
Red Hat Decision Manager 7.0

Creating and running a Red Hat Business
Optimizer solver for employee rostering using

Decision Central

Last Updated: 2018-11-20

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business
Optimizer solver for employee rostering using Decision Central

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to create and run the employee rostering example for Red Hat
Business Optimizer using Decision Central in Red Hat Decision Manager 7.0.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. DEPLOY THE EMPLOYEE ROSTERING SAMPLE PROJECT IN DECISION CENTRAL

CHAPTER 2. SET UP THE EMPLOYEE ROSTERING SAMPLE PROJECT

CHAPTER 3. PROBLEM FACTS AND PLANNING ENTITIES

CHAPTER 4. CREATE THE DATA MODEL FOR THE EMPLOYEE ROSTERING PROJECT
4.1. CREATE THE EMPLOYEE ROSTER PLANNING ENTITY
4.2. CREATE THE EMPLOYEE ROSTER PLANNING SOLUTION

CHAPTER 5. EMPLOYEE ROSTERING CONSTRAINTS
5.1. DRL RULES
5.2. CONSTRAINT DEFINITION FOR EMPLOYEE ROSTERING USING THE DRL DESIGNER

CHAPTER 6. CREATE RULES FOR EMPLOYEE ROSTERING USING GUIDED RULES
6.1. GUIDED RULES
6.2. CREATE A GUIDED RULE TO BALANCE EMPLOYEE SHIFT NUMBERS
6.3. CREATE A GUIDED RULE FOR NO MORE THAN ONE SHIFT PER DAY
6.4. CREATE A GUIDED RULE TO MATCH SKILLS TO SHIFT REQUIREMENTS
6.5. CREATE A GUIDED RULE TO MANAGE DAY OFF REQUESTS

CHAPTER 7. CONFIGURE THE SOLVER FOR EMPLOYEE ROSTERING
7.1. CONFIGURE SOLVER TERMINATION FOR THE EMPLOYEE ROSTERING PROJECT
7.2. REGISTER THE SOLVER USING THE REST API

APPENDIX A. VERSIONING INFORMATION

3

4

5

6

7
8
9

11
11
11

13
13
13
14
16
17

19
19
20

25

Table of Contents

1

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

2

PREFACE
As a business rules developer, you can test and interact with the Red Hat Business Optimizer
functionality using the preconfigured employee-rostering sample project included in the Red Hat
Decision Manager distribution.

The employee-rostering sample project can be built and deployed in Decision Central. The project
is designed to demonstrate how to create each of the Decision Central assets required to solve the shift
rostering planning problem and use Red Hat Business Optimizer to find the best possible solution. Use
this document to deploy the preconfigured employee-rostering project in Decision Central, or to
create the project yourself using Decision Central.

NOTE

The employee-rostering sample project in Decision Central does not include a data
set.

Prerequisites

Red Hat JBoss Enterprise Application Platform 7.1.0 installed. See Red Hat JBoss EAP 7.1.0
Installation Guide.

Red Hat Decision Manager installed. For more information, see Installing Red Hat Decision
Manager on premise.

Red Hat Decision Manager is running and you can log in to Decision Central with the admin
role. For more information, see Installing Red Hat Decision Manager on premise.

Red Hat Decision Manager is configured for Red Hat Business Optimizer. For more information
about the required configuration, see Installing and configuring Red Hat Business Optimizer.

If you are modifying this example to optimize your own data, a data set is required in order to run
an optimization task on the Decision Server after the modified project has been deployed from
Decision Central to the server.

PREFACE

3

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/installing_red_hat_decision_manager_on_premise
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/installing_red_hat_decision_manager_on_premise
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/installing_and_configuring_business_optimizer

CHAPTER 1. DEPLOY THE EMPLOYEE ROSTERING SAMPLE
PROJECT IN DECISION CENTRAL

Decision Central includes a number of sample projects that you can use to get familiar with the product
and its features. The employee rostering sample project has been designed and created to demonstrate
the shift rostering use case for Red Hat Business Optimizer. Use the following procedure to deploy and
run the employee rostering sample in Decision Central.

