
Red Hat Enterprise Linux 8

Managing file systems

Creating, modifying, and administering file systems in Red Hat Enterprise Linux 8

Last Updated: 2024-03-22

Red Hat Enterprise Linux 8 Managing file systems

Creating, modifying, and administering file systems in Red Hat Enterprise Linux 8

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Enterprise Linux supports a variety of file systems. Each type of file system solves different
problems and their usage is application specific. Use the information about the key differences and
considerations to select and deploy the appropriate file system based on your specific application
requirements. The supported file systems include local on-disk file systems XFS and ext4, and
network and client-and-server file systems NFS and SMB. You can perform several operations with
a file system such as creating, mounting, backing up, restoring, checking and repairing, as well as
limiting the storage space by using quotas.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS
1.1. TYPES OF FILE SYSTEMS
1.2. LOCAL FILE SYSTEMS
1.3. THE XFS FILE SYSTEM
1.4. THE EXT4 FILE SYSTEM
1.5. COMPARISON OF XFS AND EXT4
1.6. CHOOSING A LOCAL FILE SYSTEM
1.7. NETWORK FILE SYSTEMS
1.8. SHARED STORAGE FILE SYSTEMS
1.9. CHOOSING BETWEEN NETWORK AND SHARED STORAGE FILE SYSTEMS
1.10. VOLUME-MANAGING FILE SYSTEMS

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES
2.1. INTRODUCTION TO THE STORAGE RHEL SYSTEM ROLE
2.2. PARAMETERS THAT IDENTIFY A STORAGE DEVICE IN THE STORAGE RHEL SYSTEM ROLE
2.3. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AN XFS FILE SYSTEM ON A BLOCK DEVICE
2.4. EXAMPLE ANSIBLE PLAYBOOK TO PERSISTENTLY MOUNT A FILE SYSTEM
2.5. EXAMPLE ANSIBLE PLAYBOOK TO MANAGE LOGICAL VOLUMES
2.6. EXAMPLE ANSIBLE PLAYBOOK TO ENABLE ONLINE BLOCK DISCARD
2.7. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT4 FILE SYSTEM
2.8. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT3 FILE SYSTEM
2.9. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING FILE SYSTEM ON LVM USING THE STORAGE
RHEL SYSTEM ROLE
2.10. EXAMPLE ANSIBLE PLAYBOOK TO CREATE A SWAP VOLUME USING THE STORAGE
RHEL SYSTEM ROLE
2.11. CONFIGURING A RAID VOLUME USING THE STORAGE SYSTEM ROLE
2.12. CONFIGURING AN LVM POOL WITH RAID USING THE STORAGE RHEL SYSTEM ROLE
2.13. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES USING THE STORAGE RHEL SYSTEM ROLE

2.14. EXAMPLE ANSIBLE PLAYBOOK TO COMPRESS AND DEDUPLICATE A VDO VOLUME ON LVM USING
THE STORAGE RHEL SYSTEM ROLE
2.15. CREATING A LUKS2 ENCRYPTED VOLUME USING THE STORAGE RHEL SYSTEM ROLE
2.16. EXAMPLE ANSIBLE PLAYBOOK TO EXPRESS POOL VOLUME SIZES AS PERCENTAGE USING THE
STORAGE RHEL SYSTEM ROLE
2.17. ADDITIONAL RESOURCES

CHAPTER 3. MOUNTING NFS SHARES
3.1. NFS HOST NAME FORMATS
3.2. CONFIGURING AN NFSV3 CLIENT TO RUN BEHIND A FIREWALL
3.3. CONFIGURING AN NFSV4 CLIENT TO RUN BEHIND A FIREWALL
3.4. DISCOVERING NFS EXPORTS
3.5. MOUNTING AN NFS SHARE WITH MOUNT
3.6. SETTING UP PNFS SCSI ON THE CLIENT
3.7. CHECKING PNFS SCSI OPERATIONS FROM THE CLIENT USING MOUNTSTATS
3.8. COMMON NFS MOUNT OPTIONS
3.9. STORING USER SETTINGS OVER NFS
3.10. GETTING STARTED WITH FS-CACHE

3.10.1. Overview of the FS-Cache
3.10.2. Performance guarantee

8

9

10
10
11
11

12
13
14
15
15
16
17

18
18
18
19

20
20
21
22
22

23

24
25
26

27

28
29

31
32

33
33
33
34
35
35
36
37
37
39
39
39
41

Table of Contents

1

. .

. .

. .

. .

3.10.3. Using the cache with NFS
3.10.4. Setting up a cache
3.10.5. Configuring NFS cache sharing
3.10.6. Cache limitations with NFS
3.10.7. Cache cull limits configuration
3.10.8. Retrieving statistical information from the fscache kernel module
3.10.9. FS-Cache references

CHAPTER 4. DEPLOYING AN NFS SERVER
4.1. KEY FEATURES OF MINOR NFSV4 VERSIONS
4.2. THE AUTH_SYS AUTHENTICATION METHOD
4.3. THE AUTH_GSS AUTHENTICATION METHOD
4.4. FILE PERMISSIONS ON EXPORTED FILE SYSTEMS
4.5. SERVICES REQUIRED ON AN NFS SERVER
4.6. THE /ETC/EXPORTS CONFIGURATION FILE
4.7. CONFIGURING AN NFSV4-ONLY SERVER
4.8. CONFIGURING AN NFSV3 SERVER WITH OPTIONAL NFSV4 SUPPORT
4.9. ENABLING QUOTA SUPPORT ON AN NFS SERVER
4.10. ENABLING NFS OVER RDMA ON AN NFS SERVER
4.11. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT IDENTITY MANAGEMENT DOMAIN

CHAPTER 5. MOUNTING AN SMB SHARE
5.1. SUPPORTED SMB PROTOCOL VERSIONS
5.2. UNIX EXTENSIONS SUPPORT
5.3. MANUALLY MOUNTING AN SMB SHARE
5.4. MOUNTING AN SMB SHARE AUTOMATICALLY WHEN THE SYSTEM BOOTS
5.5. CREATING A CREDENTIALS FILE TO AUTHENTICATE TO AN SMB SHARE
5.6. PERFORMING A MULTI-USER SMB MOUNT

5.6.1. Mounting a share with the multiuser option
5.6.2. Verifying if an SMB share is mounted with the multiuser option
5.6.3. Accessing a share as a user

5.7. FREQUENTLY USED SMB MOUNT OPTIONS

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES
6.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES
6.2. FILE SYSTEM AND DEVICE IDENTIFIERS

File system identifiers
Device identifiers
Recommendations

6.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN /DEV/DISK/
6.3.1. File system identifiers

The UUID attribute in /dev/disk/by-uuid/
The Label attribute in /dev/disk/by-label/

6.3.2. Device identifiers
The WWID attribute in /dev/disk/by-id/
The Partition UUID attribute in /dev/disk/by-partuuid
The Path attribute in /dev/disk/by-path/

6.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH
6.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION
6.6. LISTING PERSISTENT NAMING ATTRIBUTES
6.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

CHAPTER 7. PARTITION OPERATIONS WITH PARTED
7.1. VIEWING THE PARTITION TABLE WITH PARTED

41
42
43
44
44
45
46

47
47
48
49
49
49
51
51

53
56
57
59

61
61
61

62
63
64
64
65
65
65
66

68
68
68
69
69
69
69
69
69
70
70
70
71
71
71
72
72
74

75
75

Red Hat Enterprise Linux 8 Managing file systems

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

7.2. CREATING A PARTITION TABLE ON A DISK WITH PARTED
7.3. CREATING A PARTITION WITH PARTED
7.4. REMOVING A PARTITION WITH PARTED
7.5. RESIZING A PARTITION WITH PARTED

CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK
8.1. USING UNPARTITIONED FREE SPACE
8.2. USING SPACE FROM AN UNUSED PARTITION
8.3. USING FREE SPACE FROM AN ACTIVE PARTITION

8.3.1. Destructive repartitioning
8.3.2. Non-destructive repartitioning

CHAPTER 9. GETTING STARTED WITH XFS
9.1. THE XFS FILE SYSTEM
9.2. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

CHAPTER 10. CREATING AN XFS FILE SYSTEM
10.1. CREATING AN XFS FILE SYSTEM WITH MKFS.XFS

CHAPTER 11. BACKING UP AN XFS FILE SYSTEM
11.1. FEATURES OF XFS BACKUP
11.2. BACKING UP AN XFS FILE SYSTEM WITH XFSDUMP
11.3. ADDITIONAL RESOURCES

CHAPTER 12. RESTORING AN XFS FILE SYSTEM FROM BACKUP
12.1. FEATURES OF RESTORING XFS FROM BACKUP
12.2. RESTORING AN XFS FILE SYSTEM FROM BACKUP WITH XFSRESTORE
12.3. INFORMATIONAL MESSAGES WHEN RESTORING AN XFS BACKUP FROM A TAPE
12.4. ADDITIONAL RESOURCES

CHAPTER 13. INCREASING THE SIZE OF AN XFS FILE SYSTEM
13.1. INCREASING THE SIZE OF AN XFS FILE SYSTEM WITH XFS_GROWFS

CHAPTER 14. CONFIGURING XFS ERROR BEHAVIOR
14.1. CONFIGURABLE ERROR HANDLING IN XFS
14.2. CONFIGURATION FILES FOR SPECIFIC AND UNDEFINED XFS ERROR CONDITIONS
14.3. SETTING XFS BEHAVIOR FOR SPECIFIC CONDITIONS
14.4. SETTING XFS BEHAVIOR FOR UNDEFINED CONDITIONS
14.5. SETTING THE XFS UNMOUNT BEHAVIOR

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM
15.1. SCENARIOS THAT REQUIRE A FILE SYSTEM CHECK
15.2. POTENTIAL SIDE EFFECTS OF RUNNING FSCK
15.3. ERROR-HANDLING MECHANISMS IN XFS

Unclean unmounts
Corruption

15.4. CHECKING AN XFS FILE SYSTEM WITH XFS_REPAIR
15.5. REPAIRING AN XFS FILE SYSTEM WITH XFS_REPAIR
15.6. ERROR HANDLING MECHANISMS IN EXT2, EXT3, AND EXT4
15.7. CHECKING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK
15.8. REPAIRING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

CHAPTER 16. MOUNTING FILE SYSTEMS
16.1. THE LINUX MOUNT MECHANISM
16.2. LISTING CURRENTLY MOUNTED FILE SYSTEMS
16.3. MOUNTING A FILE SYSTEM WITH MOUNT

76
77
78
80

82
82
82
83
83
84

87
87
88

89
89

90
90
90
91

92
92
92
93
94

95
95

96
96
96
97
97
98

99
99

100
100
100
100
101
102
103
103
104

105
105
105
106

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

16.4. MOVING A MOUNT POINT
16.5. UNMOUNTING A FILE SYSTEM WITH UMOUNT
16.6. COMMON MOUNT OPTIONS

CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT POINTS
17.1. TYPES OF SHARED MOUNTS
17.2. CREATING A PRIVATE MOUNT POINT DUPLICATE
17.3. CREATING A SHARED MOUNT POINT DUPLICATE
17.4. CREATING A SLAVE MOUNT POINT DUPLICATE
17.5. PREVENTING A MOUNT POINT FROM BEING DUPLICATED

CHAPTER 18. PERSISTENTLY MOUNTING FILE SYSTEMS
18.1. THE /ETC/FSTAB FILE
18.2. ADDING A FILE SYSTEM TO /ETC/FSTAB

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND
19.1. THE AUTOFS SERVICE
19.2. THE AUTOFS CONFIGURATION FILES
19.3. CONFIGURING AUTOFS MOUNT POINTS
19.4. AUTOMOUNTING NFS SERVER USER HOME DIRECTORIES WITH AUTOFS SERVICE
19.5. OVERRIDING OR AUGMENTING AUTOFS SITE CONFIGURATION FILES
19.6. USING LDAP TO STORE AUTOMOUNTER MAPS
19.7. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON DEMAND WITH /ETC/FSTAB
19.8. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON DEMAND WITH A MOUNT UNIT

CHAPTER 20. USING SSSD COMPONENT FROM IDM TO CACHE THE AUTOFS MAPS
20.1. CONFIGURING AUTOFS MANUALLY TO USE IDM SERVER AS AN LDAP SERVER
20.2. CONFIGURING SSSD TO CACHE AUTOFS MAPS

CHAPTER 21. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE SYSTEM
21.1. FILES AND DIRECTORIES THAT ALWAYS RETAIN WRITE PERMISSIONS
21.2. CONFIGURING THE ROOT FILE SYSTEM TO MOUNT WITH READ-ONLY PERMISSIONS ON BOOT

CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS WITH QUOTAS
22.1. DISK QUOTAS
22.2. THE XFS_QUOTA TOOL
22.3. FILE SYSTEM QUOTA MANAGEMENT IN XFS
22.4. ENABLING DISK QUOTAS FOR XFS
22.5. REPORTING XFS USAGE
22.6. MODIFYING XFS QUOTA LIMITS
22.7. SETTING PROJECT LIMITS FOR XFS

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS
23.1. INSTALLING THE QUOTA TOOL
23.2. ENABLING QUOTA FEATURE ON FILE SYSTEM CREATION
23.3. ENABLING QUOTA FEATURE ON EXISTING FILE SYSTEMS
23.4. ENABLING QUOTA ENFORCEMENT
23.5. ASSIGNING QUOTAS PER USER
23.6. ASSIGNING QUOTAS PER GROUP
23.7. ASSIGNING QUOTAS PER PROJECT
23.8. SETTING THE GRACE PERIOD FOR SOFT LIMITS
23.9. TURNING FILE SYSTEM QUOTAS OFF
23.10. REPORTING ON DISK QUOTAS

CHAPTER 24. DISCARDING UNUSED BLOCKS

107
107
108

110
110
110
111

113
114

115
115
115

117
117
117
119

120
120
122
123
124

126
126
127

129
129
130

131
131
131
131
132
132
133
134

136
136
136
136
137
138
139
140
141
141

142

143

Red Hat Enterprise Linux 8 Managing file systems

4

. .

. .

. .

. .

. .

. .

Requirements
24.1. TYPES OF BLOCK DISCARD OPERATIONS

Recommendations
24.2. PERFORMING BATCH BLOCK DISCARD
24.3. ENABLING ONLINE BLOCK DISCARD
24.4. ENABLING PERIODIC BLOCK DISCARD

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS
25.1. WHAT IS STRATIS
25.2. COMPONENTS OF A STRATIS VOLUME
25.3. BLOCK DEVICES USABLE WITH STRATIS

Supported devices
Unsupported devices

25.4. INSTALLING STRATIS
25.5. CREATING AN UNENCRYPTED STRATIS POOL
25.6. CREATING AN ENCRYPTED STRATIS POOL
25.7. SETTING OVERPROVISIONING MODE IN STRATIS FILESYSTEM
25.8. BINDING A STRATIS POOL TO NBDE
25.9. BINDING A STRATIS POOL TO TPM
25.10. UNLOCKING AN ENCRYPTED STRATIS POOL WITH KERNEL KEYRING
25.11. UNBINDING A STRATIS POOL FROM SUPPLEMENTARY ENCRYPTION
25.12. STARTING AND STOPPING STRATIS POOL
25.13. CREATING A STRATIS FILE SYSTEM
25.14. MOUNTING A STRATIS FILE SYSTEM
25.15. PERSISTENTLY MOUNTING A STRATIS FILE SYSTEM
25.16. SETTING UP NON-ROOT STRATIS FILESYSTEMS IN /ETC/FSTAB USING A SYSTEMD SERVICE

CHAPTER 26. EXTENDING A STRATIS VOLUME WITH ADDITIONAL BLOCK DEVICES
26.1. COMPONENTS OF A STRATIS VOLUME
26.2. ADDING BLOCK DEVICES TO A STRATIS POOL
26.3. ADDITIONAL RESOURCES

CHAPTER 27. MONITORING STRATIS FILE SYSTEMS
27.1. STRATIS SIZES REPORTED BY DIFFERENT UTILITIES
27.2. DISPLAYING INFORMATION ABOUT STRATIS VOLUMES
27.3. ADDITIONAL RESOURCES

CHAPTER 28. USING SNAPSHOTS ON STRATIS FILE SYSTEMS
28.1. CHARACTERISTICS OF STRATIS SNAPSHOTS
28.2. CREATING A STRATIS SNAPSHOT
28.3. ACCESSING THE CONTENT OF A STRATIS SNAPSHOT
28.4. REVERTING A STRATIS FILE SYSTEM TO A PREVIOUS SNAPSHOT
28.5. REMOVING A STRATIS SNAPSHOT
28.6. ADDITIONAL RESOURCES

CHAPTER 29. REMOVING STRATIS FILE SYSTEMS
29.1. COMPONENTS OF A STRATIS VOLUME
29.2. REMOVING A STRATIS FILE SYSTEM
29.3. REMOVING A STRATIS POOL
29.4. ADDITIONAL RESOURCES

CHAPTER 30. GETTING STARTED WITH AN EXT3 FILE SYSTEM
30.1. FEATURES OF AN EXT3 FILE SYSTEM
30.2. CREATING AN EXT3 FILE SYSTEM
30.3. MOUNTING AN EXT3 FILE SYSTEM

143
143
143
143
144
144

146
146
146
147
147
148
148
148
149
150
151
152
153
153
154
155
155
156
157

158
158
159
159

160
160
160
161

162
162
162
163
163
164
164

165
165
166
166
167

168
168
168
169

Table of Contents

5

. .

30.4. RESIZING AN EXT3 FILE SYSTEM

CHAPTER 31. GETTING STARTED WITH AN EXT4 FILE SYSTEM
31.1. FEATURES OF AN EXT4 FILE SYSTEM
31.2. CREATING AN EXT4 FILE SYSTEM
31.3. MOUNTING AN EXT4 FILE SYSTEM
31.4. RESIZING AN EXT4 FILE SYSTEM
31.5. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

170

172
172
172
174
174
175

Red Hat Enterprise Linux 8 Managing file systems

6

Table of Contents

7

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Enterprise Linux 8 Managing file systems

8

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

9

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS
Choosing the file system that is appropriate for your application is an important decision due to the
large number of options available and the trade-offs involved.

The following sections describe the file systems that Red Hat Enterprise Linux 8 includes by default, and
recommendations on the most suitable file system for your application.

1.1. TYPES OF FILE SYSTEMS

Red Hat Enterprise Linux 8 supports a variety of file systems (FS). Different types of file systems solve
different kinds of problems, and their usage is application specific. At the most general level, available
file systems can be grouped into the following major types:

Table 1.1. Types of file systems and their use cases

Type File system Attributes and use cases

Disk or local FS XFS XFS is the default file system in RHEL. Red Hat
recommends deploying XFS as your local file system
unless there are specific reasons to do otherwise: for
example, compatibility or corner cases around
performance.

ext4 ext4 has the benefit of familiarity in Linux, having
evolved from the older ext2 and ext3 file systems. In
many cases, it rivals XFS on performance. Support
limits for ext4 filesystem and file sizes are lower than
those on XFS.

Network or client-and-
server FS

NFS Use NFS to share files between multiple systems on
the same network.

SMB Use SMB for file sharing with Microsoft Windows
systems.

Shared storage or
shared disk FS

GFS2 GFS2 provides shared write access to members of a
compute cluster. The emphasis is on stability and
reliability, with the functional experience of a local
file system as possible. SAS Grid, Tibco MQ, IBM
Websphere MQ, and Red Hat Active MQ have been
deployed successfully on GFS2.

Volume-managing FS Stratis (Technology
Preview)

Stratis is a volume manager built on a combination of
XFS and LVM. The purpose of Stratis is to emulate
capabilities offered by volume-managing file systems
like Btrfs and ZFS. It is possible to build this stack
manually, but Stratis reduces configuration
complexity, implements best practices, and
consolidates error information.

Red Hat Enterprise Linux 8 Managing file systems

10

1.2. LOCAL FILE SYSTEMS

Local file systems are file systems that run on a single, local server and are directly attached to storage.

For example, a local file system is the only choice for internal SATA or SAS disks, and is used when your
server has internal hardware RAID controllers with local drives. Local file systems are also the most
common file systems used on SAN attached storage when the device exported on the SAN is not
shared.

All local file systems are POSIX-compliant and are fully compatible with all supported Red Hat
Enterprise Linux releases. POSIX-compliant file systems provide support for a well-defined set of
system calls, such as read(), write(), and seek().

From the application programmer’s point of view, there are relatively few differences between local file
systems. The most notable differences from a user’s perspective are related to scalability and
performance. When considering a file system choice, consider how large the file system needs to be,
what unique features it should have, and how it performs under your workload.

Available local file systems

XFS

ext4

1.3. THE XFS FILE SYSTEM

XFS is a highly scalable, high-performance, robust, and mature 64-bit journaling file system that
supports very large files and file systems on a single host. It is the default file system in Red Hat
Enterprise Linux 8. XFS was originally developed in the early 1990s by SGI and has a long history of
running on extremely large servers and storage arrays.

The features of XFS include:

Reliability

Metadata journaling, which ensures file system integrity after a system crash by keeping a
record of file system operations that can be replayed when the system is restarted and the
file system remounted

Extensive run-time metadata consistency checking

Scalable and fast repair utilities

Quota journaling. This avoids the need for lengthy quota consistency checks after a crash.

Scalability and performance

Supported file system size up to 1024 TiB

Ability to support a large number of concurrent operations

B-tree indexing for scalability of free space management

Sophisticated metadata read-ahead algorithms

Optimizations for streaming video workloads

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

11

Allocation schemes

Extent-based allocation

Stripe-aware allocation policies

Delayed allocation

Space pre-allocation

Dynamically allocated inodes

Other features

Reflink-based file copies

Tightly integrated backup and restore utilities

Online defragmentation

Online file system growing

Comprehensive diagnostics capabilities

Extended attributes (xattr). This allows the system to associate several additional
name/value pairs per file.

Project or directory quotas. This allows quota restrictions over a directory tree.

Subsecond timestamps

Performance characteristics

XFS has a high performance on large systems with enterprise workloads. A large system is one with a
relatively high number of CPUs, multiple HBAs, and connections to external disk arrays. XFS also
performs well on smaller systems that have a multi-threaded, parallel I/O workload.

XFS has a relatively low performance for single threaded, metadata-intensive workloads: for example, a
workload that creates or deletes large numbers of small files in a single thread.

1.4. THE EXT4 FILE SYSTEM

The ext4 file system is the fourth generation of the ext file system family. It was the default file system
in Red Hat Enterprise Linux 6.

The ext4 driver can read and write to ext2 and ext3 file systems, but the ext4 file system format is not
compatible with ext2 and ext3 drivers.

ext4 adds several new and improved features, such as:

Supported file system size up to 50 TiB

Extent-based metadata

Delayed allocation

Red Hat Enterprise Linux 8 Managing file systems

12

Journal checksumming

Large storage support

The extent-based metadata and the delayed allocation features provide a more compact and efficient
way to track utilized space in a file system. These features improve file system performance and reduce
the space consumed by metadata. Delayed allocation allows the file system to postpone selection of the
permanent location for newly written user data until the data is flushed to disk. This enables higher
performance since it can allow for larger, more contiguous allocations, allowing the file system to make
decisions with much better information.

File system repair time using the fsck utility in ext4 is much faster than in ext2 and ext3. Some file
system repairs have demonstrated up to a six-fold increase in performance.

1.5. COMPARISON OF XFS AND EXT4

XFS is the default file system in RHEL. This section compares the usage and features of XFS and ext4.

Metadata error behavior

In ext4, you can configure the behavior when the file system encounters metadata errors. The
default behavior is to simply continue the operation. When XFS encounters an unrecoverable
metadata error, it shuts down the file system and returns the EFSCORRUPTED error.

Quotas

In ext4, you can enable quotas when creating the file system or later on an existing file system. You
can then configure the quota enforcement using a mount option.
XFS quotas are not a remountable option. You must activate quotas on the initial mount.

Running the quotacheck command on an XFS file system has no effect. The first time you turn on
quota accounting, XFS checks quotas automatically.

File system resize

XFS has no utility to reduce the size of a file system. You can only increase the size of an XFS file
system. In comparison, ext4 supports both extending and reducing the size of a file system.

Inode numbers

The ext4 file system does not support more than 232 inodes.
XFS dynamically allocates inodes. An XFS file system cannot run out of inodes as long as there is
free space on the file system.

Certain applications cannot properly handle inode numbers larger than 232 on an XFS file system.
These applications might cause the failure of 32-bit stat calls with the EOVERFLOW return value.
Inode number exceed 232 under the following conditions:

The file system is larger than 1 TiB with 256-byte inodes.

The file system is larger than 2 TiB with 512-byte inodes.

If your application fails with large inode numbers, mount the XFS file system with the -o inode32
option to enforce inode numbers below 232. Note that using inode32 does not affect inodes that are
already allocated with 64-bit numbers.

IMPORTANT

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

13

IMPORTANT

Do not use the inode32 option unless a specific environment requires it. The inode32
option changes allocation behavior. As a consequence, the ENOSPC error might
occur if no space is available to allocate inodes in the lower disk blocks.

1.6. CHOOSING A LOCAL FILE SYSTEM

To choose a file system that meets your application requirements, you need to understand the target
system on which you are going to deploy the file system. You can use the following questions to inform
your decision:

Do you have a large server?

Do you have large storage requirements or have a local, slow SATA drive?

What kind of I/O workload do you expect your application to present?

What are your throughput and latency requirements?

How stable is your server and storage hardware?

What is the typical size of your files and data set?

If the system fails, how much downtime can you suffer?

If both your server and your storage device are large, XFS is the best choice. Even with smaller storage
arrays, XFS performs very well when the average file sizes are large (for example, hundreds of
megabytes in size).

If your existing workload has performed well with ext4, staying with ext4 should provide you and your
applications with a very familiar environment.

The ext4 file system tends to perform better on systems that have limited I/O capability. It performs
better on limited bandwidth (less than 200MB/s) and up to around 1000 IOPS capability. For anything
with higher capability, XFS tends to be faster.

XFS consumes about twice the CPU-per-metadata operation compared to ext4, so if you have a CPU-
bound workload with little concurrency, then ext4 will be faster. In general, ext4 is better if an application
uses a single read/write thread and small files, while XFS shines when an application uses multiple
read/write threads and bigger files.

You cannot shrink an XFS file system. If you need to be able to shrink the file system, consider using
ext4, which supports offline shrinking.

In general, Red Hat recommends that you use XFS unless you have a specific use case for ext4. You
should also measure the performance of your specific application on your target server and storage
system to make sure that you choose the appropriate type of file system.

Table 1.2. Summary of local file system recommendations

Scenario Recommended file system

No special use case XFS

Red Hat Enterprise Linux 8 Managing file systems

14

Large server XFS

Large storage devices XFS

Large files XFS

Multi-threaded I/O XFS

Single-threaded I/O ext4

Limited I/O capability (under 1000 IOPS) ext4

Limited bandwidth (under 200MB/s) ext4

CPU-bound workload ext4

Support for offline shrinking ext4

Scenario Recommended file system

1.7. NETWORK FILE SYSTEMS

Network file systems, also referred to as client/server file systems, enable client systems to access files
that are stored on a shared server. This makes it possible for multiple users on multiple systems to share
files and storage resources.

Such file systems are built from one or more servers that export a set of file systems to one or more
clients. The client nodes do not have access to the underlying block storage, but rather interact with the
storage using a protocol that allows for better access control.

Available network file systems

The most common client/server file system for RHEL customers is the NFS file system.
RHEL provides both an NFS server component to export a local file system over the network
and an NFS client to import these file systems.

RHEL also includes a CIFS client that supports the popular Microsoft SMB file servers for
Windows interoperability. The userspace Samba server provides Windows clients with a
Microsoft SMB service from a RHEL server.

1.8. SHARED STORAGE FILE SYSTEMS

Shared storage file systems, sometimes referred to as cluster file systems, give each server in the
cluster direct access to a shared block device over a local storage area network (SAN).

Comparison with network file systems

Like client/server file systems, shared storage file systems work on a set of servers that are all
members of a cluster. Unlike NFS, however, no single server provides access to data or metadata to
other members: each member of the cluster has direct access to the same storage device (the

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

15

shared storage), and all cluster member nodes access the same set of files.

Concurrency

Cache coherency is key in a clustered file system to ensure data consistency and integrity. There
must be a single version of all files in a cluster visible to all nodes within a cluster. The file system
must prevent members of the cluster from updating the same storage block at the same time and
causing data corruption. In order to do that, shared storage file systems use a cluster wide-locking
mechanism to arbitrate access to the storage as a concurrency control mechanism. For example,
before creating a new file or writing to a file that is opened on multiple servers, the file system
component on the server must obtain the correct lock.
The requirement of cluster file systems is to provide a highly available service like an Apache web
server. Any member of the cluster will see a fully coherent view of the data stored in their shared disk
file system, and all updates will be arbitrated correctly by the locking mechanisms.

Performance characteristics

Shared disk file systems do not always perform as well as local file systems running on the same
system due to the computational cost of the locking overhead. Shared disk file systems perform well
with workloads where each node writes almost exclusively to a particular set of files that are not
shared with other nodes or where a set of files is shared in an almost exclusively read-only manner
across a set of nodes. This results in a minimum of cross-node cache invalidation and can maximize
performance.
Setting up a shared disk file system is complex, and tuning an application to perform well on a shared
disk file system can be challenging.

Available shared storage file systems

Red Hat Enterprise Linux provides the GFS2 file system. GFS2 comes tightly integrated with
the Red Hat Enterprise Linux High Availability Add-On and the Resilient Storage Add-On.

Red Hat Enterprise Linux supports GFS2 on clusters that range in size from 2 to 16 nodes.

1.9. CHOOSING BETWEEN NETWORK AND SHARED STORAGE FILE
SYSTEMS

When choosing between network and shared storage file systems, consider the following points:

NFS-based network file systems are an extremely common and popular choice for
environments that provide NFS servers.

Network file systems can be deployed using very high-performance networking technologies
like Infiniband or 10 Gigabit Ethernet. This means that you should not turn to shared storage file
systems just to get raw bandwidth to your storage. If the speed of access is of prime
importance, then use NFS to export a local file system like XFS.

Shared storage file systems are not easy to set up or to maintain, so you should deploy them
only when you cannot provide your required availability with either local or network file systems.

A shared storage file system in a clustered environment helps reduce downtime by eliminating
the steps needed for unmounting and mounting that need to be done during a typical fail-over
scenario involving the relocation of a high-availability service.

Red Hat recommends that you use network file systems unless you have a specific use case for shared
storage file systems. Use shared storage file systems primarily for deployments that need to provide
high-availability services with minimum downtime and have stringent service-level requirements.

Red Hat Enterprise Linux 8 Managing file systems

16

1.10. VOLUME-MANAGING FILE SYSTEMS

Volume-managing file systems integrate the entire storage stack for the purposes of simplicity and in-
stack optimization.

Available volume-managing file systems

Red Hat Enterprise Linux 8 provides the Stratis volume manager as a Technology Preview.
Stratis uses XFS for the file system layer and integrates it with LVM, Device Mapper, and
other components.

Stratis was first released in Red Hat Enterprise Linux 8.0. It is conceived to fill the gap created when
Red Hat deprecated Btrfs. Stratis 1.0 is an intuitive, command line-based volume manager that can
perform significant storage management operations while hiding the complexity from the user:

Volume management

Pool creation

Thin storage pools

Snapshots

Automated read cache

Stratis offers powerful features, but currently lacks certain capabilities of other offerings that it
might be compared to, such as Btrfs or ZFS. Most notably, it does not support CRCs with self healing.

CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS

17

CHAPTER 2. MANAGING LOCAL STORAGE USING
RHEL SYSTEM ROLES

To manage LVM and local file systems (FS) using Ansible, you can use the storage role, which is one of
the RHEL System Roles available in RHEL 8.

Using the storage role enables you to automate administration of file systems on disks and logical
volumes on multiple machines and across all versions of RHEL starting with RHEL 7.7.

For more information about RHEL System Roles and how to apply them, see Introduction to
RHEL System Roles.

2.1. INTRODUCTION TO THE STORAGE RHEL SYSTEM ROLE

The storage role can manage:

File systems on disks which have not been partitioned

Complete LVM volume groups including their logical volumes and file systems

MD RAID volumes and their file systems

With the storage role, you can perform the following tasks:

Create a file system

Remove a file system

Mount a file system

Unmount a file system

Create LVM volume groups

Remove LVM volume groups

Create logical volumes

Remove logical volumes

Create RAID volumes

Remove RAID volumes

Create LVM volume groups with RAID

Remove LVM volume groups with RAID

Create encrypted LVM volume groups

Create LVM logical volumes with RAID

2.2. PARAMETERS THAT IDENTIFY A STORAGE DEVICE IN THE STORAGE

RHEL SYSTEM ROLE

Red Hat Enterprise Linux 8 Managing file systems

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/intro-to-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Your storage role configuration affects only the file systems, volumes, and pools that you list in the
following variables.

storage_volumes

List of file systems on all unpartitioned disks to be managed.
storage_volumes can also include raid volumes.

