
Red Hat Advanced Cluster Management
for Kubernetes 2.5

Applications

Read more to learn how to create applications by using Git repositories, Helm
repositories, and object storage repositories.

Last Updated: 2023-07-13

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

Read more to learn how to create applications by using Git repositories, Helm repositories, and
object storage repositories.

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more to learn how to create applications by using Git repositories, Helm repositories, and
object storage repositories.

. .

Table of Contents

CHAPTER 1. MANAGING APPLICATIONS
1.1. APPLICATION MODEL AND DEFINITIONS

1.1.1. Applications
1.1.2. Subscriptions

1.1.2.1. Channels
1.1.2.1.1. Supported Git repository servers

1.1.2.2. Placement rules
1.1.3. ApplicationSet
1.1.4. Application documentation

1.2. APPLICATION CONSOLE
1.3. SUBSCRIPTION REPORTS

1.3.1. SubscriptionStatus package-level
1.3.2. SubscriptionReport cluster-level
1.3.3. SubscriptionReport application-level
1.3.4. ManagedClusterView
1.3.5. CLI application-level status
1.3.6. CLI Last Update Time

1.4. MANAGING APPLICATION RESOURCES
1.4.1. Managing apps with Git repositories

1.4.1.1. GitOps pattern
1.4.1.1.1. GitOps example directory
1.4.1.1.2. GitOps flow
1.4.1.1.3. More examples

1.4.2. Managing apps with Helm repositories
1.4.2.1. Sample YAML

1.4.3. Managing apps with Object storage repositories
1.4.3.1. Sample YAML
1.4.3.2. Creating your Amazon Web Services (AWS) S3 object storage bucket
1.4.3.3. Subscribing to the object in the AWS bucket
1.4.3.4. Sample AWS subscription

1.5. APPLICATION ADVANCED CONFIGURATION
1.5.1. Subscribing Git resources

1.5.1.1. Creating application resources in Git
1.5.1.2. Application namespace example

1.5.1.2.1. Application to different namespaces
1.5.1.2.2. Application to same namespace

1.5.1.3. Resource overwrite example
1.5.1.3.1. Default merge option
1.5.1.3.2. mergeAndOwn option
1.5.1.3.3. Replace option

1.5.1.4. Subscribing specific Git elements
1.5.1.4.1. Subscribing to a specific branch
1.5.1.4.2. Subscribing to a specific commit
1.5.1.4.3. Subscribing to a specific tag

1.5.2. Granting subscription administrator privilege
1.5.3. Creating an allow and deny list as subscription administrator
1.5.4. Adding reconcile options

1.5.4.1. Reconcile frequency Git channel
1.5.4.2. Reconcile frequency Helm channel

1.5.5. Configuring application channel and subscription for a secure Git connection
1.5.5.1. Connecting to a private repo with user and access token

5
6
6
7
7
8
8
8

10
10
12
12
13
14
15
16
16
16
16
17
17
18
18
19
19

20
20
20
21
21
23
23
24
24
24
25
26
26
27
27
28
28
28
29
29
30
31
32
33
35
35

Table of Contents

1

1.5.5.2. Making an insecure HTTPS connection to a Git server
1.5.5.3. Using custom CA certificates for a secure HTTPS connection
1.5.5.4. Making an SSH connection to a Git server
1.5.5.5. Updating certificates and SSH keys

1.5.6. Setting up Ansible Tower tasks
1.5.6.1. Prerequisites
1.5.6.2. Install Ansible Automation Platform Resource Operator
1.5.6.3. Set up credential
1.5.6.4. Ansible integration
1.5.6.5. Ansible operator components

1.5.6.5.1. Prehook
1.5.6.5.2. Posthook
1.5.6.5.3. Ansible placement rules

1.5.6.6. Ansible configuration
1.5.6.6.1. Ansible secrets

1.5.6.7. Set secret reconciliation
1.5.6.8. Ansible sample YAML

1.5.7. Configuring Managed Clusters for OpenShift GitOps operator
1.5.7.1. Prerequisites
1.5.7.2. Registering managed clusters to GitOps
1.5.7.3. GitOps token

1.5.8. Scheduling a deployment
1.5.9. Configuring package overrides
1.5.10. Channel samples overview

1.5.10.1. Channel YAML structure
1.5.10.2. Channel YAML table
1.5.10.3. Object storage bucket (ObjectBucket) channel
1.5.10.4. Helm repository (HelmRepo) channel
1.5.10.5. Git (Git) repository channel

1.5.11. Subscription samples overview
1.5.11.1. Subscription YAML structure
1.5.11.2. Subscription YAML table
1.5.11.3. Subscription file samples
1.5.11.4. Secondary channel sample

1.5.11.4.1. Subscription time window example
1.5.11.4.2. Subscription with overrides example
1.5.11.4.3. Helm repository subscription example
1.5.11.4.4. Git repository subscription example

1.5.11.4.4.1. Subscribing specific branch and directory of Git repository
1.5.11.4.4.2. Adding a .kubernetesignore file
1.5.11.4.4.3. Applying Kustomize
1.5.11.4.4.4. Enabling Git WebHook
1.5.11.4.4.4.1. Payload URL
1.5.11.4.4.4.2. Webhook secret
1.5.11.4.4.4.3. Configuring WebHook in Git repository
1.5.11.4.4.4.4. Enable WebHook event notification in channel
1.5.11.4.4.4.5. Subscriptions of webhook-enabled channel

1.5.12. Placement rule samples overview
1.5.12.1. Placement rule YAML structure
1.5.12.2. Placement rule YAML values table
1.5.12.3. Placement rule sample files

1.5.13. Application samples
1.5.13.1. Application YAML structure

36
36
39
40
40
41
41

42
42
42
42
42
42
43
43
43
44
45
45
45
46
46
48
48
49
49
51
51
52
52
53
54
59
59
59
60
60
61
61

62
62
62
63
63
63
63
63
63
64
65
66
67
67

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

2

1.5.13.2. Application YAML table
1.5.13.3. Application file samples

68
69

Table of Contents

3

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

4

CHAPTER 1. MANAGING APPLICATIONS
Review the following topics to learn more about creating, deploying, and managing your applications.
This guide assumes familiarity with Kubernetes concepts and terminology. Key Kubernetes terms and
components are not defined. For more information about Kubernetes concepts, see Kubernetes
Documentation.

The application management functions provide you with unified and simplified options for constructing
and deploying applications and application updates. With these functions, your developers and DevOps
personnel can create and manage applications across environments through channel and subscription-
based automation.

Important: An application name cannot exceed 37 characters.

See the following topics:

Application model and definitions

Application console

Subscription reports

Managing application resources

Managing apps with Git repositories

Managing apps with Helm repositories

Managing apps with Object storage repositories

Application advanced configuration

Subscribing Git resources

Granting subscription admin privilege

Creating an allow and deny list as subscription administrator

Adding reconcile options

Configuring application channel and subscription for a secure Git connection

Setting up Ansible Tower tasks

Configuring GitOps on managed clusters

Scheduling a deployment

Configuring package overrides

Channel samples

Subscription samples

Placement rule samples

Application samples

CHAPTER 1. MANAGING APPLICATIONS

5

https://kubernetes.io/docs/home/

1.1. APPLICATION MODEL AND DEFINITIONS

The application model is based on subscribing to one or more Kubernetes resource repositories (channel
resources) that contains resources that are deployed on managed clusters. Both single and multicluster
applications use the same Kubernetes specifications, but multicluster applications involve more
automation of the deployment and application management lifecycle.

See the following image to understand more about the application model:

View the following application resource sections:

Applications

Subscriptions

ApplicationSet

Application documentation

1.1.1. Applications

Applications (application.app.k8s.io) in Red Hat Advanced Cluster Management for Kubernetes are
used for grouping Kubernetes resources that make up an application.

All of the application component resources for Red Hat Advanced Cluster Management for Kubernetes
applications are defined in YAML file specification sections. When you need to create or update an
application component resource, you need to create or edit the appropriate section to include the labels
for defining your resource.

You can also work with Discovered applications, which are applications that are discovered by the

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

6

You can also work with Discovered applications, which are applications that are discovered by the
OpenShift Container Platform GitOps or an Argo CD operator that is installed in your clusters.
Applications that share the same repository are grouped together in this view.

1.1.2. Subscriptions

Subscriptions (subscription.apps.open-cluster-management.io) allow clusters to subscribe to a
source repository (channel) that can be the following types: Git repository, Helm release registry, or
Object storage repository.

Note: Self-managing the hub cluster is not recommended because the resources might impact the hub
cluster.

Subscriptions can deploy application resources locally to the hub cluster if the hub cluster is self-
managed. You can then view the local-cluster (the self-managed hub cluster) subscription in the
topology. Resource requirements might adversely impact hub cluster performance.

Subscriptions can point to a channel or storage location for identifying new or updated resource
templates. The subscription operator can then download directly from the storage location and deploy
to targeted managed clusters without checking the hub cluster first. With a subscription, the
subscription operator can monitor the channel for new or updated resources instead of the hub cluster.

See the following subscription architecture image:

1.1.2.1. Channels

Channels (channel.apps.open-cluster-management.io) define the source repositories that a cluster
can subscribe to with a subscription, and can be the following types: Git, Helm release, and Object
storage repositories, and resource templates on the hub cluster.

If you have applications that require Kubernetes resources or Helm charts from channels that require
authorization, such as entitled Git repositories, you can use secrets to provide access to these channels.
Your subscriptions can access Kubernetes resources and Helm charts for deployment from these
channels, while maintaining data security.

CHAPTER 1. MANAGING APPLICATIONS

7

Channels use a namespace within the hub cluster and point to a physical place where resources are
stored for deployment. Clusters can subscribe to channels for identifying the resources to deploy to
each cluster.

Notes: It is best practice to create each channel in a unique namespace. However, a Git channel can
share a namespace with another type of channel, including Git, Helm, and Object storage.

Resources within a channel can be accessed by only the clusters that subscribe to that channel.

1.1.2.1.1. Supported Git repository servers

GitHub

GitLab

Bitbucket

Gogs

1.1.2.2. Placement rules

Placement rules (placementrule.apps.open-cluster-management.io) define the target clusters where
resource templates can be deployed. Use placement rules to help you facilitate the multicluster
deployment of your deployables. Placement rules are also used for governance and risk policies. For
more information on how, see Governance.

1.1.3. ApplicationSet

ApplicationSet is a sub-project of Argo CD that is supported by the GitOps Operator. ApplicationSet
adds multicluster support for Argo CD applications. You can create an application set from the Red Hat
Advanced Cluster Management console.

Note: For more details on the prerequisites for deploying ApplicationSet, see Registering managed
clusters to GitOps.

OpenShift Container Platform GitOps uses Argo CD to maintain cluster resources. Argo CD is an open-
source declarative tool for the continuous integration and continuous deployment (CI/CD) of
applications. OpenShift Container Platform GitOps implements Argo CD as a controller (OpenShift
Container Platform GitOps Operator) so that it continuously monitors application definitions and
configurations defined in a Git repository. Then, Argo CD compares the specified state of these
configurations with their live state on the cluster.

The ApplicationSet controller is installed on the cluster through a GitOps operator instance and
supplements it by adding additional features in support of cluster-administrator-focused scenarios. The
ApplicationSet controller provides the following function:

The ability to use a single Kubernetes manifest to target multiple Kubernetes clusters with the
GitOps operator.

The ability to use a single Kubernetes manifest to deploy multiple applications from one or
multiple Git repositories with the GitOps operator.

Improved support for monorepo, which is in the context of Argo CD, multiple Argo CD
Application resources that are defined within a single Git repository.

Within multitenant clusters, improved ability of individual cluster tenants to deploy applications

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

8

../../html-single/governance#governance

Within multitenant clusters, improved ability of individual cluster tenants to deploy applications
using Argo CD without needing to involve privileged cluster administrators in enabling the
destination clusters/namespaces.

The ApplicationSet operator leverages the cluster decision generator to interface Kubernetes custom
resources that use custom resource-specific logic to decide which managed clusters to deploy to. A
cluster decision resource generates a list of managed clusters, which are then rendered into the
template fields of the ApplicationSet resource. This is done using duck-typing, which does not require
knowledge of the full shape of the referenced Kubernetes resource.

See the following example of a generators.clusterDecisionResource value within an ApplicationSet:

See the following Placement:

apiVersion: argoproj.io/v1alpha1
kind: ApplicationSet
metadata:
 name: sample-application-set
 namespace: sample-gitops-namespace
spec:
 generators:
 - clusterDecisionResource:
 configMapRef: acm-placement
 labelSelector:
 matchLabels:
 cluster.open-cluster-management.io/placement: sample-application-placement
 requeueAfterSeconds: 180
 template:
 metadata:
 name: sample-application-{{name}}
 spec:
 project: default
 source:
 repoURL: https://github.com/sampleapp/apprepo.git
 targetRevision: main
 path: sample-application
 destination:
 namespace: sample-application
 server: "{{server}}"
 syncPolicy:
 syncOptions:
 - CreateNamespace=true
 - PruneLast=true
 - Replace=true
 - ApplyOutOfSyncOnly=true
 - Validate=false
 automated:
 prune: true
 allowEmpty: true
 selfHeal: true

apiVersion: cluster.open-cluster-management.io/v1beta1
kind: Placement
metadata:
 name: sample-application-placement
 namespace: sample-gitops-namespace

CHAPTER 1. MANAGING APPLICATIONS

9

If you would like to learn more about ApplicationSets, see Cluster Decision Resource Generator .

1.1.4. Application documentation

Learn more from the following documentation:

Application console

Managing application resources

Managing apps with Git repositories

Managing apps with Helm repositories

Managing apps with Object storage repositories

Application advanced configuration

Subscribing Git resources

Setting up Ansible Tower tasks

Channel samples

Subscription samples

Placement rule samples

Application samples

1.2. APPLICATION CONSOLE

The console includes a dashboard for managing the application lifecycle. You can use the console
dashboard to create and manage applications and view the status of applications. Enhanced capabilities
help your developers and operations personnel create, deploy, update, manage, and visualize
applications across your clusters.

See some of the console capability in the following list and see the console for guided information about
terms, actions, and how to read the Topology:

Important: Available actions are based on your assigned role. Learn about access requirements from the
Role-based access control documentation.

Visualize deployed applications across your clusters, including any associated resource
repositories, subscriptions, and placement configurations.

Create and edit applications, and subscribe resources. From the Actions menu, you can search,
edit, or delete. Ensure you select YAML:On to view and edit the YAML as you update the fields.

From the main Overview tab, you can click an application name to view details and application
resources, including resource repositories, subscriptions, placements, placement rules, and
deployed resources such as any optional predeployment and postdeployment hooks that are

spec:
 clusterSets:
 - sampleclusterset

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

10

https://argocd-applicationset.readthedocs.io/en/stable/Generators-Cluster-Decision-Resource/
../../html-single/access_control#role-based-access-control

using Ansible Tower tasks (for Git repositories). You can also create an application from the
overview.

Create and view ApplicationSet and Subscription types. An ApplicationSet represents Argo
applications that are generated from the controller. For an ArgoCD ApplicationSet to be
created, you need to enable Automatically sync when cluster state changes from the Sync
policy.

Note: You need GitOps cluster resources and the GitOps operator installed to create an
ApplicationSet. Without these prerequisites, you will see no Argo server options in the console
to create an ApplicationSet.

