
Red Hat AMQ 7.4

Configuring AMQ Broker

For Use with AMQ Broker 7.4

Last Updated: 2020-01-13

Red Hat AMQ 7.4 Configuring AMQ Broker

For Use with AMQ Broker 7.4

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to configure AMQ Broker.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. AMQ BROKER CONFIGURATION FILES AND LOCATIONS
1.2. UNDERSTANDING THE DEFAULT BROKER CONFIGURATION

Default message persistence settings
Default acceptor settings
Default security settings
Default message address settings

1.3. RELOADING CONFIGURATION UPDATES
1.4. MODULARIZING THE BROKER CONFIGURATION FILE
1.5. DOCUMENT CONVENTIONS

The sudo command
About the use of file paths in this document

CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND CONNECTORS
2.1. ABOUT ACCEPTORS

Configuring an Acceptor
2.2. ABOUT CONNECTORS

Configuring a Connector
2.3. CONFIGURING A TCP CONNECTION
2.4. CONFIGURING AN HTTP CONNECTION
2.5. CONFIGURING AN SSL/TLS CONNECTION
2.6. CONFIGURING AN IN-VM CONNECTION
2.7. CONFIGURING A CONNECTION FROM THE CLIENT SIDE

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS
3.1. CONFIGURING A NETWORK CONNECTION TO USE A PROTOCOL
3.2. USING AMQP WITH A NETWORK CONNECTION

3.2.1. Using an AMQP Link as a Topic
3.2.2. Configuring AMQP Security

3.3. USING MQTT WITH A NETWORK CONNECTION
3.4. USING OPENWIRE WITH A NETWORK CONNECTION
3.5. USING STOMP WITH A NETWORK CONNECTION

3.5.1. Knowing the Limitations When Using STOMP
3.5.2. Providing IDs for STOMP Messages
3.5.3. Setting a Connection’s Time to Live (TTL)

Overriding the Broker’s Default Time to Live (TTL)
3.5.4. Sending and Consuming STOMP Messages from JMS
3.5.5. Mapping STOMP Destinations to AMQ Broker Addresses and Queues

Mapping STOMP Destinations to JMS Destinations

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS
4.1. ADDRESS AND QUEUE NAMING REQUIREMENTS
4.2. CONFIGURING POINT-TO-POINT MESSAGING
4.3. CONFIGURING PUBLISH-SUBSCRIBE MESSAGING
4.4. CONFIGURING A POINT-TO-POINT USING TWO QUEUES
4.5. USING POINT-TO-POINT AND PUBLISH-SUBSCRIBE TOGETHER
4.6. CONFIGURING SUBSCRIPTION QUEUES

Configuring a Durable Subscription Queue
Configuring a Non-Shared Durable Subscription

4.7. USING A FULLY QUALIFIED QUEUE NAME
4.8. CONFIGURING SHARDED QUEUES
4.9. CONFIGURING LAST VALUE QUEUES

8
8
8
8

10
11
11

12
13
14
14
14

15
15
15
16
16
16
17
18
18
18

20
20
21
22
22
22
23
24
24
24
25
25
26
26
27

28
28
29
29
30
31
32
33
33
34
35
35

Table of Contents

1

. .

. .

4.9.1. Configuring Last Value Queues Using broker.xml
4.9.2. Configuring Last Value Queues Using the JMS Client
4.9.3. Configuring Last Value Queues Using the Core API
4.9.4. Configuring Last Value Queues Using Address Wildcards
4.9.5. Example of Last Value Queue Behavior
4.9.6. Creating Non-Destructive Consumers

4.9.6.1. Configuring Non-destructive Consumers Using broker.xml
4.9.6.2. Creating Non-destructive Consumers Using the JMS Client
4.9.6.3. Configuring Non-destructive Consumers Using Address Wildcards
4.9.6.4. Configuring Message Expiry Delay

4.10. LIMITING THE NUMBER OF CONSUMERS CONNECTED TO A QUEUE
4.11. EXCLUSIVE QUEUES

4.11.1. Configuring Exclusive Queues
4.11.2. Setting the Exclusive Queue Default

4.12. CONFIGURING A PREFIX TO CONNECT TO A SPECIFIC ROUTING TYPE
4.13. PROTOCOL MANAGERS AND ADDRESSES
4.14. DISABLING ADVISORY MESSAGES
4.15. CONFIGURING ADDRESS SETTINGS

AMQ Broker Wildcard Syntax
Configuring Wildcard Syntax

4.16. CREATING AND DELETING QUEUES AND ADDRESSES AUTOMATICALLY

CHAPTER 5. USERS AND ROLES
5.1. ENABLING GUEST ACCESS
5.2. ADDING USERS
5.3. SETTING PERMISSIONS

5.3.1. Configuring Message Production for a Single Address
5.3.2. Configuring Message Consumption for a Single Address
5.3.3. Configuring Complete Access on All Addresses
5.3.4. Configuring a Queue with a User

5.4. SETTING ROLE BASED ACCESS CONTROL
5.4.1. Configuring Whitelist Element for Bypassing the Authentication
5.4.2. Configuring Authentication Based on Roles

CHAPTER 6. SECURITY
6.1. ACCESSING THE AMQ CONSOLE
6.2. SECURING NETWORK CONNECTIONS

6.2.1. Configuring Server-Side Certificates
6.2.2. Configuring Client-Side Certificates

TLS Configuration Details
6.2.3. Adding Certificate-based Authentication
6.2.4. Adding Certificate-based Authentication for AMQP Clients

Prerequisites
Procedure
Additional Resources

6.2.5. Using Multiple Login Modules
6.2.6. Configure Multiple Security Settings for Address Groups and Sub-groups
6.2.7. Setting Resource Limits

6.2.7.1. Configuring Connection and Queue Limits
6.3. INTEGRATING WITH LDAP

6.3.1. Using LDAP for Authentication
6.3.2. Configure LDAP Authorization
6.3.3. Encrypting the Password in the login.config File

36
36
37
37
37
38
38
39
39
39
40
41
41
41
41

42
43
44
44
45
45

48
48
49
50
51
51
52
52
53
53
53

56
56
56
56
56
57
59
62
62
62
63
63
64
65
66
66
66
69
72

Red Hat AMQ 7.4 Configuring AMQ Broker

2

. .

. .

. .

6.4. INTEGRATING WITH KERBEROS
6.4.1. Enabling Network Connections to Use Kerberos

Prerequisites
Procedure
Related Information

6.4.2. Authenticating Clients with Kerberos Credentials
Prerequisites
Procedure
Related Information
6.4.2.1. Using an Alternative Configuration Scope

6.4.3. Authorizing Clients with Kerberos Credentials
Prerequisites
Procedure
Related Information

6.5. ENCRYPTING PASSWORDS IN CONFIGURATION FILES
6.6. TRACKING MESSAGES FROM VALIDATED USERS
6.7. DISABLING SECURITY

CHAPTER 7. PERSISTING MESSAGES
7.1. ABOUT JOURNAL-BASED PERSISTENCE

7.1.1. Using AIO
7.2. CONFIGURING JOURNAL-BASED PERSISTENCE

7.2.1. The Message Journal
7.2.2. The Bindings Journal
7.2.3. The JMS Journal
7.2.4. Compacting Journal Files

Compacting Journals Using the CLI
7.2.5. Disabling Disk Write Cache

7.3. CONFIGURING JDBC PERSISTENCE
7.4. CONFIGURING ZERO PERSISTENCE

CHAPTER 8. PAGING MESSAGES
8.1. ABOUT PAGE FILES
8.2. CONFIGURING THE PAGING DIRECTORY LOCATION
8.3. CONFIGURING AN ADDRESS FOR PAGING
8.4. CONFIGURING A GLOBAL PAGING SIZE

Configuring the global-max-size parameter
8.5. LIMITING DISK USAGE WHEN PAGING

Configuring the max-disk-usage
8.6. HOW TO DROP MESSAGES

8.6.1. Dropping Messages and Throwing an Exception to Producers
8.7. HOW TO BLOCK PRODUCERS
8.8. CAUTION WITH ADDRESSES WITH MULTICAST QUEUES

CHAPTER 9. WORKING WITH LARGE MESSAGES
9.1. PREPARING BROKERS TO STORE LARGE MESSAGES

Procedure
Additional Resources

9.2. PREPARING AMQ CORE PROTOCOL JMS CLIENTS TO SEND LARGE MESSAGES
Procedure

9.3. PREPARING OPENWIRE CLIENTS TO SEND LARGE MESSAGES
Procedure

9.4. SENDING LARGE MESSAGES
Procedure

72
73
73
73
74
74
74
74
75
75
76
76
76
77
77
79
79

81
81

82
82
83
83
83
84
84
85
85
86

88
88
88
89
90
90
91
91

92
92
92
92

94
94
94
95
95
95
96
96
96
96

Table of Contents

3

. .

. .

. .

. .

. .

. .

9.5. RECEIVING LARGE MESSAGES
Procedure
Receiving a Large Message Asynchronously

Procedure
9.6. LARGE MESSAGES AND JAVA CLIENTS
9.7. COMPRESSING LARGE MESSAGES
9.8. HANDLING LARGE MESSAGES WITH STOMP

CHAPTER 10. DETECTING DEAD CONNECTIONS
Detecting Dead Connections from the Client Side
10.1. CONNECTION TIME-TO-LIVE

Configuring Time-To-Live on the Broker
Configuring Time-To-Live on the Client

10.2. DISABLING ASYNCHRONOUS CONNECTION EXECUTION
10.3. CLOSING CONNECTIONS FROM THE CLIENT SIDE

CHAPTER 11. FLOW CONTROL
11.1. CONSUMER FLOW CONTROL

11.1.1. Setting the Consumer Window Size
Setting the Window Size

11.1.2. Handling Fast Consumers
Setting the Window Size for Fast Consumers

11.1.3. Handling Slow Consumers
Setting the Window Size for Slow Consumers

11.1.4. Setting the Rate of Consuming Messages
Setting the Rate of Consuming Messages

11.2. PRODUCER FLOW CONTROL
11.2.1. Setting the Producer Window Size

Setting the Window Size
11.2.2. Blocking Messages

Configuring the Maximum Size for an Address
11.2.3. Blocking AMQP Messages

Configuring the Broker to Block AMQP Messages
11.2.4. Setting the Rate of Sending Messages

Setting the Rate of Sending Messages

CHAPTER 12. MESSAGE GROUPING
12.1. CLIENT-SIDE MESSAGE GROUPING
12.2. AUTOMATIC MESSAGE GROUPING

CHAPTER 13. DUPLICATE MESSAGE DETECTION
13.1. USING THE DUPLICATE ID MESSAGE PROPERTY
13.2. CONFIGURING THE DUPLICATE ID CACHE
13.3. DUPLICATE DETECTION AND TRANSACTIONS
13.4. DUPLICATE DETECTION AND CLUSTER CONNECTIONS

CHAPTER 14. INTERCEPTING MESSAGES
14.1. CREATING INTERCEPTORS
14.2. CONFIGURING THE BROKER TO USE INTERCEPTORS
14.3. INTERCEPTORS ON THE CLIENT SIDE

CHAPTER 15. FILTERING MESSAGES
15.1. CONFIGURING A QUEUE TO USE A FILTER
15.2. FILTERING JMS MESSAGE PROPERTIES

Configuring a Filter to Convert a String to a Number

97
97
97
97
97
97
98

100
100
101
101
101
102
102

104
104
104
104
104
105
105
105
106
106
106
107
107
107
108
108
108
109
109

111
111

112

113
113
113
114
114

116
116
118
119

120
120
121
121

Red Hat AMQ 7.4 Configuring AMQ Broker

4

. .

. .

. .

. .

. .

. .

Enabling a Filter to Use Hyphens

CHAPTER 16. SETTING UP A BROKER CLUSTER
16.1. UNDERSTANDING BROKER CLUSTERS

16.1.1. How broker clusters balance message load
16.1.2. How broker clusters improve reliability
16.1.3. Common broker cluster topologies

Symmetric clusters
Chain clusters

16.1.4. Broker discovery methods
Dynamic discovery
Static discovery

16.1.5. Cluster sizing considerations
Messaging throughput
Topology
High availability

16.2. CREATING A BROKER CLUSTER
16.2.1. Creating a broker cluster with static discovery
16.2.2. Creating a broker cluster with UDP-based dynamic discovery
16.2.3. Creating a broker cluster with JGroups-based dynamic discovery

16.3. IMPLEMENTING HIGH AVAILABILITY
16.3.1. Understanding high availability

16.3.1.1. How live-backup groups provide high availability
16.3.1.2. High availability policies
16.3.1.3. Replication policy limitations

16.3.2. Configuring high availability
16.3.2.1. Configuring shared store high availability
16.3.2.2. Configuring replication high availability
16.3.2.3. Configuring network pinging for replication high availability
16.3.2.4. Configuring limited high availability with live-only
16.3.2.5. Configuring high availability with colocated backups

16.3.3. Configuring clients to fail over
16.4. ENABLING MESSAGE REDISTRIBUTION
16.5. CONFIGURING CLUSTERED MESSAGE GROUPING
16.6. CONNECTING CLIENTS TO A BROKER CLUSTER

CHAPTER 17. LOGGING
17.1. CHANGING THE LOGGING LEVEL
17.2. CONFIGURING CONSOLE LOGGING
17.3. CONFIGURING FILE LOGGING
17.4. CONFIGURING THE LOGGING FORMAT
17.5. CLIENT OR EMBEDDED SERVER LOGGING
17.6. AMQ BROKER PLUG-INS SUPPORT

17.6.1. Adding Plug-ins to the Classpath
17.6.2. Registering a Plug-in
17.6.3. Registering a Plug-in Programmatically
17.6.4. Logging Specific Events

APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS

APPENDIX B. ADDRESS SETTING CONFIGURATION ELEMENTS

APPENDIX C. CLUSTER CONNECTION CONFIGURATION ELEMENTS

APPENDIX D. COMMAND-LINE TOOLS

121

123
123
123
124
125
125
125
126
126
126
126
127
127
127
127
127
129
132
135
136
136
136
138
138
138
141

143
144
146
148
149
150
152

153
153
155
156
156
157
158
158
158
158
159

161

166

170

173

Table of Contents

5

. .

. .

APPENDIX E. MESSAGING JOURNAL CONFIGURATION ELEMENTS

APPENDIX F. REPLICATION HIGH AVAILABILITY CONFIGURATION ELEMENTS

175

177

Red Hat AMQ 7.4 Configuring AMQ Broker

6

Table of Contents

7

CHAPTER 1. OVERVIEW
AMQ Broker configuration files define important settings for a broker instance. By editing a broker’s
configuration files, you can control how the broker operates in your environment.

1.1. AMQ BROKER CONFIGURATION FILES AND LOCATIONS

All of a broker’s configuration files are stored in <broker-instance-dir>/etc. You can configure a broker
by editing the settings in these configuration files.

Each broker instance uses the following configuration files:

broker.xml

The main configuration file. You use this file to configure most aspects of the broker, such as network
connections, security settings, message addresses, and so on.

bootstrap.xml

The file that AMQ Broker uses to start a broker instance. You use it to change the location of
broker.xml, configure the web server, and set some security settings.

logging.properties

You use this file to set logging properties for the broker instance.

artemis.profile

You use this file to set environment variables used while the broker instance is running.

login.config, artemis-users.properties, artemis-roles.properties

Security-related files. You use these files to set up authentication for user access to the broker
instance.

1.2. UNDERSTANDING THE DEFAULT BROKER CONFIGURATION

You configure most of a broker’s functionality by editing the broker.xml configuration file. This file
contains default settings, which are sufficient to start and operate a broker. However, you will likely need
to change some of the default settings and add new settings to configure the broker for your
environment.

By default, broker.xml contains default settings for the following functionality:

Message persistence

Acceptors

Security

Message addresses

Default message persistence settings
By default, AMQ Broker persistence uses an append-only file journal that consists of a set of files on
disk. The journal saves messages, transactions, and other information.

<configuration ...>

 <core ...>

 ...

Red Hat AMQ 7.4 Configuring AMQ Broker

8

 <persistence-enabled>true</persistence-enabled>

 <!-- this could be ASYNCIO, MAPPED, NIO
 ASYNCIO: Linux Libaio
 MAPPED: mmap files
 NIO: Plain Java Files
 -->
 <journal-type>ASYNCIO</journal-type>

 <paging-directory>data/paging</paging-directory>

 <bindings-directory>data/bindings</bindings-directory>

 <journal-directory>data/journal</journal-directory>

 <large-messages-directory>data/large-messages</large-messages-directory>

 <journal-datasync>true</journal-datasync>

 <journal-min-files>2</journal-min-files>

 <journal-pool-files>10</journal-pool-files>

 <journal-file-size>10M</journal-file-size>

 <!--
 This value was determined through a calculation.
 Your system could perform 8.62 writes per millisecond
 on the current journal configuration.
 That translates as a sync write every 115999 nanoseconds.

 Note: If you specify 0 the system will perform writes directly to the disk.
 We recommend this to be 0 if you are using journalType=MAPPED and journal-
datasync=false.
 -->
 <journal-buffer-timeout>115999</journal-buffer-timeout>

 <!--
 When using ASYNCIO, this will determine the writing queue depth for libaio.
 -->
 <journal-max-io>4096</journal-max-io>

 <!-- how often we are looking for how many bytes are being used on the disk in ms -->
 <disk-scan-period>5000</disk-scan-period>

 <!-- once the disk hits this limit the system will block, or close the connection in certain protocols
 that won't support flow control. -->
 <max-disk-usage>90</max-disk-usage>

 <!-- should the broker detect dead locks and other issues -->
 <critical-analyzer>true</critical-analyzer>

 <critical-analyzer-timeout>120000</critical-analyzer-timeout>

 <critical-analyzer-check-period>60000</critical-analyzer-check-period>

CHAPTER 1. OVERVIEW

9

Default acceptor settings
Brokers listen for incoming client connections by using an acceptor configuration element to define the
port and protocols a client can use to make connections. By default, AMQ Broker includes configuration
for an acceptor for each supported messaging protocol.

 <critical-analyzer-policy>HALT</critical-analyzer-policy>

 ...

 </core>

</configuration>

<configuration ...>

 <core ...>

 ...

 <acceptors>

 <!-- Acceptor for every supported protocol -->
 <acceptor name="artemis">tcp://0.0.0.0:61616?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=CORE,AMQP,STOMP,HORNE
TQ,MQTT,OPENWIRE;useEpoll=true;amqpCredits=1000;amqpLowCredits=300</acceptor>

 <!-- AMQP Acceptor. Listens on default AMQP port for AMQP traffic.-->
 <acceptor name="amqp">tcp://0.0.0.0:5672?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=AMQP;useEpoll=true;amqpCre
dits=1000;amqpLowCredits=300</acceptor>

 <!-- STOMP Acceptor. -->
 <acceptor name="stomp">tcp://0.0.0.0:61613?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=STOMP;useEpoll=true</acce
ptor>

 <!-- HornetQ Compatibility Acceptor. Enables HornetQ Core and STOMP for legacy HornetQ
clients. -->
 <acceptor name="hornetq">tcp://0.0.0.0:5445?
anycastPrefix=jms.queue.;multicastPrefix=jms.topic.;protocols=HORNETQ,STOMP;useEpoll=true</a
cceptor>

 <!-- MQTT Acceptor -->
 <acceptor name="mqtt">tcp://0.0.0.0:1883?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=MQTT;useEpoll=true</accept
or>

 </acceptors>

 ...

 </core>

</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

10

Default security settings
AMQ Broker contains a flexible role-based security model for applying security to queues, based on
their addresses. The default configuration uses wildcards to apply the amq role to all addresses
(represented by the number sign, #).

Default message address settings
AMQ Broker includes a default address that establishes a default set of configuration settings to be
applied to any created queue or topic.

Additionally, the default configuration defines two queues: DLQ (Dead Letter Queue) handles
messages that arrive with no known destination, and Expiry Queue holds messages that have lived past
their expiration and therefore should not be routed to their original destination.

<configuration ...>

 <core ...>

 ...

 <security-settings>
 <security-setting match="#">
 <permission type="createNonDurableQueue" roles="amq"/>
 <permission type="deleteNonDurableQueue" roles="amq"/>
 <permission type="createDurableQueue" roles="amq"/>
 <permission type="deleteDurableQueue" roles="amq"/>
 <permission type="createAddress" roles="amq"/>
 <permission type="deleteAddress" roles="amq"/>
 <permission type="consume" roles="amq"/>
 <permission type="browse" roles="amq"/>
 <permission type="send" roles="amq"/>
 <!-- we need this otherwise ./artemis data imp wouldn't work -->
 <permission type="manage" roles="amq"/>
 </security-setting>
 </security-settings>

 ...

 </core>

</configuration>

<configuration ...>

 <core ...>

 ...

 <address-settings>
 ...
 <!--default for catch all-->
 <address-setting match="#">
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!-- with -1 only the global-max-size is in use for limiting -->

CHAPTER 1. OVERVIEW

11

1.3. RELOADING CONFIGURATION UPDATES

By default, a broker checks for changes in the configuration files every 5000 milliseconds. If any are
found, the configuration is reloaded to activate the changes. You can change the interval at which the
broker checks for configuration changes.

If the configuration is changed, the broker reloads the following modules:

Address settings and queues
When the configuration file is reloaded, the address settings determine how to handle addresses
and queues that have been deleted from the configuration file. You can set this with the config-
delete-addresses and config-delete-queues properties. For more information, see
Appendix B, Address Setting Configuration Elements .

Security settings
SSL/TLS keystores and truststores on an existing acceptor can be reloaded to establish new
certificates without any impact to existing clients. Connected clients, even those with older or
differing certificates, can continue to send and receive messages.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the <core> element, add the <configuration-file-refresh-period> element and set the
refresh period (in milliseconds).
This example sets the configuration refresh period to be 60000 milliseconds:

 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>
 </address-settings>

 <addresses>
 <address name="DLQ">
 <anycast>
 <queue name="DLQ" />
 </anycast>
 </address>
 <address name="ExpiryQueue">
 <anycast>
 <queue name="ExpiryQueue" />
 </anycast>
 </address>
 </addresses>

 </core>

</configuration>

<configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

12

1.4. MODULARIZING THE BROKER CONFIGURATION FILE

If you have multiple brokers that share common configuration settings, you can define the common
configuration in separate files, and then include these files in each broker’s broker.xml configuration
file.

The most common configuration settings that you might share between brokers include:

Addresses

Address settings

Security settings

Procedure

1. Create a separate XML file for each broker.xml section that you want to share.
Each XML file can only include a single section from broker.xml (for example, either addresses
or address settings, but not both). The top-level element must also define the element
namespace (xmlns="urn:activemq:core").

This example shows a security settings configuration defined in my-security-settings.xml:

my-security-settings.xml

2. Open the <broker-instance-dir>/etc/broker.xml configuration file for each broker that should
use the common configuration settings.

3. For each broker.xml file that you opened, do the following:

a. In the <configuration> element at the beginning of broker.xml, verify that the following
line appears:

b. Add an XML inclusion for each XML file that contains shared configuration settings.
This example includes the my-security-settings.xml file.

broker.xml

 <core>
 ...
 <configuration-file-refresh-period>60000</configuration-file-refresh-period>
 ...
 </core>
</configuration>

<security-settings xmlns="urn:activemq:core">
 <security-setting match="a1">
 <permission type="createNonDurableQueue" roles="a1.1"/>
 </security-setting>
 <security-setting match="a2">
 <permission type="deleteNonDurableQueue" roles="a2.1"/>
 </security-setting>
</security-settings>

xmlns:xi="http://www.w3.org/2001/XInclude"

CHAPTER 1. OVERVIEW

13

c. If desired, validate broker.xml to verify that the XML is valid against the schema.
You can use any XML validator program. This example uses xmllint to validate broker.xml
against the artemis-server.xsl schema.

$ xmllint --noout --xinclude --schema /opt/redhat/amq-broker/amq-broker-
7.2.0/schema/artemis-server.xsd /var/opt/amq-broker/mybroker/etc/broker.xml
/var/opt/amq-broker/mybroker/etc/broker.xml validates

Additional resources

For more information about XML Inclusions (XIncludes), see https://www.w3.org/TR/xinclude/.

1.5. DOCUMENT CONVENTIONS

This document uses the following conventions for the sudo command and file paths.

The sudo command
In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

About the use of file paths in this document
In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/...). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows paths
(for example, C:\Users\...).

<configuration ...>
 <core ...>
 ...
 <xi:include href="/opt/my-broker-config/my-security-settings.xml"/>
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

14

https://www.w3.org/TR/xinclude/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND
CONNECTORS

There are two types of connections used in AMQ Broker: network and In-VM. Network connections are
used when the two parties are located in different virtual machines, whether on the same server or
physically remote. An In-VM connection is used when the client, whether an application or a server,
resides within the same virtual machine as the broker.

Network connections rely on Netty. Netty is a high-performance, low-level network library that allows
network connections to be configured in several different ways: using Java IO or NIO, TCP sockets,
SSL/TLS, even tunneling over HTTP or HTTPS. Netty also allows for a single port to be used for all
messaging protocols. A broker will automatically detect which protocol is being used and direct the
incoming message to the appropriate handler for further processing.

The URI within a network connection’s configuration determines its type. For example, using vm in the
URI will create an In-VM connection. In the example below, note that the URI of the acceptor starts with
vm.

Using tcp in the URI, alternatively, will create a network connection.

This chapter will first discuss the two configuration elements specific to network connections, Acceptors
and Connectors. Next, configuration steps for TCP, HTTP, and SSL/TLS network connections, as well as
In-VM connections, are explained.

2.1. ABOUT ACCEPTORS

One of the most important concepts when discussing network connections in AMQ Broker is the
acceptor. Acceptors define the way connections are made to the broker. Below is a typical configuration
for an acceptor that might be in found inside the configuration file
BROKER_INSTANCE_DIR/etc/broker.xml.

Note that each acceptor is grouped inside an acceptors element. There is no upper limit to the number
of acceptors you can list per server.

Configuring an Acceptor
You configure an acceptor by appending key-value pairs to the query string of the URI defined for the
acceptor. Use a semicolon (';') to separate multiple key-value pairs, as shown in the following example. It
configures an acceptor for SSL/TLS by adding multiple key-value pairs at the end of the URI, starting
with sslEnabled=true.

For details on connector configuration parameters, see Acceptor and Connector Configuration
Parameters.

<acceptor name="in-vm-example">vm://0</acceptor>

<acceptor name="network-example">tcp://localhost:61617</acceptor>

<acceptors>
 <acceptor name="example-acceptor">tcp://localhost:61617</acceptor>
</acceptors>

<acceptor name="example-acceptor">tcp://localhost:61617?sslEnabled=true;key-store-
path=/path</acceptor>

CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND CONNECTORS

15

http://netty.io/

2.2. ABOUT CONNECTORS

Whereas acceptors define how a server accepts connections, a connector is used by clients to define
how they can connect to a server.

Below is a typical connector as defined in the BROKER_INSTANCE_DIR/etc/broker.xml configuration
file:

Note that connectors are defined inside a connectors element. There is no upper limit to the number of
connectors per server.

Although connectors are used by clients, they are configured on the server just like acceptors. There are
a couple of important reasons why:

A server itself can act as a client and therefore needs to know how to connect to other servers.
For example, when one server is bridged to another or when a server takes part in a cluster.

A server is often used by JMS clients to look up connection factory instances. In these cases,
JNDI needs to know details of the connection factories used to create client connections. The
information is provided to the client when a JNDI lookup is performed. See Configuring a
Connection on the Client Side for more information.

Configuring a Connector
Like acceptors, connectors have their configuration attached to the query string of their URI. Below is an
example of a connector that has the tcpNoDelay parameter set to false, which turns off Nagle’s
algorithm for this connection.

For details on connector configuration parameters, see Acceptor and Connector Configuration
Parameters.

2.3. CONFIGURING A TCP CONNECTION

AMQ Broker uses Netty to provide basic, unencrypted, TCP-based connectivity that can be configured
to use blocking Java IO or the newer, non-blocking Java NIO. Java NIO is preferred for better scalability
with many concurrent connections. However, using the old IO can sometimes give you better latency
than NIO when you are less worried about supporting many thousands of concurrent connections.

If you are running connections across an untrusted network, remember that a TCP network connection is
unencrypted. You may want to consider using an SSL or HTTPS configuration to encrypt messages sent
over this connection if encryption is a priority. Refer to Configuring Transport Layer Security for details.

When using a TCP connection, all connections are initiated from the client side. In other words, the
server does not initiate any connections to the client, which works well with firewall policies that force
connections to be initiated from one direction.

For TCP connections, the host and the port of the connector’s URI defines the address used for the
connection.

Procedure

<connectors>
 <connector name="example-connector">tcp://localhost:61617</connector>
</connectors>

<connector name="example-connector">tcp://localhost:61616?tcpNoDelay=false</connector>

Red Hat AMQ 7.4 Configuring AMQ Broker

16

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or modify the connection and include a URI that uses tcp as the protocol. Be sure to
include both an IP or hostname as well as a port.

In the example below, an acceptor is configured as a TCP connection. A broker configured with this
acceptor will accept clients making TCP connections to the IP 10.10.10.1 and port 61617.

You configure a connector to use TCP in much the same way.

The connector above would be referenced by a client, or even the broker itself, when making a TCP
connection to the specified IP and port, 10.10.10.2:61617.

For details on available configuration parameters for TCP connections, see Acceptor and Connector
Configuration Parameters. Most parameters can be used either with acceptors or connectors, but some
only work with acceptors.

2.4. CONFIGURING AN HTTP CONNECTION

HTTP connections tunnel packets over the HTTP protocol and are useful in scenarios where firewalls
allow only HTTP traffic. With single port support, AMQ Broker will automatically detect if HTTP is being
used, so configuring a network connection for HTTP is the same as configuring a connection for TCP.
For a full working example showing how to use HTTP, see the http-transport example, located under
INSTALL_DIR/examples/features/standard/.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or modify the connection and include a URI that uses tcp as the protocol. Be sure to
include both an IP or hostname as well as a port

In the example below, the broker will accept HTTP communications from clients connecting to port 80 at
the IP address 10.10.10.1. Furthermore, the broker will automatically detect that the HTTP protocol is in
use and will communicate with the client accordingly.

Configuring a connector for HTTP is again the same as for TCP.

<acceptors>
 <acceptor name="tcp-acceptor">tcp://10.10.10.1:61617</acceptor>
 ...
</acceptors>

<connectors>
 <connector name="tcp-connector">tcp://10.10.10.2:61617</connector>
 ...
</connectors>

<acceptors>
 <acceptor name="http-acceptor">tcp://10.10.10.1:80</acceptor>
 ...
</acceptors>

<connectors>

CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND CONNECTORS

17

Using the configuration in the example above, a broker will create an outbound HTTP connection to port
80 at the IP address 10.10.10.2.

An HTTP connection uses the same configuration parameters as TCP, but it also has some of its own.
For details on HTTP-related and other configuration parameters, see Acceptor and Connector
Configuration Parameters.

2.5. CONFIGURING AN SSL/TLS CONNECTION

You can also configure connections to use SSL/TLS. Refer to Configuring Transport Layer Security for
details.

2.6. CONFIGURING AN IN-VM CONNECTION

An In-VM connection can be used when multiple brokers are co-located in the same virtual machine, as
part of a high availability solution for example. In-VM connections can also be used by local clients
running in the same JVM as the server. For an in-VM connection, the authority part of the URI defines a
unique server ID. In fact, no other part of the URI is needed.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or modify the connection and include a URI that uses vm as the protocol.

The example acceptor above tells the broker to accept connections from the server with an ID of 0. The
other server must be running in the same virtual machine as the broker.

Configuring a connector as an in-vm connection follows the same syntax.

The connector in the example above defines how clients establish an in-VM connection to the server
with an ID of 0 that resides in the same virtual machine. The client can be be an application or broker.

2.7. CONFIGURING A CONNECTION FROM THE CLIENT SIDE

Connectors are also used indirectly in client applications. You can configure the JMS connection factory
directly on the client side without having to define a connector on the server side:

 <connector name="http-connector">tcp://10.10.10.2:80</connector>
 ...
</connectors>

<acceptors>
 <acceptor name="in-vm-acceptor">vm://0</acceptor>
 ...
</acceptors>

<connectors>
 <connector name="in-vm-connector">vm://0</connector>
 ...
</connectors>

Map<String, Object> connectionParams = new HashMap<String, Object>();

Red Hat AMQ 7.4 Configuring AMQ Broker

18

connectionParams.put(org.apache.activemq.artemis.core.remoting.impl.netty.TransportConstants.POR
T_PROP_NAME, 61617);

TransportConfiguration transportConfiguration =
 new TransportConfiguration(
 "org.apache.activemq.artemis.core.remoting.impl.netty.NettyConnectorFactory",
connectionParams);

ConnectionFactory connectionFactory =
ActiveMQJMSClient.createConnectionFactoryWithoutHA(JMSFactoryType.CF,
transportConfiguration);

Connection jmsConnection = connectionFactory.createConnection();

CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND CONNECTORS

19

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS
AMQ Broker has a pluggable protocol architecture, so that you can easily enable one or more protocols
for a network connection.

The broker supports the following protocols:

AMQP

MQTT

OpenWire

STOMP

NOTE

In addition to the protocols above, the broker also supports its own native protocol
known as "Core". Past versions of this protocol were known as "HornetQ" and used by Red
Hat JBoss Enterprise Application Platform.

3.1. CONFIGURING A NETWORK CONNECTION TO USE A PROTOCOL

You must associate a protocol with a network connection before you can use it. (See Network
Connections: Acceptors and Connectors for more information about how to create and configure
network connections.) The default configuration, located in the file
BROKER_INSTANCE_DIR/etc/broker.xml, includes several connections already defined. For
convenience, AMQ Broker includes an acceptor for each supported protocol, plus a default acceptor
that supports all protocols.

Default acceptors in broker.xml

<configuration>
 <core>
 ...
 <acceptors>
 <!-- Default ActiveMQ Artemis Acceptor. Multi-protocol adapter. Currently supports ActiveMQ
Artemis Core, OpenWire, STOMP, AMQP, MQTT, and HornetQ Core. -->
 <acceptor name="artemis">tcp://0.0.0.0:61616?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576</acceptor>

 <!-- AMQP Acceptor. Listens on default AMQP port for AMQP traffic.-->
 <acceptor name="amqp">tcp://0.0.0.0:5672?protocols=AMQP</acceptor>

 <!-- STOMP Acceptor. -->
 <acceptor name="stomp">tcp://0.0.0.0:61613?protocols=STOMP</acceptor>

 <!-- HornetQ Compatibility Acceptor. Enables HornetQ Core and STOMP for legacy HornetQ
clients. -->
 <acceptor name="hornetq">tcp://0.0.0.0:5445?protocols=HORNETQ,STOMP</acceptor>

 <!-- MQTT Acceptor -->
 <acceptor name="mqtt">tcp://0.0.0.0:1883?protocols=MQTT</acceptor>
 </acceptors>

Red Hat AMQ 7.4 Configuring AMQ Broker

20

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#transports

NOTE

The only requirement to enable a protocol is to add the protocols parameter to the URI
query string. The value of the parameter must be a comma separated list of protocol
names. If the protocol parameter is omitted from the URI all protocols are enabled.

For example, to create an acceptor for receiving messages on port 3232 using the AMQP protocol,
follow these steps:

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add the following line to the <acceptors> stanza:

3.2. USING AMQP WITH A NETWORK CONNECTION

The broker supports the AMQP 1.0 specification. An AMQP link is a uni-directional protocol for
messages between a source and a target, that is, a client and the broker.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or configure an acceptor to receive AMQP clients by including the protocols parameter
with a value of AMQP as part of the URI, as shown in the following example:

In the preceding example, the broker accepts AMQP 1.0 clients on port 5672, which is the default AMQP
port.

An AMQP link has two endpoints, a sender and a receiver. When senders transmit a message, the broker
converts it into an internal format, so it can be forwarded to its destination on the broker. Receivers
connect to the destination at the broker and convert the messages back into AMQP before they are
delivered.

If an AMQP link is dynamic, a temporary queue is created and either the remote source or the remote
target address is set to the name of the temporary queue. If the link is not dynamic, the address of the
remote target or source is used for the queue. If the remote target or source does not exist, an
exception is sent.

A link target can also be a Coordinator, which is used to handle the underlying session as a transaction,
either rolling it back or committing it.

