& RedHat

Red Hat build of Quarkus 1.11

Managing JTA transactions with the Quarkus
transaction manager

Last Updated: 2021-06-15

Red Hat build of Quarkus 1.11 Managing JTA transactions with the Quarkus
transaction manager

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the Narayana JTA extension to manage transactions in your Quarkus application.

Table of Contents

Table of Contents

o L 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ... e 4
MAKING OPEN SOURCE MORE INCLUSIVE ... i e i it 5
CHAPTER 1. PREREQUISITES ... i i i i ettt ettt as 6
CHAPTER 2. THE NARAYANA JTA TRANSACTION MANAGERAND QUARKUS ..., 7
CHAPTER 3. INSTALLING THE QUARKUS NARAYANA JTAEXTENSION ...t 8
CHAPTER 4. MANAGING JTA TRANSACTIONS DECLARATIVELY USING THE ANNOTATIONS 9

4.1. DEFINING TRANSACTION BOUNDARIES DECLARATIVELY 9

4.2. CONFIGURING A TRANSACTION FOR ROLLBACK DECLARATIVELY 9

4.3. CONFIGURING A TRANSACTION TIMEOUT DECLARATIVELY 10

4.4 METHODS RETURNING REACTIVE VALUES il

CHAPTER 5. MANAGING JTA TRANSACTIONS PROGRAMMATICALLY USING THE APIAPPROACH 12
5.1. DEFINING TRANSACTION BOUNDARIES USING THE API APPROACH 12
5.2. CONFIGURING A TRANSACTION FOR ROLLBACK USING THE API APPROACH 13

CHAPTER 6. OVERWRITING THE DEFAULT TRANSACTION TIMEOUT it 15

CHAPTER 7. CONFIGURING THE TRANSACTION NODE NAME IDENTIFIER FOR XA TRANSACTIONS ... 16

CHAPTER 8. OVERVIEW OF QUARKUS TRANSACTION CONFIGURATION PROPERTIES 17

Red Hat build of Quarkus 1.11 Managing JTA transactions with the Quarkus transaction manager

PREFACE

PREFACE

As an application developer, you can use the Quarkus transaction manager to coordinate and expose
JTA transactions to your applications.

Quarkus provides a transaction manager for coordinating JTA transactions across one or more
resources. You can use the Quarkus transaction manager to control transaction boundaries in a
declarative orin a programmatic way. You can also modify transactions and configure the transaction
timeout. This functionality is provided by the quarkus-narayana-jta extension.

Red Hat build of Quarkus 1.11 Managing JTA transactions with the Quarkus transaction manager

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our technical content and encourage you to tell us what you think. If
you'd like to add comments, provide insights, correct a typo, or even ask a question, you can do so
directly in the documentation.

NOTE

You must have a Red Hat account and be logged in to the customer portal.

To submit documentation feedback from the customer portal, do the following:

1.

2.

3.

4.

5.

Select the Multi-page HTML format.

Click the Feedback button at the top-right of the document.
Highlight the section of text where you want to provide feedback.
Click the Add Feedback dialog next to your highlighted text.

Enter your feedback in the text box on the right of the page and then click Submit.

We automatically create a tracking issue each time you submit feedback. Open the link that is displayed
after you click Submit and start watching the issue or add more comments.

Thank you for the valuable feedback.

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat build of Quarkus 1.11 Managing JTA transactions with the Quarkus transaction manager

CHAPTER 1. PREREQUISITES

® Have OpenJDK (JDK) 1l installed and the JAVA_HOME environment variable specifies the
location of the Java SDK.

o Login to the Red Hat Customer Portal to download Red Hat build of Open JDK from the
Software Downloads page.

® Have Apache Maven 3.8.1 or higher installed.
o Download Maven from the Apache Maven Project website.
® Have a Quarkus Maven project.

o Forinformation on how to create Quarkus applications with Maven, see Developing and
compiling your Quarkus applications with Apache Maven.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=core.service.openjdk&downloadType=distributions
https://maven.apache.org/
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/developing_and_compiling_your_quarkus_applications_with_apache_maven

CHAPTER 2. THE NARAYANA JTA TRANSACTION MANAGER AND QUARKUS

CHAPTER 2. THE NARAYANA JTA TRANSACTION MANAGER
AND QUARKUS

The Narayana JTA transaction manager lets you coordinate and expose JTA transactions to your
Quarkus applications. You can include the quarkus-narayana-jta extension as a dependency to your
project’'s pom.xml file and manage JTA transactions via annotations that are defined in the the
javax.transaction package or via the Context and dependency injection (CDI).

