
Red Hat Enterprise Linux Atomic Host 7

Getting Started with Kubernetes

Getting Started with Kubernetes

Last Updated: 2020-08-06

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

Getting Started with Kubernetes

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Set up Kubernetes on RHEL or RHEL Atomic Host and learn to manage pods

. .

. .

. .

. .

. .

. .

Table of Contents

1. DEPRECATION NOTICE

CHAPTER 1. GET STARTED ORCHESTRATING CONTAINERS WITH KUBERNETES
1.1. Overview
1.2. Understanding Kubernetes
1.3. Running Containers from Kubernetes Pods

1.3.1. Setting up to Deploy Docker Containers with Kubernetes
1.3.2. Starting Kubernetes
1.3.3. Launching container pods with Kubernetes

1.4. Exploring Kubernetes pods

CHAPTER 2. GET STARTED PROVISIONING STORAGE IN KUBERNETES
2.1. Overview
2.2. Kubernetes Persistent Volumes

2.2.1. Requesting storage
2.2.2. Using your claim as a volume
2.2.3. Check the service

2.3. Volumes
2.3.1. Example

2.4. Kubernetes and SELinux Permissions
2.5. NFS
2.6. iSCSI
2.7. Google Compute Engine

CHAPTER 3. MIGRATING FROM AN EARLIER VERSION OF KUBERNETES

CHAPTER 4. TROUBLESHOOTING KUBERNETES
4.1. Overview
4.2. Understanding Kubernetes Troubleshooting
4.3. Preparing Containerized Applications for Kubernetes

4.3.1. Networking Constraints
4.3.2. Preparing your Containers

4.4. Debugging Kubernetes
4.4.1. Inspecting and Debugging Kubernetes
4.4.2. Querying the State of Kubernetes

4.5. Troubleshooting Kubernetes systemd Services
4.5.1. Checking that Kubernetes systemd Services are Up
4.5.2. Checking Firewall for Kubernetes
4.5.3. Checking Kubernetes yaml or json Files

4.5.3.1. Troubleshooting Kubernetes Service Creation
4.5.3.2. Troubleshooting Kubernetes Replication Controller and Pod creation

4.6. Troubleshooting Techniques
4.6.1. Crawling and fixing the etcd database
4.6.2. Deleting Kubernetes components
4.6.3. Pods Stuck in the "WAITING" state.

CHAPTER 5. YAML IN A NUTSHELL
5.1. Overview
5.2. Basics
5.3. Lists
5.4. Mappings
5.5. Quotation

3

4
4
5
5
6
7
11

14

15
15
15
16
17
18
18
18
19

20
22
22

25

27
27
27
28
28
28
29
29
30
30
30
32
32
32
34
35
35
36
37

39
39
39
39
40
40

Table of Contents

1

. .

5.6. Block Content
5.7. Compact Representation
5.8. Additional Information

CHAPTER 6. KUBERNETES CONFIGURATION
6.1. Overview
6.2. Design Strategy
6.3. Conventions

6.3.1. Extended Types
6.3.2. Full Name

6.4. Common Structures
6.4.1. Top-Level
6.4.2. Elsewhere

6.5. Specific Structures
6.5.1. Service
6.5.2. Pod
6.5.3. Replication Controller

6.6. Field Reference

41
41

42

43
43
43
43
43
45
46
46
46
48
48
49
49
50

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

2

1. DEPRECATION NOTICE

IMPORTANT

Red Hat Enterprise Linux Atomic Host is retired as of August 6, 2020 and active support
is no longer provided. Accordingly, this guide is deprecated and will no longer receive
updates.

1. DEPRECATION NOTICE

3

CHAPTER 1. GET STARTED ORCHESTRATING CONTAINERS
WITH KUBERNETES

1.1. Overview

IMPORTANT

Procedures and software described in this chapter for manually configuring and using
Kubernetes are deprecated and, therefore, no longer supported. For information on
which software and documentation are impacted, see the Red Hat Enterprise Linux
Atomic Host Release Notes. For information on Red Hat’s officially supported
Kubernetes-based products, refer to Red Hat OpenShift Container Platform, OpenShift
Online, OpenShift Dedicated, OpenShift.io, Container Development Kit or Development
Suite.

Kubernetes is a tool for orchestrating and managing Docker containers. Red Hat provides several ways
you can use Kubernetes including:

OpenShift Container Platform: Kubernetes is built into OpenShift, allowing you to configure
Kubernetes, assign host computers as Kubernetes nodes, deploy containers to those nodes in
pods, and manage containers across multiple systems. The OpenShift Container Platform web
console provides a browser-based interface to using Kubernetes.

Container Development Kit (CDK): The CDK provides Vagrantfiles to launch the CDK with
either OpenShift (which includes Kubernetes) or a bare-bones Kubernetes configuration. This
gives you the choice of using the OpenShift tools or Kubernetes commands (such as kubectl) to
manage Kubernetes.

Kubernetes in Red Hat Enterprise Linux: To try out Kubernetes on a standard Red Hat
Enterprise Linux server system, you can install a combination of RPM packages and container
images to manually set up your own Kubernetes configuration.

The procedures in this section describe how to set up Kubernetes using the last listed option -
Kubernetes on Red Hat Enterprise Linux or Red Hat Enterprise Linux Atomic Host. Specifically, in this
chapter you set up a single-system Kubernetes sandbox so you can:

Deploy and run two containers with Kubernetes on a single system.

Manage those containers in pods with Kubernetes.

This procedure results in a setup that provides an all-in-one Kubernetes configuration in which you can
begin trying out Kubernetes and exploring how it works. In this procedure, services that are typically on a
separate Kubernetes master system and two or more Kubernetes node systems are all running on a
single system.

NOTE

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

4

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/release_notes/#red_hat_enterprise_linux_atomic_host_7_5_0_beta
https://access.redhat.com/documentation/en-us/openshift_container_platform/?version=3.7/
https://access.redhat.com/documentation/en-us/openshift_online/
https://access.redhat.com/documentation/en-us/openshift_dedicated/
https://openshift.io/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/
https://access.redhat.com/documentation/en-us/red_hat_development_suite/
http://github.com/GoogleCloudPlatform/kubernetes
https://access.redhat.com/documentation/en/openshift-container-platform/
https://access.redhat.com/documentation/en/red-hat-container-development-kit/

NOTE

The Kubernetes software described in this chapter is packaged and configured
differently than the Kubernetes included in OpenShift. We recommend you use the
OpenShift version of Kubernetes for permanent setups and production use. The
procedure described in this chapter should only be used as a convenient way to try out
Kubernetes on an all-in-one RHEL or RHEL Atomic Host system. As of RHEL 7.3, support
for the procedure for configuring a Kubernetes cluster (separate master and multiple
nodes) directly on RHEL and RHEL Atomic Host has ended. For further details on Red
Hat support for Kubernetes, see How are container orchestration tools supported with
Red Hat Enterprise Linux?

1.2. Understanding Kubernetes

While the Docker project defines a container format and builds and manages individual containers, an
orchestration tool is needed to deploy and manage sets of containers. Kubernetes is a tool designed to
orchestrate Docker containers. After building the container images you want, you can use a Kubernetes
Master to deploy one or more containers in what is referred to as a pod. The Master tells each
Kubernetes Node to pull the needed containers to that Node, where the containers run.

Kubernetes can manage the interconnections between a set of containers by defining Kubernetes
Services. As demand for individual container pods increases or decreases, Kubernetes can run or stop
container pods as needed using its replication controller feature.

For this example, both the Kubernetes Master and Node are on the same computer, which can be either
a RHEL 7 Server or RHEL 7 Atomic Host. Kubernetes relies on a set of service daemons to implement
features of the Kubernetes Master and Node. Some of those run as systemd services while others run
from containers. You need to understand the following about Kubernetes Masters and Node:

Master: A Kubernetes Master is where you direct API calls to services that control the activities
of the pods, replications controllers, services, nodes and other components of a Kubernetes
cluster. Typically, those calls are made by running kubectl commands. From the Master,
containers are deployed to run on Nodes.

Node: A Node is a system providing the run-time environments for the containers. A set of
container pods can span multiple nodes.

Pods are defined in configuration files (in YAML or JSON formats). Using the following procedure, you
will set up a single RHEL 7 or RHEL Atomic system, configure it as a Kubernetes Master and Node, use
YAML files to define each container in a pod, and deploy those containers using Kubernetes (kubectl
command).

NOTE

Three of the Kubernetes services that were defined run as systemd services (kube-
apiserver, kube-controller-manager, and kube-scheduler) in previous versions of this
procedure have been containerized. As of RHEL 7.3, only containerized versions of those
services are available. So this procedure describes how to use those containerized
Kubernetes services.

1.3. Running Containers from Kubernetes Pods

You need a RHEL 7 or RHEL Atomic system to build the Docker containers and orchestrate them with
Kubernetes. There are different sets of service daemons needed on Kubernetes Master and Node
systems. In this procedure, all service daemons run on the same system.

CHAPTER 1. GET STARTED ORCHESTRATING CONTAINERS WITH KUBERNETES

5

https://access.redhat.com/articles/2726491

Once the containers, system and services are in place, you use the kubectl command to deploy those
containers so they run on the Kubernetes Node (in this case, that will be the local system).

Here’s how to do those steps:

1.3.1. Setting up to Deploy Docker Containers with Kubernetes

To prepare for Kubernetes, you need to install RHEL 7 or RHEL Atomic Host, disable firewalld, get two
containers, and add them to a Docker Registry.

NOTE

RHEL Atomic Host does not support the yum command for installing packages. To get
around this issue, you could use the yumdownloader docker-distribution command to
download the package to a RHEL system, copy it to the Atomic system, install it on the
Atomic system using rpm-ostree install ./docker-distribution*rpm and reboot. You
could then set up the docker-distribution service as described below.

1. Install a RHEL 7 or RHEL Atomic system: For this Kubernetes sandbox system, install a RHEL 7
or RHEL Atomic system, subscribe the system, then install and start the docker service. Refer
here for information on setting up a basic RHEL or RHEL Atomic system to use with
Kubernetes:
Get Started with Docker Formatted Container Images on Red Hat Systems

2. Install Kubernetes: If you are on a RHEL 7 system, install the docker, etcd, and some kubernetes
packages. These packages are already installed on RHEL Atomic:

yum install docker kubernetes-client kubernetes-node etcd

3. Disable firewalld: If you are using a RHEL 7 host, be sure that the firewalld service is disabled
(the firewalld service is not installed on an Atomic host). On RHEL 7, type the following to
disable and stop the firewalld service:

systemctl disable firewalld
systemctl stop firewalld

4. Get Docker Containers: Build the following two containers using the following instructions:

Simple Apache Web Server in a Docker Container

Simple Database Server in a Docker Container

After you build, test and stop the containers (docker stop mydbforweb and docker stop
mywebwithdb), add them to a registry.