NOTE

 ...
 </core>
</configuration>

<acceptor name="ampq">tcp://0.0.0.0:3232?protocols=AMQP</acceptor>

<acceptors>
 <acceptor name="amqp-acceptor">tcp://localhost:5672?protocols=AMQP</acceptor>
 ...
</acceptors>

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS

21

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp

NOTE

AMQP allows the use of multiple transactions per session, amqp:multi-txns-per-ssn,
however the current version of AMQ Broker will support only single transactions per
session.

NOTE

The details of distributed transactions (XA) within AMQP are not provided in the 1.0
version of the specification. If your environment requires support for distributed
transactions, it is recommended that you use the AMQ Core Protocol JMS.

See the AMQP 1.0 specification for more information about the protocol and its features.

3.2.1. Using an AMQP Link as a Topic

Unlike JMS, the AMQP protocol does not include topics. However, it is still possible to treat AMQP
consumers or receivers as subscriptions rather than just consumers on a queue. By default, any receiving
link that attaches to an address with the prefix jms.topic. is treated as a subscription, and a subscription
queue is created. The subscription queue is made durable or volatile, depending on how the Terminus
Durability is configured, as captured in the following table:

To create this kind of subscription for a multicast-
only queue…

Set Terminus Durability to this…

Durable UNSETTLED_STATE or CONFIGURATION

Non-durable NONE

NOTE

The name of a durable queue is composed of the container ID and the link name, for
example my-container-id:my-link-name.

AMQ Broker also supports the qpid-jms client and will respect its use of topics regardless of the prefix
used for the address.

3.2.2. Configuring AMQP Security

The broker supports AMQP SASL Authentication. See Security for more information about how to
configure SASL-based authentication on the broker.

3.3. USING MQTT WITH A NETWORK CONNECTION

The broker supports MQTT v3.1.1 (and also the older v3.1 code message format). MQTT is a lightweight,
client to server, publish/subscribe messaging protocol. MQTT reduces messaging overhead and network
traffic, as well as a client’s code footprint. For these reasons, MQTT is ideally suited to constrained
devices such as sensors and actuators and is quickly becoming the de facto standard communication
protocol for Internet of Things(IoT).

Procedure

Red Hat AMQ 7.4 Configuring AMQ Broker

22

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add an acceptor with the MQTT protocol enabled. For example:

MQTT comes with a number of useful features including:

Quality of Service

Each message can define a quality of service that is associated with it. The broker will attempt to
deliver messages to subscribers at the highest quality of service level defined.

Retained Messages

Messages can be retained for a particular address. New subscribers to that address receive the last-
sent retained message before any other messages, even if the retained message was sent before
the client connected.

Wild card subscriptions

MQTT addresses are hierarchical, similar to the hierarchy of a file system. Clients are able to
subscribe to specific topics or to whole branches of a hierarchy.

Will Messages

Clients are able to set a "will message" as part of their connect packet. If the client abnormally
disconnects, the broker will publish the will message to the specified address. Other subscribers
receive the will message and can react accordingly.

The best source of information about the MQTT protocol is in the specification. The MQTT v3.1.1
specification can be downloaded from the OASIS website.

3.4. USING OPENWIRE WITH A NETWORK CONNECTION

The broker supports the OpenWire protocol , which allows a JMS client to talk directly to a broker. Use
this protocol to communicate with older versions of AMQ Broker.

Currently AMQ Broker supports OpenWire clients that use standard JMS APIs only.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add or modify an acceptor so that it includes OPENWIRE as part of the protocol parameter, as
shown in the following example:

In the preceding example, the broker will listen on port 61616 for incoming OpenWire commands.

For more details, see the examples located under INSTALL_DIR/examples/protocols/openwire.

<acceptors>
 <acceptor name="mqtt">tcp://localhost:1883?protocols=MQTT</acceptor>
 ...
</acceptors>

<acceptors>
 <acceptor name="openwire-acceptor">tcp://localhost:61616?
protocols=OPENWIRE</acceptor>
 ...
</acceptors>

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS

23

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://activemq.apache.org/openwire.html

3.5. USING STOMP WITH A NETWORK CONNECTION

STOMP is a text-orientated wire protocol that allows STOMP clients to communicate with STOMP
Brokers. The broker supports STOMP 1.0, 1.1 and 1.2. STOMP clients are available for several languages
and platforms making it a good choice for interoperability.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Configure an existing acceptor or create a new one and include a protocols parameter with a
value of STOMP, as below.

In the preceding example, the broker accepts STOMP connections on the port 61613, which is the
default.

See the stomp example located under INSTALL_DIR/examples/protocols for an example of how to
configure a broker with STOMP.

3.5.1. Knowing the Limitations When Using STOMP

When using STOMP, the following limitations apply:

1. The broker currently does not support virtual hosting, which means the host header in
CONNECT frames are ignored.

2. Message acknowledgements are not transactional. The ACK frame cannot be part of a
transaction, and it is ignored if its transaction header is set).

3.5.2. Providing IDs for STOMP Messages

When receiving STOMP messages through a JMS consumer or a QueueBrowser, the messages do not
contain any JMS properties, for example JMSMessageID, by default. However, you can set a message
ID on each incoming STOMP message by using a broker paramater.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Set the stompEnableMessageId parameter to true for the acceptor used for STOMP
connections, as shown in the following example:

By using the stompEnableMessageId parameter, each stomp message sent using this acceptor has an

<acceptors>
 <acceptor name="stomp-acceptor">tcp://localhost:61613?protocols=STOMP</acceptor>
 ...
</acceptors>

<acceptors>
 <acceptor name="stomp-acceptor">tcp://localhost:61613?
protocols=STOMP;stompEnableMessageId=true</acceptor>
 ...
</acceptors>

Red Hat AMQ 7.4 Configuring AMQ Broker

24

http://stomp.github.com/

By using the stompEnableMessageId parameter, each stomp message sent using this acceptor has an
extra property added. The property key is amq-message-id and the value is a String representation of
an internal message id prefixed with “STOMP”, as shown in the following example:

amq-message-id : STOMP12345

If stompEnableMessageId is not specified in the configuration, the default value is false.

3.5.3. Setting a Connection’s Time to Live (TTL)

STOMP clients must send a DISCONNECT frame before closing their connections. This allows the
broker to close any server-side resources, such as sessions and consumers. However, if STOMP clients
exit without sending a DISCONNECT frame, or if they fail, the broker will have no way of knowing
immediately whether the client is still alive. STOMP connections therefore are configured to have a
"Time to Live" (TTL) of 1 minute. The means that the broker stops the connection to the STOMP client
if it has been idle for more than one minute.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add the connectionTtl parameter to URI of the acceptor used for STOMP connections, as
shown in the following example:

In the preceding example, any stomp connection that using the stomp-acceptor will have its TTL set to
20 seconds.

NOTE

Version 1.0 of the STOMP protocol does not contain any heartbeat frame. It is therefore
the user’s responsibility to make sure data is sent within connection-ttl or the broker will
assume the client is dead and clean up server-side resources. With version 1.1, you can use
heart-beats to maintain the life cycle of stomp connections.

Overriding the Broker’s Default Time to Live (TTL)
As noted, the default TTL for a STOMP connection is one minute. You can override this value by adding
the connection-ttl-override attribute to the broker configuration.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add the connection-ttl-override attribute and provide a value in milliseconds for the new
default. It belongs inside the <core> stanza, as below.

<acceptors>
 <acceptor name="stomp-acceptor">tcp://localhost:61613?
protocols=STOMP;connectionTtl=20000</acceptor>
 ...
</acceptors>

<configuration ...>
 ...
 <core ...>

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS

25

In the preceding example, the default Time to Live (TTL) for a STOMP connection is set to 30 seconds,
30000 milliseconds.

3.5.4. Sending and Consuming STOMP Messages from JMS

STOMP is mainly a text-orientated protocol. To make it simpler to interoperate with JMS, the STOMP
implementation checks for presence of the content-length header to decide how to map a STOMP
message to JMS.

If you want a STOMP message to map to a … The message should….

JMS TextMessage Not include a content-length
header.

JMS BytesMessage Include a content-length header.

The same logic applies when mapping a JMS message to STOMP. A STOMP client can confirm the
presence of the content-length header to determine the type of the message body (string or bytes).

See the STOMP specification for more information about message headers.

3.5.5. Mapping STOMP Destinations to AMQ Broker Addresses and Queues

When sending messages and subscribing, STOMP clients typically include a destination header.
Destination names are string values, which are mapped to a destination on the broker. In AMQ Broker,
these destinations are mapped to addresses and queues. See the STOMP specification for more
information about the destination frame.

Take for example a STOMP client that sends the following message (headers and body included):

SEND
destination:/my/stomp/queue

hello queue a
^@

In this case, the broker will forward the message to any queues associated with the address
/my/stomp/queue.

For example, when a STOMP client sends a message (by using a SEND frame), the specified destination
is mapped to an address.

It works the same way when the client sends a SUBSCRIBE or UNSUBSCRIBE frame, but in this case
AMQ Broker maps the destination to a queue.

SUBSCRIBE
destination: /other/stomp/queue

 ...
 <connection-ttl-override>30000</connection-ttl-override>
 ...
 </core>
<configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

26

https://stomp.github.io/
https://stomp.github.io/

ack: client

^@

In the preceding example, the broker will map the destination to the queue /other/stomp/queue.

Mapping STOMP Destinations to JMS Destinations
JMS destinations are also mapped to broker addresses and queues. If you want to use STOMP to send
messages to JMS destinations, the STOMP destinations must follow the same convention:

Send or subscribe to a JMS Queue by prepending the queue name by jms.queue.. For example,
to send a message to the orders JMS Queue, the STOMP client must send the frame:

SEND
destination:jms.queue.orders
hello queue orders
^@

Send or subscribe to a JMS Topic by prepending the topic name by jms.topic.. For example, to
subscribe to the stocks JMS Topic, the STOMP client must send a frame similar to the
following:

SUBSCRIBE
destination:jms.topic.stocks
^@

CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS

27

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS
AMQ Broker has a unique addressing model that is both powerful and flexible and that offers great
performance. The addressing model comprises three main concepts: addresses, queues and routing
types.

An address represents a messaging endpoint. Within the configuration, a typical address is given a
unique name, 0 or more queues, and a routing type.

A queue is associated with an address. There can be multiple queues per address. Once an incoming
message is matched to an address, the message is sent on to one or more of its queues, depending on
the routing type configured. Queues can be configured to be automatically created and deleted.

A routing type determines how messages are sent to the queues associated with an address. A AMQ
Broker address can be configured with two different routing types.

Table 4.1. Routing Types

If you want your messages routed to… Use this routing type …

A single queue within the matching address, in a point-to-point
manner.

anycast

Every queue within the matching address, in a publish-subscribe
manner.

multicast

NOTE

An address must have at least one routing type.

It is possible to define more than one routing type per address, but this typically results in
an anti-pattern and is therefore not recommended.

If an address does use both routing types, however, and the client does not show a
preference for either one, the broker typically defaults to the anycast routing type. The
one exception is when the client uses the MQTT protocol. In that case, the default routing
type is multicast.

4.1. ADDRESS AND QUEUE NAMING REQUIREMENTS

You should be aware of the following requirements when you configure addresses and queues:

To ensure that a client can connect to a queue regardless of which wire protocol it uses, your
address and queue names should not include any of the following characters:
& :: , ? >

The # and * characters are reserved for wildcard expressions. For more information, see the
section called “AMQ Broker Wildcard Syntax”.

Address and queue names should not include any spaces.

To separate words in an address or queue name, use the configured delimiter character (the
default is the . character). For more information, see the section called “AMQ Broker Wildcard
Syntax”.

Red Hat AMQ 7.4 Configuring AMQ Broker

28

4.2. CONFIGURING POINT-TO-POINT MESSAGING

Point-to-point messaging is a common scenario in which a message sent by a producer has only one
consumer. AMQP and JMS message producers and consumers can make use of point-to-point
messaging queues, for example. Define an anycast routing type for an address so that its queues
receive messages in a point-to-point manner.

When a message is received on an address using anycast, AMQ Broker locates the queue associated
with the address and routes the message to it. When consumers request to consume from the address,
the broker locates the relevant queue and associates this queue with the appropriate consumers. If
multiple consumers are connected to the same queue, messages are distributed amongst each
consumer equally, providing the consumers are equally able to handle them.

Figure 4.1. Point-to-Point

Procedure

1. Open the file BROKER_INSTANCE_DIR/etc/broker.xml for editing.

2. Wrap an anycast configuration element around the chosen queue element of an address.
Ensure the value of address name and queue name elements are same.

4.3. CONFIGURING PUBLISH-SUBSCRIBE MESSAGING

In a publish-subscribe scenario, messages are sent to every consumer subscribed to an address. JMS
topics and MQTT subscriptions are two examples of publish-subscribe messaging. When a message is
received on an address with a multicast routing type, AMQ Broker routes a copy of the message to each
queue. To reduce the overhead of copying, each queue is sent only a reference to the message and not
a full copy.

Figure 4.2. Publish-Subscribe

<configuration ...>
 <core ...>
 ...
 <address name="durable">
 <anycast>
 <queue name="durable"/>
 </anycast>
 </address>
 </core>
</configuration>

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

29

Figure 4.2. Publish-Subscribe

Procedure

1. Open the file BROKER_INSTANCE_DIR/etc/broker.xml for editing.

2. Add an empty multicast configuration element to the chosen address.

3. (Optional) Add one more queue elements to the address and wrap the multicast element
around them. This step is typically not needed since the broker automatically creates a queue
for each subscription requested by a client.

4.4. CONFIGURING A POINT-TO-POINT USING TWO QUEUES

You can define more than one queue on an address by using an anycast routing type. Messages semt to
an anycast address are distributed evenly across all associated queues. By using Fully Qualified Queue
Names, which are described later, you can have clients connect to a specific queue. If more than one

<configuration ...>
 <core ...>
 ...
 <address name="topic.foo">
 <multicast/>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="topic.foo">
 <multicast>
 <queue name="client123.topic.foo"/>
 <queue name="client456.topic.foo"/>
 </multicast>
 </address>
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

30

consumer connects to the same queue, AMQ Broker distributes messages between them.

Figure 4.3. Point-to-Point with Two Queues

NOTE

This is how AMQ Broker handles load balancing of queues across multiple nodes in a
cluster.

Procedure

1. Open the file BROKER_INSTANCE_DIR/etc/broker.xml for editing.

2. Wrap an anycast configuration element around the queue elements in the address.

4.5. USING POINT-TO-POINT AND PUBLISH-SUBSCRIBE TOGETHER

It is possible to define an address with both point-to-point and publish-subscribe semantics enabled.
While not typically recommended, this can be useful when you want, for example, a JMS Queue named
orders and a JMS topic named orders. The different routing types make the addresses appear to be
distinct.

Using an example of JMS clients, the messages sent by a JMS queue producer are routed using the
anycast routing type. Messages sent by a JMS topic producer uses the multicast routing type. In
addition, when a JMS topic consumer attaches, it is attached to its own subscription queue. The JMS
queue consumer, however, is attached to the anycast queue.

Figure 4.4. Point-to-Point and Publish-Subscribe

<configuration ...>
 <core ...>
 ...
 <address name="address.foo">
 <anycast>
 <queue name="q1"/>
 <queue name="q2"/>
 </anycast>
 </address>
 </core>
</configuration>

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

31

Figure 4.4. Point-to-Point and Publish-Subscribe

NOTE

The behavior in this scenario is dependent on the protocol being used. For JMS there is a
clear distinction between topic and queue producers and consumers, which makes the
logic straightforward. Other protocols like AMQP do not make this distinction. A message
being sent via AMQP is routed by both anycast and multicast and consumers default to
anycast. For more information, check the behavior of each protocol in the sections on
protocols.

The XML excerpt below is an example of what the configuration for an address using both anycast and
multicast routing types would look like in BROKER_INSTANCE_DIR/etc/broker.xml. Note that
subscription queues are typically created on demand, so there is no need to list specific queue elements
inside the multicast routing type.

4.6. CONFIGURING SUBSCRIPTION QUEUES

In most cases it is not necessary to pre-create subscription queues because protocol managers create

<configuration ...>
 <core ...>
 ...
 <address name="foo.orders">
 <anycast>
 <queue name="orders"/>
 </anycast>
 <multicast/>
 </address>
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

32

subscription queues automatically when clients first request to subscribe to an address. See Protocol
Managers and Addresses for more information. For durable subscriptions, the generated queue name is
usually a concatenation of the client id and the address.

Configuring a Durable Subscription Queue
When an queue is configured as a durable subscription, the broker saves messages for any inactive
subscribers and delivers them to the subscribers when they reconnect. Clients are therefore guaranteed
to receive each message delivered to the queue after subscribing to it.

Procedure

1. Open the file BROKER_INSTANCE_DIR/etc/broker.xml for editing.

2. Add the durable configuration element to the chosen queue and assign it a value of true.

Configuring a Non-Shared Durable Subscription
The broker can be configured to prevent more than one consumer from connecting to a queue at any
one time. The subscriptions to queues configured this way are therefore "non-shared".

Procedure

1. Open the file BROKER_INSTANCE_DIR/etc/broker.xml for editing.

2. Add the durable configuration element to each chosen queue.

3. Add the max-consumers attribute to each chosen queue element and assign it a value of 1.

<configuration ...>
 <core ...>
 ...
 <address name="durable.foo">
 <multicast>
 <queue name="q1">
 <durable>true</durable>
 </queue>
 </multicast>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="non.shared.durable.foo">
 <multicast>
 <queue name="orders1">
 <durable>true</durable>
 </queue>
 <queue name="orders2">
 <durable>true</durable>
 </queue>
 </multicast>
 </address>
 </core>
</configuration>

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

33

4.7. USING A FULLY QUALIFIED QUEUE NAME

Internally the broker maps a client’s request for an address to specific queues. The broker decides on
behalf of the client which queues to send messages, or from which queue to receive messages. However,
more advanced use cases might require that the client specify a queue directly. In these situations the
client can use a Fully Qualified Queue Name (FQQN), by specifying both the address name and the
queue name, separated by a ::.

Prerequisites

An address is configured with two or more queues. In the example below the address foo has
two queues, q1 and q2.

Procedure

In the client code, use both the address name and the queue name when requesting a
connection from the broker. Remember to use two colons, ::, to separate the names, as in the
example Java code below.

<configuration ...>
 <core ...>
 ...
 <address name="non.shared.durable.foo">
 <multicast>
 <queue name="orders1" max-consumers="1">
 <durable>true</durable>
 </queue>
 <queue name="orders2" max-consumers="1">
 <durable>true</durable>
 </queue>
 </multicast>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <addresses>
 <address name="foo">
 <anycast>
 <queue name="q1" />
 <queue name="q2" />
 </anycast>
 </address>
 </addresses>
 </core>
</configuration>

String FQQN = "foo::q1";
Queue q1 session.createQueue(FQQN);
MessageConsumer consumer = session.createConsumer(q1);

Red Hat AMQ 7.4 Configuring AMQ Broker

34

4.8. CONFIGURING SHARDED QUEUES

A common pattern for processing of messages across a queue where only partial ordering is required is
to use queue sharding. In AMQ Broker this can be achieved by creating an anycast address that acts as
a single logical queue, but which is backed by many underlying physical queues.

Procedure

1. Open BROKER_INSTANCE_DIR/etc/broker.xml and add an address with the desired name. In
the example below the address named sharded is added to the configuration.

2. Add the anycast routing type and include the desired number of sharded queues. In the
example below, the queues q1, q2, and q3 are added as anycast destinations.

Using the configuration above, messages sent to sharded are distributed equally across q1, q2 and q3.
Clients are able to connect directly to a specific physical queue when using a fully qualified queue name
and receive messages sent to that specific queue only.

To tie particular messages to a particular queue, clients can specify a message group for each message.
The broker routes grouped messages to the same queue, and one consumer processes them all. See
the chapter on Message Grouping for more information.

4.9. CONFIGURING LAST VALUE QUEUES

A last value queue is a type of queue that discards messages in the queue when a newer message with
the same last value property name is placed in the queue. Through this behavior, last value queues retain
only the last values for messages of the same property.

A simple use case for a last value queue is for monitoring stock prices, where only the latest value for a
particular stock is of interest.

NOTE

<configuration ...>
 <core ...>
 ...
 <addresses>
 <address name="sharded"></address>
 </addresses>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <addresses>
 <address name="sharded">
 <anycast>
 <queue name="q1" />
 <queue name="q2" />
 <queue name="q3" />
 </anycast>
 </address>
 </addresses>
</core>
</configuration>

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

35

NOTE

The broker delivers messages that are sent to a last value queue without a configured last
value property as normal messages. Such messages are not purged from the queue when
a new message with a configured last value property arrives.

You can configure last value queues using:

The broker.xml configuration file

The JMS client

The Core API

Address wildcards

For each of the above methods, apart from the Core API, you can specify a custom value for the last
value key (also called the last value property), or leave this value unset, meaning that the key is set to
the default value instead. The default value for the last value key is _AMQ_LVQ_NAME.

For the Core API, you create last value queues using the constant last value key
Message.HDR_LAST_VALUE_NAME to identify last value messages.

4.9.1. Configuring Last Value Queues Using broker.xml

To specify a custom value for the last value key, include lines in your broker.xml configuration file that
look like the following:

Alternatively, you can configure a last value queue that uses the default last value key name of
_AMQ_LVQ_NAME. To do this, set the last-value configuration parameter to true in your broker.xml
configuration file, without specifying a value for the last value key. An example of this configuration is
shown below.

4.9.2. Configuring Last Value Queues Using the JMS Client

When using the JMS Client to auto-create destinations used by a consumer, you can specify a last value
key as part of the address settings. In this case, the auto-created queues are last value queues. An
example of this configuration is shown below.

Alternatively, configure a last value queue that uses the default last value key name of

<address name="my.address">
<multicast>
<queue name="prices1" last-value-key="stock_ticker"/>
</multicast>
</address>

<address name="my.address">
<multicast>
<queue name="prices1" last-value="true"/>
</multicast>
</address>

Queue queue = session.createQueue("my.destination.name?last-value-key=stock_ticker");
Topic topic = session.createTopic("my.destination.name?last-value-key=stock_ticker");

Red Hat AMQ 7.4 Configuring AMQ Broker

36

Alternatively, configure a last value queue that uses the default last value key name of
_AMQ_LVQ_NAME. To do this, set the last-value configuration parameter to true, without specifying a
value for the last value key. An example of this configuration is shown below.

4.9.3. Configuring Last Value Queues Using the Core API

To create a last value queue using the Core API, set the lastvalue parameter to true when creating a
queue. To do this, use the createQueue method of the ClientSession interface. The syntax for
creating a last value queue using this method is shown below.

In this case, the API uses the constant Message.HDR_LAST_VALUE_NAME to identify last value
messages delivered to the queue.

Additional Resources

For more information about using the createQueue method of the Core API to create a last
value queue, see createQueue.

4.9.4. Configuring Last Value Queues Using Address Wildcards

You can use address wildcards in the broker.xml configuration file to configure last value queues for a
set of addresses. An example of this configuration is shown below.

By default, the value of default-last-value-key is null.

When using address wildcards, you can also use the default last value key name. To do this, set the
default-last-value-queue parameter to true, without specifying a value for the last value key.

4.9.5. Example of Last Value Queue Behavior

This example shows the configuration and behavior of a last value queue.

In your broker.xml configuration file, suppose that you have added configuration that looks like the
following:

Queue queue = session.createQueue("my.destination.name?last-value=true");
Topic topic = session.createTopic("my.destination.name?last-value=true");

void createQueue(
SimpleString address,
RoutingType routingType,
SimpleString queueName,
SimpleString filter,
Boolean durable,
Boolean autoCreated,
int maxConsumers,
Boolean purgeOnNoConsumers,
Boolean exclusive,
Boolean lastValue
)

<address-setting match="lastValueQueue">
 <default-last-value-key>stock_ticker</default-last-value-key>
</address-setting>

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

37

http://activemq.apache.org/components/artemis/documentation/javadocs/javadoc-latest/org/apache/activemq/artemis/api/core/client/ClientSession.html#createQueue-org.apache.activemq.artemis.api.core.SimpleString-org.apache.activemq.artemis.api.core.RoutingType-org.apache.activemq.artemis.api.core.SimpleString-org.apache.activemq.artemis.api.core.SimpleString-boolean-boolean-int-boolean-java.lang.Boolean-java.lang.Boolean-

The configuration shown above creates a last value queue called prices1, with a last value key of
stock_ticker.

Now, suppose that a client sends two messages with the same last value property name to the prices1
queue, as shown below:

When two messages with the same last value property name arrive to the last value queue prices1, only
the latest message remains in the queue, with the first message being purged. At the command line, you
can enter the following lines to validate this behavior:

In this example, the output you see is the second message, since both messages use the last value
property and the second message was received in the queue after the first.

4.9.6. Creating Non-Destructive Consumers

When a consumer attaches to a queue, the normal behavior is that messages sent to that consumer are
acquired exclusively by the consumer. When the consumer acknowledges receipt of the messages, the
broker removes the messages from the queue.

An alternative way to configure a consumer is to configure it as a queue browser. In this case, the queue
still sends all messages to the consumer. However the browser does not prevent other consumers from
receiving the messages. In addition, the messages remain in the queue once the browser has consumed
the messages. A consumer configured as a browser is an instance of a non-destructive consumer.

In the case of a last value queue, configuring all consumers as non-destructive consumers ensures that
the queue always retains the most up-to-date value for every last value key. The examples in the
following sub-sections show how to configure a last value queue to ensure that all consumers are non-
destructive.

4.9.6.1. Configuring Non-destructive Consumers Using broker.xml

In the broker.xml configuration file, to create a last value queue, set the non-destructive parameter to
true. An example of this configuration is shown below.

<address name="my.address">
<multicast>
<queue name="prices1" last-value-key="stock_ticker"/>
</multicast>
</address>

TextMessage message = session.createTextMessage("First message with last value property set");
message.setStringProperty("stock_ticker", "36.83");
producer.send(message);

TextMessage message = session.createTextMessage("Second message with last value property
set");
message.setStringProperty("stock_ticker", "37.02");
producer.send(message);

TextMessage messageReceived = (TextMessage)messageConsumer.receive(5000);
System.out.format("Received message: %s\n", messageReceived.getText());

<address name="my.address">
 <multicast>

Red Hat AMQ 7.4 Configuring AMQ Broker

38

4.9.6.2. Creating Non-destructive Consumers Using the JMS Client

When using the JMS Client to auto-create destinations used by a consumer, you configure last value
queue behavior and non-destructive consumers as part of the address settings. An example of this
configuration is shown below.

4.9.6.3. Configuring Non-destructive Consumers Using Address Wildcards

You can use address wildcards in the broker.xml configuration file to configure last value queues for a
set of addresses. As part of this configuration, you can also specify that consumers are non destructive,
by setting default-non-destructive to true. An example of this configuration is shown below.

By default, the value of default-non-destructive is false.

4.9.6.4. Configuring Message Expiry Delay

For a queue other than a last value queue, if you have only non-destructive consumers, the broker never
deletes messages from the queue, causing the queue size to increase over time. To prevent this
unconstrained growth in queue size, use the expiry-delay parameter to specify when messages expire.

Specify a message expiry delay in the address-setting element of your broker.xml configuration file, as
shown in the following example:

When you add the preceding lines to your broker.xml configuration file, the broker sends expired
messages in exampleQueue to the expiry address expiryQueue.

expiry-delay defines the expiration time, in milliseconds, that will be applied to messages that are using
the default expiration time. By default, messages have an expiration time of 0, meaning that they don’t
expire. For messages with an expiration time greater than the default, expiry-delay has no effect.

For example, suppose you set expiry-delay on a queue to 10. If a message with the default expiration
time of 0 arrives in the queue, then the broker changes the expiration time of the message from 0 to 10.
However, if another message that is using an expiration time of 20 arrives in the queue, then its
expiration time remains unchanged. If you set expiry-delay to -1, this feature is disabled. By default,
expiry-delay is set to -1.

 <queue name="orders1" last-value-key="stock_ticker" non-destructive="true" />
 </multicast>
</address>

Queue queue = session.createQueue("my.destination.name?last-value-key=stock_ticker&non-
destructive=true");
Topic topic = session.createTopic("my.destination.name?last-value-key=stock_ticker&non-
destructive=true");

<address-setting match="lastValueQueue">
 <default-last-value-key>stock_ticker </default-last-value-key>
 <default-non-destructive>true</default-non-destructive>
</address-setting>

<address-setting match="exampleQueue">
 <expiry-delay>10</expiry-delay>
</address-setting>

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

39

4.10. LIMITING THE NUMBER OF CONSUMERS CONNECTED TO A
QUEUE

Limit the number of consumers connected to a particular queue by using the max-consumers attribute.
Create an exclusive consumer by setting max-consumers flag to 1. The default value is -1, which is sets
an unlimited number of consumers.

Procedure

1. Open BROKER_INSTANCE_DIR/etc/broker.xml and add the max-consumers attribute to
the desired queue. In the example below, only 20 consumers can connect to the queue q3 at
the same time.

2. (Optional) Create an exclusive consumer by setting max-consumers to 1, as in the example
below.

3. (Optional) Have an unlimited number of consumers by setting max-consumers to -1, as in the
example below.

<configuration ...>
 <core ...>
 ...
 <addresses>
 <address name="foo">
 <anycast>
 <queue name="q3" max-consumers="20"/>
 </anycast>
 </address>
 </addresses>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="foo">
 <anycast>
 <queue name="q3" max-consumers="1"/>
 </anycast>
 </address>
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <address name="foo">
 <anycast>
 <queue name="q3" max-consumers="-1"/>
 </anycast>
 </address>
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

40

4.11. EXCLUSIVE QUEUES

Exclusive queues are special queues that route all messages to only one consumer at a time. This is
useful when you want all messages to be processed serially by the same consumer. If there are multiple
consumers on a queue only one consumer will receive messages. If this consumer disconnects then
another consumer is chosen.

4.11.1. Configuring Exclusive Queues

You configure exclusive queues in the broker.xml configuration file something like this.

Or on auto-create when using the JMS Client by using address parameters when creating the
destination used by the consumer.

4.11.2. Setting the Exclusive Queue Default

The default value for default-exclusive-queue is false.

4.12. CONFIGURING A PREFIX TO CONNECT TO A SPECIFIC ROUTING
TYPE

Normally, if a message is received by an address that uses both anycast and multicast, one of the
anycast queues receive the message and all of the multicast queues. However, clients can specify a
special prefix when connecting to an address to specify whether to connect using anycast or multicast.
The prefixes are custom values that are designated using the anycastPrefix and multicastPrefix
parameters within the URL of an acceptor.

Configuring an Anycast Prefix

In BROKER_INSTANCE_DIR/etc/broker.xml, add the anycastPrefix to the URL of the desired
acceptor. In the example below, the acceptor is configured to use anycast:// for the
anycastPrefix. Client code can specify anycast://foo/ if the client needs to send a message to
only one of the anycast queues.

<configuration ...>
 <core ...>
 ...
 <address name="foo.bar">
 <multicast>
 <queue name="orders1" exclusive="true"/>
 </multicast>
 </address>
 </core>
</configuration>

Queue queue = session.createQueue("my.destination.name?exclusive=true");
Topic topic = session.createTopic("my.destination.name?exclusive=true");

<address-setting match="myQueue">
 <default-exclusive-queue>true</default-exclusive-queue>
</address-setting>

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

41

Configuring a Multicast Prefix

In BROKER_INSTANCE_DIR/etc/broker.xml, add the anycastPrefix to the URL of the desired
acceptor. In the example below, the acceptor is configured to use multicast:// for the
multicastPrefix. Client code can specify multicast://foo/ if the client needs the message sent
to only the multicast queues of the address.

4.13. PROTOCOL MANAGERS AND ADDRESSES

A protocol manager maps protocol-specific concepts down to the AMQ Broker address model
concepts: queues and routing types. For example, when a client sends a MQTT subscription packet with
the addresses /house/room1/lights and /house/room2/lights, the MQTT protocol manager
understands that the two addresses require multicast semantics. The protocol manager therefore first
looks to ensure that multicast is enabled for both addresses. If not, it attempts to dynamically create
them. If successful, the protocol manager then creates special subscription queues for each subscription
requested by the client.

Each protocol behaves slightly differently. The table below describes what typically happens when
subscribe frames to various types of queue are requested.

Table 4.2. Protocol Manager Actions

If the queue is of this
type…

The typical action for a protocol manager is to…

<configuration ...>
 <core ...>
 ...
 <acceptors>
 <!-- Acceptor for every supported protocol -->
 <acceptor name="artemis">tcp://0.0.0.0:61616?
protocols=AMQP;anycastPrefix=anycast://</acceptor>
 </acceptors>
 ...
 </core>
</configuration>

<configuration ...>
 <core ...>
 ...
 <acceptors>
 <!-- Acceptor for every supported protocol -->
 <acceptor name="artemis">tcp://0.0.0.0:61616?
protocols=AMQP;multicastPrefix=multicast://</acceptor>
 </acceptors>
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

42

Durable Subscription
Queue

Look for the appropriate address and ensures that multicast semantics is
enabled. It then creates a special subscription queue with the client ID and the
address as its name and multicast as its routing type.

The special name allows the protocol manager to quickly identify the required
client subscription queues should the client disconnect and reconnect at a later
date.

When the client unsubscribes the queue is deleted.

Temporary Subscription
Queue

Look for the appropriate address and ensures that multicast semantics is
enabled. It then creates a queue with a random (read UUID) name under this
address with multicast routing type.

When the client disconnects the queue is deleted.

Point-to-Point Queue Look for the appropriate address and ensures that anycast routing type is
enabled. If it is, it aims to locate a queue with the same name as the address. If it
does not exist, it looks for the first queue available. It this does not exist then it
automatically creates the queue (providing auto create is enabled). The queue
consumer is bound to this queue.

If the queue is auto created, it is automatically deleted once there are no
consumers and no messages in it.

If the queue is of this
type…

The typical action for a protocol manager is to…

4.14. DISABLING ADVISORY MESSAGES

By default, AMQ creates advisory messages about addresses and queues when an OpenWire client is
connected to the broker. Advisory messages are sent to internally managed addresses created by the
broker. These addresses appear on the AMQ Console within the same display as user-deployed
addresses and queues. Although they provide useful information, advisory messages can cause
unwanted consequences when the broker manages a large number of destinations. For example, the
messages might increase memory usage or strain connection resources. Also, the AMQ Console might
become cluttered when attempting to display all of the addresses created to send advisory messages.
To avoid these situations, use the supportAdvisory and suppressInternalManagementObjects
parameters to manage the advisory messages behavior on the broker side.

supportAdvisory: Set this option to true to enable creation of advisory messages or false to
disable them. The default value is true.

suppressInternalManagementObjects: Set this option to true to expose the advisory
messages to the management service such as JMX registry and AMQ Console, or false to not
expose them. The default value is true.

Use these parameters by editing the BROKER_INSTANCE_DIR/etc/broker.xml configuration file and
configure the parameters on openwire acceptors by using URLs. For example:

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

43

4.15. CONFIGURING ADDRESS SETTINGS

AMQ Broker has several configurable options that control aspects of how and when a message is
delivered, how many attempts should be made, and when the message expires. These configuration
options all exist within the <address-setting> configuration element. You can have AMQ Broker apply a
single <address-setting> to multiple destinations by using a wildcard syntax.

AMQ Broker Wildcard Syntax
AMQ Broker uses a specific syntax for representing wildcards in security settings, address settings, and
when creating consumers.

A wildcard expression contains words delimited by the character ‘.’.

The special characters ‘#’ and ‘*’ also have special meaning and can take the place of a word.

The character ‘#’ means 'match any sequence of zero or more words'. Use this at the end of
your expression.

The character ‘*’ means 'match a single word'. Use this anywhere within your expression.

Matching is not done character by character, but at each delimiter boundary. For example, an address-
setting looking to match queues using my in their name would not match with a queue named myqueue.

When more than one address-setting matches a queue, the broker will overlay configurations, using the
configuration of the least specific match as the baseline. Literal expressions are more specific than
wildcards, and * is more specific than #. For example, both my.queue and my.* match the queue
my.queue. In this case, the broker first applies the configuration found under my.*, since a wildcard
expression is less specific than a literal. Next, the broker overlays the configuration of the my.queue
address-setting, which will overwrite any configuration shared with my.*. Given the configuration below,
the queue my.queue would have max-delivery-attempts set to 3 and last-value-queue set to false.