Partitions are currently unsupported.

storage_pools

List of pools to be managed.
Currently the only supported pool type is LVM. With LVM, pools represent volume groups (VGs).
Under each pool there is a list of volumes to be managed by the role. With LVM, each volume
corresponds to a logical volume (LV) with a file system.

2.3. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AN XFS FILE SYSTEM
ON A BLOCK DEVICE

The example Ansible playbook applies the storage role to create an XFS file system on a block device
using the default parameters.

WARNING

The storage role can create a file system only on an unpartitioned, whole disk or a
logical volume (LV). It cannot create the file system on a partition.

Example 2.1. A playbook that creates XFS on /dev/sdb

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 roles:
 - rhel-system-roles.storage

The volume name (barefs in the example) is currently arbitrary. The storage role identifies
the volume by the disk device listed under the disks: attribute.

You can omit the fs_type: xfs line because XFS is the default file system in RHEL 8.

To create the file system on an LV, provide the LVM setup under the disks: attribute,

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

19

To create the file system on an LV, provide the LVM setup under the disks: attribute,
including the enclosing volume group. For details, see Example Ansible playbook to manage
logical volumes.
Do not provide the path to the LV device.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.4. EXAMPLE ANSIBLE PLAYBOOK TO PERSISTENTLY MOUNT A
FILE SYSTEM

The example Ansible applies the storage role to immediately and persistently mount an XFS file system.

Example 2.2. A playbook that mounts a file system on /dev/sdb to /mnt/data

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 mount_point: /mnt/data
 mount_user: somebody
 mount_group: somegroup
 mount_mode: 0755
 roles:
 - rhel-system-roles.storage

This playbook adds the file system to the /etc/fstab file, and mounts the file system
immediately.

If the file system on the /dev/sdb device or the mount point directory do not exist, the
playbook creates them.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.5. EXAMPLE ANSIBLE PLAYBOOK TO MANAGE LOGICAL VOLUMES

The example Ansible playbook applies the storage role to create an LVM logical volume in a volume
group.

Example 2.3. A playbook that creates a mylv logical volume in the myvg volume group

- hosts: all
 vars:

Red Hat Enterprise Linux 8 Managing file systems

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes#an-example-playbook-to-manage-logical-volumes_managing-lvm-logical-volumes-using-rhel-system-roles

 storage_pools:
 - name: myvg
 disks:
 - sda
 - sdb
 - sdc
 volumes:
 - name: mylv
 size: 2G
 fs_type: ext4
 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

The myvg volume group consists of the following disks:

/dev/sda

/dev/sdb

/dev/sdc

If the myvg volume group already exists, the playbook adds the logical volume to the volume
group.

If the myvg volume group does not exist, the playbook creates it.

The playbook creates an Ext4 file system on the mylv logical volume, and persistently
mounts the file system at /mnt.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.6. EXAMPLE ANSIBLE PLAYBOOK TO ENABLE ONLINE BLOCK
DISCARD

The example Ansible playbook applies the storage role to mount an XFS file system with online block
discard enabled.

Example 2.4. A playbook that enables online block discard on /mnt/data/

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 mount_point: /mnt/data

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

21

 mount_options: discard
 roles:
 - rhel-system-roles.storage

Additional resources

Example Ansible playbook to persistently mount a file system

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.7. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN
EXT4 FILE SYSTEM

The example Ansible playbook applies the storage role to create and mount an Ext4 file system.

Example 2.5. A playbook that creates Ext4 on /dev/sdb and mounts it at /mnt/data

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: ext4
 fs_label: label-name
 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

The playbook creates the file system on the /dev/sdb disk.

The playbook persistently mounts the file system at the /mnt/data directory.

The label of the file system is label-name.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.8. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN
EXT3 FILE SYSTEM

The example Ansible playbook applies the storage role to create and mount an Ext3 file system.

Example 2.6. A playbook that creates Ext3 on /dev/sdb and mounts it at /mnt/data

- hosts: all

Red Hat Enterprise Linux 8 Managing file systems

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/managing-local-storage-using-rhel-system-roles_managing-file-systems#an-example-ansible-playbook-to-persistently-mount-a-file-system_managing-local-storage-using-rhel-system-roles

 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: ext3
 fs_label: label-name
 mount_point: /mnt/data
 mount_user: somebody
 mount_group: somegroup
 mount_mode: 0755
 roles:
 - rhel-system-roles.storage

The playbook creates the file system on the /dev/sdb disk.

The playbook persistently mounts the file system at the /mnt/data directory.

The label of the file system is label-name.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.9. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING FILE
SYSTEM ON LVM USING THE STORAGE RHEL SYSTEM ROLE

The example Ansible playbook applies the storage RHEL System Role to resize an LVM logical volume
with a file system.

WARNING

Using the Resizing action in other file systems can destroy the data on the device
you are working on.

Example 2.7. A playbook that resizes existing mylv1 and myvl2 logical volumes in the myvg
volume group

- hosts: all
 vars:
 storage_pools:
 - name: myvg
 disks:
 - /dev/sda
 - /dev/sdb

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

23

 - /dev/sdc
 volumes:
 - name: mylv1
 size: 10 GiB
 fs_type: ext4
 mount_point: /opt/mount1
 - name: mylv2
 size: 50 GiB
 fs_type: ext4
 mount_point: /opt/mount2

- name: Create LVM pool over three disks
 include_role:
 name: rhel-system-roles.storage

This playbook resizes the following existing file systems:

The Ext4 file system on the mylv1 volume, which is mounted at /opt/mount1, resizes to
10 GiB.

The Ext4 file system on the mylv2 volume, which is mounted at /opt/mount2, resizes to
50 GiB.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.10. EXAMPLE ANSIBLE PLAYBOOK TO CREATE A SWAP VOLUME
USING THE STORAGE RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage role to create a
swap volume, if it does not exist, or to modify the swap volume, if it already exist, on a block device using
the default parameters.

Example 2.8. A playbook that creates or modify an existing XFS on /dev/sdb

- name: Create a disk device with swap
- hosts: all
 vars:
 storage_volumes:
 - name: swap_fs
 type: disk
 disks:
 - /dev/sdb
 size: 15 GiB
 fs_type: swap
 roles:
 - rhel-system-roles.storage

The volume name (swap_fs in the example) is currently arbitrary. The storage role identifies
the volume by the disk device listed under the disks: attribute.

Red Hat Enterprise Linux 8 Managing file systems

24

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.11. CONFIGURING A RAID VOLUME USING THE STORAGE SYSTEM
ROLE

With the storage System Role, you can configure a RAID volume on RHEL using Red Hat Ansible
Automation Platform and Ansible-Core. Create an Ansible playbook with the parameters to configure a
RAID volume to suit your requirements.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

You have an inventory file detailing the systems on which you want to deploy a RAID volume
using the storage System Role.

Procedure

1. Create a new playbook.yml file with the following content:

- name: Configure the storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Create a RAID on sdd, sde, sdf, and sdg
 include_role:
 name: rhel-system-roles.storage
 vars:
 storage_safe_mode: false
 storage_volumes:
 - name: data
 type: raid
 disks: [sdd, sde, sdf, sdg]
 raid_level: raid0
 raid_chunk_size: 32 KiB
 mount_point: /mnt/data
 state: present

WARNING

Device names might change in certain circumstances, for example, when
you add a new disk to a system. Therefore, to prevent data loss, do not use
specific disk names in the playbook.

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

25

2. Optional: Verify the playbook syntax:

ansible-playbook --syntax-check playbook.yml

3. Run the playbook:

ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

Managing RAID

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file

Preparing a control node and managed nodes to use RHEL System Roles

2.12. CONFIGURING AN LVM POOL WITH RAID USING THE STORAGE

RHEL SYSTEM ROLE

With the storage System Role, you can configure an LVM pool with RAID on RHEL using Red Hat
Ansible Automation Platform. You can set up an Ansible playbook with the available parameters to
configure an LVM pool with RAID.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

You have an inventory file detailing the systems on which you want to configure an LVM pool
with RAID using the storage System Role.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 vars:
 storage_safe_mode: false
 storage_pools:
 - name: my_pool
 type: lvm
 disks: [sdh, sdi]
 raid_level: raid1
 volumes:
 - name: my_volume
 size: "1 GiB"
 mount_point: "/mnt/app/shared"
 fs_type: xfs
 state: present
 roles:
 - name: rhel-system-roles.storage

NOTE

Red Hat Enterprise Linux 8 Managing file systems

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/managing-raid_managing-storage-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

NOTE

To create an LVM pool with RAID, you must specify the RAID type using the
raid_level parameter.

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

Managing RAID.

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.13. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES USING
THE STORAGE RHEL SYSTEM ROLE

With the storage System Role, you can configure a stripe size for RAID LVM volumes on RHEL using
Red Hat Ansible Automation Platform. You can set up an Ansible playbook with the available parameters
to configure an LVM pool with RAID.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run the
playbook.

You have an inventory file detailing the systems on which you want to configure an LVM pool
with RAID using the storage System Role.

Procedure

1. Create a new playbook.yml file with the following content:

hosts: all
 vars:
 storage_safe_mode: false
 storage_pools:
 - name: my_pool
 type: lvm
 disks: [sdh, sdi]
 volumes:
 - name: my_volume
 size: "1 GiB"
 mount_point: "/mnt/app/shared"
 fs_type: xfs
 raid_level: raid1

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_storage_devices/index#managing-raid_managing-storage-devices

 raid_stripe_size: "256 KiB"
 state: present
 roles:
 - name: rhel-system-roles.storage

2. Optional: Verify playbook syntax:

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

Managing RAID

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

2.14. EXAMPLE ANSIBLE PLAYBOOK TO COMPRESS AND
DEDUPLICATE A VDO VOLUME ON LVM USING THE STORAGE

RHEL SYSTEM ROLE

The example Ansible playbook applies the storage RHEL System Role to enable compression and
deduplication of Logical Volumes (LVM) using Virtual Data Optimizer (VDO).

Example 2.9. A playbook that creates a mylv1 LVM VDO volume in the myvg volume group

- name: Create LVM VDO volume under volume group 'myvg'
 hosts: all
 roles:
 -rhel-system-roles.storage
 vars:
 storage_pools:
 - name: myvg
 disks:
 - /dev/sdb
 volumes:
 - name: mylv1
 compression: true
 deduplication: true
 vdo_pool_size: 10 GiB
 size: 30 GiB
 mount_point: /mnt/app/shared

In this example, the compression and deduplication pools are set to true, which specifies that the VDO
is used. The following describes the usage of these parameters:

The deduplication is used to deduplicate the duplicated data stored on the storage volume.

The compression is used to compress the data stored on the storage volume, which results in

Red Hat Enterprise Linux 8 Managing file systems

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_storage_devices/index#managing-raid_managing-storage-devices

The compression is used to compress the data stored on the storage volume, which results in
more storage capacity.

The vdo_pool_size specifies the actual size the volume takes on the device. The virtual size of
VDO volume is set by the size parameter. NOTE: Because of the Storage role use of LVM VDO,
only one volume per pool can use the compression and deduplication.

2.15. CREATING A LUKS2 ENCRYPTED VOLUME USING THE STORAGE

RHEL SYSTEM ROLE

You can use the storage role to create and configure a volume encrypted with LUKS by running an
Ansible playbook.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the crypto_policies System Role.

An inventory file, which lists the managed nodes.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems. On the control node, the ansible-core and rhel-system-roles
packages are installed.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information about how to obtain and install Ansible
Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase
article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 fs_label: label-name
 mount_point: /mnt/data
 encryption: true

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

29

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

 encryption_password: your-password
 roles:
 - rhel-system-roles.storage

You can also add the other encryption parameters such as encryption_key, encryption_cipher,
encryption_key_size, and encryption_luks version in the playbook.yml file.

2. Optional: Verify playbook syntax:

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory.file /path/to/file/playbook.yml

Verification

1. View the encryption status:

cryptsetup status sdb

/dev/mapper/sdb is active and is in use.
type: LUKS2
cipher: aes-xts-plain64
keysize: 512 bits
key location: keyring
device: /dev/sdb
[...]

2. Verify the created LUKS encrypted volume:

cryptsetup luksDump /dev/sdb

Version: 2
Epoch: 6
Metadata area: 16384 [bytes]
Keyslots area: 33521664 [bytes]
UUID: a4c6be82-7347-4a91-a8ad-9479b72c9426
Label: (no label)
Subsystem: (no subsystem)
Flags: allow-discards

Data segments:
 0: crypt
 offset: 33554432 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 4096 [bytes]
[...]

3. View the cryptsetup parameters in the playbook.yml file, which the storage role supports:

cat ~/playbook.yml

Red Hat Enterprise Linux 8 Managing file systems

30

 - hosts: all
 vars:
 storage_volumes:
 - name: foo
 type: disk
 disks:
 - nvme0n1
 fs_type: xfs
 fs_label: label-name
 mount_point: /mnt/data
 encryption: true
 #encryption_password: passwdpasswd
 encryption_key: /home/passwd_key
 encryption_cipher: aes-xts-plain64
 encryption_key_size: 512
 encryption_luks_version: luks2

 roles:
 - rhel-system-roles.storage

Additional resources

Encrypting block devices using LUKS

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

2.16. EXAMPLE ANSIBLE PLAYBOOK TO EXPRESS POOL VOLUME
SIZES AS PERCENTAGE USING THE STORAGE RHEL SYSTEM ROLE

The example Ansible playbook applies the storage System Role to enable you to express Logical
Manager Volumes (LVM) volume sizes as a percentage of the pool’s total size.

Example 2.10. A playbook that express volume sizes as a percentage of the pool’s total size

- name: Express volume sizes as a percentage of the pool's total size
 hosts: all
 roles
 - rhel-system-roles.storage
 vars:
 storage_pools:
 - name: myvg
 disks:
 - /dev/sdb
 volumes:
 - name: data
 size: 60%
 mount_point: /opt/mount/data
 - name: web
 size: 30%
 mount_point: /opt/mount/web
 - name: cache
 size: 10%
 mount_point: /opt/cache/mount

CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

31

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/encrypting-block-devices-using-luks_managing-storage-devices

This example specifies the size of LVM volumes as a percentage of the pool size, for example: "60%".
Additionally, you can also specify the size of LVM volumes as a percentage of the pool size in a human-
readable size of the file system, for example, "10g" or "50 GiB".

2.17. ADDITIONAL RESOURCES

/usr/share/doc/rhel-system-roles/storage/

/usr/share/ansible/roles/rhel-system-roles.storage/

Red Hat Enterprise Linux 8 Managing file systems

32

CHAPTER 3. MOUNTING NFS SHARES
As a system administrator, you can mount remote NFS shares on your system to access shared data.

3.1. NFS HOST NAME FORMATS

This section describes different formats that you can use to specify a host when mounting or exporting
an NFS share.

You can specify the host in the following formats:

Single machine

Either of the following:

A fully-qualified domain name (that can be resolved by the server)

Host name (that can be resolved by the server)

An IP address.

IP networks

Either of the following formats is valid:

a.b.c.d/z, where a.b.c.d is the network and z is the number of bits in the netmask; for
example 192.168.0.0/24.

a.b.c.d/netmask, where a.b.c.d is the network and netmask is the netmask; for example,
192.168.100.8/255.255.255.0.

Netgroups

The @group-name format , where group-name is the NIS netgroup name.

3.2. CONFIGURING AN NFSV3 CLIENT TO RUN BEHIND A FIREWALL

The procedure to configure an NFSv3 client to run behind a firewall is similar to the procedure to
configure an NFSv3 server to run behind a firewall.

If the machine you are configuring is both an NFS client and an NFS server, follow the procedure
described in Configuring an NFSv3 server with optional NFSv4 support .

The following procedure describes how to configure a machine that is an NFS client only to run behind a
firewall.

Procedure

1. To allow the NFS server to perform callbacks to the NFS client when the client is behind a
firewall, add the rpc-bind service to the firewall by running the following command on the NFS
client:

firewall-cmd --permanent --add-service rpc-bind

2. Specify the ports to be used by the RPC service nlockmgr in the /etc/nfs.conf file as follows:

CHAPTER 3. MOUNTING NFS SHARES

33

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/deploying-an-nfs-server_deploying-different-types-of-servers#configuring-an-nfsv3-server-with-optional-nfsv4-support_deploying-an-nfs-server

[lockd]

port=port-number
udp-port=upd-port-number

Alternatively, you can specify nlm_tcpport and nlm_udpport in the
/etc/modprobe.d/lockd.conf file.

3. Open the specified ports in the firewall by running the following commands on the NFS client:

firewall-cmd --permanent --add-port=<lockd-tcp-port>/tcp
firewall-cmd --permanent --add-port=<lockd-udp-port>/udp

4. Add static ports for rpc.statd by editing the [statd] section of the /etc/nfs.conf file as follows:

[statd]

port=port-number

5. Open the added ports in the firewall by running the following commands on the NFS client:

firewall-cmd --permanent --add-port=<statd-tcp-port>/tcp
firewall-cmd --permanent --add-port=<statd-udp-port>/udp

6. Reload the firewall configuration:

firewall-cmd --reload

7. Restart the rpc-statd service:

systemctl restart rpc-statd.service

Alternatively, if you specified the lockd ports in the /etc/modprobe.d/lockd.conf file:

a. Update the current values of /proc/sys/fs/nfs/nlm_tcpport and
/proc/sys/fs/nfs/nlm_udpport:

sysctl -w fs.nfs.nlm_tcpport=<tcp-port>
sysctl -w fs.nfs.nlm_udpport=<udp-port>

b. Restart the rpc-statd service:

systemctl restart rpc-statd.service

3.3. CONFIGURING AN NFSV4 CLIENT TO RUN BEHIND A FIREWALL

Perform this procedure only if the client is using NFSv4.0. In that case, it is necessary to open a port for
NFSv4.0 callbacks.

This procedure is not needed for NFSv4.1 or higher because in the later protocol versions the server
performs callbacks on the same connection that was initiated by the client.

Procedure

Red Hat Enterprise Linux 8 Managing file systems

34

Procedure

1. To allow NFSv4.0 callbacks to pass through firewalls, set
/proc/sys/fs/nfs/nfs_callback_tcpport and allow the server to connect to that port on the
client as follows:

echo "fs.nfs.nfs_callback_tcpport = <callback-port>" >/etc/sysctl.d/90-nfs-callback-
port.conf
sysctl -p /etc/sysctl.d/90-nfs-callback-port.conf

2. Open the specified port in the firewall by running the following command on the NFS client:

firewall-cmd --permanent --add-port=<callback-port>/tcp

3. Reload the firewall configuration:

firewall-cmd --reload

3.4. DISCOVERING NFS EXPORTS

This procedure discovers which file systems a given NFSv3 or NFSv4 server exports.

Procedure

With any server that supports NFSv3, use the showmount utility:

$ showmount --exports my-server

Export list for my-server
/exports/foo
/exports/bar

With any server that supports NFSv4, mount the root directory and look around:

mount my-server:/ /mnt/
ls /mnt/

exports

ls /mnt/exports/

foo
bar

On servers that support both NFSv4 and NFSv3, both methods work and give the same results.

Additional resources

showmount(8) man page

3.5. MOUNTING AN NFS SHARE WITH MOUNT

Mount an NFS share exported from a server by using the mount utility.

CHAPTER 3. MOUNTING NFS SHARES

35

WARNING

You can experience conflicts in your NFSv4 clientid and their sudden expiration if
your NFS clients have the same short hostname. To avoid any possible sudden
expiration of your NFSv4 clientid, you must use either unique hostnames for NFS
clients or configure identifier on each container, depending on what system you are
using. For more information, see the NFSv4 clientid was expired suddenly due to
use same hostname on several NFS clients Knowledgebase article.

Procedure

To mount an NFS share, use the following command:

mount -t nfs -o options host:/remote/export /local/directory

This command uses the following variables:

options

A comma-delimited list of mount options.

host

The host name, IP address, or fully qualified domain name of the server exporting the file
system you want to mount.

/remote/export

The file system or directory being exported from the server, that is, the directory you want to
mount.

/local/directory

The client location where /remote/export is mounted.

Additional resources

Common NFS mount options

NFS host name formats

mount(8) man page

exports(5) man page

3.6. SETTING UP PNFS SCSI ON THE CLIENT

This procedure configures an NFS client to mount a pNFS SCSI layout.

Prerequisites

The NFS server is configured to export an XFS file system over pNFS SCSI.

Procedure

Red Hat Enterprise Linux 8 Managing file systems

36

https://access.redhat.com/solutions/6395261

On the client, mount the exported XFS file system using NFS version 4.1 or higher:

mount -t nfs -o nfsvers=4.1 host:/remote/export /local/directory

Do not mount the XFS file system directly without NFS.

3.7. CHECKING PNFS SCSI OPERATIONS FROM THE CLIENT USING
MOUNTSTATS

This procedure uses the /proc/self/mountstats file to monitor pNFS SCSI operations from the client.

Procedure

1. List the per-mount operation counters:

cat /proc/self/mountstats \
 | awk /scsi_lun_0/,/^$/ \
 | egrep device\|READ\|WRITE\|LAYOUT

device 192.168.122.73:/exports/scsi_lun_0 mounted on /mnt/rhel7/scsi_lun_0 with fstype
nfs4 statvers=1.1
 nfsv4:
bm0=0xfdffbfff,bm1=0x40f9be3e,bm2=0x803,acl=0x3,sessions,pnfs=LAYOUT_SCSI
 READ: 0 0 0 0 0 0 0 0
 WRITE: 0 0 0 0 0 0 0 0
 READLINK: 0 0 0 0 0 0 0 0
 READDIR: 0 0 0 0 0 0 0 0
 LAYOUTGET: 49 49 0 11172 9604 2 19448 19454
 LAYOUTCOMMIT: 28 28 0 7776 4808 0 24719 24722
 LAYOUTRETURN: 0 0 0 0 0 0 0 0
 LAYOUTSTATS: 0 0 0 0 0 0 0 0

2. In the results:

The LAYOUT statistics indicate requests where the client and server use pNFS SCSI
operations.

The READ and WRITE statistics indicate requests where the client and server fall back to
NFS operations.

3.8. COMMON NFS MOUNT OPTIONS

The following are the commonly used options when mounting NFS shares. You can use these options
wth manual mount commands, the /etc/fstab settings, and autofs.

lookupcache=mode

Specifies how the kernel should manage its cache of directory entries for a given mount point. Valid
arguments for mode are all, none, or positive.

nfsvers=version

Specifies which version of the NFS protocol to use, where version is 3, 4, 4.0, 4.1, or 4.2. This is useful
for hosts that run multiple NFS servers, or to disable retrying a mount with lower versions. If no
version is specified, NFS uses the highest version supported by the kernel and the mount utility.
The option vers is identical to nfsvers, and is included in this release for compatibility reasons.

CHAPTER 3. MOUNTING NFS SHARES

37

noacl

Turns off all ACL processing. This may be needed when interfacing with older versions of Red Hat
Enterprise Linux, Red Hat Linux, or Solaris, because the most recent ACL technology is not
compatible with older systems.

nolock

Disables file locking. This setting is sometimes required when connecting to very old NFS servers.

noexec

Prevents execution of binaries on mounted file systems. This is useful if the system is mounting a
non-Linux file system containing incompatible binaries.

nosuid

Disables the set-user-identifier and set-group-identifier bits. This prevents remote users from
gaining higher privileges by running a setuid program.

port=num

Specifies the numeric value of the NFS server port. If num is 0 (the default value), then mount
queries the rpcbind service on the remote host for the port number to use. If the NFS service on the
remote host is not registered with its rpcbind service, the standard NFS port number of TCP 2049 is
used instead.

rsize=num and wsize=num

These options set the maximum number of bytes to be transferred in a single NFS read or write
operation.
There is no fixed default value for rsize and wsize. By default, NFS uses the largest possible value
that both the server and the client support. In Red Hat Enterprise Linux 8, the client and server
maximum is 1,048,576 bytes. For more details, see the What are the default and maximum values for
rsize and wsize with NFS mounts? KBase article.

sec=flavors

Security flavors to use for accessing files on the mounted export. The flavors value is a colon-
separated list of one or more security flavors.
By default, the client attempts to find a security flavor that both the client and the server support. If
the server does not support any of the selected flavors, the mount operation fails.

Available flavors:

sec=sys uses local UNIX UIDs and GIDs. These use AUTH_SYS to authenticate NFS
operations.

sec=krb5 uses Kerberos V5 instead of local UNIX UIDs and GIDs to authenticate users.

sec=krb5i uses Kerberos V5 for user authentication and performs integrity checking of NFS
operations using secure checksums to prevent data tampering.

sec=krb5p uses Kerberos V5 for user authentication, integrity checking, and encrypts NFS
traffic to prevent traffic sniffing. This is the most secure setting, but it also involves the most
performance overhead.

tcp

Instructs the NFS mount to use the TCP protocol.

Additional resources

mount(8) man page

Red Hat Enterprise Linux 8 Managing file systems

38

https://access.redhat.com/solutions/753853

nfs(5) man page

3.9. STORING USER SETTINGS OVER NFS

If you use GNOME on a system with NFS home directories, you must set the keyfile back end for the
dconf database. Otherwise, dconf might not work correctly. With this configuration, dconf stores
settings in the ~/.config/dconf-keyfile/user file.

Procedure

1. Ensure that the glib2-fam package is installed on the system:

yum install glib2-fam

Without this package, notifications on configuration changes made on remote machines are not
displayed properly.

2. Create or edit the /etc/dconf/profile/user file on every client.

3. At the very beginning of the /etc/dconf/profile/user file, add the following line:

service-db:keyfile/user

4. Users must log out and log back in.
dconf polls the keyfile back end to determine whether updates have been made, so settings
might not be updated immediately.

3.10. GETTING STARTED WITH FS-CACHE

FS-Cache is a persistent local cache that file systems can use to take data retrieved from over the
network and cache it on local disk. This helps minimize network traffic for users accessing data from a
file system mounted over the network (for example, NFS).

3.10.1. Overview of the FS-Cache

The following diagram is a high-level illustration of how FS-Cache works:

Figure 3.1. FS-Cache Overview

CHAPTER 3. MOUNTING NFS SHARES

39

Figure 3.1. FS-Cache Overview

FS-Cache is designed to be as transparent as possible to the users and administrators of a system.
Unlike cachefs on Solaris, FS-Cache allows a file system on a server to interact directly with a client’s
local cache without creating an overmounted file system. With NFS, a mount option instructs the client
to mount the NFS share with FS-cache enabled. The mount point will cause automatic upload for two
kernel modules: fscache and cachefiles. The cachefilesd daemon communicates with the kernel
modules to implement the cache.

FS-Cache does not alter the basic operation of a file system that works over the network - it merely
provides that file system with a persistent place in which it can cache data. For example, a client can still
mount an NFS share whether or not FS-Cache is enabled. In addition, cached NFS can handle files that
will not fit into the cache (whether individually or collectively) as files can be partially cached and do not
have to be read completely up front. FS-Cache also hides all I/O errors that occur in the cache from the
client file system driver.

To provide caching services, FS-Cache needs a cache back end . A cache back end is a storage driver
configured to provide caching services, which is cachefiles. In this case, FS-Cache requires a mounted
block-based file system, such as ext3, that supports bmap and extended attributes as its cache back
end.

File systems that support functionalities required by FS-Cache cache back end include the Red Hat
Enterprise Linux 8 implementations of the following file systems:

ext3 (with extended attributes enabled)

ext4

XFS

FS-Cache cannot arbitrarily cache any file system, whether through the network or otherwise: the
shared file system’s driver must be altered to allow interaction with FS-Cache, data storage/retrieval,

Red Hat Enterprise Linux 8 Managing file systems

40

and metadata setup and validation. FS-Cache needs indexing keys and coherency data from the cached
file system to support persistence: indexing keys to match file system objects to cache objects, and
coherency data to determine whether the cache objects are still valid.

NOTE

In Red Hat Enterprise Linux 8, the cachefilesd package is not installed by default and
needs to be installed manually.

3.10.2. Performance guarantee

FS-Cache does not guarantee increased performance. Using a cache incurs a performance penalty: for
example, cached NFS shares add disk accesses to cross-network lookups. While FS-Cache tries to be as
asynchronous as possible, there are synchronous paths, such as read operations, where this is not
possible.

For example, using FS-Cache to cache an NFS share between two computers over an otherwise unladen
GigE network likely will not demonstrate any performance improvements on file access. Rather, NFS
requests would be satisfied faster from server memory rather than from local disk.

The use of FS-Cache, therefore, is a compromise between various factors. If FS-Cache is being used to
cache NFS traffic, for example, it may slow the client down a little, but massively reduce the network and
server loading by satisfying read requests locally without consuming network bandwidth.

3.10.3. Using the cache with NFS

NFS will not use the cache unless explicitly instructed. This paragraph shows how to configure an NFS
mount by using FS-Cache.

NFS indexes cache contents using NFS file handle, not the file name, which means hard-linked files
share the cache correctly.

NFS versions 3, 4.0, 4.1 and 4.2 support caching. However, each version uses different branches for
caching.

Prerequisites

The cachefilesd package is installed and running. To ensure it is running, use the following
command:

systemctl start cachefilesd
systemctl status cachefilesd

The status must be active (running).

Procedure

Mount NFS shares with the following option:

mount nfs-share:/ /mount/point -o fsc

All access to files under /mount/point will go through the cache, unless the file is opened for
direct I/O or writing.

CHAPTER 3. MOUNTING NFS SHARES

41

3.10.4. Setting up a cache

Currently, Red Hat Enterprise Linux 8 only provides the cachefiles caching back end. The cachefilesd
daemon initiates and manages cachefiles. The /etc/cachefilesd.conf file controls how cachefiles
provides caching services.

The cache back end works by maintaining a certain amount of free space on the partition hosting the
cache. It grows and shrinks the cache in response to other elements of the system using up free space,
making it safe to use on the root file system (for example, on a laptop). FS-Cache sets defaults on this
behavior, which can be configured via cache cull limits . For more information about configuring cache
cull limits, see Cache cull limits configuration .

This procedure shows how to set up a cache.

Prerequisites

The cachefilesd package is installed and service has started successfully. To be sure the service
is running, use the following command:

systemctl start cachefilesd
systemctl status cachefilesd

The status must be active (running).

Procedure

1. Configure in a cache back end which directory to use as a cache, use the following parameter:

$ dir /path/to/cache

2. Typically, the cache back end directory is set in /etc/cachefilesd.conf as /var/cache/fscache, as
in:

$ dir /var/cache/fscache

3. If you want to change the cache back end directory, the selinux context must be same as
/var/cache/fscache:

semanage fcontext -a -e /var/cache/fscache /path/to/cache
restorecon -Rv /path/to/cache

4. Replace /path/to/cache with the directory name while setting up cache.

5. If the given commands for setting selinux context did not work, use the following commands:

semanage permissive -a cachefilesd_t
semanage permissive -a cachefiles_kernel_t

FS-Cache will store the cache in the file system that hosts /path/to/cache. On a laptop, it is
advisable to use the root file system (/) as the host file system, but for a desktop machine it
would be more prudent to mount a disk partition specifically for the cache.

6. The host file system must support user-defined extended attributes. FS-Cache uses these

Red Hat Enterprise Linux 8 Managing file systems

42

6. The host file system must support user-defined extended attributes. FS-Cache uses these
attributes to store coherency maintenance information. To enable user-defined extended
attributes on a device with ext3 file systems, enter:

tune2fs -o user_xattr /dev/device

7. To enable extended attributes for a file system at the mount time, as an alternative, use the
following command:

mount /dev/device /path/to/cache -o user_xattr

8. Once the configuration file is in place, start up the cachefilesd service:

systemctl start cachefilesd

9. To configure cachefilesd to start at boot time, execute the following command as root:

systemctl enable cachefilesd

3.10.5. Configuring NFS cache sharing

There are several potential issues to do with NFS cache sharing. Because the cache is persistent, blocks
of data in the cache are indexed on a sequence of four keys:

Level 1: Server details

Level 2: Some mount options; security type; FSID; uniquifier

Level 3: File Handle

Level 4: Page number in file

To avoid coherency management problems between superblocks, all NFS superblocks that require to
cache the data have unique Level 2 keys. Normally, two NFS mounts with same source volume and
options share a superblock, and therefore share the caching, even if they mount different directories
within that volume.

This is an example how to configure cache sharing with different options.

Procedure

1. Mount NFS shares with the following commands:

mount home0:/disk0/fred /home/fred -o fsc
mount home0:/disk0/jim /home/jim -o fsc

Here, /home/fred and /home/jim likely share the superblock as they have the same options,
especially if they come from the same volume/partition on the NFS server (home0).

2. To not share the superblock, use the mount command with the following options:

mount home0:/disk0/fred /home/fred -o fsc,rsize=8192
mount home0:/disk0/jim /home/jim -o fsc,rsize=65536

In this case, /home/fred and /home/jim will not share the superblock as they have different

CHAPTER 3. MOUNTING NFS SHARES

43

In this case, /home/fred and /home/jim will not share the superblock as they have different
network access parameters, which are part of the Level 2 key.

