
Red Hat Decision Manager 7.2

Designing a decision service using DMN models

Last Updated: 2020-05-26

Red Hat Decision Manager 7.2 Designing a decision service using DMN
models

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to implement Decision Model and Notation (DMN) models in your
decision services in Red Hat Decision Manager 7.2.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)
1.1. DMN CONFORMANCE LEVELS
1.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS
1.3. RULE EXPRESSIONS IN FEEL

1.3.1. Variable and function names in FEEL
1.3.2. Data types in FEEL

1.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS
1.4.1. DMN decision tables

1.4.1.1. Hit policies in DMN decision tables
1.4.2. Boxed literal expressions
1.4.3. Boxed context expressions
1.4.4. Boxed relation expressions
1.4.5. Boxed function expressions
1.4.6. Boxed invocation expressions

1.5. DMN MODEL EXAMPLE

CHAPTER 2. DMN SUPPORT IN RED HAT DECISION MANAGER
2.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION MANAGER

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL
3.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN DECISION CENTRAL
3.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED EXPRESSIONS IN DECISION CENTRAL
3.3. DMN DESIGNER NAVIGATION AND PROPERTIES IN DECISION CENTRAL

CHAPTER 4. DMN MODEL EXECUTION
4.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION
4.2. EXECUTING A DMN SERVICE USING THE DECISION SERVER JAVA CLIENT API
4.3. EXECUTING A DMN SERVICE USING THE DECISION SERVER REST API

CHAPTER 5. ADDITIONAL RESOURCES

APPENDIX A. VERSIONING INFORMATION

3

4
4
4
8
8
9

13
14
16
17
17
18
19

20
21

30
30

32
40
48
55

59
59
61

64

69

70

Table of Contents

1

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

2

PREFACE
As a business analyst or business rules developer, you can use Decision Model and Notation (DMN) to
model a decision service graphically in a decision requirements diagram (DRD). This diagram consists of
one or more decision requirements graphs (DRGs) that trace business decisions from start to finish, with
each decision node using logic defined in DMN boxed expressions such as decision tables.

Red Hat Decision Manager provides design and runtime support for DMN 1.2 models at conformance
level 3, and runtime-only support for DMN 1.1 models at conformance level 3. You can design your DMN
models directly in Decision Central or import existing DMN models into your Red Hat Decision Manager
projects for deployment and execution. Any DMN 1.1 models that you import into Decision Central, open
in the DMN designer, and save are converted to DMN 1.2 models.

For more information about DMN, see the Object Management Group (OMG) Decision Model and
Notation specification.

IMPORTANT

The DMN designer in Red Hat Decision Manager 7.2 is a Technology Preview feature and
is disabled by default in Decision Central. Technology Preview features are not supported
with Red Hat production service level agreements (SLAs), might not be functionally
complete, and are not recommended for production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

To enable the DMN designer preview in Decision Central, in the upper-right corner of the
window, click Settings → Roles, select a role from the left panel, click Editors → DMN
Designer → Read, and click Save to save the changes.

For more information about Red Hat Technology Preview support, see Technology
Preview Features Support Scope.

PREFACE

3

https://www.omg.org/spec/DMN
https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)
Decision Model and Notation (DMN) is a standard established by the Object Management Group
(OMG) for describing and modeling operational decisions. DMN defines an XML schema that enables
DMN models to be shared between DMN-compliant platforms and across organizations so that
business analysts and business rules developers are unified in designing and implementing DMN
decision services. The DMN standard is similar to and can be used together with the Business Process
Model and Notation (BPMN) standard for designing and modeling business processes.

For more information about the background and applications of DMN, see the OMG Decision Model and
Notation specification.

1.1. DMN CONFORMANCE LEVELS

The DMN specification defines three incremental levels of conformance in a software implementation. A
product that claims compliance at one level must also be compliant with any preceding levels. For
example, a conformance level 3 implementation must also include the supported components in
conformance levels 1 and 2. For the formal definitions of each conformance level, see the OMG Decision
Model and Notation specification.

The following are summaries of the three DMN conformance levels:

Conformance level 1

A DMN conformance level 1 implementation supports decision requirement diagrams (DRDs),
decision logic, and decision tables, but decision models are not executable. Any language can be used
to define the expressions, including natural, unstructured languages.

Conformance level 2

A DMN conformance level 2 implementation includes the requirements in conformance level 1, and
supports Simplified Friendly Enough Expression Language (S-FEEL) expressions and fully
executable decision models.

Conformance level 3

A DMN conformance level 3 implementation includes the requirements in conformance levels 1 and
2, and supports Friendly Enough Expression Language (FEEL) expressions, the full set of boxed
expressions, and fully executable decision models.

Red Hat Decision Manager provides design and runtime support for DMN 1.2 models at conformance
level 3, and runtime-only support for DMN 1.1 models at conformance level 3. You can design your DMN
models directly in Decision Central or import existing DMN models into your Red Hat Decision Manager
projects for deployment and execution. Any DMN 1.1 models that you import into Decision Central, open
in the DMN designer, and save are converted to DMN 1.2 models.

1.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS

A decision requirements diagram (DRD) is a visual representation of your DMN model. This diagram
consists of one or more decision requirements graphs (DRGs) that represent a particular domain of an
overall DRD. The DRGs trace business decisions using decision nodes, business knowledge models,
sources of business knowledge, input data, and decision services.

The following table summarizes the components in a DRD:

Table 1.1. DRD components

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

4

https://www.omg.org/spec/DMN
https://www.omg.org/spec/DMN

Component Description Notation

Elements Decision Node where one or more input elements
determine an output based on defined
decision logic.

Business
knowledge model

Reusable function with one or more
decision elements. Decisions that have
the same logic but depend on different
sub-input data or sub-decisions use
business knowledge models to determine
which procedure to follow.

Knowledge source External authorities, documents,
committees, or policies that regulate a
decision or business knowledge model.
Knowledge sources are references to
real-world factors rather than executable
business rules.

Input data Information used in a decision node or a
business knowledge model. Input data
usually includes business-level concepts
or objects relevant to the business, such
as loan applicant data used in a lending
strategy.

Decision service Top-level decision containing a set of
reusable decisions published as a service
for invocation. A decision service can be
invoked from an external application or a
BPMN business process.

NOTE

Decision service nodes
are currently not
supported in the Red Hat
Decision Manager 7.2
DMN designer. This
support will be provided
in a future release.

Requirement
connectors

Information
requirement

Connection from an input data node or
decision node to another decision node
that requires the information.

Knowledge
requirement

Connection from a business knowledge
model to a decision node or to another
business knowledge model that invokes
the decision logic.

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

5

Authority
requirement

Connection from an input data node or a
decision node to a dependent knowledge
source or from a knowledge source to a
decision node, business knowledge
model, or another knowledge source.

Artifacts Text annotation Explanatory note associated with an input
data node, decision node, business
knowledge model, or knowledge source.

Association Connection from an input data node,
decision node, business knowledge
model, or knowledge source to a text
annotation.

Component Description Notation

The following table summarizes the permitted connectors between DRD elements:

Table 1.2. DRD connector rules

Starts from Connects to Connection type Example

Decision Decision Information
requirement

Business
knowledge model

Decision Knowledge
requirement

Business
knowledge model

Decision service

(Currently not
supported in the
Red Hat Decision
Manager 7.2 DMN
designer. Support
will be provided in a
future release.)

Decision Knowledge
requirement

Business
knowledge model

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

6

Input data Decision Information
requirement

Knowledge source Authority
requirement

Knowledge source Decision Authority
requirement

Business
knowledge model

Knowledge source

Decision Text annotation Association

Business
knowledge model

Knowledge source

Input data

Starts from Connects to Connection type Example

The following example DRD illustrates some of these components in practice:

Figure 1.1. Example DRD: Loan prequalification

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

7

Figure 1.1. Example DRD: Loan prequalification

1.3. RULE EXPRESSIONS IN FEEL

Friendly Enough Expression Language (FEEL) is an expression language defined by the Object
Management Group (OMG) DMN specification. FEEL expressions define the logic of a decision in a
DMN model. FEEL is designed to facilitate both decision modeling and execution by assigning
semantics to the decision model constructs. FEEL expressions in decision requirements diagrams
(DRDs) occupy table cells in boxed expressions for decision nodes and business knowledge models.

For more information about FEEL in DMN, see the OMG Decision Model and Notation specification .

1.3.1. Variable and function names in FEEL

Unlike many traditional expression languages, Friendly Enough Expression Language (FEEL) supports
spaces and a few special characters as part of variable and function names. A FEEL name must start with
a letter, ?, or _ element. The unicode letter characters are also allowed. Variable names cannot start with
a language keyword, such as and, true, or every. The remaining characters in a variable name can be any
of the starting characters, as well as digits, white spaces, and special characters such as +, -, /, *, ', and ..

For example, the following names are all valid FEEL names:

Age

Birth Date

Flight 234 pre-check procedure

Several limitations apply to variable and function names in FEEL:

Ambiguity

The use of spaces, keywords, and other special characters as part of names can make FEEL
ambiguous. The ambiguities are resolved in the context of the expression, matching names from left
to right. The parser resolves the variable name as the longest name matched in scope. You can use (
) to disambiguate names if necessary.