The examples in the table below illustrate how wildcards are used to match a set of addresses.

Table 4.3. Wildcard Examples

Example Description

The default address-setting used in broker.xml. Matches every address.
You can continue to apply this catch-all, or you can add a new address-
setting for each address or group of addresses as the need arises.

<acceptor name="artemis">tcp://127.0.0.1:61616?
protocols=CORE,AMQP,OPENWIRE;supportAdvisory=false;suppressInternalManagementObjects=fals
e</acceptor>

<address-setting match="my.*">
 <max-delivery-attempts>3</max-delivery-attempts>
 <last-value-queue>true</last-value-queue>
</address-setting>
<address-setting match="my.queue">
 <last-value-queue>false</last-value-queue>
</address-setting>

Red Hat AMQ 7.4 Configuring AMQ Broker

44

1

2

3

4

5

news.europe.# Matches news.europe, news.europe.sport, news.europe.politics.fr,
but not news.usa or europe.

news.* Matches news.europe and news.usa, but not news.europe.sport.

news.*.sport Matches news.europe.sport and news.usa.sport, but not
news.europe.fr.sport.

Example Description

Configuring Wildcard Syntax
You can customize the syntax used for wildcard addresses by adding configuration to broker.xml.

Procedure

Edit broker.xml by adding a <wildcard-addresses> section to the configuration, as in the
example below.

Add wildcard-addresses beneath the core configuration element.

Set enabled to true to tell the broker to use your custom settings.

Provide a custom character to use as the delimiter instead of the default, which is ..

The character provided as the value for any-words is used to mean 'match any sequence of zero or
more words' and will replace the default #. Use this character at the end of your expression.

The character provided as the value for single-word is used to mean 'match a single word' and will
replaced the default *. Use this character anywhere within your expression.

4.16. CREATING AND DELETING QUEUES AND ADDRESSES
AUTOMATICALLY

You can configure AMQ Broker to automatically create addresses and queues, and to delete them after
they are no longer in use. This saves you from having to pre-configure each address before a client can
connect to it.

Automatic creation and deletion of queues and addresses is configured on a per address-setting basis.

<configuration>
 <core>
 ...
 <wildcard-addresses> 1
 <enabled>true</enabled> 2
 <delimiter>,</delimiter> 3
 <any-words>@</any-words> 4
 <single-word>$</single-word> 5
 </wildcard-addresses>
 ...
 </core>
</configuration>

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

45

Automatic creation and deletion of queues and addresses is configured on a per address-setting basis.
The configuration is applied to any address or queue that is a match for the address-setting. For more
information about how to use wildcard syntax to match addresses and queues to an address-setting
see Configuring Address Settings.

IMPORTANT

Disabling the automatic creation of queues and addresses can cause problems and is not
recommended. AMQ Broker must be able to auto-create addresses and queues by using
the activemq.# pattern. For an example see the example address setting.

The following table lists the configuration elements available when configuring an address-setting to
automatically create and delete its queues and addresses.

If you want the address-setting to… Add this configuration…

Create addresses when a client sends a message to or attempts to consume
a message from a queue mapped to an address that does not exist.

auto-create-addresses

Create a queue when a client sends a message to or attempts to consume a
message from a queue.

auto-create-queues

Delete an automatically created address when it no longer has any queues. auto-delete-addresses

Delete an automatically created queue when the queue has 0 consumers
and 0 messages.

auto-delete-queues

Use a specific routing type if the client does not specify one. default-address-routing-
type

Procedure

Edit the BROKER_INSTANCE_DIR/etc/broker.xml file and configure an address-setting for
automatic creation and deletion. The following example uses all of the configuration elements
mentioned in the previous table.

<configuration ...>
 <core ...>
 ...
 <address-settings>
 <address-setting match="activemq.#"> 1
 <auto-create-addresses>true</auto-create-addresses> 2
 <auto-delete-addresses>true</auto-delete-addresses> 3
 <auto-create-queues>true</auto-create-queues> 4
 <auto-delete-queues>true</auto-delete-queues> 5
 <default-address-routing-type>ANYCAST</default-address-routing-type> 6
 </address-setting>
 </address-settings>
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

46

1

2

3

4

5

6

The configuration included in this address-setting is applied to any address or queue that matches
the wildcard activemq.#. For more information on using wildcard syntax see AMQ Broker Wildcard
Syntax.

The broker creates an address that does not exist when a client requests it.

An automatically created address is deleted when it no longer has any queues associated with it.

The broker creates a queue that does not exist when a client requests it.

An automatically created queue is deleted when it no longer has any consumers or messages.

If the client does not specify a routing type when connecting, the broker uses ANYCAST when
delivering messages to an address. The default value is MULTICAST. See the introduction of this
chapter for more information about routing types.

CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS

47

1

2

CHAPTER 5. USERS AND ROLES
The broker supports a flexible role-based security model for applying security to queues based on their
respective addresses. It is important to understand that queues are bound to addresses either one-to-
one (for point-to-point style messaging) or many-to-one (for publish-subscribe style messaging).
When a message is sent to an address the server looks up the set of queues that are bound to that
address and routes the message to that set of queues.

In the default configuration (using PropertiesLoginModule), users and their assigned roles are defined
in three configuration files:

login.config

artemis-users.properties

artemis-roles.properties

Each of these files is discussed in more detail in the following sections.

The command-line interface allows users and roles to be added to these files via an interactive process.

NOTE

The artemis-users.properties file can contain hashed passwords for security.

5.1. ENABLING GUEST ACCESS

A user who does not have login credentials, or whose credentials fail validation, can be granted limited
access to the broker using a guest account.

A broker instance can be created with guest access enabled using the command-line switch; --allow-
anonymous (the converse of which is --require-login).

The guest account is configured in the login.config file.

Procedure

1. In the login.config file, define a name and role for the guest account as follows:

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule required
 org.apache.activemq.jaas.guest.user="guest" 1
 org.apache.activemq.jaas.guest.role="guest"; 2
};

Define the username assigned to anonymous users.

Define the role assigned to anonymous users.

The guest login module allows users without credentials (and, depending on how it is configured,
possibly also users with invalid credentials) to access the broker. It is implemented by
org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule.

It is common for the guest login module to be used in conjunction with another login module, such as a

Red Hat AMQ 7.4 Configuring AMQ Broker

48

1

2

3

4

It is common for the guest login module to be used in conjunction with another login module, such as a
properties login module. Read more about that use-case in the Section 6.2.5, “Using Multiple Login
Modules” section.

5.2. ADDING USERS

When basic username and password validation is required, use the Properties login module to define it.
This login module checks the user’s credentials against a set of local property files.

Users and their corresponding passwords are listed in the BROKER_INSTANCE_DIR/etc/artemis-
users.properties file. The available roles and the users who are assigned those roles are defined in the
BROKER_INSTANCE_DIR/etc/artemis-roles.properties file.

Both of these files are referenced in the BROKER_INSTANCE_DIR/etc/login.config file.

See the documentation from your Java vendor for more information on JAAS. For example, Oracle has a
tutorial on configuring login.config.

Example 5.1. login.config

activemq { 1
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule required 2 3
 org.apache.activemq.jaas.properties.user="artemis-users.properties"; 4
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";
};

An alias for a configuration. In this section the alias used is activemq. Substitute another in your
environment.

The implementation class
(org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule).

A flag which indicates whether the success of the LoginModule is `required, requisite,
sufficient, or optional.

A list of configuration options specific to the login module implementation.

Below is an explanation for each of the success states listed in the previous example:

Required

The LoginModule is required to succeed and authentication continues to proceed down the
LoginModule list regardless of success or failure.

Requisite

The LoginModule is required to succeed. A failure immediately returns control to the application and
authentication does not proceed down the LoginModule list.

Sufficient

The LoginModule is not required to succeed. If it is successful, control returns to the application and
authentication does not proceed further. If it fails, the authentication attempt proceeds down the
LoginModule list.

Optional

The LoginModule is not required to succeed. Authentication continues down the LoginModules list

CHAPTER 5. USERS AND ROLES

49

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

1

2

3

1

2

The LoginModule is not required to succeed. Authentication continues down the LoginModules list
regardless of success or failure.

More information on these flags and the authentication process is available in the Oracle
documentation.

Example 5.2. artemis-users.properties

user1=secret 1
user2=swordfish 2
user3=myPassword 3

User1 has a password of secret.

User2 has a password of swordfish.

User3 has a password of myPassword.

Example 5.3. artemis-roles.properties

admin=user1,user2 1
developer=user3 2

User1 and user2 belong to the admin role.

User3 belongs to the developer role.

NOTE

If necessary, add your security domain alias (in this instance, activemq) to the
bootstrap.xml file as shown below:

5.3. SETTING PERMISSIONS

Permissions are defined against the queues based on their address via the <security-setting> element
in broker.xml. Multiple instances of <security-setting> can be defined in <security-settings>. An exact
match on the address can be used or a wildcard match can be used using the wildcard characters # and *.

Different permissions can be given to the set of queues which match the address. Those permissions are:

Table 5.1. Permissions

To allow users to… Use this parameter…

Create addresses createAddress

<jaas-security domain="activemq"/>

Red Hat AMQ 7.4 Configuring AMQ Broker

50

https://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html

1

2

Delete addresses deleteAddress

Create a durable queue under matching addresses createDurableQueue

Delete a durable queue under matching addresses deleteDurableQueue

Create a non-durable queue under matching
addresses

createNonDurableQueue

Delete a non-durable queue under matching
addresses

deleteNonDurableQueue

Send a message to matching addresses send

Consume a message from a queue bound to
matching addresses

consume

Invoke management operations by sending
management messages to the management address

manage

Browse a queue bound to the matching address browse

To allow users to… Use this parameter…

For each permission, a list of roles who are granted that permission is specified. If the user has any of
those roles, they are granted that permission for that set of addresses.

5.3.1. Configuring Message Production for a Single Address

To define sending permissions for a single address, a configuration similar to the example shown below is
used:

Messages sent to this queue get the nominated permissions.

The permissions applied to messages in the specified queue.

In the above example, members of the producer role have send permissions on queue1.

5.3.2. Configuring Message Consumption for a Single Address

To define consuming permissions for a single address, a configuration similar to the example shown
below is used:

<security-settings>
 <security-setting match="queue1"> 1
 <permission type="send" roles="producer"/> 2
 </security-setting>
</security-settings>

CHAPTER 5. USERS AND ROLES

51

1

2

1

Messages sent to this queue get the nominated permissions.

The permissions applied to messages in the specified queue.

In the above example, members of the consumer role have consume permissions on queue1.

5.3.3. Configuring Complete Access on All Addresses

To allow complete access to addresses and and queues, a configuration similar to the example shown
below is used.

A wildcard setting to apply to all queues.

In the above configuration, all permissions are granted to members of the guest role on all queues. This
can be be useful in a development scenario where anonymous authentication was configured to assign
the guest role to every user.

For information about more complex use cases see Configuring Multiple Permissions for Addresses .

5.3.4. Configuring a Queue with a User

The queue is assigned the username of the connecting client when it is auto-created. This is exposed as
metadata on the queue. It is exposed by JMX and in the consoleThe queue is assigned the username of
the connecting client when it is auto-created. This is exposed as metadata on the queue. It is exposed by
JMX and in the console

You can configure a user on a pre-defined queue in broker.xml

To define a user for a queue, use a configuration similar to the example shown below:

<security-settings>
 <security-setting match="queue1"> 1
 <permission type="consume" roles="consumer"/> 2
 </security-setting>
</security-settings>

<security-settings>
 <security-setting match="#"> 1
 <permission type="createDurableQueue" roles="guest"/>
 <permission type="deleteDurableQueue" roles="guest"/>
 <permission type="createNonDurableQueue" roles="guest"/>
 <permission type="deleteNonDurableQueue" roles="guest"/>
 <permission type="createAddress" roles="guest"/>
 <permission type="deleteAddress" roles="guest"/>
 <permission type="send" roles="guest"/>
 <permission type="browse" roles="guest"/>
 <permission type="consume" roles="guest"/>
 <permission type="manage" roles="guest"/>
 </security-setting>
</security-settings>

<address name="ExempleQueue">
 <anycast>

Red Hat AMQ 7.4 Configuring AMQ Broker

52

1

NOTE

Configuring a user on a queue does not change any of the security semantics for that
queue, it is only used for metadata on that queue.

5.4. SETTING ROLE BASED ACCESS CONTROL

Role-based access control (RBAC) is used to restrict access to the attributes and methods of MBeans.
RBAC enables administrators to grant the correct level of access to all users like web console,
management interface, core messages, and so on based on their role. RBAC is configured using the
authorization element in the BROKER_INSTANCE_DIR/etc/management.xml configuration file.
Within the authorization element, you can configure Whitelist, default-access, and role-access sub-
elements.

Prerequisites

You must first set up roles and add users to configure RBAC.

5.4.1. Configuring Whitelist Element for Bypassing the Authentication

A whitelist is a set of pre-approved domains or MBeans that do not require user authentication. You can
provide a whitelist of domains or list of MBeans or both that must bypass the authentication. For
example, you can use whitelist element for any MBeans that are needed by the AMQ Console to run.

Procedure

1. Open the broker BROKER_INSTANCE_DIR/etc/management.xml configuration file.

2. Search for the whitelist element and edit the configuration:

MBean of this domain will bypass the authentication.

In this example, any MBean with the domain hawtio will be allowed access without
authentication. You can also use wildcard entries like <entry domain="hawtio" key="type=*"/>
for the MBean properties to match.

3. Start or restart the broker by entering the following command:

On Linux: BROKER_INSTANCE_DIR/bin/artemis run

On Windows: BROKER_INSTANCE_DIR\bin\artemis-service.exe start

5.4.2. Configuring Authentication Based on Roles

The role-access method defines how roles are mapped to particular MBeans and their attributes and
methods.

 <queue name="ExampleQueue" user="admin" />
 </anycast>
</address>

<whitelist>
 <entry domain="hawtio"/> 1
</whitelist>

CHAPTER 5. USERS AND ROLES

53

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#pass_auth

1

2

Procedure

1. Open the BROKER_INSTANCE_DIR/etc/management.xml configuration file.

2. Search for the role-access element and edit the configuration:

A match will be applied to any MBean attribute that has the domain name
org.apache.activemq.apache.

Specified roles can invoke the listed methods.

IMPORTANT

=== You must ensure that the order of the individual lines in the configuration is
as per the template. Any change in the line indentation leads to changes in the
semantics of the assigned privileges. For example, if you move the line <access
method="*" roles="amq,guest"/> inside the <role-access> tag from last
position to the first, it changes the semantics of applied privileges. If used as the
first line, it means grant access to everything to these roles with the exception of
following specific cases. If used as the last line, it means grant access to everything
to these roles (default). ===

Here, the specific tasks like list*, get*, set*, is and * are specified using the access method. The
invoked method is matched against the methods listed in the configuration. The user is
assigned the roles given for the best matching method. For example, if you try the invoke a
method called listMessages on an MBean with the org.apache.activemq.artemis domain, then
it would match the access with the method of list. You can also explicitly configure this by using
the full method name like the following:

<access method="listMessages" roles="view,update,amq"/>.

3. Start or restart the broker by entering the following command:

On Linux: BROKER_INSTANCE_DIR/bin/artemis run

On Windows: BROKER_INSTANCE_DIR\bin\artemis-service.exe start

You can also match specific MBeans within a domain by adding a key attribute that matches an MBean
property. For example,

<role-access>
 <match domain="org.apache.activemq.artemis"> 1
 <access method="list*" roles="view,update,amq"/> 2
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>
 <access method="set*" roles="update,amq"/>
 <access method="*" roles="amq"/>
 </match>
</role-access>

<match domain="org.apache.activemq.artemis" key="subcomponent=queues">
 <access method="list*" roles="view,update,amq"/>
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>

Red Hat AMQ 7.4 Configuring AMQ Broker

54

Access to MBean attributes are converted to method calls, so these are controlled using the list*, set*,
get*, and is* syntax. The * (wildcard) syntax is used as a catch-all for every other method that is not
listed in the configuration.

NOTE

The default-access element is mainly the catch-all for every method call that is not
handled using the role-access configuration. The default-access and role-access have
the same match element semantics.

 <access method="set*" roles="update,amq"/>
 <access method="*" roles="amq"/>
</match>

CHAPTER 5. USERS AND ROLES

55

CHAPTER 6. SECURITY
This chapter covers the various security options available to administrators, and how they are
configured. Administrators can use the information provided in this chapter to tailor the functions of the
AMQ Broker security subsystems to their needs.

6.1. ACCESSING THE AMQ CONSOLE

Starting with AMQ Broker 7.1.0, you can access the AMQ Console only from the local host by default.
You must modify the configuration in BROKER_INSTANCE_DIR/etc/jolokia-access.xml to enable
remote access. For more information, see Securing AMQ Console and AMQ Broker Connections .

6.2. SECURING NETWORK CONNECTIONS

There are two basic use cases for transport layer security (TLS):

Server-side (or one-way); where only the server presents a certificate. This is the most common
use case.

Client-side (or two-way); where both the server and the client present certificates. This is
sometimes called mutual authentication.

6.2.1. Configuring Server-Side Certificates

One-way TLS is configured in the URL of the relevant acceptor in broker.xml. Here is a very basic
acceptor configuration which does not use TLS:

Here is that same acceptor configured to use one-way TLS:

This acceptor uses three additional parameters - sslEnabled, keyStorePath, and keyStorePassword.
These, at least, are required to enable one-way TLS.

6.2.2. Configuring Client-Side Certificates

Two-way TLS uses the same sslEnabled, keyStorePath, and keyStorePassword properties as one-
way TLS, but it adds needClientAuth to tell the client it should present a certificate of its own. For
example:

This configuration assumes that the client’s certificate is signed by a trusted provider. If the client’s
certificate is not signed by a trusted provider (it is self-signed, for example) then the server needs to
import the client’s certificate into a trust-store and configure the acceptor with trustStorePath and
trustStorePassword. For example:

<acceptor name="artemis">tcp://0.0.0.0:61616</acceptor>

<acceptor name="artemis">tcp://0.0.0.0:61616?
sslEnabled=true;keyStorePath=../etc/broker.keystore;keyStorePassword=1234!</acceptor>

<acceptor name="artemis">tcp://0.0.0.0:61616?
sslEnabled=true;keyStorePath=../etc/broker.keystore;keyStorePassword=1234!;needClientAuth=true
</acceptor>

Red Hat AMQ 7.4 Configuring AMQ Broker

56

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_amq_console#securing_amq_console_and_amq_broker_connections

NOTE

Client-side Considerations

AMQ Broker supports multiple protocols, and each protocol and platform has different
ways to specify TLS parameters. However, in the case of a client using the Core protocol
(a bridge) the TLS parameters are configured on the connector URL much like on the
broker’s acceptor.

TLS Configuration Details
Below are configuration details to be aware of:

Option Note

sslEnabled Must be true to enable TLS. Default is false.

keyStorePath When used on an acceptor: This is the path to the
TLS key store on the server which holds the server’s
certificates (whether self-signed or signed by an
authority).

When used on a connector: This is the path to the
client-side TLS key store which holds the client
certificates. This is only relevant for a connector if
you are using two-way TLS (that is, mutual
authentication). Although this value is configured on
the server, it is downloaded and used by the client. If
the client needs to use a different path from that set
on the server then it can override the server-side
setting by either using the customary
javax.net.ssl.keyStore system property or the
AMQ-specific
org.apache.activemq.ssl.keyStore system
property. The AMQ-specific system property is
useful if another component on client is already
making use of the standard, Java system property.

<acceptor name="artemis">tcp://0.0.0.0:61616?
sslEnabled=true;keyStorePath=../etc/broker.keystore;keyStorePassword=1234!;needClientAuth=true;tru
stStorePath=../etc/client.truststore;trustStorePassword=5678!</acceptor>

CHAPTER 6. SECURITY

57

keyStorePassword When used on an acceptor: This is the password for
the server-side KeyStore.

When used on a connector: This is the password
for the client-side KeyStore. This is only relevant for
a connector if you are using two-way TLS (that is,
mutual authentication). Although this value can be
configured on the server, it is downloaded and used
by the client. If the client needs to use a different
password from that set on the server then it can
override the server-side setting by either using the
customary javax.net.ssl.keyStorePassword
system property or the AMQ-specific
org.apache.activemq.ssl.keyStorePassword
system property. The AMQ-specific system property
is useful if another component on client is already
making use of the standard, Java system property.

trustStorePath When used on an acceptor: This is the path to the
server-side TLS key store that holds the keys of all
the clients that the server trusts. This is only relevant
for an acceptor if you are using two-way TLS
(mutual authentication).

When used on a connector: This is the path to the
client-side TLS key store which holds the public keys
of all the servers that the client trusts. Although this
value can be configured on the server, it is
downloaded and used by the client. If the client
needs to use a different path from that set on the
server then it can override the server-side setting by
either using the customary
javax.net.ssl.trustStore system property or the
AMQ-specific
org.apache.activemq.ssl.trustStore system
property. The AMQ-specific system property is
useful if another component on client is already
making use of the standard, Java system property.

Option Note

Red Hat AMQ 7.4 Configuring AMQ Broker

58

trustStorePassword When used on an acceptor: This is the password for
the server-side trust store. This is only relevant for an
acceptor if you are using two-way TLS (that is,
mutual authentication).

When used on a connector: This is the password
for the client-side TrustStore. Although this value can
be configured on the server, it is downloaded and
used by the client. If the client needs to use a
different password from that set on the server then it
can override the server-side setting by either using
the customary
javax.net.ssl.trustStorePassword system
property or the AMQ-specific
org.apache.activemq.ssl.trustStorePassword
system property. The AMQ-specific system property
is useful if another component on client is already
making use of the standard, Java system property.

enabledCipherSuites Whether used on an acceptor or connector this is
a comma-separated list of cipher suites used for TLS
communication. The default value is null which
means the JVM’s default is used.

enabledProtocols Whether used on an acceptor or connector this is
a comma-separated list of protocols used for TLS
communication. The default value is null which
means the JVM’s default is used.

needClientAuth This property is only for an acceptor. It indicates to
a client connecting to this acceptor that two-way
TLS is required. Valid values are true or false.
Default is false.

Option Note

6.2.3. Adding Certificate-based Authentication

The JAAS certificate authentication login module requires TLS to be in use and clients must be
configured with their own certificates. In this scenario, authentication is actually performed during the
TLS handshake, not directly by the JAAS certificate authentication plug-in.

The role of the plug-in is as follows:

To further constrain the set of acceptable users, because only the user Distinguished Names
(DNs) explicitly listed in the relevant properties file are eligible to be authenticated.

To associate a list of groups with the received user identity, facilitating integration with
authorization.

To require the presence of an incoming certificate (by default, the TLS layer is configured to
treat the presence of a client certificate as optional).

The JAAS certificate login module stores a collection of certificate DNs in a pair of flat files. The files

CHAPTER 6. SECURITY

59

1

The JAAS certificate login module stores a collection of certificate DNs in a pair of flat files. The files
associate a username and a list of group IDs with each Distinguished Name.

The certificate login module is implemented by the
org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule class.

Prerequisites

Certificate login configured in login.config file.

A valid artemis-users.properties file.

A valid artemis-roles.properties file.

The Subject DNs from the user certificate(s)

Procedure

1. Obtain the Subject DNs from user certificates

a. Export the certificate from the KeyStore file into a temporary file. Substitute your required
values into the following command:

keytool -export -file __FILENAME__ -alias broker-localhost -keystore broker.ks -
storepass __PASSWORD__

b. Print the contents of the exported certificate:

keytool -printcert -file __FILENAME__

The output is similar to that shown below:

Owner: CN=localhost, OU=broker, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
1

Issuer: CN=localhost, OU=broker, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
Serial number: 4537c82e
Valid from: Thu Oct 19 19:47:10 BST 2006 until: Wed Jan 17 18:47:10 GMT 2007
Certificate fingerprints:
 MD5: 3F:6C:0C:89:A8:80:29:CC:F5:2D:DA:5C:D7:3F:AB:37
 SHA1: F0:79:0D:04:38:5A:46:CE:86:E1:8A:20:1F:7B:AB:3A:46:E4:34:5C

The subject DN. The format used to enter the subject DN depends on your platform.
The string above could also be represented as;

Owner: `CN=localhost,\ OU=broker,\ O=Unknown,\ L=Unknown,\ ST=Unknown,\
C=Unknown`

2. Configuring certificate-based authentication

a. Open the login.config file and reference the user and roles properties files.

b. Open the files declared in the previous step and supply the required information:

Users and their corresponding DNs should be listed in the artemis-users.properties file.

Red Hat AMQ 7.4 Configuring AMQ Broker

60

1

2

3

4

1

Users and their corresponding DNs should be listed in the artemis-users.properties file.
The available roles and the users who hold those roles are defined in the artemis-
roles.properties file.

Examples of the syntax of these files is shown below.

c. Ensure your security domain alias (in this instance, activemq) is referenced in bootstrap.xml
as shown below:

Example Configuration

The following example shows how to configure certificate login module in the login.config file:

Example 6.1. login.config

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule 1
 debug=true 2
 org.apache.activemq.jaas.textfiledn.user="artemis-users.properties" 3
 org.apache.activemq.jaas.textfiledn.role="artemis-roles.properties"; 4
};

Configure the JAAS realm. This example uses a single
org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule

Toggle debugging on (true) or off (false). Default is false.

Define the file used to store user data (relative to the directory containing the login.config
file).

Define the file used to store role data (relative to the directory containing the login.config file).

The artemis-users.properties file consists of a list of properties with the user=StringifiedSubjectDN
(where the string encoding is specified by RFC 2253):

Example 6.2. artemis-users.properties

system=CN=system,O=Progress,C=US 1
user=CN=humble user,O=Progress,C=US
guest=CN=anon,O=Progress,C=DE

The user named system is mapped to the CN=system,O=Progress,C=US subject DN.

The artemis-roles.properties file follows the pattern of role=user where user can be either a single
user or a comma-separated list of users:

Example 6.3. artemis-roles.properties

<jaas-security domain="activemq"/>

CHAPTER 6. SECURITY

61

1

admins=system
users=system,user 1
guests=guest

Multiple users can be included as a comma-separated entry.

6.2.4. Adding Certificate-based Authentication for AMQP Clients

Use the SASL EXTERNAL mechanism configuration parameter to configure your AQMP client for
certificate-based authentication when connecting to a broker.

The broker authenticates the TSL/SSL certificate of your AMQP client in the same way that it
authenticates any certificate:

The broker reads the TLS/SSL certificate of the client to obtain an identity from the
certificate’s subject.

The certificate subject is mapped to a broker identity by the certificate login module. The
broker then authorizes the mapped user based on their roles.

Prerequisites
Before you can configure your AMQP clients to use certificate-based authentication, you must
complete the following tasks:

Configure a server-side SSL/TLS certificate .

Configure a client-side SSL/TLS certificate .

Configure the broker to use certificate-based authentication .

Procedure
To enable your AMQP client to use certificate-based authentication, add configuration parameters to
the URI that the client uses to connect to a broker.

1. Open the resource containing the URI for editing:

amqps://localhost:5500

2. Add the parameter sslEnabled=true to enable TSL/SSL for the connection:

amqps://localhost:5500?sslEnabled=true

3. Add parameters related to the TrustStore and KeyStore of the client to enable the exchange of
TSL/SSL certificates with the broker:

amqps://localhost:5500?
sslEnabled=true&trustStorePath=TRUST_STORE_PATH&trustStorePassword=TRUST_ST
ORE_PASSWORD&keyStorePath=KEY_STORE_PATH&keyStorePassword=KEY_STORE_
PASSWORD

4. Add the parameter saslMechanisms=EXTERNAL to request that the broker authenticate the
client by using the identity found in its TSL/SSL certificate:

Red Hat AMQ 7.4 Configuring AMQ Broker

62

amqps://localhost:5500?
sslEnabled=true&trustStorePath=TRUST_STORE_PATH&trustStorePassword=TRUST_ST
ORE_PASSWORD&keyStorePath=KEY_STORE_PATH&keyStorePassword=KEY_STORE_
PASSWORD&saslMechanisms=EXTERNAL

Additional Resources

For more information about certificate-based authentication in AMQ Broker, see Section 6.2.3,
“Adding Certificate-based Authentication”.

For more information about configuring your AMQP client, go to the Red Hat Customer Portal
for product documentation specific to your client.

6.2.5. Using Multiple Login Modules

It is possible to combine login modules to accommodate more complex use cases. The most common
reason to combine login modules is to support authentication for both anonymous users and users who
submit credentials.

Prerequisites

The prerequisites for different authentication combinations differ based on the methods being
implemented. Prerequisites for the most common multiple login scenario are:

A valid artemis-users.properties file

A valid artemis-roles.properties file

A login.config file configured for anonymous access

Procedure

1. Edit the login.config file to add entries for the desired authentication modules.

2. Set the parameters in each module entry as required for your environment.

3. Ensure your security domain alias (in this instance, activemq) is referenced in bootstrap.xml as
shown below:

Example 6.4. bootstrap.xml

Example Configuration

The following examples illustrate the cascading nature of multiple login configurations:

Example 6.5. login.config

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule sufficient 1
 debug=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";

<jaas-security domain="activemq"/>

CHAPTER 6. SECURITY

63

https://access.redhat.com/products/red-hat-amq

1

2

1

2

3

 org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule sufficient 2
 debug=true
 org.apache.activemq.jaas.guest.user="guest"
 org.apache.activemq.jaas.guest.role="restricted";
};

Password authentications module is activated if the user supplies credentials

Guest authentication module is activated if the user supplies no credentials or the credentials
supplied are incorrect.

The following example shows how to configure a JAAS login entry for the use case where only those
users with no credentials are logged in as guests. Note that the order of the login modules is reversed
and the flag attached to the properties login module is changed to requisite.

Example 6.6. login.config

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule sufficient 1
 debug=true
 credentialsInvalidate=true 2
 org.apache.activemq.jaas.guest.user="guest"
 org.apache.activemq.jaas.guest.role="guests";

 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule requisite 3
 debug=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";
};

The guest authentication module is activated if no login credentials are supplied.

The credentialsInvalidate option must be set to true in the configuration of the guest login
module.

The password login module is activated if credentials are supplied and the credentials must be
valid.

6.2.6. Configure Multiple Security Settings for Address Groups and Sub-groups

Below is an example security block from a broker.xml file. The various configuration options based on
this example are explained in this section.

<security-setting match="globalqueues.europe.#"> 1
 <permission type="createDurableQueue" roles="admin"/> 2
 <permission type="deleteDurableQueue" roles="admin"/> 3
 <permission type="createNonDurableQueue" roles="admin, guest, europe-users"/> 4
 <permission type="deleteNonDurableQueue" roles="admin, guest, europe-users"/> 5

Red Hat AMQ 7.4 Configuring AMQ Broker

64

1

2 3

4 5

6 7

 <permission type="send" roles="admin, europe-users"/> 6
 <permission type="consume" roles="admin, europe-users"/> 7
</security-setting>

The ‘#’ character signifies "any sequence of words". Words are delimited by the ‘.’ character. For a
full description of the wildcard syntax, see AMQ Broker Wildcard Syntax . The above security block
applies to any address that starts with the string globalqueues.europe.

Only users who have the admin role can create or delete durable queues bound to an address that
starts with the string globalqueues.europe.

Any users with the roles admin, guest, or europe-users can create or delete temporary queues
bound to an address that starts with the string globalqueues.europe.

Any users with the roles admin or europe-users can send messages to these addresses or
consume messages from queues bound to an address that starts with the string
globalqueues.europe.

The mapping between a user and what roles they have is handled by the security manager. AMQ Broker
ships with a user manager that reads user credentials from a file on disk, and can also plug into JAAS or
JBoss Application Server security.

There can be multiple security-setting elements in each XML file, or none, depending on requirements.
When the broker.xml file contains multiple security-setting elements that can apply to a set of
addresses, the most specific match takes precedence.

Let us look at an example of that, here’s another security-setting block:

<security-setting match="globalqueues.europe.orders.#">
 <permission type="send" roles="europe-users"/>
 <permission type="consume" roles="europe-users"/>
</security-setting>

In this security-setting block the match globalqueues.europe.orders.# is more specific than the
previous match 'globalqueues.europe.\#'. So any addresses which match
'globalqueues.europe.orders.\#' will take their security settings only from the latter security-setting
block.

Note that settings are not inherited from the former block. All the settings will be taken from the more
specific matching block, so for the address globalqueues.europe.orders.plastics the only permissions
that exist are send and consume for the role europe-users. The permissions createDurableQueue,
deleteDurableQueue, createNonDurableQueue, deleteNonDurableQueue are not inherited from the
other security-setting block.

By not inheriting permissions, you can effectively deny permissions in more specific security-setting
blocks by simply not specifying them. Otherwise it would not be possible to deny permissions in sub-
groups of addresses.

6.2.7. Setting Resource Limits

Sometimes it is helpful to set particular limits on what certain users can do beyond the normal security
settings related to authorization and authentication. For example, one can limit how many connections a
user can create or how many queues a user can create.

CHAPTER 6. SECURITY

65

6.2.7.1. Configuring Connection and Queue Limits

Here is an example of the XML used to set resource limits:

Unlike the match from address-setting, this match does not use any wildcard syntax. It is a simple 1:1
mapping of the limits to a user.

max-connections. Defines how many connections the matched user can make to the broker.
The default is -1, which means there is no limit.

max-queues. Defines how many queues the matched user can create. The default is -1, which
means there is no limit.

6.3. INTEGRATING WITH LDAP

6.3.1. Using LDAP for Authentication

The LDAP login module enables authentication and authorization by checking the incoming credentials
against user data stored in a central X.500 directory server. It is implemented by
org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule.

Procedure

1. Open the BROKER_INSTANCE_DIR/etc/broker.xml file and add the following lines:

2. Open the BROKER_INSTANCE_DIR/etc/login.config file.

3. Locate and edit the appropriate alias block with the appropriate parameters (see the examples
included below).

4. Start or restart the broker (service or process).

NOTE

<resource-limit-settings>
 <resource-limit-setting match="myUser">
 <max-connections>5</max-connections>
 <max-queues>3</max-queues>
 </resource-limit-setting>
</resource-limit-settings>

<security-settings>
 <security-setting match="#">
 <permission type="createDurableQueue" roles="user"/>
 <permission type="deleteDurableQueue" roles="user"/>
 <permission type="createNonDurableQueue" roles="user"/>
 <permission type="deleteNonDurableQueue" roles="user"/>
 <permission type="send" roles="user"/>
 <permission type="consume" roles="user"/>
 </security-setting>
</security-settings>

Red Hat AMQ 7.4 Configuring AMQ Broker

66

NOTE

Apache DS uses the OID portion of DN path; however, Microsoft AD does not, and
instead uses the CN portion.
For example; The DN path oid=testuser,dc=example,dc=com would be used in Apache
DS, while cn=testuser,dc=example,dc=com would be used in Microsoft AD.

Example 6.7. Example Apache DS login.config configuration

Example 6.8. Example Microsoft Active Directory login.config Configuration

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule required
 debug=true 1
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory 2
 connectionURL="ldap://localhost:10389" 3
 connectionUsername="uid=admin,ou=system" 4
 connectionPassword=secret 5
 connectionProtocol=s 6
 authentication=simple 7
 userBase="dc=example,dc=com" 8
 userSearchMatching="(uid={0})" 9
 userSearchSubtree=true 10
 userRoleName= 11
 roleBase="dc=example,dc=com" 12
 roleName=cn 13
 roleSearchMatching="(member={0})" 14
 roleSearchSubtree=true 15
 ;
};

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule required
 debug=true
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connectionURL="LDAP://localhost:389"
 connectionUsername="CN=Administrator,CN=Users,DC=example,DC=com"
 connectionPassword=redhat.123
 connectionProtocol=s
 authentication=simple
 userBase="dc=example,dc=com"
 userSearchMatching="(CN={0})"
 userSearchSubtree=true
 roleBase="dc=example,dc=com"
 roleName=cn
 roleSearchMatching="(member={0})"
 roleSearchSubtree=true
 ;
};

CHAPTER 6. SECURITY

67

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Toggle debugging on (true) or off (false). Default is false.

The initialContextFactory parameter must always be set to com.sun.jndi.ldap.LdapCtxFactory

Specify the location of the directory server using an ldap URL, ldap://Host:Port. One can optionally
qualify this URL, by adding a forward slash, /, followed by the DN of a particular node in the
directory tree. The default port of Apache DS is 10389 while for Microsoft AD the default is 389.

