
Red Hat Enterprise Linux 8

Deduplicating and compressing storage

Using VDO to optimize storage capacity in RHEL 8

Last Updated: 2024-03-20

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

Using VDO to optimize storage capacity in RHEL 8

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This documentation collection provides instructions on how to use the Virtual Data Optimizer
(VDO) to manage deduplicated and compressed storage pools in Red Hat Enterprise Linux 8.

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. DEPLOYING VDO
1.1. INTRODUCTION TO VDO
1.2. VDO DEPLOYMENT SCENARIOS

KVM
File systems
Placement of VDO on iSCSI
LVM
Encryption

1.3. COMPONENTS OF A VDO VOLUME
1.4. THE PHYSICAL AND LOGICAL SIZE OF A VDO VOLUME
1.5. SLAB SIZE IN VDO
1.6. VDO REQUIREMENTS

1.6.1. VDO memory requirements
1.6.2. VDO storage space requirements
1.6.3. Placement of VDO in the storage stack
1.6.4. Examples of VDO requirements by physical size

1.7. INSTALLING VDO
1.8. CREATING A VDO VOLUME
1.9. MOUNTING A VDO VOLUME
1.10. ENABLING PERIODIC BLOCK DISCARD
1.11. MONITORING VDO

CHAPTER 2. MAINTAINING VDO
2.1. MANAGING FREE SPACE ON VDO VOLUMES

2.1.1. The physical and logical size of a VDO volume
2.1.2. Thin provisioning in VDO
2.1.3. Monitoring VDO
2.1.4. Reclaiming space for VDO on file systems
2.1.5. Reclaiming space for VDO without a file system
2.1.6. Reclaiming space for VDO on Fibre Channel or Ethernet network

2.2. STARTING OR STOPPING VDO VOLUMES
2.2.1. Started and activated VDO volumes
2.2.2. Starting a VDO volume
2.2.3. Stopping a VDO volume
2.2.4. Additional resources

2.3. AUTOMATICALLY STARTING VDO VOLUMES AT SYSTEM BOOT
2.3.1. Started and activated VDO volumes
2.3.2. Activating a VDO volume
2.3.3. Deactivating a VDO volume

2.4. SELECTING A VDO WRITE MODE
2.4.1. VDO write modes
2.4.2. The internal processing of VDO write modes
2.4.3. Checking the write mode on a VDO volume
2.4.4. Checking for a volatile cache
2.4.5. Setting a VDO write mode

2.5. RECOVERING A VDO VOLUME AFTER AN UNCLEAN SHUTDOWN
2.5.1. VDO write modes
2.5.2. VDO volume recovery

5

6

7
7
7
7
8
8
9
9

10
11

12
12
12
13
14
15
16
17
18
19

20

21
21
21
22
23
23
24
24
24
24
25
25
26
26
26
27
27
27
27
28
29
29
30
30
30
31

Table of Contents

1

. .

. .

Automatic and manual recovery
2.5.3. VDO operating modes
2.5.4. Recovering a VDO volume online
2.5.5. Forcing an offline rebuild of a VDO volume metadata
2.5.6. Removing an unsuccessfully created VDO volume

2.6. OPTIMIZING THE UDS INDEX
2.6.1. Components of a VDO volume
2.6.2. The UDS index
2.6.3. Recommended UDS index configuration

2.7. ENABLING OR DISABLING DEDUPLICATION IN VDO
2.7.1. Deduplication in VDO
2.7.2. Enabling deduplication on a VDO volume
2.7.3. Disabling deduplication on a VDO volume

2.8. ENABLING OR DISABLING COMPRESSION IN VDO
2.8.1. Compression in VDO
2.8.2. Enabling compression on a VDO volume
2.8.3. Disabling compression on a VDO volume

2.9. INCREASING THE SIZE OF A VDO VOLUME
2.9.1. The physical and logical size of a VDO volume
2.9.2. Thin provisioning in VDO
2.9.3. Increasing the logical size of a VDO volume
2.9.4. Increasing the physical size of a VDO volume

2.10. REMOVING VDO VOLUMES
2.10.1. Removing a working VDO volume
2.10.2. Removing an unsuccessfully created VDO volume

2.11. ADDITIONAL RESOURCES

CHAPTER 3. TESTING VDO SPACE SAVINGS
3.1. THE PURPOSE AND OUTCOMES OF TESTING VDO
3.2. THIN PROVISIONING IN VDO
3.3. INFORMATION TO RECORD BEFORE EACH VDO TEST
3.4. CREATING A VDO TEST VOLUME
3.5. TESTING THE VDO TEST VOLUME
3.6. CLEANING UP THE VDO TEST VOLUME
3.7. MEASURING VDO DEDUPLICATION
3.8. MEASURING VDO COMPRESSION
3.9. MEASURING TOTAL VDO SPACE SAVINGS
3.10. TESTING THE EFFECT OF TRIM AND DISCARD ON VDO

CHAPTER 4. TESTING VDO PERFORMANCE
4.1. PREPARING AN ENVIRONMENT FOR VDO PERFORMANCE TESTING

4.1.1. Considerations before testing VDO performance
4.1.2. Special considerations for testing VDO read performance
4.1.3. Preparing the system for testing VDO performance

4.2. CREATING A VDO VOLUME FOR PERFORMANCE TESTING
4.3. CLEANING UP THE VDO PERFORMANCE TESTING VOLUME
4.4. TESTING THE EFFECTS OF I/O DEPTH ON VDO PERFORMANCE

4.4.1. Testing the effect of I/O depth on sequential 100% reads in VDO
4.4.2. Testing the effect of I/O depth on sequential 100% writes in VDO
4.4.3. Testing the effect of I/O depth on random 100% reads in VDO
4.4.4. Testing the effect of I/O depth on random 100% writes in VDO
4.4.5. Analysis of VDO performance at different I/O depths

4.5. TESTING THE EFFECTS OF I/O REQUEST SIZE ON VDO PERFORMANCE

31
32
33
33
34
34
35
35
36
37
37
37
37
38
38
38
38
39
39
40
41
41

42
42
42
43

44
44
44
46
46
47
48
48
51
52
52

55
55
55
56
56
57
57
57
58
58
59
60
61

62

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

2

. .

. .

. .

4.5.1. Testing the effect of I/O request size on sequential writes in VDO
4.5.2. Testing the effect of I/O request size on random writes in VDO
4.5.3. Testing the effect of I/O request size on sequential read in VDO
4.5.4. Testing the effect of I/O request size on random read in VDO
4.5.5. Analysis of VDO performance at different I/O request sizes

4.6. TESTING THE EFFECTS OF MIXED I/O LOADS ON VDO PERFORMANCE
4.7. TESTING THE EFFECTS OF APPLICATION ENVIRONMENTS ON VDO PERFORMANCE
4.8. OPTIONS USED FOR TESTING VDO PERFORMANCE WITH FIO

CHAPTER 5. DISCARDING UNUSED BLOCKS
Requirements
5.1. TYPES OF BLOCK DISCARD OPERATIONS

Recommendations
5.2. PERFORMING BATCH BLOCK DISCARD
5.3. ENABLING ONLINE BLOCK DISCARD
5.4. ENABLING PERIODIC BLOCK DISCARD

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES
6.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES
6.2. FILE SYSTEM AND DEVICE IDENTIFIERS

File system identifiers
Device identifiers
Recommendations

6.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN /DEV/DISK/
6.3.1. File system identifiers

The UUID attribute in /dev/disk/by-uuid/
The Label attribute in /dev/disk/by-label/

6.3.2. Device identifiers
The WWID attribute in /dev/disk/by-id/
The Partition UUID attribute in /dev/disk/by-partuuid
The Path attribute in /dev/disk/by-path/

6.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH
6.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION
6.6. LISTING PERSISTENT NAMING ATTRIBUTES
6.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

CHAPTER 7. MANAGING VIRTUAL DATA OPTIMIZER VOLUMES USING THE WEB CONSOLE
7.1. VDO VOLUMES IN THE WEB CONSOLE
7.2. CREATING VDO VOLUMES IN THE WEB CONSOLE
7.3. FORMATTING VDO VOLUMES IN THE WEB CONSOLE
7.4. EXTENDING VDO VOLUMES IN THE WEB CONSOLE

62
63
64
65
66
66
68
69

72
72
72
72
72
73
73

75
75
75
76
76
76
76
76
76
77
77
77
78
78
78
79
79
81

82
82
83
84
85

Table of Contents

3

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

6

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. DEPLOYING VDO
As a system administrator, you can use VDO to create deduplicated and compressed storage pools.

1.1. INTRODUCTION TO VDO

Virtual Data Optimizer (VDO) provides inline data reduction for Linux in the form of deduplication,
compression, and thin provisioning. When you set up a VDO volume, you specify a block device on which
to construct your VDO volume and the amount of logical storage you plan to present.

When hosting active VMs or containers, Red Hat recommends provisioning storage at a 10:1
logical to physical ratio: that is, if you are utilizing 1 TB of physical storage, you would present it
as 10 TB of logical storage.

For object storage, such as the type provided by Ceph, Red Hat recommends using a 3:1 logical
to physical ratio: that is, 1 TB of physical storage would present as 3 TB logical storage.

In either case, you can simply put a file system on top of the logical device presented by VDO and then
use it directly or as part of a distributed cloud storage architecture.

Because VDO is thinly provisioned, the file system and applications only see the logical space in use and
are not aware of the actual physical space available. Use scripting to monitor the actual available space
and generate an alert if use exceeds a threshold: for example, when the VDO volume is 80% full.

Additional resources

For more information about monitoring physical space, see Section 2.1, “Managing free space on
VDO volumes”.

1.2. VDO DEPLOYMENT SCENARIOS

You can deploy VDO in a variety of ways to provide deduplicated storage for:

both block and file access

both local and remote storage

Because VDO exposes its deduplicated storage as a standard Linux block device, you can use it with
standard file systems, iSCSI and FC target drivers, or as unified storage.

NOTE

Deployment of VDO volumes on top of Ceph RADOS Block Device (RBD) is currently
supported. However, the deployment of Red Hat Ceph Storage cluster components on
top of VDO volumes is currently not supported.

KVM
You can deploy VDO on a KVM server configured with Direct Attached Storage.

CHAPTER 1. DEPLOYING VDO

7

File systems
You can create file systems on top of VDO and expose them to NFS or CIFS users with the NFS server
or Samba.

Placement of VDO on iSCSI
You can export the entirety of the VDO storage target as an iSCSI target to remote iSCSI initiators.

When creating a VDO volume on iSCSI, you can place the VDO volume above or below the iSCSI layer.
Although there are many considerations to be made, some guidelines are provided here to help you
select the method that best suits your environment.

When placing the VDO volume on the iSCSI server (target) below the iSCSI layer:

The VDO volume is transparent to the initiator, similar to other iSCSI LUNs. Hiding the thin
provisioning and space savings from the client makes the appearance of the LUN easier to
monitor and maintain.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

8

There is decreased network traffic because there are no VDO metadata reads or writes, and
read verification for the dedupe advice does not occur across the network.

The memory and CPU resources being used on the iSCSI target can result in better
performance. For example, the ability to host an increased number of hypervisors because the
volume reduction is happening on the iSCSI target.

If the client implements encryption on the initiator and there is a VDO volume below the target,
you will not realize any space savings.

When placing the VDO volume on the iSCSI client (initiator) above the iSCSI layer:

There is a potential for lower network traffic across the network in ASYNC mode if achieving
high rates of space savings.

You can directly view and control the space savings and monitor usage.

If you want to encrypt the data, for example, using dm-crypt, you can implement VDO on top of
the crypt and take advantage of space efficiency.

LVM
On more feature-rich systems, you can use LVM to provide multiple logical unit numbers (LUNs) that
are all backed by the same deduplicated storage pool.

In the following diagram, the VDO target is registered as a physical volume so that it can be managed by
LVM. Multiple logical volumes (LV1 to LV4) are created out of the deduplicated storage pool. In this way,
VDO can support multiprotocol unified block or file access to the underlying deduplicated storage pool.

Deduplicated unified storage design enables for multiple file systems to collectively use the same
deduplication domain through the LVM tools. Also, file systems can take advantage of LVM snapshot,
copy-on-write, and shrink or grow features, all on top of VDO.

Encryption
Device Mapper (DM) mechanisms such as DM Crypt are compatible with VDO. Encrypting VDO volumes
helps ensure data security, and any file systems above VDO are still deduplicated.

CHAPTER 1. DEPLOYING VDO

9

IMPORTANT

Applying the encryption layer above VDO results in little if any data deduplication.
Encryption makes duplicate blocks different before VDO can deduplicate them.

Always place the encryption layer below VDO.

1.3. COMPONENTS OF A VDO VOLUME

VDO uses a block device as a backing store, which can include an aggregation of physical storage
consisting of one or more disks, partitions, or even flat files. When a storage management tool creates a
VDO volume, VDO reserves volume space for the UDS index and VDO volume. The UDS index and the
VDO volume interact together to provide deduplicated block storage.

Figure 1.1. VDO disk organization

The VDO solution consists of the following components:

kvdo

A kernel module that loads into the Linux Device Mapper layer provides a deduplicated, compressed,
and thinly provisioned block storage volume.
The kvdo module exposes a block device. You can access this block device directly for block storage
or present it through a Linux file system, such as XFS or ext4.

When kvdo receives a request to read a logical block of data from a VDO volume, it maps the
requested logical block to the underlying physical block and then reads and returns the requested
data.

When kvdo receives a request to write a block of data to a VDO volume, it first checks whether the
request is a DISCARD or TRIM request or whether the data is uniformly zero. If either of these
conditions is true, kvdo updates its block map and acknowledges the request. Otherwise, VDO
processes and optimizes the data.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

10

uds

A kernel module that communicates with the Universal Deduplication Service (UDS) index on the
volume and analyzes data for duplicates. For each new piece of data, UDS quickly determines if that
piece is identical to any previously stored piece of data. If the index finds a match, the storage system
can then internally reference the existing item to avoid storing the same information more than once.
The UDS index runs inside the kernel as the uds kernel module.

Command line tools

For configuring and managing optimized storage.

1.4. THE PHYSICAL AND LOGICAL SIZE OF A VDO VOLUME

VDO utilizes physical, available physical, and logical size in the following ways:

Physical size

This is the same size as the underlying block device. VDO uses this storage for:

User data, which might be deduplicated and compressed

VDO metadata, such as the UDS index

Available physical size

This is the portion of the physical size that VDO is able to use for user data
It is equivalent to the physical size minus the size of the metadata, minus the remainder after dividing
the volume into slabs by the given slab size.

Logical Size

This is the provisioned size that the VDO volume presents to applications. It is usually larger than the
available physical size. If the --vdoLogicalSize option is not specified, then the provisioning of the
logical volume is now provisioned to a 1:1 ratio. For example, if a VDO volume is put on top of a 20
GB block device, then 2.5 GB is reserved for the UDS index (if the default index size is used). The
remaining 17.5 GB is provided for the VDO metadata and user data. As a result, the available storage
to consume is not more than 17.5 GB, and can be less due to metadata that makes up the actual VDO
volume.
VDO currently supports any logical size up to 254 times the size of the physical volume with an
absolute maximum logical size of 4PB.

Figure 1.2. VDO disk organization

In this figure, the VDO deduplicated storage target sits completely on top of the block device, meaning
the physical size of the VDO volume is the same size as the underlying block device.

Additional resources

For more information about how much storage VDO metadata requires on block devices of

CHAPTER 1. DEPLOYING VDO

11

For more information about how much storage VDO metadata requires on block devices of
different sizes, see Section 1.6.4, “Examples of VDO requirements by physical size” .

1.5. SLAB SIZE IN VDO

The physical storage of the VDO volume is divided into a number of slabs. Each slab is a contiguous
region of the physical space. All of the slabs for a given volume have the same size, which can be any
power of 2 multiple of 128 MB up to 32 GB.

The default slab size is 2 GB to facilitate evaluating VDO on smaller test systems. A single VDO volume
can have up to 8192 slabs. Therefore, in the default configuration with 2 GB slabs, the maximum allowed
physical storage is 16 TB. When using 32 GB slabs, the maximum allowed physical storage is 256 TB.
VDO always reserves at least one entire slab for metadata, and therefore, the reserved slab cannot be
used for storing user data.

Slab size has no effect on the performance of the VDO volume.

Table 1.1. Recommended VDO slab sizes by physical volume size

Physical volume size Recommended slab size

10–99 GB 1 GB

100 GB – 1 TB 2 GB

2–256 TB 32 GB

NOTE

The minimal disk usage for a VDO volume using default settings of 2 GB slab size and
0.25 dense index, requires approx 4.7 GB. This provides slightly less than 2 GB of physical
data to write at 0% deduplication or compression.