Spaces in names

The DMN specification limits the use of spaces in FEEL names. According to the DMN specification,
names can contain multiple spaces but not two consecutive spaces.
In order to make the language easier to use and avoid common errors due to spaces, Red Hat
Decision Manager removes the limitation on the use of consecutive spaces. Red Hat Decision
Manager supports variable names with any number of consecutive spaces, but normalizes them into

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

8

https://www.omg.org/spec/DMN

a single space. For example, the two variable references First Name and First Name are both
acceptable in Red Hat Decision Manager.

Red Hat Decision Manager also normalizes the use of other white spaces, like the non-breakable
white space that is common in web pages, tabs, and line breaks. From a Red Hat Decision Manager
FEEL engine perspective, all of these characters are normalized into a single white space before
processing.

The keyword in

The keyword in is the only keyword in the language that cannot be used as part of a variable name.
Although the specifications allow the use of keywords in the middle of variable names, the use of in
in variable names conflicts with the grammar definition of for, every and some expression
constructs.

1.3.2. Data types in FEEL

Friendly Enough Expression Language (FEEL) supports the following data types:

Numbers

Strings

Boolean values

Dates

Time

Date and time

Days and time duration

Years and months duration

Functions

Contexts

Ranges (or intervals)

Lists

NOTE

The DMN specification currently does not provide an explicit way of declaring a variable
as a function, context, range, or list, but Red Hat Decision Manager extends the DMN
built-in types to support variables of these types.

The following are descriptions of each data type:

Numbers

Numbers in FEEL are based on the IEEE 754-2008 Decimal 128 format, with 34 digits of precision.
Internally, numbers are represented in Java as BigDecimals with MathContext DECIMAL128. FEEL
supports only one number data type, so the same type is used to represent both integers and
floating point numbers.

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

9

http://ieeexplore.ieee.org/document/4610935/
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

FEEL numbers use a dot (.) as a decimal separator. FEEL does not support -INF, +INF, or NaN. FEEL
uses null to represent invalid numbers.

Red Hat Decision Manager extends the DMN specification and supports additional number
notations:

Scientific: You can use scientific notation with the suffix e<exp> or E<exp>. For example,
1.2e3 is the same as writing the expression 1.2*10**3, but is a literal instead of an expression.

Hexadecimal: You can use hexadecimal numbers with the prefix 0x. For example, 0xff is the
same as the decimal number 255. Both uppercase and lowercase letters are supported. For
example, 0XFF is the same as 0xff.

Type suffixes: You can use the type suffixes f, F, d, D, l, and L. These suffixes are ignored.

Strings

Strings in FEEL are any sequence of characters delimited by double quotation marks.
Example:

"John Doe"

Boolean values

FEEL uses three-valued boolean logic, so a boolean logic expression may have values true, false, or
null.

Dates

Date literals are not supported in FEEL, but you can use the built-in date() function to construct date
values. Date strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The format is "YYYY-MM-DD" where YYYY is the year with four digits, MM is the number
of the month with two digits, and DD is the number of the day.
Example:

date("2017-06-23")

Date objects have time equal to "00:00:00", which is midnight. The dates are considered to be local,
without a timezone.

Time

Time literals are not supported in FEEL, but you can use the built-in time() function to construct time
values. Time strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The format is "hh:mm:ss[.uuu][(+-)hh:mm]" where hh is the hour of the day (from 00 to
23), mm is the minutes in the hour, and ss is the number of seconds in the minute. Optionally, the
string may define the number of milliseconds (uuu) within the second and contain a positive (+) or
negative (-) offset from UTC time to define its timezone. Instead of using an offset, you can use the
letter z to represent the UTC time, which is the same as an offset of -00:00. If no offset is defined,
the time is considered to be local.
Examples:

time("04:25:12")
time("14:10:00+02:00")
time("22:35:40.345-05:00")
time("15:00:30z")

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

10

https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time

Time values that define an offset or a timezone cannot be compared to local times that do not define
an offset or a timezone.

Date and time

Date and time literals are not supported in FEEL, but you can use the built-in date and time()
function to construct date and time values. Date and time strings in FEEL follow the format defined
in the XML Schema Part 2: Datatypes document. The format is "<date>T<time>", where <date> and
<time> follow the prescribed XML schema formatting, conjoined by T.
Examples:

date and time("2017-10-22T23:59:00")
date and time("2017-06-13T14:10:00+02:00")
date and time("2017-02-05T22:35:40.345-05:00")
date and time("2017-06-13T15:00:30z")

Date and time values that define an offset or a timezone cannot be compared to local date and time
values that do not define an offset or a timezone.

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dateTime as a synonym of date and time.

Days and time duration

Days and time duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Days and time duration strings in FEEL follow
the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only days,
hours, minutes and seconds. Months and years are not supported.
Examples:

duration("P1DT23H12M30S")
duration("P23D")
duration("PT12H")
duration("PT35M")

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dayTimeDuration as a synonym of days and time
duration.

Years and months duration

Years and months duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Years and months duration strings in FEEL
follow the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only
years and months. Days, hours, minutes, or seconds are not supported.
Examples:

duration("P3Y5M")
duration("P2Y")
duration("P10M")

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

11

https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#duration
https://www.w3.org/TR/xmlschema-2/#duration

duration("P25M")

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword yearMonthDuration as a synonym of years and months
duration.

Functions

FEEL has function literals (or anonymous functions) that you can use to create functions. The DMN
specification currently does not provide an explicit way of declaring a variable as a function, but Red
Hat Decision Manager extends the DMN built-in types to support variables of functions.
Example:

function(a, b) a + b

In this example, the FEEL expression creates a function that adds the parameters a and b and
returns the result.

Contexts

FEEL has context literals that you can use to create contexts. A context in FEEL is a list of key and
value pairs, similar to maps in languages like Java. The DMN specification currently does not provide
an explicit way of declaring a variable as a context, but Red Hat Decision Manager extends the DMN
built-in types to support variables of contexts.
Example:

{ x : 5, y : 3 }

In this example, the expression creates a context with two entries, x and y, representing a coordinate
in a chart.

In DMN 1.2, another way to create contexts is to create an item definition that contains the list of
keys as attributes, and then declare the variable as having that item definition type.

The Red Hat Decision Manager DMN API supports DMN ItemDefinition structural types in a
DMNContext represented in two ways:

User-defined Java type: Must be a valid JavaBeans object defining properties and getters
for each of the components in the DMN ItemDefinition. If necessary, you can also use the
@FEELProperty annotation for those getters representing a component name which would
result in an invalid Java identifier.

java.util.Map interface: The map needs to define the appropriate entries, with the keys
corresponding to the component name in the DMN ItemDefinition.

Ranges (or intervals)

FEEL has range literals that you can use to create ranges or intervals. A range in FEEL is a value that
defines a lower and an upper bound, where either can be open or closed. The DMN specification
currently does not provide an explicit way of declaring a variable as a range, but Red Hat Decision
Manager extends the DMN built-in types to support variables of ranges.
The syntax of a range is defined in the following formats:

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

12

range := interval_start endpoint '..' endpoint interval_end
interval_start := open_start | closed_start
open_start := '(' | ']'
closed_start := '['
interval_end := open_end | closed_end
open_end := ')' | '['
closed_end := ']'
endpoint := expression

The expression for the endpoint must return a comparable value, and the lower bound endpoint
must be lower than the upper bound endpoint.

For example, the following literal expression defines an interval between 1 and 10, including the
boundaries (a closed interval on both endpoints):

[1 .. 10]

The following literal expression defines an interval between 1 hour and 12 hours, including the lower
boundary (a closed interval), but excluding the upper boundary (an open interval):

[duration("PT1H") .. duration("PT12H"))

You can use ranges in decision tables to test for ranges of values, or use ranges in simple literal
expressions. For example, the following literal expression returns true if the value of a variable x is
between 0 and 100:

x in [1 .. 100]

Lists

FEEL has list literals that you can use to create lists of items. A list in FEEL is represented by a
comma-separated list of values enclosed in square brackets. The DMN specification currently does
not provide an explicit way of declaring a variable as a list, but Red Hat Decision Manager extends
the DMN built-in types to support variables of lists.
Example:

[2, 3, 4, 5]

All lists in FEEL contain elements of the same type and are immutable. Elements in a list can be
accessed by index, where the first element is 1. Negative indexes can access elements starting from
the end of the list so that -1 is the last element.

For example, the following expression returns the second element of a list x:

x[2]

The following expression returns the second-to-last element of a list x:

x[-2]

1.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

13

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD) or decision requirements graph
(DRG). Some boxed expressions can contain other boxed expressions, but the top-level boxed
expression corresponds to the decision logic of a single DRD artifact. While DRDs with one or more
DRGs represent the flow of a DMN decision model, boxed expressions define the actual decision logic of
individual nodes. DRDs and boxed expressions together form a complete and functional DMN decision
model.

The following are the types of DMN boxed expressions:

Decision tables

Literal expressions

Contexts

Relations

Functions

Invocations

Lists

NOTE

Red Hat Decision Manager does not provide boxed list expressions in Decision Central,
but supports a FEEL list data type that you can use in boxed literal expressions. For
more information about the list data type and other FEEL data types in Red Hat
Decision Manager, see Section 1.3.2, “Data types in FEEL” .

