16.4. Types of virtual machine network connections

To modify the networking properties and behavior of your VMs, change the type of virtual network or interface the VMs use. The following sections describe the connection types available to VMs in RHEL 9.

16.4.1. Virtual networking with network address translation

By default, virtual network switches operate in network address translation (NAT) mode. They use IP masquerading rather than Source-NAT (SNAT) or Destination-NAT (DNAT). IP masquerading enables connected VMs to use the host machine’s IP address for communication with any external network. When the virtual network switch is operating in NAT mode, computers external to the host cannot communicate with the VMs inside the host.

vn 04 hostwithnatswitch
Avertissement

Virtual network switches use NAT configured by firewall rules. Editing these rules while the switch is running is not recommended, because incorrect rules may result in the switch being unable to communicate.

16.4.2. Virtual networking in routed mode

When using Routed mode, the virtual switch connects to the physical LAN connected to the host machine, passing traffic back and forth without the use of NAT. The virtual switch can examine all traffic and use the information contained within the network packets to make routing decisions. When using this mode, the virtual machines (VMs) are all in a single subnet, separate from the host machine. The VM subnet is routed through a virtual switch, which exists on the host machine. This enables incoming connections, but requires extra routing-table entries for systems on the external network.

Routed mode uses routing based on the IP address:

vn 06 routed switch

A common topology that uses routed mode is virtual server hosting (VSH). A VSH provider may have several host machines, each with two physical network connections. One interface is used for management and accounting, the other for the VMs to connect through. Each VM has its own public IP address, but the host machines use private IP addresses so that only internal administrators can manage the VMs.

+ image::vn-10-routed-mode-datacenter.png[]

16.4.3. Virtual networking in bridged mode

In most VM networking modes, VMs automatically create and connect to the virbr0 virtual bridge. In contrast, in bridged mode, the VM connects to an existing Linux bridge on the host. As a result, the VM is directly visible on the physical network. This enables incoming connections, but does not require any extra routing-table entries.

Bridged mode uses connection switching based on the MAC address:

vn Bridged Mode Diagram

In bridged mode, the VM appear within the same subnet as the host machine. All other physical machines on the same physical network can detect the VM and access it.

Bridged network bonding

It is possible to use multiple physical bridge interfaces on the hypervisor by joining them together with a bond. The bond can then be added to a bridge, after which the VMs can be added to the bridge as well. However, the bonding driver has several modes of operation, and not all of these modes work with a bridge where VMs are in use.

The following bonding modes are usable:

  • mode 1
  • mode 2
  • mode 4

In contrast, using modes 0, 3, 5, or 6 is likely to cause the connection to fail. Also note that media-independent interface (MII) monitoring should be used to monitor bonding modes, as Address Resolution Protocol (ARP) monitoring does not work correctly.

For more information on bonding modes, refer to the Red Hat Knowledgebase.

Common scenarios

The most common use cases for bridged mode include:

  • Deploying VMs in an existing network alongside host machines, making the difference between virtual and physical machines invisible to the end user.
  • Deploying VMs without making any changes to existing physical network configuration settings.
  • Deploying VMs that must be easily accessible to an existing physical network. Placing VMs on a physical network where they must access DHCP services.
  • Connecting VMs to an existing network where virtual LANs (VLANs) are used.
  • A demilitarized zone (DMZ) network. For a DMZ deployment with VMs, Red Hat recommends setting up the DMZ at the physical network router and switches, and connecting the VMs to the physical network using bridged mode.

16.4.4. Virtual networking in isolated mode

When using isolated mode, virtual machines connected to the virtual switch can communicate with each other and with the host machine, but their traffic will not pass outside of the host machine, and they cannot receive traffic from outside the host machine. Using dnsmasq in this mode is required for basic functionality such as DHCP.

vn 07 isolated switch

16.4.5. Virtual networking in open mode

When using open mode for networking, libvirt does not generate any firewall rules for the network. As a result, libvirt does not overwrite firewall rules provided by the host, and the user can therefore manually manage the VM’s firewall rules.

16.4.6. Comparison of virtual machine connection types

The following table provides information about the locations to which selected types of virtual machine (VM) network configurations can connect, and to which they are visible.

Tableau 16.1. Virtual machine connection types

 Connection to the hostConnection to other VMs on the hostConnection to outside locationsVisible to outside locations

Bridged mode

YES

YES

YES

YES

NAT

YES

YES

YES

no

Routed mode

YES

YES

YES

YES

Isolated mode

YES

YES

no

no

Open mode

Depends on the host’s firewall rules