
Red Hat Enterprise Linux Atomic Host 7

Managing Containers

Managing Containers

Last Updated: 2019-10-07

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

Managing Containers

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Manage regular and super-privileged containers with systemd, runc, skopeo, and buildah

. .

. .

Table of Contents

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH
1.1. OVERVIEW
1.2. RUNNING CONTAINERS AS ROOT OR ROOTLESS

1.2.1. Set up for rootless containers
1.2.2. Upgrade to rootless containers
1.2.3. Special considerations for rootless

1.3. USING PODMAN TO WORK WITH CONTAINERS
1.3.1. Installing podman
1.3.2. Running containers with podman
1.3.3. Trying basic podman commands

1.3.3.1. Pull a container image to the local system
1.3.3.2. List local container images
1.3.3.3. Run a container image
1.3.3.4. List containers that are running or have exited
1.3.3.5. Remove a container or image
1.3.3.6. Remove a container image by its image ID or name (use -f to force):
1.3.3.7. Build a container

1.4. RUNNING CONTAINERS WITH RUNC
1.4.1. Installing and running containers

1.5. USING SKOPEO TO WORK WITH CONTAINER REGISTRIES
1.5.1. Inspecting container images with skopeo
1.5.2. Copying container images with skopeo
1.5.3. Getting image layers with skopeo

1.6. BUILDING CONTAINER IMAGES WITH BUILDAH
1.6.1. Understanding Buildah
1.6.2. Installing Buildah
1.6.3. Getting Images with buildah
1.6.4. Building an Image from a Dockerfile with Buildah
1.6.5. Running a Container with Buildah
1.6.6. Inspecting a Container with buildah
1.6.7. Modifying a Container to Create a new Image with Buildah

1.6.7.1. Using buildah mount to Modify a Container
1.6.7.2. Using buildah copy and buildah config to Modify a Container

1.6.8. Creating images from scratch with Buildah
1.6.9. Removing Images or Containers with Buildah
1.6.10. Using container registries with Buildah

1.6.10.1. Pushing containers to a private registry
1.6.10.2. Pushing containers to the Docker Hub

CHAPTER 2. MANAGING STORAGE WITH DOCKER-FORMATTED CONTAINERS
2.1. OVERVIEW
2.2. USING CONTAINER-STORAGE-SETUP

2.2.1. LVM thin pool in the volume group containing the root volume
2.2.2. LVM thin pool in a user specified volume group
2.2.3. Setting up a volume group and LVM thin pool on user specified block device

2.3. MANAGING STORAGE IN RED HAT ENTERPRISE LINUX
2.3.1. How to Leave Space in the Volume Group Backing Root During Installation

2.3.1.1. GUI Installation
2.3.1.2. Kickstart Installation

2.4. MANAGING STORAGE IN RED HAT ENTERPRISE LINUX ATOMIC HOST
2.4.1. Contents of the Atomic Host filesystem

5
5
5
6
6
7
8
9
9
11
11
11
11

12
12
12
12
12
13
14
14
15
16
16
16
17
18
18
19
19

20
21
21
22
24
24
24
25

27
27
27
28
28
28
28
28
28
29
29
29

Table of Contents

1

. .

. .

. .

2.4.2. Changing the Default Size of the Root Partition During Installation
2.4.3. Changing the Size of the Root Partition After Installation

2.4.3.1. How to extend the Root Partition to use free space in volume group
2.4.3.2. How to Add Additional Storage to the Host and Extend the Root Partition
2.4.3.3. How to Extend the Root Partition Without Adding More Storage

2.5. CHANGING STORAGE CONFIGURATION
2.6. USING THE OVERLAY GRAPH DRIVER
2.7. INCREASING THE BASE DEVICE SIZE
2.8. RESETTING STORAGE FOR CONTAINERS
2.9. STORAGE BACKUP GUIDELINES
2.10. ADDITIONAL INFORMATION ABOUT STORAGE

CHAPTER 3. SIGNING CONTAINER IMAGES
3.1. GETTING CONTAINER SIGNING SOFTWARE
3.2. CREATING IMAGE SIGNATURES

3.2.1. Create GPG Keys
3.2.2. Creating an Image Signature

3.3. SET UP TO DO IMAGE SIGNING
3.4. CREATING A SIGNATURE FOR AN IMAGE IN A REPOSITORY
3.5. CREATING AN IMAGE SIGNATURE AT PUSH TIME
3.6. SHARING THE SIGNATURE STORE
3.7. VALIDATING AND TRUSTING SIGNED IMAGES
3.8. VALIDATING SIGNED IMAGES FROM RED HAT
3.9. UNDERSTANDING IMAGE SIGNING CONFIGURATION FILES

3.9.1. policy.json file
3.9.2. whatever.yaml

CHAPTER 4. RUNNING CONTAINERS AS SYSTEMD SERVICES WITH PODMAN
4.1. STARTING CONTAINERS WITH SYSTEMD
4.2. STARTING SERVICES WITHIN A CONTAINER USING SYSTEMD

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS
5.1. OVERVIEW
5.2. RUNNING PRIVILEGED CONTAINERS

5.2.1. Understanding Name Spaces in Privileged Containers
5.3. USING THE ATOMIC TOOLS CONTAINER IMAGE

5.3.1. Overview
5.3.2. Getting and Running the RHEL Tools Container
5.3.3. Running Commands from the RHEL Tools Container
5.3.4. More Information About Running RHEL Tools Container

5.4. USING THE ATOMIC SUPPORT TOOLS CONTAINER IMAGE
5.4.1. How It Is Different from RHEL Atomic Tools
5.4.2. Getting and Running the Support Tools Container
5.4.3. Running Commands from the Support Tools Container

5.5. USING THE ATOMIC RSYSLOG CONTAINER IMAGE
5.5.1. Overview
5.5.2. Getting and Running the RHEL rsyslog Container
5.5.3. Tips for Running rsyslog Container

5.6. USING THE ATOMIC SYSTEM ACTIVITY DATA COLLECTOR (SADC) CONTAINER IMAGE
5.6.1. Overview
5.6.2. Getting and Running the RHEL sadc Container
5.6.3. Tips for Running the sadc Container

5.7. USING THE ATOMIC NET-SNMP CONTAINER IMAGE
5.7.1. Installing and Running the Net-SNMP Container

30
31
31
31
32
32
32
35
36
37
37

38
39
39
39
40
41
41
41

42
42
44
44
45
45

46
46
47

50
50
51
52
53
53
54
54
54
55
55
56
56
56
57
57
58
60
60
60
61

62
62

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

2

. .

5.7.2. Running Commands in the Net-SNMP Container
5.7.3. Configuring the SNMP Agent
5.7.4. Monitoring an Atomic Host System Using Net-SNMP
5.7.5. Extending Net-SNMP to Provide Application Metrics

5.8. USING THE ATOMIC SSSD CONTAINER IMAGE
5.8.1. Overview

5.9. USING THE ATOMIC RHEVM-GUEST-AGENT CONTAINER IMAGE
5.9.1. Overview

5.9.1.1. Overview of the rhevm-guest-agent Container
5.9.2. Getting and Running the RHEL rhevm-guest-agent Container
5.9.3. Tips for Running the rhevm-guest-agent Container

5.10. USING THE ATOMIC RHEL7 INIT CONTAINER IMAGE
5.10.1. Overview
5.10.2. Getting the Atomic RHEL7 Init Container Image
5.10.3. Creating Container Images based on the Atomic RHEL7 Init Container Image

5.11. USING THE ATOMIC RHEL6 INIT CONTAINER IMAGE
5.11.1. Overview
5.11.2. Getting the Atomic RHEL6 Init Container Image
5.11.3. Creating Container Images based on the Atomic RHEL6 Init Container Image

CHAPTER 6. RUNNING SYSTEM CONTAINERS
6.1. USING THE ETCD SYSTEM CONTAINER IMAGE

6.1.1. Overview
6.1.2. Getting and Running the etcd System Container
6.1.3. Configuring etcd

6.1.3.1. Configuring etcd during "atomic install"
6.1.3.2. Configuring etcd security settings
6.1.3.3. Configuring etcd with "runc"

6.1.4. Tips for Running etcd Container
6.2. USING THE FLANNEL SYSTEM CONTAINER IMAGE

6.2.1. Overview
6.2.2. Getting and Running the RHEL flannel System Container
6.2.3. Configuring flannel

6.2.3.1. Configuring etcd during "atomic install"
6.2.3.2. Configuring flannel with "runc"

6.2.4. Tips for Running flannel Container
6.3. USING THE OVIRT-GUEST-AGENT SYSTEM CONTAINER IMAGE FOR RED HAT VIRTUALIZATION

6.3.1. Overview
6.3.2. Getting and Running the ovirt-guest-agent System Container
6.3.3. Removing the ovirt-guest-agent Container and Image

6.4. USING THE OPEN-VM-TOOLS SYSTEM CONTAINER IMAGE FOR VMWARE
6.4.1. Overview
6.4.2. Getting and Running the open-vm-tools System Container
6.4.3. Removing the open-vm-tools Container and Image

62
63
63
63
63
64
64
64
64
64
65
66
66
66
67
67
67
68
68

69
70
70
71
72
72
73
73
74
74
74
75
76
76
77
77
77
77
78
78
79
79
80
81

Table of Contents

3

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

4

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS
WITH PODMAN, SKOPEO, AND BUILDAH

1.1. OVERVIEW

Red Hat Enterprise Linux offers a set of container tools to work directly with Linux containers and
container images that requires no container engine or docker commands or services. These tools
include:

podman: The podman command can run and manage containers and container images. It
supports the same features and command options you find in the docker command, with the
main differences being that podman doesn’t require the docker service or any other active
container engine for the command to work. Also, podman stores its data in the same directory
structure used by Buildah, Skopeo, and CRI-O, which will allow podman to eventually work with
containers being actively managed by CRI-O in OpenShift.
Podman has a lot of advanced features, such as the support for running containers in Pods. It
fully integrates with systemd, including the ability to generate unit files from containers and run
systemd within a container. Podman also offers User Namespace support, including running
containers without requiring root.

skopeo: The skopeo command is a tool for copying containers and images between different
types of container storage. It can copy containers from one container registry to another. It can
copy images to and from a host, as well as to other container environments and registries.
Skopeo can inspect images from container image registries, get images and image layers, and
use signatures to create and verify images.

buildah: The buildah command allows you to build container images either from command line
or using Dockerfiles. These images can then be pushed to any container registry and can be
used by any container engine, including Podman, CRI-O, and Docker. The buildah command can
be used as a separate command, but is incorporated into other tools as well. For example the
podman build command used buildah code to build container images. Buildah is also often used
to securely build containers while running inside of a locked down container by a tool like
Podman, OpenShift/Kubernetes or Docker.

OCI Runtimes:

runc: The runc command can be used to start up OCI containers.

The following sections describe how to set up and use podman, runc, skopeo, and buildah.

1.2. RUNNING CONTAINERS AS ROOT OR ROOTLESS

Running the container tools described in this chapter as a user with superuser privilege (root user) is the
best way to ensure that your containers have full access to any feature available on your system.
However, with a new feature called "Rootless Containers," available now as a Technology Preview, you
can work with containers as a regular user.

Although container engines, such as Docker, let you run docker commands as a regular (non-root) user,
the docker daemon that carries out those requests runs as root. So, effectively, regular users can make
requests through their containers that harm the system, without there being clarity about who made
those requests. By setting up rootless container users, system administrators limit potentially damaging
container activities from regular users, while still allowing those users to safely run many container
features under their own accounts.

This section describes how to set up your system to use container tools (Podman, Skopeo, and Buildah)

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

5

This section describes how to set up your system to use container tools (Podman, Skopeo, and Buildah)
to work with containers as a non-root user (rootless). It also describes some of the limitations you will
encounter because regular user accounts don’t have full access to all operating system features that
their containers might need to run.

1.2.1. Set up for rootless containers

You need to become root user to set up your RHEL system to allow non-root user accounts to use
container tools such as podman, skopeo, and buildah, as following:

1. Install RHEL 7.7: Install or upgrade to RHEL 7.7. Earlier RHEL 7 versions are missing features
needed for this procedure. If you are upgrading to RHEL 7.7, continue to "Upgrade to rootless
containers" after this procedure is done.

2. Install slirp4netns: Install the slirp4netns package (and also podman, just to get you started):

yum install slirp4netns podman -y

3. Increase user namespaces: To increase the number of user namespaces in the kernel, type the
following:

echo "user.max_user_namespaces=28633" > /etc/sysctl.d/userns.conf
sysctl -p /etc/sysctl.d/userns.conf

4. Create the new user account: To create a new user account and add a password for that
account (for example, joe), type the following:

useradd -c "Joe Jones" joe
passwd joe

The user is automatically configured to be able to use rootless podman.

5. Try a podman command: Log in directly as the user you just configured (don’t use su or su - to
become that user because that doesn’t set the correct environment variables) and try to pull
and run an image:

podman pull ubi7/ubi
podman run ubi7/ubi cat /etc/os-release
NAME="Red Hat Enterprise Linux Server"
VERSION="7.7 (Maipo)"
...

6. Check rootless configuration: To check that your rootless configuration is set up properly, you
can run commands inside the modified user namespace with the podman unshare command.
As the rootless user, the following command lets you see how the uids are assigned to the user
namespace:

$ podman unshare cat /proc/self/uid_map
 0 1001 1
 1 100000 65536
 65537 165536 65536

1.2.2. Upgrade to rootless containers

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

6

If you have upgraded from RHEL 7.6, you must configure subuid and subgid values manually for any
existing user you want to be able to use rootless podman.

Using an existing user name and group name (for example, jill), set the range of accessible user and
group IDs that can be used for their containers. Here are a couple of warnings:

Don’t include the rootless user’s UID and GID in these ranges

If you set multiple rootless container users, use unique ranges for each user

We recommend 65536 UIDs and GIDs for maximum compatibility with existing container
images, but the number can be reduced

Never use UIDs or GIDs under 1000 or reuse UIDs or GIDs from existing user accounts (which,
by default, start at 1000)

Here is an example:

echo "jill:200000:65536" >> /etc/subuid
echo "jill:200000:65536" >> /etc/subgid

The user/group jill is now allocated 65535 user and group IDs, ranging from 200000-265536. That user
should be able to begin running commands to work with containers now.

1.2.3. Special considerations for rootless

Here are some things to consider when running containers as a non-root user:

As a non-root container user, container images are stored under your home directory
($HOME/.local/share/containers/storage/), instead of /var/lib/containers.

Users running rootless containers are given special permission to run as a range of user and
group IDs on the host system. However, they otherwise have no root privileges to the operating
system on the host.

If you need to configure your rootless container environment, edit configuration files in your
home directory ($HOME/.config/containers). Configuration files include storage.conf (for
configuring storage) and libpod.conf (for a variety of container settings). You could also create
a registries.conf file to identify container registries available when you run podman pull or
podman run.

For RHEL 7, rootless containers are limited to VFS storage. VFS storage does not support
deduplication. So, for example, if you have a 1GB image, then starting a container will result in
copying that 1GB again for the container. Starting another container from that image will result
in another 1GB of space being used. This limitation is planned to be addressed in future releases
by backporting fuse-overlay to the RHEL 7 kernel.

A container running as root in a rootless account can turn on privileged features within its own
namespace. But that doesn’t provide any special privileges to access protected features on the
host (beyond having extra UIDs and GIDs). Here are examples of container actions you might
expect to work from a rootless account that will not work:

Anything you want to access from a mounted directory from the host must be accessible by
the UID running your container or your request to access that component will fail.

There are some system features you won’t be able to change without privilege. For

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

7

example, you cannot change the system clock by simply setting a SYS_TIME capability
inside a container and running the network time service (ntpd). You would have to run that
container as root, bypassing your rootless container environment and using the root user’s
environment, for that capability to work, such as:

$ sudo podman run -d --cap-add SYS_TIME ntpd

Note that this example allows ntpd to adjust time for the entire system, and not just within
the container.

A rootless container has no ability to access a port less than 1024. Inside the rootless container’s
namespace it can, for example, start a service that exposes port 80 from an httpd service from
the container:

$ podman run -d httpd

However, a container would need root privilege, again using the root user’s container
environment, to expose that port to the host system:

$ sudo podman run -d -p 80:80 httpd

An on-going list of shortcomings of running podman and related tools without root privilege is
contained in Shortcomings of Rootless Podman.

1.3. USING PODMAN TO WORK WITH CONTAINERS

The podman command lets you run containers as standalone entities, without requiring that
Kubernetes, the Docker runtime, or any other container runtime be involved. It is a tool that can act as a
replacement for the docker command, implementing the same command-line syntax, while it adds even
more container management features. The podman features include:

Based on docker interface: Because podman syntax mirrors the docker command,
transitioning to podman should be easy for those familiar with docker.

Managing containers and images: Both Docker- and OCI-compatible container images can be
used with podman to:

Run, stop and restart containers

Create and manage container images (push, commit, configure, build, and so on)

Working with no runtime: No runtime environment is used by podman to work with containers.

Here are a few implementation features of podman you should know about:

Podman uses the CRI-O back-end store directory, /var/lib/containers, instead of using the
Docker storage location (/var/lib/docker), by default.

Although podman and CRI-O share the same storage directory, they cannot interact with each
other’s containers. (Eventually the two features will be able to share containers.)

The podman command, like the docker command, can build container images from a
Dockerfile.

The podman command can be a useful troubleshooting tool when the docker service is

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

8

https://github.com/containers/libpod/blob/master/rootless.md

The podman command can be a useful troubleshooting tool when the docker service is
unavailable.

Options to the docker command that are not supported by podman include container, events,
image, network, node, plugin (podman does not support plugins), port, rename (use rm and
create to rename container with podman), secret, service, stack, swarm (podman does not
support Docker Swarm), system, and volume (for podman, create volumes on the host, then
mount in a container). The container and image options are used to run subcommands that are
used directly in podman.

The following features are currently in development for podman:

To interact programmatically with podman, a remote API for Podman is being developed
using a technology called varlink. This will let podman listen for API requests from remote
tools (such as Cockpit or the atomic command) and respond to them.

A feature in development will allow podman to run and manage a Pod (which may consist
of multiple containers and some metadata) without Kubernetes or OpenShift being active.
(However, podman is not expected to do some of Kubernetes’ more advanced features,
such as scheduling pods across clusters).

NOTE

The podman command is considered to be technology preview for RHEL and RHEL
Atomic 7.5.1.

1.3.1. Installing podman

To start using podman to work with containers, you can simply install it on a Red Hat Enterprise Linux
server system or try it on a RHEL Atomic Host (podman is preinstalled on RHEL Atomic Host 7.5.1 or
later). No container runtime is needed to use podman.

To install podman on a RHEL server system, do the following:

subscription-manager repos --disable=’*’
subscription-manager repos --enable=rhel-7-server-rpms
subscription-manager repos --enable=rhel-7-server-extras-rpms
subscription-manager repos --enable=rhel-7-server-optional-rpms
yum install podman -y

1.3.2. Running containers with podman

If you are used to using the docker command to work with containers, you will find most of the features
and options match those of podman. Table 1 shows a list of commands you can use with podman (type
podman -h to see this list):

Table 1.1. Commands supported by podman

podman command Description podman command Description

attach Attach to a running
container

commit Create new image from
changed container

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

9

http://www.projectatomic.io/blog/2018/05/podman-varlink/
https://github.com/varlink

build Build an image using
Dockerfile instructions

create Create, but do not start,
a container

diff Inspect changes on
container’s filesystems

exec Run a process in a
running container

export Export container’s
filesystem contents as a
tar archive

help, h Shows a list of
commands or help for
one command

history Show history of a
specified image

images List images in local
storage

import Import a tarball to
create a filesystem
image

info Display system
information

inspect Display the
configuration of a
container or image

kill Send a specific signal to
one or more running
containers

load Load an image from an
archive

login Login to a container
registry

logout Logout of a container
registry

logs Fetch the logs of a
container

mount Mount a working
container’s root
filesystem

pause Pauses all the processes
in one or more
containers

ps List containers port List port mappings or a
specific mapping for the
container

pull Pull an image from a
registry

push Push an image to a
specified destination

restart Restart one or more
containers

rm Remove one or more
containers from host.
Add -f if running.

rmi removes one or more
images from local
storage

run run a command in a new
container

save Save image to an
archive

search search registry for image

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

10

start Start one or more
containers

stats Display percentage of
CPU, memory, network
I/O, block I/O and PIDs
for one or more
containers

stop Stop one or more
containers

tag Add an additional name
to a local image

top Display the running
processes of a container

umount, unmount Unmount a working
container’s root
filesystem

unpause Unpause the processes
in one or more
containers

version Display podman version
information

1.3.3. Trying basic podman commands

Because the use of podman mirrors the features and syntax of the docker command, you can refer to
Working with Docker Formatted Container Images for examples of how to use those options to work
with containers. Simply replace docker with podman in most cases. Here are some examples of using
podman.

1.3.3.1. Pull a container image to the local system

podman pull registry.access.redhat.com/rhel7/rhel
Trying to pull registry.access.redhat...Getting image source signatures
Copying blob sha256:d1fe25896eb5cbcee...
Writing manifest to image destination
Storing signatures
fd1ba0b398a82d56900bb798c...