Prerequisites

Red Hat Decision Manager has been downloaded and installed.

You have started the decision server and logged in to Decision Central with a user that has
admin permissions.

For more information about installation see Installing Red Hat Decision Manager on premise.

For more information about getting started, see Getting started with decision services.

Procedure

1. In Decision Central, click Menu → Design → Projects.

2. In the preconfigured myteam space, click Try Samples.

3. Select employee-rostering from the list of sample projects and click Ok in the upper-right corner
to import the project.

4. After the asset list has complied, click Build & Deploy to deploy the employee rostering
example.

The rest of this document explains each of the project assets and their configuration.

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

4

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/installing_red_hat_decision_manager_on_premise
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/getting_started_with_decision_services

CHAPTER 2. SET UP THE EMPLOYEE ROSTERING SAMPLE
PROJECT

The employee rostering sample project is a preconfigured project available in Decision Central. You can
learn about how to deploy this project in Chapter 1, Deploy the employee rostering sample project in
Decision Central.

This chapter describes how to set up the employee rostering example. You can use the workflow in this
example to create a similar project of your own in Decision Central.

Prerequisites

Red Hat Decision Manager has been downloaded and installed.

You have deployed Decision Central and logged in with a user that has the admin role.

Procedure

1. Create a new project in Decision Central by clicking Menu → Design → Projects → Add
Project.

2. In the Add Project window, fill out the following fields:

Name: employee-rostering

Description(optional): Employee rostering problem optimization using Business Optimizer.
Assigns employees to shifts based on their skill.

Optionally, click Show Advanced Options to populate the Group ID, Artifact ID, and
Version information.

Group ID: employeerostering

Artifact ID: employeerostering

Version: 1.0.0-SNAPSHOT

3. Click Add to add the project to the Decision Central project repository.

CHAPTER 2. SET UP THE EMPLOYEE ROSTERING SAMPLE PROJECT

5

CHAPTER 3. PROBLEM FACTS AND PLANNING ENTITIES
Each of the domain classes in the employee rostering planning problem can be categorized as one of
the following:

A unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

A problem fact class: used by the score constraints, but does not change during planning (as
long as the problem stays the same), for example, Shift and Employee. All the properties of a
problem fact class are problem properties.

A planning entity class: used by the score constraints and changes during planning, for
example, ShiftAssignment. The properties that change during planning are planning
variables. The other properties are problem properties.
Ask yourself the following questions:

What class changes during planning?

Which class has variables that I want the Solver to change?
That class is a planning entity.

A planning entity class needs to be annotated with the @PlanningEntity annotation, or
defined in Decision Central using the Red Hat Business Optimizer dock in the domain designer.

Each planning entity class has one or more planning variables, and should also have one or
more defining properties.

Most use cases have only one planning entity class, and only one planning variable per planning
entity class.

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

6

CHAPTER 4. CREATE THE DATA MODEL FOR THE
EMPLOYEE ROSTERING PROJECT

Use this section to create the data objects required to run the employee rostering sample project in
Decision Central.

Prerequisite

You have completed the project set up described in Chapter 2, Set up the employee rostering sample
project.

Procedure

1. With your new project, either click Data Object in the project perspective, or click Create New
Asset → Data Object to create a new data object.

2. Name the first data object Timeslot, and select
employeerostering.employeerostering as the Package.
Click Ok.

3. In the Data Objects perspective, click +add field to add fields to the Timeslot data object.

4. In the id field, type endTime.

5. Click the drop-down menu next to Type and select LocalDateTime.

6. Click Create and continue to add another field.

7. Add another field with the id startTime and Type LocalDateTime.

8. Click Create.

9. Click Save in the upper-right corner to save the Timeslot data object.

10. Click the x in the upper-right corner to close the Data Objects perspective and return to the
Assets menu.

11. Using the previous steps, create the following data objects and their attributes:

Table 4.1. Skill

id Type

name String

Table 4.2. Employee

id Type

name String

skills employeerostering.employeeroster
ing.Skill[List]

