& RedHat

Red Hat Developer Tools 1

Using Rust 1.62.1 Toolset

Installing and using Rust 1.62.1 Toolset

Last Updated: 2022-11-22

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

Installing and using Rust 1.62.1 Toolset
Jacob Valdez
jvaldez@redhat.com

Eva-Lotte Gebhardt
egebhard@redhat.com

Zuzana Zoubkova
Peter Macko
Kevin Owen

Vladimir Slavik

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Rust Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux (RHEL) operating
system. Use this guide for an overview of Rust Toolset, to learn how to invoke and use different
versions of Rust tools, and to find resources with more in-depth information.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... i e i it 3
CHAPTER 1L RUST TOOLSET .t i i et i i ettt ai e n e, 4
11. RUST TOOLSET COMPONENTS 4
1.2. RUST TOOLSET COMPATIBILITY 4
1.3. GETTING ACCESS TO RUST TOOLSET ON RED HAT ENTERPRISE LINUX 7 4
1.4. INSTALLING RUST TOOLSET 6
1.5. INSTALLING RUST DOCUMENTATION 6
1.6. INSTALLING CARGO DOCUMENTATION 7
1.7. ADDITIONAL RESOURCES 7
CHAPTER 2. THE CARGO BUILD TOOL ... i i i et 9
2.1. THE CARGO DIRECTORY STRUCTURE AND FILE PLACEMENTS 9
2.2. CREATING A RUST PROJECT 9
2.3. CREATING A LIBRARY FOR A RUST PROJECT 10
2.4. BUILDING A RUST PROJECT 10
2.5.BUILDING A RUST PROJECT IN RELEASE MODE il
2.6. RUNNING A RUST PROGRAM 12
2.7.TESTING A RUST PROJECT 12
2.8. TESTING A RUST PROJECT IN RELEASE MODE 13
2.9. CONFIGURING RUST PROJECT DEPENDENCIES 14
2.10. BUILDING DOCUMENTATION FOR A RUST PROJECT 15
2.11. COMPILING CODE INTO A WEBASSEMBLY BINARY WITH RUST ON RED HAT ENTERPRISE LINUX 8 AND
RED HAT ENTERPRISE LINUX 9 BETA 16
2.12. VENDORING RUST PROJECT DEPENDENCIES 16
2.13. ADDITIONAL RESOURCES 17
CHAPTER 3. THE RUSTFMT FORMATTING TOOL ... i e ce i 18
3.1 INSTALLING RUSTFMT 18
3.2. USING RUSTFMT AS A STANDALONE TOOL 18
3.3. USING RUSTFMT WITH THE CARGO BUILD TOOL 19
3.4. ADDITIONAL RESOURCES 19
CHAPTER 4. CONTAINER IMAGES WITH RUST TOOLSETONRHEL 8 21
4.1. CREATING A CONTAINER IMAGE OF RUST TOOLSET ON RHEL 8 21
4.2. ADDITIONAL RESOURCES 21

CHAPTER 5. CHANGES IN RUST 1.62.1TOOLSET ... i et 22

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

CHAPTER 1. RUST TOOLSET

Rust Toolset is a Red Hat offering for developers on Red Hat Enterprise Linux (RHEL). It provides the
rustc compiler for the Rust programming language, the Rust package manager Cargo, the rustfmt
formatting tool, and required libraries.

Rust Toolset is distributed as a part of Red Hat Developer Tools for Red Hat Enterprise Linux 7. For

Red Hat Enterprise Linux 8, Rust Toolset is available as a module. Rust Toolset is available as packages
for Red Hat Enterprise Linux 9.

1.1. RUST TOOLSET COMPONENTS

The following components are available as part of Rust Toolset:

Name Version Description

rust 1.62.1 The Rust compiler front-end for
LLVM.

cargo 1.62.1 A build system and dependency

manager for Rust.

rustfmt 1.62.1 A tool for automatic formatting of
Rust code.