From the main Overview, when you click on an application name in the table to view a single
application overview, you can see the following information:

Cluster details, such as resource status

Resource topology

Subscription details

Access to the Editor tab to edit

Click the Topology tab for visual representation of all the applications and resources in your
project. For Helm subscriptions, see Configuring package overrides to define the appropriate
packageName and the packageAlias to get an accurate topology display.

Click the Advanced configuration tab to view terminology and tables of resources for all
applications. You can find resources and you can filter subscriptions, placement, placement
rules, and channels. If you have access, you can also click multiple Actions, such as Edit, Search,
and Delete.

View a successful Ansible Tower deployment if you are using Ansible tasks as prehook or
posthook for the deployed application.

Click Launch resource in Search to search for related resources.

Use Search to find application resources by the component kind for each resource. To search
for resources, use the following values:

Application resource Kind (search parameter)

Subscription Subscription

Channel Channel

Secret Secret

Placement Placement

Placement rule PlacementRule

Application Application

CHAPTER 1. MANAGING APPLICATIONS

11

You can also search by other fields, including name, namespace, cluster, label, and more. For more
information about using search, see Search in the console .

1.3. SUBSCRIPTION REPORTS

Subscription reports are collections of application statuses from all the managed clusters in your fleet.
Specifically, the parent application resource can hold reports from a scalable amount of managed
clusters.

Detailed application status is available on the managed clusters, while the subscriptionReports on the
hub cluster are lightweight and more scalable. See the following three types of subsription status
reports:

Package-level SubscriptionStatus: This is the application package status on the managed
cluster with detailed status for all the resources that are deployed by the application in the
appsub namespace.

Cluster-level SubscriptionReport: This is the overall status report on all the applications that
are deployed to a particular cluster.

Application-level SubscriptionReport: This is the overall status report on all the managed
clusters to which a particular application is deployed.

SubscriptionStatus package-level

SubscriptionReport cluster-level

SubscriptionReport application-level

managedClusterView

CLI application-level status

CLI Last Update Time

1.3.1. SubscriptionStatus package-level

The package-level managed cluster status is located in <namespace:<your-appsub-namespace> on
the managed cluster and contains detailed status for all the resources that are deployed by the
application. For every appsub that is deployed to a managed cluster, there is a SubscriptionStatus CR
created in the appsub namespace on the managed cluster. Every resource is reported with detailed
errors if errors exist.

See the following SubscriptionStatus sample YAML file:

apiVersion: apps.open-cluster-management.io/v1alpha1
kind: SubscriptionStatus
metadata:
 labels:
 apps.open-cluster-management.io/cluster: <your-managed-cluster>
 apps.open-cluster-management.io/hosting-subscription: <your-appsub-namespace>.<your-
appsub-name>
 name: <your-appsub-name>
 namespace: <your-appsub-namespace>
statuses:
 packages:

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

12

../../html-single/web_console#search-in-the-console

1.3.2. SubscriptionReport cluster-level

The cluster-level status is located in <namespace:<your-managed-cluster-1> on the the hub cluster
and only contains the overall status on each application on that managed cluster. The
subscriptionReport in each cluster namespace on the hub cluster reports one of the following statuses:

Deployed

Failed

propagationFailed

See the following SubscriptionStatus sample YAML file:

 - apiVersion: v1
 kind: Service
 lastUpdateTime: "2021-09-13T20:12:34Z"
 Message: <detailed error. visible only if the package fails>
 name: frontend
 namespace: test-ns-2
 phase: Deployed
 - apiVersion: apps/v1
 kind: Deployment
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: frontend
 namespace: test-ns-2
 phase: Deployed
 - apiVersion: v1
 kind: Service
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: redis-master
 namespace: test-ns-2
 phase: Deployed
 - apiVersion: apps/v1
 kind: Deployment
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: redis-master
 namespace: test-ns-2
 phase: Deployed
 - apiVersion: v1
 kind: Service
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: redis-slave
 namespace: test-ns-2
 phase: Deployed
 - apiVersion: apps/v1
 kind: Deployment
 lastUpdateTime: "2021-09-13T20:12:34Z"
 name: redis-slave
 namespace: test-ns-2
 phase: Deployed

apiVersion: apps.open-cluster-management.io/v1alpha1
kind: subscriptionReport
metadata:

CHAPTER 1. MANAGING APPLICATIONS

13

1.3.3. SubscriptionReport application-level

One application-level subscriptionReport for each application is located in <namespace:<your-
appsub-namespace> in appsub namespace on the hub cluster and contains the following information:

The overall status of the application for each managed cluster

A list of all resources for the application

A report summary with the total number of total clusters

A report summary with the total number of clusters where the application is in the status:
deployed, failed, propagationFailed, and inProgress.

Note: The inProcess status is the total minus deployed, minus failed `, and minus
`propagationFailed.

See the following SubscriptionStatus sample YAML file:

 labels:
 apps.open-cluster-management.io/cluster: "true"
 name: <your-managed-cluster-1>
 namespace: <your-managed-cluster-1>
reportType: Cluster
results:
- result: deployed
 source: appsub-1-ns/appsub-1 // appsub 1 to <your-managed-cluster-1>
 timestamp:
 nanos: 0
 seconds: 1634137362
- result: failed
 source: appsub-2-ns/appsub-2 // appsub 2 to <your-managed-cluster-1>
 timestamp:
 nanos: 0
 seconds: 1634137362
- result: propagationFailed
 source: appsub-3-ns/appsub-3 // appsub 3 to <your-managed-cluster-1>
 timestamp:
 nanos: 0
 seconds: 1634137362

apiVersion: apps.open-cluster-management.io/v1alpha1
kind: subscriptionReport
metadata:
 labels:
 apps.open-cluster-management.io/hosting-subscription: <your-appsub-namespace>.<your-
appsub-name>
 name: <your-appsub-name>
 namespace: <your-appsub-namespace>
reportType: Application
resources:
- apiVersion: v1
 kind: Service
 name: redis-master2
 namespace: playback-ns-2
- apiVersion: apps/v1

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

14

1.3.4. ManagedClusterView

A ManagedClusterView CR is reported on the first failed cluster. If an application is deployed on
multiple clusters with resource deployment failures, only one managedClusterView CR is created for
the first failed cluster namespace on the hub cluster. The managedClusterView CR retrieves the
detailed subscription status from the failed cluster so that the application owner does not need to
access the failed remote cluster.

See the following command that you can run to get the status:

% oc get managedclusterview -n <failing-clusternamespace> "<app-name>-<app name>"

 kind: Deployment
 name: redis-master2
 namespace: playback-ns-2
- apiVersion: v1
 kind: Service
 name: redis-slave2
 namespace: playback-ns-2
- apiVersion: apps/v1
 kind: Deployment
 name: redis-slave2
 namespace: playback-ns-2
- apiVersion: v1
 kind: Service
 name: frontend2
 namespace: playback-ns-2
- apiVersion: apps/v1
 kind: Deployment
 name: frontend2
 namespace: playback-ns-2
results:
- result: deployed
 source: cluster-1 //cluster 1 status
 timestamp:
 nanos: 0
 seconds: 0
- result: failed
 source: cluster-3 //cluster 2 status
 timestamp:
 nanos: 0
 seconds: 0
- result: propagationFailed
 source: cluster-4 //cluster 3 status
 timestamp:
 nanos: 0
 seconds: 0
summary:
 deployed: 8
 failed: 1
 inProgress: 0
 propagationFailed: 1
 clusters: 10

CHAPTER 1. MANAGING APPLICATIONS

15

1.3.5. CLI application-level status

If you cannot access the managed clusters to get a subscription status, you can use the CLI. The cluster-
level or the application-level subscription report provides the overall status, but not the the detailed
error messages for an application.

1. Download the CLI from multicloud-operators-subscription.

2. Run the following command to create a managedClusterView resource to see the managed
cluster application SubscriptionStatus so that you can identify the error:

% getAppSubStatus.sh -c <your-managed-cluster> -s <your-appsub-namespace> -n <your-appsub-
name>

1.3.6. CLI Last Update Time

You can also get the Last Update Time of an AppSub on a given managed cluster when it is not practical
to log in to each managed cluster to retrieve this information. Thus, an utility script was created to
simplify the retrieval of the Last Update Time of an AppSub on a managed cluster. This script is
designed to run on the Hub cluster. It creates a managedClusterView resource to get the AppSub from
the managed cluster, and parses the data to get the Last Update Time.

1. Download the CLI from multicloud-operators-subscription.

2. Run the following command to retriev the Last Update Time of an AppSub on a managed
cluster. This script is designed to run on the hub cluster. It creates a managedClusterView
resource to get the AppSub from the managed cluster, and parses the data to get the Last
Update Time:

% getLastUpdateTime.sh -c <your-managed-cluster> -s <your-appsub-namespace> -n <your-
appsub-name>

1.4. MANAGING APPLICATION RESOURCES

From the console, you can create applications by using Git repositories, Helm repositories, and Object
storage repositories.

Important: Git Channels can share a namespace with all other channel types: Helm, Object storage, and
other Git namespaces.

See the following topics to start managing apps:

Managing apps with Git repositories

Managing apps with Helm repositories

Managing apps with Object storage repositories

1.4.1. Managing apps with Git repositories

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn how to deploy resources from Git repositories in the following procedure. Learn
more about the application model at Application model and definitions .

User required access: A user role that can create applications. You can only perform actions that your

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

16

https://github.com/open-cluster-management-io/multicloud-operators-subscription/blob/main/cmd/scripts/getAppSubStatus.sh
https://github.com/open-cluster-management-io/multicloud-operators-subscription/blob/main/cmd/scripts/getLastUpdateTime.sh

User required access: A user role that can create applications. You can only perform actions that your
role is assigned. Learn about access requirements from the Role-based access control documentation.

1. From the console navigation menu, click Applications to see listed applications and to create
new applications.

2. Optional: After you choose the kind of application you want to create, you can select YAML: On
to view the YAML in the console as you create and edit your application. See the YAML samples
later in the topic.

3. Choose Git from the list of repositories that you can use and enter the values in the correct
fields. Follow the guidance in the console and see the YAML editor change values based on your
input.
Notes:

If you select an existing Git repository path, you do not need to specify connection
information if this is a private repository. The connection information is pre-set and you do
not need to view these values.

If you enter a new Git repository path, you can optionally enter Git connection information if
this is a private Git repository.

Notice the reconcile option. The merge option is the default selection, which means that
new fields are added and existing fields are updated in the resource. You can choose to
replace. With the replace option, the existing resource is replaced with the Git source.
When the subscription reconcile rate is set to low, it can take up to one hour for the
subscribed application resources to reconcile. On the card on the single application view,
click Sync to reconcile manually. If set to off, it never reconciles.

4. Set any optional pre-deployment and post-deployment tasks. Set the Ansible Tower secret if
you have Ansible Tower jobs that you want to run before or after the subscription deploys the
application resources. The Ansible Tower tasks that define Ansible jobs must be placed within
prehook and posthook folders in this repository.

5. You can click Add credential if you need to add a credential using the console. Follow the
directions in the console. See more information at Managing credentials overview.

6. Click Create.

7. You are redirected to the Overview page where you can view the details and topology.

1.4.1.1. GitOps pattern

Learn best practices for organizing a Git repository to manage clusters.

1.4.1.1.1. GitOps example directory

Folders in this example are defined and named, with each folder containing applications or
configurations that are run on managed clusters:

Root folder managed-subscriptions: Contains subscriptions that target the common-
managed folder.

Subfolder apps/: Used to subscribe applications in the common-managed folder with
placement to managed-clusters.

Subfolder config/: Used to subscribe configurations in the common-managed folder with

CHAPTER 1. MANAGING APPLICATIONS

17

../../html-single/access_control#role-based-access-control
../../html-single/credentials#managing-credentials-overview

Subfolder config/: Used to subscribe configurations in the common-managed folder with
placement to managed-clusters.

Subfolder policies/: Used to apply policies with placement to managed-clusters.

Folder root-subscription/: The initial subscription for the hub cluster that subscribes the
managed-subscriptions folder.

See the example of a directory:

1.4.1.1.2. GitOps flow

Your directory structure is created for the following subscription flow: root-subscription > managed-
subscriptions > common-managed.

1. A single subscription in root-subscription/ is applied from the CLI terminal to the hub cluster.

2. Subscriptions and policies are downloaded and applied to the hub cluster from the managed-
subscription folder.

The subscriptions and policies in the managed-subscription folder then perform work on
the managed clusters based on the placement.

Placement determines which managed-clusters each subscription or policy affects.

The subscriptions or policies define what is on the clusters that match their placement.

3. Subscriptions apply content from the common-managed folder to managed-clusters that
match the placement rules. This also applies common applications and configurations to all
managed-clusters that match the placement rules.

1.4.1.1.3. More examples

For an example of root-subscription/, see application-subscribe-all.

For examples of subscriptions that point to other folders in the same repository, see subscribe-
all.

See an example of the common-managed folder with application artifacts in the nginx-apps
repository.

common-managed/
 apps/
 app-name-0/
 app-name-1/
 config/
 config001/
 config002/

managed-subscriptions
 apps/
 config/
 policies/

root-subscription/

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

18

https://github.com/stolostron/application-samples/tree/main/subscriptions/subscribe-all
https://github.com/stolostron/application-samples/tree/main/subscriptions
https://github.com/stolostron/application-samples/tree/main/subscriptions/nginx

See policy examples in Policy collection .

1.4.2. Managing apps with Helm repositories

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn how to deploy resources from Helm repositories in the following procedure. Learn
more about the application model at Application model and definitions .

User required access: A user role that can create applications. You can only perform actions that your
role is assigned. Learn about access requirements from the Role-based access control documentation.

1. From the console navigation menu, click Applications to see listed applications and to create
new applications.

2. Optional: After you choose the kind of application you want to create, you can select YAML: On
to view the YAML in the console as you create and edit your application. See the YAML samples
later in the topic.

3. Choose Helm from the list of repositories that you can use and enter the values in the correct
fields. Follow the guidance in the console and see the YAML editor change values based on your
input.

4. Click Create.

5. You are redirected to the Overview page where you can view the details and topology.

1.4.2.1. Sample YAML

The following example channel definition abstracts a Helm repository as a channel:

Note: For Helm, all Kubernetes resources contained within the Helm chart must have the label release.
{{ .Release.Name }}` for the application topology to be displayed properly.

The following channel definition shows another example of a Helm repository channel:

apiVersion: v1
kind: Namespace
metadata:
 name: hub-repo

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: helm
 namespace: hub-repo
spec:
 pathname: [https://kubernetes-charts.storage.googleapis.com/] # URL points to a valid chart URL.
 type: HelmRepo

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: predev-ch
 namespace: ns-ch
 labels:

CHAPTER 1. MANAGING APPLICATIONS

19

https://github.com/stolostron/policy-collection
../../html-single/access_control#role-based-access-control

Note: To see REST API, use the APIs.

1.4.3. Managing apps with Object storage repositories

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn more about the application model at Application model and definitions :

User required access: A user role that can create applications. You can only perform actions that your
role is assigned. Learn about access requirements from the Role-based access control documentation.

1. From the console navigation menu, click Applications to see listed applications and to create
new applications.

2. Optional: After you choose the kind of application you want to create, you can select YAML: On
to view the YAML in the console as you create and edit your application. See the YAML samples
later in the topic.