CHAPTER 4. CREATE THE DATA MODEL FOR THE EMPLOYEE ROSTERING PROJECT

7

Table 4.3. Shift

id Type

requiredSkill employeerostering.employeeroster
ing.Skill

timeslot employeerostering.employeeroster
ing.Timeslot

Table 4.4. DayOffRequest

id Type

date LocalDate

employee employeerostering.employeeroster
ing.Employee

Table 4.5. ShiftAssignment

id Type

employee employeerostering.employeeroster
ing.Employee

shift employeerostering.employeeroster
ing.Shift

For more information about creating data objects, see Getting started with decision services.

4.1. CREATE THE EMPLOYEE ROSTER PLANNING ENTITY

In order to solve the employee rostering planning problem, you must create a planning entity and a
solver. The planning entity is defined in the domain designer using the attributes available in the Red Hat
Business Optimizer dock.

Use the following procedure to define the ShiftAssignment data object as the planning entity for the
employee rostering example.

Prerequisite

You have created the relevant data objects and planning entity required to run the employee
rostering example by completing the procedures in Chapter 4, Create the data model for the
employee rostering project.

Procedure

1. From the project Assets menu, open the ShiftAssignment data object.

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

8

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/getting_started_with_decision_services

2. In the Data Objects perspective, open the Red Hat Business Optimizer dock by clicking the

 on the right.

3. Select Planning Entity.

4. Select employee from the list of fields under the ShiftAssignment data object.

5. In the Red Hat Business Optimizer dock, select Planning Variable.
In the Value Range Id input field, type employeeRange. This adds the
@ValueRangeProvider annotation to the planning entity, which you can view by clicking the
Source tab in the designer.

The value range of a planning variable is defined with the @ValueRangeProvider annotation.
A @ValueRangeProvider annotation always has a property id, which is referenced by the
@PlanningVariable property valueRangeProviderRefs.

6. Close the dock and click Save to save the data object.

4.2. CREATE THE EMPLOYEE ROSTER PLANNING SOLUTION

The employee roster problem relies on a defined planning solution. The planning solution is defined in
the domain designer using the attributes available in the Red Hat Business Optimizer dock.

Prerequisite

You have created the relevant data objects and planning entity required to run the employee
rostering example by completing the procedures in Chapter 4, Create the data model for the
employee rostering project and Section 4.1, “Create the employee roster planning entity”.

Procedure

1. Create a new data object with the identifier EmployeeRoster.

2. Create the following fields:

Table 4.6. EmployeeRoster

id Type

dayOffRequestList employeerostering.employeeroster
ing.DayOffRequest[List]

shiftAssignmentList employeerostering.employeeroster
ing.ShiftAssignment[List]

shiftList employeerostering.employeeroster
ing.Shift[List]

skillList employeerostering.employeeroster
ing.Skill[List]

CHAPTER 4. CREATE THE DATA MODEL FOR THE EMPLOYEE ROSTERING PROJECT

9

timeslotList employeerostering.employeeroster
ing.Timeslot[List]

id Type

3. In the Data Objects perspective, open the Red Hat Business Optimizer dock by clicking the

 on the right.

4. Select Planing Solution.

5. Leave the default Hard soft score as the Solution Score Type. This automatically
generates a score field in the EmployeeRoster data object with the solution score as the
type.

6. Add a new field with the following attributes:

id Type

employeeList employeerostering.employeeroster
ing.Employee[List]

7. With the employeeList field selected, open the Red Hat Business Optimizer dock and select
the Planning Value Range Provider box.
In the id field, type employeeRange. Close the dock.

8. Click Save in the upper-right corner to save the asset.

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

10

CHAPTER 5. EMPLOYEE ROSTERING CONSTRAINTS
Employee rostering is a planning problem. All planning problems include constraints that must be
satisfied in order to find an optimal solution.

The employee rostering sample project in Decision Central includes the following hard and soft
constraints:

Hard constraint

Employees are only assigned one shift per day.

All shifts that require a particular employee skill are assigned an employee with that particular
skill.

