
OpenStack Team

Red Hat Enterprise Linux OpenStack
Platform 7
Auto Scaling for Compute

configure Auto Scaling in Red Hat Enterprise Linux OpenStack Platform

Red Hat Enterprise Linux OpenStack Platform 7 Auto Scaling for Compute

configure Auto Scaling in Red Hat Enterprise Linux OpenStack Platform

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
Automatically scale out your Compute instances in response to system usage.

. .

Table of Contents

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE
1.1. ARCHITECTURAL OVERVIEW
1.2. EXAMPLE: AUTO SCALING BASED ON CPU USAGE
1.3. EXAMPLE: AUTO SCALING APPLICATIONS

3
3
3
9

Table of Contents

1

Red Hat Enterprise Linux OpenStack Platform 7 Auto Scaling for Compute

2

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE

This guide describes how to automatically scale out your Compute instances in response to heavy
system usage. By using pre-defined rules that consider factors such as CPU or memory usage, you
can configure Orchestration (heat) to automatically add and remove additional instances as needed.

1.1. ARCHITECTURAL OVERVIEW

1.1.1. Orchestration

The core component behind auto scaling is Orchestration (heat). Orchestration allows you to define
rules using human-readable YAML templates. These rules can assess Telemetry data before
deciding to add additional instances. Then, once the activity has subsided, Orchestration can
automatically remove any unneeded instances.

1.1.2. Telemetry

Telemetry does performance monitoring of your OpenStack environment, collecting data on CPU,
storage, and memory utilization for instances and physical hosts. Orchestration templates examine
Telemetry data when assessing whether to take any pre-defined action.

1.1.3. Key Terms

Stack - A stack comprises all the resources necessary to operate an application. It can be as
simple as a single instance and its resources, or as complex as multiple instances with all the
resource dependencies that comprise a multi-tier application.

Templates - YAML scripts that define a series of tasks for Heat to execute. For example, it is
preferable to use separate templates for certain functions:

Stack Template - This is where you define thresholds that Telemetry should respond to, and
define the auto scaling group.

Environment Template - Defines the build information for your environment: which flavor
and image to use, how the virtual network should be configured, and what software should be
installed.

1.2. EXAMPLE: AUTO SCALING BASED ON CPU USAGE

In this example, Orchestration examines Telemetry data, and automatically increases the number of
instances in response to high CPU usage. A stack template and environment template are created
to define the needed rules and subsequent configuration. This example makes use of existing
resources (such as networks), and uses names that are likely to differ in your own environment.

1. Create the environment template, describing the instance flavor, networking configuration,
and image type. Enter the following values in /etc/heat/templates/cirros.yaml:

heat_template_version: 2014-10-16
description: A base Cirros 0.3.4 server

resources:
 server:

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE

3

 type: OS::Nova::Server
 properties:
 block_device_mapping:
 - device_name: vda
 delete_on_termination: true
 volume_id: { get_resource: volume }
 flavor: m1.nano
 key_name: admin
 networks:
 - port: { get_resource: port }

 port:
 type: OS::Neutron::Port
 properties:
 network: private
 security_groups:
 - all

 floating_ip:
 type: OS::Neutron::FloatingIP
 properties:
 floating_network: public

 floating_ip_assoc:
 type: OS::Neutron::FloatingIPAssociation
 properties:
 floatingip_id: { get_resource: floating_ip }
 port_id: { get_resource: port }

 volume:
 type: OS::Cinder::Volume
 properties:
 image: 'Cirros 0.3.4'
 size: 1

2. Register the Orchestration resource in /root/environment.yaml:

resource_registry:

 "OS::Nova::Server::Cirros":
"file:///etc/heat/templates/cirros.yaml"

3. Create the stack template, describing the CPU thresholds to watch for, and how many
instances should be added. An instance group is also created, defining the minimum and
maximum number of instances that can participate in this template.