1.3.3.2. List local container images

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/rhel7/rhel-minimal latest de9c26f23799 5 weeks ago 80.1MB
registry.access.redhat.com/rhel7/rhel latest fd1ba0b398a8 5 weeks ago 211MB

1.3.3.3. Run a container image

This runs a container image and opens a shell inside the container:

podman run -it registry.access.redhat.com/rhel7/rhel /bin/bash
[root@8414218c04f9 /]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 13:48 pts/0 00:00:00 /bin/bash

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

11

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/get_started_with_docker_formatted_container_images#working_with_docker_formatted_containers

root 21 1 0 13:49 pts/0 00:00:00 ps -ef
[root@8414218c04f9 /]# exit
#

1.3.3.4. List containers that are running or have exited

podman ps -a
CONTAINER ID IMAGE COMMAND
 CREATED AT STATUS PORTS NAMES
440becd26893 registry.access.redhat.com/rhel7/rhel-minimal:latest /bin/bash
 2018-05-10 09:02:52 -0400 EDT Exited (0) About an hour ago happy_hodgkin
8414218c04f9 registry.access.redhat.com/rhel7/rhel:latest /bin/bash
 2018-05-10 09:48:07 -0400 EDT Exited (0) 14 minutes ago nostalgic_boyd

1.3.3.5. Remove a container or image

Remove a container by its container ID:

podman rm 440becd26893

1.3.3.6. Remove a container image by its image ID or name (use -f to force):

podman rmi registry.access.redhat.com/rhel7/rhel-minimal
podman rmi de9c26f23799
podman rmi -f registry.access.redhat.com/rhel7/rhel:latest

1.3.3.7. Build a container

cat Dockerfile
FROM registry.access.redhat.com/rhel7/rhel-minimal
ENTRYPOINT "echo "Podman build this container."

podman build -t podbuilt .
STEP 1: FROM registry.access...
...
Writing manifest to image destination
Storing signatures
91e043c11617c08d4f8...

podman run podbuilt
Podman build this container.

1.4. RUNNING CONTAINERS WITH RUNC

"runC" is a lightweight, portable implementation of the Open Container Initiative (OCI) container
runtime specification. runC unites a lot of the low-level features that make running containers possible.
It shares a lot of low-level code with Docker but it is not dependent on any of the components of the
Docker platform. It supports Linux namespaces, live migration, and has portable performance profiles. It
also provides full support for Linux security features such as SELinux, control groups (cgroups),
seccomp, and others. You can build and run images with runc, or you can run docker-formatted images
with runc.

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

12

1.4.1. Installing and running containers

The runc package is available for Red Hat Enterprise Linux in the Extras channel. You need to have the
Extras channel enabled to install it with yum. If you are using Red Hat Enterprise Linux Atomic Host, the
runc package is already included. For a regular RHEL system, to enable the extras repository and install
the package, run:

$ sudo subscription-manager repos --enable=rhel-7-server-extras-rpms
$ sudo yum install runc

With runc, containers are configured using bundles. A bundle for a container is a directory that includes a
specification file named "config.json" and a root filesystem. The root filesystem contains the contents of
the container.

To create a bundle:

$ runc spec

This command creates a config.json file that only contains a bare-bones structure that you will need to
edit. Most importantly, you will need to change the "args" parameter to identify the executable to run.
By default, "args" is set to "sh".

 "args": [
 "sh"
],

As an example, you can download the docker-formatted Red Hat Enterprise Linux base image
(rhel/rhel7) using docker, then export it, create a new bundle for it with runc, and edit the "config.json"
file to point to that image. You can then create the container image and run an instance of that image
with runc. Use the following commands:

$ sudo docker pull registry.access.redhat.com/rhel7/rhel
$ sudo docker export $(docker create registry.access.redhat.com/rhel7/rhel) > rhel.tar
$ mkdir -p rhel-runc/rootfs
$ tar -C rhel-runc/rootfs -xf rhel.tar
$ runc spec -b rhel-runc
$ vi rhel-runc/config.json Change the value of terminal from *false* to *true*
$ sudo runc create -b rhel-runc/ rhel-container
$ sudo runc start rhel-container
sh-4.2#

In this example, the name of the container instance is "rhel-container". Running that container, by
default, starts a shell, so you can begin looking around and running commands from inside that container.
Type exit when you are done.

The name of a container instance must be unique on the host. To start a new instance of a container:

runc start <container_name>

You can provide the bundle directory using the "-b" option. By default, the value for the bundle is the
current directory.

You will need root privileges to start containers with runc. To see all commands available to runc and
their usage, run "runc --help".

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

13

1.5. USING SKOPEO TO WORK WITH CONTAINER REGISTRIES

With the skopeo command, you can work with container images from registries without using the docker
daemon or the docker command. Registries can include the Docker Registry, your own local registries,
or Atomic registries. Activities you can do with skopeo include:

inspect: The output of a skopeo inspect command is similar to what you see from a docker
inspect command: low-level information about the container image. That output can be in json
format (default) or raw format (using the --raw option).

copy: With skopeo copy you can copy a container image from a registry to another registry or to
a local directory.

layers: The skopeo layers command lets you download the layers associated with images so
that they are stored as tarballs and associated manifest files in a local directory.

Like the buildah command and other tools that rely on the containers/image library, the skopeo
command can work with images from container storage areas other than those associated with Docker.
Available transports to other types of container storage include: containers-storage (for images stored
by buildah and CRI-O), ostree (for atomic and system containers), oci (for content stored in an OCI-
compliant directory), and others. See the skopeo man page for details.

To try out skopeo, you could set up a local registry, then run the commands that follow to inspect, copy,
and download image layers. If you want to follow along with the examples, start by doing the following:

Install a local registry as described in Working with Docker Registries.

Pull the latest RHEL 7 image to your local system (docker pull rhel7/rhel).

Retag the RHEL 7 image and push it to your local registry as follows:

$ sudo docker tag rhel7/rhel localhost:5000/myrhel7
$ sudo docker push localhost:5000/myrhel7

The rest of this section describes how to inspect, copy and get layers from the RHEL 7 image.

NOTE

The skopeo tool by default requires a TLS connection. It fails when trying to use an
unencrypted connection. To override the default and use an http registry, prepend http:
to the <registry>/<image> string.

1.5.1. Inspecting container images with skopeo

When you inspect a container image from a registry, you need to identify the container format (such as
docker), the location of the registry (such as docker.io or localhost:5000), and the repository/image
(such as rhel7/rhel).

The following example inspects the mariadb container image from the Docker Registry:

$ sudo skopeo inspect docker://docker.io/library/mariadb
{
 "Name": "docker.io/library/mariadb",
 "Tag": "latest",
 "Digest": "sha256:d3f56b143b62690b400ef42e876e628eb5e488d2d0d2a35d6438a4aa841d89c4",

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

14

https://github.com/projectatomic/skopeo/blob/master/docs/skopeo.1.md
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#working_with_docker_registries

 "RepoTags": [
 "10.0.15",
 "10.0.16",
 "10.0.17",
 "10.0.19",
...
 "Created": "2016-06-10T01:53:48.812217692Z",
 "DockerVersion": "1.10.3",
 "Labels": {},
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
...

Assuming you pushed a container image tagged localhost:5000/myrhel7 to a docker registry running
on your local system, the following command inspects that image:

$ sudo skopeo inspect docker://localhost:5000/myrhel7
{
 "Name": "localhost:5000/myrhel7",
 "Tag": "latest",
 "Digest": "sha256:4e09c308a9ddf56c0ff6e321d135136eb04152456f73786a16166ce7cba7c904",
 "RepoTags": [
 "latest"
],
 "Created": "2016-06-16T17:27:13Z",
 "DockerVersion": "1.7.0",
 "Labels": {
 "Architecture": "x86_64",
 "Authoritative_Registry": "registry.access.redhat.com",
 "BZComponent": "rhel-server-docker",
 "Build_Host": "rcm-img01.build.eng.bos.redhat.com",
 "Name": "rhel7/rhel",
 "Release": "75",
 "Vendor": "Red Hat, Inc.",
 "Version": "7.2"
 },
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
 "sha256:16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf"
]
}

1.5.2. Copying container images with skopeo

This command copies the myrhel7 container image from a local registry into a directory on the local
system:

skopeo copy docker://localhost:5000/myrhel7 dir:/root/test/
INFO[0000] Downloading
myrhel7/blobs/sha256:16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf
ls /root/test
16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf.tar manifest.json

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

15

The result of the skopeo copy command is a tarball (16d*.tar) and a manifest.json file representing the
image begin copied to the directory you identified. If there were multiple layers, there would be multiple
tarballs. The skopeo copy command can also copy images to another registry. If you need to provide a
signature to write to the destination registry, you can do that by adding a --sign-by= option to the
command line, followed by the required key-id.

1.5.3. Getting image layers with skopeo

The skopeo layers command is similar to skopeo copy, with the difference being that the copy option
can copy an image to another registry or to a local directory, while the layers option just drops the layers
(tarballs and manifest.jason file) in the current directory. For example

skopeo layers docker://localhost:5000/myrhel7
INFO[0000] Downloading
myrhel7/blobs/sha256:16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf
find .
./layers-myrhel7-latest-698503105
./layers-myrhel7-latest-698503105/manifest.json
./layers-myrhel7-latest-
698503105/16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf.tar

As you can see from this example, a new directory is created (layers-myrhel7-latest-698503105) and, in
this case, a single layer tarball and a manifest.json file are copied to that directory.

1.6. BUILDING CONTAINER IMAGES WITH BUILDAH

The buildah command lets you create container images from a working container, a Dockerfile, or from
scratch. The resulting images are OCI compliant, so they will work on any runtimes that meet the OCI
Runtime Specification (such as Docker and CRI-O).

This section describes how to use the buildah command to create and otherwise work with containers
and container images.

1.6.1. Understanding Buildah

Using Buildah is different from building images with the docker command in the following ways:

No Daemon!: Buildah bypasses the Docker daemon! So no container runtime (Docker, CRI-O, or
other) is needed to use Buildah.

Base image or scratch: Lets you not only build an image based on another container, but also
lets you start with an empty image (scratch).

Build tools external: Doesn’t include build tools within the image itself. As a result, Buildah:

Reduces the size of images you build

Makes the image more secure by not having the software used to build the container (like
gcc, make, and dnf) within the resulting image.

Creates images that require fewer resources to transport the images (because they are
smaller).

Buildah is able to operate without Docker or other container runtimes by storing data separately and by
including features that let you not only build images, but run those images as containers as well. By

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

16

https://github.com/opencontainers/runtime-spec

default, Buildah stores images in an area identified as containers-storage (/var/lib/containers). When
you go to commit a container to an image, you can export that container as a local Docker image by
indicating docker-daemon (stored in /var/lib/docker).

NOTE

The containers-storage location that the buildah command uses by default is the same
place that the CRI-O container runtime uses for storing local copies of images. So images
pulled from a registry by either CRI-O or Buildah, or committed by the buildah command,
should be visible to both.

There are more than a dozen options to use with the buildah command. Some of the main activities you
can do with the buildah command include:

Build a container from a Dockerfile: Use a Dockerfile to build a new container image (buildah
bud).

Build a container from another image or scratch: Build a new container, starting with an
existing base image (buildah from <imagename>) or from scratch (buildah from scratch)

Inspecting a container or image: View metadata associated with the container or image
(buildah inspect)

Mount a container: Mount a container’s root filesystem to add or change content (buildah
mount).

Create a new container layer: Use the updated contents of a container’s root filesystem as a
filesystem layer to commit content to a new image (buildah commit).

Unmount a container: Unmount a mounted container (buildah umount).

Delete a container or an image: Remove a container (buildah rm) or a container image
(buildah rmi).

The buildah package is technology preview for Red Hat Enterprise Linux version 7.4.4. For more details
on Buildah, see the GitHub Buildah page . The GitHub Buildah site includes man pages and software that
might be more recent than is available with the RHEL version. Here are some other articles on Buildah
that might interest you:

Buildah Tutorial 1: Building OCI container images

Buildah Tutorial 2: Using Buildah with container registries

Buildah Blocks - Getting Fit

1.6.2. Installing Buildah

The buildah package is available from the Red Hat Enterprise Linux Server Extras repository. From a
RHEL Server system with a valid subscription, install the buildah package as follows:

subscription-manager repos --enable=rhel-7-server-rpms
subscription-manager repos --enable=rhel-7-server-extras-rpms
yum -y install buildah

With the buildah package installed, you can refer to the man pages included with the buildah package

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

17

https://github.com/projectatomic/buildah
https://github.com/projectatomic/buildah/blob/master/docs/tutorials/01-intro.md
https://github.com/projectatomic/buildah/blob/master/docs/tutorials/02-registries-repositories.md
https://www.projectatomic.io/blog/2017/08/buildah-getting-fit/

With the buildah package installed, you can refer to the man pages included with the buildah package
for details on how to use it. To see the available man pages and other documentation, type:

rpm -qd buildah

The following sections describe how to use buildah to get containers, build a container from a
Dockerfile, build one from scratch, and manage containers in various ways.

1.6.3. Getting Images with buildah

To get a container image to use with buildah, use the buildah from command. Here’s how to get a
RHEL 7 image from the Red Hat Registry as a working container to use with the buildah command:

buildah from docker://registry.access.redhat.com/rhel7/rhel-minimal
Getting image source signatures
Copying blob…
Writing manifest to image destination
Storing signatures
rhel-minimal-working-container
buildah images
IMAGE ID IMAGE NAME CREATED AT SIZE
1456eedf8101 registry.access.redhat.com/rhel7/rhel-atomic:latest
 Oct 12, 2017 15:15 74.77 MB
buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
dc8f21Ag4a47 * 1456eedf8101 registry.access.redhat.com/rhel7/rhel-atomic:latest
 rhel-atomic-working-container
1456eedf8101 registry.access.redhat.com/rhel7/rhel-minimal:latest
 Oct 12, 2017 15:15 74.77 MB

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
dc8f21Ag4a47 * 1456eedf8101 registry.access.redhat.com/rhel7/rhel-minimal:latest
 rhel-minimal-working-container

Notice that the result of the buildah from command is an image
(registry.access.redhat.com/rhel7/rhel-minimal:latest) and a working container that is ready to run from
that image (rhel-minimal-working-container). Here’s an example of how to execute a command from
that container:

buildah run rhel-minimal-working-container cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.4 (Maipo)

The image and container are now ready for use with Buildah.

1.6.4. Building an Image from a Dockerfile with Buildah

With the buildah command, you can create a new image from a Dockerfile. The following steps show
how to build an image that includes a simple script that is executed when the image is run.

This simple example starts with two files in the current directory: Dockerfile (which holds the instructions
for building the container image) and myecho (a script that echoes a few words to the screen):

ls

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

18

Dockerfile myecho
cat Dockerfile
FROM registry.access.redhat.com/rhel7/rhel-minimal
ADD myecho /usr/local/bin
ENTRYPOINT "/usr/local/bin/myecho"
cat myecho
echo "This container works!"
chmod 755 myecho

With the Dockerfile in the current directory, build the new container as follows:

buildah bud -t myecho .
STEP 1: FROM registry.access.redhat.com/rhel7/rhel-minimal
STEP 2: ADD myecho /usr/local/bin
STEP 3: ENTRYPOINT "/usr/local/bin/myecho"
STEP 4: COMMIT containers-storage:
[devicemapper@/var/lib/containers/storage+/var/run/containers/storage]docker.io/library/myecho:latest

The buildah bud command creates a new image named myecho, but doesn’t create a working container,
as demonstrated when you run buildah containers below:

buildah images
IMAGE ID IMAGE NAME CREATED AT SIZE
1456eedf8101 registry.access.redhat.com/rhel7/rhel-minimal:latest
 Oct 12, 2017 15:15 74.77 MB
ab230ac5aba3 docker.io/library/myecho:latest
 Oct 12, 2017 15:15 2.854 KB
buildah containers

Next, you can make the image into a container and run it, to make sure it is working.

1.6.5. Running a Container with Buildah

To check that the image you built previously works, you need to create a working container from the
image, then use buildah run to run the working container.

buildah from myecho
myecho-working-container
buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
dc8f21af4a47 * 1456eedf8101 registry.access.redhat.com/rhel7/rhel-minimal:latest
 rhel-minimal-working-container
6d1ffccb557d * ab230ac5aba3 docker.io/library/myecho:latest
 myecho-working-container
buildah run myecho-working-container
This container works!

The steps just shown used the image (myecho) to create a container (myecho-working-container). After
that, buildah containers showed the container exists and buildah run ran the container, producing the
output: This container works!

1.6.6. Inspecting a Container with buildah

With buildah inspect, you can show information about a container or image. For example, to inspect the

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

19

With buildah inspect, you can show information about a container or image. For example, to inspect the
myecho image you created earlier, type:

buildah inspect myecho | less
{
 "type": "buildah 0.0.1",
 "image": "docker.io/library/myecho:latest",
 "image-id": "e2b190ac8a37737ec03cfa4c9bfd989845b9bec3aa81ff48d8350d7418d748f6",
 "config": "eyJjcmVh...
 "ociv1": {
 "created": "2017-10-12T15:15:00.207103Z",
 "author": "Red Hat, Inc.",
 "architecture": "amd64",
 "os": "linux",
 "config": {
 "Entrypoint": [
 "/bin/sh",
 "-c",
 "\"/usr/local/bin/myecho\""
],
 "WorkingDir": "/",
 "Labels": {
 "architecture": "x86_64",
 "authoritative-source-url": "registry.access.redhat.com",

To inspect a container from that same image, type the following:

buildah inspect myecho-working-container | less
{
 "type": "buildah 0.0.1",
 "image": "docker.io/library/myecho:latest",
 "image-id": "e2b190ac8a37737ec03cfa4c9bfd989845b9bec3aa81ff48d8350d7418d748f6",
 "config": "eyJjcmV...
 "container-name": "myecho-working-container",
 "container-id": "70f22e886310bba26bb57ca7afa39fd19af2791c4c66067cb6206b7c3ebdcd20",
 "process-label": "system_u:system_r:svirt_lxc_net_t:s0:c225,c716",
 "mount-label": "system_u:object_r:svirt_sandbox_file_t:s0:c225,c716",
 "ociv1": {
 "created": "2017-10-12T15:15:00.207103Z",
 "author": "Red Hat, Inc.",
 "architecture": "amd64",

Note that the container output has added information, such as the container name, container id, process
label, and mount label to what was in the image.

1.6.7. Modifying a Container to Create a new Image with Buildah

There are several ways you can modify an existing container with the buildah command and commit
those changes to a new container image:

Mount a container and copy files to it

Use buildah copy and buildah config to modify a container

Once you have modified the container, use buildah commit to commit the changes to a new image.

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

20

1.6.7.1. Using buildah mount to Modify a Container

After getting an image with buildah from, you can use that image as the basis for a new image. The
following text shows how to create a new image by mounting a working container, adding files to that
container, then committing the changes to a new image.

Type the following to view the working container you used earlier:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME

dc8f21af4a47 * 1456eedf8101 registry.access.redhat.com/rhel7/rhel-minimal:latest
 rhel-minimal-working-container
6d1ffccb557d * ab230ac5aba3 docker.io/library/myecho:latest
 myecho-working-container

Mount the container image and set the mount point to a variable ($mymount) to make it easier to deal
with:

mymount=$(buildah mount myecho-working-container)
echo $mymount
/var/lib/containers/storage/devicemapper/mnt/176c273fe28c23e5319805a2c48559305a57a706cc7ae7b
ec7da4cd79edd3c02/rootfs

Add content to the script created earlier in the mounted container:

echo 'echo "We even modified it."' >> $mymount/usr/local/bin/myecho

To commit the content you added to create a new image (named myecho), type the following:

buildah commit myecho-working-container containers-storage:myecho2

To check that the new image includes your changes, create a working container and run it:

buildah images
IMAGE ID IMAGE NAME CREATED AT SIZE
a7e06d3cd0e2 docker.io/library/myecho2:latest
 Oct 12, 2017 15:15 3.144 KB
buildah from docker.io/library/myecho2:latest
myecho2-working-container
buildah run myecho2-working-container
This container works!
We even modified it.

You can see that the new echo command added to the script displays the additional text.

When you are done, you can unmount the container:

buildah umount myecho-working-container

1.6.7.2. Using buildah copy and buildah config to Modify a Container

With buildah copy, you can copy files to a container without mounting it first. Here’s an example, using

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

21

With buildah copy, you can copy files to a container without mounting it first. Here’s an example, using
the myecho-working-container created (and unmounted) in the previous section, to copy a new script
to the container and change the container’s configuration to run that script by default.

Create a script called newecho and make it executable:

cat newecho
echo "I changed this container"
chmod 755 newecho

Create a new working container:

buildah from myecho:latest
myecho-working-container-2

Copy newecho to /usr/local/bin inside the container:

buildah copy myecho-working-container-2 newecho /usr/local/bin

Change the configuration to use the newecho script as the new entrypoint:

buildah config myecho-working-container-2 --entrypoint "/bin/sh -c /usr/local/bin/newecho"

Run the new container, which should result in the newecho command being executed:

buildah run myecho-working-container-2
I changed this container

If the container behaved as you expected it would, you could then commit it to a new image
(mynewecho):

buildah commit myecho-working-container-2 containers-storage:mynewecho

1.6.8. Creating images from scratch with Buildah

Instead of starting with a base image, you can create a new container that holds no content and only a
small amount of container metadata. This is referred to as a scratch container. Here are a few issues to
consider when choosing to create an image starting from a scratch container with the buildah
command:

With a scratch container, you can simply copy executables that have no dependencies to the
scratch image and make a few configuration settings to get a minimal container to work.

To use tools like yum or rpm packages to populate the scratch container, you need to at least
initialize an RPM database in the container and add a release package. The example below
shows how to do that.

If you end up adding a lot of RPM packages, consider using the rhel or rhel-minimal base
images instead of a scratch image. Those base images have had documentation, language
packs, and other components trimmed out, which can ultimately result in your image being
smaller.

This example adds a Web service (httpd) to a container and configures it to run. In the example, instead

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

22

of committing the image to Buildah (containers-storage which stores locally in /var/lib/containers), we
illustrate how to commit the image so it can be managed by the local Docker service (docker-daemon
which stores locally in /var/lib/docker). You could just have easily committed it to Buildah, which would
let you then push it to a Docker service (docker), a local OSTree repository (ostree), or other OCI-
compliant storage (oci). (Type man buildah push for details.)