Soft constraints

All employees are assigned a shift.

If an employee requests a day off, their shift can be reassigned to another employee.

Hard and soft constraints can be defined in Decision Central using either the free-form DRL designer, or
using guided rules.

For more information about hard and soft constraints, see Installing and configuring Red Hat Business
Optimizer.

5.1. DRL RULES

DRL rules are business rules that you define directly in .drl text files. These DRL files are the source in
which all other rule assets in Decision Central are ultimately rendered. You can create and manage DRL
files within the Decision Central interface, or create them externally using Red Hat Developer Studio,
Java objects, or Maven archetypes. A DRL file can contain one or more rules that define at minimum the
rule conditions (when) and actions (then). The DRL designer in Decision Central provides syntax
highlighting for Java, DRL, and XML.

All data objects related to a DRL rule must be in the same project package as the DRL rule in Decision
Central. Assets in the same package are imported by default. Existing assets in other packages can be
imported with the DRL rule.

5.2. CONSTRAINT DEFINITION FOR EMPLOYEE ROSTERING USING
THE DRL DESIGNER

You can create constraint definitions for the employee rostering example using the free-form DRL
designer in Decision Central.

Use this procedure to create a hard constraint where no employee can be assigned a shift that begins
less than 10 hours after their previous shift ended.

Procedure

1. Go to Menu → Design → Projects and click the project name.

2. Click Create New Asset → DRL file.

CHAPTER 5. EMPLOYEE ROSTERING CONSTRAINTS

11

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/installing_and_configuring_business_optimizer

3. In the DRL file name field, type ComplexScoreRules.

4. Select the employeerostering.employeerostering package.

5. Click +Ok to create the DRL file.

6. In the Editor tab of the DRL designer, define the Employee10HourShiftSpace rule as a DRL
file:

7. Click Save to save the DRL file.

For more information about creating DRL files, see Designing a decision service using DRL rules.

package employeerostering.employeerostering;

rule "Employee10HourShiftSpace"
 dialect "mvel"
 when
 $shiftAssignment : ShiftAssignment($employee : employee !=
null, $shiftEndDateTime : shift.timeslot.endTime)
 ShiftAssignment(this != $shiftAssignment, $employee ==
employee, $shiftEndDateTime <= shift.timeslot.endTime,
 $shiftEndDateTime.until(shift.timeslot.startTime,
java.time.temporal.ChronoUnit.HOURS) <10)
 then
 scoreHolder.addHardConstraintMatch(kcontext, -1);
end

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

12

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_drl_rules

CHAPTER 6. CREATE RULES FOR EMPLOYEE ROSTERING
USING GUIDED RULES

You can create rules that define hard and soft constraints for employee rostering using the guided rules
designer in Decision Central.

6.1. GUIDED RULES

Guided rules are business rules that you create in a UI-based guided rules designer in Decision Central
that leads you through the rule-creation process. The guided rules designer provides fields and options
for acceptable input based on the data objects for the rule being defined. The guided rules that you
define are compiled into Drools Rule Language (DRL) rules as with all other rule assets.

All data objects related to a guided rule must be in the same project package as the guided rule. Assets
in the same package are imported by default. After the necessary data objects and the guided rule are
created, you can use the Data Objects tab of the guided rules designer to verify that all required data
objects are listed or to import other existing data objects by adding a New item.

6.2. CREATE A GUIDED RULE TO BALANCE EMPLOYEE SHIFT
NUMBERS

The BalanceEmployeesShiftNumber guided rule creates a soft constraint that ensures shifts are
assigned to employees in a way that is balanced as evenly as possible. It does this by creating a score
penalty that increases when shift distribution is less even. The score formula, implemented by the rule,
incentivizes the Solver to distribute shifts in a more balanced way.

Procedure

1. Go to Menu → Design → Projects and click the project name.

2. Click Create New Asset → Guided Rule.

3. Enter BalanceEmployeesShiftNumber as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select Employee in the Add a condition to the rule window. Click +Ok.