The DN of the user that opens the connection to the directory server. For example,
uid=admin,ou=system. Directory servers generally require clients to present username/password
credentials in order to open a connection.

The password that matches the DN from connectionUsername. In the directory server, in the DIT,
the password is normally stored as a userPassword attribute in the corresponding directory entry.

Any value is supported but is effectively unused. This option must be set explicitly because it has no
default value.

Specify the authentication method used when binding to the LDAP server. This parameter can be
set to either simple (which requires a username and password) or none (which allows anonymous
access).

Select a particular subtree of the DIT to search for user entries. The subtree is specified by a DN,
which specifies the base node of the subtree. For example, by setting this option to
ou=User,ou=ActiveMQ,ou=system, the search for user entries is restricted to the subtree
beneath the ou=User,ou=ActiveMQ,ou=system node.

Specify an LDAP search filter, which is applied to the subtree selected by userBase. See the
Search Matching section below for more information.

Specify the search depth for user entries, relative to the node specified by userBase. This option is
a boolean. A setting of false indicates it tries to match one of the child entries of the userBase
node (maps to javax.naming.directory.SearchControls.ONELEVEL_SCOPE), while true
indicates it tries to match any entry belonging to the subtree of the userBase node (maps to
javax.naming.directory.SearchControls.SUBTREE_SCOPE).

Specify the name of the multi-valued attribute of the user entry that contains a list of role names
for the user (where the role names are interpreted as group names by the broker’s authorization
plug-in). If this option is omitted, no role names are extracted from the user entry.

If role data is stored directly in the directory server, one can use a combination of role options
(roleBase, roleSearchMatching, roleSearchSubtree, and roleName) as an alternative to (or in
addition to) specifying the userRoleName option. This option selects a particular subtree of the
DIT to search for role/group entries. The subtree is specified by a DN, which specifies the base
node of the subtree. For example, by setting this option to ou=Group,ou=ActiveMQ,ou=system,
the search for role/group entries is restricted to the subtree beneath the
ou=Group,ou=ActiveMQ,ou=system node.

Specify the attribute type of the role entry that contains the name of the role/group (such as C, O,
OU, etc.). If this option is omitted the role search feature is effectively disabled.

Specify an LDAP search filter, which is applied to the subtree selected by roleBase. See the Search
Matching section below for more information.

Specify the search depth for role entries, relative to the node specified by roleBase. If set to false
(which is the default) the search tries to match one of the child entries of the roleBase node (maps
to javax.naming.directory.SearchControls.ONELEVEL_SCOPE). If true it tries to match any

Red Hat AMQ 7.4 Configuring AMQ Broker

68

entry belonging to the subtree of the roleBase node (maps to
javax.naming.directory.SearchControls.SUBTREE_SCOPE).

Search Matching

userSearchMatching

Before passing to the LDAP search operation, the string value provided in this configuration
parameter is subjected to string substitution, as implemented by the java.text.MessageFormat
class.
This means that the special string, {0}, is substituted by the username, as extracted from the
incoming client credentials. After substitution, the string is interpreted as an LDAP search filter (the
syntax is defined by the IETF standard RFC 2254).

For example, if this option is set to (uid={0}) and the received username is jdoe, the search filter
becomes (uid=jdoe) after string substitution.

If the resulting search filter is applied to the subtree selected by the user base,
ou=User,ou=ActiveMQ,ou=system, it would match the entry,
uid=jdoe,ou=User,ou=ActiveMQ,ou=system.

A short introduction to the search filter syntax is available from Oracle’s JNDI tutorial

roleSearchMatching

This works in a similar manner to the userSearchMatching option, except that it supports two
substitution strings.
The substitution string {0} substitutes the full DN of the matched user entry (that is, the result of the
user search). For example, for the user, jdoe, the substituted string could be
uid=jdoe,ou=User,ou=ActiveMQ,ou=system.

The substitution string {1} substitutes the received username. For example, jdoe.

If this option is set to (member=uid={1}) and the received username is jdoe, the search filter
becomes (member=uid=jdoe) after string substitution (assuming ApacheDS search filter syntax).

If the resulting search filter is applied to the subtree selected by the role base,
ou=Group,ou=ActiveMQ,ou=system, it matches all role entries that have a member attribute equal
to uid=jdoe (the value of a member attribute is a DN).

This option must always be set, even if role searching is disabled, because it has no default value. If
OpenLDAP is used, the syntax of the search filter is (member:=uid=jdoe).

6.3.2. Configure LDAP Authorization

The LegacyLDAPSecuritySettingPlugin security-setting-plugin will read the security information that
was previously handled by LDAPAuthorizationMap and the cachedLDAPAuthorizationMap in Apache
A-MQ 6 and turn it into corresponding security settings where possible.

The security implementations of the two brokers do not match perfectly so some translation must occur
to achieve near equivalent functionality.

Here is an example of the plugin’s configuration:

<security-setting-plugin class-

CHAPTER 6. SECURITY

69

http://download.oracle.com/javase/jndi/tutorial/basics/directory/filter.html
http://activemq.apache.org/security.html
http://activemq.apache.org/cached-ldap-authorization-module.html

1

2

3

4

5

6

7

class-name. The implementation is
org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin.

initialContextFactory. The initial context factory used to connect to LDAP. It must always be set
to com.sun.jndi.ldap.LdapCtxFactory (that is, the default value).

connectionURL. Specifies the location of the directory server using an LDAP URL,
ldap://Host:Port. You can optionally qualify this URL, by adding a forward slash, /, followed by the
DN of a particular node in the directory tree. For example, ldap://ldapserver:10389/ou=system.
The default is ldap://localhost:1024.

connectionUsername. The DN of the user that opens the connection to the directory server. For
example, uid=admin,ou=system. Directory servers generally require clients to present
username/password credentials in order to open a connection.

connectionPassword. The password that matches the DN from connectionUsername. In the
directory server, in the DIT, the password is normally stored as a userPassword attribute in the
corresponding directory entry.

connectionProtocol - any value is supported but is effectively unused. In the future, this option
may allow one to select the Secure Socket Layer (SSL) for the connection to the directory server.
This option must be set explicitly because it has no default value.

authentication. Specifies the authentication method used when binding to the LDAP server. Can
take either of the values, simple (username and password, the default value) or none
(anonymous). Note: Simple Authentication and Security Layer (SASL) authentication is currently
not supported.

Other possible settings not shown in the example above are:

destinationBase

Specifies the DN of the node whose children provide the permissions for all destinations. In this case
the DN is a literal value (that is, no string substitution is performed on the property value). For
example, a typical value of this property is ou=destinations,o=ActiveMQ,ou=system (that is, the
default value).

filter

Specifies an LDAP search filter, which is used when looking up the permissions for any kind of
destination. The search filter attempts to match one of the children or descendants of the queue or
topic node. The default value is (cn=*).

roleAttribute

Specifies an attribute of the node matched by filter whose value is the DN of a role. Default value is
uniqueMember.

adminPermissionValue

name="org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin"> 1
 <setting name="initialContextFactory" value="com.sun.jndi.ldap.LdapCtxFactory"/> 2
 <setting name="connectionURL" value="ldap://localhost:1024"/> 3
 <setting name="connectionUsername" value="uid=admin,ou=system"/> 4
 <setting name="connectionPassword" value="secret"/> 5
 <setting name="connectionProtocol" value="s"/> 6
 <setting name="authentication" value="simple"/> 7
</security-setting-plugin>

Red Hat AMQ 7.4 Configuring AMQ Broker

70

Specifies a value that matches the admin permission. The default value is admin.

readPermissionValue

Specifies a value that matches the read permission. The default value is read.

writePermissionValue

Specifies a value that matches the write permission. The default value is write.

enableListener

Whether or not to enable a listener that will automatically receive updates made in the LDAP server
and update the broker’s authorization configuration in real-time. The default value is true.

The name of the queue or topic defined in LDAP will serve as the "match" for the security-setting, the
permission value will be mapped from the A-MQ 6 type to the AMQ 7 type, and the role will be mapped
as-is. Since the name of the queue or topic coming from LDAP will server as the "match" for the
security-setting the security-setting may not be applied as expected to JMS destinations since AMQ 7
always prefixes JMS destinations with "jms.queue." or "jms.topic." as necessary.

A-MQ 6 only has three permission types - read, write, and admin. These permission types are described
on the ActiveMQ website; http://activemq.apache.org/security.html.

However, as described previously, AMQ 7 has 10 permission types:

createAddress

deleteAddress

createDurableQueue

deleteDurableQueue

createNonDurableQueue

deleteNonDurableQueue

send

consume

manage

browse

The list below shows how the old types are mapped to the new types:

read - consume, browse

write - send

admin - createDurableQueue, deleteDurableQueue, createNonDurableQueue,
deleteNonDurableQueue, createAddress, deleteAddress

As mentioned, there are a few places where a translation was performed to achieve some equivalence:

This mapping does not include the AMQ 7 manage permission type since there is no type
analogous for that in A-MQ 6.

The admin permission in A-MQ 6 relates to whether or not the broker will auto-create a

CHAPTER 6. SECURITY

71

http://activemq.apache.org/security.html

destination if it does not exist and the user sends a message to it. AMQ 7 automatically allows
the automatic creation of a destination if the user has permission to send message to it.
Therefore, the plugin will map the admin permission to the four aforementioned permissions in
AMQ 7.

6.3.3. Encrypting the Password in the login.config File

Because organizations frequently securely store data with LDAP, the login.config file can contain the
configuration required for the broker to communicate with the organization’s LDAP server. This
configuration file usually includes a password to log in to the LDAP server, so this password needs to be
masked.

Prerequisites

Ensure that you have modified the login-config file to add the required properties as described
in Section 6.3.2, “Configure LDAP Authorization” .

Procedure

The following procedure explains how to mask the value of the connectionPassword found in the
BROKER_INSTANCE_DIR/etc/login.config file.

1. From a command prompt, use the mask utility to encrypt the password:

$ BROKER_INSTANCE_DIR/bin/artemis mask PASSWORD

The encrypted password is displayed on the screen:

result: 3a34fd21b82bf2a822fa49a8d8fa115d

2. Open the BROKER_INSTANCE_DIR/etc/login.config file and locate the
connectionPassword:

connectionPassword = PASSWORD

3. Replace the plain text password with the encrypted value that you created in Step 1:

connectionPassword = 3a34fd21b82bf2a822fa49a8d8fa115d

4. Wrap the encrypted value with the identifier ENC():

connectionPassword = ENC(3a34fd21b82bf2a822fa49a8d8fa115d)

The login.config file now contains a masked password. Because the password is wrapped with the ENC()
identifier, AMQ Broker decrypts it before it is used.

Additional Resources

For more information about the configuration files included with AMQ Broker, see AMQ Broker
configuration files and locations.

6.4. INTEGRATING WITH KERBEROS

When sending and receiving messages with the AMQP protocol, clients can send Kerberos security

Red Hat AMQ 7.4 Configuring AMQ Broker

72

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#broker-configuration-files-location-configuring

credentials that AMQ Broker authenticates by using the GSSAPI mechanism from the Simple
Authentication and Security Layer (SASL) framework. Kerberos credentials can also be used for
authorization by mapping an authenticated user to an assigned role configured in an LDAP directory or
text-based properties file.

You can use SASL in tandem with Transport Layer Sockets (TLS) to secure your messaging
applications. SASL provides user authentication, and TLS provides data integrity.

You must deploy and configure a Kerberos infrastructure before AMQ Broker can authenticate and
authorize Kerberos credentials. See your operating system documentation for more information about
deploying Kerberos. If your operating system is RHEL 7, for example, see the chapter Using Kerberos. A
Kerberos Authentication Overview is available for Windows as well.

NOTE

You must deploy and configure a Kerberos infrastructure before AMQ Broker can
authenticate and authorize Kerberos credentials.

NOTE

Users of an Oracle or IBM JDK should install the Java Cryptography Extension (JCE).
See the documentation from the Oracle version of the JCE or the IBM version of the
JCE for more information.

6.4.1. Enabling Network Connections to Use Kerberos

AMQ Broker integrates with Kerberos security credentials by using the GSSAPI mechanism from the
Simple Authentication and Security Layer (SASL) framework. To use Kerberos in AMQ Broker, each
acceptor authenticating or authorizing clients that use a Kerberos credential must be configured to
used the GSSAPI mechanism.

Prerequisites
You must deploy and configure a Kerberos infrastructure before AMQ Broker can authenticate and
authorize Kerberos credentials.

Procedure

1. Stop the broker.

a. If the broker is running on Linux:

BROKER_INSTANCE_DIR/bin/artemis stop

b. If the broker is running on Windows as a service:

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

2. Open the broker.xml configuration file located under BROKER_INSTANCE_DIR/etc

3. Add the name-value pair saslMechanisms=GSSAPI to the query string of the URL for the
acceptor, as shown in the following example:

<acceptor name="amqp">
 tcp://0.0.0.0:5672?protocols=AMQP;saslMechanisms=GSSAPI
</acceptor>

CHAPTER 6. SECURITY

73

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/using_kerberos
https://technet.microsoft.com/en-us/library/hh831553(v=ws.11).aspx
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.install.doc/doc/bi_install_download_jce.html

The result is an acceptor that uses the GSSAPI mechanism when authenticating Kerberos
credentials.

4. (Optional) The PLAIN and ANONYMOUS SASL mechanisms are also supported. If you want to
use these other mechanisms in addition to GSSAPI, add them to the list of saslMechanisms.
Be sure to separate each value with a comma. In the following example, the name-value pair
saslMechanisms=GSSAPI is modified to add the value PLAIN.

<acceptor name="amqp">
 tcp://0.0.0.0:5672?protocols=AMQP;saslMechanisms=GSSAPI,PLAIN
</acceptor>

The result is an acceptor that uses both the GSSAPI and PLAIN SASL mechanisms.

5. Start the broker.

a. If the broker is running on Linux:

BROKER_INSTANCE_DIR/bin/artemis run

b. If the broker is running on Windows as a service:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

Related Information
See About Acceptors for more information about acceptors.

6.4.2. Authenticating Clients with Kerberos Credentials

AMQ Broker supports Kerberos authentication of AMQP connections that use the GSSAPI mechanism
from the Simple Authentication and Security Layer (SASL) framework.

A broker acquires its Kerberos acceptor credentials by using the Java Authentication and Authorization
Service (JAAS). The JAAS library included with your Java installation is packaged with a login module,
Krb5LoginModule, that authenticates Kerberos credentials. See the documentation from your Java
vendor for more information about their Krb5LoginModule. For example, Oracle provides information
about their Krb5LoginModule login module as part of their Java 8 documentation .

Prerequisites
You must enable the GSSAPI mechanism of an acceptor before it can authenticate AMQP connections
using Kerberos security credentials.

Procedure

1. Stop the broker.

a. If the broker is running on Linux:

BROKER_INSTANCE_DIR/bin/artemis stop

b. If the broker is running on Windows as a service:

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

2. Open the login.config configuration file located under BROKER_INSTANCE_DIR/etc.

Red Hat AMQ 7.4 Configuring AMQ Broker

74

https://docs.oracle.com/javase/8/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html

1

2

3

4

3. Add a configuration scope named amqp-sasl-gssapi to login.config. The following example
shows configuration for the Krb5LoginModule found in Oracle and OpenJDK versions of the
JDK.

NOTE

Verify the fully qualified class name of the Krb5LoginModule and its available
options by referring to the documentation from your Java vendor.

amqp-sasl-gssapi { 1
 com.sun.security.auth.module.Krb5LoginModule required 2
 isInitiator=false
 storeKey=true
 useKeyTab=true 3
 principal="amqp/my_broker_host@example.com" 4
 debug=true;
};

By default, the GSSAPI mechanism implementation on the broker uses a JAAS
configuration scope named amqp-sasl-gssapi to obtain its Kerberos acceptor credentials.

This version of the Krb5LoginModule is provided by the Oracle and OpenJDK versions of
the JDK. Verify the fully qualified class name of the Krb5LoginModule and its available
options by referring to the documentation from your Java vendor.

The Krb5LoginModule is configured to use a Kerberos keytab when authenticating a
principal. Keytabs are generated using tooling from your Kerberos environment. See the
documentation from your vendor for details about generating Kerberos keytabs.

The Principal is set to amqp/my_broker_host@example.com. This value must
correspond to the service principal created in your Kerberos environment. See the
documentation from your vendor for details about creating service principals.

4. Start the broker.

a. If the broker is running on Linux:

BROKER_INSTANCE_DIR/bin/artemis run

b. If the broker is running on Windows as a service:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

Related Information
See Network Connections and Kerberos, for more information about enabling the GSSAPI mechanism in
AMQ Broker.

6.4.2.1. Using an Alternative Configuration Scope

You can specify an alternative configuration scope by adding the parameter saslLoginConfigScope to
the URL of an AMQP acceptor. In the following configuration example, the parameter
saslLoginConfigScope is given the value alternative-sasl-gssapi. The result is an acceptor that uses

CHAPTER 6. SECURITY

75

the alternative scope named alternative-sasl-gssapi, which was declared in the
BROKER_INSTANCE_DIR/etc/login.config configuration file.

<acceptor name="amqp">
tcp://0.0.0.0:5672?
protocols=AMQP;saslMechanisms=GSSAPI,PLAIN;saslLoginConfigScope=alternative-sasl-gssapi`
</acceptor>

6.4.3. Authorizing Clients with Kerberos Credentials

AMQ Broker is packaged with an implementation of the JAAS Krb5LoginModule for use by other
security modules when mapping roles. The module adds a Kerberos-authenticated Peer Principal to the
Subject’s principal set as an AMQ Broker UserPrincipal. The credentials can then be passed to a
PropertiesLoginModule or LDAPLoginModule, which maps the Kerberos-authenticated Peer Principal
to an AMQ Broker role.

NOTE

The Kerberos Peer Principal does not exist as a broker user, only as a role member.

Prerequisites
You must enable the GSSAPI mechanism of an acceptor before it can authorize AMQP connections
using Kerberos security credentials.

Procedure

1. Stop the broker.

a. If the broker is running on Linux:

BROKER_INSTANCE_DIR/bin/artemis stop

b. If the broker is running on Windows as a service:

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

2. Open the login.config configuration file located under BROKER_INSTANCE_DIR/etc.

3. Add configuration for the AMQ Broker Krb5LoginModule and the LDAPLoginModule.

NOTE

Verify the configuration options by referring to the documentation from your
LDAP provider.

org.apache.activemq.artemis.spi.core.security.jaas.Krb5LoginModule required
 ; 1
org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule optional
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connectionURL="ldap://localhost:1024"
 authentication=GSSAPI
 saslLoginConfigScope=broker-sasl-gssapi
 connectionProtocol=s

Red Hat AMQ 7.4 Configuring AMQ Broker

76

1

 userBase="ou=users,dc=example,dc=com"
 userSearchMatching="(krb5PrincipalName={0})"
 userSearchSubtree=true
 authenticateUser=false
 roleBase="ou=system"
 roleName=cn
 roleSearchMatching="(member={0})"
 roleSearchSubtree=false
 ;

This version of the Krb5LoginModule is distributed with AMQ Broker and transforms the
Kerberos identity into a broker identity that can be used by other AMQ modules for role
mapping.

4. Start the broker.

a. If the broker is running on Linux:

BROKER_INSTANCE_DIR/bin/artemis run

b. If the broker is running on Windows as a service:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

Related Information
See Network Connections and Kerberos for more information about enabling the GSSAPI mechanism in
AMQ Broker.

See Users and Roles for more information about the PropertiesLoginModule.

See Integrating with LDAP for more information about the LDAPLoginModule.

6.5. ENCRYPTING PASSWORDS IN CONFIGURATION FILES

By default, AMQ Broker stores all passwords in configuration files as plain text. Be sure to secure all
configuration files with the correct permissions to prevent unauthorized access. You can also encrypt, or
mask, the plain text passwords to prevent unwanted viewers from reading them.

A masked password is the encrypted version of a plain text password. The encrypted version is
generated by the mask command-line utility provided by AMQ Broker. For more information about the
mask utility, see the command-line help documentation:

$ BROKER_INSTANCE_DIR/bin/artemis help mask

To mask a password, replace its plain text value with the encrypted one. The masked password must be
wrapped by the identifier ENC() so that it is decrypted when the actual value is needed.

In the following example, the configuration file BROKER_INSTANCE_DIR/etc/bootstrap.xml contains
masked passwords for the attributes keyStorePassword and trustStorePassword.

Example with bootstrap.xml

<web bind="https://localhost:8443" path="web"

CHAPTER 6. SECURITY

77

You can use masked passwords only with the following configuration files.

Supported Configuration Files

broker.xml

bootstrap.xml

management.xml

artemis-users.properties

login.config (for use with the LDAPLoginModule)

Configuration files are found at BROKER_INSTANCE_DIR/etc.

NOTE

artemis-users.properties supports only masked passwords that have been hashed.
When a user is created upon broker creation, artemis-users.properties contains hashed
passwords by default. The default PropertiesLoginModule will not decode the
passwords in artemis-users.properties file but will instead hash the input and compare
the two hashed values for password verification. Changing the hashed password to a
masked password does not allow access to the AMQ Console.

broker.xml, bootstrap.xml, management.xml, and login.config support passwords that
are masked but not hashed.

Procedure

As an example, the following procedure explains how to mask the value of the cluster-password
configuration element found in the file BROKER_INSTANCE_DIR/etc/broker.xml.

1. From a command prompt, use the mask utility to encrypt a password:

$ BROKER_INSTANCE_DIR/bin/artemis mask PASSWORD

The encrypted password is displayed on the screen:

result: 3a34fd21b82bf2a822fa49a8d8fa115d

2. Open the configuration file containing the plain text password you want to mask:

3. Replace the plain text password with the encrypted value that you created in Step 1:

 keyStorePassword="ENC(-342e71445830a32f95220e791dd51e82)"
 trustStorePassword="ENC(32f94e9a68c45d89d962ee7dc68cb9d1)">
 <app url="activemq-branding" war="activemq-branding.war"/>
</web>

<cluster-password>
 PASSWORD
</cluster-password>

Red Hat AMQ 7.4 Configuring AMQ Broker

78

4. Wrap the encrypted value with the identifier ENC():

The configuration file now contains a masked password. Because the password is wrapped with the
ENC() identifier, AMQ Broker decrypts it before it is used.

Additional Resources

For more information about the configuration files included with AMQ Broker, see AMQ Broker
configuration files and locations.

6.6. TRACKING MESSAGES FROM VALIDATED USERS

To enable tracking and logging the origins of messages (for example, for security-auditing purposes),
you can use the _AMQ_VALIDATED_USER message key.

In the broker.xml configuration file, if the populate-validated-user option is set to true, then the broker
adds the name of the validated user to the message using the _AMQ_VALIDATED_USER key. For JMS
and STOMP clients, this message key maps to the JMSXUserID key.

NOTE

The broker cannot add the validated user name to a message produced by an AMQP
JMS client. Modifying the properties of an AMQP message after it has been sent by a
client is a violation of the AMQP protocol.

For a user authenticated based on his/her SSL certificate, the validated user name populated by the
broker is the name to which the certificate’s Distinguished Name (DN) maps.

In the broker.xml configuration file, if security-enabled is false and populate-validated-user is true,
then the broker populates whatever user name, if any, that the client provides. The populate-validated-
user option is false by default.

You can configure the broker to reject a message that doesn’t have a user name (that is, the
JMSXUserID key) already populated by the client when it sends the message. You might find this option
useful for AMQP clients, because the broker cannot populate the validated user name itself for
messages sent by these clients.

To configure the broker to reject messages without JMSXUserID set by the client, add the following
configuration to the broker.xml configuration file:

By default, reject-empty-validated-user is set to false.

6.7. DISABLING SECURITY

<cluster-password>
 3a34fd21b82bf2a822fa49a8d8fa115d
</cluster-password>

<cluster-password>
 ENC(3a34fd21b82bf2a822fa49a8d8fa115d)
</cluster-password>

<reject-empty-validated-user>true</reject-empty-validated-user>

CHAPTER 6. SECURITY

79

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#broker-configuration-files-location-configuring

Security is enabled by default. Broker security can be enabled or disabled by setting the <security-
enabled> parameter in the <core> element of the broker.xml configuration file.

Procedure

1. Open the broker.xml file.

2. Locate the <security-enabled> parameter.

3. Edit the entry as needed:

Set the parameter to false to disable security:

4. If necessary, change the security-invalidation-interval entry (which periodically invalidates
secure logins) to a different value (in ms). The default is 10000.

<security-enabled>false</security-enabled>

Red Hat AMQ 7.4 Configuring AMQ Broker

80

CHAPTER 7. PERSISTING MESSAGES
This chapter describes how persistence works with AMQ Broker and how to configure it.

The broker ships with two persistence options:

1. Journal-based
The default. A highly performant option that writes messages to journals on the file system.

2. JDBC-based
Uses the broker’s JDBC Store to persist messages to a database of your choice.

Alternatively, you can also configure the broker for zero persistence.

The broker uses a different solution for persisting large messages outside the message journal. See
Working with Large Messages for more information. The broker can also be configured to page
messages to disk in low memory situations. See Paging Messages for more information.

NOTE

For current information regarding which databases and network file systems are
supported see Red Hat AMQ Supported Configurations on the Red Hat Customer Portal.

7.1. ABOUT JOURNAL-BASED PERSISTENCE

A broker’s journal is a set of append only files on disk. Each file is pre-created to a fixed size and initially
filled with padding. As messaging operations are performed on the broker, records are appended to end
of the journal. Appending records allows the broker to minimize disk head movement and random access
operations, which are typically the slowest operation on a disk. When one journal file is full, the broker
uses a new one.

The journal file size is configurable, minimizing the number of disk cylinders used by each file. Modern
disk topologies are complex, however, and the broker cannot control which cylinder(s) the file is
mapped to. Journal file sizing therefore is not an exact science.

Other persistence-related features include:

A sophisticated file garbage collection algorithm that determines whether a particular journal
file is still in use. If not, the file can be reclaimed and re-used.

A compaction algorithm that removes dead space from the journal and that compresses the
data. This results in the journal using fewer files on disk.

Support for local transactions.

Support for XA transactions when using AMQ JMS clients.

The majority of the journal is written in Java. However, the interaction with the actual file system is
abstracted, so you can use different, pluggable implementations. AMQ Broker ships with two
implementations:

Java NIO.
Uses the standard Java NIO to interface with the file system. This provides extremely good
performance and runs on any platform with a Java 6 or later runtime.

Linux Asynchronous IO

CHAPTER 7. PERSISTING MESSAGES

81

https://access.redhat.com/articles/2791941
https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html

1

2

3

Uses a thin native wrapper to talk to the Linux asynchronous IO library (AIO). With AIO, the
broker is called back after the data has made it to disk, avoiding explicit syncs altogether. By
default the broker tries to use an AIO journal, and falls back to using NIO if AIO is not available.

Using AIO typically provides even better performance than using Java NIO. For instructions on
how to install libaio see Using an AIO journal .

NOTE

For current information regarding which network file systems are supported see Red Hat
AMQ Supported Configurations on the Red Hat Customer Portal.

7.1.1. Using AIO

The Java NIO journal is highly performant, but if you are running the broker using Linux Kernel 2.6 or
later, Red Hat recommends using the AIO journal for better persistence performance. It is not possible
to use the AIO journal with other operating systems or earlier versions of the Linux kernel.

To use the AIO journal you must install the libaio if it is not already installed.

Procedure

Use the yum command to install libaio, as in the example below:

yum install libaio

7.2. CONFIGURING JOURNAL-BASED PERSISTENCE

Persistence configuration is maintained in the file BROKER_INSTANCE_DIR/etc/broker.xml. The
broker’s default configuration uses journal based persistence and includes the elements shown below.

Set to true to use the file based journal for persistence.

The type of journal to use. If set to ASYNCIO, the broker first attempts to use AIO and falls back to
NIO if ASYNCIO is not found.

The file system location of the bindings journal. The default setting is relative to
BROKER_INSTANCE_DIR.

<configuration>
 <core>
 ...
 <persistence-enabled>true</persistence-enabled> 1
 <journal-type>ASYNCIO</journal-type> 2
 <bindings-directory>./data/bindings</bindings-directory> 3
 <journal-directory>./data/journal</journal-directory> 4
 <journal-datasync>true</journal-datasync> 5
 <journal-min-files>2</journal-min-files> 6
 <journal-pool-files>-1</journal-pool-files> 7
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

82

https://access.redhat.com/articles/2791941

4

5

6

7

The file system location of the messaging journal. The default setting is relative to
BROKER_INSTANCE_DIR.

Set to true to use fdatasync to confirm writes to the disk.

The number of journal files to pre-create when the broker starts.

The number of files to keep after reclaiming un-used files. The default value, -1, means that no
files are deleted during clean up.

7.2.1. The Message Journal

The message journal stores all message-related data, including the messages themselves and duplicate
ID caches. The files on this journal are prefixed as activemq-data. Each file has a amq extension and a
default size of 10485760 bytes. The location of the message journal is set using the journal-directory
configuration element. The default value is BROKER_INSTANCE_DIR/data/journal. The default
configuration includes other elements related to the messaging journal:

journal-min-files
The number of journal files to pre-create when the broker starts. The default is 2.

journal-pool-files
The number of files to keep after reclaiming un-used files. The default value, -1, means that no
files are deleted once created by the broker. However, the system cannot grow infinitely, so you
are required to use paging for destinations that are unbounded in this way. See the chapter on
Paging Messages for more information.

There are several other configuration elements available for the messaging journal. See the appendix for
a full list.

7.2.2. The Bindings Journal

The bindings journal is used to store bindings-related data, such as the set of queues deployed on the
server and their attributes. It also stores data such as ID sequence counters.

The bindings journal always uses NIO because it is typically low throughput when compared to the
message journal. Files on this journal are prefixed with activemq-bindings. Each file has a bindings
extension and a default size of 1048576 bytes.

Use the following configuration elements in BROKER_INSTANCE_DIR/etc/broker.xml to configure
the bindings journal.

bindings-directory
This is the directory in which the bindings journal lives. The default value is
BROKER_INSTANCE_DIR/data/bindings.

create-bindings-dir
If this is set to true then the bindings directory is automatically created at the location specified
in bindings-directory if it does not already exist. The default value is true

7.2.3. The JMS Journal

The JMS journal stores all JMS-related data, including JMS Queues, Topics, and Connection Factories,
as well as any JNDI bindings for these resources. Also, any JMS Resources created via the management
API is persisted to this journal, but any resources configured via configuration files are not. The JMS

CHAPTER 7. PERSISTING MESSAGES

83

1

2

Journal is only created if JMS is being used.

The files on this journal are prefixed as activemq-jms. Each file has a jms extension and and a default
size of 1048576 bytes.

The JMS journal shares its configuration with the bindings journal.

7.2.4. Compacting Journal Files

AMQ Broker includes a compaction algorithm that removes dead space from the journal and
compresses its data so that it takes up less space on disk. There are two criteria used to determine when
to start compaction. After both criteria are met, the compaction process parses the journal and
removes all dead records. Consequently, the journal comprises fewer files. The criteria are:

The number of files created for the journal.

The percentage of live data in the journal’s files.

You configure both criteria in BROKER_INSTANCE_DIR/etc/broker.xml.

Procedure

To configure the criteria for the compaction process, add the following two elements, as in the
example below.

The minimum number of files created before compaction begins. That is, the compacting
algorithm does not start until you have at least journal-compact-min-files. The default
value is 10. Setting this to 0 disables compaction, which is dangerous because the journal
could grow indefinitely.

The percentage of live data in the journal’s files. When less than this percentage is
considered live data, compacting begins. Remember that compacting does not begin until
you also have at least journal-compact-min-files data files on the journal. The default
value is 30.

Compacting Journals Using the CLI
You can also use the command-line interface (CLI) to compact journals.

Procedure

1. As the owner of the BROKER_INSTANCE_DIR, stop the broker. In the example below, the user
amq-broker was created during the installation of AMQ Broker.

<configuration>
 <core>
 ...
 <journal-compact-min-files>15</journal-compact-min-files> 1
 <journal-compact-percentage>25</journal-compact-percentage> 2
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

84

su - amq-broker
cd __BROKER_INSTANCE_DIR__/bin
$./artemis stop

2. (Optional) Run the following CLI command to get a full list of parameters for the data tool. Note
that by default, the tool uses settings found in BROKER_INSTANCE_DIR/etc/broker.xml.

$./artemis help data compact.

3. Run the following CLI command to compact the data.

$./artemis data compact.

4. After the tool has successfully compacted the data, restart the broker.

$./artemis run

Related Information

AMQ Broker includes a number of CLI commands for managing your journal files. See command-line
Tools in the Appendix for more information.

7.2.5. Disabling Disk Write Cache

Most disks contain hardware write caches. A write cache can increase the apparent performance of the
disk because writes are lazily written to the disk later. By default many systems ship with disk write cache
enabled. This means that even after syncing from the operating system there is no guarantee the data
has actually made it to disk, so if a failure occurs, critical data can be lost.

Some more expensive disks have non-volatile or battery-backed write caches that do not necessarily
lose data in event of failure, but you should test them. If your disk does not have such features, you
should ensure that write cache is disabled. Be aware that disabling disk write cache can negatively affect
performance.

Procedure

On Linux, manage your disk’s write cache settings using the tools hdparm (for IDE disks) or
sdparm or sginfo (for SDSI/SATA disks).

On Windows, manage the cache setting by right-clicking the disk and clicking Properties.

7.3. CONFIGURING JDBC PERSISTENCE

The JDBC persistence store uses a JDBC connection to store messages and bindings data in database
tables. The data in the tables is encoded using AMQ Broker journal encoding.

NOTE

For current information regarding which databases are supported see Red Hat AMQ
Supported Configurations on the Red Hat Customer Portal.

Procedure

1. Add the appropriate JDBC client libraries to the broker runtime. You can do this by adding the

CHAPTER 7. PERSISTING MESSAGES

85

https://access.redhat.com/articles/2791941

1

2

3

4

5

6

7

8

1. Add the appropriate JDBC client libraries to the broker runtime. You can do this by adding the
relevant jars to the BROKER_INSTANCE_DIR/lib directory.

2. Create a store element in your BROKER_INSTANCE_DIR/etc/broker.xml configuration file
under the core element, as in the example below.

jdbc-connection-url is the full JDBC connection URL for your database server. The
connection url should include all configuration parameters and the database name.

jdbc-user is the encrypted user name for your database server. For more information
about encrypting user names and passwords for use in configuration files, see Encrypting
Passwords in Configuration Files.

jdbc-password is the encrypted password for your database server. For more information
about encrypting user names and passwords for use in configuration files, see Encrypting
Passwords in Configuration Files.

bindings-table-name is the name of the table in which the bindings data is stored.
Specifying this table name allows you to share a single database between multiple servers,
without interference.

message-table-name is the name of the table in which the bindings data is stored.

large-message-table-name is the name of the table in which messages and related data
are persisted.

page-store-table-name is the name of the table in which paged store directory
information is stored.

jdbc-driver-class-name is the fully-qualified class name of the desired database driver.

7.4. CONFIGURING ZERO PERSISTENCE

In some situations, zero persistence is sometimes required for a messaging system. Configuring the

<configuration>
 <core>
 <store>
 <database-store>
 <jdbc-connection-url>jdbc:derby:data/derby/database-store;create=true</jdbc-
connection-url> 1
 <jdbc-user>ENC(5493dd76567ee5ec269d11823973462f)</jdbc-user> 2
 <jdbc-password>ENC(56a0db3b71043054269d11823973462f)</jdbc-password> 3
 <bindings-table-name>BINDINGS_TABLE</bindings-table-name> 4
 <message-table-name>MESSAGE_TABLE</message-table-name> 5
 <large-message-table-name>LARGE_MESSAGES_TABLE</large-message-table-
name> 6
 <page-store-table-name>PAGE_STORE_TABLE</page-store-table-name> 7
 <jdbc-driver-class-name>org.apache.derby.jdbc.EmbeddedDriver</jdbc-driver-class-
name> 8
 </database-store>
 </store>
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

86

In some situations, zero persistence is sometimes required for a messaging system. Configuring the
broker to perform zero persistence is straightforward. Set the parameter persistence-enabled in
BROKER_INSTANCE_DIR/etc/broker.xml to false.

Note that if you set this parameter to false, then zero persistence occurs. That means no bindings data,
message data, large message data, duplicate ID caches or paging data is persisted.