To begin, create a scratch container:

buildah from scratch
working-container

This creates just an empty container (no image) that you can mount as follows:

scratchmnt=$(buildah mount working-container)
echo $scratchmnt
/var/lib/containers/storage/devicemapper/mnt/cc92011e9a2b077d03a97c0809f1f3e7fef0f29bdc6ab5e86
b85430ec77b2bf6/rootfs

Initialize an RPM database within the scratch image and add the redhat-release package (which includes
other files needed for RPMs to work):

rpm --root $scratchmnt --initdb
yum install yum-utils (if not already installed)
yumdownloader --destdir=/tmp redhat-release-server
rpm --root $scratchmnt -ihv /tmp/redhat-release-server*.rpm

Install the httpd service to the scratch directory:

yum install -y --installroot=$scratchmnt httpd

Add some text to an index.html file in the container, so you will be able to test it later:

echo "Your httpd container from scratch worked." > $scratchmnt/var/www/html/index.html

Instead of running httpd as an init service, set a few buildah config options to run the httpd daemon
directly from the container:

buildah config --cmd "/usr/sbin/httpd -DFOREGROUND" working-container
buildah config --port 80/tcp working-container
buildah commit working-container docker-daemon:myhttpd:latest

By default, the buildah commit command adds the docker.io repository name to the image name and
copies the image to the storage area for your local Docker service (/var/lib/docker). For now, you can
use the Image ID to run the new image as a container with the docker command:

docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/myhttpd latest 47c0795d7b0e 9 minutes ago 665.6 MB
docker run -p 8080:80 -d --name httpd-server 47c0795d7b0e
curl localhost:8080
Your httpd container from scratch worked.

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

23

1.6.9. Removing Images or Containers with Buildah

When you are done with particular containers or images, you can remove them with buildah rm or
buildah rmi, respectively. Here are some examples.

To remove the container created in the previous section, you could type the following to see the
mounted container, unmount it and remove it:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
05387e29ab93 * c37e14066ac7 docker.io/library/myecho:latest myecho-working-container
buildah mount
05387e29ab93 /var/lib/containers/storage/devicemapper/mnt/9274181773a.../rootfs
buildah umount 05387e29ab93
buildah rm 05387e29ab93
05387e29ab93151cf52e9c85c573f3e8ab64af1592b1ff9315db8a10a77d7c22

To remove the image you created previously, you could type the following:

buildah rmi docker.io/library/myecho:latest
untagged: docker.io/library/myecho:latest
ab230ac5aba3b5a0a7c3d2c5e0793280c1a1b4d2457a75a01b70a4b7a9ed415a

1.6.10. Using container registries with Buildah

With Buildah, you can push and pull container images between your local system and public or private
container registries. The following examples show how to:

Push containers to and pull them from a private registry with buildah.

Push and pull container between your local system and the Docker Registry.

Use credentials to associated you containers with a registry account when you push them.

Use the skopeo command, in tandem with the buildah command, to query registries for information
about container images.

1.6.10.1. Pushing containers to a private registry

Pushing containers to a private container registry with the buildah command works much the same as
pushing containers with the docker command. You need to:

Set up a private registry (OpenShift provides a container registry or you can set up a simple
registry with the docker-distribution package, as shown below).

Create or acquire the container image you want to push.

Use buildah push to push the image to the registry.

To install a registry on your local system, start it up, and enable it to start on boot, type:

yum install -y docker-distribution
systemctl start docker-distribution
systemctl enable docker-distribution

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

24

By default, the docker-distribution service listens on TCP port 5000 on your localhost.

To push an image from your local Buildah container storage, check the image name, then push it it using
the buildah push command. Remember to identify both the local image name and a new name that
includes the location (localhost:5000, in this case):

buildah images
IMAGE ID IMAGE NAME CREATED AT SIZE
cb702d492ee9 docker.io/library/myecho2:latest Nov 21, 2017 16:50 3.143 KB
buildah push --tls-verify=false myecho2:latest localhost:5000/myecho2:latest
Getting image source signatures
Copying blob sha256:e4efd0...
...
Writing manifest to image destination
Storing signatures

Use the curl command to list the images in the registry and skopeo to inspect metadata about the
image:

curl http://localhost:5000/v2/_catalog
{"repositories":["myatomic","myecho2"]}
curl http://localhost:5000/v2/myecho2/tags/list
{"name":"myecho2","tags":["latest"]}
skopeo inspect --tls-verify=false docker://localhost:5000/myecho2:latest | less
{
 "Name": "localhost:5000/myecho2",
 "Digest": "sha256:8999ff6050...",
 "RepoTags": [
 "latest"
],
 "Created": "2017-11-21T16:50:25.830343Z",
 "DockerVersion": "",
 "Labels": {
 "architecture": "x86_64",
 "authoritative-source-url": "registry.access.redhat.com",

At this point, any tool that can pull container images from a container registry can get a copy of your
pushed image. For example, you could start the docker daemon and try to pull the image so it can be
used by the docker command as follows:

systemctl start docker
docker pull localhost:5000/myecho2
docker run localhost:5000/myecho2
This container works!

1.6.10.2. Pushing containers to the Docker Hub

You can use your Docker Hub credentials to push and pull images from the Docker Hub with the
buildah command. For this example, replace the username and password
(testaccountXX:My00P@sswd) with your own Docker Hub credentials:

buildah push --creds testaccountXX:My00P@sswd \
 docker.io/library/myecho2:latest docker://testaccountXX/myecho2:latest

CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH

25

As with the private registry, you can then get and run the container from the Docker Hub with either the
buildah or docker command:

docker run docker.io/textaccountXX/myecho2:latest
This container works!
buildah from docker.io/textaccountXX/myecho2:latest
myecho2-working-container-2
buildah run myecho2-working-container-2
This container works!

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

26

CHAPTER 2. MANAGING STORAGE WITH DOCKER-
FORMATTED CONTAINERS

2.1. OVERVIEW

Running a large number of containers in production requires a lot of storage space. Additionally, creating
and running containers requires the underlying storage drivers to be configured to use the most
performant options. The default storage options for Docker-formatted containers vary between the
different systems and in some cases they need to be changed. A default installation of RHEL uses
loopback devices, whereas RHEL Atomic Host has LVM thin pools created during installation. Note that
using the loopback option is not recommended for production systems.

During the planning phase, ensure that:

1) You are running in the direct-lvm mode and have LVM thin pools set up. This can be done using the
docker-storage-setup utility.

2) You allocate enough free space during installation or plan for an external storage to be attached to
the system.

This document also includes procedures on how to extend the storage when you run out of space. Some
of these procedures are destructive, this is why it is recommended to plan in advance. Use the described
procedures relevant to your system to help you set up the environment.

NOTE

Prior to RHEL 7.4, the container-storage-setup utility was called docker-storage-setup.
As with previous RHEL Server and RHEL Atomic releases, you can add storage settings to
/etc/sysconfig/docker-storage-setup as input, which results in those settings being
placed in /etc/sysconfig/docker-storage as output.

2.2. USING CONTAINER-STORAGE-SETUP

The container-storage-setup utility is installed with the container-storage-setup package, while
leveraging components from the docker package. This utility can assist you in setting up the direct LVM
storage.

When docker starts, it automatically starts the docker-storage-setup daemon. By default, docker-
storage-setup tries to find free space in the Volume Group containing the root Logical Volume and tries
to set up an LVM thin pool. If there is no free space in the Volume Group, docker-storage-setup will fail
to set up an LVM thin pool and will fall back to using loopback devices.

The default behavior of docker-storage-setup is controlled by the /etc/sysconfig/docker-storage
configuration file. You can override these options by creating a file /etc/sysconfig/docker-storage-setup
using new values.

The container-storage-setup utility needs to know where the free space is to set up a thin pool. The
following sections describe some of the ways you can configure the system to make sure container-
storage-setup can setup an LVM thin pool.

See man 1 container-storage-setup for more information. (Note that manual pages are not available on
RHEL Atomic, however they are available on RHEL Server systems.)

CHAPTER 2. MANAGING STORAGE WITH DOCKER-FORMATTED CONTAINERS

27

2.2.1. LVM thin pool in the volume group containing the root volume

By default, container-storage-setup looks for free space in the root volume group and creates an LVM
thin pool. Hence you can leave free space during system installation in the root volume group and
starting docker will automatically set up a thin pool and use it.

2.2.2. LVM thin pool in a user specified volume group

container-storage-setup can be configured to use a specific volume group for creating a thin pool.

echo VG=docker-vg >> /etc/sysconfig/docker-storage-setup
systemctl start docker

2.2.3. Setting up a volume group and LVM thin pool on user specified block device

You can specify one or multiple block devices in the /etc/sysconfig/docker-storage-setup file and
container-storage-setup will create a volume group and an LVM thin pool for the docker service to use.

echo DEVS=/dev/vdb >> /etc/sysconfig/docker-storage-setup
systemctl start docker

2.3. MANAGING STORAGE IN RED HAT ENTERPRISE LINUX

In Red Hat Enterprise Linux, there is no free space in the root volume group by default. Therefore, some
action to ensure container-storage-setup can find free space is required.

An easy way is to leave some free space in the volume group containing root during installation. The
following section explains how to leave free space.

2.3.1. How to Leave Space in the Volume Group Backing Root During Installation

There are two methods to leave free space in the root volume group during installation. Using the
interactive graphical installation utility Anaconda or by preparing a Kickstart file to control the
installation.

2.3.1.1. GUI Installation

1. Start the graphical installation; when you arrive at the "Installation Destination" screen, select "I
will configure partitioning" from "Other Storage Options" and click "Done".

2. On the "Manual Partitioning" screen, where you are prompted to create mount points. Choose
"Click here to create them automatically". This will create the default partitioning scheme.

3. Choose the root partition (/) , this displays the "Desired Capacity" input field.

4. Reduce that capacity to leave some free space in the root volume group.

5. By default, the volume group which has the root LV is big enough to accommodate user-
created volumes. Any free space on disk is left free and is not part of that volume group.
Change that by clicking on "Modify", selecting "Size policy" and setting that to "As large as
possible". Click "Save". This makes sure that any unused space on disk is left free in the volume
group.

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

28

6. Click "Done" to accept the proposed partitioning.

7. Click "Begin Installation".

2.3.1.2. Kickstart Installation

In a Kickstart file, use the "volgroup" Kickstart option with the "--reserved-percent" and "--reserved-
space" options where you can specify how much space to leave free in the volume group. Here is an
example section of a Kickstart file which leaves 20% free space in the root LV:

Disk partitioning information
part /boot --size=500
part pv.1 --size=500 --grow
volgroup rhel --pesize=4096 pv.1 --reserved-percent=20
logvol / --size=500 --grow --name=root --vgname=rhel
logvol swap --size=2048 --name=swap --vgname=rhel

2.4. MANAGING STORAGE IN RED HAT ENTERPRISE LINUX ATOMIC
HOST

On RHEL Atomic Host, the root volume size is 3GB. There is free space in the root volume group and
60% of that is used by container-storage-setup for setting up an LVM thin pool. The rest of the space is
free and can be used for extending the root volume or for creating a thin pool.

On RHEL Atomic Host with default partitioning setup, the docker-storage-setup service creates an LVM
thin pool to be used by the container images. During installation, the installation program creates the
root Logical Volume that is 3GB by default. Next, during boot, the docker-storage-setup service
automatically sets up an LVM thin pool called docker-pool which takes 60% of the remaining space.
The rest can be used for extending root or docker-pool . During boot, docker-storage-setup reads the
/etc/sysconfig/docker-storage file to determine the type of storage used and it modifies it so that
docker makes use of the LVM thin pool. You can override the defaults by creating a file called
/etc/sysconfig/docker-storage-setup which will modify the behavior of the service during boot. If you
do not create such file, then an LVM thin pool will be created by default.

Red Hat Enterprise Linux Atomic Host installed from a cloud image with default partitioning has a
Volume Group called atomicos and two Logical Volumes as part of that group. The name of the Volume
Group varies between different images of Red Hat Enterprise Linux Atomic Host. For bare-metal and
virtual installations the Volume Group name is derived from the host name. If the host is unnamed, the
Volume Group will be called rah. The properties of the Volume Group and the Logical Volumes in them
are the same across all images.

2.4.1. Contents of the Atomic Host filesystem

You can run the lvs command to list the Logical Volumes on the system and see the Volume Group
name:

lvs
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
docker-pool atomicos twi-aotz-- 7.69g 14.36 2.56
root atomicos -wi-ao---- 2.94g

1. The Root partition is called root and is 3GB by default. root is a Logical Volume that contains
the following:

CHAPTER 2. MANAGING STORAGE WITH DOCKER-FORMATTED CONTAINERS

29

The /var and /etc directories.

The /ostree/repo which contains the OSTree versions.

The /var/lib/docker/ directory which contains container images data, such as temporary
data or the docker volumes. A docker volume is a unit of storage that a running container
can request from the host system. The unit of storage can be provided by another container
but also by the host directly. In the case of Red Hat Enterprise Linux Atomic Host, these
volumes are automatically allocated to the Root Partition, in /var/lib/docker/vfs/.

2. A Container Image Partition called docker-pool which takes 60% of the remaining space. It is
formatted as an LVM thin pool by the docker-storage-setup service. It is used to store the
container images. The space used by docker-pool is managed by the docker-storage-setup
service. When you pull a container image from a registry, for example, the image takes up space
on this partition. Container images are read-only. Once an image is launched as a container, all
writes (except to mounted volumes or docker volumes) are stored in this Logical Volume.

IMPORTANT

It is important to monitor the free space in docker-pool and not to allow it to run
out of space. If the LVM thin pool runs out of space it will lead to a failure
because the XFS file system underlying the LVM thin pool will be retrying
indefinitely in response to any I/O errors. The LVM2 tools provide a facility to
monitor a thin pool and extend it based on user settings. See the Automatically
extend thin pool LV and Data space exhaustion sections of the lvmthin(7) manual
page for more information. By default, docker-storage-setup configures the thin
pool for auto extension. This means as the pool fills up, it will automatically grow
and consume free space available in that volume group. If the volume group gets
full and there is no space left for auto extension, then you can preemptively
destroy old containers that are no longer needed in order to reclaim space. Or
you can stop creating or modifying container images until additional storage is
added to the system.

The docker-pool partition contains the following directories:

/etc/sysconfig/docker - configured by the user

/etc/sysconfig/docker-storage - configured by programs, but can be edited by the user
(you have to disable docker-storage-setup)

/etc/sysconfig/docker-storage-setup - configured by the user; only available in RHEL
Atomic Host

2.4.2. Changing the Default Size of the Root Partition During Installation

To change the default Root Partition size, use the method below for your installation.

Anaconda: When you arrive at the "Installation Destination" screen, select "I will configure
partitioning" from "Other Storage Options" and click "Done". This will lead you to the "Manual
Partitioning" screen, where you are prompted to create mount points. Choose "Click here to
create them automatically", which will give you the boot, root, and swap partitions. (At this point,
you only have these partitions, docker-pool is created later by the docker-storage-setup
service). Choose the root partition (/) and enter the new value in the "Desired Capacity" input
field. When you finish the installation, the system boots with your custom configuration.

Kickstart: In the %post section of the Kickstart file, give the path to the /etc/sysconfig/docker-

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

30

Kickstart: In the %post section of the Kickstart file, give the path to the /etc/sysconfig/docker-
storage-setup file (which will be created automatically) and specify the necessary options after
the command. The syntax is as follows:

%post
cat > /etc/sysconfig/docker-storage-setup << EOF
ROOT_SIZE=6G
EOF
%end

cloud-init: The write_files directive in the user-data file is used to setup the
/etc/sysconfig/docker-storage-setup file similarly to the Kickstart example above. This
example user-data file sets the password for cloud-user to "atomic" and configures the root
partition to be 6GB instead of the default 3GB.

#cloud-config
password: atomic
write_files:
 - path: /etc/sysconfig/docker-storage-setup
 permissions: 0644
 owner: root
 content: |
 ROOT_SIZE=6G

2.4.3. Changing the Size of the Root Partition After Installation

When you add container images to the Container Image Partition which require space in
/var/lib/docker/, the image can request more space than is currently available on the Root Partition. A
container image can request a docker volume when it has data that should not be stored in the container,
for example the data from a database server. If you run out of space on root, you have three options:

Extend the Root Partition to use the free space in the volume group.

Add new storage to the host and extend the Root Partition.

Extend the Root Partition and shrink the Container Image Partition.

2.4.3.1. How to extend the Root Partition to use free space in volume group

If there is free space in volume group, then you can extend the root volume to use some or all of that
free space and grow the root partition.

lvextend -r -L +3GB /dev/atomicos/root

2.4.3.2. How to Add Additional Storage to the Host and Extend the Root Partition

This option is non-destructive and will enable you to add more storage to the Root Partition and use it.
This requires creating a new Physical Volume using a new disk device (in this example /dev/sdb), add it
to atomicos Volume Group and then extend the Root Partition Logical Volume. You must stop the
docker daemon and the docker-storage-setup service for this task. Use the following commands:

systemctl stop docker docker-storage-setup
pvcreate /dev/sdb
vgextend atomicos /dev/sdb

CHAPTER 2. MANAGING STORAGE WITH DOCKER-FORMATTED CONTAINERS

31

lvextend -r -L +3GB /dev/atomicos/root
systemctl start docker docker-storage-setup

2.4.3.3. How to Extend the Root Partition Without Adding More Storage

This option is destructive because the Container Image Partition will be destroyed. When it is not
possible to add more storage to the Root Partition, you can extend it. Extending the Root Partition
means that you will have to shrink the Container Image Partition. However, since LVM does not support
shrinking Thinly-Provisioned Logical Volumes,

Therefore, you must stop all running containers, destroy the Container Image Partition, and extend the
Root Partition. docker-storage-setup will reallocate the remaining space to the Container Image
Partition when it is restarted. Use the following commands:

systemctl stop docker docker-storage-setup
rm -rf /var/lib/docker/*
lvremove atomicos/docker-pool
lvextend -L +3GB /dev/atomicos/root
systemctl start docker-storage-setup
systemctl start docker

At this point you will need to download all container images again.

2.5. CHANGING STORAGE CONFIGURATION

If you change the storage configuration for Docker-formatted containers, you must also remember to
remove the /var/lib/docker directory. This directory contains the metadata for old images, containers,
and volumes which are not valid for the new configuration. Examples of instances in which changing the
storage configuration might be required include when switching from using loop devices to LVM thin
pool, or switching from one thin pool to another. In the latter case, the old thin pool should be removed.

systemctl stop docker docker-storage-setup
rm /etc/sysconfig/docker-storage-setup
lvremove docker/docker-pool
rm -rf /var/lib/docker/
systemctl start docker

2.6. USING THE OVERLAY GRAPH DRIVER

The overlay graph driver uses OverlayFS, a copy-on-write union file system that features page-cache
sharing between snapshot volumes. Similarly to LVM thin pool, OverlayFS supports efficient storage of
image layers. However, compared to LVM thin pool, container creation and destruction with OverlayFS
uses less memory and is more performant.

WARNING

OverlayFS is not POSIX-compliant, because some of the file system semantics are
different from standard file systems like ext4 and XFS. Hence, make sure your
applications work with OverlayFS before changing the storage driver to overlay.



Red Hat Enterprise Linux Atomic Host 7 Managing Containers

32

In Atomic Host 7.5 and later, the overlay driver is the default storage driver. If you have a system
installed before Atomic Host 7.5, upgrading it to 7.5 will not change the configured storage driver to
overlay. Also, note that only XFS is currently supported for use as a lower layer OverlayFS file system.

You can switch to overlay manually by executing these steps:

Enabling Overlay

Execute the following steps to enable the overlay Graph Driver for the docker service:

IMPORTANT

Changing the storage backend is a destructive operation. Before starting, be sure to back
up your images. This can be done in two ways:

1. Use docker save to back up your images and then and docker load to restore
them.

2. Use atomic storage export to save all data and atomic storage import to
restore it into the new storage backend.

1. Stop docker and remove the current storage:

systemctl stop docker
container-storage-setup --reset
rm -rf /var/lib/docker/

2. In the /etc/sysconfig/docker-storage-setup file, specify the following directives:

STORAGE_DRIVER - overlay2 or overlay

NOTE

Red Hat recommends to use overlay2 and not overlay, because overlay2 is
more performant.

DEVS - block storage device

CONTAINER_ROOT_LV_NAME - the LVM logical volume name

CONTAINER_ROOT_LV_SIZE - the absolute size or percentage of the volume group to
use for the logical volume

CONTAINER_ROOT_LV_MOUNT_PATH - the root location for the container storage

VG - the LVM volume group

For example:

STORAGE_DRIVER=overlay2
DEVS=/dev/sdb
CONTAINER_ROOT_LV_NAME=dockerlv
CONTAINER_ROOT_LV_SIZE=100%FREE
CONTAINER_ROOT_LV_MOUNT_PATH=/var/lib/docker
VG=dockervg

CHAPTER 2. MANAGING STORAGE WITH DOCKER-FORMATTED CONTAINERS

33

If the atomic rootfs and the overlay volume use different volume groups, it is often optimal to let
overlay use all available space on its volume group. To do this, set
CONTAINER_ROOT_LV_SIZE to 100%FREE. If not specified, the volume defaults to using
40% of space on the volume group.

Variables CONTAINER_ROOT_LV_NAME and CONTAINER_ROOT_LV_MOUNT_PATH
behave this way:

If you specify these variables, a new logical volume for storing container images and
container rootfs is created.

If you do not specify them, then no new logical volume will be created, and overlay2 will be
setup on rootfs.

3. If in the previous step you set the root location for the container storage
(CONTAINER_ROOT_LV_MOUNT_PATH) to /var/lib/docker, which is the standard docker
storage directory, then the SELinux context on that directory and its contents are properly set
to container_var_lib_t.
However, if you use a different directory, you must relabel it. Otherwise SELinux will not allow its
use. For example, to use /var/lib/mystorage, you would type:

mkdir -p /var/lib/mystorage
chmod 600 /var/lib/mystorage
semanage fcontext -a -t container_var_lib_t '/var/lib/mystorage(/.*)?'
restorecon -vvFR /var/lib/mystorage/
ls -ldZ /var/lib/mystorage/
drwx------. root root system_u:object_r:container_var_lib_t:s0 /var/lib/mystorage/

4. Restart docker:

systemctl start docker

Enabling Overlay in Kickstart

For a Kickstart installation you need to put the Overlay configuration in the %post section. For example:

%post
echo "STORAGE_DRIVER=overlay2
DEVS=/dev/sdb
CONTAINER_ROOT_LV_NAME=dockerlv
CONTAINER_ROOT_LV_SIZE=100%FREE
CONTAINER_ROOT_LV_MOUNT_PATH=/var/lib/docker
VG=dockervg" >> /etc/sysconfig/docker-storage-setup
%end

For explanation and guidance on the exact values of the directives, see the Enabling Overlay procedure.

