
OpenShift Sandboxed Containers 1.5

OpenShift sandboxed containers user guide

For OpenShift Container Platform

Last Updated: 2024-04-02

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers
user guide

For OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information about OpenShift sandboxed containers operators and their usage

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. UNDERSTANDING OPENSHIFT SANDBOXED CONTAINERS
1.1. OPENSHIFT SANDBOXED CONTAINERS SUPPORTED PLATFORMS
1.2. OPENSHIFT SANDBOXED CONTAINERS COMMON TERMS
1.3. OPENSHIFT SANDBOXED CONTAINERS WORKLOAD MANAGEMENT

1.3.1. OpenShift sandboxed containers building blocks
1.3.2. RHCOS extensions
1.3.3. OpenShift Virtualization and OpenShift sandboxed containers

1.4. UNDERSTANDING COMPLIANCE AND RISK MANAGEMENT

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS
2.1. PREREQUISITES

2.1.1. Resource requirements for OpenShift sandboxed containers
2.1.2. Checking whether cluster nodes are eligible to run OpenShift sandboxed containers

2.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING THE WEB CONSOLE
2.2.1. Installing the OpenShift sandboxed containers Operator using the web console
2.2.2. Creating the KataConfig custom resource in the web console
2.2.3. Deploying a workload in a sandboxed container using the web console

2.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING THE CLI
2.3.1. Installing the OpenShift sandboxed containers Operator using the CLI
2.3.2. Creating the KataConfig custom resource using the CLI
2.3.3. Deploying a workload in a sandboxed container using the CLI

2.4. INSTALLATION AND UNINSTALL TRANSITIONS
2.5. ADDITIONAL RESOURCES

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS
3.1. PREREQUISITES

3.1.1. About peer pod resource requirements in OpenShift sandboxed containers
3.1.1.1. Modifying the peer pod VM limit per node

3.1.2. Prerequisites for peer-pods using AWS
3.1.2.1. Enable ports 15150 and 9000 for AWS

3.1.3. Prerequisites for peer-pods using Azure
3.1.4. Prerequisites for peer pods using IBM Z or IBM(R) LinuxONE with RHEL KVM

3.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS WITH THE WEB
CONSOLE

3.2.1. Installing the OpenShift sandboxed containers Operator using the web console
3.2.2. Configuring peer-pod parameters for AWS using the web console

3.2.2.1. Creating a secret object for AWS using the web console
3.2.2.2. Creating a peer-pod ConfigMap for AWS using the web console

3.2.3. Configuring peer-pod parameters for Azure using the web console
3.2.3.1. Creating a secret object for Azure using the web console
3.2.3.2. Creating a peer-pod ConfigMap for Azure using the web console
3.2.3.3. Creating an SSH key secret object for Azure using the web console

3.2.4. Creating the KataConfig custom resource in the web console
3.2.5. Deploying a workload with peer pods in a sandboxed container using the web console

3.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS WITH THE CLI

3.3.1. Installing the OpenShift sandboxed containers Operator using the CLI
3.3.2. Setting up peer pods for AWS using the CLI

4
4
4

5
6
6
7
7
7
7
8

9
9
9
11

13
13
14
16
17
17
19
21
23
25

26
26
26
27
28
28
29
29

30
30
31
31
32
33
33
34
35
36
38

39
40
42

Table of Contents

1

. .

. .

. .

. .

3.3.2.1. Creating a secret object for AWS using the CLI
3.3.2.2. Creating a peer-pod ConfigMap for AWS using the CLI

3.3.3. Setting up peer pods for Azure using the CLI
3.3.3.1. Creating a secret object for Azure using the CLI
3.3.3.2. Creating a peer-pod ConfigMap for Azure using the CLI
3.3.3.3. Creating an SSH key secret object for Azure using the CLI

3.3.4. Setting up peer pods for IBM Z using the CLI
3.3.4.1. Setting up libvirt on the KVM host
3.3.4.2. Creating a peer-pod VM image for IBM Z

3.3.4.2.1. Building the peer-pod VM QCOW2 image
3.3.4.3. Creating a RHEL secret for peer-pod credentials
3.3.4.4. Creating a peer-pod ConfigMap for IBM Z using the CLI
3.3.4.5. Creating an SSH key secret object for IBM Z using the CLI

3.3.5. Creating the KataConfig custom resource using the CLI
3.3.6. Deploying a workload with peer pods in a sandboxed container using the CLI

3.4. ADDITIONAL RESOURCES

CHAPTER 4. MONITORING OPENSHIFT SANDBOXED CONTAINERS
4.1. ABOUT OPENSHIFT SANDBOXED CONTAINERS METRICS
4.2. VIEWING METRICS FOR OPENSHIFT SANDBOXED CONTAINERS
4.3. VIEWING THE OPENSHIFT SANDBOXED CONTAINERS DASHBOARD
4.4. ADDITIONAL RESOURCES

CHAPTER 5. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS
5.1. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS USING THE WEB CONSOLE

5.1.1. Deleting OpenShift sandboxed containers pods using the web console
5.1.2. Deleting the KataConfig custom resource using the web console
5.1.3. Deleting the OpenShift sandboxed containers Operator using the web console
5.1.4. Deleting the OpenShift sandboxed containers namespace using the web console
5.1.5. Deleting the KataConfig custom resource definition using the web console

5.2. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS USING THE CLI
5.2.1. Deleting OpenShift sandboxed containers pods using the CLI
5.2.2. Deleting the KataConfig custom resource using the CLI
5.2.3. Deleting the OpenShift sandboxed containers Operator using the CLI
5.2.4. Deleting the KataConfig custom resource definition using the CLI