CHAPTER 7. PERSISTING MESSAGES

87

CHAPTER 8. PAGING MESSAGES
AMQ Broker transparently supports huge queues containing millions of messages while the server is
running with limited memory.

In such a situation it’s not possible to store all of the queues in memory at any one time, so AMQ Broker
transparently pages messages into and out of memory as they are needed, thus allowing massive
queues with a low memory footprint.

Paging is done individually per address. AMQ Broker will start paging messages to disk when the size of
all messages in memory for an address exceeds a configured maximum size. For more information about
addresses, see Addresses, Queues, and Topics .

By default, AMQ Broker does not page messages. You must explicitly configure paging to enable it.

See the paging example located under INSTALL_DIR/examples/standard/ for a working example
showing how to use paging with AMQ Broker.

8.1. ABOUT PAGE FILES

Messages are stored per address on the file system. Each address has an individual folder where
messages are stored in multiple files (page files). Each file will contain messages up to a max configured
size (page-size-bytes). The system will navigate on the files as needed, and it will remove the page file
as soon as all the messages are acknowledged up to that point.

Browsers will read through the page-cursor system.

Consumers with selectors will also navigate through the page-files and ignore messages that don’t
match the criteria.

NOTE

When you have a queue, and consumers filtering the queue with a very restrictive selector
you may get into a situation where you won’t be able to read more data from paging until
you consume messages from the queue.

Example: in one consumer you make a selector as 'color="red"' but you only have one
color red one million messages after blue, you won’t be able to consume red until you
consume blue ones. This is different to browsing as we will "browse" the entire queue
looking for messages and while we "depage" messages while feeding the queue.

8.2. CONFIGURING THE PAGING DIRECTORY LOCATION

To configure the location of the paging directory, add the paging-directory configuration element to
the broker’s main configuration file BROKER_INSTANCE_DIR/etc/broker.xml, as in the example below.

<configuration ...>
 ...
 <core ...>
 <paging-directory>/somewhere/paging-directory</paging-directory>
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

88

AMQ Broker will create one directory for each address being paged under the configured location.

8.3. CONFIGURING AN ADDRESS FOR PAGING

Configuration for paging is done at the address level by adding elements to a specific address-settings,
as in the example below.

In the example above, when messages sent to the address jms.paged.queue exceed 104857600 bytes
in memory, the broker will begin paging.

NOTE

Paging is done individually per address. If you specify max-size-bytes for an address,
each matching address does not exceed the maximum size that you specified. It DOES
NOT mean that the total overall size of all matching addresses is limited to max-size-
bytes.

This is the list of available parameters on the address settings.

Table 8.1. Paging Configuration Elements

Element Name Description Default

max-size-bytes The maximum size in memory allowed for the address
before the broker enters page mode.

-1 (disabled).

When this parameter is
disabled, the broker uses
global-max-size as a
memory-usage limit for
paging instead. For
more information, see
Section 8.4,
“Configuring a Global
Paging Size”.

page-size-bytes The size of each page file used on the paging system. 10MiB (10 * 1024 *
1024 bytes)

<address-settings>
 <address-setting match="jms.paged.queue">
 <max-size-bytes>104857600</max-size-bytes>
 <page-size-bytes>10485760</page-size-bytes>
 <address-full-policy>PAGE</address-full-policy>
 </address-setting>
</address-settings>

CHAPTER 8. PAGING MESSAGES

89

address-full-policy Valid values are PAGE, DROP, BLOCK, and FAIL.
If the value is PAGE then further messages will be
paged to disk. If the value is DROP then further
messages will be silently dropped. If the value is FAIL
then the messages will be dropped and the client
message producers will receive an exception. If the
value is BLOCK then client message producers will
block when they try and send further messages.

PAGE

page-max-cache-size The system will keep up to this number of page files
in memory to optimize IO during paging navigation.

5

Element Name Description Default

8.4. CONFIGURING A GLOBAL PAGING SIZE

Sometimes configuring a memory limit per address is not practical, such as when a broker manages many
addresses that have different usage patterns. In these situations, use the global-max-size parameter to
set a global limit to the amount of memory the broker can use before it enters into the page mode
configured for the address associated with the incoming message.

The default value for global-max-size is half of the maximum memory available to the Java virtual
machine (JVM). You can specify your own value for this parameter by configuring it in the broker.xml
configuration file. The value for global-max-size is in bytes, but you can use byte notation ("K", "Mb",
"GB", for example) for convenience.

The following procedure shows how to configure the global-max-size parameter in the broker.xml
configuration file.

Configuring the global-max-size parameter

Procedure

1. Stop the broker.

a. If the broker is running on Linux, run the following command:

BROKER_INSTANCE_DIR/bin/artemis stop

b. If the broker is running on Windows as a service, run the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

2. Open the broker.xml configuration file located under BROKER_INSTANCE_DIR/etc.

3. Add the global-max-size parameter to broker.xml to limit the amount of memory, in bytes, the
broker can use. Note that you can also use byte notation (K, Mb, GB) for the value of global-
max-size, as shown in the following example.

<configuration>
 <core>
 ...
 <global-max-size>1GB</global-max-size>

Red Hat AMQ 7.4 Configuring AMQ Broker

90

In the preceding example, the broker is configured to use a maximum of one gigabyte, 1GB, of
available memory when processing messages. If the configured limit is exceeded, the broker
enters the page mode configured for the address associated with the incoming message.

4. Start the broker.

a. If the broker is running on Linux, run the following command:

BROKER_INSTANCE_DIR/bin/artemis run

b. If the broker is running on Windows as a service, run the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

Related Information

See Section 8.3, “Configuring an Address for Paging” for information about setting the paging mode for
an address.

8.5. LIMITING DISK USAGE WHEN PAGING

You can limit the amount of physical disk the broker uses before it blocks incoming messages rather
than pages them. Add the max-disk-usage to the broker.xml configuration file and provide a value for
the percentage of disk space the broker is allowed to use when paging messages. The default value for
max-disk-usage is 90, which means the limit is set at 90 percent of disk space.

Configuring the max-disk-usage

Procedure

1. Stop the broker.

a. If the broker is running on Linux, run the following command:

BROKER_INSTANCE_DIR/bin/artemis stop

b. If the broker is running on Windows as a service, run the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

2. Open the broker.xml configuration file located under BROKER_INSTANCE_DIR/etc.

3. Add the max-disk-usage configuration element and set a limit to the amount disk space to use
when paging messages.

 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <max-disk-usage>50</max-disk-usage>

CHAPTER 8. PAGING MESSAGES

91

In the preceding example, the broker is limited to using 50 percent of disk space when paging
messages. Messages are blocked and no longer paged after 50 percent of the disk is used.

4. Start the broker.

a. If the broker is running on Linux, run the following command:

BROKER_INSTANCE_DIR/bin/artemis run

b. If the broker is running on Windows as a service, run the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

8.6. HOW TO DROP MESSAGES

Instead of paging messages when the max size is reached, an address can also be configured to just drop
messages when the address is full.

To do this just set the address-full-policy to DROP in the address settings

8.6.1. Dropping Messages and Throwing an Exception to Producers

Instead of paging messages when the max size is reached, an address can also be configured to drop
messages and also throw an exception on the client-side when the address is full.

To do this just set the address-full-policy to FAIL in the address settings

8.7. HOW TO BLOCK PRODUCERS

Instead of paging messages when the max size is reached, an address can also be configured to block
producers from sending further messages when the address is full, thus preventing the memory from
being exhausted on the server.

NOTE

Blocking works only if the protocol being used supports it. For example, an AMQP
producer will understand a Block packet when it is sent by the broker, but a STOMP
producer will not.

When memory is freed up on the server, producers will automatically unblock and be able to continue
sending.

To do this just set the address-full-policy to BLOCK in the address settings.

In the default configuration, all addresses are configured to block producers after 10 MiB of data are in
the address.

8.8. CAUTION WITH ADDRESSES WITH MULTICAST QUEUES

 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

92

When a message is routed to an address that has multicast queues bound to it, for example, a JMS
subscription in a Topic, there is only one copy of the message in memory. Each queue handles only a
reference to it. Because of this the memory is only freed up after all queues referencing the message
have delivered it.

If you have a single lazy subscription, the entire address will suffer IO performance hit as all the queues
will have messages being sent through an extra storage on the paging system.

For example:

An address has 10 queues

One of the queues does not deliver its messages (maybe because of a slow consumer).

Messages continually arrive at the address and paging is started.

The other 9 queues are empty even though messages have been sent.

In this example, all the other 9 queues will be consuming messages from the page system. This may
cause performance issues if this is an undesirable state.

CHAPTER 8. PAGING MESSAGES

93

1

CHAPTER 9. WORKING WITH LARGE MESSAGES
You can configure AMQ Broker to store large messages on a physical disk or in a database table.
Handling large messages in this way avoids the memory overhead that occurs when storing several large
messages in memory.

AMQ Broker can persist large messages even if the client and broker are running with limited memory.
The maximum size of a large message depends only on the amount of space available for your physical
disk or database table.

NOTE

Large message support is available for the AMQP, Core, and OpenWire protocols.
Additionally, the STOMP protocol provides its own method for handling large messages.
See "Handling Large Messages with STOMP" for more information.

NOTE

If you persist large messages on a disk, it is recommended that the large messages
directory be located on a different volume than the one used to persist the message
journal or the paging directory.

9.1. PREPARING BROKERS TO STORE LARGE MESSAGES

Large messages are stored on physical disk or database table. You must configure the broker to specify
where large messages are stored.

Procedure

Add configuration to BROKER_INSTANCE_DIR/etc/broker.xml that references the storage
location for large messages.

If you are storing large messages on disk, add the large-messages-directory configuration
element and provide the file system location, as shown in the following example:

The default value for the large-messages-directory configuration element is
BROKER_INSTANCE_DIR/data/largemessages

If you are storing large messages in a database table, add the name of the table to your
database-store, as shown in the following example:

<configuration>
 <core>
 ...
 <large-messages-directory>/path/to/large-messages</large-messages-directory> 1
 ...
 </core>
</configuration>

<store>
 <database-store>
 ...

Red Hat AMQ 7.4 Configuring AMQ Broker

94

1 The default value for the large-message-table configuration element is
LARGE_MESSAGE_TABLE.

NOTE

Handling large AMQP messages: The broker treats AMQP messages that
are larger than the size of either the journal-buffer-size or journal-file-size
as large messages. For more information about the journal, see Messaging
Journal Configuration Elements.

Additional Resources

See the large-message example found under BROKER_INSTANCE_DIR/examples/standard/ for a
working example showing how to work with large messages.

For more information about configuring a data-store see Configuring JDBC Persistence .

9.2. PREPARING AMQ CORE PROTOCOL JMS CLIENTS TO SEND
LARGE MESSAGES

You prepare client connections to handle large messages by setting a value for the property
minLargeMessageSize. The value can be provided as a parameter in the connection URL, or it can be
set by using a supported client API. Any message larger than minLargeMessageSize is considered a
large message.

NOTE

AMQ Broker messages are encoded using two bytes per character. Therefore, if the
message data is filled with ASCII characters (which are one byte in size), the size of the
resulting message would roughly double. When setting the value of
minLargeMessageSize, remember that encoding can increase message size. The
default value for minLargeMessageSize` is 100KiB.

Procedure

Set the minimum size for large messages.

If you are using JNDI to instantiate your connection factory, set the size in a jndi.properties
file by using the parameter minLargeMessageSize.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?
minLargeMessageSize=250000

If you are not using JNDI, set the size using the method
ActiveMQConnectionFactory.setMinLargeMessageSize().

 <large-message-table>MY_TABLE</large-message-table> 1
 </database-store>
</store>

CHAPTER 9. WORKING WITH LARGE MESSAGES

95

9.3. PREPARING OPENWIRE CLIENTS TO SEND LARGE MESSAGES

NOTE

Configuration options added to the connection URI used by an AMQ OpenWire JMS
client must include the prefix wireFormat. to take effect. Options missing this prefix are
ignored.

Procedure

Set the minimum size for large messages.

If you are using JNDI to instantiate your connection factory, set the size in a jndi.properties
file by using the parameter minLargeMessageSize. You must add the prefix wireFormat.
to the parameter for it to take effect.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?
wireFormat.minLargeMessageSize=250000

If you are not using JNDI, set the size using the method
ActiveMQConnectionFactory.setMinLargeMessageSize().

9.4. SENDING LARGE MESSAGES

AMQ Broker supports Java-based InputStreams for sending large messages. The most common use
case is to send files stored on your disk, but you could also send the data as JDBC Blobs or JSON
objects recovered from HTTPRequests.

NOTE

When using JMS, streaming large messages is supported only when using
StreamMessage and BytesMessage.

Procedure

To send a large message, set the JMS_AMQ_InputStream property to mark the message as
streamed:

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setMinLargeMessageSize(250000);

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setMinLargeMessageSize(250000);

BytesMessage message = session.createBytesMessage();
FileInputStream fileInputStream = new FileInputStream(fileInput);
BufferedInputStream bufferedInput = new BufferedInputStream(fileInputStream);
message.setObjectProperty("JMS_AMQ_InputStream", bufferedInput);
...

Red Hat AMQ 7.4 Configuring AMQ Broker

96

9.5. RECEIVING LARGE MESSAGES

The AMQ Broker Core JMS API has a method for synchronously receiving a streamed message. The
methods block further processing until the input stream is completely received.

Procedure

To receive a large message, set the JMS_AMQ_SaveStream on the message object:

Receiving a Large Message Asynchronously
The Core JMS API also has a method for asynchronously receiving a streamed message. The method
does not block processing by a consumer while it receives the input stream.

Procedure

To receive a large message asynchronously, set the JMS_AMQ_OutputStream parameter on
the message object:

9.6. LARGE MESSAGES AND JAVA CLIENTS

There are a two recommended options available to Java developers who are writing clients that use
large messages.

One option is to use an instance of InputStream and OutputStream. For example, a FileInputStream
could be used to send a message taken from a large file on a physical disk. A FileOutputStream could
then be used by the receiver to stream the message to a location on its local file system.

Another option is to stream a JMS BytesMessage or StreamMessage directly:

9.7. COMPRESSING LARGE MESSAGES

BytesMessage messageReceived = (BytesMessage)messageConsumer.receive(120000);
File outputFile = new File("large_message_received.dat");
FileOutputStream fileOutputStream = new FileOutputStream(outputFile);
BufferedOutputStream bufferedOutput = new BufferedOutputStream(fileOutputStream);

// This will block until the entire content is saved on disk
messageReceived.setObjectProperty("JMS_AMQ_SaveStream", bufferedOutput);

BytesMessage messageReceived = (BytesMessage)messageConsumer.receive(120000);
File outputFile = new File("large_message_received.dat");
FileOutputStream fileOutputStream = new FileOutputStream(outputFile);
BufferedOutputStream bufferedOutput = new BufferedOutputStream(fileOutputStream);

// This will not block until the entire content is saved on disk
messageReceived.setObjectProperty("JMS_AMQ_OutputStream", bufferedOutput);

BytesMessage rm = (BytesMessage)cons.receive(10000);
byte data[] = new byte[1024];
for (int i = 0; i < rm.getBodyLength(); i += 1024)
{
 int numberOfBytes = rm.readBytes(data);
 // Do whatever you want with the data
}

CHAPTER 9. WORKING WITH LARGE MESSAGES

97

You can enable clients to compress large messages before sending them. The ZIP algorithm is used to
compress the message body as the message is sent to the broker.

NOTE

If the compressed size of a large message is less than the value of
minLargeMessageSize, the message is sent as a regular message. Therefore, it is not
written to the broker’s large-message data directory.

If you use a Core JMS client and JNDI, use the JNDI context environment to enable message
compression:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory
connectionFactory.myConnectionFactory=tcp://localhost:61616?
compressLargeMessages=true

Add the minLargeMessageSize parameter to the connection factory URL to set the minimum
size requirement for messages to be compressed. In the following example, messages are
compressed only when they exceed 250 kilobytes in size.

connectionFactory.myConnectionFactory=tcp://localhost:61616?
compressLargeMessages=true&minLargeMessageSize=250kb

9.8. HANDLING LARGE MESSAGES WITH STOMP

STOMP clients might send large bodies of frames, which can exceed the size of the broker’s internal
buffer, causing unexpected errors.

To prevent this situation from occurring, set the acceptor’s stompMinLargeMessageSize parameter to
the desired size. Proper sizing is affected by system resources such as the amount of disk space
available, as well as the size of the messages. It is recommended that you run performance tests using
several values for stompMinLargeMessageSize to determine an appropriate size.

The broker checks the size of the body of each STOMP frame coming from connections established
with this acceptor. If the size of the body is equal to or greater than the value of
stompMinLargeMessageSize, the message is persisted as a large message.

Procedure

1. Open the configuration file BROKER_INSTANCE_DIR/etc/broker.xml

2. Add the stompMinLargeMessageSize parameter and its desired value to an existing or new
acceptor, as shown in the following example:

In the preceding example, the broker is configured to accept STOMP messages on port 61613. If the
acceptor receives a STOMP frame with a body larger than or equal to 10240 bytes the broker will persist
it as a large message.

<acceptors>
 <acceptor name="stomp-acceptor">tcp://localhost:61613?
protocols=STOMP;stompMinLargeMessageSize=10240</acceptor>
 ...
</acceptors>

Red Hat AMQ 7.4 Configuring AMQ Broker

98

When a large message is delivered to a STOMP consumer, the broker automatically converts it from a
large message to a normal message before sending it to the client. If a large message is compressed, the
broker decompresses it before sending it to STOMP clients.

The default value of stompMinLargeMessageSize is 102400 bytes.

CHAPTER 9. WORKING WITH LARGE MESSAGES

99

1

CHAPTER 10. DETECTING DEAD CONNECTIONS
Sometimes clients stop unexpectedly and do not have a chance to clean up their resources. If this
occurs, it can leave resources in a faulty state and result in the broker running out of memory or other
system resources. The broker detects that a client’s connection was not properly shut down at garbage
collection time. The connection is then closed and a message similar to the one below is written to the
log. The log captures the exact line of code where the client session was instantiated. This enables you
to identify the error and correct it.

[Finalizer] 20:14:43,244 WARNING [org.apache.activemq.artemis.core.client.impl.DelegatingSession]
I'm closing a JMS Conection you left open. Please make sure you close all connections explicitly
before let
ting them go out of scope!
[Finalizer] 20:14:43,244 WARNING [org.apache.activemq.artemis.core.client.impl.DelegatingSession]
The session you didn't close was created here:
java.lang.Exception
 at org.apache.activemq.artemis.core.client.impl.DelegatingSession.<init>
(DelegatingSession.java:83)
 at org.acme.yourproject.YourClass (YourClass.java:666) 1

The line in the client code where the connection was instantiated.

Detecting Dead Connections from the Client Side
As long as it is receiving data from the broker, the client considers a connection to be alive. Configure
the client to check its connection for failure by providing a value for the client-failure-check-period
property. The default check period for a network connection is 30000 milliseconds (30 seconds), while
the default value for an In-VM connection, is -1, which means the client never fails the connection from
its side if no data is received.

Typically, you set the check period to be much lower than the value used for the broker’s connection
time-to-live, which ensures that clients can reconnect in case of a temporary failure.

The examples below show how to set the check period to 10000 milliseconds (10 seconds) using Core
JMS clients.

Procedure

Set the check period for detecting dead connections.

If you are using JNDI with your Core JMS client, set the check period within the JNDI
context environment, jndi.properties, for example, as below.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?
clientFailureCheckPeriod=10000

If you are not using JNDI set the check period directly by passing a value to
ActiveMQConnectionFactory.setClientFailureCheckPeriod().

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setClientFailureCheckPeriod(10000);

Red Hat AMQ 7.4 Configuring AMQ Broker

100

1

2

10.1. CONNECTION TIME-TO-LIVE

Because the network connection between the client and the server can fail and then come back online,
allowing a client to reconnect, AMQ Broker waits to clean up inactive server-side resources. This wait
period is called a time-to-live (TTL). The default TTL for a network-based connection is 60000
milliseconds (1 minute). The default TTL on an In-VM connection is -1, which means the broker never
times out the connection on the broker side.

Configuring Time-To-Live on the Broker
If you do not want clients to specify their own connection TTL, you can set a global value on the broker
side. This can be done by specifying the connection-ttl-override element in the broker configuration.

The logic to check connections for TTL violations runs periodically on the broker, as determined by the
connection-ttl-check-interval element.

Procedure

Edit BROKER_INSTANCE_DIR/etc/broker.xml by adding the connection-ttl-override
configuration element and providing a value for the time-to-live, as in the example below.

The global TTL for all connections is set to 30000 milliseconds (30 seconds). The default
value is -1, which allows clients to set their own TTL.

The interval between checks for dead connections is set to 1000 milliseconds (1 second).
By default, the checks are done every 2000 milliseconds (2 seconds).

Configuring Time-To-Live on the Client
By default clients can set a TTL for their own connections. The examples below show you how to set the
Time-To-Live using Core JMS clients.

Procedure

Set the Time-To-Live for a Client Connection.

If you are using JNDI to instantiate your connection factory, you can specify it in the xml
config, using the parameter connectionTtl.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?connectionTtl=30000

If you are not using JNDI, the connection TTL is defined by the ConnectionTTL attribute on
a ActiveMQConnectionFactory instance.

<configuration>
 <core>
 ...
 <connection-ttl-override>30000</connection-ttl-override> 1
 <connection-ttl-check-interval>1000</connection-ttl-check-interval> 2
 ...
 </core>
</configuration>

CHAPTER 10. DETECTING DEAD CONNECTIONS

101

10.2. DISABLING ASYNCHRONOUS CONNECTION EXECUTION

Most packets received on the broker side are executed on the remoting thread. These packets
represent short-running operations and are always executed on the remoting thread for performance
reasons. However, some packet types are executed using a thread pool instead of the remoting thread,
which adds a little network latency.

The packet types that use the thread pool are implemented within the Java classes listed below. The
classes are all found in the package
org.apache.actiinvemq.artemis.core.protocol.core.impl.wireformat.

RollbackMessage

SessionCloseMessage

SessionCommitMessage

SessionXACommitMessage

SessionXAPrepareMessage

SessionXARollbackMessage

Procedure

To disable asynchronous connection execution, add the async-connection-execution-enabled
configuration element to BROKER_INSTANCE_DIR/etc/broker.xml and set it to false, as in the
example below. The default value is true.

10.3. CLOSING CONNECTIONS FROM THE CLIENT SIDE

A client application must close its resources in a controlled manner before it exits to prevent dead
connections from occurring. In Java, it is recommended to close connections inside a finally block:

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConnectionTTL(30000);

<configuration>
 <core>
 ...
 <async-connection-execution-enabled>false</async-connection-execution-enabled>
 ...
 </core>
</configuration>

Connection jmsConnection = null;
try {
 ConnectionFactory jmsConnectionFactory =
ActiveMQJMSClient.createConnectionFactoryWithoutHA(...);
 jmsConnection = jmsConnectionFactory.createConnection();
 ...use the connection...
}
finally {
 if (jmsConnection != null) {

Red Hat AMQ 7.4 Configuring AMQ Broker

102

 jmsConnection.close();
 }
}

CHAPTER 10. DETECTING DEAD CONNECTIONS

103

CHAPTER 11. FLOW CONTROL
Flow control prevents producers and consumers from becoming overburdened by limiting the flow of
data between them. Using AMQ Broker allows you to configure flow control for both consumers and
producers.

11.1. CONSUMER FLOW CONTROL

Consumer flow control regulates the flow of data between the broker and the client as the client
consumes messages from the broker. AMQ Broker clients buffer messages by default before delivering
them to consumers. Without a buffer, the client would first need to request each message from the
broker before consuming it. This type of "round-trip" communication is costly. Regulating the flow of
data on the client side is important because out of memory issues can result when a consumer cannot
process messages quickly enough and the buffer begins to overflow with incoming messages.

11.1.1. Setting the Consumer Window Size

The maximum size of messages held in the client-side buffer is determined by its window size. The
default size of the window for AMQ Broker clients is 1 MiB, or 1024 * 1024 bytes. The default is fine for
most use cases. For other cases, finding the optimal value for the window size might require
benchmarking your system. AMQ Broker allows you to set the buffer window size if you need to change
the default.

Setting the Window Size
The following examples demonstrate how to set the consumer window size parameter when using a
Core JMS client. Each example sets a consumers window size to 300000 bytes.

Procedure

Set the consumer window size.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
consumerWindowSize parameter as part of the connection string URL. Store the URL
within a JNDI context environment. The example below uses a jndi.properties file to store
the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?
consumerWindowSize=300000

If the Core JMS client does not use JNDI to instantiate its connection factory, pass a value
to ActiveMQConnectionFactory.setConsumerWindowSize().

11.1.2. Handling Fast Consumers

Fast consumers can process messages as fast as they consume them. If you are confident that the
consumers in your messaging system are that fast, consider setting the window size to -1. This setting
allows for unbounded message buffering on the client side. Use this setting with caution, however. It can
overflow client-side memory if the consumer is not able to process messages as fast as it receives them.

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConsumerWindowSize(300000);

Red Hat AMQ 7.4 Configuring AMQ Broker

104

Setting the Window Size for Fast Consumers

Procedure

The examples below show how to set the window size to -1 when using a Core JMS client that is a fast
consumer of messages.

Set the consumer window size to -1.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
consumerWindowSize parameter as part of the connection string URL. Store the URL
within a JNDI context environment. The example below uses a jndi.properties file to store
the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?consumerWindowSize=-
1

If the Core JMS client does not use JNDI to instantiate its connection factory, pass a value
to ActiveMQConnectionFactory.setConsumerWindowSize().

11.1.3. Handling Slow Consumers

Slow consumers take significant time to process each message. In these cases, it is recommended to not
buffer messages on the client side. Messages remain on the broker side ready to be consumed by other
consumers instead. One benefit of turning off the buffer is that it provides deterministic distribution
between multiple consumers on a queue. To handle slow consumers by disabling the client-side buffer,
set the window size to 0.

Setting the Window Size for Slow Consumers

Procedure

The examples below show you how to set the window size to 0 when using the Core JMS client that is a
slow consumer of messages.

Set the consumer window size to 0.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
consumerWindowSize parameter as part of the connection string URL. Store the URL
within a JNDI context environment. The example below uses a jndi.properties file to store
the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?
consumerWindowSize=0

If the Core JMS client does not use JNDI to instantiate its connection factory, pass a value
to ActiveMQConnectionFactory.setConsumerWindowSize().

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConsumerWindowSize(-1);

CHAPTER 11. FLOW CONTROL

105

Related Information

See the example no-consumer-buffering in INSTALL_DIR/examples/standard for an example that
shows how to configure the broker to prevent consumer buffering when dealing with slow consumers.

11.1.4. Setting the Rate of Consuming Messages

You can regulate the rate at which a consumer can consume messages. Also known as "throttling",
regulating the rate of consumption ensures that a consumer never consumes messages at a rate faster
than configuration allows.

NOTE

Rate-limited flow control can be used in conjunction with window-based flow control.
Rate-limited flow control affects only how many messages a client can consume in a
second and not how many messages are in its buffer. With a slow rate limit and a high
window-based limit, the internal buffer of the client fills up with messages quickly.

The rate must be a positive integer to enable this functionality and is the maximum desired message
consumption rate specified in units of messages per second. Setting the rate to -1 disables rate-limited
flow control. The default value is -1.

Setting the Rate of Consuming Messages

Procedure

The examples below use a Core JMS client that limits the rate of consuming messages to 10 messages
per second.

Set the consumer rate.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
consumerMaxRate parameter as part of the connection string URL. Store the URL within a
JNDI context environment. The example below uses a jndi.properties file to store the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://localhost:61616?consumerMaxRate=10

If the Core JMS client does not use JNDI to instantiate its connection factory, pass the
value to ActiveMQConnectionFactory.setConsumerMaxRate().

Related information

See the consumer-rate-limit example in INSTALL_DIR/examples/standard for a working example of
how to limit the consumer rate.

11.2. PRODUCER FLOW CONTROL

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConsumerWindowSize(0);

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConsumerMaxRate(10);

Red Hat AMQ 7.4 Configuring AMQ Broker

106

In a similar way to consumer window-based flow control, AMQ Broker can limit the amount of data sent
from a producer to a broker to prevent the broker from being overburdened with too much data. In the
case of a producer, the window size determines the amount of bytes that can be in-flight at any one
time.

11.2.1. Setting the Producer Window Size

The window size is negotiated between the broker and producer on the basis of credits, one credit for
each byte in the window. As messages are sent and credits are used, the producer must request, and be
granted, credits from the broker before it can send more messages. The exchange of credits between
producer and broker regulates the flow of data between them.

Setting the Window Size
The following examples demonstrate how to set the producer window size to 1024 bytes when using
Core JMS clients.

Procedure

Set the producer window size.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
producerWindowSize parameter as part of the connection string URL. Store the URL
within a JNDI context environment. The example below uses a jndi.properties file to store
the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://localhost:61616?producerWindowSize=1024

If the Core JMS client does not use JNDI to instantiate its connection factory, pass the
value to ActiveMQConnectionFactory.setProducerWindowSize().

11.2.2. Blocking Messages

Because more than one producer can be associated with the same address, it is possible for the broker
to allocate more credits across all producers than what is actually available. However, you can set a
maximum size on any address that prevents the broker from sending more credits than are available.

In the default configuration, a global maximum size of 100Mb is used for each address. When the
address is full, the broker writes further messages to the paging journal instead of routing them to the
queue. Instead of paging, you can block the sending of more messages on the client side until older
messages are consumed. Blocking producer flow control in this way prevents the broker from running
out of memory due to producers sending more messages than can be handled at any one time.

In the configuration, blocking producer flow control is managed on a per address-setting basis. The
configuration applies to all queues registered to an address. In other words, the total memory for all
queues bound to that address is capped by the value given for max-size-bytes.

NOTE

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setProducerWindowSize(1024);

CHAPTER 11. FLOW CONTROL

107

1

2

3

NOTE

Blocking is protocol dependent. In AMQ Broker the AMQP, OpenWire, and Core
protocols feature producer flow control. The AMQP protocol handles flow control
differently, however. See Blocking Flow Control Using AMQP for more information.

Configuring the Maximum Size for an Address
To configure the broker to block messages if they are larger than the set maximum number of bytes,
add a new addres-setting configuration element to BROKER_INSTANCE_DIR/etc/broker.xml.

Procedure

In the example configuration below, an address-setting is set to BLOCK producers from
sending messages after reaching its maximum size of 300000 bytes.

The above configuration applies to any queue referenced by the my.blocking.queue address .

Sets the maximum size to 300000 bytes. The broker will block producers from sending to the
address if the message exceeds max-size-bytes. Note that this element supports byte notation
such as "K", "Mb", and "GB".

Sets the address-full-policy to BLOCK to enable blocking producer flow control.

11.2.3. Blocking AMQP Messages

As explained earlier in this chapter the Core protocol uses a producer window-size flow control system.
In this system, credits represent bytes and are allocated to producers. If a producer wants to send a
message, it must wait until it has sufficient credits to accommodate the size of a message before
sending it.

AMQP flow control credits are not representative of bytes, however, but instead represent the number
of messages a producer is permitted to send, regardless of the message size. It is therefore possible in
some scenarios for an AMQP client to significantly exceed the max-size-bytes of an address.

To manage this situation, add the element max-size-bytes-reject-threshold to the address-setting to
specify an upper bound on an address size in bytes. Once this upper bound is reached, the broker rejects
AMQP messages. By default, max-size-bytes-reject-threshold is set to -1, or no limit.

Configuring the Broker to Block AMQP Messages
To configure the broker to block AMQP messages if they are larger than the set maximum number of
bytes, add a new addres-setting configuration element to BROKER_INSTANCE_DIR/etc/broker.xml.

<configuration>
 <core>
 ...
 <address-settings>
 <address-setting match="my.blocking.queue"> 1
 <max-size-bytes>300000</max-size-bytes> 2
 <address-full-policy>BLOCK</address-full-policy> 3
 </address-setting>
 </address-settings>
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

108

1

2

Procedure

The example configuration below applies a maximum size of 300000 bytes to any AMQP
message routed to the my.amqp.blocking.queue address.

The above configuration applies to any queue referenced by the my.amqp.blocking.queue
address.

The broker is configured to reject AMQP messages sent to queues matching this address if they
are larger than the max-size-bytes-reject-threshold of 300000 bytes. Note that this element does
not support byte notation such as K, Mb, and GB.

11.2.4. Setting the Rate of Sending Messages

AMQ Broker can also limit the rate a producer can emit messages. The producer rate is specified in units
of messages per second. Setting it to -1, the default, disables rate-limited flow control.

Setting the Rate of Sending Messages
The examples below demonstrate how to set the rate of sending messages when the producer is using a
Core JMS client. Each example sets the maximum rate of sending messages to 10 per second.

Procedure

Set the rate that a producer can send messages.

If the Core JMS Client uses JNDI to instantiate its connection factory, include the
producerMaxRate parameter as part of the connection string URL. Store the URL within a
JNDI context environment. The example below uses a jndi.properties file to store the URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

java.naming.provider.url=tcp://localhost:61616?producerMaxRate=10

If the Core JMS client does not use JNDI to instantiate its connection factory, pass the
value to ActiveMQConnectionFactory.setProducerMaxRate().

Related Information

See the producer-rate-limit example in INSTALL_DIR/examples/standard for a working example of

<configuration>
 <core>
 ...
 <address-settings>
 ...
 <address-setting match="my.amqp.blocking.queue"> 1
 <max-size-bytes-reject-threshold>300000</max-size-bytes-reject-threshold> 2
 </address-setting>
 </address-settings>
 </core>
</configuration>

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setProducerMaxRate(10);

CHAPTER 11. FLOW CONTROL

109

See the producer-rate-limit example in INSTALL_DIR/examples/standard for a working example of
how to limit a the rate of sending messages.

Red Hat AMQ 7.4 Configuring AMQ Broker

110

CHAPTER 12. MESSAGE GROUPING
Message groups are sets of messages that have the following characteristics:

Messages in a message group share the same group ID, that is, they have same group identifier
property. For JMS messages, the property is JMSXGroupID.

Messages in a message group are always consumed by the same consumer, even if there are
many consumers on a queue. Another consumer is chosen to receive a message group if the
original consumer closes.

Message groups are useful when you want all messages for a certain value of the property to be
processed serially by the same consumer. For example, you may want orders for any particular stock
purchase to be processed serially by the same consumer. To do this you could create a pool of
consumers, then set the stock name as the value of the message property. This ensures that all
messages for a particular stock are always processed by the same consumer.

NOTE

Grouped messages might impact the concurrent processing of non-grouped messages
due to the underlying FIFO semantics of a queue. For example, if there is a chunk of 100
grouped messages at the head of a queue followed by 1,000 non-grouped messages, all
the grouped messages are sent to the appropriate client before any of the non-grouped
messages are consumed. The functional impact in this scenario is a temporary suspension
of concurrent message processing while all the grouped messages are processed. Keep
this potential performance bottleneck in mind when determining the size of your message
groups. Consider whether to isolate your grouped messages from your non-grouped
messages.

12.1. CLIENT-SIDE MESSAGE GROUPING

The examples below show how to use message grouping using Core JMS clients.

Procedure

Set the group ID.

If you are using JNDI to establish a JMS connection factory for your JMS client, add the
groupID parameter and supply a value. All messages sent using this connection factory have
the property JMSXGroupID set to the specified value.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?groupID=MyGroup

If you are not using JNDI, set the JMSXGroupID property using the setStringProperty()
method.

Related Information

See mesagge-group and message-group2 under INSTALL_DIR/examples/features/standard for

 Message message = new TextMessage();
 message.setStringProperty("JMSXGroupID", "MyGroup");
 producer.send(message);

CHAPTER 12. MESSAGE GROUPING

111

See mesagge-group and message-group2 under INSTALL_DIR/examples/features/standard for
working examples of how message groups are configured and used.

12.2. AUTOMATIC MESSAGE GROUPING

Instead of supplying a group ID yourself, you can have the ID automatically generated for you. Messages
grouped in this way are still processed serially by a single consumer.

Procedure

The examples below show how to enable message grouping using Core JMS clients.

Enable automatic generation of the group ID.

If you are using a JNDI context environment to instantiate your JMS connection factory, add
the autogroup=true name-value pair to the query string of the connection URL.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?autoGroup=true

If you are not using JNDI, set autogroup to true on the ActiveMQConnectonFactory.