Here, the minimal disk usage is the sum of the default slab size and dense index.

You can control the slab size by providing the --config 'allocation/vdo_slab_size_mb=size-in-
megabytes' option to the lvcreate command.

1.6. VDO REQUIREMENTS

VDO has certain requirements on its placement and your system resources.

1.6.1. VDO memory requirements

Each VDO volume has two distinct memory requirements:

The VDO module

VDO requires a fixed 38 MB of RAM and several variable amounts:

1.15 MB of RAM for each 1 MB of configured block map cache size. The block map cache
requires a minimum of 150MB RAM.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

12

1.6 MB of RAM for each 1 TB of logical space.

268 MB of RAM for each 1 TB of physical storage managed by the volume.

The UDS index

The Universal Deduplication Service (UDS) requires a minimum of 250 MB of RAM, which is also the
default amount that deduplication uses. You can configure the value when formatting a VDO volume,
because the value also affects the amount of storage that the index needs.
The memory required for the UDS index is determined by the index type and the required size of the
deduplication window:

Index type Deduplication window Note

Dense 1 TB per 1 GB of RAM A 1 GB dense index is generally sufficient for up to
4 TB of physical storage.

Sparse 10 TB per 1 GB of RAM A 1 GB sparse index is generally sufficient for up to
40 TB of physical storage.

NOTE

The minimal disk usage for a VDO volume using default settings of 2 GB slab size and
0.25 dense index, requires approx 4.7 GB. This provides slightly less than 2 GB of
physical data to write at 0% deduplication or compression.

Here, the minimal disk usage is the sum of the default slab size and dense index.

The UDS Sparse Indexing feature is the recommended mode for VDO. It relies on the temporal
locality of data and attempts to retain only the most relevant index entries in memory. With the
sparse index, UDS can maintain a deduplication window that is ten times larger than with dense, while
using the same amount of memory.

Although the sparse index provides the greatest coverage, the dense index provides more
deduplication advice. For most workloads, given the same amount of memory, the difference in
deduplication rates between dense and sparse indexes is negligible.

Additional resources

Examples of VDO requirements by physical size

1.6.2. VDO storage space requirements

You can configure a VDO volume to use up to 256 TB of physical storage. Only a certain part of the
physical storage is usable to store data. This section provides the calculations to determine the usable
size of a VDO-managed volume.

VDO requires storage for two types of VDO metadata and for the UDS index:

The first type of VDO metadata uses approximately 1 MB for each 4 GB of physical storage plus
an additional 1 MB per slab.

The second type of VDO metadata consumes approximately 1.25 MB for each 1 GB of logical

CHAPTER 1. DEPLOYING VDO

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_logical_volumes_on_rhel/lvm-vdo-requirements_deduplicating-and-compressing-logical-volumes-on-rhel#examples-of-vdo-requirements-by-physical-size_lvm-vdo-requirements

The second type of VDO metadata consumes approximately 1.25 MB for each 1 GB of logical
storage, rounded up to the nearest slab.

The amount of storage required for the UDS index depends on the type of index and the
amount of RAM allocated to the index. For each 1 GB of RAM, a dense UDS index uses 17 GB of
storage, and a sparse UDS index will use 170 GB of storage.

Additional resources

Section 1.6.4, “Examples of VDO requirements by physical size”

Section 1.5, “Slab size in VDO”

1.6.3. Placement of VDO in the storage stack

Place storage layers either above, or under the Virtual Data Optimizer (VDO), to fit the placement
requirements.

A VDO volume is a thin-provisioned block device. You can prevent running out of physical space by
placing the volume above a storage layer that you can expand at a later time. Examples of such
expandable storage are Logical Volume Manager (LVM) volumes, or Multiple Device Redundant Array
Inexpensive or Independent Disks (MD RAID) arrays.

You can place thick provisioned layers above VDO. There are two aspects of thick provisioned layers
that you must consider:

Writing new data to unused logical space on a thick device. When using VDO, or other thin-
provisioned storage, the device can report that it is out of space during this kind of write.

Overwriting used logical space on a thick device with new data. When using VDO, overwriting
data can also result in a report of the device being out of space.

These limitations affect all layers above the VDO layer. If you do not monitor the VDO device, you can
unexpectedly run out of physical space on the thick-provisioned volumes above VDO.

See the following examples of supported and unsupported VDO volume configurations.

Figure 1.3. Supported VDO volume configurations

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

14

Figure 1.3. Supported VDO volume configurations

Figure 1.4. Unsupported VDO volume configurations

Additional resources

For more information about stacking VDO with LVM layers, see the Stacking LVM volumes
article.

1.6.4. Examples of VDO requirements by physical size

CHAPTER 1. DEPLOYING VDO

15

https://access.redhat.com/articles/2106521#vdo

The following tables provide approximate system requirements of VDO based on the physical size of
the underlying volume. Each table lists requirements appropriate to the intended deployment, such as
primary storage or backup storage.

The exact numbers depend on your configuration of the VDO volume.

Primary storage deployment

In the primary storage case, the UDS index is between 0.01% to 25% the size of the physical size.

Table 1.2. Storage and memory requirements for primary storage

Physical size RAM usage: UDS RAM usage: VDO Disk usage Index type

10GB–1TB 250MB 472MB 2.5GB Dense

2–10TB 1GB 3GB 10GB Dense

250MB 22GB Sparse

11–50TB 2GB 14GB 170GB Sparse

51–100TB 3GB 27GB 255GB Sparse

101–256TB 12GB 69GB 1020GB Sparse

Backup storage deployment

In the backup storage case, the UDS index covers the size of the backup set but is not bigger than
the physical size. If you expect the backup set or the physical size to grow in the future, factor this
into the index size.

Table 1.3. Storage and memory requirements for backup storage

Physical size RAM usage: UDS RAM usage: VDO Disk usage Index type

10GB–1TB 250MB 472MB 2.5 GB Dense

2–10TB 2GB 3GB 170GB Sparse

11–50TB 10GB 14GB 850GB Sparse

51–100TB 20GB 27GB 1700GB Sparse

101–256TB 26GB 69GB 3400GB Sparse

1.7. INSTALLING VDO

This procedure installs software necessary to create, mount, and manage VDO volumes.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

16

Procedure

Install the VDO software:

yum install lvm2 kmod-kvdo vdo

1.8. CREATING A VDO VOLUME

This procedure creates a VDO volume on a block device.

Prerequisites

Install the VDO software. See Section 1.7, “Installing VDO”.

Use expandable storage as the backing block device. For more information, see Section 1.6.3,
“Placement of VDO in the storage stack”.

Procedure

In all the following steps, replace vdo-name with the identifier you want to use for your VDO volume; for
example, vdo1. You must use a different name and device for each instance of VDO on the system.

1. Find a persistent name for the block device where you want to create the VDO volume. For
more information about persistent names, see Chapter 6, Overview of persistent naming
attributes.
If you use a non-persistent device name, then VDO might fail to start properly in the future if
the device name changes.

2. Create the VDO volume:

vdo create \
 --name=vdo-name \
 --device=block-device \
 --vdoLogicalSize=logical-size

Replace block-device with the persistent name of the block device where you want to
create the VDO volume. For example, /dev/disk/by-id/scsi-
3600508b1001c264ad2af21e903ad031f.

Replace logical-size with the amount of logical storage that the VDO volume should
present:

For active VMs or container storage, use logical size that is ten times the physical size
of your block device. For example, if your block device is 1TB in size, use 10T here.

For object storage, use logical size that is three times the physical size of your block
device. For example, if your block device is 1TB in size, use 3T here.

If the physical block device is larger than 16TiB, add the --vdoSlabSize=32G option to
increase the slab size on the volume to 32GiB.
Using the default slab size of 2GiB on block devices larger than 16TiB results in the vdo
create command failing with the following error:

vdo: ERROR - vdoformat: formatVDO failed on '/dev/device': VDO Status: Exceeds
maximum number of slabs supported

CHAPTER 1. DEPLOYING VDO

17

Example 1.1. Creating VDO for container storage

For example, to create a VDO volume for container storage on a 1TB block device, you might
use:

vdo create \
 --name=vdo1 \
 --device=/dev/disk/by-id/scsi-3600508b1001c264ad2af21e903ad031f \
 --vdoLogicalSize=10T

IMPORTANT

If a failure occurs when creating the VDO volume, remove the volume to clean up.
See Section 2.10.2, “Removing an unsuccessfully created VDO volume” for
details.

3. Create a file system on top of the VDO volume:

For the XFS file system:

mkfs.xfs -K /dev/mapper/vdo-name

For the ext4 file system:

mkfs.ext4 -E nodiscard /dev/mapper/vdo-name

NOTE

The purpose of the -K and -E nodiscard options on a freshly created VDO
volume is to not spend time sending requests, as it has no effect on an un-
allocated block. A fresh VDO volume starts out 100% un-allocated.

4. Use the following command to wait for the system to register the new device node:

udevadm settle

Next steps

1. Mount the file system. See Section 1.9, “Mounting a VDO volume” for details.

2. Enable the discard feature for the file system on your VDO device. See Section 1.10, “Enabling
periodic block discard” for details.

Additional resources

The vdo(8) man page

1.9. MOUNTING A VDO VOLUME

This procedure mounts a file system on a VDO volume, either manually or persistently.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

18

Prerequisites

A VDO volume has been created on your system. For instructions, see Section 1.8, “Creating a
VDO volume”.

Procedure

To mount the file system on the VDO volume manually, use:

mount /dev/mapper/vdo-name mount-point

To configure the file system to mount automatically at boot, add a line to the /etc/fstab file:

For the XFS file system:

/dev/mapper/vdo-name mount-point xfs defaults 0 0

For the ext4 file system:

/dev/mapper/vdo-name mount-point ext4 defaults 0 0

If the VDO volume is located on a block device that requires network, such as iSCSI, add the
_netdev mount option.

Additional resources

The vdo(8) man page.

For iSCSI and other block devices requiring network, see the systemd.mount(5) man page for
information about the _netdev mount option.

1.10. ENABLING PERIODIC BLOCK DISCARD

You can enable a systemd timer to regularly discard unused blocks on all supported file systems.

Procedure

Enable and start the systemd timer:

systemctl enable --now fstrim.timer
Created symlink /etc/systemd/system/timers.target.wants/fstrim.timer →
/usr/lib/systemd/system/fstrim.timer.

Verification

Verify the status of the timer:

systemctl status fstrim.timer
fstrim.timer - Discard unused blocks once a week
 Loaded: loaded (/usr/lib/systemd/system/fstrim.timer; enabled; vendor preset: disabled)
 Active: active (waiting) since Wed 2023-05-17 13:24:41 CEST; 3min 15s ago
 Trigger: Mon 2023-05-22 01:20:46 CEST; 4 days left
 Docs: man:fstrim

CHAPTER 1. DEPLOYING VDO

19

May 17 13:24:41 localhost.localdomain systemd[1]: Started Discard unused blocks once a
week.

1.11. MONITORING VDO

This procedure describes how to obtain usage and efficiency information from a VDO volume.

Prerequisites

Install the VDO software. See Section 1.7, “Installing VDO”.

Procedure

Use the vdostats utility to get information about a VDO volume:

vdostats --human-readable

Device 1K-blocks Used Available Use% Space saving%
/dev/mapper/node1osd1 926.5G 21.0G 905.5G 2% 73%
/dev/mapper/node1osd2 926.5G 28.2G 898.3G 3% 64%

Additional resources

The vdostats(8) man page.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

20

CHAPTER 2. MAINTAINING VDO
After deploying a VDO volume, you can perform certain tasks to maintain or optimize it. Some of the
following tasks are required for the correct functioning of VDO volumes.

Prerequisites

VDO is installed and deployed. See Chapter 1, Deploying VDO .

2.1. MANAGING FREE SPACE ON VDO VOLUMES

VDO is a thinly provisioned block storage target. Because of that, you must actively monitor and manage
space usage on VDO volumes.

2.1.1. The physical and logical size of a VDO volume

VDO utilizes physical, available physical, and logical size in the following ways:

Physical size

This is the same size as the underlying block device. VDO uses this storage for:

User data, which might be deduplicated and compressed

VDO metadata, such as the UDS index

Available physical size

This is the portion of the physical size that VDO is able to use for user data
It is equivalent to the physical size minus the size of the metadata, minus the remainder after dividing
the volume into slabs by the given slab size.

Logical Size

This is the provisioned size that the VDO volume presents to applications. It is usually larger than the
available physical size. If the --vdoLogicalSize option is not specified, then the provisioning of the
logical volume is now provisioned to a 1:1 ratio. For example, if a VDO volume is put on top of a 20
GB block device, then 2.5 GB is reserved for the UDS index (if the default index size is used). The
remaining 17.5 GB is provided for the VDO metadata and user data. As a result, the available storage
to consume is not more than 17.5 GB, and can be less due to metadata that makes up the actual VDO
volume.
VDO currently supports any logical size up to 254 times the size of the physical volume with an
absolute maximum logical size of 4PB.

Figure 2.1. VDO disk organization

In this figure, the VDO deduplicated storage target sits completely on top of the block device, meaning
the physical size of the VDO volume is the same size as the underlying block device.

CHAPTER 2. MAINTAINING VDO

21

Additional resources

For more information about how much storage VDO metadata requires on block devices of
different sizes, see Section 1.6.4, “Examples of VDO requirements by physical size” .

2.1.2. Thin provisioning in VDO

VDO is a thinly provisioned block storage target. The amount of physical space that a VDO volume uses
might differ from the size of the volume that is presented to users of the storage. You can make use of
this disparity to save on storage costs.

Out-of-space conditions

Take care to avoid unexpectedly running out of storage space, if the data written does not achieve the
expected rate of optimization.

Whenever the number of logical blocks (virtual storage) exceeds the number of physical blocks (actual
storage), it becomes possible for file systems and applications to unexpectedly run out of space. For
that reason, storage systems using VDO must provide you with a way of monitoring the size of the free
pool on the VDO volume.

You can determine the size of this free pool by using the vdostats utility. The default output of this
utility lists information for all running VDO volumes in a format similar to the Linux df utility. For example:

Device 1K-blocks Used Available Use%
/dev/mapper/vdo-name 211812352 105906176 105906176 50%

When the physical storage capacity of a VDO volume is almost full, VDO reports a warning in the system
log, similar to the following:

Oct 2 17:13:39 system lvm[13863]: Monitoring VDO pool vdo-name.
Oct 2 17:27:39 system lvm[13863]: WARNING: VDO pool vdo-name is now 80.69% full.
Oct 2 17:28:19 system lvm[13863]: WARNING: VDO pool vdo-name is now 85.25% full.
Oct 2 17:29:39 system lvm[13863]: WARNING: VDO pool vdo-name is now 90.64% full.
Oct 2 17:30:29 system lvm[13863]: WARNING: VDO pool vdo-name is now 96.07% full.

NOTE

These warning messages appear only when the lvm2-monitor service is running. It is
enabled by default.

How to prevent out-of-space conditions

If the size of free pool drops below a certain level, you can take action by:

Deleting data. This reclaims space whenever the deleted data is not duplicated. Deleting data
frees the space only after discards are issued.

Adding physical storage

IMPORTANT

Monitor physical space on your VDO volumes to prevent out-of-space situations.
Running out of physical blocks might result in losing recently written, unacknowledged
data on the VDO volume.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

22

Thin provisioning and the TRIM and DISCARD commands

To benefit from the storage savings of thin provisioning, the physical storage layer needs to know when
data is deleted. File systems that work with thinly provisioned storage send TRIM or DISCARD
commands to inform the storage system when a logical block is no longer required.

Several methods of sending the TRIM or DISCARD commands are available:

With the discard mount option, the file systems can send these commands whenever a block is
deleted.

You can send the commands in a controlled manner by using utilities such as fstrim. These
utilities tell the file system to detect which logical blocks are unused and send the information to
the storage system in the form of a TRIM or DISCARD command.

The need to use TRIM or DISCARD on unused blocks is not unique to VDO. Any thinly provisioned
storage system has the same challenge.

2.1.3. Monitoring VDO

This procedure describes how to obtain usage and efficiency information from a VDO volume.

Prerequisites

Install the VDO software. See Section 1.7, “Installing VDO”.

Procedure

Use the vdostats utility to get information about a VDO volume:

vdostats --human-readable

Device 1K-blocks Used Available Use% Space saving%
/dev/mapper/node1osd1 926.5G 21.0G 905.5G 2% 73%
/dev/mapper/node1osd2 926.5G 28.2G 898.3G 3% 64%

Additional resources

The vdostats(8) man page.