The following table shows the most common Java Transaction APIs (JTA) annotations. .Java
Transaction APIs (JTA) annotations:

Annotation Description

@Transactional Provides the ability to control transaction boundaries on any CDI beans at the
method level or class level

@TransactionScope Provides the ability to specify a standard CDI scope to define bean instances
d whose life cycle is scoped to the currently active transaction

NOTE
You can set attributes on the @Transactional annotation to control how the transaction

starts. You can apply the @Transactional annotation with attributes to individual
methods or to the entire bean.

e

Additional resources

® Narayana community site
® APl documentation for the javax.transaction package
® API| documentation of the Transactional annotation

® APl documentation of the Transactional annotation attributes

https://narayana.io/
https://docs.oracle.com/javaee/7/api/javax/transaction/package-summary.html
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/transaction/transactional
https://javaee.github.io/javaee-spec/javadocs/javax/transaction/Transactional.TxType.html

Red Hat build of Quarkus 1.11 Managing JTA transactions with the Quarkus transaction manager

CHAPTER 3. INSTALLING THE QUARKUS NARAYANA JTA
EXTENSION

You need to add the quarkus-narayana-jta extension as a dependency to your Quarkus project. If you
are using Hibernate ORM, the quarkus-narayana-jta extension is already present in your project.

Prerequisites

® Have a Quarkus Maven project.

Procedure

1. Navigate to the root directory of your project.

I cd <directory_name>

2. Use one of the following methods to add the quarkus-narayana-jta extension to your Quarkus
project:

a. Add the quarkus-narayana-jta extension to your pom.xml file:
<dependency>
<groupld>io.quarkus</groupld>

<artifactld>quarkus-narayana-jta</artifactld>
</dependency>

b. Add the quarkus-narayana-jta extension using the command line:

I /mvnw quarkus:add-extension -Dextensions="narayana-jta"

CHAPTER 4. MANAGING JTA TRANSACTIONS DECLARATIVELY USING THE ANNOTATIONS

CHAPTER 4. MANAGING JTA TRANSACTIONS
DECLARATIVELY USING THE ANNOTATIONS

You can let the container demarcate transaction boundaries by automatically beginning and committing
JTA transactions based on annotations. The following chapters demonstrate how you can manage JTA
transactions and define transaction boundaries using the @Transactional annotation.

4.1. DEFINING TRANSACTION BOUNDARIES DECLARATIVELY

You can use @Transactional to control transaction boundaries on any CDI bean at the method level or
at the class level to ensure that every method is transactional. This also applies to REST endpoints.

Procedure

® Define the scope of the transaction with the @Transactional annotation on the entry method:

Example src/main/java/org/acme/SantaClauseService.java

import javax.inject.Inject;
import javax.enterprise.context.ApplicationScoped;
import javax.transaction.Transactional;

@ApplicationScoped
public class SantaClausService {

@Inject ChildDAO childDAO;
@Inject SantaClausDAO santaDAO;

@Transactional ﬂ
public void getAGiftFromSanta(Child child, String giftDescription) {
// some transaction work
Gift gift = childDAO.addToGiftList(child, giftDescription);
if (gift == null) {
throw new OMGGiftNotRecognizedException(); €
}
else {
santaDAO.addToSantaTodoList(gift);
}
}
}

ﬂ @Transactional annotation defines your transaction boundaries and wraps this call within
a transaction.

9 When a RuntimeException crosses the transaction boundaries, the transaction manager
rolls back the transaction.

4.2. CONFIGURING A TRANSACTION FOR ROLLBACK
DECLARATIVELY

Red Hat build of Quarkus 1.11 Managing JTA transactions with the Quarkus transaction manager

Exceptions caused by system-level faults mark the transactions for rollback and abort the transaction
immediately. You can override the default behavior using the
@Transactional(dontRollbackOn=SomeException.class) or the rollbackOn attribute.

Prerequisites

® Have a Quarkus Maven project.

Procedure

e Use the @Transactional(dontRollbackOn=SomeException.class) to specify an exception
that does not roll back the transaction:

Example src/main/java/org/acme/SantaClauseService.java

import javax.inject.Inject;
import javax.enterprise.context.ApplicationScoped;
import javax.transaction.Transactional;

@ApplicationScoped
public class SantaClausService {

@Inject ChildDAO childDAO;
@Inject SantaClausDAO santaDAO;

@Transactional(dontRollbackOn=NonCriticalRuntimeException.class)
public void getAGiftFromSanta(Child child, String giftDescription) throws Exception {
Gift gift = childDAO.addToGiftList(child);

// might throw a NonCriticalRuntimeException
gift.setDescription(giftDescription);

santaDAO.addToSantaTodoList(gift);

In this example, the transaction context is propagated to all calls nested in the @Transactional
method (childDAO.addToGiftList() and santaDAO.addToSantaTodoList()). The transaction
commits unless a runtime exception crosses the method boundary.