1.2. RUST TOOLSET COMPATIBILITY

Rust Toolset is available for Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux 8 and Red Hat
Enterprise Linux 9 on the following architectures:

® AMD and Intel 64-bit

® 64-bit ARM (RHEL 8 and RHEL 9)

® |BM Power Systems, Little Endian

® |BM Power Systems, Big Endian (Only RHEL 7)

® 64-bitIBMZ

1.3. GETTING ACCESS TO RUST TOOLSET ON RED HAT
ENTERPRISE LINUX 7

To be able to install Rust Toolset on Red Hat Enterprise Linux 7, you must access and enable Red Hat
Developer Tools and Red Hat Software Collections repositories.
If these repositories are already attached to your system, see Installing Rust Toolset.

Procedure

1. Install Wget by running:

CHAPTER 1. RUST TOOLSET

I # yum install wget

Download the latest subscription data by running:

I # subscription-manager refresh

Register your system by running:
I # subscription-manager register

To register your system using a graphical user interface (GUI), follow the Registering and
Unregistering a System guide.

Display a list of all available subscriptions and identify the pool ID by running:
I # subscription-manager list --available

Find the pool ID on the line beginning with Pool ID.

Attach the subscription that provides access to the Red Hat Developer Tools repository to
your system by running:

I # subscription-manager attach --pool=<pool ID from the subscription>

® Replace <pool ID from the subscription> with the pool ID you identified in the previous
step.

Verify which subscriptions are attached to your system by running:

I # sudo subscription-manager list --consumed

Enable the rhel-7-variant-devtools-rpms repository by running:
I # subscription-manager repos --enable rhel-7-<variant>-devtools-rpms
® Replace <variants with your Red Hat Enterprise Linux system variant: server or

workstation.
Use server to access the widest range of development tools.

Enable the rhel-variant-rhscl-7-rpms repository by running:
I # subscription-manager repos --enable rhel-<variant>-rhscl-7-rpms

® Replace <variants with your Red Hat Enterprise Linux system variant: server or
workstation.

. Add the Red Hat Developer Tools GPG key to your system by running:

cd /etc/pki/rpm-gpg
wget -O RPM-GPG-KEY-redhat-devel https://www.redhat.com/security/data/a5787476.ixt
rpm --import RPM-GPG-KEY-redhat-devel

https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/quick_registration_for_rhel/registering-machine-ui

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

Additional resources

® For more information on registering your system and associating it with subscriptions, see the
Red Hat Subscription Management guides collection.

1.4.INSTALLING RUST TOOLSET

Complete the following steps to install Rust Toolset including all development and debugging tools as
well as dependent packages. Note that Rust Toolset has a dependency on LLVM Toolset.

Prerequisites

® On Red Hat Enterprise Linux 7, a subscription providing access to the Red Hat Developer Tools
content set is attached to your system.
To attach the subscription, see Getting access to Rust Toolset on Red Hat Enterprise Linux 7.
® All available Red Hat Enterprise Linux updates are installed.
Procedure

On Red Hat Enterprise Linux 7, install the rust-toolset-1.62 collection by running:

I # yum install rust-toolset-1.62

On Red Hat Enterprise Linux 8, install the rust-toolset module by running:

I # yum module install rust-toolset

On Red Hat Enterprise Linux 9, install the rust-toolset package by running:

I # dnf install rust-toolset

1.5.INSTALLING RUST DOCUMENTATION

The The Rust Programming Language book is available as installable documentation.

Prerequisites

® Rust Toolset is installed.
For more information, see Installing Rust Toolset.

Procedure

To install the rust-doc package, run the following command:

® On Red Hat Enterprise Linux 7:
I # yum install rust-toolset-1.62-rust-doc

You can find the The Rust Programming Language book under the following path: /opt/rh/rust-
toolset-1.62/root/usr/share/doc/rust/html/index.html.