Enter the following values in /root/example.yaml:

heat_template_version: 2014-10-16
description: Example auto scale group, policy and alarm
resources:
 scaleup_group:
 type: OS::Heat::AutoScalingGroup
 properties:
 cooldown: 60
 desired_capacity: 1

Red Hat Enterprise Linux OpenStack Platform 7 Auto Scaling for Compute

4

 max_size: 3
 min_size: 1
 resource:
 type: OS::Nova::Server::Cirros

 scaleup_policy:
 type: OS::Heat::ScalingPolicy
 properties:
 adjustment_type: change_in_capacity
 auto_scaling_group_id: { get_resource: scaleup_group }
 cooldown: 60
 scaling_adjustment: 1

 scaledown_policy:
 type: OS::Heat::ScalingPolicy
 properties:
 adjustment_type: change_in_capacity
 auto_scaling_group_id: { get_resource: scaleup_group }
 cooldown: 60
 scaling_adjustment: -1

 cpu_alarm_high:
 type: OS::Ceilometer::Alarm
 properties:
 meter_name: cpu_util
 statistic: avg
 period: 60
 evaluation_periods: 1
 threshold: 50
 alarm_actions:
 - {get_attr: [scaleup_policy, alarm_url]}
 comparison_operator: gt

 cpu_alarm_low:
 type: OS::Ceilometer::Alarm
 properties:
 meter_name: cpu_util
 statistic: avg
 period: 60
 evaluation_periods: 1
 threshold: 10
 alarm_actions:
 - {get_attr: [scaledown_policy, alarm_url]}
 comparison_operator: lt

4. Update the Telemetry collection interval. By default, Telemetry polls instances every 10
minutes for CPU data. For this example, change the interval to 60 seconds in
/etc/ceilometer/pipeline.yaml:

- name: cpu_source
interval: 60
meters:
- "cpu"
sinks:
- cpu_sink

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE

5

Note

A polling period of 60 seconds is not recommended for production environments,
as a higher polling interval can result in increased load on the control plane.

5. Restart all OpenStack services to apply the updated Telemetry setting:

openstack-service restart

Note

This step will result in a brief outage to your OpenStack deployment.

6. Run the Orchestration scripts to build the environment and deploy the instance:

heat stack-create example -f /root/example.yaml -e
/root/environment.yaml
+--------------------------------------+------------+---------
-----------+----------------------+
| id | stack_name |
stack_status | creation_time |
+--------------------------------------+------------+---------
-----------+----------------------+
| 6fca513c-25a1-4849-b7ab-909e37f52eca | example |
CREATE_IN_PROGRESS | 2015-08-31T16:18:02Z |
+--------------------------------------+------------+---------
-----------+----------------------+

Orchestration will create the stack and launch a single cirros instance, as set in the
scaleup_group definition: min_size:

nova list
+--------------------------------------+---------------------
----------------------------------+--------+------------+-----
--------+--------------------------------------+
| ID | Name
| Status | Task State | Power State | Networks
|
+--------------------------------------+---------------------
----------------------------------+--------+------------+-----
--------+--------------------------------------+
| 3f627c84-06aa-4782-8c12-29409964cc73 | ex-qeki-3azno6me5gvm-
pqmr5zd6kuhm-server-gieck7uoyrwc | ACTIVE | - | Running
| private=10.10.1.156, 192.168.122.234 |
+--------------------------------------+---------------------
----------------------------------+--------+------------+-----
--------+--------------------------------------+

Orchestration also creates two cpu alarms which are used to trigger scale-up or scale-down
events, as defined in cpu_alarm_high and cpu_alarm_low:

ceilometer alarm-list

Red Hat Enterprise Linux OpenStack Platform 7 Auto Scaling for Compute

6

+--------------------------------------+---------------------
----------------+-------------------+----------+---------+----
--------+--------------------------------+------------------+
| Alarm ID | Name
| State | Severity | Enabled | Continuous | Alarm
condition | Time constraints |
+--------------------------------------+---------------------
----------------+-------------------+----------+---------+----
--------+--------------------------------+------------------+
| 04b4f845-f5b6-4c5a-8af0-59e03c22e6fa | example-cpu_alarm_high-
rd5kysmlahvx | ok | low | True | True
| cpu_util > 50.0 during 1 x 60s | None |
| ac81cd81-20b3-45f9-bea4-e51f00499602 | example-cpu_alarm_low-
6t65kswutupz | ok | low | True | True
| cpu_util < 10.0 during 1 x 60s | None |
+--------------------------------------+---------------------
----------------+-------------------+----------+---------+----
--------+--------------------------------+------------------+

1.2.1. Test Auto Scaling Instances

Orchestration auto scales instances based on the cpu_alarm_high threshold. Once CPU
utilization is above 50% instances will be scaled up, as set in the cpu_alarm_high definition:
threshold: 50
To generate CPU load, login to the instance and run the dd command:

$ ssh -i admin.pem cirros@192.168.122.232
$ dd if=/dev/zero of=/dev/null &
$ dd if=/dev/zero of=/dev/null &
$ dd if=/dev/zero of=/dev/null &

After running the dd commands, you can expect to have 100% CPU utilization in the cirros instance.
After 60 seconds you should see that Orchestration has auto scaled the group to two instances:

nova list
+--------------------------------------+---------------------------
----------------------------+--------+------------+-------------+--
------------------------------------+
| ID | Name
| Status | Task State | Power State | Networks
|
+--------------------------------------+---------------------------
----------------------------+--------+------------+-------------+--
------------------------------------+
| 3f627c84-06aa-4782-8c12-29409964cc73 | ex-qeki-3azno6me5gvm-
pqmr5zd6kuhm-server-gieck7uoyrwc | ACTIVE | - | Running |
private=10.10.1.156, 192.168.122.234 |
| 0f69dfbe-4654-474f-9308-1b64de3f5c18 | ex-qeki-qmvor5rkptj7-
krq7i66h6n7b-server-b4pk3dzjvbpi | ACTIVE | - | Running |
private=10.10.1.157, 192.168.122.235 |
+--------------------------------------+---------------------------
----------------------------+--------+------------+-------------+--
------------------------------------+

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE

7

After a further 60 seconds you will observe that Orchestration has auto scaled again to three
instances. Since three is the maximum for this configuration, it will not scale any higher (as set in
the scaleup_group definition: max_size)

nova list
+--------------------------------------+---------------------------
----------------------------+--------+------------+-------------+--
------------------------------------+
| ID | Name
| Status | Task State | Power State | Networks
|
+--------------------------------------+---------------------------
----------------------------+--------+------------+-------------+--
------------------------------------+
| 3f627c84-06aa-4782-8c12-29409964cc73 | ex-qeki-3azno6me5gvm-
pqmr5zd6kuhm-server-gieck7uoyrwc | ACTIVE | - | Running |
private=10.10.1.156, 192.168.122.234 |
| 0e805e75-aa6f-4375-b057-2c173b68f172 | ex-qeki-gajdwmu2cgm2-
vckf4g2gpwis-server-r3smbhtqij76 | ACTIVE | - | Running |
private=10.10.1.158, 192.168.122.236 |
| 0f69dfbe-4654-474f-9308-1b64de3f5c18 | ex-qeki-qmvor5rkptj7-
krq7i66h6n7b-server-b4pk3dzjvbpi | ACTIVE | - | Running |
private=10.10.1.157, 192.168.122.235 |
+--------------------------------------+---------------------------
----------------------------+--------+------------+-------------+--
------------------------------------+

1.2.2. Automatically Scaling Down Instances

Orchestration automatically scales down instances based on the cpu_alarm_low threshold. In this
example, the instances are scaled down once CPU utilization is below 10%. Terminate the running
dd processes and you will observe Orchestration begin to scale the instances back down.

Stopping the dd processes causes the cpu_alarm_low event to trigger. As a result,
Orchestration begins to automatically scale down and remove the instances:

ceilometer alarm-list
+--------------------------------------+---------------------------
----------+-------+----------+---------+------------+---------------
-----------------+------------------+
| Alarm ID | Name
| State | Severity | Enabled | Continuous | Alarm condition
| Time constraints |
+--------------------------------------+---------------------------
----------+-------+----------+---------+------------+---------------
-----------------+------------------+
| 04b4f845-f5b6-4c5a-8af0-59e03c22e6fa | example-cpu_alarm_high-
rd5kysmlahvx | ok | low | True | True | cpu_util >
50.0 during 1 x 60s | None |
| ac81cd81-20b3-45f9-bea4-e51f00499602 | example-cpu_alarm_low-
6t65kswutupz | alarm | low | True | True | cpu_util <
10.0 during 1 x 60s | None |
+--------------------------------------+---------------------------
----------+-------+----------+---------+------------+---------------
-----------------+------------------+

Red Hat Enterprise Linux OpenStack Platform 7 Auto Scaling for Compute

8

After a few minutes you can expect to be back to a single instance, the minimum number of
instances allowed in scaleup_group: min_size: 1

1.3. EXAMPLE: AUTO SCALING APPLICATIONS

The functionality described earlier can also be used to scale up applications; for example, a
dynamic web page that be served by one of multiple instances running at a time. In this case,
neutron can be configured to provide Load Balancing-as-a-Service, which works to evenly distribute
traffic among instances.