3. To cache the contents of the two subtrees (/home/fred1 and /home/fred2) twice with not
sharing the superblock, use the following command:

mount home0:/disk0/fred /home/fred1 -o fsc,rsize=8192
mount home0:/disk0/fred /home/fred2 -o fsc,rsize=65536

4. Another way to avoid superblock sharing is to suppress it explicitly with the nosharecache
parameter. Using the same example:

mount home0:/disk0/fred /home/fred -o nosharecache,fsc
mount home0:/disk0/jim /home/jim -o nosharecache,fsc

However, in this case only one of the superblocks is permitted to use cache since there is
nothing to distinguish the Level 2 keys of home0:/disk0/fred and home0:/disk0/jim.

5. To specify the addressing to the superblock, use the fsc=unique-identifier mount option to set
a unique identifier on at least one of the mounts, for example:

mount home0:/disk0/fred /home/fred -o nosharecache,fsc
mount home0:/disk0/jim /home/jim -o nosharecache,fsc=jim

Here, the unique identifier jim is added to the Level 2 key used in the cache for /home/jim.

IMPORTANT

The user can not share caches between superblocks that have different communications
or protocol parameters. For example, it is not possible to share between NFSv4.0 and
NFSv3 or between NFSv4.1 and NFSv4.2 because they force different superblocks. Also
setting parameters, such as the read size (rsize), prevents cache sharing because, again, it
forces a different superblock.

3.10.6. Cache limitations with NFS

There are some cache limitations with NFS:

Opening a file from a shared file system for direct I/O automatically bypasses the cache. This is
because this type of access must be direct to the server.

Opening a file from a shared file system for either direct I/O or writing flushes the cached copy
of the file. FS-Cache will not cache the file again until it is no longer opened for direct I/O or
writing.

Furthermore, this release of FS-Cache only caches regular NFS files. FS-Cache will not cache
directories, symlinks, device files, FIFOs and sockets.

3.10.7. Cache cull limits configuration

The cachefilesd daemon works by caching remote data from shared file systems to free space on the
disk. This could potentially consume all available free space, which could be bad if the disk also contains
the root partition. To control this, cachefilesd tries to maintain a certain amount of free space by

Red Hat Enterprise Linux 8 Managing file systems

44

discarding old objects, such as less-recently accessed objects, from the cache. This behavior is known as
cache culling .

Cache culling is done on the basis of the percentage of blocks and the percentage of files available in
the underlying file system. There are settings in /etc/cachefilesd.conf which control six limits:

brun N% (percentage of blocks), frun N% (percentage of files)

If the amount of free space and the number of available files in the cache rises above both these
limits, then culling is turned off.

bcull N% (percentage of blocks), fcull N% (percentage of files)

If the amount of available space or the number of files in the cache falls below either of these limits,
then culling is started.

bstop N% (percentage of blocks), fstop N% (percentage of files)

If the amount of available space or the number of available files in the cache falls below either of
these limits, then no further allocation of disk space or files is permitted until culling has raised things
above these limits again.

The default value of N for each setting is as follows:

brun/frun - 10%

bcull/fcull - 7%

bstop/fstop - 3%

When configuring these settings, the following must hold true:

0 ≤ bstop < bcull < brun < 100

0 ≤ fstop < fcull < frun < 100

These are the percentages of available space and available files and do not appear as 100 minus the
percentage displayed by the df program.

IMPORTANT

Culling depends on both bxxx and fxxx pairs simultaneously; the user can not treat them
separately.

3.10.8. Retrieving statistical information from the fscache kernel module

FS-Cache also keeps track of general statistical information. This procedure shows how to get this
information.

Procedure

1. To view the statistical information about FS-Cache, use the following command:

cat /proc/fs/fscache/stats

FS-Cache statistics includes information about decision points and object counters. For more
information, see the following kernel document:

/usr/share/doc/kernel-doc-4.18.0/Documentation/filesystems/caching/fscache.txt

CHAPTER 3. MOUNTING NFS SHARES

45

3.10.9. FS-Cache references

This section provides reference information for FS-Cache.

1. For more information about cachefilesd and how to configure it, see man cachefilesd and
man cachefilesd.conf. The following kernel documents also provide additional information:

/usr/share/doc/cachefilesd/README

/usr/share/man/man5/cachefilesd.conf.5.gz

/usr/share/man/man8/cachefilesd.8.gz

2. For general information about FS-Cache, including details on its design constraints, available
statistics, and capabilities, see the following kernel document:
/usr/share/doc/kernel-doc-4.18.0/Documentation/filesystems/caching/fscache.txt

Red Hat Enterprise Linux 8 Managing file systems

46

CHAPTER 4. DEPLOYING AN NFS SERVER
By using the Network File System (NFS) protocol, remote users can mount shared directories over a
network and use them as they were mounted locally. This enables you to consolidate resources onto
centralized servers on the network.

4.1. KEY FEATURES OF MINOR NFSV4 VERSIONS

Each minor NFSv4 version brings enhancements aimed at improving performance and security. Use
these improvements to utilize the full potential of NFSv4, ensuring efficient and reliable file sharing
across networks.

Key features of NFSv4.2

Server-side copy

Server-side copy is a capability of the NFS server to copy files on the server without transferring the
data back and forth over the network.

Sparse files

Enables files to have one or more empty spaces, or gaps, which are unallocated or uninitialized data
blocks consisting only of zeros. This enables applications to map out the location of holes in the
sparse file.

Space reservation

Clients can reserve or allocate space on the storage server before writing data. This prevents the
server from running out of space.

Labeled NFS

Enforces data access rights and enables SELinux labels between a client and a server for individual
files on an NFS file system.

Layout enhancements

Provides functionality to enable Parallel NFS (pNFS) servers to collect better performance statistics.

Key features of NFSv4.1

Client-side support for pNFS

The support of high-speed I/O to clustered servers enables you to store data on multiple machines,
to provide direct access to data, and synchronization of updates to metadata.

Sessions

Sessions maintain the server’s state relative to the connections belonging to a client. These sessions
provide improved performance and efficiency by reducing the overhead associated with establishing
and terminating connections for each Remote Procedure Call (RPC) operation.

Key features of NFSv4.0

RPC and security

The RPCSEC_GSS framework enhances RPC security. The NFSv4 protocol introduces a new
operation for in-band security negotiation. This enables clients to query server policies for accessing
file system resources securely.

Procedure and operation structure

NFS 4.0 introduces the COMPOUND procedure, which enables clients to merge multiple operations
into a single request to reduce RPCs.

CHAPTER 4. DEPLOYING AN NFS SERVER

47

File system model

NFS 4.0 retains the hierarchical file system model, treating files as byte streams and encoding
names with UTF-8 for internationalization.

File handle types
With volatile file handles, servers can adjust to file system changes and enable clients to
adapt as needed without requiring permanent file handles.

Attribute types
The file attribute structure includes required, recommended, and named attributes, each
serving distinct purposes. Required attributes, derived from NFSv3, are essential for
distinguishing file types, while recommended attributes, such as ACLs, provide enhanced
access control.

Multi-server namespace
Namespaces span across multiple servers, simplify file system transfers based on attributes,
support referrals, redundancy, and seamless server migration.

OPEN and CLOSE operations

These operations can combine file lookup, creation, and semantic sharing at a single point and make
the file access management more efficient.

File locking

File locking is part of the protocol, eliminating the need for RPC callbacks. File lock state is managed
by the server under a lease-based model, where failure to renew the lease may result in state release
by the server.

Client caching and delegation

Caching resembles previous versions, with client-determined timeouts for attribute and directory
caching. Delegations in NFS 4.0 allow the server to assign certain responsibilities to the client,
guaranteeing specific file sharing semantics and enabling local file operations without immediate
server interaction.

4.2. THE AUTH_SYS AUTHENTICATION METHOD

The AUTH_SYS method, which is also known as AUTH_UNIX, is a client authentication mechanism. With
AUTH_SYS, the client sends the User ID (UID) and Group ID (GID) of the user to the server to verify its
identity and permissions when accessing files. It is considered less secure as it relies on the client-
provided information, making it susceptible to unauthorized access if misconfigured.

Mapping mechanisms ensure that NFS clients can access files with the appropriate permissions on the
server, even if the UID and GID assignments differ between systems. UIDs and GIDs are mapped
between NFS client and server by the following mechanisms:

Direct mapping

UIDs and GIDs are directly mapped by NFS servers and clients between local and remote systems.
This requires consistent UID and GID assignments across all systems participating in NFS file sharing.
For example, a user with UID 1000 on a client can only access the files on a share that a user with UID
1000 on the server has access to.
For a simplified ID management in an NFS environment, administrators often rely on centralized
services, such as LDAP or Network Information Service (NIS) to manage UID and GID mappings
across multiple systems.

User and Group ID mapping

NFS servers and clients can use the idmapd service to translate UIDs and GIDs between different

Red Hat Enterprise Linux 8 Managing file systems

48

NFS servers and clients can use the idmapd service to translate UIDs and GIDs between different
systems for consistent identification and permission assignment.

4.3. THE AUTH_GSS AUTHENTICATION METHOD

Kerberos is a network authentication protocol that allows secure authentication for clients and servers
over a non-secure network. It uses symmetric key cryptography and requires a trusted Key Distribution
Center (KDC) to authenticate users and services.

Unlike AUTH_SYS, with the RPCSEC_GSS Kerberos mechanism, the server does not depend on the
client to correctly represent which user is accessing the file. Instead, cryptography is used to
authenticate users to the server, which prevents a malicious client from impersonating a user without
having that user’s Kerberos credentials.

In the /etc/exports file, the sec option defines one or multiple methods of Kerberos security that the
share should provide, and clients can mount the share with one of these methods. The sec option
supports the following values:

sys: no cryptographic protection (default)

krb5: authentication only

krb5i: authentication and integrity protection

krb5p: authentication, integrity checking, and traffic encryption

Note that the more cryptographic functionality a method provides, the lower is the performance.

4.4. FILE PERMISSIONS ON EXPORTED FILE SYSTEMS

File permissions on exported file systems determine access rights to files and directories for clients
accessing them over NFS.

Once the NFS file system is mounted by a remote host, the only protection each shared file has is its file
system permissions. If two users that share the same User ID (UID) value mount the same NFS file
system on different client systems, they can modify each other’s files.

NFS treats the root user on the client as equivalent to the root user on the server. However, by default,
the NFS server maps root to the nobody account when accessing an NFS share. The root_squash
option controls this behavior.

Additional resources

exports(5) man page

4.5. SERVICES REQUIRED ON AN NFS SERVER

Red Hat Enterprise Linux (RHEL) uses a combination of a kernel module and user-space processes to
provide NFS file shares:

Table 4.1. Services required on an NFS server

CHAPTER 4. DEPLOYING AN NFS SERVER

49

Service name NFS versions Description

nfsd 3, 4 The NFS kernel module that services requests for shared NFS file
systems.

rpcbind 3 This process accepts port reservations from local remote procedure call
(RPC) services, makes them available or advertised, allowing
corresponding remote RPC services to access them. The rpcbind
service responds to requests and sets up connections to the specified
RPC service.

rpc.mountd 3, 4 This service processes MOUNT requests from NFSv3 clients, and
NFSv4 servers use internal functions of this service.

It checks that the requested NFS share is currently exported by the
NFS server and that the client is allowed to access it.

rpc.nfsd 3, 4 This process advertises explicit NFS versions and protocols the server
defines. It works with the kernel to meet the dynamic demands of NFS
clients, such as providing server threads each time an NFS client
connects.

The nfs-server service starts this process.

lockd 3 This kernel module implements the Network Lock Manager (NLM)
protocol, which enables clients to lock files on the server. RHEL loads
the module automatically when the NFS server runs.

rpc.rquotad 3, 4 This service provides user quota information for remote users.

rpc.idmapd 4 This process provides NFSv4 client and server upcalls, which map
between NFSv4 names (strings in the form of `user@domain`) and
local user and group IDs.

gssproxy 3, 4 This service handles krb5 authentication on behalf of rpc.nfsd.

nfsdcld 4 This service provides a NFSv4 client tracking daemon that prevents the
server from granting lock reclaims when other clients have taken
conflicting locks during a network partition combined with a server
reboot.

rpc.statd 3 This service provides notification to other NFSv3 clients when the local
host reboots, and to the kernel when a remote NFSv3 host reboots.

Additional resources

rpcbind(8), rpc.mountd(8), rpc.nfsd(8), rpc.statd(8), rpc.rquotad(8), rpc.idmapd(8),
nfsdcld(8) man pages

Red Hat Enterprise Linux 8 Managing file systems

50

4.6. THE /ETC/EXPORTS CONFIGURATION FILE

The /etc/exports file controls which directories the server exports. Each line contains an export point, a
whitespace-separated list of clients that are allowed to mount the directory, and options for each of the
clients:

<directory> <host_or_network_1>(<options_1>) <host_or_network_n>(<options_n>)...

The following are the individual parts of an /etc/exports entry:

<export>

The directory that is being exported.

<host_or_network>

The host or network to which the export is being shared. For example, you can specify a hostname, an
IP address, or an IP network.

<options>

The options for the host or network.

Adding a space between a client and options, changes the behavior. For example, the following lines do
not have the same meaning:

/projects client.example.com(rw)
/projects client.example.com (rw)

In the first line, the server allows only client.example.com to mount the /projects directory in read-
write mode, and no other hosts can mount the share. However, due to the space between
client.example.com and (rw) in the second line, the server exports the directory to
client.example.com in read-only mode (default setting), but all other hosts can mount the share in
read-write mode.

The NFS server uses the following default settings for each exported directory:

Table 4.2. Default options of entries in /etc/exports

Default setting Description

ro Exports the directory in read-only mode.

sync The NFS server does not reply to requests before changes made by previous requests
are written to disk.

wdelay The server delays writing to the disk if it suspects another write request is pending..

root_squash Prevents that the root user on clients has root permissions on an exported directory.
With root_squash enabled, the NFS server maps access from root to the user
nobody.

4.7. CONFIGURING AN NFSV4-ONLY SERVER

If you do not have any NFSv3 clients in your network, you can configure the NFS server to support only

CHAPTER 4. DEPLOYING AN NFS SERVER

51

If you do not have any NFSv3 clients in your network, you can configure the NFS server to support only
NFSv4 or specific minor protocol versions of it. Using only NFSv4 on the server reduces the number of
ports that are open to the network.

Procedure

1. Install the nfs-utils package:

dnf install nfs-utils

2. Edit the /etc/nfs.conf file, and make the following changes:

a. Disable the vers3 parameter in the [nfsd] section to disable NFSv3:

[nfsd]
vers3=n

b. Optional: If you require only specific NFSv4 minor versions, uncomment all vers4.
<minor_version> parameters and set them accordingly, for example:

[nfsd]
vers3=n
vers4=y
vers4.0=n
vers4.1=n
vers4.2=y

With this configuration, the server provides only NFS version 4.2.

IMPORTANT

If you require only a specific NFSv4 minor version, set only the parameters
for the minor versions. Do not uncomment the vers4 parameter to avoid an
unpredictable activation or deactivation of minor versions. By default, the
vers4 parameter enables or disables all NFSv4 minor versions. However, this
behavior changes if you set vers4 in conjunction with other vers parameters.

3. Disable all NFSv3-related services:

systemctl mask --now rpc-statd.service rpcbind.service rpcbind.socket

4. Optional: Create a directory that you want to share, for example:

mkdir -p /nfs/projects/

If you want to share an existing directory, skip this step.

5. Set the permissions you require on the /nfs/projects/ directory:

chmod 2770 /nfs/projects/
chgrp users /nfs/projects/

These commands set write permissions for the users group on the /nfs/projects/ directory and

Red Hat Enterprise Linux 8 Managing file systems

52

These commands set write permissions for the users group on the /nfs/projects/ directory and
ensure that the same group is automatically set on new entries created in this directory.

6. Add an export point to the /etc/exports file for each directory that you want to share:

/nfs/projects/ 192.0.2.0/24(rw) 2001:db8::/32(rw)

This entry shares the /nfs/projects/ directory to be accessible with read and write access to
clients in the 192.0.2.0/24 and 2001:db8::/32 subnets.

7. Open the relevant ports in firewalld:

firewall-cmd --permanent --add-service nfs
firewall-cmd --reload

8. Enable and start the NFS server:

systemctl enable --now nfs-server

Verification

On the server, verify that the server provides only the NFS versions that you have configured:

cat /proc/fs/nfsd/versions
-3 +4 -4.0 -4.1 +4.2

On a client, perform the following steps:

1. Install the nfs-utils package:

dnf install nfs-utils

2. Mount an exported NFS share:

mount server.example.com:/nfs/projects/ /mnt/

3. As a user which is a member of the users group, create a file in /mnt/:

touch /mnt/file

4. List the directory to verify that the file was created:

ls -l /mnt/
total 0
-rw-r--r--. 1 demo users 0 Jan 16 14:18 file

4.8. CONFIGURING AN NFSV3 SERVER WITH OPTIONAL NFSV4
SUPPORT

In a network which still uses NFSv3 clients, configure the server to provide shares by using the NFSv3
protocol. If you also have newer clients in your network, you can, additionally, enable NFSv4. By default,
Red Hat Enterprise Linux NFS clients use the latest NFS version that the server provides.

CHAPTER 4. DEPLOYING AN NFS SERVER

53

Procedure

1. Install the nfs-utils package:

dnf install nfs-utils

2. Optional: By default, NFSv3 and NFSv4 are enabled. If you do not require NFSv4 or only specific
minor versions, uncomment all vers4.<minor_version> parameters and set them accordingly:

[nfsd]
vers3=y
vers4=y
vers4.0=n
vers4.1=n
vers4.2=y

With this configuration, the server provides only the NFS version 3 and 4.2.

IMPORTANT

If you require only a specific NFSv4 minor version, set only the parameters for
the minor versions. Do not uncomment the vers4 parameter to avoid an
unpredictable activation or deactivation of minor versions. By default, the vers4
parameter enables or disables all NFSv4 minor versions. However, this behavior
changes if you set vers4 in conjunction with other vers parameters.

3. By default, NFSv3 RPC services use random ports. To enable a firewall configuration, configure
fixed port numbers in the /etc/nfs.conf file:

a. In the [lockd] section, set a fixed port number for the nlockmgr RPC service, for example:

[lockd]
port=5555

With this setting, the service automatically uses this port number for both the UDP and TCP
protocol.

b. In the [statd] section, set a fixed port number for the rpc.statd service, for example:

[statd]
port=6666

With this setting, the service automatically uses this port number for both the UDP and TCP
protocol.

4. Optional: Create a directory that you want to share, for example:

mkdir -p /nfs/projects/

If you want to share an existing directory, skip this step.

5. Set the permissions you require on the /nfs/projects/ directory:

Red Hat Enterprise Linux 8 Managing file systems

54

chmod 2770 /nfs/projects/
chgrp users /nfs/projects/

These commands set write permissions for the users group on the /nfs/projects/ directory and
ensure that the same group is automatically set on new entries created in this directory.

6. Add an export point to the /etc/exports file for each directory that you want to share:

/nfs/projects/ 192.0.2.0/24(rw) 2001:db8::/32(rw)

This entry shares the /nfs/projects/ directory to be accessible with read and write access to
clients in the 192.0.2.0/24 and 2001:db8::/32 subnets.

7. Open the relevant ports in firewalld:

firewall-cmd --permanent --add-service={nfs,rpc-bind,mountd}
firewall-cmd --permanent --add-port={5555/tcp,5555/udp,6666/tcp,6666/udp}
firewall-cmd --reload

8. Enable and start the NFS server:

systemctl enable --now rpc-statd nfs-server

Verification

On the server, verify that the server provides only the NFS versions that you have configured:

cat /proc/fs/nfsd/versions
+3 +4 -4.0 -4.1 +4.2

On a client, perform the following steps:

1. Install the nfs-utils package:

dnf install nfs-utils

2. Mount an exported NFS share:

mount -o vers=<version> server.example.com:/nfs/projects/ /mnt/

3. Verify that the share was mounted with the specified NFS version:

mount | grep "/mnt"
server.example.com:/nfs/projects/ on /mnt type nfs (rw,relatime,vers=3,...

4. As a user which is a member of the users group, create a file in /mnt/:

touch /mnt/file

5. List the directory to verify that the file was created:

CHAPTER 4. DEPLOYING AN NFS SERVER

55

ls -l /mnt/
total 0
-rw-r--r--. 1 demo users 0 Jan 16 14:18 file

4.9. ENABLING QUOTA SUPPORT ON AN NFS SERVER

If you want to restrict the amount of data a user or a group can store, you can configure quotas on the
file system. On an NFS server, the rpc-rquotad service ensures that the quota is also applied to users on
NFS clients.

Prerequisites

The NFS server is running and configured.

Quotas have been configured on the ext or XFS file system.

Procedure

1. Verify that quotas are enabled on the directories that you export:

For ext file system, enter:

quotaon -p /nfs/projects/
group quota on /nfs/projects (/dev/sdb1) is on
user quota on /nfs/projects (/dev/sdb1) is on
project quota on /nfs/projects (/dev/sdb1) is off

For an XFS file system, enter:

findmnt /nfs/projects
TARGET SOURCE FSTYPE OPTIONS
/nfs/projects /dev/sdb1 xfs
rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,usrquota,grpquota

2. Install the quota-rpc package:

dnf install rpc-quotad

3. Optional. By default, the quota RPC service runs on port 875. If you want to run the service on a
different port, append -p <port_number> to the RPCRQUOTADOPTS variable in the
/etc/sysconfig/rpc-rquotad file:

RPCRQUOTADOPTS="-p __<port_number>__"

4. Optional: By default, remote hosts can only read quotas. To allow clients to set quotas, append
the -S option to the RPCRQUOTADOPTS variable in the /etc/sysconfig/rpc-rquotad file:

RPCRQUOTADOPTS="-S"

5. Open the port in firewalld:

Red Hat Enterprise Linux 8 Managing file systems

56

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/limiting-storage-space-usage-on-ext4-with-quotas_managing-file-systems#doc-wrapper
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/assembly_limiting-storage-space-usage-on-xfs-with-quotas_managing-file-systems

firewall-cmd --permanent --add-port=875/udp
firewall-cmd --reload

6. Enable and start the rpc-quotad service:

systemctl enable --now rpc-rquotad

Verification

1. On the client:

a. Mount the exported share:

mount server.example.com:/nfs/projects/ /mnt/

b. Display the quota. The command depends on the file system of the exported directory. For
example:

To display the quota of a specific user on all mounted ext file systems, enter:

quota -u <user_name>
Disk quotas for user demo (uid 1000):
 Filesystem space quota limit grace files quota limit grace
server.example.com:/nfs/projects
 0K 100M 200M 0 0 0

To display the user and group quota on an XFS file system, enter:

xfs_quota -x -c "report -h" /mnt/
User quota on /nfs/projects (/dev/vdb1)
 Blocks
User ID Used Soft Hard Warn/Grace
---------- ---------------------------------
root 0 0 0 00 [------]
demo 0 100M 200M 00 [------]

Additional resources

quota(1) man page

xfs_quota(8) man page

4.10. ENABLING NFS OVER RDMA ON AN NFS SERVER

Remote Direct Memory Access (RDMA) is a protocol that enables a client system to directly transfer
data from the memory of a storage server into its own memory. This enhances storage throughput,
decreases latency in data transfer between the server and client, and reduces CPU load on both ends. If
both the NFS server and clients are connected over RDMA, clients can use NFSoRDMA to mount an
exported directory.

Prerequisites

The NFS service is running and configured

CHAPTER 4. DEPLOYING AN NFS SERVER

57

An InfiniBand or RDMA over Converged Ethernet (RoCE) device is installed on the server.

IP over InfiniBand (IPoIB) is configured on the server, and the InfiniBand device has an IP
address assigned.

Procedure

1. Install the rdma-core package:

dnf install rdma-core

2. If the package was already installed, verify that the xprtrdma and svcrdma modules in the
/etc/rdma/modules/rdma.conf file are uncommented:

NFS over RDMA client support
xprtrdma
NFS over RDMA server support
svcrdma

3. Optional. By default, NFS over RDMA uses port 20049. If you want to use a different port, set
the rdma-port setting in the [nfsd] section of the /etc/nfs.conf file:

rdma-port=_<port>_

4. Open the NFSoRDMA port in firewalld:

firewall-cmd --permanent --add-port={20049/tcp,20049/udp}
firewall-cmd --reload

Adjust the port numbers if you set a different port than 20049.

5. Restart the nfs-server service:

systemctl restart nfs-server

Verification

1. On a client with InfiniBand hardware, perform the following steps:

a. Install the following packages:

dnf install nfs-utils rdma-core

b. Mount an exported NFS share over RDMA:

mount -o rdma server.example.com:/nfs/projects/ /mnt/

If you set a port number other than the default (20049), pass port=<port_number> to the
command:

mount -o rdma,port=<port_number> server.example.com:/nfs/projects/ /mnt/

c. Verify that the share was mounted with the rdma option:

Red Hat Enterprise Linux 8 Managing file systems

58

mount | grep "/mnt"
server.example.com:/nfs/projects/ on /mnt type nfs (...,proto=rdma,...)

Additional resources

Configuring InfiniBand and RDMA networks

4.11. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT
IDENTITY MANAGEMENT DOMAIN

If you use Red Hat Identity Management (IdM), you can join your NFS server to the IdM domain. This
enables you to centrally manage users and groups and to use Kerberos for authentication, integrity
protection, and traffic encryption.

Prerequisites

The NFS server is enrolled in a Red Hat Identity Management (IdM) domain.

The NFS server is running and configured.

Procedure

1. Obtain a kerberos ticket as an IdM administrator:

kinit admin

2. Create a nfs/<FQDN> service principal:

ipa service-add nfs/nfs_server.idm.example.com

3. Retrieve the nfs service principal from IdM, and store it in the /etc/krb5.keytab file:

ipa-getkeytab -s idm_server.idm.example.com -p nfs/nfs_server.idm.example.com -k
/etc/krb5.keytab

4. Optional: Display the principals in the /etc/krb5.keytab file:

klist -k /etc/krb5.keytab
Keytab name: FILE:/etc/krb5.keytab
KVNO Principal
---- --
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM

By default, the IdM client adds the host principal to the /etc/krb5.keytab file when you join the
host to the IdM domain. If the host principal is missing, use the ipa-getkeytab -s

CHAPTER 4. DEPLOYING AN NFS SERVER

59

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_infiniband_and_rdma_networks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management

idm_server.idm.example.com -p host/nfs_server.idm.example.com -k /etc/krb5.keytab
command to add it.

5. Use the ipa-client-automount utility to configure mapping of IdM IDs:

ipa-client-automount
Searching for IPA server...
IPA server: DNS discovery
Location: default
Continue to configure the system with these values? [no]: yes
Configured /etc/idmapd.conf
Restarting sssd, waiting for it to become available.
Started autofs

6. Update your /etc/exports file, and add the Kerberos security method to the client options. For
example:

/nfs/projects/ 192.0.2.0/24(rw,sec=krb5i)

If you want that your clients can select from multiple security methods, specify them separated
by colons:

/nfs/projects/ 192.0.2.0/24(rw,sec=krb5:krb5i:krb5p)

7. Reload the exported file systems:

exportfs -r

Red Hat Enterprise Linux 8 Managing file systems

60

CHAPTER 5. MOUNTING AN SMB SHARE
The Server Message Block (SMB) protocol implements an application-layer network protocol used to
access resources on a server, such as file shares and shared printers.

NOTE

In the context of SMB, you can find mentions about the Common Internet File System
(CIFS) protocol, which is a dialect of SMB. Both the SMB and CIFS protocol are
supported, and the kernel module and utilities involved in mounting SMB and CIFS shares
both use the name cifs.

The cifs-utils package provides utilities to:

Mount SMB and CIFS shares

Manage NT LAN Manager (NTLM) credentials in the kernel’s keyring

Set and display Access Control Lists (ACL) in a security descriptor on SMB and CIFS shares

5.1. SUPPORTED SMB PROTOCOL VERSIONS

The cifs.ko kernel module supports the following SMB protocol versions:

SMB 1

WARNING

The SMB1 protocol is deprecated due to known security issues, and is only
safe to use on a private network. The main reason that SMB1 is still
provided as a supported option is that currently it is the only SMB protocol
version that supports UNIX extensions. If you do not need to use UNIX
extensions on SMB, Red Hat strongly recommends using SMB2 or later.

SMB 2.0

SMB 2.1

SMB 3.0

SMB 3.1.1

NOTE

Depending on the protocol version, not all SMB features are implemented.

5.2. UNIX EXTENSIONS SUPPORT

Samba uses the CAP_UNIX capability bit in the SMB protocol to provide the UNIX extensions feature.

CHAPTER 5. MOUNTING AN SMB SHARE

61

Samba uses the CAP_UNIX capability bit in the SMB protocol to provide the UNIX extensions feature.
These extensions are also supported by the cifs.ko kernel module. However, both Samba and the kernel
module support UNIX extensions only in the SMB 1 protocol.

Prerequisites

The cifs-utils package is installed.

Procedure

1. Set the server min protocol parameter in the [global] section in the /etc/samba/smb.conf file
to NT1.

2. Mount the share using the SMB 1 protocol by providing the -o vers=1.0 option to the mount
command. For example:

mount -t cifs -o vers=1.0,username=<user_name> //<server_name>/<share_name>
/mnt/

By default, the kernel module uses SMB 2 or the highest later protocol version supported by the
server. Passing the -o vers=1.0 option to the mount command forces that the kernel module
uses the SMB 1 protocol that is required for using UNIX extensions.

Verification

Display the options of the mounted share:

mount
...
//<server_name>/<share_name> on /mnt type cifs (...,unix,...)

If the unix entry is displayed in the list of mount options, UNIX extensions are enabled.

5.3. MANUALLY MOUNTING AN SMB SHARE

If you only require an SMB share to be temporary mounted, you can mount it manually using the mount
utility.

NOTE

Manually mounted shares are not mounted automatically again when you reboot the
system. To configure that Red Hat Enterprise Linux automatically mounts the share when
the system boots, see Mounting an SMB share automatically when the system boots .

Prerequisites

The cifs-utils package is installed.

Procedure

Use the mount utility with the -t cifs parameter to mount an SMB share:

mount -t cifs -o username=<user_name> //<server_name>/<share_name> /mnt/
Password for <user_name>@//<server_name>/<share_name>: password

Red Hat Enterprise Linux 8 Managing file systems

62

In the -o parameter, you can specify options that are used to mount the share. For details, see
the OPTIONS section in the mount.cifs(8) man page and Frequently used mount options .

Example 5.1. Mounting a share using an encrypted SMB 3.0 connection

To mount the \\server\example\ share as the DOMAIN\Administrator user over an
encrypted SMB 3.0 connection into the /mnt/ directory:

mount -t cifs -o username=DOMAIN\Administrator,seal,vers=3.0 //server/example
/mnt/
Password for DOMAIN\Administrator@//server_name/share_name: password

Verification

List the content of the mounted share:

ls -l /mnt/
total 4
drwxr-xr-x. 2 root root 8748 Dec 4 16:27 test.txt
drwxr-xr-x. 17 root root 4096 Dec 4 07:43 Demo-Directory

5.4. MOUNTING AN SMB SHARE AUTOMATICALLY WHEN THE
SYSTEM BOOTS

If access to a mounted SMB share is permanently required on a server, mount the share automatically at
boot time.

Prerequisites

The cifs-utils package is installed.

Procedure

1. Add an entry for the share to the /etc/fstab file. For example:

//<server_name>/<share_name> /mnt cifs credentials=/root/smb.cred 0 0

IMPORTANT

To enable the system to mount a share automatically, you must store the user
name, password, and domain name in a credentials file. For details, see Creating
a credentials file to authenticate to an SMB share

In the fourth field of the row in the /etc/fstab, specify mount options, such as the path to the
credentials file. For details, see the OPTIONS section in the mount.cifs(8) man page and
Frequently used mount options .

Verification

Mount the share by specifying the mount point:

CHAPTER 5. MOUNTING AN SMB SHARE

63

mount /mnt/

5.5. CREATING A CREDENTIALS FILE TO AUTHENTICATE TO AN SMB
SHARE

In certain situations, such as when mounting a share automatically at boot time, a share should be
mounted without entering the user name and password. To implement this, create a credentials file.

Prerequisites

The cifs-utils package is installed.

Procedure

1. Create a file, such as /root/smb.cred, and specify the user name, password, and domain name
that file:

username=user_name
password=password
domain=domain_name

2. Set the permissions to only allow the owner to access the file:

chown user_name /root/smb.cred
chmod 600 /root/smb.cred

You can now pass the credentials=file_name mount option to the mount utility or use it in the
/etc/fstab file to mount the share without being prompted for the user name and password.

5.6. PERFORMING A MULTI-USER SMB MOUNT

The credentials you provide to mount a share determine the access permissions on the mount point by
default. For example, if you use the DOMAIN\example user when you mount a share, all operations on
the share will be executed as this user, regardless which local user performs the operation.