You can find the API documentation for all Rust code packages under the following path:
/opt/rh/rust-toolset-1.62/root/usr/share/doc/rust/html/std/index.html.

https://access.redhat.com/documentation/en-us/red_hat_subscription_management

CHAPTER 1. RUST TOOLSET

® On Red Hat Enterprise Linux 8:
I # yum install rust-doc

You can find the The Rust Programming Language book under the following path:
/usr/share/doc/rust/html/index.htmi.

You can find the APl documentation for all Rust code packages under the following path:
/usr/share/doc/rust/html/std/index.html.

® On Red Hat Enterprise Linux 9:
I # dnf install rust-doc

You can find the The Rust Programming Language book under the following path:
/usr/share/doc/rust/html/index.html.

You can find the API documentation for all Rust code packages under the following path:
/usr/share/doc/rust/html/std/index.html.

1.6. INSTALLING CARGO DOCUMENTATION

The Cargo, Rust’s Package Manager book is available as installable documentation for Cargo.

Prerequisites

® Rust Toolset is installed.
For more information, see Installing Rust Toolset.

Procedure
® Toinstall the cargo-doc package, run:

o On Red Hat Enterprise Linux 7:
I # yum install rust-toolset-1.62-cargo-doc

You can find the Cargo book under the following path: /opt/rh/rust-toolset-
1.62/root/usr/share/doc/cargo/html/index.html.

o On Red Hat Enterprise Linux 8:
I # yum install cargo-doc

You can find the Cargo, Rust’s Package Manager book under the following path:
/usr/share/doc/cargo/html/index.html.

o On Red Hat Enterprise Linux 9:
I # dnf install cargo-doc

You can find the Cargo, Rust’s Package Manager book under the following path:
/usr/share/doc/cargo/html/index.html.

1.7. ADDITIONAL RESOURCES

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

® For more information on the Rust programming language, see the official Rust documentation.

https://doc.rust-lang.org/

CHAPTER 2. THE CARGO BUILD TOOL

CHAPTER 2. THE CARGO BUILD TOOL

Cargo is a build tool and front end for the Rust compiler rustc as well as a package and dependency
manager. It allows Rust projects to declare dependencies with specific version requirements, resolves
the full dependency graph, downloads packages, and builds as well as tests your entire project.

Rust Toolset is distributed with Cargo 1.62.1.

2.1. THE CARGO DIRECTORY STRUCTURE AND FILE PLACEMENTS
The Cargo build tool uses set conventions for defining the directory structure and file placement within
a Cargo package. Running the cargo new command generates the package directory structure and
templates for both a manifest and a project file. By default, it also initializes a new Git repository in the

package root directory.

For a binary program, Cargo creates a directory project_name containing a text file named Cargo.toml
and a subdirectory src containing a text file named main.rs.

Additional resources

® For more information on the Cargo directory structure, see The Cargo Book — Package Layout .

® Forin-depth information about Rust code organization, see The Rust Programming Language —
Managing Growing Projects with Packages, Crates, and Modules.

2.2. CREATING A RUST PROJECT

Create a new Rust project that is set up according to the Cargo conventions. For more information on
Cargo conventions, see Cargo directory structure and file placements.

Procedure

Create a Rust project by running the following command:

® On Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.62 'cargo new --bin <project_name>"'

o Replace <project_name> with your project name.

® On Red Hat Enterprise Linux 8:
I $ cargo new --bin <project_name>

o Replace <project_name> with your project name.

® On Red Hat Enterprise Linux 9:
I $ cargo new --bin <project_name>

o Replace <project_name> with your project name.

https://doc.rust-lang.org/cargo/guide/project-layout.html
https://doc.rust-lang.org/book/ch07-00-managing-growing-projects-with-packages-crates-and-modules.html

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

NOTE

To edit the project code, edit the main executable file main.rs and add new source files
to the src subdirectory.

Additional resources

e Forinformation on configuring your project and adding dependencies, see Configuring Rust
project dependencies.