2.1.4. Reclaiming space for VDO on file systems

This procedure reclaims storage space on a VDO volume that hosts a file system.

VDO cannot reclaim space unless file systems communicate that blocks are free using the DISCARD,
TRIM, or UNMAP commands.

Procedure

If the file system on your VDO volume supports discard operations, enable them. See
Chapter 5, Discarding unused blocks .

For file systems that do not use DISCARD, TRIM, or UNMAP, you can manually reclaim free
space. Store a file consisting of binary zeros to fill the free space and then delete that file.

CHAPTER 2. MAINTAINING VDO

23

2.1.5. Reclaiming space for VDO without a file system

This procedure reclaims storage space on a VDO volume that is used as a block storage target without a
file system.

Procedure

Use the blkdiscard utility.
For example, a single VDO volume can be carved up into multiple subvolumes by deploying LVM
on top of it. Before deprovisioning a logical volume, use the blkdiscard utility to free the space
previously used by that logical volume.

LVM supports the REQ_DISCARD command and forwards the requests to VDO at the
appropriate logical block addresses in order to free the space. If you use other volume
managers, they also need to support REQ_DISCARD, or equivalently, UNMAP for SCSI devices
or TRIM for ATA devices.

Additional resources

The blkdiscard(8) man page

2.1.6. Reclaiming space for VDO on Fibre Channel or Ethernet network

This procedure reclaims storage space on VDO volumes (or portions of volumes) that are provisioned to
hosts on a Fibre Channel storage fabric or an Ethernet network using SCSI target frameworks such as
LIO or SCST.

Procedure

SCSI initiators can use the UNMAP command to free space on thinly provisioned storage
targets, but the SCSI target framework needs to be configured to advertise support for this
command. This is typically done by enabling thin provisioning on these volumes.
Verify support for UNMAP on Linux-based SCSI initiators by running the following command:

sg_vpd --page=0xb0 /dev/device

In the output, verify that the Maximum unmap LBA count value is greater than zero.

2.2. STARTING OR STOPPING VDO VOLUMES

You can start or stop a given VDO volume, or all VDO volumes, and their associated UDS indexes.

2.2.1. Started and activated VDO volumes

During the system boot, the vdo systemd unit automatically starts all VDO devices that are configured
as activated.

The vdo systemd unit is installed and enabled by default when the vdo package is installed. This unit
automatically runs the vdo start --all command at system startup to bring up all activated VDO
volumes.

You can also create a VDO volume that does not start automatically by adding the --activate=disabled
option to the vdo create command.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

24

The starting order

Some systems might place LVM volumes both above VDO volumes and below them. On these systems,
it is necessary to start services in the right order:

1. The lower layer of LVM must start first. In most systems, starting this layer is configured
automatically when the LVM package is installed.

2. The vdo systemd unit must start then.

3. Finally, additional scripts must run in order to start LVM volumes or other services on top of the
running VDO volumes.

How long it takes to stop a volume

Stopping a VDO volume takes time based on the speed of your storage device and the amount of data
that the volume needs to write:

The volume always writes around 1GiB for every 1GiB of the UDS index.

The volume additionally writes the amount of data equal to the block map cache size plus up to
8MiB per slab.

The volume must finish processing all outstanding IO requests.

2.2.2. Starting a VDO volume

This procedure starts a given VDO volume or all VDO volumes on your system.

Procedure

To start a given VDO volume, use:

vdo start --name=my-vdo

To start all VDO volumes, use:

vdo start --all

Additional resources

The vdo(8) man page

2.2.3. Stopping a VDO volume

This procedure stops a given VDO volume or all VDO volumes on your system.

Procedure

1. Stop the volume.

To stop a given VDO volume, use:

vdo stop --name=my-vdo

CHAPTER 2. MAINTAINING VDO

25

To stop all VDO volumes, use:

vdo stop --all

2. Wait for the volume to finish writing data to the disk.

Additional resources

The vdo(8) man page

2.2.4. Additional resources

If restarted after an unclean shutdown, VDO performs a rebuild to verify the consistency of its
metadata and repairs it if necessary. See Section 2.5, “Recovering a VDO volume after an
unclean shutdown” for more information about the rebuild process.

2.3. AUTOMATICALLY STARTING VDO VOLUMES AT SYSTEM BOOT

You can configure VDO volumes so that they start automatically at system boot. You can also disable
the automatic start.

2.3.1. Started and activated VDO volumes

During the system boot, the vdo systemd unit automatically starts all VDO devices that are configured
as activated.

The vdo systemd unit is installed and enabled by default when the vdo package is installed. This unit
automatically runs the vdo start --all command at system startup to bring up all activated VDO
volumes.

You can also create a VDO volume that does not start automatically by adding the --activate=disabled
option to the vdo create command.

The starting order

Some systems might place LVM volumes both above VDO volumes and below them. On these systems,
it is necessary to start services in the right order:

1. The lower layer of LVM must start first. In most systems, starting this layer is configured
automatically when the LVM package is installed.

2. The vdo systemd unit must start then.

3. Finally, additional scripts must run in order to start LVM volumes or other services on top of the
running VDO volumes.

How long it takes to stop a volume

Stopping a VDO volume takes time based on the speed of your storage device and the amount of data
that the volume needs to write:

The volume always writes around 1GiB for every 1GiB of the UDS index.

The volume additionally writes the amount of data equal to the block map cache size plus up to
8MiB per slab.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

26

The volume must finish processing all outstanding IO requests.

2.3.2. Activating a VDO volume

This procedure activates a VDO volume to enable it to start automatically.

Procedure

To activate a specific volume:

vdo activate --name=my-vdo

To activate all volumes:

vdo activate --all

Additional resources

The vdo(8) man page

2.3.3. Deactivating a VDO volume

This procedure deactivates a VDO volume to prevent it from starting automatically.

Procedure

To deactivate a specific volume:

vdo deactivate --name=my-vdo

To deactivate all volumes:

vdo deactivate --all

Additional resources

The vdo(8) man page

2.4. SELECTING A VDO WRITE MODE

You can configure write mode for a VDO volume, based on what the underlying block device requires.
By default, VDO selects write mode automatically.

2.4.1. VDO write modes

VDO supports the following write modes:

sync

When VDO is in sync mode, the layers above it assume that a write command writes data to
persistent storage. As a result, it is not necessary for the file system or application, for example, to
issue FLUSH or force unit access (FUA) requests to cause the data to become persistent at critical

CHAPTER 2. MAINTAINING VDO

27

points.
VDO must be set to sync mode only when the underlying storage guarantees that data is written to
persistent storage when the write command completes. That is, the storage must either have no
volatile write cache, or have a write through cache.

async

When VDO is in async mode, VDO does not guarantee that the data is written to persistent storage
when a write command is acknowledged. The file system or application must issue FLUSH or FUA
requests to ensure data persistence at critical points in each transaction.
VDO must be set to async mode if the underlying storage does not guarantee that data is written to
persistent storage when the write command completes; that is, when the storage has a volatile write
back cache.

async-unsafe

This mode has the same properties as async but it is not compliant with Atomicity, Consistency,
Isolation, Durability (ACID). Compared to async, async-unsafe has a better performance.

WARNING

When an application or a file system that assumes ACID compliance operates on
top of the VDO volume, async-unsafe mode might cause unexpected data loss.

auto

The auto mode automatically selects sync or async based on the characteristics of each device.
This is the default option.

2.4.2. The internal processing of VDO write modes

The write modes for VDO are sync and async. The following information describes the operations of
these modes.

If the kvdo module is operating in synchronous (synch) mode:

1. It temporarily writes the data in the request to the allocated block and then acknowledges the
request.

2. Once the acknowledgment is complete, an attempt is made to deduplicate the block by
computing a MurmurHash-3 signature of the block data, which is sent to the VDO index.

3. If the VDO index contains an entry for a block with the same signature, kvdo reads the
indicated block and does a byte-by-byte comparison of the two blocks to verify that they are
identical.

4. If they are indeed identical, then kvdo updates its block map so that the logical block points to
the corresponding physical block and releases the allocated physical block.

5. If the VDO index did not contain an entry for the signature of the block being written, or the
indicated block does not actually contain the same data, kvdo updates its block map to make
the temporary physical block permanent.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

28

If kvdo is operating in asynchronous (async) mode:

1. Instead of writing the data, it will immediately acknowledge the request.

2. It will then attempt to deduplicate the block in same manner as described above.

3. If the block turns out to be a duplicate, kvdo updates its block map and releases the allocated
block. Otherwise, it writes the data in the request to the allocated block and updates the block
map to make the physical block permanent.

2.4.3. Checking the write mode on a VDO volume

This procedure lists the active write mode on a selected VDO volume.

Procedure

Use the following command to see the write mode used by a VDO volume:

vdo status --name=my-vdo

The output lists:

The configured write policy , which is the option selected from sync, async, or auto

The write policy, which is the particular write mode that VDO applied, that is either sync or
async

2.4.4. Checking for a volatile cache

This procedure determines if a block device has a volatile cache or not. You can use the information to
choose between the sync and async VDO write modes.

Procedure

1. Use either of the following methods to determine if a device has a writeback cache:

Read the /sys/block/block-device/device/scsi_disk/identifier/cache_type sysfs file. For
example:

$ cat '/sys/block/sda/device/scsi_disk/7:0:0:0/cache_type'

write back

$ cat '/sys/block/sdb/device/scsi_disk/1:2:0:0/cache_type'

None

Alternatively, you can find whether the above mentioned devices have a write cache or not
in the kernel boot log:

sd 7:0:0:0: [sda] Write cache: enabled, read cache: enabled, does not support DPO or
FUA
sd 1:2:0:0: [sdb] Write cache: disabled, read cache: disabled, supports DPO and FUA

CHAPTER 2. MAINTAINING VDO

29

2. In the previous examples:

Device sda indicates that it has a writeback cache. Use async mode for it.

Device sdb indicates that it does not have a writeback cache. Use sync mode for it.

You should configure VDO to use the sync write mode if the cache_type value is None or
write through.

2.4.5. Setting a VDO write mode

This procedure sets a write mode for a VDO volume, either for an existing one or when creating a new
volume.

IMPORTANT

Using an incorrect write mode might result in data loss after a power failure, a system
crash, or any unexpected loss of contact with the disk.

Prerequisites

Determine which write mode is correct for your device. See Section 2.4.4, “Checking for a
volatile cache”.

Procedure

You can set a write mode either on an existing VDO volume or when creating a new volume:

To modify an existing VDO volume, use:

vdo changeWritePolicy --writePolicy=sync|async|async-unsafe|auto \
 --name=vdo-name

To specify a write mode when creating a VDO volume, add the --
writePolicy=sync|async|async-unsafe|auto option to the vdo create command.

2.5. RECOVERING A VDO VOLUME AFTER AN UNCLEAN SHUTDOWN

You can recover a VDO volume after an unclean shutdown to enable it to continue operating. The task is
mostly automated. Additionally, you can clean up after a VDO volume was unsuccessfully created
because of a failure in the process.

2.5.1. VDO write modes

VDO supports the following write modes:

sync

When VDO is in sync mode, the layers above it assume that a write command writes data to
persistent storage. As a result, it is not necessary for the file system or application, for example, to
issue FLUSH or force unit access (FUA) requests to cause the data to become persistent at critical
points.
VDO must be set to sync mode only when the underlying storage guarantees that data is written to
persistent storage when the write command completes. That is, the storage must either have no
volatile write cache, or have a write through cache.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

30

async

When VDO is in async mode, VDO does not guarantee that the data is written to persistent storage
when a write command is acknowledged. The file system or application must issue FLUSH or FUA
requests to ensure data persistence at critical points in each transaction.
VDO must be set to async mode if the underlying storage does not guarantee that data is written to
persistent storage when the write command completes; that is, when the storage has a volatile write
back cache.

async-unsafe

This mode has the same properties as async but it is not compliant with Atomicity, Consistency,
Isolation, Durability (ACID). Compared to async, async-unsafe has a better performance.

WARNING

When an application or a file system that assumes ACID compliance operates on
top of the VDO volume, async-unsafe mode might cause unexpected data loss.

auto

The auto mode automatically selects sync or async based on the characteristics of each device.
This is the default option.

2.5.2. VDO volume recovery

When a VDO volume restarts after an unclean shutdown, VDO performs the following actions:

Verifies the consistency of the metadata on the volume.

Rebuilds a portion of the metadata to repair it if necessary.

Rebuilds are automatic and do not require user intervention.

VDO might rebuild different writes depending on the active write mode:

sync

If VDO was running on synchronous storage and write policy was set to sync, all data written to the
volume are fully recovered.

async

If the write policy was async, some writes might not be recovered if they were not made durable. This
is done by sending VDO a FLUSH command or a write I/O tagged with the FUA (force unit access)
flag. You can accomplish this from user mode by invoking a data integrity operation like fsync,
fdatasync, sync, or umount.

In either mode, some writes that were either unacknowledged or not followed by a flush might also be
rebuilt.

Automatic and manual recovery
When a VDO volume enters recovering operating mode, VDO automatically rebuilds the unclean VDO
volume after the it comes back online. This is called online recovery.

CHAPTER 2. MAINTAINING VDO

31

If VDO cannot recover a VDO volume successfully, it places the volume in read-only operating mode
that persists across volume restarts. You need to fix the problem manually by forcing a rebuild.

Additional resources

For more information about automatic and manual recovery and VDO operating modes, see
Section 2.5.3, “VDO operating modes”.

2.5.3. VDO operating modes

This section describes the modes that indicate whether a VDO volume is operating normally or is
recovering from an error.

You can display the current operating mode of a VDO volume using the vdostats --verbose device
command. See the Operating mode attribute in the output.

normal

This is the default operating mode. VDO volumes are always in normal mode, unless either of the
following states forces a different mode. A newly created VDO volume starts in normal mode.

recovering

When a VDO volume does not save all of its metadata before shutting down, it automatically enters
recovering mode the next time that it starts up. The typical reasons for entering this mode are
sudden power loss or a problem from the underlying storage device.
In recovering mode, VDO is fixing the references counts for each physical block of data on the
device. Recovery usually does not take very long. The time depends on how large the VDO volume is,
how fast the underlying storage device is, and how many other requests VDO is handling
simultaneously. The VDO volume functions normally with the following exceptions:

Initially, the amount of space available for write requests on the volume might be limited. As
more of the metadata is recovered, more free space becomes available.

Data written while the VDO volume is recovering might fail to deduplicate against data
written before the crash if that data is in a portion of the volume that has not yet been
recovered. VDO can compress data while recovering the volume. You can still read or
overwrite compressed blocks.

During an online recovery, certain statistics are unavailable: for example, blocks in use and
blocks free . These statistics become available when the rebuild is complete.

Response times for reads and writes might be slower than usual due to the ongoing recovery
work

You can safely shut down the VDO volume in recovering mode. If the recovery does not finish
before shutting down, the device enters recovering mode again the next time that it starts up.

The VDO volume automatically exits recovering mode and moves to normal mode when it has fixed
all the reference counts. No administrator action is necessary. For details, see Section 2.5.4,
“Recovering a VDO volume online”.

read-only

When a VDO volume encounters a fatal internal error, it enters read-only mode. Events that might
cause read-only mode include metadata corruption or the backing storage device becoming read-
only. This mode is an error state.

In read-only mode, data reads work normally but data writes always fail. The VDO volume stays in

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

32

In read-only mode, data reads work normally but data writes always fail. The VDO volume stays in
read-only mode until an administrator fixes the problem.

You can safely shut down a VDO volume in read-only mode. The mode usually persists after the
VDO volume is restarted. In rare cases, the VDO volume is not able to record the read-only state to
the backing storage device. In these cases, VDO attempts to do a recovery instead.

Once a volume is in read-only mode, there is no guarantee that data on the volume has not been lost
or corrupted. In such cases, Red Hat recommends copying the data out of the read-only volume and
possibly restoring the volume from backup.

If the risk of data corruption is acceptable, it is possible to force an offline rebuild of the VDO volume
metadata so the volume can be brought back online and made available. The integrity of the rebuilt
data cannot be guaranteed. For details, see Section 2.5.5, “Forcing an offline rebuild of a VDO
volume metadata”.

2.5.4. Recovering a VDO volume online

This procedure performs an online recovery on a VDO volume to recover metadata after an unclean
shutdown.

Procedure

1. If the VDO volume is not already started, start it:

vdo start --name=my-vdo

No additional steps are necessary. The recovery runs in the background.