Enabling Overlay in cloud-init

For a cloud-init installation you need to include the Overlay configuration as a snippet in the user-data
file. For example:

runcmd:
 - echo "STORAGE_DRIVER=overlay2" >> /etc/sysconfig/docker-storage-setup

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

34

For explanation and guidance on the exact values of the directives, see the Enabling Overlay procedure.

2.7. INCREASING THE BASE DEVICE SIZE

The "base device size" is the maximum size an image or container can grow to. You can check the
default base size for your version of docker by running docker info:

docker info
Containers: 0
Images: 0
Server Version: 1.9.1
Storage Driver: devicemapper
Pool Name: docker-253:1-1313713-pool
Pool Blocksize: 65.54 kB
Base Device Size: 107.4 GB

The base device size has been changed since docker 1.9 from 100GB to 10GB. The following is a list of
the default sizes for the different versions of docker:`

docker 1.9 Base Device Size: 107.4 GB

docker 1.10 Base Device Size: 10.74 GB

docker 1.11 Base Device Size: 10.74 GB

This default limit is defined by docker and will apply to all future images and containers. You can increase
this per container limit using the --dm.basesize option, and the docker-storage service will updated it
on next reboot.

docker daemon --storage-opt --dm.basesize=20GB

Limitations:

This option only applies to the devicemapper storage backend.

You can only expand the base size, but you cannot set a limit smaller than the default for your
version of docker.

All new containers would not have the increased rootfs size. Even after restarting the daemon
with the new base device size using --storage-opt dm.basesize=20G, you still need to update
all the existing images in order for new containers to reap benefits of this new size.

With this approach, the heaviest application (container) dictates the size for the rest of the
containers, for example, if you want to have 100 containers on your infrastructure and one of
them is a data intensive application requiring 100 GB of space, you would have to set the base
device size to 100 GB. Even though there are 99 other containers that only need 200 MB of
space each.

 - echo "DEVS=/dev/sdb" >> /etc/sysconfig/docker-storage-setup
 - echo "CONTAINER_ROOT_LV_NAME=dockerlv" >> /etc/sysconfig/docker-storage-setup
 - echo "CONTAINER_ROOT_LV_SIZE=100%FREE" >> /etc/sysconfig/docker-storage-setup
 - echo "CONTAINER_ROOT_LV_MOUNT_PATH=/var/lib/docker" >> /etc/sysconfig/docker-storage-
setup
 - echo "VG=dockervg" >> /etc/sysconfig/docker-storage-setup

CHAPTER 2. MANAGING STORAGE WITH DOCKER-FORMATTED CONTAINERS

35

2.8. RESETTING STORAGE FOR CONTAINERS

Since this is a destructive command, and requires some preparations, following is a procedure explaining
in detail how to use the command:

1. Make sure that you have a version of Atomic Host that is 7.2.5 or later:

atomic host upgrade

2. Confirm that you have a version of Atomic Host that is 7.2.5 or later by checking the Version
field when you run atomic host status:

atomic host status
State: idle
Deployments:
* rhel-atomic-host-ostree:rhel-atomic-host/7/x86_64/standard
 Version: 7.2.6 (2016-07-29 19:54:25)
 Commit: b672bf8a457cb28e003dee20c53749636ef5fce3e4743afe4aaad269d3aaa62a
 OSName: rhel-atomic-host

 rhel-atomic-host-ostree:rhel-atomic-host/7/x86_64/standard
 Version: 7.2.5 (2016-06-18 15:21:12)
 Commit: 9bfe1fb65094d43e420490196de0e9aea26b3923f1c18ead557460b83356f058
 OSName: rhel-atomic-host

3. List the current contents of the storage to make sure everything is safe to delete.

atomic images

 REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
 registry.access.redhat.com/rhel6 latest sha256:b335a 2016-07-07 13:31 195.66 MB
 registry.access.redhat.com/rhel7/rhel-tools latest sha256:38819 2016-06-22 06:54 1.3
GB
 registry.access.redhat.com/rhel7/openscap latest sha256:da0d5 2016-06-20 14:24
363.37 MB
 registry.access.redhat.com/rhel7/rsyslog latest sha256:878a5 2016-06-16 17:18 216.0
MB
 registry.access.redhat.com/rhel7 latest sha256:5fbb7 2016-06-16 13:27 203.5 MB

4. Stop the docker daemon:

systemctl stop docker

5. Run the atomic storage reset command:

atomic storage reset

6. Start the docker daemon again:

systemctl start docker

7. Run the atomic images list command to show that all images and containers have been
removed and that storage on the Atomic Host has been reset:

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

36

atomic images

 REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

2.9. STORAGE BACKUP GUIDELINES

Red Hat currently does not endorse any single backup technology for containers. We do, however,
suggest the following general guidelines:

Ensure that the Dockerfiles that you use to create containers are backed up.

Ensure that any data required by or generated by your containers is housed on an external
source. Back up the external source in a responsible manner and on a reasonable schedule.

Create a local docker repository and use it for saving and retrieving custom containers.

Use docker save/load or atomic storage export/import to create portable images of
containers and back up those images.

2.10. ADDITIONAL INFORMATION ABOUT STORAGE

The Thinly-Provisioned Logical Volumes section from the LVM Administrator Guide explains
LVM Thin Provisioning in detail.

The Red Hat Enterprise Linux 7 Storage Administration Guide provides information on adding
storage to Red Hat Enterprise Linux 7.

CHAPTER 2. MANAGING STORAGE WITH DOCKER-FORMATTED CONTAINERS

37

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Logical_Volume_Manager_Administration/thinprovisioned_volumes.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/index.html

CHAPTER 3. SIGNING CONTAINER IMAGES
Signing container images on RHEL systems provides a means of validating where a container image
came from, checking that the image has not been tampered with, and setting policies to determine
which validated images you will allow to be pulled to your systems. Before you begin, there are a few
things you should know about Red Hat container image signing:

Docker version: The features described here require at least Docker 1.12.3. So you can use the
docker package for any RHEL and RHEL Atomic release after 7.3.2.

Red Hat Signed Images: As of RHEL and RHEL Atomic 7.4, image signing is fully supported (no
longer tech preview). With RHEL 7.4, Red Hat has also begun signing its own container images.
So you can use the instructions provided in this chapter to determine the authenticity of those
images using Red Hat GPG keys.

This chapter describes tools and procedures you can use on Red Hat systems to not only sign images,
but also consume images that have been signed in these ways:

Creating Image Signatures: By signing images with a private key and sharing a public key
generated from it, others can use the public key to authenticate the images you share. The
signatures needed to validate the images can be made available from an accessible location
(like a Web server) in what is referred to as a "signature store" or made available from a directory
on the local filesystem. The actual signature can be created from an image stored in a registry or
at the time the image is pushed to a container registry.

Verifying Signed Images: You can check a signed image when it is pulled from a registry. This
includes verifying Red Hat’s signed images.

Trusting Images: Besides determining that an image is valid, you can also set policies that say
which valid images you trust to use on your system, as well as which registries you trust to use
without validation.

For the current release Red Hat Enterprise Linux and RHEL Atomic Host, there are a limited number of
tools and container registries that support image signing. Over time, however, you can expect most
features on RHEL systems that pull or store images to support signing. To get you started in the mean
time, however, you can use the following features in RHEL:

Registries: Currently, you can use a local container registry (docker-distribution package) and
the Docker Hub (docker.io) from RHEL systems to push and pull signed images. For the time
being, image signing features are only supported in v2 (not v1) Docker Registries.

Image signing tools: To create image signatures, you can use atomic sign (to create a
signature from a stored image) or atomic push (to create an image signature as you push it to a
registry).

Image verifying tools: To verify a signed image, you can use the atomic trust command to
identify which image registries you trust without verification and which registries require
verification. Later, when you pull an image, the atomic pull or docker pull command will validate
the image as it is pulled to the local system.

Operating systems: The image signing and verification features described here are supported
in Red Hat Enterprise Linux Server and RHEL Atomic Host systems, version 7.3.1 and later.

For a more complete description of Red Hat container image signing, see:

Container Image Signing Integration Guide

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

38

https://access.redhat.com/articles/2750891

3.1. GETTING CONTAINER SIGNING SOFTWARE

If you are using a RHEL Atomic Host 7.3.2 system (or later), the tools you need to sign, trust and verify
images are already included.

Most container-related software for RHEL server is in the rhel-7-server-extras-rpms yum repository. So,
on your RHEL 7.3 server system, you should enable that repository, install packages, and start the
docker service as follows:

subscription-manager repos --enable=rhel-7-server-extras-rpms
yum install skopeo docker atomic

Before you start the docker service, you must enable signature verification. To do that edit the
/etc/sysconfig/docker file and change --signature-verification=false to --signature-
verification=true on the OPTIONS line. It should appear as follows:

OPTIONS='--selinux-enabled --log-driver=journald --signature-verification=true'

Then, enable and start the docker service:

systemctl enable docker; systemctl start docker

The docker service should now be running and ready for you to use.

3.2. CREATING IMAGE SIGNATURES

Image signing in this section is broken down into the following steps:

GPG keys: Create GPG keys for signing images.

Sign images: Choose from either creating a signature from an image already in a container
registry or creating a signature as you push it to a container registry.

3.2.1. Create GPG Keys

To sign container images on Red Hat systems, you need to have a private GPG key and a public key you
create from it. If you don’t already have GPG keys you want to use, you can create them with the gpg2 -
-gen-key command. This procedure was done from a terminal window on a GNOME desktop as the user
who will sign the images:

1. Create private key: Use the following command to interactively add information needed to
create the private key. You can use defaults for most prompts, although you should properly
identify your user name, email address, and add a comment. You also must add a passphrase
when prompted.

$ gpg2 --gen-key
Please select what kind of key you want:
Your selection? 1
What keysize do you want? (2048) 2048
Please specify how long the key should be valid.
 0 = key does not expire
Key is valid for? (0) 0
Key does not expire at all
Is this correct? (y/N) y

CHAPTER 3. SIGNING CONTAINER IMAGES

39

Real name: Joe Smith
Email address: jjsmith@example.com
Comment: Image Signing Key
You selected this USER-ID:
 "Joe Smith (Image Signing Key) <jjsmith@example.com>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.
gpg: /home/jsmith/.gnupg/trustdb.gpg: trustdb created
gpg: key D3F46FFF marked as ultimately trusted
public and secret key created and signed.

You will need the passphrase later, when you attempt to sign an image. Anyone with access to
your private key and passphrase will be able to identify content as belonging to you.

2. Create entropy: You need to generate activity on your system to help produce random data
that will be used to produce your key. This can be done by moving windows around or opening
another Terminal window and running a variety of commands, such as ones that write to disk or
read lots of data. Once enough entropy is generated, the gpg2 command will exit and show
information about the key just created.

3. Create public key: Here’s an example of creating a public key from that private key:

$ gpg2 --armor --export --output mysignkey.gpg jjsmith@example.com

4. List keys: Use the following command to list your keys.

$ gpg2 --list-keys
/home/jsmith/.gnupg/pubring.gpg

pub 2048R/D3F46FFF 2016-10-20
uid Joe Smith (Image Signing Key) <jjsmith@example.com>
sub 2048R/775A4344 2016-10-20

At this point, the private key you created is available to use from this user account to sign images and
the public key (mysignkey.gpg) can be shared with others for them to use to validate your images. Keep
the private key secure. If someone else has that key, they could use it to sign files as though those files
belonged to you.

3.2.2. Creating an Image Signature

With your private key in place, you can begin preparing to sign your images. The steps below show two
different ways to sign images:

From a repository: You can create a signature for an image that is already in a repository using
atomic sign.

Image at push time: You can tag a local image and create an image signature as you push it to a
registry using atomic push.

Image signing requires super user privileges to run the atomic and docker commands. However, when
you sign, you probably want to use your own keys. To take that into account, when you run the atomic
command with sudo, it will read keys from your regular user account’s home directory (not the root
user’s directory) to do the signing.

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

40

3.3. SET UP TO DO IMAGE SIGNING

If you are going to sign a lot of images on a personal system, you can identify signing information in your
/etc/atomic.conf file. Once you add that information to atomic.conf, the atomic command assumes
that you want to use that information to sign any image you push or sign. For example, for a user
account jjsmith with a default signer of jjsmith@example.com, you could add the following lines to the
/etc/atomic.conf file so that all images you push or sign would be signed with that information by
default:

default_signer: jjsmith@example.com
gnupg_homedir: /home/jjsmith/.gnupg

If you want to use a different signer or signing home directory, to override those default values, you can
do that later on the atomic command line using the --sign-by and --gnupghome options, respectively.
For example, to have jjsmith@example.com and /home/jjsmith/.gnupg used as the signer and default
gnupg directory, type the following on the atomic command line:

$ sudo atomic push --sign-by jjsmith@example.com \
 --gnupghome /home/jjsmith/.gnupg \
 docker.io/wherever/whatever

3.4. CREATING A SIGNATURE FOR AN IMAGE IN A REPOSITORY

You can create an image signature for an image that is already pushed to a registry using the atomic
sign command. Use docker search to find the image, then atomic sign to create a signature for that
image.

IMPORTANT: The image signature is created using the exact name you enter on the atomic sign
command line. When someone verifies that image against the signature later, they must use the exact
same name or the image will not be verified.

1. Find image: Find the image for which you want to create the signature using the docker search
command:

$ sudo docker search docker.io/jjsmith/mybusybox
INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/jjsmith/mybusybox 0....

2. Create the image signature: Choose the image you want to sign (jjsmith/mybusybox in this
example). To sign it with the default signer and home directory entered in /etc/atomic.conf,
type the following:

$ sudo atomic sign docker.io/jjsmith/mybusybox
Created:
/var/lib/atomic/sigstore/docker.io/jjsmith/mybusybox@sha256:9393222c6789842b16bcf7306b6e
b4b486d81a48d3b8b8f206589b5d1d5a6101/signature-1

When you are prompted for a passphrase, enter the passphrase you entered when you created your
private key. As noted in the output, you can see that the signature was created and stored in the
/var/lib/atomic/sigstore directory on your local system under the registry name, user name, and image
name (docker.io/jjsmith/mybusybox*sha256:…​).

3.5. CREATING AN IMAGE SIGNATURE AT PUSH TIME

CHAPTER 3. SIGNING CONTAINER IMAGES

41

mailto:jjsmith@example.com
mailto:jjsmith@example.com

To create an image signature for an image at the time you push it, you can tag it with the identity of the
registry and possibly the username you want to be associated with the image. This shows an example of
creating an image signature at the point that you push it to the Docker Hub (docker.io). In this case, the
procedure relies on the default signer and GNUPG home directory assigned earlier in the
/etc/atomic.conf file.

1. Tag image: Using the image ID of the image, tag it with the identity of the registry to which you
want to push it.

$ sudo docker tag hangman docker.io/jjsmith/hangman:latest

2. Push and sign the image: The following command creates the signature as the image is pushed
to docker.io:

$ sudo atomic push -t docker docker.io/jjsmith/hangman:latest
Registry Username: jjsmith
Registry Password: *****
Copying blob sha256:5f70bf18...
Signing manifest
Writing manifest to image destination
Storing signatures

When prompted, enter the passphrase you assigned when you created your private key. At this
point, the image should be available from the repository and ready to pull.

3.6. SHARING THE SIGNATURE STORE

The signatures you just created are stored in the /var/lib/atomic/sigstore directory. For the purposes
of trying out signatures, you can just use that signature store from the local system. However, when you
begin sharing signed images with others and have them validate those images, you would typically share
that signature store directory structure from a Web server or other centrally available location. You
would also need to share the public key associated with the private key you used to create the
signatures.

For this procedure, you could just copy your public key to the /etc/pki/containers directory and use the
signature store from the local /var/lib/atomic/sigstore directory. For example:

$ sudo mkdir /etc/pki/containers
$ sudo cp mysignkey.gpg /etc/pki/containers/

As for the location of the signature store, you can assign that location when you run an atomic trust add
command (shown later). Or you can edit the /etc/containers/registries.d/default.yaml file directly
and identify a value for the sigstore setting (such as, sigstore: file:///var/lib/atomic/sigstore).

3.7. VALIDATING AND TRUSTING SIGNED IMAGES

Using the atomic trust command, you can identify policies that determine which registries you trust to
allow container images to be pulled to your system. To further refine the images you accept, you can set
a trust value to accept all images from a registry or accept only signed images from a registry. As part of
accepting signed images, you can also identify the location of the keys to use to validate the images.

The following procedure describes how to show and change trust policies related to pulling images to
your system with the atomic command.

1. Check trust values: Run this command to see the current trust value for pulling container

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

42

file:///var/lib/atomic/sigstore

1. Check trust values: Run this command to see the current trust value for pulling container
images with the atomic command:

$ sudo atomic trust show
* (default) accept

When you start out, the trust default allows any request to pull an image to be accepted.

2. Set default to reject: Having the default be reject might be harsh if you are just trying out
containers, but could be considered when you are ready to lock down which registries to allow.
So you could leave the default as accept, if you like. To limit pulled images to only accept images
from certain registries, you can start by changing the default to reject as follows:

$ sudo atomic trust default reject
$ sudo atomic trust show
* (default) reject
$ sudo atomic pull docker.io/centos
Pulling docker.io/library/centos:latest ...
FATA[0000] Source image rejected: Running image docker://centos:latest is rejected by
policy.

You can see that the default is now to reject all requests to pull images, so an attempt to pull a
container image fails.

3. Add trusted registry without signatures: This step shows how to allow to your system to pull
images from the docker.io registry without requiring signature checking. You could repeat this
step for every registry you want to allow (including your own local registries) for which you don’t
want to require signatures. Type the following to allow docker.io images to be pulled, without
signature verification:

$ sudo atomic trust add docker.io --type insecureAcceptAnything
$ sudo atomic pull docker.io/centos
Pulling docker.io/library/centos:latest ...
Copying blob ...
$

Notice that you were able to pull the centos image from docker.io after adding that trust line.

4. Add trusted registry with signatures: This example identifies the Red Hat Registry
(registry.access.redhat.com) as being a registry from which the local system will be able to pull
signed images:

sudo atomic trust add registry.access.redhat.com \
 --pubkeys /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release \
 --sigstore https://access.redhat.com/webassets/docker/content/sigstore \
 --type signedBy

5. Pull and verify image: At this point, you can verify the trust settings. Run the atomic trust show
command, which shows that only signed images from registry.access.redhat.com and any image
from docker.io will be accepted. All other images will be rejected.

$ sudo atomic trust show
* (default) reject
docker.io accept
registry.access.redhat.com signed security@redhat.com,security@redhat.com

CHAPTER 3. SIGNING CONTAINER IMAGES

43

The trust policies you just set are stored in the /etc/containers/policy.json file. See the Reasonable
Locked-Down System example policy.json file for an good, working example of this file. You can add
your own policy files to the /etc/containers/registries.d directory. You can name those files anything
you like, as long as .yaml is at the end.

3.8. VALIDATING SIGNED IMAGES FROM RED HAT

Red Hat signs its container images using its own GPG keys. Using the same public keys Red Hat uses to
validate RPM packages, you can validate signed Red Hat container images. The following procedure
describes the process of validating signed images from Red Hat.

Refer to the following articles related to validating Red Hat container images:

Verifying image signing for Red Hat Container Registry: Describes how to use the atomic
command to indicate that you trust images from the Red Hat Registry and check the signatures
of images you pull from that registry using the docker service.

Image Signatures: Describes how to use image signatures with OpenShift commands and the
OpenShift Registry.

Follow these steps to identify how to trust the Red Hat Registry and validate the signatures of images
you get from that registry:

1. Add the Red Hat container registry (registry.access.redhat.com) as a trusted registry. Identify
the location of the signature store (--sigstore) that contains the signature for each signed
image in the registry and the public keys (--pubkeys) used to validate those signatures against
the images.

$ sudo atomic trust add \
 --pubkeys /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release \
 --sigstore https://access.redhat.com/webassets/docker/content/sigstore \
 registry.access.redhat.com

2. Pull a container from the trusted registry. If the signature is valid, the image should be pulled
with the output looking similar to the following:

$ sudo atomic pull rhel7/etcd
Pulling registry.access.redhat.com/rhel7/etcd:latest ...
Copying blob ...
...
Writing manifest to image destination
Storing signatures

If you had identified the wrong signature directory or no signature was found there for the
image you wanted to pull, you would see output that looks as follows:

FATA[0004] Source image rejected: A signature was required, but no signature exists

3.9. UNDERSTANDING IMAGE SIGNING CONFIGURATION FILES

The image signing process illustrated in this chapter resulted in several configuration files being created
or modified. Instead using the atomic command to create and modify those files, you could edit those
files directly. Here are examples of the files created when you run commands to trust registries.