2.3. CREATING A LIBRARY FOR A RUST PROJECT

Complete the following steps to create a library for your Rust project using the Cargo build tool.

Prerequisites

® An existing Rust project.
For information on how to create a Rust project, see Creating a Rust project.

Procedure

To create a library for your Rust project, run the following command:

® On Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'cargo new --lib <project_name>"'

o Replace <project_name> with the name of your Rust project.
® On Red Hat Enterprise Linux 8:

I $ cargo new --lib <project_name>

o Replace <project_name> with the name of your Rust project.
® On Red Hat Enterprise Linux 9:

I $ cargo new --lib <project_name>

o Replace <project_name> with the name of your Rust project.

2.4. BUILDING A RUST PROJECT

Build your Rust project using the Cargo build tool. Cargo resolves all dependencies of your project,
downloads missing dependencies, and compiles it using the rustc compiler.

By default, projects are built and compiled in debug mode. For information on compiling your project in
release mode, see Building a Rust project in release mode .

Prerequisites

® An existing Rust project.
For information on how to create a Rust project, see Creating a Rust project.

™~ o

10

CHAPTER 2. THE CARGO BUILD TOOL

rFroceaure
® To build a Rust project managed by Cargo, run in the project directory:

o On Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'cargo build'
o On Red Hat Enterprise Linux 8:

I $ cargo build
o On Red Hat Enterprise Linux 9:

I $ cargo build

® To verify that your Rust program can be built when you do not need to build an executable file,
run:

I $ cargo check

2.5. BUILDING A RUST PROJECT IN RELEASE MODE

Build your Rust project in release mode using the Cargo build tool. Release mode is optimizing your
source code and can therefore increase compilation time while ensuring that the compiled binary will
run faster. Use this mode to produce optimized artifacts suitable for release and production.

Cargo resolves all dependencies of your project, downloads missing dependencies, and compiles it using
the rustc compiler.

For information on compiling your project in debug mode, see Building a Rust project.

Prerequisites

® An existing Rust project.
For information on how to create a Rust project, see Creating a Rust project.

Procedure
® To build the project in release mode, run:

o On Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'cargo build --release’
o On Red Hat Enterprise Linux 8:

I $ cargo build --release
o On Red Hat Enterprise Linux 9:

I $ cargo build --release

1

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

® To verify that your Rust program can be build when you do not need to build an executable file,
run:

I $ cargo check

2.6. RUNNING A RUST PROGRAM
Run your Rust project using the Cargo build tool. Cargo first rebuilds your project and then runs the

resulting executable file. If used during development, the cargo run command correctly resolves the
output path independently of the build mode.

Prerequisites

® A built Rust project.
For information on how to build a Rust project, see Building a Rust project.

Procedure

To run a Rust program managed as a project by Cargo, run in the project directory:

® On Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'cargo run'
® On Red Hat Enterprise Linux 8:

I $ cargo run
® On Red Hat Enterprise Linux 9:

I $ cargo run

NOTE

If your program has not been built yet, Cargo builds your program before running it.

2.7. TESTING A RUST PROJECT

Test your Rust program using the Cargo build tool. Cargo first rebuilds your project and then runs the
tests found in the project. Note that you can only test functions that are free, monomorphic, and take no
arguments. The function return type must be either () or Result<(), E> where E: Error.

By default, Rust projects are tested in debug mode. For information on testing your project in release
mode, see Testing a Rust project in release mode .

Prerequisites

® A built Rust project.
For information on how to build a Rust project, see Building a Rust project.

Procedure

e Add the test attribute #[test] in front of your function.

12

CHAPTER 2. THE CARGO BUILD TOOL
® To run tests for a Rust project managed by Cargo, run in the project directory:
o On Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.62 'cargo test'
o On Red Hat Enterprise Linux 8:
I $ cargo test
o On Red Hat Enterprise Linux 9:

I $ cargo test

Additional resources

® For more information on performing tests in your Rust project, see The Rust Reference —
Testing attributes.