3. Choose Object store from the list of repositories that you can use and enter the values in the
correct fields. Follow the guidance in the console and see the YAML editor change values based
on your input.

4. Click Create.

5. You are redirected to the Overview page where you can view the details and topology.

1.4.3.1. Sample YAML

The following example channel definition abstracts an object storage as a channel:

Note: To see REST API, use the APIs.

1.4.3.2. Creating your Amazon Web Services (AWS) S3 object storage bucket

You can set up subscriptions to subscribe resources that are defined in the Amazon Simple Storage
Service (Amazon S3) object storage service. See the following procedure:

 app: nginx-app-details
spec:
 type: HelmRepo
 pathname: https://kubernetes-charts.storage.googleapis.com/

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: dev
 namespace: ch-obj
spec:
 type: Object storage
 pathname: [http://sample-ip:#####/dev] # URL is appended with the valid bucket name, which
matches the channel name.
 secretRef:
 name: miniosecret
 gates:
 annotations:
 dev-ready: true

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

20

../../html-single/apis#apis
../../html-single/access_control#role-based-access-control
../../html-single/apis#apis

1. Log into the AWS console with your AWS account, user name, and password.

2. Navigate to Amazon S3 > Buckets to the bucket home page.

3. Click Create Bucket to create your bucket.

4. Select the AWS region, which is essential for connecting your AWS S3 object bucket.

5. Create the bucket access token.

6. Navigate to your user name in the navigation bar, then from the drop-down menu, select My
Security Credentials.

7. Navigate to Access keys for CLI, SDK, & API access in the AWS IAM credentials tab and click on
Create access key.

8. Save your Access key ID , Secret access key .

9. Upload your object YAML files to the bucket.

1.4.3.3. Subscribing to the object in the AWS bucket

1. Create an object bucket type channel with a secret to specify the AccessKeyID,
SecretAccessKey, and Region for connecting the AWS bucket. The three fields are created
when the AWS bucket is created.

2. Add the URL. The URL identifies the channel in a AWS S3 bucket if the URL contains s3:// or s3
and aws keywords. For example, see all of the following bucket URLs have AWS s3 bucket
identifiers:

https://s3.console.aws.amazon.com/s3/buckets/sample-bucket-1
s3://sample-bucket-1/
https://sample-bucket-1.s3.amazonaws.com/

Note: The AWS S3 object bucket URL is not necessary to connect the bucket with the AWS S3
API.

1.4.3.4. Sample AWS subscription

See the following complete AWS S3 object bucket channel sample YAML file:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: object-dev
 namespace: ch-object-dev
spec:
 type: ObjectBucket
 pathname: https://s3.console.aws.amazon.com/s3/buckets/sample-bucket-1
 secretRef:
 name: secret-dev

apiVersion: v1
kind: Secret
metadata:
 name: secret-dev

CHAPTER 1. MANAGING APPLICATIONS

21

https://s3.console.aws.amazon.com/

You can continue to create other AWS subscription and placement rule objects, as you see in the
following sample YAML with kind: PlacementRule and kind: Subscription added:

You can also subscribe to objects within a specific subfolder in the object bucket. Add the subfolder
annotation to the subscription, which forces the object bucket subscription to only apply all the
resources in the subfolder path.

See the annotation with subfolder-1 as the bucket-path:

See the following complete sample for a subfolder:

 namespace: ch-object-dev
stringData:
 AccessKeyID: <your AWS bucket access key id>
 SecretAccessKey: <your AWS bucket secret access key>
 Region: <your AWS bucket region>
type: Opaque

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: towhichcluster
 namespace: obj-sub-ns
spec:
 clusterSelector: {}

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: obj-sub
 namespace: obj-sub-ns
spec:
 channel: ch-object-dev/object-dev
 placement:
 placementRef:
 kind: PlacementRule
 name: towhichcluster

annotations:
 apps.open-cluster-management.io/bucket-path: <subfolder-1>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 annotations:
 apps.open-cluster-management.io/bucket-path: subfolder1
 name: obj-sub
 namespace: obj-sub-ns
 labels:
 name: obj-sub
spec:
 channel: ch-object-dev/object-dev
 placement:

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

22

1.5. APPLICATION ADVANCED CONFIGURATION

Within Red Hat Advanced Cluster Management for Kubernetes, applications are composed of multiple
application resources. You can use channel, subscription, placements, and placement rule resources to
help you deploy, update, and manage your overall applications.

Both single and multicluster applications use the same Kubernetes specifications, but multicluster
applications involve more automation of the deployment and application management lifecycle.

All of the application component resources for Red Hat Advanced Cluster Management for Kubernetes
applications are defined in YAML file specification sections. When you need to create or update an
application component resource, you need to create or edit the appropriate section to include the labels
for defining your resource.

View the following application advanced configuration topics:

Subscribing Git resources

Granting subscription admin privilege

Creating an allow and deny list as subscription administrator

Adding reconcile options

Configuring application channel and subscription for a secure Git connection

Setting up Ansible Tower tasks

Configuring GitOps on managed clusters

Configuring package overrides

Channel samples overview

Subscription samples overview

Placement rule samples overview

Application samples overview

1.5.1. Subscribing Git resources

By default, when a subscription deploys subscribed applications to target clusters, the applications are
deployed to that subscription namespace, even if the application resources are associated with other
namespaces. A subscription administrator can change default behavior, as described in Granting
subscription admin privilege.

Additionally, if an application resource exists in the cluster and was not created by the subscription, the
subscription cannot apply a new resource on that existing resource. See the following processes to
change default settings as the subscription administrator:

Required access: Cluster administrator

 placementRef:
 kind: PlacementRule
 name: towhichcluster

CHAPTER 1. MANAGING APPLICATIONS

23

Creating application resources in Git

Subscribing specific Git elements

Application namespace example

Resource overwrite example

1.5.1.1. Creating application resources in Git

You need to specify the full group and version for apiVersion in resource YAML when you subscribe.
For example, if you subscribe to apiVersion: v1, the subscription controller fails to validate the
subscription and you receive an error: Resource /v1, Kind=ImageStream is not supported.

If the apiVersion is changed to image.openshift.io/v1, as in the following sample, it passes the
validation in the subscription controller and the resource is applied successfully.

Next, see more useful examples of how a subscription administrator can change default behavior.

1.5.1.2. Application namespace example

In this following examples, you are logged in as a subscription administrator.

1.5.1.2.1. Application to different namespaces

Create a subscription to subscribe the sample resource YAML file from a Git repository. The example
file contains subscriptions that are located within the following different namespaces:

Applicable channel types: Git

ConfigMap test-configmap-1 gets created in multins namespace.

ConfigMap test-configmap-2 gets created in default namespace.

ConfigMap test-configmap-3 gets created in the subscription namespace.

apiVersion: `image.openshift.io/v1`
kind: ImageStream
metadata:
 name: default
 namespace: default
spec:
 lookupPolicy:
 local: true
 tags:
 - name: 'latest'
 from:
 kind: DockerImage
 name: 'quay.io/repository/open-cluster-management/multicluster-operators-
subscription:community-latest'

apiVersion: v1
kind: Namespace
metadata:

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

24

If the subscription was created by other users, all the ConfigMaps get created in the same namespace
as the subscription.

1.5.1.2.2. Application to same namespace

As a subscription administrator, you might want to deploy all application resources into the same
namespace.

You can deploy all application resources into the subscription namespace by Creating an allow and deny
list as subscription administrator.

Add apps.open-cluster-management.io/current-namespace-scoped: true annotation to the
subscription YAML. For example, when a subscription administrator creates the following subscription,
all three ConfigMaps in the previous example are created in subscription-ns namespace.

 name: multins

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: multins
data:
 path: resource1

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-2
 namespace: default
data:
 path: resource2

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-3
data:
 path: resource3

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: subscription-example
 namespace: subscription-ns
 annotations:
 apps.open-cluster-management.io/git-path: sample-resources
 apps.open-cluster-management.io/reconcile-option: merge
 apps.open-cluster-management.io/current-namespace-scoped: "true"
spec:
 channel: channel-ns/somechannel
 placement:
 placementRef:
 name: dev-clusters

CHAPTER 1. MANAGING APPLICATIONS

25

1.5.1.3. Resource overwrite example

Applicable channel types: Git, ObjectBucket (Object storage in the console)

Note: The resource overwrite option is not applicable to helm charts from the Git repository because
the helm chart resources are managed by Helm.

In this example, the following ConfigMap already exists in the target cluster.

Subscribe the following sample resource YAML file from a Git repository and replace the existing
ConfigMap. See the change in the data specification:

1.5.1.3.1. Default merge option

See the following sample resource YAML file from a Git repository with the default apps.open-cluster-
management.io/reconcile-option: merge annotation. See the following example:

When this subscription is created by a subscription administrator and subscribes the ConfigMap
resource, the existing ConfigMap is merged, as you can see in the following example:

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: sub-ns
data:
 name: user1
 age: 19

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: sub-ns
data:
 age: 20

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: subscription-example
 namespace: sub-ns
 annotations:
 apps.open-cluster-management.io/git-path: sample-resources
 apps.open-cluster-management.io/reconcile-option: merge
spec:
 channel: channel-ns/somechannel
 placement:
 placementRef:
 name: dev-clusters

apiVersion: v1
kind: ConfigMap
metadata:

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

26

When the merge option is used, entries from subscribed resource are either created or updated in the
existing resource. No entry is removed from the existing resource.

Important: If the existing resource you want to overwrite with a subscription is automatically reconciled
by another operator or controller, the resource configuration is updated by both subscription and the
controller or operator. Do not use this method in this case.

1.5.1.3.2. mergeAndOwn option

With mergeAndOwn, entries from subscribed resource are either created or updated in the existing
resource. Log in as a subscription administrator and create a subscription with apps.open-cluster-
management.io/reconcile-option: mergeAndOwn annotation. See the following example:

When this subscription is created by a subscription administrator and subscribes the ConfigMap
resource, the existing ConfigMap is merged, as you can see in the following example:

As previosly mentioned, when the mergeAndOwn option is used, entries from subscribed resource are
either created or updated in the existing resource. No entry is removed from the existing resource. It
also adds the apps.open-cluster-management.io/hosting-subscription annotation to indicate that
the resource is now owned by the subscription. Deleting the subscription deletes the ConfigMap.

1.5.1.3.3. Replace option

You log in as a subscription administrator and create a subscription with apps.open-cluster-

 name: test-configmap-1
 namespace: sub-ns
data:
 name: user1
 age: 20

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: subscription-example
 namespace: sub-ns
 annotations:
 apps.open-cluster-management.io/git-path: sample-resources
 apps.open-cluster-management.io/reconcile-option: mergeAndOwn
spec:
 channel: channel-ns/somechannel
 placement:
 placementRef:
 name: dev-clusters

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: sub-ns
 annotations:
 apps.open-cluster-management.io/hosting-subscription: sub-ns/subscription-example
data:
 name: user1
 age: 20

CHAPTER 1. MANAGING APPLICATIONS

27

You log in as a subscription administrator and create a subscription with apps.open-cluster-
management.io/reconcile-option: replace annotation. See the following example:

When this subscription is created by a subscription administrator and subscribes the ConfigMap
resource, the existing ConfigMap is replaced by the following:

1.5.1.4. Subscribing specific Git elements

You can subscribe to a specific Git branch, commit, or tag.

1.5.1.4.1. Subscribing to a specific branch

The subscription operator that is included in the multicloud-operators-subscription repository
subscribes to the default branch of a Git repository. If you want to subscribe to a different branch, you
need to specify the branch name annotation in the subscription.

The following example, the YAML file displays how to specify a different branch with apps.open-
cluster-management.io/git-branch: <branch1>:

1.5.1.4.2. Subscribing to a specific commit

The subscription operator that is included in the multicloud-operators-subscription repository
subscribes to the latest commit of specified branch of a Git repository by default. If you want to
subscribe to a specific commit, you need to specify the desired commit annotation with the commit hash

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: subscription-example
 namespace: sub-ns
 annotations:
 apps.open-cluster-management.io/git-path: sample-resources
 apps.open-cluster-management.io/reconcile-option: replace
spec:
 channel: channel-ns/somechannel
 placement:
 placementRef:
 name: dev-clusters

apiVersion: v1
kind: ConfigMap
metadata:
 name: test-configmap-1
 namespace: sub-ns
data:
 age: 20

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-mongodb-subscription
 annotations:
 apps.open-cluster-management.io/git-path: stable/ibm-mongodb-dev
 apps.open-cluster-management.io/git-branch: <branch1>

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

28

in the subscription.

The following example, the YAML file displays how to specify a different commit with apps.open-
cluster-management.io/git-desired-commit: <full commit number>:

The git-clone-depth annotation is optional and set to 20 by default, which means the subscription
controller retrieves the previous 20 commit histories from the Git repository. If you specify a much older
git-desired-commit, you need to specify git-clone-depth accordingly for the desired commit.

1.5.1.4.3. Subscribing to a specific tag

The subscription operator that is included in the multicloud-operators-subscription repository
subscribes to the latest commit of specified branch of a Git repository by default. If you want to
subscribe to a specific tag, you need to specify the tag annotation in the subscription.

The following example, the YAML file displays how to specify a different tag with apps.open-cluster-
management.io/git-tag: <v1.0>:

Note: If both Git desired commit and tag annotations are specified, the tag is ignored.

The git-clone-depth annotation is optional and set to 20 by default, which means the subscription
controller retrieves the previous 20 commit history from the Git repository. If you specify much older
git-tag, you need to specify git-clone-depth accordingly for the desired commit of the tag.

1.5.2. Granting subscription administrator privilege

Learn how to grant subscription administrator access. A subscription administrator can change default
behavior. Learn more in the following process:

1. From the console, log in to your Red Hat OpenShift Container Platform cluster.

2. Create one or more users. See Preparing for users for information about creating users. You can
also prepare groups or service accounts.
Users that you create are administrators for the app.open-cluster-
management.io/subscription application. With OpenShift Container Platform, a subscription
administrator can change default behavior. You can group these users to represent a
subscription administrative group, which is demonstrated in later examples.

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-mongodb-subscription
 annotations:
 apps.open-cluster-management.io/git-path: stable/ibm-mongodb-dev
 apps.open-cluster-management.io/git-desired-commit: <full commit number>
 apps.open-cluster-management.io/git-clone-depth: 100

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-mongodb-subscription
 annotations:
 apps.open-cluster-management.io/git-path: stable/ibm-mongodb-dev
 apps.open-cluster-management.io/git-tag: <v1.0>
 apps.open-cluster-management.io/git-clone-depth: 100

CHAPTER 1. MANAGING APPLICATIONS

29

https://docs.openshift.com/container-platform/4.10/post_installation_configuration/preparing-for-users.html

3. From the terminal, log in to your Red Hat Advanced Cluster Management cluster.

4. If open-cluster-management:subscription-admin ClusterRoleBinding does not exist, you
need to create it. See the following example:

5. Add the following subjects into open-cluster-management:subscription-admin
ClusterRoleBinding with the following command:

oc edit clusterrolebinding open-cluster-management:subscription-admin

Note: Initially, open-cluster-management:subscription-admin ClusterRoleBinding has no
subject.