2. If you rely on volume statistics like blocks in use and blocks free , wait until they are available.

2.5.5. Forcing an offline rebuild of a VDO volume metadata

This procedure performs a forced offline rebuild of a VDO volume metadata to recover after an unclean
shutdown.

WARNING

This procedure might cause data loss on the volume.

Prerequisites

The VDO volume is started.

Procedure

1. Check if the volume is in read-only mode. See the operating mode attribute in the command
output:

CHAPTER 2. MAINTAINING VDO

33

vdo status --name=my-vdo

If the volume is not in read-only mode, it is not necessary to force an offline rebuild. Perform an
online recovery as described in Section 2.5.4, “Recovering a VDO volume online” .

2. Stop the volume if it is running:

vdo stop --name=my-vdo

3. Restart the volume with the --forceRebuild option:

vdo start --name=my-vdo --forceRebuild

2.5.6. Removing an unsuccessfully created VDO volume

This procedure cleans up a VDO volume in an intermediate state. A volume is left in an intermediate
state if a failure occurs when creating the volume. This might happen when, for example:

The system crashes

Power fails

The administrator interrupts a running vdo create command

Procedure

To clean up, remove the unsuccessfully created volume with the --force option:

vdo remove --force --name=my-vdo

The --force option is required because the administrator might have caused a conflict by
changing the system configuration since the volume was unsuccessfully created.

Without the --force option, the vdo remove command fails with the following message:

[...]
A previous operation failed.
Recovery from the failure either failed or was interrupted.
Add '--force' to 'remove' to perform the following cleanup.
Steps to clean up VDO my-vdo:
umount -f /dev/mapper/my-vdo
udevadm settle
dmsetup remove my-vdo
vdo: ERROR - VDO volume my-vdo previous operation (create) is incomplete

2.6. OPTIMIZING THE UDS INDEX

You can configure certain settings of the UDS index to optimize it on your system.

IMPORTANT

You cannot change the properties of the UDS index after creating the VDO volume.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

34

2.6.1. Components of a VDO volume

VDO uses a block device as a backing store, which can include an aggregation of physical storage
consisting of one or more disks, partitions, or even flat files. When a storage management tool creates a
VDO volume, VDO reserves volume space for the UDS index and VDO volume. The UDS index and the
VDO volume interact together to provide deduplicated block storage.

Figure 2.2. VDO disk organization

The VDO solution consists of the following components:

kvdo

A kernel module that loads into the Linux Device Mapper layer provides a deduplicated, compressed,
and thinly provisioned block storage volume.
The kvdo module exposes a block device. You can access this block device directly for block storage
or present it through a Linux file system, such as XFS or ext4.

When kvdo receives a request to read a logical block of data from a VDO volume, it maps the
requested logical block to the underlying physical block and then reads and returns the requested
data.

When kvdo receives a request to write a block of data to a VDO volume, it first checks whether the
request is a DISCARD or TRIM request or whether the data is uniformly zero. If either of these
conditions is true, kvdo updates its block map and acknowledges the request. Otherwise, VDO
processes and optimizes the data.

uds

A kernel module that communicates with the Universal Deduplication Service (UDS) index on the
volume and analyzes data for duplicates. For each new piece of data, UDS quickly determines if that
piece is identical to any previously stored piece of data. If the index finds a match, the storage system
can then internally reference the existing item to avoid storing the same information more than once.
The UDS index runs inside the kernel as the uds kernel module.

Command line tools

For configuring and managing optimized storage.

2.6.2. The UDS index

VDO uses a high-performance deduplication index called UDS to detect duplicate blocks of data as they
are being stored.

The UDS index provides the foundation of the VDO product. For each new piece of data, it quickly
determines if that piece is identical to any previously stored piece of data. If the index finds match, the
storage system can then internally reference the existing item to avoid storing the same information
more than once.

The UDS index runs inside the kernel as the uds kernel module.

CHAPTER 2. MAINTAINING VDO

35

The deduplication window is the number of previously written blocks that the index remembers. The size
of the deduplication window is configurable. For a given window size, the index requires a specific
amount of RAM and a specific amount of disk space. The size of the window is usually determined by
specifying the size of the index memory using the --indexMem=size option. VDO then determines the
amount of disk space to use automatically.

The UDS index consists of two parts:

A compact representation is used in memory that contains at most one entry per unique block.

An on-disk component that records the associated block names presented to the index as they
occur, in order.

UDS uses an average of 4 bytes per entry in memory, including cache.

The on-disk component maintains a bounded history of data passed to UDS. UDS provides
deduplication advice for data that falls within this deduplication window, containing the names of the
most recently seen blocks. The deduplication window allows UDS to index data as efficiently as possible
while limiting the amount of memory required to index large data repositories. Despite the bounded
nature of the deduplication window, most datasets which have high levels of deduplication also exhibit a
high degree of temporal locality — in other words, most deduplication occurs among sets of blocks that
were written at about the same time. Furthermore, in general, data being written is more likely to
duplicate data that was recently written than data that was written a long time ago. Therefore, for a
given workload over a given time interval, deduplication rates will often be the same whether UDS
indexes only the most recent data or all the data.

Because duplicate data tends to exhibit temporal locality, it is rarely necessary to index every block in
the storage system. Were this not so, the cost of index memory would outstrip the savings of reduced
storage costs from deduplication. Index size requirements are more closely related to the rate of data
ingestion. For example, consider a storage system with 100 TB of total capacity but with an ingestion
rate of 1 TB per week. With a deduplication window of 4 TB, UDS can detect most redundancy among the
data written within the last month.

2.6.3. Recommended UDS index configuration

This section describes the recommended options to use with the UDS index, based on your intended use
case.

In general, Red Hat recommends using a sparse UDS index for all production use cases. This is an
extremely efficient indexing data structure, requiring approximately one-tenth of a byte of RAM per
block in its deduplication window. On disk, it requires approximately 72 bytes of disk space per block.
The minimum configuration of this index uses 256 MB of RAM and approximately 25 GB of space on
disk.

To use this configuration, specify the --sparseIndex=enabled --indexMem=0.25 options to the vdo
create command. This configuration results in a deduplication window of 2.5 TB (meaning it will
remember a history of 2.5 TB). For most use cases, a deduplication window of 2.5 TB is appropriate for
deduplicating storage pools that are up to 10 TB in size.

The default configuration of the index, however, is to use a dense index. This index is considerably less
efficient (by a factor of 10) in RAM, but it has much lower (also by a factor of 10) minimum required disk
space, making it more convenient for evaluation in constrained environments.

In general, a deduplication window that is one quarter of the physical size of a VDO volume is a
recommended configuration. However, this is not an actual requirement. Even small deduplication
windows (compared to the amount of physical storage) can find significant amounts of duplicate data in

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

36

many use cases. Larger windows may also be used, but it in most cases, there will be little additional
benefit to doing so.

Additional resources

Speak with your Red Hat Technical Account Manager representative for additional guidelines on
tuning this important system parameter.

2.7. ENABLING OR DISABLING DEDUPLICATION IN VDO

In some instances, you might want to temporarily disable deduplication of data being written to a VDO
volume while still retaining the ability to read to and write from the volume. Disabling deduplication
prevents subsequent writes from being deduplicated, but the data that was already deduplicated
remains so.

2.7.1. Deduplication in VDO

Deduplication is a technique for reducing the consumption of storage resources by eliminating multiple
copies of duplicate blocks.

Instead of writing the same data more than once, VDO detects each duplicate block and records it as a
reference to the original block. VDO maintains a mapping from logical block addresses, which are used
by the storage layer above VDO, to physical block addresses, which are used by the storage layer under
VDO.

After deduplication, multiple logical block addresses can be mapped to the same physical block address.
These are called shared blocks. Block sharing is invisible to users of the storage, who read and write
blocks as they would if VDO were not present.

When a shared block is overwritten, VDO allocates a new physical block for storing the new block data to
ensure that other logical block addresses that are mapped to the shared physical block are not modified.

2.7.2. Enabling deduplication on a VDO volume

This procedure restarts the associated UDS index and informs the VDO volume that deduplication is
active again.

NOTE

Deduplication is enabled by default.

Procedure

To restart deduplication on a VDO volume, use the following command:

vdo enableDeduplication --name=my-vdo

2.7.3. Disabling deduplication on a VDO volume

This procedure stops the associated UDS index and informs the VDO volume that deduplication is no
longer active.

Procedure

CHAPTER 2. MAINTAINING VDO

37

To stop deduplication on a VDO volume, use the following command:

vdo disableDeduplication --name=my-vdo

You can also disable deduplication when creating a new VDO volume by adding the --
deduplication=disabled option to the vdo create command.

2.8. ENABLING OR DISABLING COMPRESSION IN VDO

VDO provides data compression. Disabling it can maximize performance and speed up processing of
data that is unlikely to compress. Re-enabling it can increase space savings.

2.8.1. Compression in VDO

In addition to block-level deduplication, VDO also provides inline block-level compression using the
HIOPS Compression™ technology.

VDO volume compression is on by default.

While deduplication is the optimal solution for virtual machine environments and backup applications,
compression works very well with structured and unstructured file formats that do not typically exhibit
block-level redundancy, such as log files and databases.

Compression operates on blocks that have not been identified as duplicates. When VDO sees unique
data for the first time, it compresses the data. Subsequent copies of data that have already been stored
are deduplicated without requiring an additional compression step.

The compression feature is based on a parallelized packaging algorithm that enables it to handle many
compression operations at once. After first storing the block and responding to the requestor, a best-fit
packing algorithm finds multiple blocks that, when compressed, can fit into a single physical block. After
it is determined that a particular physical block is unlikely to hold additional compressed blocks, it is
written to storage and the uncompressed blocks are freed and reused.

By performing the compression and packaging operations after having already responded to the
requestor, using compression imposes a minimal latency penalty.

2.8.2. Enabling compression on a VDO volume

This procedure enables compression on a VDO volume to increase space savings.

NOTE

Compression is enabled by default.

Procedure

To start it again, use the following command:

vdo enableCompression --name=my-vdo

2.8.3. Disabling compression on a VDO volume

This procedure stops compression on a VDO volume to maximize performance or to speed processing

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

38

This procedure stops compression on a VDO volume to maximize performance or to speed processing
of data that is unlikely to compress.

Procedure

To stop compression on an existing VDO volume, use the following command:

vdo disableCompression --name=my-vdo

Alternatively, you can disable compression by adding the --compression=disabled option to
the vdo create command when creating a new volume.

2.9. INCREASING THE SIZE OF A VDO VOLUME

You can increase the physical size of a VDO volume to utilize more underlying storage capacity, or the
logical size to provide more capacity on the volume.

2.9.1. The physical and logical size of a VDO volume

VDO utilizes physical, available physical, and logical size in the following ways:

Physical size

This is the same size as the underlying block device. VDO uses this storage for:

User data, which might be deduplicated and compressed

VDO metadata, such as the UDS index

Available physical size

This is the portion of the physical size that VDO is able to use for user data
It is equivalent to the physical size minus the size of the metadata, minus the remainder after dividing
the volume into slabs by the given slab size.

Logical Size

This is the provisioned size that the VDO volume presents to applications. It is usually larger than the
available physical size. If the --vdoLogicalSize option is not specified, then the provisioning of the
logical volume is now provisioned to a 1:1 ratio. For example, if a VDO volume is put on top of a 20
GB block device, then 2.5 GB is reserved for the UDS index (if the default index size is used). The
remaining 17.5 GB is provided for the VDO metadata and user data. As a result, the available storage
to consume is not more than 17.5 GB, and can be less due to metadata that makes up the actual VDO
volume.
VDO currently supports any logical size up to 254 times the size of the physical volume with an
absolute maximum logical size of 4PB.

Figure 2.3. VDO disk organization

CHAPTER 2. MAINTAINING VDO

39

Figure 2.3. VDO disk organization

In this figure, the VDO deduplicated storage target sits completely on top of the block device, meaning
the physical size of the VDO volume is the same size as the underlying block device.

Additional resources

For more information about how much storage VDO metadata requires on block devices of
different sizes, see Section 1.6.4, “Examples of VDO requirements by physical size” .

2.9.2. Thin provisioning in VDO

VDO is a thinly provisioned block storage target. The amount of physical space that a VDO volume uses
might differ from the size of the volume that is presented to users of the storage. You can make use of
this disparity to save on storage costs.

Out-of-space conditions

Take care to avoid unexpectedly running out of storage space, if the data written does not achieve the
expected rate of optimization.

Whenever the number of logical blocks (virtual storage) exceeds the number of physical blocks (actual
storage), it becomes possible for file systems and applications to unexpectedly run out of space. For
that reason, storage systems using VDO must provide you with a way of monitoring the size of the free
pool on the VDO volume.

You can determine the size of this free pool by using the vdostats utility. The default output of this
utility lists information for all running VDO volumes in a format similar to the Linux df utility. For example:

Device 1K-blocks Used Available Use%
/dev/mapper/vdo-name 211812352 105906176 105906176 50%

When the physical storage capacity of a VDO volume is almost full, VDO reports a warning in the system
log, similar to the following:

Oct 2 17:13:39 system lvm[13863]: Monitoring VDO pool vdo-name.
Oct 2 17:27:39 system lvm[13863]: WARNING: VDO pool vdo-name is now 80.69% full.
Oct 2 17:28:19 system lvm[13863]: WARNING: VDO pool vdo-name is now 85.25% full.
Oct 2 17:29:39 system lvm[13863]: WARNING: VDO pool vdo-name is now 90.64% full.
Oct 2 17:30:29 system lvm[13863]: WARNING: VDO pool vdo-name is now 96.07% full.

NOTE

These warning messages appear only when the lvm2-monitor service is running. It is
enabled by default.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

40

How to prevent out-of-space conditions

If the size of free pool drops below a certain level, you can take action by:

Deleting data. This reclaims space whenever the deleted data is not duplicated. Deleting data
frees the space only after discards are issued.

Adding physical storage

IMPORTANT

Monitor physical space on your VDO volumes to prevent out-of-space situations.
Running out of physical blocks might result in losing recently written, unacknowledged
data on the VDO volume.

Thin provisioning and the TRIM and DISCARD commands

To benefit from the storage savings of thin provisioning, the physical storage layer needs to know when
data is deleted. File systems that work with thinly provisioned storage send TRIM or DISCARD
commands to inform the storage system when a logical block is no longer required.

Several methods of sending the TRIM or DISCARD commands are available:

With the discard mount option, the file systems can send these commands whenever a block is
deleted.

You can send the commands in a controlled manner by using utilities such as fstrim. These
utilities tell the file system to detect which logical blocks are unused and send the information to
the storage system in the form of a TRIM or DISCARD command.

The need to use TRIM or DISCARD on unused blocks is not unique to VDO. Any thinly provisioned
storage system has the same challenge.

2.9.3. Increasing the logical size of a VDO volume

This procedure increases the logical size of a given VDO volume. It enables you to initially create VDO
volumes that have a logical size small enough to be safe from running out of space. After some period of
time, you can evaluate the actual rate of data reduction, and if sufficient, you can grow the logical size of
the VDO volume to take advantage of the space savings.

It is not possible to decrease the logical size of a VDO volume.

Procedure

To grow the logical size, use:

vdo growLogical --name=my-vdo \
 --vdoLogicalSize=new-logical-size

When the logical size increases, VDO informs any devices or file systems on top of the volume
of the new size.

2.9.4. Increasing the physical size of a VDO volume

This procedure increases the amount of physical storage available to a VDO volume.

CHAPTER 2. MAINTAINING VDO

41

It is not possible to shrink a VDO volume in this way.

Prerequisites

The underlying block device has a larger capacity than the current physical size of the VDO
volume.
If it does not, you can attempt to increase the size of the device. The exact procedure depends
on the type of the device. For example, to resize an MBR or GPT partition, see the Resizing a
partition section in the Managing storage devices guide.

Procedure

Add the new physical storage space to the VDO volume:

vdo growPhysical --name=my-vdo

2.10. REMOVING VDO VOLUMES

You can remove an existing VDO volume on your system.

2.10.1. Removing a working VDO volume

This procedure removes a VDO volume and its associated UDS index.