In the following example, Orchestration again examines Telemetry data and increases the number of
instances if high CPU usage is detected, or decreases the number of instances if CPU usage
returns below a set value.

1. Create the template describing the properties of the load-balancer environment. Enter the
following values in /etc/heat/templates/lb-env.yaml:

heat_template_version: 2014-10-16
description: A load-balancer server
parameters:
 image:
 type: string
 description: Image used for servers
 key_name:
 type: string
 description: SSH key to connect to the servers
 flavor:
 type: string
 description: flavor used by the servers
 pool_id:
 type: string
 description: Pool to contact
 user_data:
 type: string
 description: Server user_data
 metadata:
 type: json
 network:
 type: string
 description: Network used by the server

resources:
 server:
 type: OS::Nova::Server
 properties:
 flavor: {get_param: flavor}
 image: {get_param: image}
 key_name: {get_param: key_name}
 metadata: {get_param: metadata}
 user_data: {get_param: user_data}
 networks:
 - port: { get_resource: port }

 member:
 type: OS::Neutron::PoolMember

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE

9

 properties:
 pool_id: {get_param: pool_id}
 address: {get_attr: [server, first_address]}
 protocol_port: 80

 port:
 type: OS::Neutron::Port
 properties:
 network: {get_param: network}
 security_groups:
 - base

outputs:
 server_ip:
 description: IP Address of the load-balanced server.
 value: { get_attr: [server, first_address] }
 lb_member:
 description: LB member details.
 value: { get_attr: [member, show] }

2. Create another template for the instances that will be running the web application. The
following template creates a load balancer and uses the existing networks. Be sure to
replace the parameters according to your environment, and save the template in a file such
as /root/lb-webserver-rhel7.yaml:

heat_template_version: 2014-10-16
description: AutoScaling RHEL 7 Web Application
parameters:
 image:
 type: string
 description: Image used for servers
 default: RHEL 7
 key_name:
 type: string
 description: SSH key to connect to the servers
 default: admin
 flavor:
 type: string
 description: flavor used by the web servers
 default: m2.tiny
 network:
 type: string
 description: Network used by the server
 default: private
 subnet_id:
 type: string
 description: subnet on which the load balancer will be
located
 default: 9daa6b7d-e647-482a-b387-dd5f855b88ef
 external_network_id:
 type: string
 description: UUID of a Neutron external network
 default: db17c885-77fa-45e8-8647-dbb132517960

resources:
 webserver:

Red Hat Enterprise Linux OpenStack Platform 7 Auto Scaling for Compute

10

 type: OS::Heat::AutoScalingGroup
 properties:
 min_size: 1
 max_size: 3
 cooldown: 60
 desired_capacity: 1
 resource:
 type: file:///etc/heat/templates/lb-env.yaml
 properties:
 flavor: {get_param: flavor}
 image: {get_param: image}
 key_name: {get_param: key_name}
 network: {get_param: network}
 pool_id: {get_resource: pool}
 metadata: {"metering.stack": {get_param:
"OS::stack_id"}}
 user_data:
 str_replace:
 template: |
 #!/bin/bash -v

 yum -y install httpd php
 systemctl enable httpd
 systemctl start httpd
 cat <<EOF > /var/www/html/hostname.php
 <?php echo "Hello, My name is " .
php_uname('n'); ?>
 EOF
 params:
 hostip: 192.168.122.70
 fqdn: sat6.example.com
 shortname: sat6

 web_server_scaleup_policy:
 type: OS::Heat::ScalingPolicy
 properties:
 adjustment_type: change_in_capacity
 auto_scaling_group_id: {get_resource: webserver}
 cooldown: 60
 scaling_adjustment: 1

 web_server_scaledown_policy:
 type: OS::Heat::ScalingPolicy
 properties:
 adjustment_type: change_in_capacity
 auto_scaling_group_id: {get_resource: webserver}
 cooldown: 60
 scaling_adjustment: -1

 cpu_alarm_high:
 type: OS::Ceilometer::Alarm
 properties:
 description: Scale-up if the average CPU > 95% for 1 minute
 meter_name: cpu_util
 statistic: avg
 period: 60