Your subjects might display as the following example:

1.5.3. Creating an allow and deny list as subscription administrator

As a subscription administrator, you can create an application from a Git repository application
subscription that contains an allow list to allow deployment of only specified Kubernetes kind
resources. You can also create a deny list in the application subscription to deny deployment of specific
Kubernetes kind resources.

By default, policy.open-cluster-management.io/v1 resources are not deployed by an application
subscription. To avoid this default behavior, application subscription needs deployed by a subscription
administrator.

See the following example of allow and deny specifications:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: open-cluster-management:subscription-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: open-cluster-management:subscription-admin

subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: example-name
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: example-group-name
- kind: ServiceAccount
 name: my-service-account
 namespace: my-service-account-namespace
Service Account can be used as a user subject as well
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: 'system:serviceaccount:my-service-account-namespace:my-service-account'

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

30

The following application subscription YAML specifies that when the application is deployed from the
myapplication directory from the source repository, it deploys only v1/Deployment resources, even if
there are other resources in the source repository:

This example application subscription YAML specifies deployments of all valid resources except
v1/Service and v1/ConfigMap resources. Instead of listing individual resource kinds within an API group,
you can add "*" to allow or deny all resource kinds in the API Group.

1.5.4. Adding reconcile options

You can use the apps.open-cluster-management.io/reconcile-option annotation in individual
resources to override the subscription-level reconcile option.

For example, if you add apps.open-cluster-management.io/reconcile-option: replace annotation in

metadata:
 annotations:
 apps.open-cluster-management.io/github-path: sub2
 name: demo-subscription
 namespace: demo-ns
spec:
 channel: demo-ns/somechannel
 allow:
 - apiVersion: policy.open-cluster-management.io/v1
 kinds:
 - Policy
 - apiVersion: v1
 kinds:
 - Deployment
 deny:
 - apiVersion: v1
 kinds:
 - Service
 - ConfigMap
 placement:
 local: true

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 annotations:
 apps.open-cluster-management.io/github-path: myapplication
 name: demo-subscription
 namespace: demo-ns
spec:
 channel: demo-ns/somechannel
 deny:
 - apiVersion: v1
 kinds:
 - Service
 - ConfigMap
 placement:
 placementRef:
 name: demo-placement
 kind: PlacementRule

CHAPTER 1. MANAGING APPLICATIONS

31

the subscription and add apps.open-cluster-management.io/reconcile-option: merge annotation in a
resource YAML in the subscribed Git repository, the resource is merged on the target cluster while
other resources are replaced.

1.5.4.1. Reconcile frequency Git channel

You can select reconcile frequency options: high, medium, low, and off in channel configuration to
avoid unnecessary resource reconciliations and therefore prevent overload on subscription operator.

Required access: Administrator and cluster administrator

See the following definitions of the settings:attribute:<value>:

Off: The deployed resources are not automatically reconciled. A change in the Subscription
custom resource initiates a reconciliation. You can add or update a label or annotation.

Low: The deployed resources are automatically reconciled every hour, even if there is no
change in the source Git repository.

Medium: This is the default setting. The subscription operator compares the currently deployed
commit ID to the latest commit ID of the source repository every 3 minutes, and applies
changes to target clusters. Every 15 minutes, all resources are reapplied from the source Git
repository to the target clusters, even if there is no change in the repository.

High: The deployed resources are automatically reconciled every two minutes, even if there is
no change in the source Git repository.

You can set this by using the apps.open-cluster-management.io/reconcile-rate annotation in the
channel custom resource that is referenced by subscription.

See the following name: git-channel example:

In the previous example, all subscriptions that use sample/git-channel are assigned low reconciliation

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: git-channel
 namespace: sample
 annotations:
 apps.open-cluster-management.io/reconcile-rate: <value from the list>
spec:
 type: GitHub
 pathname: <Git URL>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-subscription
 annotations:
 apps.open-cluster-management.io/git-path: <application1>
 apps.open-cluster-management.io/git-branch: <branch1>
spec:
 channel: sample/git-channel
 placement:
 local: true

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

32

In the previous example, all subscriptions that use sample/git-channel are assigned low reconciliation
frequency.

a. When the subscription reconcile rate is set to low, it can take up to one hour for the subscribed
application resources to reconcile. On the card on the single application view, click Sync to
reconcile manually. If set to off, it never reconciles.

Regardless of the reconcile-rate setting in the channel, a subscription can turn the auto-reconciliation
off by specifying apps.open-cluster-management.io/reconcile-rate: off annotation in the
Subscription custom resource.

See the following git-channel example:

See that the resources deployed by git-subscription are never automatically reconciled even if the
reconcile-rate is set to high in the channel.

1.5.4.2. Reconcile frequency Helm channel

Every 15 minutes, the subscription operator compares currently deployed hash of your Helm chart to the
hash from the source repository. Changes are applied to target clusters. The frequency of resource
reconciliation impacts the performance of other application deployments and updates.

For example, if there are hundreds of application subscriptions and you want to reconcile all
subscriptions more frequently, the response time of reconciliation is slower.

Depending on the Kubernetes resources of the application, appropriate reconciliation frequency can
improve performance.

Off: The deployed resources are not automatically reconciled. A change in the Subscription
custom resource initiates a reconciliation. You can add or update a label or annotation.

Low: The subscription operator compares currently deployed hash to the hash of the source

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: git-channel
 namespace: sample
 annotations:
 apps.open-cluster-management.io/reconcile-rate: high
spec:
 type: GitHub
 pathname: <Git URL>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: git-subscription
 annotations:
 apps.open-cluster-management.io/git-path: application1
 apps.open-cluster-management.io/git-branch: branch1
 apps.open-cluster-management.io/reconcile-rate: "off"
spec:
 channel: sample/git-channel
 placement:
 local: true

CHAPTER 1. MANAGING APPLICATIONS

33

Low: The subscription operator compares currently deployed hash to the hash of the source
repository every hour and apply changes to target clusters when there is change.

Medium: This is the default setting. The subscription operator compares currently deployed
hash to the hash of the source repository every 15 minutes and apply changes to target clusters
when there is change.

High: The subscription operator compares currently deployed hash to the hash of the source
repository every 2 minutes and apply changes to target clusters when there is change.

You can set this using apps.open-cluster-management.io/reconcile-rate annotation in the Channel
custom resource that is referenced by subscription. See the following helm-channel example:

See the following helm-channel example:

In this example, all subscriptions that uses sample/helm-channel are assigned a low reconciliation
frequency.

Regardless of the reconcile-rate setting in the channel, a subscription can turn the auto-reconciliation
off by specifying apps.open-cluster-management.io/reconcile-rate: off annotation in the
Subscription custom resource, as displayed in the following example:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: helm-channel
 namespace: sample
 annotations:
 apps.open-cluster-management.io/reconcile-rate: low
spec:
 type: HelmRepo
 pathname: <Helm repo URL>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: helm-subscription
spec:
 channel: sample/helm-channel
 name: nginx-ingress
 packageOverrides:
 - packageName: nginx-ingress
 packageAlias: nginx-ingress-simple
 packageOverrides:
 - path: spec
 value:
 defaultBackend:
 replicaCount: 3
 placement:
 local: true

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: helm-channel
 namespace: sample

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

34

In this example, the resources deployed by helm-subscription are never automatically reconciled, even
if the reconcile-rate is set to high in the channel.

1.5.5. Configuring application channel and subscription for a secure Git connection

Git channels and subscriptions connect to the specified Git repository through HTTPS or SSH. The
following application channel configurations can be used for secure Git connections:

Connecting to a private repo with user and access token

Making an insecure HTTPS connection to a Git server

Using custom CA certificates for a secure HTTPS connection

Making an SSH connection to a Git server

Updating certificates and SSH keys

1.5.5.1. Connecting to a private repo with user and access token

You can connect to a Git server using channel and subscription. See the following procedures for
connecting to a private repository with a user and access token:

1. Create a secret in the same namespace as the channel. Set the user field to a Git user ID and
the accessToken field to a Git personal access token. The values should be base64 encoded.
See the following sample with user and accessToken populated:

 annotations:
 apps.open-cluster-management.io/reconcile-rate: high
spec:
 type: HelmRepo
 pathname: <Helm repo URL>

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: helm-subscription
 annotations:
 apps.open-cluster-management.io/reconcile-rate: "off"
spec:
 channel: sample/helm-channel
 name: nginx-ingress
 packageOverrides:
 - packageName: nginx-ingress
 packageAlias: nginx-ingress-simple
 packageOverrides:
 - path: spec
 value:
 defaultBackend:
 replicaCount: 3
 placement:
 local: true

apiVersion: v1
kind: Secret
metadata:

CHAPTER 1. MANAGING APPLICATIONS

35

2. Configure the channel with a secret. See the following sample with the secretRef populated:

1.5.5.2. Making an insecure HTTPS connection to a Git server

You can use the following connection method in a development environment to connect to a privately-
hosted Git server with SSL certificates that are signed by custom or self-signed certificate authority.
However, this procedure is not recommended for production:

Specify insecureSkipVerify: true in the channel specification. Otherwise, the connection to the Git
server fails with an error similar to the following:

x509: certificate is valid for localhost.com, not localhost

See the following sample with the channel specification addition for this method:

1.5.5.3. Using custom CA certificates for a secure HTTPS connection

You can use this connection method to securely connect to a privately-hosted Git server with SSL
certificates that are signed by custom or self-signed certificate authority.

1. Create a ConfigMap to contain the Git server root and intermediate CA certificates in PEM
format. The ConfigMap must be in the same namespace as the channel CR. The field name
must be caCerts and use |. From the following sample, notice that caCerts can contain multiple
certificates, such as root and intermediate CAs:

apiVersion: v1

 name: my-git-secret
 namespace: channel-ns
data:
 user: dXNlcgo=
 accessToken: cGFzc3dvcmQK

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: sample-channel
 namespace: channel-ns
spec:
 type: Git
 pathname: <Git HTTPS URL>
 secretRef:
 name: my-git-secret

apiVersion: apps.open-cluster-management.io/v1
ind: Channel
metadata:
labels:
 name: sample-channel
 namespace: sample
spec:
 type: GitHub
 pathname: <Git HTTPS URL>
 insecureSkipVerify: true

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

36

kind: ConfigMap
metadata:
 name: git-ca
 namespace: channel-ns
data:
 caCerts: |
 # Git server root CA

 -----BEGIN CERTIFICATE-----
 MIIF5DCCA8wCCQDInYMol7LSDTANBgkqhkiG9w0BAQsFADCBszELMAkGA1UEBhMC

Q0ExCzAJBgNVBAgMAk9OMRAwDgYDVQQHDAdUb3JvbnRvMQ8wDQYDVQQKDAZSZW
RI

YXQxDDAKBgNVBAsMA0FDTTFFMEMGA1UEAww8Z29ncy1zdmMtZGVmYXVsdC5hcHBz
 LnJqdW5nLWh1YjEzLmRldjA2LnJlZC1jaGVzdGVyZmllbGQuY29tMR8wHQYJKoZI
 hvcNAQkBFhByb2tlakByZWRoYXQuY29tMB4XDTIwMTIwMzE4NTMxMloXDTIzMDky

MzE4NTMxMlowgbMxCzAJBgNVBAYTAkNBMQswCQYDVQQIDAJPTjEQMA4GA1UEBwwH

VG9yb250bzEPMA0GA1UECgwGUmVkSGF0MQwwCgYDVQQLDANBQ00xRTBDBgNVBA
MM
 PGdvZ3Mtc3ZjLWRlZmF1bHQuYXBwcy5yanVuZy1odWIxMy5kZXYwNi5yZWQtY2hl
 c3RlcmZpZWxkLmNvbTEfMB0GCSqGSIb3DQEJARYQcm9rZWpAcmVkaGF0LmNvbTCC
 AiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAM3nPK4mOQzaDAo6S3ZJ0Ic3
 U9p/NLodnoTIC+cn0q8qNCAjf13zbGB3bfN9Zxl8Q5fv+wYwHrUOReCp6U/InyQy
 6OS3gj738F635inz1KdyhKtlWW2p9Ye9DUtx1IlfHkDVdXtynjHQbsFNIdRHcpQP
 upM5pwPC3BZXqvXChhlfAy2m4yu7vy0hO/oTzWIwNsoL5xt0Lw4mSyhlEip/t8lU
 xn2y8qhm7MiIUpXuwWhSYgCrEVqmTcB70Pc2YRZdSFolMN9Et70MjQN0TXjoktH8
 PyASJIKIRd+48yROIbUn8rj4aYYBsJuoSCjJNwujZPbqseqUr42+v+Qp2bBj1Sjw
 +SEZfHTvSv8AqX0T6eo6njr578+DgYlwsS1A1zcAdzp8qmDGqvJDzwcnQVFmvaoM
 gGHCdJihfy3vDhxuZRDse0V4Pz6tl6iklM+tHrJL/bdL0NdfJXNCqn2nKrM51fpw
 diNXs4Zn3QSStC2x2hKnK+Q1rwCSEg/lBawgxGUslTboFH77a+Kwu4Oug9ibtm5z
 ISs/JY4Kiy4C2XJOltOR2XZYkdKaX4x3ctbrGaD8Bj+QHiSAxaaSXIX+VbzkHF2N
 aD5ijFUopjQEKFrYh3O93DB/URIQ+wHVa6+Kvu3uqE0cg6pQsLpbFVQ/I8xHvt9L
 kYy6z6V/nj9ZYKQbq/kPAgMBAAEwDQYJKoZIhvcNAQELBQADggIBAKZuc+lewYAv
 jaaSeRDRoToTb/yN0Xsi69UfK0aBdvhCa7/0rPHcv8hmUBH3YgkZ+CSA5ygajtL4
 g2E8CwIO9ZjZ6l+pHCuqmNYoX1wdjaaDXlpwk8hGTSgy1LsOoYrC5ZysCi9Jilu9
 PQVGs/vehQRqLV9uZBigG6oZqdUqEimaLHrOcEAHB5RVcnFurz0qNbT+UySjsD63
 9yJdCeQbeKAR9SC4hG13EbM/RZh0lgFupkmGts7QYULzT+oA0cCJpPLQl6m6qGyE
 kh9aBB7FLykK1TeXVuANlNU4EMyJ/e+uhNkS9ubNJ3vuRuo+ECHsha058yi16JC9
 NkZqP+df4Hp85sd+xhrgYieq7QGX2KOXAjqAWo9htoBhOyW3mm783A7WcOiBMQv0
 2UGZxMsRjlP6UqB08LsV5ZBAefElR344sokJR1de/Sx2J9J/am7yOoqbtKpQotIA
 XSUkATuuQw4ctyZLDkUpzrDzgd2Bt+aawF6sD2YqycaGFwv2YD9t1YlD6F4Wh8Mc
 20Qu5EGrkQTCWZ9pOHNSa7YQdmJzwbxJC4hqBpBRAJFI2fAIqFtyum6/8ZN9nZ9K
 FSEKdlu+xeb6Y6xYt0mJJWF6mCRi4i7IL74EU/VNXwFmfP6IadliUOST3w5t92cB
 M26t73UCExXMXTCQvnp0ki84PeR1kRk4
 -----END CERTIFICATE-----

 # Git server intermediate CA 1

 -----BEGIN CERTIFICATE-----
 MIIF5DCCA8wCCQDInYMol7LSDTANBgkqhkiG9w0BAQsFADCBszELMAkGA1UEBhMC