Procedure

1. Unmount the file systems and stop the applications that are using the storage on the VDO
volume.

2. To remove the VDO volume from your system, use:

vdo remove --name=my-vdo

2.10.2. Removing an unsuccessfully created VDO volume

This procedure cleans up a VDO volume in an intermediate state. A volume is left in an intermediate
state if a failure occurs when creating the volume. This might happen when, for example:

The system crashes

Power fails

The administrator interrupts a running vdo create command

Procedure

To clean up, remove the unsuccessfully created volume with the --force option:

vdo remove --force --name=my-vdo

The --force option is required because the administrator might have caused a conflict by
changing the system configuration since the volume was unsuccessfully created.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

42

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-partitions_managing-storage-devices#proc_resizing-a-partition-with-parted_getting-started-with-partitions

Without the --force option, the vdo remove command fails with the following message:

[...]
A previous operation failed.
Recovery from the failure either failed or was interrupted.
Add '--force' to 'remove' to perform the following cleanup.
Steps to clean up VDO my-vdo:
umount -f /dev/mapper/my-vdo
udevadm settle
dmsetup remove my-vdo
vdo: ERROR - VDO volume my-vdo previous operation (create) is incomplete

2.11. ADDITIONAL RESOURCES

You can use the Ansible tool to automate VDO deployment and administration. For details, see:

Ansible documentation: https://docs.ansible.com/

VDO Ansible module documentation:
https://docs.ansible.com/ansible/latest/modules/vdo_module.html

CHAPTER 2. MAINTAINING VDO

43

https://docs.ansible.com/
https://docs.ansible.com/ansible/latest/modules/vdo_module.html

CHAPTER 3. TESTING VDO SPACE SAVINGS
You can perform a series of tests to determine how much storage space you can save by using VDO.

Prerequisites

One or more physical block devices are available.

The target block device is larger than 512 GiB.

VDO is installed.

3.1. THE PURPOSE AND OUTCOMES OF TESTING VDO

VDO tests provided by Red Hat help produce an assessment of the integration of VDO into existing
storage devices. They are intended to augment, not replace, your internal evaluation efforts.

The test results help Red Hat engineers to assist you in understanding VDO behavior in specific storage
environments. Original equipment manufacturers (OEMs) can learn how to design their deduplication
and compression capable devices, and how their customers can tune their applications for those devices.

Goals

Identify configuration settings that elicit optimal responses from the test device.

Explain basic tuning parameters to help avoid product misconfigurations.

Create a reference of performance results to compare with real use cases.

Identify how different workloads affect performance and data efficiency.

Shorten the time to market with VDO implementations.

The test plan and test conditions

The VDO tests provide conditions under which VDO can be most realistically evaluated. Altering test
procedures or parameters might invalidate results. Red Hat sales engineers can guide you when
modifying test plans.

For an effective test plan, you must study the VDO architecture and explore these items:

The performance in high-load environments

The configurable properties of VDO for performance tuning end-user applications

The impact of VDO being a native 4 KiB block device

The response to access patterns and distributions of deduplication and compression

The value of cost versus capacity versus performance for a given application

3.2. THIN PROVISIONING IN VDO

VDO is a thinly provisioned block storage target. The amount of physical space that a VDO volume uses
might differ from the size of the volume that is presented to users of the storage. You can make use of
this disparity to save on storage costs.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

44

Out-of-space conditions

Take care to avoid unexpectedly running out of storage space, if the data written does not achieve the
expected rate of optimization.

Whenever the number of logical blocks (virtual storage) exceeds the number of physical blocks (actual
storage), it becomes possible for file systems and applications to unexpectedly run out of space. For
that reason, storage systems using VDO must provide you with a way of monitoring the size of the free
pool on the VDO volume.

You can determine the size of this free pool by using the vdostats utility. The default output of this
utility lists information for all running VDO volumes in a format similar to the Linux df utility. For example:

Device 1K-blocks Used Available Use%
/dev/mapper/vdo-name 211812352 105906176 105906176 50%

When the physical storage capacity of a VDO volume is almost full, VDO reports a warning in the system
log, similar to the following:

Oct 2 17:13:39 system lvm[13863]: Monitoring VDO pool vdo-name.
Oct 2 17:27:39 system lvm[13863]: WARNING: VDO pool vdo-name is now 80.69% full.
Oct 2 17:28:19 system lvm[13863]: WARNING: VDO pool vdo-name is now 85.25% full.
Oct 2 17:29:39 system lvm[13863]: WARNING: VDO pool vdo-name is now 90.64% full.
Oct 2 17:30:29 system lvm[13863]: WARNING: VDO pool vdo-name is now 96.07% full.

NOTE

These warning messages appear only when the lvm2-monitor service is running. It is
enabled by default.

How to prevent out-of-space conditions

If the size of free pool drops below a certain level, you can take action by:

Deleting data. This reclaims space whenever the deleted data is not duplicated. Deleting data
frees the space only after discards are issued.

Adding physical storage

IMPORTANT

Monitor physical space on your VDO volumes to prevent out-of-space situations.
Running out of physical blocks might result in losing recently written, unacknowledged
data on the VDO volume.

Thin provisioning and the TRIM and DISCARD commands

To benefit from the storage savings of thin provisioning, the physical storage layer needs to know when
data is deleted. File systems that work with thinly provisioned storage send TRIM or DISCARD
commands to inform the storage system when a logical block is no longer required.

Several methods of sending the TRIM or DISCARD commands are available:

With the discard mount option, the file systems can send these commands whenever a block is
deleted.

CHAPTER 3. TESTING VDO SPACE SAVINGS

45

You can send the commands in a controlled manner by using utilities such as fstrim. These
utilities tell the file system to detect which logical blocks are unused and send the information to
the storage system in the form of a TRIM or DISCARD command.

The need to use TRIM or DISCARD on unused blocks is not unique to VDO. Any thinly provisioned
storage system has the same challenge.

3.3. INFORMATION TO RECORD BEFORE EACH VDO TEST

You must record the following information at the start of each test to ensure that the test environment
is fully understood. You can capture much of the required information by using the sosreport utility.

Required information

The used Linux build, including the kernel build number

The complete list of installed packages, as obtained from the rpm -qa command

Complete system specifications

CPU type and quantity; available in the /proc/cpuinfo file

Installed memory and the amount available after the rase OS is running; available in the
/proc/meminfo file

Types of used drive controllers

Types and quantity of used disks

A complete list of running processes; available from the ps aux command or a similar listing

Name of the physical volume and the volume group created for use with VDO; available from
the pvs and vgs commands

File system used when formatting the VDO volume, if any

Permissions on the mounted directory

Content of the /etc/vdoconf.yaml file

Location of the VDO files

3.4. CREATING A VDO TEST VOLUME

This procedure creates a VDO volume with a logical size of 1 TiB on a 512 GiB physical volume for testing
purposes.

Procedure

1. Create a VDO volume:

vdo create --name=vdo-test \
 --device=/dev/sdb \
 --vdoLogicalSize=1T \

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

46

 --writePolicy=policy \
 --verbose

Replace /dev/sdb with the path to a block device.

To test the VDO async mode on top of asynchronous storage, create an asynchronous
volume using the --writePolicy=async option.

To test the VDO sync mode on top of synchronous storage, create a synchronous volume
using the --writePolicy=sync option.

2. Format the new volume with an XFS or ext4 file system.

For XFS:

mkfs.xfs -K /dev/mapper/vdo-test

For ext4:

mkfs.ext4 -E nodiscard /dev/mapper/vdo-test

3. Mount the formatted volume:

mkdir /mnt/vdo-test

mount /dev/mapper/vdo-test /mnt/vdo-test && \
 chmod a+rwx /mnt/vdo-test

3.5. TESTING THE VDO TEST VOLUME

This procedure tests whether reading and writing to the VDO test volume works.

Prerequisites

A newly created VDO test volume is mounted. For details, see Section 3.4, “Creating a VDO test
volume”.

Procedure

1. Write 32 GiB of random data to the VDO volume:

$ dd if=/dev/urandom of=/mnt/vdo-test/testfile bs=4096 count=8388608

2. Read the data from the VDO volume and write it to another volume:

$ dd if=/mnt/vdo-test/testfile of=another-location/testfile bs=4096

Replace another-location with any directory where you have write access that is not on the
VDO test volume. For example, you can use your home directory.

3. Compare the two files:

$ diff --report-identical-files /mnt/vdo-test/testfile another-location/testfile

CHAPTER 3. TESTING VDO SPACE SAVINGS

47

The command should report that the files are the same.

4. Copy the file back to a new location on the VDO volume:

$ dd if=another-location/testfile of=/mnt/vdo-test/testfile2 bs=4096

5. Compare the third file to the second file:

$ diff --report-identical-files /mnt/vdo-test/testfile2 another-location/testfile

The command should report that the files are the same.

Cleanup steps

Remove the VDO test volume as described in Section 3.6, “Cleaning up the VDO test volume”.

3.6. CLEANING UP THE VDO TEST VOLUME

This procedure removes the VDO volume used for testing VDO efficiency from the system.

Prerequisites

A VDO test volume is mounted.

Procedure

1. Unmount the file system created on the VDO volume:

umount /mnt/vdo-test

2. Remove the VDO test volume from the system:

vdo remove --name=vdo-test

Verification steps

Verify that the volume has been removed:

vdo list --all | grep vdo-test

The command should not list the VDO test partition.

3.7. MEASURING VDO DEDUPLICATION

This procedure tests the efficiency of VDO data deduplication on a VDO test volume.

Prerequisites

A newly created VDO test volume is mounted. For details, see Section 3.4, “Creating a VDO test
volume”.

Procedure

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

48

1. Prepare a table where you can record the test results:

Statistic Bare file system After seed After 10 copies

File system used size

VDO data used

VDO logical used

2. Create 10 directories on the VDO volume to hold 10 copies of the test data set:

$ mkdir /mnt/vdo-test/vdo{01..10}

3. Examine the disk usage reported by the file system:

$ df --human-readable /mnt/vdo-test

Example 3.1. Disk usage

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vdo-test 1.5T 198M 1.4T 1% /mnt/vdo-test

4. Record the following values:

vdostats --verbose | grep "blocks used"

Example 3.2. Used blocks

data blocks used : 1090
overhead blocks used : 538846
logical blocks used : 6059434

The data blocks used value is the number of blocks used by user data after optimization
on the physical device running under VDO.

The logical blocks used value is the number of blocks used before optimization. It will be
used as the starting point for measurements.

5. Create a data source file on the VDO volume:

$ dd if=/dev/urandom of=/mnt/vdo-test/sourcefile bs=4096 count=1048576

4294967296 bytes (4.3 GB) copied, 540.538 s, 7.9 MB/s

6. Re-examine the amount of used physical disk space:

$ df --human-readable /mnt/vdo-test

CHAPTER 3. TESTING VDO SPACE SAVINGS

49

Example 3.3. Disk usage with the data source file

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vdo-test 1.5T 4.2G 1.4T 1% /mnt/vdo-test

vdostats --verbose | grep "blocks used"

Example 3.4. Used blocks with the data source file

data blocks used : 1050093 # Increased by 4GiB
overhead blocks used : 538846 # Did not significantly change
logical blocks used : 7108036 # Increased by 4GiB

This command should show an increase in the number of blocks used, corresponding to the size
of the written file.

7. Copy the file to each of the 10 subdirectories:

$ for i in {01..10}; do
 cp /mnt/vdo-test/sourcefile /mnt/vdo-test/vdo$i
 done

8. Re-examine the amount of used physical disk space:

$ df -h /mnt/vdo-test

Example 3.5. Disk usage after copying the file

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vdo-test 1.5T 45G 1.3T 4% /mnt/vdo-test

vdostats --verbose | grep "blocks used"

Example 3.6. Used blocks after copying the file

data blocks used : 1050836 # Increased by 3 MiB
overhead blocks used : 538846
logical blocks used : 17594127 # Increased by 41 GiB

The data blocks used value should be similar to the result of the earlier listing, with only a slight
increase due to file system journaling and metadata.

9. Subtract this new value of the space used by the file system from the value found before writing
the test data. This is the amount of space consumed by this test from the perspective of the file
system.

10. Observe the space savings in your recorded statistics:

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

50

Example 3.7. Recorded values

Statistic Bare file system After seed After 10 copies

File system used size 198 MiB 4.2 GiB 45 GiB

VDO data used 4 MiB 4.1 GiB 4.1 GiB

VDO logical used 23.6 GiB (file system
overhead for 1.6 TiB
formatted drive)

27.8 GiB 68.7 GiB

NOTE

In the table, values have been converted to MiB or GiB. Blocks in the
vdostats output are 4,096 B in size.

Cleanup steps

Remove the VDO test volume as described in Section 3.6, “Cleaning up the VDO test volume”.

3.8. MEASURING VDO COMPRESSION

This procedure tests the efficiency of VDO data compression on a VDO test volume.

Prerequisites

A newly created VDO test volume is mounted. For details, see Section 3.4, “Creating a VDO test
volume”.

Procedure

1. Disable deduplication and enable compression on the VDO test volume:

vdo disableDeduplication --name=vdo-test
vdo enableCompression --name=vdo-test

2. Synchronize the VDO volume to complete any unfinished compression:

sync && dmsetup message vdo-test 0 sync-dedupe

3. Inspect VDO statistics before the transfer:

vdostats --verbose | grep "blocks used"

Make note of the data blocks used and logical blocks used values.

4. VDO optimizes file system overhead as well as actual user data. Calculate the number of 4 KiB

CHAPTER 3. TESTING VDO SPACE SAVINGS

51

4. VDO optimizes file system overhead as well as actual user data. Calculate the number of 4 KiB
blocks saved by compression for the empty file system as logical blocks used minus data
blocks used.

5. Copy the content of the /lib directory to the VDO volume:

cp --verbose --recursive /lib /mnt/vdo-test

...
sent 152508960 bytes received 60448 bytes 61027763.20 bytes/sec
total size is 152293104 speedup is 1.00

Record the total size of the copied data.

6. Synchronize Linux caches and the VDO volume:

sync && dmsetup message vdo-test 0 sync-dedupe

7. Inspect VDO statistics again:

vdostats --verbose | grep "blocks used"

Observe the logical blocks used and data blocks used values.

8. Calculate the amount of bytes saved by compression using the following formula:

saved_bytes = (logical_blocks_used - data_blocks_used) * 4096

Cleanup steps

Remove the VDO test volume as described in Section 3.6, “Cleaning up the VDO test volume”.

3.9. MEASURING TOTAL VDO SPACE SAVINGS

This procedure tests the combined efficiency of VDO data deduplication and compression on a VDO
test volume.

Procedure

1. Create and mount a VDO volume as described in Section 3.4, “Creating a VDO test volume” .

2. Perform the tests described in Measuring VDO deduplication and Measuring VDO compression
on the same volume without removing it. Observe changes to space savings in the vdostats
output.

3. Experiment with your own datasets.

3.10. TESTING THE EFFECT OF TRIM AND DISCARD ON VDO

This procedure tests whether the TRIM and DISCARD commands properly free up blocks from deleted
files on a VDO test volume. It demonstrates that discards inform VDO that the space is no longer used.

Prerequisites

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

52

A newly created VDO test volume is mounted. For details, see Section 3.4, “Creating a VDO test
volume”.

Procedure

1. Prepare a table where you can record the test results:

Step File space used (MB) Data blocks used Logical blocks used

Initial

Add 1 GiB file

Run fstrim

Delete 1 GiB file

Run fstrim

2. Trim the file system to remove unneeded blocks:

fstrim /mnt/vdo-test

The command might take a long time.

3. Record the initial space usage in the file system:

$ df -m /mnt/vdo-test

4. See how many physical and logical data blocks the VDO volume uses:

vdostats --verbose | grep "blocks used"

5. Create a 1 GiB file with non-duplicate data on the VDO volume:

$ dd if=/dev/urandom of=/mnt/vdo-test/file bs=1M count=1K

6. Record the space usage again:

$ df -m /mnt/vdo-test

vdostats --verbose | grep "blocks used"

The file system should use an additional 1 GiB. The data blocks used and logical blocks used
values should increase similarly.

7. Trim the file system again:

fstrim /mnt/vdo-test

8. Inspect the space usage again to confirm that the trim had no impact on the physical volume

CHAPTER 3. TESTING VDO SPACE SAVINGS

53

8. Inspect the space usage again to confirm that the trim had no impact on the physical volume
usage:

$ df -m /mnt/vdo-test

vdostats --verbose | grep "blocks used"

9. Delete the 1 GiB file:

$ rm /mnt/vdo-test/file

10. Check and record the space usage again:

$ df -m /mnt/vdo-test

vdostats --verbose | grep "blocks used"

The file system is aware that a file has been deleted, but there is no change to the number of
physical or logical blocks because the file deletion has not been communicated to the
underlying storage.