2.8. TESTING A RUST PROJECT IN RELEASE MODE

Test your Rust program in release mode using the Cargo build tool. Release mode is optimizing your
source code and can therefore increase compilation time while ensuring that the compiled binary will

run faster. Use this mode to produce optimized artifacts suitable for release and production.

Cargo first rebuilds your project and then runs the tests found in the project. Note that you can only test
functions that are free, monomorphic, and take no arguments. The function return type must be either ()
or Result<(), E> where E: Error.

For information on testing your project in debug mode, see Testing a Rust project.

Prerequisites

® A built Rust project.
For information on how to build a Rust project, see Building a Rust project.

Procedure

® Add the test attribute #[test] in front of your function.

® To run tests for a Rust project managed by Cargo in release mode, run in the project directory:

o On Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'cargo test --release’
o On Red Hat Enterprise Linux 8:

I $ cargo test --release
o On Red Hat Enterprise Linux 9:

I $ cargo test --release

13

https://doc.rust-lang.org/reference/attributes/testing.html

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

Additional resources

® For more information on performing tests in your Rust project, see The Rust Reference —
Testing attributes.

2.9. CONFIGURING RUST PROJECT DEPENDENCIES

Configure the dependencies of your Rust project using the Cargo build tool. To specify dependencies
for a project managed by Cargo, edit the file Cargo.toml in the project directory and rebuild your

project. Cargo downloads the Rust code packages and their dependencies, stores them locally, builds all
of the project source code including the dependency code packages, and runs the resulting executable.

Prerequisites

® A built Rust project.
For information on how to build a Rust project, see Building a Rust project.

Procedure
1. In your project directory, open the file Cargo.toml.

2. Move to the section labelled [dependencies].
Each dependency is listed on a new line in the following format:

I crate_name = version

Rust code packages are called crates.
3. Edit your dependencies.

4. Rebuild your project by running:

® On Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'cargo build'
® On Red Hat Enterprise Linux 8:

I $ cargo build
® On Red Hat Enterprise Linux 9:

I $ cargo build

5. Run your project by using the following command:

® On Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.62 'cargo run'
® On Red Hat Enterprise Linux 8:

I $ cargo run

14

https://doc.rust-lang.org/reference/attributes/testing.html

CHAPTER 2. THE CARGO BUILD TOOL

® On Red Hat Enterprise Linux 9:

I $ cargo run

Additional resources

® For more information on configuring Rust dependencies, see The Cargo Book — Specifying
Dependencies.

2.10. BUILDING DOCUMENTATION FOR A RUST PROJECT
Use the Cargo tool to generate documentation from comments in your source code that are marked for

extraction. Note that documentation comments are extracted only for public functions, variables, and
members.

Prerequisites

® A built Rust project.
For information on how to build a Rust project, see Building a Rust project.

® Configured dependencies.
For more information on configuring dependencies, see Configuring Rust project dependencies.

Procedure

® To mark comments for extraction, use three slashes /// and place your comment in the beginning
of the line it is documenting.
Cargo supports the Markdown language for your comments.

® To build project documentation using Cargo, run in the project directory:

o On Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.62 'cargo doc --no-deps'
o On Red Hat Enterprise Linux 8:
I $ cargo doc --no-deps
o On Red Hat Enterprise Linux 9:
I $ cargo doc --no-deps
The generated documentation is located in the .target/doc directory.

Additional resources

® For more information on building documentation using Cargo, see The Rust Programming
Language — Making Useful Documentation Comments.

15

http://doc.crates.io/specifying-dependencies.html
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

2.11. COMPILING CODE INTO A WEBASSEMBLY BINARY WITH RUST
ON RED HAT ENTERPRISE LINUX 8 AND RED HAT ENTERPRISE LINUX
9 BETA

Complete the following steps to install the WebAssembly standard library.

Prerequisites

® Rust Toolset is installed.
For more information, see Installing Rust Toolset.