5. Install registry: To get the Docker Registry service (v2) on your local system, you must install
the docker-distribution package. For example:

yum install docker-distribution

6. Start the local Docker Registry: To start the local Docker Registry, type the following:

systemctl start docker-distribution
systemctl enable docker-distribution

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

6

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#get_started_with_docker_formatted_container_images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/install_and_deploy_an_apache_web_server_container
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/install_and_deploy_a_mariadb_container

systemctl is-active docker-distribution
active

7. Tag images: Using the image ID of each image, tag the two images so they can be pushed to
your local Docker Registry. Assuming the registry is running on the local system, tag the two
images as follows:

docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
dbforweb latest c29665465a6c 4 minutes ago 556.2 MB
webwithdb latest 80e7af79c507 14 minutes ago 405.6 MB
docker tag c29665465a6c localhost:5000/dbforweb
docker push localhost:5000/dbforweb
docker tag 80e7af79c507 localhost:5000/webwithdb
docker push localhost:5000/webwithdb

The two images are now available from your local Docker Registry.

1.3.2. Starting Kubernetes

Because both Kubernetes Master and Node services are running on the local system, you don’t need to
change the Kubernetes configuration files. Master and Node services will point to each other on
localhost and services are made available only on localhost.

1. Pull Kubernetes containers: To pull the Kubernetes container images, type the following:

docker pull registry.access.redhat.com/rhel7/kubernetes-apiserver
docker pull registry.access.redhat.com/rhel7/kubernetes-controller-mgr
docker pull registry.access.redhat.com/rhel7/kubernetes-scheduler

2. Create manifest files: Create the following apiserver-pod.json, controller-mgr-pod.json, and
scheduler-pod.json files and put them in the /etc/kubernetes/manifests directory. These files
identify the images representing the three Kubernetes services that are started later by the
kubelet service:
apiserver-pod.json

NOTE: The --service-cluster-ip-range allocates the IP address range (CIDR notation) used by
the kube-apiserver to assign to services in the cluster. Make sure that any addresses assigned in
the range here are not assigned to any pods in the cluster. Also, keep in mind that a 255-address
range (/24) is allocated to each node. So you should at least assign a /20 range for a small
cluster and up to a /14 range to allow up to 1000 nodes.

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {
 "name": "kube-apiserver"
 },
 "spec": {
 "hostNetwork": true,
 "containers": [
 {
 "name": "kube-apiserver",
 "image": "rhel7/kubernetes-apiserver",
 "command": [

CHAPTER 1. GET STARTED ORCHESTRATING CONTAINERS WITH KUBERNETES

7

 "/usr/bin/kube-apiserver",
 "--v=0",
 "--address=0.0.0.0",
 "--etcd_servers=http://127.0.0.1:2379",
 "--service-cluster-ip-range=10.254.0.0/16",
 "--admission_control=AlwaysAdmit"
],
 "ports": [
 {
 "name": "https",
 "hostPort": 443,
 "containerPort": 443
 },
 {
 "name": "local",
 "hostPort": 8080,
 "containerPort": 8080
 }
],
 "volumeMounts": [
 {
 "name": "etcssl",
 "mountPath": "/etc/ssl",
 "readOnly": true
 },
 {
 "name": "config",
 "mountPath": "/etc/kubernetes",
 "readOnly": true
 }
],
 "livenessProbe": {
 "httpGet": {
 "path": "/healthz",
 "port": 8080
 },
 "initialDelaySeconds": 15,
 "timeoutSeconds": 15
 }
 }
],
 "volumes": [
 {
 "name": "etcssl",
 "hostPath": {
 "path": "/etc/ssl"
 }
 },
 {
 "name": "config",
 "hostPath": {
 "path": "/etc/kubernetes"
 }
 }

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

8

]
 }
}

controller-mgr-pod.json

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {
 "name": "kube-controller-manager"
 },
 "spec": {
 "hostNetwork": true,
 "containers": [
 {
 "name": "kube-controller-manager",
 "image": "rhel7/kubernetes-controller-mgr",
 "volumeMounts": [
 {
 "name": "etcssl",
 "mountPath": "/etc/ssl",
 "readOnly": true
 },
 {
 "name": "config",
 "mountPath": "/etc/kubernetes",
 "readOnly": true
 }
],
 "livenessProbe": {
 "httpGet": {
 "path": "/healthz",
 "port": 10252
 },
 "initialDelaySeconds": 15,
 "timeoutSeconds": 15
 }
 }
],
 "volumes": [
 {
 "name": "etcssl",
 "hostPath": {
 "path": "/etc/ssl"
 }
 },
 {
 "name": "config",
 "hostPath": {
 "path": "/etc/kubernetes"
 }
 }
]
 }
}

CHAPTER 1. GET STARTED ORCHESTRATING CONTAINERS WITH KUBERNETES

9

scheduler-pod.json

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {
 "name": "kube-scheduler"
 },
 "spec": {
 "hostNetwork": true,
 "containers": [
 {
 "name": "kube-scheduler",
 "image": "rhel7/kubernetes-scheduler",
 "volumeMounts": [
 {
 "name": "config",
 "mountPath": "/etc/kubernetes",
 "readOnly": true
 }
],
 "livenessProbe": {
 "httpGet": {
 "path": "/healthz",
 "port": 10251
 },
 "initialDelaySeconds": 15,
 "timeoutSeconds": 15
 }
 }
],
 "volumes": [
 {
 "name": "config",
 "hostPath": {
 "path": "/etc/kubernetes"
 }
 }
]
 }
}

3. Configure the kubelet service: Because the manifests define Kubernetes services as pods, the
kubelet service is needed to start these containerized Kubernetes services. To configure the
kubelet service, edit the /etc/kubernetes/kubelet and modify the KUBELET_ARGS line to
read as follows (all other content can stay the same):

KUBELET_ADDRESS="--address=127.0.0.1"
KUBELET_HOSTNAME="--hostname-override=127.0.0.1"
KUBELET_ARGS="--register-node=true --config=/etc/kubernetes/manifests --register-
schedulable=true"
KUBELET_API_SERVER="--api-servers=http://127.0.0.1:8080"
KUBELET_POD_INFRA_CONTAINER="--pod-infra-container-
image=registry.access.redhat.com/rhel7/pod-infrastructure:latest"

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

10

4. Start kubelet and other Kubernetes services: Start and enable the docker, etcd, kube-proxy
and kubelet services as follows:

for SERVICES in docker etcd kube-proxy kubelet; do
 systemctl restart $SERVICES
 systemctl enable $SERVICES
 systemctl is-active $SERVICES
done

5. Start the Kubernetes Node service daemons: You need to start several services associated
with a Kubernetes Node:

for SERVICES in docker kube-proxy.service kubelet.service; do
 systemctl restart $SERVICES
 systemctl enable $SERVICES
 systemctl status $SERVICES
done

6. Check the services: Run the ss command to check which ports the services are running on:

ss -tulnp | grep -E "(kube)|(etcd)"

7. Test the etcd service: Use the curl command as follows to check the etcd service:

curl -s -L http://localhost:2379/version
{"etcdserver":"3.0.15","etcdcluster":"3.0.0"}

1.3.3. Launching container pods with Kubernetes

With Master and Node services running on the local system and the two container images in place, you
can now launch the containers using Kubernetes pods. Here are a few things you should know about that:

Separate pods: Although you can launch multiple containers in a single pod, by having them in
separate pods each container can replicate multiple instances as demands require, without
having to launch the other container.

Kubernetes service: This procedure defines Kubernetes services for the database and web
server pods so containers can go through Kubernetes to find those services. In this way, the
database and web server can find each other without knowing the IP address, port number, or
even the node the pod providing the service is running on.

The following steps show how to launch and test the two pods:

IMPORTANT: It is critical that the indents in the YAML file be maintained. Spacing in YAML files are part
of what keep the format cleaner (not requiring curly braces or other characters to maintain the
structure).

1. Create a Database Kubernetes service: Create a db-service.yaml file to identify the pod
providing the database service to Kubernetes.

apiVersion: v1
kind: Service
metadata:
 labels:

CHAPTER 1. GET STARTED ORCHESTRATING CONTAINERS WITH KUBERNETES

11

 name: db
 name: db-service
 namespace: default
spec:
 ports:
 - port: 3306
 selector:
 app: db

2. Create a Database server replication controller file: Create a db-rc.yaml file that you will use
to deploy the Database server pod. Here is what it could contain:

apiVersion: v1
kind: ReplicationController
metadata:
 name: db-controller
spec:
 replicas: 1
 selector:
 app: "db"
 template:
 metadata:
 name: "db"
 labels:
 app: "db"
 spec:
 containers:
 - name: "db"
 image: "localhost:5000/dbforweb"
 ports:
 - containerPort: 3306

3. Create a Web server Kubernetes Service file: Create a webserver-service.yaml file that you
will use to deploy the Web server pod. Here is what it could contain:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: webserver
 name: webserver-service
 namespace: default
spec:
 ports:
 - port: 80
 selector:
 app: webserver

4. Create a Web server replication controller file: Create a webserver-rc.yaml file that you will
use to deploy the Web server pod. Here is what it could contain:

kind: "ReplicationController"
apiVersion: "v1"
metadata:
 name: "webserver-controller"

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

12

spec:
 replicas: 1
 selector:
 app: "webserver"
 template:
 spec:
 containers:
 - name: "apache-frontend"
 image: "localhost:5000/webwithdb"
 ports:
 - containerPort: 80
 metadata:
 labels:
 app: "webserver"
 uses: db

5. Orchestrate the containers with kubectl: With the two YAML files in the current directory, run
the following commands to start the pods to begin running the containers:

kubectl create -f db-service.yaml
services/db-service
kubectl create -f db-rc.yaml
replicationcontrollers/db-controller
kubectl create -f webserver-service.yaml
services/webserver-service
kubectl create -f webserver-rc.yaml
replicationcontrollers/webserver-controller

6. Check rc, pods, and services: Run the following commands to make sure that Kubernetes
master services, the replication controllers, pods, and services are all running:

kubectl cluster-info
Kubernetes master is running at http://localhost:8080
kubectl get rc
NAME DESIRED CURRENT READY AGE
db-controller 1 1 1 7d
webserver-controller 1 1 1 7d
kubectl get pods --all-namespaces=true
NAMESPACE NAME READY STATUS RESTARTS AGE
default db-controller-kf126 1/1 Running 9 7d
default kube-apiserver-127.0.0.1 1/1 Running 0 29m
default kube-controller-manager-127.0.0.1 1/1 Running 4 7d
default kube-scheduler-127.0.0.1 1/1 Running 4 7d
default webserver-controller-l4r2j 1/1 Running 9 7d
kubectl get service --all-namespaces=true
NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
default db-service 10.254.109.7 <none> 3306/TCP 7d
default kubernetes 10.254.0.1 <none> 443/TCP 8d
default webserver-service 10.254.159.86 <none> 80/TCP 7d

7. Check containers: If both containers are running and the Web server container can see the
Database server, you should be able to run the curl command to see that everything is working,
as follows (note that the IP address matches webserver-service address):

http://10.254.159.86:80/cgi-bin/action

CHAPTER 1. GET STARTED ORCHESTRATING CONTAINERS WITH KUBERNETES

13

<html>
<head>
<title>My Application</title>
</head>
<body>
<h2>RedHat rocks</h2>
<h2>Success</h2>
</body>
</html>

If you have a Web browser installed on the localhost, you can open that Web browser to see a better
representation of the few lines of output. Just open the browser to this URL: http://10.254.159.86/cgi-
bin/action.

