, all sent messages will have
the to field set to the node name
of the sender.

properties or
client_properties

integer The properties to include in the
open frame sent.

Report a bug

[2] The use of new properties nested map is recommended. The x-declare map is supported as a
convenience and is automatically converted to a properties map before sending to the broker.

Messaging Programming Reference

154

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8044-770652+%5BLatest%5D&comment=Title%3A+Connection+Options+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8044-770652+25+Sep+2015+11%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 12. Message Timestamping

12.1. Message Timestamping

Messages can be timestamped with the date and time of their arrival at the broker. By default timestamping of
messages is turned off.

Report a bug

12.2. Enable Message Timestamping at Broker Start-up

To enable message timestamping at broker start-up, start the broker with the --enable-timestamp yes
argument:

./qpidd --enable-timestamp yes

Report a bug

12.3. Enable Message Timestamping from an Application

QMF command messages can be used to enable and disable timestamping from an application, with no need
to restart the broker.

The QMF methods getTimestampConfig and setTimestampConfig get and set the timestamping
configuration.

getTimestampConfig

Returns True if received messages are timestamped.

setTimestampConfig

Set True to enable timestamping received messages, False to disable timestamping.

Report a bug

12.4. Access a Message Timestamp in Python

The following code fragment checks for and extracts the message timestamp from a received message.

try:
 msg = receiver.fetch(timeout=1)
 if "x-amqp-0-10.timestamp" in msg.properties:
 print("Timestamp=%s" % str(msg.properties["x-amqp-0-10.timestamp"]))
except Empty:
 pass

Report a bug

12.5. Access a Message Timestamp in C++

Chapter 12. Message Timestamping

155

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8138-591820+%5BLatest%5D&comment=Title%3A+Message+Timestamping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8138-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8067-591818+%5BLatest%5D&comment=Title%3A+Enable+Message+Timestamping+at+Broker+Start-up%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8067-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8160-591823+%5BLatest%5D&comment=Title%3A+Enable+Message+Timestamping%09from+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8160-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8033-591819+%5BLatest%5D&comment=Title%3A+Access+a+Message+Timestamp+in+Python%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8033-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The following code fragment checks for and extracts the message timestamp from a received message.

messaging::Message msg;
if (receiver.fetch(msg, messaging::Duration::SECOND*1)) {
 if (msg.getProperties().find("x-amqp-0-10.timestamp") !=
msg.getProperties().end()) {
 std::cout << "Timestamp=" <<
msg.getProperties()["x-amqp-0-10.timestamp"].asString() << std::endl;
 }
}

Report a bug

12.6. Using AMQ 0-10 Message Property Keys for Timestamping

If the timestamp delivery property is set in an incoming message (delivery-properties.timestamp),
the timestamp value can be accessed using the x-amqp-0-10.timestamp message property.

See Also:

Chapter 19, The AMQP 0-10 mapping

Report a bug

Messaging Programming Reference

156

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8041-591819+%5BLatest%5D&comment=Title%3A+Access+a+Message+Timestamp+in+C%2B%2B%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8041-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8043-591819+%5BLatest%5D&comment=Title%3A+Using+AMQ+0-10+Message+Property+Keys+for+Timestamping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8043-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 13. Maps and Lists

13.1. Maps and Lists in Message Content

Messaging applications frequently need to exchange data across languages and platforms. Messages can
contain maps and lists.

Report a bug

13.2. Map and List Representation in Native Data Types

Table 13.1. Map and List Representation in Supported Languages

Language map list
Python dict list

C++ Variant::Map Variant::List

Java MapMessage ListMessage

.NET Dictionary<string,
object>

Collection<object>

Report a bug

13.3. Qpid Maps and Lists in Python

In Python, Qpid supports the dict and list types directly in message content. The following code shows how to
send these structures in a message:

Python

from qpid.messaging import *
!!! SNIP !!!

content = {'Id' : 987654321, 'name' : 'Widget', 'percent' : 0.99}
content['colours'] = ['red', 'green', 'white']
content['dimensions'] = {'length' : 10.2, 'width' : 5.1,'depth' :
2.0};
content['parts'] = [[1,2,5], [8,2,5]]
content['specs'] = {'colors' : content['colours'],
 'dimensions' : content['dimensions'],
 'parts' : content['parts'] }
message = Message(content=content)
sender.send(message)

Report a bug

13.4. Python Data Types in Maps

The following table shows the data types that can be sent in a Python map message, and the corresponding
data types that will be received by clients in Java or C++.

Chapter 13. Maps and Lists

157

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8158-591823+%5BLatest%5D&comment=Title%3A+Maps+and+Lists+in+Message+Content%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8158-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8168-591823+%5BLatest%5D&comment=Title%3A+Map+and+List+Representation+in+Native+Data+Types%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8168-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8079-591821+%5BLatest%5D&comment=Title%3A+Qpid+Maps+and+Lists+in+Python%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8079-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Table 13.2. Python Data Types in Maps

Python Data Type → C++ → Java
 bool bool boolean

 int int64 long

 long int64 long

 float double double

 unicode string java.lang.String

 uuid qpid::types::Uuid java.util.UUID

 dict Variant::Map java.util.Map

 list Variant::List java.util.List

Report a bug

13.5. Qpid Maps and Lists in C++

In C++, Qpid defines the Variant::Map and Variant::List types, which can be encoded into message content.
The following code shows how to send these structures in a message:

using namespace qpid::types;

// !!! SNIP !!!

Message message;
Variant::Map content;
content["id"] = 987654321;
content["name"] = "Widget";
content["percent"] = 0.99;
Variant::List colours;
colours.push_back(Variant("red"));
colours.push_back(Variant("green"));
colours.push_back(Variant("white"));
content["colours"] = colours;

Variant::Map dimensions;
dimensions["length"] = 10.2;
dimensions["width"] = 5.1;
dimensions["depth"] = 2.0;
content["dimensions"]= dimensions;

Variant::List part1;
part1.push_back(Variant(1));
part1.push_back(Variant(2));
part1.push_back(Variant(5));

Variant::List part2;
part2.push_back(Variant(8));
part2.push_back(Variant(2));
part2.push_back(Variant(5));

Variant::List parts;
parts.push_back(part1);
parts.push_back(part2);

Messaging Programming Reference

158

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8161-591823+%5BLatest%5D&comment=Title%3A+Python+Data+Types+in+Maps%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8161-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

content["parts"]= parts;

Variant::Map specs;
specs["colours"] = colours;
specs["dimensions"] = dimensions;
specs["parts"] = parts;
content["specs"] = specs;

message.setContentObject(content);
sender.send(message, true);

Report a bug

13.6. C++ Data Types in Maps

The following table shows the data types that can be sent in a C++ map message, and the corresponding
data types that will be received by clients in Java and Python.

Table 13.3. C++ Data Types in Maps

 C++ Data Type → Python → Java

 bool bool boolean

 uint16 int | long short

 uint32 int | long int

 uint64 int | long long

 int16 int | long short

 int32 int | long int

 int64 int | long long

 float float float

 double float double

 string unicode java.lang.String

 qpid::types::Uuid uuid java.util.UUID

 Variant::Map dict java.util.Map

 Variant::List list java.util.List

Report a bug

13.7. Qpid Maps and Lists in .NET C#

The .NET binding for the Qpid Messaging API binds .NET managed data types to C++ Variant data types.
The following code shows how to send Variant::Map and Variant::List structures in a message:

.NET/C#

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using Org.Apache.Qpid.Messaging;

namespace Org.Apache.Qpid.Messaging.examples
{

Chapter 13. Maps and Lists

159

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8077-704190+%5BLatest%5D&comment=Title%3A+Qpid+Maps+and+Lists+in+C%2B%2B%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8077-704190+28+Aug+2014+10%3A43+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8088-591821+%5BLatest%5D&comment=Title%3A+C%2B%2B+Data+Types+in+Maps%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8088-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 class MapSender
 {
 // csharp.map.sender example
 //
 // Send an amqp/map message
 // The map message contains simple types, a nested amqp/map,
 // an ampq/list, and specific instances of each supported
type.
 //
 static int Main(string[] args)
 {
 string url = "amqp:tcp:localhost:5672";
 string address = "message_queue; {create: always}";
 string connectionOptions = "";

 if (args.Length > 0)
 url = args[0];
 if (args.Length > 1)
 address = args[1];
 if (args.Length > 2)
 connectionOptions = args[2];

 //
 // Create and open an AMQP connection to the broker URL
 //
 Connection connection = new Connection(url,
connectionOptions);
 connection.Open();

 //
 // Create a session and a sender
 //
 Session session = connection.CreateSession();
 Sender sender = session.CreateSender(address);

 //
 // Create structured content for the message. This
example builds a
 // map of items including a nested map and a list of
values.
 //
 Dictionary<string, object> content = new
Dictionary<string, object>();
 Dictionary<string, object> subMap = new
Dictionary<string, object>();
 Collection<object> colors = new Collection<object>();

 // add simple types
 content["id"] = 987654321;
 content["name"] = "Widget";
 content["percent"] = 0.99;

 // add nested amqp/map
 subMap["name"] = "Smith";
 subMap["number"] = 354;
 content["nestedMap"] = subMap;

Messaging Programming Reference

160

 // add an amqp/list
 colors.Add("red");
 colors.Add("green");
 colors.Add("white");
 // list contains null value
 colors.Add(null);
 content["colorsList"] = colors;

 // add one of each supported amqp data type
 bool mybool = true;
 content["mybool"] = mybool;

 byte mybyte = 4;
 content["mybyte"] = mybyte;

 UInt16 myUInt16 = 5 ;
 content["myUInt16"] = myUInt16;

 UInt32 myUInt32 = 6;
 content["myUInt32"] = myUInt32;

 UInt64 myUInt64 = 7;
 content["myUInt64"] = myUInt64;

 char mychar = 'h';
 content["mychar"] = mychar;

 Int16 myInt16 = 9;
 content["myInt16"] = myInt16;

 Int32 myInt32 = 10;
 content["myInt32"] = myInt32;

 Int64 myInt64 = 11;
 content["myInt64"] = myInt64;

 Single mySingle = (Single)12.12;
 content["mySingle"] = mySingle;

 Double myDouble = 13.13;
 content["myDouble"] = myDouble;

 Guid myGuid = new
Guid("000102030405060708090a0b0c0d0e0f");
 content["myGuid"] = myGuid;

 content["myNull"] = null;

 //
 // Construct a message with the map content and send it
synchronously
 // via the sender.
 //
 Message message = new Message(content);
 sender.Send(message, true);

Chapter 13. Maps and Lists

161

 //
 // Wait until broker receives all messages.
 //
 session.Sync();

 //
 // Close the connection.
 //
 connection.Close();
 return 0;
 }
 }
}

Report a bug

13.8. C# Data Types and .NET bindings

The following table shows the mapping between data types in .NET and C++..

Table 13.4. Data Type Mapping between C++ and .NET binding

C++ Data Type .NET binding
 void nullptr

 bool bool

 uint8 byte

 uint16 UInt16

 uint32 UInt32

 uint64 UInt64

 int16 char

 int16 Int16

 int32 Int32

 int64 Int64

 float Single

 double Double

 string string

 qpid::types::Uuid Guid

 Variant::Map Dictionary< string, object >

 Variant::List Collection< object >

Note

.NET string objects are translated to and from C++ strings using UTF-8 encoding only.

Report a bug

Messaging Programming Reference

162

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8084-704743+%5BLatest%5D&comment=Title%3A+Qpid+Maps+and+Lists+in+.NET+C%23%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8084-704743+01+Sep+2014+12%3A07+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8122-591820+%5BLatest%5D&comment=Title%3A+C%23+Data+Types+and+.NET+bindings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8122-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 14. The Request/Response Pattern

14.1. The Request/Response Pattern

Request/Response applications use the reply-to message property to allow a server to respond to the
client that sent a message. A server sets up a service queue, with a name known to clients. A client creates a
private queue for the server's response, creates a message for a request, sets the request's reply-to property
to the address of the client's response queue, and sends the request to the service queue. The server sends
the response to the address specified in the request's reply-to property.

Report a bug

14.2. Request/Response C++ Example

This example is a client and server that use the request/response pattern. The server creates a service
queue and waits for a message to arrive. If it receives a message, it sends a message back to the sender.

Receiver receiver = session.createReceiver("service_queue; {create:
always}");

Message request = receiver.fetch();
const Address& address = request.getReplyTo(); // Get "reply-to" from
request ...
if (address) {
 Sender sender = session.createSender(address); // ... send response to
"reply-to"
 Message response("pong!");
 sender.send(response);
 session.acknowledge();
}

The client creates a sender for the service queue, and also creates a response queue that is deleted when
the client closes the receiver for the response queue. In the C++ client, if the address starts with the
character #, it is given a unique name.

Sender sender = session.createSender("service_queue");

Receiver receiver = session.createReceiver("#response-queue;
{create:always}");
Address responseQueue = receiver.getAddress();

Message request;
request.setReplyTo(responseQueue);
request.setContent("ping");
sender.send(request);
Message response = receiver.fetch();
std::cout << request.getContent() << " -> " << response.getContent() <<
std::endl;

The client sends the string ping to the server. The server sends the response pong back to the same client,
using the replyTo property.

Report a bug

Chapter 14. The Request/Response Pattern

163

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8119-591820+%5BLatest%5D&comment=Title%3A+The+Request%2FResponse+Pattern%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8119-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8167-704192+%5BLatest%5D&comment=Title%3A+Request%2FResponse+C%2B%2B+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8167-704192+28+Aug+2014+10%3A47+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 15. Performance Tips

15.1. Apache Qpid Programming for Performance

Consider prefetching messages for receivers. This helps eliminate roundtrips and increases throughput.
Prefetch is disabled by default, and enabling it is the most effective means of improving throughput of
received messages.

Send messages asynchronously. Again, this helps eliminate roundtrips and increases throughput. The
C++ and .NET clients send asynchronously by default, however the python client defaults to synchronous
sends.

Acknowledge messages in batches. Rather than acknowledging each message individually, consider
issuing acknowledgments after n messages and/or after a particular duration has elapsed.

Tune the sender capacity. If the capacity is too low the sender may block waiting for the broker to confirm
receipt of messages, before it can free up more capacity.

If you are setting a reply-to address on messages being sent by the c++ client, make sure the address
type is set to either queue or topic as appropriate. This avoids the client having to determine which type
of node is being referred to, which is required when handling reply-to in AMQP 0-10.

For latency-sensitive applications, setting tcp-nodelay on qpidd and on client connections can help
reduce the latency.

Report a bug

Messaging Programming Reference

164

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8095-591822+%5BLatest%5D&comment=Title%3A+Apache+Qpid+Programming+for+Performance%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8095-591822+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 16. Cluster Failover

16.1. Changes to Clustering in MRG 3

MRG 3 replaces the cluster module with the new ha module. This module provides active-passive
clustering functionality for high availability.

The cluster module in MRG 2 was active-active: clients could connect to any broker in the cluster. The
new ha module is active-passive. Exactly one broker acts as primary the other brokers act as backup. Only
the primary accepts client connections. If a client attempts to connect to a backup broker, the connection is
aborted and the client fails-over until it connects to the primary.

The new ha module also supports a virtual IP address. Clients can be configured with a single IP address that
is automatically routed to the primary broker. This is the recommended configuration.

The fail-over exchange is provided for backwards compatibility. New implementations should use a virtual IP
address instead.