CHAPTER 6. UPGRADING OPENSHIFT SANDBOXED CONTAINERS
6.1. UPGRADING THE OPENSHIFT SANDBOXED CONTAINERS RESOURCES
6.2. UPGRADING THE OPENSHIFT SANDBOXED CONTAINERS OPERATOR
6.3. UPGRADING THE OPENSHIFT SANDBOXED CONTAINERS MONITOR PODS

6.3.1. Upgrading the monitor pods using the web console
6.3.2. Upgrading the monitor pods using the CLI

CHAPTER 7. COLLECTING OPENSHIFT SANDBOXED CONTAINERS DATA
7.1. COLLECTING OPENSHIFT SANDBOXED CONTAINERS DATA FOR RED HAT SUPPORT

7.1.1. Using the must-gather tool
7.2. ABOUT OPENSHIFT SANDBOXED CONTAINERS LOG DATA
7.3. ENABLING DEBUG LOGS FOR OPENSHIFT SANDBOXED CONTAINERS

7.3.1. Viewing debug logs for OpenShift sandboxed containers
7.4. ADDITIONAL RESOURCES

42
44
44
45
46
47
48
48
49
50
52
53
53
54
56
58

59
59
59
60
61

62
62
62
62
63
64
64
65
65
65
66
67

69
69
69
69
70
70

71
71
71
72
72
73
75

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

2

Table of Contents

3

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. Because of the enormity of this endeavor, these changes are being updated gradually and
where possible. For more details, see our CTO Chris Wright’s message .

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
You can provide feedback or report an error by submitting the Create Issue form in Jira. The Jira issue
will be created in the Red Hat Hybrid Cloud Infrastructure Jira project, where you can track the progress
of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click Create Issue

a. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do
not modify any other fields in the form.

3. Click Create.

We appreciate your feedback on our documentation.

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12341520&summary=Documentation+feedback&issuetype=1&description=Details:%0A%0ADocumentation+URL:%0A%0A&priority=10200&labels=hcidocs-feedback&components=12393342

CHAPTER 1. UNDERSTANDING OPENSHIFT SANDBOXED
CONTAINERS

OpenShift sandboxed containers support for Red Hat OpenShift Container Platform provides you with
built-in support for running Kata Containers as an additional optional runtime. The new runtime
supports containers in dedicated virtual machines (VMs), providing improved workload isolation. This is
particularly useful for performing the following tasks:

Run privileged or untrusted workloads

OpenShift sandboxed containers (OSC) makes it possible to safely run workloads that require
specific privileges, without having to risk compromising cluster nodes by running privileged
containers. Workloads that require special privileges include the following:

Workloads that require special capabilities from the kernel, beyond the default ones granted
by standard container runtimes such as CRI-O, for example to access low-level networking
features.

Workloads that need elevated root privileges, for example to access a specific physical
device. With OpenShift sandboxed containers, it is possible to pass only a specific device
through to the VM, ensuring that the workload cannot access or misconfigure the rest of the
system.

Workloads for installing or using set-uid root binaries. These binaries grant special privileges
and, as such, can present a security risk. With OpenShift sandboxed containers, additional
privileges are restricted to the virtual machines, and grant no special access to the cluster
nodes.

Some workloads may require privileges specifically for configuring the cluster nodes. Such workloads
should still use privileged containers, because running on a virtual machine would prevent them from
functioning.

Ensure kernel isolation for each workload

OpenShift sandboxed containers supports workloads that require custom kernel tuning (such as
sysctl, scheduler changes, or cache tuning) and the creation of custom kernel modules (such as out
of tree or special arguments).

Share the same workload across tenants

OpenShift sandboxed containers enables you to support multiple users (tenants) from different
organizations sharing the same OpenShift cluster. The system also lets you run third-party workloads
from multiple vendors, such as container network functions (CNFs) and enterprise applications.
Third-party CNFs, for example, may not want their custom settings interfering with packet tuning or
with sysctl variables set by other applications. Running inside a completely isolated kernel is helpful
in preventing "noisy neighbor" configuration problems.

Ensure proper isolation and sandboxing for testing software

You can use OpenShift sandboxed containers to run a containerized workload with known
vulnerabilities or to handle an issue in a legacy application. This isolation also enables administrators
to give developers administrative control over pods, which is useful when the developer wants to test
or validate configurations beyond those an administrator would typically grant. Administrators can,
for example, safely and securely delegate kernel packet filtering (eBPF) to developers. Kernel packet
filtering requires CAP_ADMIN or CAP_BPF privileges, and is therefore not allowed under a standard
CRI-O configuration, as this would grant access to every process on the Container Host worker
node. Similarly, administrators can grant access to intrusive tools such as SystemTap, or support the
loading of custom kernel modules during their development.

Ensure default resource containment through VM boundaries

CHAPTER 1. UNDERSTANDING OPENSHIFT SANDBOXED CONTAINERS

5

By default, resources such as CPU, memory, storage, or networking are managed in a more robust
and secure way in OpenShift sandboxed containers. Since OpenShift sandboxed containers are
deployed on VMs, additional layers of isolation and security give a finer-grained access control to the
resource. For example, an errant container will not be able to allocate more memory than is available
to the VM. Conversely, a container that needs dedicated access to a network card or to a disk can
take complete control over that device without getting any access to other devices.

1.1. OPENSHIFT SANDBOXED CONTAINERS SUPPORTED PLATFORMS

You can install OpenShift sandboxed containers on a bare-metal server or on an Amazon Web Services
(AWS) bare-metal instance. Bare-metal instances offered by other cloud providers are not supported.

Red Hat Enterprise Linux CoreOS (RHCOS) is the only supported operating system for OpenShift
sandboxed containers.

OpenShift sandboxed containers 1.5 is compatible with all supported versions of Red Hat OpenShift
Container Platform. See the Red Hat OpenShift Container Platform Platform Life Cycle Policy for
details.