However, in certain situations, the administrator wants to mount a share automatically when the system
boots, but users should perform actions on the share’s content using their own credentials. The
multiuser mount options lets you configure this scenario.

IMPORTANT

To use the multiuser mount option, you must additionally set the sec mount option to a
security type that supports providing credentials in a non-interactive way, such as krb5 or
the ntlmssp option with a credentials file. For details, see Accessing a share as a user .

The root user mounts the share using the multiuser option and an account that has minimal access to
the contents of the share. Regular users can then provide their user name and password to the current
session’s kernel keyring using the cifscreds utility. If the user accesses the content of the mounted
share, the kernel uses the credentials from the kernel keyring instead of the one initially used to mount
the share.

Using this feature consists of the following steps:

Red Hat Enterprise Linux 8 Managing file systems

64

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_accessing-a-share-as-a-user_assembly_performing-a-multi-user-smb-mount

Mount a share with the multiuser option.

Optionally, verify if the share was successfully mounted with the multiuser option.

Access the share as a user .

Prerequisites

The cifs-utils package is installed.

5.6.1. Mounting a share with the multiuser option

Before users can access the share with their own credentials, mount the share as the root user using an
account with limited permissions.

Procedure

To mount a share automatically with the multiuser option when the system boots:

1. Create the entry for the share in the /etc/fstab file. For example:

//server_name/share_name /mnt cifs multiuser,sec=ntlmssp,credentials=/root/smb.cred
0 0

2. Mount the share:

mount /mnt/

If you do not want to mount the share automatically when the system boots, mount it manually by
passing -o multiuser,sec=security_type to the mount command. For details about mounting an SMB
share manually, see Manually mounting an SMB share .

5.6.2. Verifying if an SMB share is mounted with the multiuser option

To verify if a share is mounted with the multiuser option, display the mount options.

Procedure

mount
...
//server_name/share_name on /mnt type cifs (sec=ntlmssp,multiuser,...)

If the multiuser entry is displayed in the list of mount options, the feature is enabled.

5.6.3. Accessing a share as a user

If an SMB share is mounted with the multiuser option, users can provide their credentials for the server
to the kernel’s keyring:

cifscreds add -u SMB_user_name server_name
Password: password

When the user performs operations in the directory that contains the mounted SMB share, the server

CHAPTER 5. MOUNTING AN SMB SHARE

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_mounting-a-share-with-the-multiuser-option_assembly_performing-a-multi-user-smb-mount
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_verifying-if-an-smb-share-is-mounted-with-the-multiuser-option_assembly_performing-a-multi-user-smb-mount
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_accessing-a-share-as-a-user_assembly_performing-a-multi-user-smb-mount
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_manually-mounting-an-smb-share_assembly_mounting-an-smb-share-on-red-hat-enterprise-linux

When the user performs operations in the directory that contains the mounted SMB share, the server
applies the file system permissions for this user, instead of the one initially used when the share was
mounted.

NOTE

Multiple users can perform operations using their own credentials on the mounted share
at the same time.

5.7. FREQUENTLY USED SMB MOUNT OPTIONS

When you mount an SMB share, the mount options determine:

How the connection will be established with the server. For example, which SMB protocol
version is used when connecting to the server.

How the share will be mounted into the local file system. For example, if the system overrides
the remote file and directory permissions to enable multiple local users to access the content
on the server.

To set multiple options in the fourth field of the /etc/fstab file or in the -o parameter of a mount
command, separate them with commas. For example, see Mounting a share with the multiuser option .

The following list gives frequently used mount options:

Option Description

credentials=file_name Sets the path to the credentials file. See Authenticating to an SMB share
using a credentials file.

dir_mode=mode Sets the directory mode if the server does not support CIFS UNIX extensions.

file_mode=mode Sets the file mode if the server does not support CIFS UNIX extensions.

password=password Sets the password used to authenticate to the SMB server. Alternatively,
specify a credentials file using the credentials option.

seal Enables encryption support for connections using SMB 3.0 or a later
protocol version. Therefore, use seal together with the vers mount option
set to 3.0 or later. See the example in Manually mounting an SMB share.

sec=security_mode Sets the security mode, such as ntlmsspi, to enable NTLMv2 password
hashing and enabled packet signing. For a list of supported values, see the
option’s description in the mount.cifs(8) man page.

If the server does not support the ntlmv2 security mode, use sec=ntlmssp,
which is the default.

For security reasons, do not use the insecure ntlm security mode.

username=user_name Sets the user name used to authenticate to the SMB server. Alternatively,
specify a credentials file using the credentials option.

Red Hat Enterprise Linux 8 Managing file systems

66

vers=SMB_protocol_version Sets the SMB protocol version used for the communication with the server.

Option Description

For a complete list, see the OPTIONS section in the mount.cifs(8) man page.

CHAPTER 5. MOUNTING AN SMB SHARE

67

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING
ATTRIBUTES

As a system administrator, you need to refer to storage volumes using persistent naming attributes to
build storage setups that are reliable over multiple system boots.

6.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES

Red Hat Enterprise Linux provides a number of ways to identify storage devices. It is important to use
the correct option to identify each device when used in order to avoid inadvertently accessing the wrong
device, particularly when installing to or reformatting drives.

Traditionally, non-persistent names in the form of /dev/sd(major number)(minor number) are used on
Linux to refer to storage devices. The major and minor number range and associated sd names are
allocated for each device when it is detected. This means that the association between the major and
minor number range and associated sd names can change if the order of device detection changes.

Such a change in the ordering might occur in the following situations:

The parallelization of the system boot process detects storage devices in a different order with
each system boot.

A disk fails to power up or respond to the SCSI controller. This results in it not being detected by
the normal device probe. The disk is not accessible to the system and subsequent devices will
have their major and minor number range, including the associated sd names shifted down. For
example, if a disk normally referred to as sdb is not detected, a disk that is normally referred to
as sdc would instead appear as sdb.

A SCSI controller (host bus adapter, or HBA) fails to initialize, causing all disks connected to that
HBA to not be detected. Any disks connected to subsequently probed HBAs are assigned
different major and minor number ranges, and different associated sd names.

The order of driver initialization changes if different types of HBAs are present in the system.
This causes the disks connected to those HBAs to be detected in a different order. This might
also occur if HBAs are moved to different PCI slots on the system.

Disks connected to the system with Fibre Channel, iSCSI, or FCoE adapters might be
inaccessible at the time the storage devices are probed, due to a storage array or intervening
switch being powered off, for example. This might occur when a system reboots after a power
failure, if the storage array takes longer to come online than the system take to boot. Although
some Fibre Channel drivers support a mechanism to specify a persistent SCSI target ID to
WWPN mapping, this does not cause the major and minor number ranges, and the associated sd
names to be reserved; it only provides consistent SCSI target ID numbers.

These reasons make it undesirable to use the major and minor number range or the associated sd
names when referring to devices, such as in the /etc/fstab file. There is the possibility that the wrong
device will be mounted and data corruption might result.

Occasionally, however, it is still necessary to refer to the sd names even when another mechanism is
used, such as when errors are reported by a device. This is because the Linux kernel uses sd names (and
also SCSI host/channel/target/LUN tuples) in kernel messages regarding the device.

6.2. FILE SYSTEM AND DEVICE IDENTIFIERS

This sections explains the difference between persistent attributes identifying file systems and block

Red Hat Enterprise Linux 8 Managing file systems

68

This sections explains the difference between persistent attributes identifying file systems and block
devices.

File system identifiers
File system identifiers are tied to a particular file system created on a block device. The identifier is also
stored as part of the file system. If you copy the file system to a different device, it still carries the same
file system identifier. On the other hand, if you rewrite the device, such as by formatting it with the mkfs
utility, the device loses the attribute.

File system identifiers include:

Unique identifier (UUID)

Label

Device identifiers
Device identifiers are tied to a block device: for example, a disk or a partition. If you rewrite the device,
such as by formatting it with the mkfs utility, the device keeps the attribute, because it is not stored in
the file system.

Device identifiers include:

World Wide Identifier (WWID)

Partition UUID

Serial number

Recommendations

Some file systems, such as logical volumes, span multiple devices. Red Hat recommends
accessing these file systems using file system identifiers rather than device identifiers.

6.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN
/DEV/DISK/

The udev mechanism is used for all types of devices in Linux, and is not limited only for storage devices.
It provides different kinds of persistent naming attributes in the /dev/disk/ directory. In the case of
storage devices, Red Hat Enterprise Linux contains udev rules that create symbolic links in the
/dev/disk/ directory. This enables you to refer to storage devices by:

Their content

A unique identifier

Their serial number.

Although udev naming attributes are persistent, in that they do not change on their own across system
reboots, some are also configurable.

6.3.1. File system identifiers

The UUID attribute in /dev/disk/by-uuid/
Entries in this directory provide a symbolic name that refers to the storage device by a unique identifier
(UUID) in the content (that is, the data) stored on the device. For example:

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

69

/dev/disk/by-uuid/3e6be9de-8139-11d1-9106-a43f08d823a6

You can use the UUID to refer to the device in the /etc/fstab file using the following syntax:

UUID=3e6be9de-8139-11d1-9106-a43f08d823a6

You can configure the UUID attribute when creating a file system, and you can also change it later on.

The Label attribute in /dev/disk/by-label/
Entries in this directory provide a symbolic name that refers to the storage device by a label in the
content (that is, the data) stored on the device.

For example:

/dev/disk/by-label/Boot

You can use the label to refer to the device in the /etc/fstab file using the following syntax:

LABEL=Boot

You can configure the Label attribute when creating a file system, and you can also change it later on.

6.3.2. Device identifiers

The WWID attribute in /dev/disk/by-id/
The World Wide Identifier (WWID) is a persistent, system-independent identifier that the SCSI
Standard requires from all SCSI devices. The WWID identifier is guaranteed to be unique for every
storage device, and independent of the path that is used to access the device. The identifier is a
property of the device but is not stored in the content (that is, the data) on the devices.

This identifier can be obtained by issuing a SCSI Inquiry to retrieve the Device Identification Vital
Product Data (page 0x83) or Unit Serial Number (page 0x80).

Red Hat Enterprise Linux automatically maintains the proper mapping from the WWID-based device
name to a current /dev/sd name on that system. Applications can use the /dev/disk/by-id/ name to
reference the data on the disk, even if the path to the device changes, and even when accessing the
device from different systems.

Example 6.1. WWID mappings

WWID symlink Non-persistent device Note

/dev/disk/by-id/scsi-
3600508b400105e210000900000490000

/dev/sda A device with a page
0x83 identifier

/dev/disk/by-id/scsi-
SSEAGATE_ST373453LW_3HW1RHM6

/dev/sdb A device with a page
0x80 identifier

/dev/disk/by-id/ata-
SAMSUNG_MZNLN256HMHQ-
000L7_S2WDNX0J336519-part3

/dev/sdc3 A disk partition

Red Hat Enterprise Linux 8 Managing file systems

70

In addition to these persistent names provided by the system, you can also use udev rules to implement
persistent names of your own, mapped to the WWID of the storage.

The Partition UUID attribute in /dev/disk/by-partuuid
The Partition UUID (PARTUUID) attribute identifies partitions as defined by GPT partition table.

Example 6.2. Partition UUID mappings

PARTUUID symlink Non-persistent device

/dev/disk/by-partuuid/4cd1448a-01 /dev/sda1

/dev/disk/by-partuuid/4cd1448a-02 /dev/sda2

/dev/disk/by-partuuid/4cd1448a-03 /dev/sda3

The Path attribute in /dev/disk/by-path/
This attribute provides a symbolic name that refers to the storage device by the hardware path used to
access the device.

The Path attribute fails if any part of the hardware path (for example, the PCI ID, target port, or LUN
number) changes. The Path attribute is therefore unreliable. However, the Path attribute may be useful
in one of the following scenarios:

You need to identify a disk that you are planning to replace later.

You plan to install a storage service on a disk in a specific location.

6.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH

You can configure Device Mapper (DM) Multipath to map between the World Wide Identifier (WWID)
and non-persistent device names.

If there are multiple paths from a system to a device, DM Multipath uses the WWID to detect this. DM
Multipath then presents a single "pseudo-device" in the /dev/mapper/wwid directory, such as
/dev/mapper/3600508b400105df70000e00000ac0000.

The command multipath -l shows the mapping to the non-persistent identifiers:

Host:Channel:Target:LUN

/dev/sd name

major:minor number

Example 6.3. WWID mappings in a multipath configuration

An example output of the multipath -l command:

3600508b400105df70000e00000ac0000 dm-2 vendor,product

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

71

[size=20G][features=1 queue_if_no_path][hwhandler=0][rw]
_ round-robin 0 [prio=0][active]
 _ 5:0:1:1 sdc 8:32 [active][undef]
 _ 6:0:1:1 sdg 8:96 [active][undef]
_ round-robin 0 [prio=0][enabled]
 _ 5:0:0:1 sdb 8:16 [active][undef]
 _ 6:0:0:1 sdf 8:80 [active][undef]

DM Multipath automatically maintains the proper mapping of each WWID-based device name to its
corresponding /dev/sd name on the system. These names are persistent across path changes, and they
are consistent when accessing the device from different systems.

When the user_friendly_names feature of DM Multipath is used, the WWID is mapped to a name of the
form /dev/mapper/mpathN. By default, this mapping is maintained in the file /etc/multipath/bindings.
These mpathN names are persistent as long as that file is maintained.

IMPORTANT

If you use user_friendly_names, then additional steps are required to obtain consistent
names in a cluster.

6.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION

The following are some limitations of the udev naming convention:

It is possible that the device might not be accessible at the time the query is performed
because the udev mechanism might rely on the ability to query the storage device when the
udev rules are processed for a udev event. This is more likely to occur with Fibre Channel, iSCSI
or FCoE storage devices when the device is not located in the server chassis.

The kernel might send udev events at any time, causing the rules to be processed and possibly
causing the /dev/disk/by-*/ links to be removed if the device is not accessible.

There might be a delay between when the udev event is generated and when it is processed,
such as when a large number of devices are detected and the user-space udevd service takes
some amount of time to process the rules for each one. This might cause a delay between when
the kernel detects the device and when the /dev/disk/by-*/ names are available.

External programs such as blkid invoked by the rules might open the device for a brief period of
time, making the device inaccessible for other uses.

The device names managed by the udev mechanism in /dev/disk/ may change between major
releases, requiring you to update the links.

6.6. LISTING PERSISTENT NAMING ATTRIBUTES

This procedure describes how to find out the persistent naming attributes of non-persistent storage
devices.

Procedure

To list the UUID and Label attributes, use the lsblk utility:

Red Hat Enterprise Linux 8 Managing file systems

72

$ lsblk --fs storage-device

For example:

Example 6.4. Viewing the UUID and Label of a file system

$ lsblk --fs /dev/sda1

NAME FSTYPE LABEL UUID MOUNTPOINT
sda1 xfs Boot afa5d5e3-9050-48c3-acc1-bb30095f3dc4 /boot

To list the PARTUUID attribute, use the lsblk utility with the --output +PARTUUID option:

$ lsblk --output +PARTUUID

For example:

Example 6.5. Viewing the PARTUUID attribute of a partition

$ lsblk --output +PARTUUID /dev/sda1

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT PARTUUID
sda1 8:1 0 512M 0 part /boot 4cd1448a-01

To list the WWID attribute, examine the targets of symbolic links in the /dev/disk/by-id/
directory. For example:

Example 6.6. Viewing the WWID of all storage devices on the system

$ file /dev/disk/by-id/*

/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001
symbolic link to ../../sda
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part1
symbolic link to ../../sda1
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part2
symbolic link to ../../sda2
/dev/disk/by-id/dm-name-rhel_rhel8-root
symbolic link to ../../dm-0
/dev/disk/by-id/dm-name-rhel_rhel8-swap
symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-
QIWtEHtXGobe5bewlIUDivKOz5ofkgFhP0RMFsNyySVihqEl2cWWbR7MjXJolD6g
symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-
QIWtEHtXGobe5bewlIUDivKOz5ofkgFhXqH2M45hD2H9nAf2qfWSrlRLhzfMyOKd
symbolic link to ../../dm-0
/dev/disk/by-id/lvm-pv-uuid-atlr2Y-vuMo-ueoH-CpMG-4JuH-AhEF-wu4QQm
symbolic link to ../../sda2

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

73

6.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

This procedure describes how to change the UUID or Label persistent naming attribute of a file system.

NOTE

Changing udev attributes happens in the background and might take a long time. The
udevadm settle command waits until the change is fully registered, which ensures that
your next command will be able to utilize the new attribute correctly.

In the following commands:

Replace new-uuid with the UUID you want to set; for example, 1cdfbc07-1c90-4984-b5ec-
f61943f5ea50. You can generate a UUID using the uuidgen command.

Replace new-label with a label; for example, backup_data.

Prerequisites

If you are modifying the attributes of an XFS file system, unmount it first.

Procedure

To change the UUID or Label attributes of an XFS file system, use the xfs_admin utility:

xfs_admin -U new-uuid -L new-label storage-device
udevadm settle

To change the UUID or Label attributes of an ext4, ext3, or ext2 file system, use the tune2fs
utility:

tune2fs -U new-uuid -L new-label storage-device
udevadm settle

To change the UUID or Label attributes of a swap volume, use the swaplabel utility:

swaplabel --uuid new-uuid --label new-label swap-device
udevadm settle

Red Hat Enterprise Linux 8 Managing file systems

74

CHAPTER 7. PARTITION OPERATIONS WITH PARTED
parted is a program to manipulate disk partitions. It supports multiple partition table formats, including
MS-DOS and GPT. It is useful for creating space for new operating systems, reorganizing disk usage,
and copying data to new hard disks.

7.1. VIEWING THE PARTITION TABLE WITH PARTED

Display the partition table of a block device to see the partition layout and details about individual
partitions. You can view the partition table on a block device using the parted utility.

Procedure

1. Start the parted utility. For example, the following output lists the device /dev/sda:

parted /dev/sda

2. View the partition table:

(parted) print

Model: ATA SAMSUNG MZNLN256 (scsi)
Disk /dev/sda: 256GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 1049kB 269MB 268MB primary xfs boot
 2 269MB 34.6GB 34.4GB primary
 3 34.6GB 45.4GB 10.7GB primary
 4 45.4GB 256GB 211GB extended
 5 45.4GB 256GB 211GB logical

3. Optional: Switch to the device you want to examine next:

(parted) select block-device

For a detailed description of the print command output, see the following:

Model: ATA SAMSUNG MZNLN256 (scsi)

The disk type, manufacturer, model number, and interface.

Disk /dev/sda: 256GB

The file path to the block device and the storage capacity.

Partition Table: msdos

The disk label type.

Number

The partition number. For example, the partition with minor number 1 corresponds to /dev/sda1.

Start and End

The location on the device where the partition starts and ends.

CHAPTER 7. PARTITION OPERATIONS WITH PARTED

75

Type

Valid types are metadata, free, primary, extended, or logical.

File system

The file system type. If the File system field of a device shows no value, this means that its file
system type is unknown. The parted utility cannot recognize the file system on encrypted devices.

Flags

Lists the flags set for the partition. Available flags are boot, root, swap, hidden, raid, lvm, or lba.

Additional resources

parted(8) man page.

7.2. CREATING A PARTITION TABLE ON A DISK WITH PARTED

Use the parted utility to format a block device with a partition table more easily.

WARNING

Formatting a block device with a partition table deletes all data stored on the
device.

Procedure

1. Start the interactive parted shell:

parted block-device

2. Determine if there already is a partition table on the device:

(parted) print

If the device already contains partitions, they will be deleted in the following steps.

3. Create the new partition table:

(parted) mklabel table-type

Replace table-type with with the intended partition table type:

msdos for MBR

gpt for GPT

Example 7.1. Creating a GUID Partition Table (GPT) table

To create a GPT table on the disk, use:

Red Hat Enterprise Linux 8 Managing file systems

76

(parted) mklabel gpt

The changes start applying after you enter this command.

4. View the partition table to confirm that it is created:

(parted) print

5. Exit the parted shell:

(parted) quit

Additional resources

parted(8) man page.

7.3. CREATING A PARTITION WITH PARTED

As a system administrator, you can create new partitions on a disk by using the parted utility.

NOTE

The required partitions are swap, /boot/, and / (root).

Prerequisites

A partition table on the disk.

If the partition you want to create is larger than 2TiB, format the disk with the GUID Partition
Table (GPT).

Procedure

1. Start the parted utility:

parted block-device

2. View the current partition table to determine if there is enough free space:

(parted) print

Resize the partition in case there is not enough free space.

From the partition table, determine:

The start and end points of the new partition.

On MBR, what partition type it should be.

3. Create the new partition:

CHAPTER 7. PARTITION OPERATIONS WITH PARTED

77

(parted) mkpart part-type name fs-type start end

Replace part-type with with primary, logical, or extended. This applies only to the MBR
partition table.

Replace name with an arbitrary partition name. This is required for GPT partition tables.

Replace fs-type with xfs, ext2, ext3, ext4, fat16, fat32, hfs, hfs+, linux-swap, ntfs, or
reiserfs. The fs-type parameter is optional. Note that the parted utility does not create the
file system on the partition.

Replace start and end with the sizes that determine the starting and ending points of the
partition, counting from the beginning of the disk. You can use size suffixes, such as 512MiB,
20GiB, or 1.5TiB. The default size is in megabytes.

Example 7.2. Creating a small primary partition

To create a primary partition from 1024MiB until 2048MiB on an MBR table, use:

(parted) mkpart primary 1024MiB 2048MiB

The changes start applying after you enter the command.

4. View the partition table to confirm that the created partition is in the partition table with the
correct partition type, file system type, and size:

(parted) print

5. Exit the parted shell:

(parted) quit

6. Register the new device node:

udevadm settle

7. Verify that the kernel recognizes the new partition:

cat /proc/partitions

Additional resources

parted(8) man page.

Creating a partition table on a disk with parted .

Resizing a partition with parted

7.4. REMOVING A PARTITION WITH PARTED

Using the parted utility, you can remove a disk partition to free up disk space.

Red Hat Enterprise Linux 8 Managing file systems

78

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_creating-a-partition-table-on-a-disk-with-parted_partition-operations-with-parted
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_resizing-a-partition-with-parted_partition-operations-with-parted

WARNING

Removing a partition deletes all data stored on the partition.

Procedure

1. Start the interactive parted shell:

parted block-device

Replace block-device with the path to the device where you want to remove a partition: for
example, /dev/sda.

2. View the current partition table to determine the minor number of the partition to remove:

(parted) print

3. Remove the partition:

(parted) rm minor-number

Replace minor-number with the minor number of the partition you want to remove.

The changes start applying as soon as you enter this command.

4. Verify that you have removed the partition from the partition table:

(parted) print

5. Exit the parted shell:

(parted) quit

6. Verify that the kernel registers that the partition is removed:

cat /proc/partitions

7. Remove the partition from the /etc/fstab file, if it is present. Find the line that declares the
removed partition, and remove it from the file.

8. Regenerate mount units so that your system registers the new /etc/fstab configuration:

systemctl daemon-reload

9. If you have deleted a swap partition or removed pieces of LVM, remove all references to the
partition from the kernel command line:

a. List active kernel options and see if any option references the removed partition:

CHAPTER 7. PARTITION OPERATIONS WITH PARTED

79

grubby --info=ALL

b. Remove the kernel options that reference the removed partition:

grubby --update-kernel=ALL --remove-args="option"

10. To register the changes in the early boot system, rebuild the initramfs file system:

dracut --force --verbose

Additional resources

parted(8) man page

7.5. RESIZING A PARTITION WITH PARTED

Using the parted utility, extend a partition to use unused disk space, or shrink a partition to use its
capacity for different purposes.

Prerequisites

Back up the data before shrinking a partition.

If the partition you want to create is larger than 2TiB, format the disk with the GUID Partition
Table (GPT).

If you want to shrink the partition, first shrink the file system so that it is not larger than the
resized partition.

NOTE

XFS does not support shrinking.

Procedure

1. Start the parted utility:

parted block-device

2. View the current partition table:

(parted) print

From the partition table, determine:

The minor number of the partition.

The location of the existing partition and its new ending point after resizing.

3. Resize the partition:

(parted) resizepart 1 2GiB

Red Hat Enterprise Linux 8 Managing file systems

80

Replace 1 with the minor number of the partition that you are resizing.

Replace 2 with the size that determines the new ending point of the resized partition,
counting from the beginning of the disk. You can use size suffixes, such as 512MiB, 20GiB,
or 1.5TiB. The default size is in megabytes.

4. View the partition table to confirm that the resized partition is in the partition table with the
correct size:

(parted) print

5. Exit the parted shell:

(parted) quit

6. Verify that the kernel registers the new partition:

cat /proc/partitions

7. Optional: If you extended the partition, extend the file system on it as well.

Additional resources

parted(8) man page.

Creating a partition table on a disk with parted

Resizing an ext3 file system

Resizing an ext4 file system

Increasing the size of an XFS file system

CHAPTER 7. PARTITION OPERATIONS WITH PARTED

81

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-partitions_managing-storage-devices#proc_creating-a-partition-table-on-a-disk-with-parted_getting-started-with-partitions
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/getting-started-with-an-ext3-file-system_managing-file-systems#resizing-an-ext3-file-system_getting-started-with-an-ext3-file-system
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/getting-started-with-an-ext4-file-system_managing-file-systems#resizing-an-ext4-file-system_getting-started-with-an-ext4-file-system
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/increasing-the-size-of-an-xfs-file-system_managing-file-systems#proc_increasing-the-size-of-an-xfs-file-system-with-xfs_growfs_increasing-the-size-of-an-xfs-file-system

CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK
There are different approaches to repartitioning a disk. These include:

Unpartitioned free space is available.

An unused partition is available.

Free space in an actively used partition is available.

NOTE

The following examples are simplified for clarity and do not reflect the exact partition
layout when actually installing Red Hat Enterprise Linux.

8.1. USING UNPARTITIONED FREE SPACE

Partitions that are already defined and do not span the entire hard disk, leave unallocated space that is
not part of any defined partition. The following diagram shows what this might look like.

Figure 8.1. Disk with unpartitioned free space

The first diagram represents a disk with one primary partition and an undefined partition with
unallocated space. The second diagram represents a disk with two defined partitions with allocated
space.

An unused hard disk also falls into this category. The only difference is that all the space is not part of
any defined partition.

On a new disk, you can create the necessary partitions from the unused space. Most preinstalled
operating systems are configured to take up all available space on a disk drive.

8.2. USING SPACE FROM AN UNUSED PARTITION

In the following example, the first diagram represents a disk with an unused partition. The second
diagram represents reallocating an unused partition for Linux.

Figure 8.2. Disk with an unused partition

Red Hat Enterprise Linux 8 Managing file systems

82

Figure 8.2. Disk with an unused partition

To use the space allocated to the unused partition, delete the partition and then create the appropriate
Linux partition instead. Alternatively, during the installation process, delete the unused partition and
manually create new partitions.

8.3. USING FREE SPACE FROM AN ACTIVE PARTITION

This process can be difficult to manage because an active partition, that is already in use, contains the
required free space. In most cases, hard disks of computers with preinstalled software contain one larger
partition holding the operating system and data.

WARNING

If you want to use an operating system (OS) on an active partition, you must
reinstall the OS. Be aware that some computers, which include pre-installed
software, do not include installation media to reinstall the original OS. Check
whether this applies to your OS before you destroy an original partition and the OS
installation.

To optimise the use of available free space, you can use the methods of destructive or non-destructive
repartitioning.

8.3.1. Destructive repartitioning

Destructive repartitioning destroys the partition on your hard drive and creates several smaller partitions
instead. Backup any needed data from the original partition as this method deletes the complete
contents.

After creating a smaller partition for your existing operating system, you can:

Reinstall software.

Restore your data.

CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK

83

Start your Red Hat Enterprise Linux installation.

The following diagram is a simplified representation of using the destructive repartitioning method.

Figure 8.3. Destructive repartitioning action on disk

WARNING

This method deletes all data previously stored in the original partition.

8.3.2. Non-destructive repartitioning

Non-destructive repartitioning resizes partitions, without any data loss. This method is reliable, however
it takes longer processing time on large drives.

The following is a list of methods, which can help initiate non-destructive repartitioning.

Compress existing data

The storage location of some data cannot be changed. This can prevent the resizing of a partition to the
required size, and ultimately lead to a destructive repartition process. Compressing data in an already
existing partition can help you resize your partitions as needed. It can also help to maximize the free
space available.

The following diagram is a simplified representation of this process.

Figure 8.4. Data compression on a disk

Red Hat Enterprise Linux 8 Managing file systems

84

Figure 8.4. Data compression on a disk

To avoid any possible data loss, create a backup before continuing with the compression process.

Resize the existing partition

By resizing an already existing partition, you can free up more space. Depending on your resizing
software, the results may vary. In the majority of cases, you can create a new unformatted partition of
the same type, as the original partition.

The steps you take after resizing can depend on the software you use. In the following example, the best
practice is to delete the new DOS (Disk Operating System) partition, and create a Linux partition
instead. Verify what is most suitable for your disk before initiating the resizing process.

Figure 8.5. Partition resizing on a disk

Optional: Create new partitions

Some pieces of resizing software support Linux based systems. In such cases, there is no need to delete
the newly created partition after resizing. Creating a new partition afterwards depends on the software
you use.

The following diagram represents the disk state, before and after creating a new partition.

Figure 8.6. Disk with final partition configuration

CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK

85

Figure 8.6. Disk with final partition configuration

Red Hat Enterprise Linux 8 Managing file systems

86

CHAPTER 9. GETTING STARTED WITH XFS
This is an overview of how to create and maintain XFS file systems.

9.1. THE XFS FILE SYSTEM

XFS is a highly scalable, high-performance, robust, and mature 64-bit journaling file system that
supports very large files and file systems on a single host. It is the default file system in Red Hat
Enterprise Linux 8. XFS was originally developed in the early 1990s by SGI and has a long history of
running on extremely large servers and storage arrays.

The features of XFS include:

Reliability

Metadata journaling, which ensures file system integrity after a system crash by keeping a
record of file system operations that can be replayed when the system is restarted and the
file system remounted

Extensive run-time metadata consistency checking

Scalable and fast repair utilities

Quota journaling. This avoids the need for lengthy quota consistency checks after a crash.

Scalability and performance

Supported file system size up to 1024 TiB

Ability to support a large number of concurrent operations

B-tree indexing for scalability of free space management

Sophisticated metadata read-ahead algorithms

Optimizations for streaming video workloads

Allocation schemes

Extent-based allocation

Stripe-aware allocation policies

Delayed allocation

Space pre-allocation

Dynamically allocated inodes

Other features

Reflink-based file copies

Tightly integrated backup and restore utilities

Online defragmentation

CHAPTER 9. GETTING STARTED WITH XFS

87

Online file system growing

Comprehensive diagnostics capabilities

Extended attributes (xattr). This allows the system to associate several additional
name/value pairs per file.

Project or directory quotas. This allows quota restrictions over a directory tree.

Subsecond timestamps

Performance characteristics

XFS has a high performance on large systems with enterprise workloads. A large system is one with a
relatively high number of CPUs, multiple HBAs, and connections to external disk arrays. XFS also
performs well on smaller systems that have a multi-threaded, parallel I/O workload.

XFS has a relatively low performance for single threaded, metadata-intensive workloads: for example, a
workload that creates or deletes large numbers of small files in a single thread.

9.2. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

This section compares which tools to use to accomplish common tasks on the ext4 and XFS file
systems.

Task ext4 XFS

Create a file system mkfs.ext4 mkfs.xfs

File system check e2fsck xfs_repair

Resize a file system resize2fs xfs_growfs

Save an image of a file system e2image xfs_metadump and
xfs_mdrestore

Label or tune a file system tune2fs xfs_admin

Back up a file system dump and restore xfsdump and xfsrestore

Quota management quota xfs_quota

File mapping filefrag xfs_bmap

Red Hat Enterprise Linux 8 Managing file systems

88

CHAPTER 10. CREATING AN XFS FILE SYSTEM
As a system administrator, you can create an XFS file system on a block device to enable it to store files
and directories.

10.1. CREATING AN XFS FILE SYSTEM WITH MKFS.XFS

This procedure describes how to create an XFS file system on a block device.

Procedure

1. To create the file system:

If the device is a regular partition, an LVM volume, an MD volume, a disk, or a similar device,
use the following command:

mkfs.xfs block-device

Replace block-device with the path to the block device. For example, /dev/sdb1,
/dev/disk/by-uuid/05e99ec8-def1-4a5e-8a9d-5945339ceb2a, or /dev/my-
volgroup/my-lv.

In general, the default options are optimal for common use.

When using mkfs.xfs on a block device containing an existing file system, add the -f
option to overwrite that file system.

To create the file system on a hardware RAID device, check if the system correctly detects
the stripe geometry of the device:

If the stripe geometry information is correct, no additional options are needed. Create
the file system:

mkfs.xfs block-device

If the information is incorrect, specify stripe geometry manually with the su and sw
parameters of the -d option. The su parameter specifies the RAID chunk size, and the
sw parameter specifies the number of data disks in the RAID device.
For example:

mkfs.xfs -d su=64k,sw=4 /dev/sda3

2. Use the following command to wait for the system to register the new device node:

udevadm settle

Additional resources

mkfs.xfs(8) man page.