Q0ExCzAJBgNVBAgMAk9OMRAwDgYDVQQHDAdUb3JvbnRvMQ8wDQYDVQQKDAZSZW

CHAPTER 1. MANAGING APPLICATIONS

37

RI

YXQxDDAKBgNVBAsMA0FDTTFFMEMGA1UEAww8Z29ncy1zdmMtZGVmYXVsdC5hcHBz
 LnJqdW5nLWh1YjEzLmRldjA2LnJlZC1jaGVzdGVyZmllbGQuY29tMR8wHQYJKoZI
 hvcNAQkBFhByb2tlakByZWRoYXQuY29tMB4XDTIwMTIwMzE4NTMxMloXDTIzMDky

MzE4NTMxMlowgbMxCzAJBgNVBAYTAkNBMQswCQYDVQQIDAJPTjEQMA4GA1UEBwwH

VG9yb250bzEPMA0GA1UECgwGUmVkSGF0MQwwCgYDVQQLDANBQ00xRTBDBgNVBA
MM
 PGdvZ3Mtc3ZjLWRlZmF1bHQuYXBwcy5yanVuZy1odWIxMy5kZXYwNi5yZWQtY2hl
 c3RlcmZpZWxkLmNvbTEfMB0GCSqGSIb3DQEJARYQcm9rZWpAcmVkaGF0LmNvbTCC
 AiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAM3nPK4mOQzaDAo6S3ZJ0Ic3
 U9p/NLodnoTIC+cn0q8qNCAjf13zbGB3bfN9Zxl8Q5fv+wYwHrUOReCp6U/InyQy
 6OS3gj738F635inz1KdyhKtlWW2p9Ye9DUtx1IlfHkDVdXtynjHQbsFNIdRHcpQP
 upM5pwPC3BZXqvXChhlfAy2m4yu7vy0hO/oTzWIwNsoL5xt0Lw4mSyhlEip/t8lU
 xn2y8qhm7MiIUpXuwWhSYgCrEVqmTcB70Pc2YRZdSFolMN9Et70MjQN0TXjoktH8
 PyASJIKIRd+48yROIbUn8rj4aYYBsJuoSCjJNwujZPbqseqUr42+v+Qp2bBj1Sjw
 +SEZfHTvSv8AqX0T6eo6njr578+DgYlwsS1A1zcAdzp8qmDGqvJDzwcnQVFmvaoM
 gGHCdJihfy3vDhxuZRDse0V4Pz6tl6iklM+tHrJL/bdL0NdfJXNCqn2nKrM51fpw
 diNXs4Zn3QSStC2x2hKnK+Q1rwCSEg/lBawgxGUslTboFH77a+Kwu4Oug9ibtm5z
 ISs/JY4Kiy4C2XJOltOR2XZYkdKaX4x3ctbrGaD8Bj+QHiSAxaaSXIX+VbzkHF2N
 aD5ijFUopjQEKFrYh3O93DB/URIQ+wHVa6+Kvu3uqE0cg6pQsLpbFVQ/I8xHvt9L
 kYy6z6V/nj9ZYKQbq/kPAgMBAAEwDQYJKoZIhvcNAQELBQADggIBAKZuc+lewYAv
 jaaSeRDRoToTb/yN0Xsi69UfK0aBdvhCa7/0rPHcv8hmUBH3YgkZ+CSA5ygajtL4
 g2E8CwIO9ZjZ6l+pHCuqmNYoX1wdjaaDXlpwk8hGTSgy1LsOoYrC5ZysCi9Jilu9
 PQVGs/vehQRqLV9uZBigG6oZqdUqEimaLHrOcEAHB5RVcnFurz0qNbT+UySjsD63
 9yJdCeQbeKAR9SC4hG13EbM/RZh0lgFupkmGts7QYULzT+oA0cCJpPLQl6m6qGyE
 kh9aBB7FLykK1TeXVuANlNU4EMyJ/e+uhNkS9ubNJ3vuRuo+ECHsha058yi16JC9
 NkZqP+df4Hp85sd+xhrgYieq7QGX2KOXAjqAWo9htoBhOyW3mm783A7WcOiBMQv0
 2UGZxMsRjlP6UqB08LsV5ZBAefElR344sokJR1de/Sx2J9J/am7yOoqbtKpQotIA
 XSUkATuuQw4ctyZLDkUpzrDzgd2Bt+aawF6sD2YqycaGFwv2YD9t1YlD6F4Wh8Mc
 20Qu5EGrkQTCWZ9pOHNSa7YQdmJzwbxJC4hqBpBRAJFI2fAIqFtyum6/8ZN9nZ9K
 FSEKdlu+xeb6Y6xYt0mJJWF6mCRi4i7IL74EU/VNXwFmfP6IadliUOST3w5t92cB
 M26t73UCExXMXTCQvnp0ki84PeR1kRk4
 -----END CERTIFICATE-----

 # Git server intermediate CA 2

 -----BEGIN CERTIFICATE-----
 MIIF5DCCA8wCCQDInYMol7LSDTANBgkqhkiG9w0BAQsFADCBszELMAkGA1UEBhMC

Q0ExCzAJBgNVBAgMAk9OMRAwDgYDVQQHDAdUb3JvbnRvMQ8wDQYDVQQKDAZSZW
RI

YXQxDDAKBgNVBAsMA0FDTTFFMEMGA1UEAww8Z29ncy1zdmMtZGVmYXVsdC5hcHBz
 LnJqdW5nLWh1YjEzLmRldjA2LnJlZC1jaGVzdGVyZmllbGQuY29tMR8wHQYJKoZI
 hvcNAQkBFhByb2tlakByZWRoYXQuY29tMB4XDTIwMTIwMzE4NTMxMloXDTIzMDky

MzE4NTMxMlowgbMxCzAJBgNVBAYTAkNBMQswCQYDVQQIDAJPTjEQMA4GA1UEBwwH

VG9yb250bzEPMA0GA1UECgwGUmVkSGF0MQwwCgYDVQQLDANBQ00xRTBDBgNVBA
MM
 PGdvZ3Mtc3ZjLWRlZmF1bHQuYXBwcy5yanVuZy1odWIxMy5kZXYwNi5yZWQtY2hl

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

38

 c3RlcmZpZWxkLmNvbTEfMB0GCSqGSIb3DQEJARYQcm9rZWpAcmVkaGF0LmNvbTCC
 AiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAM3nPK4mOQzaDAo6S3ZJ0Ic3
 U9p/NLodnoTIC+cn0q8qNCAjf13zbGB3bfN9Zxl8Q5fv+wYwHrUOReCp6U/InyQy
 6OS3gj738F635inz1KdyhKtlWW2p9Ye9DUtx1IlfHkDVdXtynjHQbsFNIdRHcpQP
 upM5pwPC3BZXqvXChhlfAy2m4yu7vy0hO/oTzWIwNsoL5xt0Lw4mSyhlEip/t8lU
 xn2y8qhm7MiIUpXuwWhSYgCrEVqmTcB70Pc2YRZdSFolMN9Et70MjQN0TXjoktH8
 PyASJIKIRd+48yROIbUn8rj4aYYBsJuoSCjJNwujZPbqseqUr42+v+Qp2bBj1Sjw
 +SEZfHTvSv8AqX0T6eo6njr578+DgYlwsS1A1zcAdzp8qmDGqvJDzwcnQVFmvaoM
 gGHCdJihfy3vDhxuZRDse0V4Pz6tl6iklM+tHrJL/bdL0NdfJXNCqn2nKrM51fpw
 diNXs4Zn3QSStC2x2hKnK+Q1rwCSEg/lBawgxGUslTboFH77a+Kwu4Oug9ibtm5z
 ISs/JY4Kiy4C2XJOltOR2XZYkdKaX4x3ctbrGaD8Bj+QHiSAxaaSXIX+VbzkHF2N
 aD5ijFUopjQEKFrYh3O93DB/URIQ+wHVa6+Kvu3uqE0cg6pQsLpbFVQ/I8xHvt9L
 kYy6z6V/nj9ZYKQbq/kPAgMBAAEwDQYJKoZIhvcNAQELBQADggIBAKZuc+lewYAv
 jaaSeRDRoToTb/yN0Xsi69UfK0aBdvhCa7/0rPHcv8hmUBH3YgkZ+CSA5ygajtL4
 g2E8CwIO9ZjZ6l+pHCuqmNYoX1wdjaaDXlpwk8hGTSgy1LsOoYrC5ZysCi9Jilu9
 PQVGs/vehQRqLV9uZBigG6oZqdUqEimaLHrOcEAHB5RVcnFurz0qNbT+UySjsD63
 9yJdCeQbeKAR9SC4hG13EbM/RZh0lgFupkmGts7QYULzT+oA0cCJpPLQl6m6qGyE
 kh9aBB7FLykK1TeXVuANlNU4EMyJ/e+uhNkS9ubNJ3vuRuo+ECHsha058yi16JC9
 NkZqP+df4Hp85sd+xhrgYieq7QGX2KOXAjqAWo9htoBhOyW3mm783A7WcOiBMQv0
 2UGZxMsRjlP6UqB08LsV5ZBAefElR344sokJR1de/Sx2J9J/am7yOoqbtKpQotIA
 XSUkATuuQw4ctyZLDkUpzrDzgd2Bt+aawF6sD2YqycaGFwv2YD9t1YlD6F4Wh8Mc
 20Qu5EGrkQTCWZ9pOHNSa7YQdmJzwbxJC4hqBpBRAJFI2fAIqFtyum6/8ZN9nZ9K
 FSEKdlu+xeb6Y6xYt0mJJWF6mCRi4i7IL74EU/VNXwFmfP6IadliUOST3w5t92cB
 M26t73UCExXMXTCQvnp0ki84PeR1kRk4
 -----END CERTIFICATE-----

2. Configure the channel with this ConfigMap. See the following sample with the git-ca name from
the previous step:

1.5.5.4. Making an SSH connection to a Git server

1. Create a secret to contain your private SSH key in sshKey field in data. If the key is passphrase-
protected, specify the password in passphrase field. This secret must be in the same
namespace as the channel CR. Create this secret using a oc command to create a secret generic
git-ssh-key --from-file=sshKey=./.ssh/id_rsa, then add base64 encoded passphrase. See the
following sample:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: my-channel
 namespace: channel-ns
spec:
 configMapRef:
 name: git-ca
 pathname: <Git HTTPS URL>
 type: Git

apiVersion: v1
kind: Secret
metadata:
 name: git-ssh-key
 namespace: channel-ns
data:
 sshKey:

CHAPTER 1. MANAGING APPLICATIONS

39

2. Configure the channel with the secret. See the following sample:

The subscription controller does an ssh-keyscan with the provided Git hostname to build the
known_hosts list to prevent an Man-in-the-middle (MITM) attack in the SSH connection. If you
want to skip this and make insecure connection, use insecureSkipVerify: true in the channel
configuration. This is not best practice, especially in production environments.

1.5.5.5. Updating certificates and SSH keys

If a Git channel connection configuration requires an update, such as CA certificates, credentials, or SSH
key, you need to create a new secret and ConfigMap in the same namespace and update the channel to
reference that new secret and ConfigMap. For more information, see Using custom CA certificates for a
secure HTTPS connection.

1.5.6. Setting up Ansible Tower tasks

Red Hat Advanced Cluster Management is integrated with Ansible Tower automation so that you can
create prehook and posthook AnsibleJob instances for Git subscription application management. With
Ansible Tower jobs, you can automate tasks and integrate with external services, such as Slack and

LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnphQzFyWlhrdG
RqRUFBQUFBQ21GbGN6STFOaTFqZEhJQUFBQUdZbU55ZVhCMEFBQUFHQUFBQUJD
K3YySHhWSIwCm8zejh1endzV3NWODMvSFVkOEtGeVBmWk5OeE5TQUgcFA3Yk1yR2tlRF
FPd3J6MGIKOUlRM0tKVXQzWEE0Zmd6NVlrVFVhcTJsZWxxVk1HcXI2WHF2UVJ5Mkc0NkRl
RVlYUGpabVZMcGVuaGtRYU5HYmpaMmZOdQpWUGpiOVhZRmd4bTNnYUpJU3BNeTFL
WjQ5MzJvOFByaDZEdzRYVUF1a28wZGdBaDdndVpPaE53b0pVYnNmYlZRc0xMS1RrCnQw
blZ1anRvd2NEVGx4TlpIUjcwbGVUSHdGQTYwekM0elpMNkRPc3RMYjV2LzZhMjFHRlMwVm
VXQ3YvMlpMOE1sbjVUZWwKSytoUWtxRnJBL3BUc1ozVXNjSG1GUi9PV25FPQotLS0tLUVO
RCBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0K
 passphrase: cGFzc3cwcmQK
type: Opaque

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: my-channel
 namespace: channel-ns
spec:
 secretRef:
 name: git-ssh-key
 pathname: <Git SSH URL>
 type: Git

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: my-channel
 namespace: channel-ns
spec:
 secretRef:
 name: git-ssh-key
 pathname: <Git SSH URL>
 type: Git
 insecureSkipVerify: true

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

40

PagerDuty services. Your Git repository resource root path will contain prehook and posthook
directories for Ansible Tower jobs that run as part of deploying the app, updating the app, or removing
the app from a cluster.

Required access: Cluster administrator

Prerequisites

Install Ansible Automation Platform Resource Operator

Set up credential

Ansible integration

Ansible operator components

Ansible configuration

Set secret reconciliation

Ansible sample YAML

1.5.6.1. Prerequisites

OpenShift Container Platform 4.6 or later

You must have Ansible Tower version 3.7.3 or a later version installed. It is best practice to install
the latest supported version of Ansible Tower. See Red Hat AnsibleTower documentation for
more details.

Install the Ansible Automation Platform Resource Operator to connect Ansible jobs to the
lifecycle of Git subscriptions. For best results when using the AnsibleJob to launch Ansible
Tower jobs, the Ansible Tower job template should be idempotent when it is run.

Check PROMPT ON LAUNCH on the template for both INVENTORY and EXTRA VARIABLES. See Job
templates for more information.

1.5.6.2. Install Ansible Automation Platform Resource Operator

1. Log in to your OpenShift Container Platform cluster console.

2. Click OperatorHub in the console navigation.

3. Search for and install the Ansible Automation Platform Resource Operator . Note: To submit
prehook and posthook AnsibleJobs, install Ansible Automation Platform (AAP) Resource
Operator with corresponding version available on different OpenShift Container Platform
versions:

OpenShift Container Platform 4.6 needs (AAP) Resource Operator early-access

OpenShift Container Platform 4.7 needs (AAP) Resource Operator early-access, stable-2.1

OpenShift Container Platform 4.8 needs (AAP) Resource Operator early-access, stable-2.1,
stable-2.2

OpenShift Container Platform 4.9 needs (AAP) Resource Operator early-access, stable-2.1,
stable-2.2

CHAPTER 1. MANAGING APPLICATIONS

41

https://docs.ansible.com/ansible-tower/
https://docs.ansible.com/ansible-tower/latest/html/userguide/job_templates.html

OpenShift Container Platform 4.10 needs (AAP) Resource Operator stable-2.1, stable-2.2

1.5.6.3. Set up credential

You can create the credential you need from the Credentials page in the console. Click Add credential
or access the page from the navigation. See Creating a credential for Ansible Automation Platform for
credential information.