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE

11

 evaluation_periods: 1
 threshold: 95
 alarm_actions:
 - {get_attr: [web_server_scaleup_policy, alarm_url]}
 matching_metadata: {'metadata.user_metadata.stack':
{get_param: "OS::stack_id"}}
 comparison_operator: gt

 cpu_alarm_low:
 type: OS::Ceilometer::Alarm
 properties:
 description: Scale-down if the average CPU < 15% for 1
minute
 meter_name: cpu_util
 statistic: avg
 period: 60
 evaluation_periods: 1
 threshold: 15
 alarm_actions:
 - {get_attr: [web_server_scaledown_policy, alarm_url]}
 matching_metadata: {'metadata.user_metadata.stack':
{get_param: "OS::stack_id"}}
 comparison_operator: lt

 monitor:
 type: OS::Neutron::HealthMonitor
 properties:
 type: TCP
 delay: 5
 max_retries: 5
 timeout: 5

 pool:
 type: OS::Neutron::Pool
 properties:
 protocol: HTTP
 monitors: [{get_resource: monitor}]
 subnet_id: {get_param: subnet_id}
 lb_method: ROUND_ROBIN
 vip:
 protocol_port: 80

 lb:
 type: OS::Neutron::LoadBalancer
 properties:
 protocol_port: 80
 pool_id: {get_resource: pool}

 lb_floating:
 type: OS::Neutron::FloatingIP
 properties:
 floating_network_id: {get_param: external_network_id}
 port_id: {get_attr: [pool, vip, port_id]}

outputs:
 scale_up_url:

Red Hat Enterprise Linux OpenStack Platform 7 Auto Scaling for Compute

12

 description: >
 This URL is the webhook to scale up the autoscaling group.
You
 can invoke the scale-up operation by doing an HTTP POST to
this
 URL; no body nor extra headers are needed.
 value: {get_attr: [web_server_scaleup_policy, alarm_url]}
 scale_dn_url:
 description: >
 This URL is the webhook to scale down the autoscaling
group.
 You can invoke the scale-down operation by doing an HTTP
POST to
 this URL; no body nor extra headers are needed.
 value: {get_attr: [web_server_scaledown_policy, alarm_url]}
 pool_ip_address:
 value: {get_attr: [pool, vip, address]}
 description: The IP address of the load balancing pool
 website_url:
 value:
 str_replace:
 template: http://serviceip/hostname.php
 params:
 serviceip: { get_attr: [lb_floating,
floating_ip_address] }
 description: >
 This URL is the "external" URL that can be used to access
the
 website.
 ceilometer_query:
 value:
 str_replace:
 template: >
 ceilometer statistics -m cpu_util
 -q metadata.user_metadata.stack=stackval -p 60 -a avg
 params:
 stackval: { get_param: "OS::stack_id" }
 description: >
 This is a Ceilometer query for statistics on the cpu_util
meter
 Samples about OS::Nova::Server instances in this stack.
The -q
 parameter selects Samples according to the subject's
metadata.
 When a VM's metadata includes an item of the form
metering.X=Y,
 the corresponding Ceilometer resource has a metadata item
of the
 form user_metadata.X=Y and samples about resources so
tagged can
 be queried with a Ceilometer query term of the form
 metadata.user_metadata.X=Y. In this case the nested stacks
give
 their VMs metadata that is passed as a nested stack

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE

13

parameter,
 and this stack passes a metadata of the form
metering.stack=Y,
 where Y is this stack's ID.

3. Update the Telemetry collection interval. By default, Telemetry polls instances every 10
minutes for CPU data. For this example, change the interval to 60 seconds in
/etc/ceilometer/pipeline.yaml:

- name: cpu_source
interval: 60
meters:
- "cpu"
sinks:
- cpu_sink

Note

A polling period of 60 seconds is not recommended for production environments,
as a higher polling interval can result in increased load on the control plane.

4. Restart all OpenStack services to apply the updated Telemetry setting:

openstack-service restart

Note

This step will result in a brief outage to your OpenStack deployment.

5. Run the Orchestration scripts. This will build the environment and use the template to deploy
the instance:

heat stack-create webfarm -f /root/lb-webserver-rhel7.yaml

Replace /root/lb-webserver-rhel7.yaml with the actual path and file name.