1.2. OPENSHIFT SANDBOXED CONTAINERS COMMON TERMS

The following terms are used throughout the documentation.

Sandbox

A sandbox is an isolated environment where programs can run. In a sandbox, you can run untested or
untrusted programs without risking harm to the host machine or the operating system.
In the context of OpenShift sandboxed containers, sandboxing is achieved by running workloads in a
different kernel using virtualization, providing enhanced control over the interactions between
multiple workloads that run on the same host.

Pod

A pod is a construct that is inherited from Kubernetes and OpenShift Container Platform. It
represents resources where containers can be deployed. Containers run inside of pods, and pods are
used to specify resources that can be shared between multiple containers.
In the context of OpenShift sandboxed containers, a pod is implemented as a virtual machine. Several
containers can run in the same pod on the same virtual machine.

OpenShift sandboxed containers Operator

An Operator is a software component that automates operations, which are actions that a human
operator could do on the system.
The OpenShift sandboxed containers Operator is tasked with managing the lifecycle of sandboxed
containers on a cluster. You can use the OpenShift sandboxed containers Operator to perform tasks
such as the installation and removal of sandboxed containers, software updates, and status
monitoring.

Kata Containers

Kata Containers is a core upstream project that is used to build OpenShift sandboxed containers.
OpenShift sandboxed containers integrate Kata Containers with OpenShift Container Platform.

KataConfig

KataConfig objects represent configurations of sandboxed containers. They store information about
the state of the cluster, such as the nodes on which the software is deployed.

Runtime class

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

6

https://access.redhat.com/support/policy/updates/openshift

A RuntimeClass object describes which runtime can be used to run a given workload. A runtime class
that is named kata is installed and deployed by the OpenShift sandboxed containers Operator. The
runtime class contains information about the runtime that describes resources that the runtime
needs to operate, such as the pod overhead.

Peer pod

A peer pod in OpenShift sandboxed containers extends the concept of a standard pod. Unlike a
standard sandboxed container, where the virtual machine is created on the worker node itself, in a
peer pod, the virtual machine is created through a remote hypervisor using any supported hypervisor
or cloud provider API. The peer pod acts as a regular pod on the worker node, with its corresponding
VM running elsewhere. The remote location of the VM is transparent to the user and is specified by
the runtime class in the pod specification. The peer pod design circumvents the need for nested
virtualization.

1.3. OPENSHIFT SANDBOXED CONTAINERS WORKLOAD
MANAGEMENT

OpenShift sandboxed containers provides the following features for enhancing workload management
and allocation:

1.3.1. OpenShift sandboxed containers building blocks

The OpenShift sandboxed containers Operator encapsulates all of the components from Kata
containers. It manages installation, lifecycle, and configuration tasks.

The OpenShift sandboxed containers Operator is packaged in the Operator bundle format as two
container images. The bundle image contains metadata and is required to make the operator OLM-
ready. The second container image contains the actual controller that monitors and manages the
KataConfig resource.

1.3.2. RHCOS extensions

The OpenShift sandboxed containers Operator is based on the Red Hat Enterprise Linux CoreOS
(RHCOS) extensions concept. RHCOS extensions are a mechanism to install optional OpenShift
Container Platform software. The OpenShift sandboxed containers Operator uses this mechanism to
deploy sandboxed containers on a cluster.

The sandboxed containers RHCOS extension contains RPMs for Kata, QEMU, and its dependencies. You
can enable them by using the MachineConfig resources that the Machine Config Operator provides.

Additional resources

Adding extensions to RHCOS

1.3.3. OpenShift Virtualization and OpenShift sandboxed containers

You can use OpenShift sandboxed containers on clusters with OpenShift Virtualization.

To run OpenShift Virtualization and OpenShift sandboxed containers at the same time, you must enable
VMs to migrate, so that they do not block node reboots. Configure the following parameters on your
VM:

Use ocs-storagecluster-ceph-rbd as the storage class.

Set the evictionStrategy parameter to LiveMigrate in the VM.

CHAPTER 1. UNDERSTANDING OPENSHIFT SANDBOXED CONTAINERS

7

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/
https://docs.openshift.com/container-platform/latest/operators/operator_sdk/osdk-working-bundle-images.html
https://docs.openshift.com/container-platform/latest/post_installation_configuration/machine-configuration-tasks.html#rhcos-add-extensions_post-install-machine-configuration-tasks

Additional resources

Configuring local storage for virtual machines

Configuring virtual machine eviction strategy

1.4. UNDERSTANDING COMPLIANCE AND RISK MANAGEMENT

OpenShift Container Platform is designed for FIPS. When running Red Hat Enterprise Linux (RHEL) or
Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core
components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-
2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

For more information about the NIST validation program, see Cryptographic Module Validation
Program. For the latest NIST status for the individual versions of RHEL cryptographic libraries that have
been submitted for validation, see Compliance Activities and Government Standards .

OpenShift sandboxed containers can be used on FIPS enabled clusters.

When running in FIPS mode, OpenShift sandboxed containers components, VMs, and VM images are
adapted to comply with FIPS.

NOTE

FIPS compliance for OpenShift sandboxed containers only applies to the kata runtime
class. The new peer pods runtime class kata-remote is not yet fully supported, and has
not been tested for FIPS compliance.

FIPS compliance is one of the most critical components required in highly secure environments, to
ensure that only supported cryptographic technologies are allowed on nodes.

IMPORTANT

The use of FIPS Validated / Modules in Process cryptographic libraries is only supported
on OpenShift Container Platform deployments on the x86_64 architecture.

To understand Red Hat’s view of OpenShift Container Platform compliance frameworks, refer to the
Risk Management and Regulatory Readiness chapter of the OpenShift Security Guide Book .