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

44

https://https//github.com/containers/image/blob/master/docs/policy.json.md#a-reasonably-locked-down-system
https://access.redhat.com/articles/3116561
https://docs.openshift.com/container-platform/3.5/dev_guide/image_signatures.html

3.9.1. policy.json file

The atomic trust command modifies settings in the /etc/containers/policy.json file. Here is the
content of that file that resulted from changing the default trust policy to reject, accepting all requests
to pull images from the registry.access.redhat.com registry without verifying signatures, and accepting
requests to pull images from the jjones account in the docker.io registry that are signed by GPGKeys in
the /etc/pki/containers/mysignkey.gpg file:

 "default": [
 {
 "type": "reject"
 }
],
 "transports": {
 "docker": {
 "registry.access.redhat.com": [
 {
 "type": "insecureAcceptAnything"
 }
],
 "docker.io/jjones": [
 {
 "keyType": "GPGKeys",
 "type": "signedBy",
 "keyPath": "/etc/pki/containers/mysignkey.gpg"
 }
]
 }
 }
}

3.9.2. whatever.yaml

Settings added from the atomic trust add command line when adding trust settings for a registry are
stored in a new file that is created in the /etc/containers/registries.d/ directory. The file name
includes the registry’s name and ends in the .yaml suffix. For example, if you were adding trust settings
for the user jjones at docker.io (docker.io/jjones), the file that stores the settings is
/etc/containers/registries.d/docker.io-jjones.yaml. The command line could include the location of
the signature store:

docker:
 docker.io/jjones:
 sigstore: file:///var/lib/atomic/sigstore/

The settings in the docker.io-jjones.yaml file override default setting on your system. Default signing
settings are stored in the /etc/containers/registries.d/default.yaml file. For more information of the
format of the registries.d files, see Registries Configuration Directory .

CHAPTER 3. SIGNING CONTAINER IMAGES

45

https://github.com/containers/image/blob/master/docs/registries.d.md

CHAPTER 4. RUNNING CONTAINERS AS SYSTEMD SERVICES
WITH PODMAN

Podman (Pod Manager) is a fully featured container engine that is a simple daemonless tool. Podman
provides a Docker-CLI comparable command line that eases the transition from other container engines
and allows the management of pods, containers and images. It was not originally designed to bring up an
entire Linux system or manage services for such things as start-up order, dependency checking, and
failed service recovery. That is the job of a full-blown initialization system like systemd.

Red Hat has become a leader in integrating containers with systemd, so that OCI and Docker-formatted
containers built by Podman can be managed in the same way that other services and features are
managed in a Linux system. This chapter describes how you can use the systemd initialization service to
work with containers in two different ways:

Starting Containers with systemd: By setting up a systemd unit file on your host computer, you
can have the host automatically start, stop, check the status, and otherwise manage a container
as a systemd service.

Starting services within a container using systemd: Many Linux services (Web servers, file
servers, database servers, and so on) are already packaged for Red Hat Enterprise Linux to run
as systemd services. If you are using the latest RHEL container image, you can set the RHEL
container image to start the systemd service, then automatically start selected services within
the container when the container starts up.

The following two sections describe how to use systemd container in those ways.

4.1. STARTING CONTAINERS WITH SYSTEMD

When you set up a container to start as a systemd service, you can define the order in which the
containerized service runs, check for dependencies (like making sure another service is running, a file is
available or a resource is mounted), and even have a container start by using the runc command.

This section provides an example of a container that is configured to run directly on a RHEL or RHEL
Atomic Host system as a systemd service.

1. Get the image you want to run on your system. For example, to use the redis service from
docker.io, run the following command:

podman pull docker.io/redis

2. Open Selinux permission. If SELinux is enabled on your system, you must turn on the
container_manage_cgroup boolean to run containers with systemd as shown here (see the
Containers running systemd solution for details):

setsebool -P container_manage_cgroup on

3. Run the image as a container, giving it a name you want to use in the systemd service file. For
example, to name the running redis container redis_server, type the following:

podman run -d --name redis_server -p 6379:6379 redis

4. Configure the container as a systemd service by creating the unit configuration file in the
/etc/systemd/system/ directory. For example, the contents of the /etc/systemd/system/redis-
container.service can look as follows (note that redis_server matches the name you set on the

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

46

https://access.redhat.com/solutions/3387631

podman run line):

[Unit]
Description=Redis container

[Service]
Restart=always
ExecStart=/usr/bin/podman start -a redis_server
ExecStop=/usr/bin/podman stop -t 2 redis_server

[Install]
WantedBy=local.target

5. After creating the unit file, to start the container automatically at boot time, type the following:

systemctl enable redis-container.service

6. Once the service is enabled, it will start at boot time. To start it immediately and check the
status of the service, type the following:

systemctl start redis-container.service
systemctl status redis-container.service
* redis-container.service - Redis container
 Loaded: loaded (/etc/systemd/system/redis-container.service; enabled; vendor preset:
disabled)
 Active: active (running) since Fri 2019-03-15 16:22:55 EDT; 6s ago
 Main PID: 1540 (podman)
 Tasks: 8 (limit: 2353)
 Memory: 7.7M
 CGroup: /system.slice/redis-container.service
 └─1540 /usr/bin/podman start -a redis_server

Mar 15 16:22:55 localhost.localdomain systemd[1]: Started Redis container.

To learn more about configuring services with systemd, refer to the System Administrator’s Guide
chapter called Managing Services with systemd.

4.2. STARTING SERVICES WITHIN A CONTAINER USING SYSTEMD

A package with the systemd initialization system is included in the official Red Hat Enterprise Linux Init
base image named rhel7-init. This means that applications created to be managed with systemd can be
started and managed inside a container. A container running systemd will:

NOTE

Previously, a modified version of the systemd initialization system called systemd-
container was included in the Red Hat Enterprise Linux versions 7.2 base images. Now,
the systemd package is the same across systems.

Start the /sbin/init process (the systemd service) to run as PID 1 within the container.

Start all systemd services that are installed and enabled within the container, in order of
dependencies.

CHAPTER 4. RUNNING CONTAINERS AS SYSTEMD SERVICES WITH PODMAN

47

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#chap-Managing_Services_with_systemd
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/rhel7-init

Allow systemd to restart services or kill zombie processes for services started within the
container.

The general steps for building a container that is ready to be used as a systemd services is:

Install the package containing the systemd-enabled service inside the container. This can
include dozens of services that come with RHEL, such as Apache Web Server (httpd), FTP
server (vsftpd), Proxy server (squid), and many others. For this example, we simply install an
Apache (httpd) Web server.

Use the systemctl command to enable the service inside the container.

Add data for the service to use in the container (in this example, we add a Web server test
page). For a real deployment, you would probably connect to outside storage.

Expose any ports needed to access the service.

Set /sbin/init as the default process to start when the container runs

In this example, we build a container by creating a Dockerfile that installs and configures a Web server
(httpd) to start automatically by the systemd service (/sbin/init) when the container is run on a host
system.

1. Create Dockerfile: In a separate directory, create a file named Dockerfile with the following
contents:

FROM rhel7-init
RUN yum -y install httpd; yum clean all; systemctl enable httpd;
RUN echo "Successful Web Server Test" > /var/www/html/index.html
RUN mkdir /etc/systemd/system/httpd.service.d/; echo -e '[Service]\nRestart=always' >
/etc/systemd/system/httpd.service.d/httpd.conf
EXPOSE 80
CMD ["/sbin/init"]

The Dockerfile installs the httpd package, enables the httpd service to start at boot time (i.e.
when the container starts), creates a test file (index.html), exposes the Web server to the host
(port 80), and starts the systemd init service (/sbin/init) when the container starts.

2. Build the container: From the directory containing the Dockerfile, type the following:

podman build --format=docker -t mysysd .

3. Open Selinux permission. If SELinux is enabled on your system, you must turn on the
container_manage_cgroup boolean to run containers with systemd as shown here (see the
Containers running systemd solution for details):

setsebool -P container_manage_cgroup 1

4. Run the container: Once the container is built and named mysysd, type the following to run the
container:

podman run -d --name=mysysd_run -p 80:80 mysysd

From this command, the mysysd image runs as the mysysd_run container as a daemon process,
with port 80 from the container exposed to port 80 on the host system.

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

48

https://access.redhat.com/solutions/3387631

5. Check that the container is running: To make sure that the container is running and that the
service is working, type the following commands:

podman ps | grep mysysd_run
a282b0c2ad3d localhost/mysysd:latest /sbin/init 15 seconds ago Up 14 seconds ago
0.0.0.0:80->80/tcp mysysd_run
curl localhost/index.html
Successful Web Server Test

At this point, you have a container that starts up a Web server as a systemd service inside the container.
Install and run any services you like in this same way by modifying the Dockerfile and configuring data
and opening ports as appropriate.

CHAPTER 4. RUNNING CONTAINERS AS SYSTEMD SERVICES WITH PODMAN

49

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

5.1. OVERVIEW

Containers are designed to keep their own, contained views of namespaces and have limited access to
the hosts they run on. By default, containers have a process table, network interfaces, file systems, and
IPC facilities that are separate from the host. Many security features like capabilities and SELinux are
wrapped around containers to control access to the host system and other containers. Although
containers can use resources from the host, commands run from a container have a very limited ability
to interface directly with the host.

Some containers, however, are intended to access, monitor, and possibly change features on the host
system directly. These are referred to as super privileged containers. Because of the nature of Red Hat
Enterprise Linux Atomic hosts (RHEL Atomic), SPCs offer some important uses for RHEL Atomic hosts.
For example:

The RHEL Atomic Host is meant to be lean. Many tools that you might want to use to manage or
troubleshoot RHEL Atomic host are not included by default.

Because Atomic Host does not allow for packages to be installed using yum or rpm commands,
the best way to add tools from RHEL or third parties on to a RHEL Atomic Host is to include
those tools in a container.

You can bring an SPC into a RHEL Atomic Host, troubleshoot a problem, then remove it when it
is no longer needed, to free up resources.

Red Hat produces several SPCs that are tailored specifically to run on RHEL Atomic hosts, and more are
in the pipeline for later. These include:

RHEL Atomic Tools Container Image: This container can be thought of as the administrator’s
shell. Many of the debugging tools (such as strace, traceroute, and sosreport) and man pages
that an administrator might use to diagnose problems on the host are in this container.

RHEL Atomic rsyslog Container Image: This container runs the rsyslogd service, allowing you
to offload log messages to a centralized server or to manage log files in RHEL Atomic. Note
that the systemd-journald service is collecting all logging data on the RHEL Atomic Host, even if
you do not install the rsyslog container.

RHEL Atomic System Activity Data Collector (sadc) Container Image: This container runs the
sadc service from the sysstat package and causes the RHEL Atomic system to gather data
continuously that can be read later by the sar command.

RHEL Atomic System Security Services Daemon (SSSD) Container Image: This container
allows the Red Hat Enterprise Linux Atomic Host authentication subsystem to be connected to
central identity providers like Red Hat Identity Management and Microsoft Active Directory.

Super privileged containers can be found in other Red Hat products as well. For example, here are
reasons some containers need extra privileges and examples of containers requring those features that
are part of the Red Hat OpenShift Container Platform:

Access to docker socket: Communicating with the docker service via the docker socket
requires special privilege. Containers that need to do that include the openshift3/node and
openshift3/openshift-docker-builder containers.

Need to load kernel modules: Any container needing to load kernel modules must be

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

50

Need to load kernel modules: Any container needing to load kernel modules must be
privileged. These include openshift3/openvswitch and openshift3/ose-keepalived-ipfailover
containers.

Need to bypass SELinux: If a container won’t work with SELinux in enforcing mode, it needs
special privileges to escape SELinux confinement. The openshift3/logging-fluentd container is
an example of such a container. (Note that it is better to create an SELinux policy for the
container and label the files it needs to access appropriately so it can work with SELinux.)

The OpenShift containers just described are all available from the Red Hat Registry
(registry.access.redhat.com). Search the Red Hat Container Catalog for descriptions of those
containers.

Using the RHEL Atomic Tools Container Image as an example, the next section illustrates how super
privileged containers are run and how host features are accessed from an SPC.

5.2. RUNNING PRIVILEGED CONTAINERS

Running a docker command to include every option you need to run as a super privileged container
would require a long and complicated command line. For that reason, we have made it simpler by
introducing the atomic command to run containers. If you run an atomic command like the following:

atomic run rhel7/rhel-tools
[root@localhost /]#

It creates and starts up the rhel-tools container using the docker command with multiple options. This
makes it simpler to use and execute containers in the RHEL Atomic Host. The resulting docker
command is as follows:

docker run -it --name rhel-tools --privileged \
 --ipc=host --net=host --pid=host -e HOST=/host \
 -e NAME=rhel-tools -e IMAGE=rhel7/rhel-tools \
 -v /run:/run -v /var/log:/var/log \
 -v /etc/localtime:/etc/localtime -v /:/host rhel7/rhel-tools

By understanding what options are run for a super privileged container you can better understand how
you might want to use those options when running your own containers that need to access resources
on the host. Here are descriptions of those options:

-i -t: Open a terminal device (-t) and run interactively (-i).

The --name option sets the name of the container (rhel-tools, in this case).

The --privileged option turns off the Security separation, meaning a process running as root
inside of the container has the same access to the RHEL Atomic host that it would have if it
were run outside the container.

The --ipc=host, --net=host, and --pid=host flags turn off the ipc, net, and pid namespaces
inside the container. This means that the processes within the container see the same network
and process table, as well as share any IPCs with the host processes.

There several options to set environment variables inside the container (-e). You can refer to any of
these options from the shell that opens when you start the container (for example, echo $HOST). These
include:

-e HOST=/host: Sets the location of the host filesystem within the container (in other words,

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

51

https://access.redhat.com/containers/

-e HOST=/host: Sets the location of the host filesystem within the container (in other words,
where / from the host is mounted). You can append $HOST to any file name so a command you
run accesses that file on the host instead of within the container. For example, from within the
container, $HOST/etc/passwd accesses the /etc/passwd file on the host.

-e NAME=rhel-tools: Sets the name of the container (what you see when you type docker ps).

-e IMAGE=rhel7/rhel-tools: Identifies the name of the image (what you see when you type
docker images).

Several files and directories from the host (in addition to what is normally mounted from the host to a
container) are mounted from the host file system to the container. These include:

-v /run:/run: The -v /run:/run option mounts the /run directory from the host on the /run
directory inside the container. This allows processes within the container to talk to the host’s
dbus service and talk directly to the systemd service. Processes within the container can even
communicate with the docker daemon.

-v /var/log:/var/log: Allows commands run within the container to read and write log files from
the host’s /var/log directory.

-v /etc/localtime:/etc/localtime: Causes the host system’s timezone to be used with the
container.

-v /:/host: Mounting / from the host on /host allows a process within the container to easily
modify content on the host. Running touch /host/etc/passwd would actually act on the
/etc/passwd file on the host.

The last argument identifies rhel7/rhel-tools as the image to run.

In the case of the RHEL Tools privileged container, when you run it, a shell opens and you can start using
the commands from inside that container. As an alternative, you could add an option to the end of the
atomic or docker command line to run a particular command (such as sosreport or traceroute). The
next section describes how to begin investigating that container.

5.2.1. Understanding Name Spaces in Privileged Containers

Many of the basic Red Hat Enterprise administrative commands have been modified to be aware they
are running in a container. For example, when you run sosreport inside the RHEL Atomic Tools
Container, it knows to use /host as the root of the file system and not /. When you run other commands
from within the RHEL Atomic Tools Container (or any privileged container), however, it might help to
understand how they may behave differently when run in a privileged container, based on the following
topics:

Privileges

A privileged container runs applications as root user on the host by default. The container has this ability
because it runs with an unconfined_t SELinux security context.

Mount Tables

When you use tools such as df and mount to see what file systems are mounted, you see different
information from inside the privileged container then you would see if you ran the same command
directly on the host. That’s because the two environments maintain their own mount table.

Process Tables

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

52

Unlike a regular container, that only sees the processes running inside the container, running a ps -e
command within a privileged container (with --pid=host set) lets you see every process running on the
host. So, you can pass a process ID from the host to commands that run in the privileged container (for
example, kill PID). With some commands, however, permissions issues could occur when they try to
access processes from the container.

Inter-process communications

The IPC facility on the host is accessible from within the privileged container. So, you can run commands
such as ipcs to see information about active message queues, shared memory segments, and
semaphone sets on the host.

5.3. USING THE ATOMIC TOOLS CONTAINER IMAGE

The Red Hat Enterprise Linux Atomic Tools Container (RHEL Tools Container) is a docker-formatted
image that includes a set of software tools for troubleshooting and investigating a Red Hat Enterprise
Linux Atomic (RHEL Atomic) Host. Designed to run as a privileged container, the RHEL Tools Container
allows you to interact directly with the RHEL Atomic Host system to uncover and solve problems. Inside
the RHEL Tools Container are popular system administration tools such as dig, iotop, ip, ss, less, ncat,
lspci, perf, screen, strace, sar, tcpdump, and vim. Most of these tools are not included with RHEL Atomic.

This section covers:

How to get and run the RHEL Atomic Tools Container

How the RHEL Atomic Tools Container works

What commands are in the RHEL Atomic Tools Container and how to use them

5.3.1. Overview

RHEL Atomic is designed to be a light-weight, streamlined version of Red Hat Enterprise Linux that is
configured and tuned specifically for running Linux containers. It is kept light so it can consume minimal
amounts of resources during deployment and run efficiently once deployed. This makes RHEL Atomic
particularly suited for hosting containers in cloud environments.

One of the problems of the reduced size of Atomic is that many of the standard RHEL tools are not
installed in Atomic. To make the problem worse, the support for installing additional software packages
is limited.

The RHEL Tools Container solves this problem. It provides a chosen set of popular system
administration tools. You can install this container either during the deployment of the Atomic system or
later, when you need to troubleshoot a problem.

Consider these facts about the RHEL Tools Container:

It opens privileges. Containers, by default, cannot see most of the Atomic Host’s file system or
namespaces (networking, IPC, process table, and so on). However, because the RHEL Tools
Container runs as a privileged host and opens access to host namespaces and features, most
commands you run from within that container will be able to view and act on the host as if run
directly on the host.

The tools might behave differently. Some commands, when run from within the container,
even with privileges open, will behave differently than if run directly on the host system. See
Running Commands from the RHEL Tools Container for examples of this.

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

53

5.3.2. Getting and Running the RHEL Tools Container

To get and run the RHEL Tools Container:

1. Install RHEL Atomic Host using the Installation and Configuration Guide. The RHEL Tools
Container is designed to run on RHEL Atomic Host systems.

2. Pull the RHEL Tools Container image to the Atomic Host:

docker pull rhel7/rhel-tools

3. Run the RHEL Tools Container:

atomic run rhel7/rhel-tools
[root@localhost /]#

You now have a shell open inside the container, with all the tools in the container ready to run. When you
are finished using the tools, run exit.

5.3.3. Running Commands from the RHEL Tools Container

The following examples show some of the commands from the RHEL Tools Container and the
differences between running them in the container and on the host system:

blktrace: To use blktrace from within a container, you need to first mount the debugfs file
system. In this example the administrator mounts debugfs and runs blktrace:

mount -t debugfs debugfs /sys/kernel/debug/
blktrace /dev/vda
^C
=== vda ===
 CPU 0: 38086 events, 1786 KiB data
 Total: 38086 events (dropped 0), 1786 KiB data

useradd: To add a user to do non-root activities within the container, you can use the useradd
command:

useradd jjones
su - jjones
[jjones@example ~]$

5.3.4. More Information About Running RHEL Tools Container

Note these details about the RHEL Tools Container:

The container image that you pull is named rhel7/rhel-tools. However, once you run it, a
container is created using that image. That container is called rhel-tools.

Changes you make to a container (for example, yum install package) continue to exist even
after you stop and start the container again. This means that atomic run rhel7/rhel-tools will
not pull down any files or do any additional setup on the host the second time you run it.

To see the name of the container, even after it is stopped, type docker ps -a.

Unless you explicitly remove the container (docker rm rhel-tools), the container continues to

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

54

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/installation_and_configuration_guide/

Unless you explicitly remove the container (docker rm rhel-tools), the container continues to
exist on your system.

Even if you remove the rhel7/rhel-tools container image, the rhel-tools container, if there is
one, is retained. While the container is retained, you cannot upgrade the container image.
To upgrade the rhel7/rhel-tools image, preserve any files from the existing container that you
want to keep by copying them somewhere on /host. Then remove the container by running
docker rm rhel-tools. Finally, get the updated container image by running docker pull
rhel7/rhel-tools.

Commands that should run directly on the Atomic host include those related to systemd
(systemctl and journalctl), LVM (lvm, lvdisplay, vgdisplay and so on), the atomic command,
and any commands that modify block devices.

If you have any issues with the RHEL Tools Container, you can file bugs and RFEs at
bugzilla.redhat.com under the "Red Hat Enterprise Linux" product and the "rhel-tools-docker"
component.

5.4. USING THE ATOMIC SUPPORT TOOLS CONTAINER IMAGE

The Red Hat Enterprise Linux Atomic Support Tools container (Support Tools Container) is a docker-
formatted image that includes the sos, strace, tcpdump, and redhat-support-tool tools.

The four tools comprising the Support Tools Container were previously part of the RHEL Tools
Container (strace and tcpdump still are). The two containers are essentially the same but with a
different set of included tools. Thus, the information in the Using the Atomic Tools Container Image
section applies to Support Tools Container, except for two things: set of available tools and container
size.

This section covers:

The relationship between the Support Tools Container and the RHEL Tools Container

How to get and run the RHEL Atomic Tools Container

What commands are in the RHEL Atomic Tools Container and how to use them

5.4.1. How It Is Different from RHEL Atomic Tools

The Support Tools Container has been created as part of the effort to reduce the size of the huge RHEL
Tools Container.

A frequent use case for the RHEL Tools Container has been to gather sosreports and run tcpdump,
strace, and redhat-support-tool tools. That is why the dedicated Support Tools Container, which
consists of these four tools, has been created.

The Support Tools Container is much smaller than the RHEL Tools Container, 218MB instead of 370MB,
and can be installed and used more liberally.

The sos and redhat-support-tool tools have been removed from the RHEL Tools Container, while the
tcpdump and strace remain there.

For more information on the splitting of the RHEL Tools Container, see the RHEL Atomic Host 7.4.3
Release Note.

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/release_notes/#rhel-tools-split-release-note

5.4.2. Getting and Running the Support Tools Container

To get and run the Support Tools Container:

1. Install RHEL Atomic Host using the Installation and Configuration Guide. The Support Tools
Container is designed to run on RHEL Atomic Host systems.