ActiveMQConnectionFactory cf =
ActiveMQJMSClient.createConnectionFactoryWithoutHA(...);
cf.setAutoGroup(true);

Red Hat AMQ 7.4 Configuring AMQ Broker

112

CHAPTER 13. DUPLICATE MESSAGE DETECTION
AMQ Broker includes automatic duplicate message detection, which filters out any duplicate messages
it receives so you do not have to code your own duplicate detection logic.

Without duplicate detection, a client cannot determine whether a message it sent was successful
whenever the target broker or the connection to it fails. For example, if the broker or connection fails
before the message was received and processed by the broker, the message never arrives at its address,
and the client does not receive a response from the broker due to the failure. On the other hand, if the
broker or connection failed after a message was received and processed by the broker, the message is
routed correctly, but the client still does not receive a response.

Moreover, using a transaction to determine success does not help in these cases. If the broker or
connection fails while the transaction commit is being processed, for example, the client is still unable to
determine whether it successfully sent the message.

If the client resends the last message in an effort to correct the assumed failure, the result could be a
duplicate message being sent to the address, which could negatively impact your system. Sending a
duplicate message could mean that a purchase order is fulfilled twice, for example. Fortunately, {AMQ
Broker} provides automatic duplicate messages detection as a way to prevent these kind of issues from
happening.

13.1. USING THE DUPLICATE ID MESSAGE PROPERTY

To enable duplicate message detection provide a unique value for the message property
_AMQ_DUPL_ID. When a broker receives a message, it checks if _AMQ_DUPL_ID has a value. If it does,
the broker then checks in its memory cache to see if it has already received a message with that value. If
a message with the same value is found, the incoming message is ignored.

Procedure

The examples below illustrate how to set the duplicate detection property using a Core JMS Client.
Note that for convenience, the clients use the value of the constant
org.apache.activemq.artemis.api.core.Message.HDR_DUPLICATE_DETECTION_ID for the name of
the duplicate ID property, _AMQ_DUPL_ID.

Set the value for _AMQ_DUPL_ID to a unique String.

13.2. CONFIGURING THE DUPLICATE ID CACHE

The broker maintains caches of received values of the _AMQ_DUPL_ID property. Each address has its
own distinct cache. The cache is circular and fixed. New entries replace the oldest ones as cache space
demands.

NOTE

Be sure to size the cache appropriately. If a previous message arrived more than id-
cache-size messages before the arrival of a new message with the same
_AMQ_DUPL_ID, the broker cannot detect the duplicate. This results in both messages
being processed by the broker.

Message jmsMessage = session.createMessage();
String myUniqueID = "This is my unique id";
message.setStringProperty(HDR_DUPLICATE_DETECTION_ID.toString(), myUniqueID);

CHAPTER 13. DUPLICATE MESSAGE DETECTION

113

1

2

Procedure

The example configuration below illustrates how to configure the ID cache by adding elements to
BROKER_INSTANCE_DIR/etc/broker.xml.

The maximum size of the cache is configured by the parameter id-cache-size. The default value is
20000 entries. In the example above, the cache size is set to 5000 entries.

Set persist-id-cache to true to have each ID persisted to disk as they are received. The default
value is true. In the example above, persistence is disabled by setting the value to false.

13.3. DUPLICATE DETECTION AND TRANSACTIONS

Using duplicate detection to move messages between brokers can give you the same once and only
once delivery guarantees as using an XA transaction to consume messages, but with less overhead and
much easier configuration than using XA.

If you are sending messages in a transaction, you do not have to set _AMQ_DUPL_ID for every message
in the transaction, but only in one of them. If the broker detects a duplicate message for any message in
the transaction, it ignores the entire transaction.

13.4. DUPLICATE DETECTION AND CLUSTER CONNECTIONS

You can configure cluster connections to insert a duplicate ID for each message they move across the
cluster.

Procedure

Add the element use-duplicate-detection to the configuration of the desired cluster
connection found in BROKER_INSTANCE_DIR/etc/broker.xml. Note that the default value for
this parameter is true. In the example below, the element is added to the configuration for the
cluster connection my-cluster.

<configuration>
 <core>
 ...
 <id-cache-size>5000</id-cache-size> 1
 <persist-id-cache>false</persist-id-cache> 2
 </core>
</configuration>

<configuration>
 <core>
 ...
 <cluster-connection>
 <cluster-connection name="my-cluster"> 2
 <use-duplicate-detection>true</use-duplicate-detection>
 ...
 </cluster-connection>
 ...
 </cluster-connections>
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

114

Related Information

For more information about broker clusters, see Section 16.2, “Creating a broker cluster” .

CHAPTER 13. DUPLICATE MESSAGE DETECTION

115

CHAPTER 14. INTERCEPTING MESSAGES
With AMQ Broker you can intercept packets entering or exiting the broker, allowing you to audit packets
or filter messages. Interceptors can change the packets they intercept, which makes them powerful, but
also potentially dangerous.

You can develop interceptors to meet your business requirements. Interceptors are protocol specific
and must implement the appropriate interface.

Interceptors must implement the intercept() method, which returns a boolean value. If the value is true,
the message packet continues onward. If false, the process is aborted, no other interceptors are called,
and the message packet is not processed further.

14.1. CREATING INTERCEPTORS

You can create your own incoming and outgoing interceptors. All interceptors are protocol specific and
are called for any packet entering or exiting the server respectively. This allows you to create
interceptors to meet business requirements such as auditing packets. Interceptors can change the
packets they intercept. This makes them powerful as well as potentially dangerous, so be sure to use
them with caution.

Interceptors and their dependencies must be placed in the Java classpath of the broker. You can use the
BROKER_INSTANCE_DIR/lib directory since it is part of the classpath by default.

Procedure

The following examples demonstrate how to create an interceptor that checks the size of each packet
passed to it. Note that the examples implement a specific interface for each protocol.

Implement the appropriate interface and override its intercept() method.

If you are using the AMQP protocol, implement the
org.apache.activemq.artemis.protocol.amqp.broker.AmqpInterceptor interface.

package com.example;

import org.apache.activemq.artemis.protocol.amqp.broker.AMQPMessage;
import org.apache.activemq.artemis.protocol.amqp.broker.AmqpInterceptor;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements AmqpInterceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 public boolean intercept(final AMQPMessage message, RemotingConnection
connection)
 {
 int size = message.getEncodeSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This AMQPMessage has an acceptable size.");
 return true;
 }
 return false;
 }
}

Red Hat AMQ 7.4 Configuring AMQ Broker

116

If you are using the Core protocol, your interceptor must implement the
org.apache.artemis.activemq.api.core.Interceptor interface.

If you are using the MQTT protocol, implement the
org.apache.activemq.artemis.core.protocol.mqtt.MQTTInterceptor interface.

If you are using the Stomp protocol, implement the
org.apache.activemq.artemis.core.protocol.stomp.StompFrameInterceptor interface.

package com.example;

import org.apache.artemis.activemq.api.core.Interceptor;
import org.apache.activemq.artemis.core.protocol.core.Packet;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(Packet packet, RemotingConnection connection)
 throws ActiveMQException
 {
 int size = packet.getPacketSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This Packet has an acceptable size.");
 return true;
 }
 return false;
 }
}

package com.example;

import org.apache.activemq.artemis.core.protocol.mqtt.MQTTInterceptor;
import io.netty.handler.codec.mqtt.MqttMessage;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(MqttMessage mqttMessage, RemotingConnection connection)
 throws ActiveMQException
 {
 byte[] msg = (mqttMessage.toString()).getBytes();
 int size = msg.length;
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This MqttMessage has an acceptable size.");
 return true;
 }
 return false;
 }
}

CHAPTER 14. INTERCEPTING MESSAGES

117

14.2. CONFIGURING THE BROKER TO USE INTERCEPTORS

Once you have created an interceptor, you must configure the broker to use it.

Prerequisites

You must create an interceptor class and add it (and its dependencies) to the Java classpath of the
broker before you can configure it for use by the broker. You can use the BROKER_INSTANCE_DIR/lib
directory since it is part of the classpath by default.

Procedure

Configure the broker to use an interceptor by adding configuration to
BROKER_INSTANCE_DIR/etc/broker.xml

If your interceptor is intended for incoming messages, add its class-name to the list of
remoting-incoming-interceptors.

If your interceptor is intended for outgoing messages, add its class-name to the list of
remoting-outgoing-interceptors.

package com.example;

import org.apache.activemq.artemis.core.protocol.stomp.StompFrameInterceptor;
import org.apache.activemq.artemis.core.protocol.stomp.StompFrame;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(StompFrame stompFrame, RemotingConnection connection)
 throws ActiveMQException
 {
 int size = stompFrame.getEncodedSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This StompFrame has an acceptable size.");
 return true;
 }
 return false;
 }
}

<configuration>
 <core>
 ...
 <remoting-incoming-interceptors>
 <class-name>org.example.MyIncomingInterceptor</class-name>
 </remoting-incoming-interceptors>
 ...
 </core>
</configuration>

<configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

118

14.3. INTERCEPTORS ON THE CLIENT SIDE

Clients can use interceptors to intercept packets either sent by the client to the server or by the server
to the client. As in the case of a broker-side interceptor, if it returns false, no other interceptors are
called and the client does not process the packet further. This process happens transparently to the
client except when an outgoing packet is sent in a blocking fashion. In those cases, an
ActiveMQException is thrown to the caller because blocking sends provides reliability. The
ActiveMQException thrown contains the name of the interceptor that returned false.

As on the server, the client interceptor classes and their dependencies must be added to the Java
classpath of the client to be properly instantiated and invoked.

 <core>
 ...
 <remoting-outgoing-interceptors>
 <class-name>org.example.MyOutgoingInterceptor</class-name>
 </remoting-outgoing-interceptors>
 </core>
</configuration>

CHAPTER 14. INTERCEPTING MESSAGES

119

CHAPTER 15. FILTERING MESSAGES
AMQ Broker provides a powerful filter language based on a subset of the SQL 92 expression syntax.
The filter language uses the same syntax as used for JMS selectors, but the predefined identifiers are
different. The table below lists the identifiers that apply to a AMQ Broker message.

Identifier Attribute

AMQPriority The priority of a message. Message priorities are integers with valid values
from 0 through 9. 0 is the lowest priority and 9 is the highest.

AMQExpiration The expiration time of a message. The value is a long integer.

AMQDurable Whether a message is durable or not. The value is a string. Valid values are
DURABLE or NON_DURABLE.

AMQTimestamp The timestamp of when the message was created. The value is a long
integer.

AMQSize The value of the encodeSize property of the message. The value of
encodeSize is the space, in bytes, that the message takes up in the journal.
Because the broker uses a double-byte character set to encode messages,
the actual size of the message is half the value of encodeSize.

Any other identifiers used in core filter expressions are assumed to be properties of the message. For
documentation on selector syntax for JMS Messages, see the Java EE API .

15.1. CONFIGURING A QUEUE TO USE A FILTER

You can add a filter to the queues you configure in BROKER_INSTANCE_DIR/etc/broker.xml. Only
messages that match the filter expression enter the queue.

Procedure

Add the filter element to the desired queue and include the filter you want to apply as the value
of the element. In the example below, the filter NEWS='technology' is added to the queue
technologyQueue.

<configuration>
 <core>
 ...
 <addresses>
 <address name="myQueue">
 <anycast>
 <queue name="myQueue">
 <filter string="NEWS='technology'"/>
 </queue>
 </anycast>
 </address>

Red Hat AMQ 7.4 Configuring AMQ Broker

120

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

15.2. FILTERING JMS MESSAGE PROPERTIES

The JMS specification states that a String property must not be converted to a numeric type when used
in a selector. For example, if a message has the age property set to the String value 21, the selector age
> 18 must not match it. This restriction limits STOMP clients because they can send only messages with
String properties.

The JMS specification also states that hyphens cannot be used as property identifiers, making them
unavailable for use in filters. However, this constraint can be overcome by using the
hyphenated_props: prefix.

Configuring a Filter to Convert a String to a Number
To convert String properties to a numeric type, add the prefix convert_string_expressions: to the
value of the filter.

Procedure

Edit BROKER_INSTANCE_DIR/etc/broker.xml by applying the prefix
convert_string_expressions: to the desired filter. The example below edits the filter value
from age > 18 to convert_string_expressions:age > 18.

Enabling a Filter to Use Hyphens
To enable the use of hyphens when filtering JMS properties, add the prefix hyphenated_props: to the
value of the filter.

Procedure

Edit BROKER_INSTANCE_DIR/etc/broker.xml by applying the prefix hyphenated_props: to
the desired filter. In the example below, a filter is edited so that it can select for the hyphenated
property foo-bar.

 </addresses>
 </core>
</configuration>

<configuration>
 <core>
 ...
 <addresses>
 <address name="myQueue">
 <anycast>
 <queue name="myQueue">
 <filter string="convert_string_expressions='age > 18'"/>
 </queue>
 </anycast>
 </address>
 </addresses>
 </core>
</configuration>

<configuration>
 <core>
 ...
 <addresses>

CHAPTER 15. FILTERING MESSAGES

121

 <address name="myQueue">
 <anycast>
 <queue name="myQueue">
 <filter string="hyphenated_props='foo-bar = 0'"/>
 </queue>
 </anycast>
 </address>
 </addresses>
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

122

CHAPTER 16. SETTING UP A BROKER CLUSTER
A cluster consists of multiple broker instances that have been grouped together. Broker clusters
enhance performance by distributing the message processing load across multiple brokers. In addition,
broker clusters can minimize downtime through high availability.

You can connect brokers together in many different cluster topologies. Within the cluster, each active
broker manages its own messages and handles its own connections.

You can also balance client connections across the cluster and redistribute messages to avoid broker
starvation.

16.1. UNDERSTANDING BROKER CLUSTERS

Before creating a broker cluster, you should understand some important clustering concepts.

16.1.1. How broker clusters balance message load

When brokers are connected to form a cluster, AMQ Broker automatically balances the message load
between the brokers. This ensures that the cluster can maintain high message throughput.

Consider a symmetric cluster of four brokers. Each broker is configured with a queue named
OrderQueue. The OrderProducer client connects to Broker1 and sends messages to OrderQueue.
Broker1 forwards the messages to the other brokers in round-robin fashion. The OrderConsumer
clients connected to each broker consume the messages. The exact order depends on the order in
which the brokers started.

Figure 16.1. Message load balancing

CHAPTER 16. SETTING UP A BROKER CLUSTER

123

Figure 16.1. Message load balancing

Without message load balancing, the messages sent to Broker1 would stay on Broker1 and only
OrderConsumer1 would be able to consume them.

While AMQ Broker automatically load balances messages by default, you can configure the cluster to
only load balance messages to brokers that have a matching consumer. You can also configure message
redistribution to automatically redistribute messages from queues that do not have any consumers to
queues that do have consumers.

Additional resources

The message load balancing policy is configured with the message-load-balancing property in
each broker’s cluster connection. For more information, see Appendix C, Cluster Connection
Configuration Elements.

For more information about message redistribution, see Section 16.4, “Enabling message
redistribution”.

16.1.2. How broker clusters improve reliability

Broker clusters make high availability and failover possible, which makes them more reliable than
standalone brokers. By configuring high availability, you can ensure that client applications can continue
to send and receive messages even if a broker encounters a failure event.

With high availability, the brokers in the cluster are grouped into live-backup groups. A live-backup
group consists of a live broker that serves client requests, and one or more backup brokers that wait

Red Hat AMQ 7.4 Configuring AMQ Broker

124

passively to replace the live broker if it fails. If a failure occurs, the backup brokers replaces the live
broker in its live-backup group, and the clients reconnect and continue their work.

16.1.3. Common broker cluster topologies

You can connect brokers to form either a symmetric or chain cluster topology. The topology you
implement depends on your environment and messaging requirements.

Symmetric clusters
In a symmetric cluster, every broker is connected to every other broker. This means that every broker is
no more than one hop away from every other broker.

Figure 16.2. Symmetric cluster

Each broker in a symmetric cluster is aware of all of the queues that exist on every other broker in the
cluster and the consumers that are listening on those queues. Therefore, symmetric clusters are able to
load balance and redistribute messages more optimally than a chain cluster.

Symmetric clusters are easier to set up than chain clusters, but they can be difficult to use in
environments in which network restrictions prevent brokers from being directly connected.

Chain clusters
In a chain cluster, each broker in the cluster is not connected to every broker in the cluster directly.
Instead, the brokers form a chain with a broker on each end of the chain and all other brokers just
connecting to the previous and next brokers in the chain.

Figure 16.3. Chain cluster

CHAPTER 16. SETTING UP A BROKER CLUSTER

125

Figure 16.3. Chain cluster

Chain clusters are more difficult to set up than symmetric clusters, but can be useful when brokers are
on separate networks and cannot be directly connected. By using a chain cluster, an intermediary broker
can indirectly connect two brokers to enable messages to flow between them even though the two
brokers are not directly connected.

16.1.4. Broker discovery methods

Discovery is the mechanism by which brokers in a cluster propagate their connection details to each
other. AMQ Broker supports both dynamic discovery and static discovery .

Dynamic discovery
Each broker in the cluster broadcasts its connection settings to the other members through either UDP
multicast or JGroups. In this method, each broker uses:

A broadcast group to push information about its cluster connection to other potential members
of the cluster.

A discovery group to receive and store cluster connection information about the other brokers in
the cluster.

Static discovery
If you are not able to use UDP or JGroups in your network, or if you want to manually specify each
member of the cluster, you can use static discovery. In this method, a broker "joins" the cluster by
connecting to a second broker and sending its connection details. The second broker then propagates
those details to the other brokers in the cluster.

16.1.5. Cluster sizing considerations

Before creating a broker cluster, consider your messaging throughput, topology, and high availability
requirements. These factors affect the number of brokers to include in the cluster.

NOTE

Red Hat AMQ 7.4 Configuring AMQ Broker

126

NOTE

After creating the cluster, you can adjust the size by adding and removing brokers. You
can add and remove brokers without losing any messages.

Messaging throughput
The cluster should contain enough brokers to provide the messaging throughput that you require. The
more brokers in the cluster, the greater the throughput. However, large clusters can be complex to
manage.

Topology
You can create either symmetric clusters or chain clusters. The type of topology you choose affects the
number of brokers you may need.

For more information, see Section 16.1.3, “Common broker cluster topologies” .

High availability
If you require high availability (HA), consider choosing an HA policy before creating the cluster. The HA
policy affects the size of the cluster, because each master broker should have at least one slave broker.

For more information, see Section 16.3, “Implementing high availability” .

16.2. CREATING A BROKER CLUSTER

You create a broker cluster by configuring a cluster connection on each broker that should participate in
the cluster. The cluster connection defines how the broker should connect to the other brokers.

You can create a broker cluster that uses static discovery or dynamic discovery (either UDP multicast or
JGroups).

Prerequisites

You should have determined the size of the broker cluster.
For more information, see Section 16.1.5, “Cluster sizing considerations” .

16.2.1. Creating a broker cluster with static discovery

You can create a broker cluster by specifying a static list of brokers. Use this static discovery method if
you are unable to use UDP multicast or JGroups on your network.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the <core> element, add the following connectors:

A connector that defines how other brokers can connect to this one

One or more connectors that define how this broker can connect to other brokers in the
cluster

<configuration>
 <core>
 ...
 <connectors>

CHAPTER 16. SETTING UP A BROKER CLUSTER

127

1

2

This connector defines connection information that other brokers can use to connect to
this one. This information will be sent to other brokers in the cluster during discovery.

The broker2 and broker3 connectors define how this broker can connect to two other
brokers in the cluster, one of which will always be available. If there are other brokers in the
cluster, they will be discovered by one of these connectors when the initial connection is
made.

For more information about connectors, see Section 2.2, “About Connectors”.

3. Add a cluster connection and configure it to use static discovery.
By default, the cluster connection will load balance messages for all addresses in a symmetric
topology.

cluster-connection

Use the name attribute to specify the name of the cluster connection.

connector-ref

The connector that defines how other brokers can connect to this one.

static-connectors

One or more connectors that this broker can use to make an initial connection to another
broker in the cluster. After making this initial connection, the broker will discover the other
brokers in the cluster. You only need to configure this property if the cluster uses static
discovery.

4. Configure any additional properties for the cluster connection.
These additional cluster connection properties have default values that are suitable for most
common use cases. Therefore, you only need to configure these properties if you do not want
the default behavior. For more information, see Appendix C, Cluster Connection Configuration
Elements.

 <connector name="netty-connector">tcp://localhost:61617</connector> 1
 <connector name="broker2">tcp://localhost:61618</connector> 2
 <connector name="broker3">tcp://localhost:61619</connector>
 </connectors>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <static-connectors>
 <connector-ref>broker2-connector</connector-ref>
 <connector-ref>broker3-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
 </cluster-connections>
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

128

5. Create the cluster user and password.
AMQ Broker ships with default cluster credentials, but you should change them to prevent
unauthorized remote clients from using these default credentials to connect to the broker.

IMPORTANT

The cluster password must be the same on every broker in the cluster.

6. Repeat this procedure on each additional broker.
You can copy the cluster configuration to each additional broker. However, do not copy any of
the other AMQ Broker data files (such as the bindings, journal, and large messages directories).
These files must be unique among the nodes in the cluster or the cluster will not form properly.

Additional resources

For an example of a broker cluster that uses static discovery, see the clustered-static-
discovery AMQ Broker example program .

16.2.2. Creating a broker cluster with UDP-based dynamic discovery

You can create a broker cluster in which the brokers discover each other dynamically through UDP
multicast.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the <core> element, add a connector.
This connector defines connection information that other brokers can use to connect to this
one. This information will be sent to other brokers in the cluster during discovery.

3. Add a UDP broadcast group.

The broadcast group enables the broker to push information about its cluster connection to the

<configuration>
 <core>
 ...
 <cluster-user>cluster_user</cluster-user>
 <cluster-password>cluster_user_password</cluster-password>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <connectors>
 <connector name="netty-connector">tcp://localhost:61617</connector>
 </connectors>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

129

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-static-discovery

The broadcast group enables the broker to push information about its cluster connection to the
other brokers in the cluster. This broadcast group uses UDP to broadcast the connection
settings:

The following parameters are required unless otherwise noted:

broadcast-group

Use the name attribute to specify a unique name for the broadcast group.

local-bind-address

The address to which the UDP socket is bound. If you have multiple network interfaces on
your broker, you should specify which one you want to use for broadcasts. If this property is
not specified, the socket will be bound to an IP address chosen by the operating system. This
is a UDP-specific attribute.

local-bind-port

The port to which the datagram socket is bound. In most cases, use the default value of -1,
which specifies an anonymous port. This parameter is used in connection with local-bind-
address. This is a UDP-specific attribute.

group-address

The multicast address to which the data will be broadcast. It is a class D IP address in the
range 224.0.0.0 - 239.255.255.255 inclusive. The address 224.0.0.0 is reserved and is not
available for use. This is a UDP-specific attribute.

group-port

The UDP port number used for broadcasting. This is a UDP-specific attribute.

broadcast-period (optional)

The interval in milliseconds between consecutive broadcasts. The default value is 2000
milliseconds (2 seconds).

connector-ref

The previously configured cluster connector that should be broadcasted.

4. Add a UDP discovery group.
The discovery group defines how this broker receives connector information from other brokers.
The broker maintains a list of connectors (one entry for each broker). As it receives broadcasts
from a broker, it updates its entry. If it does not receive a broadcast from a broker for a length of
time, it removes the entry.

<configuration>
 <core>
 ...
 <broadcast-groups>
 <broadcast-group name="my-broadcast-group">
 <local-bind-address>172.16.9.3</local-bind-address>
 <local-bind-port>-1</local-bind-port>
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <broadcast-period>2000</broadcast-period>
 <connector-ref>netty-connector</connector-ref>
 </broadcast-group>
 </broadcast-groups>
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

130

This discovery group uses UDP to discover the brokers in the cluster:

The following parameters are required unless otherwise noted:

discovery-group

Use the name attribute to specify a unique name for the discovery group.

local-bind-address (optional)

If the machine on which the broker is running uses multiple network interfaces, you can
specify the network interface to which the discovery group should listen. This is a UDP-
specific attribute.

group-address

The multicast address of the group on which to listen. It should match the group-address in
the broadcast group that you want to listen from. This is a UDP-specific attribute.

group-port

The UDP port number of the multicast group. It should match the group-port in the
broadcast group that you want to listen from. This is a UDP-specific attribute.

refresh-timeout (optional)

The amount of time in milliseconds that the discovery group waits after receiving the last
broadcast from a particular broker before removing that broker’s connector pair entry from
its list. The default is 10000 milliseconds (10 seconds).
Set this to a much higher value than the broadcast-period on the broadcast group.
Otherwise, brokers might periodically disappear from the list even though they are still
broadcasting (due to slight differences in timing).

5. Create a cluster connection and configure it to use dynamic discovery.
By default, the cluster connection will load balance messages for all addresses in a symmetric
topology.

<configuration>
 <core>
 ...
 <discovery-groups>
 <discovery-group name="my-discovery-group">
 <local-bind-address>172.16.9.7</local-bind-address>
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
 <discovery-groups>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 </cluster-connection>

CHAPTER 16. SETTING UP A BROKER CLUSTER

131

cluster-connection

Use the name attribute to specify the name of the cluster connection.

connector-ref

The connector that defines how other brokers can connect to this one.

discovery-group-ref

The discovery group that this broker should use to locate other members of the cluster. You
only need to configure this property if the cluster uses dynamic discovery.

6. Configure any additional properties for the cluster connection.
These additional cluster connection properties have default values that are suitable for most
common use cases. Therefore, you only need to configure these properties if you do not want
the default behavior. For more information, see Appendix C, Cluster Connection Configuration
Elements.

7. Create the cluster user and password.
AMQ Broker ships with default cluster credentials, but you should change them to prevent
unauthorized remote clients from using these default credentials to connect to the broker.

IMPORTANT

The cluster password must be the same on every broker in the cluster.

8. Repeat this procedure on each additional broker.
You can copy the cluster configuration to each additional broker. However, do not copy any of
the other AMQ Broker data files (such as the bindings, journal, and large messages directories).
These files must be unique among the nodes in the cluster or the cluster will not form properly.

Additional resources

For an example of a broker cluster configuration that uses dynamic discovery with UDP, see the
clustered-queue AMQ Broker example program .

16.2.3. Creating a broker cluster with JGroups-based dynamic discovery

If you are already using JGroups in your environment, you can use it to create a broker cluster in which
the brokers discover each other dynamically.

Prerequisites

 </cluster-connections>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <cluster-user>cluster_user</cluster-user>
 <cluster-password>cluster_user_password</cluster-password>
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

132

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-queue

JGroups must be installed and configured.
For an example of a JGroups configuration file, see the clustered-jgroups AMQ Broker
example program.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Within the <core> element, add a connector.
This connector defines connection information that other brokers can use to connect to this
one. This information will be sent to other brokers in the cluster during discovery.

3. Within the <core> element, add a JGroups broadcast group.
The broadcast group enables the broker to push information about its cluster connection to the
other brokers in the cluster. This broadcast group uses JGroups to broadcast the connection
settings:

The following parameters are required unless otherwise noted:

broadcast-group

Use the name attribute to specify a unique name for the broadcast group.

jgroups-file

The name of JGroups configuration file to initialize JGroups channels. The file must be in
the Java resource path so that the broker can load it.

jgroups-channel

The name of the JGroups channel to connect to for broadcasting.

broadcast-period (optional)

The interval in milliseconds between consecutive broadcasts. The default value is 2000

<configuration>
 <core>
 ...
 <connectors>
 <connector name="netty-connector">tcp://localhost:61617</connector>
 </connectors>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <broadcast-groups>
 <broadcast-group name="my-broadcast-group">
 <jgroups-file>test-jgroups-file_ping.xml</jgroups-file>
 <jgroups-channel>activemq_broadcast_channel</jgroups-channel>
 <broadcast-period>2000</broadcast-period>
 <connector-ref>netty-connector</connector-ref>
 </broadcast-group>
 </broadcast-groups>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

133

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-jgroups

The interval in milliseconds between consecutive broadcasts. The default value is 2000
milliseconds (2 seconds).

connector-ref

The previously configured cluster connector that should be broadcasted.

4. Add a JGroups discovery group.
The discovery group defines how connector information is received. The broker maintains a list
of connectors (one entry for each broker). As it receives broadcasts from a broker, it updates its
entry. If it does not receive a broadcast from a broker for a length of time, it removes the entry.

This discovery group uses JGroups to discover the brokers in the cluster:

The following parameters are required unless otherwise noted:

discovery-group

Use the name attribute to specify a unique name for the discovery group.

jgroups-file

The name of JGroups configuration file to initialize JGroups channels. The file must be in
the Java resource path so that the broker can load it.

jgroups-channel

The name of the JGroups channel to connect to for receiving broadcasts.

refresh-timeout (optional)

The amount of time in milliseconds that the discovery group waits after receiving the last
broadcast from a particular broker before removing that broker’s connector pair entry from
its list. The default is 10000 milliseconds (10 seconds).
Set this to a much higher value than the broadcast-period on the broadcast group.
Otherwise, brokers might periodically disappear from the list even though they are still
broadcasting (due to slight differences in timing).

5. Create a cluster connection and configure it to use dynamic discovery.
By default, the cluster connection will load balance messages for all addresses in a symmetric
topology.

<configuration>
 <core>
 ...
 <discovery-groups>
 <discovery-group name="my-discovery-group">
 <jgroups-file>test-jgroups-file_ping.xml</jgroups-file>
 <jgroups-channel>activemq_broadcast_channel</jgroups-channel>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
 <discovery-groups>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <cluster-connections>

Red Hat AMQ 7.4 Configuring AMQ Broker

134

cluster-connection

Use the name attribute to specify the name of the cluster connection.

connector-ref

The connector that defines how other brokers can connect to this one.

discovery-group-ref

The discovery group that this broker should use to locate other members of the cluster. You
only need to configure this property if the cluster uses dynamic discovery.

6. Configure any additional properties for the cluster connection.
These additional cluster connection properties have default values that are suitable for most
common use cases. Therefore, you only need to configure these properties if you do not want
the default behavior. For more information, see Appendix C, Cluster Connection Configuration
Elements.

7. Create the cluster user and password.
AMQ Broker ships with default cluster credentials, but you should change them to prevent
unauthorized remote clients from using these default credentials to connect to the broker.

IMPORTANT

The cluster password must be the same on every broker in the cluster.

8. Repeat this procedure on each additional broker.
You can copy the cluster configuration to each additional broker. However, do not copy any of
the other AMQ Broker data files (such as the bindings, journal, and large messages directories).
These files must be unique among the nodes in the cluster or the cluster will not form properly.

Additional resources

For an example of a broker cluster that uses dynamic discovery with JGroups, see the
clustered-jgroups AMQ Broker example program .

16.3. IMPLEMENTING HIGH AVAILABILITY

After creating a broker cluster, you can improve its reliability by implementing high availability (HA). With

 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 </cluster-connection>
 </cluster-connections>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <cluster-user>cluster_user</cluster-user>
 <cluster-password>cluster_user_password</cluster-password>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

135

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-jgroups

After creating a broker cluster, you can improve its reliability by implementing high availability (HA). With
HA, the broker cluster can continue to function even if one or more brokers go offline.

Implementing HA involves several steps:

1. Understand how HA works in AMQ Broker .
You should understand what live-backup groups are, and choose an HA policy that best meets
your requirements.

2. Configure the HA policy on each broker in the cluster .

3. Configure your client applications to use failover .

16.3.1. Understanding high availability

In AMQ Broker, you implement high availability (HA) by grouping the brokers in the cluster into live-
backup groups. In a live-backup group, a live broker is linked to a backup broker, which can take over for
the live broker if it fails. AMQ Broker also provides several different strategies for failover (called HA
policies) within a live-backup group.

16.3.1.1. How live-backup groups provide high availability

In AMQ Broker, you implement high availability (HA) by linking together the brokers in your cluster to
form live-backup groups. Live-backup groups provide failover, which means that if one broker fails,
another broker can take over its message processing.

A live-backup group consists of one live broker (sometimes called the master broker) linked to one or
more backup brokers (sometimes called slave brokers). The live broker serves client requests, while the
backup brokers wait in passive mode. If the live broker fails, a backup broker replaces the live broker,
enabling the clients to reconnect and continue their work.

16.3.1.2. High availability policies

A high availability (HA) policy defines how failover happens in a live-backup group. AMQ Broker
provides several different HA policies:

Shared store (recommended)

The live and backup brokers store their messaging data in a single directory on a shared file system
(typically a storage area network, or SAN). If the live broker fails, the backup broker loads the
messaging data from the shared file system and takes over for the failed live broker.
In most cases, you should use shared store instead of replication. Because shared store does not
replicate data over the network, it typically provides better performance than replication. Shared
store also avoids network isolation (also called "split brain") issues in which a live broker and its
backup become live at the same time.

Red Hat AMQ 7.4 Configuring AMQ Broker

136

Replication

The live and backup brokers continuously synchronize their messaging data over the network. If the
live broker fails, the backup broker loads the synchronized data and takes over for the failed live
broker.
Data synchronization between the live and backup brokers ensures that no messaging data is lost if
the live broker fails. When the live and backup brokers initially join together, the live broker replicates
all of its existing data to the backup broker over the network. Once this initial phase is complete, the
live broker replicates persistent data to the backup broker as the live broker receives it. This means
that if the live broker drops off the network, the backup broker has all of the persistent data that the
live broker has received up to that point.

Because replication synchronizes data over the network, network failures can result in network
isolation in which a live broker and its backup become live at the same time.

Live-only (limited HA)

When a live broker is stopped gracefully, it copies its messages and transaction state to another live
broker and then shuts down. Clients can then reconnect to the other broker to continue sending and
receiving messages.

Additional resources

For more information about the persistent message data that is shared between brokers in a
live-backup group, see Section 7.1, “About Journal-based Persistence”.

CHAPTER 16. SETTING UP A BROKER CLUSTER

137

16.3.1.3. Replication policy limitations

Network isolation (sometimes called "split brain") is a limitation of the replication high availability (HA)
policy. You should understand how it occurs, and how to avoid it.

Network isolation can happen if a live broker and its backup lose their connection. In this situation, both a
live broker and its backup can become active at the same time. Specifically, if the backup broker can still
connect to more than half of the live brokers in the cluster, it also becomes active. Because there is no
message replication between the brokers in this situation, they each serve clients and process messages
without the other knowing it. In this case, each broker has a completely different journal. Recovering
from this situation can be very difficult and in some cases, not possible.

To avoid network isolation, consider the following:

To eliminate any possibility of network isolation, use the shared store HA policy.

If you do use the replication HA policy, you can reduce (but not eliminate) the chance of
encountering network isolation by doing the following:

Use at least three live-backup pairs.

If you only have a single live-backup pair, configure network pinging.

Additional resources

Section 16.3.2.3, “Configuring network pinging for replication high availability”

16.3.2. Configuring high availability

After choosing a high availability (HA) policy, configure the policy on each broker in the cluster.

You can configure HA in any of the following ways:

Shared store HA

Replication HA

Limited HA with live-only

Colocated backups (using either shared store or replication as the HA policy)

Prerequisites

You must have chosen the HA policy that best fits your requirements.
For more information, see Section 16.3.1.2, “High availability policies” .

16.3.2.1. Configuring shared store high availability

You can use the shared store high availability (HA) policy to implement HA in a broker cluster. With
shared store, both live and backup brokers access a single directory on a shared file system. If a live
broker fails, the backup broker loads the message data from the shared store and takes over for the
failed live broker.

In most cases, you should use shared store instead of replication. Because shared store does not
replicate data over the network, it typically provides better performance than replication. Shared store
also avoids network isolation (also called "split brain") issues in which a live broker and its backup

Red Hat AMQ 7.4 Configuring AMQ Broker

138

become live at the same time.

NOTE

When using shared store, the startup time for the backup broker depends on the size of
the message journal. When the backup broker takes over for a failed live broker, it loads
the journal from the shared store. This process can be time consuming if the journal
contains a lot of data.

Prerequisites

A shared file system must be accessible to the live and backup brokers.
Typically, you should use a Storage Area Network (SAN) to provide the shared store. For more
information about supported network file systems, see Red Hat AMQ Supported
Configurations.

Procedure

1. Group the brokers in your cluster into live-backup groups.
In most cases, a live-backup group should consist of two brokers: a live broker and a backup
broker. If you have six brokers in your cluster, you would need three live-backup groups.