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

8

https://docs.openshift.com/container-platform/latest/virt/virtual_machines/virtual_disks/virt-configuring-local-storage-for-vms.html
https://docs.openshift.com/container-platform/latest/virt/live_migration/virt-configuring-vmi-eviction-strategy.html
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/validated-modules
https://access.redhat.com/articles/2918071#fips-140-2-and-fips-140-3-2
https://access.redhat.com/articles/5059881

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED
CONTAINERS WORKLOADS

You can install the OpenShift sandboxed containers Operator using either the web console or
OpenShift CLI (oc). Before installing the OpenShift sandboxed containers Operator, you must prepare
your OpenShift Container Platform cluster.

2.1. PREREQUISITES

Before you install OpenShift sandboxed containers, ensure that your OpenShift Container Platform
cluster meets the following requirements:

Your cluster must be installed on on-premise bare-metal infrastructure with Red Hat Enterprise
Linux CoreOS (RHCOS) workers. You can use any installation method including user-
provisioned, installer-provisioned, or assisted installer to deploy your cluster.

NOTE

OpenShift sandboxed containers only supports RHCOS worker nodes. RHEL
nodes are not supported.

Nested virtualization is not supported.

You can install OpenShift sandboxed containers on Amazon Web Services (AWS) bare-metal
instances. Bare-metal instances offered by other cloud providers are not supported.

2.1.1. Resource requirements for OpenShift sandboxed containers

OpenShift sandboxed containers lets users run workloads on their OpenShift Container Platform
clusters inside a sandboxed runtime (Kata). Each pod is represented by a virtual machine (VM). Each VM
runs in a QEMU process and hosts a kata-agent process that acts as a supervisor for managing
container workloads, and the processes running in those containers. Two additional processes add more
overhead:

containerd-shim-kata-v2 is used to communicate with the pod.

virtiofsd handles host file system access on behalf of the guest.

Each VM is configured with a default amount of memory. Additional memory is hot-plugged into the VM
for containers that explicitly request memory.

A container running without a memory resource consumes free memory until the total memory used by
the VM reaches the default allocation. The guest and its I/O buffers also consume memory.

If a container is given a specific amount of memory, then that memory is hot-plugged into the VM
before the container starts.

When a memory limit is specified, the workload is terminated if it consumes more memory than the limit.
If no memory limit is specified, the kernel running on the VM might run out of memory. If the kernel runs
out of memory, it might terminate other processes on the VM.

Default memory sizes

The following table lists some the default values for resource allocation.

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS

9

Resource Value

Memory allocated by default to a virtual machine 2Gi

Guest Linux kernel memory usage at boot ~110Mi

Memory used by the QEMU process (excluding VM
memory)

~30Mi

Memory used by the virtiofsd process (excluding
VM I/O buffers)

~10Mi

Memory used by the containerd-shim-kata-v2
process

~20Mi

File buffer cache data after running dnf install on
Fedora

~300Mi* [1]

File buffers appear and are accounted for in multiple locations:

In the guest where it appears as file buffer cache.

In the virtiofsd daemon that maps allowed user-space file I/O operations.

In the QEMU process as guest memory.

NOTE

Total memory usage is properly accounted for by the memory utilization metrics, which
only count that memory once.

Pod overhead describes the amount of system resources that a pod on a node uses. You can get the
current pod overhead for the Kata runtime by using oc describe runtimeclass kata as shown below.

Example

Example output

You can change the pod overhead by changing the spec.overhead field for a RuntimeClass. For

$ oc describe runtimeclass kata

kind: RuntimeClass
apiVersion: node.k8s.io/v1
metadata:
 name: kata
overhead:
 podFixed:
 memory: "500Mi"
 cpu: "500m"

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

10

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

You can change the pod overhead by changing the spec.overhead field for a RuntimeClass. For
example, if the configuration that you run for your containers consumes more than 350Mi of memory for
the QEMU process and guest kernel data, you can alter the RuntimeClass overhead to suit your needs.

NOTE

The specified default overhead values are supported by Red Hat. Changing default
overhead values is not supported and can result in technical issues.

When performing any kind of file system I/O in the guest, file buffers are allocated in the guest kernel.
The file buffers are also mapped in the QEMU process on the host, as well as in the virtiofsd process.

For example, if you use 300Mi of file buffer cache in the guest, both QEMU and virtiofsd appear to use
300Mi additional memory. However, the same memory is being used in all three cases. In other words,
the total memory usage is only 300Mi, mapped in three different places. This is correctly accounted for
when reporting the memory utilization metrics.

Additional resources

Installing a user-provisioned cluster on bare metal

2.1.2. Checking whether cluster nodes are eligible to run OpenShift sandboxed
containers

Before running OpenShift sandboxed containers, you can check whether the nodes in your cluster are
eligible to run Kata containers. Some cluster nodes might not comply with sandboxed containers'
minimum requirements. The most common reason for node ineligibility is the lack of virtualization
support on the node. If you attempt to run sandboxed workloads on ineligible nodes, you will experience
errors. You can use the Node Feature Discovery (NFD) Operator and a NodeFeatureDiscovery
resource to automatically check node eligibility.

NOTE

If you want to install the Kata runtime on only selected worker nodes that you know are
eligible, apply the feature.node.kubernetes.io/runtime.kata=true label to the selected
nodes and set checkNodeEligibility: true in the KataConfig resource.

Alternatively, to install the Kata runtime on all worker nodes, set checkNodeEligibility:
false in the KataConfig resource.

In both these scenarios, you do not need to create the NodeFeatureDiscovery resource.
You should only apply the feature.node.kubernetes.io/runtime.kata=true label manually
if you are sure that the node is eligible to run Kata containers.

The following procedure applies the feature.node.kubernetes.io/runtime.kata=true label to all eligible
nodes and configures the KataConfig resource to check for node eligibility.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the Node Feature Discovery (NFD) Operator.