4.3. CONFIGURING A TRANSACTION TIMEOUT DECLARATIVELY

Use the @TransactionConfiguration annotation in addition to the @Transactional annotation to
specify the timeout in seconds. You can place the @TransactionConfiguration annotation only on the
top-level method that delineates the transaction.

Procedure

e Use the timeout property of the @TransactionConfiguration to set the timeout in seconds:

import javax.transaction.Transactional;

@Transactional

10

CHAPTER 4. MANAGING JTA TRANSACTIONS DECLARATIVELY USING THE ANNOTATIONS

@TransactionConfiguration(timeout=40)
public void getAGiftFromSanta(Child child, String giftDescription) {...}

NOTE

The configuration defined on a method takes precedence over the configuration defined
on a class. When you define @TransactionConfiguration on a class, it is equivalent to
defining it on all the methods of the class that are marked with @Transactional.

4.4. METHODS RETURNING REACTIVE VALUES

If a method annotated with @Transactional returns a reactive value it does not terminate the
transaction until the returned reactive value is terminated. The transaction is marked for rollback when
the reactive value terminates with an exception, otherwise the transaction is committed.

Additional resources

® Context Propagation guide

1

https://quarkus.io/guides/context-propagation

Red Hat build of Quarkus 1.11 Managing JTA transactions with the Quarkus transaction manager

CHAPTER 5. MANAGING JTA TRANSACTIONS
PROGRAMMATICALLY USING THE API APPROACH

You can manage transaction boundaries programmatically by injecting UserTransaction. The following
chapters demonstrate how you can manage JTA transactions and define transaction boundaries using
the APl approach.

5.1. DEFINING TRANSACTION BOUNDARIES USING THE API
APPROACH

You caninject a UserTransaction and manage the transaction boundaries by calling its begin(),
commit() and rollback() methods.

Procedure

1. Inject the UserTransaction interface:

src/main/java/org/acme/SantaClauseService.java

@ApplicationScoped
public class SantaClausService {

@Inject ChildDAO childDAO;
@Inject SantaClausDAO santaDAO;
@Inject UserTransaction transaction;

}

2. Use the transaction demarcation methods to control the transaction:

src/main/java/org/acme/SantaClauseService.java

import javax.transaction.Transactional;
import javax.inject.Inject;

import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

@ApplicationScoped
public class SantaClausService {

@Inject ChildDAO childDAO;
@Inject SantaClausDAO santaDAO;
@Inject UserTransaction transaction;

public void getAGiftFromSanta(Child child, String giftDescription) {
// some transaction work
try {
transaction.begin(); ﬂ
Gift gift = childDAO.addToGiftList(child, giftDescription);
santaDAQO.addToSantaTodoList(gift);
transaction.commit();
}
catch(SomeException €) {
// do something on Tx failure

12

CHAPTER 5. MANAGING JTA TRANSACTIONS PROGRAMMATICALLY USING THE API APPROACH

transaction.rollback(); g

ﬂ Place your transaction code between the transaction.begin() and the
transaction.commit().

Aborts the transaction immediately.

NOTE

You cannot use UserTransaction in a method where a transaction starts by a
@Transactional call.

e

5.2. CONFIGURING A TRANSACTION FOR ROLLBACK USING THE API
APPROACH

Exceptions caused by system-level faults mark the transactions for rollback. You can mark the
transaction for rollback programmatically by injecting TransactionManager.

Procedure

1. Inject the TransactionManager and set the transaction for rollback with setRollbackOnly:
In this example, the transaction context is propagated to all calls nested in the @Transactional
method (childDAO.addToGiftList() and santaDAO.addToSantaTodoList()). The transaction
manager commits the transaction unless a runtime exception crosses the method boundary.

Example src/main/java/org/acme/SantaClausService.java

import javax.transaction.Transactional;
import javax.inject.Inject;

import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

@ApplicationScoped
public class SantaClausService {

@Inject TransactionManager tm; ﬂ
@Inject ChildDAO childDAO;
@Inject SantaClausDAO santaDAO;

@Transactional
public void getAGiftFromSanta(Child child, String giftDescription) {
// some transaction work
Gift gift = childDAO.addToGiftList(child, giftDescription);
if (gift == null) {
tm.setRollbackOnly(); @)
}
else {
santaDAO.addToSantaTodoList(gift);

13

Red Hat build of Quarkus 1.11 Managing JTA transactions with the Quarkus transaction manager

Q Inject the TransactionManager to be able to activate setRollbackOnly semantic.