2. Create the first live-backup group consisting of one live broker and one backup broker.

a. Open the live broker’s <broker-instance-dir>/etc/broker.xml configuration file.

b. Verify that the live broker’s paging, bindings, journal, and large messages directories point to
a shared location that the backup broker can also access.

c. Configure the live broker to use shared store for its HA policy.

<configuration>
 <core>
 ...
 <paging-directory>../sharedstore/data/paging</paging-directory>
 <bindings-directory>../sharedstore/data/bindings</bindings-directory>
 <journal-directory>../sharedstore/data/journal</journal-directory>
 <large-messages-directory>../sharedstore/data/large-messages</large-messages-
directory>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <master>
 <failover-on-shutdown>true</failover-on-shutdown>
 </master>
 </shared-store>
 </ha-policy>

CHAPTER 16. SETTING UP A BROKER CLUSTER

139

https://access.redhat.com/articles/2791941

failover-on-shutdown

If this broker is stopped normally, this property controls whether the backup broker
should become live and take over.

d. Open the backup broker’s <broker-instance-dir>/etc/broker.xml configuration file.

e. Verify that the backup broker’s paging, bindings, journal, and large messages directories
point to the same shared location as the live broker.

f. Configure the backup broker to use shared store for its HA policy.

failover-on-shutdown

If this broker has become live and then is stopped normally, this property controls
whether the backup broker (the original live broker) should become live and take over.

allow-failback

If failover has occurred and the backup broker has taken over for the live broker, this
property controls whether the backup broker should fail back to the original live broker
when it restarts and reconnects to the cluster.

NOTE

 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <paging-directory>../sharedstore/data/paging</paging-directory>
 <bindings-directory>../sharedstore/data/bindings</bindings-directory>
 <journal-directory>../sharedstore/data/journal</journal-directory>
 <large-messages-directory>../sharedstore/data/large-messages</large-messages-
directory>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <slave>
 <failover-on-shutdown>true</failover-on-shutdown>
 <allow-failback>true</allow-failback>
 </slave>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

140

NOTE

Failback is intended for a live-backup pair (one live broker paired with a
single backup broker). If the live broker is configured with multiple
backups, then failback will not occur. Instead, if a failover event occurs, the
backup broker will become live, and the next backup will become its
backup. When the original live broker comes back online, it will not be able
to initiate failback, because the broker that is now live already has a
backup.

3. Repeat Step 2 for each remaining live-backup group in the cluster.

16.3.2.2. Configuring replication high availability

You can use the replication high availability (HA) policy to implement HA in a broker cluster. With
replication, persistent data is synchronized between the live and backup brokers. If a live broker
encounters a failure, message data is synchronized to the backup broker and it takes over for the failed
live broker.

You should use replication as an alternative to shared store, if you do not have a shared file system.
However, replication can result in network isolation in which a live broker and its backup become live at
the same time.

NOTE

Because the live and backup brokers must synchronize their messaging data over the
network, replication adds a performance overhead. This synchronization process blocks
journal operations, but it does not block clients.

You can configure the maximum amount of time that journal operations can be blocked
for data synchronization.

The following procedure describes how to configure HA for a six-broker cluster. In this topology, the six
brokers are grouped into three live-backup pairs: each of the three live brokers is paired with a
dedicated backup broker.

Replication requires at least three live-backup pairs to lessen (but not eliminate) the risk of network
isolation.

Prerequisites

You must have a broker cluster with at least six brokers.
The six brokers will be configured into three live-backup pairs. For more information about
adding brokers to a cluster, see Chapter 16, Setting up a broker cluster .

Procedure

1. Group the brokers in your cluster into live-backup groups.
In most cases, a live-backup group should consist of two brokers: a live broker and a backup
broker. If you have six brokers in your cluster, you would need three live-backup groups.

2. Create the first live-backup group consisting of one live broker and one backup broker.

a. Open the live broker’s <broker-instance-dir>/etc/broker.xml configuration file.

CHAPTER 16. SETTING UP A BROKER CLUSTER

141

b. Configure the live broker to use replication for its HA policy.

check-for-live-server

If the live broker fails, this property controls whether clients should fail back to it when it
restarts.
If you set this to true, when the broker restarts, it searches for another broker in the
cluster with the same cluster node ID. If it finds one, it synchronizes its data with it and
then requests that the other broker shut down. The live broker then resumes its active
role, and clients reconnect to it.

WARNING

If you restart a live broker after failover has occurred, then the value
for check-for-live-server must be set to true. Otherwise, the live
broker restarts and processes the same messages that its backup
broker has already handled, causing duplicates.

group-name

A name for this live-backup group. To form a live-backup group, the live and backup
brokers must be configured with the same group name.

c. Configure any additional HA properties for the live broker.
These additional HA properties have default values that are suitable for most common use
cases. Therefore, you only need to configure these properties if you do not want the default
behavior. For more information, see Appendix F, Replication High Availability Configuration
Elements.

d. Open the backup broker’s <broker-instance-dir>/etc/broker.xml configuration file.

e. Configure the backup broker to use replication for its HA policy.

<configuration>
 <core>
 ...
 <ha-policy>
 <replication>
 <master>
 <check-for-live-server>true</check-for-live-server>
 <group-name>my-group-1</group-name>
 ...
 </master>
 </replication>
 </ha-policy>
 ...
 </core>
</configuration>

<configuration>
 <core>

Red Hat AMQ 7.4 Configuring AMQ Broker

142

allow-failback

If failover has occurred and the backup broker has taken over for the live broker, this
property controls whether the backup broker should fail back to the original live broker
when it restarts and reconnects to the cluster.

NOTE

Failback is intended for a live-backup pair (one live broker paired with a
single backup broker). If the live broker is configured with multiple
backups, then failback will not occur. Instead, if a failover event occurs, the
backup broker will become live, and the next backup will become its
backup. When the original live broker comes back online, it will not be able
to initiate failback, because the broker that is now live already has a
backup.

group-name

The group name of the live broker to which this backup should connect. A backup broker
connects only to a live broker that shares the same group name.

f. Configure any additional HA properties for the backup broker.
These additional HA properties have default values that are suitable for most common use
cases. Therefore, you only need to configure these properties if you do not want the default
behavior. For more information, see Appendix F, Replication High Availability Configuration
Elements.

3. Repeat Step 2 for each additional live-backup group in the cluster.
If there are six brokers in the cluster, you would repeat this procedure two more times: once for
each remaining live-backup group.

Additional resources

For examples of broker clusters that use replication for HA, see the HA example programs.

16.3.2.3. Configuring network pinging for replication high availability

If you are using the replication high availability (HA) policy, and if you have only a single live-backup pair,
configuring network pinging reduces the chances of encountering network isolation.

NOTE

 ...
 <ha-policy>
 <replication>
 <slave>
 <allow-failback>true</allow-failback>
 <group-name>my-group-1</group-name>
 ...
 </slave>
 </replication>
 </ha-policy>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

143

https://github.com/apache/activemq-artemis/tree/master/examples/features/ha

NOTE

For the replication HA policy, the recommended configuration is to use three or more
live-backup pairs. This configuration uses quorum-based voting to avoid network
isolation. You should only use the network pinger if you are unable to use three or more
live-backup groups.

Procedure

1. On the live broker, open the <broker-instance-dir>/etc/broker.xml configuration file.

2. Add the network ping elements to configure the broker to continually ping its backup.

network-check-period

The frequency (in milliseconds) with which the broker should check to see if the network is
still online.

network-check-timeout

The amount of time (in milliseconds) that the broker should wait for a response after pinging
its backup. If the broker does not receive a response within this time, the broker will stop.

network-check-list

The IP address that should be used to ping the backup broker. This address should be
defined as a connector in the backup broker’s broker.xml configuration file.

network-check-ping-command

The command to use to ping the backup broker.

network-check-ping6-command

The command to use to ping the backup broker if it uses an IPv6 address.

3. Repeat this procedure on the backup broker.

Additional resources

For more information about network isolation, see Section 16.3.1.3, “Replication policy
limitations”.

16.3.2.4. Configuring limited high availability with live-only

The live-only HA policy enables you to shut down a broker in a cluster without losing any messages. With
live-only, when a live broker is stopped gracefully, it copies its messages and transaction state to
another live broker and then shuts down. Clients can then reconnect to the other broker to continue
sending and receiving messages.

The live-only HA policy only handles cases when the broker is stopped gracefully. It does not handle

<configuration>
 <core>
 <network-check-period>10000</network-check-period>
 <network-check-timeout>1000</network-check-timeout>
 <network-check-list>192.0.2.1</network-check-list>
 <network-check-ping-command>ping -c 1 -t %d %s</network-check-ping-command>
 <network-check-ping6-command>ping6 -c 1 %2$s</network-check-ping6-command>
 ...
 </core>
</configuration>

Red Hat AMQ 7.4 Configuring AMQ Broker

144

The live-only HA policy only handles cases when the broker is stopped gracefully. It does not handle
unexpected broker failures.

While live-only HA prevents message loss, it may not preserve message order. If a broker configured
with live-only HA is stopped, its messages will be appended to the ends of the queues of another broker.

NOTE

When a broker is preparing to scale down, it sends a message to its clients before they are
disconnected informing them which new broker is ready to process their messages.
However, clients should reconnect to the new broker only after their initial broker has
finished scaling down. This ensures that any state, such as queues or transactions, is
available on the other broker when the client reconnects. The normal reconnect settings
apply when the client is reconnecting, so you should set these high enough to deal with
the time needed to scale down.

This procedure describes how to configure each broker in the cluster to scale down. After completing
this procedure, whenever a broker is stopped gracefully, it will copy its messages and transaction state
to another broker in the cluster.

Procedure

1. Open the first broker’s <broker-instance-dir>/etc/broker.xml configuration file.

2. Configure the broker to use the live-only HA policy.

3. Configure a method for scaling down the broker cluster.
Specify the broker or group of brokers to which this broker should scale down.

To scale down to… Do this…

A specific broker in the
cluster

Specify the connector of the broker to which you want to scale down.

<configuration>
 <core>
 ...
 <ha-policy>
 <live-only>
 </live-only>
 </ha-policy>
 ...
 </core>
</configuration>

<live-only>
 <scale-down>
 <connectors>
 <connector-ref>broker1-connector</connector-ref>
 </connectors>
 </scale-down>
</live-only>

CHAPTER 16. SETTING UP A BROKER CLUSTER

145

Any broker in the cluster Specify the broker cluster’s discovery group.

A broker in a particular
broker group

Specify a broker group.

To scale down to… Do this…

4. Repeat this procedure for each remaining broker in the cluster.

Additional resources

For an example of a broker cluster that uses live-only to scale down the cluster, see the scale-
down example programs.

16.3.2.5. Configuring high availability with colocated backups

Rather than configure live-backup groups, you can colocate backup brokers in the same JVM as another
live broker. In this configuration, each live broker is configured to request another live broker to create
and start a backup broker in its JVM.

Figure 16.4. Colocated live and backup brokers

You can use colocation with either shared store or replication as the high availability (HA) policy. The

<live-only>
 <scale-down>
 <discovery-group-ref discovery-group-name="my-
discovery-group"/>
 </scale-down>
</live-only>

<live-only>
 <scale-down>
 <group-name>my-group-name</group-name>
 </scale-down>
</live-only>

Red Hat AMQ 7.4 Configuring AMQ Broker

146

https://github.com/apache/activemq-artemis/tree/master/examples/features/ha/scale-down

You can use colocation with either shared store or replication as the high availability (HA) policy. The
new backup broker inherits its configuration from the live broker that creates it. The name of the backup
is set to colocated_backup_n where n is the number of backups the live broker has created.

In addition, the backup broker inherits the configuration for its connectors and acceptors from the live
broker that creates it. By default, port offset of 100 is applied to each. For example, if the live broker has
an acceptor for port 61616, the first backup broker created will use port 61716, the second backup will
use 61816, and so on.

Directories for the journal, large messages, and paging are set according to the HA policy you choose. If
you choose shared store, the requesting broker notifies the target broker which directories to use. If
replication is chosen, directories are inherited from the creating broker and have the new backup’s name
appended to them.

This procedure configures each broker in the cluster to use shared store HA, and to request a backup to
be created and colocated with another broker in the cluster.

Procedure

1. Open the first broker’s <broker-instance-dir>/etc/broker.xml configuration file.

2. Configure the broker to use an HA policy and colocation.
In this example, the broker is configured with shared store HA and colocation.

request-backup

By setting this property to true, this broker will request a backup broker to be created by
another live broker in the cluster.

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <colocated>
 <request-backup>true</request-backup>
 <max-backups>1</max-backups>
 <backup-request-retries>-1</backup-request-retries>
 <backup-request-retry-interval>5000</backup-request-retry-interval/>
 <backup-port-offset>150</backup-port-offset>
 <excludes>
 <connector-ref>remote-connector</connector-ref>
 </excludes>
 <master>
 <failover-on-shutdown>true</failover-on-shutdown>
 </master>
 <slave>
 <failover-on-shutdown>true</failover-on-shutdown>
 <allow-failback>true</allow-failback>
 </slave>
 </colocated>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

147

max-backups

The number of backup brokers that this broker can create. If you set this property to 0, this
broker will not accept backup requests from other brokers in the cluster.

backup-request-retries

The number of times this broker should try to request a backup broker to be created. The
default is -1, which means unlimited tries.

backup-request-retry-interval

The amount of time in milliseconds that the broker should wait before retrying a request to
create a backup broker. The default is 5000, or 5 seconds.

backup-port-offset

The port offset to use for the acceptors and connectors for a new backup broker. If this
broker receives a request to create a backup for another broker in the cluster, it will create
the backup broker with the ports offset by this amount. The default is 100.

excludes (optional)

Excludes connectors from the backup port offset. If you have configured any connectors for
external brokers that should be excluded from the backup port offset, add a <connector-
ref> for each of the connectors.

master

The shared store or replication failover configuration for this broker.

slave

The shared store or replication failover configuration for this broker’s backup.

3. Repeat this procedure for each remaining broker in the cluster.

Additional resources

For examples of broker clusters that use colocated backups, see the HA example programs.

16.3.3. Configuring clients to fail over

After configuring high availability in a broker cluster, you configure your clients to fail over. Client failover
ensures that if a broker fails, the clients connected to it can reconnect to another broker in the cluster
with minimal downtime.

NOTE

In the event of transient network problems, AMQ Broker automatically reattaches
connections to the same broker. This is similar to failover, except that the client
reconnects to the same broker.

You can configure two different types of client failover:

Automatic client failover

The client receives information about the broker cluster when it first connects. If the broker to which
it is connected fails, the client automatically reconnects to the broker’s backup, and the backup
broker re-creates any sessions and consumers that existed on each connection before failover.

Application-level client failover

As an alternative to automatic client failover, you can instead code your client applications with your
own custom reconnection logic in a failure handler.

Red Hat AMQ 7.4 Configuring AMQ Broker

148

https://github.com/apache/activemq-artemis/tree/master/examples/features/ha

Procedure

Use AMQ Core Protocol JMS to configure your client application with automatic or application-
level failover.
For more information, see Using the AMQ Core Protocol JMS Client .

16.4. ENABLING MESSAGE REDISTRIBUTION

If your broker cluster uses on-demand message load balancing, you should enable message
redistribution to prevent messages from being "stuck" in a queue that does not have a consumer to
consume them.

Broker clusters use load balancing to distribute the message load across the cluster. When configuring
load balancing in the cluster connection, if you set message-load-balancing to ON_DEMAND, the
broker will only forward messages to other brokers that have matching consumers. This ensures that
messages are not moved to queues that do not have any consumers to consume them. However, if the
consumers attached to a queue close after the messages are forwarded to the broker, those messages
will be "stuck" in the queue and not consumed. This issue is sometimes called starvation.

Message redistribution prevents starvation by automatically redistributing the messages from queues
that have no consumers to brokers in the cluster that do have matching consumers.

Procedure

1. Open the <broker-instance-dir>/etc/broker.xml configuration file.

2. In the <cluster-connection> element, verify that <message-load-balancing> is set to
<ON_DEMAND>.

3. Within the <address-settings> element, set the redistribution delay for a queue or set of
queues.
In this example, messages load balanced to my.queue will be redistributed 5000 milliseconds (5
seconds) after the last consumer closes.

<configuration>
 <core>
 ...
 <cluster-connections>
 <cluster-connection name="my-cluster">
 ...
 <message-load-balancing>ON_DEMAND</message-load-balancing>
 ...
 </cluster-connection>
 </cluster-connections>
 </core>
</configuration>

<configuration>
 <core>
 ...
 <address-settings>
 <address-setting match="my.queue">
 <redistribution-delay>5000</redistribution-delay>
 </address-setting>
 </address-settings>

CHAPTER 16. SETTING UP A BROKER CLUSTER

149

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_the_amq_core_protocol_jms_client/

address-setting

Set the match attribute to be the name of the queue for which you want messages to be
redistributed. You can use the broker wildcard syntax to specify a range of queues. For more
information, see the section called “AMQ Broker Wildcard Syntax” .

redistribution-delay

The amount of time (in milliseconds) that the broker should wait after this queue’s final
consumer closes before redistributing messages to other brokers in the cluster. If you set this
to 0, messages will be redistributed immediately. However, you should typically set a delay
before redistributing - it is common for a consumer to close but another one to be quickly
created on the same queue.

4. Repeat this procedure on each additional broker.

Additional resources

For an example of a broker cluster configuration that redistributes messages, see the queue-
message-redistribution AMQ Broker example program .

16.5. CONFIGURING CLUSTERED MESSAGE GROUPING

Message grouping enables clients to send groups of messages of a particular type to be processed
serially by the same consumer. By adding a grouping handler to each broker in the cluster, you ensure
that clients can send grouped messages to any broker in the cluster and still have those messages
consumed in the correct order by the same consumer.

There are two types of grouping handlers: local handlers and remote handlers. They enable the broker
cluster to route all of the messages in a particular group to the appropriate queue so that the intended
consumer can consume them in the correct order.

Prerequisites

There should be at least one consumer on each broker in the cluster.
When a message is pinned to a consumer on a queue, all messages with the same group ID will
be routed to that queue. If the consumer is removed, the queue will continue to receive the
messages even if there are no consumers.

Procedure

1. Configure a local handler on one broker in the cluster.
If you are using high availability, this should be a master broker.

a. Open the broker’s <broker-instance-dir>/etc/broker.xml configuration file.

b. Within the <core> element, add a local handler:
The local handler serves as an arbiter for the remote handlers. It stores route information
and communicates it to the other brokers.

 ...
 </core>
</configuration>

<configuration>
 <core>
 ...

Red Hat AMQ 7.4 Configuring AMQ Broker

150

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/queue-message-redistribution

grouping-handler

Use the name attribute to specify a unique name for the grouping handler.

type

Set this to LOCAL.

timeout

The amount of time to wait (in milliseconds) for a decision to be made about where to
route the message. The default is 5000 milliseconds (5 seconds). If the timeout is
reached before a routing decision is made, an exception is thrown, which ensures strict
message ordering.
When the broker receives a message with a group ID, it proposes a route to a queue to
which the consumer is attached. If the route is accepted by the grouping handlers on the
other brokers in the cluster, then the route is established: all brokers in the cluster will
forward messages with this group ID to that queue. If the broker’s route proposal is
rejected, then it proposes an alternate route, repeating the process until a route is
accepted.

2. If you are using high availability, copy the local handler configuration to the master broker’s slave
broker.
Copying the local handler configuration to the slave broker prevents a single point of failure for
the local handler.

3. On each remaining broker in the cluster, configure a remote handler.

a. Open the broker’s <broker-instance-dir>/etc/broker.xml configuration file.

b. Within the <core> element, add a remote handler:

grouping-handler

Use the name attribute to specify a unique name for the grouping handler.

type

Set this to REMOTE.

timeout

The amount of time to wait (in milliseconds) for a decision to be made about where to

 <grouping-handler name="my-grouping-handler">
 <type>LOCAL</type>
 <timeout>10000</timeout>
 </grouping-handler>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <grouping-handler name="my-grouping-handler">
 <type>REMOTE</type>
 <timeout>5000</timeout>
 </grouping-handler>
 ...
 </core>
</configuration>

CHAPTER 16. SETTING UP A BROKER CLUSTER

151

The amount of time to wait (in milliseconds) for a decision to be made about where to
route the message. The default is 5000 milliseconds (5 seconds). Set this value to at
least half of the value of the local handler.

Additional resources

For an example of a broker cluster configured for message grouping, see the clustered-
grouping AMQ Broker example program .

16.6. CONNECTING CLIENTS TO A BROKER CLUSTER

You can use the AMQ JMS clients to connect to the cluster. By using JMS, you can configure your
messaging clients to discover the list of brokers dynamically or statically. You can also configure client-
side load balancing to distribute the client sessions created from the connection across the cluster.

Procedure

Use AMQ Core Protocol JMS to configure your client application to connect to the broker
cluster.
For more information, see Using the AMQ Core Protocol JMS Client .

Red Hat AMQ 7.4 Configuring AMQ Broker

152

https://github.com/apache/activemq-artemis/tree/master/examples/features/clustered/clustered-grouping
https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/using_the_amq_core_protocol_jms_client/

CHAPTER 17. LOGGING
AMQ Broker uses the JBoss Logging framework to do its logging and is configurable via the
BROKER_INSTANCE_DIR/etc/logging.properties configuration file. This configuration file is a list of
key value pairs.

There are six loggers available, which are configured by the loggers key.

loggers=org.jboss.logging,org.apache.activemq.artemis.core.server,org.apache.activemq.artemis.utils,or
g.apache.activemq.artemis.journal,org.apache.activemq.artemis.jms.server,org.apache.activemq.artemi
s.integration.bootstrap

Table 17.1. Loggers

Logger Description

org.jboss.logging Logs any calls not handled by the Brokers loggers

org.apache.activemq.artemis.core.server Logs the Broker core

org.apache.activemq.artemis.utils Logs utility calls

org.apache.activemq.artemis.journal Logs Journal calls

org.apache.activemq.artemis.jms Logs JMS calls

org.apache.activemq.artemis.integration.boo
tstrap

Logs bootstrap calls

By default there are two loggers configured by default by the logger.handlers key.

logger.handlers=FILE,CONSOLE

As the names suggest these log to the console and to a file.

17.1. CHANGING THE LOGGING LEVEL

The default logging level for all loggers is INFO and is configured on the root logger.

logger.level=INFO

All other loggers specified can be configured individually via the logger name.

logger.org.apache.activemq.artemis.core.server.level=INFO
logger.org.apache.activemq.artemis.journal.level=INFO
logger.org.apache.activemq.artemis.utils.level=INFO
logger.org.apache.activemq.artemis.jms.level=INFO
logger.org.apache.activemq.artemis.integration.bootstrap.level=INFO

NOTE

CHAPTER 17. LOGGING

153

NOTE

The root logger configuration will always be the finest logging logged even if the other
logs have a finer logging configuration.

Table 17.2. Available Logging Levels

Level Description

FATAL Use the FATAL level priority for events that indicate
a critical service failure. If a service issues a FATAL
error it is completely unable to service requests of
any kind.

ERROR Use the ERROR level priority for events that indicate
a disruption in a request or the ability to service a
request. A service should have some capacity to
continue to service requests in the presence of
ERRORs.

WARN Use the WARN level priority for events that may
indicate a non-critical service error. Resumable
errors, or minor breaches in request expectations fall
into this category. The distinction between WARN
and ERROR may be hard to discern and so it is up to
the developer to judge. The simplest criterion is
would this failure result in a user support call. If it
would use ERROR. If it would not use WARN.

INFO Use the INFO level priority for service life-cycle
events and other crucial related information. Looking
at the INFO messages for a given service category
should tell you exactly what state the service is in.

DEBUG Use the DEBUG level priority for log messages that
convey extra information regarding life-cycle events.
Developer or in depth information required for
support is the basis for this priority. The important
point is that when the DEBUG level priority is
enabled, the JBoss server log should not grow
proportionally with the number of server requests.
Looking at the DEBUG and INFO messages for a
given service category should tell you exactly what
state the service is in, as well as what server
resources it is using: ports, interfaces, log files, and so
on.

Red Hat AMQ 7.4 Configuring AMQ Broker

154

TRACE Use TRACE the level priority for log messages that
are directly associated with activity that corresponds
requests. Further, such messages should not be
submitted to a Logger unless the Logger category
priority threshold indicates that the message will be
rendered. Use the Logger.isTraceEnabled() method
to determine if the category priority threshold is
enabled. The point of the TRACE priority is to allow
for deep probing of the JBoss server behavior when
necessary. When the TRACE level priority is enabled,
you can expect the number of messages in the JBoss
server log to grow at least a x N, where N is the
number of requests received by the server, a some
constant. The server log may well grow as power of N
depending on the request-handling layer being
traced.

Level Description

17.2. CONFIGURING CONSOLE LOGGING

Console Logging can be configured via the following keys.

handler.CONSOLE=org.jboss.logmanager.handlers.ConsoleHandler
handler.CONSOLE.properties=autoFlush
handler.CONSOLE.level=DEBUG
handler.CONSOLE.autoFlush=true
handler.CONSOLE.formatter=PATTERN

NOTE

handler.CONSOLE refers to the name given in the logger.handlers key.

Table 17.3. Available Console Configuration

Property Description

name The handler’s name.

encoding The character encoding used by this Handler.

level The log level specifying which message levels will be
logged by this. Message levels lower than this value
will be discarded.

formatter Defines a formatter. See Section 17.4, “Configuring
the Logging Format”.

autoflush Automatically flush after each write.

CHAPTER 17. LOGGING

155

target Defines the target of the console handler. The value
can either be SYSTEM_OUT or SYSTEM_ERR.

Property Description

17.3. CONFIGURING FILE LOGGING

File Logging can be configured via the following keys.

handler.FILE=org.jboss.logmanager.handlers.PeriodicRotatingFileHandler
handler.FILE.level=DEBUG
handler.FILE.properties=suffix,append,autoFlush,fileName
handler.FILE.suffix=.yyyy-MM-dd
handler.FILE.append=true
handler.FILE.autoFlush=true
handler.FILE.fileName=${artemis.instance}/log/artemis.log
handler.FILE.formatter=PATTERN

NOTE

handler.FILE refers to the name given in the logger.handlers key.

Table 17.4. Available Console Configuration

Property Description

name The handler’s name.

encoding The character encoding used by this Handler.

level The log level specifying which message levels will be
logged by this. Message levels lower than this value
will be discarded.

formatter Defines a formatter. See Section 17.4, “Configuring
the Logging Format”.

autoflush Automatically flush after each write.

append Specify whether to append to the target file.

file The file description consisting of the path and
optional relative to path.

17.4. CONFIGURING THE LOGGING FORMAT

The formatter describes how log messages should be shown. The following is the default configuration.

Red Hat AMQ 7.4 Configuring AMQ Broker

156

formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern
formatter.PATTERN.pattern=%d{HH:mm:ss,SSS} %-5p [%c] %s%E%n

Where %s is the message and %E is the exception if one exists.

The format is the same as the Log4J format. A full description can be found here.

17.5. CLIENT OR EMBEDDED SERVER LOGGING

Firstly, if you want to enable logging on the client side you need to include the JBoss logging JARs in
your client’s class path. If you are using Maven, add the following dependencies:

There are two properties you need to set when starting your Java program. The first is to set the Log
Manager to use the JBoss Log Manager. This is done by setting the -Djava.util.logging.manager
property. For example:

-Djava.util.logging.manager=org.jboss.logmanager.LogManager

The second is to set the location of the logging.properties file to use. This is done by setting the -
Dlogging.configuration property with a valid URL. For example:

-Dlogging.configuration=file:///home/user/projects/myProject/logging.properties

The following is a typical logging.properties file for a client:

Root logger option
loggers=org.jboss.logging,org.apache.activemq.artemis.core.server,org.apache.activemq.artemis.utils,or
g.apache.activemq.artemis.journal,org.apache.activemq.artemis.jms,org.apache.activemq.artemis.ra

Root logger level
logger.level=INFO
ActiveMQ Artemis logger levels
logger.org.apache.activemq.artemis.core.server.level=INFO
logger.org.apache.activemq.artemis.utils.level=INFO
logger.org.apache.activemq.artemis.jms.level=DEBUG

Root logger handlers
logger.handlers=FILE,CONSOLE

Console handler configuration
handler.CONSOLE=org.jboss.logmanager.handlers.ConsoleHandler
handler.CONSOLE.properties=autoFlush

<dependency>
 <groupId>org.jboss.logmanager</groupId>
 <artifactId>jboss-logmanager</artifactId>
 <version>1.5.3.Final</version>
</dependency>
<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-core-client</artifactId>
 <version>1.0.0.Final</version>
</dependency>

CHAPTER 17. LOGGING

157

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

handler.CONSOLE.level=FINE
handler.CONSOLE.autoFlush=true
handler.CONSOLE.formatter=PATTERN

File handler configuration
handler.FILE=org.jboss.logmanager.handlers.FileHandler
handler.FILE.level=FINE
handler.FILE.properties=autoFlush,fileName
handler.FILE.autoFlush=true
handler.FILE.fileName=activemq.log
handler.FILE.formatter=PATTERN

Formatter pattern configuration
formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern
formatter.PATTERN.pattern=%d{HH:mm:ss,SSS} %-5p [%c] %s%E%n

17.6. AMQ BROKER PLUG-INS SUPPORT

AMQ supports custom plug-ins. You can use plug-ins to log information about many different types of
events that would otherwise only be available through debug logs. Multiple plug-ins can be registered,
tied, and executed together. The plug-ins will be executed based on the order of the registration, that is,
the first plug-in registered is always executed first.

You can create custom plug-ins and implement them using the ActiveMQServerPlugin interface. This
interface ensures that the plug-in is on the classpath, and is registered with the broker. As all the
interface methods are implemented by default, you have to add only the required behavior that needs to
be implemented.

17.6.1. Adding Plug-ins to the Classpath

Add the custom created broker plug-ins to the broker runtime by adding the relevant jars to the
BROKER_INSTANCE_DIR/lib directory.

If you are using an embedded system then place the jar under the regular classpath of your embedded
application.

17.6.2. Registering a Plug-in

You must register a plug-in by adding the broker-plugins element in the broker.xml file. You can
specify the plug-in configuration value using the property child elements. These properties will be read
and passed into the plug-in’s init (Map<String, String>) operation after the plug-in has been
instantiated.

<broker-plugins>
 <broker-plugin class-name="some.plugin.UserPlugin">
 <property key="property1" value="val_1" />
 <property key="property2" value="val_2" />
 </broker-plugin>
 </broker-plugins>

17.6.3. Registering a Plug-in Programmatically

To register a plug-in programmatically, use the registerBrokerPlugin() method and pass in a new

Red Hat AMQ 7.4 Configuring AMQ Broker

158

To register a plug-in programmatically, use the registerBrokerPlugin() method and pass in a new
instance of your plug-in. The example below shows the registration of the UserPlugin plugin:

Configuration config = new ConfigurationImpl();

config.registerBrokerPlugin(new UserPlugin());

17.6.4. Logging Specific Events

By default, AMQ broker provides the LoggingActiveMQServerPlugin plug-in to log specific broker
events. The LoggingActiveMQServerPlug-in plug-in is commented out by default and does not log
any information. The following table provides information about the plug-in properties and its
description. Set the configuration property value to true to log events.

Property Description

LOG_CONNECTION_EVENTS Logs information when a connection is created or
destroyed.

LOG_SESSION_EVENTS Logs information when a session is created or closed.

LOG_CONSUMER_EVENTS Logs information when a consumer is created or
closed.

LOG_DELIVERING_EVENTS Logs information when message is delivered to a
consumer and when a message is acknowledged by a
consumer.

LOG_SENDING_EVENTS Logs information when a message has been sent to
an address and when a message has been routed
within the broker.

LOG_INTERNAL_EVENTS Logs information when a queue created or
destroyed, when a message is expired, when a bridge
is deployed, and when a critical failure occurs.

LOG_ALL_EVENTS Logs information for all the above events.

To configure the LoggingActiveMQServerPlugin plugin to log connection events, uncomment the
<broker-plugins> section in the broker.xml file. The value of all the events is set to true in the
commented default example.

<configuration ...>
...
<!-- Uncomment the following if you want to use the Standard LoggingActiveMQServerPlugin plugin
to log in events -->
 <broker-plugins>
 <broker-plugin class-
name="org.apache.activemq.artemis.core.server.plugin.impl.LoggingActiveMQServerPlugin">
 <property key="LOG_ALL_EVENTS" value="true"/>
 <property key="LOG_CONNECTION_EVENTS" value="true"/>

CHAPTER 17. LOGGING

159

 <property key="LOG_SESSION_EVENTS" value="true"/>
 <property key="LOG_CONSUMER_EVENTS" value="true"/>
 <property key="LOG_DELIVERING_EVENTS" value="true"/>
 <property key="LOG_SENDING_EVENTS" value="true"/>
 <property key="LOG_INTERNAL_EVENTS" value="true"/>
 </broker-plugin>
 </broker-plugins>
...
</configuration>

After changing the configuration parameters inside the <broker-plugins> section of the broker.xml
file, you must restart the broker to reload the configuration updates. These configuration changes will
not be reloaded by the configuration-file-refresh-period setting.

When the log level is set to INFO, an entry is logged after the event has occurred. If the log level is set to
DEBUG, log entries are generated for both before and after the event has occurred. For example, it
logs beforeCreateConsumer() and afterCreateConsumer(). If the log Level is set to DEBUG, it logs
more information for a notification when available.

Red Hat AMQ 7.4 Configuring AMQ Broker

160

APPENDIX A. ACCEPTOR AND CONNECTOR
CONFIGURATION PARAMETERS

The tables below detail some of the available parameters used to configure Netty network connections.
Parameters and their values are appended to the URI of the connection string. See Network
Connections: Acceptors and Connectors for more information. Each table lists the parameters by name
and notes whether they can be used with acceptors or connectors or with both. You can use some
parameters, for example, only with acceptors.

NOTE

All Netty parameters are defined in the class
org.apache.activemq.artemis.core.remoting.impl.netty.TransportConstants. Source
code is available for download on the customer portal.

Table A.1. Netty TCP Parameters

Parameter Use with… Description

batchDelay Both Before writing packets to the acceptor or connector, the broker
can be configured to batch up writes for a maximum of
batchDelay milliseconds. This can increase overall throughput
for very small messages. It does so at the expense of an increase
in average latency for message transfer. The default value is 0
ms.

connectionsAllowed Acceptors Limits the number of connections that the acceptor will allow.
When this limit is reached, a DEBUG-level message is issued to
the log and the connection is refused. The type of client in use
determines what happens when the connection is refused.

directDeliver Both When a message arrives on the server and is delivered to waiting
consumers, by default, the delivery is done on the same thread
as that on which the message arrived. This gives good latency in
environments with relatively small messages and a small number
of consumers, but at the cost of overall throughput and
scalability - especially on multi-core machines. If you want the
lowest latency and a possible reduction in throughput then you
can use the default value for directDeliver, which is true. If you
are willing to take some small extra hit on latency but want the
highest throughput set directDeliver to false.

APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS

161

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/configuring_amq_broker/#transports
http://access.redhat.com/downloads

handshake-timeout Acceptors Prevents an unauthorized client to open a large number of
connections and keep them open. Because each connection
requires a file handle, it consumes resources that are then
unavailable to other clients.

This timeout limits the amount of time a connection can
consume resources without having been authenticated. After
the connection is authenticated, you can use resource limit
settings to limit resource consumption.

The default value is set to 10 seconds. You can set it to any other
integer value. You can turn off this option by setting it to 0 or
negative integer.

After you edit the timeout value, you must restart the broker.

localAddress Connectors Specifies which local address the client will use when connecting
to the remote address. This is typically used in the Application
Server or when running Embedded to control which address is
used for outbound connections. If the local-address is not set
then the connector will use any local address available.

localPort Connectors Specifies which local port the client will use when connecting to
the remote address. This is typically used in the Application
Server or when running Embedded to control which port is used
for outbound connections. If the default is used, which is 0, then
the connector will let the system pick up an ephemeral port.
Valid ports are 0 to 65535

nioRemotingThreads Both When configured to use NIO, the broker will by default use a
number of threads equal to three times the number of cores (or
hyper-threads) as reported by
Runtime.getRuntime().availableProcessors() for
processing incoming packets. If you want to override this value,
you can set the number of threads by specifying this parameter.
The default value for this parameter is -1, which means use the
value derived from
Runtime.getRuntime().availableProcessors() * 3.

tcpNoDelay Both If this is true then Nagle’s algorithm will be disabled. This is a
Java (client) socket option. The default value is true.

tcpReceiveBufferSize Both Determines the size of the TCP receive buffer in bytes. The
default value is 32768.