1.4. Exploring Kubernetes pods

If something goes wrong along the way, there are several ways to determine what happened. One thing
you can do is to examine services inside of the containers. To do that, you can look at the logs inside the
container to see what happened. Run the following command (replacing the last argument with the pod
name you want to examine).

kubectl logs kube-controller-manager-127.0.0.1

Another problem that people have had comes from forgetting to disable firewalld. If firewalld is active, it
could block access to ports when a service tries to access them between your containers. Make sure you
have run systemctl stop firewalld ; systemctl disable firewalld on your host.

If you made a mistake creating your two-pod application, you can delete the replication controllers and
the services. (The pods will just go away when the replication controllers are removed.) After that, you
can fix the YAML files and create them again. Here’s how you would delete the replication controllers
and services:

kubectl delete rc webserver-controller
replicationcontrollers/webserver-controller
kubectl delete rc db-controller
replicationcontrollers/db-controller
kubectl delete service webserver-service
services/webserver-service
kubectl delete service db-service

Remember to not just delete the pods. If you do, without removing the replication controllers, the
replication controllers will just start new pods to replace the ones you deleted.

The example you have just seen is a simple approach to getting started with Kubernetes. Because it
involves only one master and one node on the same system, it is not scalable. To set up a more formal
and permanent Kubernetes configuration, Red Hat recommends using OpenShift Container Platform.

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

14

http://10.254.159.86/cgi-bin/action
https://access.redhat.com/documentation/en/openshift-container-platform/

CHAPTER 2. GET STARTED PROVISIONING STORAGE IN
KUBERNETES

2.1. Overview

IMPORTANT

Procedures and software described in this chapter for manually configuring and using
Kubernetes are deprecated and, therefore, no longer supported. For information on
which software and documentation are impacted, see the Red Hat Enterprise Linux
Atomic Host Release Notes. For information on Red Hat’s officially supported
Kubernetes-based products, refer to Red Hat OpenShift Container Platform, OpenShift
Online, OpenShift Dedicated, OpenShift.io, Container Development Kit or Development
Suite.

This section explains how to provision storage in Kubernetes.

Before undertaking the exercises in this topic, you must have a working Kubernetes configuration in
place. Follow the instructions in Get Started Orchestrating Containers with Kubernetes to manually
configure Kubnetes.

NOTE

While you can use the procedure for orchestrating Kubernetes to test a manual
configuration of Kubernetes, you should not use that configuration for production
purposes. For a Kubernetes configuration that is supported by Red Hat, you must use
OpenShift (which is available in various online and installable forms).

2.2. Kubernetes Persistent Volumes

This section provides an overview of Kubernetes Persistent Volumes. The example below explains how
to use the nginx web server to serve content from a persistent volume. This section assumes that you
understand the basics of Kubernetes and that you have a Kubernetes cluster up and running.

A Persistent Volume (PV) in Kubernetes represents a real piece of underlying storage capacity in the
infrastructure. Before using Kubernetes to mount anything, you must first create whatever storage that
you plan to mount. Cluster administrators must create their GCE disks and export their NFS shares in
order for Kubernetes to mount them.

Persistent volumes are intended for "network volumes" like GCE Persistent Disks, NFS shares, and AWS
ElasticBlockStore volumes. HostPath was included for ease of development and testing. You’ll create a
local HostPath for this example.

IMPORTANT

In order for HostPath to work, you will need to run a single node cluster. Kubernetes does
not support local storage on the host at this time. There is no guarantee that your pod
will end up on the correct node where the HostPath resides.

// this will be nginx's webroot
$ mkdir /tmp/data01
$ echo 'I love Kubernetes storage!' > /tmp/data01/index.html

CHAPTER 2. GET STARTED PROVISIONING STORAGE IN KUBERNETES

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/release_notes/#red_hat_enterprise_linux_atomic_host_7_5_0_beta
https://access.redhat.com/documentation/en-us/openshift_container_platform/?version=3.7/
https://access.redhat.com/documentation/en-us/openshift_online/
https://access.redhat.com/documentation/en-us/openshift_dedicated/
https://openshift.io/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/
https://access.redhat.com/documentation/en-us/red_hat_development_suite/

Define physical volumes in a YAML file.

$ mkdir -p ~/examples/persistent-volumes/volumes/
$ vi ~/examples/persistent-volumes/volumes/local-01.yaml

Create the following content in the local-01.yaml file:

kind: PersistentVolume
apiVersion: v1
metadata:
 name: pv0001
 labels:
 type: local
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/tmp/data01"

Create physical volumes by posting them to the API server.

$ kubectl create -f ~/examples/persistent-volumes/volumes/local-01.yaml
persistentvolume "pv0001" created

$ kubectl get pv
NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv0001 10Gi RWO Available 14s

2.2.1. Requesting storage

Users of Kubernetes request persistent storage for their pods. The nature of the underlying provisioning
need not be known by users. Users must know that they can rely on their claims to storage and that they
can manage that storage’s lifecycle independently of the many pods that may use it.

Claims must be created in the same namespace as the pods that use them.

Create a YAML file defining the storage claim.

$ mkdir -p ~/examples/persistent-volumes/claims/
$ vi ~/examples/persistent-volumes/claims/claim-01.yaml

Add the following content to the claim-01.yaml file:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim-1
spec:
 accessModes:
 - ReadWriteOnce

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

16

 resources:
 requests:
 storage: 3Gi

Create the claim.

$ kubectl create -f ~/examples/persistent-volumes/claims/claim-01.yaml
persistentvolumeclaim "myclaim-1" created

A background process will attempt to match this claim to a volume. The state of your claim will
eventually look something like this:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
myclaim-1 Bound pv0001 10Gi RWO 7s

$ kubectl get pv
NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv0001 10Gi RWO Bound default/myclaim-1

2.2.2. Using your claim as a volume

Claims are used as volumes in pods. Kubernetes uses the claim to look up its bound PV. The PV is then
exposed to the pod.

Start by creating a pod.yaml file.

$ mkdir -p ~/examples/persistent-volumes/simpletest/
$ vi ~/examples/persistent-volumes/simpletest/pod.yaml

Add the following content to the pod.yaml file:

kind: Pod
apiVersion: v1
metadata:
 name: mypod
 labels:
 name: frontendhttp
spec:
 containers:
 - name: myfrontend
 image: nginx
 ports:
 - containerPort: 80
 name: "http-server"
 volumeMounts:
 - mountPath: "/usr/share/nginx/html"
 name: mypd
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim-1

Use pod.yaml to create the pod and the claim, then check that it was all done properly.

CHAPTER 2. GET STARTED PROVISIONING STORAGE IN KUBERNETES

17

$ kubectl create -f ~/examples/persistent-volumes/simpletest/pod.yaml

$ kubectl describe pods mypod | less
Name: mypod
Namespace: default
Node: 127.0.0.1/127.0.0.1
Start Time: Tue, 16 Aug 2016 09:42:03 -0400
Labels: name=frontendhttp
Status: Running
IP: 172.17.0.2

Page through the kubectl describe content until you see the IP address for the pod. Use that IP
address in the next steps.

2.2.3. Check the service

Query the service using the curl command, with the IP address and port number, to make sure the
service is running. In this example, the address is 172.17.0.2. If you get a "forbidden" errror, disable
SELinux using the setenforce 0 command.

curl 172.17.0.2:80
I love Kubernetes storage!

If you see the output shown above, you have a successfully created a working persistent volumer, claim
and pod that is using that claim.

2.3. Volumes

Kubernetes abstracts various storage facilities as "volumes".

Volumes are defined in the volumes section of a pod’s definition. The source of the data in the volumes
is either:

a remote NFS share,

an iSCSI target,

an empty directory, or

a local directory on the host.

It is possible to define multiple volumes in the volumes section of the pod’s definition. Each volume
must have a unique name (within the context of the pod) that is used during the mounting procedure as
a unique identifier within the pod.

These volumes, once defined, can be mounted into containers that are defined in the containers
section of the pod’s definition. Each container can mount several volumes; on the other hand, a single
volume can be mounted into several containers. The volumeMounts section of the container definition
specifies where the volume should be mounted.

2.3.1. Example

apiVersion: v1
kind: Pod

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

18

metadata:
 name: nfs-web
spec:
 volumes:
 # List of volumes to use, i.e. *what* to mount
 - name: myvolume
 < volume details, see below >
 - name: mysecondvolume
 < volume details, see below >

 containers:
 - name: mycontainer
 volumeMounts:
 # List of mount directories, i.e. *where* to mount
 # We want to mount 'myvolume' into /usr/share/nginx/html
 - name: myvolume
 mountPath: /usr/share/nginx/html/
 # We want to mount 'mysecondvolume' into /var/log
 - name: mysecondvolume
 mountPath: /var/log/

2.4. Kubernetes and SELinux Permissions

Kubernetes, in order to function properly, must have access to a directory that is shared between the
host and the container. SELinux, by default, blocks Kubernetes from having access to that shared
directory. Usually this is a good idea: no one wants a compromised container to access the host and
cause damage. In this situation, though, we want the directory to be shared between the host and the
pod without SELinux intervening to prevent the share.

Here’s an example. If we want to share the directory /srv/my-data from the Atomic Host to a pod, we
must explicitly relabel /srv/my-data with the SELinux label svirt_sandbox_file_t. The presence of this
label on this directory (which is on the host) causes SELinux to permit the container to read and write to
the directory. Here’s the command that attaches the svirt_sandbox_file_t label to the /srv/my-data
directory:

$ chcon -R -t svirt_sandbox_file_t /srv/my-data

The following example steps you through the procedure:

1. Define this container, which uses /srv/my-data from the host as the HTML root:

 {
 "apiVersion": "v1",
 "kind": "Pod",
 "metadata": {
 "name": "host-test"
 },
 "spec": {
 "containers": [
 {
 "name": "host-test",
 "image": "nginx",
 "privileged": false,
 "volumeMounts": [
 {

CHAPTER 2. GET STARTED PROVISIONING STORAGE IN KUBERNETES

19

 "name": "srv",
 "mountPath": "/usr/share/nginx/html",
 "readOnly": false
 }
]
 }
],
 "volumes": [
 {
 "name": "srv",
 "hostPath": {
 "path": "/srv/my-data"
 }
 }
]
 }
}

2. Run the following commands on the container host to confirm that SELinux denies the nginx
container read access to /srv/my-data (note the failed curl command):

$ mkdir /srv/my-data
$ echo "Hello world" > /srv/my-data/index.html
$ curl <IP address of the container>
 <html>
 <head><title>403 Forbidden</title></head>
 ...