All Friendly Enough Expression Language (FEEL) expressions that you use in your boxed expressions
must conform to the FEEL syntax requirements in the OMG Decision Model and Notation specification .

1.4.1. DMN decision tables

A decision table in DMN is a visual representation of one or more business rules in a tabular format. You
use decision tables to define rules for a decision node that applies those rules at a given point in the
decision model. Each rule consists of a single row in the table, and includes columns that define the
conditions (input) and outcome (output) for that particular row. The definition of each row is precise
enough to derive the outcome using the values of the conditions. Input and output values can be FEEL
expressions or defined data type values.

For example, the following decision table determines credit score ratings based on a defined range of a
loan applicant’s credit score:

Figure 1.2. Decision table for credit score rating

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

14

https://www.omg.org/spec/DMN

Figure 1.2. Decision table for credit score rating

The following decision table determines the next step in a lending strategy for applicants depending on
applicant loan eligibility and the bureau call type:

Figure 1.3. Decision table for lending strategy

The following decision table determines applicant qualification for a loan as the concluding decision
node in a loan prequalification decision model:

Figure 1.4. Decision table for loan prequalification

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

15

Figure 1.4. Decision table for loan prequalification

Decision tables are a popular way of modeling rules and decision logic, and are used in many
methodologies (such as DMN) and implementation frameworks (such as Drools).

IMPORTANT

Red Hat Decision Manager supports both DMN decision tables and Drools-native
decision tables, but they are different types of assets with different syntax requirements
and are not interchangeable. For more information about Drools-native decision tables in
Red Hat Decision Manager, see Designing a decision service using uploaded decision
tables.

1.4.1.1. Hit policies in DMN decision tables

Hit policies determine how to reach an outcome when multiple rules in a decision table match the
provided input values. For example, if one rule in a decision table applies a sales discount to military
personnel and another rule applies a discount to students, then when a customer is both a student and in
the military, the decision table hit policy must indicate whether to apply one discount or the other
(Unique, First) or both discounts (Collect Sum). You specify the single character of the hit policy (U, F,
C+) in the upper-left corner of the decision table.

The following are supported DMN decision table hit policies:

Unique (U): Permits only one rule to match. Any overlap raises an error.

Any (A): Permits multiple rules to match, but they must all have the same output. If multiple
matching rules do not have the same output, an error is raised.

Priority (P): Permits multiple rules to match, with different outputs. The output that comes first
in the output values list is selected.

First (F): Uses the first match in rule order.

Collect (C+, C>, C<, C#): Aggregates output from multiple rules based on an aggregation
function.

Collect (C): Aggregates values in an arbitrary list.

Collect Sum (C+): Outputs the sum of all collected values. Values must be numeric.

Collect Min (C<): Outputs the minimum value among the matches. The resulting values

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

16

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/designing_a_decision_service_using_uploaded_decision_tables

Collect Min (C<): Outputs the minimum value among the matches. The resulting values
must be comparable, such as numbers, dates, or text (lexicographic order).

Collect Max (C>): Outputs the maximum value among the matches. The resulting values
must be comparable, such as numbers, dates or text (lexicographic order).

Collect Count (C#): Outputs the number of matching rules.

1.4.2. Boxed literal expressions

A boxed literal expression in DMN is a literal FEEL expression as text in a table cell, typically with a
labeled column and an assigned data type. You use boxed literal expressions to define simple or
complex node logic or decision data directly in FEEL for a particular node in a decision. Literal FEEL
expressions must conform to FEEL syntax requirements in the OMG Decision Model and Notation
specification.

For example, the following boxed literal expression defines the minimum acceptable PITI calculation
(principal, interest, taxes, and insurance) in a lending decision, where acceptable rate is a variable
defined in the DMN model:

Figure 1.5. Boxed literal expression for minimum PITI value

The following boxed literal expression sorts a list of possible dating candidates (soul mates) in an online
dating application based on their score on criteria such as age, location, and interests:

Figure 1.6. Boxed literal expression for matching online dating candidates

1.4.3. Boxed context expressions

A boxed context expression in DMN is a set of variable names and values with a result value. Each name-

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

17

https://www.omg.org/spec/DMN

value pair is a context entry. You use context expressions to represent data definitions in decision logic
and set a value for a desired decision element within the DMN decision model. A value in a boxed context
expression can be a data type value or FEEL expression, or can contain a nested sub-expression of any
type, such as a decision table, a literal expression, or another context expression.

For example, the following boxed context expression defines the factors for sorting delayed passengers
in a flight-rebooking decision model, based on defined data types (tPassengerTable,
tFlightNumberList):

Figure 1.7. Boxed context expression for flight passenger waiting list

The following boxed context expression defines the factors that determine whether a loan applicant can
meet minimum mortgage payments based on principal, interest, taxes, and insurance (PITI), represented
as a front-end ratio calculation with a sub-context expression:

Figure 1.8. Boxed context expression for front-end client PITI ratio

1.4.4. Boxed relation expressions

A boxed relation expression in DMN is a traditional data table with information about given entities, listed
as rows. You use boxed relation tables to define decision data for relevant entities in a decision at a
particular node. Boxed relation expressions are similar to context expressions in that they set variable
names and values, but relation expressions contain no result value and list all variable values based on a
single defined variable in each column.

For example, the following boxed relation expression provides information about employees in an

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

18

For example, the following boxed relation expression provides information about employees in an
employee rostering decision:

Figure 1.9. Boxed relation expression with employee information

1.4.5. Boxed function expressions

A boxed function expression in DMN is a parameterized boxed expression containing a literal FEEL
expression, a nested context expression of an external JAVA or PMML function, or a nested boxed
expression of any type. By default, all business knowledge models are defined as boxed function
expressions. You use boxed function expressions to call functions on your decision logic and to define all
business knowledge models.

For example, the following boxed function expression determines airline flight capacity in a flight-
rebooking decision model:

Figure 1.10. Boxed function expression for flight capacity

The following boxed function expression contains a basic Java function as a context expression for
determining absolute value in a decision model calculation:

Figure 1.11. Boxed function expression for absolute value

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

19

Figure 1.11. Boxed function expression for absolute value

The following boxed function expression determines a monthly mortgage installment as a business
knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 1.12. Boxed function expression for installment calculation in business knowledge model

1.4.6. Boxed invocation expressions

A boxed invocation expression in DMN is a boxed expression that invokes a business knowledge model.
A boxed invocation expression contains the name of the business knowledge model to be invoked and a
list of parameter bindings. Each binding is represented by two boxed expressions on a row: The box on
the left contains the name of a parameter and the box on the right contains the binding expression
whose value is assigned to the parameter to evaluate the invoked business knowledge model. You use
boxed invocations to invoke at a particular decision node a business knowledge model defined in the
decision model.

For example, the following boxed invocation expression invokes a reassign next passenger business
knowledge model as the concluding decision node in a flight-rebooking decision model:

Figure 1.13. Boxed invocation expression to reassign flight passengers

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

20

Figure 1.13. Boxed invocation expression to reassign flight passengers

The following boxed invocation expression invokes an InstallmentCalculation business knowledge
model to calculate a monthly installment amount for a loan before proceeding to affordability decisions:

Figure 1.14. Boxed invocation expression for required monthly installment

1.5. DMN MODEL EXAMPLE

The following is a real-world DMN model example that demonstrates how you can use decision
modeling to reach a decision based on input data, circumstances, and company guidelines. In this
scenario, a flight from San Diego to New York is canceled, requiring the affected airline to find alternate
arrangements for its inconvenienced passengers.

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

21

First, the airline collects the information necessary to determine how best to get the travelers to their
destinations:

Input data

List of flights

List of passengers

Decisions

Prioritize the passengers who will get seats on a new flight

Determine which flights those passengers will be offered

Business knowledge models

The company process for determining passenger priority

Any flights that have space available

Company rules for determining how best to reassign inconvenienced passengers

The airline then uses the DMN standard to model its decision process in the following decision
requirements diagram (DRD) for determining the best rebooking solution:

Figure 1.15. DRD for flight rebooking

Similar to flowcharts, DRDs use shapes to represent the different elements in a process. Ovals contain
the two necessary input data, rectangles contain the decision points in the model, and rectangles with
clipped corners (business knowledge models) contain reusable logic that can be repeatedly invoked.

The DRD draws logic for each element from boxed expressions that provide variable definitions using
FEEL expressions or data type values.