2. Pull the Support Tools Container image to the Atomic Host:

docker pull rhel7/support-tools

3. Run the RHEL Tools Container:

atomic run rhel7/support-tools
[root@localhost /]#

You now have a shell open inside the container, with all the tools in the container ready to run. When you
are finished using the tools, run exit.

5.4.3. Running Commands from the Support Tools Container

The following examples two of the commands from the Support Tools Container and the differences
between running them in the container and on the host system:

sosreport: The sosreport command includes an atomic plugin that makes it container-aware.
This means that you can run sosreport to generate a report with almost exactly the same
results as if run directly on the host. For example:

sosreport
Please enter your first initial and last name [localhost.localdomain]: jjones
Please enter the case id that you are generating this report for: 12345678
...
ls /host/var/tmp
sosreport-jjones.12345678-20150203102944.tar.xz
sosreport-jjones.12345678-20150203102944.tar.xz.md5

Note that the report is copied to the /var/tmp directory on the host, which makes it available
after you close the container. Additionally, the host’s root file system is mounted on /host within
the container, which allows you to access the report in the /host/var/tmp directory within the
container.

strace: Since the host’s process table is visible from within the RHEL Tools Container, the
commands that take a process ID as an argument work from within the container. This enables
using the strace command:

ps -ef | grep ssh
root 998 1 0 Jan29 ? 00:00:00 /usr/sbin/sshd -D
strace -p 998
Process 998 attached
select(7, [3 4], NULL, NULL, NULL ...

5.5. USING THE ATOMIC RSYSLOG CONTAINER IMAGE

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

56

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/installation_and_configuration_guide/

5.5.1. Overview

The Red Hat Enterprise Linux rsyslog Atomic Container Image is a Docker formatted image that is
designed to run on a Red Hat Enterprise Linux Atomic (RHEL Atomic) host.

With this container, you can start an rsyslogd daemon that:

Uses configuration files and log files that are stored on the Atomic host’s file system

Can be configured to provide any standard rsyslog features, including directing log message to
a remote log host

This topic describes how to get and run the RHEL rsyslog container.

Because the rsyslog service is not installed on a Red Hat Enterprise Linux Atomic Host, the rsyslog
container offers a way of adding that service to an Atomic host.

Here are some of the features of the rsyslog container:

Installs from atomic command: When you use the atomic install command to get and run the
rsyslog container, several things happen. The container itself is pulled from the registry, files and
directories needed by the rsyslog service are added to the host, and the container is started
with docker run.

Configure from the host: Because the files needed by the rsyslog service are stored on the
Atomic host, there is no need to go inside the container itself. All configuration can be done
from the host.

Restarting the service: If you make any changes to the configuration, to pick up the changes
you just have to stop, remove and restart the container again (docker stop rsyslog; docker rm
rsyslog; atomic run rhel7/rsyslog).

Super privileged container: Keep in mind that running the rsyslog container opens privileges
from that container to the host system. The container has root access to RHEL Atomic host and
opens access to privileged configuration and log files.

5.5.2. Getting and Running the RHEL rsyslog Container

To use the rsyslog Atomic Container Image on a RHEL Atomic host, you need to install it, load it and run
it, as described in the following procedure:

1. Install RHEL Atomic Host: To install and configure a RHEL Atomic host, refer to the
appropriate installation guide listed on the Red Hat Enterprise Linux Atomic Host
Documentation page.

2. Install the RHEL rsyslog Container: While logged into the RHEL Atomic host, get and start the
RHEL rsyslog Container by running the following command:

docker pull rhel7/rsyslog
atomic install rhel7/rsyslog
...
docker run --rm --privileged -v /:/host -e HOST=/host -e IMAGE=rhel7/rsyslog -e
NAME=rsyslog rhel7/rsyslog /bin/install.sh
Creating directory at /host//etc/pki/rsyslog
Installing file at /host//etc/rsyslog.conf
Installing file at /host//etc/sysconfig/rsyslog

3. Start the rsyslog container: To run the RHEL rsyslog container, use the atomic command. The

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

57

https://access.redhat.com/articles/rhel-atomic-documentation

3. Start the rsyslog container: To run the RHEL rsyslog container, use the atomic command. The
following command starts the container using the docker command with appropriate options:

atomic run rhel7/rsyslog
docker run -d --privileged --name rsyslog --net=host -v /etc/pki/rsyslog:/etc/pki/rsyslog -v
/etc/rsyslog.conf:/etc/rsyslog.conf -v /etc/rsyslog.d:/etc/rsyslog.d -v /var/log:/var/log -v
/var/lib/rsyslog:/var/lib/rsyslog -v /run/log:/run/log -v /etc/machine-id:/etc/machine-id -v
/etc/localtime:/etc/localtime -e IMAGE=rhel7/rsyslog -e NAME=rsyslog --restart=always
rhel7/rsyslog /bin/rsyslog.sh
5803dbade82274158f0694a19fdcd7aac044a2656b2ce96d1aebdb0e30ad5ffd

After the atomic command starts, you can see the exact 'docker' command that is run to start
the rsyslog container. The rsyslogd container runs as a super privileged container.

4. Check that the container is running: Type the following to check that the rsyslog container is
running:

docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
5803dbade822 registry.access.stage.redhat.com/rhel7/rsyslog:7.1-3 "/bin/rsyslog.sh" 9
minutes ago Up 9 minutes rsyslog

NOTE

The full name of the image is "registry.access.redhat.com/rhel7/rsyslog:7.1-3",
which include both the name of the registry from which it was downloaded and
the version of the image obtained. The actual container that is run locally,
however, is simply called rsyslog. The difference between the image and
container is central to the way docker works.

5. Check that the rsyslog service is working: From a shell, type the following to watch as
messages come into the /var/log/messages file:

tail -f /var/log/messages

6. Generate a log message: Type the following to generate a log message:

logger "Test that rsyslog is doing great"

If the rsyslog service is working, the message should appear from the shell running the tail
command. You can start using the rsyslog service on the Atomic host now.

5.5.3. Tips for Running rsyslog Container

Here are some tips to help you understand a few other issues related to running the RHEL rsyslog
container:

Understanding persistent logging: By default, the Red Hat Enterprise Linux Atomic Host
system is configured to log to persistent logs on the local root filesystem with journald by
setting the following value in in /etc/systemd/journald.conf:

Storage=persistent

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

58

To configure persistent logging to either local rsyslog logs or to a remote rsyslog server, you
may want to disable the local journald persistent logging by changing that line to:

Storage=volatile

and rebooting the RHEL Atomic Host system. journald will still maintain local logs in a ramdisk if
you do this, but will not write them to disk. This can save on local disk IO if the data is already
being captured securely in another location. The rsyslog container will still be able to capture
and process journald logs.

Changing rsyslog configuration: Every time you change the rsyslog container configuration,
you must stop and remove the running rsyslog container, then start a new one. To do that, run
the following commands:

docker stop rsyslog
docker rm rsyslog
atomic run rhel7/rsyslog

Log rotation: In the initial version of the rsyslog container image, there is no support for local
rotation of rsyslog log files. This will be added in a future update. But rsyslog can still be used
with local log files if space permits.
There is no requirement for local log rotation if rsyslog is configured to send logs only to a
remote log collection host. Refer to the Red Hat Enterprise Linux System Administrator’s Guide
for information on configuring both local and remote logging with rsyslog.

Ensure there is enough space for logs.

The ideal configuration for many cloud environments is to configure rsyslog to log to a
remote rsyslog server.

If you are logging to local storage, be aware that log rotation within a container currently
does not occur. In upcoming releases, we will support the configuring log file size limits for
the rsyslog configuration by editing logrotate configuration file (such as those in
/etc/logrotate.d/ directory and the /etc/logrotate.conf file). This feature is not yet
supported.

Note especially that the amount of space available on the root file system of Atomic host
qcow2 images is limited. A larger space can be provisioned by installing via the Red Hat
Enterprise Linux Atomic host anaconda installer ISO image.

Image and Container Lifecycle
If you want to upgrade to a newer version of the Red Hat Enterprise Linux rsyslog Atomic
container image, it is not enough to merely download the new image with docker pull
rhel7/rsyslog. You must also explicitly remove the existing rsyslog container with the following
commands, before re-running it, in order to create a fresh container from the new image:

docker pull rhel7/rsyslog

If a new image downloads, run the following:

docker stop rsyslog
docker rm rsyslog
atomic install rhel7/rsyslog
atomic run rhel7/rsyslog

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

59

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-basic_configuration_of_rsyslog.html

5.6. USING THE ATOMIC SYSTEM ACTIVITY DATA COLLECTOR
(SADC) CONTAINER IMAGE

The Red Hat Enterprise Linux sadc Atomic Container Image is a Docker-formatted containerized version
of the system monitoring and data collection utilities contained in the sysstat package. This container is
designed to run on a Red Hat Enterprise Linux Atomic host. With this container installed and running, the
following occurs on your Atomic system:

System activity data are gathered on an on-going basis

Commands such as cifsiostat, iostat, mpstat, nfsiostat, pidstat, sadf, and sar are available to
display that data. You use the docker exec sadc command to run the commands.

This topic describes how to get and run the sadc container.

5.6.1. Overview

Because sysstat package (which includes sar, iostat, sadc an other tools) is not installed on a Red Hat
Enterprise Linux Atomic host, the sadc container offers a way of adding those utilities to an Atomic host.
Here are some of the features of the sadc container:

Installs from atomic command: When you use the "atomic install" command to get and run the
sadc container, several things happen. The container itself is pulled from the registry, files and
directories needed by the sadc service are added to the host, and the container is started with
docker run.

Configure from the host: Because the files needed by the sadc data collection service are
stored on the Atomic host, there is no need to go inside the container itself. All configuration
can be done from the host.

Super privileged container: Keep in mind that running the sadc container opens privileges from
that container to the host system. The container has root access to RHEL Atomic host and
opens access to privileged configuration and log files. For more information on privileged
containers, see Running Privileged Docker Containers in RHEL Atomic.

5.6.2. Getting and Running the RHEL sadc Container

To use the sadc container on a Red Hat Enterprise Linux Atomic host, you need to install it, load it and
run it, as described in the following procedure:

1. Install RHEL Atomic Host: To install and configure a RHEL Atomic host, refer to the
appropriate installation guide listed on the Red Hat Enterprise Linux Atomic Host
Documentation page.

2. Install the RHEL sadc Container: While logged into the RHEL Atomic host, get and start the
sadc container by running the following command::

docker pull rhel7/sadc
atomic install rhel7/sadc
docker run --rm --privileged --name sadc -v /:/host -e HOST=/host -e IMAGE=rhel7/sadc -e
NAME=name rhel7/sadc /usr/local/bin/sysstat-install.sh
Installing file at /host//etc/cron.d/sysstat
Installing file at /host//etc/sysconfig/sysstat
Installing file at /host//etc/sysconfig/sysstat.ioconf
Installing file at /host//usr/local/bin/sysstat.sh

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

60

3. Start the sadc container: To run the RHEL sadc container, use the atomic command. The
following command starts the container using the docker command with appropriate options:

atomic run rhel7/sadc
docker run -d --privileged --name sadc -v /etc/sysconfig/sysstat:/etc/sysconfig/sysstat -v
/etc/sysconfig/sysstat.ioconf:/etc/sysconfig/sysstat.ioconf -v /var/log/sa:/var/log/sa -v /:/host -e
HOST=/host -e IMAGE=rhel7/sadc -e NAME=sadc --net=host --restart=always rhel7/sadc
/usr/local/bin/sysstat.sh
11c566e20ec995a164f815d9bb76b4b876c555f507c9f56c41f5009c9b1bebf4

After the atomic command starts, you can see the exact docker command that is run to start
the sadc container. The sadc container runs as a super privileged container. For more
information on super privileged containers, refer to Running Super Privileged Docker Containers
on a Red Hat Enterprise Linux Atomic Host.

4. Check that the container is running: Type the following to check that the sadc container is
running:

docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
11c566e20ec9 registry.access.stage.redhat.com/rhel7/sadc:7.1-3 "/usr/local/bin/syss 3
minutes ago Up 2 minutes sadc

NOTE

While "registry.access.redhat.com/rhel7/sadc:7.1-3" is the full name of the image,
including both the name of the registry from which it was downloaded and the
version of the image obtained. The actual container that is run locally, however, is
simply called "sadc". The difference between the image and container is central
to the way docker works.

5. Generate sadc data: From a shell, type the following generate some system activity data and
test that sadc is working properly:

docker exec sadc /usr/lib64/sa/sa1 1 1

6. Check that sadc worked properly: If sadc generated some system activity data, you should be
able to see it using the sar command as follows:

docker exec sadc sar
Linux 3.10.0-229.el7.x86_64 (minion1.example.com) 02/27/15 _x86_64_ (1 CPU)

09:31:25 LINUX RESTART
09:32:00 CPU %user %nice %system %iowait %steal %idle
09:32:18 all 0.86 0.00 0.92 0.00 0.00 98.22

If sadc is working, you should be able to see the data generated by the sadc command you just ran. New
data should be generated every 10 minutes. So you can run the sar command again to make sure that
data is being collected in an on-going basis.

5.6.3. Tips for Running the sadc Container

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

61

Here are some tips to help you understand a few other issues related to running the sadc container:

Running sysstat commands: You can run any of the commands in the sysstat package to view
data gathered by the sadc container. These include cifsiostat, iostat, mpstat, nfsiostat,
pidstat, sadf, and sar. Because these commands are not on the Atomic host, you must run
them using docker exec. For example:

docker exec sadc iostat

Image and Container Lifecycle
If you want to upgrade to a newer version of the Red Hat Enterprise Linux sadc Atomic
container image, it is not enough to merely download the new image with docker pull
rhel7/sadc. You must also explicitly remove the existing sadc container with the following
commands, before re-running it, in order to create a fresh container from the new image:

docker stop sadc
docker rm sadc

5.7. USING THE ATOMIC NET-SNMP CONTAINER IMAGE

The Red Hat Enterprise Linux Atomic Net-SNMP Container (Net-SNMP Container) is a docker-
formatted image that provides the Net-SNMP software suite, including an SNMP agent. Net-SNMP
allows you to set up performance monitoring of an Atomic Host system using the SNMP protocol.

Non-containerized Net-SNMP is documented in the RHEL7 System Administrator’s Guide .

5.7.1. Installing and Running the Net-SNMP Container

To install and run the Net-SNMP Container:

1. Pull the Net-SNMP Container image:

atomic pull rhel7/net-snmp

2. Install the image:

atomic install --system --system-package=no --name=net-snmp rhel7/net-snmp

Currently, Red Hat recommends using the --system-package=no option to prevent rpmbuild
from creating an RPM file during installation and to fall back to copying files to the host instead.

3. Run the Net-SNMP service:

systemctl start net-snmp

5.7.2. Running Commands in the Net-SNMP Container

When you need to run the commands, for example commands in the non-containerized Net-SNMP
documentation, they must be run inside the container:

atomic run --storage ostree net-snmp COMMAND ARGUMENTS

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

62

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-system_monitoring_tools-net-snmp
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-system_monitoring_tools-net-snmp

For example, to run snmpwalk -v3 localhost system, use:

atomic run --storage ostree net-snmp snmpwalk -v3 localhost system

5.7.3. Configuring the SNMP Agent

To configure the SNMP Agent, follow the instructions in Configuring Net-SNMP. That document shows
how to set the system information and configure authentication.

NOTE

If you want increased security, configure Net-SNMP to use version 3 of SNMP.

During configuring, you will change configuration files such as /etc/snmp/snmpd.conf and run
commands such as net-snmp-create-v3-user.

When you change configuration files:

1. Stop the net-snmp service:

systemctl stop net-snmp

2. Make changes in the configuration files.

3. Start the net-snmp service:

systemctl start net-snmp

When you run commands:

1. Make sure the net-snmp service is running:

systemctl start net-snmp

2. Run the commands.

5.7.4. Monitoring an Atomic Host System Using Net-SNMP

See Retrieving Performance Data over SNMP to learn how to access performance data about the
managed Atomic Host over SNMP.

5.7.5. Extending Net-SNMP to Provide Application Metrics

See Extending Net-SNMP for information on extending Net-SNMP to provide application metrics in
addition to the system metrics. The document shows how to extend Net-SNMP using shell scripts and
Perl scripts.

Note that RHEL Atomic Host is a containerized system, and might not support some extensions.

5.8. USING THE ATOMIC SSSD CONTAINER IMAGE

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

63

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-system_monitoring_tools-net-snmp#sect-System_Monitoring_Tools-Net-SNMP-Configuring
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-system_monitoring_tools-net-snmp#sect-System_Monitoring_Tools-Net-SNMP-Retrieving
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-system_monitoring_tools-net-snmp#sect-System_Monitoring_Tools-Net-SNMP-Extending

5.8.1. Overview

The Red Hat Enterprise Linux Atomic SSSD Container Image provides the ipa-client-install and
realmd tools for enrolling the host to an Identity Management (IdM) server or for connecting it to an
Active Directory domain. It makes it possible to run the System Security Services Daemon (SSSD) in a
container to provide identity, authentication, and authorization services to the Atomic Host itself and to
applications running in other containers on the same Atomic Host system.

Usage of the SSSD container is described in the Using Containerized Identity Management Services
guide:

For conceptual information on the SSSD container and other IdM containers, see Overview of
the Containerized Identity Management Services.

For information on using the SSSD container, see Using the sssd Container .

IdM and non-containerized SSSD are described in other Identity Management Guides:

For introduction to IdM and documentation for the ipa-client-install utility, see Linux Domain
Identity, Authentication, and Policy Guide.

For documentation for realmd and using SSSD with Active Directory, see Windows Integration
Guide. In particular, see Using Active Directory as an Identity Provider for SSSD .

For documentation for non-containerized SSSD, see System-Level Authentication Guide .

5.9. USING THE ATOMIC RHEVM-GUEST-AGENT CONTAINER IMAGE

5.9.1. Overview

The rhevm-guest-agent container image is a Docker-formatted container that is used to run an agent
inside of virtual machines on Red Hat Virtualization hosts. Communications between that agent and the
Red Hat Virtualization Manager allows that manager to both monitor and change the state of the
agent’s virtual machine.

This topic describes how to get and run the rhevm-guest-agent container.

5.9.1.1. Overview of the rhevm-guest-agent Container

A rhevm-guest-agent running inside a virtual machine on a Red Hat Virtualization host allows a Red Hat
Virtualization Manager (RHV-M) to access data and control the state of that virtual machine (VM). That
agent provides information to the RHV-M that include heart-beat data, CPU usage, IP addresses,
installed applications, and other content related to the health and processing of the virtual machine.
Likewise, through the agent, the RHEV-M can shutdown, restart or check the status of the virtual
machine.

5.9.2. Getting and Running the RHEL rhevm-guest-agent Container

To use the rhevm-guest-agent container on a RHEL or RHEL Atomic host system, you need to install it
and run it as described in the following procedure:

1. Install RHEL or RHEL Atomic Host: Install and configure a RHEL or RHEL Atomic host system
as a virtual machine in a Red Hat Virtualization environment (from the RHV Manager). The
rhevm-guest-agent is made to run on a RHEL system on a RHEV Host so it can be managed by
a RHV Manager.

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

64

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/using_containerized_identity_management_services/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/using_containerized_identity_management_services/#overview-of-the-containerized-ipa-services
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/using_containerized_identity_management_services/#using-the-sssd-container
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Windows_Integration_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Windows_Integration_Guide/SSSD-AD.html#sssd-identity
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System-Level_Authentication_Guide/index.html

2. Pull the rhevm-guest-agent container: While logged into the virtual machine, pull the rhevm-
guest-agent container as follows:

docker pull registry.access.redhat.com/rhev4/rhevm-guest-agent
Using default tag: latest
Trying to pull repository registry.access.redhat.com/rhev4/rhevm-guest-agent ...
latest: Pulling from registry.access.redhat.com/rhev4/rhevm-guest-agent
16dc1f96e3a1: Pull complete
83abca08dea6: Pull complete
Digest:
sha256:0ea0bf8729957454e1f134747d7539e37ea128f39e9757271eea4cbba8737655
Status: Downloaded newer image for registry.access.redhat.com/rhev4/rhevm-guest-
agent:latest

3. Install the rhevm-guest-agent container: Use the atomic command to install the rhevm-
guest-agent container as follows:

atomic install rhev4/rhevm-guest-agent
docker run --rm --privileged --pid=host -v /:/host -e HOST=/host -e IMAGE=rhev4/rhevm-
guest-agent -e NAME=rhevm-guest-agent rhev4/rhevm-guest-agent /usr/local/bin/ovirt-guest-
agent-install.sh
Host group is
Creating ovirtagent group on host system
Host user is
Creating ovirtagent user on host system

Notice that the process of installing the container on the hosts system includes opening
privileges to the host system and creating ovirtagent user and group accounts on the host.

4. Start the rhevm-guest-agent container: To run the RHEL rhevm-guest-agent container, use
the atomic command as follows:

atomic run rhev4/rhevm-guest-agent
docker run --privileged --pid=host --net=host -v /:/host -e HOST=/host -v /proc:/hostproc -v
/dev/virtio-ports/com.redhat.rhevm.vdsm:/dev/virtio-ports/com.redhat.rhevm.vdsm --env
container=docker --restart=always -e IMAGE=rhev4/rhevm-guest-agent -e NAME=rhevm-
guest-agent rhev4/rhevm-guest-agent

After the atomic command starts, you can see the exact docker command that is run to start
the rhevm-guest-agent container. In this case, the container is set to always restart if the service
ever goes down (--restart=always). See the "Tips" section for information about privileges that
are open to the host system.

5.9.3. Tips for Running the rhevm-guest-agent Container

Here are some tips to help you understand a few other issues related to running the rhevm-guest-agent
container:

Privileges opened: The rhevm-guest-agent is a super privileged container, opening up various
features on the host. Privileges rhevm-guest-agent opens include: --privileged (turns of
security separation, allowing root access to the host), --pid=host (allows access to host process
table), --net=host (allows access to host network interfaces), and -v /:/host (mount host’s root
file system in the container). Several other host assets are mounted inside the container as well.
For more information on the implications of opening these privileges, see Running Super-
privileged Containers.