Q Programmatically decide when to roll back the transaction.

14

CHAPTER 6. OVERWRITING THE DEFAULT TRANSACTION TIMEOUT

CHAPTER 6. OVERWRITING THE DEFAULT TRANSACTION
TIMEOUT

You can overwrite the transaction timeout by setting the value for the quarkus.transaction-
manager.default-transaction-timeout property in your application.properties file. The default

timeout for all transactions managed by the transaction manager is 60 seconds. If the transaction is not
resolved within the timeout, the transaction manager automatically rolls it back.

Procedure

® Set the <durations for the quarkus.transaction-manager.default-transaction-timeout
property in your application.properties file:

I quarkus.transaction-manager.default-transaction-timeout=<duration>

You can set the <duration> time in seconds or use the standard java.time.Duration format.

For example, to set the timeout to 2 minutes, enter quarkus.transaction-manager.default-
transaction-timeout=PT2M.

Additional resources

® APl documentation for Duration#parse()

15

https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

Red Hat build of Quarkus 1.11 Managing JTA transactions with the Quarkus transaction manager

16

CHAPTER 7. CONFIGURING THE TRANSACTION NODE NAME
IDENTIFIER FOR XA TRANSACTIONS

You can set a unique node identifier for XA transactions that have multiple resources. When you create
a transaction the node name identifier becomes part of the transaction ID. The identifier allows the
transaction manager to recognize the XA transaction counterparts created in a database or by a JMS
broker. The transaction manager can roll back the transaction counterparts during recovery.

Procedure

® Set avalue for the quarkus.transaction-manager.node-name property in your
application.properties file:

I quarkus.transaction-manager.node-name=<unique_id>

NOTE

Make sure to set a unique node name identifier for each deployment of
transaction manager. The node identifier must be stable over the transaction
manager restarts.

CHAPTER 8. OVERVIEW OF QUARKUS TRANSACTION CONFIGURATION PROPERTIES

CHAPTER 8. OVERVIEW OF QUARKUS TRANSACTION
CONFIGURATION PROPERTIES

The following table lists some of the configuration properties that you can use to configure the
transaction management.

Table 8.1. Table Quarkus transaction configuration properties and their default values:

Property Description Default
quarkus.datasource.jdbc.transactio Lets you use regular JDBC transactions, XA, or enabled
ns disable all transactional capabilities (enabled, xa,

disabled)

quarkus.datasource.jdbc.transactio = The transaction isolation level (undefined, none,
n-isolation-level read-uncommitted, read-committed,
repeatable-read, serializable)

quarkus.transaction- The timeout for all transactions managed by the 60
manager.default-transaction- transaction manager seconds
timeout

quarkus.transaction- The node name identifier

manager.node-name

Revised on 2021-06-15 14:51:53 UTC

17

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. PREREQUISITES
	CHAPTER 2. THE NARAYANA JTA TRANSACTION MANAGER AND QUARKUS
	CHAPTER 3. INSTALLING THE QUARKUS NARAYANA JTA EXTENSION
	CHAPTER 4. MANAGING JTA TRANSACTIONS DECLARATIVELY USING THE ANNOTATIONS
	4.1. DEFINING TRANSACTION BOUNDARIES DECLARATIVELY
	4.2. CONFIGURING A TRANSACTION FOR ROLLBACK DECLARATIVELY
	4.3. CONFIGURING A TRANSACTION TIMEOUT DECLARATIVELY
	4.4. METHODS RETURNING REACTIVE VALUES

	CHAPTER 5. MANAGING JTA TRANSACTIONS PROGRAMMATICALLY USING THE API APPROACH
	5.1. DEFINING TRANSACTION BOUNDARIES USING THE API APPROACH
	5.2. CONFIGURING A TRANSACTION FOR ROLLBACK USING THE API APPROACH

	CHAPTER 6. OVERWRITING THE DEFAULT TRANSACTION TIMEOUT
	CHAPTER 7. CONFIGURING THE TRANSACTION NODE NAME IDENTIFIER FOR XA TRANSACTIONS
	CHAPTER 8. OVERVIEW OF QUARKUS TRANSACTION CONFIGURATION PROPERTIES