1.5.6.4. Ansible integration

You can integrate Ansible Tower jobs into Git subscriptions. For instance, for a database front-end and
back-end application, the database is required to be instantiated using Ansible Tower with an Ansible
Job, and the application is installed by a Git subscription. The database is instantiated before you deploy
the front-end and back-end application with the subscription.

The application subscription operator is enhanced to define two subfolders: prehook and posthook.
Both folders are in the Git repository resource root path and contain all prehook and posthook Ansible
jobs, respectively.

When the Git subscription is created, all of the pre and post AnsibleJob resources are parsed and stored
in memory as an object. The application subscription controller decides when to create the pre and post
AnsibleJob instances.

1.5.6.5. Ansible operator components

When you create a subscription CR, the Git-branch and Git-path points to a Git repository root location.
In the Git root location, the two subfolders prehook and posthook should contain at least one
Kind:AnsibleJob resource.

1.5.6.5.1. Prehook

The application subscription controller searches all the Kind:AnsibleJob CRs in the prehook folder as
the prehook AnsibleJob objects, then generates a new prehook AnsibleJob instance. The new instance
name is the prehook AnsibleJob object name and a random suffix string.

See an example instance name: database-sync-1-2913063.

The application subscription controller queues the reconcile request again in a 1 minute loop, where it
checks the prehook AnsibleJob status.ansibleJobResult. When the prehook
status.ansibleJobResult.status is successful, the application subscription continues to deploy the
main subscription.

1.5.6.5.2. Posthook

When the app subscription status is updated, if the subscription status is subscribed or propagated to all
target clusters in subscribed status, the app subscription controller searches all of the AnsibleJob Kind
CRs in the posthook folder as the posthook AnsibleJob objects. Then, it generates new posthook
AnsibleJob instances. The new instance name is the posthook AnsibleJob object name and a random
suffix string.

See an example instance name: service-ticket-1-2913849.

1.5.6.5.3. Ansible placement rules

With a valid prehook AnsibleJob, the subscription launches the prehook AnsibleJob regardless of the

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

42

../../html-single/credentials

decision from the placement rule. For example, you can have a prehook AnsibleJob that failed to
propagate a placement rule subscription. When the placement rule decision changes, new prehook and
posthook AnsibleJob instances are created.

1.5.6.6. Ansible configuration

You can configure Ansible Tower configurations with the following tasks:

1.5.6.6.1. Ansible secrets

You must create an Ansible Tower secret CR in the same subscription namespace. The Ansible Tower
secret is limited to the same subscription namespace.

Create the secret from the console by filling in the Ansible Tower secret name section. To create the
secret using terminal, edit and apply the following yaml:

Run the following command to add your YAML file:

oc apply -f

See the following YAML sample:

Note: The namespace is the same namespace as the subscription namespace. The stringData:token
and host are from the Ansible Tower.

When the app subscription controller creates prehook and posthook AnsibleJobs, if the secret from
subscription spec.hooksecretref is available, then it is sent to the AnsibleJob CR
spec.tower_auth_secret and the AnsibleJob can access the Ansible Tower.

1.5.6.7. Set secret reconciliation

For a main-sub subscription with prehook and posthook AnsibleJobs, the main-sub subscription should
be reconciled after all prehook and posthook AnsibleJobs or main subscription are updated in the Git
repository.

Prehook AnsibleJobs and the main subscription continuously reconcile and relaunch a new pre-
AnsibleJob instance.

1. After the pre-AnsibleJob is done, re-run the main subscription.

2. If there is any specification change in the main subscription, re-deploy the subscription. The
main subscription status should be updated to align with the redeployment procedure.

3. Reset the hub subscription status to nil. The subscription is refreshed along with the
subscription deployment on target clusters.

apiVersion: v1
kind: Secret
metadata:
 name: toweraccess
 namespace: same-as-subscription
type: Opaque
stringData:
 token: ansible-tower-api-token
 host: https://ansible-tower-host-url

CHAPTER 1. MANAGING APPLICATIONS

43

When the deployment is finished on the target cluster, the subscription status on the target
cluster is updated to "subscribed" or "failed", and is synced to the hub cluster subscription
status.

4. After the main subscription is done, relaunch a new post-AnsibleJob instance.

5. Verify that the DONE subscription is updated. See the following output:

subscription.status == "subscribed"

subscription.status == "propagated" with all of the target clusters "subscribed"

When an AnsibleJob CR is created, A Kubernetes job CR is created to launch an Ansible Tower job by
communicating to the target Ansible Tower. When the job is complete, the final status for the job is
returned to AnsibleJob status.ansibleJobResult.

Notes:

The AnsibleJob status.conditions is reserved by the Ansible Job operator for storing the creation of
Kubernetes job result. The status.conditions does not reflect the actual Ansible Tower job status.

The subscription controller checks the Ansible Tower job status by the
AnsibleJob.status.ansibleJobResult instead of AnsibleJob.status.conditions.

As previously mentioned in the prehook and posthook AnsibleJob workflow, when the main subscription
is updated in Git repository, a new prehook and posthook AnsibleJob instance is created. As a result,
one main subscription can link to multiple AnsibleJob instances.

Four fields are defined in subscription.status.ansibleJobs:

lastPrehookJobs: The most recent prehook AnsibleJobs

prehookJobsHistory: All the prehook AnsibleJobs history

lastPosthookJobs: The most recent posthook AnsibleJobs

posthookJobsHistory: All the posthook AnsibleJobs history

1.5.6.8. Ansible sample YAML

See the following sample of an AnsibleJob .yaml file in a Git prehook and posthook folder:

apiVersion: tower.ansible.com/v1alpha1
kind: AnsibleJob
metadata:
 name: demo-job-001
 namespace: default
spec:
 tower_auth_secret: toweraccess
 job_template_name: Demo Job Template
 extra_vars:
 cost: 6.88
 ghosts: ["inky","pinky","clyde","sue"]
 is_enable: false
 other_variable: foo
 pacman: mrs
 size: 8

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

44

1.5.7. Configuring Managed Clusters for OpenShift GitOps operator

To configure GitOps, you can register a set of one or more Red Hat Advanced Cluster Management for
Kubernetes managed clusters to an instance of Red Hat OpenShift Container Platform GitOps
operator. After registering, you can deploy applications to those clusters. Set up a continuous GitOps
environment to automate application consistency across clusters in development, staging, and
production environments.

1.5.7.1. Prerequisites

1. You need to install the Red Hat OpenShift GitOps operator on your Red Hat Advanced Cluster
Management for Kubernetes.

2. Import one or more managed clusters.

1.5.7.2. Registering managed clusters to GitOps

1. Create managed cluster sets and add managed clusters to those managed cluster sets. See the
example for managed cluster sets in the multicloud-integrations managedclusterset.
See the Creating and managing ManagedClusterSets documentation for more information.

2. Create managed cluster set binding to the namespace where Red Hat OpenShift Container
Platform GitOps is deployed.
See the example in the repository at multicloud-integrations managedclustersetbinding, which
binds to the openshift-gitops namespace.

See the Creating a ManagedClusterSetBinding resource documentation for more information.

3. In the namespace that is used in managed cluster set binding, create a placement custom
resource to select a set of managed clusters to register to an OpenShift Container Platform
GitOps operator instance. You can use the example in the repository at multicloud-integration
placement
See Using ManagedClusterSets with Placement for placement information.

Note: Only OpenShift Container Platform clusters are registered to an Red Hat OpenShift
Container Platform GitOps operator instance, not other Kubernetes clusters.

4. Create a GitOpsCluster custom resource to register the set of managed clusters from the
placement decision to the specified instance of Red Hat OpenShift Container Platform GitOps.
This enables the Red Hat OpenShift Container Platform GitOps instance to deploy applications
to any of those Red Hat Advanced Cluster Management managed clusters.
Use the example in the repository at multicloud-integrations gitops cluster.

Note: The referenced Placement resource must be in the same namespace as the
GitOpsCluster resource.

See from the following sample that placementRef.name is all-openshift-clusters, and is
specified as target clusters for the GitOps instance that is installed in argoNamespace:
openshift-gitops. The argoServer.cluster specification requires the local-cluster value.

 targets_list:
 - aaa
 - bbb
 - ccc
 version: 1.23.45

CHAPTER 1. MANAGING APPLICATIONS

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html/cicd/gitops
https://github.com/open-cluster-management/multicloud-integrations/blob/main/examples/managedclusterset.yaml
../../html-single/clusters#managedclustersets
https://github.com/stolostron/multicloud-integrations/blob/main/examples/managedclustersetbinding.yaml
../../html-single/clusters#creating-a-managedclustersetbinding
https://github.com/stolostron/multicloud-integrations/blob/main/examples/placement.yaml
../../html-single/clusters
https://github.com/stolostron/multicloud-integrations/blob/main/examples/gitopscluster.yaml

5. Save your changes. You can now follow the GitOps workflow to manage your applications. See
About GitOps to learn more.

1.5.7.3. GitOps token

When you integrate with the GitOps operator for every managed cluster that is bound to the GitOps
namespace through the placement and ManagedClusterSetBinding custom resources, a secret with a
token to access the ManagedCluster is created in the namespace. This is required for the GitOps
controller to sync resources to the managed cluster. When a user is given administrator access to a
GitOps namespace to perform application lifecycle operations, the user also gains access to this secret
and admin level to the managed cluster.

If this is not desired, instead of binding the user to the namespace-scoped admin role, use a more
restrictive custom role with permissions required to work with application resources that can be created
and used to bound the user. See the following ClusterRole example:

1.5.8. Scheduling a deployment

If you need to deploy new or change Helm charts or other resources during only specific times, you can
define subscriptions for those resources to begin deployments during only those specific times.
Alternatively, you can restrict deployments.

For instance, you can define time windows between 10:00 PM and 11:00 PM each Friday to serve as

apiVersion: apps.open-cluster-management.io/v1beta1
kind: GitOpsCluster
metadata:
 name: gitops-cluster-sample
 namespace: dev
spec:
 argoServer:
 cluster: local-cluster
 argoNamespace: openshift-gitops
 placementRef:
 kind: Placement
 apiVersion: cluster.open-cluster-management.io/v1beta1
 name: all-openshift-clusters

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: application-set-admin
rules:
- apiGroups:
 - argoproj.io
 resources:
 - applicationsets
 verbs:
 - get
 - list
 - watch
 - update
 - delete
 - deletecollection
 - patch

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cicd/index#understanding-openshift-gitops

For instance, you can define time windows between 10:00 PM and 11:00 PM each Friday to serve as
scheduled maintenance windows for applying patches or other application updates to your clusters.

You can restrict or block deployments from beginning during specific time windows, such as to avoid
unexpected deployments during peak business hours. For instance, to avoid peak hours you can define a
time window for a subscription to avoid beginning deployments between 8:00 AM and 8:00 PM.

By defining time windows for your subscriptions, you can coordinate updates for all of your applications
and clusters. For instance, you can define subscriptions to deploy only new application resources
between 6:01 PM and 11:59 PM and define other subscriptions to deploy only updated versions of
existing resources between 12:00 AM to 7:59 AM.

When a time window is defined for a subscription, the time ranges when a subscription is active changes.
As part of defining a time window, you can define the subscription to be active or blocked during that
window.

The deployment of new or changed resources begins only when the subscription is active. Regardless of
whether a subscription is active or blocked, the subscription continues to monitor for any new or
changed resource. The active and blocked setting affects only deployments.

When a new or changed resource is detected, the time window definition determines the next action for
the subscription.

For subscriptions to HelmRepo, ObjectBucket, and Git type channels:

If the resource is detected during the time range when the subscription is active, the resource
deployment begins.

If the resource is detected outside the time range when the subscription is blocked from
running deployments, the request to deploy the resource is cached. When the next time range
that the subscription is active occurs, the cached requests are applied and any related
deployments begin.

When a time window is blocked, all resources that were previously deployed by the application
subscription remain. Any new update is blocked until the time window is active again.

End user may wrongly think when the app sub time window is blocked, all deployed resources will be
removed. And they will be back when the app sub time window is active again.

If a deployment begins during a defined time window and is running when the defined end of the time
window elapses, the deployment continues to run to completion.

To define a time window for a subscription, you need to add the required fields and values to the
subscription resource definition YAML.

As part of defining a time window, you can define the days and hours for the time window.

You can also define the time window type, which determines whether the time window when
deployments can begin occurs during, or outside, the defined time frame.

If the time window type is active, deployments can begin only during the defined time frame.
You can use this setting when you want deployments to occur within only specific maintenance
windows.

If the time window type is block, deployments cannot begin during the defined time frame, but
can begin at any other time. You can use this setting when you have critical updates that are
required, but still need to avoid deployments during specific time ranges. For instance, you can

CHAPTER 1. MANAGING APPLICATIONS

47

use this type to define a time window to allow security-related updates to be applied at any time
except between 10:00 AM and 2:00 PM.

You can define multiple time windows for a subscription, such as to define a time window every
Monday and Wednesday.

1.5.9. Configuring package overrides

Configure package overrides for a subscription override value for the Helm chart or Kubernetes resource
that is subscribed to by the subscription.

To configure a package override, specify the field within the Kubernetes resource spec to override as
the value for the path field. Specify the replacement value as the value for the value field.

For example, if you need to override the values field within the spec for a Helm release for a subscribed
Helm chart, you need to set the value for the path field in your subscription definition to spec.

The contents for the value field are used to override the values within the spec field of the Helm spec.

For a Helm release, override values for the spec field are merged into the Helm release
values.yaml file to override the existing values. This file is used to retrieve the configurable
variables for the Helm release.

If you need to override the release name for a Helm release, include the packageOverride
section within your definition. Define the packageAlias for the Helm release by including the
following fields:

packageName to identify the Helm chart.

packageAlias to indicate that you are overriding the release name.
By default, if no Helm release name is specified, the Helm chart name is used to identify the
release. In some cases, such as when there are multiple releases subscribed to the same
chart, conflicts can occur. The release name must be unique among the subscriptions within
a namespace. If the release name for a subscription that you are creating is not unique, an
error occurs. You must set a different release name for your subscription by defining a
packageOverride. If you want to change the name within an existing subscription, you must
first delete that subscription and then recreate the subscription with the preferred release
name.

1.5.10. Channel samples overview

View samples and YAML definitions that you can use to build your files. Channels (channel.apps.open-
cluster-management.io) provide you with improved continuous integration and continuous delivery
capabilities for creating and managing your Red Hat Advanced Cluster Management for Kubernetes
applications.

packageOverrides:
- packageName: nginx-ingress
 packageOverrides:
 - path: spec
 value: my-override-values

packageOverrides:
- packageName: nginx-ingress
 packageAlias: my-helm-release-name

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

48

To use the OpenShift CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace filename with the name
of your file:

oc apply -f filename.yaml

c. Verify that your application resource is created by running the following command:

oc get application.app

Channel YAML structure

Channel YAML table

Object storage bucket (ObjectBucket) channel

Helm repository (HelmRepo) channel

Git (Git) repository channel

1.5.10.1. Channel YAML structure

For application samples that you can deploy, see the stolostron repository.

The following YAML structures show the required fields for a channel and some of the common optional
fields. Your YAML structure needs to include some required fields and values. Depending on your
application management requirements, you might need to include other optional fields and values. You
can compose your own YAML content with any tool and in the product console.