CHAPTER 6. CREATE RULES FOR EMPLOYEE ROSTERING USING GUIDED RULES

13

7. Click on the Employee condition to modify the constraints and add the variable name
$employee.

8. Add the WHEN condition From Accumulate.

a. Above the From Accumulate condition, click click to add pattern and select Number as
the fact type from the drop-down list.

b. Add the variable name $shiftCount to the Number condition.

c. Below the From Accumulate condition, click click to add pattern and select the
ShiftAssignment fact type from the drop-down list.

d. Add the variable name $shiftAssignment to the ShiftAssignment fact type.

e. Click on the ShiftAssignment condition again and from the Add a restriction on a field
drop-down list, select employee.

f. Select equal to from the drop-down list next to the employee constraint.

g. Click the icon next to the drop-down button to add a variable, and click Bound variable
in the Field value window.

h. Select $employee from the drop-down list.

i. In the Function box type count($shiftAssignment).

9. Add the THEN condition by clicking the in the THEN field.

10. Select Modify Soft Score in the Add a new action window. Click +Ok.

a. Type the following expression into the box: -
($shiftCount.intValue()*$shiftCount.intValue())

11. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

12. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules.

6.3. CREATE A GUIDED RULE FOR NO MORE THAN ONE SHIFT PER
DAY

The OneEmployeeShiftPerDay guided rule creates a hard constraint that employees are not assigned
more than one shift per day. In the employee rostering example, this constraint is created using the
guided rule designer.

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

14

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_guided_rules

Procedure

1. Go to Menu → Design → Projects and click the project name.

2. Click Create New Asset → Guided Rule.

3. Enter OneEmployeeShiftPerDay as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select Free form DRL from the Add a condition to the rule window.

7. In the free form DRL box, type the following condition:

This condition states that a shift cannot be assigned to an employee that already has another
shift assignment on the same day.

8. Add the THEN condition by clicking the in the THEN field.

9. Select Add free form DRL from the Add a new action window.

10. In the free form DRL box, type the following condition:

11. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

12. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules.

$shiftAssignment : ShiftAssignment(employee != null)
 ShiftAssignment(this != $shiftAssignment , employee ==
$shiftAssignment.employee , shift.timeslot.startTime.toLocalDate()
== $shiftAssignment.shift.timeslot.startTime.toLocalDate())

scoreHolder.addHardConstraintMatch(kcontext, -1);

CHAPTER 6. CREATE RULES FOR EMPLOYEE ROSTERING USING GUIDED RULES

15

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_guided_rules

6.4. CREATE A GUIDED RULE TO MATCH SKILLS TO SHIFT
REQUIREMENTS

The ShiftReqiredSkillsAreMet guided rule creates a hard constraint that ensures all shifts are
assigned an employee with the correct set of skills. In the employee rostering example, this constraint is
created using the guided rule designer.

Procedure

1. Go to Menu → Design → Projects and click the project name.

2. Click Create New Asset → Guided Rule.

3. Enter ShiftReqiredSkillsAreMet as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select ShiftAssignment in the Add a condition to the rule window. Click +Ok.

7. Click on the ShiftAssignment condition, and select employee from the Add a restriction on
a field drop-down list.

8. In the designer, click the drop-down list next to employee and select is not null.

9. Click on the ShiftAssignment condition, and click Expression editor.

a. In the designer, click [not bound] to open the Expression editor, and bind the expression
to the variable $requiredSkill. Click Set.

b. In the designer, next to $requiredSkill, select shift from the first drop-down list, then
requiredSkill from the next drop-down list.

10. Click on the ShiftAssignment condition, and click Expression editor.

a. In the designer, next to [not bound], select employee from the first drop-down list, then
skills from the next drop-down list.

b. Leave the next drop-down list as Choose.

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

16

c. In the next drop-down box, change please choose to excludes.

d. Click the icon next to excludes, and in the Field value window, click the New formula
button.

e. Type $requiredSkill into the formula box.

11. Add the THEN condition by clicking the in the THEN field.

12. Select Modify Hard Score in the Add a new action window. Click +Ok.

13. Type -1 into the score actions box.

14. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

15. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules.