Parameter Use with… Description

Red Hat AMQ 7.4 Configuring AMQ Broker

162

http://www.thenetworkencyclopedia.com/entry/nagles-algorithm/
http://docs.oracle.com/javase/7/docs/technotes/guides/net/socketOpt.html

tcpSendBufferSize Both Determines the size of the TCP send buffer in bytes. The default
value is 32768.

TCP buffer sizes should be tuned according to the bandwidth
and latency of your network.

In summary TCP send/receive buffer sizes should be calculated
as:

buffer_size = bandwidth * RTT.

Where bandwidth is in bytes per second and network round trip
time (RTT) is in seconds. RTT can be easily measured using the
ping utility.

For fast networks you may want to increase the buffer sizes
from the defaults.

Parameter Use with… Description

Table A.2. Netty HTTP Parameters

Parameter Use with… Description

httpClientIdleTime Acceptors How long a client can be idle before sending an empty HTTP
request to keep the connection alive.

httpClientIdleScanPerio
d

Acceptors How often, in milliseconds, to scan for idle clients.

httpEnabled Acceptors No longer required. With single port support the broker will now
automatically detect if HTTP is being used and configure itself.

httpRequiresSessionId Both If true the client will wait after the first call to receive a session
id. Used when an HTTP connector is connecting to a servlet
acceptor. This configuration is not recommended.

httpResponseTime Acceptors How long the server can wait before sending an empty HTTP
response to keep the connection alive.

httpServerScanPeriod Acceptors How often, in milliseconds, to scan for clients needing responses.

Table A.3. Netty TLS/SSL Parameters

Parameter Use with… Description

enabledCipherSuites Both Comma separated list of cipher suites used for SSL
communication. The default value is empty which means the
JVM’s default will be used.

APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS

163

enabledProtocols Both Comma separated list of protocols used for SSL communication.
The default value is empty which means the JVM’s default will
be used.

keyStorePassword Both When used on an acceptor this is the password for the server-
side keystore.

When used on a connector this is the password for the client-
side keystore. This is only relevant for a connector if you are
using 2-way SSL (that is, mutual authentication). Although this
value can be configured on the server, it is downloaded and used
by the client. If the client needs to use a different password
from that set on the server then it can override the server-side
setting by either using the customary
javax.net.ssl.keyStorePassword system property or the
ActiveMQ-specific
org.apache.activemq.ssl.keyStorePassword system
property. The ActiveMQ-specific system property is useful if
another component on client is already making use of the
standard, Java system property.

keyStorePath Both When used on an acceptor this is the path to the SSL key store
on the server which holds the server’s certificates (whether self-
signed or signed by an authority).

When used on a connector this is the path to the client-side SSL
key store which holds the client certificates. This is only relevant
for a connector if you are using 2-way SSL (that is, mutual
authentication). Although this value is configured on the server,
it is downloaded and used by the client. If the client needs to use
a different path from that set on the server then it can override
the server-side setting by either using the customary
javax.net.ssl.keyStore system property or the ActiveMQ-
specific org.apache.activemq.ssl.keyStore system
property. The ActiveMQ-specific system property is useful if
another component on client is already making use of the
standard, Java system property.

needClientAuth Acceptors Tells a client connecting to this acceptor that 2-way SSL is
required. Valid values are true or false. Default is false.

sslEnabled Both Must be true to enable SSL. Default is false.

Parameter Use with… Description

Red Hat AMQ 7.4 Configuring AMQ Broker

164

trustStorePassword Both When used on an acceptor this is the password for the server-
side trust store. This is only relevant for an acceptor if you are
using 2-way SSL (that is, mutual authentication).

When used on a connector this is the password for the client-
side truststore. Although this value can be configured on the
server, it is downloaded and used by the client. If the client
needs to use a different password from that set on the server
then it can override the server-side setting by either using the
customary javax.net.ssl.trustStorePassword system
property or the ActiveMQ-specific
org.apache.activemq.ssl.trustStorePassword system
property. The ActiveMQ-specific system property is useful if
another component on client is already making use of the
standard, Java system property.

trustStorePath Both When used on an acceptor this is the path to the server-side
SSL key store that holds the keys of all the clients that the
server trusts. This is only relevant for an acceptor if you are
using 2-way SSL (that is, mutual authentication).

When used on a connector this is the path to the client-side SSL
key store which holds the public keys of all the servers that the
client trusts. Although this value can be configured on the server,
it is downloaded and used by the client. If the client needs to use
a different path from that set on the server then it can override
the server-side setting by either using the customary
javax.net.ssl.trustStore system property or the ActiveMQ-
specific org.apache.activemq.ssl.trustStore system
property. The ActiveMQ-specific system property is useful if
another component on client is already making use of the
standard, Java system property.

verifyHost Both When used on an acceptor the CN of the connecting client’s
SSL certificate will be compared to its hostname to verify they
match. This is useful only for 2-way SSL.

When used on a connector the CN of the server’s SSL
certificate will be compared to its hostname to verify they
match. This is useful for both 1-way and 2-way SSL.

Valid values are true or false. Default is false.

Parameter Use with… Description

APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS

165

APPENDIX B. ADDRESS SETTING CONFIGURATION
ELEMENTS

The table below lists all of the configuration elements of an address-setting. Note that some elements
are marked DEPRECATED. Use the suggested replacement to avoid potential issues.

Table B.1. Address Setting Elements

Name Description

address-full-policy Determines what happens when an address configured with a max-size-
bytes becomes full. The available policies are:

PAGE: messages sent to a full address will be paged to disk.

DROP: messages sent to a full address will be silently dropped.

FAIL: messages sent to a full address will be dropped and the message
producers will receive an exception.

BLOCK: message producers will block when they try and send any further
messages.

NOTE

The BLOCK policy works only for the AMQP, OpenWire, and
Core protocols because they feature flow control.

auto-create-addresses Whether to automatically create addresses when a client sends a message
to or attempts to consume a message from a queue mapped to an address
that does not exist a queue. The default value is true.

auto-create-jms-queues DEPRECATED: Use auto-create-queues instead. Determines whether
this broker should automatically create a JMS queue corresponding to the
address settings match when a JMS producer or a consumer tries to use
such a queue. The default value is false.

auto-create-jms-topics DEPRECATED: Use auto-create-queues instead. Determines whether
this broker should automatically create a JMS topic corresponding to the
address settings match when a JMS producer or a consumer tries to use
such a queue. The default value is false.

auto-create-queues Whether to automatically create a queue when a client sends a message to
or attempts to consume a message from a queue. The default value is true.

auto-delete-addresses Whether to delete auto-created addresses when the broker no longer has
any queues. The default value is true.

auto-delete-jms-queues DEPRECATED: Use auto-delete-queues instead. Determines whether
AMQ Broker should automatically delete auto-created JMS queues when
they have no consumers and no messages. The default value is false.

Red Hat AMQ 7.4 Configuring AMQ Broker

166

auto-delete-jms-topics DEPRECATED: Use auto-delete-queues instead. Determines whether
AMQ Broker should automatically delete auto-created JMS topics when
they have no consumers and no messages. The default value is false.

auto-delete-queues Whether to delete auto-created queues when the queue has no consumers
and no messages. The default value is true.

config-delete-addresses When the configuration file is reloaded, this setting specifies how to handle
an address (and its queues) that has been deleted from the configuration
file. You can specify the following values:

OFF (default)
The address is not deleted when the configuration file is reloaded.

FORCE
The address and its queues are deleted when the configuration file is
reloaded. If there are any messages in the queues, they are removed
also.

config-delete-queues When the configuration file is reloaded, this setting specifies how to handle
queues that have been deleted from the configuration file. You can specify
the following values:

OFF (default)
The queue is not deleted when the configuration file is reloaded.

FORCE
The queue is deleted when the configuration file is reloaded. If there are
any messages in the queue, they are removed also.

dead-letter-address The address to which the broker sends dead messages.

default-address-routing-type The routing-type used on auto-created addresses. The default value is
MULTICAST.

default-max-consumers The maximum number of consumers allowed on this queue at any one time.
The default value is 200.

default-purge-on-no-
consumers

Whether to purge the contents of the queue once there are no consumers.
The default value is false.

default-queue-routing-type The routing-type used on auto-created queues. The default value is
MULTICAST.

expiry-address The address that will receive expired messages.

expiry-delay Defines the expiration time in milliseconds that will be used for messages
using the default expiration time. The default value is -1, which is means no
expiration time.

Name Description

APPENDIX B. ADDRESS SETTING CONFIGURATION ELEMENTS

167

last-value-queue Whether a queue uses only last values or not. The default value is false.

management-browse-page-
size

How many messages a management resource can browse. The default
value is 200.

max-delivery-attempts how many times to attempt to deliver a message before sending to dead
letter address. The default is 10.

max-redelivery-delay Maximum value for the redelivery-delay, in milliseconds.

max-size-bytes The maximum memory size for this address, specified in bytes. Used when
the address-full-policy is PAGING, BLOCK, or FAIL, this value is
specified in byte notation such as "K", "Mb", and "GB". The default value is -
1, which denotes infinite bytes. This parameter is used to protect broker
memory by limiting the amount of memory consumed by a particular
address space. This setting does not represent the total amount of bytes
sent by the client that are currently stored in broker address space. It is an
estimate of broker memory utilization. This value can vary depending on
runtime conditions and certain workloads. It is recommended that you
allocate the maximum amount of memory that can be afforded per address
space. Under typical workloads, the broker requires approximately 150% to
200% of the payload size of the outstanding messages in memory.

max-size-bytes-reject-
threshold

Used when the address-full-policy is BLOCK. The maximum size, in
bytes, that an address can reach before the broker begins to reject
messages. Works in combination with max-size-bytes for the AMQP
protocol only. The default value is -1, which means no limit.

message-counter-history-
day-limit

How many days to keep a message counter history for this address. The
default value is 0.

page-max-cache-size The number of page files to keep in memory to optimize I/O during paging
navigation. The default value is 5.

page-size-bytes The paging size in bytes. Also supports byte notation like K, Mb, and GB.
The default value is 10485760 bytes, almost 10.5 MB.

redelivery-delay The time, in milliseconds, to wait before redelivering a cancelled message.
The default value is 0.

redelivery-delay-multiplier Multiplier to apply to the redelivery-delay parameter. The default value is
1.0.

redistribution-delay Defines how long to wait in milliseconds after the last consumer is closed on
a queue before redistributing any messages. The default value is -1.

Name Description

Red Hat AMQ 7.4 Configuring AMQ Broker

168

send-to-dla-on-no-route When set to true, a message will be sent to the configured dead letter
address if it cannot be routed to any queues. The default value is false.

slow-consumer-check-period How often to check, in seconds, for slow consumers. The default value is 5.

slow-consumer-policy Determines what happens when a slow consumer is identified. Valid options
are KILL or NOTIFY. KILL kills the consumer’s connection, which impacts
any client threads using that same connection. NOTIFY sends a
CONSUMER_SLOW management notification to the client. The default
value is NOTIFY.

slow-consumer-threshold The minimum rate of message consumption allowed before a consumer is
considered slow. Measured in messages-per-second. The default value is -1,
which is unbounded.

Name Description

APPENDIX B. ADDRESS SETTING CONFIGURATION ELEMENTS

169

APPENDIX C. CLUSTER CONNECTION CONFIGURATION
ELEMENTS

The table below lists all of the configuration elements of a cluster-connection.

Table C.1. Cluster Connection Configuration Elements

Name Description

address Each cluster connection applies only to addresses that match the value
specified in the address field. If no address is specified, then all addresses
will be load balanced.

The address field also supports comma separated lists of addresses. Use
exclude syntax, ! to prevent an address from being matched. Below are
some example addresses:

jms.eu
Matches all addresses starting with jms.eu.

!jms.eu
Matches all addresses except for those starting with jms.eu

jms.eu.uk,jms.eu.de
Matches all addresses starting with either jms.eu.uk or jms.eu.de

jms.eu,!jms.eu.uk
Matches all addresses starting with jms.eu, but not those starting with
jms.eu.uk

NOTE

You should not have multiple cluster connections with
overlapping addresses (for example, "europe" and
"europe.news"), because the same messages could be
distributed between more than one cluster connection,
possibly resulting in duplicate deliveries.

call-failover-timeout Use when a call is made during a failover attempt. The default is -1, or no
timeout.

call-timeout When a packet is sent over a cluster connection, and it is a blocking call,
call-timeout determines how long the broker will wait (in milliseconds) for
the reply before throwing an exception. The default is 30000.

check-period The interval, in milliseconds, between checks to see if the cluster connection
has failed to receive pings from another broker. The default is 30000.

confirmation-window-size The size, in bytes, of the window used for sending confirmations from the
broker connected to. When the broker receives confirmation-window-
size bytes, it notifies its client. The default is 1048576. A value of -1 means
no window.

Red Hat AMQ 7.4 Configuring AMQ Broker

170

connector-ref Identifies the connector that will be transmitted to other brokers in the
cluster so that they have the correct cluster topology. This parameter is
mandatory.

connection-ttl Determines how long a cluster connection should stay alive if it stops
receiving messages from a specific broker in the cluster. The default is
60000.

discovery-group-ref Points to a discovery-group to be used to communicate with other
brokers in the cluster. This element must include the attribute discovery-
group-name, which must match the name attribute of a previously
configured discovery-group.

initial-connect-attempts Sets the number of times the system will try to connect a broker in the
cluster initially. If the max-retry is achieved, this broker will be considered
permanently down, and the system will not route messages to this broker.
The default is -1, which means infinite retries.

max-hops Configures the broker to load balance messages to brokers which might be
connected to it only indirectly with other brokers as intermediates in a chain.
This allows for more complex topologies while still providing message load-
balancing. The default value is 1, which means messages are distributed
only to other brokers directly connected to this broker. This parameter is
optional.

max-retry-interval The maximum delay for retries, in milliseconds. The default is 2000.

message-load-balancing Determines whether and how messages will be distributed between other
brokers in the cluster. Include the message-load-balancing element to
enable load balancing. The default value is ON_DEMAND. You can provide
a value as well. Valid values are:

OFF
Disables load balancing.

STRICT
Forwards messages to all brokers that have a matching queue, whether
or not the queue has an active consumer or a matching selector.

ON_DEMAND
Ensures that messages are forwarded only to brokers that have active
consumers or a matching selector.

min-large-message-size If a message size, in bytes, is larger than min-large-message-size, it will
be split into multiple segments when sent over the network to other cluster
members. The default is 102400.

Name Description

APPENDIX C. CLUSTER CONNECTION CONFIGURATION ELEMENTS

171

notification-attempts Sets how many times the cluster connection should broadcast itself when
connecting to the cluster. The default is 2.

notification-interval Sets how often, in milliseconds, the cluster connection should broadcast
itself when attaching to the cluster. The default is 1000.

producer-window-size The size, in bytes, for producer flow control over cluster connection. By
default, it is disabled, but you may want to set a value if you are using really
large messages in cluster. A value of -1 means no window.

reconnect-attempts Sets the number of times the system will try to reconnect to a broker in the
cluster. If the max-retry is achieved, this broker will be considered
permanently down and the system will stop routing messages to this broker.
The default is -1, which means infinite retries.

retry-interval Determines the interval, in milliseconds, between retry attempts. If the
cluster connection is created and the target broker has not been started or
is booting, then the cluster connections from other brokers will retry
connecting to the target until it comes back up. This parameter is optional.
The default value is 500 milliseconds.

retry-interval-multiplier The multiplier used to increase the retry-interval after each reconnect
attempt. The default is 1.

use-duplicate-detection Cluster connections use bridges to link the brokers, and bridges can be
configured to add a duplicate ID property in each message that is
forwarded. If the target broker of the bridge crashes and then recovers,
messages might be resent from the source broker. By setting use-
duplicate-detection to true, any duplicate messages will be filtered out
and ignored on receipt at the target broker. The default is true.

Name Description

Red Hat AMQ 7.4 Configuring AMQ Broker

172

APPENDIX D. COMMAND-LINE TOOLS
AMQ Broker includes a set of command-line interface (CLI) tools so you can manage your messaging
journal. The table below lists the name for each tool and its description.

Tool Description

exp Exports the message data using a special and independent XML format.

imp Imports the journal to a running broker using the output provided by exp.

data Prints reports about journal records and compacts their data.

encode Shows an internal format of the journal encoded to String.

decode Imports the internal journal format from encode.

For a full list of commands available for each tool, use the help parameter followed by the tool’s name. In
the example below, the CLI output lists all the commands available to the data tool after the user
entered the command ./artemis help data.

$./artemis help data

NAME
 artemis data - data tools group
 (print|imp|exp|encode|decode|compact) (example ./artemis data print)

SYNOPSIS
 artemis data
 artemis data compact [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data decode [--broker <brokerConfig>] [--suffix <suffix>]
 [--verbose] [--paging <paging>] [--prefix <prefix>] [--file-size <size>]
 [--directory <directory>] --input <input> [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data encode [--directory <directory>] [--broker <brokerConfig>]
 [--suffix <suffix>] [--verbose] [--paging <paging>] [--prefix <prefix>]
 [--file-size <size>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data exp [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data imp [--host <host>] [--verbose] [--port <port>]
 [--password <password>] [--transaction] --input <input> [--user <user>]
 artemis data print [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]

COMMANDS
 With no arguments, Display help information

APPENDIX D. COMMAND-LINE TOOLS

173

 print
 Print data records information (WARNING: don't use while a
 production server is running)

 ...

You can use the help at the tool for more information on how to execute each of the tool’s commands.
For example, the CLI lists more information about the data print command after the user enters the
./artemis help data print.

$./artemis help data print

NAME
 artemis data print - Print data records information (WARNING: don't use
 while a production server is running)

SYNOPSIS
 artemis data print [--bindings <binding>] [--journal <journal>]
 [--paging <paging>]

OPTIONS
 --bindings <binding>
 The folder used for bindings (default ../data/bindings)

 --journal <journal>
 The folder used for messages journal (default ../data/journal)

 --paging <paging>
 The folder used for paging (default ../data/paging)

Red Hat AMQ 7.4 Configuring AMQ Broker

174

APPENDIX E. MESSAGING JOURNAL CONFIGURATION
ELEMENTS

The table below lists all of the configuration elements related to the AMQ Broker messaging journal.

Table E.1. Address Setting Elements

Name Description

journal-directory The directory where the message journal is located. The default value is
BROKER_INSTANCE_DIR/data/journal.

For the best performance, the journal should be located on its own physical
volume in order to minimize disk head movement. If the journal is on a
volume that is shared with other processes that may be writing other files
(for example, bindings journal, database, or transaction coordinator) then
the disk head may well be moving rapidly between these files as it writes
them, thus drastically reducing performance.

When using a SAN, each journal instance should be given its own LUN
(logical unit).

create-journal-dir If set to true, the journal directory will be automatically created at the
location specified in journal-directory if it does not already exist. The
default value is true.

journal-type Valid values are NIO or ASYNCIO.

If set to NIO, the broker uses Java NIO interface to itsjournal. Set to
ASYNCIO, and the broker will use the Linux asynchronous IO journal. If you
choose ASYNCIO but are not running Linux or you do not have libaio
installed then the broker will detect this and automatically fall back to using
NIO.

journal-sync-transactional If set to true, the broker flushes all transaction data to disk on transaction
boundaries (that is, commit, prepare, and rollback). The default value is
true.

journal-sync-non-
transactional

If set to true, the broker flushes non-transactional message data (sends and
acknowledgements) to disk each time. The default value is true.

journal-file-size The size of each journal file in bytes. The default value is 10485760 bytes
(10MiB).

journal-min-files The minimum number of files the broker pre-creates when starting. Files are
pre-created only if there is no existing message data.

Depending on how much data you expect your queues to contain at steady
state, you should tune this number of files to match the total amount of
data expected.

APPENDIX E. MESSAGING JOURNAL CONFIGURATION ELEMENTS

175

journal-pool-files The system will create as many files as needed; however, when reclaiming
files it will shrink back to journal-pool-files.

The default value is -1, meaning it will never delete files on the journal once
created. The system cannot grow infinitely, however, as you are still required
to use paging for destinations that can grow indefinitely.

journal-max-io Controls the maximum number of write requests that can be in the IO queue
at any one time. If the queue becomes full then writes will block until space
is freed up.

When using NIO, this value should always be 1. When using AIO, the default
value is 500. The total max AIO can’t be higher than the value set at the OS
level (/proc/sys/fs/aio-max-nr), which is usually at 65536.

journal-buffer-timeout Controls the timeout for when the buffer will be flushed. AIO can typically
withstand with a higher flush rate than NIO, so the system maintains
different default values for both NIO and AIO.

The default value for NIO is 3333333 nanoseconds, or 300 times per
second, and the default value for AIO is 50000 nanoseconds, or 2000 times
per second.

NOTE

By increasing the timeout value, you might be able to
increase system throughput at the expense of latency, since
the default values are chosen to give a reasonable balance
between throughput and latency.

journal-buffer-size The size of the timed buffer on AIO. The default value is 490KiB.

journal-compact-min-files The minimal number of files necessary before the broker compacts the
journal. The compacting algorithm will not start until you have at least
journal-compact-min-files. The default value is 10.

NOTE

Setting the value to 0 will disable compacting and could be
dangerous because the journal could grow indefinitely.

journal-compact-percentage The threshold to start compacting. Journal data will be compacted if less
than journal-compact-percentage is determined to be live data. Note
also that compacting will not start until you have at least journal-
compact-min-files data files on the journal. The default value is 30.

Name Description

Red Hat AMQ 7.4 Configuring AMQ Broker

176

APPENDIX F. REPLICATION HIGH AVAILABILITY
CONFIGURATION ELEMENTS

The following tables list the valid ha-policy configuration elements when using a replication HA policy.

Table F.1. Configuration Elements Available when Using Replication High Availability

Name Description

check-for-live-server Applies to master brokers only. Determines whether the master checks the
cluster for another master server using its own server ID when starting up.
Set to true if you want to fail back to the original master broker. The default
is false.

cluster-name Name of the cluster configuration to use for replication. This setting is only
necessary if you configure multiple cluster connections. If configured, the
the cluster configuration with this name will be used when connecting to the
cluster. If unset, the first cluster connection defined in the configuration is
used.

group-name If set, slave brokers will only pair with master brokers with the matching
group-name.

initial-replication-sync-
timeout

The amount of time the replicating broker will wait at the completion of the
initial replication process for the replica to acknowledge it has received all
the necessary data. The default is 30,000 milliseconds, or 30 seconds.

NOTE

During this interval any journal related operations will be
blocked.

max-saved-replicated-
journals-size

Applies to slave brokers only. Specifies how many times a slave broker can
restart after moving its files on start. Once there are this number of slave
journal files the broker will stop permanently after if fails back. The default is
2.

allow-failback Applies to slave brokers only. Determines whether the slave broker will
automatically restart and resume its original role when another broker places
a request to take over its place. The default is true.

Revised on 2020-01-13 22:09:09 UTC

APPENDIX F. REPLICATION HIGH AVAILABILITY CONFIGURATION ELEMENTS

177

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. AMQ BROKER CONFIGURATION FILES AND LOCATIONS
	1.2. UNDERSTANDING THE DEFAULT BROKER CONFIGURATION
	Default message persistence settings
	Default acceptor settings
	Default security settings
	Default message address settings

	1.3. RELOADING CONFIGURATION UPDATES
	1.4. MODULARIZING THE BROKER CONFIGURATION FILE
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	About the use of file paths in this document

	CHAPTER 2. NETWORK CONNECTIONS: ACCEPTORS AND CONNECTORS
	2.1. ABOUT ACCEPTORS
	Configuring an Acceptor

	2.2. ABOUT CONNECTORS
	Configuring a Connector

	2.3. CONFIGURING A TCP CONNECTION
	2.4. CONFIGURING AN HTTP CONNECTION
	2.5. CONFIGURING AN SSL/TLS CONNECTION
	2.6. CONFIGURING AN IN-VM CONNECTION
	2.7. CONFIGURING A CONNECTION FROM THE CLIENT SIDE

	CHAPTER 3. NETWORK CONNECTIONS: PROTOCOLS
	3.1. CONFIGURING A NETWORK CONNECTION TO USE A PROTOCOL
	3.2. USING AMQP WITH A NETWORK CONNECTION
	3.2.1. Using an AMQP Link as a Topic
	3.2.2. Configuring AMQP Security

	3.3. USING MQTT WITH A NETWORK CONNECTION
	3.4. USING OPENWIRE WITH A NETWORK CONNECTION
	3.5. USING STOMP WITH A NETWORK CONNECTION
	3.5.1. Knowing the Limitations When Using STOMP
	3.5.2. Providing IDs for STOMP Messages
	3.5.3. Setting a Connection’s Time to Live (TTL)
	Overriding the Broker’s Default Time to Live (TTL)

	3.5.4. Sending and Consuming STOMP Messages from JMS
	3.5.5. Mapping STOMP Destinations to AMQ Broker Addresses and Queues
	Mapping STOMP Destinations to JMS Destinations

	CHAPTER 4. ADDRESSES, QUEUES, AND TOPICS
	4.1. ADDRESS AND QUEUE NAMING REQUIREMENTS
	4.2. CONFIGURING POINT-TO-POINT MESSAGING
	4.3. CONFIGURING PUBLISH-SUBSCRIBE MESSAGING
	4.4. CONFIGURING A POINT-TO-POINT USING TWO QUEUES
	4.5. USING POINT-TO-POINT AND PUBLISH-SUBSCRIBE TOGETHER
	4.6. CONFIGURING SUBSCRIPTION QUEUES
	Configuring a Durable Subscription Queue
	Configuring a Non-Shared Durable Subscription

	4.7. USING A FULLY QUALIFIED QUEUE NAME
	4.8. CONFIGURING SHARDED QUEUES
	4.9. CONFIGURING LAST VALUE QUEUES
	4.9.1. Configuring Last Value Queues Using broker.xml
	4.9.2. Configuring Last Value Queues Using the JMS Client
	4.9.3. Configuring Last Value Queues Using the Core API
	4.9.4. Configuring Last Value Queues Using Address Wildcards
	4.9.5. Example of Last Value Queue Behavior
	4.9.6. Creating Non-Destructive Consumers
	4.9.6.1. Configuring Non-destructive Consumers Using broker.xml
	4.9.6.2. Creating Non-destructive Consumers Using the JMS Client
	4.9.6.3. Configuring Non-destructive Consumers Using Address Wildcards
	4.9.6.4. Configuring Message Expiry Delay

	4.10. LIMITING THE NUMBER OF CONSUMERS CONNECTED TO A QUEUE
	4.11. EXCLUSIVE QUEUES
	4.11.1. Configuring Exclusive Queues
	4.11.2. Setting the Exclusive Queue Default

	4.12. CONFIGURING A PREFIX TO CONNECT TO A SPECIFIC ROUTING TYPE
	4.13. PROTOCOL MANAGERS AND ADDRESSES
	4.14. DISABLING ADVISORY MESSAGES
	4.15. CONFIGURING ADDRESS SETTINGS
	AMQ Broker Wildcard Syntax
	Configuring Wildcard Syntax

	4.16. CREATING AND DELETING QUEUES AND ADDRESSES AUTOMATICALLY

	CHAPTER 5. USERS AND ROLES
	5.1. ENABLING GUEST ACCESS
	5.2. ADDING USERS
	5.3. SETTING PERMISSIONS
	5.3.1. Configuring Message Production for a Single Address
	5.3.2. Configuring Message Consumption for a Single Address
	5.3.3. Configuring Complete Access on All Addresses
	5.3.4. Configuring a Queue with a User

	5.4. SETTING ROLE BASED ACCESS CONTROL
	5.4.1. Configuring Whitelist Element for Bypassing the Authentication
	5.4.2. Configuring Authentication Based on Roles

	CHAPTER 6. SECURITY
	6.1. ACCESSING THE AMQ CONSOLE
	6.2. SECURING NETWORK CONNECTIONS
	6.2.1. Configuring Server-Side Certificates
	6.2.2. Configuring Client-Side Certificates
	TLS Configuration Details

	6.2.3. Adding Certificate-based Authentication
	6.2.4. Adding Certificate-based Authentication for AMQP Clients
	Prerequisites
	Procedure
	Additional Resources

	6.2.5. Using Multiple Login Modules
	6.2.6. Configure Multiple Security Settings for Address Groups and Sub-groups
	6.2.7. Setting Resource Limits
	6.2.7.1. Configuring Connection and Queue Limits

	6.3. INTEGRATING WITH LDAP
	6.3.1. Using LDAP for Authentication
	6.3.2. Configure LDAP Authorization
	6.3.3. Encrypting the Password in the login.config File

	6.4. INTEGRATING WITH KERBEROS
	6.4.1. Enabling Network Connections to Use Kerberos
	Prerequisites
	Procedure
	Related Information

	6.4.2. Authenticating Clients with Kerberos Credentials
	Prerequisites
	Procedure
	Related Information
	6.4.2.1. Using an Alternative Configuration Scope

	6.4.3. Authorizing Clients with Kerberos Credentials
	Prerequisites
	Procedure
	Related Information

	6.5. ENCRYPTING PASSWORDS IN CONFIGURATION FILES
	6.6. TRACKING MESSAGES FROM VALIDATED USERS
	6.7. DISABLING SECURITY

	CHAPTER 7. PERSISTING MESSAGES
	7.1. ABOUT JOURNAL-BASED PERSISTENCE
	7.1.1. Using AIO

	7.2. CONFIGURING JOURNAL-BASED PERSISTENCE
	7.2.1. The Message Journal
	7.2.2. The Bindings Journal
	7.2.3. The JMS Journal
	7.2.4. Compacting Journal Files
	Compacting Journals Using the CLI

	7.2.5. Disabling Disk Write Cache

	7.3. CONFIGURING JDBC PERSISTENCE
	7.4. CONFIGURING ZERO PERSISTENCE

	CHAPTER 8. PAGING MESSAGES
	8.1. ABOUT PAGE FILES
	8.2. CONFIGURING THE PAGING DIRECTORY LOCATION
	8.3. CONFIGURING AN ADDRESS FOR PAGING
	8.4. CONFIGURING A GLOBAL PAGING SIZE
	Configuring the global-max-size parameter

	8.5. LIMITING DISK USAGE WHEN PAGING
	Configuring the max-disk-usage

	8.6. HOW TO DROP MESSAGES
	8.6.1. Dropping Messages and Throwing an Exception to Producers

	8.7. HOW TO BLOCK PRODUCERS
	8.8. CAUTION WITH ADDRESSES WITH MULTICAST QUEUES

	CHAPTER 9. WORKING WITH LARGE MESSAGES
	9.1. PREPARING BROKERS TO STORE LARGE MESSAGES
	Procedure
	Additional Resources

	9.2. PREPARING AMQ CORE PROTOCOL JMS CLIENTS TO SEND LARGE MESSAGES
	Procedure

	9.3. PREPARING OPENWIRE CLIENTS TO SEND LARGE MESSAGES
	Procedure

	9.4. SENDING LARGE MESSAGES
	Procedure

	9.5. RECEIVING LARGE MESSAGES
	Procedure
	Receiving a Large Message Asynchronously
	Procedure

	9.6. LARGE MESSAGES AND JAVA CLIENTS
	9.7. COMPRESSING LARGE MESSAGES
	9.8. HANDLING LARGE MESSAGES WITH STOMP

	CHAPTER 10. DETECTING DEAD CONNECTIONS
	Detecting Dead Connections from the Client Side
	10.1. CONNECTION TIME-TO-LIVE
	Configuring Time-To-Live on the Broker
	Configuring Time-To-Live on the Client

	10.2. DISABLING ASYNCHRONOUS CONNECTION EXECUTION
	10.3. CLOSING CONNECTIONS FROM THE CLIENT SIDE

	CHAPTER 11. FLOW CONTROL
	11.1. CONSUMER FLOW CONTROL
	11.1.1. Setting the Consumer Window Size
	Setting the Window Size

	11.1.2. Handling Fast Consumers
	Setting the Window Size for Fast Consumers

	11.1.3. Handling Slow Consumers
	Setting the Window Size for Slow Consumers

	11.1.4. Setting the Rate of Consuming Messages
	Setting the Rate of Consuming Messages

	11.2. PRODUCER FLOW CONTROL
	11.2.1. Setting the Producer Window Size
	Setting the Window Size

	11.2.2. Blocking Messages
	Configuring the Maximum Size for an Address

	11.2.3. Blocking AMQP Messages
	Configuring the Broker to Block AMQP Messages

	11.2.4. Setting the Rate of Sending Messages
	Setting the Rate of Sending Messages

	CHAPTER 12. MESSAGE GROUPING
	12.1. CLIENT-SIDE MESSAGE GROUPING
	12.2. AUTOMATIC MESSAGE GROUPING

	CHAPTER 13. DUPLICATE MESSAGE DETECTION
	13.1. USING THE DUPLICATE ID MESSAGE PROPERTY
	13.2. CONFIGURING THE DUPLICATE ID CACHE
	13.3. DUPLICATE DETECTION AND TRANSACTIONS
	13.4. DUPLICATE DETECTION AND CLUSTER CONNECTIONS

	CHAPTER 14. INTERCEPTING MESSAGES
	14.1. CREATING INTERCEPTORS
	14.2. CONFIGURING THE BROKER TO USE INTERCEPTORS
	14.3. INTERCEPTORS ON THE CLIENT SIDE

	CHAPTER 15. FILTERING MESSAGES
	15.1. CONFIGURING A QUEUE TO USE A FILTER
	15.2. FILTERING JMS MESSAGE PROPERTIES
	Configuring a Filter to Convert a String to a Number
	Enabling a Filter to Use Hyphens

	CHAPTER 16. SETTING UP A BROKER CLUSTER
	16.1. UNDERSTANDING BROKER CLUSTERS
	16.1.1. How broker clusters balance message load
	16.1.2. How broker clusters improve reliability
	16.1.3. Common broker cluster topologies
	Symmetric clusters
	Chain clusters

	16.1.4. Broker discovery methods
	Dynamic discovery
	Static discovery

	16.1.5. Cluster sizing considerations
	Messaging throughput
	Topology
	High availability

	16.2. CREATING A BROKER CLUSTER
	16.2.1. Creating a broker cluster with static discovery
	16.2.2. Creating a broker cluster with UDP-based dynamic discovery
	16.2.3. Creating a broker cluster with JGroups-based dynamic discovery

	16.3. IMPLEMENTING HIGH AVAILABILITY
	16.3.1. Understanding high availability
	16.3.1.1. How live-backup groups provide high availability
	16.3.1.2. High availability policies
	16.3.1.3. Replication policy limitations

	16.3.2. Configuring high availability
	16.3.2.1. Configuring shared store high availability
	16.3.2.2. Configuring replication high availability
	16.3.2.3. Configuring network pinging for replication high availability
	16.3.2.4. Configuring limited high availability with live-only
	16.3.2.5. Configuring high availability with colocated backups

	16.3.3. Configuring clients to fail over

	16.4. ENABLING MESSAGE REDISTRIBUTION
	16.5. CONFIGURING CLUSTERED MESSAGE GROUPING
	16.6. CONNECTING CLIENTS TO A BROKER CLUSTER

	CHAPTER 17. LOGGING
	17.1. CHANGING THE LOGGING LEVEL
	17.2. CONFIGURING CONSOLE LOGGING
	17.3. CONFIGURING FILE LOGGING
	17.4. CONFIGURING THE LOGGING FORMAT
	17.5. CLIENT OR EMBEDDED SERVER LOGGING
	17.6. AMQ BROKER PLUG-INS SUPPORT
	17.6.1. Adding Plug-ins to the Classpath
	17.6.2. Registering a Plug-in
	17.6.3. Registering a Plug-in Programmatically
	17.6.4. Logging Specific Events

	APPENDIX A. ACCEPTOR AND CONNECTOR CONFIGURATION PARAMETERS
	APPENDIX B. ADDRESS SETTING CONFIGURATION ELEMENTS
	APPENDIX C. CLUSTER CONNECTION CONFIGURATION ELEMENTS
	APPENDIX D. COMMAND-LINE TOOLS
	APPENDIX E. MESSAGING JOURNAL CONFIGURATION ELEMENTS
	APPENDIX F. REPLICATION HIGH AVAILABILITY CONFIGURATION ELEMENTS