1.5.10.2. Channel YAML table

Field Description

apiVersion Required. Set the value to apps.open-cluster-
management.io/v1.

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name:
 namespace: # Each channel needs a unique namespace, except Git channel.
spec:
 sourceNamespaces:
 type:
 pathname:
 secretRef:
 name:
 gates:
 annotations:
 labels:

CHAPTER 1. MANAGING APPLICATIONS

49

https://github.com/stolostron/application-samples

kind Required. Set the value to Channel to indicate that
the resource is a channel.

metadata.name Required. The name of the channel.

metadata.namespace Required. The namespace for the channel; Each
channel needs a unique namespace, except the Git
channel.

spec.sourceNamespaces Optional. Identifies the namespace that the channel
controller monitors for new or updated deployables
to retrieve and promote to the channel.

spec.type Required. The channel type. The supported types
are: HelmRepo, Git, and ObjectBucket (Object
storage in the console)

spec.pathname Required for HelmRepo, Git, ObjectBucket
channels. For a HelmRepo channel, set the value to
be the URL for the Helm repository. For an
ObjectBucket channel, set the value to be the URL
for the Object storage. For a Git channel, set the
value to be the HTTPS URL for the Git repository.

spec.secretRef.name Optional. Identifies a Kubernetes Secret resource to
use for authentication, such as for accessing a
repository or chart. You can use a secret for
authentication with only HelmRepo,
ObjectBucket, and Git type channels.

spec.gates Optional. Defines requirements for promoting a
deployable within the channel. If no requirements are
set, any deployable that is added to the channel
namespace or source is promoted to the channel.
The gates value is only for ObjectBucket channel
types and does not apply to HelmRepo and Git
channel types, .

spec.gates.annotations Optional. The annotations for the channel.
Deployables must have matching annotations to be
included in the channel.

metadata.labels Optional. The labels for the channel.

spec.insecureSkipVerify Optional. Default value is false, if set true, the
channel connection is built by skipping the
authentication

Field Description

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

50

The definition structure for a channel can resemble the following YAML content:

1.5.10.3. Object storage bucket (ObjectBucket) channel

The following example channel definition abstracts an Object storage bucket as a channel:

1.5.10.4. Helm repository (HelmRepo) channel

The following example channel definition abstracts a Helm repository as a channel:

Deprecation notice: For 2.5, specifying insecureSkipVerify: "true" in channel ConfigMap reference
to skip Helm repo SSL certificate is deprecated. See the replacement in the following current sample,
with spec.insecureSkipVerify: true that is used in the channel instead:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: predev-ch
 namespace: ns-ch
 labels:
 app: nginx-app-details
spec:
 type: HelmRepo
 pathname: https://kubernetes-charts.storage.googleapis.com/

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: dev
 namespace: ch-obj
spec:
 type: ObjectBucket
 pathname: [http://9.28.236.243:xxxx/dev] # URL is appended with the valid bucket name, which
matches the channel name.
 secretRef:
 name: miniosecret
 gates:
 annotations:
 dev-ready: true

apiVersion: v1
kind: Namespace
metadata:
 name: hub-repo

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: Helm
 namespace: hub-repo
spec:
 pathname: [https://9.21.107.150:8443/helm-repo/charts] # URL points to a valid chart URL.
 insecureSkipVerify: true
 type: HelmRepo

CHAPTER 1. MANAGING APPLICATIONS

51

The following channel definition shows another example of a Helm repository channel:

Note: For Helm, all Kubernetes resources contained within the Helm chart must have the label release {{
.Release.Name }} for the application topology to display properly.

1.5.10.5. Git (Git) repository channel

The following example channel definition displays an example of a channel for the Git Repository. In the
following example, secretRef refers to the user identity that is used to access the Git repo that is
specified in the pathname. If you have a public repo, you do not need the secretRef label and value:

1.5.11. Subscription samples overview

View samples and YAML definitions that you can use to build your files. As with channels, subscriptions
(subscription.apps.open-cluster-management.io) provide you with improved continuous integration
and continuous delivery capabilities for application management.

To use the OpenShift CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an api server. Replace filename with the name
of your file:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: predev-ch
 namespace: ns-ch
 labels:
 app: nginx-app-details
spec:
 type: HelmRepo
 pathname: https://kubernetes-charts.storage.googleapis.com/

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
 name: hive-cluster-gitrepo
 namespace: gitops-cluster-lifecycle
spec:
 type: Git
 pathname: https://github.com/open-cluster-management/gitops-clusters.git
 secretRef:
 name: github-gitops-clusters

apiVersion: v1
kind: Secret
metadata:
 name: github-gitops-clusters
 namespace: gitops-cluster-lifecycle
data:
 user: dXNlcgo= # Value of user and accessToken is Base 64 coded.
 accessToken: cGFzc3dvcmQ

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

52

c. Verify that your application resource is created by running the following command:

Subscription YAML structure

Subscription YAML table

Subscription file samples

Subscription time window example

Subscription with overrides example

Helm repository subscription example

Git repository subscription example

1.5.11.1. Subscription YAML structure

The following YAML structure shows the required fields for a subscription and some of the common
optional fields. Your YAML structure needs to include certain required fields and values.

Depending on your application management requirements, you might need to include other optional
fields and values. You can compose your own YAML content with any tool:

oc apply -f filename.yaml

oc get application.app

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name:
 namespace:
 labels:
spec:
 sourceNamespace:
 source:
 channel:
 name:
 packageFilter:
 version:
 labelSelector:
 matchLabels:
 package:
 component:
 annotations:
 packageOverrides:
 - packageName:
 packageAlias:
 - path:
 value:
 placement:
 local:
 clusters:
 name:

CHAPTER 1. MANAGING APPLICATIONS

53

1.5.11.2. Subscription YAML table

Field Description

apiVersion Required. Set the value to apps.open-cluster-
management.io/v1.

kind Required. Set the value to Subscription to indicate
that the resource is a subscription.

metadata.name Required. The name for identifying the subscription.

metadata.namespace Required. The namespace resource to use for the
subscription.

metadata.labels Optional. The labels for the subscription.

spec.channel Optional. The namespace name
("Namespace/Name") that defines the channel for
the subscription. Define either the channel, or the
source, or the sourceNamespace field. In
general, use the channel field to point to the
channel instead of using the source or
sourceNamespace fields. If more than one field is
defined, the first field that is defined is used.

spec.sourceNamespace Optional. The source namespace where deployables
are stored on the hub cluster. Use this field only for
namespace channels. Define either the channel, or
the source, or the sourceNamespace field. In
general, use the channel field to point to the
channel instead of using the source or
sourceNamespace fields.

spec.source Optional. The path name ("URL") to the Helm
repository where deployables are stored. Use this
field for only Helm repository channels. Define either
the channel, or the source, or the
sourceNamespace field. In general, use the
channel field to point to the channel instead of
using the source or sourceNamespace fields.

 clusterSelector:
 placementRef:
 name:
 kind: PlacementRule
 overrides:
 clusterName:
 clusterOverrides:
 path:
 value:

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

54

spec.name Required for HelmRepo type channels, but optional
for ObjectBucket type channels. The specific name
for the target Helm chart or deployable within the
channel. If neither the name or packageFilter are
defined for channel types where the field is optional,
all deployables are found and the latest version of
each deployable is retrieved.

spec.packageFilter Optional. Defines the parameters to use to find
target deployables or a subset of a deployables. If
multiple filter conditions are defined, a deployable
must meet all filter conditions.

spec.packageFilter.version Optional. The version or versions for the deployable.
You can use a range of versions in the form >1.0, or
<3.0. By default, the version with the most recent
"creationTimestamp" value is used.

spec.packageFilter.annotations Optional. The annotations for the deployable.

spec.packageOverrides Optional. Section for defining overrides for the
Kubernetes resource that is subscribed to by the
subscription, such as a Helm chart, deployable, or
other Kubernetes resource within a channel.

spec.packageOverrides.packageName Optional, but required for setting an override.
Identifies the Kubernetes resource that is being
overwritten.

spec.packageOverrides.packageAlias Optional. Gives an alias to the Kubernetes resource
that is being overwritten.

spec.packageOverrides.packageOverrides Optional. The configuration of parameters and
replacement values to use to override the
Kubernetes resource.

spec.placement Required. Identifies the subscribing clusters where
deployables need to be placed, or the placement rule
that defines the clusters. Use the placement
configuration to define values for multicluster
deployments.

Field Description

CHAPTER 1. MANAGING APPLICATIONS

55

spec.placement.local Optional, but required for a stand-alone cluster or
cluster that you want to manage directly. Defines
whether the subscription must be deployed locally.
Set the value to true to have the subscription
synchronize with the specified channel. Set the value
to false to prevent the subscription from subscribing
to any resources from the specified channel. Use this
field when your cluster is a stand-alone cluster or
you are managing this cluster directly. If your cluster
is part of a multicluster and you do not want to
manage the cluster directly, use only one of
clusters, clusterSelector, or placementRef to
define where your subscription is to be placed. If your
cluster is the Hub of a multicluster and you want to
manage the cluster directly, you must register the
Hub as a managed cluster before the subscription
operator can subscribe to resources locally.

spec.placement.clusters Optional. Defines the clusters where the subscription
is to be placed. Only one of clusters,
clusterSelector, or placementRef is used to
define where your subscription is to be placed for a
multicluster. If your cluster is a stand-alone cluster
that is not your hub cluster, you can also use local
cluster.

spec.placement.clusters.name Optional, but required for defining the subscribing
clusters. The name or names of the subscribing
clusters.

spec.placement.clusterSelector Optional. Defines the label selector to use to identify
the clusters where the subscription is to be placed.
Use only one of clusters, clusterSelector, or
placementRef to define where your subscription is
to be placed for a multicluster. If your cluster is a
stand-alone cluster that is not your hub cluster, you
can also use local cluster.

spec.placement.placementRef Optional. Defines the placement rule to use for the
subscription. Use only one of clusters,
clusterSelector , or placementRef to define
where your subscription is to be placed for a
multicluster. If your cluster is a stand-alone cluster
that is not your Hub cluster, you can also use local
cluster.

spec.placement.placementRef.name Optional, but required for using a placement rule.
The name of the placement rule for the subscription.

Field Description

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

56

spec.placement.placementRef.kind Optional, but required for using a placement rule. Set
the value to PlacementRule to indicate that a
placement rule is used for deployments with the
subscription.

spec.overrides Optional. Any parameters and values that need to be
overridden, such as cluster-specific settings.

spec.overrides.clusterName Optional. The name of the cluster or clusters where
parameters and values are being overridden.

spec.overrides.clusterOverrides Optional. The configuration of parameters and
values to override.

spec.timeWindow Optional. Defines the settings for configuring a time
window when the subscription is active or blocked.

spec.timeWindow.type Optional, but required for configuring a time window.
Indicates whether the subscription is active or
blocked during the configured time window.
Deployments for the subscription occur only when
the subscription is active.

spec.timeWindow.location Optional, but required for configuring a time window.
The time zone of the configured time range for the
time window. All time zones must use the Time Zone
(tz) database name format. For more information,
see Time Zone Database.

spec.timeWindow.daysofweek Optional, but required for configuring a time window.
Indicates the days of the week when the time range is
applied to create a time window. The list of days
must be defined as an array, such as daysofweek:
["Monday", "Wednesday", "Friday"].

spec.timeWindow.hours Optional, but required for configuring a time window.
Defined the time range for the time window. A start
time and end time for the hour range must be
defined for each time window. You can define
multiple time window ranges for a subscription.

spec.timeWindow.hours.start Optional, but required for configuring a time window.
The timestamp that defines the beginning of the time
window. The timestamp must use the Go
programming language Kitchen format
"hh:mmpm". For more information, see Constants.

Field Description

CHAPTER 1. MANAGING APPLICATIONS

57

https://www.iana.org/time-zones
https://godoc.org/time#pkg-constants

spec.timeWindow.hours.end Optional, but required for configuring a time window.
The timestamp that defines the ending of the time
window. The timestamp must use the Go
programming language Kitchen format
"hh:mmpm". For more information, see Constants.

Field Description

Notes:

When you are defining your YAML, a subscription can use packageFilters to point to multiple
Helm charts, deployables, or other Kubernetes resources. The subscription, however, only
deploys the latest version of one chart, or deployable, or other resource.

For time windows, when you are defining the time range for a window, the start time must be set
to occur before the end time. If you are defining multiple time windows for a subscription, the
time ranges for the windows cannot overlap. The actual time ranges are based on the
subscription-controller container time, which can be set to a different time and location than
the time and location that you are working within.

Within your subscription specification, you can also define the placement of a Helm release as
part of the subscription definition. Each subscription can reference an existing placement rule,
or define a placement rule directly within the subscription definition.

When you are defining where to place your subscription in the spec.placement section, use only
one of clusters, clusterSelector, or placementRef for a multicluster environment.

If you include more than one placement setting, one setting is used and others are ignored. The
following priority is used to determine which setting the subscription operator uses:

a. placementRef

b. clusters

c. clusterSelector

Your subscription can resemble the following YAML content:

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress
 packageFilter:
 version: "1.36.x"
 placement:
 placementRef:
 kind: PlacementRule
 name: towhichcluster
 overrides:

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

58

https://godoc.org/time#pkg-constants

1.5.11.3. Subscription file samples

For application samples that you can deploy, see the stolostron repository.

1.5.11.4. Secondary channel sample

If there is a mirrored channel (application source repository), you can specify a secondaryChannel in
the subscription YAML. When an application subscription fails to connect to the repository server using
the primary channel, it connects to the repository server using the secondary channel. Ensure that the
application manifests stored in the secondary channel are in sync with the primary channel. See the
following sample subscription YAML with the secondaryChannel.

1.5.11.4.1. Subscription time window example

The following example subscription includes multiple configured time windows. A time window occurs
between 10:20 AM and 10:30 AM every Monday, Wednesday, and Friday. A time window also occurs
between 12:40 PM and 1:40 PM every Monday, Wednesday, and Friday. The subscription is active only
during these six weekly time windows for deployments to begin.

 - clusterName: "/"
 clusterOverrides:
 - path: "metadata.namespace"
 value: default

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 secondaryChannel: ns-ch-2/predev-ch-2
 name: nginx-ingress

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
 labels:

CHAPTER 1. MANAGING APPLICATIONS

59

https://github.com/stolostron/application-samples

1.5.11.4.2. Subscription with overrides example

The following example includes package overrides to define a different release name of the Helm
release for Helm chart. A package override setting is used to set the name my-nginx-ingress-
releaseName as the different release name for the nginx-ingress Helm release.

1.5.11.4.3. Helm repository subscription example

The following subscription automatically pulls the latest nginx Helm release for the version 1.36.x. The
Helm release deployable is placed on the my-development-cluster-1 cluster when a new version is
available in the source Helm repository.

The spec.packageOverrides section shows optional parameters for overriding values for the Helm
release. The override values are merged into the Helm release values.yaml file, which is used to retrieve
the configurable variables for the Helm release.