6.5. CREATE A GUIDED RULE TO MANAGE DAY OFF REQUESTS

The DayOffRequest guided rule creates a soft constraint that allows a shift to be reassigned to another
employee in the event the employee who was originally assigned the shift is no longer able to work that
day. In the employee rostering example, this constraint is created using the guided rule designer.

Procedure

1. Go to Menu → Design → Projects and click the project name.

2. Click Create New Asset → Guided Rule.

3. Enter DayOffRequest as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select Free form DRL from the Add a condition to the rule window.

CHAPTER 6. CREATE RULES FOR EMPLOYEE ROSTERING USING GUIDED RULES

17

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_guided_rules

7. In the free form DRL box, type the following condition:

This condition states if a shift is assigned to an employee who has made a day off request, the
employee can be unassigned the shift on that day.

8. Add the THEN condition by clicking the in the THEN field.

9. Select Add free form DRL from the Add a new action window.

10. In the free form DRL box, type the following condition:

11. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

12. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules.

$dayOffRequest : DayOffRequest()
 ShiftAssignment(employee == $dayOffRequest.employee ,
shift.timeslot.startTime.toLocalDate() == $dayOffRequest.date)

scoreHolder.addSoftConstraintMatch(kcontext, -100);

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

18

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/designing_a_decision_service_using_guided_rules

CHAPTER 7. CONFIGURE THE SOLVER FOR EMPLOYEE
ROSTERING

You can create and edit Solver configurations in Decision Central. The Solver configuration designer
creates a solver configuration that can be run after the project is deployed.

Prerequisite

Red Hat Decision Manager has been downloaded and installed. You have created and configured all of
the relevant assets for the employee rostering example.

Procedure

1. In Decision Central, click Menu → Projects, and click on your project to open it.

2. In the Assets perspective, click Create New Asset → Solver configuration

3. In the Create new Solver configuration window, type the name
EmployeeRosteringSolverConfig for your Solver and click Ok.
This opens the Solver configuration designer.

4. In the Score Director Factory configuration section, define a knowledge base that contains
scoring rule definitions. The employee rostering sample project uses defaultKieBase.

a. Select one of the knowledge sessions defined within the knowledge base. The employee
rostering sample project uses defaultKieSession.

5. Click Validate in the upper-right corner to check the Score Director Factory configuration is
correct. If validation fails, address any problems described in the error message, and try again to
validate until the configuration passes.

6. Click Save to save the Solver configuration.

For more information about configuring a Solver, see Installing and configuring Red Hat Business
Optimizer.

7.1. CONFIGURE SOLVER TERMINATION FOR THE EMPLOYEE
ROSTERING PROJECT

You can configure the Solver to terminate after a specified amount of time. By default, the planning
engine is given an unlimited time period to solve a problem instance.

The employee rostering sample project is set up to run for 30 seconds.

Prerequisite

You have created all relevant assets for the employee rostering project and created the
EmployeeRosteringSolverConfig solver configuration in Decision Central as described in
Chapter 7, Configure the Solver for employee rostering.

Procedure

1. Open the EmployeeRosteringSolverConfig from the Assets perspective. This will open
the Solver configuration designer.

CHAPTER 7. CONFIGURE THE SOLVER FOR EMPLOYEE ROSTERING

19

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/installing_and_configuring_business_optimizer

2. In the Termination section, click Add to create new termination element within the selected
logical group.

3. Select the Time spent termination type from the drop-down list. This is added as an input field
in the termination configuration.

4. Use the arrows next to the time elements to adjust the amount of time spent to 30 seconds.

5. Click Validate in the upper-right corner to check the Score Director Factory configuration is
correct. If validation fails, address any problems described in the error message, and try again to
validate until the configuration passes.

6. Click Save to save the Solver configuration.

For more information about configuring a Solver or Solver termination, see Red Hat Decision Manager
Red Hat Business Optimizer Guide.