CHAPTER 10. CREATING AN XFS FILE SYSTEM

89

CHAPTER 11. BACKING UP AN XFS FILE SYSTEM
As a system administrator, you can use the xfsdump to back up an XFS file system into a file or on a
tape. This provides a simple backup mechanism.

11.1. FEATURES OF XFS BACKUP

This section describes key concepts and features of backing up an XFS file system with the xfsdump
utility.

You can use the xfsdump utility to:

Perform backups to regular file images.
Only one backup can be written to a regular file.

Perform backups to tape drives.
The xfsdump utility also enables you to write multiple backups to the same tape. A backup can
span multiple tapes.

To back up multiple file systems to a single tape device, simply write the backup to a tape that
already contains an XFS backup. This appends the new backup to the previous one. By default,
xfsdump never overwrites existing backups.

Create incremental backups.
The xfsdump utility uses dump levels to determine a base backup to which other backups are
relative. Numbers from 0 to 9 refer to increasing dump levels. An incremental backup only backs
up files that have changed since the last dump of a lower level:

To perform a full backup, perform a level 0 dump on the file system.

A level 1 dump is the first incremental backup after a full backup. The next incremental
backup would be level 2, which only backs up files that have changed since the last level
1 dump; and so on, to a maximum of level 9.

Exclude files from a backup using size, subtree, or inode flags to filter them.

Additional resources

xfsdump(8) man page.

11.2. BACKING UP AN XFS FILE SYSTEM WITH XFSDUMP

This procedure describes how to back up the content of an XFS file system into a file or a tape.

Prerequisites

An XFS file system that you can back up.

Another file system or a tape drive where you can store the backup.

Procedure

Use the following command to back up an XFS file system:

Red Hat Enterprise Linux 8 Managing file systems

90

xfsdump -l level [-L label] \
 -f backup-destination path-to-xfs-filesystem

Replace level with the dump level of your backup. Use 0 to perform a full backup or 1 to 9 to
perform consequent incremental backups.

Replace backup-destination with the path where you want to store your backup. The
destination can be a regular file, a tape drive, or a remote tape device. For example,
/backup-files/Data.xfsdump for a file or /dev/st0 for a tape drive.

Replace path-to-xfs-filesystem with the mount point of the XFS file system you want to
back up. For example, /mnt/data/. The file system must be mounted.

When backing up multiple file systems and saving them on a single tape device, add a
session label to each backup using the -L label option so that it is easier to identify them
when restoring. Replace label with any name for your backup: for example, backup_data.

Example 11.1. Backing up multiple XFS file systems

To back up the content of XFS file systems mounted on the /boot/ and /data/ directories
and save them as files in the /backup-files/ directory:

xfsdump -l 0 -f /backup-files/boot.xfsdump /boot
xfsdump -l 0 -f /backup-files/data.xfsdump /data

To back up multiple file systems on a single tape device, add a session label to each backup
using the -L label option:

xfsdump -l 0 -L "backup_boot" -f /dev/st0 /boot
xfsdump -l 0 -L "backup_data" -f /dev/st0 /data

Additional resources

xfsdump(8) man page.

11.3. ADDITIONAL RESOURCES

xfsdump(8) man page

CHAPTER 11. BACKING UP AN XFS FILE SYSTEM

91

CHAPTER 12. RESTORING AN XFS FILE SYSTEM FROM
BACKUP

As a system administrator, you can use the xfsrestore utility to restore XFS backup created with the
xfsdump utility and stored in a file or on a tape.

12.1. FEATURES OF RESTORING XFS FROM BACKUP

The xfsrestore utility restores file systems from backups produced by xfsdump. The xfsrestore utility
has two modes:

The simple mode enables users to restore an entire file system from a level 0 dump. This is the
default mode.

The cumulative mode enables file system restoration from an incremental backup: that is,
level 1 to level 9.

A unique session ID or session label identifies each backup. Restoring a backup from a tape containing
multiple backups requires its corresponding session ID or label.

To extract, add, or delete specific files from a backup, enter the xfsrestore interactive mode. The
interactive mode provides a set of commands to manipulate the backup files.

Additional resources

xfsrestore(8) man page.

12.2. RESTORING AN XFS FILE SYSTEM FROM BACKUP WITH
XFSRESTORE

This procedure describes how to restore the content of an XFS file system from a file or tape backup.

Prerequisites

A file or tape backup of XFS file systems, as described in Backing up an XFS file system .

A storage device where you can restore the backup.

Procedure

The command to restore the backup varies depending on whether you are restoring from a full
backup or an incremental one, or are restoring multiple backups from a single tape device:

xfsrestore [-r] [-S session-id] [-L session-label] [-i]
 -f backup-location restoration-path

Replace backup-location with the location of the backup. This can be a regular file, a tape
drive, or a remote tape device. For example, /backup-files/Data.xfsdump for a file or
/dev/st0 for a tape drive.

Replace restoration-path with the path to the directory where you want to restore the file
system. For example, /mnt/data/.

Red Hat Enterprise Linux 8 Managing file systems

92

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/backing-up-an-xfs-file-system_managing-file-systems

To restore a file system from an incremental (level 1 to level 9) backup, add the -r option.

To restore a backup from a tape device that contains multiple backups, specify the backup
using the -S or -L options.
The -S option lets you choose a backup by its session ID, while the -L option lets you choose
by the session label. To obtain the session ID and session labels, use the xfsrestore -I
command.

Replace session-id with the session ID of the backup. For example, b74a3586-e52e-4a4a-
8775-c3334fa8ea2c. Replace session-label with the session label of the backup. For
example, my_backup_session_label.

To use xfsrestore interactively, use the -i option.
The interactive dialog begins after xfsrestore finishes reading the specified device.
Available commands in the interactive xfsrestore shell include cd, ls, add, delete, and
extract; for a complete list of commands, use the help command.

Example 12.1. Restoring Multiple XFS File Systems

To restore the XFS backup files and save their content into directories under /mnt/:

xfsrestore -f /backup-files/boot.xfsdump /mnt/boot/
xfsrestore -f /backup-files/data.xfsdump /mnt/data/

To restore from a tape device containing multiple backups, specify each backup by its
session label or session ID:

xfsrestore -L "backup_boot" -f /dev/st0 /mnt/boot/
xfsrestore -S "45e9af35-efd2-4244-87bc-4762e476cbab" \
 -f /dev/st0 /mnt/data/

Additional resources

xfsrestore(8) man page.

12.3. INFORMATIONAL MESSAGES WHEN RESTORING AN XFS
BACKUP FROM A TAPE

When restoring a backup from a tape with backups from multiple file systems, the xfsrestore utility
might issue messages. The messages inform you whether a match of the requested backup has been
found when xfsrestore examines each backup on the tape in sequential order. For example:

xfsrestore: preparing drive
xfsrestore: examining media file 0
xfsrestore: inventory session uuid (8590224e-3c93-469c-a311-fc8f23029b2a) does not match the
media header's session uuid (7eda9f86-f1e9-4dfd-b1d4-c50467912408)
xfsrestore: examining media file 1
xfsrestore: inventory session uuid (8590224e-3c93-469c-a311-fc8f23029b2a) does not match the
media header's session uuid (7eda9f86-f1e9-4dfd-b1d4-c50467912408)
[...]

The informational messages keep appearing until the matching backup is found.

CHAPTER 12. RESTORING AN XFS FILE SYSTEM FROM BACKUP

93

12.4. ADDITIONAL RESOURCES

xfsrestore(8) man page

Red Hat Enterprise Linux 8 Managing file systems

94

CHAPTER 13. INCREASING THE SIZE OF AN XFS FILE SYSTEM
As a system administrator, you can increase the size of an XFS file system to make a complete use of a
larger storage capacity.

IMPORTANT

It is not currently possible to decrease the size of XFS file systems.

13.1. INCREASING THE SIZE OF AN XFS FILE SYSTEM WITH
XFS_GROWFS

This procedure describes how to grow an XFS file system using the xfs_growfs utility.

Prerequisites

Ensure that the underlying block device is of an appropriate size to hold the resized file system
later. Use the appropriate resizing methods for the affected block device.

Mount the XFS file system.

Procedure

While the XFS file system is mounted, use the xfs_growfs utility to increase its size:

xfs_growfs file-system -D new-size

Replace file-system with the mount point of the XFS file system.

With the -D option, replace new-size with the desired new size of the file system specified in
the number of file system blocks.
To find out the block size in kB of a given XFS file system, use the xfs_info utility:

xfs_info block-device

...
data = bsize=4096
...

Without the -D option, xfs_growfs grows the file system to the maximum size supported by
the underlying device.

Additional resources

xfs_growfs(8) man page.

CHAPTER 13. INCREASING THE SIZE OF AN XFS FILE SYSTEM

95

CHAPTER 14. CONFIGURING XFS ERROR BEHAVIOR
You can configure how an XFS file system behaves when it encounters different I/O errors.

14.1. CONFIGURABLE ERROR HANDLING IN XFS

The XFS file system responds in one of the following ways when an error occurs during an I/O operation:

XFS repeatedly retries the I/O operation until the operation succeeds or XFS reaches a set limit.
The limit is based either on a maximum number of retries or a maximum time for retries.

XFS considers the error permanent and stops the operation on the file system.

You can configure how XFS reacts to the following error conditions:

EIO

Error when reading or writing

ENOSPC

No space left on the device

ENODEV

Device cannot be found

You can set the maximum number of retries and the maximum time in seconds until XFS considers an
error permanent. XFS stops retrying the operation when it reaches either of the limits.

You can also configure XFS so that when unmounting a file system, XFS immediately cancels the retries
regardless of any other configuration. This configuration enables the unmount operation to succeed
despite persistent errors.

Default behavior

The default behavior for each XFS error condition depends on the error context. Some XFS errors such
as ENODEV are considered to be fatal and unrecoverable, regardless of the retry count. Their default
retry limit is 0.

14.2. CONFIGURATION FILES FOR SPECIFIC AND UNDEFINED XFS
ERROR CONDITIONS

The following directories store configuration files that control XFS error behavior for different error
conditions:

/sys/fs/xfs/device/error/metadata/EIO/

For the EIO error condition

/sys/fs/xfs/device/error/metadata/ENODEV/

For the ENODEV error condition

/sys/fs/xfs/device/error/metadata/ENOSPC/

For the ENOSPC error condition

/sys/fs/xfs/device/error/default/

Common configuration for all other, undefined error conditions

Each directory contains the following configuration files for configuring retry limits:

Red Hat Enterprise Linux 8 Managing file systems

96

max_retries

Controls the maximum number of times that XFS retries the operation.

retry_timeout_seconds

Specifies the time limit in seconds after which XFS stops retrying the operation.

14.3. SETTING XFS BEHAVIOR FOR SPECIFIC CONDITIONS

This procedure configures how XFS reacts to specific error conditions.

Procedure

Set the maximum number of retries, the retry time limit, or both:

To set the maximum number of retries, write the desired number to the max_retries file:

echo value > /sys/fs/xfs/device/error/metadata/condition/max_retries

To set the time limit, write the desired number of seconds to the retry_timeout_seconds
file:

echo value > /sys/fs/xfs/device/error/metadata/condition/retry_timeout_second

value is a number between -1 and the maximum possible value of the C signed integer type. This
is 2147483647 on 64-bit Linux.

In both limits, the value -1 is used for continuous retries and 0 to stop immediately.

device is the name of the device, as found in the /dev/ directory; for example, sda.

14.4. SETTING XFS BEHAVIOR FOR UNDEFINED CONDITIONS

This procedure configures how XFS reacts to all undefined error conditions, which share a common
configuration.

Procedure

Set the maximum number of retries, the retry time limit, or both:

To set the maximum number of retries, write the desired number to the max_retries file:

echo value > /sys/fs/xfs/device/error/metadata/default/max_retries

To set the time limit, write the desired number of seconds to the retry_timeout_seconds
file:

echo value > /sys/fs/xfs/device/error/metadata/default/retry_timeout_seconds

value is a number between -1 and the maximum possible value of the C signed integer type. This
is 2147483647 on 64-bit Linux.

In both limits, the value -1 is used for continuous retries and 0 to stop immediately.

CHAPTER 14. CONFIGURING XFS ERROR BEHAVIOR

97

device is the name of the device, as found in the /dev/ directory; for example, sda.

14.5. SETTING THE XFS UNMOUNT BEHAVIOR

This procedure configures how XFS reacts to error conditions when unmounting the file system.

If you set the fail_at_unmount option in the file system, it overrides all other error configurations during
unmount, and immediately unmounts the file system without retrying the I/O operation. This allows the
unmount operation to succeed even in case of persistent errors.

WARNING

You cannot change the fail_at_unmount value after the unmount process starts,
because the unmount process removes the configuration files from the sysfs
interface for the respective file system. You must configure the unmount behavior
before the file system starts unmounting.

Procedure

Enable or disable the fail_at_unmount option:

To cancel retrying all operations when the file system unmounts, enable the option:

echo 1 > /sys/fs/xfs/device/error/fail_at_unmount

To respect the max_retries and retry_timeout_seconds retry limits when the file system
unmounts, disable the option:

echo 0 > /sys/fs/xfs/device/error/fail_at_unmount

device is the name of the device, as found in the /dev/ directory; for example, sda.

Red Hat Enterprise Linux 8 Managing file systems

98

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM
RHEL provides file system administration utilities which are capable of checking and repairing file
systems. These tools are often referred to as fsck tools, where fsck is a shortened version of file system
check. In most cases, these utilities are run automatically during system boot, if needed, but can also be
manually invoked if required.

IMPORTANT

File system checkers guarantee only metadata consistency across the file system. They
have no awareness of the actual data contained within the file system and are not data
recovery tools.

15.1. SCENARIOS THAT REQUIRE A FILE SYSTEM CHECK

The relevant fsck tools can be used to check your system if any of the following occurs:

System fails to boot

Files on a specific disk become corrupt

The file system shuts down or changes to read-only due to inconsistencies

A file on the file system is inaccessible

File system inconsistencies can occur for various reasons, including but not limited to hardware errors,
storage administration errors, and software bugs.

IMPORTANT

File system check tools cannot repair hardware problems. A file system must be fully
readable and writable if repair is to operate successfully. If a file system was corrupted
due to a hardware error, the file system must first be moved to a good disk, for example
with the dd(8) utility.

For journaling file systems, all that is normally required at boot time is to replay the journal if required
and this is usually a very short operation.

However, if a file system inconsistency or corruption occurs, even for journaling file systems, then the
file system checker must be used to repair the file system.

IMPORTANT

It is possible to disable file system check at boot by setting the sixth field in /etc/fstab to
0. However, Red Hat does not recommend doing so unless you are having issues with fsck
at boot time, for example with extremely large or remote file systems.

Additional resources

fstab(5) man page.

fsck(8) man page.

dd(8) man page.

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM

99

15.2. POTENTIAL SIDE EFFECTS OF RUNNING FSCK

Generally, running the file system check and repair tool can be expected to automatically repair at least
some of the inconsistencies it finds. In some cases, the following issues can arise:

Severely damaged inodes or directories may be discarded if they cannot be repaired.

Significant changes to the file system may occur.

To ensure that unexpected or undesirable changes are not permanently made, ensure you follow any
precautionary steps outlined in the procedure.

15.3. ERROR-HANDLING MECHANISMS IN XFS

This section describes how XFS handles various kinds of errors in the file system.

Unclean unmounts
Journalling maintains a transactional record of metadata changes that happen on the file system.

In the event of a system crash, power failure, or other unclean unmount, XFS uses the journal (also
called log) to recover the file system. The kernel performs journal recovery when mounting the XFS file
system.

Corruption
In this context, corruption means errors on the file system caused by, for example:

Hardware faults

Bugs in storage firmware, device drivers, the software stack, or the file system itself

Problems that cause parts of the file system to be overwritten by something outside of the file
system

When XFS detects corruption in the file system or the file-system metadata, it may shut down the file
system and report the incident in the system log. Note that if the corruption occurred on the file system
hosting the /var directory, these logs will not be available after a reboot.

Example 15.1. System log entry reporting an XFS corruption

dmesg --notime | tail -15

XFS (loop0): Mounting V5 Filesystem
XFS (loop0): Metadata CRC error detected at xfs_agi_read_verify+0xcb/0xf0 [xfs], xfs_agi block
0x2
XFS (loop0): Unmount and run xfs_repair
XFS (loop0): First 128 bytes of corrupted metadata buffer:
00000000027b3b56: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000005f9abc7a: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000005b0aef35: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000000da9d2ded: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000001e265b07: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000006a40df69: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000000b272907: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000000e484aac5: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Red Hat Enterprise Linux 8 Managing file systems

100

XFS (loop0): metadata I/O error in "xfs_trans_read_buf_map" at daddr 0x2 len 1 error 74
XFS (loop0): xfs_imap_lookup: xfs_ialloc_read_agi() returned error -117, agno 0
XFS (loop0): Failed to read root inode 0x80, error 11

User-space utilities usually report the Input/output error message when trying to access a corrupted
XFS file system. Mounting an XFS file system with a corrupted log results in a failed mount and the
following error message:

mount: /mount-point: mount(2) system call failed: Structure needs cleaning.

You must manually use the xfs_repair utility to repair the corruption.

Additional resources

xfs_repair(8) man page.

15.4. CHECKING AN XFS FILE SYSTEM WITH XFS_REPAIR

This procedure performs a read-only check of an XFS file system using the xfs_repair utility. You must
manually use the xfs_repair utility to repair any corruption. Unlike other file system repair utilities,
xfs_repair does not run at boot time, even when an XFS file system was not cleanly unmounted. In the
event of an unclean unmount, XFS simply replays the log at mount time, ensuring a consistent file
system; xfs_repair cannot repair an XFS file system with a dirty log without remounting it first.

NOTE

Although an fsck.xfs binary is present in the xfsprogs package, this is present only to
satisfy initscripts that look for an fsck.file system binary at boot time. fsck.xfs
immediately exits with an exit code of 0.

Procedure

1. Replay the log by mounting and unmounting the file system:

mount file-system
umount file-system

NOTE

If the mount fails with a structure needs cleaning error, the log is corrupted and
cannot be replayed. The dry run should discover and report more on-disk
corruption as a result.

2. Use the xfs_repair utility to perform a dry run to check the file system. Any errors are printed
and an indication of the actions that would be taken, without modifying the file system.

xfs_repair -n block-device

3. Mount the file system:

mount file-system

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM

101

Additional resources

xfs_repair(8) man page.

xfs_metadump(8) man page.

15.5. REPAIRING AN XFS FILE SYSTEM WITH XFS_REPAIR

This procedure repairs a corrupted XFS file system using the xfs_repair utility.

Procedure

1. Create a metadata image prior to repair for diagnostic or testing purposes using the
xfs_metadump utility. A pre-repair file system metadata image can be useful for support
investigations if the corruption is due to a software bug. Patterns of corruption present in the
pre-repair image can aid in root-cause analysis.

Use the xfs_metadump debugging tool to copy the metadata from an XFS file system to a
file. The resulting metadump file can be compressed using standard compression utilities to
reduce the file size if large metadump files need to be sent to support.

xfs_metadump block-device metadump-file

2. Replay the log by remounting the file system:

mount file-system
umount file-system

3. Use the xfs_repair utility to repair the unmounted file system:

If the mount succeeded, no additional options are required:

xfs_repair block-device

If the mount failed with the Structure needs cleaning error, the log is corrupted and cannot
be replayed. Use the -L option (force log zeroing) to clear the log:

WARNING

This command causes all metadata updates in progress at the time of
the crash to be lost, which might cause significant file system damage
and data loss. This should be used only as a last resort if the log cannot
be replayed.

xfs_repair -L block-device

4. Mount the file system:

mount file-system

Red Hat Enterprise Linux 8 Managing file systems

102

Additional resources

xfs_repair(8) man page.

15.6. ERROR HANDLING MECHANISMS IN EXT2, EXT3, AND EXT4

The ext2, ext3, and ext4 file systems use the e2fsck utility to perform file system checks and repairs.
The file names fsck.ext2, fsck.ext3, and fsck.ext4 are hardlinks to the e2fsck utility. These binaries are
run automatically at boot time and their behavior differs based on the file system being checked and the
state of the file system.

A full file system check and repair is invoked for ext2, which is not a metadata journaling file system, and
for ext4 file systems without a journal.

For ext3 and ext4 file systems with metadata journaling, the journal is replayed in userspace and the
utility exits. This is the default action because journal replay ensures a consistent file system after a
crash.

If these file systems encounter metadata inconsistencies while mounted, they record this fact in the file
system superblock. If e2fsck finds that a file system is marked with such an error, e2fsck performs a full
check after replaying the journal (if present).

Additional resources

fsck(8) man page.

e2fsck(8) man page.

15.7. CHECKING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

This procedure checks an ext2, ext3, or ext4 file system using the e2fsck utility.

Procedure

1. Replay the log by remounting the file system:

mount file-system
umount file-system

2. Perform a dry run to check the file system.

e2fsck -n block-device

NOTE

Any errors are printed and an indication of the actions that would be taken,
without modifying the file system. Later phases of consistency checking may
print extra errors as it discovers inconsistencies which would have been fixed in
early phases if it were running in repair mode.

Additional resources

CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM

103

e2image(8) man page.

e2fsck(8) man page.

15.8. REPAIRING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

This procedure repairs a corrupted ext2, ext3, or ext4 file system using the e2fsck utility.

Procedure

1. Save a file system image for support investigations. A pre-repair file system metadata image
can be useful for support investigations if the corruption is due to a software bug. Patterns of
corruption present in the pre-repair image can aid in root-cause analysis.

NOTE

Severely damaged file systems may cause problems with metadata image
creation.

If you are creating the image for testing purposes, use the -r option to create a sparse file of
the same size as the file system itself. e2fsck can then operate directly on the resulting file.

e2image -r block-device image-file

If you are creating the image to be archived or provided for diagnostic, use the -Q option,
which creates a more compact file format suitable for transfer.

e2image -Q block-device image-file

2. Replay the log by remounting the file system:

mount file-system
umount file-system

3. Automatically repair the file system. If user intervention is required, e2fsck indicates the unfixed
problem in its output and reflects this status in the exit code.

e2fsck -p block-device

Additional resources

e2image(8) man page.

e2fsck(8) man page.

Red Hat Enterprise Linux 8 Managing file systems

104

CHAPTER 16. MOUNTING FILE SYSTEMS
As a system administrator, you can mount file systems on your system to access data on them.

16.1. THE LINUX MOUNT MECHANISM

This section explains basic concepts of mounting file systems on Linux.

On Linux, UNIX, and similar operating systems, file systems on different partitions and removable
devices (CDs, DVDs, or USB flash drives for example) can be attached to a certain point (the mount
point) in the directory tree, and then detached again. While a file system is mounted on a directory, the
original content of the directory is not accessible.

Note that Linux does not prevent you from mounting a file system to a directory with a file system
already attached to it.

When mounting, you can identify the device by:

a universally unique identifier (UUID): for example, UUID=34795a28-ca6d-4fd8-a347-
73671d0c19cb

a volume label: for example, LABEL=home

a full path to a non-persistent block device: for example, /dev/sda3

When you mount a file system using the mount command without all required information, that is
without the device name, the target directory, or the file system type, the mount utility reads the
content of the /etc/fstab file to check if the given file system is listed there. The /etc/fstab file contains
a list of device names and the directories in which the selected file systems are set to be mounted as
well as the file system type and mount options. Therefore, when mounting a file system that is specified
in /etc/fstab, the following command syntax is sufficient:

Mounting by the mount point:

mount directory

Mounting by the block device:

mount device

Additional resources

mount(8) man page

How to list persistent naming attributes such as the UUID .

16.2. LISTING CURRENTLY MOUNTED FILE SYSTEMS

This procedure describes how to list all currently mounted file systems on the command line.

Procedure

To list all mounted file systems, use the findmnt utility:

CHAPTER 16. MOUNTING FILE SYSTEMS

105

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#proc_listing-persistent-naming-attributes_assembly_overview-of-persistent-naming-attributes

$ findmnt

To limit the listed file systems only to a certain file system type, add the --types option:

$ findmnt --types fs-type

For example:

Example 16.1. Listing only XFS file systems

$ findmnt --types xfs

TARGET SOURCE FSTYPE OPTIONS
/ /dev/mapper/luks-5564ed00-6aac-4406-bfb4-c59bf5de48b5 xfs rw,relatime
├─/boot /dev/sda1 xfs rw,relatime
└─/home /dev/mapper/luks-9d185660-7537-414d-b727-d92ea036051e xfs rw,relatime

Additional resources

findmnt(8) man page

16.3. MOUNTING A FILE SYSTEM WITH MOUNT

This procedure describes how to mount a file system using the mount utility.

Prerequisites

Make sure that no file system is already mounted on your chosen mount point:

$ findmnt mount-point

Procedure

1. To attach a certain file system, use the mount utility:

mount device mount-point

Example 16.2. Mounting an XFS file system

For example, to mount a local XFS file system identified by UUID:

mount UUID=ea74bbec-536d-490c-b8d9-5b40bbd7545b /mnt/data

2. If mount cannot recognize the file system type automatically, specify it using the --types
option:

mount --types type device mount-point

Example 16.3. Mounting an NFS file system

Red Hat Enterprise Linux 8 Managing file systems

106

For example, to mount a remote NFS file system:

mount --types nfs4 host:/remote-export /mnt/nfs

Additional resources

mount(8) man page

16.4. MOVING A MOUNT POINT

This procedure describes how to change the mount point of a mounted file system to a different
directory.

Procedure

1. To change the directory in which a file system is mounted:

mount --move old-directory new-directory

Example 16.4. Moving a home file system

For example, to move the file system mounted in the /mnt/userdirs/ directory to the /home/
mount point:

mount --move /mnt/userdirs /home

2. Verify that the file system has been moved as expected:

$ findmnt
$ ls old-directory
$ ls new-directory

Additional resources

mount(8) man page

16.5. UNMOUNTING A FILE SYSTEM WITH UMOUNT

This procedure describes how to unmount a file system using the umount utility.

Procedure

1. Try unmounting the file system using either of the following commands:

By mount point:

umount mount-point

By device:

CHAPTER 16. MOUNTING FILE SYSTEMS

107

umount device

If the command fails with an error similar to the following, it means that the file system is in use
because of a process is using resources on it:

umount: /run/media/user/FlashDrive: target is busy.

2. If the file system is in use, use the fuser utility to determine which processes are accessing it.
For example:

$ fuser --mount /run/media/user/FlashDrive

/run/media/user/FlashDrive: 18351

Afterwards, terminate the processes using the file system and try unmounting it again.

16.6. COMMON MOUNT OPTIONS

The following table lists the most common options of the mount utility. You can apply these mount
options using the following syntax:

mount --options option1,option2,option3 device mount-point

Table 16.1. Common mount options

Option Description

async Enables asynchronous input and output operations on the file system.

auto Enables the file system to be mounted automatically using the mount -a
command.

defaults Provides an alias for the async,auto,dev,exec,nouser,rw,suid options.

exec Allows the execution of binary files on the particular file system.

loop Mounts an image as a loop device.

noauto Default behavior disables the automatic mount of the file system using the
mount -a command.

noexec Disallows the execution of binary files on the particular file system.

nouser Disallows an ordinary user (that is, other than root) to mount and unmount the file
system.

remount Remounts the file system in case it is already mounted.

ro Mounts the file system for reading only.

Red Hat Enterprise Linux 8 Managing file systems

108

rw Mounts the file system for both reading and writing.

user Allows an ordinary user (that is, other than root) to mount and unmount the file
system.

Option Description

CHAPTER 16. MOUNTING FILE SYSTEMS

109

CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT
POINTS

As a system administrator, you can duplicate mount points to make the file systems accessible from
multiple directories.

17.1. TYPES OF SHARED MOUNTS

There are multiple types of shared mounts that you can use. The difference between them is what
happens when you mount another file system under one of the shared mount points. The shared mounts
are implemented using the shared subtrees functionality.

The following mount types are available:

private

This type does not receive or forward any propagation events.
When you mount another file system under either the duplicate or the original mount point, it is not
reflected in the other.

shared

This type creates an exact replica of a given mount point.
When a mount point is marked as a shared mount, any mount within the original mount point is
reflected in it, and vice versa.

This is the default mount type of the root file system.

slave

This type creates a limited duplicate of a given mount point.
When a mount point is marked as a slave mount, any mount within the original mount point is
reflected in it, but no mount within a slave mount is reflected in its original.

unbindable

This type prevents the given mount point from being duplicated whatsoever.

Additional resources

The Shared subtrees article on Linux Weekly News .

17.2. CREATING A PRIVATE MOUNT POINT DUPLICATE

This procedure duplicates a mount point as a private mount. File systems that you later mount under the
duplicate or the original mount point are not reflected in the other.

Procedure

1. Create a virtual file system (VFS) node from the original mount point:

mount --bind original-dir original-dir

2. Mark the original mount point as private:

Red Hat Enterprise Linux 8 Managing file systems

110

https://lwn.net/Articles/159077/

mount --make-private original-dir

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-rprivate option instead of --make-private.

3. Create the duplicate:

mount --bind original-dir duplicate-dir

Example 17.1. Duplicating /media into /mnt as a private mount point

1. Create a VFS node from the /media directory:

mount --bind /media /media

2. Mark the /media directory as private:

mount --make-private /media

3. Create its duplicate in /mnt:

mount --bind /media /mnt

4. It is now possible to verify that /media and /mnt share content but none of the mounts within
/media appear in /mnt. For example, if the CD-ROM drive contains non-empty media and
the /media/cdrom/ directory exists, use:

mount /dev/cdrom /media/cdrom
ls /media/cdrom
EFI GPL isolinux LiveOS
ls /mnt/cdrom
#

5. It is also possible to verify that file systems mounted in the /mnt directory are not reflected
in /media. For example, if a non-empty USB flash drive that uses the /dev/sdc1 device is
plugged in and the /mnt/flashdisk/ directory is present, use:

mount /dev/sdc1 /mnt/flashdisk
ls /media/flashdisk
ls /mnt/flashdisk
en-US publican.cfg

Additional resources

mount(8) man page

17.3. CREATING A SHARED MOUNT POINT DUPLICATE

This procedure duplicates a mount point as a shared mount. File systems that you later mount under the
original directory or the duplicate are always reflected in the other.

CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT POINTS

111

Procedure

1. Create a virtual file system (VFS) node from the original mount point:

mount --bind original-dir original-dir

2. Mark the original mount point as shared:

mount --make-shared original-dir

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-rshared option instead of --make-shared.

3. Create the duplicate:

mount --bind original-dir duplicate-dir

Example 17.2. Duplicating /media into /mnt as a shared mount point

To make the /media and /mnt directories share the same content:

1. Create a VFS node from the /media directory:

mount --bind /media /media

2. Mark the /media directory as shared:

mount --make-shared /media

3. Create its duplicate in /mnt:

mount --bind /media /mnt

4. It is now possible to verify that a mount within /media also appears in /mnt. For example, if
the CD-ROM drive contains non-empty media and the /media/cdrom/ directory exists, use:

mount /dev/cdrom /media/cdrom
ls /media/cdrom
EFI GPL isolinux LiveOS
ls /mnt/cdrom
EFI GPL isolinux LiveOS

5. Similarly, it is possible to verify that any file system mounted in the /mnt directory is
reflected in /media. For example, if a non-empty USB flash drive that uses the /dev/sdc1
device is plugged in and the /mnt/flashdisk/ directory is present, use:

mount /dev/sdc1 /mnt/flashdisk
ls /media/flashdisk
en-US publican.cfg
ls /mnt/flashdisk
en-US publican.cfg

Red Hat Enterprise Linux 8 Managing file systems

112

Additional resources

mount(8) man page

17.4. CREATING A SLAVE MOUNT POINT DUPLICATE

This procedure duplicates a mount point as a slave mount type. File systems that you later mount under
the original mount point are reflected in the duplicate but not the other way around.

Procedure

1. Create a virtual file system (VFS) node from the original mount point:

mount --bind original-dir original-dir

2. Mark the original mount point as shared:

mount --make-shared original-dir

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-rshared option instead of --make-shared.

3. Create the duplicate and mark it as the slave type:

mount --bind original-dir duplicate-dir
mount --make-slave duplicate-dir

Example 17.3. Duplicating /media into /mnt as a slave mount point

This example shows how to get the content of the /media directory to appear in /mnt as well, but
without any mounts in the /mnt directory to be reflected in /media.

