
Red Hat Ceph Storage 2

Ceph Object Gateway for Production

Planning, designing and deploying Ceph Storage clusters and Ceph Object Gateway
clusters for production.

Last Updated: 2018-04-03

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

Planning, designing and deploying Ceph Storage clusters and Ceph Object Gateway clusters for
production.

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide covers planning a cluster, considering hardware, developing storage strategies,
configuring gateways and load balancers and using the Ceph Object Gateway.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. AUDIENCE
1.2. ASSUMPTIONS
1.3. SCOPE

CHAPTER 2. PLANNING A CLUSTER
2.1. IDENTIFYING USE CASES
2.2. SELECTING DATA DURABILITY METHODS
2.3. CONSIDERING MULTI-SITE DEPLOYMENT

CHAPTER 3. CONSIDERING HARDWARE
3.1. CONSIDERING STORAGE SIZING
3.2. CONSIDERING STORAGE DENSITY
3.3. CONSIDERING NETWORK HARDWARE
3.4. CONSIDERING UNINTERRUPTED POWER SUPPLIES
3.5. SELECTING HARDWARE FOR USE CASES
3.6. SELECTING SSDS FOR BUCKET INDEXES
3.7. SELECTING SSDS FOR MONITOR NODES

CHAPTER 4. DEPLOYING A CLUSTER
4.1. NAMING HOSTS
4.2. TUNING THE KERNEL

4.2.1. Adjusting TCMalloc
4.2.2. Reserving Free Memory for OSDs
4.2.3. Increasing File Descriptors
4.2.4. Adjusting ulimit On Large Clusters
4.2.5. Adjusting PID Count

4.3. CONFIGURING ANSIBLE GROUPS
4.4. DEPLOYING CEPH

4.4.1. Setting the Journal Size
4.4.2. Adjusting Backfill & Recovery Settings
4.4.3. Adjusting the Cluster Map Size
4.4.4. Adjusting Scrubbing
4.4.5. Expanding the Cluster

CHAPTER 5. DEVELOPING STORAGE STRATEGIES
5.1. DEVELOPING CRUSH HIERARCHIES

5.1.1. Creating CRUSH Roots
5.1.2. Using Logical Host Names in a CRUSH Map
5.1.3. Creating CRUSH Rulesets

5.2. CREATING THE ROOT POOL
5.3. CONFIGURING A REALM
5.4. CREATING SYSTEM POOLS
5.5. CREATING DATA PLACEMENT STRATEGIES

5.5.1. Creating a Bucket Index Pool
5.5.2. Creating a Data Pool
5.5.3. Creating a Bucket Extras Pool
5.5.4. Configuring Placement Targets in a Zone Group
5.5.5. Configuring Placement Pools in a Zone
5.5.6. Data Placement Summary

CHAPTER 6. CONFIGURING GATEWAYS
6.1. CONFIGURING CIVETWEB

4
4
4
4

5
5
5
6

7
7
7
8
8
8
9
9

10
10
10
10
11
11
11
11
12
13
13
13
14
14
14

16
16
17
18
19
21
21
23
24
25
26
26
27
28
29

31
31

Table of Contents

1

. .

6.2. CONFIGURING FIREWALL PORTS
6.3. CONFIGURING DNS WILDCARDS
6.4. CONFIGURING LOAD BALANCERS

CHAPTER 7. ADDITIONAL USE CASES
7.1. EXPANDING THE CLUSTER WITH MULTI-SITE
7.2. MIGRATING DATA WITH NFS GANESHA
7.3. CONFIGURING THE CLUSTER FOR STATIC WEBHOSTING
7.4. CONFIGURING THE CLUSTER FOR LDAP/AD
7.5. CONFIGURING THE CLUSTER TO USE OPENSTACK KEYSTONE

31
31
31

32
32
33
33
33
33

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
Welcome to the Ceph Object Gateway for Production guide. This guide covers topics for building
Ceph Storage clusters and Ceph Object Gateway clusters for production use.

1.1. AUDIENCE

This guide is for those who intend to deploy a Ceph Object Gateway environment for production. It
provides a sequential series of topics for planning, designing and deploying a production Ceph Storage
cluster and Ceph Object Gateway cluster with links to general Ceph documentation where appropriate.

1.2. ASSUMPTIONS

This guide assumes the reader has a basic understanding of the Ceph Storage Cluster and the Ceph
Object Gateway. Readers with no Ceph experience should consider setting up a small Ceph test
environment or using the Ceph Sandbox Environment to get familiar with Ceph concepts before
proceeding with this guide.

This guide assumes a single-site cluster consisting of a single Ceph Storage cluster and multiple Ceph
Object Gateway instances in the same zone. This guide assumes the single-site cluster will expand to a
multi-zone and multi-site cluster by repeating the procedures in this guide for each zone group and zone
with the naming modifications required for secondary zone groups and zones.

1.3. SCOPE

This guide covers the following topics when setting up a Ceph Storage Cluster and a Ceph Object
Gateway for production:

Planning a Cluster

Considering Hardware

Deploying a Cluster

Developing Storage Strategies

Configuring Gateways

Additional Use Cases

NOTE

This document is intended to complement the hardware, installation, administration and
Ceph Object Gateway guides. This guide does not replace the other guides.

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

4

CHAPTER 2. PLANNING A CLUSTER
Planning a cluster for use with the Ceph Object Gateway involves several important considerations:

Identifying use cases

Selecting data durability methods

Considering multi-site deployment

These factors will have a significant influence when considering hardware. Consider these factors
carefully before selecting hardware.

2.1. IDENTIFYING USE CASES

Ceph Storage is capable of serving many different types of storage use cases. For Ceph Object
Storage, the typical use cases are:

Throughput-optimized: A throughput-optimized cluster seeks to ensure fast data access. Host
bus adapters (HBAs), storage media with fast sequential read/write characteristics and high
network bandwidth provide capability for applications such as graphics, streaming audio and
streaming video. Throughput-optimized optimized clusters also consider whether write
performance is a consideration. Throughput-optimized clusters that use SSDs for journaling
realize substantially better write performance, which can be important for applications like storing
CCTV streams. Throughput-optimized clusters should consider the throughput characteristics of
a Host Bus Adapter (HBA) controller and network throughput for intensive applications such as
streaming 4K video. HBA-based hardware controllers offer significant performance
improvements over on-board controllers.

Capacity-optimized: A capacity-optimized cluster seeks to ensure the lowest cost per terabyte
of storage. Capacity-optimized clusters often use the least expensive storage media and often
avoid the added expense of separate SSD journals for applications such as archiving
infrequently accessed legacy financial records, old emails, etc.

IOPS-optimized: An IOPS-optimized cluster seeks to provide high performance for read- and
write-intensive workloads. While IOPS-optimized workloads are not as common for Ceph Object
Gateways, they can be supported with SSD, Flash memory or NVMe CRUSH hierarchies.

Carefully consider the storage use case(s) BEFORE considering hardware, because it can significantly
impact the price and performance of the cluster. For example, if the use case is capacity-optimized and
the hardware is better suited to a throughput-optimized use case, the hardware will be more expensive
than necessary. Conversely, if the use case is throughput-optimized and the hardware is better suited to
a capacity-optimized use case, the cluster may suffer from poor performance.

Also, note that since Ceph Object Gateway supports storage policies, it is possible to create CRUSH
hierarchies for ALL of the foregoing scenarios and invoke them with storage policies supported in the
APIs. See Creating Data Placement Strategies for details.

2.2. SELECTING DATA DURABILITY METHODS

Cluster design should also consider the data durability strategy. Ceph Storage uses either replication or
erasure coding to ensure data durability.

Replication stores one or more redundant copies of the data across failure domains in case of a
hardware failure. However, redundant copies of data can become expensive at scale. For example, to

CHAPTER 2. PLANNING A CLUSTER

5

store 1 petabyte of data with triple replication would require a cluster with at least 3 petabytes of storage
capacity.