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS

11

https://docs.openshift.com/container-platform/latest/installing/installing_bare_metal/installing-bare-metal.html

Procedure

1. Create a NodeFeatureDiscovery resource to detect node capabilities suitable for running Kata
containers:

a. Save the following YAML in the nfd.yaml file:

b. Create the NodeFeatureDiscovery custom resource (CR):

Example output

A feature.node.kubernetes.io/runtime.kata=true label is applied to all qualifying worker
nodes.

2. Set the checkNodeEligibility field to true in the KataConfig resource to enable the feature,
for example:

a. Save the following YAML in the kata-config.yaml file:

b. Create the KataConfig CR:

Example output

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureDiscovery
metadata:
 name: nfd-kata
 namespace: openshift-nfd
spec:
 operand:
 image: quay.io/openshift/origin-node-feature-discovery:4.10
 imagePullPolicy: Always
 servicePort: 12000
 workerConfig:
 configData: |
 sources:
 custom:
 - name: "feature.node.kubernetes.io/runtime.kata"
 matchOn:
 - cpuId: ["SSE4", "VMX"]
 loadedKMod: ["kvm", "kvm_intel"]
 - cpuId: ["SSE4", "SVM"]
 loadedKMod: ["kvm", "kvm_amd"]

$ oc create -f nfd.yaml

nodefeaturediscovery.nfd.openshift.io/nfd-kata created

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: example-kataconfig
spec:
 checkNodeEligibility: true

$ oc create -f kata-config.yaml

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

12

Example output

Verification

Verify that qualifying nodes in the cluster have the correct label applied:

Example output

Additional resources

For more information about installing the Node Feature Discovery (NFD) Operator, see
Installing NFD.

2.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS
WORKLOADS USING THE WEB CONSOLE

You can deploy OpenShift sandboxed containers workloads from the web console. First, you must install
the OpenShift sandboxed containers Operator, then create the KataConfig custom resource (CR).
Once you are ready to deploy a workload in a sandboxed container, you must manually add kata as the
runtimeClassName to the workload YAML file.

2.2.1. Installing the OpenShift sandboxed containers Operator using the web console

You can install the OpenShift sandboxed containers Operator from the OpenShift Container Platform
web console.

Prerequisites

You have OpenShift Container Platform 4.15 installed.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. From the Administrator perspective in the web console, navigate to Operators →
OperatorHub.

2. In the Filter by keyword field, type OpenShift sandboxed containers.

3. Select the OpenShift sandboxed containers tile.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

kataconfig.kataconfiguration.openshift.io/example-kataconfig created

$ oc get nodes --selector='feature.node.kubernetes.io/runtime.kata=true'

NAME STATUS ROLES AGE VERSION
compute-3.example.com Ready worker 4h38m v1.25.0
compute-2.example.com Ready worker 4h35m v1.25.0

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS

13

https://docs.openshift.com/container-platform/latest/hardware_enablement/psap-node-feature-discovery-operator.html#installing-the-node-feature-discovery-operator_node-feature-discovery-operator

a. Select stable from the list of available Update Channel options.

b. Verify that Operator recommended Namespace is selected for Installed Namespace. This
installs the Operator in the mandatory openshift-sandboxed-containers-operator
namespace. If this namespace does not yet exist, it is automatically created.

NOTE

Attempting to install the OpenShift sandboxed containers Operator in a
namespace other than openshift-sandboxed-containers-operator causes
the installation to fail.

c. Verify that Automatic is selected for Approval Strategy. Automatic is the default value,
and enables automatic updates to OpenShift sandboxed containers when a new z-stream
release is available.

6. Click Install.

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

2. Verify that the OpenShift sandboxed containers Operator is listed in the in operators list.

2.2.2. Creating the KataConfig custom resource in the web console

You must create one KataConfig custom resource (CR) to enable installing kata as a RuntimeClass on
your cluster nodes.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

14

NOTE

Kata is installed on all worker nodes by default. If you want to install kata as a
RuntimeClass only on specific nodes, you can add labels to those nodes, then define the
label in the KataConfig CR when you create it.

Procedure

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator from the list of operators.

3. In the KataConfig tab, click Create KataConfig.

4. In the Create KataConfig page, enter the following details:

Name: Enter a name for the KataConfig resource. By default, the name is defined as
example-kataconfig.

Labels (Optional): Enter any relevant, identifying attributes to the KataConfig resource.
Each label represents a key-value pair.

checkNodeEligibility (Optional, not relevant for peer pods): Select this checkbox to use
the Node Feature Discovery Operator (NFD) to detect node eligibility to run kata as a
RuntimeClass. For more information, see "Checking whether cluster nodes are eligible to
run OpenShift sandboxed containers".

enablePeerPods (For peer pods): Select this checkbox to enable peer pods and use
OpenShift sandboxed containers in a public cloud environment.

kataConfigPoolSelector: By default, kata is installed as a RuntimeClass on all nodes. If you
want to install kata as a RuntimeClass only on selected nodes, you must add a
matchExpression:

a. Expand the kataConfigPoolSelector area.

b. In the kataConfigPoolSelector, expand matchExpressions. This is a list of label
selector requirements.

c. Click Add matchExpressions.

d. In the key field, add the label key the selector applies to.

e. In the operator field, add the key’s relationship to the label values. Valid operators are
In, NotIn, Exists, and DoesNotExist.

f. Expand the values area, and then click Add value.

g. In the Value field, enter true or false for key label value.

logLevel: Define the level of log data retrieved for nodes running kata as a RuntimeClass.
For more information, see "Collecting OpenShift sandboxed containers data".

5. Click Create.

The new KataConfig CR is created and begins to install kata as a RuntimeClass on the worker nodes.