Improvement to multi-threaded performance

In MRG 2, a clustered broker would only utilize a single CPU thread. Some users worked around this by
running multiple clustered brokers on a single machine, to utilize the multiple cores.

In MRG 3, a clustered broker now utilizes multiple threads and can take advantage of multi-core CPUs.

Report a bug

16.2. Active-Passive Messaging Clusters

The High Availability (HA) module provides active-passive, hot-standby messaging clusters to provide fault
tolerant message delivery.

In an active-passive cluster only one broker, known as the primary, is active and serving clients at a time. The
other brokers are standing by as backups. Changes on the primary are replicated to all the backups so they
are always up-to-date or "hot". Backup brokers reject client connection attempts, to enforce the requirement
that clients only connect to the primary.

If the primary fails, one of the backups is promoted to take over as the new primary. Clients fail-over to the
new primary automatically. If there are multiple backups, the other backups also fail-over to become backups
of the new primary.

This approach relies on an external cluster resource manager, rgmanager, to detect failures, choose the
new primary and handle network partitions.

Report a bug

16.3. Cluster Failover in C++

To use the MRG 3 C++ client with a cluster that uses a Virtual IP, simply specify the Virtual IP address as the
broker address. Fail-over is handled transparently by the cluster manager.

In a case where you have a cluster that does not use a Virtual IP address, specify multiple cluster node
addresses in a single URL and specify the connection option reconnect to be true. For example:

Chapter 16. Cluster Failover

165

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+22191-682259+%5BLatest%5D&comment=Title%3A+Changes+to+Clustering+in+MRG+3%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22191-682259+08+Jul+2014+11%3A15+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/High_Availability_Add-On_Overview/index.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+22194-592453+%5BLatest%5D&comment=Title%3A+Active-Passive+Messaging+Clusters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22194-592453+24+Feb+2014+07%3A58+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

qpid::messaging::Connection c("node1,node2,node3","{reconnect:true}");

Heartbeats are disabled by default. You can enable them by specifying a heartbeat interval (in seconds) for
the connection via the heartbeat option. For example:

qpid::messaging::Connection c("node1,node2,node3","
{reconnect:true,heartbeat:10}");

Report a bug

16.4. Cluster Failover in Python

To use the MRG 3 Python client with a cluster that uses a Virtual IP, simply specify the Virtual IP address as
the broker address. Fail-over is handled transparently by the cluster manager.

In a case where you have a cluster that does not use a Virtual IP address, specify reconnect=True and a
list of host:port addresses as reconnect_urls when calling Connection.establish or
Connection.open:

connection = qpid.messaging.Connection.establish("node1", reconnect=True,
reconnect_urls=["node1", "node2", "node3"])

Heartbeats are disabled by default. You can enable them by specifying a heartbeat interval (in seconds) for
the connection via the heartbeat option. For example:

connection = qpid.messaging.Connection.establish("node1", reconnect=True,
reconnect_urls=["node1", "node2", "node3"], heartbeat=10)

Report a bug

16.5. Failover Behavior in Java JMS Clients

In Java JMS clients, with a cluster that uses a Virtual IP, simply specify the Virtual IP address as the broker
address. Fail-over is handled transparently by the cluster manager.

In a case where you have a cluster that does not use a Virtual IP address, client fail-over is handled
automatically if it is enabled in the connection. You can configure a connection to use fail-over using the
failover property:

connectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?
brokerlist='tcp://localhost:5672'&failover='failover_exchange'

This property can take five values:

Fail-over Modes

failover_exchange

If the connection fails, fail over to any other broker in the cluster. This is provided for backward
compatibility. Use of a Virtual IP (and transparent server-side failover) is recommended.

roundrobin

Messaging Programming Reference

166

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+22197-592454+%5BLatest%5D&comment=Title%3A+Cluster+Failover+in+C%2B%2B%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22197-592454+24+Feb+2014+07%3A58+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+22198-592454+%5BLatest%5D&comment=Title%3A+Cluster+Failover+in+Python%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22198-592454+24+Feb+2014+07%3A58+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

If the connection fails, fail over to one of the brokers specified in the brokerlist.

singlebroker

Fail-over is not supported; the connection is to a single broker only.

nofailover

Disables all retry and failover logic.

<class>

Any other value is interpreted as a classname which must implement the
org.apache.qpid.jms.failover.FailoverMethod interface.

In a Connection URL, heartbeat is set using the idle_timeout property, which is an integer corresponding
to the heartbeat period in seconds. For instance, the following line from a JNDI properties file sets the
heartbeat time out to 3 seconds:

connectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?
brokerlist='tcp://localhost:5672'&idle_timeout=3

Report a bug

Chapter 16. Cluster Failover

167

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+22199-626742+%5BLatest%5D&comment=Title%3A+Failover+Behavior+in+Java+JMS+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22199-626742+01+Apr+2014+17%3A44+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 17. Logging

17.1. Logging in C++

The Qpidd broker and C++ clients can both use environment variables to enable logging. Linux and Windows
systems use the same named environment variables and values.

1. Use QPID_LOG_ENABLE to set the level of logging you are interested in (trace, debug, info,
notice, warning, error, or critical):

export QPID_LOG_ENABLE="warning+"

2. The Qpidd broker and C++ clients use QPID_LOG_OUTPUT to determine where logging output should
be sent. This is either a file name or the special values stderr, stdout, or syslog:

export QPID_LOG_TO_FILE="/tmp/myclient.out"

3. From a Windows command prompt, use the following command format to set the environment
variables:

set QPID_LOG_ENABLE=warning+
set QPID_LOG_TO_FILE=D:\tmp\myclient.out

Report a bug

17.2. Logging in Python

The Python client library supports logging using the standard Python logging module.

The basicConfig() logging method reports all warnings and errors:

from logging import basicConfig
basicConfig()

The qpidd daemon allows you to specify the level of logging desired. For instance, the following code
enables logging at the DEBUG level:

from qpid.log import enable, DEBUG
enable("qpid.messaging.io", DEBUG)

For more information on Python logging, see the Python documentation. For more information on Qpid
logging, run $ pydoc qpid.log.

Report a bug

17.3. Change the logging level at runtime

The logging level of the broker can be changed at runtime, without restarting. This is useful to increase the
level of logging detail while debugging, then return it to a lower level.

Messaging Programming Reference

168

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8074-591821+%5BLatest%5D&comment=Title%3A+Logging+in+C%2B%2B%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8074-591821+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8059-746163+%5BLatest%5D&comment=Title%3A+Logging+in+Python%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8059-746163+09+Mar+2015+12%3A04+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

The Qpid Management Framework Broker object has a setLogLevel method to control the logging level.
The following C++ code demonstrates calling this method to set the logging level.

#include <qpid/messaging/Connection.h>
#include <qpid/messaging/Session.h>
#include <qpid/messaging/Sender.h>
#include <qpid/messaging/Receiver.h>
#include <qpid/messaging/Message.h>
#include <qpid/messaging/Address.h>

#include <iostream>

using namespace std;
using namespace qpid::messaging;
using namespace qpid::types;

int main(int argc, char** argv) {
 if (argc < 2) {
 cerr << "Invalid number of parameters, expecting log level (info, trace,
warning or so)" << endl;
 return 1;
 }
 string log_level = argv[1];

 Connection connection(argc>2?argv[2]:"localhost:5672");
 connection.open();
 Session session = connection.createSession();
 Sender sender = session.createSender("qmf.default.direct/broker");
 Receiver receiver = session.createReceiver("#reply-queue; {create:always,
node:{x-declare:{auto-delete:true}}}");
 Address responseQueue = receiver.getAddress();

 Message message;
 Variant::Map content;
 Variant::Map OID;
 Variant::Map arguments;

 OID["_object_name"] = "org.apache.qpid.broker:broker:amqp-broker";
 arguments["level"] = log_level;

 content["_object_id"] = OID;
 content["_method_name"] = "setLogLevel";
 content["_arguments"] = arguments;

 message.setContentObject(content);
 message.setReplyTo(responseQueue);
 message.setProperty("x-amqp-0-10.app-id", "qmf2");
 message.setProperty("qmf.opcode", "_method_request");
 message.setContentType("amqp/map");

 sender.send(message, true);

 /* receive a response from the broker & check our request was successfully
processed */
 Message response;
 if (receiver.fetch(response,qpid::messaging::Duration(30000)) == true) {

Chapter 17. Logging

169

 qpid::types::Variant::Map recv_props = response.getProperties();
 if (recv_props["qmf.opcode"] == "_method_response")
 std::cout << "Response: OK" << std::endl;
 else if (recv_props["qmf.opcode"] == "_exception")
 std::cerr << "Error: " << response.getContent() << std::endl;
 else
 std::cerr << "Invalid response received!" << std::endl;
 }
 else
 std::cout << "Timeout: No response received within 30 seconds!" <<
std::endl;

 receiver.close();
 sender.close();
 session.close();
 connection.close();
 return 0;
 }

1. Save the example code to a file set_log_level.cpp.

2. Modify the Connection URL in the code to resolve to your broker. At the moment it is set to connect
to a broker running on port 5672 on the local machine.

3. Compile the example code:

g++ -Wall -lqpidclient -lqpidcommon -lqpidmessaging -lqpidtypes -o
set_log_level set_log_level.cpp

4. Use the complied program to change the log level of the broker:

./set_log_level "trace+"

5. To observe the change in the logging level, tail the server log as you run the program.

Report a bug

Messaging Programming Reference

170

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8398-704197+%5BLatest%5D&comment=Title%3A+Change+the+logging+level+at+runtime%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8398-704197+28+Aug+2014+10%3A54+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 18. Security

18.1. Security features provided by Qpid

Qpid provides authentication, rule-based authorization, encryption, and digital signing.

Report a bug

18.2. Authentication

Qpid uses Simple Authentication and Security Layer (SASL) to authenticate client connections to the broker.
SASL is a framework that supports a variety of authentication methods. For secure applications, use CRAM-
MD5, DIGEST-MD5, or GSSAPI (Kerberos) mechanisms. The ANONYMOUS mechanism is not secure. The
PLAIN mechanism is secure only when used together with SSL.

Report a bug

18.3. SASL Support in Windows Clients

The Windows Qpid C++ and C# clients support only ANONYMOUS and PLAIN and EXTERNAL authentication
mechanisms.

No other SASL mechanisms are supported by Windows at this time.

If no sasl-mechanism is specified, the default chosen mechanism will usually differ between Windows and
Linux.

Report a bug

18.4. Enable Kerberos authentication

For Kerberos authentication, if the user running the program is already authenticated, for example, if they are
using kinit, there is no need to supply a user name or password. If you are using another form of
authentication, or are not already authenticated with Kerberos, you can supply these as connection options:

connection.setOption("username", "mick");
connection.setOption("password", "pa$$word");

Report a bug

18.5. Enable SSL

Encryption and signing are done using SSL (they can also be done using SASL). To enable SSL, set the
transport connection option to ssl:

connection.setOption("transport", "ssl");

Report a bug

18.6. SSL Client Environment Variables for C++ Clients

Chapter 18. Security

171

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8062-591818+%5BLatest%5D&comment=Title%3A+Security+features+provided+by+Qpid%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8062-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8118-591820+%5BLatest%5D&comment=Title%3A+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8118-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+13329-634092+%5BLatest%5D&comment=Title%3A+SASL+Support+in+Windows+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13329-634092+29+Apr+2014+00%3A44+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8064-591818+%5BLatest%5D&comment=Title%3A+Enable+Kerberos+authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8064-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8034-591819+%5BLatest%5D&comment=Title%3A+Enable+SSL%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8034-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Table 18.1. SSL Client Environment Variables for C++ clients

SSL Client Options for C++ clients
QPID_SSL_USE_EXPORT_POLICY Use NSS export policy

QPID_SSL_CERT_PASSWORD_FILE PATH File containing password to use for accessing
certificate database

QPID_SSL_CERT_DB PATH Path to directory containing certificate database

QPID_SSL_CERT_NAME NAME Name of the certificate to use. When SSL client
authentication is enabled, a certificate name should
normally be provided.

Report a bug

Messaging Programming Reference

172

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8075-665518+%5BLatest%5D&comment=Title%3A+SSL+Client+Environment+Variables+for+C%2B%2B+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8075-665518+10+Jun+2014+12%3A42+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 19. The AMQP 0-10 mapping

19.1. The AMQP 0-10 mapping

The interaction with the broker triggered by creating a sender or receiver depends on what the specified
address resolves to. Where the node type is not specified in the address, the client queries the broker to
determine whether it refers to a queue or an exchange.

When sending to a queue, the queue's name is set as the routing key and the message is transferred to the
default (or nameless) exchange. When sending to an exchange, the message is transferred to that exchange
and the routing key is set to the message subject if one is specified. A default subject may be specified in the
target address. The subject may also be set on each message individually to override the default if required.
In each case any specified subject is also added as a qpid.subject entry in the application-headers
field of the message-properties.

When receiving from a queue, any subject in the source address is currently ignored. The client sends a
message-subscribe request for the queue in question. The accept-mode is determined by the reliability
option in the link properties; for unreliable links the accept-mode is none, for reliable links it is explicit. The
default for a queue is reliable. The acquire-mode is determined by the value of the mode option. If the
mode is set to browse the acquire mode is not-acquired, otherwise it is set to pre-acquired. The
exclusive and arguments fields in the message-subscribe command can be controlled using the x-
subscribe map.

When receiving from an exchange, the client creates a subscription queue and binds that to the exchange.
The subscription queue's arguments can be specified using the x-declare map within the link properties.
The reliability option determines most of the other parameters. If the reliability is set to unreliable then an
auto-deleted, exclusive queue is used meaning that if the client or connection fails messages may be lost.
For exactly-once the queue is not set to be auto-deleted. The durability of the subscription queue is
determined by the durable option in the link properties. The binding process depends on the type of the
exchange the source address resolves to.

For a topic exchange, if no subject is specified and no x-bindings are defined for the link, the
subscription queue is bound using a wildcard matching any routing key (thus satisfying the expectation
that any message sent to that address will be received from it). If a subject is specified in the source
address however, it is used for the binding key (this means that the subject in the source address may be
a binding pattern including wildcards).

For a fanout exchange the binding key is irrelevant to matching. A receiver created from a source address
that resolves to a fanout exchange receives all messages sent to that exchange regardless of any subject
the source address may contain. An x-bindings element in the link properties should be used if there is
any need to set the arguments to the bind.

For a direct exchange, the subject is used as the binding key. If no subject is specified an empty string is
used as the binding key.

For a headers exchange, if no subject is specified the binding arguments simply contain an x-match
entry and no other entries, causing all messages to match. If a subject is specified then the binding
arguments contain an x-match entry set to all and an entry for qpid.subject whose value is the
subject in the source address (this means the subject in the source address must match the message
subject exactly). For more control the x-bindings element in the link properties must be used.

For the XML exchange, if a subject is specified it is used as the binding key and an XQuery is defined that
matches any message with that value for qpid.subject. Again this means that only messages whose
subject exactly match that specified in the source address are received. If no subject is specified then the
empty string is used as the binding key with an xquery that will match any message (this means that only

Chapter 19. The AMQP 0-10 mapping

173

messages with an empty string as the routing key will be received). For more control the x-bindings
element in the link properties must be used. A source address that resolves to the XML exchange must
contain either a subject or an x-bindings element in the link properties as there is no way at present to
receive any message regardless of routing key.