11. Trim the file system again:

fstrim /mnt/vdo-test

12. Check and record the space usage again:

$ df -m /mnt/vdo-test

vdostats --verbose | grep "blocks used"

The fstrim utility looks for free blocks in the file system and sends a TRIM command to the
VDO volume for unused addresses, which releases the associated logical blocks. VDO processes
the TRIM command to release the underlying physical blocks.

Additional resources

For more information about the TRIM and DISCARD commands, the fstrim utility, and the
discard mount option, see Chapter 5, Discarding unused blocks

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

54

CHAPTER 4. TESTING VDO PERFORMANCE
You can perform a series of tests to measure VDO performance, obtain a performance profile of your
system with VDO, and determine which applications perform well with VDO.

Prerequisites

One or more Linux physical block devices are available.

The target block device (for example, /dev/sdb) is larger than 512 GiB.

Flexible I/O Tester (fio) is installed.

VDO is installed.

4.1. PREPARING AN ENVIRONMENT FOR VDO PERFORMANCE
TESTING

Before testing VDO performance, you must consider the host system configuration, VDO configuration,
and the workloads that will be used during testing. These choices affect the benchmarking of space
efficiency, bandwidth, and latency.

To prevent one test from affecting the results of another, you must create a new VDO volume for each
iteration of each test.

4.1.1. Considerations before testing VDO performance

The following conditions and configurations affect the VDO test results:

System configuration

Number and type of CPU cores available. You can list this information using the taskset utility.

Available memory and total installed memory

Configuration of storage devices

Active disk scheduler

Linux kernel version

Packages installed

VDO configuration

Partitioning scheme

File systems used on VDO volumes

Size of the physical storage assigned to a VDO volume

Size of the logical VDO volume created

Sparse or dense UDS indexing

CHAPTER 4. TESTING VDO PERFORMANCE

55

UDS Index in memory size

VDO thread configuration

Workloads

Types of tools used to generate test data

Number of concurrent clients

The quantity of duplicate 4 KiB blocks in the written data

Read and write patterns

The working set size

4.1.2. Special considerations for testing VDO read performance

You must consider these additional factors before testing VDO read performance:

If a 4 KiB block has never been written, VDO does not read from the storage and immediately
responds with a zero block.

If a 4 KiB block has been written but contains all zeros, VDO does not read from the storage and
immediately responds with a zero block.

This behavior results in very fast read performance when there is no data to read. This is why read tests
must prefill the volume with actual data.

4.1.3. Preparing the system for testing VDO performance

This procedure configures system settings to achieve optimal VDO performance during testing.

IMPORTANT

Testing beyond the bounds listed in any particular test might result in the loss of testing
time due to abnormal results.

For example, the VDO tests describe a test that conducts random reads over a 100 GiB
address range. To test a working set of 500 GiB, you must increase the amount of RAM
allocated for the VDO block map cache accordingly.

Procedure

1. Ensure that your CPU is running at its highest performance setting.

2. If possible, disable CPU frequency scaling using the BIOS configuration or the Linux cpupower
utility.

3. If possible, enable dynamic processor frequency adjustment (Turbo Boost or Turbo Core) for
the CPU. This feature introduces some variability in the test results, but improves overall
performance.

4. File systems might have unique impacts on performance. They often skew performance
measurements, making it harder to isolate the impact of VDO on the results.

If reasonable, measure performance on the raw block device. If this is not possible, format the

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

56

If reasonable, measure performance on the raw block device. If this is not possible, format the
device using the file system that VDO will use in the target implementation.

4.2. CREATING A VDO VOLUME FOR PERFORMANCE TESTING

This procedure creates a VDO volume with a logical size of 1 TiB on a 512 GiB physical volume for testing
VDO performance.

Procedure

Create a VDO volume:

vdo create --name=vdo-test \
 --device=/dev/sdb \
 --vdoLogicalSize=1T \
 --writePolicy=policy \
 --verbose

Replace /dev/sdb with the path to a block device.

To test the VDO async mode on top of asynchronous storage, create an asynchronous
volume using the --writePolicy=async option.

To test the VDO sync mode on top of synchronous storage, create a synchronous volume
using the --writePolicy=sync option.

4.3. CLEANING UP THE VDO PERFORMANCE TESTING VOLUME

This procedure removes the VDO volume used for testing VDO performance from the system.

Prerequisites

A VDO test volume exists on the system.

Procedure

Remove the VDO test volume from the system:

vdo remove --name=vdo-test

Verification steps

Verify that the volume has been removed:

vdo list --all | grep vdo-test

The command should not list the VDO test partition.

4.4. TESTING THE EFFECTS OF I/O DEPTH ON VDO PERFORMANCE

These tests determine the I/O depth that produces the optimal throughput and the lowest latency for
your VDO configuration. I/O depth represents the number of I/O requests that the fio tool submits at a
time.

CHAPTER 4. TESTING VDO PERFORMANCE

57

Because VDO uses a 4 KiB sector size, the tests perform four-corner testing at 4 KiB I/O operations,
and I/O depth of 1, 8, 16, 32, 64, 128, 256, 512, and 1024.

4.4.1. Testing the effect of I/O depth on sequential 100% reads in VDO

This test determines how sequential 100% read operations perform on a VDO volume at different I/O
depth values.

Procedure

1. Create a new VDO volume.
For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job on the test volume:

fio --rw=write \
 --bs=8M \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --thread \
 --direct=1 \
 --scramble_buffers=1

3. Record the reported throughput and latency for sequential 100% reads:

for depth in 1 2 4 8 16 32 64 128 256 512 1024 2048; do
 fio --rw=read \
 --bs=4096 \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=1 \
 --iodepth=$depth \
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

4.4.2. Testing the effect of I/O depth on sequential 100% writes in VDO

This test determines how sequential 100% write operations perform on a VDO volume at different I/O
depth values.

Procedure

1. Create a new VDO test volume.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

58

For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job:

fio --rw=write \
 --bs=8M \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --thread \
 --direct=1 \
 --scramble_buffers=1

3. Record the reported throughput and latency for sequential 100% writes:

for depth in 1 2 4 8 16 32 64 128 256 512 1024 2048; do
 fio --rw=write \
 --bs=4096 \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=1 \
 --iodepth=$depth \
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

4.4.3. Testing the effect of I/O depth on random 100% reads in VDO

This test determines how random 100% read operations perform on a VDO volume at different I/O
depth values.

Procedure

1. Create a new VDO test volume.
For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job:

fio --rw=write \
 --bs=8M \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --thread \
 --direct=1 \
 --scramble_buffers=1

CHAPTER 4. TESTING VDO PERFORMANCE

59

3. Record the reported throughput and latency for random 100% reads:

for depth in 1 2 4 8 16 32 64 128 256 512 1024 2048; do
 fio --rw=randread \
 --bs=4096 \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=1 \
 --iodepth=$depth \
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

4.4.4. Testing the effect of I/O depth on random 100% writes in VDO

This test determines how random 100% write operations perform on a VDO volume at different I/O
depth values.

IMPORTANT

You must recreate the VDO volume between each I/O depth test run.

Procedure

Perform the following series of steps separately for the I/O depth values of 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, and 2048:

1. Create a new VDO test volume.
For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job:

fio --rw=write \
 --bs=8M \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --thread \
 --direct=1 \
 --scramble_buffers=1

3. Record the reported throughput and latency for random 100% writes:

fio --rw=randwrite \

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

60

 --bs=4096 \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=1 \
 --iodepth=depth-value
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

4.4.5. Analysis of VDO performance at different I/O depths

The following example analyses VDO throughput and latency recorded at different I/O depth values.

Watch the behavior across the range and the points of inflection where increased I/O depth provides
diminishing throughput gains. Sequential access and random access probably peak at different values,
but the peaks might be different for all types of storage configurations.

Example 4.1. I/O depth analysis

Figure 4.1. VDO throughput analysis

Notice the "knee" in each performance curve:

Marker 1 identifies the peak sequential throughput at point X. This particular configuration
does not benefit from sequential 4 KiB I/O depth larger than X.

Marker 2 identifies peak random 4 KiB throughput at point Z. This particular configuration
does not benefit from random 4 KiB I/O depth larger than Z.

Beyond the I/O depth at points X and Z, there are diminishing bandwidth gains, and average request
latency increases 1:1 for each additional I/O request.

CHAPTER 4. TESTING VDO PERFORMANCE

61

The following image shows an example of the random write latency after the "knee" of the curve in
the previous graph. You should test at these points for maximum throughput that incurs the least
response time penalty.

Figure 4.2. VDO latency analysis

Optimal I/O depth

Point Z marks the optimal I/O depth. The test plan collects additional data with I/O depth equal to Z.

4.5. TESTING THE EFFECTS OF I/O REQUEST SIZE ON VDO
PERFORMANCE

Using these tests, you can identify the block size that produces the best performance of VDO at the
optimal I/O depth.

The tests perform four-corner testing at a fixed I/O depth, with varied block sizes over the range of
8 KiB to 1 MiB.

Prerequisites

You have determined the optimal I/O depth value. For details, see Section 4.4, “Testing the
effects of I/O depth on VDO performance”.
In the following tests, replace optimal-depth with the optimal I/O depth value.

4.5.1. Testing the effect of I/O request size on sequential writes in VDO

This test determines how sequential write operations perform on a VDO volume at different I/O request
sizes.

Procedure

1. Create a new VDO volume.
For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job on the test volume:

fio --rw=write \

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

62

 --bs=8M \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --thread \
 --direct=1 \
 --scramble_buffers=1

3. Record the reported throughput and latency for the sequential write test:

for iosize in 4 8 16 32 64 128 256 512 1024; do
 fio --rw=write \
 --bs=${iosize}k \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=1 \
 --iodepth=optimal-depth \
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

4.5.2. Testing the effect of I/O request size on random writes in VDO

This test determines how random write operations perform on a VDO volume at different I/O request
sizes.

IMPORTANT

You must recreate the VDO volume between each I/O request size test run.

Procedure

Perform the following series steps separately for the I/O request sizes of 4k, 8k, 16k, 32k, 64k, 128k,
256k, 512k, and 1024k:

1. Create a new VDO volume.
For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job on the test volume:

fio --rw=write \
 --bs=8M \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \

CHAPTER 4. TESTING VDO PERFORMANCE

63

 --thread \
 --direct=1 \
 --scramble_buffers=1

3. Record the reported throughput and latency for the random write test:

fio --rw=randwrite \
 --bs=request-size \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=1 \
 --iodepth=optimal-depth \
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

4.5.3. Testing the effect of I/O request size on sequential read in VDO

This test determines how sequential read operations perform on a VDO volume at different I/O request
sizes.

Procedure

1. Create a new VDO volume.
For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job on the test volume:

fio --rw=write \
 --bs=8M \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --thread \
 --direct=1 \
 --scramble_buffers=1

3. Record the reported throughput and latency for the sequential read test:

for iosize in 4 8 16 32 64 128 256 512 1024; do
 fio --rw=read \
 --bs=${iosize}k \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

64

 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=1 \
 --iodepth=optimal-depth \
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

4.5.4. Testing the effect of I/O request size on random read in VDO

This test determines how random read operations perform on a VDO volume at different I/O request
sizes.

Procedure

1. Create a new VDO volume.
For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job on the test volume:

fio --rw=write \
 --bs=8M \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --thread \
 --direct=1 \
 --scramble_buffers=1

3. Record the reported throughput and latency for the random read test:

for iosize in 4 8 16 32 64 128 256 512 1024; do
 fio --rw=read \
 --bs=${iosize}k \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=1 \
 --iodepth=optimal-depth \
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done

CHAPTER 4. TESTING VDO PERFORMANCE

65

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

4.5.5. Analysis of VDO performance at different I/O request sizes

The following example analyses VDO throughput and latency recorded at different I/O request sizes.

Example 4.2. I/O request size analysis

Figure 4.3. Request size versus throughput analysis and key inflection points

Analyzing the example results:

Sequential writes reach a peak throughput at request size Y.
This curve demonstrates how applications that are configurable or naturally dominated by
certain request sizes might perceive performance. Larger request sizes often provide more
throughput because 4 KiB I/O operations might benefit from merging.

Sequential reads reach a similar peak throughput at point Z.
After these peaks, the overall latency before the I/O operation completes increases with no
additional throughput. You should tune the device to not accept I/O operations larger than
this size.

Random reads achieve peak throughput at point X.
Certain devices might achieve near-sequential throughput rates at large request size random
accesses, but others suffer more penalty when varying from purely sequential access.

Random writes achieve peak throughput at point Y.
Random writes involve the most interaction of a deduplication device, and VDO achieves
high performance especially when request sizes or I/O depths are large.

4.6. TESTING THE EFFECTS OF MIXED I/O LOADS ON VDO
PERFORMANCE

This test determines how your VDO configuration behaves with mixed read and write I/O loads, and
analyzes the effects of mixed reads and writes at the optimal random queue depth and request sizes
from 4 KB to 1 MB.

This procedure performs four-corner testing at fixed I/O depth, varied block size over the 8 KB to

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

66

This procedure performs four-corner testing at fixed I/O depth, varied block size over the 8 KB to
256 KB range, and set read percentage at 10% increments, beginning with 0%.

Prerequisites

You have determined the optimal I/O depth value. For details, see Section 4.4, “Testing the
effects of I/O depth on VDO performance”.
In the following procedure, replace optimal-depth with the optimal I/O depth value.

Procedure

1. Create a new VDO volume.
For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job on the test volume:

fio --rw=write \
 --bs=8M \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --thread \
 --direct=1 \
 --scramble_buffers=1

3. Record the reported throughput and latency for the read and write input stimulus:

for readmix in 0 10 20 30 40 50 60 70 80 90 100; do
 for iosize in 4 8 16 32 64 128 256 512 1024; do
 fio --rw=rw \
 --rwmixread=$readmix \
 --bs=${iosize}k \
 --name=vdo \
 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=0 \
 --iodepth=optimal-depth \
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done
 done

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

5. Graph the test results.

Example 4.3. Mixed I/O loads analysis

The following image shows an example of how VDO might respond to mixed I/O loads:

Figure 4.4. Performance is consistent across varying read and write mixes

CHAPTER 4. TESTING VDO PERFORMANCE

67

Figure 4.4. Performance is consistent across varying read and write mixes

Aggregate performance and aggregate latency are relatively consistent across the range of
mixing reads and writes, trending from the lower maximum write throughput to the higher
maximum read throughput.

This behavior might vary with different storage, but the important observation is that the
performance is consistent under varying loads or that you can understand performance
expectation for applications that demonstrate specific read and write mixes.

NOTE

If your system does not show a similar response consistency, it might be a sign
of a sub-optimal configuration. Contact your Red Hat Sales Engineer if this
occurs.

4.7. TESTING THE EFFECTS OF APPLICATION ENVIRONMENTS ON
VDO PERFORMANCE

These tests determine how your VDO configuration behaves when deployed in a mixed, real application
environment. If you know more details about the expected environment, test them as well.

Prerequisites

Consider limiting the permissible queue depth on your configuration.

If possible, tune the application to issue requests with the block sizes that are the most
beneficial to VDO performance.

Procedure

1. Create a new VDO volume.
For details, see Section 4.2, “Creating a VDO volume for performance testing” .

2. Prefill any areas that the test might access by performing a write fio job on the test volume:

fio --rw=write \
 --bs=8M \
 --name=vdo \

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

68

 --filename=/dev/mapper/vdo-test \
 --ioengine=libaio \
 --thread \
 --direct=1 \
 --scramble_buffers=1

3. Record the reported throughput and latency for the read and write input stimulus:

for readmix in 20 50 80; do
 for iosize in 4 8 16 32 64 128 256 512 1024; do
 fio --rw=rw \
 --rwmixread=$readmix \
 --bsrange=4k-256k \
 --name=vdo \
 --filename=/dev/mapper/vdo-name \
 --ioengine=libaio \
 --numjobs=1 \
 --thread \
 --norandommap \
 --runtime=300 \
 --direct=0 \
 --iodepth=$iosize \
 --scramble_buffers=1 \
 --offset=0 \
 --size=100g
 done
 done

4. Remove the VDO test volume.
For details, see Section 4.3, “Cleaning up the VDO performance testing volume” .

5. Graph the test results.

Example 4.4. Application environment analysis

The following image shows an example of how VDO might respond to mixed I/O loads:

Figure 4.5. Mixed environment performance

4.8. OPTIONS USED FOR TESTING VDO PERFORMANCE WITH FIO

The VDO tests use the fio utility to synthetically generate data with repeatable characteristics. The
following fio options are necessary to simulate real world workloads in the tests:

CHAPTER 4. TESTING VDO PERFORMANCE

69

Table 4.1. Used fio options

Argument Description Value used in the tests

--size The quantity of data that fio sends to the target per
job.