You can monitor the creation of the stack in Dashboard under Orchestration → Stacks → Webfarm.
Once the stack has been created, you are presented with multiple useful pieces of information,
notably:

URLs that you can use to trigger manual scale-up or scale-down events.

The floating IP address, which is the IP address of the website.

The Telemetry command which shows the CPU load for the whole stack, and which you can use
to check whether the scaling is working as expected.

This is what the page looks like in Dashboard:

Red Hat Enterprise Linux OpenStack Platform 7 Auto Scaling for Compute

14

Open Network → Load Balancers to view the load balancer:

Click Members. This page displays the members of the load balancing pool; these are the instances
to which the website traffic can be distributed. Note that a member will not have the Active status
until the corresponding instance has been created, and Apache has been installed and configured.

When the web server has started, the instance is visible as an active member of the load balancer:

You are now able to access the web application at http://IP/hostname.php. You can expect to
see output similar to the following:

Hello, My name is we-zrwm-t4ezkpx34gxu-qbg5d7dqbc4j-server-mzdvigk2jugl

You can now view the stack’s CPU performance data by running the Telemetry command from the
stack overview in Dashboard. The command looks like the following:

ceilometer statistics -m cpu_util -q
metadata.user_metadata.stack=8f86c3d5-15cf-4a64-b9e8-70215498c046 -p 60
-a avg

1.3.1. Test Auto Scaling Applications

To manually trigger application scaling, use the REST scale-up URL from the stack overview in
Dashboard, or generate load by running a resource-intensive command on the initially deployed
instance.

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE

15

To use the REST API, you need a tool which can perform HTTP POST requests, such as the
REST Easy Firefox add on or curl. Copy the scale-up URL and either paste it into the REST
Easy form:

Or use it as a parameter on the curl command line:

$ curl -X POST "scale-up URL"

To artificially generate load, allocate a floating IP to the instance, log in to it with SSH, and run a
command which will keep the CPU busy. For example:

$ dd if=/dev/zero of=/dev/null &

Important

Check whether CPU usage is above 95%, for example, using the top command. If the
CPU usage is not sufficiently high, run the dd command multiple times in parallel, or
use another method to keep the CPU busy.

The next time Telemetry collects CPU data from the stack, the scale-up event will trigger and appear
at Orchestration → Stacks → Webfarm → Events. A new web server instance will be created and
added to the load balancer. When this is done, the instance becomes active, and you will notice that
the website URL is routed through the load balancer to both instances in the stack.

Note

The creation can take several minutes because the instance must be initialized, Apache
installed and configured, and the application deployed. This is monitored by HAProxy,
which ensures that the website is available on the instance before it is marked as active.

This is what the list of members of the load balancing pool looks like in the Dashboard while the new
instance is being created:

Red Hat Enterprise Linux OpenStack Platform 7 Auto Scaling for Compute

16

https://addons.mozilla.org/en-us/firefox/addon/rest-easy/

Important

The average CPU usage of the instances in the heat stack is taken into account when
deciding whether or not an additional instance gets created. Because the second instance
will most likely have normal CPU usage, it will balance out the first instance. However, if
the second instance becomes busy as well and the average CPU usage of the first and
second instance exceeds 95%, another (third) instance will be created.

1.3.2. Automatically Scaling Down Applications

This is similar to Section 1.2.2, “Automatically Scaling Down Instances” in that the scale-down policy
is triggered when the average CPU usage for the stack drops below a predefined value, which is
15% in the example described in Section 1.3.1, “Test Auto Scaling Applications”. In addition, when
an instance is removed from the stack this way, it is also automatically removed from the load
balancer. The website traffic is then automatically distributed among the rest of the instances.

CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE

17

	Table of Contents
	CHAPTER 1. CONFIGURE AUTO SCALING FOR COMPUTE
	1.1. ARCHITECTURAL OVERVIEW
	1.1.1. Orchestration
	1.1.2. Telemetry
	1.1.3. Key Terms

	1.2. EXAMPLE: AUTO SCALING BASED ON CPU USAGE
	1.2.1. Test Auto Scaling Instances
	1.2.2. Automatically Scaling Down Instances

	1.3. EXAMPLE: AUTO SCALING APPLICATIONS
	1.3.1. Test Auto Scaling Applications
	1.3.2. Automatically Scaling Down Applications