 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress
 packageFilter:
 version: "1.36.x"
 placement:
 placementRef:
 kind: PlacementRule
 name: towhichcluster
 timewindow:
 windowtype: "active" #Enter active or blocked depending on the purpose of the type.
 location: "America/Los_Angeles"
 daysofweek: ["Monday", "Wednesday", "Friday"]
 hours:
 - start: "10:20AM"
 end: "10:30AM"
 - start: "12:40PM"
 end: "1:40PM"

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: simple
 namespace: default
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress
 packageOverrides:
 - packageName: nginx-ingress
 packageAlias: my-nginx-ingress-releaseName
 packageOverrides:
 - path: spec
 value:
 defaultBackend:
 replicaCount: 3
 placement:
 local: false

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

60

1.5.11.4.4. Git repository subscription example

1.5.11.4.4.1. Subscribing specific branch and directory of Git repository

In this example subscription, the annotation apps.open-cluster-management.io/git-path indicates that
the subscription subscribes to all Helm charts and Kubernetes resources within the sample_app_1/dir1
directory of the Git repository that is specified in the channel. The subscription subscribes to master
branch by default. In this example subscription, the annotation apps.open-cluster-management.io/git-
branch: branch1 is specified to subscribe to branch1 branch of the repository.

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: nginx
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 channel: ns-ch/predev-ch
 name: nginx-ingress
 packageFilter:
 version: "1.36.x"
 placement:
 clusters:
 - name: my-development-cluster-1
 packageOverrides:
 - packageName: my-server-integration-prod
 packageOverrides:
 - path: spec
 value:
 persistence:
 enabled: false
 useDynamicProvisioning: false
 license: accept
 tls:
 hostname: my-mcm-cluster.icp
 sso:
 registrationImage:
 pullSecret: hub-repo-docker-secret

 apiVersion: apps.open-cluster-management.io/v1
 kind: Subscription
 metadata:
 name: sample-subscription
 namespace: default
 annotations:
 apps.open-cluster-management.io/git-path: sample_app_1/dir1
 apps.open-cluster-management.io/git-branch: branch1
 spec:
 channel: default/sample-channel
 placement:
 placementRef:
 kind: PlacementRule
 name: dev-clusters

CHAPTER 1. MANAGING APPLICATIONS

61

Notes:

When you are using a Git channel subscription that subscribes to Helm charts, the resource
topology view might show an additional Helmrelease resource. This resource is an internal
application management resource and can be safely ignored.

1.5.11.4.4.2. Adding a .kubernetesignore file

You can include a .kubernetesignore file within your Git repository root directory, or within the
apps.open-cluster-management.io/git-path directory that is specified in subscription’s annotations.

You can use this .kubernetesignore file to specify patterns of files or subdirectories, or both, to ignore
when the subscription deploys Kubernetes resources or Helm charts from the repository.

You can also use the .kubernetesignore file for fine-grain filtering to selectively apply Kubernetes
resources. The pattern format of the .kubernetesignore file is the same as a .gitignore file.

If the apps.open-cluster-management.io/git-path annotation is not defined, the subscription looks for
a .kubernetesignore file in the repository root directory. If the apps.open-cluster-management.io/git-
path field is defined, the subscription looks for the .kubernetesignore file in the apps.open-cluster-
management.io/git-path directory. Subscriptions do not search in any other directory for a
.kubernetesignore file.

1.5.11.4.4.3. Applying Kustomize

If there is kustomization.yaml or kustomization.yml file in a subscribed Git folder, kustomize is
applied. You can use spec.packageOverrides to override kustomization at the subscription
deployment time.

In order to override kustomization.yaml file, packageName: kustomization is required in
packageOverrides. The override either adds new entries or updates existing entries. It does not remove
existing entries.

1.5.11.4.4.4. Enabling Git WebHook

By default, a Git channel subscription clones the Git repository specified in the channel every minute
and applies changes when the commit ID has changed. Alternatively, you can configure your subscription
to apply changes only when the Git repository sends repo PUSH and PULL webhook event notifications.

In order to configure webhook in a Git repository, you need a target webhook payload URL and
optionally a secret.

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
 name: example-subscription
 namespace: default
spec:
 channel: some/channel
 packageOverrides:
 - packageName: kustomization
 packageOverrides:
 - value: |
patchesStrategicMerge:
- patch.yaml

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

62

1.5.11.4.4.4.1. Payload URL

Create a route (ingress) in the hub cluster to expose the subscription operator’s webhook event listener
service.

Then, use oc get route multicluster-operators-subscription -n open-cluster-management command
to find the externally-reachable hostname.

The webhook payload URL is https://<externally-reachable hostname>/webhook.

1.5.11.4.4.4.2. Webhook secret

Webhook secret is optional. Create a Kubernetes secret in the channel namespace. The secret must
contain data.secret.

See the following example:

The value of data.secret is the base-64 encoded WebHook secret you are going to use.

Best practice: Use a unique secret for each Git repository.

1.5.11.4.4.4.3. Configuring WebHook in Git repository

Use the payload URL and webhook secret to configure WebHook in your Git repository.

1.5.11.4.4.4.4. Enable WebHook event notification in channel

Annotate the subscription channel. See the following example:

If you used a secret to configure WebHook, annotate the channel with this as well where
<the_secret_name> is the kubernetes secret name containing webhook secret.

1.5.11.4.4.4.5. Subscriptions of webhook-enabled channel

No webhook specific configuration is needed in subscriptions.

1.5.12. Placement rule samples overview

oc create route passthrough --service=multicluster-operators-subscription -n open-cluster-
management

apiVersion: v1
kind: Secret
metadata:
 name: my-github-webhook-secret
data:
 secret: BASE64_ENCODED_SECRET

oc annotate channel.apps.open-cluster-management.io <channel name> apps.open-cluster-
management.io/webhook-enabled="true"

oc annotate channel.apps.open-cluster-management.io <channel name> apps.open-cluster-
management.io/webhook-secret="<the_secret_name>"

CHAPTER 1. MANAGING APPLICATIONS

63

https:

Placement rules (placementrule.apps.open-cluster-management.io) define the target clusters where
deployables can be deployed. Use placement rules to help you facilitate the multicluster deployment of
your deployables.

To use the OpenShift CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace filename with the name
of your file:

c. Verify that your application resource is created by running the following command:

Placement rule YAML structure

Placement rule YAML values table

Placement rule sample files

1.5.12.1. Placement rule YAML structure

The following YAML structure shows the required fields for a placement rule and some of the common
optional fields. Your YAML structure needs to include some required fields and values. Depending on
your application management requirements, you might need to include other optional fields and values.
You can compose your own YAML content with any tool and in the product console

oc apply -f filename.yaml

oc get application.app

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name:
 namespace:
 resourceVersion:
 labels:
 app:
 chart:
 release:
 heritage:
 selfLink:
 uid:
spec:
 clusterSelector:
 matchLabels:
 datacenter:
 environment:
 clusterReplicas:
 clusterConditions:
 ResourceHint:
 type:
 order:
 Policies:

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

64

1.5.12.2. Placement rule YAML values table

Field Description

apiVersion Required. Set the value to apps.open-cluster-
management.io/v1.

kind Required. Set the value to PlacementRule to
indicate that the resource is a placement rule.

metadata.name Required. The name for identifying the placement
rule.

metadata.namespace Required. The namespace resource to use for the
placement rule.

metadata.resourceVersion Optional. The version of the placement rule resource.

metadata.labels Optional. The labels for the placement rule.

spec.clusterSelector Optional. The labels for identifying the target
clusters

spec.clusterSelector.matchLabels Optional. The labels that must exist for the target
clusters.

spec.clusterSelector.matchExpressions Optional. The labels that must exist for the target
clusters.

status.decisions Optional. Defines the target clusters where
deployables are placed.

status.decisions.clusterName Optional. The name of a target cluster

status.decisions.clusterNamespace Optional. The namespace for a target cluster.

spec.clusterReplicas Optional. The number of replicas to create.

spec.clusterConditions Optional. Define any conditions for the cluster.

spec.ResourceHint Optional. If more than one cluster matches the labels
and values that you provided in the previous fields,
you can specify a resource specific criteria to select
the clusters. For example, you can select the cluster
with the most available CPU cores.

CHAPTER 1. MANAGING APPLICATIONS

65

spec.ResourceHint.type Optional. Set the value to either cpu to select
clusters based on available CPU cores or memory
to select clusters based on available memory
resources.

spec.ResourceHint.order Optional. Set the value to either asc for ascending
order, or desc for descending order.

spec.Policies Optional. The policy filters for the placement rule.

Field Description

1.5.12.3. Placement rule sample files

For application samples that you can deploy, see the stolostron repository.

Existing placement rules can include the following fields that indicate the status for the placement rule.
This status section is appended after the spec section in the YAML structure for a rule.

Field Description

status The status information for the placement rule.

status.decisions Defines the target clusters where deployables are
placed.

status.decisions.clusterName The name of a target cluster

status.decisions.clusterNamespace The namespace for a target cluster.

Example 1

status:
 decisions:
 clusterName:
 clusterNamespace:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: gbapp-gbapp
 namespace: development
 labels:
 app: gbapp
spec:
 clusterSelector:
 matchLabels:
 environment: Dev
 clusterReplicas: 1
status:

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

66

https://github.com/stolostron/application-samples

Example 2

1.5.13. Application samples

View samples and YAML definitions that you can use to build your files. Applications
(Application.app.k8s.io) in Red Hat Advanced Cluster Management for Kubernetes are used for
viewing the application components.

To use the OpenShift CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace filename with the name
of your file:

c. Verify that your application resource is created by running the following command:

Application YAML structure

Application YAML table

Application file samples

1.5.13.1. Application YAML structure

To compose the application definition YAML content for creating or updating an application resource,
your YAML structure needs to include some required fields and values. Depending on your application

 decisions:
 - clusterName: local-cluster
 clusterNamespace: local-cluster

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: towhichcluster
 namespace: ns-sub-1
 labels:
 app: nginx-app-details
spec:
 clusterReplicas: 1
 clusterConditions:
 - type: ManagedClusterConditionAvailable
 status: "True"
 clusterSelector:
 matchExpressions:
 - key: environment
 operator: In
 values:
 - dev

oc apply -f filename.yaml

oc get application.app

CHAPTER 1. MANAGING APPLICATIONS

67

requirements or application management requirements, you might need to include other optional fields
and values.

The following YAML structure shows the required fields for an application and some of the common
optional fields.

1.5.13.2. Application YAML table

Field Value Description

apiVersion app.k8s.io/v1beta1 Required

kind Application Required

metadata

 name: The name for identifying
the application resource.

Required

 namespace: The namespace
resource to use for the
application.

spec

selector.matchLabels key:value pair that are a
Kubernetes label and value found
on the subscription or
subscriptions this application will
be associated with. The label
allows the application resource to
find the related subscriptions by
performing a label name and
value match.

Required

The spec for defining these applications is based on the Application metadata descriptor custom
resource definition that is provided by the Kubernetes Special Interest Group (SIG). Only the values
shown in the table are required.

You can use this definition to help you compose your own application YAML content. For more
information about this definition, see Kubernetes SIG Application CRD community specification .

apiVersion: app.k8s.io/v1beta1
kind: Application
metadata:
 name:
 namespace:
spec:
 selector:
 matchLabels:
 label_name: label_value

Red Hat Advanced Cluster Management for Kubernetes 2.5 Applications

68

https://github.com/kubernetes-sigs/application

1.5.13.3. Application file samples

For application samples that you can deploy, see the stolostron repository.

The definition structure for an application can resemble the following example YAML content:

apiVersion: app.k8s.io/v1beta1
kind: Application
metadata:
 name: my-application
 namespace: my-namespace
spec:
 selector:
 matchLabels:
 my-label: my-label-value

CHAPTER 1. MANAGING APPLICATIONS

69

https://github.com/stolostron/application-samples

	Table of Contents
	CHAPTER 1. MANAGING APPLICATIONS
	1.1. APPLICATION MODEL AND DEFINITIONS
	1.1.1. Applications
	1.1.2. Subscriptions
	1.1.2.1. Channels
	1.1.2.2. Placement rules

	1.1.3. ApplicationSet
	1.1.4. Application documentation

	1.2. APPLICATION CONSOLE
	1.3. SUBSCRIPTION REPORTS
	1.3.1. SubscriptionStatus package-level
	1.3.2. SubscriptionReport cluster-level
	1.3.3. SubscriptionReport application-level
	1.3.4. ManagedClusterView
	1.3.5. CLI application-level status
	1.3.6. CLI Last Update Time

	1.4. MANAGING APPLICATION RESOURCES
	1.4.1. Managing apps with Git repositories
	1.4.1.1. GitOps pattern

	1.4.2. Managing apps with Helm repositories
	1.4.2.1. Sample YAML

	1.4.3. Managing apps with Object storage repositories
	1.4.3.1. Sample YAML
	1.4.3.2. Creating your Amazon Web Services (AWS) S3 object storage bucket
	1.4.3.3. Subscribing to the object in the AWS bucket
	1.4.3.4. Sample AWS subscription

	1.5. APPLICATION ADVANCED CONFIGURATION
	1.5.1. Subscribing Git resources
	1.5.1.1. Creating application resources in Git
	1.5.1.2. Application namespace example
	1.5.1.3. Resource overwrite example
	1.5.1.4. Subscribing specific Git elements

	1.5.2. Granting subscription administrator privilege
	1.5.3. Creating an allow and deny list as subscription administrator
	1.5.4. Adding reconcile options
	1.5.4.1. Reconcile frequency Git channel
	1.5.4.2. Reconcile frequency Helm channel

	1.5.5. Configuring application channel and subscription for a secure Git connection
	1.5.5.1. Connecting to a private repo with user and access token
	1.5.5.2. Making an insecure HTTPS connection to a Git server
	1.5.5.3. Using custom CA certificates for a secure HTTPS connection
	1.5.5.4. Making an SSH connection to a Git server
	1.5.5.5. Updating certificates and SSH keys

	1.5.6. Setting up Ansible Tower tasks
	1.5.6.1. Prerequisites
	1.5.6.2. Install Ansible Automation Platform Resource Operator
	1.5.6.3. Set up credential
	1.5.6.4. Ansible integration
	1.5.6.5. Ansible operator components
	1.5.6.6. Ansible configuration
	1.5.6.7. Set secret reconciliation
	1.5.6.8. Ansible sample YAML

	1.5.7. Configuring Managed Clusters for OpenShift GitOps operator
	1.5.7.1. Prerequisites
	1.5.7.2. Registering managed clusters to GitOps
	1.5.7.3. GitOps token

	1.5.8. Scheduling a deployment
	1.5.9. Configuring package overrides
	1.5.10. Channel samples overview
	1.5.10.1. Channel YAML structure
	1.5.10.2. Channel YAML table
	1.5.10.3. Object storage bucket (ObjectBucket) channel
	1.5.10.4. Helm repository (HelmRepo) channel
	1.5.10.5. Git (Git) repository channel

	1.5.11. Subscription samples overview
	1.5.11.1. Subscription YAML structure
	1.5.11.2. Subscription YAML table
	1.5.11.3. Subscription file samples
	1.5.11.4. Secondary channel sample

	1.5.12. Placement rule samples overview
	1.5.12.1. Placement rule YAML structure
	1.5.12.2. Placement rule YAML values table
	1.5.12.3. Placement rule sample files

	1.5.13. Application samples
	1.5.13.1. Application YAML structure
	1.5.13.2. Application YAML table
	1.5.13.3. Application file samples