Procedure
® Toinstall the WebAssembly standard library, run:

o On Red Hat Enterprise Linux 8:

I # yum install rust-std-static-wasm32-unknown-unknown
o On Red Hat Enterprise Linux 9:

I # dnf install rust-std-static-wasm32-unknown-unknown

® To use WebAssembly with Cargo, run:

o On Red Hat Enterprise Linux 8:
I # cargo <commandad> --target wasm32-unknown-unknown

Replace <command> with the Cargo command you want to run.

o On Red Hat Enterprise Linux 9:
I # cargo <commandad> --target wasm32-unknown-unknown
Replace <command> with the Cargo command you want to run.

Additional resources

® For more information on WebAssembly, see the official Rust and WebAssembly documentation
or the Rust and WebAssembly book.

2.12. VENDORING RUST PROJECT DEPENDENCIES

Create a local copy of the dependencies of your Rust project for offline redistribution and reuse using
the Cargo build tool. This procedure is called vendoring project dependencies. The vendored
dependencies including Rust code packages for building your project on a Windows operating system
are located in the vendor directory. Vendored dependencies can be used by Cargo without any
connection to the internet.

Prerequisites

16

https://rustwasm.github.io/docs/book/game-of-life/setup.html
https://rustwasm.github.io/docs.html

CHAPTER 2. THE CARGO BUILD TOOL

® A built Rust project.
For information on how to build a Rust project, see Building a Rust project.

® Configured dependencies.
For more information on configuring dependencies, see Configuring Rust project dependencies.

Procedure
To vendor your Rust project with dependencies using Cargo, run in the project directory:

® On Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'cargo vendor'
® On Red Hat Enterprise Linux 8:

I $ cargo vendor
® On Red Hat Enterprise Linux 9:

I $ cargo vendor

2.13. ADDITIONAL RESOURCES
® For more information on Cargo, see the Official Cargo Guide.

® To display the manual page included in Rust Toolset, run:

o For Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'man cargo'
o For Red Hat Enterprise Linux 8:

I $ man cargo
o For Red Hat Enterprise Linux 9:

I $ man cargo

17

http://doc.crates.io/guide.html

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

CHAPTER 3. THE RUSTFMT FORMATTING TOOL

With the rustfmt formatting tool, you can automatically format the source code of your Rust programs.
You can use rusftmt either as a standalone tool or with Cargo.

3.1. INSTALLING RUSTFMT

Complete the following steps to install the rustfmt formatting tool.

Prerequisites

® Rust Toolset is installed.
For more information, see Installing Rust Toolset.

Procedure

Run the following command to install rustfmt:

® On Red Hat Enterprise Linux 7:

I # yum install rust-toolset-1.62-rustfmt

® On Red Hat Enterprise Linux 8:

I # yum install rustfmt

® On Red Hat Enterprise Linux 9:

I # dnf install rustfmt

3.2. USING RUSTFMT AS A STANDALONE TOOL

Use rustfmt as a standalone tool to format a Rust source file and all its dependencies. As an alternative,
use rustfmt with the Cargo build tool. For more information, see Using rustfmt with Cargo.

Prerequisites

® An existing Rust project.
For information on how to create a Rust project, see Creating a Rust project.

Procedure

To format a Rust source file using rustfmt as a standalone tool, run the following command:

® On Red Hat Enterprise Linux 7:
I $ scl enable rust-toolset-1.62 'rustfmt <source-file>'

o Replace <source_file> with the name of your source file.
Alternatively, you can replace <source_file> with standard input. rustfmt then provides its
output in standard output.

® On Red Hat Enterprise Linux 8:

18

CHAPTER 3. THE RUSTFMT FORMATTING TOOL

I $ rustfmt <source-file>
o Replace <source_file> with the name of your source file.

Alternatively, you can replace <source_file> with standard input. rustfmt then provides its
output in standard output.

® On Red Hat Enterprise Linux 9:
I $ rustfmt <source-file>

o Replace <source_file> with the name of your source file.
Alternatively, you can replace <source_file> with standard input. rustfmt then provides its
output in standard output.