1. Create a VFS node from the /media directory:

mount --bind /media /media

2. Mark the /media directory as shared:

mount --make-shared /media

3. Create its duplicate in /mnt and mark it as slave:

mount --bind /media /mnt
mount --make-slave /mnt

4. Verify that a mount within /media also appears in /mnt. For example, if the CD-ROM drive
contains non-empty media and the /media/cdrom/ directory exists, use:

mount /dev/cdrom /media/cdrom
ls /media/cdrom
EFI GPL isolinux LiveOS
ls /mnt/cdrom
EFI GPL isolinux LiveOS

CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT POINTS

113

5. Also verify that file systems mounted in the /mnt directory are not reflected in /media. For
example, if a non-empty USB flash drive that uses the /dev/sdc1 device is plugged in and
the /mnt/flashdisk/ directory is present, use:

mount /dev/sdc1 /mnt/flashdisk
ls /media/flashdisk
ls /mnt/flashdisk
en-US publican.cfg

Additional resources

mount(8) man page

17.5. PREVENTING A MOUNT POINT FROM BEING DUPLICATED

This procedure marks a mount point as unbindable so that it is not possible to duplicate it in another
mount point.

Procedure

To change the type of a mount point to an unbindable mount, use:

mount --bind mount-point mount-point
mount --make-unbindable mount-point

Alternatively, to change the mount type for the selected mount point and all mount points
under it, use the --make-runbindable option instead of --make-unbindable.

Any subsequent attempt to make a duplicate of this mount fails with the following error:

mount --bind mount-point duplicate-dir

mount: wrong fs type, bad option, bad superblock on mount-point,
missing codepage or helper program, or other error
In some cases useful info is found in syslog - try
dmesg | tail or so

Example 17.4. Preventing /media from being duplicated

To prevent the /media directory from being shared, use:

mount --bind /media /media
mount --make-unbindable /media

Additional resources

mount(8) man page

Red Hat Enterprise Linux 8 Managing file systems

114

CHAPTER 18. PERSISTENTLY MOUNTING FILE SYSTEMS
As a system administrator, you can persistently mount file systems to configure non-removable storage.

18.1. THE /ETC/FSTAB FILE

Use the /etc/fstab configuration file to control persistent mount points of file systems. Each line in the
/etc/fstab file defines a mount point of a file system.

It includes six fields separated by white space:

1. The block device identified by a persistent attribute or a path in the /dev directory.

2. The directory where the device will be mounted.

3. The file system on the device.

4. Mount options for the file system, which includes the defaults option to mount the partition at
boot time with default options. The mount option field also recognizes the systemd mount unit
options in the x-systemd.option format.

5. Backup option for the dump utility.

6. Check order for the fsck utility.

NOTE

The systemd-fstab-generator dynamically converts the entries from the /etc/fstab file
to the systemd-mount units. The systemd auto mounts LVM volumes from /etc/fstab
during manual activation unless the systemd-mount unit is masked.

Example 18.1. The /boot file system in /etc/fstab

Block device Mount
point

File system Options Backup Check

UUID=ea74bbec-536d-
490c-b8d9-
5b40bbd7545b

/boot xfs defaults 0 0

The systemd service automatically generates mount units from entries in /etc/fstab.

Additional resources

fstab(5) and systemd.mount(5) man pages

18.2. ADDING A FILE SYSTEM TO /ETC/FSTAB

This procedure describes how to configure persistent mount point for a file system in the /etc/fstab
configuration file.

CHAPTER 18. PERSISTENTLY MOUNTING FILE SYSTEMS

115

Procedure

1. Find out the UUID attribute of the file system:

$ lsblk --fs storage-device

For example:

Example 18.2. Viewing the UUID of a partition

$ lsblk --fs /dev/sda1

NAME FSTYPE LABEL UUID MOUNTPOINT
sda1 xfs Boot ea74bbec-536d-490c-b8d9-5b40bbd7545b /boot

2. If the mount point directory does not exist, create it:

mkdir --parents mount-point

3. As root, edit the /etc/fstab file and add a line for the file system, identified by the UUID.
For example:

Example 18.3. The /boot mount point in /etc/fstab

UUID=ea74bbec-536d-490c-b8d9-5b40bbd7545b /boot xfs defaults 0 0

4. Regenerate mount units so that your system registers the new configuration:

systemctl daemon-reload

5. Try mounting the file system to verify that the configuration works:

mount mount-point

Additional resources

Overview of persistent naming attributes.

Red Hat Enterprise Linux 8 Managing file systems

116

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#con_device-names-managed-by-the-udev-mechanism-in-dev-disk-_assembly_overview-of-persistent-naming-attributes

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND
As a system administrator, you can configure file systems, such as NFS, to mount automatically on
demand.

19.1. THE AUTOFS SERVICE

This section explains the benefits and basic concepts of the autofs service, used to mount file systems
on demand.

One drawback of permanent mounting using the /etc/fstab configuration is that, regardless of how
infrequently a user accesses the mounted file system, the system must dedicate resources to keep the
mounted file system in place. This might affect system performance when, for example, the system is
maintaining NFS mounts to many systems at one time.

An alternative to /etc/fstab is to use the kernel-based autofs service. It consists of the following
components:

A kernel module that implements a file system, and

A user-space service that performs all of the other functions.

The autofs service can mount and unmount file systems automatically (on-demand), therefore saving
system resources. It can be used to mount file systems such as NFS, AFS, SMBFS, CIFS, and local file
systems.

Additional resources

The autofs(8) man page.

19.2. THE AUTOFS CONFIGURATION FILES

This section describes the usage and syntax of configuration files used by the autofs service.

The master map file

The autofs service uses /etc/auto.master (master map) as its default primary configuration file. This can
be changed to use another supported network source and name using the autofs configuration in the
/etc/autofs.conf configuration file in conjunction with the Name Service Switch (NSS) mechanism.

All on-demand mount points must be configured in the master map. Mount point, host name, exported
directory, and options can all be specified in a set of files (or other supported network sources) rather
than configuring them manually for each host.

The master map file lists mount points controlled by autofs, and their corresponding configuration files
or network sources known as automount maps. The format of the master map is as follows:

mount-point map-name options

The variables used in this format are:

mount-point

The autofs mount point; for example, /mnt/data.

map-file

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

117

The map source file, which contains a list of mount points and the file system location from which
those mount points should be mounted.

options

If supplied, these apply to all entries in the given map, if they do not themselves have options
specified.

Example 19.1. The /etc/auto.master file

The following is a sample line from /etc/auto.master file:

/mnt/data /etc/auto.data

Map files

Map files configure the properties of individual on-demand mount points.

The automounter creates the directories if they do not exist. If the directories exist before the
automounter was started, the automounter will not remove them when it exits. If a timeout is specified,
the directory is automatically unmounted if the directory is not accessed for the timeout period.

The general format of maps is similar to the master map. However, the options field appears between
the mount point and the location instead of at the end of the entry as in the master map:

mount-point options location

The variables used in this format are:

mount-point

This refers to the autofs mount point. This can be a single directory name for an indirect mount or
the full path of the mount point for direct mounts. Each direct and indirect map entry key (mount-
point) can be followed by a space separated list of offset directories (subdirectory names each
beginning with /) making them what is known as a multi-mount entry.

options

When supplied, these options are appended to the master map entry options, if any, or used instead
of the master map options if the configuration entry append_options is set to no.

location

This refers to the file system location such as a local file system path (preceded with the Sun map
format escape character : for map names beginning with /), an NFS file system or other valid file
system location.

Example 19.2. A map file

The following is a sample from a map file; for example, /etc/auto.misc:

payroll -fstype=nfs4 personnel:/exports/payroll
sales -fstype=xfs :/dev/hda4

The first column in the map file indicates the autofs mount point: sales and payroll from the server
called personnel. The second column indicates the options for the autofs mount. The third column
indicates the source of the mount.

Red Hat Enterprise Linux 8 Managing file systems

118

Following the given configuration, the autofs mount points will be /home/payroll and /home/sales.
The -fstype= option is often omitted and is not needed if the file system is NFS, including mounts for
NFSv4 if the system default is NFSv4 for NFS mounts.

Using the given configuration, if a process requires access to an autofs unmounted directory such as
/home/payroll/2006/July.sxc, the autofs service automatically mounts the directory.

The amd map format

The autofs service recognizes map configuration in the amd format as well. This is useful if you want to
reuse existing automounter configuration written for the am-utils service, which has been removed from
Red Hat Enterprise Linux.

However, Red Hat recommends using the simpler autofs format described in the previous sections.

Additional resources

autofs(5) man page

autofs.conf(5) man page

auto.master(5) man page

/usr/share/doc/autofs/README.amd-maps file

19.3. CONFIGURING AUTOFS MOUNT POINTS

This procedure describes how to configure on-demand mount points using the autofs service.

Prerequisites

Install the autofs package:

yum install autofs

Start and enable the autofs service:

systemctl enable --now autofs

Procedure

1. Create a map file for the on-demand mount point, located at /etc/auto.identifier. Replace
identifier with a name that identifies the mount point.

2. In the map file, fill in the mount point, options, and location fields as described in The autofs
configuration files section.

3. Register the map file in the master map file, as described in The autofs configuration files
section.

4. Allow the service to re-read the configuration, so it can manage the newly configured autofs
mount:

systemctl reload autofs.service

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

119

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/mounting-file-systems-on-demand_managing-file-systems#the-autofs-configuration-files_mounting-file-systems-on-demand
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/mounting-file-systems-on-demand_managing-file-systems#the-autofs-configuration-files_mounting-file-systems-on-demand

5. Try accessing content in the on-demand directory:

ls automounted-directory

19.4. AUTOMOUNTING NFS SERVER USER HOME DIRECTORIES WITH
AUTOFS SERVICE

This procedure describes how to configure the autofs service to mount user home directories
automatically.

Prerequisites

The autofs package is installed.

The autofs service is enabled and running.

Procedure

1. Specify the mount point and location of the map file by editing the /etc/auto.master file on a
server on which you need to mount user home directories. To do so, add the following line into
the /etc/auto.master file:

/home /etc/auto.home

2. Create a map file with the name of /etc/auto.home on a server on which you need to mount
user home directories, and edit the file with the following parameters:

* -fstype=nfs,rw,sync host.example.com:/home/&

You can skip fstype parameter, as it is nfs by default. For more information, see autofs(5) man
page.

3. Reload the autofs service:

systemctl reload autofs

19.5. OVERRIDING OR AUGMENTING AUTOFS SITE CONFIGURATION
FILES

It is sometimes useful to override site defaults for a specific mount point on a client system.

Example 19.3. Initial conditions

For example, consider the following conditions:

Automounter maps are stored in NIS and the /etc/nsswitch.conf file has the following
directive:

automount: files nis

The auto.master file contains:

Red Hat Enterprise Linux 8 Managing file systems

120

+auto.master

The NIS auto.master map file contains:

/home auto.home

The NIS auto.home map contains:

beth fileserver.example.com:/export/home/beth
joe fileserver.example.com:/export/home/joe
* fileserver.example.com:/export/home/&

The autofs configuration option BROWSE_MODE is set to yes:

BROWSE_MODE="yes"

The file map /etc/auto.home does not exist.

Procedure

This section describes the examples of mounting home directories from a different server and
augmenting auto.home with only selected entries.

Example 19.4. Mounting home directories from a different server

Given the preceding conditions, let’s assume that the client system needs to override the NIS map
auto.home and mount home directories from a different server.

In this case, the client needs to use the following /etc/auto.master map:

/home /etc/auto.home
+auto.master

The /etc/auto.home map contains the entry:

* host.example.com:/export/home/&

Because the automounter only processes the first occurrence of a mount point, the /home directory
contains the content of /etc/auto.home instead of the NIS auto.home map.

Example 19.5. Augmenting auto.home with only selected entries

Alternatively, to augment the site-wide auto.home map with just a few entries:

1. Create an /etc/auto.home file map, and in it put the new entries. At the end, include the NIS
auto.home map. Then the /etc/auto.home file map looks similar to:

mydir someserver:/export/mydir
+auto.home

2. With these NIS auto.home map conditions, listing the content of the /home directory

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

121

2. With these NIS auto.home map conditions, listing the content of the /home directory
outputs:

$ ls /home

beth joe mydir

This last example works as expected because autofs does not include the contents of a file map of
the same name as the one it is reading. As such, autofs moves on to the next map source in the
nsswitch configuration.

19.6. USING LDAP TO STORE AUTOMOUNTER MAPS

This procedure configures autofs to store automounter maps in LDAP configuration rather than in
autofs map files.

Prerequisites

LDAP client libraries must be installed on all systems configured to retrieve automounter maps
from LDAP. On Red Hat Enterprise Linux, the openldap package should be installed
automatically as a dependency of the autofs package.

Procedure

1. To configure LDAP access, modify the /etc/openldap/ldap.conf file. Ensure that the BASE,
URI, and schema options are set appropriately for your site.

2. The most recently established schema for storing automount maps in LDAP is described by the
rfc2307bis draft. To use this schema, set it in the /etc/autofs.conf configuration file by
removing the comment characters from the schema definition. For example:

Example 19.6. Setting autofs configuration

DEFAULT_MAP_OBJECT_CLASS="automountMap"
DEFAULT_ENTRY_OBJECT_CLASS="automount"
DEFAULT_MAP_ATTRIBUTE="automountMapName"
DEFAULT_ENTRY_ATTRIBUTE="automountKey"
DEFAULT_VALUE_ATTRIBUTE="automountInformation"

3. Ensure that all other schema entries are commented in the configuration. The automountKey
attribute of the rfc2307bis schema replaces the cn attribute of the rfc2307 schema. Following
is an example of an LDAP Data Interchange Format (LDIF) configuration:

Example 19.7. LDIF Configuration

auto.master, example.com
dn: automountMapName=auto.master,dc=example,dc=com
objectClass: top
objectClass: automountMap
automountMapName: auto.master

/home, auto.master, example.com
dn: automountMapName=auto.master,dc=example,dc=com

Red Hat Enterprise Linux 8 Managing file systems

122

objectClass: automount
automountKey: /home
automountInformation: auto.home

auto.home, example.com
dn: automountMapName=auto.home,dc=example,dc=com
objectClass: automountMap
automountMapName: auto.home

foo, auto.home, example.com
dn: automountKey=foo,automountMapName=auto.home,dc=example,dc=com
objectClass: automount
automountKey: foo
automountInformation: filer.example.com:/export/foo

/, auto.home, example.com
dn: automountKey=/,automountMapName=auto.home,dc=example,dc=com
objectClass: automount
automountKey: /
automountInformation: filer.example.com:/export/&

Additional resources

The rfc2307bis draft

19.7. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON
DEMAND WITH /ETC/FSTAB

This procedure shows how to mount a file system on demand using the automount systemd units when
mount point is defined in /etc/fstab. You have to add an automount unit for each mount and enable it.

Procedure

1. Add desired fstab entry as documented in Persistently mounting file systems . For example:

/dev/disk/by-id/da875760-edb9-4b82-99dc-5f4b1ff2e5f4 /mount/point xfs defaults 0 0

2. Add x-systemd.automount to the options field of entry created in the previous step.

3. Load newly created units so that your system registers the new configuration:

systemctl daemon-reload

4. Start the automount unit:

systemctl start mount-point.automount

Verification

1. Check that mount-point.automount is running:

systemctl status mount-point.automount

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

123

https://tools.ietf.org/html/draft-howard-rfc2307bis
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#assembly_persistently-mounting-file-systems_managing-file-systems

2. Check that automounted directory has desired content:

ls /mount/point

Additional resources

systemd.automount(5) man page

systemd.mount(5) man page

Managing systemd

19.8. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON
DEMAND WITH A MOUNT UNIT

This procedure shows how to mount a file system on demand using the automount systemd units when
mount point is defined by a mount unit. You have to add an automount unit for each mount and enable
it.

Procedure

1. Create a mount unit. For example:

mount-point.mount
[Mount]
What=/dev/disk/by-uuid/f5755511-a714-44c1-a123-cfde0e4ac688
Where=/mount/point
Type=xfs

2. Create a unit file with the same name as the mount unit, but with extension .automount.

3. Open the file and create an [Automount] section. Set the Where= option to the mount path:

[Automount]
Where=/mount/point
[Install]
WantedBy=multi-user.target

4. Load newly created units so that your system registers the new configuration:

systemctl daemon-reload

5. Enable and start the automount unit instead:

systemctl enable --now mount-point.automount

Verification

1. Check that mount-point.automount is running:

systemctl status mount-point.automount

Red Hat Enterprise Linux 8 Managing file systems

124

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#doc-wrapper

2. Check that automounted directory has desired content:

ls /mount/point

Additional resources

systemd.automount(5) man page.

systemd.mount(5) man page.

Managing systemd.

CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings

CHAPTER 20. USING SSSD COMPONENT FROM IDM TO
CACHE THE AUTOFS MAPS

The System Security Services Daemon (SSSD) is a system service to access remote service directories
and authentication mechanisms. The data caching is useful in case of the slow network connection. To
configure the SSSD service to cache the autofs map, follow the procedures below in this section.

20.1. CONFIGURING AUTOFS MANUALLY TO USE IDM SERVER AS AN
LDAP SERVER

This procedure shows how to configure autofs to use IdM server as an LDAP server.

Procedure

1. Edit the /etc/autofs.conf file to specify the schema attributes that autofs searches for:

#
Other common LDAP naming
#
map_object_class = "automountMap"
entry_object_class = "automount"
map_attribute = "automountMapName"
entry_attribute = "automountKey"
value_attribute = "automountInformation"

NOTE

User can write the attributes in both lower and upper cases in the
/etc/autofs.conf file.

2. Optionally, specify the LDAP configuration. There are two ways to do this. The simplest is to let
the automount service discover the LDAP server and locations on its own:

ldap_uri = "ldap:///dc=example,dc=com"

This option requires DNS to contain SRV records for the discoverable servers.

Alternatively, explicitly set which LDAP server to use and the base DN for LDAP searches:

ldap_uri = "ldap://ipa.example.com"
search_base = "cn=location,cn=automount,dc=example,dc=com"

3. Edit the /etc/autofs_ldap_auth.conf file so that autofs allows client authentication with the IdM
LDAP server.

Change authrequired to yes.

Set the principal to the Kerberos host principal for the IdM LDAP server,
host/fqdn@REALM. The principal name is used to connect to the IdM directory as part of
GSS client authentication.

<autofs_ldap_sasl_conf

Red Hat Enterprise Linux 8 Managing file systems

126

 usetls="no"
 tlsrequired="no"
 authrequired="yes"
 authtype="GSSAPI"
 clientprinc="host/server.example.com@EXAMPLE.COM"
 />

For more information about host principal, see Using canonicalized DNS host names in IdM .

If necessary, run klist -k to get the exact host principal information.

20.2. CONFIGURING SSSD TO CACHE AUTOFS MAPS

The SSSD service can be used to cache autofs maps stored on an IdM server without having to
configure autofs to use the IdM server at all.

Prerequisites

The sssd package is installed.

Procedure

1. Open the SSSD configuration file:

vim /etc/sssd/sssd.conf

2. Add the autofs service to the list of services handled by SSSD.

[sssd]
domains = ldap
services = nss,pam,autofs

3. Create a new [autofs] section. You can leave this blank, because the default settings for an
autofs service work with most infrastructures.

[nss]

[pam]

[sudo]

[autofs]

[ssh]

[pac]

For more information, see the sssd.conf man page.

4. Optionally, set a search base for the autofs entries. By default, this is the LDAP search base, but
a subtree can be specified in the ldap_autofs_search_base parameter.

[domain/EXAMPLE]

CHAPTER 20. USING SSSD COMPONENT FROM IDM TO CACHE THE AUTOFS MAPS

127

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#using-canonicalized-dns-host-names-in-idm_configuring-and-managing-idm

ldap_search_base = "dc=example,dc=com"
ldap_autofs_search_base = "ou=automount,dc=example,dc=com"

5. Restart SSSD service:

systemctl restart sssd.service

6. Check the /etc/nsswitch.conf file, so that SSSD is listed as a source for automount
configuration:

automount: sss files

7. Restart autofs service:

systemctl restart autofs.service

8. Test the configuration by listing a user’s /home directory, assuming there is a master map entry
for /home:

ls /home/userName

If this does not mount the remote file system, check the /var/log/messages file for errors. If
necessary, increase the debug level in the /etc/sysconfig/autofs file by setting the logging
parameter to debug.

Red Hat Enterprise Linux 8 Managing file systems

128

CHAPTER 21. SETTING READ-ONLY PERMISSIONS FOR THE
ROOT FILE SYSTEM

Sometimes, you need to mount the root file system (/) with read-only permissions. Example use cases
include enhancing security or ensuring data integrity after an unexpected system power-off.

21.1. FILES AND DIRECTORIES THAT ALWAYS RETAIN WRITE
PERMISSIONS

For the system to function properly, some files and directories need to retain write permissions. When
the root file system is mounted in read-only mode, these files are mounted in RAM using the tmpfs
temporary file system.

The default set of such files and directories is read from the /etc/rwtab file. Note that the readonly-root
package is required to have this file present in your system.

dirs /var/cache/man
dirs /var/gdm
<content truncated>

empty /tmp
empty /var/cache/foomatic
<content truncated>

files /etc/adjtime
files /etc/ntp.conf
<content truncated>

Entries in the /etc/rwtab file follow this format:

copy-method path

In this syntax:

Replace copy-method with one of the keywords specifying how the file or directory is copied to
tmpfs.

Replace path with the path to the file or directory.

The /etc/rwtab file recognizes the following ways in which a file or directory can be copied to tmpfs:

empty

An empty path is copied to tmpfs. For example:

empty /tmp

dirs

A directory tree is copied to tmpfs, empty. For example:

dirs /var/run

files

CHAPTER 21. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE SYSTEM

129

A file or a directory tree is copied to tmpfs intact. For example:

files /etc/resolv.conf

The same format applies when adding custom paths to /etc/rwtab.d/.

21.2. CONFIGURING THE ROOT FILE SYSTEM TO MOUNT WITH READ-
ONLY PERMISSIONS ON BOOT

With this procedure, the root file system is mounted read-only on all following boots.

Procedure

1. In the /etc/sysconfig/readonly-root file, set the READONLY option to yes to mount the file
systems as read-only:

READONLY=yes

2. Add the ro option in the root entry (/) in the /etc/fstab file:

/dev/mapper/luks-c376919e... / xfs x-systemd.device-timeout=0,ro 1 1

3. Enable the ro kernel option:

grubby --update-kernel=ALL --args="ro"

4. Ensure that the rw kernel option is disabled:

grubby --update-kernel=ALL --remove-args="rw"

5. If you need to add files and directories to be mounted with write permissions in the tmpfs file
system, create a text file in the /etc/rwtab.d/ directory and put the configuration there.
For example, to mount the /etc/example/file file with write permissions, add this line to the
/etc/rwtab.d/example file:

files /etc/example/file

IMPORTANT

Changes made to files and directories in tmpfs do not persist across boots.

6. Reboot the system to apply the changes.

Troubleshooting

If you mount the root file system with read-only permissions by mistake, you can remount it with
read-and-write permissions again using the following command:

mount -o remount,rw /

Red Hat Enterprise Linux 8 Managing file systems

130

CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS
WITH QUOTAS

You can restrict the amount of disk space available to users or groups by implementing disk quotas. You
can also define a warning level at which system administrators are informed before a user consumes too
much disk space or a partition becomes full.

The XFS quota subsystem manages limits on disk space (blocks) and file (inode) usage. XFS quotas
control or report on usage of these items on a user, group, or directory or project level. Group and
project quotas are only mutually exclusive on older non-default XFS disk formats.

When managing on a per-directory or per-project basis, XFS manages the disk usage of directory
hierarchies associated with a specific project.

22.1. DISK QUOTAS

In most computing environments, disk space is not infinite. The quota subsystem provides a mechanism
to control usage of disk space.

You can configure disk quotas for individual users as well as user groups on the local file systems. This
makes it possible to manage the space allocated for user-specific files (such as email) separately from
the space allocated to the projects that a user works on. The quota subsystem warns users when they
exceed their allotted limit, but allows some extra space for current work (hard limit/soft limit).

If quotas are implemented, you need to check if the quotas are exceeded and make sure the quotas are
accurate. If users repeatedly exceed their quotas or consistently reach their soft limits, a system
administrator can either help the user determine how to use less disk space or increase the user’s disk
quota.

You can set quotas to control:

The number of consumed disk blocks.

The number of inodes, which are data structures that contain information about files in UNIX file
systems. Because inodes store file-related information, this allows control over the number of
files that can be created.

22.2. THE XFS_QUOTA TOOL

You can use the xfs_quota tool to manage quotas on XFS file systems. In addition, you can use XFS file
systems with limit enforcement turned off as an effective disk usage accounting system.

The XFS quota system differs from other file systems in a number of ways. Most importantly, XFS
considers quota information as file system metadata and uses journaling to provide a higher level
guarantee of consistency.

Additional resources

xfs_quota(8) man page.

22.3. FILE SYSTEM QUOTA MANAGEMENT IN XFS

The XFS quota subsystem manages limits on disk space (blocks) and file (inode) usage. XFS quotas

CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS WITH QUOTAS

131

The XFS quota subsystem manages limits on disk space (blocks) and file (inode) usage. XFS quotas
control or report on usage of these items on a user, group, or directory or project level. Group and
project quotas are only mutually exclusive on older non-default XFS disk formats.

When managing on a per-directory or per-project basis, XFS manages the disk usage of directory
hierarchies associated with a specific project.

22.4. ENABLING DISK QUOTAS FOR XFS

This procedure enables disk quotas for users, groups, and projects on an XFS file system. Once quotas
are enabled, the xfs_quota tool can be used to set limits and report on disk usage.

Procedure

1. Enable quotas for users:

mount -o uquota /dev/xvdb1 /xfs

Replace uquota with uqnoenforce to allow usage reporting without enforcing any limits.

2. Enable quotas for groups:

mount -o gquota /dev/xvdb1 /xfs

Replace gquota with gqnoenforce to allow usage reporting without enforcing any limits.

3. Enable quotas for projects:

mount -o pquota /dev/xvdb1 /xfs

Replace pquota with pqnoenforce to allow usage reporting without enforcing any limits.

4. Alternatively, include the quota mount options in the /etc/fstab file. The following example
shows entries in the /etc/fstab file to enable quotas for users, groups, and projects, respectively,
on an XFS file system. These examples also mount the file system with read/write permissions:

vim /etc/fstab
/dev/xvdb1 /xfs xfs rw,quota 0 0
/dev/xvdb1 /xfs xfs rw,gquota 0 0
/dev/xvdb1 /xfs xfs rw,prjquota 0 0

Additional resources

mount(8) man page.

xfs_quota(8) man page.

22.5. REPORTING XFS USAGE

You can use the xfs_quota tool to set limits and report on disk usage. By default, xfs_quota is run
interactively, and in basic mode. Basic mode subcommands simply report usage, and are available to all
users.

Red Hat Enterprise Linux 8 Managing file systems

132

Prerequisites

Quotas have been enabled for the XFS file system. See Enabling disk quotas for XFS .

Procedure

1. Start the xfs_quota shell:

xfs_quota

2. Show usage and limits for the given user:

xfs_quota> quota username

3. Show free and used counts for blocks and inodes:

xfs_quota> df

4. Run the help command to display the basic commands available with xfs_quota.

xfs_quota> help

5. Specify q to exit xfs_quota.

xfs_quota> q

Additional resources

xfs_quota(8) man page.

22.6. MODIFYING XFS QUOTA LIMITS

Start the xfs_quota tool with the -x option to enable expert mode and run the administrator
commands, which allow modifications to the quota system. The subcommands of this mode allow actual
configuration of limits, and are available only to users with elevated privileges.

Prerequisites

Quotas have been enabled for the XFS file system. See Enabling disk quotas for XFS .

Procedure

1. Start the xfs_quota shell with the -x option to enable expert mode:

xfs_quota -x

2. Report quota information for a specific file system:

xfs_quota> report /path

For example, to display a sample quota report for /home (on /dev/blockdevice), use the
command report -h /home. This displays output similar to the following:

CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS WITH QUOTAS

133

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#enabling-disk-quotas-for-xfs_assembly_limiting-storage-space-usage-on-xfs-with-quotas
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#enabling-disk-quotas-for-xfs_assembly_limiting-storage-space-usage-on-xfs-with-quotas

User quota on /home (/dev/blockdevice)
Blocks
User ID Used Soft Hard Warn/Grace
---------- ---------------------------------
root 0 0 0 00 [------]
testuser 103.4G 0 0 00 [------]

3. Modify quota limits:

xfs_quota> limit isoft=500m ihard=700m user /path

For example, to set a soft and hard inode count limit of 500 and 700 respectively for user john,
whose home directory is /home/john, use the following command:

xfs_quota -x -c 'limit isoft=500 ihard=700 john' /home/

In this case, pass mount_point which is the mounted xfs file system.

4. Run the help command to display the expert commands available with xfs_quota -x:

xfs_quota> help

Additional resources

xfs_quota(8) man page.

22.7. SETTING PROJECT LIMITS FOR XFS

This procedure configures limits for project-controlled directories.

Procedure

1. Add the project-controlled directories to /etc/projects. For example, the following adds the
/var/log path with a unique ID of 11 to /etc/projects. Your project ID can be any numerical value
mapped to your project.

echo 11:/var/log >> /etc/projects

2. Add project names to /etc/projid to map project IDs to project names. For example, the
following associates a project called logfiles with the project ID of 11 as defined in the previous
step.

echo logfiles:11 >> /etc/projid

3. Initialize the project directory. For example, the following initializes the project directory /var:

xfs_quota -x -c 'project -s logfiles' /var

4. Configure quotas for projects with initialized directories:

xfs_quota -x -c 'limit -p bhard=1g logfiles' /var

Red Hat Enterprise Linux 8 Managing file systems

134

Additional resources

xfs_quota(8) man page.

projid(5) man page.

projects(5) man page.

CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS WITH QUOTAS

135

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4
WITH QUOTAS

You have to enable disk quotas on your system before you can assign them. You can assign disk quotas
per user, per group or per project. However, if there is a soft limit set, you can exceed these quotas for a
configurable period of time, known as the grace period.

23.1. INSTALLING THE QUOTA TOOL

You must install the quota RPM package to implement disk quotas.

Procedure

Install the quota package:

yum install quota

23.2. ENABLING QUOTA FEATURE ON FILE SYSTEM CREATION

This procedure describes how to enable quotas on file system creation.

Procedure

1. Enable quotas on file system creation:

mkfs.ext4 -O quota /dev/sda

NOTE

Only user and group quotas are enabled and initialized by default.

2. Change the defaults on file system creation:

mkfs.ext4 -O quota -E quotatype=usrquota:grpquota:prjquota /dev/sda

3. Mount the file system:

mount /dev/sda

Additional resources

ext4(5) man page.

23.3. ENABLING QUOTA FEATURE ON EXISTING FILE SYSTEMS

This procedure describes how to enable the quota feature on existing file system using the tune2fs
command.

Procedure

Red Hat Enterprise Linux 8 Managing file systems

136

1. Unmount the file system:

umount /dev/sda

2. Enable quotas on existing file system:

tune2fs -O quota /dev/sda

NOTE

Only user and group quotas are initialized by default.

3. Change the defaults:

tune2fs -Q usrquota,grpquota,prjquota /dev/sda

4. Mount the file system:

mount /dev/sda

Additional resources

ext4(5) man page.

23.4. ENABLING QUOTA ENFORCEMENT

The quota accounting is enabled by default after mounting the file system without any additional
options, but quota enforcement is not.

Prerequisites

Quota feature is enabled and the default quotas are initialized.

Procedure

Enable quota enforcement by quotaon for the user quota:

mount /dev/sda /mnt

quotaon /mnt

NOTE

The quota enforcement can be enabled at mount time using usrquota,
grpquota, or prjquota mount options.

mount -o usrquota,grpquota,prjquota /dev/sda /mnt

Enable user, group, and project quotas for all file systems:

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS

137

quotaon -vaugP

If neither of the -u, -g, or -P options are specified, only the user quotas are enabled.

If only -g option is specified, only group quotas are enabled.

If only -P option is specified, only project quotas are enabled.

Enable quotas for a specific file system, such as /home:

quotaon -vugP /home

Additional resources

quotaon(8) man page.

23.5. ASSIGNING QUOTAS PER USER

The disk quotas are assigned to users with the edquota command.

NOTE

The text editor defined by the EDITOR environment variable is used by edquota. To
change the editor, set the EDITOR environment variable in your ~/.bash_profile file to
the full path of the editor of your choice.

Prerequisites

User must exist prior to setting the user quota.

Procedure

1. Assign the quota for a user:

edquota username

Replace username with the user to which you want to assign the quotas.

For example, if you enable a quota for the /dev/sda partition and execute the command
edquota testuser, the following is displayed in the default editor configured on the system:

Disk quotas for user testuser (uid 501):
Filesystem blocks soft hard inodes soft hard
/dev/sda 44043 0 0 37418 0 0

2. Change the desired limits.
If any of the values are set to 0, limit is not set. Change them in the text editor.

For example, the following shows the soft and hard block limits for the testuser have been set to
50000 and 55000 respectively.

Red Hat Enterprise Linux 8 Managing file systems

138

Disk quotas for user testuser (uid 501):
Filesystem blocks soft hard inodes soft hard
/dev/sda 44043 50000 55000 37418 0 0

The first column is the name of the file system that has a quota enabled for it.