The Erasure coding section of the Storage Strategies Guide describes how erasure coding stores data as
data chunks and coding chunks. In the event of a lost data chunk, erasure coding can recover the lost
data chunk with the remaining data chunks and coding chunks. Erasure coding is substantially more
economical than replication. For example, using erasure coding with 8 data chunks and 3 coding chunks
provides the same redundancy as 3 copies of the data. However, such an encoding scheme uses
approximately 1.5x of the initial data stored compared to 3x with replication.

NOTE

ONLY the data storage pool can use erasure coding. Pools storing system data and
bucket indexes use replication.

2.3. CONSIDERING MULTI-SITE DEPLOYMENT

Another important aspect of designing a cluster is to determine if the cluster will be in one data center site
or span multiple data center sites. Multi-site clusters benefit from geographically distributed failover and
disaster recovery, such as long-term power outages, earthquakes, hurricanes, floods or other disasters.
Additionally, multi-site clusters in an active-active configuration can direct client applications to the
closest available cluster in the manner of content delivery networks. Placing data as close to the client as
possible is increasingly important for throughput intensive workloads such as streaming 4k video.

For details of multi-site clusters, see the Multi-site sections of the Object Gateway for Red Hat Enterprise
Linux guide.

NOTE

Red Hat recommends identifying realm, zone group and zone names BEFORE creating
Ceph Storage pools. Some pool names should be pre-pended with the zone name by
convention.

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

6

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/storage-strategies-guide/#erasure_code_pools
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux#multi_site
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/

CHAPTER 3. CONSIDERING HARDWARE
Considering hardware is an important part of building Ceph Storage clusters and Ceph Object Gateway
clusters for production environments. High-level considerations include:

Considering Storage Sizing

Considering Storage Density

Considering Uninterrupted Power Supplies

Considering Network Hardware

Selecting Hardware for Use Cases

Selecting SSDs for Bucket Indexes

Selecting SSDs for Monitor Nodes

IMPORTANT

Consider these factors BEFORE identifying and purchasing computing and networking
hardware for the cluster.

3.1. CONSIDERING STORAGE SIZING

One of the most important factors in designing a cluster is to determine the storage requirements
(sizing). Ceph Storage is designed to scale into petabytes and beyond. The following examples are
common sizes for Ceph storage clusters.

Small: 250 terabytes

Medium: 1 petabyte

Large: 2 petabytes or more.

Sizing should include current needs and the needs of the near future. Consider the rate at which the
gateway client will add new data to the cluster. That may differ from use-case to use-case. For example,
recording CCTV video, 4k video or medical imaging may add significant amounts of data far more
quickly then less storage intensive information such as financial market data. Additionally, consider that
data durability methods such as replication versus erasure coding will have a significant impact on the
storage media required.

For additional information on sizing, see the Red Hat Ceph Storage Hardware Guide and its associated
links for selecting OSD hardware.

3.2. CONSIDERING STORAGE DENSITY

Another important aspect of cluster design includes storage density. Generally, a cluster should store
data across at least 10 nodes to ensure reasonable performance when replicating, backfilling and
recovery. If a node fails, with at least 10 nodes in the cluster, only 10% of the data has to move to the
surviving nodes. If the number of nodes is substantially less, a higher percentage of the data must move
to the surviving nodes. Additionally, the full_ratio and near_full_ratio need to be set to
accommodate a node failure to ensure that the cluster can write data. For this reason, it is is important to
consider storage density. Higher storage density isn’t necessarily a good idea.

CHAPTER 3. CONSIDERING HARDWARE

7

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/red-hat-ceph-storage-hardware-guide/

Another factor that favors more nodes over higher storage density is erasure coding. When writing an
object using erasure coding and using node as the minimum CRUSH failure domain, the cluster will need
as many nodes as data and coding chunks. For example, a cluster using k=8, m=3 should have at least
11 nodes so that each data or coding chunk is stored on a separate node.

Hot-swapping is also an important consideration. Most modern servers support drive hot-swapping.
However, some hardware configurations require removing more than one drive to replace a drive. Red
Hat recommends avoiding such configurations, because they can bring down more OSDs than required
when swapping out failed disks.

3.3. CONSIDERING NETWORK HARDWARE

A major advantage of Ceph Storage is that it allows scaling capacity, IOPS and throughput
independently. An important aspect of a cloud storage solution is that clusters can run out of IOPS due to
network latency and other factors or run out of throughput due to bandwidth constraints long before the
clusters run out of storage capacity. This means that the network hardware configuration must support
the use case(s) in order to meet price/performance targets. Network performance is increasingly
important when considering the use of SSDs, flash, NVMe, and other high performance storage
methods.

Another important consideration of Ceph Storage is that it supports a front side or public network for
client and monitor data, and a back side or cluster network for heart beating, data replication and
recovery. This means that the back side or cluster network will always require more network resources
than the front side or public network. Depending upon whether the data pool uses replication or erasure
coding for data durability, the network requirements for the back side or cluster network should be
quantified appropriately.

Finally, verify network throughput before installing and testing Ceph. Most performance-related problems
in Ceph usually begin with a networking issue. Simple network issues like a kinked or bent Cat-6 cable
could result in degraded bandwidth. Use a minimum of 10Gbe for the front side network. For large
clusters, consider using 40Gbe for the backend or cluster network. Alternatively, use LCAP mode 4 to
bond networks. Additionally, use jumbo frames (MTU 9000), especially on the backend or cluster
network.

3.4. CONSIDERING UNINTERRUPTED POWER SUPPLIES

Since Ceph writes are atomic— all or nothing— it isn’t a requirement to invest in uninterruptable power
supplies (UPS) for Ceph OSD nodes. However, Red Hat recommends investing in UPSs for Ceph
Monitor nodes. Monitors use leveldb, which is sensitive to synchronous write latency. A power outage
could cause corruption, requiring technical support to restore the state of the cluster.

Ceph OSDs may benefit from the use of a UPS if a storage controller uses a writeback cache. In this
scenario, a UPS may help prevent filesystem corruption during a power outage if the controller doesn’t
flush the writeback cache in time.

3.5. SELECTING HARDWARE FOR USE CASES

A major advantage of Ceph Storage is that it can be configured to support many use cases. Generally,
Red Hat recommends configuring OSD hosts identically for a particular use case. The three primary use
cases for a Ceph Storage cluster are:

IOPS optimized

Throughput optimized

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

8

Capacity optimized

Since these use cases typically have different drive, HBA controller and networking requirements among
other factors, configuring a series of identical hosts to facilitate all of these use cases with a single node
configuration is possible, but is not necessarily recommended.

Using the same hosts to facilitate multiple CRUSH hierarchies will involve the use of logical, rather than
actual host names in the CRUSH map. Additionally, deployment tools such as Ansible would need to
consider a group for each use case, rather than deploying all OSDs in the default [osds] group.

NOTE

Generally, it is easier to configure and manage hosts that serve a single use case, such
as high IOPS, high throughput, or high capacity.

3.6. SELECTING SSDS FOR BUCKET INDEXES

When selecting OSD hardware for use with a Ceph Object Gateway— irrespective of the use case— Red
Hat recommends considering an OSD node that has at least one SSD drive used exclusively for the
bucket index pool. This is particularly important when buckets will contain a large number of objects.

A bucket index entry is approximately 200 bytes of data, stored as an object map (omap) in leveldb.
While this is a trivial amount of data, some uses of Ceph Object Gateway can result in tens or hundreds
of millions of objects in a single bucket. By mapping the bucket index pool to a CRUSH hierarchy of SSD
nodes, the reduced latency provides a dramatic performance improvement when buckets contain very
large numbers of objects.

IMPORTANT

In a production cluster, a typical OSD node will have at least one SSD for the bucket
index, AND at least on SSD for the journal.

3.7. SELECTING SSDS FOR MONITOR NODES

Ceph monitors use leveldb, which is sensitive to synchronous write latency. Red Hat strongly
recommends using SSDs to store monitor data. Ensure that the selected SSDs have sufficient sequential
write and throughput characteristics.