If an x-bindings list is present in the link options a binding is created for each element within that list. Each
element is a nested map that may contain values named queue, exchange, key, or arguments. If the
queue value is absent the queue name the address resolves to is implied. If the exchange value is absent the
exchange name the address resolves to is implied.

The following table shows how Qpid Messaging API message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table msg refers to the Message class defined in the Qpid
Messaging API, mp refers to an AMQP 0-10 message-properties struct, and dp refers to an AMQP 0-10
delivery-properties struct.

Table 19.1. Mapping to AMQP 0-10 Message Properties

Python API C++ API AMQP 0-10 Property

 msg.id msg.{get,set}MessageId() mp.message_id

 msg.subject msg.{get,set}Subject() mp.application_headers
["qpid.subject"]

 msg.user_id msg.{get,set}UserId() mp.user_id

 msg.reply_to msg.{get,set}ReplyTo() mp.reply_to

 msg.correlation_id msg.
{get,set}CorrelationId()

 mp.correlation_id

 msg.durable msg.{get,set}Durable() dp.delivery_mode ==
delivery_mode.persistent

 msg.priority msg.{get,set}Priority() dp.priority

 msg.ttl msg.{get,set}Ttl() dp.ttl

 msg.redelivered msg.
{get,set}Redelivered()

 dp.redelivered

 msg.properties msg.
{get,set}Properties()

 mp.application_headers

 msg.content_type msg.
{get,set}ContentType()

 mp.content_type

Report a bug

19.2. AMQ 0-10 Message Property Keys

The Qpid Messaging API recognizes special message property keys and automatically provides a mapping to
their corresponding AMQP 0-10 definitions.

For example, when sending a message, if the properties contain an entry for x-amqp-0-10.app-id, its
value will be used to set the message-properties.app-id property in the outgoing message. Likewise, if
an incoming message has message-properties.app-id set, its value can be accessed via the x-amqp-

[a] [b]

[c]

[d]

[a] The .NET Binding for C++ Messaging provides all the message and delivery properties described in the C++
API.

[b] In these entries, mp refers to an AMQP message property, and dp refers to an AMQP delivery property.
[c] The reply_to is converted from the protocol representation into an address.
[d] Note that msg.durable is a boolean, not an enum.

Messaging Programming Reference

174

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8166-591823+%5BLatest%5D&comment=Title%3A+The+AMQP+0-10+mapping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8166-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

0-10.app-id message property key.

Similarly, when sending a message, if the properties contain an entry for x-amqp-0-10.content-
encoding, its value will be used to set the message-properties.content-encoding property in the
outgoing message. Likewise, if an incoming message has message-properties.content-encoding
set, its value can be accessed via the x-amqp-0-10.content-encoding message property key.

The routing key (delivery-properties.routing-key) in an incoming messages can be accessed via
the x-amqp-0-10.routing-key message property.

Report a bug

19.3. AMQP Routing Key and Message Subject

Whenever you send a message using the Qpid Messaging API in Red Hat Enterprise Messaging, the x-
amqp-0-10.routing-key property is set to the value of the message subject, with one exception.

Any message that has a subject explicitly set has its subject preserved and the AMQP routing key set to the
message subject when it is sent.

When a message has no subject manually set, its subject is set by the sender, if the sender's destination
address contains a subject.

Take for example, the following sender:

sender = session.sender('amq.topic/SubjectX')

Given these two messages:

msg1 = Message('A message with no subject')

msg2 = Message('A message with a subject')
msg2.subject = 'SubjectY'

msg1 has its subject and AMQP routing key set to 'SubjectX'. msg2 retains its subject 'SubjectY', and has
its AMQP routing key set to 'SubjectY'.

There are only two other cases.

The first is when a message with no subject is sent via a sender with no subject in its destination address.
For example, in Python:

sender = session('amq.topic')
msg = Message('No subject, and none assigned by the sender')
sender.send(msg)

In this case the message is sent with a blank subject and a blank AMQP routing key.

The second, and only exceptional case, is when a message with a blank subject and a manually assigned
AMQP routing key is sent via a sender with no subject in its destination address. For example, in Python:

sender = session('amq.topic')
msg = Message('No subject, but a manually assigned AMQP routing key')
msg.properties['x-amqp-0-10.routing-key'] = 'amqp-SubjectX'
sender.send(msg)

Chapter 19. The AMQP 0-10 mapping

175

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8061-591818+%5BLatest%5D&comment=Title%3A+AMQ+0-10+Message+Property+Keys%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8061-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

In this case, the message is sent with a blank subject, and the arbitrary AMQP routing key assigned.

Note that in this case the message will not route in a Red Hat Enterprise Messaging topic exchange. The
amqp-0-10.routing-key may be useful in an interoperability scenario, but in Red Hat Enterprise
Messaging the message subject is used for routing.

The following Python program demonstrates the various permutations of interaction between message
subject, sender destination address subject, and message routing key:

import sys
from qpid.messaging import *

This program demonstrates that the x-amqp-0-10.routing-key
(1) is (re)set to the message subject when the message has a subject or
is sent via a sender that has a subject
(2) is not a valid basis for routing in a topic exchange
- the topic exchange will not route a message to a queue

def sendmsg(msg, note = ''):
 global rxplain, rxsubject, txplain, txsubject, ssn, testcount

 msg.properties['sender'] = 'Plain Sender'
 txplain.send(msg)

 msg.properties['sender'] = 'SubjectX Sender'
 txsubject.send(msg)

 if testcount > 0:
 x = raw_input('\nPress Enter for the next test message')
 print '\n==\n'

 testcount = testcount + 1
 print '\nScenario ' + str(testcount)
 print '\nSent message:\n'
 subject = 'Blank'
 if msg.subject:
 subject = msg.subject
 print 'Subject:\t' + subject
 routekey = 'Blank'
 if 'x-amqp-0-10.routing-key' in msg.properties:
 routekey = msg.properties['x-amqp-0-10.routing-key']
 print 'Routing Key:\t' + routekey

 msgcount = 0

 print '\nThe queue listening for all messages received:'
 try:
 while True:
 rxmsg = rxplain.fetch(timeout = 1)
 subject ='Blank'
 if rxmsg.subject:
 subject = rxmsg.subject
 routekey = 'Blank'
 if 'x-amqp-0-10.routing-key' in rxmsg.properties:
 routekey = rxmsg.properties['x-amqp-0-10.routing-key']

Messaging Programming Reference

176

 print '\nSubject:\t' + subject
 print 'Routing Key:\t' + routekey
 print 'Sent via:\t' + rxmsg.properties['sender']
 msgcount = 1
 ssn.acknowledge(rxmsg)
 except:
 pass

 if msgcount == 0:
 print 'Nothing\n'
 else:
 msgcount = 0

 print '\nThe queue listening for SubjectX messages received:'
 try:
 while True:
 rxmsg = rxsubject.fetch(timeout = 1)
 subject ='Blank'
 if rxmsg.subject:
 subject = rxmsg.subject
 routekey = 'Blank'
 if 'x-amqp-0-10.routing-key' in rxmsg.properties:
 routekey = rxmsg.properties['x-amqp-0-10.routing-key']
 print '\nSubject:\t' + subject
 print 'Routing Key:\t' + routekey
 print 'Sent via:\t' + rxmsg.properties['sender']
 msgcount = 1
 ssn.acknowledge(rxmsg)
 except:
 pass

 if msgcount == 0:
 print 'Nothing\n'

 if note != '':
 print '\nNote: ' + note + "\n"

connection = Connection("localhost:5672")
connection.open()

try:
 ssn = connection.session()

 # we create our receivers here so that queues are created to hold the
messages sent
 rxplain = ssn.receiver("amq.topic")
 rxsubject = ssn.receiver("amq.topic/SubjectX")

 txplain = ssn.sender("amq.topic")
 txsubject = ssn.sender("amq.topic/SubjectX")

 testcount = 0

 msg = Message("Plain message, no subject")
 sendmsg(msg, "a subject sender writes the subject and routing key when a
message has no subject, a plain sender does not")

Chapter 19. The AMQP 0-10 mapping

177

 msg = Message("Message with subject")
 msg.subject = "SubjectX"
 sendmsg(msg, "a plain sender writes the routing key if the message has a
subject")

 msg = Message("Message with a different subject")
 msg.subject = "SubjectY"
 sendmsg(msg, "a subject sender does not rewrite a subject, both senders
use the message subject to write routing key")

 msg = Message("Message with routing key")
 msg.properties["x-amqp-0-10.routing-key"] = "SubjectX"
 sendmsg(msg, "a routing key is not sufficient to route to a queue - the
match is on subject")

 msg = Message("Message with different routing key")
 msg.properties["x-amqp-0-10.routing-key"] = "SubjectY"
 sendmsg(msg, "the only case where you can manually set a non-blank routing
key is a message with a blank subject, sent via a plain sender")

 msg = Message("Message with different routing key and subject")
 msg.properties["x-amqp-0-10.routing-key"] = "SubjectY"
 msg.subject = "SubjectZ"
 sendmsg(msg, "all messages with subjects and all messages sent via a
subject sender have their routing key rewritten")

finally:
 connection.close()

Report a bug

19.4. Using AMQ 0-10 Message Property Keys for Timestamping

If the timestamp delivery property is set in an incoming message (delivery-properties.timestamp),
the timestamp value can be accessed using the x-amqp-0-10.timestamp message property.

See Also:

Chapter 12, Message Timestamping

Report a bug

Messaging Programming Reference

178

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+10289-591919+%5BLatest%5D&comment=Title%3A+AMQP+Routing+Key+and+Message+Subject%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10289-591919+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8043-591819+%5BLatest%5D&comment=Title%3A+Using+AMQ+0-10+Message+Property+Keys+for+Timestamping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8043-591819+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 20. Using the qpid-java AMQP 0-10 client

20.1. A Simple Messaging Program in Java JMS

The following program shows how to send and receive a message using the qpid-java client. JMS programs
typically use JNDI to obtain connection factory and destination objects which the application needs. In this
way the configuration is kept separate from the application code itself.

In this example, we create a JNDI context using a properties file, use the context to lookup a connection
factory, create and start a connection, create a session, and lookup a destination from the JNDI context. Then
we create a producer and a consumer, send a message with the producer and receive it with the consumer.

package org.apache.qpid.example.jmsexample.hello;

import javax.jms.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;

public class Hello {

 public Hello() {
 }

 public static void main(String[] args) {
 Hello producer = new Hello();
 producer.runTest();
 }

 private void runTest() {
 try {
 Properties properties = new Properties();

properties.load(this.getClass().getResourceAsStream("hello.properties"));
 Context context = new InitialContext(properties);

 ConnectionFactory connectionFactory
 = (ConnectionFactory) context.lookup("qpidConnectionfactory");
 Connection connection = connectionFactory.createConnection();
 connection.start();

 Session
session=connection.createSession(false,Session.AUTO_ACKNOWLEDGE);
 Destination destination = (Destination) context.lookup("topicExchange");

 MessageProducer messageProducer = session.createProducer(destination);
 MessageConsumer messageConsumer = session.createConsumer(destination);

 TextMessage message = session.createTextMessage("Hello world!");
 messageProducer.send(message);

 message = (TextMessage)messageConsumer.receive();
 System.out.println(message.getText());

 connection.close();

Chapter 20. Using the qpid-java AMQP 0-10 client

179

 context.close();
 }
 catch (Exception exp) {
 exp.printStackTrace();
 }
 }
}

Explanation

Here is an explanation of the program code:

properties.load(this.getClass().getResourceAsStream("hello.properties"));

Loads the JNDI properties file, which specifies connection properties, queues, topics, and addressing
options.

Context context = new InitialContext(properties);

Creates the JNDI initial context.

ConnectionFactory connectionFactory
 = (ConnectionFactory) context.lookup("qpidConnectionfactory");

Creates a JMS connection factory for Qpid.

Connection connection = connectionFactory.createConnection();

Creates a JMS connection.

connection.start();

Activates the connection.

Session session=connection.createSession(false,Session.AUTO_ACKNOWLEDGE);

Creates a session. This session is not transactional (transactions='false'), and messages are automatically
acknowledged.

Destination destination = (Destination) context.lookup("topicExchange");

Creates a destination for the topic exchange, so senders and receivers can use it.

MessageProducer messageProducer = session.createProducer(destination);

Creates a producer that sends messages to the topic exchange.

MessageConsumer messageConsumer = session.createConsumer(destination);

Creates a consumer that reads messages from the topic exchange.

message = (TextMessage)messageConsumer.receive();

Messaging Programming Reference

180

Reads the next available message.

connection.close();

Closes the connection, all sessions managed by the connection, and all senders and receivers managed by
each session.

context.close();

Closes the JNDI context.

hello.properties file

The contents of the hello.properties file are shown below.

 java.naming.factory.initial
 = org.apache.qpid.jndi.PropertiesFileInitialContextFactory

connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory
 = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'
destination.[jndiname] = [address_string]
destination.topicExchange = amq.topic

Report a bug

20.2. Apache Qpid JNDI Properties for AMQP Messaging

The qpid-jms AMQP 1.0 client supports the following JNDI properties:

connectionfactory.<jndiname>

The Connection URL that the connection factory uses to perform connections.

queue.<jndiname>

A JMS queue. Implemented as an amq.direct exchange in Apache Qpid.

topic.<jndiname>

A JMS topic. Implemented as an amq.topic exchange in Apache Qpid.

destination.<jndiname>

Can be used for defining all amq destinations, queues, topics and header matching, using an
address string (or a binding URL, for backward-compatibility with earlier implementations).

Report a bug

20.3. JNDI Properties for Apache Qpid

Apache Qpid defines JNDI properties that can be used to specify JMS Connections and Destinations. This is
a JNDI properties file example:

Chapter 20. Using the qpid-java AMQP 0-10 client

181

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+26919-771722+%5BLatest%5D&comment=Title%3A+A+Simple+Messaging+Program+in+Java+JMS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=26919-771722+15+Oct+2015+09%3A05+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8110-771723+%5BLatest%5D&comment=Title%3A+Apache+Qpid+JNDI+Properties+for+AMQP+Messaging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8110-771723+15+Oct+2015+09%3A45+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

java.naming.factory.initial
 = org.apache.qpid.jndi.PropertiesFileInitialContextFactory

connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory
 = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'
destination.[jndiname] = [address_string]
destination.topicExchange = amq.topic

Report a bug

20.4. Durable Subscription Queues in MRG 3

In MRG 3, the qpid-java client requires that durable subscription queues are named.

This means that the following command, which works in MRG 2, now reports an exception in MRG 3:

java -cp ${CLASSPATH} org.apache.qpid.example.Drain
"amq.topic/some_subject;{ link: { durable: true } }"

javax.jms.JMSException: Error registering consumer:
org.apache.qpid.AMQException: You cannot mark a subscription queue as
durable without providing a name for the link.