3. Apply the label svirt_sandbox_file_t to the directory /srv/my-data:

$ chcon -R -t svirt_sandbox_file_t /srv/my-data

4. Use curl to access the container and to confirm that the label has taken effect:

$ curl <IP address of the container>
Hello world

If the curl command returned "Hello world", the SELinux label has been properly applied.

2.5. NFS

In order to test this scenario, you must already have prepared NFS shares. In this example, you will mount
the NFS shares into a pod.

The following example mounts the NFS share into /usr/share/nginx/html/ and runs the nginx
webserver.

1. Create a file named nfs-web.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: nfs-web
spec:

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

20

 volumes:
 - name: www
 nfs:
 # Use real NFS server address here.
 server: 192.168.100.1
 # Use real NFS server export directory.
 path: "/www"
 readOnly: true
 containers:
 - name: web
 image: nginx
 ports:
 - name: web
 containerPort: 80
 protocol: tcp
 volumeMounts:
 # 'name' must match the volume name below.
 - name: www
 # Where to mount the volume.
 mountPath: "/usr/share/nginx/html/"

2. Start the pod: The following command tells Kubernetes to mount 192.168.100.1:/www into
/usr/share/nginx/html/` inside the nginx container and run it.

$ kubectl create -f nfs-web.yaml

3. Confirm that the webserver receives data from the NFS share:

$ curl 172.17.0.6
Hello from NFS

Mount options in Kubernetes

Kubernetes 1.6 includes the ability to add mount options to certain volume types. These include:
GCEPersistentDisk, AWSElasticBlockStore, AzureFile, AzureDisk, NFS, iSCSI, RBD (Ceph Block Device),
CephFS, Cinder (OpenStack block storage), Glusterfs, VsphereVolume, Quobyte Volumes, VMware, and
Photon. You can add mount options by setting annotations to PersistentVolume objects. For example:

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: my-disk
 annotations:
 volume.beta.kubernetes.io/mount-options: "discard"

Prior to Kubernetes 1.6, the ability to add mount options was not supported. For details, see Kubernetes
Persistent Volumes.

Troubleshooting

403 Forbidden error: if you receive a "403 Forbidden" response from the webserver, make sure that
SELinux allows Docker containers to read data over NFS by running the following command:

$ setsebool -P virt_use_nfs 1

CHAPTER 2. GET STARTED PROVISIONING STORAGE IN KUBERNETES

21

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#mount-options

2.6. iSCSI

To use iSCSI storage, make sure that the iSCSI target is properly configured. Then, make sure that all
Kubernetes nodes have sufficient privileges to attach a LUN from the iSCSI target.

1. Create a file named iscsi-web.yaml, containing the following pod definition:

apiVersion: v1
kind: Pod
metadata:
 name: iscsi-web
spec:
 volumes:
 - name: www
 iscsi:
 # Address of the iSCSI target portal
 targetPortal: "192.168.100.98:3260"
 # IQN of the portal
 iqn: "iqn.2003-01.org.linux-iscsi.iscsi.x8664:sn.63b56adc495d"
 # LUN we want to mount
 lun: 0
 # Filesystem on the LUN
 fsType: ext4
 readOnly: false
 containers:
 - name: web
 image: nginx
 ports:
 - name: web
 containerPort: 80
 protocol: tcp
 volumeMounts:
 # 'name' must match the volume name below.
 - name: www
 # Where to mount he volume.
 mountPath: "/usr/share/nginx/html/"

2. Create the pod: From the following command, Kubernetes logs into the iSCSI target, attaches
LUN 0 (typically as /dev/sdXYZ), mounts the filesystem specified (in our example, it’s ext4) to
/usr/share/nginx/html/ inside the nginx container, and runs it.

$ kubectl create -f iscsi-web.yaml

3. Check that the web server uses data from the iSCSI volume:

$ curl 172.17.0.6
Hello from iSCSI

2.7. Google Compute Engine

If you are running your cluster on Google Compute Engine, you can use a Google Compute Engine
Persistent Disk (GCE PD) as your persistent storage source. In the following example, you will create a
pod which serves html content from a GCE PD.

1. If you have the GCE SDK set up, create a persistent disk using the following command.

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

22

1. If you have the GCE SDK set up, create a persistent disk using the following command.
(Otherwise you can create the disk through the GCE web interface. If you want to set up the
GCE SDK follow the instructions here.)

$ gcloud compute disks create --size=250GB {Persistent Disk Name}

2. Create a file named gce-pd-web.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: gce-web
spec:
 containers:
 - name: web
 image: nginx
 ports:
 - name: web
 containerPort: 80
 protocol: tcp
 volumeMounts:
 - name: html-pd
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: html-pd
 gcePersistentDisk:
 # Add the name of your persistent disk below
 pdName: {Persistent Disk Name}
 fsType: ext4

3. Create the pod. Kubernetes will create the pod and attach the disk but it will not format and
mount it. (This is due to a bug which will be fixed in future versions of Kubernetes. The step that
follows works around this issue.)

$ kubectl create -f gce-pd-web.yaml

4. Format and mount the persistent disk.

The disk will be attached to the virtual machine and a device will appear under `/dev/disk/by-
id/`` with the name `scsi-0Google_PersistentDisk_{Persistent Disk Name}`. If this disk is
already formatted and contains data proceed to the next step. Otherwise run the following
command as root to format it:

$ mkfs.ext4 /dev/disk/by-id/scsi-0Google_PersistentDisk_{Persistent Disk Name}

5. When the disk is formatted, mount it in the location expected by Kubernetes. Run the following
commands as root:

mkdir -p /var/lib/kubelet/plugins/kubernetes.io/gce-pd/mounts/{Persistent Disk Name} &&
mount /dev/disk/by-id/scsi-0Google_PersistentDisk_{Persistent Disk Name}
/var/lib/kubelet/plugins/kubernetes.io/gce-pd/mounts/{Persistent Disk Name}

CHAPTER 2. GET STARTED PROVISIONING STORAGE IN KUBERNETES

23

https://cloud.google.com/sdk/

[NOTE]
The `mkdir` command and the mount command must be run in quick succession as above
because Kubernetes clean up will remove the directory if it sees nothing mounted there.

6. Now that the disk is mounted it must be given the correct SELinux context. As root run the
following:

$ sudo chcon -R -t svirt_sandbox_file_t /var/lib/kubelet/plugins/kubernetes.io/gce-
pd/mounts/{Persistent Disk Name}

7. Create some data for your web server to serve:

$ echo "Hello world" > /var/lib/kubelet/plugins/kubernetes.io/gce-pd/mounts/{Persistent Disk
Name}/index.html

8. You should now be able to get HTML content from the pod:

$ curl {IP address of the container}
Hello World!

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

24

CHAPTER 3. MIGRATING FROM AN EARLIER VERSION OF
KUBERNETES

IMPORTANT

Procedures and software described in this chapter for manually configuring and using
Kubernetes are deprecated and, therefore, no longer supported. For information on
which software and documentation are impacted, see the Red Hat Enterprise Linux
Atomic Host Release Notes. For information on Red Hat’s officially supported
Kubernetes-based products, refer to Red Hat OpenShift Container Platform, OpenShift
Online, OpenShift Dedicated, OpenShift.io, Container Development Kit or Development
Suite.

If you already have a Kubernetes all-in-one system up and running from an earlier release of RHEL or
RHEL Atomic, you can migrate your setup to the latest release using the procedure described here. If
you have a Kubernetes cluster installed from an earlier RHEL release, that configuration is no longer
supported.

The main issue in migrating from an earlier RHEL Atomic Host release is that three Kubernetes services
on the master (kube-scheduler, kube-apiserver, and kube-controller-manager) were dropped from the
RHEL Atomic Host distribution. So, to upgrade to a new release, you need to transition to containerized
versions of those services on your Kubernetes master.

Here’s how you can go about upgrading your Kubernetes all-in-one master and node to a later release
of RHEL or RHEL Atomic:

1. Stop Kubernetes services: Run these commands from the master to stop and disable
Kubernetes services:

for SERVICES in kube-apiserver kube-controller-manager kube-scheduler; do
 systemctl stop $SERVICES
 systemctl disable $SERVICES
 systemctl is-active $SERVICES
 done
systemctl stop kubelet

2. Upgrade each system: Upgrading is done differently on RHEL Server and RHEL Atomic
systems:
On a RHEL Atomic Host, system type the following:

atomic host upgrade
reboot

On a RHEL Server system, type the following:

yum upgrade -y

3. Create manifest files (optional): You can create files named apiserver.pod.json, controller-
manager.pod.json, and scheduler.pod.json files with content described earlier in this document.
You may need to modify those files based on setting in your current apiserver, controller-
manager, and scheduler configuration files (in /etc/kubernetes). Copy the new json files to the

CHAPTER 3. MIGRATING FROM AN EARLIER VERSION OF KUBERNETES

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/release_notes/#red_hat_enterprise_linux_atomic_host_7_5_0_beta
https://access.redhat.com/documentation/en-us/openshift_container_platform/?version=3.7/
https://access.redhat.com/documentation/en-us/openshift_online/
https://access.redhat.com/documentation/en-us/openshift_dedicated/
https://openshift.io/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/
https://access.redhat.com/documentation/en-us/red_hat_development_suite/

/etc/kubernetes/manifests/ directory. If those files don’t exist, however, your Kubernetes
master services will use the configuration files from your previous release that are contained in
the /etc/kubernetes directory.

4. Reconfigure kubelet: To have kubelet use the new manifest files, add a KUBELET_ARGS
argument to the /etc/kubernetes/kubelet file that points to that directory, as described earlier
(--config=/etc/kubernetes/manifests/).

5. Pull Kubernetes containers: On the master, before you try to start the containerized
Kubernetes services, you should pull their docker images to the local system. Run the following
commands to do that:

docker pull rhel7/kubernetes-controller-mgr
docker pull rhel7/kubernetes-apiserver
docker pull rhel7/kubernetes-scheduler

6. Restart etcd and kubelet: Restarting etcd and kubelet services results in the new manifest files
being used to start up the containerized versions of kube-apiserver, kube-controller-manager,
and kube-scheduler.

systemctl restart etcd kubelet

At this point, the three Kubernetes containers should have replaced the systemd versions of those
services on your system.

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

26

CHAPTER 4. TROUBLESHOOTING KUBERNETES

4.1. Overview

IMPORTANT

Procedures and software described in this chapter for manually configuring and using
Kubernetes are deprecated and, therefore, no longer supported. For information on
which software and documentation are impacted, see the Red Hat Enterprise Linux
Atomic Host Release Notes. For information on Red Hat’s officially supported
Kubernetes-based products, refer to Red Hat OpenShift Container Platform, OpenShift
Online, OpenShift Dedicated, OpenShift.io, Container Development Kit or Development
Suite.

Kubernetes is a utility that makes it possible to deploy and manage sets of docker-formatted containers
that run applications. This topic explains how to troubleshoot problems that arise when creating and
managing Kubernetes pods, replication controllers, services, and containers.