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS

15

The new KataConfig CR is created and begins to install kata as a RuntimeClass on the worker nodes.
Wait for the kata installation to complete and the worker nodes to reboot before continuing to the next
step.

IMPORTANT

OpenShift sandboxed containers installs kata only as a secondary, optional runtime on
the cluster and not as the primary runtime.

Verification

1. In the KataConfig tab, select the new KataConfig CR.

2. In the KataConfig page, select the YAML tab.

3. Monitor the status field.
A message appears each time there is an update. Click Reload to view the updated KataConfig
CR.

The status field has conditions and kataNodes subfields. The kataNodes subfield is a
collection of node lists, each of which lists nodes in a particular state of kata installation.

When all workers under kataNodes are listed as installed, and the condition InProgress is
False without specifying a reason, this indicates that kata is installed on the cluster. For more
information, see "Installation and uninstall transitions".

2.2.3. Deploying a workload in a sandboxed container using the web console

OpenShift sandboxed containers installs Kata as a secondary, optional runtime on your cluster, and not
as the primary runtime.

To deploy a pod-templated workload in a sandboxed container, you must manually add kata as the
runtimeClassName to the workload YAML file.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

You have created a KataConfig custom resource (CR).

Procedure

1. From the Administrator perspective in the web console, expand Workloads and select the type
of workload you want to create.

2. In the workload page, click to create the workload.

3. In the YAML file for the workload, in the spec field where the container is listed, add
runtimeClassName: kata.

Example for Pod object

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

16

4. Click Save.

OpenShift Container Platform creates the workload and begins scheduling it.

2.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS
WORKLOADS USING THE CLI

You can deploy OpenShift sandboxed containers workloads using the CLI. First, you must install the
OpenShift sandboxed containers Operator, then create the KataConfig custom resource. Once you are
ready to deploy a workload in a sandboxed container, you must add kata as the runtimeClassName to
the workload YAML file.

2.3.1. Installing the OpenShift sandboxed containers Operator using the CLI

You can install the OpenShift sandboxed containers Operator using the OpenShift Container Platform
CLI.

Prerequisites

You have OpenShift Container Platform 4.15 installed on your cluster.

For installations on IBM Z or IBM® LinuxONE, you must have OpenShift Container Platform 4.14
or later installed.

IMPORTANT

apiVersion: v1
kind: Pod
metadata:
 name: hello-openshift
 labels:
 app: hello-openshift
spec:
 runtimeClassName: kata
 containers:
 - name: hello-openshift
 image: quay.io/openshift/origin-hello-openshift
 ports:
 - containerPort: 8888
 securityContext:
 privileged: false
 allowPrivilegeEscalation: false
 runAsNonRoot: true
 runAsUser: 1001
 capabilities:
 drop:
 - ALL
 seccompProfile:
 type: RuntimeDefault

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS

17

IMPORTANT

Deploying OpenShift sandboxed containers workloads on IBM Z using peer pods
is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the
development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have subscribed to the OpenShift sandboxed containers catalog.

NOTE

Subscribing to the OpenShift sandboxed containers catalog provides openshift-
sandboxed-containers-operator namespace access to the OpenShift
sandboxed containers Operator.

Procedure

1. Create the Namespace object for the OpenShift sandboxed containers Operator.

a. Create a Namespace object YAML file that contains the following manifest:

b. Create the Namespace object:

2. Create the OperatorGroup object for the OpenShift sandboxed containers Operator.

a. Create an OperatorGroup object YAML file that contains the following manifest:

b. Create the OperatorGroup object:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

$ oc create -f Namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

18

https://access.redhat.com/support/offerings/techpreview/

3. Create the Subscription object to subscribe the Namespace to the OpenShift sandboxed
containers Operator.

a. Create a Subscription object YAML file that contains the following manifest:

b. Create the Subscription object:

The OpenShift sandboxed containers Operator is now installed on your cluster.

NOTE

All the object file names listed above are suggestions. You can create the object YAML
files using other names.

Verification

Ensure that the Operator is correctly installed:

Example output

Additional resources

Installing from OperatorHub using the CLI

2.3.2. Creating the KataConfig custom resource using the CLI

You must create one KataConfig custom resource (CR) to install kata as a RuntimeClass on your
nodes. Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do the
following:

Install the needed RHCOS extensions, such as QEMU and kata-containers, on your RHCOS

$ oc create -f OperatorGroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.5.2

$ oc create -f Subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

NAME DISPLAY VERSION REPLACES PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.5.2 1.5.1
Succeeded

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS

19

https://docs.openshift.com/container-platform/latest/operators/admin/olm-adding-operators-to-cluster.html

Install the needed RHCOS extensions, such as QEMU and kata-containers, on your RHCOS
node.

Ensure that the CRI-O runtime is configured with the correct runtime handlers.

Create a RuntimeClass CR named kata with a default configuration. This enables users to
configure workloads to use kata as the runtime by referencing the CR in the
RuntimeClassName field. This CR also specifies the resource overhead for the runtime.

NOTE

Kata is installed on all worker nodes by default. If you want to install kata as a
RuntimeClass only on specific nodes, you can add labels to those nodes, and then define
the label in the KataConfig CR when you create it.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Procedure

1. Create a YAML file with the following manifest:

Set`checkNodeEligibility` to true to detect node eligibility to run kata as a RuntimeClass.

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 checkNodeEligibility: false 1
 logLevel: info

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

20

https://github.com/cri-o/cri-o

1

1

Set`checkNodeEligibility` to true to detect node eligibility to run kata as a RuntimeClass.
For more information, see "Checking whether cluster nodes are eligible to run OpenShift
sandboxed containers".

2. (Optional) If you want to install kata as a RuntimeClass only on selected nodes, create a YAML
file that includes the label in the manifest:

Labels in kataConfigPoolSelector only support single values; nodeSelector syntax is not
supported.