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

65

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#running_super_privileged_containers

Viewing rhevm-guest-agent: The data made accessible by the rhevm-guest-agent can be
displayed from the Red Hat Virtualization Manager. From the RHV-M web-based interface,
select the virtual machine on which the agent is running to be able to view information collected
from the agent about the health and activity of that virtual machine.

Information, Notifications, and Actions: The rhevm-guest-agent provides information,
notifications, and actions to the RHV-M. To see details about what the rhevm-guest-agent
provides, you can view the upstream oVirt-guest-agent page.

Image and Container Lifecycle
If you want to upgrade to a newer version of the rhevm-guest-agent container image, it is not
enough to merely download the new image with docker pull. You must also explicitly remove
the existing rhevm-guest-agent container with the following commands, before re-running it, in
order to create a fresh container from the new image:

docker stop rhevm-guest-agent
docker rm rhevm-guest-agent

5.10. USING THE ATOMIC RHEL7 INIT CONTAINER IMAGE

5.10.1. Overview

The Red Hat Enterprise Linux 7 Init Image allows creating containerized services based on the systemd
init system. This container image configures systemd in an OCI container and enables running one or
more services in a RHEL7 user space using unit files, init scripts, or both.

This image is maintained by Red Hat and is updated regularly. Use this image like a regular Red Hat
Enterprise Linux 7 system. Tools such as yum, gzip, and bash are provided by default.

You never run this container. It is only used when creating your container images.

Note that behavior of containers created using this image might be different from behavior of the
corresponding application on a non-Atomic RHEL7 system.

IMPORTANT: To run the rhel7-init container on a RHEL or RHEL Atomic host system with SELinux
enabled, the container_manage_cgroup boolean must be turned on. The boolean is off by default. You
can turn that boolean on permanently by typing the following on the host system: setsebool -P
container_manage_cgroup 1

5.10.2. Getting the Atomic RHEL7 Init Container Image

To use the RHEL7 Init Atomic Container Image on a RHEL Atomic host, you need to install an Atomic
host system:

1. Install RHEL Atomic Host: To install and configure a RHEL Atomic host, refer to the
appropriate installation guide listed on the Red Hat Enterprise Linux Atomic Host Installation
and Configuration Guide.

2. Pull the RHEL7 Init Container: While logged into the RHEL Atomic host, get the RHEL7 Init
Container by running the following command:

docker pull rhel7-init

3. Allow init container to manage cgroups: Turn on the container_manage_cgroup SELinux

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

66

http://wiki.ovirt.org/documentation/internal/guest-agent/guest-agent/
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/installation-and-configuration-guide/installation-and-configuration-guide

3. Allow init container to manage cgroups: Turn on the container_manage_cgroup SELinux
boolean on the host system to allow the init image to run:

setsebool -P container_manage_cgroup 1

5.10.3. Creating Container Images based on the Atomic RHEL7 Init Container Image

To assemble a new image from the RHEL7 Init Image:

1. Create a Dockerfile that includes these entries:

FROM rhel7-init

and

RUN yum -y install <daemon> && yum clean all && systemctl enable <daemon>

Substitute <daemon> with the name of the package containing the daemon for which you are
creating the image.

For example, to create an Apache container image:

RUN yum -y install httpd && yum clean all && systemctl enable httpd

2. Assemble the image:

docker build --tag <new_container_name> <directory_containing_dockerfile>

For example, to assemble the Apache container image:

docker build -t myhttpd .

3. (optional) Run the new image:

docker run <options> <new_container_name>

For example, to run the Apache container:

docker run -d -p 80:80 --name my-httpd -v /var/log/httpd myhttpd

5.11. USING THE ATOMIC RHEL6 INIT CONTAINER IMAGE

5.11.1. Overview

The Red Hat Enterprise Linux 6 Init Image allows creating containerized services in a RHEL6-like
environment. This container image enables running one or more services in a RHEL6 user space using
init scripts. While the init system for Red Hat Enterprise Linux 6 is upstart, this image uses another init
system, so no upstart-specific feature is supported in this image.

This image is maintained by Red Hat and is updated regularly. Use this image like a regular Red Hat
Enterprise Linux 6 system. Tools such as yum, gzip, and bash are provided by default.

CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS

67

You never run this container. It is only used when creating your container images.

Note that behavior of containers created using this image might be different from behavior of the
corresponding application on a non-Atomic RHEL6 system.

5.11.2. Getting the Atomic RHEL6 Init Container Image

To use the RHEL6 Init Atomic Container Image on a RHEL Atomic host, you need to install it:

1. Install RHEL Atomic Host: To install and configure a RHEL Atomic host, refer to the
appropriate installation guide listed on the Red Hat Enterprise Linux Atomic Host Installation
and Configuration Guide.

2. Pull the RHEL6 Init Container: While logged into the RHEL Atomic host, get the RHEL6 Init
Container by running the following command:

docker pull rhel6/rhel6-init

5.11.3. Creating Container Images based on the Atomic RHEL6 Init Container Image

To assemble a new image from the RHEL6 Init Image:

1. Create a Dockerfile that includes these entries:

FROM rhel6-init

and

RUN yum -y install <daemon> && yum clean all && chkconfig <daemon> on

Substitute <daemon> with the name of the package containing the daemon for which you are
creating the image.

For example, to create an Apache container image:

RUN yum -y install httpd && yum clean all && chkconfig httpd on

2. Assemble the image:

docker build --tag <new_container_name> <directory_containing_dockerfile>

For example, to assemble the Apache container image:

docker build -t myhttpd .

3. (optional) Run the new image:

docker run <options> <new_container_name>

For example, to run the Apache container:

docker run -d -p 80:80 --name my-httpd -v /var/log/httpd myhttpd

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

68

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/installation-and-configuration-guide/installation-and-configuration-guide

CHAPTER 6. RUNNING SYSTEM CONTAINERS
System containers provide a way to containerize services that need to run before the docker daemon is
running. They use different technologies than the Docker-formatted containers, ostree for storage,
runc for runtime, skopeo for searching and systemd for service management. Previously, such services
were provided in the system as packages, or as part of the ostree in Atomic Host. Excluding applications
from the Atomic Host system and containerizing them makes the system itself smaller. Red Hat
provides the etcd and flannel services as system containers.

NOTE

To use the system containers on Atomic Host, you need to have the atomic command-
line tool version 1.12 or later, along with ostree and runc utilities (all of which are included
on the latest version of Atomic Host). To use system containers on RHEL Server systems,
you must be running at least RHEL 7.3.3 (because the ostree package was not available
on RHEL server until that release).

Because they are not Docker-formatted containers, you do not use the docker command for container
management. The atomic command-line tool and systemd are used to pull, install and manage system
containers. Here is a brief comparison between how you pull, install and run docker containers and
system containers.

docker

1. docker pull rhel7/rsyslog

2. atomic install rhel7/syslog

3. atomic run rhel7/rsyslog

system containers

1. atomic pull --storage=ostree rhel7/etcd

2. atomic install --system [--set=VARIABLE] rhel7/etcd (you will notice this command also
runs systemctl start etcd)

The atomic install command supports several options to configure the settings for system containers.
The --set option is used to pass variables which you would normally set for this service. These variables
are stored in the manifest.json file.

To uninstall a system image, use:

atomic containers delete rhel7/etcd
atomic uninstall rhel7/etcd

System containers use runc as runtime, and docker and runc images are stored in different places on
the system: /var/lib/containers/atomic/$NAME and /etc/systemd/system/$NAME.service
respectively.

Therefore, when you use docker images and docker ps you will only see the Docker-formatted
containers. The atomic tool will show all containers on the system:

atomic containers list -a
 CONTAINER ID IMAGE COMMAND CREATED STATUS RUNTIME

CHAPTER 6. RUNNING SYSTEM CONTAINERS

69

 etcd rhel7/etcd /usr/bin/etcd-env.sh 2016-10-13 14:21 running runc
 flannel rhel7/flannel /usr/bin/flanneld-ru 2016-10-13 15:12 failed runc
 1cf730472572 rhel7/cockpit-ws /container/atomic-ru 2016-10-13 17:55 exited Docker
 9a2bb24e5978 rhel7/rsyslog /bin/rsyslog.sh 2016-10-13 17:49 created Docker
 34f95af8f8f9 rhel7/cockpit-ws /container/atomic-ru 2016-09-27 19:10 exited Docker

Note that unlike docker containers, where the services are managed by the docker daemon, with system
containers you have to manage the dependencies between the services yourself. For example, flannel is
a dependency for etcd and when you run flannel, it checks whether etcd is set up (if it is not, flannel will
wait).

System containers require root privileges. Because runc requires root, containers also run as the root
user.

6.1. USING THE ETCD SYSTEM CONTAINER IMAGE

6.1.1. Overview

The etcd service provides a highly-available key value store that can be used by applications that need
to access and share configuration and service discovery information. Applications that use etcd include
Kubernetes, flannel, OpenShift, fleet, vulcand, and locksmith.

The etcd container described here is what is referred to as a system container. A system container is
designed to come up before the docker service or in a situation where no docker service is available. In
this case, the etcd container can be used to bring up a keystore for the flannel system container, both of
which can then be in place to provide networking services before the docker service comes up.

Prior to RHEL Atomic 7.3.2, there were two containerized versions of the etcd services maintained by
Red Hat: etcd 2 (etcd container) and etcd 3 (etcd3 container). With 7.3.2, etcd 2 has been deprecated
and etcd 3 is the only supported version of etcd. So the only available etcd container is:

etcd: This is based on etcd version 3.

SUPPORT FOR ETCD

Along with the etcd 3 container, the etcd3 rpm package is also deprecated. Going
forward, Red Hat expects to maintain only one version of etcd at a time. For RHEL
Atomic 7.3.2, system containers in general and the etcd container specifically in
supported as Tech Preview only.

Besides bypassing the docker service, this etcd container can also bypass the docker command and the
storage area used to hold docker containers by default. To use the container, you need a combination of
commands that include atomic (to pull, list, install, delete and unstall the image), skopeo (to inspect the
image), runc (to ultimately run the image) and systemctl to manage the image among your other
systemd services.

Here are some of the features of the etcd container:

Supports atomic pull: Use the atomic pull command to pull the container to your system.

Supports atomic install: Use the atomic install --system command to set up the etcd service
to run as a systemd service.

Configures the etcd service: When the etcd service starts, a set of ETCD environment

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

70

https://github.com/coreos/etcd/
http://kubernetes.io/
https://github.com/coreos/flannel
https://access.redhat.com/documentation/en/openshift-container-platform/
https://github.com/coreos/fleet
https://github.com/vulcand/vulcand
https://github.com/coreos/locksmith

Configures the etcd service: When the etcd service starts, a set of ETCD environment
variables are exported. Those variables identify the location of the etcd data directory and set
the IP addresses and ports the etcd service listens on.

System container: After you have used the atomic command to install the etcd container, you
can use the systemd systemctl command to manage the service.

6.1.2. Getting and Running the etcd System Container

To use an etcd system container image on a RHEL Atomic system, you need to pull it, install it and
enable it. There identity of the currently supported etcd container is:

registry.access.redhat.com/rhel7/etcd

The procedure below illustrates how to pull, install, and run the etcd container.

1. Pull the etcd container: While logged into the RHEL Atomic system, get the etcd container by
running the following command:

atomic pull --storage=ostree registry.access.redhat.com/rhel7/etcd
Image rhel7/etcd is being pulled to ostree ...
Pulling layer 2bf01635e2a0f7ed3800c8cb3effc5ff46adc6b9b86f0e80743c956371efe553
Pulling layer 38bd6ce6e1f2271d48ecb41a70a86122060ea91871a154b37d54ec66f593706f
Pulling layer 852368668be3e36086ae7a47c8b9e40b5ca87819b3200bc83d7a2f95b73f0f12
Pulling layer e5d06327f2054d371f725243b619d66982c8d4589c1caa19bfcc23a93cf6b4d2
Pulling layer 82e7326c732857423e13163ff1e41ad63b3e2bddef8809175f89dec25f58b6ee
Pulling layer b65a93c9f67115dc4c9da8dfeee63b58ec52c6ea58ff7f727b00d932d1f4e8f5

This pulls the etcd system container from the Red Hat Registry to the ostree storage area on
the local system. By setting ostree storage, the docker storage area is not used and the docker
daemon and docker command won’t see the pulled etcd container image.

2. Install the etcd container: Type the following to do a default installation of the etcd container
so it is set up as a systemd service.

NOTE

Before running atomic install, refer to "Configuring etcd" to see options you
could add to the atomic install command to change it from the default install
shown here.

atomic install --system rhel7/etcd
Extracting to /var/lib/containers/atomic/etcd.0
systemctl daemon-reload
systemd-tmpfiles --create /etc/tmpfiles.d/etcd.conf
systemctl enable etcd

3. Start the etcd service: Use the systemctl command to start the installed etcd service as you
would any other systemd service.

systemctl start etcd

4. Check etcd with runc: To make sure the etcd container is running, you can use the runc list

CHAPTER 6. RUNNING SYSTEM CONTAINERS

71

4. Check etcd with runc: To make sure the etcd container is running, you can use the runc list
command as you would use docker ps to see containers running under docker:

runc list
ID PID STATUS BUNDLE CREATED
etcd 4521 running /sysroot/ostree/deploy... 2016-10-25T22:58:13.756410403Z

5. Test that the etcd service is working: You can use the curl command to set and retrieve keys
from your etcd service. This example assigns a value to a key called testkey, then retrieves that
value:

curl -L http://127.0.0.1:2379/v2/keys/testkey -XPUT -d value="testing my etcd"
{"action":"set","node":{"key":"/testkey","value":"testing my
etcd","modifiedIndex":6,"createdIndex":6}}
curl -L http://127.0.0.1:2379/v2/keys/testkey
{"action":"get","node":{"key":"/testkey","value":"testing my
etcd","modifiedIndex":6,"createdIndex":6}}

Note that the first action does a set to set the key and the second does a get to return the value of the
key.

The "Configuring etcd" section shows ways of setting up the etcd service in different ways.

6.1.3. Configuring etcd

You can change how the etcd service is configured on the atomic install command line or after it is
running using the runc command.

6.1.3.1. Configuring etcd during "atomic install"

The correct way to configure the etcd container image is when you first run atomic install. Setting that
are defined initially in the /etc/etcd/etcd.conf file inside of the container can be overridden on the
atomic install command line using the --set option. For example, this example shows how to reset the
value of ETCD_ADVERTISE_CLIENT_URLS value:

atomic install --system --set ETCD_ADVERTISE_CLIENT_URLS="http://192.168.122.55:2379"
rhel/etcd

Here is the list of other values and setting in the etcd.conf file that you can change on the atomic
install command line. See the etcd.conf.yaml.sample page for descriptions of these settings.

[member]
ETCD_NAME=default
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
#ETCD_WAL_DIR=""
#ETCD_SNAPSHOT_COUNT="10000"
#ETCD_HEARTBEAT_INTERVAL="100"
#ETCD_ELECTION_TIMEOUT="1000"
#ETCD_LISTEN_PEER_URLS="http://localhost:2380"
ETCD_LISTEN_CLIENT_URLS="http://localhost:2379"
#ETCD_MAX_SNAPSHOTS="5"
#ETCD_MAX_WALS="5"
#ETCD_CORS=""
#[cluster]

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

72

https://github.com/coreos/etcd/blob/master/etcd.conf.yml.sample

#ETCD_INITIAL_ADVERTISE_PEER_URLS="http://localhost:2380"
if you use different ETCD_NAME (e.g. test), set ETCD_INITIAL_CLUSTER value for this name, i.e.
"test=http://..."
#ETCD_INITIAL_CLUSTER="default=http://localhost:2380"
#ETCD_INITIAL_CLUSTER_STATE="new"
#ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_ADVERTISE_CLIENT_URLS="http://localhost:2379"
#ETCD_DISCOVERY=""
#ETCD_DISCOVERY_SRV=""
#ETCD_DISCOVERY_FALLBACK="proxy"
#ETCD_DISCOVERY_PROXY=""
#ETCD_STRICT_RECONFIG_CHECK="false"
#[proxy]
#ETCD_PROXY="off"
#ETCD_PROXY_FAILURE_WAIT="5000"
#ETCD_PROXY_REFRESH_INTERVAL="30000"
#ETCD_PROXY_DIAL_TIMEOUT="1000"
#ETCD_PROXY_WRITE_TIMEOUT="5000"
#ETCD_PROXY_READ_TIMEOUT="0"
#[security]
#ETCD_CERT_FILE=""
#ETCD_KEY_FILE=""
#ETCD_CLIENT_CERT_AUTH="false"
#ETCD_TRUSTED_CA_FILE=""
#ETCD_PEER_CERT_FILE=""
#ETCD_PEER_KEY_FILE=""
#ETCD_PEER_CLIENT_CERT_AUTH="false"
#ETCD_PEER_TRUSTED_CA_FILE=""
#[logging]
#ETCD_DEBUG="false"
examples for -log-package-levels etcdserver=WARNING,security=DEBUG
#ETCD_LOG_PACKAGE_LEVELS=""
#[profiling]
#ETCD_ENABLE_PPROF="false"

6.1.3.2. Configuring etcd security settings

The etcd service is configured with authentication and encryption disabled by default. Because etcd is
initially configured to listen to localhost only, the lack of security becomes much more of an issue when
the etcd service is exposed to nodes that are outside of the local host. Remote attackers will have
access to passwords and secret keys.

In general, here is what you need to do to configure a secure, multi-node etcd cluster service:

1. Create TLS certificates and a signed key pair for every member in a cluster, as described in The
etcd Security Model.

2. Identify the certificates and keys in the /etc/etcd/etcd.conf file.

3. Open the firewall to allow access to TCP ports 7379 (client communication) and 7380 (server-
to-server communication).

4. Install and run the etcd service (see atomic install --system rhel7/etcd as described earlier)

6.1.3.3. Configuring etcd with "runc"

CHAPTER 6. RUNNING SYSTEM CONTAINERS

73

https://coreos.com/etcd/docs/latest/op-guide/security.html

With the etcd container running, you can configure settings in the etcd container using the runc exec
command. For example, you could run the etcdctl command inside the etcd container to change the
network range set by the Network value in the etcd keystore (used later by the flannel service) with the
following command:

runc exec etcd etcdctl set /atomic.io/network/config '{"Network":"10.40.0.0/16"}'
runc exec etcd etcdctl get /atomic.io/network/config
{"Network":"10.40.0.0/16"}

The example just shown illustrates the runc exec command running etcdctl set at first to set the
Network value. After that, runc executes the etcdctl get command to get configuration information.

6.1.4. Tips for Running etcd Container

If you are done with the etcd container image, you can remove it with the atomic uninstall command:

atomic uninstall etcd

For more information on system containers, see Introduction to System Containers .

6.2. USING THE FLANNEL SYSTEM CONTAINER IMAGE

6.2.1. Overview

The flannel service was designed to provide virtual subnets for use among container hosts. Using flannel,
Kubernetes (or other container platforms) can ensure that each container pod has a unique address that
is routable within a Kubernetes cluster. As a result, the job of finding ports and services between
containers is simpler.

The flannel container described here is what is referred to as a system container. A system container is
designed to come up before the docker service or in a situation where no docker service is available. In
this case, the flannel container is meant to be brought up after the etcd service (also available as a
system container) and before docker and kubernetes services to provide virtual subnets that the later
services can leverage.

Besides bypassing the docker service, the flannel container can also bypass the docker command and
the storage area used to hold docker containers by default. To use the container, you need a
combination of commands that include atomic (to pull, list, install, delete and unstall the image), skopeo
(to inspect the image), runc (to ultimately run the image) and systemctl to manage the image among
your other systemd services.

NOTE

For RHEL 7.3, system containers in general and the flannel container specifically are
supported as Tech Preview only.

Here are some of the features of the flannel container:

Supports atomic pull: Use the atomic pull --storage=ostree" command to pull the container
to the ostree storage area, instead of default docker storage, on your system.

Supports atomic install: Use the atomic install --system command to set up the flannel
service to run as a systemd service.

Configures the flannel service: When the flannel service starts, configuration data are stored

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

74

http://www.projectatomic.io/blog/2016/09/intro-to-system-containers/
https://github.com/coreos/flannel/

Configures the flannel service: When the flannel service starts, configuration data are stored
for flannel in the etcd keystore. To configure flannel, you can use the runc command to run an
etcdctl command to configure flannel settings inside the etcd container.

System container: After you have used the atomic command to install the flannel container,
you can use the systemd systemctl command to manage the service.

6.2.2. Getting and Running the RHEL flannel System Container

To use the flannel system container image on a RHEL system, you need to pull it, install it and enable it,
as described in the following procedure:

1. Pull and run the etcd container: The flannel container is dependent on there being an available
etcd keystore. See Using the etcd System Container Image for information on pulling, installing,
and running the etcd system container before setting up the flannel system container.

2. Pull the flannel container: While logged into the RHEL system, get the RHEL etcd container by
running the following command:

atomic pull --storage=ostree rhel7/flannel
Image rhel7/flannel is being pulled to ostree ...
Pulling layer 2bf01635e2a0f7ed3800c8cb3effc5ff46adc6b9b86f0e80743c956371efe553
Pulling layer 38bd6ce6e1f2271d48ecb41a70a86122060ea91871a154b37d54ec66f593706f
...

This pulls the flannel system container from the Red Hat registry to the ostree storage area on
the local system. By setting ostree storage, the docker storage area is not used and the docker
daemon and docker command won’t see the pulled flannel container image.