To avoid the client exception, name the link. For example:

java -cp ${CLASSPATH} org.apache.qpid.example.Drain
"amq.topic/some_subject;{ link: { name: some_name, durable: true } }"

Report a bug

20.5. Connection URLs

In JNDI properties, a Connection URL specifies properties for a connection. The format for a Connection URL
is:

amqp://[<user>:<pass>@]
[<clientid>]<virtualhost>[?<option>='<value>'[&<option>='<value>']]

For instance, the following Connection URL specifies a user name, a password, a client ID, a virtual host
("test"), a broker list with a single broker, and a TCP host with the host name localhost using port 5672:

amqp://username:password@clientid/test?brokerlist='tcp://localhost:5672'

Apache Qpid supports the following properties in Connection URLs:

Table 20.1. Connection URL Properties

Option Type Description

Messaging Programming Reference

182

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8052-591818+%5BLatest%5D&comment=Title%3A+JNDI+Properties+for+Apache+Qpid%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8052-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+28328-771724+%5BLatest%5D&comment=Title%3A+Durable+Subscription+Queues+in+MRG+3%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28328-771724+15+Oct+2015+09%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

brokerlist the section called “ Broker list
URL ”

The broker to use for this
connection. In the current release,
precisely one broker must be
specified.

max_prefetch Integer The maximum number of pre-
fetched messages per destination.

sync_publish {'persistent' | 'transient' | 'all' | ''} A sync command is sent after
every persistent or transient
message to guarantee that it has
been received.

persistent sets this behavior
for persistent messages.

transient sets this behavior for
transient messages only.

all syncs both type of messages,
however the default behavior ''
also has the same effect.

sync_ack Boolean A sync command is sent after
every acknowledgment to
guarantee that it has been
received.

use_legacy_map_msg_format Boolean If you are using JMS Map
messages and deploying a new
client with any JMS client older
than 0.7 release, you must set this
to true to ensure the older clients
can understand the map message
encoding.

failover {'roundrobin' |
'failover_exchange' |
'singlebroker' |
'nofailover' | '<class>'}

roundrobin will try each
broker given in the broker list.
failover_exchange
connects to the initial broker
given in the broker URL and
will receive membership
updates via the failover
exchange.
singlebroker connects to
the initial broker only and does
not support failover.
nofailover disables all retry
and failover logic.
Any other value is interpreted
as a classname which must
implement the
org.apache.qpid.jms.failover.F
ailoverMethod interface.

Option Type Description

Chapter 20. Using the qpid-java AMQP 0-10 client

183

ssl Boolean If ssl='true', use SSL for all
broker connections. Overrides
any per-broker settings in the
brokerlist entries. If not specified,
the brokerlist entry for each given
broker is used to determine
whether SSL is used.

Option Type Description

Broker list URL

Broker lists are specified using a URL in this format:

brokerlist=<transport>://<host>[:<port>](?<param>=<value>)?
(&<param>=<value>)*

For instance, this is a typical broker list URL:

brokerlist='tcp://localhost:5672'

A broker list can contain more than one broker address; if so, the connection is made to the first broker in the
list that is available. In general, it is better to use the failover exchange when using multiple brokers, since it
allows applications to fail over if a broker goes down.

Example 20.1. Broker Lists

A broker list can specify properties to be used when connecting to the broker, such as security options.
This broker list specifies options for a Kerberos connection using GSSAPI:

amqp://guest:guest@test/test?sync_ack='true'
 &brokerlist='tcp://ip1:5672?sasl_mechs='GSSAPI''

This broker list specifies SSL options:

amqp://guest:guest@test/test?sync_ack='true'
 &brokerlist='tcp://ip1:5672?ssl='true'&ssl_cert_alias='cert1''

This broker list specifies two brokers using the connectdelay and retries broker options. It also illustrates
the failover connection URL property.

amqp://guest:guest@/test?failover='roundrobin?cyclecount='2''
 &brokerlist='tcp://ip1:5672?
retries='5'&connectdelay='2000';tcp://ip2:5672?
retries='5'&connectdelay='2000''

The following broker list URL options are supported:

Table 20.2. Broker List URL Options

Option Type Description

Messaging Programming Reference

184

idle_timeout Integer Frequency of idle_timeout
messages (in seconds)

sasl_mechs -- For secure applications, we
suggest CRAM-MD5, DIGEST-
MD5, or GSSAPI. The ANONYMOUS
method is not secure. The PLAIN
method is secure only when used
together with SSL. For Kerberos,
sasl_mechs must be set to
GSSAPI, sasl_protocol must
be set to the principal for the
qpidd broker, e.g. qpidd/, and
sasl_server must be set to the
host for the SASL server, e.g.
sasl.com. SASL External is
supported using SSL certification,
e.g.
ssl='true'&sasl_mechs='EX
TERNAL'

sasl_encryption Boolean If sasl_encryption='true',
the JMS client attempts to
negotiate a security layer with the
broker using GSSAPI to encrypt
the connection. Note that for this
to happen, GSSAPI must be
selected as the sasl_mech.

ssl Boolean If ssl='true', the JMS client will
encrypt the connection using SSL.

tcp_nodelay Boolean If tcp_nodelay='true', TCP
packet batching is disabled.

sasl_protocol -- Used only for Kerberos.
sasl_protocol must be set to
the principal for the qpidd broker,
e.g. qpidd/

sasl_server -- For Kerberos, sasl_mechs must
be set to GSSAPI, sasl_server
must be set to the host for the
SASL server, e.g. sasl.com.

trust_store String Path to Kerberos trust store

trust_store_password String Kerberos trust store password

key_store String Path to Kerberos key store

key_store_password String Kerberos key store password

ssl_verify_hostname Boolean When using SSL you can enable
hostname verification by using
"ssl_verify_hostname=true"
in the broker URL.

ssl_cert_alias String If multiple certificates are present
in the keystore, the alias will be
used to extract the correct
certificate.

Option Type Description

Chapter 20. Using the qpid-java AMQP 0-10 client

185

retries integer The number of times to retry
connection to each broker in the
broker list. Defaults to 1.

connectdelay integer Length of time (in milliseconds) to
wait before attempting to
reconnect. Defaults to 0.

connecttimeout integer Length of time (in milliseconds) to
wait for the socket connection to
succeed. A value of 0 represents
an infinite timeout, i.e. the
connection attempt will block until
established or an error occurs.
Defaults to 30000.

tcp_nodelay Boolean If tcp_nodelay='true', TCP
packet batching is disabled.
Defaults to true since Qpid 0.14.

Option Type Description

Report a bug

20.6. Java JMS Message Properties

The following table shows how Qpid Messaging API message properties are mapped to AMQP 0.10 and 1.0
message properties and delivery properties.

Table 20.3. Mapping JMS Headers to AMQP fields

JMS Header
Name

AMQP Identifier AMQP Field AMQP Section Notes

JMSCorrelation
ID

correlation_id correlation-id properties

JMSDeliveryMod
e

delivery_mode durable header Computed value:
[durable ?
'PERSISTENT' :
'NON_PERSISTEN
T']

JMSDestination to to properties

JMSExpiration absolute_expir
y_time

absolute-
expiry-time

properties

JMSMessageID message_id message-id properties

JMSPriority priority priority header

JMSRedelivered redelivered delivery-count header computed value:
delivery-count
> 0

JMSReplyTo reply_to reply-to properties

JMSTimestamp creation_time creation-time properties

JMSType subject subject properties

Messaging Programming Reference

186

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8117-770207+%5BLatest%5D&comment=Title%3A+Connection+URLs%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8117-770207+14+Sep+2015+10%3A47+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Note

As per the JMS specification; Message header field references are restricted to:

JMSDeliveryMode
JMSPriority
JMSMessageID
JMSTimestamp
JMSCorrelationID
JMSType

When using JMS only these fields are strictly valid in a selector.

Report a bug

20.7. JMS MapMessage Types

qpid-java supports the Java JMS MapMessage interface, which provides support for maps in messages. The
following code shows how to send a MapMessage in Java JMS.

Example 20.2. Sending a Java JMS MapMessage

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.MapMessage;
import javax.jms.MessageProducer;
import javax.jms.Session;

import org.apache.qpid.client.AMQAnyDestination;
import org.apache.qpid.client.AMQConnection;

import edu.emory.mathcs.backport.java.util.Arrays;

// !!! SNIP !!!

MessageProducer producer = session.createProducer(queue);

MapMessage m = session.createMapMessage();
m.setIntProperty("Id", 987654321);
m.setStringProperty("name", "Widget");
m.setDoubleProperty("price", 0.99);

List<String> colors = new ArrayList<String>();
colors.add("red");
colors.add("green");
colors.add("white");

Chapter 20. Using the qpid-java AMQP 0-10 client

187

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8133-770658+%5BLatest%5D&comment=Title%3A+Java+JMS+Message+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8133-770658+25+Sep+2015+13%3A52+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

m.setObject("colours", colors);

Map<String,Double> dimensions = new HashMap<String,Double>();
dimensions.put("length",10.2);
dimensions.put("width",5.1);
dimensions.put("depth",2.0);
m.setObject("dimensions",dimensions);

List<List<Integer>> parts = new ArrayList<List<Integer>>();
parts.add(Arrays.asList(new Integer[] {1,2,5}));
parts.add(Arrays.asList(new Integer[] {8,2,5}));
m.setObject("parts", parts);

Map<String,Object> specs = new HashMap<String,Object>();
specs.put("colours", colors);
specs.put("dimensions", dimensions);
specs.put("parts", parts);
m.setObject("specs",specs);

producer.send(m);

The following table shows the data types that can be sent in a MapMessage, and the corresponding data
types that will be received by clients in Python or C++.

Table 20.4. Java Data Types in Maps

 Java Data Type ? Python ? C++

 boolean bool bool

 short int | long int16

 int int | long int32

 long int | long int64

 float float float

 double float double

 java.lang.String unicode std::string

 java.util.UUID uuid qpid::types::Uuid

 java.util.Map dict Variant::Map

 java.util.List list Variant::List

Report a bug

20.8. JMS ListMessage

The JMS ListMessage type is available for sending lists.

On the receiver side, List messages are exposed via 3 interfaces:

1. javax.jms.StreamMessage

2. javax.jms.MapMessage

3. org.apache.qpid.jms.ListMessage

[a]

[a] In Qpid, maps can nest. This goes beyond the functionality required by the JMS specification.

Messaging Programming Reference

188

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8058-771725+%5BLatest%5D&comment=Title%3A+JMS+MapMessage+Types%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8058-771725+15+Oct+2015+09%3A59+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

On the sender side, List messages can be sent two ways:

1. org.apache.qpid.jms.ListMessage - by creating it via createListMessage() in
org.apache.qpid.jms.Session.

Example:

ListMessage msg =
((org.apache.qpid.jms.Session)ssn).createListMessage();

2. If you set -Dqpid.use_legacy_stream_message=false any stream message you create will
be encoded as a list message.

Example:

StreamMessage msg = jmsSession.createStreamMessage();

For code examples, refer to this sample code.

Report a bug

20.9. JMS Client Logging

The qpid-java client logging is handled using the Simple Logging Facade for Java (SLF4J). SLF4J is a
facade that delegates to other logging systems like log4j or JDK 1.4 logging.

When using the log4j binding, set the log level for org.apache.qpid. Otherwise log4j will default to DEBUG
which will degrade performance considerably due to excessive logging. The recommended logging level for
production is WARN.

The following example shows the logging properties used to configure client logging for SLF4J using the log4j
binding. These properties can be placed in a log4j.properties file and placed in the CLASSPATH, or they
can be set explicitly using the -Dlog4j.configuration property.

Example 20.3. log4j Logging Properties

log4j.logger.org.apache.qpid=WARN, console
log4j.additivity.org.apache.qpid=false

log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.Threshold=all
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%t %d %p [%c{4}] %m%n

Report a bug

20.10. AMQP 0-10 JMS Client Configuration

20.10.1. Configuration Methods and Granularity

The qpid-java client allows several configuration options to customize its behavior at different levels of
granularity.

Chapter 20. Using the qpid-java AMQP 0-10 client

189

https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/src/test/java/org/apache/qpid/client/message/AMQPEncodedListMessageUnitTest.java
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+13324-592066+%5BLatest%5D&comment=Title%3A+JMS+ListMessage%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13324-592066+24+Feb+2014+07%3A57+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
http://www.slf4j.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8151-771726+%5BLatest%5D&comment=Title%3A+JMS+Client+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8151-771726+15+Oct+2015+10%3A01+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

JVM level using JVM arguments - Affects all connections, sessions, consumers and producers created
within the JVM.

Example: The -dmax_prefetch=1000 property specifies the message credits to use.

Connection level using connection or broker properties - Affects the respective connection and sessions,
consumers and producers created by that connection.

Example: The amqp://guest:guest@test/test?max_prefetch='1000'
&brokerlist='tcp://localhost:5672' property specifies the message credits to use. This
overrides any value specified via the JVM argument max_prefetch.

Destination level using addressing options - Affects the producer(s) and consumer(s) created using the
respective destination.

Example: my-queue; {create: always, link:{capacity: 10}} where capacity option
specifies the message credits to use. This overrides any connection level configuration.

Report a bug

20.10.2. qpid-java JVM Arguments

Table 20.5. Configuration Options For Connection Behavior

Property Name Type Default Value Description
qpid.amqp.version string 0-10 Sets the AMQP version

to be used - currently
supports 0-8, 0-9, 0-91,
and 0-10. The client will
begin negotiation at the
specified version and
only negotiate
downwards if the broker
does not support the
specified version.

qpid.heartbeat int 120 (seconds) The heartbeat interval in
seconds. Two
consecutive missed
heartbeats result in the
connection timing out.
This can also be set per
connection.

ignore_setclientID boolean false If a client ID is specified
in the connection URL
then it is used, otherwise
an ID is generated. If an
ID is specified after it has
been generated Qpid will
throw an exception.
Setting this property to
'true' disables that check
and allows you to set a
client ID at any time.

Table 20.6. Configuration Options For Session Behavior

Messaging Programming Reference

190

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8379-771727+%5BLatest%5D&comment=Title%3A+Configuration+Methods+and+Granularity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8379-771727+15+Oct+2015+10%3A03+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Property Name Type Default Value Description
qpid.session.comma
nd_limit

int 65536 Limits the number of
unacknowledged
commands.

qpid.session.byte_
limit

int 1048576 Limits the number of
unacknowledged
commands in bytes.

qpid.use_legacy_ma
p_message

boolean false Uses the old map
message encoding. By
default the map
messages are encoded
using the 0-10 map
encoding. This can also
be set per connection as
well.

qpid.jms.daemon.di
spatcher

boolean false Controls whether the
Session dispatcher
thread is a daemon
thread or not. If this
system property is set to
true then the Session
dispatcher threads will
be created as daemon
threads. This setting is
introduced in version
0.16.

Table 20.7. Configuration Options For Consumer Behavior

Property Name Type Default Value Description
max_prefetch int 500 Maximum number of

messages to credits. Can
also be set per
connection or per
destination.

qpid.session.max_a
ck_delay

long 1000 (ms) Timer interval to flush
message acks in buffer
when using AUTO_ACK
and DUPS_OK.

sync_ack boolean false If set, each message will
be acknowledged
synchronously. When
using AUTO_ACK mode,
set this to "true". Can
also be set per
connection.

Table 20.8. Configuration Options For Producer Behavior

Property Name Type Default Value Description

Chapter 20. Using the qpid-java AMQP 0-10 client

191

sync_publish string - Sends messages
synchronously. Valid
values are persistent,
transient, all. Can
also be set per
connection.

Property Name Type Default Value Description

Table 20.9. Configuration Options For Threading

Property Name Type Default Value Description
qpid.thread_factor
y

string org.apache.qpid.th
read.DefaultThread
Factory

Specifies the thread
factory to use. If using a
real time JVM, set to
org.apache.qpid.th
read.RealtimeThrea
dFactory.

qpid.rt_thread_pri
ority

int 20 Specifies the priority (1-
99) for realtime threads
created by the realtime
thread factory.