See also the --numjobs option.

100 GiB

--bs The block size of each read-and-write request
produced by fio.

Red Hat recommends a 4 KiB block size to match 4
KiB default of VDO.

4k

--numjobs The number of jobs that fio creates for the
benchmark.

Each job sends the amount of data specified by the --
size option. The first job sends data to the device at
the offset specified by the --offset option.
Subsequent jobs overwrite the same region of the
disk unless you provide the --offset_increment
option, which offsets each job from where the
previous job began by that value.

To achieve peak performance on flash disks (SSD),
Red Hat recommends at least two jobs. One job is
typically enough to saturate rotational disk (HDD)
throughput.

1 for HDD, 2 for SSD

--thread Instructs fio jobs to run in threads rather than to fork,
which might provide better performance by limiting
context switching.

none

--ioengine The I/O engine that fio uses for the benchmark.

Red Hat testing uses the asynchronous unbuffered
engine called libaio to test workloads where one or
more processes are making simultaneous random
requests. The libaio engine enables a single thread
to make multiple requests asynchronously before it
retrieves any data. This limits the number of context
switches that a synchronous engine would require if
it provided the requests by many threads.

libaio

--direct The option enables requests submitted to the device
to bypass the kernel page cache.

You must use the libaio engine with the --direct
option. Otherwise, the kernel uses the sync API for all
I/O requests.

1 (libaio)

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

70

--iodepth The number of I/O buffers in flight at any time.

A high value usually increases performance,
particularly for random reads or writes. High values
ensure that the controller always has requests to
batch. However, setting the value too high, (typically
greater than 1K, might cause undesirable latency.

Red Hat recommends a value between 128 and 512.
The final value is a trade-off and depends on how
your application tolerates latency.

128 at minimum

--
iodepth_batch_sub
mit

The number of I/O requests to create when the I/O
depth buffer pool begins to empty.

This option limits task switching from I/O operations
to buffer creation during the test.

16

--
iodepth_batch_com
plete

The number of I/O operations to complete before
submitting a batch.

This option limits task switching from I/O operations
to buffer creation during the test.

16

--gtod_reduce Disables time-of-day calls to calculate latency.

This setting lowers throughput if enabled. Enable the
option unless you require latency measurement.

1

Argument Description Value used in the tests

CHAPTER 4. TESTING VDO PERFORMANCE

71

CHAPTER 5. DISCARDING UNUSED BLOCKS
You can perform or schedule discard operations on block devices that support them. The block discard
operation communicates to the underlying storage which filesystem blocks are no longer in use by the
mounted filesystem. Block discard operations allow SSDs to optimize garbage collection routines, and
they can inform thinly-provisioned storage to repurpose unused physical blocks.

Requirements

The block device underlying the file system must support physical discard operations.
Physical discard operations are supported if the value in the
/sys/block/<device>/queue/discard_max_bytes file is not zero.

5.1. TYPES OF BLOCK DISCARD OPERATIONS

You can run discard operations using different methods:

Batch discard

Is triggered explicitly by the user and discards all unused blocks in the selected file systems.

Online discard

Is specified at mount time and triggers in real time without user intervention. Online discard
operations discard only blocks that are transitioning from the used to the free state.

Periodic discard

Are batch operations that are run regularly by a systemd service.

All types are supported by the XFS and ext4 file systems.

Recommendations
Red Hat recommends that you use batch or periodic discard.

Use online discard only if:

the system’s workload is such that batch discard is not feasible, or

online discard operations are necessary to maintain performance.

5.2. PERFORMING BATCH BLOCK DISCARD

You can perform a batch block discard operation to discard unused blocks on a mounted file system.

Prerequisites

The file system is mounted.

The block device underlying the file system supports physical discard operations.

Procedure

Use the fstrim utility:

To perform discard only on a selected file system, use:

fstrim mount-point

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

72

To perform discard on all mounted file systems, use:

fstrim --all

If you execute the fstrim command on:

a device that does not support discard operations, or

a logical device (LVM or MD) composed of multiple devices, where any one of the device does
not support discard operations,

the following message displays:

fstrim /mnt/non_discard

fstrim: /mnt/non_discard: the discard operation is not supported

Additional resources

fstrim(8) man page.

5.3. ENABLING ONLINE BLOCK DISCARD

You can perform online block discard operations to automatically discard unused blocks on all supported
file systems.

Procedure

Enable online discard at mount time:

When mounting a file system manually, add the -o discard mount option:

mount -o discard device mount-point

When mounting a file system persistently, add the discard option to the mount entry in the
/etc/fstab file.

Additional resources

mount(8) man page.

fstab(5) man page.

5.4. ENABLING PERIODIC BLOCK DISCARD

You can enable a systemd timer to regularly discard unused blocks on all supported file systems.

Procedure

Enable and start the systemd timer:

CHAPTER 5. DISCARDING UNUSED BLOCKS

73

systemctl enable --now fstrim.timer
Created symlink /etc/systemd/system/timers.target.wants/fstrim.timer →
/usr/lib/systemd/system/fstrim.timer.

Verification

Verify the status of the timer:

systemctl status fstrim.timer
fstrim.timer - Discard unused blocks once a week
 Loaded: loaded (/usr/lib/systemd/system/fstrim.timer; enabled; vendor preset: disabled)
 Active: active (waiting) since Wed 2023-05-17 13:24:41 CEST; 3min 15s ago
 Trigger: Mon 2023-05-22 01:20:46 CEST; 4 days left
 Docs: man:fstrim

May 17 13:24:41 localhost.localdomain systemd[1]: Started Discard unused blocks once a
week.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

74

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING
ATTRIBUTES

As a system administrator, you need to refer to storage volumes using persistent naming attributes to
build storage setups that are reliable over multiple system boots.

6.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES

Red Hat Enterprise Linux provides a number of ways to identify storage devices. It is important to use
the correct option to identify each device when used in order to avoid inadvertently accessing the wrong
device, particularly when installing to or reformatting drives.

Traditionally, non-persistent names in the form of /dev/sd(major number)(minor number) are used on
Linux to refer to storage devices. The major and minor number range and associated sd names are
allocated for each device when it is detected. This means that the association between the major and
minor number range and associated sd names can change if the order of device detection changes.

Such a change in the ordering might occur in the following situations:

The parallelization of the system boot process detects storage devices in a different order with
each system boot.

A disk fails to power up or respond to the SCSI controller. This results in it not being detected by
the normal device probe. The disk is not accessible to the system and subsequent devices will
have their major and minor number range, including the associated sd names shifted down. For
example, if a disk normally referred to as sdb is not detected, a disk that is normally referred to
as sdc would instead appear as sdb.

A SCSI controller (host bus adapter, or HBA) fails to initialize, causing all disks connected to that
HBA to not be detected. Any disks connected to subsequently probed HBAs are assigned
different major and minor number ranges, and different associated sd names.

The order of driver initialization changes if different types of HBAs are present in the system.
This causes the disks connected to those HBAs to be detected in a different order. This might
also occur if HBAs are moved to different PCI slots on the system.

Disks connected to the system with Fibre Channel, iSCSI, or FCoE adapters might be
inaccessible at the time the storage devices are probed, due to a storage array or intervening
switch being powered off, for example. This might occur when a system reboots after a power
failure, if the storage array takes longer to come online than the system take to boot. Although
some Fibre Channel drivers support a mechanism to specify a persistent SCSI target ID to
WWPN mapping, this does not cause the major and minor number ranges, and the associated sd
names to be reserved; it only provides consistent SCSI target ID numbers.

These reasons make it undesirable to use the major and minor number range or the associated sd
names when referring to devices, such as in the /etc/fstab file. There is the possibility that the wrong
device will be mounted and data corruption might result.

Occasionally, however, it is still necessary to refer to the sd names even when another mechanism is
used, such as when errors are reported by a device. This is because the Linux kernel uses sd names (and
also SCSI host/channel/target/LUN tuples) in kernel messages regarding the device.

6.2. FILE SYSTEM AND DEVICE IDENTIFIERS

This sections explains the difference between persistent attributes identifying file systems and block

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

75

This sections explains the difference between persistent attributes identifying file systems and block
devices.

File system identifiers
File system identifiers are tied to a particular file system created on a block device. The identifier is also
stored as part of the file system. If you copy the file system to a different device, it still carries the same
file system identifier. On the other hand, if you rewrite the device, such as by formatting it with the mkfs
utility, the device loses the attribute.

File system identifiers include:

Unique identifier (UUID)

Label

Device identifiers
Device identifiers are tied to a block device: for example, a disk or a partition. If you rewrite the device,
such as by formatting it with the mkfs utility, the device keeps the attribute, because it is not stored in
the file system.

Device identifiers include:

World Wide Identifier (WWID)

Partition UUID

Serial number

Recommendations

Some file systems, such as logical volumes, span multiple devices. Red Hat recommends
accessing these file systems using file system identifiers rather than device identifiers.

6.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN
/DEV/DISK/

The udev mechanism is used for all types of devices in Linux, and is not limited only for storage devices.
It provides different kinds of persistent naming attributes in the /dev/disk/ directory. In the case of
storage devices, Red Hat Enterprise Linux contains udev rules that create symbolic links in the
/dev/disk/ directory. This enables you to refer to storage devices by:

Their content

A unique identifier

Their serial number.

Although udev naming attributes are persistent, in that they do not change on their own across system
reboots, some are also configurable.

6.3.1. File system identifiers

The UUID attribute in /dev/disk/by-uuid/
Entries in this directory provide a symbolic name that refers to the storage device by a unique identifier
(UUID) in the content (that is, the data) stored on the device. For example:

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

76

/dev/disk/by-uuid/3e6be9de-8139-11d1-9106-a43f08d823a6

You can use the UUID to refer to the device in the /etc/fstab file using the following syntax:

UUID=3e6be9de-8139-11d1-9106-a43f08d823a6

You can configure the UUID attribute when creating a file system, and you can also change it later on.

The Label attribute in /dev/disk/by-label/
Entries in this directory provide a symbolic name that refers to the storage device by a label in the
content (that is, the data) stored on the device.

For example:

/dev/disk/by-label/Boot

You can use the label to refer to the device in the /etc/fstab file using the following syntax:

LABEL=Boot

You can configure the Label attribute when creating a file system, and you can also change it later on.

6.3.2. Device identifiers

The WWID attribute in /dev/disk/by-id/
The World Wide Identifier (WWID) is a persistent, system-independent identifier that the SCSI
Standard requires from all SCSI devices. The WWID identifier is guaranteed to be unique for every
storage device, and independent of the path that is used to access the device. The identifier is a
property of the device but is not stored in the content (that is, the data) on the devices.

This identifier can be obtained by issuing a SCSI Inquiry to retrieve the Device Identification Vital
Product Data (page 0x83) or Unit Serial Number (page 0x80).

Red Hat Enterprise Linux automatically maintains the proper mapping from the WWID-based device
name to a current /dev/sd name on that system. Applications can use the /dev/disk/by-id/ name to
reference the data on the disk, even if the path to the device changes, and even when accessing the
device from different systems.

Example 6.1. WWID mappings

WWID symlink Non-persistent device Note

/dev/disk/by-id/scsi-
3600508b400105e210000900000490000

/dev/sda A device with a page
0x83 identifier

/dev/disk/by-id/scsi-
SSEAGATE_ST373453LW_3HW1RHM6

/dev/sdb A device with a page
0x80 identifier

/dev/disk/by-id/ata-
SAMSUNG_MZNLN256HMHQ-
000L7_S2WDNX0J336519-part3

/dev/sdc3 A disk partition

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

77

In addition to these persistent names provided by the system, you can also use udev rules to implement
persistent names of your own, mapped to the WWID of the storage.

The Partition UUID attribute in /dev/disk/by-partuuid
The Partition UUID (PARTUUID) attribute identifies partitions as defined by GPT partition table.

Example 6.2. Partition UUID mappings

PARTUUID symlink Non-persistent device

/dev/disk/by-partuuid/4cd1448a-01 /dev/sda1

/dev/disk/by-partuuid/4cd1448a-02 /dev/sda2

/dev/disk/by-partuuid/4cd1448a-03 /dev/sda3

The Path attribute in /dev/disk/by-path/
This attribute provides a symbolic name that refers to the storage device by the hardware path used to
access the device.

The Path attribute fails if any part of the hardware path (for example, the PCI ID, target port, or LUN
number) changes. The Path attribute is therefore unreliable. However, the Path attribute may be useful
in one of the following scenarios:

You need to identify a disk that you are planning to replace later.

You plan to install a storage service on a disk in a specific location.

6.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH

You can configure Device Mapper (DM) Multipath to map between the World Wide Identifier (WWID)
and non-persistent device names.

If there are multiple paths from a system to a device, DM Multipath uses the WWID to detect this. DM
Multipath then presents a single "pseudo-device" in the /dev/mapper/wwid directory, such as
/dev/mapper/3600508b400105df70000e00000ac0000.

The command multipath -l shows the mapping to the non-persistent identifiers:

Host:Channel:Target:LUN

/dev/sd name

major:minor number

Example 6.3. WWID mappings in a multipath configuration

An example output of the multipath -l command:

3600508b400105df70000e00000ac0000 dm-2 vendor,product

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

78

[size=20G][features=1 queue_if_no_path][hwhandler=0][rw]
_ round-robin 0 [prio=0][active]
 _ 5:0:1:1 sdc 8:32 [active][undef]
 _ 6:0:1:1 sdg 8:96 [active][undef]
_ round-robin 0 [prio=0][enabled]
 _ 5:0:0:1 sdb 8:16 [active][undef]
 _ 6:0:0:1 sdf 8:80 [active][undef]

DM Multipath automatically maintains the proper mapping of each WWID-based device name to its
corresponding /dev/sd name on the system. These names are persistent across path changes, and they
are consistent when accessing the device from different systems.

When the user_friendly_names feature of DM Multipath is used, the WWID is mapped to a name of the
form /dev/mapper/mpathN. By default, this mapping is maintained in the file /etc/multipath/bindings.
These mpathN names are persistent as long as that file is maintained.

IMPORTANT

If you use user_friendly_names, then additional steps are required to obtain consistent
names in a cluster.

6.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION

The following are some limitations of the udev naming convention:

It is possible that the device might not be accessible at the time the query is performed
because the udev mechanism might rely on the ability to query the storage device when the
udev rules are processed for a udev event. This is more likely to occur with Fibre Channel, iSCSI
or FCoE storage devices when the device is not located in the server chassis.

The kernel might send udev events at any time, causing the rules to be processed and possibly
causing the /dev/disk/by-*/ links to be removed if the device is not accessible.

There might be a delay between when the udev event is generated and when it is processed,
such as when a large number of devices are detected and the user-space udevd service takes
some amount of time to process the rules for each one. This might cause a delay between when
the kernel detects the device and when the /dev/disk/by-*/ names are available.

External programs such as blkid invoked by the rules might open the device for a brief period of
time, making the device inaccessible for other uses.

The device names managed by the udev mechanism in /dev/disk/ may change between major
releases, requiring you to update the links.

6.6. LISTING PERSISTENT NAMING ATTRIBUTES

This procedure describes how to find out the persistent naming attributes of non-persistent storage
devices.

Procedure

To list the UUID and Label attributes, use the lsblk utility:

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

79

$ lsblk --fs storage-device

For example:

Example 6.4. Viewing the UUID and Label of a file system

$ lsblk --fs /dev/sda1

NAME FSTYPE LABEL UUID MOUNTPOINT
sda1 xfs Boot afa5d5e3-9050-48c3-acc1-bb30095f3dc4 /boot

To list the PARTUUID attribute, use the lsblk utility with the --output +PARTUUID option:

$ lsblk --output +PARTUUID

For example:

Example 6.5. Viewing the PARTUUID attribute of a partition

$ lsblk --output +PARTUUID /dev/sda1

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT PARTUUID
sda1 8:1 0 512M 0 part /boot 4cd1448a-01

To list the WWID attribute, examine the targets of symbolic links in the /dev/disk/by-id/
directory. For example:

Example 6.6. Viewing the WWID of all storage devices on the system

$ file /dev/disk/by-id/*

/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001
symbolic link to ../../sda
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part1
symbolic link to ../../sda1
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part2
symbolic link to ../../sda2
/dev/disk/by-id/dm-name-rhel_rhel8-root
symbolic link to ../../dm-0
/dev/disk/by-id/dm-name-rhel_rhel8-swap
symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-
QIWtEHtXGobe5bewlIUDivKOz5ofkgFhP0RMFsNyySVihqEl2cWWbR7MjXJolD6g
symbolic link to ../../dm-1
/dev/disk/by-id/dm-uuid-LVM-
QIWtEHtXGobe5bewlIUDivKOz5ofkgFhXqH2M45hD2H9nAf2qfWSrlRLhzfMyOKd
symbolic link to ../../dm-0
/dev/disk/by-id/lvm-pv-uuid-atlr2Y-vuMo-ueoH-CpMG-4JuH-AhEF-wu4QQm
symbolic link to ../../sda2

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

80

6.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

This procedure describes how to change the UUID or Label persistent naming attribute of a file system.