CHAPTER 3. CONSIDERING HARDWARE

9

CHAPTER 4. DEPLOYING A CLUSTER
The initial deployment of a production cluster is identical to deploying a proof-of-concept system. The
only material difference is that the initial deployment will use production-grade hardware. First, follow the
prerequisites section of the Installation Guide for Red Hat Enterprise Linux and execute the appropriate
steps for each node. The following sections provide additional guidance relevant to production clusters.

4.1. NAMING HOSTS

When naming hosts, consider their use case and performance profile. For example, if the hosts will store
client data, consider naming them according to their hardware configuration and performance profile. For
example:

data-ssd-1, data-ssd-2

hot-storage-1, hot-storage-2

sata-1, sata-2

sas-ssd-1, sas-ssd-2

The naming convention may make it easier to manage the cluster and troubleshoot hardware issues as
they arise.

If the host contains hardware for multiple use cases— for example, the host contains SSDs for data, SAS
drives with SSDs for journals, and SATA drives with co-located journals for cold storage— choose a
generic name for the host. For example:

osd-node-1 osd-node-2

Generic host names can be extended when using logical host names in the CRUSH hierarchy as
needed. For example:

osd-node-1-ssd osd-node-1-sata osd-node-1-sas-ssd osd-node-1-bucket-index

osd-node-2-ssd osd-node-2-sata osd-node-2-sas-ssd osd-node-2-bucket-index

See Using Logical Host Names in a CRUSH Map for additional details.

4.2. TUNING THE KERNEL

Production clusters benefit from tuning the operating system, specifically limits and memory allocation.
Ensure that adjustments are set for all nodes within the cluster. Consult Red Hat support for additional
guidance.

4.2.1. Adjusting TCMalloc

Under heavy multi-threaded memory allocation workloads, TCMalloc can consume significant amounts
of CPU and reduce IOPS when it doesn’t have enough thread cache available. Red Hat recommends
increasing the amount of thread cache beyond the default 32MB.

To change the TCMalloc cache setting, edit /etc/sysconfig/ceph, and use the
TCMALLOC_MAX_TOTAL_THREAD_CACHE_BYTES setting to adjust the cache size. For example,
increasing the cache from 64MB to 128MB can substantially increase IOPS while reducing CPU
overhead.

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

10

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/#prerequisites
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/installation-guide-for-red-hat-enterprise-linux/

To release the memory that TCMalloc has allocated, but which is not being used by the Ceph daemon
itself, execute the following:

ceph tell osd.* heap release

4.2.2. Reserving Free Memory for OSDs

To help prevent insufficient memory-related errors during OSD memory allocation requests, set the
vm.min_free_kbytes option in the sysctl.conf file on OSD nodes. This option specifies the
amount of physical memory to keep in reserve. The recommended settings are based on the amount of
system RAM. For example:

For 64GB RAM, reserve 1GB.

vm.min_free_kbytes = 1048576

For 128GB RAM, reserve 2GB.

vm.min_free_kbytes = 2097152

For 256GB RAM, reserve 3GB.

vm.min_free_kbytes = 3145728

4.2.3. Increasing File Descriptors

The Ceph Object Gateway may hang if it runs out of file descriptors. Modify
/etc/security/limits.conf on Ceph Object Gateway nodes to increase the file descriptors for the
Ceph Object Gateway. For example:

ceph soft nproc unlimited

4.2.4. Adjusting ulimit On Large Clusters

For system administrators that will run Ceph administrator commands on large clusters— for example,
1024 OSDs or more— create an /etc/security/limits.d/50-ceph.conf file on each node that
will run administrator commands with the following contents:

<username> soft nproc unlimited

Replace <username> with the name of the non-root account that will run Ceph administrator
commands.

NOTE

The root user’s ulimit is already set to "unlimited" by default on RHEL.

4.2.5. Adjusting PID Count

CHAPTER 4. DEPLOYING A CLUSTER

11

Hosts with high numbers of OSDs may spawn a lot of threads, especially during recovery and re-
balancing. Many Linux kernels default to a relatively small maximum number of threads. Check the
default settings to see if they are suitable.

cat /proc/sys/kernel/pid_max

Consider setting kernel.pid_max to a higher number of threads. The theoretical maximum is
4,194,303 threads. For example, add the following to the /etc/sysctl.conf file to set it to the
maximum:

kernel.pid_max = 4194303

To effect the changes without rebooting, execute:

sysctl -p

To verify the changes, execute:

sysctl -a | grep kernel.pid_max

4.3. CONFIGURING ANSIBLE GROUPS

This procedure is only pertinent for deploying Ceph using Ansible. The ceph-ansible package is
already configured with a default osds group. If the cluster will only have one use case and storage
policy, proceed with the procedure documented in the Installing Ceph Using Ansible section of the
Installation Guide for Red Hat Enterprise Linux.

If the cluster will support multiple use cases and storage policies, create a group for each one. See
Configuring OSD Settings section of the Installation Guide for Red Hat Enterprise Linux for high level
details.

Each use case should copy /usr/share/ceph-ansible/group_vars/osd.sample to a file named
for the group name. For example, if the cluster has IOPS-optimized, throughput-optimized and capacity-
optimized use cases, create separate files representing the groups for each use case. For example:

cd /usr/share/ceph-ansible/group_vars/
cp osds.sample osds-iops
cp osds.sample osds-throughput
cp osds.sample osds-capacity

Then, configure each file according to the use case.

Once the group variable files are configured, edit the site.yml file to ensure that it includes each new
group. For example:

- hosts: osds-iops
 gather_facts: false
 become: True
 roles:
 - ceph-osd

- hosts: osds-throughput
 gather_facts: false

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

12

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/#installing_red_hat_ceph_storage_using_ansible
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/installation-guide-for-red-hat-enterprise-linux/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/#configuring_ceph_osd_settings
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/installation-guide-for-red-hat-enterprise-linux/

 become: True
 roles:
 - ceph-osd

- hosts: osds-capacity
 gather_facts: false
 become: True
 roles:
 - ceph-osd

Finally, in the /etc/ansible/hosts file, place the OSD nodes associated to a group under the
corresponding group name. For example:

[osds-iops]
<ceph-host-name> devices="['<device_1>', '<device_2>']"

[osds-throughput]
<ceph-host-name> devices="['<device_1>', '<device_2>']"

[osds-capacity]
<ceph-host-name> devices="['<device_1>', '<device_2>']"

4.4. DEPLOYING CEPH

Once the pre-requisites and initial tuning are complete, consider deploying a Ceph cluster. When
deploying a production cluster, Red Hat recommends setting up the initial monitor cluster and enough
OSD nodes to reach an active + clean state. See Storage Cluster Installation for details.

Then, install the Ceph CLI client on an administration node. See Ceph CLI installation for details.

Once the initial cluster is running, consider adding the settings in the following sections to the Ceph
configuration file.

NOTE

If deployment uses a tool such as Ansible, add the following settings to the deployment
tool’s configuration. For example, see overriding Ceph default settings for examples on
how to modify Ceph settings using Ansible.

4.4.1. Setting the Journal Size

Set the journal size for the Ceph cluster. Configuration tools such as Ansible may have a default value.
Generally, the journal size should find the product of the synchronization interval and the slower of the
disk and network throughput, and multiply the product by two (2).

See Journal Settings for details.

4.4.2. Adjusting Backfill & Recovery Settings

I/O is negatively impacted by both backfilling and recovery operations, leading to poor performance and
unhappy end users. To help accommodate I/O demand during a cluster expansion or recovery, set the
following options and values in the Ceph Configuration file:

[osd]

CHAPTER 4. DEPLOYING A CLUSTER

13

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/#storage_cluster_installation
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/#ceph_command_line_interface_installation
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/#overriding_ceph_default_settings
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/configuration-guide/#journal_settings

osd_max_backfills = 1
osd_recovery_max_active = 1
osd_recovery_op_priority = 1

4.4.3. Adjusting the Cluster Map Size

When the cluster has thousands of OSDs, download the cluster map and check its file size. By default,
the ceph-osd daemon caches 500 previous osdmaps. Even with deduplication, the map may consume
a lot of memory per daemon. Tuning the cache size in the Ceph configuration file may help reduce
memory consumption significantly. For example:

[global]
osd_map_message_max=10

[osd]
osd_map_cache_size=20
osd_map_max_advance=10
osd_map_share_max_epochs=10
osd_pg_epoch_persisted_max_stale=10

4.4.4. Adjusting Scrubbing

By default, Ceph performs light scrubbing daily and deep scrubbing weekly. Light scrubbing checks
object sizes and checksums to ensure that PGs are storing the same object data. Over time, disk sectors
can go bad irrespective of object sizes and checksums. Deep scrubbing checks an object’s content with
that of its replicas to ensure that the actual contents are the same. In this respect, deep scrubbing
ensures data integrity in the manner of fsck, but the procedure imposes an I/O penalty on the cluster.
Even light scrubbing can impact I/O.