Table 20.10. Configuration Options For I/O

Property Name Type Default Value Description
qpid.transport string org.apache.qpid.tr

ansport.network.io
.IoNetworkTranspor
t

The transport
implementation to be
used. You can also
specify the
org.apache.qpid.tr
ansport.network.Ne
tworkTransport
transport mechanism.

qpid.sync_op_timeo
ut

long 60000 (milliseconds) The length of time to wait
for a synchronous
operation to complete.
For compatibility with
older clients, use
amqj.default_syncw
rite_timeout.

Messaging Programming Reference

192

qpid.tcp_nodelay boolean true Sets the
TCP_NODELAY
property of the
underlying socket.

This can also be set per
connection using the
Connection URL options.

For compatibility with
older clients, the
synonym
amqj.tcp_nodelay is
supported.

qpid.send_buffer_s
ize

integer 65535 Sets the SO_SNDBUF
property of the
underlying socket.

For compatibility with
older clients, the
synonym
amqj.sendBufferSiz
e is supported.

qpid.receive_buffe
r_size

integer 65535 Sets the SO_RCVBUF
property of the
underlying socket.

For compatibility with
older clients, the
synonym
amqj.receiveBuffer
Size is supported.

qpid.failover_meth
od_timeout

long 60000 During failover, this is the
timeout for each attempt
to try to re-establish the
connection. If a
reconnection attempt
exceeds the timeout, the
entire failover process is
aborted.

It is only applicable for
AMQP 0-8/0-9/0-9-1
clients.

Property Name Type Default Value Description

Table 20.11. Configuration Options For Security

Property Name Type Default Value Description

Chapter 20. Using the qpid-java AMQP 0-10 client

193

qpid.sasl_mechs string PLAIN The SASL mechanism
used. More than one can
be specified using a
comma separated list.
Supported values are
PLAIN, GSSAPI, and
EXTERNAL.

qpid.sasl_protocol string AMQP When using GSSAPI as
the SASL mechanism,
sasl_protocol must
be set to the principal for
the qpidd broker.

qpid.sasl_server_n
ame

string localhost When using GSSAPI as
the SASL mechanism,
sasl_server must be
set to the host for the
SASL server.

Property Name Type Default Value Description

Table 20.12. JVM properties for GSSAPI as the SASL mechanism

Property Name Type Default Value Description
javax.security.aut
h.useSubjectCredsO
nly

boolean true If set to 'false', forces the
SASL GASSPI client to
obtain kerberos
credentials explicitly.

java.security.auth
.login.config

string - Specifies the JASS
configuration file.

Table 20.13. Configuration options for SSL connections

Property Name Type Default Value Description
qpid.ssl_timeout long 60000 Timeout value used by

the Java SSL engine
when waiting on
operations.

qpid.ssl.KeyManage
rFactory.algorithm

string - The key manager factory
algorithm name. If not
set, defaults to the value
returned from the Java
runtime call
KeyManagerFactory.get
DefaultAlgorithm().

For compatibility with
older clients, the
synonym
qpid.ssl.keyStoreCertTyp
e is supported.

Messaging Programming Reference

194

qpid.ssl.TrustMana
gerFactory.algorit
hm

string - The trust manager
factory algorithm name.
If not set, defaults to the
value returned from the
Java runtime call
TrustManagerFactory.get
DefaultAlgorithm()

For compatibility with
older clients, the
synonym
qpid.ssl.trustStoreCertTy
pe is supported.

Property Name Type Default Value Description

Table 20.14. JVM Properties for SSL connections

Property Name Type Default Value Description
javax.net.ssl.keyS
tore

string jvm default Specifies the key store
path.

javax.net.ssl.keyS
torePassword

string jvm default Specifies the key store
password.

javax.net.ssl.trus
tStore

string jvm default Specifies the trust store
path.

javax.net.ssl.trus
tStorePassword

string jvm default Specifies the trust store
password.

Report a bug

20.11. Java Message Service with Filters

20.11.1. No Local filter

 <type name="no-local-filter" class="composite" source="list"
provides="filter">
 <descriptor name="apache.org:no-local-filter:list"
code="0x0000468C:0x00000003"/>
</type>

A message is accepted by the simple-no-local-filter only when the message was originally sent to the
container of the source on a separate connection from that which is currently receiving from the source.

Report a bug

20.11.2. Selector filter

<type name="selector-filter" class="restricted" source="string"
provides="filter">
 <descriptor name="apache.org:selector-filter:string"
code="0x0000468C:0x00000004"/>

Chapter 20. Using the qpid-java AMQP 0-10 client

195

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8378-771728+%5BLatest%5D&comment=Title%3A+%3Capplication+condition%3D%22mrg3%22%3Eqpid-java%3C%2Fapplication%3E%3Capplication+condition%3D%22mrg2%22%3EQpid+JMS%3C%2Fapplication%3E+JVM+Arguments%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8378-771728+15+Oct+2015+10%3A04+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+30276-626622+%5BLatest%5D&comment=Title%3A+No+Local+filter%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30276-626622+01+Apr+2014+13%3A59+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

</type>

The qpid-java JMS "selector" defines an SQL like syntax for filtering messages. The selector filters based on
the values of "headers" and "properties". The selector-filter uses the selector as defined by JMS but with the
names of JMS headers translated into their AMQP equivalents. The defined JMS headers can be mapped to
equivalent fields within the AMQP message sections:

The full list of headers is included in Section 20.6, “Java JMS Message Properties”.

When encoding the selector string on the wire, these JMS header names should be translated to
amqp.field_name where field_name is the appropriate AMQP 1.0 field named in the table above, with
the hyphen replaced by an underscore. For example, the selector: JMSCorrelationID = 'abc' AND
color = 'blue' AND weight > 2500 would be transferred over the wire as: amqp.correlation_id
= 'abc' AND color = 'blue' AND weight > 2500

The "properties" of the JMS message are equivalent to the AMQP application-properties section. Thus a
reference to a property Foo in a message selector would be evaluated as the value associated with the key
"Foo" (if present) in the application-properties section.

The operands of the JMS selector are defined in terms of the types available within JMS, When evaluated
against the application properties section, the values within that section are evaluated according to the
following type mapping:

Table 20.15. Mapping AMQP types to JMS types

AMQP Type JMS Selector Type
null null
boolean boolean
ubyte short
ushort int
uint long
ulong long
byte byte
short short
int int
long long
float float
double double
decimal32 double
decimal64 double
decimal128 double
char char
timestamp long
uuid byte[16]
binary byte[]
string String
symbol String

Report a bug

Messaging Programming Reference

196

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+30275-771729+%5BLatest%5D&comment=Title%3A+Selector+filter%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30275-771729+15+Oct+2015+10%3A06+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 21. Using the qpid-jms AMQP 1.0 client

21.1. QPID AMQP 1.0 JMS Client Configuration

This chapter details various configuration options for the qpid-jms client, such as how to configure and
create a JNDI InitialContext, the syntax for its related configuration, and various URI options that can be
set when defining a ConnectionFactory.

Applications use a JNDI InitialContext, itself obtained from an InitialContextFactory, to look up
JMS objects such as ConnectionFactory. The Qpid JMS client provides an implementation of the
InitialContextFactory in class org.apache.qpid.jms.jndi.JmsInitialContextFactory. This may be
configured and used in three main ways:

Via jndi.properties file on the Java Classpath.

By including a file named jndi.properties on the Classpath and setting the
java.naming.factory.initial property to value
org.apache.qpid.jms.jndi.JmsInitialContextFactory, the Qpid
InitialContextFactory implementation will be discovered when instantiating InitialContext
object.

javax.naming.Context ctx = new javax.naming.InitialContext();

The particular ConnectionFactory, Queue and Topic objects you wish the context to contain are
configured using properties (the syntax for which is detailed below) either directly within the
jndi.properties file, or in a separate file which is referenced in jndi.properties using the
java.naming.provider.url property.

Via system properties.

By setting the java.naming.factory.initial system property to value
org.apache.qpid.jms.jndi.JmsInitialContextFactory, the Qpid
InitialContextFactory implementation will be discovered when instantiating InitialContext
object.

javax.naming.Context ctx = new javax.naming.InitialContext();

The particular ConnectionFactory, Queue and Topic objects you wish the context to contain are
configured as properties in a file, which is passed using the java.naming.provider.url
system property. The syntax for these properties is detailed below.

Programmatically using an environment Hashtable.

The InitialContext may also be configured directly by passing an environment during creation:

Hashtable<Object, Object> env = new Hashtable<Object, Object>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.qpid.jms.jndi.JmsInitialContextFactory");
javax.naming.Context context = new javax.naming.InitialContext(env);

Chapter 21. Using the qpid-jms AMQP 1.0 client

197

The particular ConnectionFactory, Queue and Topic objects you wish the context to contain are
configured as properties (the syntax for which is detailed below), either directly within the
environment Hashtable, or in a separate file which is referenced using the
java.naming.provider.url property within the environment Hashtable.

The property syntax used in the properties file or environment Hashtable is as follows:

Table 21.1. Property syntax

Property Syntax
ConnectionFactory connectionfactory.lookupName = URI

Queue queue.lookupName = queueName

Topic topic.lookupName = topicName

As an example, consider the following properties used to define a ConnectionFactory, Queue, and Topic:

connectionfactory.myFactoryLookup = amqp://localhost:5672
queue.myQueueLookup = queueA
topic.myTopicLookup = topicA

These objects could then be looked up from a Context as follows:

ConnectionFactory factory = (ConnectionFactory)
context.lookup("myFactoryLookup");
Queue queue = (Queue) context.lookup("myQueueLookup");
Topic topic = (Topic) context.lookup("myTopicLookup");

Report a bug

21.2. QPID AMQP 1.0 JMS Client Connection URLs

The basic format of the qpid-jms client's Connection URI is as follows:

amqp://hostname:port[?option=value[&option2=value...]]

The client can be configured with a number of different settings using the URI while defining the
ConnectionFactory, these are detailed in the following tables.

The options below apply to the behavior of the JMS objects such as Connection, Session,
MessageConsumer and MessageProducer.

Table 21.2. JMS Configuration options

Option Description
jms.username User name value used to authenticate the

connection
jms.password The password value used to authenticate the

connection
jms.clientID The ClientID value that is applied to the connection.

Messaging Programming Reference

198

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+44875-771781+%5BLatest%5D&comment=Title%3A+QPID+AMQP+1.0+JMS+Client+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44875-771781+16+Oct+2015+08%3A52+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

jms.forceAsyncSend Configures whether all Messages sent from a
MessageProducer are sent asynchronously or
only those Message that qualify such as Messages
inside a transaction or non-persistent messages.

jms.alwaysSyncSend Override all asynchronous send conditions and
always sends every Message from a
MessageProducer synchronously.

jms.sendAcksAsync Causes all Message acknowledgments to be sent
asynchronously.

jms.localMessageExpiry Controls whether MessageConsumer instances will
locally filter expired Messages or deliver them. By
default this value is set to true and expired
messages will be filtered.

jms.localMessagePriority If enabled pre-fetched messages are reordered
locally based on their given Message priority value.
Default is false.

jms.validatePropertyNames If message property names should be validated as
valid Java identifiers. Default is true.

jms.queuePrefix Optional prefix value added to the name of any
Queue created from a JMS Session.

jms.topicPrefix Optional prefix value added to the name of any
Topic created from a JMS Session.

jms.closeTimeout Timeout value that controls how long the client waits
on Connection close before returning. (By default
the client waits 15 seconds for a normal close
completion event).

jms.connectTimeout Timeout value that controls how long the client waits
on Connection establishment before returning with
an error. (By default the client waits 15 seconds for
a connection to be established before failing).

jms.clientIDPrefix Optional prefix value that is used for generated
Client ID values when a new Connection is created
for the JMS ConnectionFactory. The default
prefix is ID:.

jms.connectionIDPrefix Optional prefix value that is used for generated
Connection ID values when a new Connection is
created for the JMS ConnectionFactory. This
connection ID is used when logging some
information from the JMS Connection object so a
configurable prefix can make breadcrumbing the
logs easier. The default prefix is ID:.

Option Description

The values below control how many messages the remote peer can send to the client and be held in a pre-
fetch buffer for each consumer instance.

Table 21.3. Prefetch Options

Option Description
jms.prefetchPolicy.queuePrefetch defaults to 1000

jms.prefetchPolicy.topicPrefetch defaults to 1000

Chapter 21. Using the qpid-jms AMQP 1.0 client

199

jms.prefetchPolicy.queueBrowserPrefetc
h

defaults to 1000

jms.prefetchPolicy.durableTopicPrefetc
h

defaults to 1000

jms.prefetchPolicy.all used to set all prefetch values at once.

Option Description

The RedeliveryPolicy parameter controls how redelivered messages are handled on the client.

Table 21.4. Redelivery Options

Option Description
jms.redeliveryPolicy.maxRedeliveries Controls when an incoming message is rejected

based on the number of times it has been
redelivered, the default value is disabled (-1). A
value of zero (0) would indicate no message
redeliveries are accepted, a value of five (5) would
allow a message to be redelivered five times.

When connected to a remote using plain TCP these options configure the behavior of the underlying socket.
These options are appended to the connection URI along with the other configuration options, for example:

amqp://localhost:5672?jms.clientID=foo&transport.connectTimeout=30000

Table 21.5. TCP Transport Options

Option Description
transport.sendBufferSize default is 64k

transport.receiveBufferSize default is 64k

transport.trafficClass default is 0

transport.connectTimeout default is 60 seconds

transport.soTimeout default is -1

transport.soLinger default is -1

transport.tcpKeepAlive default is false

transport.tcpNoDelay default is true

The SSL Transport extends the TCP Transport and is enabled using the amqps URI scheme. Because the
SSL Transport extends the functionality of the TCP based Transport, all the TCP Transport options are valid
on an SSL Transport URI.

A simple SSL based client URI is shown below:

amqps://localhost:5673

Table 21.6. SSL Transport Options

Option Description
transport.keyStoreLocation The default is to read from the system property

javax.net.ssl.keyStore

Messaging Programming Reference

200

transport.keyStorePassword The default is to read from the system property
javax.net.ssl.keyStorePassword

transport.trustStoreLocation The default is to read from the system property
javax.net.ssl.trustStore

transport.trustStorePassword The default is to read from the system property
javax.net.ssl.keyStorePassword

transport.storeType The type of trust store being used. Default is JKS.

transport.contextProtocol The protocol argument used when getting an
SSLContext. Default is TLS.

transport.enabledCipherSuites The cipher suites to enable, comma separated. No
default, meaning the context default ciphers are
used. Any disabled ciphers are removed from this.

transport.disabledCipherSuites The cipher suites to disable, comma separated.
Ciphers listed here are removed from the enabled
ciphers. No default.

transport.enabledProtocols The protocols to enable, comma separated. No
default, meaning the context default protocols are
used. Any disabled protocols are removed from this.

transport.disabledProtocols The protocols to disable, comma separated.
Protocols listed here are removed from the enabled
protocols. Default is SSLv2Hello,SSLv3.

transport.trustAll Whether to trust the provided server certificate
implicitly, regardless of any configured trust store.
Defaults to false.

transport.verifyHost Whether to verify that the hostname being
connected to matches with the provided server
certificate. Defaults to true.

transport.keyAlias The alias to use when selecting a keypair from the
keystore if required to send a client certificate to the
server. No default.