For the purpose of illustrating troubleshooting techniques, this topic uses the containers and
configuration deployed in the Get Started Orchestrating Containers with Kubernetes chapter.
Techniques described here should apply to Kubernetes running on Red Hat Enterprise Linux Server and
RHEL Atomic Host systems.

4.2. Understanding Kubernetes Troubleshooting

Before you begin troubleshooting Kubernetes, you should have an understanding of the Kubernetes
components being investigated. These include:

Master: The system from which you manage your Kubernetes environment.

Nodes: One or more systems on which containers are deployed by Kubernetes (nodes were
previously called minions).

Pods: A pod defines one or more containers to run, as well as options to the docker run
command for each container and labels to define the location of services.

Services: A service allows a container within a Kubernetes environment to find an application
provided by another container by name (label), without knowing its IP address.

Replication controllers: A replication controller lets you designate that a certain number of
pods should be running. (New pods are started until the required number is reached and if a pod
dies, a new pod is run to replace it.)

Networking (flanneld): The flanneld service lets you configure IP address ranges and related
setting to be used by Kubernetes. This feature is optional. yaml and json files: The Kubernetes
elements we’ll work with are actually created from configuration files in yaml or json formats. this
topic focuses primarily on yaml-formatted files.

You will troubleshoot the components just described using these commands in particular:

kubectl: The kubectl command (run from the master) lets you create, delete, get (list
information) and perform other actions on Kubernetes pods, services and replication controllers.
You’ll use this command to test your yaml/json files, as well as see the state of the different
Kubernetes components.

CHAPTER 4. TROUBLESHOOTING KUBERNETES

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/release_notes/#red_hat_enterprise_linux_atomic_host_7_5_0_beta
https://access.redhat.com/documentation/en-us/openshift_container_platform/?version=3.7/
https://access.redhat.com/documentation/en-us/openshift_online/
https://access.redhat.com/documentation/en-us/openshift_dedicated/
https://openshift.io/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/
https://access.redhat.com/documentation/en-us/red_hat_development_suite/

systemctl: Specific systemd services must be configured with Kubernetes to facilitate
communications between master and nodes. Those services must also be active and enabled.

journalctl: You can use the journalctl command to check Kubernetes systemd services to follow
the processing of those services. You can run it on both the master and nodes to check for
Kubernetes failures on those systems. All daemon logging in kubernetes uses the systemd
journal.

etcdctl or curl: The etcd daemon manages the storage of information for the Kubernetes
cluster. This service can run on the master or on some other system. You can use the etcdctl
command in RHEL or RHEL Atomic Host systems to query that information. You also can use
the curl command instead to query the etcd service.

4.3. Preparing Containerized Applications for Kubernetes

Some of the things you should consider before deploying an application to Kubernetes are described
below.

4.3.1. Networking Constraints

All Applications are not equally kuberizable, because there are limitations on the type of applications
that can be run as Kubernetes services. In Kubernetes, a service is a load balanced proxy whose IP
address is injected into the iptables of clients of that service. Therefore, you should verify that the
application you intend to "kuberize":

Can support network address translation or NAT-ing across its subprocesses.

Does not require forward and reverse DNS lookup. Kubernetes does not provide forward or
reverse DNS lookup to the clients of a service.

If neither of these restrictions apply, or if the user can disable these checks, you can continue on.

4.3.2. Preparing your Containers

Depending on the type of software you are running you may wish to take advantage of some predefined
environment variables that are provided for clients of Kubernetes services.

For example, given a service named db, if you launch a Pod in Kubernetes that uses that service,
Kubernetes will inject the following environment variables into the containers in that pod:

DB_SERVICE_PORT_3306_TCP_PORT=3306
DB_SERVICE_SERVICE_HOST=10.254.100.1
DB_SERVICE_PORT_3306_TCP_PROTO=tcp
DB_SERVICE_PORT_3306_TCP_ADDR=10.254.100.1
DB_SERVICE_PORT_3306_TCP=tcp://10.254.100.1:3306
DB_SERVICE_PORT=tcp://10.254.100.1:3306
DB_SERVICE_SERVICE_PORT=3306

NOTE: Notice that the service name (db) is capitalized in the variables (DB). If there were dashes (-) in
the name, they would be converted to underscores (_).

To see these and other shell variables, use docker exec to open a shell to the active container and run
env to see the shell variables:

docker exec -it <container_ID> /bin/bash

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

28

[root@e7ea67..]# env
...
WEBSERVER_SERVICE_SERVICE_PORT=80
KUBERNETES_RO_SERVICE_PORT=80
KUBERNETES_SERVICE_PORT=443
KUBERNETES_RO_PORT_80_TCP_PORT=80
KUBERNETES_SERVICE_HOST=10.254.255.128
DB_SERVICE_PORT_3306_TCP_PORT=3306
DB_SERVICE_SERVICE_HOST=10.254.100.1
WEBSERVER_SERVICE_PORT_80_TCP_ADDR=10.254.100.50
...

When starting your client applications you may want to leverage those variables. If you are debugging
communications problems between containers, viewing these shell variables is a great way to see each
container’s view of the addresses of services and ports.

4.4. Debugging Kubernetes

Before you start debugging Kubernetes, it helps to have a high level of understanding of how
Kubernetes works. When you submit an application to Kubernetes, here’s generally what happens:

1. Your kubectl command line is sent to the kube-apiserver (on the master) where it is validated.

2. The kube-scheduler process (on the master) reads your yaml or json file and assigns pods to
nodes (nodes are systems running the kubelet service).

3. The kublet service (on a node) converts the pod manifest into one or more docker run calls.

4. The docker run command tries to start up the identified containers on available nodes.

So, to debug a kubernetes deployed app, you need to confirm that:

1. The Kubernetes service daemon (systemd) processes are running.

2. The yaml or json submission is valid.

3. The kubelet service is receiving a work order from the kube-scheduler.

4. The kubelet service on each node is able to successfully launch each container with docker.

NOTE

The above list is missing the kube-controller-manager which is important if you do things
like create a replication controller, but you see no pods being managed by it. Or you have
registered nodes with the cluster, but you are not getting information about their available
resources, etc.

Also note, there is a movement upstream to an all-in-one hyperkube binary, so terminology here may
need to change in the near future.

4.4.1. Inspecting and Debugging Kubernetes

From the Kubernetes master, inspect the running Kubernetes configuration. We’ll start by showing you
how this configuration should look when everything is working. Then we’ll show you how to the setup
might break in various ways and how you can go about fixing it.

CHAPTER 4. TROUBLESHOOTING KUBERNETES

29

4.4.2. Querying the State of Kubernetes

Using kubectl is the simplest way to manually debug the process of application submission, service
creation, and pod assignment. To see what pods, services, and replication controllers are active, run
these commands on the master:

kubectl get pods
POD IP CONTAINER(S) IMAGE(S) HOST LABELS
STATUS
4e04dd3b-c... 10.20.29.3 apache-frontend webwithdb node2.example.com/
name=webserver,selectorname=webserver,uses=db Running
5544eab2-c... 10.20.48.15 apache-frontend webwithdb node1.example.com/
name=webserver,selectorname=webserver,uses=db Running
1c971a09-c... 10.20.29.2 db dbforweb node2.example.com name=db,selectorname=db
Running
1c97a755-c... 10.20.48.14 db dbforweb node1.example.com/ name=db,selectorname=db
Running
kubectl get services
NAME LABELS SELECTOR IP PORT
webserver-service name=webserver name=webserver 10.254.100.50 80
db-service name=db name=db 10.254.100.1 3306
kubernetes component=apiserver,provider=kubernetes 10.254.92.19 443
kubernetes-ro component=apiserver,provider=kubernetes 10.254.206.141 80
kubectl get replicationControllers
CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
webserver-controller apache-frontend webwithdb selectorname=webserver 2
db-controller db dbforweb selectorname=db 2

Here’s information to help you interpret this output:

Pods are either in Waiting or Running states. The fact that all four pods are running here is a
good sign.

The replication controller successfully started two apache-frontend and two db containers. They
were distributed across node1 and node2.

The uses label for apache-frontend lets that container find the db container through the db-
service Kubernetes service.

The services listing identifies the IP address and port number for each service that can be
requested from pods by each service’s label name.

The kubernetes and kubernetes-ro services provide access to the kube-apiserver systemd
service.

If something goes wrong in the process of getting to this state, the following sections will help you
troubleshoot problems.

4.5. Troubleshooting Kubernetes systemd Services

Kubernetes is implemented using a set of service daemons that run on Kubernetes masters and nodes. If
these systemd services are not working properly, you will experience failures. Things you should know
about avoiding or fixing potential problems with Kubernetes systemd services are described below.

4.5.1. Checking that Kubernetes systemd Services are Up

A Kubernetes cluster that consists of a master and one or more nodes (minions) needs to initialize a

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

30

A Kubernetes cluster that consists of a master and one or more nodes (minions) needs to initialize a
particular set of systemd services. You should verify that the following services are running on the
master and on each node:

Start Master first: The services on the master should come before starting the services on the
nodes. The nodes will not start up properly if the master is not already up.

Master services: Services include: kube-controller-manager, kube-scheduler, flanneld, etcd,
and kube-apiserver. The flanneld service is optional and it is possible to run the etcd services on
another system.

Node services: Services include: docker kube-proxy kubelet flanneld. The flanneld service is
optional.

Here’s how you verify those services on the master and each node:

Master: On your kubernetes master server, this will tell you if the proper services are active and enabled
(flanneld may not be configured on your system):

for SERVICES in etcd flanneld kube-apiserver kube-controller-manager kube-scheduler;
 do echo --- $SERVICES --- ; systemctl is-active $SERVICES ;
 systemctl is-enabled $SERVICES ; echo ""; done
--- etcd ---
active
enabled
--- flanneld ---
active
enabled
--- kube-apiserver ---
active
enabled
--- kube-controller-manager ---
active
enabled
--- kube-scheduler ---
active
enabled

Nodes: On each node, make sure the proper services are active and enabled:

for SERVICES in flanneld docker kube-proxy.service kubelet.service; \
do echo --- $SERVICES --- ; systemctl is-active $SERVICES ; \
systemctl is-enabled $SERVICES ; echo ""; done
--- flanneld ---
active
enabled
--- docker ---
active
enabled
--- kube-proxy.service ---
active
enabled
--- kubelet.service ---
active
enabled

CHAPTER 4. TROUBLESHOOTING KUBERNETES

31

If any of the master or node systemd services are disabled or failed, here’s what to do:

Try to enable or activate the service.

Check the systemd journal on the system where a service is failing and look for hints on how to
fix the problem. One way to do that is to use the journalctl with the command representing the
service. For example:

journalctl -l -u kubelet
journalctl -l -u kube-apiserver

If the services still don’t start, check that each service’s configuration file is set up properly.

4.5.2. Checking Firewall for Kubernetes

There is no iptables or firewalld service installed on RHEL Atomic Host. So, by default, there are no
firewall filter rules blocking access to Kubernetes services. However, if you have a firewall running on a
RHEL host or if you have added iptables firewall rules to your Kubernetes master or nodes to filter
incoming ports, you need to make sure that the ports that need to be exposed on those systems are not
blocked.