NOTE

By default, rustfmt modifies the affected files without displaying details or creating
backups. To display details and create backups, run rustfmt with the --write-mode value.

3.3. USING RUSTFMT WITH THE CARGO BUILD TOOL

Use the rustfmt tool with Cargo to format a Rust source file and all its dependencies.
As an alternative, use rustfmt as a standalone tool. For more information, see Using rustfmt as a
standalone tool.

Prerequisites

® An existing Rust project.
For information on how to create a Rust project, see Creating a Rust project.

Procedure

To format all source files in a Cargo code package, run the following command:

® On Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'cargo fmt'
® On Red Hat Enterprise Linux 8:

I $ cargo fmt
® On Red Hat Enterprise Linux 9:

I $ cargo fmt

NOTE

To change the rustfmt formatting options, create the configuration file rustfmt.tomlin
the project directory and add your configurations to the file.

3.4. ADDITIONAL RESOURCES

19

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

® To display the help pages of rustfmt, run:

o On Red Hat Enterprise Linux 7:

I $ scl enable rust-toolset-1.62 'rustfmt --help'
o On Red Hat Enterprise Linux 8:

I $ rustfmt --help
o On Red Hat Enterprise Linux 9:

I $ rustfmt --help

® To configure the rustfmt tool, edit the file Configurations.md.

o On Red Hat Enterprise Linux 7, you can find it under the following path:
/opt/rh/rust-toolset-1.62/root/usr/share/doc/rust-toolset-1.62-rustfmt-
1.62.1/Configurations.md

o On Red Hat Enterprise Linux 8, you can find it under the following path:
/usr/share/doc/rustfmt/Configurations.md

o On Red Hat Enterprise Linux 9, you can find it under the following path:
/ust/share/doc/rustfmt/Configurations.md

20

CHAPTER 4. CONTAINER IMAGES WITH RUST TOOLSET ON RHEL €

CHAPTER 4. CONTAINER IMAGES WITH RUST TOOLSET ON
RHEL 8

On RHEL 8, you can build your own Rust Toolset container images on top of Red Hat Universal Base
Images (UBI) containers using Containerfiles.

4.1. CREATING A CONTAINER IMAGE OF RUST TOOLSET ON RHEL 8

On RHEL 8, Rust Toolset packages are part of the Red Hat Universal Base Images (UBIs) repositories.
To keep the container size small, install only individual packages instead of the entire Rust Toolset.

Prerequisites

® An existing Containerfile.
For more information on creating Containerfiles, see the Dockerfile reference page.

Procedure

® Visit the Red Hat Container Catalog.

® Selecta UBI.

® Click Get this image and follow the instructions.

® To create a container containing Rust Toolset, add the following lines to your Containerfile:
FROM registry.access.redhat.com/ubi8/ubi:/atest

RUN yum install -y rust-toolset

® To create a container image containing an individual package only, add the following lines to
your Containerfile:

I RUN yum install <package-name>

® Replace <package name> with the name of the package you want to install.

4.2. ADDITIONAL RESOURCES
® For more information on Red Hat UBI images, see Working with Container Images.

® For more information on Red Hat UBI repositories, see Universal Base Images (UBI): Images,
repositories, packages, and source code.

21

https://docs.docker.com/engine/reference/builder/
https://catalog.redhat.com/software/container-stacks/search?q=Red Hat universal base image&p=1
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index/#assembly_working-with-container-images_building-running-and-managing-containers
https://access.redhat.com/articles/4238681

Red Hat Developer Tools 1Using Rust 1.62.1 Toolset

CHAPTER 5. CHANGES IN RUST 1.62.1 TOOLSET

Rust Toolset has been updated from version 1.58.0 to 1.62.1on RHEL 7, RHEL 8, and RHEL 9.