7.2. REGISTER THE SOLVER USING THE REST API

Once the solver configuration is created and the project is deployed to the decision server, you can
create a Solver and submit planning problems. This can be done by accessing the project KIE
container’s capabilities through the decision server’s remote APIs. You can create a Solver from the
solver configuration file, then submit a planning problem to it and request the best solution at any time.

Each Solver is capable of optimizing one planning problem at a time.

Prerequisites

You must have the the kie-server role in order for the admin credentials mentioned in this
examples to work. For more information about the kie-server role, see Installing and
configuring Red Hat Business Optimizer.

The employee rostering project has been set up and deployed according to the previous
chapters in this document.

The Solver has been configured as instructed in Chapter 7, Configure the Solver for employee
rostering and Section 7.1, “Configure Solver termination for the employee rostering project”.

You have successfully built and deployed the employee rostering project. For more information
about deploying the employee rostering sample project in the workbench, see Chapter 1, Deploy
the employee rostering sample project in Decision Central.

Procedure

1. Create a HTTP request using the following header:

authorization: admin:admin
X-KIE-ContentType: xstream
content-type: application/xml

2. Register the Solver using the following request:

PUT

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

20

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/business_resource_planner_guide
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/installing_and_configuring_business_optimizer

http://localhost:8080/kie-
server/services/rest/server/containers/employeerostering_1.0.0-
SNAPSHOT/solvers/EmployeeRosteringSolver

Request body

3. Submit a request to the Solver:

POST

http://localhost:8080/kie-
server/services/rest/server/containers/employeerostering_1.0.0-
SNAPSHOT/solvers/EmployeeRosteringSolver/state/solving

Request body

<solver-instance>
 <solver-config-
file>employeerostering/employeerostering/EmployeeRosteringSolverCo
nfig.solver.xml</solver-config-file>
</solver-instance>

<employeerostering.employeerostering.EmployeeRoster>
 <employeeList>
 <employeerostering.employeerostering.Employee>
 <name>John</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>reading</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Mary</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>writing</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Petr</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>speaking</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 </employeeList>
 <shiftList>
 <employeerostering.employeerostering.Shift>
 <timeslot>
 <startTime>2017-01-01T00:00:00</startTime>
 <endTime>2017-01-01T01:00:00</endTime>
 </timeslot>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerosteri

CHAPTER 7. CONFIGURE THE SOLVER FOR EMPLOYEE ROSTERING

21

http://localhost:8080/kie-server/services/rest/server/containers/employeerostering_1.0.0-SNAPSHOT/solvers/EmployeeRosteringSolver
http://localhost:8080/kie-server/services/rest/server/containers/employeerostering_1.0.0-SNAPSHOT/solvers/EmployeeRosteringSolver/state/solving

4. Request the best solution to the planning problem:

GET

http://localhost:8080/kie-
server/services/rest/server/containers/employeerostering_1.0.0-
SNAPSHOT/solvers/EmployeeRosteringSolver/bestsolution

Example response

ng.Employee/skills/employeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot
reference="../../employeerostering.employeerostering.Shift/timeslo
t"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerosteri
ng.Employee[3]/skills/employeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot
reference="../../employeerostering.employeerostering.Shift/timeslo
t"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerosteri
ng.Employee[2]/skills/employeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 </shiftList>
 <skillList>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.
Employee/skills/employeerostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.
Employee[3]/skills/employeerostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.
Employee[2]/skills/employeerostering.employeerostering.Skill"/>
 </skillList>
 <timeslotList>
 <employeerostering.employeerostering.Timeslot
reference="../../shiftList/employeerostering.employeerostering.Shi
ft/timeslot"/>
 </timeslotList>
 <dayOffRequestList/>
 <shiftAssignmentList/>
</employeerostering.employeerostering.EmployeeRoster>

<solver-instance>
 <container-id>employee-rostering</container-id>
 <solver-id>solver1</solver-id>
 <solver-config-
file>employeerostering/employeerostering/EmployeeRosteringSolverCo
nfig.solver.xml</solver-config-file>
 <status>NOT_SOLVING</status>