The following is the output of a netstat command, showing which ports Kubernetes and related services
are listening on a Kubernetes nodes:

netstat -tupln
tcp6 0 0 :::10249 :::* LISTEN 125528/kube-proxy
tcp6 0 0 :::10250 :::* LISTEN 125536/kubelet

NOTE: The kube-proxy service listens on random ports. This is not a problem on RHEL Atomic systems,
since there is on filtering firewall service used by default. However, if you add a firewall to RHEL Atomic
or use a default RHEL system, you can request that kube-proxy listen on specific ports in the service
definition and then open those ports in the firewall.

Here is netstat output on a Kubernetes master:

tcp 0 0 192.168.122.249:7080 0.0.0.0:* LISTEN 636/kube-apiserver
tcp6 0 0 :::8080 :::* LISTEN 636/kube-apiserver
tcp 0 0 127.0.0.1:10252 0.0.0.0:* LISTEN 7541/kube-controller
tcp 0 0 127.0.0.1:10251 0.0.0.0:* LISTEN 7590/kube-scheduler
tcp6 0 0 :::4001 :::* LISTEN 941/etcd
tcp6 0 0 :::7001 :::* LISTEN 941/etcd

The output in the third column shows the IP addresses and port number that each service is listening on.
(::: represents all interfaces) Open ports to each of those services.

4.5.3. Checking Kubernetes yaml or json Files

You set up your Kubernetes environment (pods, services, and replication controllers) by loading
information from yaml or json files using the kubectl create command. Failures can result from those
files being improperly formatted or missing needed information.

The following sections contain tips for fixing problems that occur from broken yaml or json files.

4.5.3.1. Troubleshooting Kubernetes Service Creation

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

32

A Kubernetes service (created with kubectl), attaches an IP address and port to a label. A pod that
needs to use that service can refer to that service by the label, so it doesn’t need to know the IP address
and port numbers directly. The following is an example of a service file named db-service.yaml, followed
by a list of problems that can occur when you try to create a service:

id: "db-service"
kind: "Service"
apiVersion: "v1"
port: 3306
portalIP: "10.254.100.1"
selector:
 name: "db"
labels:
 name: "db"

kubectl create -f db-service
kubectl get services
NAME LABELS SELECTOR IP PORT
db-service name=db name=db 10.254.100.1 3306
kubernetes-ro component=apiserver,provider=kubernetes 10.254.186.33 80
kubernetes component=apiserver,provider=kubernetes 10.254.198.9 443

NOTE: If you don’t see the kubernetes-ro and kubernetes services, try restarting the kube-scheduler
systemd service (systemctl restart kube-scheduler.service).

If you don’t see output similar to what was just shown, read the following:

If the service seemed to create successfully, but the LABELS an SELECTOR were not set, the
output might look as follows:

kubectl get services
NAME LABELS SELECTOR IP PORT
db-service 10.254.100.1 3306

Check that the name: fields under selector: and labels: are each indented two spaces. In this
case I deleted the two blank spaces before each name: "db" line and their values were not used
by kubectl.

If you forget that you have already created a Service and try to create it again or if some other
service has already allocated an IP address you identified in your service yaml, your new attempt
to create the service will result in this message:

create.go:75] service "webserver-service" is invalid: spec.portalIP:
 invalid value '10.254.100.50': IP 10.254.100.50 is already allocated

You can either use a different IP address or stop the service that is currently consuming that
port, if you don’t need that service.

The following error noting that the "Service" object isn’t registered can occur for a couple of
reasons:

7338 create.go:75] unable to recognize "db-service.yaml": no object named "Services" is
registered

In the above example, "Service" was misspelled as "Services". If it does correctly say "Service",

CHAPTER 4. TROUBLESHOOTING KUBERNETES

33

then check that the apiVersion is correct. A similar error occurred when the invalid value "v99"
was used as the apiVersion. Instead of saying "v99" doesn’t exist, it says it can’t find the object
"Service".

1. Here is a list of error messages that occur if any of the fields from the above example is
missing:

a. id: missing: service "" is invalid: name: required value ''

b. kind: missing: unable to recognize "db-service.yaml": no object named "" is registered

c. apiVersion: missing: service "" is invalid: [name: required value '', spec.port: invalid value
'0']

d. port: missing: service "db-service" is invalid: spec.port: invalid value '0'

e. portalIP: missing: No error is reported because portalIP is not required

f. selector: missing: No error is reported, but SELECTOR field is missing and service may
not work.

g. labels: missing: Not an error, but LABELS field is missing and service may not work.

4.5.3.2. Troubleshooting Kubernetes Replication Controller and Pod creation

A Kubernetes Pod lets you associate one or more containers together, assign run options to each
container, and manage those containers together as a unit. A replication controller lets you designate
how many of the pods you identify should be running. The following is an example of a yaml file that
defines a Web server pod and a replications controller that ensures that two instances of the pod are
running.

id: "webserver-controller"
kind: "ReplicationController"
apiVersion: "v1"
metadata:
 name: "webserver-controller"
spec:
 replicas: 1
 selector:
 name: "webserver"
 template:
 spec:
 containers:
 - name: "apache-frontend"
 image: "webwithdb"
 ports:
 - containerPort: 80
 metadata:
 labels:
 name: "webserver"
 uses: db
 labels:
 name: "webserver"

kubectl create -f webserver-service.yaml
kubectl get pods

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

34

POD IP CONTAINER(S) IMAGE(S) HOST
 LABELS STATUS
f28980d... 10.20.48.4 apache-frontend webwithdb node1.example.com/
 name=webserver,selectorname=webserver,uses=db Running
f28a0a8... 10.20.29.9 apache-frontend webwithdb node2.example.com/
 name=webserver,selectorname=webserver,uses=db Running
kubectl get replicationControllers
CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS

webserver-controller apache-frontend webwithdb selectorname=webserver 2

NOTE: I truncated the pod name and wrapped the long lines in the output above.

If you don’t see output similar to what was just shown, read the following:

id: missing: If a generated set of numbers and letters appears in the CONTROLLER column
instead of "webserver-controller", your yaml file is probably missing the id line.

apiVersion set wrong: If you see the message "unable to recognize "webserver-rc.yaml": no
object named "ReplicationController" is registered", you may have an invalid apiVersion value or
misspelled ReplicationController.

selectorname: missing: If you see the message "replicationController "webserver-controller" is
invalid: spec.selector: required value 'map[]'", there is no selectorname set after the
replicaSelector line. If the selectorname is not indented properly, you will see a message like,
"unable to get type info from "webserver-rc.yaml": couldn’t get version/kind: error converting
YAML to JSON: yaml: line 7: did not find expected key."

4.6. Troubleshooting Techniques

If you want to look deeper into what is going on with your Kubernetes cluster, see the following
techniques for investigating further.

4.6.1. Crawling and fixing the etcd database

The etcd service provides the database that Kubernetes uses to coordinate information across the
cluster. There are ways to view the database directly and fix problems in it (or clear the database if it is
beyond repair).

Displaying data from the etcd database: You can query most information you need from the etcd
database using kubectl get commands. However, if this database seems to be inconsistent with the way
you believe your configuration should be, you can directly query the etcd database using the etcdctl
command.

Use the etcdctl command with the ls option to list the directory structure of the database. To get
values, use the get option. For example, to see the root of the database, type the following:

etcdctl ls /
/registry

To list information associated with the etcd database, type this:

etcdctl ls /registry/

/registry/namespaces

CHAPTER 4. TROUBLESHOOTING KUBERNETES

35

/registry/ranges
/registry/serviceaccounts
/registry/services

...

To see the data associated with a particular entry, type the following:

etcdctl get /registry/namespaces/default | python -mjson.tool
{
 "apiVersion": "v1",
 "kind": "Namespace",
 "metadata": {
 "creationTimestamp": "2016-10-24T12:05:11Z",
 "name": "default",
 "uid": "1d6efb5f-99e2-11e6-8f4b-525400585a9f"
 },
 "spec": {
 "finalizers": [
 "kubernetes"
]
 },
 "status": {
 "phase": "Active"
 }
}

The output above is piped to a python json.tool formatting module, to make it easier to read.

NOTE: Instead of the etcdctl command, you can use the curl. For example, to see the root of the
database with curl, use this instead of the etcdctl ls / command: curl -L
http://localhost:2379/v2/keys/ | python -mjson.tool. Use that form of the curl command to display
both directory and key values. If you believe that a node is not able to connect to the etcd service on the
master, you could use the following curl command to test that connection from the node:

curl -s -L http://localhost:2379/version
{"etcdserver":"2.3.7","etcdcluster":"2.3.0"}

Fixing the etcd database: It is possible to correct problems with your etcd database if information gets
out of sync. There is are etcdctl update and etcdctl set commands for changing the contents of a key.
However, if you are not careful, changing these values can cause more problems than they fix.

However, if your etcd database become completely unuseable, you can clear it and start over again. The
way to do that is to run the etcd daemon with the -f option.

WARNING: Before you clear the etcd database, try using kubectl delete command to try to remove the
offending services, pods, replicationControllers or minions. If you still feel you need to clear the
database, keep in mind that if you do so, you need to recreate everything from scratch.

To clear the etcd database, type the following:

etcd -f

4.6.2. Deleting Kubernetes components

How you stop and delete components in Kubernetes matters. Because Kubernetes is designed to get

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

36

http://localhost:2379/v2/keys/

How you stop and delete components in Kubernetes matters. Because Kubernetes is designed to get
things to a particular state, simply deleting a container or a pod will often just cause another one to be
started.

If you do delete components out of order, here’s what you can expect:

I deleted a pod, but it started up again: If you don’t stop the replication controllers first, the
pods will be restarted. Stop the replication controllers (kubectl delete replicationControllers
webserver-controller), then stop the pods.

I stopped and deleted a container, but it started up again: With a Kubernetes cluster, you
should not stop a container directly with docker stop. The replication controller will start a new
container to restart the one you stopped.

4.6.3. Pods Stuck in the "WAITING" state.

PODS can be stuck in the waiting state for some time period. Here are some possible causes:

Pulling the Docker image is taking a while: To confirm this, you can ssh directly into the minion
which the pod is assigned, and run:

journalctl -f -u docker

This should show logs of docker pulling down your image. Note requests to pull dockerhub
images may fail intermittently, but the kubelets will continue retrying.

PODs are unassigned: If a pod remains unassigned, confirm that nodes are available to the
master by running kubectl get minions. It is possible that the node may just be down or
otherwise unreachable. Unassigned pods can also result from setting the replication count
higher then what the cluster can provide.

Container Pod dies right after starting: In some cases, if the Dockerfile you created is not
written properly to start a service, or the docker CMD operation is failing, you might see the
POD immediately dying after it starts. Try testing the container image with a docker run
command, to make sure that the container itself isn’t broken.