The default settings may allow Ceph OSDs to initiate scrubbing at inopportune times such as peak
operating times or periods with heavy loads. End users may experience latency and poor performance
when scrubbing operations conflict with end user operations.

To prevent end users from experiencing poor performance, Ceph provides a number of scrubbing
settings that can limit scrubbing to periods with lower loads or during off-peak hours. See scrubbing for
details.

If the cluster experiences high loads during the day and low loads late at night, consider restricting
scrubbing to night time hours. For example:

[osd]
osd_scrub_begin_hour = 23 #23:01H, or 10:01PM.
osd_scrub_end_hour = 6 #06:01H or 6:01AM.

If time constraints aren’t an effective method of determining a scrubbing schedule, consider using the
osd_scrub_load_threshold. The default value is 0.5, but it could be modified for low load
conditions. For example:

[osd]
osd_scrub_load_threshold = 0.25

4.4.5. Expanding the Cluster

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

14

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/configuration-guide/#scrubbing

Once the initial cluster is running and in an active+clean state, add additional OSD nodes and Ceph
Object Gateway nodes to the cluster. Apply the steps detailed in Tuning the Kernel to each node. See
Adding and Removing OSD Nodes for details on adding nodes.

For each OSD node added to the cluster, add OSDs to the cluster for each drive in the node that will
store client data. See Adding an OSD for additional details. When using Ansible to add OSD nodes, refer
to Configuring Ansible Groups, and add the OSD nodes to the appropriate group if the cluster will support
multiple use cases.

For each Ceph Object Gateway node, install a gateway instance. See Ceph Object Gateway Installation
for details.

Once the cluster returns to an active+clean state, remove any overrides and proceed with Developing
Storage Strategies.

NOTE

Step 3 of Adding a Node and Step 10 of Adding an OSD With the Command Line
Interface will be revisited in topics beginning with Developing CRUSH Hierarchies.

CHAPTER 4. DEPLOYING A CLUSTER

15

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/administration-guide/#adding_and_removing_osd_nodes
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/administration-guide/#adding_an_osd
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/#ceph_object_gateway_installation
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/administration-guide/#overrides

CHAPTER 5. DEVELOPING STORAGE STRATEGIES
One of the more challenging aspects of setting up Ceph Storage clusters and Ceph Object Gateways for
production use is defining effective storage strategies. Storage strategies involve the following factors:

Developing CRUSH Hierarchies

Creating CRUSH Roots

Using Logical Host Names in a CRUSH Map

Creating CRUSH Rulesets

Creating the Gateway’s Root Pool

Configuring a Realm

Creating System Pools

Creating Data Placement Strategies

See the Storage Strategies guide for general guidance on storage strategies and command line usage.

5.1. DEVELOPING CRUSH HIERARCHIES

When deploying a Ceph cluster and an Object Gateway, typically the object gateway will have a default
zone group and zone. The Ceph storage cluster will have default pools, which in turn will use a CRUSH
map with a default CRUSH hierarchy and a default CRUSH ruleset.

IMPORTANT

The default rbd pool may use the default CRUSH ruleset. DO NOT delete the default
ruleset or hierarchy if Ceph clients have used them to store client data.

For general details on CRUSH hierarchies, see the CRUSH Administration section of the Storage
Strategies guide.

Production gateways typically use a custom realm, zone group and zone named according to the use
and geographic location of the gateways. Additionally, the Ceph cluster will have a CRUSH map that has
multiple CRUSH hierarchies.

System Pools: At least one CRUSH hierarchy will be for system pools and potentially for data.
The system pools include .rgw.root and the system pools associated with the zone. System
pools typically fall under a single CRUSH hierarchy, and use replication for data durability. A data
pool may also use the CRUSH hierarchy, but the pool will usually be configured with erasure
coding for data durability.

Bucket Index: At least one CRUSH hierarchy SHOULD be for the bucket index pool, where the
CRUSH hierarchy maps to SSD drives. Bucket indices can be a performance bottleneck. It is
strongly recommended to use SSD drives in this CRUSH hierarchy. DO NOT create partitions
for bucket indices on SSDs used for OSD journals . Additionally, a bucket index should be
configured with bucket sharding. See Creating a Bucket Index Pool and supporting links for
details.

Placement Pools: The placement pools for each placment target include the bucket index, the

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

16

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-2-crush-administration
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/

data bucket and the bucket extras. These pools may fall under separate CRUSH hierarchies.
Since Ceph Object Gateway can support multiple storage policies, the bucket pools of the
storage policies may be associated with different CRUSH hierarchies, reflecting different use
cases such as IOPS-optimized, throughput-optimized, and capacity-optimized respectively. The
bucket index pool SHOULD use its own CRUSH hierarchy to map the bucket index pool to
higher performance SSD drives.

5.1.1. Creating CRUSH Roots

From the command line on the administration node, create CRUSH roots in the CRUSH map for each
CRUSH hierarchy. There MUST be at least one CRUSH hierarchy for system pools that may also
potentially serve data storage pools. There SHOULD be at least one CRUSH hierarchy for the bucket
index pool, mapped to SSDs or other high speed data storage media.

For details on CRUSH hierarchies, see CRUSH Hierarchies. To manually edit a CRUSH map, see
Editing a CRUSH Map.

In the following examples, the hosts named data0, data1 and data2 use extended logical names such
as data0-sas-ssd, data0-index and so forth in the CRUSH map, because there are multiple
CRUSH hierarchies pointing to the same physical hosts.

A typical CRUSH root might represent nodes with SAS drives and SSDs for journals. For example:

##
SAS-SSD ROOT DECLARATION
##

root sas-ssd {
 id -1 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item data2-sas-ssd weight 4.000
 item data1-sas-ssd weight 4.000
 item data0-sas-ssd weight 4.000
}

A CRUSH root for bucket indexes SHOULD represent SSD drives or other high speed storage media
used exclusively for bucket indexes. For example:

##
INDEX ROOT DECLARATION
##

root index {
 id -2 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item data2-index weight 1.000
 item data1-index weight 1.000
 item data0-index weight 1.000
}

CHAPTER 5. DEVELOPING STORAGE STRATEGIES

17

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-2-crush-administration#crush_hierarchies
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-2-crush-administration#editing_a_crush_map

NOTE

Create a separate CRUSH hierarchy with different SSD drives to store data in SSDs. DO
NOT use the same SSD drive to store journals, bucket indexes and data.

5.1.2. Using Logical Host Names in a CRUSH Map

In the CRUSH map, host names must be unique and used only once. When the host serves multiple
CRUSH hierarchies and use cases, a CRUSH map may use logical host names instead of the actual
host name in order to ensure the host name is only used once. For example, a node may have multiple
types of drives such as SSDs, SAS drives with SSD journals and SATA drives with co-located journals.
To create multiple CRUSH hierarchies for the same host, the hierarchies will need to use logical host
names in lieu of the actual host names so the bucket names are unique within the CRUSH hierarchy. For
example, if the host name is data2, the CRUSH hierarchy might use logical names such as data2-
sas-ssd and data2-index. For example:

host data2-sas-ssd {
 id -11 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item osd.0 weight 1.000
 item osd.1 weight 1.000
 item osd.2 weight 1.000
 item osd.3 weight 1.000
}

In the foregoing example, the host data2 uses the logical name data2-sas-ssd to map the SAS
drives with journals on SSDs into one hierarchy. The OSD IDs osd.0 through osd.3 in the forgoing
example represent SAS drives using SSD journals in a high throughput hardware configuration. These
OSD IDs differ from the OSD ID in the following example.