NOTE

Changing udev attributes happens in the background and might take a long time. The
udevadm settle command waits until the change is fully registered, which ensures that
your next command will be able to utilize the new attribute correctly.

In the following commands:

Replace new-uuid with the UUID you want to set; for example, 1cdfbc07-1c90-4984-b5ec-
f61943f5ea50. You can generate a UUID using the uuidgen command.

Replace new-label with a label; for example, backup_data.

Prerequisites

If you are modifying the attributes of an XFS file system, unmount it first.

Procedure

To change the UUID or Label attributes of an XFS file system, use the xfs_admin utility:

xfs_admin -U new-uuid -L new-label storage-device
udevadm settle

To change the UUID or Label attributes of an ext4, ext3, or ext2 file system, use the tune2fs
utility:

tune2fs -U new-uuid -L new-label storage-device
udevadm settle

To change the UUID or Label attributes of a swap volume, use the swaplabel utility:

swaplabel --uuid new-uuid --label new-label swap-device
udevadm settle

CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES

81

CHAPTER 7. MANAGING VIRTUAL DATA OPTIMIZER
VOLUMES USING THE WEB CONSOLE

Configure the Virtual Data Optimizer (VDO) using the RHEL 8 web console.

You will learn how to:

Create VDO volumes

Format VDO volumes

Extend VDO volumes

Prerequisites

The RHEL 8 web console is installed and accessible. For details, see Installing the web console .

The cockpit-storaged package is installed on your system.

7.1. VDO VOLUMES IN THE WEB CONSOLE

Red Hat Enterprise Linux 8 supports Virtual Data Optimizer (VDO).

VDO is a block virtualization technology that combines:

Compression

For details, see Enabling or disabling compression in VDO.

Deduplication

For details, see Enabling or disabling compression in VDO.

Thin provisioning

For details, see Creating and managing thin provisioned volumes (thin volumes) .

Using these technologies, VDO:

Saves storage space inline

Compresses files

Eliminates duplications

Enables you to allocate more virtual space than how much the physical or logical storage
provides

Enables you to extend the virtual storage by growing

VDO can be created on top of many types of storage. In the RHEL 8 web console, you can configure
VDO on top of:

LVM

NOTE

It is not possible to configure VDO on top of thinly-provisioned volumes.

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#changing-the-compression-and-deduplication-settings-on-an-lvm-vdo-volume_creating-a-deduplicated-and-compressed-logical-volume
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#changing-the-compression-and-deduplication-settings-on-an-lvm-vdo-volume_creating-a-deduplicated-and-compressed-logical-volume
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_logical_volumes/creating-and-managing-thin-provisioned-volumes_configuring-and-managing-logical-volumes

Physical volume

Software RAID

For details about placement of VDO in the Storage Stack, see System Requirements.

Additional resources

For details about VDO, see Deduplicating and compressing storage.

7.2. CREATING VDO VOLUMES IN THE WEB CONSOLE

Create a VDO volume in the RHEL web console.

Prerequisites

Physical drives, LVMs, or RAID from which you want to create VDO.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. Click the + button in the VDO Devices box.

4. In the Name field, enter a name of a VDO volume without spaces.

5. Select the drive that you want to use.

6. In the Logical Size bar, set up the size of the VDO volume. You can extend it more than ten
times, but consider for what purpose you are creating the VDO volume:

For active VMs or container storage, use logical size that is ten times the physical size of the
volume.

For object storage, use logical size that is three times the physical size of the volume.

For details, see Deploying VDO.

7. In the Index Memory bar, allocate memory for the VDO volume.
For details about VDO system requirements, see System Requirements.

8. Select the Compression option. This option can efficiently reduce various file formats.
For details, see Enabling or disabling compression in VDO.

9. Select the Deduplication option.
This option reduces the consumption of storage resources by eliminating multiple copies of
duplicate blocks. For details, see Enabling or disabling compression in VDO.

10. [Optional] If you want to use the VDO volume with applications that need a 512 bytes block size,
select Use 512 Byte emulation. This reduces the performance of the VDO volume, but should
be very rarely needed. If in doubt, leave it off.

11. Click Create.

CHAPTER 7. MANAGING VIRTUAL DATA OPTIMIZER VOLUMES USING THE WEB CONSOLE

83

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_logical_volumes_on_rhel/lvm-vdo-requirements_deduplicating-and-compressing-logical-volumes-on-rhel#lvm-vdo-requirements_deduplicating-and-compressing-logical-volumes-on-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_logical_volumes_on_rhel/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#lvm-vdo-deployment-scenarios_creating-a-deduplicated-and-compressed-logical-volume
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_logical_volumes_on_rhel/lvm-vdo-requirements_deduplicating-and-compressing-logical-volumes-on-rhel#lvm-vdo-requirements_deduplicating-and-compressing-logical-volumes-on-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#changing-the-compression-and-deduplication-settings-on-an-lvm-vdo-volume_creating-a-deduplicated-and-compressed-logical-volume
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#changing-the-compression-and-deduplication-settings-on-an-lvm-vdo-volume_creating-a-deduplicated-and-compressed-logical-volume

Verification steps

Check that you can see the new VDO volume in the Storage section. Then you can format it
with a file system.

7.3. FORMATTING VDO VOLUMES IN THE WEB CONSOLE

VDO volumes act as physical drives. To use them, you need to format them with a file system.

WARNING

Formatting VDO will erase all data on the volume.

The following steps describe the procedure to format VDO volumes.

Prerequisites

A VDO volume is created. For details, see Creating VDO volumes in the web console .

Procedure

1. Log in to the RHEL 8 web console. For details, see Logging in to the web console .

2. Click Storage.

3. Click the VDO volume.

4. Click on the Unrecognized Data tab.

5. Click Format.

6. In the Erase drop down menu, select:

Do not overwrite existing data

The RHEL web console rewrites only the disk header. The advantage of this option is the
speed of formatting.

Overwrite existing data with zeros

The RHEL web console rewrites the whole disk with zeros. This option is slower because the
program has to go through the whole disk. Use this option if the disk includes any data and
you need to rewrite them.

7. In the Type drop down menu, select a filesystem:

The XFS file system supports large logical volumes, switching physical drives online without
outage, and growing. Leave this file system selected if you do not have a different strong
preference.
XFS does not support shrinking volumes. Therefore, you will not be able to reduce volume
formatted with XFS.

The ext4 file system supports logical volumes, switching physical drives online without

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

84

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/using-the-web-console-for-managing-virtual-data-optimizer-volumes_system-management-using-the-rhel-8-web-console#creating-virtual-data-optimizer-in-the-web-console_managing-virtual-data-optimizer-volumes-using-the-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

The ext4 file system supports logical volumes, switching physical drives online without
outage, growing, and shrinking.

You can also select a version with the LUKS (Linux Unified Key Setup) encryption, which allows
you to encrypt the volume with a passphrase.

8. In the Name field, enter the logical volume name.

9. In the Mounting drop down menu, select Custom.
The Default option does not ensure that the file system will be mounted on the next boot.

10. In the Mount Point field, add the mount path.

11. Select Mount at boot.

12. Click Format.
Formatting can take several minutes depending on the used formatting options and the volume
size.

After a successful finish, you can see the details of the formatted VDO volume on the
Filesystem tab.

13. To use the VDO volume, click Mount.

At this point, the system uses the mounted and formatted VDO volume.

7.4. EXTENDING VDO VOLUMES IN THE WEB CONSOLE

Extend VDO volumes in the RHEL 8 web console.

Prerequisites

The cockpit-storaged package is installed on your system.

The VDO volume created.

Procedure

1. Log in to the RHEL 8 web console.
For details, see Logging in to the web console .

2. Click Storage.

3. Click your VDO volume in the VDO Devices box.

4. In the VDO volume details, click the Grow button.

5. In the Grow logical size of VDO dialog box, extend the logical size of the VDO volume.

1. Click Grow.

Verification steps

Check the VDO volume details for the new size to verify that your changes have been
successful.

CHAPTER 7. MANAGING VIRTUAL DATA OPTIMIZER VOLUMES USING THE WEB CONSOLE

85

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console

Red Hat Enterprise Linux 8 Deduplicating and compressing storage

86

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. DEPLOYING VDO
	1.1. INTRODUCTION TO VDO
	1.2. VDO DEPLOYMENT SCENARIOS
	KVM
	File systems
	Placement of VDO on iSCSI
	LVM
	Encryption

	1.3. COMPONENTS OF A VDO VOLUME
	1.4. THE PHYSICAL AND LOGICAL SIZE OF A VDO VOLUME
	1.5. SLAB SIZE IN VDO
	1.6. VDO REQUIREMENTS
	1.6.1. VDO memory requirements
	1.6.2. VDO storage space requirements
	1.6.3. Placement of VDO in the storage stack
	1.6.4. Examples of VDO requirements by physical size

	1.7. INSTALLING VDO
	1.8. CREATING A VDO VOLUME
	1.9. MOUNTING A VDO VOLUME
	1.10. ENABLING PERIODIC BLOCK DISCARD
	1.11. MONITORING VDO

	CHAPTER 2. MAINTAINING VDO
	2.1. MANAGING FREE SPACE ON VDO VOLUMES
	2.1.1. The physical and logical size of a VDO volume
	2.1.2. Thin provisioning in VDO
	2.1.3. Monitoring VDO
	2.1.4. Reclaiming space for VDO on file systems
	2.1.5. Reclaiming space for VDO without a file system
	2.1.6. Reclaiming space for VDO on Fibre Channel or Ethernet network

	2.2. STARTING OR STOPPING VDO VOLUMES
	2.2.1. Started and activated VDO volumes
	2.2.2. Starting a VDO volume
	2.2.3. Stopping a VDO volume
	2.2.4. Additional resources

	2.3. AUTOMATICALLY STARTING VDO VOLUMES AT SYSTEM BOOT
	2.3.1. Started and activated VDO volumes
	2.3.2. Activating a VDO volume
	2.3.3. Deactivating a VDO volume

	2.4. SELECTING A VDO WRITE MODE
	2.4.1. VDO write modes
	2.4.2. The internal processing of VDO write modes
	2.4.3. Checking the write mode on a VDO volume
	2.4.4. Checking for a volatile cache
	2.4.5. Setting a VDO write mode

	2.5. RECOVERING A VDO VOLUME AFTER AN UNCLEAN SHUTDOWN
	2.5.1. VDO write modes
	2.5.2. VDO volume recovery
	Automatic and manual recovery

	2.5.3. VDO operating modes
	2.5.4. Recovering a VDO volume online
	2.5.5. Forcing an offline rebuild of a VDO volume metadata
	2.5.6. Removing an unsuccessfully created VDO volume

	2.6. OPTIMIZING THE UDS INDEX
	2.6.1. Components of a VDO volume
	2.6.2. The UDS index
	2.6.3. Recommended UDS index configuration

	2.7. ENABLING OR DISABLING DEDUPLICATION IN VDO
	2.7.1. Deduplication in VDO
	2.7.2. Enabling deduplication on a VDO volume
	2.7.3. Disabling deduplication on a VDO volume

	2.8. ENABLING OR DISABLING COMPRESSION IN VDO
	2.8.1. Compression in VDO
	2.8.2. Enabling compression on a VDO volume
	2.8.3. Disabling compression on a VDO volume

	2.9. INCREASING THE SIZE OF A VDO VOLUME
	2.9.1. The physical and logical size of a VDO volume
	2.9.2. Thin provisioning in VDO
	2.9.3. Increasing the logical size of a VDO volume
	2.9.4. Increasing the physical size of a VDO volume

	2.10. REMOVING VDO VOLUMES
	2.10.1. Removing a working VDO volume
	2.10.2. Removing an unsuccessfully created VDO volume

	2.11. ADDITIONAL RESOURCES

	CHAPTER 3. TESTING VDO SPACE SAVINGS
	3.1. THE PURPOSE AND OUTCOMES OF TESTING VDO
	3.2. THIN PROVISIONING IN VDO
	3.3. INFORMATION TO RECORD BEFORE EACH VDO TEST
	3.4. CREATING A VDO TEST VOLUME
	3.5. TESTING THE VDO TEST VOLUME
	3.6. CLEANING UP THE VDO TEST VOLUME
	3.7. MEASURING VDO DEDUPLICATION
	3.8. MEASURING VDO COMPRESSION
	3.9. MEASURING TOTAL VDO SPACE SAVINGS
	3.10. TESTING THE EFFECT OF TRIM AND DISCARD ON VDO

	CHAPTER 4. TESTING VDO PERFORMANCE
	4.1. PREPARING AN ENVIRONMENT FOR VDO PERFORMANCE TESTING
	4.1.1. Considerations before testing VDO performance
	4.1.2. Special considerations for testing VDO read performance
	4.1.3. Preparing the system for testing VDO performance

	4.2. CREATING A VDO VOLUME FOR PERFORMANCE TESTING
	4.3. CLEANING UP THE VDO PERFORMANCE TESTING VOLUME
	4.4. TESTING THE EFFECTS OF I/O DEPTH ON VDO PERFORMANCE
	4.4.1. Testing the effect of I/O depth on sequential 100% reads in VDO
	4.4.2. Testing the effect of I/O depth on sequential 100% writes in VDO
	4.4.3. Testing the effect of I/O depth on random 100% reads in VDO
	4.4.4. Testing the effect of I/O depth on random 100% writes in VDO
	4.4.5. Analysis of VDO performance at different I/O depths

	4.5. TESTING THE EFFECTS OF I/O REQUEST SIZE ON VDO PERFORMANCE
	4.5.1. Testing the effect of I/O request size on sequential writes in VDO
	4.5.2. Testing the effect of I/O request size on random writes in VDO
	4.5.3. Testing the effect of I/O request size on sequential read in VDO
	4.5.4. Testing the effect of I/O request size on random read in VDO
	4.5.5. Analysis of VDO performance at different I/O request sizes

	4.6. TESTING THE EFFECTS OF MIXED I/O LOADS ON VDO PERFORMANCE
	4.7. TESTING THE EFFECTS OF APPLICATION ENVIRONMENTS ON VDO PERFORMANCE
	4.8. OPTIONS USED FOR TESTING VDO PERFORMANCE WITH FIO

	CHAPTER 5. DISCARDING UNUSED BLOCKS
	Requirements
	5.1. TYPES OF BLOCK DISCARD OPERATIONS
	Recommendations

	5.2. PERFORMING BATCH BLOCK DISCARD
	5.3. ENABLING ONLINE BLOCK DISCARD
	5.4. ENABLING PERIODIC BLOCK DISCARD

	CHAPTER 6. OVERVIEW OF PERSISTENT NAMING ATTRIBUTES
	6.1. DISADVANTAGES OF NON-PERSISTENT NAMING ATTRIBUTES
	6.2. FILE SYSTEM AND DEVICE IDENTIFIERS
	File system identifiers
	Device identifiers
	Recommendations

	6.3. DEVICE NAMES MANAGED BY THE UDEV MECHANISM IN /DEV/DISK/
	6.3.1. File system identifiers
	The UUID attribute in /dev/disk/by-uuid/
	The Label attribute in /dev/disk/by-label/

	6.3.2. Device identifiers
	The WWID attribute in /dev/disk/by-id/
	The Partition UUID attribute in /dev/disk/by-partuuid
	The Path attribute in /dev/disk/by-path/

	6.4. THE WORLD WIDE IDENTIFIER WITH DM MULTIPATH
	6.5. LIMITATIONS OF THE UDEV DEVICE NAMING CONVENTION
	6.6. LISTING PERSISTENT NAMING ATTRIBUTES
	6.7. MODIFYING PERSISTENT NAMING ATTRIBUTES

	CHAPTER 7. MANAGING VIRTUAL DATA OPTIMIZER VOLUMES USING THE WEB CONSOLE
	7.1. VDO VOLUMES IN THE WEB CONSOLE
	7.2. CREATING VDO VOLUMES IN THE WEB CONSOLE
	7.3. FORMATTING VDO VOLUMES IN THE WEB CONSOLE
	7.4. EXTENDING VDO VOLUMES IN THE WEB CONSOLE