3. Create the KataConfig resource:

The new KataConfig CR is created and begins to install kata as a RuntimeClass on the worker nodes.
Wait for the kata installation to complete and the worker nodes to reboot before continuing to the next
step.

IMPORTANT

OpenShift sandboxed containers installs kata only as a secondary, optional runtime on
the cluster and not as the primary runtime.

Verification

Monitor the installation progress:

When all workers under kataNodes are listed as installed, and the condition InProgress is
False without specifying a reason, this indicates that kata is installed on the cluster. For more
information, see "Installation and uninstall transitions".

Additional resources

Understanding how to update labels on nodes

2.3.3. Deploying a workload in a sandboxed container using the CLI

OpenShift sandboxed containers installs Kata as a secondary, optional runtime on your cluster, and not
as the primary runtime.

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 checkNodeEligibility: false
 logLevel: info
 kataConfigPoolSelector:
 matchLabels:
 <label_key>: '<label_value>' 1

$ oc create -f cluster-kataconfig.yaml

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS

21

https://docs.openshift.com/container-platform/latest/nodes/nodes/nodes-nodes-working.html#nodes-nodes-working-updating_nodes-nodes-working

To deploy a pod-templated workload in a sandboxed container, you must add kata as the
runtimeClassName to the workload YAML file.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

You have created a KataConfig custom resource (CR).

Procedure

Add runtimeClassName: kata to any pod-templated object:

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

.Example for Pod object

apiVersion: v1
kind: Pod
metadata:
 name: hello-openshift
 labels:
 app: hello-openshift
spec:
 runtimeClassName: kata
 containers:
 - name: hello-openshift
 image: quay.io/openshift/origin-hello-openshift
 ports:
 - containerPort: 8888
 securityContext:
 privileged: false
 allowPrivilegeEscalation: false
 runAsNonRoot: true
 runAsUser: 1001
 capabilities:
 drop:
 - ALL
 seccompProfile:
 type: RuntimeDefault

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

22

OpenShift Container Platform creates the workload and begins scheduling it.

Verification

Inspect the runtimeClassName field on a pod-templated object. If the runtimeClassName is
kata, then the workload is running on OpenShift sandboxed containers.

2.4. INSTALLATION AND UNINSTALL TRANSITIONS

The following table displays the key installation and uninstall transitions for a cluster with two worker
nodes:

Table 2.1. Installation transitions

Status Description

Initial installation

When a KataConfig instance is created to start the
installation on both workers the status looks like this
for a second or two.

Installing

Within a few seconds the status changes.

Installing (Worker-1 installation starting)

For a short period of time, the status changes,
signifying that one node has initiated the installation
of kata, while the other is in a waiting state. This is
because only one node can be unavailable at any
given time. The nodeCount remains at 2 because
both nodes will eventually receive kata, but the
readyNodeCount is currently 0 as neither of them
has reached that state yet.

 conditions:
 message: Performing initial installation of
kata on cluster
 reason: Installing
 status: 'True'
 type: InProgress
 kataNodes:
 nodeCount: 0
 readyNodeCount: 0

 kataNodes:
 nodeCount: 2
 readyNodeCount: 0
 waitingToInstall:
 - worker-0
 - worker-1

 kataNodes:
 installing:
 - worker-1
 nodeCount: 2
 readyNodeCount: 0
 waitingToInstall:
 - worker-0

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS

23

Installing (Worker-1 installed, worker-0 installation
started)

After some time, worker-1 will complete its
installation, causing a change in the status. The
readyNodeCount is updated to 1, indicating that
worker-1 is now prepared to execute kata
workloads. You can not schedule and run kata
workloads until the kata runtimeClass is created,
which occurs only at the end of the installation
process.

Installed

When installed, both workers are listed as installed,
and the InProgress condition transitions to False
without specifying a reason, indicating the successful
installation of kata on the cluster.

Status Description

Table 2.2. Uninstall transitions

Status Description

Initial uninstall

If kata is installed on both workers, and you delete
the KataConfig to remove kata from the cluster,
similar to the installation process, both workers will
briefly enter a waiting state for a few seconds.

 kataNodes:
 installed:
 - worker-1
 installing:
 - worker-0
 nodeCount: 2
 readyNodeCount: 1

 conditions:
 message: ""
 reason: ""
 status: 'False'
 type: InProgress
 kataNodes:
 installed:
 - worker-0
 - worker-1
 nodeCount: 2
 readyNodeCount: 2

 conditions:
 message: Removing kata from cluster
 reason: Uninstalling
 status: 'True'
 type: InProgress
 kataNodes:
 nodeCount: 0
 readyNodeCount: 0
 waitingToUninstall:
 - worker-0
 - worker-1

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

24

Uninstalling

After some time one of the workers starts
uninstalling.

Uninstalling

worker-1 finishes, worker-0 starts uninstalling.

Status Description

NOTE

The reason field can also report the following:

Failed: This is reported if the node cannot finish its transition. The status reports
True and the message is Node <node_name> Degraded:
<error_message_from_the_node>.

BlockedByExistingKataPods: This is reported if there are pods running on a
cluster that use the kata runtime while kata is being uninstalled. The status field
is False and the message is Existing pods using "kata" RuntimeClass found.
Please delete the pods manually for KataConfig deletion to proceed. There
could also be a technical error message reported like Failed to list kata pods:
<error_message> if communication with the cluster control plane fails.

2.5. ADDITIONAL RESOURCES

The OpenShift sandboxed containers Operator is supported in a restricted network
environment. For more information, see Using Operator Lifecycle Manager on restricted
networks.