Notable changes include:

Destructuring assignment allows patterns to assign to existing variables in the left-hand side of
an assignment. For example, a tuple assignment can swap to variables: (a, b) = (b, a);

Inline assembly is now supported on 64-bit x86 and 64-bit ARM using the core::arch::asm!
macro. See more details in the "Inline assembly” chapter of the reference,
"/usr/share/doc/rust/html/reference/inline-assembly.html". (online at https://doc.rust-
lang.org/reference/inline-assembly.html)

Enums can now derive the Default trait with an explicitly annotated #[default] variant.

Mutex, CondVar, and RwLock now use a custom futex-based implementation rather than
pthreads, with new optimizations made possible by Rust language guarantees.

Rust now supports custom exit codes from main, including user-defined types that implement
the newly-stabilized Termination trait.

Cargo supports more control over dependency features. The "dep:" prefix can refer to an
optional dependency without exposing that as a feature, and a "?" only enables a dependency

feature if that dependency is enabled elsewhere, like "package-name?/feature-name”.

Cargo has a new cargo add subcommand for adding dependencies to Cargo.toml.

For detailed information regarding the updates, see the series of upstream release announcements:

22

Announcing Rust 1.59.0.
Announcing Rust 1.60.0.
Announcing Rust 1.61.0.
Announcing Rust 1.62.0.

Announcing Rust 1.62.1.

https://doc.rust-lang.org/reference/inline-assembly.html
https://blog.rust-lang.org/2022/02/24/Rust-1.59.0.html
https://blog.rust-lang.org/2022/04/07/Rust-1.60.0.html
https://blog.rust-lang.org/2022/05/19/Rust-1.61.0.html
https://blog.rust-lang.org/2022/06/30/Rust-1.62.0.html
https://blog.rust-lang.org/2022/07/19/Rust-1.62.1.html

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RUST TOOLSET
	1.1. RUST TOOLSET COMPONENTS
	1.2. RUST TOOLSET COMPATIBILITY
	1.3. GETTING ACCESS TO RUST TOOLSET ON RED HAT ENTERPRISE LINUX 7
	1.4. INSTALLING RUST TOOLSET
	1.5. INSTALLING RUST DOCUMENTATION
	1.6. INSTALLING CARGO DOCUMENTATION
	1.7. ADDITIONAL RESOURCES

	CHAPTER 2. THE CARGO BUILD TOOL
	2.1. THE CARGO DIRECTORY STRUCTURE AND FILE PLACEMENTS
	2.2. CREATING A RUST PROJECT
	2.3. CREATING A LIBRARY FOR A RUST PROJECT
	2.4. BUILDING A RUST PROJECT
	2.5. BUILDING A RUST PROJECT IN RELEASE MODE
	2.6. RUNNING A RUST PROGRAM
	2.7. TESTING A RUST PROJECT
	2.8. TESTING A RUST PROJECT IN RELEASE MODE
	2.9. CONFIGURING RUST PROJECT DEPENDENCIES
	2.10. BUILDING DOCUMENTATION FOR A RUST PROJECT
	2.11. COMPILING CODE INTO A WEBASSEMBLY BINARY WITH RUST ON RED HAT ENTERPRISE LINUX 8 AND RED HAT ENTERPRISE LINUX 9 BETA
	2.12. VENDORING RUST PROJECT DEPENDENCIES
	2.13. ADDITIONAL RESOURCES

	CHAPTER 3. THE RUSTFMT FORMATTING TOOL
	3.1. INSTALLING RUSTFMT
	3.2. USING RUSTFMT AS A STANDALONE TOOL
	3.3. USING RUSTFMT WITH THE CARGO BUILD TOOL
	3.4. ADDITIONAL RESOURCES

	CHAPTER 4. CONTAINER IMAGES WITH RUST TOOLSET ON RHEL 8
	4.1. CREATING A CONTAINER IMAGE OF RUST TOOLSET ON RHEL 8
	4.2. ADDITIONAL RESOURCES

	CHAPTER 5. CHANGES IN RUST 1.62.1 TOOLSET