Option Description

Table 21.7. AMQP Options

Option Description
amqp.idleTimeout The idle timeout in milliseconds after which the

connection will be failed if the peer sends no AMQP
frames. Default is 60000.

amqp.vhost The vhost to connect to. Used to populate the
SASL and Open hostname fields. Default is the
main hostname from the Connection URI.

amqp.saslLayer Controls whether connections use a SASL layer or
not. Default is true.

amqp.saslMechanisms Which SASL mechanism(s) the client allows
selection of, if offered by the server and usable with
the configured credentials. Comma separated if
specifying more than 1 mechanism. Default is to
allow selection from all the clients supported
mechanisms, which are currently EXTERNAL, CRAM-
MD5, PLAIN, and ANONYMOUS.

amqp.maxFrameSize The max-frame-size value in bytes that is advertised
to the peer. Default is 1048576.

Chapter 21. Using the qpid-jms AMQP 1.0 client

201

With failover enabled the client can reconnect to a different broker automatically when the connection to the
current connection is lost for some reason. The failover URI is always initiated with the failover prefix and
a list of URIs for the brokers is contained inside a set of parentheses.

The jms. options are applied to the overall failover URI, outside the parentheses, and affect the JMS
Connection object for its lifetime.

The URI for failover looks something like the following:

failover:(amqp://host1:5672,amqp://host2:5672)?
jms.clientID=foo&failover.maxReconnectAttempts=20

The individual broker details within the parentheses can use the transport. or amqp. options defined
earlier, with these being applied as each host is connected to:

failover:(amqp://host1:5672?amqp.option=value,amqp://host2:5672?
transport.option=value)?jms.clientID=foo

Table 21.8. Failover Options

Option Description
failover.initialReconnectDelay The amount of time the client will wait before the

first attempt to reconnect to a remote peer. The
default value is zero (0), meaning the first attempt
happens immediately.

failover.reconnectDelay Controls the delay between successive
reconnection attempts, defaults to 10 milliseconds.
If the backoff option is not enabled this value
remains constant.

failover.maxReconnectDelay The maximum time that the client will wait before
attempting a reconnect. This value is only used
when the backoff feature is enabled to ensure that
the delay does not grow too large. Defaults to 30
seconds as the max time between connect
attempts.

failover.useReconnectBackOff Controls whether the time between reconnection
attempts grows based on a configured multiplier.
This option defaults to true.

failover.reconnectBackOffMultiplier The multiplier used to grow the reconnection delay
value, defaults to 2.0d.

failover.maxReconnectAttempts The number of reconnection attempts allowed
before reporting the connection as failed to the
client. The default is no limit or (-1).

failover.startupMaxReconnectAttempts For a client that has never connected to a remote
peer before this option control how many attempts
are made to connect before reporting the connection
as failed. The default is to use the value of
maxReconnectAttempts.

failover.warnAfterReconnectAttempts Controls how often the client will log a message
indicating that failover reconnection is being
attempted. The default is to log every 10 connection
attempts.

Messaging Programming Reference

202

The failover URI also supports defining 'nested' options as a means of specifying AMQP and transport option
values applicable to all the individual nested broker URI's, which can be useful to avoid repetition.

This is accomplished using the same transport. and amqp. URI options outlined earlier for a non-failover
broker URI but prefixed with failover.nested.. For example, to apply the same value for the
amqp.vhost option to every broker connected to you might have a URI like:

failover:(amqp://host1:5672,amqp://host2:5672)?
jms.clientID=foo&failover.nested.amqp.vhost=myhost

The client has an optional Discovery module, which provides a customized failover layer where the broker
URIs to connect to are not given in the initial URI, but discovered as the client operates via associated
discovery agents. There are currently two discovery agent implementations, a file watcher that loads URIs
from a file, and a multicast listener that works with ActiveMQ 5 brokers which have been configured to
broadcast their broker addresses for listening clients.

The general set of failover related options when using discovery are the same as those detailed earlier, with
the main prefix updated from failover. to discovery., and with the 'nested' options prefix used to supply URI
options common to all the discovered broker URIs bring updated from failover.nested. to
discovery.discovered. For example, without the agent URI details, a general discovery URI might look
like:

discovery:(<agent-uri>)?
discovery.maxReconnectAttempts=20&discovery.discovered.jms.clientID=foo

To use the file watcher discovery agent, utilize an agent URI of the form:

discovery:(file:///path/to/monitored-file?updateInterval=60000)

The URI option for the file watcher discovery agent is updateInterval. It controls the frequency in
milliseconds which the file is inspected for change. The default value is 30000.

To use the multicast discovery agent with an ActiveMQ 5 broker, utilize an agent URI of the form:

discovery:(multicast://default?group=default)

Note that the use of default as the host in the multicast agent URI above is a special value (that is substituted
by the agent with the default 239.255.2.3:6155). You may change this to specify the actual IP and port in
use with your multicast configuration.

The URI option for the multicast discovery agent is group. It controls which multicast group messages are
listened for on. The default value is default.

Report a bug

21.3. QPID AMQP 1.0 JMS Client Logging

The client makes use of the SLF4J API, allowing users to select a particular logging implementation based on
their needs by supplying a SLF4J 'binding', such as slf4j-log4j in order to use Log4J. More details on SLF4J
are available from http://www.slf4j.org/.

The client uses Logger names residing within the org.apache.qpid.jms hierarchy, which you can use to
configure a logging implementation based on your needs.

Chapter 21. Using the qpid-jms AMQP 1.0 client

203

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+44876-771780+%5BLatest%5D&comment=Title%3A+QPID+AMQP+1.0+JMS+Client+Connection+URLs%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44876-771780+16+Oct+2015+08%3A52+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
http://www.slf4j.org/

When debugging some issues, it may sometimes be useful to enable additional protocol trace logging from
the Qpid Proton AMQP 1.0 library. There are two options to achieve this:

Set the environment variable (not Java system property) PN_TRACE_FRM to true, which will cause
Proton to emit frame logging to stdout.

Add the option amqp.traceFrames=true to your connection URI to have the client add a protocol
tracer to Proton, and configure the org.apache.qpid.jms.provider.amqp.FRAMES Logger to
TRACE level to include the output in your logs.

Report a bug

Messaging Programming Reference

204

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+44877-771734+%5BLatest%5D&comment=Title%3A+QPID+AMQP+1.0+JMS+Client+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44877-771734+15+Oct+2015+11%3A09+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Chapter 22. .NET Binding for Qpid C++ Messaging

22.1. .NET Binding for the C++ Messaging Client Examples

Table 22.1. Client and Server Examples

Example Name Example Description
csharp.example.server Creates a receiver and listens for messages. Upon

receipt, the content of the message is converted to
upper case and forwarded to the received
message's ReplyTo address.

csharp.example.client Sends a series of messages to the server and prints
the original message content and the received
message content.

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

22.2. .NET Binding Class Mapping to Underlying C++ Messaging API

Table 22.2. Map Sender and Receiver Examples

Example Name Example Description
csharp.map.receiver Creates a receiver and listens for a map message.

Upon receipt, the message is decoded and
displayed on the console.

csharp.map.sender Creates a map message and sends it to
map.receiver. The map message contains values
for every supported .NET messaging binding data
type.

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

22.3. .NET Binding for the C++ Messaging API Class: Address

Table 22.3. .NET Binding for the C++ Messaging API Class: Address

.NET Binding Class: Address

Language Syntax
C++ class Address

.NET public ref class Address

Constructor
C++ Address();

Chapter 22. .NET Binding for Qpid C++ Messaging

205

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8132-591820+%5BLatest%5D&comment=Title%3A+.NET+Binding+for+the+C%2B%2B+Messaging+Client+Examples%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8132-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8129-591820+%5BLatest%5D&comment=Title%3A+.NET+Binding+Class+Mapping+to+Underlying+C%2B%2B+Messaging+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8129-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

.NET public Address();

Constructor
C++ Address(const std::string& address);

.NET public Address(string address);

Constructor
C++ Address(const std::string& name, const std::string& subject, const

qpid::types::Variant::Map& options, const std::string& type = "");

.NET public Address(string name, string subject, Dictionary<string,
object> options);

.NET public Address(string name, string subject, Dictionary<string,
object> options, string type);

Copy constructor
C++ Address(const Address& address);

.NET public Address(Address address);

Destructor
C++ ~Address();

.NET ~Address();

Finalizer
C++ not applicable
.NET !Address();

Copy assignment operator
C++ Address& operator=(const Address&);

.NET public Address op_Assign(Address rhs);

Property: Name
C++ const std::string& getName() const;

C++ void setName(const std::string&);

.NET public string Name { get; set; }

Property: Subject
C++ const std::string& getSubject() const;

C++ void setSubject(const std::string&);

.NET public string Subject { get; set; }

Property: Options
C++ const qpid::types::Variant::Map& getOptions() const;

C++ qpid::types::Variant::Map& getOptions();

C++ void setOptions(const qpid::types::Variant::Map&);

.NET public Dictionary<string, object> Options { get; set; }

Property: Type
C++ std::string getType() const;

C++ void setType(const std::string&);

.NET public string Type { get; set; }

Miscellaneous
C++ std::string str() const;

.NET public string ToStr();

Miscellaneous
C++ operator bool() const;

.NET Binding Class: Address

Language Syntax

Messaging Programming Reference

206

.NET not applicable
Miscellaneous

C++ bool operator !() const;

.NET not applicable

.NET Binding Class: Address

Language Syntax

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

22.4. .NET Binding for the C++ Messaging API Class: Connection

Table 22.4. .NET Binding for the C++ Messaging API Class: Connection

.NET Binding Class: Connection

Language Syntax
C++ class Connection : public qpid::messaging::Handle<ConnectionImpl>

.NET public ref class Connection

Constructor
C++ Connection(ConnectionImpl* impl);

.NET not applicable
Constructor

C++ Connection();

.NET not applicable
Constructor

C++ Connection(const std::string& url, const qpid::types::Variant::Map&
options = qpid::types::Variant::Map());

.NET public Connection(string url);

.NET public Connection(string url, Dictionary<string, object> options);

Constructor
C++ Connection(const std::string& url, const std::string& options);

.NET public Connection(string url, string options);

Copy Constructor
C++ Connection(const Connection&);

.NET public Connection(Connection connection);

Destructor
C++ ~Connection();

.NET ~Connection();

Finalizer
C++ not applicable
.NET !Connection();

Copy assignment operator
C++ Connection& operator=(const Connection&);

.NET public Connection op_Assign(Connection rhs);

Method: SetOption

Chapter 22. .NET Binding for Qpid C++ Messaging

207

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8145-591820+%5BLatest%5D&comment=Title%3A+.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Address%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8145-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

C++ void setOption(const std::string& name, const qpid::types::Variant&
value);

.NET public void SetOption(string name, object value);

Method: open
C++ void open();

.NET public void Open();

Property: isOpen
C++ bool isOpen();

.NET public bool IsOpen { get; }

Method: close
C++ void close();

.NET public void Close();

Method: createTransactionalSession
C++ Session createTransactionalSession(const std::string& name =

std::string());

.NET public Session CreateTransactionalSession();

.NET public Session CreateTransactionalSession(string name);

Method: createSession
C++ Session createSession(const std::string& name = std::string());

.NET public Session CreateSession();

.NET public Session CreateSession(string name);

Method: getSession
C++ Session getSession(const std::string& name) const;

.NET public Session GetSession(string name);

Property: AuthenticatedUsername

C++ std::string getAuthenticatedUsername();

.NET public string GetAuthenticatedUsername();

.NET Binding Class: Connection

Language Syntax

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

22.5. .NET Binding for the C++ Messaging API Class: Duration

Table 22.5. .NET Binding for the C++ Messaging API Class: Duration

.NET Binding Class: Duration

Language Syntax
C++ class Duration

.NET public ref class Duration

Constructor
C++ explicit Duration(uint64_t milliseconds);

.NET public Duration(ulong mS);

Copy constructor

Messaging Programming Reference

208

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8149-591823+%5BLatest%5D&comment=Title%3A+.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Connection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8149-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

C++ not applicable
.NET public Duration(Duration rhs);

Destructor
C++ default
.NET default

Finalizer
C++ not applicable
.NET default

Property: Milliseconds
C++ uint64_t getMilliseconds() const;

.NET public ulong Milliseconds { get; }

Operator: *
C++ Duration operator*(const Duration& duration, uint64_t multiplier);

.NET public static Duration operator *(Duration dur, ulong multiplier);

.NET public static Duration Multiply(Duration dur, ulong multiplier);

C++ Duration operator*(uint64_t multiplier, const Duration& duration);

.NET public static Duration operator *(ulong multiplier, Duration dur);

.NET public static Duration Multiply(ulong multiplier, Duration dur);

Constants
C++ static const Duration FOREVER;

C++ static const Duration IMMEDIATE;

C++ static const Duration SECOND;

C++ static const Duration MINUTE;

.NET public sealed class DurationConstants

.NET public static Duration FORVER;

.NET public static Duration IMMEDIATE;

.NET public static Duration MINUTE;

.NET public static Duration SECOND;

.NET Binding Class: Duration

Language Syntax

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

22.6. .NET Binding for the C++ Messaging API Class: FailoverUpdates

Table 22.6. .NET Binding for the C++ Messaging API Class: FailoverUpdates

.NET Binding Class: FailoverUpdates

Language Syntax
C++ class FailoverUpdates

.NET public ref class FailoverUpdates

Constructor
C++ FailoverUpdates(Connection& connection);

Chapter 22. .NET Binding for Qpid C++ Messaging

209

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8150-591823+%5BLatest%5D&comment=Title%3A+.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Duration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8150-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

.NET public FailoverUpdates(Connection connection);

Destructor
C++ ~FailoverUpdates();

.NET ~FailoverUpdates();

Finalizer
C++ not applicable
.NET !FailoverUpdates();

.NET Binding Class: FailoverUpdates

Language Syntax

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

22.7. .NET Binding for the C++ Messaging API Class: Message

Table 22.7. .NET Binding for the C++ Messaging API Class: Message

.NET Binding Class: Message

Language Syntax
C++ class Message

.NET public ref class Message

Constructor
C++ Message(const std::string& bytes = std::string());

.NET Message();

.NET Message(System::String ^ theStr);

.NET Message(System::Object ^ theValue);

.NET Message(array<System::Byte> ^ bytes);

Constructor
C++ Message(const char*, size_t);

.NET public Message(byte[] bytes, int offset, int size);

Copy Constructor
C++ Message(const Message&);

.NET public Message(Message message);

Copy assignment operator
C++ Message& operator=(const Message&);

.NET public Message op_Assign(Message rhs);

Destructor
C++ ~Message();

.NET ~Message();

Finalizer
C++ not applicable
.NET !Message()

Property: ReplyTo

Messaging Programming Reference

210

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8147-591823+%5BLatest%5D&comment=Title%3A+.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+FailoverUpdates%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8147-591823+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

C++ void setReplyTo(const Address&);

C++ const Address& getReplyTo() const;

.NET public Address ReplyTo { get; set; }

Property: Subject
C++ void setSubject(const std::string&);

C++ const std::string& getSubject() const;

.NET public string Subject { get; set; }

Property: ContentType
C++ void setContentType(const std::string&);

C++ const std::string& getContentType() const;

.NET public string ContentType { get; set; }

Property: MessageId
C++ void setMessageId(const std::string&);

C++ const std::string& getMessageId() const;

.NET public string MessageId { get; set; }

Property: UserId
C++ void setUserId(const std::string&);