The second column shows how many blocks the user is currently using.

The next two columns are used to set soft and hard block limits for the user on the file
system.

The inodes column shows how many inodes the user is currently using.

The last two columns are used to set the soft and hard inode limits for the user on the file
system.

The hard block limit is the absolute maximum amount of disk space that a user or group
can use. Once this limit is reached, no further disk space can be used.

The soft block limit defines the maximum amount of disk space that can be used.
However, unlike the hard limit, the soft limit can be exceeded for a certain amount of
time. That time is known as the grace period. The grace period can be expressed in
seconds, minutes, hours, days, weeks, or months.

Verification steps

Verify that the quota for the user has been set:

quota -v testuser
Disk quotas for user testuser:
Filesystem blocks quota limit grace files quota limit grace
/dev/sda 1000* 1000 1000 0 0 0

23.6. ASSIGNING QUOTAS PER GROUP

You can assign quotas on a per-group basis.

Prerequisites

Group must exist prior to setting the group quota.

Procedure

1. Set a group quota:

edquota -g groupname

For example, to set a group quota for the devel group:

edquota -g devel

This command displays the existing quota for the group in the text editor:

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS

139

Disk quotas for group devel (gid 505):
Filesystem blocks soft hard inodes soft hard
/dev/sda 440400 0 0 37418 0 0

2. Modify the limits and save the file.

Verification steps

Verify that the group quota is set:

quota -vg groupname

23.7. ASSIGNING QUOTAS PER PROJECT

This procedure assigns quotas per project.

Prerequisites

Project quota is enabled on your file system.

Procedure

1. Add the project-controlled directories to /etc/projects. For example, the following adds the
/var/log path with a unique ID of 11 to /etc/projects. Your project ID can be any numerical value
mapped to your project.

echo 11:/var/log >> /etc/projects

2. Add project names to /etc/projid to map project IDs to project names. For example, the
following associates a project called Logs with the project ID of 11 as defined in the previous
step.

echo Logs:11 >> /etc/projid

3. Set the desired limits:

edquota -P 11

NOTE

You can choose the project either by its project ID (11 in this case), or by its
name (Logs in this case).

4. Using quotaon, enable quota enforcement:
See Enabling quota enforcement.

Verification steps

Verify that the project quota is set:

quota -vP 11

Red Hat Enterprise Linux 8 Managing file systems

140

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/index#enabling-quota-enforcement_limiting-storage-space-usage-on-ext4-with-quotas

NOTE

You can verify either by the project ID, or by the project name.

Additional resources

edquota(8) man page.

projid(5) man page.

projects(5) man page.

23.8. SETTING THE GRACE PERIOD FOR SOFT LIMITS

If a given quota has soft limits, you can edit the grace period, which is the amount of time for which a soft
limit can be exceeded. You can set the grace period for users, groups, or projects.

Procedure

Edit the grace period:

edquota -t

IMPORTANT

While other edquota commands operate on quotas for a particular user, group, or project,
the -t option operates on every file system with quotas enabled.

Additional resources

edquota(8) man page.

23.9. TURNING FILE SYSTEM QUOTAS OFF

Use quotaoff to turn disk quota enforcement off on the specified file systems. Quota accounting stays
enabled after executing this command.

Procedure

To turn all user and group quotas off:

quotaoff -vaugP

If neither of the -u, -g, or -P options are specified, only the user quotas are disabled.

If only -g option is specified, only group quotas are disabled.

If only -P option is specified, only project quotas are disabled.

The -v switch causes verbose status information to display as the command executes.

Additional resources

CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS

141

quotaoff(8) man page.

23.10. REPORTING ON DISK QUOTAS

You can create a disk quota report using the repquota utility.

Procedure

1. Run the repquota command:

repquota

For example, the command repquota /dev/sda produces this output:

*** Report for user quotas on device /dev/sda
Block grace time: 7days; Inode grace time: 7days
 Block limits File limits
User used soft hard grace used soft hard grace
--
root -- 36 0 0 4 0 0
kristin -- 540 0 0 125 0 0
testuser -- 440400 500000 550000 37418 0 0

2. View the disk usage report for all quota-enabled file systems:

repquota -augP

The -- symbol displayed after each user determines whether the block or inode limits have been
exceeded. If either soft limit is exceeded, a + character appears in place of the corresponding -
character. The first - character represents the block limit, and the second represents the inode limit.

The grace columns are normally blank. If a soft limit has been exceeded, the column contains a time
specification equal to the amount of time remaining on the grace period. If the grace period has expired,
none appears in its place.

Additional resources

The repquota(8) man page for more information.

Red Hat Enterprise Linux 8 Managing file systems

142

CHAPTER 24. DISCARDING UNUSED BLOCKS
You can perform or schedule discard operations on block devices that support them. The block discard
operation communicates to the underlying storage which filesystem blocks are no longer in use by the
mounted filesystem. Block discard operations allow SSDs to optimize garbage collection routines, and
they can inform thinly-provisioned storage to repurpose unused physical blocks.

Requirements

The block device underlying the file system must support physical discard operations.
Physical discard operations are supported if the value in the
/sys/block/<device>/queue/discard_max_bytes file is not zero.

24.1. TYPES OF BLOCK DISCARD OPERATIONS

You can run discard operations using different methods:

Batch discard

Is triggered explicitly by the user and discards all unused blocks in the selected file systems.

Online discard

Is specified at mount time and triggers in real time without user intervention. Online discard
operations discard only blocks that are transitioning from the used to the free state.

Periodic discard

Are batch operations that are run regularly by a systemd service.

All types are supported by the XFS and ext4 file systems.

Recommendations
Red Hat recommends that you use batch or periodic discard.

Use online discard only if:

the system’s workload is such that batch discard is not feasible, or

online discard operations are necessary to maintain performance.

24.2. PERFORMING BATCH BLOCK DISCARD

You can perform a batch block discard operation to discard unused blocks on a mounted file system.

Prerequisites

The file system is mounted.

The block device underlying the file system supports physical discard operations.

Procedure

Use the fstrim utility:

To perform discard only on a selected file system, use:

fstrim mount-point

CHAPTER 24. DISCARDING UNUSED BLOCKS

143

To perform discard on all mounted file systems, use:

fstrim --all

If you execute the fstrim command on:

a device that does not support discard operations, or

a logical device (LVM or MD) composed of multiple devices, where any one of the device does
not support discard operations,

the following message displays:

fstrim /mnt/non_discard

fstrim: /mnt/non_discard: the discard operation is not supported

Additional resources

fstrim(8) man page.

24.3. ENABLING ONLINE BLOCK DISCARD

You can perform online block discard operations to automatically discard unused blocks on all supported
file systems.

Procedure

Enable online discard at mount time:

When mounting a file system manually, add the -o discard mount option:

mount -o discard device mount-point

When mounting a file system persistently, add the discard option to the mount entry in the
/etc/fstab file.

Additional resources

mount(8) man page.

fstab(5) man page.

24.4. ENABLING PERIODIC BLOCK DISCARD

You can enable a systemd timer to regularly discard unused blocks on all supported file systems.

Procedure

Enable and start the systemd timer:

Red Hat Enterprise Linux 8 Managing file systems

144

systemctl enable --now fstrim.timer
Created symlink /etc/systemd/system/timers.target.wants/fstrim.timer →
/usr/lib/systemd/system/fstrim.timer.

Verification

Verify the status of the timer:

systemctl status fstrim.timer
fstrim.timer - Discard unused blocks once a week
 Loaded: loaded (/usr/lib/systemd/system/fstrim.timer; enabled; vendor preset: disabled)
 Active: active (waiting) since Wed 2023-05-17 13:24:41 CEST; 3min 15s ago
 Trigger: Mon 2023-05-22 01:20:46 CEST; 4 days left
 Docs: man:fstrim

May 17 13:24:41 localhost.localdomain systemd[1]: Started Discard unused blocks once a
week.

CHAPTER 24. DISCARDING UNUSED BLOCKS

145

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS
Stratis runs as a service to manage pools of physical storage devices, simplifying local storage
management with ease of use while helping you set up and manage complex storage configurations.

IMPORTANT

Stratis is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

25.1. WHAT IS STRATIS

Stratis is a local storage-management solution for Linux. It is focused on simplicity and ease of use, and
gives you access to advanced storage features.

Stratis makes the following activities easier:

Initial configuration of storage

Making changes later

Using advanced storage features

Stratis is a local storage management system that supports advanced storage features. The central
concept of Stratis is a storage pool. This pool is created from one or more local disks or partitions, and
file systems are created from the pool.

The pool enables many useful features, such as:

File system snapshots

Thin provisioning

Tiering

Encryption

Additional resources

Stratis website

25.2. COMPONENTS OF A STRATIS VOLUME

Learn about the components that comprise a Stratis volume.

Externally, Stratis presents the following volume components in the command-line interface and the
API:

blockdev

Block devices, such as a disk or a disk partition.

Red Hat Enterprise Linux 8 Managing file systems

146

https://access.redhat.com/support/offerings/techpreview
https://stratis-storage.github.io/

pool

Composed of one or more block devices.
A pool has a fixed total size, equal to the size of the block devices.

The pool contains most Stratis layers, such as the non-volatile data cache using the dm-cache
target.

Stratis creates a /dev/stratis/my-pool/ directory for each pool. This directory contains links to
devices that represent Stratis file systems in the pool.

filesystem

Each pool can contain one or more file systems, which store files.
File systems are thinly provisioned and do not have a fixed total size. The actual size of a file system
grows with the data stored on it. If the size of the data approaches the virtual size of the file system,
Stratis grows the thin volume and the file system automatically.

The file systems are formatted with XFS.

IMPORTANT

Stratis tracks information about file systems created using Stratis that XFS is not
aware of, and changes made using XFS do not automatically create updates in Stratis.
Users must not reformat or reconfigure XFS file systems that are managed by Stratis.

Stratis creates links to file systems at the /dev/stratis/my-pool/my-fs path.

NOTE

Stratis uses many Device Mapper devices, which show up in dmsetup listings and the
/proc/partitions file. Similarly, the lsblk command output reflects the internal workings
and layers of Stratis.

25.3. BLOCK DEVICES USABLE WITH STRATIS

Storage devices that can be used with Stratis.

Supported devices
Stratis pools have been tested to work on these types of block devices:

LUKS

LVM logical volumes

MD RAID

DM Multipath

iSCSI

HDDs and SSDs

NVMe devices

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

147

Unsupported devices
Because Stratis contains a thin-provisioning layer, Red Hat does not recommend placing a Stratis pool
on block devices that are already thinly-provisioned.

25.4. INSTALLING STRATIS

Install the required packages for Stratis.

Procedure

1. Install packages that provide the Stratis service and command-line utilities:

yum install stratisd stratis-cli

2. Verify that the stratisd service is enabled:

systemctl enable --now stratisd

25.5. CREATING AN UNENCRYPTED STRATIS POOL

You can create an unencrypted Stratis pool from one or more block devices.

Prerequisites

Stratis is installed. For more information, see Installing Stratis.

The stratisd service is running.

The block devices on which you are creating a Stratis pool are not in use and are not mounted.

Each block device on which you are creating a Stratis pool is at least 1 GB.

On the IBM Z architecture, the /dev/dasd* block devices must be partitioned. Use the partition
device for creating the Stratis pool.

For information about partitioning DASD devices, see Configuring a Linux instance on IBM Z .

NOTE

You cannot encrypt an unencrypted Stratis pool.

Procedure

1. Erase any file system, partition table, or RAID signatures that exist on each block device that
you want to use in the Stratis pool:

wipefs --all block-device

where block-device is the path to the block device; for example, /dev/sdb.

2. Create the new unencrypted Stratis pool on the selected block device:

stratis pool create my-pool block-device

Red Hat Enterprise Linux 8 Managing file systems

148

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_8_installation/configuring-a-linux-instance-on-ibm-z_installing-rhel

where block-device is the path to an empty or wiped block device.

NOTE

Specify multiple block devices on a single line:

stratis pool create my-pool block-device-1 block-device-2

3. Verify that the new Stratis pool was created:

stratis pool list

25.6. CREATING AN ENCRYPTED STRATIS POOL

To secure your data, you can create an encrypted Stratis pool from one or more block devices.

When you create an encrypted Stratis pool, the kernel keyring is used as the primary encryption
mechanism. After subsequent system reboots this kernel keyring is used to unlock the encrypted Stratis
pool.

When creating an encrypted Stratis pool from one or more block devices, note the following:

Each block device is encrypted using the cryptsetup library and implements the LUKS2 format.

Each Stratis pool can either have a unique key or share the same key with other pools. These
keys are stored in the kernel keyring.

The block devices that comprise a Stratis pool must be either all encrypted or all unencrypted. It
is not possible to have both encrypted and unencrypted block devices in the same Stratis pool.

Block devices added to the data tier of an encrypted Stratis pool are automatically encrypted.

Prerequisites

Stratis v2.1.0 or later is installed. For more information, see Installing Stratis.

The stratisd service is running.

The block devices on which you are creating a Stratis pool are not in use and are not mounted.

The block devices on which you are creating a Stratis pool are at least 1GB in size each.

On the IBM Z architecture, the /dev/dasd* block devices must be partitioned. Use the partition
in the Stratis pool.

For information about partitioning DASD devices, see Configuring a Linux instance on IBM Z .

Procedure

1. Erase any file system, partition table, or RAID signatures that exist on each block device that
you want to use in the Stratis pool:

wipefs --all block-device

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

149

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_8_installation/configuring-a-linux-instance-on-ibm-z_installing-rhel

where block-device is the path to the block device; for example, /dev/sdb.

2. If you have not created a key set already, run the following command and follow the prompts to
create a key set to use for the encryption.

stratis key set --capture-key key-description

where key-description is a reference to the key that gets created in the kernel keyring.

3. Create the encrypted Stratis pool and specify the key description to use for the encryption. You
can also specify the key path using the --keyfile-path option instead of using the key-
description option.

stratis pool create --key-desc key-description my-pool block-device

where

key-description

References the key that exists in the kernel keyring, which you created in the previous step.

my-pool

Specifies the name of the new Stratis pool.

block-device

Specifies the path to an empty or wiped block device.

NOTE

Specify multiple block devices on a single line:

stratis pool create --key-desc key-description my-pool block-device-1
block-device-2

4. Verify that the new Stratis pool was created:

stratis pool list

25.7. SETTING OVERPROVISIONING MODE IN STRATIS FILESYSTEM

A storage stack can reach a state of overprovision. If the file system size becomes bigger than the pool
backing it, the pool becomes full. To prevent this, disable overprovisioning, which ensures that the size
of all filesystems on the pool does not exceed the available physical storage provided by the pool. If you
use Stratis for critical applications or the root filesystem, this mode prevents certain failure cases.

If you enable overprovisioning, an API signal notifies you when your storage has been fully allocated. The
notification serves as a warning to the user to inform them that when all the remaining pool space fills up,
Stratis has no space left to extend to.

Prerequisites

Stratis is installed. For more information, see Installing Stratis.

Red Hat Enterprise Linux 8 Managing file systems

150

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems

Procedure

To set up the pool correctly, you have two possibilities:

1. Create a pool from one or more block devices:

stratis pool create pool-name /dev/sdb

2. Set overprovisioning mode in the existing pool:

stratis pool overprovision pool-name <yes|no>

If set to "yes", you enable overprovisioning to the pool. This means that the sum of the
logical sizes of the Stratis filesystems, supported by the pool, can exceed the amount of
available data space.

Verification

1. Run the following to view the full list of Stratis pools:

stratis pool list

Name Total Physical Properties UUID Alerts
pool-name 1.42 TiB / 23.96 MiB / 1.42 TiB ~Ca,~Cr,~Op cb7cb4d8-9322-4ac4-a6fd-
eb7ae9e1e540

2. Check if there is an indication of the pool overprovisioning mode flag in the stratis pool list
output. The " ~ " is a math symbol for "NOT", so ~Op means no-overprovisioning.

3. Optional: Run the following to check overprovisioning on a specific pool:

stratis pool overprovision pool-name yes

stratis pool list

Name Total Physical Properties UUID Alerts
pool-name 1.42 TiB / 23.96 MiB / 1.42 TiB ~Ca,~Cr,~Op cb7cb4d8-9322-4ac4-a6fd-
eb7ae9e1e540

Additional resources

The Stratis Storage webpage.

25.8. BINDING A STRATIS POOL TO NBDE

Binding an encrypted Stratis pool to Network Bound Disk Encryption (NBDE) requires a Tang server.
When a system containing the Stratis pool reboots, it connects with the Tang server to automatically
unlock the encrypted pool without you having to provide the kernel keyring description.

NOTE

Binding a Stratis pool to a supplementary Clevis encryption mechanism does not remove
the primary kernel keyring encryption.

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

151

https://stratis-storage.github.io/

Prerequisites

Stratis v2.3.0 or later is installed. For more information, see Installing Stratis.

The stratisd service is running.

You have created an encrypted Stratis pool, and you have the key description of the key that
was used for the encryption. For more information, see Creating an encrypted Stratis pool .

You can connect to the Tang server. For more information, see Deploying a Tang server with
SELinux in enforcing mode

Procedure

Bind an encrypted Stratis pool to NBDE:

stratis pool bind nbde --trust-url my-pool tang-server

where

my-pool

Specifies the name of the encrypted Stratis pool.

tang-server

Specifies the IP address or URL of the Tang server.

Additional resources

Configuring automated unlocking of encrypted volumes using policy-based decryption

25.9. BINDING A STRATIS POOL TO TPM

When you bind an encrypted Stratis pool to the Trusted Platform Module (TPM) 2.0, the system
containing the pool reboots, and the pool is automatically unlocked without you having to provide the
kernel keyring description.

Prerequisites

Stratis v2.3.0 or later is installed. For more information, see Installing Stratis.

The stratisd service is running.

You have created an encrypted Stratis pool. For more information, see Creating an encrypted
Stratis pool.

Procedure

Bind an encrypted Stratis pool to TPM:

stratis pool bind tpm my-pool key-description

where

my-pool

Red Hat Enterprise Linux 8 Managing file systems

152

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-encrypted-stratis-pool_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening#deploying-a-tang-server-with-selinux-in-enforcing-mode_configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-encrypted-stratis-pool_setting-up-stratis-file-systems

Specifies the name of the encrypted Stratis pool.

key-description

References the key that exists in the kernel keyring, which was generated when you created
the encrypted Stratis pool.

25.10. UNLOCKING AN ENCRYPTED STRATIS POOL WITH KERNEL
KEYRING

After a system reboot, your encrypted Stratis pool or the block devices that comprise it might not be
visible. You can unlock the pool using the kernel keyring that was used to encrypt the pool.

Prerequisites

Stratis v2.1.0 is installed. For more information, see Installing Stratis.

The stratisd service is running.

You have created an encrypted Stratis pool. For more information, see Creating an encrypted
Stratis pool.

Procedure

1. Re-create the key set using the same key description that was used previously:

stratis key set --capture-key key-description

where key-description references the key that exists in the kernel keyring, which was generated
when you created the encrypted Stratis pool.

2. Verify that the Stratis pool is visible:

stratis pool list

25.11. UNBINDING A STRATIS POOL FROM SUPPLEMENTARY
ENCRYPTION

When you unbind an encrypted Stratis pool from a supported supplementary encryption mechanism, the
primary kernel keyring encryption remains in place. This is not true for pools that are created with Clevis
encryption from the start.

Prerequisites

Stratis v2.3.0 or later is installed on your system. For more information, see Installing Stratis.

You have created an encrypted Stratis pool. For more information, see Creating an encrypted
Stratis pool.

The encrypted Stratis pool is bound to a supported supplementary encryption mechanism.

Procedure

Unbind an encrypted Stratis pool from a supplementary encryption mechanism:

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

153

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-encrypted-stratis-pool_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-encrypted-stratis-pool_setting-up-stratis-file-systems

stratis pool unbind clevis my-pool

where

my-pool specifies the name of the Stratis pool you want to unbind.

Additional resources

Binding an encrypted Stratis pool to NBDE

Binding an encrypted Stratis pool to TPM

25.12. STARTING AND STOPPING STRATIS POOL

You can start and stop Stratis pools. This gives you the option to dissasemble or bring down all the
objects that were used to construct the pool, such as filesystems, cache devices, thin pool, and
encrypted devices. Note that if the pool actively uses any device or filesystem, it might issue a warning
and not be able to stop.

The stopped state is recorded in the pool’s metadata. These pools do not start on the following boot,
until the pool receives a start command.

Prerequisites

Stratis is installed. For more information, see Installing Stratis.

The stratisd service is running.

You have created either an unencrypted or an encrypted Stratis pool. See Creating an
unencrypted Stratis pool

or Creating an encrypted Stratis pool .

Procedure

Use the following command to start the Stratis pool. The --unlock-method option specifies the
method of unlocking the pool if it is encrypted:

stratis pool start pool-uuid --unlock-method <keyring|clevis>

Alternatively, use the following command to stop the Stratis pool. This tears down the storage
stack but leaves all metadata intact:

stratis pool stop pool-name

Verification steps

Use the following command to list all pools on the system:

stratis pool list

Use the following command to list all not previously started pools. If the UUID is specified, the
command prints detailed information about the pool corresponding to the UUID:

Red Hat Enterprise Linux 8 Managing file systems

154

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#bind-stratis-pool-nbde_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#bind-stratis-pool-tpm_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-unencrypted-stratis-pool_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-encrypted-stratis-pool_setting-up-stratis-file-systems

stratis pool list --stopped --uuid UUID

25.13. CREATING A STRATIS FILE SYSTEM

Create a Stratis file system on an existing Stratis pool.

Prerequisites

Stratis is installed. For more information, see Installing Stratis.

The stratisd service is running.

You have created a Stratis pool. See Creating an unencrypted Stratis pool

or Creating an encrypted Stratis pool .

Procedure

1. To create a Stratis file system on a pool, use:

stratis filesystem create --size number-and-unit my-pool my-fs

where

number-and-unit

Specifies the size of a file system. The specification format must follow the standard size
specification format for input, that is B, KiB, MiB, GiB, TiB or PiB.

my-pool

Specifies the name of the Stratis pool.

my-fs

Specifies an arbitrary name for the file system.
For example:

Example 25.1. Creating a Stratis file system

stratis filesystem create --size 10GiB pool1 filesystem1

Verification steps

List file systems within the pool to check if the Stratis filesystem is created:

stratis fs list my-pool

Additional resources

Mounting a Stratis file system .

25.14. MOUNTING A STRATIS FILE SYSTEM

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

155

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-unencrypted-stratis-pool_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-encrypted-stratis-pool_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#mounting-a-stratis-file-system_setting-up-stratis-file-systems

Mount an existing Stratis file system to access the content.

Prerequisites

Stratis is installed. For more information, see Installing Stratis.

The stratisd service is running.

You have created a Stratis file system. For more information, see Creating a Stratis filesystem .

Procedure

To mount the file system, use the entries that Stratis maintains in the /dev/stratis/ directory:

mount /dev/stratis/my-pool/my-fs mount-point

The file system is now mounted on the mount-point directory and ready to use.

Additional resources

Creating a Stratis file system .

25.15. PERSISTENTLY MOUNTING A STRATIS FILE SYSTEM

This procedure persistently mounts a Stratis file system so that it is available automatically after booting
the system.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

You have created a Stratis file system. See Creating a Stratis filesystem .

Procedure

1. Determine the UUID attribute of the file system:

$ lsblk --output=UUID /dev/stratis/my-pool/my-fs

For example:

Example 25.2. Viewing the UUID of Stratis file system

$ lsblk --output=UUID /dev/stratis/my-pool/fs1

UUID
a1f0b64a-4ebb-4d4e-9543-b1d79f600283

2. If the mount point directory does not exist, create it:

Red Hat Enterprise Linux 8 Managing file systems

156

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-a-stratis-file-system_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-a-stratis-file-system_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-a-stratis-file-system_setting-up-stratis-file-systems

mkdir --parents mount-point

3. As root, edit the /etc/fstab file and add a line for the file system, identified by the UUID. Use xfs
as the file system type and add the x-systemd.requires=stratisd.service option.
For example:

Example 25.3. The /fs1 mount point in /etc/fstab

UUID=a1f0b64a-4ebb-4d4e-9543-b1d79f600283 /fs1 xfs defaults,x-
systemd.requires=stratisd.service 0 0

4. Regenerate mount units so that your system registers the new configuration:

systemctl daemon-reload

5. Try mounting the file system to verify that the configuration works:

mount mount-point

Additional resources

Persistently mounting file systems

25.16. SETTING UP NON-ROOT STRATIS FILESYSTEMS IN
/ETC/FSTAB USING A SYSTEMD SERVICE

You can manage setting up non-root filesystems in /etc/fstab using a systemd service.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

You have created a Stratis file system. See Creating a Stratis filesystem .

Procedure

For all non-root Stratis filesystems, use:

/dev/stratis/[STRATIS_SYMLINK] [MOUNT_POINT] xfs defaults, x-
systemd.requires=stratis-fstab-setup@[POOL_UUID].service,x-systemd.after=stratis-stab-
setup@[POOL_UUID].service <dump_value> <fsck_value>

Additional resources

Persistently mounting file systems .

CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS

157

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/assembly_persistently-mounting-file-systems_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/setting-up-stratis-file-systems_managing-file-systems#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/setting-up-stratis-file-systems_managing-file-systems#creating-a-stratis-file-system_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#assembly_persistently-mounting-file-systems_managing-file-systems

CHAPTER 26. EXTENDING A STRATIS VOLUME WITH
ADDITIONAL BLOCK DEVICES

You can attach additional block devices to a Stratis pool to provide more storage capacity for Stratis file
systems.

IMPORTANT

Stratis is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

26.1. COMPONENTS OF A STRATIS VOLUME

Learn about the components that comprise a Stratis volume.

Externally, Stratis presents the following volume components in the command-line interface and the
API:

blockdev

Block devices, such as a disk or a disk partition.

pool

Composed of one or more block devices.
A pool has a fixed total size, equal to the size of the block devices.

The pool contains most Stratis layers, such as the non-volatile data cache using the dm-cache
target.

Stratis creates a /dev/stratis/my-pool/ directory for each pool. This directory contains links to
devices that represent Stratis file systems in the pool.

filesystem

Each pool can contain one or more file systems, which store files.
File systems are thinly provisioned and do not have a fixed total size. The actual size of a file system
grows with the data stored on it. If the size of the data approaches the virtual size of the file system,
Stratis grows the thin volume and the file system automatically.

The file systems are formatted with XFS.

IMPORTANT

Stratis tracks information about file systems created using Stratis that XFS is not
aware of, and changes made using XFS do not automatically create updates in Stratis.
Users must not reformat or reconfigure XFS file systems that are managed by Stratis.

Stratis creates links to file systems at the /dev/stratis/my-pool/my-fs path.

Red Hat Enterprise Linux 8 Managing file systems

158

https://access.redhat.com/support/offerings/techpreview

NOTE

Stratis uses many Device Mapper devices, which show up in dmsetup listings and the
/proc/partitions file. Similarly, the lsblk command output reflects the internal workings
and layers of Stratis.

26.2. ADDING BLOCK DEVICES TO A STRATIS POOL

This procedure adds one or more block devices to a Stratis pool to be usable by Stratis file systems.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

The block devices that you are adding to the Stratis pool are not in use and not mounted.

The block devices that you are adding to the Stratis pool are at least 1 GiB in size each.

Procedure

To add one or more block devices to the pool, use:

stratis pool add-data my-pool device-1 device-2 device-n

Additional resources

stratis(8) man page

26.3. ADDITIONAL RESOURCES

The Stratis Storage website

CHAPTER 26. EXTENDING A STRATIS VOLUME WITH ADDITIONAL BLOCK DEVICES

159

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://stratis-storage.github.io/

CHAPTER 27. MONITORING STRATIS FILE SYSTEMS
As a Stratis user, you can view information about Stratis volumes on your system to monitor their state
and free space.

IMPORTANT

Stratis is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

27.1. STRATIS SIZES REPORTED BY DIFFERENT UTILITIES

This section explains the difference between Stratis sizes reported by standard utilities such as df and
the stratis utility.

Standard Linux utilities such as df report the size of the XFS file system layer on Stratis, which is 1 TiB.
This is not useful information, because the actual storage usage of Stratis is less due to thin provisioning,
and also because Stratis automatically grows the file system when the XFS layer is close to full.

IMPORTANT

Regularly monitor the amount of data written to your Stratis file systems, which is
reported as the Total Physical Used value. Make sure it does not exceed the Total Physical
Size value.

Additional resources

stratis(8) man page.

27.2. DISPLAYING INFORMATION ABOUT STRATIS VOLUMES

This procedure lists statistics about your Stratis volumes, such as the total, used, and free size or file
systems and block devices belonging to a pool.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

Procedure

To display information about all block devices used for Stratis on your system:

stratis blockdev

Pool Name Device Node Physical Size State Tier
my-pool /dev/sdb 9.10 TiB In-use Data

Red Hat Enterprise Linux 8 Managing file systems

160

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems

To display information about all Stratis pools on your system:

stratis pool

Name Total Physical Size Total Physical Used
my-pool 9.10 TiB 598 MiB

To display information about all Stratis file systems on your system:

stratis filesystem

Pool Name Name Used Created Device
my-pool my-fs 546 MiB Nov 08 2018 08:03 /dev/stratis/my-pool/my-fs

Additional resources

stratis(8) man page.

27.3. ADDITIONAL RESOURCES

The Stratis Storage website

CHAPTER 27. MONITORING STRATIS FILE SYSTEMS

161

https://stratis-storage.github.io/

CHAPTER 28. USING SNAPSHOTS ON STRATIS FILE
SYSTEMS

You can use snapshots on Stratis file systems to capture file system state at arbitrary times and restore
it in the future.

IMPORTANT

Stratis is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

28.1. CHARACTERISTICS OF STRATIS SNAPSHOTS

In Stratis, a snapshot is a regular Stratis file system created as a copy of another Stratis file system. The
snapshot initially contains the same file content as the original file system, but can change as the
snapshot is modified. Whatever changes you make to the snapshot will not be reflected in the original
file system.

The current snapshot implementation in Stratis is characterized by the following:

A snapshot of a file system is another file system.

A snapshot and its origin are not linked in lifetime. A snapshotted file system can live longer than
the file system it was created from.

A file system does not have to be mounted to create a snapshot from it.

Each snapshot uses around half a gigabyte of actual backing storage, which is needed for the
XFS log.

28.2. CREATING A STRATIS SNAPSHOT

This procedure creates a Stratis file system as a snapshot of an existing Stratis file system.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

You have created a Stratis file system. See Creating a Stratis filesystem .

Procedure

To create a Stratis snapshot, use:

stratis fs snapshot my-pool my-fs my-fs-snapshot

Additional resources

Red Hat Enterprise Linux 8 Managing file systems

162

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-a-stratis-file-system_setting-up-stratis-file-systems

Additional resources

stratis(8) man page.

28.3. ACCESSING THE CONTENT OF A STRATIS SNAPSHOT

This procedure mounts a snapshot of a Stratis file system to make it accessible for read and write
operations.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

You have created a Stratis snapshot. See Creating a Stratis filesystem .

Procedure

To access the snapshot, mount it as a regular file system from the /dev/stratis/my-pool/
directory:

mount /dev/stratis/my-pool/my-fs-snapshot mount-point

Additional resources

Mounting a Stratis file system .

mount(8) man page.

28.4. REVERTING A STRATIS FILE SYSTEM TO A PREVIOUS
SNAPSHOT

This procedure reverts the content of a Stratis file system to the state captured in a Stratis snapshot.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

You have created a Stratis snapshot. See Creating a Stratis snapshot .

Procedure

1. Optionally, back up the current state of the file system to be able to access it later:

stratis filesystem snapshot my-pool my-fs my-fs-backup

2. Unmount and remove the original file system:

umount /dev/stratis/my-pool/my-fs
stratis filesystem destroy my-pool my-fs

CHAPTER 28. USING SNAPSHOTS ON STRATIS FILE SYSTEMS

163

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-a-stratis-file-system_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#mounting-a-stratis-file-system_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-a-stratis-snapshot_using-snapshots-on-stratis-file-systems

3. Create a copy of the snapshot under the name of the original file system:

stratis filesystem snapshot my-pool my-fs-snapshot my-fs

4. Mount the snapshot, which is now accessible with the same name as the original file system:

mount /dev/stratis/my-pool/my-fs mount-point

The content of the file system named my-fs is now identical to the snapshot my-fs-snapshot.

Additional resources

stratis(8) man page.

28.5. REMOVING A STRATIS SNAPSHOT

This procedure removes a Stratis snapshot from a pool. Data on the snapshot are lost.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

You have created a Stratis snapshot. See Creating a Stratis snapshot .

Procedure

1. Unmount the snapshot:

umount /dev/stratis/my-pool/my-fs-snapshot

2. Destroy the snapshot:

stratis filesystem destroy my-pool my-fs-snapshot

Additional resources

stratis(8) man page.