In the following example, the host data2 uses the logical name data2-index to map the SSD drive for
a bucket index into a second hierarchy. The OSD ID osd.4 in the following example represents an SSD
drive or other high speed storage media used exclusively for a bucket index pool.

host data2-index {
 id -21 # do not change unnecessarily
 # weight 0.000
 alg straw
 hash 0 # rjenkins1
 item osd.4 weight 1.000
}

IMPORTANT

When using logical host names, ensure that one of the following settings is present in the
Ceph configuration file to prevent the OSD startup scripts from using the actual host
names upon startup and thereby failing to locate data in CRUSH map.

When the CRUSH map uses logical host names, as in the foregoing examples, prevent the OSD startup
scripts from identifying the hosts according to their actual host names at initialization. In the [global]
section of the Ceph configuration file, add the following setting:

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

18

osd_crush_update_on_start = false

An alternative method of defining a logical host name is to define the location of the CRUSH map for
each OSD in the [osd.<ID>] sections of the Ceph configuration file. This will override any locations the
OSD startup script defines. From the foregoing examples, the entries might look like the following:

[osd.0]
osd crush location = "host=data2-sas-ssd"

[osd.1]
osd crush location = "host=data2-sas-ssd"

[osd.2]
osd crush location = "host=data2-sas-ssd"

[osd.3]
osd crush location = "host=data2-sas-ssd"

[osd.4]
osd crush location = "host=data2-index"

IMPORTANT

If one of the foregoing approaches isn’t used when a CRUSH map uses logical host
names rather than actual host names, on restart, the Ceph Storage Cluster will assume
that the OSDs map to the actual host names, and the actual host names will not be found
in the CRUSH map, and Ceph Storage Cluster clients will not find the OSDs and their
data.

5.1.3. Creating CRUSH Rulesets

Like the default CRUSH hierarchy, the CRUSH map also contains a default CRUSH ruleset, usually
ruleset 0.

NOTE

The default rbd pool may use this ruleset. DO NOT delete the default ruleset if other
pools have used it to store customer data.

See CRUSH Rules for general details on CRUSH Rules. To manually edit a CRUSH map, see Editing a
CRUSH Map.

For each CRUSH hierarchy, create a CRUSH rule. The following example illustrates a rule for the
CRUSH hierarchy that will store the system pools, including .rgw.root. In this example, the root sas-
ssd serves as the main CRUSH hierarchy. It uses ruleset 1 to distinguish itself from the default
ruleset 0. The step take sas-ssd line tells the pool to use the sas-ssd root created in CRUSH
Root, whose child buckets contain OSDs with SAS drives and SSD journals in a high throughput
hardware configuration. The type rack portion of step chooseleaf is the failure domain. In the
following example, it is a rack.

##
SYSTEM RULE DECLARATION
##

CHAPTER 5. DEVELOPING STORAGE STRATEGIES

19

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-2-crush-administration#crush_rules
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-2-crush-administration#editing_a_crush_map

rule rgw-system {
 ruleset 1
 type replicated
 min_size 1
 max_size 10
 step take sas-ssd
 step chooseleaf firstn 0 type rack
 step emit
}

NOTE

In the foregoing example, if data gets replicated three times, there should be at least three
racks in the cluster containing a similar number of OSD nodes.

TIP

The type replicated setting has NOTHING to do with data durability, the number of replicas or the
erasure coding. Only replicated is supported.

The following example illustrates a rule for the CRUSH hierarchy that will store the data pool. In this
example, the root sas-ssd serves as the main CRUSH hierarchy— the same CRUSH hierarchy as the
system rule. It uses ruleset 2 to distinguish itself from the default ruleset 0 and ruleset 1. The
step take sas-ssd line tells the pool to use the sas-ssd root created in CRUSH Root, whose child
buckets contain OSDs with SAS drives and SSD journals in a high throughput hardware configuration.
The type host portion of step chooseleaf is the failure domain. In the following example, it is a
host. Notice that the rule uses the same CRUSH hierarchy, but a different failure domain.

##
THROUGHPUT RULE DECLARATION
##

rule rgw-throughput {
 ruleset 2
 type replicated
 min_size 1
 max_size 10
 step take sas-ssd
 step chooseleaf firstn 0 type host
 step emit
}

NOTE

In the foregoing example, if the pool uses erasure coding with a a larger number of data
and encoding chunks than the default, there should be at least as many racks in the
cluster containing a similar number of OSD nodes to facilitate the erasure coding chunks.
For smaller clusters, this may not be practical, so the foregoing example uses host as the
CRUSH failure domain.

The following example illustrates a rule for the CRUSH hierarchy that will store the index pool. In this
example, the root index serves as the main CRUSH hierarchy. It uses ruleset 3 to distinguish itself

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

20

from ruleset 0 through ruleset 2. The step take index line tells the pool to use the index root
created in CRUSH Root, whose child buckets contain OSDs SSD drives for high IOPS. The type rack
portion of step chooseleaf is the failure domain. In the following example, it is a rack.

##
INDEX RULE DECLARATION
##

rule rgw-index {
 ruleset 3
 type replicated
 min_size 1
 max_size 10
 step take index
 step chooseleaf firstn 0 type rack
 step emit
}

5.2. CREATING THE ROOT POOL

The Ceph Object Gateway configuration gets stored in a pool named .rgw.root, including realms,
zone groups and zones. By convention, its name is not prepended with the zone name.

.rgw.root

If the Ceph Storage Cluster is running, create an .rgw.root pool using the new ruleset. See the Ceph
Placement Groups (PGs) per Pool Calculator and Placement Groups for details on the number or PGs.
See Create a Pool for details on creating a pool. In this instance, the pool will use replicated and
NOT erasure for data durability. For example:

ceph osd pool create .rgw.root 32 32 replicated sas-ssd

NOTE

For system pools, including .rgw.root, the suggested PG count from the Ceph
Placement Groups (PGs) per Pool Calculator is substantially less than the target PGs per
OSD. Also, ensure the number of OSDs is set in step 3 of the calculator.

Once this pool gets created, the Ceph Object Gateway can store its configuration data in the pool.

5.3. CONFIGURING A REALM

The Ceph Storage pools supporting the Ceph Object Gateway apply to a zone within a zone group. By
default, Ceph Object Gateway will define a default zone group and zone.

For the master zone group and zone, Red Hat recommends creating a new realm, zone group and zone.
Then, delete the default zone and its pools if they were already generated. Use Configuring a Master
Zone as a best practice, because this configures the cluster for Multi Site operation.

1. Create a realm. See Realms for additional details.

2. Create a master zone group. See Zone Groups for additional details on zone groups.

CHAPTER 5. DEVELOPING STORAGE STRATEGIES

21

https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-3-placement-groups-pgs
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-4-pools#create_a_pool
https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/2/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#configuring_a_master_zone
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/2/html-single/object_gateway_guide_for_red_hat_enterprise_linux/#multi_site
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-8-multi-site#create_a_realm_2
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-4-object-gateway-configuration-reference#realms
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-8-multi-site#create_a_master_zone_group
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-4-object-gateway-configuration-reference#zone_groups

3. Create a master zone. See Zones for additional details on zones.

4. Delete the default zone group and zone. You MAY delete default pools if they were created, and
are not storing client data. DO NOT delete the .rgw.root pool.

5. Create a System User.

6. Update the period.

7. Update the Ceph Configuration file.

NOTE

This procedure omits the step of starting the gateway, since the gateway may create the
pools manually. To specify specific CRUSH rulesets and data durability methods, create
the pools manually.

By setting up a new realm, zone group and zone, the cluster is now prepared for expansion to a multi site
cluster where there are multiple zones within the zone group. This means that the cluster can be
expanded and configured for failover, and disaster recovery. See Expanding the Cluster with Multi Site
for additional details.