C++ const std::string& getUserId() const;

.NET public string UserId { get; set; }

Property: CorrelationId
C++ void setCorrelationId(const std::string&);

C++ const std::string& getCorrelationId() const;

.NET public string CorrelationId { get; set; }

Property: Priority
C++ void setPriority(uint8_t);

C++ uint8_t getPriority() const;

.NET public byte Priority { get; set; }

Property: Ttl
C++ void setTtl(Duration ttl);

C++ Duration getTtl() const;

.NET public Duration Ttl { get; set; }

Property: Durable
C++ void setDurable(bool durable);

C++ bool getDurable() const;

.NET public bool Durable { get; set; }

Property: Redelivered
C++ bool getRedelivered() const;

C++ void setRedelivered(bool);

.NET public bool Redelivered { get; set; }

Method: SetProperty
C++ void setProperty(const std::string&, const qpid::types::Variant&);

.NET public void SetProperty(string name, object value);

Property: Properties
C++ const qpid::types::Variant::Map& getProperties() const;

.NET Binding Class: Message

Language Syntax

Chapter 22. .NET Binding for Qpid C++ Messaging

211

C++ qpid::types::Variant::Map& getProperties();

.NET public Dictionary<string, object> Properties { get; set; }

Method: SetContent
C++ void setContent(const std::string&);

C++ void setContent(const char* chars, size_t count);

.NET public void SetContent(byte[] bytes);

.NET public void SetContent(string content);

.NET public void SetContent(byte[] bytes, int offset, int size);

Method: GetContent
C++ std::string getContent() const;

.NET public string GetContent();

.NET public void GetContent(byte[] arr);

.NET public void GetContent(Collection<object> __p1);

.NET public void GetContent(Dictionary<string, object> dict);

Method: GetContentPtr
C++ const char* getContentPtr() const;

.NET not applicable
Property: ContentSize

C++ size_t getContentSize() const;

.NET public ulong ContentSize { get; }

Struct: EncodingException
C++ struct EncodingException : qpid::types::Exception

.NET not applicable
Method: decode

C++ void decode(const Message& message, qpid::types::Variant::Map& map,
const std::string& encoding = std::string());

C++ void decode(const Message& message, qpid::types::Variant::List&
list, const std::string& encoding = std::string());

.NET not applicable
Method: encode

C++ void encode(const qpid::types::Variant::Map& map, Message& message,
const std::string& encoding = std::string());

C++ void encode(const qpid::types::Variant::List& list, Message&
message, const std::string& encoding = std::string());

.NET not applicable
Method: AsString

C++ not applicable
.NET public string AsString(object obj);

.NET public string ListAsString(Collection<object> list);

.NET public string MapAsString(Dictionary<string, object> dict);

.NET Binding Class: Message

Language Syntax

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

Messaging Programming Reference

212

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8127-591820+%5BLatest%5D&comment=Title%3A+.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8127-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

22.8. .NET Binding for the C++ Messaging API Class: Receiver

Table 22.8. .NET Binding for the C++ Messaging API Class: Receiver

.NET Binding Class: Receiver

Language Syntax
C++ class Receiver

.NET public ref class Receiver

Constructor
.NET Constructed object is returned by Session.CreateReceiver

Copy constructor
C++ Receiver(const Receiver&);

.NET public Receiver(Receiver receiver);

Destructor
C++ ~Receiver();

.NET ~Receiver();

Finalizer
C++ not applicable
.NET !Receiver()

Copy assignment operator
C++ Receiver& operator=(const Receiver&);

.NET public Receiver op_Assign(Receiver rhs);

Method: Get
C++ bool get(Message& message, Duration timeout=Duration::FOREVER);

.NET public bool Get(Message mmsgp);

.NET public bool Get(Message mmsgp, Duration durationp);

Method: Get
C++ Message get(Duration timeout=Duration::FOREVER);

.NET public Message Get();

.NET public Message Get(Duration durationp);

Method: Fetch
C++ bool fetch(Message& message, Duration timeout=Duration::FOREVER);

.NET public bool Fetch(Message mmsgp);

.NET public bool Fetch(Message mmsgp, Duration duration);

Method: Fetch
C++ Message fetch(Duration timeout=Duration::FOREVER);

.NET public Message Fetch();

.NET public Message Fetch(Duration durationp);

Property: Capacity
C++ void setCapacity(uint32_t);

C++ uint32_t getCapacity();

.NET public uint Capacity { get; set; }

Property: Available
C++ uint32_t getAvailable();

.NET public uint Available { get; }

Property: Unsettled
C++ uint32_t getUnsettled();

Chapter 22. .NET Binding for Qpid C++ Messaging

213

.NET public uint Unsettled { get; }

Method: Close
C++ void close();

.NET public void Close();

Property: IsClosed
C++ bool isClosed() const;

.NET public bool IsClosed { get; }

Property: Name
C++ const std::string& getName() const;

.NET public string Name { get; }

Property: Session
C++ Session getSession() const;

.NET public Session Session { get; }

.NET Binding Class: Receiver

Language Syntax

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

22.9. .NET Binding for the C++ Messaging API Class: Sender

Table 22.9. .NET Binding for the C++ Messaging API Class: Sender

.NET Binding Class: Sender

Language Syntax
C++ class Sender

.NET public ref class Sender

Constructor
.NET Constructed object is returned by session.createSender

Copy constructor
C++ Sender(const Sender&);

.NET public Sender(Sender sender);

Destructor
C++ ~Sender();

.NET ~Sender();

Finalizer
C++ not applicable
.NET !Sender()

Copy assignment operator
C++ Sender& operator=(const Sender&);

.NET public Sender op_Assign(Sender rhs);

Method: Send
C++ void send(const Message& message, bool sync=false);

.NET public void Send(Message mmsgp);

Messaging Programming Reference

214

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8142-591820+%5BLatest%5D&comment=Title%3A+.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Receiver%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8142-591820+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

.NET public void Send(Message mmsgp, bool sync);

Method: Close
C++ void close();

.NET public void Close();

Property: Capacity
C++ void setCapacity(uint32_t);

C++ uint32_t getCapacity();

.NET public uint Capacity { get; set; }

Property: Available
C++ uint32_t getAvailable();

.NET public uint Available { get; }

Property: Unsettled
C++ uint32_t getUnsettled();

.NET public uint Unsettled { get; }

Property: Name
C++ const std::string& getName() const;

.NET public string Name { get; }

Property: Session
C++ Session getSession() const;

.NET public Session Session { get; }

.NET Binding Class: Sender

Language Syntax

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

22.10. .NET Binding for the C++ Messaging API Class: Session

Table 22.10. .NET Binding for the C++ Messaging API Class: Session

Language Syntax
C++ class Session

.NET public ref class Session

Constructor
.NET Constructed object is returned by Connection.CreateSession

Copy constructor
C++ Session(const Session&);

.NET public Session(Session session);

Destructor
C++ ~Session();

.NET ~Session();

Finalizer
C++ not applicable
.NET !Session()

Copy assignment operator

Chapter 22. .NET Binding for Qpid C++ Messaging

215

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8051-704449+%5BLatest%5D&comment=Title%3A+.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Sender%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8051-704449+29+Aug+2014+10%3A28+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

C++ Session& operator=(const Session&);

.NET public Session op_Assign(Session rhs);

Method: Close
C++ void close();

.NET public void Close();

Method: Commit
C++ void commit();

.NET public void Commit();

Method: Rollback
C++ void rollback();

.NET public void Rollback();

Method: Acknowledge
C++ void acknowledge(bool sync=false);

C++ void acknowledge(Message&, bool sync=false);

.NET public void Acknowledge();

.NET public void Acknowledge(bool sync);

.NET public void Acknowledge(Message __p1);

.NET public void Acknowledge(Message __p1, bool __p2);

Method: Reject
C++ void reject(Message&);

.NET public void Reject(Message __p1);

Method: Release
C++ void release(Message&);

.NET public void Release(Message __p1);

Method: Sync
C++ void sync(bool block=true);

.NET public void Sync();

.NET public void Sync(bool block);

Property: Receivable
C++ uint32_t getReceivable();

.NET public uint Receivable { get; }

Property: UnsettledAcks
C++ uint32_t getUnsettledAcks();

.NET public uint UnsettledAcks { get; }

Method: NextReceiver
C++ bool nextReceiver(Receiver&, Duration timeout=Duration::FOREVER);

.NET public bool NextReceiver(Receiver rcvr);

.NET public bool NextReceiver(Receiver rcvr, Duration timeout);

Method: NextReceiver
C++ Receiver nextReceiver(Duration timeout=Duration::FOREVER);

.NET public Receiver NextReceiver();

.NET public Receiver NextReceiver(Duration timeout);

Method: CreateSender
C++ Sender createSender(const Address& address);

.NET public Sender CreateSender(Address address);

Method: CreateSender

Language Syntax

Messaging Programming Reference

216

C++ Sender createSender(const std::string& address);

.NET public Sender CreateSender(string address);

Method: CreateReceiver
C++ Receiver createReceiver(const Address& address);

.NET public Receiver CreateReceiver(Address address);

Method: CreateReceiver
C++ Receiver createReceiver(const std::string& address);

.NET public Receiver CreateReceiver(string address);

Method: GetSender
C++ Sender getSender(const std::string& name) const;

.NET public Sender GetSender(string name);

Method: GetReceiver
C++ Receiver getReceiver(const std::string& name) const;

.NET public Receiver GetReceiver(string name);

Property: Connection
C++ Connection getConnection() const;

.NET public Connection Connection { get; }

Property: HasError
C++ bool hasError();

.NET public bool HasError { get; }

Method: CheckError
C++ void checkError();

.NET public void CheckError();

Language Syntax

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

22.11. .NET Class: SessionReceiver

The SessionReceiver class provides a convenient callback mechanism for messages received by all
receivers on a given session.

using Org.Apache.Qpid.Messaging;
using System;

namespace Org.Apache.Qpid.Messaging.SessionReceiver
{
 public interface ISessionReceiver
 {
 void SessionReceiver(Receiver receiver, Message message);
 }

 public class CallbackServer
 {
 public CallbackServer(Session session, ISessionReceiver callback);

Chapter 22. .NET Binding for Qpid C++ Messaging

217

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8055-591818+%5BLatest%5D&comment=Title%3A+.NET+Binding+for+the+C%2B%2B+Messaging+API+Class%3A+Session%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8055-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

 public void Close();
 }
}

To use this class a client program includes references to both Org.Apache.Qpid.Messaging and
Org.Apache.Qpid.Messaging.SessionReceiver. The calling program creates a function that
implements the ISessionReceiver interface. This function will be called whenever a message is received
by the session. The callback process is started by creating a CallbackServer and will continue to run until
the client program calls the CallbackServer.Close function.

A complete operating example of using the SessionReceiver callback is contained in
cpp/bindings/qpid/dotnet/examples/csharp.map.callback.receiver.

See Also:

Section 3.3.3.2, “Windows SDK Contents”

Report a bug

Messaging Programming Reference

218

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8063-591818+%5BLatest%5D&comment=Title%3A+.NET+Class%3A+SessionReceiver%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8063-591818+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Appendix A. Exchange and Queue Declaration Arguments

A.1. Exchange and Queue Argument Reference

Changes

qpid.last_value_queue and qpid.last_value_queue_no_browse deprecated and
removed.

qpid.msg_sequence queue argument replaced by qpid.queue_msg_sequence.

ring_strict and flow_to_disk are no longer valid qpid.policy_type values.

qpid.persist_last_node deprecated and removed.

Following is a complete list of arguments for declaring queues and exchanges.

Exchange options

qpid.exclusive-binding (bool)

Ensures that a given binding key is associated with only one queue.

qpid.ive (bool)

If set to “true”, the exchange is an initial value exchange, which differs from other exchanges in
only one way: the last message sent to the exchange is cached, and if a new queue is bound to
the exchange, it attempts to route this message to the queue, if the message matches the binding
criteria. This allows a new queue to use the last received message as an initial value.

qpid.msg_sequence (bool)

If set to “true”, the exchange inserts a sequence number named “qpid.msg_sequence” into the
message headers of each message. The type of this sequence number is int64. The sequence
number for the first message routed from the exchange is 1, it is incremented sequentially for each
subsequent message. The sequence number is reset to 1 when the qpid broker is restarted.

qpid.sequence_counter (int64)

Start qpid.msg_sequence counting at the given number.

Queue options

no-local (bool)

Specifies that the queue should discard any messages enqueued by sessions on the same
connection as that which declares the queue.

qpid.alert_count (uint32_t)

If the queue message count goes above this size an alert should be sent.

qpid.alert_repeat_gap (int64_t)

Controls the minimum interval between events in seconds. The default value is 60 seconds.

qpid.alert_size (int64_t)

Appendix A. Exchange and Queue Declaration Arguments

219

If the queue size in bytes goes above this size an alert should be sent.

qpid.auto_delete_timeout (bool)

If a queue is configured to be automatically deleted, it will be deleted after the amount of seconds
specified here.

qpid.browse-only (bool)

All users of queue are forced to browse. Limit queue size with ring, LVQ, or TTL. Note that this
argument name uses a hyphen rather than an underscore.

qpid.file_count (int)

Set the number of files in the persistence journal for the queue. Default value is 8.

qpid.file_size (int64)

Set the number of pages in the file (each page is 64KB). Default value is 24.

qpid.flow_resume_count (uint32_t)

Flow resume threshold value as a message count.

qpid.flow_resume_size (uint64_t)

Flow resume threshold value in bytes.

qpid.flow_stop_count (uint32_t)

Flow stop threshold value as a message count.

qpid.flow_stop_size (uint64_t)

Flow stop threshold value in bytes.

qpid.last_value_queue_key (string)

Defines the key to use for a last value queue.

qpid.max_count (uint32_t)

The maximum byte size of message data that a queue can contain before the action dictated by
the policy_type is taken.

qpid.max_size (uint64_t)

The maximum number of messages that a queue can contain before the action dictated by the
policy_type is taken.

qpid.policy_type (string)

Sets default behavior for controlling queue size. Valid values are reject and ring.

qpid.priorities (size_t)

The number of distinct priority levels recognized by the queue (up to a maximum of 10). The
default value is 1 level.

qpid.queue_msg_sequence (string)

Messaging Programming Reference

220

Causes a custom header with the specified name to be added to enqueued messages. This header
is automatically populated with a sequence number.

qpid.trace.exclude (string)

Does not send on messages which include one of the given (comma separated) trace ids.

qpid.trace.id (string)

Adds the given trace id as to the application header "x-qpid.trace" in messages sent from the
queue.

x-qpid-maximum-message-count

This is an alias for qpid.alert_count.

x-qpid-maximum-message-size

This is an alias for qpid.alert_size.

x-qpid-minimum-alert-repeat-gap

This is an alias for qpid.alert_repeat_gap.

x-qpid-priorities

This is an alias for qpid.priorities.

Report a bug

Appendix A. Exchange and Queue Declaration Arguments

221

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19948%2C+Messaging+Programming+Reference-3-3.2.0%0ABuild+Date%3A+16-10-2015+08%3A57%3A59%0ATopic+ID%3A+8380-733160+%5BLatest%5D&comment=Title%3A+Exchange+and+Queue+Argument+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8380-733160+17+Dec+2014+13%3A56+en-US+%5BLatest%5D&product=Red+Hat+Enterprise+MRG&component=Messaging_Programming_Reference

Appendix B. Revision History

Revision 3.2.0-6 Fri Oct 16 2015 Scott Mumford
Post 3.2 GA update: Added Using the qpid-jms AMQP 1.0 client Chapter.