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

22

Some boxed expressions are basic, such as the following decision for establishing a prioritized waiting
list:

Figure 1.16. Boxed context expression example for prioritized wait list

Some boxed expressions are more complex with greater detail and calculation, such as the following
business knowledge model for reassigning the next delayed passenger:

Figure 1.17. Boxed function expression for passenger reassignment

The following is the DMN source file for this decision model:

<definitions xmlns="http://www.omg.org/spec/DMN/20151101/dmn.xsd"
xmlns:kie="https://www.drools.org/kie-dmn" xmlns:feel="http://www.omg.org/spec/FEEL/20140401"

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

23

id="_0019_flight_rebooking" name="0019-flight-rebooking" namespace="https://www.drools.org/kie-
dmn">
 <itemDefinition id="_tFlight" name="tFlight">
 <itemComponent id="_tFlight_Flight" name="Flight Number">
 <typeRef>feel:string</typeRef>
 </itemComponent>
 <itemComponent id="_tFlight_From" name="From">
 <typeRef>feel:string</typeRef>
 </itemComponent>
 <itemComponent id="_tFlight_To" name="To">
 <typeRef>feel:string</typeRef>
 </itemComponent>
 <itemComponent id="_tFlight_Dep" name="Departure">
 <typeRef>feel:dateTime</typeRef>
 </itemComponent>
 <itemComponent id="_tFlight_Arr" name="Arrival">
 <typeRef>feel:dateTime</typeRef>
 </itemComponent>
 <itemComponent id="_tFlight_Capacity" name="Capacity">
 <typeRef>feel:number</typeRef>
 </itemComponent>
 <itemComponent id="_tFlight_Status" name="Status">
 <typeRef>feel:string</typeRef>
 </itemComponent>
 </itemDefinition>
 <itemDefinition id="_tFlightTable" isCollection="true" name="tFlightTable">
 <typeRef>kie:tFlight</typeRef>
 </itemDefinition>
 <itemDefinition id="_tPassenger" name="tPassenger">
 <itemComponent id="_tPassenger_Name" name="Name">
 <typeRef>feel:string</typeRef>
 </itemComponent>
 <itemComponent id="_tPassenger_Status" name="Status">
 <typeRef>feel:string</typeRef>
 </itemComponent>
 <itemComponent id="_tPassenger_Miles" name="Miles">
 <typeRef>feel:number</typeRef>
 </itemComponent>
 <itemComponent id="_tPassenger_Flight" name="Flight Number">
 <typeRef>feel:string</typeRef>
 </itemComponent>
 </itemDefinition>
 <itemDefinition id="_tPassengerTable" isCollection="true" name="tPassengerTable">
 <typeRef>kie:tPassenger</typeRef>
 </itemDefinition>
 <itemDefinition id="_tFlightNumberList" isCollection="true" name="tFlightNumberList">
 <typeRef>feel:string</typeRef>
 </itemDefinition>
 <inputData id="i_Flight_List" name="Flight List">
 <variable name="Flight List" typeRef="kie:tFlightTable"/>
 </inputData>
 <inputData id="i_Passenger_List" name="Passenger List">
 <variable name="Passenger List" typeRef="kie:tPassengerTable"/>
 </inputData>
 <decision name="Prioritized Waiting List" id="d_PrioritizedWaitingList">
 <variable name="Prioritized Waiting List" typeRef="kie:tPassengerTable"/>

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

24

 <informationRequirement>
 <requiredInput href="#i_Passenger_List"/>
 </informationRequirement>
 <informationRequirement>
 <requiredInput href="#i_Flight_List"/>
 </informationRequirement>
 <knowledgeRequirement>
 <requiredKnowledge href="#b_PassengerPriority"/>
 </knowledgeRequirement>
 <context>
 <contextEntry>
 <variable name="Cancelled Flights" typeRef="kie:tFlightNumberList"/>
 <literalExpression>
 <text>Flight List[Status = "cancelled"].Flight Number</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <variable name="Waiting List" typeRef="kie:tPassengerTable"/>
 <literalExpression>
 <text>Passenger List[list contains(Cancelled Flights, Flight Number)]</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <literalExpression>
 <text>sort(Waiting List, passenger priority)</text>
 </literalExpression>
 </contextEntry>
 </context>
 </decision>
 <decision name="Rebooked Passengers" id="d_RebookedPassengers">
 <variable name="Rebooked Passengers" typeRef="kie:tPassengerTable"/>
 <informationRequirement>
 <requiredDecision href="#d_PrioritizedWaitingList"/>
 </informationRequirement>
 <informationRequirement>
 <requiredInput href="#i_Flight_List"/>
 </informationRequirement>
 <knowledgeRequirement>
 <requiredKnowledge href="#b_ReassignNextPassenger"/>
 </knowledgeRequirement>
 <invocation>
 <literalExpression>
 <text>reassign next passenger</text>
 </literalExpression>
 <binding>
 <parameter name="Waiting List"/>
 <literalExpression>
 <text>Prioritized Waiting List</text>
 </literalExpression>
 </binding>
 <binding>
 <parameter name="Reassigned Passengers List"/>
 <literalExpression>
 <text>[]</text>
 </literalExpression>
 </binding>

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

25

 <binding>
 <parameter name="Flights"/>
 <literalExpression>
 <text>Flight List</text>
 </literalExpression>
 </binding>
 </invocation>
 </decision>
 <businessKnowledgeModel id="b_PassengerPriority" name="passenger priority">
 <encapsulatedLogic>
 <formalParameter name="Passenger1" typeRef="kie:tPassenger"/>
 <formalParameter name="Passenger2" typeRef="kie:tPassenger"/>
 <decisionTable hitPolicy="UNIQUE">
 <input id="b_Passenger_Priority_dt_i_P1_Status" label="Passenger1.Status">
 <inputExpression typeRef="feel:string">
 <text>Passenger1.Status</text>
 </inputExpression>
 <inputValues>
 <text>"gold", "silver", "bronze"</text>
 </inputValues>
 </input>
 <input id="b_Passenger_Priority_dt_i_P2_Status" label="Passenger2.Status">
 <inputExpression typeRef="feel:string">
 <text>Passenger2.Status</text>
 </inputExpression>
 <inputValues>
 <text>"gold", "silver", "bronze"</text>
 </inputValues>
 </input>
 <input id="b_Passenger_Priority_dt_i_P1_Miles" label="Passenger1.Miles">
 <inputExpression typeRef="feel:string">
 <text>Passenger1.Miles</text>
 </inputExpression>
 </input>
 <output id="b_Status_Priority_dt_o" label="Passenger1 has priority">
 <outputValues>
 <text>true, false</text>
 </outputValues>
 <defaultOutputEntry>
 <text>false</text>
 </defaultOutputEntry>
 </output>
 <rule id="b_Passenger_Priority_dt_r1">
 <inputEntry id="b_Passenger_Priority_dt_r1_i1">
 <text>"gold"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r1_i2">
 <text>"gold"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r1_i3">
 <text>>= Passenger2.Miles</text>
 </inputEntry>
 <outputEntry id="b_Passenger_Priority_dt_r1_o1">
 <text>true</text>
 </outputEntry>
 </rule>

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

26

 <rule id="b_Passenger_Priority_dt_r2">
 <inputEntry id="b_Passenger_Priority_dt_r2_i1">
 <text>"gold"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r2_i2">
 <text>"silver","bronze"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r2_i3">
 <text>-</text>
 </inputEntry>
 <outputEntry id="b_Passenger_Priority_dt_r2_o1">
 <text>true</text>
 </outputEntry>
 </rule>
 <rule id="b_Passenger_Priority_dt_r3">
 <inputEntry id="b_Passenger_Priority_dt_r3_i1">
 <text>"silver"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r3_i2">
 <text>"silver"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r3_i3">
 <text>>= Passenger2.Miles</text>
 </inputEntry>
 <outputEntry id="b_Passenger_Priority_dt_r3_o1">
 <text>true</text>
 </outputEntry>
 </rule>
 <rule id="b_Passenger_Priority_dt_r4">
 <inputEntry id="b_Passenger_Priority_dt_r4_i1">
 <text>"silver"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r4_i2">
 <text>"bronze"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r4_i3">
 <text>-</text>
 </inputEntry>
 <outputEntry id="b_Passenger_Priority_dt_r4_o1">
 <text>true</text>
 </outputEntry>
 </rule>
 <rule id="b_Passenger_Priority_dt_r5">
 <inputEntry id="b_Passenger_Priority_dt_r5_i1">
 <text>"bronze"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r5_i2">
 <text>"bronze"</text>
 </inputEntry>
 <inputEntry id="b_Passenger_Priority_dt_r5_i3">
 <text>>= Passenger2.Miles</text>
 </inputEntry>
 <outputEntry id="b_Passenger_Priority_dt_r5_o1">
 <text>true</text>
 </outputEntry>
 </rule>

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

27

 </decisionTable>
 </encapsulatedLogic>
 <variable name="passenger priority" typeRef="feel:boolean"/>
 </businessKnowledgeModel>
 <businessKnowledgeModel id="b_ReassignNextPassenger" name="reassign next passenger">
 <encapsulatedLogic>
 <formalParameter name="Waiting List" typeRef="kie:tPassengerTable"/>
 <formalParameter name="Reassigned Passengers List" typeRef="kie:tPassengerTable"/>
 <formalParameter name="Flights" typeRef="kie:tFlightTable"/>
 <context>
 <contextEntry>
 <variable name="Next Passenger" typeRef="kie:tPassenger"/>
 <literalExpression>
 <text>Waiting List[1]</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <variable name="Original Flight" typeRef="kie:tFlight"/>
 <literalExpression>
 <text>Flights[Flight Number = Next Passenger.Flight Number][1]</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <variable name="Best Alternate Flight" typeRef="kie:tFlight"/>
 <literalExpression>
 <text>Flights[From = Original Flight.From and To = Original Flight.To and Departure >
Original Flight.Departure and Status = "scheduled" and has capacity(item, Reassigned Passengers
List)][1]</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <variable name="Reassigned Passenger" typeRef="kie:tPassenger"/>
 <context>
 <contextEntry>
 <variable name="Name" typeRef="feel:string"/>
 <literalExpression>
 <text>Next Passenger.Name</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <variable name="Status" typeRef="feel:string"/>
 <literalExpression>
 <text>Next Passenger.Status</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <variable name="Miles" typeRef="feel:number"/>
 <literalExpression>
 <text>Next Passenger.Miles</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <variable name="Flight Number" typeRef="feel:string"/>
 <literalExpression>
 <text>Best Alternate Flight.Flight Number</text>
 </literalExpression>