In Red Hat Ceph Storage 2, multi site configurations are active-active by default. When deploying a multi
site cluster, the zones and their underlying Ceph storage clusters may be in different geographic regions.
Since each zone has a deep copy of each object in the same namespace, users can access the copy

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

22

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-8-multi-site#create_a_master_zone
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-4-object-gateway-configuration-reference#zones
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-8-multi-site#delete_default_zone_group_and_zone
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-8-multi-site#create_a_system_user
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-8-multi-site#update_the_period
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-8-multi-site#update_the_ceph_configuration_file
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/2/html-single/ceph_object_gateway_for_production/#expanding_the_cluster_with_multi_site

from the zone that is physically the closest to them, reducing latency. However, the cluster may be
configured in active-passive mode if the secondary zones are intended only for failover and disaster
recovery.

NOTE

Using a zone group with multiple zones is supported. Using multiple zone groups is a
technology preview only, and is not supported in production.

5.4. CREATING SYSTEM POOLS

The Ceph Object Gateway uses many pools for various system functions, and a separate set of
placement pools for storing bucket indexes, data and other information.

Since it is computationally expensive to peer a pool’s placement groups, Red Hat generally recommends
that the Ceph Object Gateway’s system pools use substantially fewer placement groups than data
storage pools.

The system pools store objects related to system control, garbage collection, logging, user information,
usage, etc. By convention, these pool names have the zone name prepended to the pool name.

.<zone-name>.rgw.control: The control pool.

.<zone-name>.rgw.gc: The garbage collection pool, which contains hash buckets of objects
to be deleted.

.<zone-name>.log: The log pool contains logs of all bucket/container and object actions such
as create, read, update and delete.

.<zone-name>.intent-log: The intent log pool contains a copy of an object update request
to facilitate undo/redo if a request fails.

.<zone-name>.users.uid: The user ID pool contains a map of unique user IDs.

.<zone-name>.users.keys: The keys pool contains access keys and secret keys for each
user ID.

.<zone-name>.users.email: The email pool contains email addresses associated to a user
ID.

.<zone-name>.users.swift: The Swift pool contains the Swift subuser information for a
user ID.

.<zone-name>.usage: The usage pool contains a usage log on a per user basis.

Execute the Get a Zone procedure to see the pool names.

radosgw-admin zone get [--rgw-zone=<zone>]

When radosgw-admin creates a zone, the pool names SHOULD be prepended with the zone name.
For example, a zone named us-west SHOULD have pool names that look something like this:

{ "domain_root": ".rgw.root",
 "control_pool": ".us-west.rgw.control",
 "gc_pool": ".us-west.rgw.gc",

CHAPTER 5. DEVELOPING STORAGE STRATEGIES

23

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-4-object-gateway-configuration-reference#get_a_zone

 "log_pool": ".us-west.log",
 "intent_log_pool": ".us-west.intent-log",
 "usage_log_pool": ".us-west.usage",
 "user_keys_pool": ".us-west.users.keys",
 "user_email_pool": ".us-west.users.email",
 "user_swift_pool": ".us-west.users.swift",
 "user_uid_pool": ".us-west.users.uid",
 "system_key": { "access_key": "", "secret_key": ""},
 "placement_pools": [
 { "key": "default-placement",
 "val": { "index_pool": ".us-west.rgw.buckets.index",
 "data_pool": ".us-west.rgw.buckets",
 "data_extra_pool": ".us-west.rgw.buckets.non-ec"
 "index_type": 0
 }
 }
]
}

Beginning with control_pool and ending with user_uid_pool, create the pools using the pool
names in the zone, provided the zone name is prepended to the pool name. Following the previous
examples, pool creation might look something like this:

ceph osd pool create .us-west.rgw.control 32 32 replicated rgw-system
...
ceph osd pool create .us-west.users.uid 32 32 replicated rgw-system

From previous examples, the rgw-system ruleset represents a CRUSH hierarchy of SAS drives with
SSD journals and rack as the CRUSH failure domain. See Creating CRUSH Roots, and Creating
CRUSH Rulesets for preceding examples.

See the Ceph Placement Groups (PGs) per Pool Calculator and Placement Groups for details on the
number of PGs. See Create a Pool for details on creating a pool.

NOTE

For system pools the suggested PG count from the calculator is substantially less than the
target PGs per OSD. Ensure that step 3 of the calculator specifies the correct number of
OSDs.

Generally, the .rgw.root pool and the system pools should use the same CRUSH hierarchy and use at
least node as the failure domain in the CRUSH ruleset. Like the .rgw.root pool, the system pools
should use replicated for data durability, NOT erasure.

5.5. CREATING DATA PLACEMENT STRATEGIES

The Ceph Object Gateway has a default storage policy called default-placement. If the cluster has
only one storage policy, the default-placement policy will suffice. This default placement policy is
referenced from the zone group configuration and defined in the zone configuration.

See Storage Policies for additional details.

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

24

https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-3-placement-groups-pgs
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-4-pools#create_a_pool
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-3-administration-cli#storage-policies

For clusters that support multiple use cases, such as IOPS-optimized, throughput-optimized or capacity-
optimized, a set of placement targets in the zone group configuration and a set of placement pools in the
zone configuration represent each storage policy.

The examples in the following sections illustrate how to create a storage policy and make it the default
policy. This example also assumes the default policy will use a throughput-optimized hardware profile.
Topics include:

Creating a Bucket Index Pool

Creating a Data Pool

Creating a Bucket Extras Pool

Configuring Placement Targets in a Zone Group

Configuring Placement Pools in a Zone

Data Placement Summary

5.5.1. Creating a Bucket Index Pool

By default, Ceph Object Gateway maps a bucket’s objects to a bucket index, which enables a gateway
client to request a list of objects in a bucket among other things. While common use cases may involve
quotas where users have a bucket and a limited number of objects per bucket, buckets can store
innumerable objects. When buckets store millions of objects, bucket index performance benefits
substantially from using SSDs or other high performance storage media to store its data. Additionally,
bucket sharding also dramatically improves performance.

See the Ceph Placement Groups (PGs) per Pool Calculator and Placement Groups for details on the
number of PGs. See Create a Pool for details on creating a pool.

NOTE

The PG per Pool Calculator recommends a smaller number of PGs per pool for the bucket
index pool; however, the PG count is approximately twice the number of PGs as the
system pools.

To create a bucket index pool, execute ceph osd pool create with the pool name, the number of
PGs and PGPs, the replicated data durability method, and the name of the ruleset. For example:

ceph osd pool create .us-west.rgw.buckets.index 64 64 replicated rgw-
index

From previous examples, the rgw-index ruleset represents a CRUSH hierarchy of SSD drives and
rack as the CRUSH failure domain. See Selecting SSDs for Bucket Indexes, Creating CRUSH Roots,
and Creating CRUSH Rulesets for preceding examples.

IMPORTANT

If buckets will store more than 100k objects, configure bucket sharding to ensure that
bucket index performance doesn’t degrade as the number of objects in the bucket
increases. See Configuring Bucket Sharding. Also see Bucket Index Resharding for
details on resharding a bucket if the original configuration is no longer suitable.

CHAPTER 5. DEVELOPING STORAGE STRATEGIES

25

https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-3-placement-groups-pgs
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-4-pools#create_a_pool
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#configuring-bucket-index-sharding
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#resharding-bucket-index

5.5.2. Creating a Data Pool

The data pool is where Ceph Object Gateway stores the object data for a particular storage policy. The
data pool should have a full complement of PGs, not the reduced number of PGs for system pools. The
data pool SHOULD consider using erasure coding, as it is substantially more efficient than replication
and can significantly reduce the capacity requirements while maintaining data durability.

To use erasure coding, create an erasure code profile. See Erasure Code Profiles in the Storage
Strategies Guide for more details.

IMPORTANT

Choosing the correct profile is important because you cannot change the profile after you
create the pool. To modify a profile, you must create a new pool with a different profile
and migrate the objects from the old pool to the new pool.