28.6. ADDITIONAL RESOURCES

The Stratis Storage website

Red Hat Enterprise Linux 8 Managing file systems

164

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/using-snapshots-on-stratis-file-systems_managing-file-systems#creating-a-stratis-snapshot_using-snapshots-on-stratis-file-systems
https://stratis-storage.github.io/

CHAPTER 29. REMOVING STRATIS FILE SYSTEMS
You can remove an existing Stratis file system, or a Stratis pool, by destroying data on them.

IMPORTANT

Stratis is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

29.1. COMPONENTS OF A STRATIS VOLUME

Learn about the components that comprise a Stratis volume.

Externally, Stratis presents the following volume components in the command-line interface and the
API:

blockdev

Block devices, such as a disk or a disk partition.

pool

Composed of one or more block devices.
A pool has a fixed total size, equal to the size of the block devices.

The pool contains most Stratis layers, such as the non-volatile data cache using the dm-cache
target.

Stratis creates a /dev/stratis/my-pool/ directory for each pool. This directory contains links to
devices that represent Stratis file systems in the pool.

filesystem

Each pool can contain one or more file systems, which store files.
File systems are thinly provisioned and do not have a fixed total size. The actual size of a file system
grows with the data stored on it. If the size of the data approaches the virtual size of the file system,
Stratis grows the thin volume and the file system automatically.

The file systems are formatted with XFS.

IMPORTANT

Stratis tracks information about file systems created using Stratis that XFS is not
aware of, and changes made using XFS do not automatically create updates in Stratis.
Users must not reformat or reconfigure XFS file systems that are managed by Stratis.

Stratis creates links to file systems at the /dev/stratis/my-pool/my-fs path.

NOTE

CHAPTER 29. REMOVING STRATIS FILE SYSTEMS

165

https://access.redhat.com/support/offerings/techpreview

NOTE

Stratis uses many Device Mapper devices, which show up in dmsetup listings and the
/proc/partitions file. Similarly, the lsblk command output reflects the internal workings
and layers of Stratis.

29.2. REMOVING A STRATIS FILE SYSTEM

This procedure removes an existing Stratis file system. Data stored on it are lost.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

You have created a Stratis file system. See Creating a Stratis filesystem .

Procedure

1. Unmount the file system:

umount /dev/stratis/my-pool/my-fs

2. Destroy the file system:

stratis filesystem destroy my-pool my-fs

3. Verify that the file system no longer exists:

stratis filesystem list my-pool

Additional resources

stratis(8) man page.

29.3. REMOVING A STRATIS POOL

This procedure removes an existing Stratis pool. Data stored on it are lost.

Prerequisites

Stratis is installed. See Installing Stratis.

The stratisd service is running.

You have created a Stratis pool:

To create an unencrypted pool, see Creating an unencrypted Stratis pool

To create an encrypted pool, see Creating an encrypted Stratis pool .

Procedure

Red Hat Enterprise Linux 8 Managing file systems

166

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-a-stratis-file-system_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#installing-stratis_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-unencrypted-stratis-pool_setting-up-stratis-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#create-encrypted-stratis-pool_setting-up-stratis-file-systems

1. List file systems on the pool:

stratis filesystem list my-pool

2. Unmount all file systems on the pool:

umount /dev/stratis/my-pool/my-fs-1 \
 /dev/stratis/my-pool/my-fs-2 \
 /dev/stratis/my-pool/my-fs-n

3. Destroy the file systems:

stratis filesystem destroy my-pool my-fs-1 my-fs-2

4. Destroy the pool:

stratis pool destroy my-pool

5. Verify that the pool no longer exists:

stratis pool list

Additional resources

stratis(8) man page.

29.4. ADDITIONAL RESOURCES

The Stratis Storage website

CHAPTER 29. REMOVING STRATIS FILE SYSTEMS

167

https://stratis-storage.github.io/

CHAPTER 30. GETTING STARTED WITH AN EXT3 FILE
SYSTEM

As a system administrator, you can create, mount, resize, backup, and restore an ext3 file system. The
ext3 file system is essentially an enhanced version of the ext2 file system.

30.1. FEATURES OF AN EXT3 FILE SYSTEM

Following are the features of an ext3 file system:

Availability: After an unexpected power failure or system crash, file system check is not required
due to the journaling provided. The default journal size takes about a second to recover,
depending on the speed of the hardware

NOTE

The only supported journaling mode in ext3 is data=ordered (default). For more
information, see Is the EXT journaling option "data=writeback" supported in
RHEL? Knowledgebase article.

Data Integrity: The ext3 file system prevents loss of data integrity during an unexpected power
failure or system crash.

Speed: Despite writing some data more than once, ext3 has a higher throughput in most cases
than ext2 because ext3’s journaling optimizes hard drive head motion.

Easy Transition: It is easy to migrate from ext2 to ext3 and gain the benefits of a robust
journaling file system without reformatting.

Additional resources

ext3 man page.

30.2. CREATING AN EXT3 FILE SYSTEM

As a system administrator, you can create an ext3 file system on a block device using mkfs.ext3
command.

Prerequisites

A partition on your disk. For information about creating MBR or GPT partitions, see Creating a
partition table on a disk with parted.

.

+ Alternatively, use an LVM or MD volume.

Procedure

1. To create an ext3 file system:

For a regular-partition device, an LVM volume, an MD volume, or a similar device, use the
following command:

Red Hat Enterprise Linux 8 Managing file systems

168

https://access.redhat.com/solutions/424073
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_creating-a-partition-table-on-a-disk-with-parted_partition-operations-with-parted

mkfs.ext3 /dev/block_device

Replace /dev/block_device with the path to a block device.

For example, /dev/sdb1, /dev/disk/by-uuid/05e99ec8-def1-4a5e-8a9d-5945339ceb2a, or
/dev/my-volgroup/my-lv. In general, the default options are optimal for most usage
scenarios.

For striped block devices (for example, RAID5 arrays), the stripe geometry can be specified
at the time of file system creation. Using proper stripe geometry enhances the performance
of an ext3 file system. For example, to create a file system with a 64k stride (that is, 16 x
4096) on a 4k-block file system, use the following command:

mkfs.ext3 -E stride=16,stripe-width=64 /dev/block_device

In the given example:

stride=value: Specifies the RAID chunk size

stripe-width=value: Specifies the number of data disks in a RAID device, or the number
of stripe units in the stripe.

NOTE

To specify a UUID when creating a file system:

mkfs.ext3 -U UUID /dev/block_device

Replace UUID with the UUID you want to set: for example, 7cd65de3-e0be-
41d9-b66d-96d749c02da7.

Replace /dev/block_device with the path to an ext3 file system to have the
UUID added to it: for example, /dev/sda8.

To specify a label when creating a file system:

mkfs.ext3 -L label-name /dev/block_device

2. To view the created ext3 file system:

blkid

Additional resources

ext3 man page.

mkfs.ext3 man page.

30.3. MOUNTING AN EXT3 FILE SYSTEM

As a system administrator, you can mount an ext3 file system using the mount utility.

Prerequisites

CHAPTER 30. GETTING STARTED WITH AN EXT3 FILE SYSTEM

169

An ext3 file system. For information about creating an ext3 file system, see Creating an ext3 file
system.

Procedure

1. To create a mount point to mount the file system:

mkdir /mount/point

Replace /mount/point with the directory name where mount point of the partition must be
created.

2. To mount an ext3 file system:

To mount an ext3 file system with no extra options:

mount /dev/block_device /mount/point

To mount the file system persistently, see Persistently mounting file systems .

3. To view the mounted file system:

df -h

Additional resources

mount man page.

ext3 man page.

fstab man page.

Mounting file systems

30.4. RESIZING AN EXT3 FILE SYSTEM

As a system administrator, you can resize an ext3 file system using the resize2fs utility. The resize2fs
utility reads the size in units of file system block size, unless a suffix indicating a specific unit is used. The
following suffixes indicate specific units:

s (sectors) - 512 byte sectors

K (kilobytes) - 1,024 bytes

M (megabytes) - 1,048,576 bytes

G (gigabytes) - 1,073,741,824 bytes

T (terabytes) - 1,099,511,627,776 bytes

Prerequisites

An ext3 file system. For information about creating an ext3 file system, see Creating an ext3 file
system.

Red Hat Enterprise Linux 8 Managing file systems

170

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-an-ext3-file-system_getting-started-with-an-ext3-file-system
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/assembly_persistently-mounting-file-systems_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/mounting-file-systems_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-an-ext3-file-system_getting-started-with-an-ext3-file-system

An underlying block device of an appropriate size to hold the file system after resizing.

Procedure

1. To resize an ext3 file system, take the following steps:

To shrink and grow the size of an unmounted ext3 file system:

umount /dev/block_device
e2fsck -f /dev/block_device
resize2fs /dev/block_device size

Replace /dev/block_device with the path to the block device, for example /dev/sdb1.

Replace size with the required resize value using s, K, M, G, and T suffixes.

An ext3 file system may be grown while mounted using the resize2fs command:

resize2fs /mount/device size

NOTE

The size parameter is optional (and often redundant) when expanding. The
resize2fs automatically expands to fill the available space of the container,
usually a logical volume or partition.

2. To view the resized file system:

df -h

Additional resources

resize2fs man page.

e2fsck man page.

ext3 man page.

CHAPTER 30. GETTING STARTED WITH AN EXT3 FILE SYSTEM

171

CHAPTER 31. GETTING STARTED WITH AN EXT4 FILE
SYSTEM

As a system administrator, you can create, mount, resize, backup, and restore an ext4 file system. The
ext4 file system is a scalable extension of the ext3 file system. With Red Hat Enterprise Linux 8, it can
support a maximum individual file size of 16 terabytes, and file system to a maximum of 50 terabytes.

31.1. FEATURES OF AN EXT4 FILE SYSTEM

Following are the features of an ext4 file system:

Using extents: The ext4 file system uses extents, which improves performance when using large
files and reduces metadata overhead for large files.

Ext4 labels unallocated block groups and inode table sections accordingly, which allows the
block groups and table sections to be skipped during a file system check. It leads to a quick file
system check, which becomes more beneficial as the file system grows in size.

Metadata checksum: By default, this feature is enabled in Red Hat Enterprise Linux 8.

Allocation features of an ext4 file system:

Persistent pre-allocation

Delayed allocation

Multi-block allocation

Stripe-aware allocation

Extended attributes (xattr): This allows the system to associate several additional name and
value pairs per file.

Quota journaling: This avoids the need for lengthy quota consistency checks after a crash.

NOTE

The only supported journaling mode in ext4 is data=ordered (default). For more
information, see Is the EXT journaling option "data=writeback" supported in
RHEL? Knowledgebase article.

Subsecond timestamps — This gives timestamps to the subsecond.

Additional resources

ext4 man page.

31.2. CREATING AN EXT4 FILE SYSTEM

As a system administrator, you can create an ext4 file system on a block device using mkfs.ext4
command.

Prerequisites

A partition on your disk. For information about creating MBR or GPT partitions, see Creating a

Red Hat Enterprise Linux 8 Managing file systems

172

https://access.redhat.com/solutions/424073

A partition on your disk. For information about creating MBR or GPT partitions, see Creating a
partition table on a disk with parted.

Alternatively, use an LVM or MD volume.

Procedure

1. To create an ext4 file system:

For a regular-partition device, an LVM volume, an MD volume, or a similar device, use the
following command:

mkfs.ext4 /dev/block_device

Replace /dev/block_device with the path to a block device.

For example, /dev/sdb1, /dev/disk/by-uuid/05e99ec8-def1-4a5e-8a9d-5945339ceb2a, or
/dev/my-volgroup/my-lv. In general, the default options are optimal for most usage
scenarios.

For striped block devices (for example, RAID5 arrays), the stripe geometry can be specified
at the time of file system creation. Using proper stripe geometry enhances the performance
of an ext4 file system. For example, to create a file system with a 64k stride (that is, 16 x
4096) on a 4k-block file system, use the following command:

mkfs.ext4 -E stride=16,stripe-width=64 /dev/block_device

In the given example:

stride=value: Specifies the RAID chunk size

stripe-width=value: Specifies the number of data disks in a RAID device, or the number
of stripe units in the stripe.

NOTE

To specify a UUID when creating a file system:

mkfs.ext4 -U UUID /dev/block_device

Replace UUID with the UUID you want to set: for example, 7cd65de3-e0be-
41d9-b66d-96d749c02da7.

Replace /dev/block_device with the path to an ext4 file system to have the
UUID added to it: for example, /dev/sda8.

To specify a label when creating a file system:

mkfs.ext4 -L label-name /dev/block_device

2. To view the created ext4 file system:

blkid

CHAPTER 31. GETTING STARTED WITH AN EXT4 FILE SYSTEM

173

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/partition-operations-with-parted_managing-file-systems#proc_creating-a-partition-table-on-a-disk-with-parted_partition-operations-with-parted

Additional resources

ext4 man page.

mkfs.ext4 man page.

31.3. MOUNTING AN EXT4 FILE SYSTEM

As a system administrator, you can mount an ext4 file system using the mount utility.

Prerequisites

An ext4 file system. For information about creating an ext4 file system, see Creating an ext4 file
system.

Procedure

1. To create a mount point to mount the file system:

mkdir /mount/point

Replace /mount/point with the directory name where mount point of the partition must be
created.

2. To mount an ext4 file system:

To mount an ext4 file system with no extra options:

mount /dev/block_device /mount/point

To mount the file system persistently, see Persistently mounting file systems .

3. To view the mounted file system:

df -h

Additional resources

mount man page.

ext4 man page.

fstab man page.

Mounting file systems.

31.4. RESIZING AN EXT4 FILE SYSTEM

As a system administrator, you can resize an ext4 file system using the resize2fs utility. The resize2fs
utility reads the size in units of file system block size, unless a suffix indicating a specific unit is used. The
following suffixes indicate specific units:

s (sectors) - 512 byte sectors

Red Hat Enterprise Linux 8 Managing file systems

174

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-an-ext4-file-system_getting-started-with-an-ext4-file-system
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/assembly_persistently-mounting-file-systems_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/mounting-file-systems_managing-file-systems

K (kilobytes) - 1,024 bytes

M (megabytes) - 1,048,576 bytes

G (gigabytes) - 1,073,741,824 bytes

T (terabytes) - 1,099,511,627,776 bytes

Prerequisites

An ext4 file system. For information about creating an ext4 file system, see Creating an ext4 file
system.

An underlying block device of an appropriate size to hold the file system after resizing.

Procedure

1. To resize an ext4 file system, take the following steps:

To shrink and grow the size of an unmounted ext4 file system:

umount /dev/block_device
e2fsck -f /dev/block_device
resize2fs /dev/block_device size

Replace /dev/block_device with the path to the block device, for example /dev/sdb1.

Replace size with the required resize value using s, K, M, G, and T suffixes.

An ext4 file system may be grown while mounted using the resize2fs command:

resize2fs /mount/device size

NOTE

The size parameter is optional (and often redundant) when expanding. The
resize2fs automatically expands to fill the available space of the container,
usually a logical volume or partition.

2. To view the resized file system:

df -h

Additional resources

resize2fs man page.

e2fsck man page.

ext4 man page.

31.5. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

This section compares which tools to use to accomplish common tasks on the ext4 and XFS file

CHAPTER 31. GETTING STARTED WITH AN EXT4 FILE SYSTEM

175

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/index#creating-an-ext4-file-system_getting-started-with-an-ext4-file-system

This section compares which tools to use to accomplish common tasks on the ext4 and XFS file
systems.

Task ext4 XFS

Create a file system mkfs.ext4 mkfs.xfs

File system check e2fsck xfs_repair

Resize a file system resize2fs xfs_growfs

Save an image of a file system e2image xfs_metadump and
xfs_mdrestore

Label or tune a file system tune2fs xfs_admin

Back up a file system dump and restore xfsdump and xfsrestore

Quota management quota xfs_quota

File mapping filefrag xfs_bmap

Red Hat Enterprise Linux 8 Managing file systems

176

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. OVERVIEW OF AVAILABLE FILE SYSTEMS
	1.1. TYPES OF FILE SYSTEMS
	1.2. LOCAL FILE SYSTEMS
	1.3. THE XFS FILE SYSTEM
	1.4. THE EXT4 FILE SYSTEM
	1.5. COMPARISON OF XFS AND EXT4
	1.6. CHOOSING A LOCAL FILE SYSTEM
	1.7. NETWORK FILE SYSTEMS
	1.8. SHARED STORAGE FILE SYSTEMS
	1.9. CHOOSING BETWEEN NETWORK AND SHARED STORAGE FILE SYSTEMS
	1.10. VOLUME-MANAGING FILE SYSTEMS

	CHAPTER 2. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES
	2.1. INTRODUCTION TO THE STORAGE RHEL SYSTEM ROLE
	2.2. PARAMETERS THAT IDENTIFY A STORAGE DEVICE IN THE STORAGE RHEL SYSTEM ROLE
	2.3. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AN XFS FILE SYSTEM ON A BLOCK DEVICE
	2.4. EXAMPLE ANSIBLE PLAYBOOK TO PERSISTENTLY MOUNT A FILE SYSTEM
	2.5. EXAMPLE ANSIBLE PLAYBOOK TO MANAGE LOGICAL VOLUMES
	2.6. EXAMPLE ANSIBLE PLAYBOOK TO ENABLE ONLINE BLOCK DISCARD
	2.7. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT4 FILE SYSTEM
	2.8. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT3 FILE SYSTEM
	2.9. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING FILE SYSTEM ON LVM USING THE STORAGE RHEL SYSTEM ROLE
	2.10. EXAMPLE ANSIBLE PLAYBOOK TO CREATE A SWAP VOLUME USING THE STORAGE RHEL SYSTEM ROLE
	2.11. CONFIGURING A RAID VOLUME USING THE STORAGE SYSTEM ROLE
	2.12. CONFIGURING AN LVM POOL WITH RAID USING THE STORAGE RHEL SYSTEM ROLE
	2.13. CONFIGURING A STRIPE SIZE FOR RAID LVM VOLUMES USING THE STORAGE RHEL SYSTEM ROLE
	2.14. EXAMPLE ANSIBLE PLAYBOOK TO COMPRESS AND DEDUPLICATE A VDO VOLUME ON LVM USING THE STORAGE RHEL SYSTEM ROLE
	2.15. CREATING A LUKS2 ENCRYPTED VOLUME USING THE STORAGE RHEL SYSTEM ROLE
	2.16. EXAMPLE ANSIBLE PLAYBOOK TO EXPRESS POOL VOLUME SIZES AS PERCENTAGE USING THE STORAGE RHEL SYSTEM ROLE
	2.17. ADDITIONAL RESOURCES

	CHAPTER 3. MOUNTING NFS SHARES
	3.1. NFS HOST NAME FORMATS
	3.2. CONFIGURING AN NFSV3 CLIENT TO RUN BEHIND A FIREWALL
	3.3. CONFIGURING AN NFSV4 CLIENT TO RUN BEHIND A FIREWALL
	3.4. DISCOVERING NFS EXPORTS
	3.5. MOUNTING AN NFS SHARE WITH MOUNT
	3.6. SETTING UP PNFS SCSI ON THE CLIENT
	3.7. CHECKING PNFS SCSI OPERATIONS FROM THE CLIENT USING MOUNTSTATS
	3.8. COMMON NFS MOUNT OPTIONS
	3.9. STORING USER SETTINGS OVER NFS
	3.10. GETTING STARTED WITH FS-CACHE
	3.10.1. Overview of the FS-Cache
	3.10.2. Performance guarantee
	3.10.3. Using the cache with NFS
	3.10.4. Setting up a cache
	3.10.5. Configuring NFS cache sharing
	3.10.6. Cache limitations with NFS
	3.10.7. Cache cull limits configuration
	3.10.8. Retrieving statistical information from the fscache kernel module
	3.10.9. FS-Cache references

	CHAPTER 4. DEPLOYING AN NFS SERVER
	4.1. KEY FEATURES OF MINOR NFSV4 VERSIONS
	4.2. THE AUTH_SYS AUTHENTICATION METHOD
	4.3. THE AUTH_GSS AUTHENTICATION METHOD
	4.4. FILE PERMISSIONS ON EXPORTED FILE SYSTEMS
	4.5. SERVICES REQUIRED ON AN NFS SERVER
	4.6. THE /ETC/EXPORTS CONFIGURATION FILE
	4.7. CONFIGURING AN NFSV4-ONLY SERVER
	4.8. CONFIGURING AN NFSV3 SERVER WITH OPTIONAL NFSV4 SUPPORT
	4.9. ENABLING QUOTA SUPPORT ON AN NFS SERVER
	4.10. ENABLING NFS OVER RDMA ON AN NFS SERVER
	4.11. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT IDENTITY MANAGEMENT DOMAIN

	CHAPTER 5. MOUNTING AN SMB SHARE
	5.1. SUPPORTED SMB PROTOCOL VERSIONS
	5.2. UNIX EXTENSIONS SUPPORT
	5.3. MANUALLY MOUNTING AN SMB SHARE
	5.4. MOUNTING AN SMB SHARE AUTOMATICALLY WHEN THE SYSTEM BOOTS
	5.5. CREATING A CREDENTIALS FILE TO AUTHENTICATE TO AN SMB SHARE
	5.6. PERFORMING A MULTI-USER SMB MOUNT
	5.6.1. Mounting a share with the multiuser option
	5.6.2. Verifying if an SMB share is mounted with the multiuser option
	5.6.3. Accessing a share as a user

	5.7. FREQUENTLY USED SMB MOUNT OPTIONS

	CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES
	6.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES
	6.2. FILE SYSTEM AND DEVICE IDENTIFIERS
	File system identifiers
	Device identifiers
	Recommendations

	6.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN /DEV/DISK/
	6.3.1. File system identifiers
	The UUID attribute in /dev/disk/by-uuid/
	The Label attribute in /dev/disk/by-label/

	6.3.2. Device identifiers
	The WWID attribute in /dev/disk/by-id/
	The Partition UUID attribute in /dev/disk/by-partuuid
	The Path attribute in /dev/disk/by-path/

	6.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH
	6.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION
	6.6. LISTING PERSISTENT NAMING ATTRIBUTES
	6.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

	CHAPTER 7. PARTITION OPERATIONS WITH PARTED
	7.1. VIEWING THE PARTITION TABLE WITH PARTED
	7.2. CREATING A PARTITION TABLE ON A DISK WITH PARTED
	7.3. CREATING A PARTITION WITH PARTED
	7.4. REMOVING A PARTITION WITH PARTED
	7.5. RESIZING A PARTITION WITH PARTED

	CHAPTER 8. STRATEGIES FOR REPARTITIONING A DISK
	8.1. USING UNPARTITIONED FREE SPACE
	8.2. USING SPACE FROM AN UNUSED PARTITION
	8.3. USING FREE SPACE FROM AN ACTIVE PARTITION
	8.3.1. Destructive repartitioning
	8.3.2. Non-destructive repartitioning

	CHAPTER 9. GETTING STARTED WITH XFS
	9.1. THE XFS FILE SYSTEM
	9.2. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

	CHAPTER 10. CREATING AN XFS FILE SYSTEM
	10.1. CREATING AN XFS FILE SYSTEM WITH MKFS.XFS

	CHAPTER 11. BACKING UP AN XFS FILE SYSTEM
	11.1. FEATURES OF XFS BACKUP
	11.2. BACKING UP AN XFS FILE SYSTEM WITH XFSDUMP
	11.3. ADDITIONAL RESOURCES

	CHAPTER 12. RESTORING AN XFS FILE SYSTEM FROM BACKUP
	12.1. FEATURES OF RESTORING XFS FROM BACKUP
	12.2. RESTORING AN XFS FILE SYSTEM FROM BACKUP WITH XFSRESTORE
	12.3. INFORMATIONAL MESSAGES WHEN RESTORING AN XFS BACKUP FROM A TAPE
	12.4. ADDITIONAL RESOURCES

	CHAPTER 13. INCREASING THE SIZE OF AN XFS FILE SYSTEM
	13.1. INCREASING THE SIZE OF AN XFS FILE SYSTEM WITH XFS_GROWFS

	CHAPTER 14. CONFIGURING XFS ERROR BEHAVIOR
	14.1. CONFIGURABLE ERROR HANDLING IN XFS
	14.2. CONFIGURATION FILES FOR SPECIFIC AND UNDEFINED XFS ERROR CONDITIONS
	14.3. SETTING XFS BEHAVIOR FOR SPECIFIC CONDITIONS
	14.4. SETTING XFS BEHAVIOR FOR UNDEFINED CONDITIONS
	14.5. SETTING THE XFS UNMOUNT BEHAVIOR

	CHAPTER 15. CHECKING AND REPAIRING A FILE SYSTEM
	15.1. SCENARIOS THAT REQUIRE A FILE SYSTEM CHECK
	15.2. POTENTIAL SIDE EFFECTS OF RUNNING FSCK
	15.3. ERROR-HANDLING MECHANISMS IN XFS
	Unclean unmounts
	Corruption

	15.4. CHECKING AN XFS FILE SYSTEM WITH XFS_REPAIR
	15.5. REPAIRING AN XFS FILE SYSTEM WITH XFS_REPAIR
	15.6. ERROR HANDLING MECHANISMS IN EXT2, EXT3, AND EXT4
	15.7. CHECKING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK
	15.8. REPAIRING AN EXT2, EXT3, OR EXT4 FILE SYSTEM WITH E2FSCK

	CHAPTER 16. MOUNTING FILE SYSTEMS
	16.1. THE LINUX MOUNT MECHANISM
	16.2. LISTING CURRENTLY MOUNTED FILE SYSTEMS
	16.3. MOUNTING A FILE SYSTEM WITH MOUNT
	16.4. MOVING A MOUNT POINT
	16.5. UNMOUNTING A FILE SYSTEM WITH UMOUNT
	16.6. COMMON MOUNT OPTIONS

	CHAPTER 17. SHARING A MOUNT ON MULTIPLE MOUNT POINTS
	17.1. TYPES OF SHARED MOUNTS
	17.2. CREATING A PRIVATE MOUNT POINT DUPLICATE
	17.3. CREATING A SHARED MOUNT POINT DUPLICATE
	17.4. CREATING A SLAVE MOUNT POINT DUPLICATE
	17.5. PREVENTING A MOUNT POINT FROM BEING DUPLICATED

	CHAPTER 18. PERSISTENTLY MOUNTING FILE SYSTEMS
	18.1. THE /ETC/FSTAB FILE
	18.2. ADDING A FILE SYSTEM TO /ETC/FSTAB

	CHAPTER 19. MOUNTING FILE SYSTEMS ON DEMAND
	19.1. THE AUTOFS SERVICE
	19.2. THE AUTOFS CONFIGURATION FILES
	19.3. CONFIGURING AUTOFS MOUNT POINTS
	19.4. AUTOMOUNTING NFS SERVER USER HOME DIRECTORIES WITH AUTOFS SERVICE
	19.5. OVERRIDING OR AUGMENTING AUTOFS SITE CONFIGURATION FILES
	19.6. USING LDAP TO STORE AUTOMOUNTER MAPS
	19.7. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON DEMAND WITH /ETC/FSTAB
	19.8. USING SYSTEMD.AUTOMOUNT TO MOUNT A FILE SYSTEM ON DEMAND WITH A MOUNT UNIT

	CHAPTER 20. USING SSSD COMPONENT FROM IDM TO CACHE THE AUTOFS MAPS
	20.1. CONFIGURING AUTOFS MANUALLY TO USE IDM SERVER AS AN LDAP SERVER
	20.2. CONFIGURING SSSD TO CACHE AUTOFS MAPS

	CHAPTER 21. SETTING READ-ONLY PERMISSIONS FOR THE ROOT FILE SYSTEM
	21.1. FILES AND DIRECTORIES THAT ALWAYS RETAIN WRITE PERMISSIONS
	21.2. CONFIGURING THE ROOT FILE SYSTEM TO MOUNT WITH READ-ONLY PERMISSIONS ON BOOT

	CHAPTER 22. LIMITING STORAGE SPACE USAGE ON XFS WITH QUOTAS
	22.1. DISK QUOTAS
	22.2. THE XFS_QUOTA TOOL
	22.3. FILE SYSTEM QUOTA MANAGEMENT IN XFS
	22.4. ENABLING DISK QUOTAS FOR XFS
	22.5. REPORTING XFS USAGE
	22.6. MODIFYING XFS QUOTA LIMITS
	22.7. SETTING PROJECT LIMITS FOR XFS

	CHAPTER 23. LIMITING STORAGE SPACE USAGE ON EXT4 WITH QUOTAS
	23.1. INSTALLING THE QUOTA TOOL
	23.2. ENABLING QUOTA FEATURE ON FILE SYSTEM CREATION
	23.3. ENABLING QUOTA FEATURE ON EXISTING FILE SYSTEMS
	23.4. ENABLING QUOTA ENFORCEMENT
	23.5. ASSIGNING QUOTAS PER USER
	23.6. ASSIGNING QUOTAS PER GROUP
	23.7. ASSIGNING QUOTAS PER PROJECT
	23.8. SETTING THE GRACE PERIOD FOR SOFT LIMITS
	23.9. TURNING FILE SYSTEM QUOTAS OFF
	23.10. REPORTING ON DISK QUOTAS

	CHAPTER 24. DISCARDING UNUSED BLOCKS
	Requirements
	24.1. TYPES OF BLOCK DISCARD OPERATIONS
	Recommendations

	24.2. PERFORMING BATCH BLOCK DISCARD
	24.3. ENABLING ONLINE BLOCK DISCARD
	24.4. ENABLING PERIODIC BLOCK DISCARD

	CHAPTER 25. SETTING UP STRATIS FILE SYSTEMS
	25.1. WHAT IS STRATIS
	25.2. COMPONENTS OF A STRATIS VOLUME
	25.3. BLOCK DEVICES USABLE WITH STRATIS
	Supported devices
	Unsupported devices

	25.4. INSTALLING STRATIS
	25.5. CREATING AN UNENCRYPTED STRATIS POOL
	25.6. CREATING AN ENCRYPTED STRATIS POOL
	25.7. SETTING OVERPROVISIONING MODE IN STRATIS FILESYSTEM
	25.8. BINDING A STRATIS POOL TO NBDE
	25.9. BINDING A STRATIS POOL TO TPM
	25.10. UNLOCKING AN ENCRYPTED STRATIS POOL WITH KERNEL KEYRING
	25.11. UNBINDING A STRATIS POOL FROM SUPPLEMENTARY ENCRYPTION
	25.12. STARTING AND STOPPING STRATIS POOL
	25.13. CREATING A STRATIS FILE SYSTEM
	25.14. MOUNTING A STRATIS FILE SYSTEM
	25.15. PERSISTENTLY MOUNTING A STRATIS FILE SYSTEM
	25.16. SETTING UP NON-ROOT STRATIS FILESYSTEMS IN /ETC/FSTAB USING A SYSTEMD SERVICE

	CHAPTER 26. EXTENDING A STRATIS VOLUME WITH ADDITIONAL BLOCK DEVICES
	26.1. COMPONENTS OF A STRATIS VOLUME
	26.2. ADDING BLOCK DEVICES TO A STRATIS POOL
	26.3. ADDITIONAL RESOURCES

	CHAPTER 27. MONITORING STRATIS FILE SYSTEMS
	27.1. STRATIS SIZES REPORTED BY DIFFERENT UTILITIES
	27.2. DISPLAYING INFORMATION ABOUT STRATIS VOLUMES
	27.3. ADDITIONAL RESOURCES

	CHAPTER 28. USING SNAPSHOTS ON STRATIS FILE SYSTEMS
	28.1. CHARACTERISTICS OF STRATIS SNAPSHOTS
	28.2. CREATING A STRATIS SNAPSHOT
	28.3. ACCESSING THE CONTENT OF A STRATIS SNAPSHOT
	28.4. REVERTING A STRATIS FILE SYSTEM TO A PREVIOUS SNAPSHOT
	28.5. REMOVING A STRATIS SNAPSHOT
	28.6. ADDITIONAL RESOURCES

	CHAPTER 29. REMOVING STRATIS FILE SYSTEMS
	29.1. COMPONENTS OF A STRATIS VOLUME
	29.2. REMOVING A STRATIS FILE SYSTEM
	29.3. REMOVING A STRATIS POOL
	29.4. ADDITIONAL RESOURCES

	CHAPTER 30. GETTING STARTED WITH AN EXT3 FILE SYSTEM
	30.1. FEATURES OF AN EXT3 FILE SYSTEM
	30.2. CREATING AN EXT3 FILE SYSTEM
	30.3. MOUNTING AN EXT3 FILE SYSTEM
	30.4. RESIZING AN EXT3 FILE SYSTEM

	CHAPTER 31. GETTING STARTED WITH AN EXT4 FILE SYSTEM
	31.1. FEATURES OF AN EXT4 FILE SYSTEM
	31.2. CREATING AN EXT4 FILE SYSTEM
	31.3. MOUNTING AN EXT4 FILE SYSTEM
	31.4. RESIZING AN EXT4 FILE SYSTEM
	31.5. COMPARISON OF TOOLS USED WITH EXT4 AND XFS