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

28

 </contextEntry>
 </context>
 </contextEntry>
 <contextEntry>
 <variable name="Remaining Waiting List" typeRef="kie:tPassengerTable"/>
 <literalExpression>
 <text>remove(Waiting List, 1)</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <variable name="Updated Reassigned Passengers List" typeRef="kie:tPassengerTable"/>
 <literalExpression>
 <text>append(Reassigned Passengers List, Reassigned Passenger)</text>
 </literalExpression>
 </contextEntry>
 <contextEntry>
 <literalExpression>
 <text>if count(Remaining Waiting List) > 0 then reassign next passenger(Remaining Waiting
List, Updated Reassigned Passengers List, Flights) else Updated Reassigned Passengers
List</text>
 </literalExpression>
 </contextEntry>
 </context>
 </encapsulatedLogic>
 <variable name="reassign next passenger" typeRef="kie:tPassengerTable"/>
 <knowledgeRequirement>
 <requiredKnowledge href="#b_HasCapacity"/>
 </knowledgeRequirement>
 </businessKnowledgeModel>
 <businessKnowledgeModel id="b_HasCapacity" name="has capacity">
 <encapsulatedLogic>
 <formalParameter name="flight" typeRef="kie:tFlight"/>
 <formalParameter name="rebooked list" typeRef="kie:tPassengerTable"/>
 <literalExpression>
 <text>flight.Capacity > count(rebooked list[Flight Number = flight.Flight Number])</text>
 </literalExpression>
 </encapsulatedLogic>
 <variable name="has capacity" typeRef="feel:boolean"/>
 </businessKnowledgeModel>
</definitions>

CHAPTER 1. DECISION MODEL AND NOTATION (DMN)

29

CHAPTER 2. DMN SUPPORT IN RED HAT DECISION MANAGER
Red Hat Decision Manager provides design and runtime support for DMN 1.2 models at conformance
level 3, and runtime-only support for DMN 1.1 models at conformance level 3. You can integrate DMN
models with your Red Hat Decision Manager decision services in several ways:

Design your DMN models directly in Decision Central using the DMN designer.

Import DMN files into your project in Decision Central (Menu → Design → Projects → Import
Asset). Any DMN 1.1 models that you import into Decision Central, open in the DMN designer,
and save are converted to DMN 1.2 models.

Package DMN files as part of your project knowledge JAR (KJAR) file without Decision Central.

In addition to all DMN conformance level 3 requirements, Red Hat Decision Manager also includes
enhancements and fixes to FEEL and DMN model components to optimize the experience of
implementing DMN decision services with Red Hat Decision Manager. From a platform perspective,
DMN models are like any other business asset in Red Hat Decision Manager, such as DRL files or
uploaded decision tables, that you can include in your Red Hat Decision Manager project and deploy to
Decision Server in order to start your DMN decision services.

For more information about including external DMN files with your Red Hat Decision Manager project
packaging and deployment method, see Packaging and deploying a Red Hat Decision Manager project .

2.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION
MANAGER

Red Hat Decision Manager provides the following DMN properties that you can configure when you
execute your DMN models on Decision Server or on your client application:

org.kie.dmn.strictConformance

When enabled, this property disables by default any extensions or profiles provided beyond the DMN
standard, such as some helper functions or enhanced features of DMN 1.2 backported into DMN 1.1.
You can use this property to configure the decision engine to support only pure DMN features, such
as when running the DMN Technology Compatibility Kit (TCK).
Default value: false

-Dorg.kie.dmn.strictConformance=true

org.kie.dmn.runtime.typecheck

When enabled, this property enables verification of actual values conforming to their declared types
in the DMN model, as input or output of DRD elements. You can use this property to verify whether
data supplied to the DMN model or produced by the DMN model is compliant with what is specified
in the model.
Default value: false

-Dorg.kie.dmn.runtime.typecheck=true

org.kie.dmn.decisionservice.coercesingleton

By default, this property makes the result of a decision service defining a single output decision be
the single value of the output decision value. When disabled, this property makes the result of a
decision service defining a single output decision be a context with the single entry for that decision.

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

30

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/packaging_and_deploying_a_red_hat_decision_manager_project
https://dmn-tck.github.io/tck/

You can use this property to adjust your decision service outputs according to your project
requirements.
Default value: true

-Dorg.kie.dmn.decisionservice.coercesingleton=false

org.kie.dmn.profiles.$PROFILE_NAME

When valorized with a Java fully qualified name, this property loads a DMN profile onto the decision
engine at start time. You can use this property to implement a predefined DMN profile with
supported features different from or beyond the DMN standard. For example, if you are creating
DMN models using the Signavio DMN modeller, use this property to implement features from the
Signavio DMN profile into your DMN decision service.

-Dorg.kie.dmn.profiles.signavio=org.kie.dmn.signavio.KieDMNSignavioProfile

org.kie.dmn.compiler.execmodel

When enabled, this property enables DMN decision table logic to be compiled into executable rule
models during run time. You can use this property to evaluate DMN decision table logic more
efficiently. This property is helpful when the executable model compilation was not originally
performed during project compile time. Enabling this property may result in added compile time
during the first evaluation by the decision engine, but subsequent compilations are more efficient.
Default value: false

-Dorg.kie.dmn.compiler.execmodel=true

CHAPTER 2. DMN SUPPORT IN RED HAT DECISION MANAGER

31

CHAPTER 3. CREATING AND EDITING DMN MODELS IN
DECISION CENTRAL

You can use the DMN designer in Decision Central to design DMN decision requirements diagrams
(DRDs) and define decision logic for a complete and functional DMN decision model. Red Hat Decision
Manager provides design and runtime support for DMN 1.2 models at conformance level 3, and includes
enhancements and fixes to FEEL and DMN model components to optimize the experience of
implementing DMN decision services with Red Hat Decision Manager. Red Hat Decision Manager also
provides runtime-only support for DMN 1.1 models at conformance level 3, but any DMN 1.1 models that
you import into Decision Central, open in the DMN designer, and save are converted to DMN 1.2 models.

IMPORTANT

The DMN designer in Red Hat Decision Manager 7.2 is a Technology Preview feature and
is disabled by default in Decision Central. Technology Preview features are not supported
with Red Hat production service level agreements (SLAs), might not be functionally
complete, and are not recommended for production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

To enable the DMN designer preview in Decision Central, in the upper-right corner of the
window, click Settings → Roles, select a role from the left panel, click Editors → DMN
Designer → Read, and click Save to save the changes.

For more information about Red Hat Technology Preview support, see Technology
Preview Features Support Scope.

Procedure

1. In Decision Central, go to Menu → Design → Projects and click the project name.

2. Create or import a DMN file in your Decision Central project.
To create a DMN file, click Add Asset → DMN, enter an informative DMN model name, select
the appropriate Package, and click Ok.

To import an existing DMN file, click Import, enter the DMN model name, select the appropriate
Package, select the DMN file to upload, and click Ok.

The new DMN file is now listed in the DMN panel of the Project Explorer, and the DMN decision
requirements diagram (DRD) canvas appears.

NOTE

If you imported a DMN file that does not contain layout information, the
imported decision requirements diagram (DRD) is formatted automatically in the
DMN designer. Click Save in the DMN designer to save the DRD layout.

3. Begin adding components to your new or imported DMN decision requirements diagram (DRD)
by clicking and dragging one of the DMN nodes from the left toolbar.

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

32

https://access.redhat.com/support/offerings/techpreview/

The following DRD components are available:

Decision: Use this node for a DMN decision, where one or more input elements determine
an output based on defined decision logic.

Business knowledge model: Use this node for reusable functions with one or more decision
elements. Decisions that have the same logic but depend on different sub-input data or
sub-decisions use business knowledge models to determine which procedure to follow.

Knowledge source: Use this node for external authorities, documents, committees, or
policies that regulate a decision or business knowledge model. Knowledge sources are
references to real-world factors rather than executable business rules.

Input data: Use this node for information used in a decision node or a business knowledge
model. Input data usually includes business-level concepts or objects relevant to the
business, such as loan applicant data used in a lending strategy.

Text annotation: Use this node for explanatory notes associated with an input data node,
decision node, business knowledge model, or knowledge source.

NOTE

Decision service nodes are currently not supported in the Red Hat Decision
Manager 7.2 DMN designer. This support will be provided in a future release.

4. In the DMN designer canvas, double-click the new DRD node to enter an informative node
name.

5. If the node is a decision or business knowledge model, select the node to display the node

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

33

5. If the node is a decision or business knowledge model, select the node to display the node
options and click the Edit icon to open the DMN boxed expression designer to define the
decision logic for the node:

Figure 3.1. Opening a new decision node boxed expression

Figure 3.2. Opening a new business knowledge model boxed expression

By default, all business knowledge models are defined as boxed function expressions containing

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

34

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,
or a nested boxed expression of any type.

For decision nodes, you double-click the undefined table to select the type of boxed expression
you want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

For business knowledge models, you right-click the value cell and select the type of expression
you want to use, or click Clear and double-click the cleared cell to select a boxed expression of
another type.