The default configuration is two data chunks and one encoding chunk, which means only one OSD can
be lost. For higher resiliency, consider a larger number of data and encoding chunks. For example,
some large very scale systems use 8 data chunks and 3 encoding chunks, which allows three OSDs to
fail without losing data.

IMPORTANT

Each data and encoding chunk SHOULD get stored on a different node or host at a
minimum. For smaller clusters, this makes using rack impractical as the minimum
CRUSH failure domain when using a larger number of data and encoding chunks.
Consequently, it is common for the data pool to use a separate CRUSH hierarchy with
host as the minimum CRUSH failure domain. Red Hat recommends host as the
minimum failure domain. If erasure code chunks get stored on OSDs within the same
host, a host failure such as a failed journal or network card could lead to data loss.

To create a data pool, execute ceph osd pool create with the pool name, the number of PGs and
PGPs, the erasure data durability method, the erasure code profile and the name of the ruleset. For
example:

ceph osd pool create .us-west.rgw.buckets.throughput 8192 8192 erasure
8k3m rgw-throughput

From previous examples, the rgw-throughput ruleset represents a CRUSH hierarchy of SAS drives
with SSD journals and host as the CRUSH failure domain. See Creating CRUSH Roots, and Creating
CRUSH Rulesets for preceding examples.

5.5.3. Creating a Bucket Extras Pool

The data_extra_pool is for data that cannot use erasure coding. For example, multi-part uploads
allow uploading a large object such as a movie in multiple parts. These parts must first be stored without
erasure coding. Erasure coding will apply to the whole object, not the partial uploads.

NOTE

The PG per Pool Calculator recommends a smaller number of PGs per pool for the
data_extra_pool; however, the PG count is approximately twice the number of PGs as
the system pools and the same as the bucket index pool.

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

26

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-5-erasure-code-pools#erasure-code-profiles

To create a data extra pool, execute ceph osd pool create with the pool name, the number of PGs
and PGPs, the replicated data durability method, and the name of the ruleset. For example:

ceph osd pool create .us-west.rgw.buckets.non-ec 64 64 replicated rgw-
system

5.5.4. Configuring Placement Targets in a Zone Group

Once the pools are created, create the placement target in the zone group. To retrieve the zone group,
execute the following to output the zone group configuration to a file called zonegroup.json:

radosgw-admin zonegroup get [--rgw-zonegroup=<zonegroup>] >
zonegroup.json

The file contents will look something like this:

{
 "id": "90b28698-e7c3-462c-a42d-4aa780d24eda",
 "name": "us",
 "api_name": "us",
 "is_master": "true",
 "endpoints": [
 "http:\/\/rgw1:80"
],
 "hostnames": [],
 "hostnames_s3website": [],
 "master_zone": "9248cab2-afe7-43d8-a661-a40bf316665e",
 "zones": [
 {
 "id": "9248cab2-afe7-43d8-a661-a40bf316665e",
 "name": "us-east",
 "endpoints": [
 "http:\/\/rgw1"
],
 "log_meta": "true",
 "log_data": "true",
 "bucket_index_max_shards": 0,
 "read_only": "false"
 },
 {
 "id": "d1024e59-7d28-49d1-8222-af101965a939",
 "name": "us-west",
 "endpoints": [
 "http:\/\/rgw2:80"
],
 "log_meta": "false",
 "log_data": "true",
 "bucket_index_max_shards": 0,
 "read_only": "false"
 }
],
 "placement_targets": [
 {
 "name": "default-placement",

CHAPTER 5. DEVELOPING STORAGE STRATEGIES

27

 "tags": []
 }
],
 "default_placement": "default-placement",
 "realm_id": "ae031368-8715-4e27-9a99-0c9468852cfe"
}

The placement_targets section will list each storage policy. By default, it will contain a placement
target called default-placement. The default placement target is identified immediately after the
placement_targets section.

Assuming a placement target called throughput-optimized, with throughput-optimized as the
default target, the placement_targets section and the default_placement setting of the zone
group configuration should be modified to something like this:

{
 ...
 "placement_targets": [
 {
 "name": "throughput-optimized",
 "tags": []
 }
],
 "default_placement": "throughput-optimized",
 ...
}

Finally, set the zone group configuration with the settings from the modified zonegroup.json file; then,
update the period. For example:

radosgw-admin zonegroup set [--rgw-zonegroup=<zonegroup>] --infile
zonegroup.json
radosgw-admin period update --commit

5.5.5. Configuring Placement Pools in a Zone

Once the zone group has the new throughput-optimized placement target, map the placement
pools for throughput-optimized in the zone configuration. This step will replace the mapping for
default-placement to its associated pools with a throughput-optimized set of placement pools.

Execute the Get a Zone procedure to see the pool names.

radosgw-admin zone get [--rgw-zone=<zone>] > zone.json

Assuming a zone named us-west, the file contents will look something like this:

{ "domain_root": ".rgw.root",
 "control_pool": ".us-west.rgw.control",
 "gc_pool": ".us-west.rgw.gc",
 "log_pool": ".us-west.log",
 "intent_log_pool": ".us-west.intent-log",
 "usage_log_pool": ".us-west.usage",
 "user_keys_pool": ".us-west.users.keys",
 "user_email_pool": ".us-west.users.email",

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

28

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-4-object-gateway-configuration-reference#get_a_zone

 "user_swift_pool": ".us-west.users.swift",
 "user_uid_pool": ".us-west.users.uid",
 "system_key": { "access_key": "", "secret_key": ""},
 "placement_pools": [
 { "key": "default-placement",
 "val": { "index_pool": ".us-west.rgw.buckets.index",
 "data_pool": ".us-west.rgw.buckets",
 "data_extra_pool": ".us-west.rgw.buckets.non-ec"
 "index_type": 0
 }
 }
]
}

The placement_pools section of the zone configuration defines sets of placement pools. Each set of
placement pools defines a storage policy. Modify the file to remove the default-placement entry, and
replace it with a throughput-optimized entry with the pools created in the preceding steps. For
example:

{
...
"placement_pools": [
 { "key": "throughput-optimized",
 "val": { "index_pool": ".us-west.rgw.buckets.index",
 "data_pool": ".us-west.rgw.buckets.throughput"}
 "data_extra_pool": ".us-west.rgw.buckets.non-ec",
 "index_type": 0
 }
]
}

Finally, set the zone configuration with the settings from the modified zone.json file; then, update the
period. For example:

radosgw-admin zone set --rgw-zone={zone-name} --infile zone.json
radosgw-admin period update --commit

NOTE

The index_pool points to the index pool and CRUSH hierarchy with SSDs or other high-
performance storage, the data_pool points to a pool with a full complement of PGs, and
a CRUSH hierarchy of high-throughput host bus adapters, SAS drives and SSDs for
journals.

5.5.6. Data Placement Summary

When processing client requests, the Ceph Object Gateway will use the the new throughput-
optimized target as the default storage policy. Use this procedure to establish the same target in
different zones and zone groups in a multi-site configuration, replacing the zone name for the pools as
appropriate.

Use this procedure to establish additional storage policies. The naming for each target and set of
placement pools is arbitrary. It could be fast, streaming, cold-storage or any other suitable name.
However, each set must have a corresponding entry under placement_targets in the zone group,

CHAPTER 5. DEVELOPING STORAGE STRATEGIES

29

and one of the targets MUST be referenced in the default_placement setting; and, the zone must
have a corresponding set of pools configured for each policy.

Client requests will always use the default target, unless the client request specifies X-Storage-
Policy and a different target. See Create a Container for an object gateway client usage example.

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

30

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/object-gateway-guide-for-red-hat-enterprise-linux/chapter-7-object-gateway-swift-api#create_a_container

CHAPTER 6. CONFIGURING GATEWAYS
The final steps in preparing the Ceph Object Gateway for production involve configuring Civetweb,
firewall ports, the DNS and load balancers. Topics include:

Configuring Civetweb

Configuring Firewall Ports

Configuring DNS Wildcards

Configuring Load Balancers

6.1. CONFIGURING CIVETWEB

Depending on the choices made during installation of the Ceph Object Gateway, the Ceph configuration
file will already have entries for each instance of the Ceph Object Gateway with additional modifications
from the steps involved in Configuring a Realm.