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

22

http://localhost:8080/kie-server/services/rest/server/containers/employeerostering_1.0.0-SNAPSHOT/solvers/EmployeeRosteringSolver/bestsolution

 <score
scoreClass="org.optaplanner.core.api.score.buildin.hardsoft.HardSo
ftScore">0hard/0soft</score>
 <best-solution
class="employeerostering.employeerostering.EmployeeRoster">
 <employeeList>
 <employeerostering.employeerostering.Employee>
 <name>John</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>reading</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Mary</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>writing</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Petr</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>speaking</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 </employeeList>
 <shiftList>
 <employeerostering.employeerostering.Shift>
 <timeslot>
 <startTime>2017-01-01T00:00:00</startTime>
 <endTime>2017-01-01T01:00:00</endTime>
 </timeslot>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerosteri
ng.Employee/skills/employeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot
reference="../../employeerostering.employeerostering.Shift/timeslo
t"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerosteri
ng.Employee[3]/skills/employeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot
reference="../../employeerostering.employeerostering.Shift/timeslo
t"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerosteri
ng.Employee[2]/skills/employeerostering.employeerostering.Skill"/>

CHAPTER 7. CONFIGURE THE SOLVER FOR EMPLOYEE ROSTERING

23

For more information about creating containers, Solvers, and submitting problems through the decision
server REST API, see Installing and configuring Red Hat Business Optimizer.

 </employeerostering.employeerostering.Shift>
 </shiftList>
 <skillList>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.
Employee/skills/employeerostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.
Employee[3]/skills/employeerostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.
Employee[2]/skills/employeerostering.employeerostering.Skill"/>
 </skillList>
 <timeslotList>
 <employeerostering.employeerostering.Timeslot
reference="../../shiftList/employeerostering.employeerostering.Shi
ft/timeslot"/>
 </timeslotList>
 <dayOffRequestList/>
 <shiftAssignmentList/>
 <score>0hard/0soft</score>
 </best-solution>
</solver-instance>

Red Hat Decision Manager 7.0 Creating and running a Red Hat Business Optimizer solver for employee rostering using Decision Central

24

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.0/html-single/installing_and_configuring_business_optimizer

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on: Monday, October 1, 2018.

APPENDIX A. VERSIONING INFORMATION

25

	Table of Contents
	PREFACE
	CHAPTER 1. DEPLOY THE EMPLOYEE ROSTERING SAMPLE PROJECT IN DECISION CENTRAL
	CHAPTER 2. SET UP THE EMPLOYEE ROSTERING SAMPLE PROJECT
	CHAPTER 3. PROBLEM FACTS AND PLANNING ENTITIES
	CHAPTER 4. CREATE THE DATA MODEL FOR THE EMPLOYEE ROSTERING PROJECT
	4.1. CREATE THE EMPLOYEE ROSTER PLANNING ENTITY
	4.2. CREATE THE EMPLOYEE ROSTER PLANNING SOLUTION

	CHAPTER 5. EMPLOYEE ROSTERING CONSTRAINTS
	5.1. DRL RULES
	5.2. CONSTRAINT DEFINITION FOR EMPLOYEE ROSTERING USING THE DRL DESIGNER

	CHAPTER 6. CREATE RULES FOR EMPLOYEE ROSTERING USING GUIDED RULES
	6.1. GUIDED RULES
	6.2. CREATE A GUIDED RULE TO BALANCE EMPLOYEE SHIFT NUMBERS
	6.3. CREATE A GUIDED RULE FOR NO MORE THAN ONE SHIFT PER DAY
	6.4. CREATE A GUIDED RULE TO MATCH SKILLS TO SHIFT REQUIREMENTS
	6.5. CREATE A GUIDED RULE TO MANAGE DAY OFF REQUESTS

	CHAPTER 7. CONFIGURE THE SOLVER FOR EMPLOYEE ROSTERING
	7.1. CONFIGURE SOLVER TERMINATION FOR THE EMPLOYEE ROSTERING PROJECT
	7.2. REGISTER THE SOLVER USING THE REST API

	APPENDIX A. VERSIONING INFORMATION