Revision 3.2.0-5 Thu Oct 8 2015 Scott Mumford
MRG-M 3.2 GA

Revision 3.2.0-3 Tue Sep 29 2015 Scott Mumford
Prepared for MRG-M 3.2 GA

Revision 3.2.0-1 Tue Jul 14 2015 Jared Morgan
Prepared for MRG-M 3.2 GA

Revision 3.1.0-5 Wed Apr 01 2015 Jared Morgan
Prepared for MRG-M 3.1 GA

Revision 3.0.0-4 Tue Sep 23 2014 Jared Morgan
Prepared for MRG-M 3.0 GA

Messaging Programming Reference

222

	Table of Contents
	Chapter 1. Introduction
	1.1. Red Hat Enterprise MRG Messaging
	1.2. Apache Qpid
	1.3. AMQP - Advanced Message Queuing Protocol
	1.4. Differences between AMQP 0-10 and AMQP 1.0
	Broker Architecture
	Broker Management
	Symmetry

	1.5. AMQP 1.0 support in MRG-M 3
	1.5.1. Support for the C++ qpid::messaging API
	1.5.2. Reply-To Addresses and Temporary Queues
	1.5.3. Connections, Session and Links
	1.5.4. Addresses
	1.5.5. On-demand Create Workaround for Legacy Applications
	1.5.6. Link-scoped x-declare and x-subscribe
	1.5.7. Node- and Link-scoped x-bindings
	1.5.8. Delete Policy
	1.5.9. Node Lifetime Policies
	1.5.10. Message Timestamp
	1.5.11. Accessing AMQP Message Properties and Headers
	1.5.12. AMQP Support in qpidd
	1.5.13. Simple Authentication and Security Layer (SASL) Support
	1.5.14. Queues and Exchanges
	1.5.15. Filters
	1.5.16. Message Conversion Between AMQP 0-10 and AMQP 1.0
	1.5.17. Capabilities
	1.5.18. Capability Matching and Assert
	1.5.19. Configuring Subscription Queues using Topics

	1.6. qpid::messaging Message::get/setContentObject()

	Chapter 2. AMQP Model Overview
	2.1. The Producer - Consumer Model
	2.2. Consumer-driven messaging
	2.3. Message Producer (Sender)
	2.4. Message
	2.5. Message Broker
	2.6. Routing Key
	2.7. Message Subject
	2.8. Message Properties
	2.9. Connection
	2.10. Session
	2.11. Exchange
	2.12. Binding
	2.13. Topic
	2.14. Domain
	2.15. Message Queue
	2.16. Transaction
	2.17. Message Consumer (Receiver)

	Chapter 3. Getting Started
	3.1. Getting Started with Python
	3.1.1. Python Messaging Development
	3.1.2. Python Client Libraries
	3.1.3. Install Python Client Libraries (Red Hat Enterprise Linux 6)

	3.2. Getting Started with .NET
	3.2.1. .NET Messaging Development
	3.2.2. Windows SDK
	3.2.3. Windows SDK Contents
	3.2.4. How To Download and Install the Windows SDK
	3.2.4.1. Obtain the Windows SDK
	3.2.4.2. Install the Windows SDK

	3.3. Getting Started with C++
	3.3.1. C++ Messaging Development
	3.3.2. C++ on Linux
	3.3.2.1. C++ Client Libraries
	3.3.2.2. Install C++ Client Libraries (Red Hat Enterprise Linux 6)
	3.3.2.3. Install C++ Client Libraries for MRG 3

	3.3.3. C++ on Windows
	3.3.3.1. Windows SDK
	3.3.3.2. Windows SDK Contents
	3.3.3.3. How To Download and Install the Windows SDK

	3.4. Getting Started with Java
	3.4.1. Java Client Libraries
	3.4.2. Install Java Client Libraries (Red Hat Enterprise Linux 6)

	3.5. Getting Started with Ruby
	3.5.1. Ruby Messaging Development
	3.5.2. Ruby Client Libraries
	3.5.3. Install Ruby Client Libraries (Red Hat Enterprise Linux 6)

	3.6. Hello World
	3.6.1. Red Hat Enterprise Messaging "Hello World"
	3.6.2. Java JMS "Hello World" Program Listing
	3.6.3. "Hello World" Walk-through

	Chapter 4. Beyond "Hello World"
	4.1. Subscriptions
	4.2. Publishing
	4.3. AMQP Exchange Types
	4.4. Pre-configured Exchanges
	4.5. Exchange Subscription Patterns
	4.6. The Default Exchange
	4.6.1. Default Exchange
	4.6.2. Publish to a Queue using the Default Exchange
	4.6.3. Subscribe to the Default Exchange

	4.7. Direct Exchange
	4.7.1. Direct Exchange
	4.7.2. Create a Direct Exchange using qpid-config
	4.7.3. Create a Direct Exchange from an application
	4.7.4. Publish to a Direct Exchange
	4.7.5. Subscribe to a Direct Exchange
	4.7.6. Exclusive Bindings for Direct Exchanges

	4.8. Fanout Exchange
	4.8.1. The pre-configured Fanout Exchange
	4.8.2. Fanout Exchange
	4.8.3. Create a Fanout Exchange using qpid-config
	4.8.4. Create a Fanout Exchange from an application
	4.8.5. Publish to Multiple Queues using the Fanout Exchange
	4.8.6. Subscribe to a Fanout Exchange

	4.9. Topic Exchange
	4.9.1. The pre-configured Topic Exchange
	4.9.2. Topic Exchange
	4.9.3. Create a Topic Exchange using qpid-config
	4.9.4. Create a Topic Exchange from an application
	4.9.5. Publish to a Topic Exchange
	4.9.6. Subscribe to a Topic Exchange

	4.10. Headers Exchange
	4.10.1. The pre-configured Headers Exchange
	4.10.2. Headers Exchange
	4.10.3. Create a Headers Exchange using qpid-config
	4.10.4. Create a Headers Exchange from an application
	4.10.5. Publish to a Headers Exchange
	4.10.6. Subscribe to a Headers Exchange

	4.11. XML Exchange
	4.11.1. Custom Exchange Types
	4.11.2. The pre-configured XML Exchange Type
	4.11.3. Create an XML Exchange
	4.11.4. Subscribe to the XML Exchange

	Chapter 5. Message Delivery and Acceptance
	5.1. The Lifecycle of a Message
	5.1.1. Message Delivery Overview
	5.1.2. Message Generation
	5.1.3. Message Send over Reliable Link
	5.1.4. Message Send over Unreliable Link
	5.1.5. Message Distribution on the Broker
	5.1.6. Message Receive over Reliable Link
	5.1.7. Message Receive over Unreliable Link

	5.2. Browsing and Consuming Messages
	5.2.1. Message Acquisition and Acceptance
	5.2.2. Message Acquisition and Acceptance on an Unreliable Link
	5.2.3. Message Rejection
	5.2.4. Receiving Messages from Multiple Sources
	5.2.5. Rejected and Orphaned Messages
	5.2.6. Alternate Exchange

	Chapter 6. Advanced Queue Features
	6.1. Browse-only Queues
	6.2. Ignore Locally Published Messages
	6.3. Exclusive Queues
	6.4. Server-side Selectors
	6.4.1. Select messages using a filter
	6.4.2. Server-side selector syntax

	6.5. Automatically Deleted Queues
	6.5.1. Automatically Deleted Queues
	6.5.2. Automatically Deleted Queue Example
	6.5.3. Queue Deletion Checks

	6.6. Last Value (LV) Queues
	6.6.1. Last Value Queues
	6.6.2. Declaring a Last Value Queue
	6.6.3. Last Value Queue Example
	6.6.4. Last Value Queue Command-line Example

	6.7. Priority Queuing
	6.7.1. Priority Queuing
	6.7.2. Declaring a Priority Queue
	6.7.3. Considerations when using Priority Queues
	6.7.4. Priority Queue Demonstration
	6.7.5. Fairshare Feature

	6.8. Message Groups
	6.8.1. Message Groups
	6.8.2. Create a Queue with Message Groups enabled
	6.8.3. Message Group Consumer Requirements
	6.8.4. Configure a Queue for Message Groups using qpid-config
	6.8.5. Default Group
	6.8.6. Override the Default Group Name
	6.8.7. Message Groups Demonstration

	Chapter 7. Asynchronous Messaging
	7.1. Asynchronous Operations
	7.2. Asynchronous Sending
	7.2.1. Synchronous and Asynchronous Send
	7.2.2. Sender Capacity
	7.2.3. Set Sender Capacity
	7.2.4. Query Sender Capacity
	7.2.5. Avoiding a Blocked Asynchronous Send
	7.2.6. Asynchronous Message Sending Example
	7.2.7. Asynchronous Send and Link Reliability

	7.3. Asynchronous Receiving
	7.3.1. Asynchronous Message Retrieval (Prefetch)
	7.3.2. Enable Receiver Prefetch
	7.3.3. Asynchronously Acknowledging Received Messages
	7.3.4. Asynchronous Receive and Link Reliability

	Chapter 8. Reliability and Quality of Service
	8.1. Link Reliability
	8.1.1. Reliable Link
	8.1.2. Unreliable Link

	8.2. Queue Sizing
	8.2.1. Controlling Queue Size
	8.2.2. Queue Threshold Alerts

	8.3. Producer Flow Control
	8.3.1. Flow Control
	8.3.2. Queue Flow State
	8.3.3. Broker Default Flow Thresholds
	8.3.4. Disable Broker-wide Default Flow Thresholds
	8.3.5. Per-Queue Flow Thresholds

	8.4. Credit-based Flow Control
	8.4.1. Flow Control Using Credit
	8.4.2. Credit Allocation Modes

	8.5. Durable Queues
	8.5.1. Durable Queues
	8.5.2. Persistent Messages
	8.5.3. Create a durable queue in an application
	8.5.4. Mark a message as persistent
	8.5.5. Durable Message State After Restart
	8.5.6. Journal Description
	8.5.7. Configure the Message Journal in an application

	8.6. Transactions
	8.6.1. Transactions
	8.6.2. Transactions Example

	Chapter 9. Qpid Management Framework (QMF)
	9.1. QMF - Qpid Management Framework
	9.2. QMF Versions
	9.3. Creating Exchanges from an Application
	9.4. Broker Exchange and Queue Configuration via QMF
	9.5. Command Messages
	9.6. QMF Command Message Structure
	9.7. Create Command
	9.8. Delete Command
	9.9. List Command
	9.10. Queue and Exchange Creation using QMF
	9.11. QMF Events
	9.12. QMF Client Connection Events
	9.13. ACL Lookup Query Methods
	Method: Lookup
	Method: LookupPublish
	Management Properties and Statistics
	Example
	ACL File acl-test-01-rules.acl
	Python Script acl-test-01.py

	9.14. Using QMF in a Cluster

	Chapter 10. The Qpid Messaging API
	10.1. Handling Exceptions
	10.1.1. Messaging Exceptions Reference
	10.1.2. C++ Messaging Exceptions Class Hierarchy
	10.1.3. Connection Exceptions
	10.1.4. Session Exceptions
	10.1.5. Sender Exceptions
	10.1.6. Receiver Exceptions

	Chapter 11. Addresses
	11.1. x-declare Parameters
	11.2. Address String Options Reference
	11.3. Node Properties
	11.4. Link Properties
	11.5. Address String Grammar
	11.6. Connection Options
	11.7. Setting Connection Options
	11.8. Connection Options Reference

	Chapter 12. Message Timestamping
	12.1. Message Timestamping
	12.2. Enable Message Timestamping at Broker Start-up
	12.3. Enable Message Timestamping from an Application
	12.4. Access a Message Timestamp in Python
	12.5. Access a Message Timestamp in C++
	12.6. Using AMQ 0-10 Message Property Keys for Timestamping

	Chapter 13. Maps and Lists
	13.1. Maps and Lists in Message Content
	13.2. Map and List Representation in Native Data Types
	13.3. Qpid Maps and Lists in Python
	13.4. Python Data Types in Maps
	13.5. Qpid Maps and Lists in C++
	13.6. C++ Data Types in Maps
	13.7. Qpid Maps and Lists in .NET C#
	13.8. C# Data Types and .NET bindings

	Chapter 14. The Request/Response Pattern
	14.1. The Request/Response Pattern
	14.2. Request/Response C++ Example

	Chapter 15. Performance Tips
	15.1. Apache Qpid Programming for Performance

	Chapter 16. Cluster Failover
	16.1. Changes to Clustering in MRG 3
	16.2. Active-Passive Messaging Clusters
	16.3. Cluster Failover in C++
	16.4. Cluster Failover in Python
	16.5. Failover Behavior in Java JMS Clients

	Chapter 17. Logging
	17.1. Logging in C++
	17.2. Logging in Python
	17.3. Change the logging level at runtime

	Chapter 18. Security
	18.1. Security features provided by Qpid
	18.2. Authentication
	18.3. SASL Support in Windows Clients
	18.4. Enable Kerberos authentication
	18.5. Enable SSL
	18.6. SSL Client Environment Variables for C++ Clients

	Chapter 19. The AMQP 0-10 mapping
	19.1. The AMQP 0-10 mapping
	19.2. AMQ 0-10 Message Property Keys
	19.3. AMQP Routing Key and Message Subject
	19.4. Using AMQ 0-10 Message Property Keys for Timestamping

	Chapter 20. Using the qpid-java AMQP 0-10 client
	20.1. A Simple Messaging Program in Java JMS
	20.2. Apache Qpid JNDI Properties for AMQP Messaging
	20.3. JNDI Properties for Apache Qpid
	20.4. Durable Subscription Queues in MRG 3
	20.5. Connection URLs
	Broker list URL

	20.6. Java JMS Message Properties
	20.7. JMS MapMessage Types
	20.8. JMS ListMessage
	20.9. JMS Client Logging
	20.10. AMQP 0-10 JMS Client Configuration
	20.10.1. Configuration Methods and Granularity
	20.10.2. qpid-java JVM Arguments

	20.11. Java Message Service with Filters
	20.11.1. No Local filter
	20.11.2. Selector filter

	Chapter 21. Using the qpid-jms AMQP 1.0 client
	21.1. QPID AMQP 1.0 JMS Client Configuration
	21.2. QPID AMQP 1.0 JMS Client Connection URLs
	21.3. QPID AMQP 1.0 JMS Client Logging

	Chapter 22. .NET Binding for Qpid C++ Messaging
	22.1. .NET Binding for the C++ Messaging Client Examples
	22.2. .NET Binding Class Mapping to Underlying C++ Messaging API
	22.3. .NET Binding for the C++ Messaging API Class: Address
	22.4. .NET Binding for the C++ Messaging API Class: Connection
	22.5. .NET Binding for the C++ Messaging API Class: Duration
	22.6. .NET Binding for the C++ Messaging API Class: FailoverUpdates
	22.7. .NET Binding for the C++ Messaging API Class: Message
	22.8. .NET Binding for the C++ Messaging API Class: Receiver
	22.9. .NET Binding for the C++ Messaging API Class: Sender
	22.10. .NET Binding for the C++ Messaging API Class: Session
	22.11. .NET Class: SessionReceiver

	Appendix A. Exchange and Queue Declaration Arguments
	A.1. Exchange and Queue Argument Reference
	Exchange options
	Queue options

	Appendix B. Revision History