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

35

6. In the selected boxed expression designer for either a decision node (any expression type) or
business knowledge model (function expression), double-click the applicable table cells to
define the table name, variable data types, variable names and values, function parameters and
bindings, or FEEL expressions to include in the decision logic.

You can right-click cells for additional actions where applicable, such as inserting or removing

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

36

You can right-click cells for additional actions where applicable, such as inserting or removing
table rows and columns or clearing table contents.

The following is an example decision table for a decision node that determines credit score
ratings based on a defined range of a loan applicant’s credit score:

Figure 3.3. Decision node decision table for credit score rating

The following is an example boxed function expression for a business knowledge model that
calculates mortgage payments based on principal, interest, taxes, and insurance (PITI) as a
literal expression:

Figure 3.4. Business knowledge model function for PITI calculation

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

37

Figure 3.4. Business knowledge model function for PITI calculation

7. After you define the decision logic for the selected node, click Back to "<NODE_NAME>" to
return to the DRD view.

8. For the selected DRD node, use the available connection options to create and connect to the
next node in the DRD, or click and drag a new node onto the DRD canvas from the left toolbar.
The node type determines which connection options are supported. For example, an Input data
node can connect to a decision node, knowledge source, or text annotation using the applicable
connection type, whereas a Knowledge source node can connect to any DRD element. A
Decision node can connect only to another decision or a text annotation.

The following connection types are available, depending on the node type:

Information requirement: Use this connection from an input data node or decision node to
another decision node that requires the information.

Knowledge requirement: Use this connection from a business knowledge model to a
decision node or to another business knowledge model that invokes the decision logic.

Authority requirement: Use this connection from an input data node or a decision node to a
dependent knowledge source or from a knowledge source to a decision node, business
knowledge model, or another knowledge source.

Association: Use this connection from an input data node, decision node, business
knowledge model, or knowledge source to a text annotation.

Figure 3.5. Connecting credit score input to credit score rating decision

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

38

Figure 3.5. Connecting credit score input to credit score rating decision

9. Continue adding and defining the remaining DRD components of your decision model.
Periodically click Save in the DMN designer to save your work.

10. After you add and define all components of the DRD, click Save to save and validate the
completed DRD.

+

The following is an example DRD for a loan prequalification decision model:

Figure 3.6. Completed DRD for loan prequalification

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

39

Figure 3.6. Completed DRD for loan prequalification

3.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN
DECISION CENTRAL

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD) or decision requirements graph
(DRG). Some boxed expressions can contain other boxed expressions, but the top-level boxed
expression corresponds to the decision logic of a single DRD artifact. While DRDs with one or more
DRGs represent the flow of a DMN decision model, boxed expressions define the actual decision logic of
individual nodes. DRDs and boxed expressions together form a complete and functional DMN decision
model.

You can use the DMN designer in Decision Central to define decision logic for your DRD components
using built-in boxed expressions.

Prerequisites

You have created or imported a DMN file in Decision Central.

Procedure

1. In Decision Central, go to Menu → Design → Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer canvas, select a decision node or business knowledge model that you want
to define and click the Edit icon to open the DMN boxed expression designer:

Figure 3.7. Opening a new decision node boxed expression

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

40

Figure 3.7. Opening a new decision node boxed expression

Figure 3.8. Opening a new business knowledge model boxed expression

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,
or a nested boxed expression of any type.

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

41

For decision nodes, you double-click the undefined table to select the type of boxed expression
you want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

For business knowledge models, you right-click the value cell and select the type of expression
you want to use, or click Clear and double-click the cleared cell to select a boxed expression of
another type.

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

42

3. For this example, use a decision node and select Decision table as the boxed expression type.
A decision table in DMN is a visual representation of one or more rules in a tabular format. Each
rule consists of a single row in the table, and includes columns that define the conditions (input)
and outcome (output) for that particular row.

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

43

4. Double-click the input column header to define the name and data type for the input condition.
For example, name the input column Credit Score.FICO with a number data type. This column
specifies numeric credit score values or ranges of loan applicants.

5. Double-click the output column header to define the name and data type for the output values.
For example, name the output column Credit Score Rating and next to the Data Type option,
click Manage to create a custom data type with score ratings as constraints.

6. In the Manage Custom Data Types window, click Add and create a Credit_Score_Rating data
type as a string with the following constraints: "Excellent","Good","Fair","Poor","Bad".

7. Click Save to save the data type, and in the decision table, double-click the Credit Score
Rating column header and set the data type to this new custom data type.

8. Use the Credit Score.FICO input column to define credit score values or ranges of values, and
use the Credit Score Rating column to specify one of the corresponding ratings you defined in
the Credit_Score_Rating data type.
Right-click any value cell to insert or delete rows (rules) or columns (clauses).

Figure 3.9. Decision node decision table for credit score rating

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

44

Figure 3.9. Decision node decision table for credit score rating

9. After you define all rules, click the top-left corner of the decision table to define the rule Hit
Policy and Builtin Aggregator (for COLLECT hit policy only).
The hit policy determines how to reach an outcome when multiple rules in a decision table match
the provided input values. The built-in aggregator determines how to aggregate rule values
when you use the COLLECT hit policy.

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

45

NOTE

The Orientation option is not supported in the Red Hat Decision Manager 7.2
DMN designer and will be removed from the Decision Central user interface in a
future release. This option determines whether rows, columns, or both rows and
columns (CrossTable) represent rules in DMN decision tables.

The following is a more complex decision table that determines applicant qualification for a loan
as the concluding decision node in the same loan prequalification decision model:

Figure 3.10. Decision table for loan prequalification

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

46

the boxed expression tables and define variables and parameters for decision logic, but according to the
requirements of the boxed expression type. Some boxed expressions, such as boxed literal expressions,
can be single-column tables, while other boxed expressions, such as function, context, and invocation
expressions, can be multi-column tables with nested boxed expressions of other types.

For example, the following boxed context expression defines the parameters that determine whether a
loan applicant can meet minimum mortgage payments based on principal, interest, taxes, and insurance
(PITI), represented as a front-end ratio calculation with a sub-context expression:

Figure 3.11. Boxed context expression for front-end client PITI ratio

The following boxed function expression determines a monthly mortgage installment as a business
knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 3.12. Boxed function expression for installment calculation in business knowledge model

For more information and examples of each boxed expression type, see Section 1.4, “DMN decision logic
in boxed expressions”.

3.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

47

3.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED
EXPRESSIONS IN DECISION CENTRAL

In DMN boxed expressions in Decision Central, data types determine the structure of the data that you
use within an associated table, column, or field in the boxed expression. You can use default DMN data
types (such as String, Number, Boolean) or you can create custom data types to specify additional
fields and constraints that you want to implement for the boxed expression values.

Custom data types that you create for a boxed expression can be simple or structured:

Simple data types have only a name and a type assignment. Example: Age (number).

Structured data types contain multiple fields associated with a parent data type. Example: A
single type Person containing the fields Name (string), Age (number), email (string).

Prerequisites

You have created or imported a DMN file in Decision Central.

Procedure

1. In Decision Central, go to Menu → Design → Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer canvas, select a decision node or business knowledge model for which you
want to define the data types and click the Edit icon to open the DMN boxed expression
designer.

3. If the boxed expression is for a decision node that is not yet defined, double-click the undefined
table to select the type of boxed expression you want to use, such as a boxed literal expression,
boxed context expression, decision table, or other DMN boxed expression.

4. Double-click the cell for the table header, column header, or parameter field (depending on the

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

48

4. Double-click the cell for the table header, column header, or parameter field (depending on the
boxed expression type) for which you want to define the data type and click Manage to create a
custom data type.

You can also manage custom data types by selecting the Diagram properties icon in the
upper-right corner of the DMN designer:

The data type that you define for a specified cell in a boxed expression determines the structure
of the data that you use within that associated table, column, or field in the boxed expression.

In this example, an output column Credit Score Rating for a DMN decision table defines a set of
custom credit score ratings based on an applicant’s credit score.

5. In the Manage Custom Data Types window, click Add and create a Credit_Score_Rating data

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

49

5. In the Manage Custom Data Types window, click Add and create a Credit_Score_Rating data
type as a string with the following constraints: "Excellent","Good","Fair","Poor","Bad".

If the data type requires a list of items, enable the Collection setting.

6. Click Save to save the data type, and in the decision table, double-click the Credit Score
Rating column header, set the data type to this new custom data type, and define the rule
values for that column with the rating constraints that you specified.

Figure 3.13. Decision table for credit score rating

In the DMN decision model for this scenario, the Credit Score Rating decision flows into the
following Loan Prequalification decision that also requires custom data types:

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

50

7. Continuing with this example, double-click any column header to return to the Manage Custom
Data Types window, click Add, and create a Loan_Qualification data type as a Structure with
no constraints.

8. Next to the Loan_Qualification data type, select the settings icon (three vertical dots) and
select Insert nested field to insert sub-fields within this parent data type.

You can use these sub-fields in association with the parent structured data type in boxed
expressions, such as nested column headers in decision tables or nested table parameters in
context or function expressions.