The most common configuration change from the default configuration is changing the default port 7480
to another port such as 8080 or 80. See Changing the Default Port.

There are additional settings particular to Civetweb. See Civetweb Configuration Options for details.

There are additional settings which may be overridden. See Object Gateway Configuration Reference for
details.

NOTE

The section on Additional Use Cases will provide detailed configuration examples for
using Ceph Object Gateway with third party components.

6.2. CONFIGURING FIREWALL PORTS

When changing the default port for Civetweb, ensure that the corresponding ports are open for client
access. See Configuring the Firewall for details.

6.3. CONFIGURING DNS WILDCARDS

S3-style subdomains incorporate the bucket name as a CNAME extension. Add a wildcard to the DNS to
facilitate S3-style subdomains. See Adding a Wildcard to DNS for details.

6.4. CONFIGURING LOAD BALANCERS

A zone will typically have multiple instances of a Ceph Object Gateway to handle production loads and to
maintain high availability. Production clusters typically use a load balancer to allocate requests among
gateway instances.

Additionally, earlier versions of Civetweb do not support HTTPS. A load balancer can be configured to
accept SSL requests, terminate the SSL connection and pass the request over HTTP to the gateway
instances.

Ceph Storage aims to maintain high availability. For this reason, Red Hat recommends using
HAProxy/keepalived. See HAProxy/keepalived Configuration for details.

CHAPTER 6. CONFIGURING GATEWAYS

31

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/#ceph_object_gateway_installation
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#changing_your_default_port
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#civetweb_configuration_options
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#object_gateway_configuration_reference
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/#configuring_firewall
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#adding_a_wildcard_to_dns
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#haproxy_keepalived_configuration

CHAPTER 7. ADDITIONAL USE CASES
Once the cluster is up and running, there are additional use cases to consider.

Expanding the Cluster with Multi-Site

Migrating Data with NFS-Ganesha

Configuring the Cluster for Static Webhosting

Configuring the Cluster with LDAP/AD

Configuring the Cluster to use Keystone

7.1. EXPANDING THE CLUSTER WITH MULTI-SITE

When developing storage strategies, the procedure for Creating a Realm ensured that the cluster is
already configured to use multi-site with its own realm, master zone group and master zone.

A typical production cluster will have a secondary zone with its own Ceph Storage Cluster in a separate
physical location to act as a backup in the event of a disaster. To set up a secondary zone, repeat the
procedures in this guide. Generally, the secondary zone should have the same hardware configuration
and sizing as the master zone. See Configuring a Secondary Zone for additional details.

Adding a secondary zone adds Failover and Disaster Recovery capabilities to the cluster.

Red Hat Ceph Storage 2 Ceph Object Gateway for Production

32

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#configure_a_secondary_zone
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#failover_and_disaster_recovery

7.2. MIGRATING DATA WITH NFS GANESHA

If the Ceph Object Gateway and Ceph Storage Cluster replaces a filesystem-based storage solution,
consider using Ceph’s NFS-Ganesha solution to migrate data from the file system into Ceph Object
Gateway.

See Exporting the Namespace to NFS-Ganesha (TECH PREVIEW).

7.3. CONFIGURING THE CLUSTER FOR STATIC WEBHOSTING

Traditional web hosting sometimes involves setting up a web server for each website, which can use
resources inefficiently when content doesn’t change dynamically.

Ceph Object Gateway can host static web sites in S3 buckets— that is, sites that do not use server-side
services like PHP, servlets, databases, nodejs and the like. This approach is substantially more
economical than setting up VMs with web servers for each site.

See Configuring Gateways for Static Web Hosting for additional details.

7.4. CONFIGURING THE CLUSTER FOR LDAP/AD

Organizations deploying Ceph Object Gateway for their users and applications may choose to use Light-
weight Directory Access Protocol (LDAP) or Microsoft Active Directory (AD) to authenticate with the
Ceph Object Gateway in lieu of creating Ceph Object Gateway users.

Using LDAP/AD means that Ceph Object Gateway can integrate with an organizations LDAP/AD single
sign-on initiatives.

See the Ceph Object Gateway with LDAP/AD Guide for details.

7.5. CONFIGURING THE CLUSTER TO USE OPENSTACK KEYSTONE

When deploying the Ceph Object Gateway in lieu of OpenStack Swift, it is possible to configure the
gateway to use OpenStack Keystone to authenticate users in lieu of creating Ceph Object Gateway
users.

See Using Keystone to Authenticate Ceph Object Gateway Users for details.

CHAPTER 7. ADDITIONAL USE CASES

33

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#exporting_the_namespace_to_nfs_ganesha_tech_preview
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#configuring_gateways_for_static_web_hosting
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/ceph-object-gateway-with-ldap-ad-guide/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/using-keystone-to-authenticate-ceph-object-gateway-users/

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. AUDIENCE
	1.2. ASSUMPTIONS
	1.3. SCOPE

	CHAPTER 2. PLANNING A CLUSTER
	2.1. IDENTIFYING USE CASES
	2.2. SELECTING DATA DURABILITY METHODS
	2.3. CONSIDERING MULTI-SITE DEPLOYMENT

	CHAPTER 3. CONSIDERING HARDWARE
	3.1. CONSIDERING STORAGE SIZING
	3.2. CONSIDERING STORAGE DENSITY
	3.3. CONSIDERING NETWORK HARDWARE
	3.4. CONSIDERING UNINTERRUPTED POWER SUPPLIES
	3.5. SELECTING HARDWARE FOR USE CASES
	3.6. SELECTING SSDS FOR BUCKET INDEXES
	3.7. SELECTING SSDS FOR MONITOR NODES

	CHAPTER 4. DEPLOYING A CLUSTER
	4.1. NAMING HOSTS
	4.2. TUNING THE KERNEL
	4.2.1. Adjusting TCMalloc
	4.2.2. Reserving Free Memory for OSDs
	4.2.3. Increasing File Descriptors
	4.2.4. Adjusting ulimit On Large Clusters
	4.2.5. Adjusting PID Count

	4.3. CONFIGURING ANSIBLE GROUPS
	4.4. DEPLOYING CEPH
	4.4.1. Setting the Journal Size
	4.4.2. Adjusting Backfill & Recovery Settings
	4.4.3. Adjusting the Cluster Map Size
	4.4.4. Adjusting Scrubbing
	4.4.5. Expanding the Cluster

	CHAPTER 5. DEVELOPING STORAGE STRATEGIES
	5.1. DEVELOPING CRUSH HIERARCHIES
	5.1.1. Creating CRUSH Roots
	5.1.2. Using Logical Host Names in a CRUSH Map
	5.1.3. Creating CRUSH Rulesets

	5.2. CREATING THE ROOT POOL
	5.3. CONFIGURING A REALM
	5.4. CREATING SYSTEM POOLS
	5.5. CREATING DATA PLACEMENT STRATEGIES
	5.5.1. Creating a Bucket Index Pool
	5.5.2. Creating a Data Pool
	5.5.3. Creating a Bucket Extras Pool
	5.5.4. Configuring Placement Targets in a Zone Group
	5.5.5. Configuring Placement Pools in a Zone
	5.5.6. Data Placement Summary

	CHAPTER 6. CONFIGURING GATEWAYS
	6.1. CONFIGURING CIVETWEB
	6.2. CONFIGURING FIREWALL PORTS
	6.3. CONFIGURING DNS WILDCARDS
	6.4. CONFIGURING LOAD BALANCERS

	CHAPTER 7. ADDITIONAL USE CASES
	7.1. EXPANDING THE CLUSTER WITH MULTI-SITE
	7.2. MIGRATING DATA WITH NFS GANESHA
	7.3. CONFIGURING THE CLUSTER FOR STATIC WEBHOSTING
	7.4. CONFIGURING THE CLUSTER FOR LDAP/AD
	7.5. CONFIGURING THE CLUSTER TO USE OPENSTACK KEYSTONE