Check output from container: Messages output from containers can be viewed with the
kubectl log command. This can be useful for debugging problems with the applications running
within the container. Here is how to list available pods and view log messages for the one you
want:

kubectl get pods
POD IP CONTAINER(S) IMAGE(S) HOST
LABELS STATUS
e1f4b268-e87d-11e4-926b-5254001aa4ee 10.20.24.3 db dbforweb
node1.example.com/ name=db,selectorname=db Running
kubectl log e1f4b268-e87d-11e4-926b-5254001aa4ee
2015-04-28T16:09:36.953130209Z 150428 12:09:36 mysqld_safe Logging to
'/var/log/mariadb/mariadb.log'.
2015-04-28T16:09:37.137064742Z 150428 12:09:37 mysqld_safe Starting mysqld daemon
with databases from /var/lib/mysql

Check container output from docker: Some errors don’t percolate all the way up to the
kubelet. You can look directly in the docker logs for an exited container to observe why this
might be happening. Here’s how:

1. Log into the node that’s having trouble running a container

CHAPTER 4. TROUBLESHOOTING KUBERNETES

37

1. Log into the node that’s having trouble running a container

2. Run this command to look for an exited run:

docker ps -a
61960bda2927 rhel7/rhel-tools:latest "/usr/bin/bash" 47 hours ago
 Exited (0) 43 hours ago myrhel-tools4

3. Check all the output from the container with docker logs:

docker logs 61960bda2927

You should be able to see the entire output from the container session. So, for example, if you opened a
shell in a container, you will see all the commands you ran from that shell when you run docker logs.

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

38

CHAPTER 5. YAML IN A NUTSHELL

5.1. Overview

YAML — which stands for “YAML Ain’t Markup Language” — is a human-friendly data serialization
standard, similar in scope to JSON (Javascript Object Notation). Unlike JSON, there are only a handful
of special characters used to represent mappings and bullet lists, the two basic types of structure, and
indentation is used to represent substructure.

5.2. Basics

The YAML format is line-oriented, with two top-level parts, HEAD and BODY, separated by a line of
three hyphens.

HEAD

BODY

The head holds configuration information and the body holds the data. this topic does not discuss the
configuration aspect; all the examples here show only the data portion. In such cases, the “---” is
optional.

The most basic data element is one of:

1. A number

2. A Unicode string

3. A boolean value, spelled either true or false

4. In a key/value pair context, a missing value is parsed as nil

Comments start with a “#” (hash, U+23) and go to the end of the line.

Indentation is whitespace at the start of the line. You are strongly encouraged to avoid TAB (U+09)
characters and use a series of SPACE (U+20) characters, instead.

5.3. Lists

A list is a series of lines, each beginning with the same amount of indentation, followed by a hyphen,
followed by a list element. Lists cannot have blank lines. For example, here is a list of three elements, the
third of which has a comment:

- top shelf
- middle age
- bottom dweller # stability is important

Note: The third element is the string “bottom dweller” and does not include the whitespace between
“dweller” and the comment.

WARNING: Lists cannot normally nest directly; there should be an intervening mapping (described
below). In the following example, the list’s second element seems, due to the indentation (two SPACE
characters), to host a sub-list:

CHAPTER 5. YAML IN A NUTSHELL

39

- top
- middle
 - highish middle
 - lowish middle
- bottom

In reality, the second element is actually parsed as a single string. The input is equivalent to:

- top
- middle - highish middle - lowish middle
- bottom

The newlines and indentation are normalized to a single space.

5.4. Mappings

To write a mapping (also known as an associative array or hash table), use a “:” (colon, U+3A) followed
by one or more SPACE characters between the key and the value:

square: 4
triangle: 3
pentagon: 5

All keys in a mapping must be unique. For example, this is invalid YAML for two reasons: the key square
is repeated, and there is no space after the colon following triangle:

square: 4
triangle:3 # invalid key/value separation
square: 5 # repeated key

Mappings can nest directly, by starting the sub-mapping on the next line with increased indentation. In
the next example, the value for key square is itself a mapping (keys sides and perimeter), and likewise
for the value for key triangle. The value for key pentagon is the number 5.

square:
 sides: 4
 perimeter: sides * side-length
triangle:
 sides: 3
 perimeter: see square
pentagon: 5

The following example shows a mapping with three key/value pairs. The first and third values are nil,
while the second is a list of two elements, “highish middle” and “lowish middle”.

top:
middle:
 - highish middle
 - lowish middle
bottom:

5.5. Quotation

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

40

Double-quotation marks (also known as “double-quotes”) are useful for forcing non-string data to be
interpreted as a string, for preserving whitespace, and for suppressing the meaning of colon. To include
a double-quote in a string, escape it with `“\” (backslash, U+5C). In the following example, all keys and
values are strings. The second key has a colon in it. The second value has two spaces both preceding and
trailing the visible text.

"true" : "1"
"key the second (which has a \":\" in it)" : " second value "

For readability when double-quoting the key, you are encouraged to add whitespace before the colon.

5.6. Block Content

There are two kinds of block content, typically found in the value position of a mapping element:
newline-preserving and folded. If a block begins with “|” (pipe, U+7C), the newlines in that block are
preserved. If it begins with “>” (greater-than, U+3E), consecutive newlines are folded into a single
space. The following example shows both kinds of block content as the values for keys good-bye and
anyway.

hello: world

good-bye: |
 first line

 third
 fourth and last

anyway: >
 nothing is guaranteed
 in life
lastly:

Using \n (backslash-n) to indicate newline, the values for keys good-bye and anyway are, respectively:

first line\n\nthird\nfourth and last\n

nothing is guaranteed in life\n

Note that the newlines are preserved in the good-bye value but folded into a single space in the
anyway value. Also, each value ends with a single newline, even though there are two blank lines
between “fourth and last” and “anyway”, and no blank lines between “in life” and “lastly”.

5.7. Compact Representation

Another, more compact, way to represent lists and mappings is to begin with a start character, finish with
an end character, and separate elements with “,” (comma, U+2C).

For lists, the start and end characters are “[” (left square brace, U+5B) and “]” (right square brace,
U+5D), respectively. In the following example, the values in the mapping are identical:

one:
 - echo
 - hello, world!

CHAPTER 5. YAML IN A NUTSHELL

41

two: [echo, "hello, world!"]

Note: The double-quotes around the second list element of the second value; they prevent the comma
from being misinterpreted as an element separator. (If we remove them, the list would have three
elements: "echo", "hello" and "world!".)

For mappings, the start and end characters are “{” (left curly brace, U+7B) and “}” (right curly brace,
U+7D), respectively. In the following example, the values of both one and two are identical:

one:
 roses: red
 violets: blue

two: { roses: red, violets: blue }

5.8. Additional Information

There is much more to YAML, not described in this topic: directives, complex mapping keys, flow styles,
references, aliases, and tags. For detailed information, see the official YAML site, specifically the latest (
version 1.2 at time of writing) specification.

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

42

http://yaml.org/
http://yaml.org/spec/1.2/spec.html

CHAPTER 6. KUBERNETES CONFIGURATION

6.1. Overview

IMPORTANT

Procedures and software described in this chapter for manually configuring and using
Kubernetes are deprecated and, therefore, no longer supported. For information on
which software and documentation are impacted, see the Red Hat Enterprise Linux
Atomic Host Release Notes. For information on Red Hat’s officially supported
Kubernetes-based products, refer to Red Hat OpenShift Container Platform, OpenShift
Online, OpenShift Dedicated, OpenShift.io, Container Development Kit or Development
Suite.

Kubernetes reads YAML files to configure services, pods and replication controllers. This document
describes the similarities and differences between these areas and details the names and expected data
types of the various files.

6.2. Design Strategy

Kubernetes uses environment variables whose names are partially specified by the service configuration,
so normally you would design the services first, followed by the pods, followed by the replication
controllers. This ordering is “outside-in”, moving from the user-facing portion to the internal
management portion.

Of course, you are free to design the system in any order you wish. However, you might find that you
require more iterations to arrive at a good set of configuration files if you don’t start with services.

6.3. Conventions

In this document, we say field name and field value instead of key and value, respectively. For brevity
and consistency with upstream Kubernetes documentation, we say map instead of mapping. As the field
value can often be a complex structure, we call the combination of field name and value together a
<field> tree or <field> structure, regardless of the complexity of the field value. For example, here is a
map, with two top-level structures, one and two:

The one tree is a map with two elements, the a tree and the b tree, while the two tree is very simple:
field name is two and field value is 42. The field values for both a and b are lists.

6.3.1. Extended Types

We conceptually extend the YAML type system to include some sub-types of string and some more
precise sub-types of number:

symbol

This is a string that has no internal whitespace, comma, colon, curly-braces or square-braces. As such,
it does not require double-quotes. For example, all the field names and the first two values in the
following map are symbols.

one:
 a: [x, y, z]
 b: [q, r, s]
two: 42

CHAPTER 6. KUBERNETES CONFIGURATION

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/release_notes/#red_hat_enterprise_linux_atomic_host_7_5_0_beta
https://access.redhat.com/documentation/en-us/openshift_container_platform/?version=3.7/
https://access.redhat.com/documentation/en-us/openshift_online/
https://access.redhat.com/documentation/en-us/openshift_dedicated/
https://openshift.io/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/
https://access.redhat.com/documentation/en-us/red_hat_development_suite/
https://access.redhat.com/articles/1460723

Note that the field value for b is a symbol even though it is written with double-quotes. The double-
quotes are unnecessary, but not invalid. The other way to think about it is: If you need to use double-
quotes, you are not writing a symbol.

enum

This is a symbol taken from a pre-specified, finite, set.

v4addr

This is an IPv4 address in dots-and-numbers notatation (e.g., 127.0.0.1).

opt-v4addr

This is either a v4addr or the symbol None.

integer

This is a number with neither fractional part nor decimal point.

resource-quantity

This is a number optionally followed by a scaling suffix.

Suffix Scale Example Equivalence

(none) 1 19 19 (19 * 1)

m 1e-3 200m 0.2 (200 * 1e-3)

K 1e+3 4K 4000 (4 * 1e+3)

Ki 2^10 4Ki 4096 (4 * 2^10)

M 1e+6 6.5M 6500000 (6.5 * 1e+6)

Mi 2^20 6.5Mi 6815744 (6.5 * 2^20)

G 1e+9 0.4G 400000000 (0.4 * 1e+9)

Gi 2^30 0.4Gi 429496729 (0.4 * 2^30)

T 1e+12 37T 37000000000000 (37 * 1e+12)

Ti 2^40 37Ti 40681930227712 (37 * 2^40)

P 1e+15 9.8P 9800000000000000 (9.8 * 1e+15)

Pi 2^50 9.8Pi 11033819087057716 (9.8 * 2^50)

E 1e+18 0.42E 420000000000000000 (0.42 * 1e+18)

a: one-is-a-lonely-number
b: "two-s-company"
c: 3's a crowd

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

44

Ei 2^60 0.42Ei 484227031934875712 (0.42 * 2^60)

Suffix Scale Example Equivalence

Note: The suffix is case-sensitive; m and M differ.