9. For this example, under the structured Loan_Qualification data type, add a Qualification field
with constraints "Qualified","Not Qualified" and a Reason field with no constraints. Add also a
simple Back_End_Ratio and a Front_End_Ratio data type, both with constraints
"Sufficient","Insufficient".
Click Save for each data type that you create.

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

51

10. Return to the decision table and, for each column, double-click the column header cell, set the
data type to the new corresponding custom data type, and define the rule values as needed for
the column with the constraints that you specified, if applicable.

Figure 3.14. Decision table for loan prequalification

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate
the boxed expression tables and define custom data types as needed.

For example, the following boxed function expression uses custom tCandidate and tProfile structured
data types to associate data for online dating compatibility:

Figure 3.15. Boxed function expression for online dating compatibility

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

52

Figure 3.15. Boxed function expression for online dating compatibility

Figure 3.16. Custom data type definitions for online dating compatibility

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

53

Figure 3.16. Custom data type definitions for online dating compatibility

Figure 3.17. Parameter definitions with custom data types for online dating compatibility

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

54

Figure 3.17. Parameter definitions with custom data types for online dating compatibility

3.3. DMN DESIGNER NAVIGATION AND PROPERTIES IN DECISION
CENTRAL

The DMN designer provides the following additional features to help you navigate through the
components and properties of decision requirements diagrams (DRDs).

DMN file and diagram views

In the upper-left corner of the DMN designer, select the Project Explorer view to navigate between
all DMN and other files or select the Decision Navigator view to navigate between the nodes and
boxed expressions of a selected DRD:

Figure 3.18. Project Explorer view

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

55

Figure 3.18. Project Explorer view

Figure 3.19. Decision Navigator view

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

56

In the upper-right corner of the DMN designer, select the Explore diagram icon to view an elevated
preview of the selected DRD and to navigate between the nodes of the selected DRD:

Figure 3.20. Explore diagram view

DRD properties and design

In the upper-right corner of the DMN designer, select the Diagram properties icon to modify the
identifying information, data types, and appearance of a selected DRD, DRD node, or boxed
expression cell:

Figure 3.21. DRD node properties

CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL

57

Figure 3.21. DRD node properties

To view the properties of the entire DRD, click the DRD canvas background instead of a specific
node.

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

58

CHAPTER 4. DMN MODEL EXECUTION
You can create or import DMN files in your Red Hat Decision Manager project using Decision Central or
package the DMN files as part of your project knowledge JAR (KJAR) file without Decision Central.
After you implement your DMN files in your Red Hat Decision Manager project, you can execute the
DMN decision service by deploying the KIE container that contains it to Decision Server for remote
access or by manipulating the KIE container directly as a dependency of the calling application. Other
options for creating and deploying DMN knowledge packages are also available, and most are similar for
all types of knowledge assets, such as DRL files or process definitions.

For information about including external DMN assets with your project packaging and deployment
method, see Packaging and deploying a Red Hat Decision Manager project .

4.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You typically embed
knowledge assets directly into a project if there is a tight relationship between the version of the code
and the version of the DMN definition. Any changes to the decision take effect after you have
intentionally updated and redeployed the application. A benefit of this approach is that proper
operation does not rely on any external dependencies to the run time, which can be a limitation of
locked-down environments.

Using Maven dependencies enables further flexibility because the specific version of the decision can
dynamically change, (for example, by using a system property), and it can be periodically scanned for
updates and automatically updated. This introduces an external dependency on the deploy time of the
service, but executes the decision locally, reducing reliance on an external service being available during
run time.

Prerequisites

A KIE container is deployed in Decision Server in the form of a KJAR that includes the DMN
model, ideally compiled as an executable model for more efficient execution:

mvn clean install -DgenerateDMNModel=yes

For more information about project packaging and deployment and executable models, see
Packaging and deploying a Red Hat Decision Manager project .

Procedure

1. In your client application, add the following dependencies to the relevant classpath of your Java
project:

<!-- Required for the DMN runtime API -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-dmn-core</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<!-- Required if not using classpath KIE container -->
<dependency>
 <groupId>org.kie</groupId>

CHAPTER 4. DMN MODEL EXECUTION

59

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/packaging_and_deploying_a_red_hat_decision_manager_project
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/packaging_and_deploying_a_red_hat_decision_manager_project

The <version> is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.14.0.Final-redhat-00002).

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Create a KIE container from classpath or ReleaseId:

Alternative option:

3. Obtain DMNRuntime from the KIE container and a reference to the DMN model to be
evaluated, by using the model namespace and modelName:

 <artifactId>kie-ci</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.2.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseId);

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

DMNRuntime dmnRuntime =
kieContainer.newKieSession().getKieRuntime(DMNRuntime.class);

String namespace = "http://www.redhat.com/_c7328033-c355-43cd-b616-0aceef80e52a";
String modelName = "dmn-movieticket-ageclassification";

DMNModel dmnModel = dmnRuntime.getModel(namespace, modelName);

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

60

https://access.redhat.com/solutions/3363991

1

2

3

4

4. Execute the decision services for the desired model:

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

Assign input variables for the input DMN context.

Evaluate all DMN decisions defined in the DMN model.

Each evaluation may result in one or more results, creating the loop.

This example prints the following output:

Age 1 Decision 'AgeClassification' : Child
Age 12 Decision 'AgeClassification' : Child
Age 13 Decision 'AgeClassification' : Adult
Age 64 Decision 'AgeClassification' : Adult
Age 65 Decision 'AgeClassification' : Senior
Age 66 Decision 'AgeClassification' : Senior

If the DMN model was not previously compiled as an executable model for more efficient
execution, you can enable the following property when you execute your DMN models:

-Dorg.kie.dmn.compiler.execmodel=true

4.2. EXECUTING A DMN SERVICE USING THE DECISION SERVER JAVA
CLIENT API

The Decision Server Java client API provides a lightweight approach to invoking a remote DMN service
either through the REST or JMS interfaces of Decision Server. This approach reduces the number of
runtime dependencies necessary to interact with a KIE base. Decoupling the calling code from the
decision definition also increases flexibility by enabling them to iterate independently at the appropriate
pace.

For more information about the Decision Server Java client API, see Interacting with Red Hat Decision
Manager using KIE APIs.

Prerequisites

Decision Server is installed and configured, including a known user name and credentials for a

DMNContext dmnContext = dmnRuntime.newContext(); 1

for (Integer age : Arrays.asList(1,12,13,64,65,66)) {
 dmnContext.set("Age", age); 2
 DMNResult dmnResult =
 dmnRuntime.evaluateAll(dmnModel, dmnContext); 3

 for (DMNDecisionResult dr : dmnResult.getDecisionResults()) { 4
 log.info("Age: " + age + ", " +
 "Decision: '" + dr.getDecisionName() + "', " +
 "Result: " + dr.getResult());
 }
}

CHAPTER 4. DMN MODEL EXECUTION

61

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/interacting_with_red_hat_decision_manager_using_kie_apis

Decision Server is installed and configured, including a known user name and credentials for a
user with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

A KIE container is deployed in Decision Server in the form of a KJAR that includes the DMN
model, ideally compiled as an executable model for more efficient execution:

mvn clean install -DgenerateDMNModel=yes

For more information about project packaging and deployment and executable models, see
Packaging and deploying a Red Hat Decision Manager project .

You have the container ID of the KIE container containing the DMN model. If more than one
model is present, you must also know the model namespace and model name of the relevant
model.

Procedure

1. In your client application, add the following dependencies to the relevant classpath of your Java
project:

The <version> is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.14.0.Final-redhat-00002).

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Instantiate a KieServicesClient instance with the appropriate connection information.

<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.2.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

62

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/planning_a_red_hat_decision_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/packaging_and_deploying_a_red_hat_decision_manager_project
https://access.redhat.com/solutions/3363991

1

2

1

2

3

Example:

The connection information:

Example URL: http://localhost:8080/kie-server/services/rest/server

The credentials should reference a user with the kie-server role.

The Marshalling format is an instance of
org.kie.server.api.marshalling.MarshallingFormat. It controls whether the messages will
be JSON or XML. Options for Marshalling format are JSON, JAXB, or XSTREAM.

3. Obtain a DMNServicesClient from the KIE server Java client connected to the related Decision
Server by invoking the method getServicesClient() on the KIE server Java client instance:

The dmnClient can now execute decision services on Decision Server.

4. Execute the decision services for the desired model.
Example:

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

Assign input variables for the input DMN Context.

Evaluate all the DMN Decisions defined in the DMN model:

KieServicesConfiguration conf =
 KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD); 1

conf.setMarshallingFormat(MarshallingFormat.JSON); 2

KieServicesClient kieServicesClient = KieServicesFactory.newKieServicesClient(conf);

DMNServicesClient dmnClient =
kieServicesClient.getServicesClient(DMNServicesClient.class);

for (Integer age : Arrays.asList(1,12,13,64,65,66)) {
 DMNContext dmnContext = dmnClient.newContext(); 1
 dmnContext.set("Age", age); 2
 ServiceResponse<DMNResult> serverResp = 3
 dmnClient.evaluateAll($kieContainerId,
 $modelNamespace,
 $modelName,
 dmnContext);

 DMNResult dmnResult = serverResp.getResult(); 4
 for (DMNDecisionResult dr : dmnResult.getDecisionResults()) {
 log.info("Age: " + age + ", " +
 "Decision: '" + dr.getDecisionName() + "', " +
 "Result: " + dr.getResult());
 }
}

CHAPTER 4. DMN MODEL EXECUTION

63

4

$kieContainerId is the ID of the container where the KJAR containing the DMN model
is deployed

$modelNamespace is the namespace for the model.