3. Install the flannel container: Type the following to do a default installation of the flannel
container so it is set up as a systemd service. See "Configuring flannel" to see options you could
add to the atomic install command to change it from the default install shown here.

atomic install --system rhel7/flannel
Extracting to /var/lib/containers/atomic/flannel.0
systemctl daemon-reload
systemd-tmpfiles --create /etc/tmpfiles.d/flannel.conf
systemctl enable flannel

4. Start the flannel service: Use the systemctl command to start the installed etcd service as you
would any other systemd service.

systemctl start flannel

5. Check etcd and flannel with runc: To make sure the flannel and etcd containers are running,
you can use the runc list command as you would use docker ps to see containers running under
docker:

runc list
ID PID STATUS BUNDLE CREATED
etcd 4521 running /sysroot/ostree/deploy... 2016-10-25T22:58:13.756410403Z
flannel 6562 running /sysroot/ostree/deploy... 2016-10-26T13:50:49.041148994Z

6. Test that the flannel service is working: If the flannel service is working properly, the next time
you start up the docker0 network interface, the docker network interface should pick up an

CHAPTER 6. RUNNING SYSTEM CONTAINERS

75

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/single/getting-started-with-containers/#using_the_etcd_system_container_image

address range from those assigned by flannel. After starting flannel and before restarting
docker, run these commands:

ip a | grep docker | grep inet
 inet 172.17.0.1/16 scope global docker0
systemctl reboot
ip a | grep docker | grep inet
 inet 10.40.4.1/24 scope global docker0

Note that the docker0 interface picks up an address in the address range assigned by flannel and will,
going forward, assign containers to addresses in the 10.40.4.0/24 address range.

The "Configuring flannel" section shows ways of setting up the etcd service in different ways.

6.2.3. Configuring flannel

You can change how the flannel service is configured on the atomic install command line or after it is
running using the runc command.

6.2.3.1. Configuring etcd during "atomic install"

Environment variables that that are defined initially when the flannel container starts up can be
overridden on the atomic install command line using the --set option. For example, this example shows
how to reset the value of FLANNELD_ETCD_ENDPOINTS:

atomic install --system --set FLANNELD_ETCD_ENDPOINTS="http://192.168.122.55:2379"
rhel7/flannel

This is how two of these variables are set by default:

FLANNELD_ETCD_ENDPOINTS=http://127.0.0.1:2379: Identifies the location of the etcd
service IP address and port number.

FLANNELD_ETCD_PREFIX=/atomic.io/network: Identifies the location of flannel values in
the etcd keystore.

Here is the list of other values that you can change on the atomic install command line. See the Key
Command Line Options and Environment Variables sections of the Flannel Github page for descriptions
of these settings.

* *FLANNELD_PUBLIC_IP*
* *FLANNELD_ETCD_ENDPOINTS*
* *FLANNELD_ETCD_PREFIX*
* *FLANNELD_ETCD_KEYFILE*
* *FLANNELD_ETCD_CERTFILE*
* *FLANNELD_ETCD_CAFILE*
* *FLANNELD_IFACE*
* *FLANNELD_SUBNET_FILE*
* *FLANNELD_IP_MASQ*
* *FLANNELD_LISTEN*
* *FLANNELD_REMOTE*
* *FLANNELD_REMOTE_KEYFILE*
* *FLANNELD_REMOTE_CERTFILE*
* *FLANNELD_REMOTE_CAFILE*
* *FLANNELD_NETWORKS*

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

76

https://github.com/coreos/flannel

6.2.3.2. Configuring flannel with "runc"

Flannel settings that are stored in the etcd keystore can be changed by executing etcdctl commands in
the etcd container. Here’s an example of how to change the Network value in the etcd keystore so that
flannel uses a different set of IP address ranges.

runc exec etcd etcdctl set /atomic.io/network/config '{"Network":"10.40.0.0/16"}'
runc exec etcd etcdctl get /atomic.io/network/config
{"Network":"10.40.0.0/16"}

The example just shown illustrates the runc exec command running etcdctl set at first to set the
Network value. After that, runc executes the etcdctl get command to get configuration information.

6.2.4. Tips for Running flannel Container

If you are done with the flannel container image, you can remove it with the atomic uninstall command:

atomic uninstall flannel

For more information on system containers, see Introduction to System Containers .

6.3. USING THE OVIRT-GUEST-AGENT SYSTEM CONTAINER IMAGE
FOR RED HAT VIRTUALIZATION

6.3.1. Overview

The ovirt-guest-agent container launches the Red Hat Virtualization (RHV) management agent. This
container is made to be deployed on Red Hat Enterprise Linux virtual machines that are running in a RHV
environment. The agent provides an interface to the RHV manager that supplies heart-beat and other
run-time data from inside the guest VM. The RHV manager can send control commands to shutdown,
restart and otherwise change the state of the virtual machine through the agent.

The overt-guest-agent is added automatically to the Red Hat Atomic Image for RHV, which is an OVA-
formatted image made for RHEV environments. You can download the image from the Red Hat
Enterprise Linux Atomic Host download page. Or, you can get and run the container image manually on
a RHEL Server or RHEL Atomic Host virtual machine you install yourself.

The ovirt-guest-agent container is a system container. System containers are designed to come up
before the docker service or in a situation where no docker service is available. In this case, the ovirt-
guest-agent allows the RHV manager to change the state of the virtual machine on which it is running
whether the docker service is running or not.

Here are some of the features of the ovirt-guest-agent container:

Supports atomic pull: Use the atomic pull command to pull the ovirt-guest-agent container to
your system.

Supports atomic install: Use the atomic install --system command to set up the ovirt-guest-
agent service to run as a systemd service.

System container: After you have used the atomic command to install the ovirt-guest-agent
container, you can use the systemd systemctl command to manage the service.

Note that the ovirt-guest-agent container image is not made to run in environments other than a RHEL

CHAPTER 6. RUNNING SYSTEM CONTAINERS

77

http://www.projectatomic.io/blog/2016/09/intro-to-system-containers/
https://access.redhat.com/downloads/content/271/ver=/rhel---7/latest/x86_64/product-software

Note that the ovirt-guest-agent container image is not made to run in environments other than a RHEL
or RHEL Atomic virtual machine in a RHV environment.

6.3.2. Getting and Running the ovirt-guest-agent System Container

To use an ovirt-guest-agent system container image on a RHEL Server or RHEL Atomic system, you
need to pull it, install it and enable it. The identity of the currently supported ovirt-guest-agent
container is:

registry.access.redhat.com/rhev4/ovirt-guest-agent

The procedure below illustrates how to pull, install, and run the ovirt-guest-agent container.

1. Pull the ovirt-guest-agent container: While logged into the RHEL or RHEL Atomic system, get
the ovirt-guest-agent container by running the following command:

atomic pull --storage=ostree registry.access.redhat.com/rhev4/ovirt-guest-agent

This pulls the ovirt-guest-agent system container from the Red Hat Registry to the ostree
storage area on the local system. By setting ostree storage, the docker storage area is not used
and the docker daemon and docker command won’t see the pulled ovirt-guest-agent container
image.

2. Install the ovirt-guest-agent container: Type the following to do a default installation of the
ovirt-guest-agent container so it is set up as a systemd service.

atomic install --system rhel7/ovirt-guest-agent
Extracting to /var/lib/containers/atomic/ovirt-guest-agent.0
systemctl daemon-reload
systemd-tmpfiles --create /etc/tmpfiles.d/ovirt-guest-agent.conf
systemctl enable ovirt-guest-agent

3. Start the ovirt-guest-agent service: Use the systemctl command to start and enable the
installed ovirt-guest-agent service as you would any other systemd service.

systemctl start ovirt-guest-agent
systemctl enable ovirt-guest-agent

4. Check ovirt-guest-agent with runc: To make sure the ovirt-guest-agent container is running,
you can use the runc list command as you would use docker ps to see containers running under
docker:

runc list
ID PID STATUS BUNDLE CREATED
ovirt-guest-agent 4521 running /sysroot/ostree/de... 2017-04-07T21:01:07.279104535Z

6.3.3. Removing the ovirt-guest-agent Container and Image

If you are done with the ovirt-guest-agent container image, you can stop and remove the container,
then uninstall the image:

atomic containers delete ovirt-guest-agent
Do you wish to delete the following images?

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

78

 ID NAME IMAGE_NAME STORAGE
 ovirt-guest- ovirt-guest-agent registry.access.redhat.com ostree

Confirm (y/N) y
systemctl stop ovirt-guest-agent
systemctl disable ovirt-guest-agent
systemd-tmpfiles --remove /etc/tmpfiles.d/ovirt-guest-agent.conf
atomic uninstall registry.access.redhat.com/rhev4/ovirt-guest-agent
Do you wish to delete the following images?

 IMAGE STORAGE
 registry.access.redhat.com/rhev4/ovirt-guest-agent ostree
Confirm (y/N) y

For more information on system containers, see Introduction to System Containers .

6.4. USING THE OPEN-VM-TOOLS SYSTEM CONTAINER IMAGE FOR
VMWARE

6.4.1. Overview

The open-vm-tools container provides services and modules that allow VMware technology to manage
and otherwise work with Red Hat Enterprise Linux and RHEL Atomic Host virtual machines running in
VMware environments. Kernel modules included in this container are made to improve performance of
RHEL systems running as VMware guests. Services provided by this container include:

Graceful power operations

Script execution on guests during power operations

Enhanced guest automation via custom programs or file system operations

Guest authentication

Guest network, memory, and disk usage information collection

Guest heartbeat generation, used to determine if guests are available

Guest, host, and client desktop clock synchronization

Host access to obtain file-system-consistent guest file system snapshots

Guest script execution associated with quiescing guest file systems (pre-freeze and post-thaw)

Guest customization opportunities after guests power up

File folder sharing between VMware (Workstation or Fusion) and guest system

Text, graphics, and file pasting between guests, hosts and client desktops

The open-vm-tools container is a system container, designed to come up before the docker service or in
a situation where no docker service is available. In this case, the open-vm-tools container allows VMware
technologies to manage the RHEL or RHEL Atomic virtual machines on which it is running whether the
docker service is running or not.

CHAPTER 6. RUNNING SYSTEM CONTAINERS

79

http://www.projectatomic.io/blog/2016/09/intro-to-system-containers/

Here are some of the features of the open-vm-tools container on the RHEL guest system:

Supports atomic pull: Use the atomic pull command to pull the open-vm-tools container to
your system.

Supports atomic install: Use the atomic install --system command to set up the open-vm-
tools service to run as a systemd service.

System container: After you have used the atomic command to install the open-vm-tools
container, you can use the systemd systemctl command to manage the service.

Note that the open-vm-tools container image is not made to run in environments other than a RHEL or
RHEL Atomic virtual machine in a VMware environment.

6.4.2. Getting and Running the open-vm-tools System Container

To use an open-vm-tools system container image on a RHEL Server or RHEL Atomic system, you need
to pull it, install it and enable it. The identity of the currently supported open-vm-tools container is:

registry.access.redhat.com/rhel7/open-vm-tools

The procedure below illustrates how to pull, install, and run the open-vm-tools container.

1. Pull the open-vm-tools container: While logged into the RHEL or RHEL Atomic system, get
the open-vm-tools container by running the following command:

atomic pull --storage=ostree registry.access.redhat.com/rhel7/open-vm-tools

This pulls the open-vm-tools system container from the Red Hat Registry to the ostree storage
area on the local system. By setting ostree storage, the docker storage area is not used and the
docker daemon and docker command won’t see the pulled open-vm-tools container image.

2. Install the open-vm-tools container: Type the following to do a default installation of the
open-vm-tools container so it is set up as a systemd service.

atomic install --system rhel7/open-vm-tools
Extracting to /var/lib/containers/atomic/open-vm-tools.0
systemctl daemon-reload
systemd-tmpfiles --create /etc/tmpfiles.d/open-vm-tools.conf
systemctl enable open-vm-tools

3. Start the open-vm-tools service: Use the systemctl command to start and enable the installed
open-vm-tools service as you would any other systemd service.

systemctl start open-vm-tools
systemctl enable open-vm-tools

4. Check open-vm-tools with runc: To make sure the open-vm-tools container is running, you
can use the runc list command as you would use docker ps to see containers running under
docker:

runc list
ID PID STATUS BUNDLE CREATED
open-vm-tools 4521 running /sysroot/ostree/de... 2017-04-07T18:03:01.913246491Z

Red Hat Enterprise Linux Atomic Host 7 Managing Containers

80

6.4.3. Removing the open-vm-tools Container and Image

If you are done with the open-vm-tools container image, you can stop and remove the container, then
uninstall the image:

atomic containers delete open-vm-tools
Do you wish to delete the following images?

 ID NAME IMAGE_NAME STORAGE
 ovirt-guest- open-vm-tools registry.access.redhat.com ostree

Confirm (y/N) y
systemctl stop open-vm-tools
systemctl disable open-vm-tools
systemd-tmpfiles --remove /etc/tmpfiles.d/open-vm-tools.conf
atomic uninstall registry.access.redhat.com/rhel7/open-vm-tools
Do you wish to delete the following images?

 IMAGE STORAGE
 registry.access.redhat.com/rhel7/open-vm-tools ostree
Confirm (y/N) y

To learn more about how the open-vm-tools container was built, refer to Containerizing open-vm-tools.
Using the instructions in that article allows you to build your own open-vm-tools container, using custom
configuration settings. For more information on system containers, see Introduction to System
Containers.

CHAPTER 6. RUNNING SYSTEM CONTAINERS

81

https://developers.redhat.com/blog/2017/03/23/containerizing-open-vm-tools-part-1-the-dockerfile-and-constructing-a-systemd-unit-file/
http://www.projectatomic.io/blog/2016/09/intro-to-system-containers/

	Table of Contents
	CHAPTER 1. FINDING, RUNNING, AND BUILDING CONTAINERS WITH PODMAN, SKOPEO, AND BUILDAH
	1.1. OVERVIEW
	1.2. RUNNING CONTAINERS AS ROOT OR ROOTLESS
	1.2.1. Set up for rootless containers
	1.2.2. Upgrade to rootless containers
	1.2.3. Special considerations for rootless

	1.3. USING PODMAN TO WORK WITH CONTAINERS
	1.3.1. Installing podman
	1.3.2. Running containers with podman
	1.3.3. Trying basic podman commands
	1.3.3.1. Pull a container image to the local system
	1.3.3.2. List local container images
	1.3.3.3. Run a container image
	1.3.3.4. List containers that are running or have exited
	1.3.3.5. Remove a container or image
	1.3.3.6. Remove a container image by its image ID or name (use -f to force):
	1.3.3.7. Build a container

	1.4. RUNNING CONTAINERS WITH RUNC
	1.4.1. Installing and running containers

	1.5. USING SKOPEO TO WORK WITH CONTAINER REGISTRIES
	1.5.1. Inspecting container images with skopeo
	1.5.2. Copying container images with skopeo
	1.5.3. Getting image layers with skopeo

	1.6. BUILDING CONTAINER IMAGES WITH BUILDAH
	1.6.1. Understanding Buildah
	1.6.2. Installing Buildah
	1.6.3. Getting Images with buildah
	1.6.4. Building an Image from a Dockerfile with Buildah
	1.6.5. Running a Container with Buildah
	1.6.6. Inspecting a Container with buildah
	1.6.7. Modifying a Container to Create a new Image with Buildah
	1.6.7.1. Using buildah mount to Modify a Container
	1.6.7.2. Using buildah copy and buildah config to Modify a Container

	1.6.8. Creating images from scratch with Buildah
	1.6.9. Removing Images or Containers with Buildah
	1.6.10. Using container registries with Buildah
	1.6.10.1. Pushing containers to a private registry
	1.6.10.2. Pushing containers to the Docker Hub

	CHAPTER 2. MANAGING STORAGE WITH DOCKER-FORMATTED CONTAINERS
	2.1. OVERVIEW
	2.2. USING CONTAINER-STORAGE-SETUP
	2.2.1. LVM thin pool in the volume group containing the root volume
	2.2.2. LVM thin pool in a user specified volume group
	2.2.3. Setting up a volume group and LVM thin pool on user specified block device

	2.3. MANAGING STORAGE IN RED HAT ENTERPRISE LINUX
	2.3.1. How to Leave Space in the Volume Group Backing Root During Installation
	2.3.1.1. GUI Installation
	2.3.1.2. Kickstart Installation

	2.4. MANAGING STORAGE IN RED HAT ENTERPRISE LINUX ATOMIC HOST
	2.4.1. Contents of the Atomic Host filesystem
	2.4.2. Changing the Default Size of the Root Partition During Installation
	2.4.3. Changing the Size of the Root Partition After Installation
	2.4.3.1. How to extend the Root Partition to use free space in volume group
	2.4.3.2. How to Add Additional Storage to the Host and Extend the Root Partition
	2.4.3.3. How to Extend the Root Partition Without Adding More Storage

	2.5. CHANGING STORAGE CONFIGURATION
	2.6. USING THE OVERLAY GRAPH DRIVER
	2.7. INCREASING THE BASE DEVICE SIZE
	2.8. RESETTING STORAGE FOR CONTAINERS
	2.9. STORAGE BACKUP GUIDELINES
	2.10. ADDITIONAL INFORMATION ABOUT STORAGE

	CHAPTER 3. SIGNING CONTAINER IMAGES
	3.1. GETTING CONTAINER SIGNING SOFTWARE
	3.2. CREATING IMAGE SIGNATURES
	3.2.1. Create GPG Keys
	3.2.2. Creating an Image Signature

	3.3. SET UP TO DO IMAGE SIGNING
	3.4. CREATING A SIGNATURE FOR AN IMAGE IN A REPOSITORY
	3.5. CREATING AN IMAGE SIGNATURE AT PUSH TIME
	3.6. SHARING THE SIGNATURE STORE
	3.7. VALIDATING AND TRUSTING SIGNED IMAGES
	3.8. VALIDATING SIGNED IMAGES FROM RED HAT
	3.9. UNDERSTANDING IMAGE SIGNING CONFIGURATION FILES
	3.9.1. policy.json file
	3.9.2. whatever.yaml

	CHAPTER 4. RUNNING CONTAINERS AS SYSTEMD SERVICES WITH PODMAN
	4.1. STARTING CONTAINERS WITH SYSTEMD
	4.2. STARTING SERVICES WITHIN A CONTAINER USING SYSTEMD

	CHAPTER 5. RUNNING SUPER-PRIVILEGED CONTAINERS
	5.1. OVERVIEW
	5.2. RUNNING PRIVILEGED CONTAINERS
	5.2.1. Understanding Name Spaces in Privileged Containers

	5.3. USING THE ATOMIC TOOLS CONTAINER IMAGE
	5.3.1. Overview
	5.3.2. Getting and Running the RHEL Tools Container
	5.3.3. Running Commands from the RHEL Tools Container
	5.3.4. More Information About Running RHEL Tools Container

	5.4. USING THE ATOMIC SUPPORT TOOLS CONTAINER IMAGE
	5.4.1. How It Is Different from RHEL Atomic Tools
	5.4.2. Getting and Running the Support Tools Container
	5.4.3. Running Commands from the Support Tools Container

	5.5. USING THE ATOMIC RSYSLOG CONTAINER IMAGE
	5.5.1. Overview
	5.5.2. Getting and Running the RHEL rsyslog Container
	5.5.3. Tips for Running rsyslog Container

	5.6. USING THE ATOMIC SYSTEM ACTIVITY DATA COLLECTOR (SADC) CONTAINER IMAGE
	5.6.1. Overview
	5.6.2. Getting and Running the RHEL sadc Container
	5.6.3. Tips for Running the sadc Container

	5.7. USING THE ATOMIC NET-SNMP CONTAINER IMAGE
	5.7.1. Installing and Running the Net-SNMP Container
	5.7.2. Running Commands in the Net-SNMP Container
	5.7.3. Configuring the SNMP Agent
	5.7.4. Monitoring an Atomic Host System Using Net-SNMP
	5.7.5. Extending Net-SNMP to Provide Application Metrics

	5.8. USING THE ATOMIC SSSD CONTAINER IMAGE
	5.8.1. Overview

	5.9. USING THE ATOMIC RHEVM-GUEST-AGENT CONTAINER IMAGE
	5.9.1. Overview
	5.9.1.1. Overview of the rhevm-guest-agent Container

	5.9.2. Getting and Running the RHEL rhevm-guest-agent Container
	5.9.3. Tips for Running the rhevm-guest-agent Container

	5.10. USING THE ATOMIC RHEL7 INIT CONTAINER IMAGE
	5.10.1. Overview
	5.10.2. Getting the Atomic RHEL7 Init Container Image
	5.10.3. Creating Container Images based on the Atomic RHEL7 Init Container Image

	5.11. USING THE ATOMIC RHEL6 INIT CONTAINER IMAGE
	5.11.1. Overview
	5.11.2. Getting the Atomic RHEL6 Init Container Image
	5.11.3. Creating Container Images based on the Atomic RHEL6 Init Container Image

	CHAPTER 6. RUNNING SYSTEM CONTAINERS
	6.1. USING THE ETCD SYSTEM CONTAINER IMAGE
	6.1.1. Overview
	6.1.2. Getting and Running the etcd System Container
	6.1.3. Configuring etcd
	6.1.3.1. Configuring etcd during "atomic install"
	6.1.3.2. Configuring etcd security settings
	6.1.3.3. Configuring etcd with "runc"

	6.1.4. Tips for Running etcd Container

	6.2. USING THE FLANNEL SYSTEM CONTAINER IMAGE
	6.2.1. Overview
	6.2.2. Getting and Running the RHEL flannel System Container
	6.2.3. Configuring flannel
	6.2.3.1. Configuring etcd during "atomic install"
	6.2.3.2. Configuring flannel with "runc"

	6.2.4. Tips for Running flannel Container

	6.3. USING THE OVIRT-GUEST-AGENT SYSTEM CONTAINER IMAGE FOR RED HAT VIRTUALIZATION
	6.3.1. Overview
	6.3.2. Getting and Running the ovirt-guest-agent System Container
	6.3.3. Removing the ovirt-guest-agent Container and Image

	6.4. USING THE OPEN-VM-TOOLS SYSTEM CONTAINER IMAGE FOR VMWARE
	6.4.1. Overview
	6.4.2. Getting and Running the open-vm-tools System Container
	6.4.3. Removing the open-vm-tools Container and Image