6.3.2. Full Name

The last convention relates to the full name of a field. All field names are symbols. At the top-level, the
full name of a field is identical to the field name. At each sub-level, the full name of a field is the full
name of the parent structure followed by a “.” (period, U+2E) followed by the name of the field.

Here is a map with two top-level items, one and two:

The value of one is a sub-map, while the value of two is a simple number. The following table shows all
the field names and full names.

Name Full Name Depth

one one 0 (top-level)

two two 0

a one.a 1

b one.b 1

x one.a.x 2

y one.a.y 2

z one.a.z 2

q one.b.q 2

r one.b.r 2

one:
 a:
 x: 9
 y: 10
 z: 11
 b:
 q: 19
 r: 20
 s: 21
two: 42

CHAPTER 6. KUBERNETES CONFIGURATION

45

s one.b.s 2

Name Full Name Depth

6.4. Common Structures

All configuration files are maps at the top-level, with a few required fields and a series of optional ones.
In most cases field values are basic data elements, but sometimes the value is a list or a sub-map. In a
map, the order does not matter, although it is traditional to place the required fields first.

6.4.1. Top-Level

The top-level fields are kind, apiVersion, metadata, and spec.

kind (enum, one of: Service, Pod, ReplicationController)

This specifies what the configuration file is trying to configure. Although Kubernetes can usually infer
kind from context, the slight redundancy of specifying it in the configuration file ensures that type
errors are caught early.

apiVersion (enum)

This specifies which version of the API is used in the configuration file. In this document all examples
use apiVersion: v1.

metadata (map)

This is a top-level field for Service, Pod and ReplicationController files and additionally found as a
member of the ReplicationController’s template map. Common sub-fields (all optional unless
otherwise indicated) are:

Field Type Comment

name symbol Required

namespace symbol Default is default

labels map See individual types

Strictly speaking, metadata is optional. However, we recommend including it along with the others,
anyway, because name and labels facilitate later manipulation of the Service, Pod or
ReplicationController.

spec (map)

This field is the subject of the rest of this document.

6.4.2. Elsewhere

The other fields described in this section are common, in the sense of being found in more than one
context, but not at top-level.

labels (map)

This is often one of the fields in the metadata map. Valid label keys have two segements:

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

46

[prefix/]name

The prefix and “/” (slash, U+2F) portions are optional. The name portion is required and must be 1-
63 characters in length. It must begin and end with with an alphanumeric character (i.e., [0-9A-Za-z]).
The internal characters of name may include hyphen, dot and underscore. Here are some label keys,
valid and invalid:

Label Keys Prefix Name Comments

prefix/name prefix name

just-a-name (n/a) just-a-name

-simply-wrong! (n/a) (n/a) beg and end not alphanumeric

example.org/service example.org service looks like a domain!

In the following example, labels and name comprise the map value of field metadata and the map
value of labels has only one key/value pair.

Note that in this example metadata.labels.name and metadata.name differ.

selector (map)

This is often one of the fields in the spec map of a Service or ReplicationController, but is also found
at top-level. The map specifies field names and values that must match in order for the configured
object to receive traffic. For example, the following fragment matches the labels example above.

protocol (enum, one of: TCP, UDP)

This specifies an IP protocol.

port (integer)

The field value is the TCP/UDP port where the service, pod or replication controller can be
contacted for administration and control purposes. Similar fields are containerPort, hostPort and
targetPort. Often, port is found in the same map with name and protocol. For example, here is a
fragment that shows a list of two such maps as the value for field ports:

metadata:
 labels:
 name: rabbitmq
 name: rabbitmq-controller

spec:
 selector:
 name: rabbitmq

ports:
- name: dns
 port: 53
 protocol: UDP

CHAPTER 6. KUBERNETES CONFIGURATION

47

In this example, the port in both maps is identical, while the name and protocol differ.

limits (map)

The field value is a sub-map associating resource types with resource-quantity values. For limits the
quantities describe maximum allowable values. A similar field is request, which describes desired
values.
Valid resource types are cpu and memory. The units for cpu are Kubernetes Compute Unit
seconds/second (i.e., CPU cores normalized to a canonical "Kubernetes CPU"). The units for
memory are bytes.

In the following fragment, cpu is limited to 0.1 KCU and memory to 2GiB.

As shown here, the limits field is often found as part of the map value for the resources field.

6.5. Specific Structures

The following subsections list fields found in the various configuration files apart from those in Common
Structures. A field value’s type is either one of the elemental data types, including those listed in
Conventions, map or list. Each subsection also discusses pitfalls for that particular file.

6.5.1. Service

At the most basic level, Kubernetes can be configured with one Service YAML and one Pod YAML. In the
service YAML, the required field kind has value Service. The spec tree should include ports, and
optionally, selector and type. The value of type is an enum, one of: ClusterIP (the default if type is
unspecified), NodePort, LoadBalancer.

Here is an example of a basic Service YAML:

Note that name: blog is indented by two columns to signify it being part of the sub-map value of both
metadata and selector trees.

- name: dns-tcp
 port: 53
 protocol: TCP

resources:
 limits:
 cpu: 100m
 memory: 2Gi

kind: Service
apiVersion: v1
metadata:
 name: blog
spec:
 ports:
 - containerPort: 4567
 targetPort: 80
 selector:
 name: blog
 type: LoadBalancer

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

48

WARNING

Omitting the indentation of metadata.name places name at top-level and gives
metadata a nil value.

Each container’s port 4567 is visible externally as port 80, and they are accessed in a round-robin
manner because of `type: LoadBalancer'.

6.5.2. Pod

In the pod YAML, the required field kind has value Pod. The spec tree should include containers and
optionally volumes fields. Their values are both a list of maps. Each element of containers specifies an
image, with a name and other fields that describe how the image is to be run (e.g., privileged,
resources), what ports it exposes, and what volume mounts it requires. Each element of volumes
specfies a hostPath, with a name.

This example specifies the webserver nginx to be run unprivileged and with access to the host directory
/srv/my-data visible internally as /usr/share/nginx/html.

6.5.3. Replication Controller

In the replication controller YAML, the required field kind has value ReplicationController. The
spec.replicas field specifies how the pod should be horizontally scaled, that is, how many copies of a
pod should be active simultaneously. The spec tree also has a template tree, which in turn has a
sub-spec tree that resembles the spec tree from a Pod YAML.

apiVersion: v1
kind: Pod
metadata:
 name: host-test
spec:
 containers:
 - image: nginx
 name: host-test
 privileged: false
 volumeMounts:
 - mountPath: /usr/share/nginx/html
 name: srv
 readOnly: false
 volumes:
 - hostPath:
 path: /srv/my-data
 name: srv

apiVersion: v1
kind: ReplicationController
metadata:
 name: my-nginx
spec:
 replicas: 3 1

CHAPTER 6. KUBERNETES CONFIGURATION

49

1

2

Kubernetes will try to maintain three active copies.

This sub-spec tree is essentially a Pod spec tree.

6.6. Field Reference

The following table lists all fields found the files, apart from those in Common Structures. A field value’s
type is either one of the elemental data types (including those listed in Conventions), map, or list. For
the Context column, the code is s for services, p for pods, r for replication controllers.

Field Type Context Example / Comment

desiredState map

clusterIP opt-
v4addr

s 10.254.100.50

selector map s one element, key name

replicas integer r 2

replicaSelector map r one field: selectorname

podTemplate map r two fields: desiredState, labels

manifest map r

version string r like apiVersion

containers map pr

 template:
 metadata:
 labels:
 app: nginx
 spec: 2
 volumes:
 - name: secret-volume
 secret:
 secretName: nginxsecret
 containers:
 - name: nginxhttps
 image: bprashanth/nginxhttps:1.0
 ports:
 - containerPort: 443
 - containerPort: 80
 volumeMounts:
 - mountPath: /etc/nginx/ssl
 name: secret-volume

Red Hat Enterprise Linux Atomic Host 7 Getting Started with Kubernetes

50

image string pr

selectorname string r

deprecatedPublicIPs list s each element is an v4addr

privileged boolean pr

resources map pr

imagePullPolicy enum pr Always, Never, IfNotPresent

command list of
strings

pr for docker run

Field Type Context Example / Comment

CHAPTER 6. KUBERNETES CONFIGURATION

51

	Table of Contents
	1. DEPRECATION NOTICE
	CHAPTER 1. GET STARTED ORCHESTRATING CONTAINERS WITH KUBERNETES
	1.1. Overview
	1.2. Understanding Kubernetes
	1.3. Running Containers from Kubernetes Pods
	1.3.1. Setting up to Deploy Docker Containers with Kubernetes
	1.3.2. Starting Kubernetes
	1.3.3. Launching container pods with Kubernetes

	1.4. Exploring Kubernetes pods

	CHAPTER 2. GET STARTED PROVISIONING STORAGE IN KUBERNETES
	2.1. Overview
	2.2. Kubernetes Persistent Volumes
	2.2.1. Requesting storage
	2.2.2. Using your claim as a volume
	2.2.3. Check the service

	2.3. Volumes
	2.3.1. Example

	2.4. Kubernetes and SELinux Permissions
	2.5. NFS
	2.6. iSCSI
	2.7. Google Compute Engine

	CHAPTER 3. MIGRATING FROM AN EARLIER VERSION OF KUBERNETES
	CHAPTER 4. TROUBLESHOOTING KUBERNETES
	4.1. Overview
	4.2. Understanding Kubernetes Troubleshooting
	4.3. Preparing Containerized Applications for Kubernetes
	4.3.1. Networking Constraints
	4.3.2. Preparing your Containers

	4.4. Debugging Kubernetes
	4.4.1. Inspecting and Debugging Kubernetes
	4.4.2. Querying the State of Kubernetes

	4.5. Troubleshooting Kubernetes systemd Services
	4.5.1. Checking that Kubernetes systemd Services are Up
	4.5.2. Checking Firewall for Kubernetes
	4.5.3. Checking Kubernetes yaml or json Files
	4.5.3.1. Troubleshooting Kubernetes Service Creation
	4.5.3.2. Troubleshooting Kubernetes Replication Controller and Pod creation

	4.6. Troubleshooting Techniques
	4.6.1. Crawling and fixing the etcd database
	4.6.2. Deleting Kubernetes components
	4.6.3. Pods Stuck in the "WAITING" state.

	CHAPTER 5. YAML IN A NUTSHELL
	5.1. Overview
	5.2. Basics
	5.3. Lists
	5.4. Mappings
	5.5. Quotation
	5.6. Block Content
	5.7. Compact Representation
	5.8. Additional Information

	CHAPTER 6. KUBERNETES CONFIGURATION
	6.1. Overview
	6.2. Design Strategy
	6.3. Conventions
	6.3.1. Extended Types
	6.3.2. Full Name

	6.4. Common Structures
	6.4.1. Top-Level
	6.4.2. Elsewhere

	6.5. Specific Structures
	6.5.1. Service
	6.5.2. Pod
	6.5.3. Replication Controller

	6.6. Field Reference