$modelName is the name for the model.

The DMN Result object is available from the server response.

At this point, the dmnResult contains all the decision results from the evaluated DMN model.

You can also execute only a specific DMN decision in the model by using alternative methods of
the DMNServicesClient.

NOTE

If the KIE container only contains one DMN model, you can omit
$modelNamespace and $modelName because the Decision Server API selects
it by default.

4.3. EXECUTING A DMN SERVICE USING THE DECISION SERVER REST
API

Directly interacting with the REST endpoints of Decision Server provides the most separation between
the calling code and the decision logic definition. The calling code is completely free of direct
dependencies, and you can implement it in an entirely different development platform such as node.js
or .net. The examples in this section demonstrate Nix-style curl commands but provide relevant
information to adapt to any REST client.

For more information about the Decision Server REST API, see Interacting with Red Hat Decision
Manager using KIE APIs.

Prerequisites

Decision Server is installed and configured, including a known user name and credentials for a
user with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

A KIE container is deployed in Decision Server in the form of a KJAR that includes the DMN
model, ideally compiled as an executable model for more efficient execution:

mvn clean install -DgenerateDMNModel=yes

For more information about project packaging and deployment and executable models, see
Packaging and deploying a Red Hat Decision Manager project .

You have the container ID of the KIE container containing the DMN model. If more than one
model is present, you must also know the model namespace and model name of the relevant
model.

Procedure

1. Determine the base URL for accessing the Decision Server REST API endpoints. This requires
knowing the following values (with the default local deployment values as an example):

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

64

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/interacting_with_red_hat_decision_manager_using_kie_apis
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/planning_a_red_hat_decision_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/packaging_and_deploying_a_red_hat_decision_manager_project

Host (localhost)

Port (8080)

Root context (kie-server)

Base REST path (services/rest/)

Example base URL in local deployment:

http://localhost:8080/kie-server/services/rest/

2. Determine user authentication requirements.
When users are defined directly in the Decision Server configuration, HTTP Basic authentication
is used and requires the user name and password. Successful requests require that the user
have the kie-server role.

The following example demonstrates how to add credentials to a curl request:

curl -u username:password <request>

If Decision Server is configured with Red Hat Single Sign-On, the request must include a bearer
token:

3. Specify the format of the request and response. The REST API endpoints work with both JSON
and XML formats and are set using request headers:

JSON

curl -H "accept: application/json" -H "content-type: application/json"

XML

curl -H "accept: application/xml" -H "content-type: application/xml"

4. (Optional) Query the container for a list of deployed decision models:
[GET] server/containers/{containerId}/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/xml" -X GET "http://localhost:8080/kie-
server/services/rest/server/containers/MovieDMNContainer/dmn"

Sample XML output:

curl -H "Authorization: bearer $TOKEN" <request>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="OK models successfully retrieved from container
'MovieDMNContainer'">
 <dmn-model-info-list>
 <model>
 <model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a</model-namespace>

CHAPTER 4. DMN MODEL EXECUTION

65

Sample JSON output:

5. Execute the model:
[POST] server/containers/{containerId}/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/json" -H "content-type: application/json" -X POST
"http://localhost:8080/kie-server/services/rest/server/containers/MovieDMNContainer/dmn" -d
"{ \"model-namespace\" : \"http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a\", \"model-name\" : \"dmn-movieticket-ageclassification\", \"decision-name\" : [
], \"decision-id\" : [], \"dmn-context\" : {\"Age\" : 66}}"

Example JSON request:

Example XML request (JAXB format):

 <model-name>dmn-movieticket-ageclassification</model-name>
 <model-id>_99</model-id>
 <decisions>
 <dmn-decision-info>
 <decision-id>_3</decision-id>
 <decision-name>AgeClassification</decision-name>
 </dmn-decision-info>
 </decisions>
 </model>
 </dmn-model-info-list>
</response>

{
 "type" : "SUCCESS",
 "msg" : "OK models successfully retrieved from container 'MovieDMNContainer'",
 "result" : {
 "dmn-model-info-list" : {
 "models" : [{
 "model-namespace" : "http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a",
 "model-name" : "dmn-movieticket-ageclassification",
 "model-id" : "_99",
 "decisions" : [{
 "decision-id" : "_3",
 "decision-name" : "AgeClassification"
 }]
 }]
 }
 }
}

{
 "model-namespace" : "http://www.redhat.com/_c7328033-c355-43cd-b616-0aceef80e52a",
 "model-name" : "dmn-movieticket-ageclassification",
 "decision-name" : [],
 "decision-id" : [],
 "dmn-context" : {"Age" : 66}
}

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

66

NOTE

Regardless of the request format, the request requires the following elements:

Model namespace

Model name

Context object containing input values

Example JSON response:

Example XML (JAXB format) response:

<?xml version="1.0" encoding="UTF-8"?>
<dmn-evaluation-context>
 <model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a</model-namespace>
 <model-name>dmn-movieticket-ageclassification</model-name>
 <dmn-context xsi:type="jaxbListWrapper" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <type>MAP</type>
 <element xsi:type="jaxbStringObjectPair" key="Age">
 <value xsi:type="xs:int" xmlns:xs="http://www.w3.org/2001/XMLSchema">66</value>
 </element>
 </dmn-context>
</dmn-evaluation-context>

{
 "type" : "SUCCESS",
 "msg" : "OK from container 'MovieDMNContainer'",
 "result" : {
 "dmn-evaluation-result" : {
 "messages" : [],
 "model-namespace" : "http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a",
 "model-name" : "dmn-movieticket-ageclassification",
 "decision-name" : [],
 "dmn-context" : {
 "Age" : 66,
 "AgeClassification" : "Senior"
 },
 "decision-results" : {
 "_3" : {
 "messages" : [],
 "decision-id" : "_3",
 "decision-name" : "AgeClassification",
 "result" : "Senior",
 "status" : "SUCCEEDED"
 }
 }
 }
 }
}

CHAPTER 4. DMN MODEL EXECUTION

67

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="OK from container 'MovieDMNContainer'">
 <dmn-evaluation-result>
 <model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a</model-namespace>
 <model-name>dmn-movieticket-ageclassification</model-name>
 <dmn-context xsi:type="jaxbListWrapper"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <type>MAP</type>
 <element xsi:type="jaxbStringObjectPair" key="Age">
 <value xsi:type="xs:int"
xmlns:xs="http://www.w3.org/2001/XMLSchema">66</value>
 </element>
 <element xsi:type="jaxbStringObjectPair" key="AgeClassification">
 <value xsi:type="xs:string"
xmlns:xs="http://www.w3.org/2001/XMLSchema">Senior</value>
 </element>
 </dmn-context>
 <messages/>
 <decisionResults>
 <entry>
 <key>_3</key>
 <value>
 <decision-id>_3</decision-id>
 <decision-name>AgeClassification</decision-name>
 <result xsi:type="xs:string"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Senior</result>
 <messages/>
 <status>SUCCEEDED</status>
 </value>
 </entry>
 </decisionResults>
 </dmn-evaluation-result>
</response>

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

68

CHAPTER 5. ADDITIONAL RESOURCES
Decision Model and Notation specification

DMN Technology Compatibility Kit

Packaging and deploying a Red Hat Decision Manager project

CHAPTER 5. ADDITIONAL RESOURCES

69

https://www.omg.org/spec/DMN
https://dmn-tck.github.io/tck/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.2/html-single/packaging_and_deploying_a_red_hat_decision_manager_project

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Friday, May 22, 2020.

Red Hat Decision Manager 7.2 Designing a decision service using DMN models

70

	Table of Contents
	PREFACE
	CHAPTER 1. DECISION MODEL AND NOTATION (DMN)
	1.1. DMN CONFORMANCE LEVELS
	1.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS
	1.3. RULE EXPRESSIONS IN FEEL
	1.3.1. Variable and function names in FEEL
	1.3.2. Data types in FEEL

	1.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS
	1.4.1. DMN decision tables
	1.4.1.1. Hit policies in DMN decision tables

	1.4.2. Boxed literal expressions
	1.4.3. Boxed context expressions
	1.4.4. Boxed relation expressions
	1.4.5. Boxed function expressions
	1.4.6. Boxed invocation expressions

	1.5. DMN MODEL EXAMPLE

	CHAPTER 2. DMN SUPPORT IN RED HAT DECISION MANAGER
	2.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION MANAGER

	CHAPTER 3. CREATING AND EDITING DMN MODELS IN DECISION CENTRAL
	3.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN DECISION CENTRAL
	3.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED EXPRESSIONS IN DECISION CENTRAL
	3.3. DMN DESIGNER NAVIGATION AND PROPERTIES IN DECISION CENTRAL

	CHAPTER 4. DMN MODEL EXECUTION
	4.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION
	4.2. EXECUTING A DMN SERVICE USING THE DECISION SERVER JAVA CLIENT API
	4.3. EXECUTING A DMN SERVICE USING THE DECISION SERVER REST API

	CHAPTER 5. ADDITIONAL RESOURCES
	APPENDIX A. VERSIONING INFORMATION