When using a disconnected cluster on a restricted network, you must configure proxy support in
Operator Lifecycle Manager to access the OperatorHub. Using a proxy allows the cluster to
fetch the OpenShift sandboxed containers Operator.

 kataNodes:
 nodeCount: 0
 readyNodeCount: 0
 uninstalling:
 - worker-1
 waitingToUninstall:
 - worker-0

 kataNodes:
 nodeCount: 0
 readyNodeCount: 0
 uninstalling:
 - worker-0

CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS

25

https://docs.openshift.com/container-platform/latest/operators/admin/olm-restricted-networks.html
https://docs.openshift.com/container-platform/latest/operators/admin/olm-configuring-proxy-support.html

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED
CONTAINERS WORKLOADS USING PEER PODS

You can install the OpenShift sandboxed containers Operator using either the web console or
OpenShift CLI (oc). Before installing the OpenShift sandboxed containers Operator, you must prepare
your OpenShift Container Platform cluster.

3.1. PREREQUISITES

Before you install OpenShift sandboxed containers and enable peer pods, you must meet the following
requirements:

You have OpenShift Container Platform 4.15 installed on AWS or Azure.

For installations on IBM Z or IBM® LinuxONE, you must have OpenShift Container Platform 4.14
or later installed.

IMPORTANT

Deploying OpenShift sandboxed containers workloads on IBM Z using peer pods
is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the
development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

3.1.1. About peer pod resource requirements in OpenShift sandboxed containers

A peer pod uses resources in two locations:

The worker node. The worker node stores metadata, Kata shim resources (containerd-shim-
kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the
worker nodes and the peer-pod virtual machine (VM).

The cloud instance. This is the actual peer-pod VM running in the cloud.

The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead
included in the RuntimeClass (kata-remote) definition used for creating peer pods.

The total number of peer-pod VMs running in the cloud is defined as Kubernetes Node extended
resources. This limit is per node and is set by the limit attribute in the peerpodConfig custom resource
(CR). The peerpodConfig CR, named peerpodconfig-openshift, is created when you create the
kataConfig CR and enable peer pods, and is located in the openshift-sandboxed-containers-operator
namespace.

The following peerpodConfig CR example displays the default spec values:

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

26

https://access.redhat.com/support/offerings/techpreview/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

1 The default limit is 10 VMs per node.

The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle
capacity tracking and accounting.

You can edit the limit per node based on the requirements for your environment. See Modifying the VM
limit per node in peer pods for more information.

A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also
removes any resource-specific entries from the pod specification, if present. This enables the
Kubernetes scheduler to account for these extended resources, ensuring the peer-pod is only
scheduled when resources are available.

The mutating webhook modifies a Kubernetes pod as follows:

The mutating webhook checks the pod for the expected RuntimeClassName value, specified
in the TARGET_RUNTIME_CLASS environment variable. If the value in the pod specification
does not match the value in the TARGET_RUNTIME_CLASS, the webhook exits without
modifying the pod.

If the RuntimeClassName values match, the webhook makes the following changes to the pod
spec:

1. The webhook removes every resource specification from the resources field of all
containers and init containers in the pod.

2. The webhook adds the extended resource (kata.peerpods.io/vm) to the spec by modifying
the resources field of the first container in the pod. The extended resource
kata.peerpods.io/vm is used by the Kubernetes scheduler for accounting purposes.

NOTE

The mutating webhook excludes specific system namespaces in OpenShift Container
Platform from mutation. If a peer-pod is created in those system namespaces, then
resource accounting using Kubernetes extended resources does not work unless the pod
spec includes the extended resource.

As a best practice, define a cluster-wide policy to only allow peer-pod creation in specific
namespaces.

3.1.1.1. Modifying the peer pod VM limit per node

You can change the limit of peer pod VMs per node by editing the peerpodConfig custom resource

apiVersion: confidentialcontainers.org/v1alpha1
kind: PeerPodConfig
metadata:
 name: peerpodconfig-openshift
 namespace: openshift-sandboxed-containers-operator
spec:
 cloudSecretName: peer-pods-secret
 configMapName: peer-pods-cm
 limit: "10" 1
 nodeSelector:
 node-role.kubernetes.io/kata-oc: ""

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

27

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

1

You can change the limit of peer pod VMs per node by editing the peerpodConfig custom resource
(CR).

Procedure

1. Check the current limit by running the following command:

2. Modify the limit attribute of the peerpodConfig CR by running the following command:

Replace <value> with the limit you want to define.

3.1.2. Prerequisites for peer-pods using AWS

If you are using AWS to create peer pods, you must ensure the following requirements:

Your OpenShift Container Platform cluster must be installed on AWS, with at least one worker
node.

You have access to AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY credentials.
These are used to create additional cloud instances in the same virtual private cloud (VPC) of
the cluster.

You must have the AWS CLI tool installed and configured.

You must enable internal cluster communication on ports 15150 and 9000.
You can enable these ports in either the AWS web console or using the CLI.

3.1.2.1. Enable ports 15150 and 9000 for AWS

Procedure

1. Retrieve the Instance ID:

2. Retrieve the AWS region:

3. Retrieve the security groups:

$ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator
\
-o jsonpath='{.spec.limit}{"\n"}'

$ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-
operator \
--type merge --patch '{"spec":{"limit":"<value>"}}' 1

$ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' -o
jsonpath='{.items[0].spec.providerID}' | sed 's#[^]*/##g')

$ AWS_REGION=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.aws.region}')

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

28

4. Authorize the peer-pods shim and to access kata-agent communication. Run the following
command:

5. Set up the peer-pods tunnel. Run the following command:

The ports are now enabled.

3.1.3. Prerequisites for peer-pods using Azure

If you are using Microsoft Azure to create peer pods, you must ensure the following requirements:

Your OpenShift Container Platform cluster must be installed on Azure, with at least one worker
node.

You have access to the following credentials and subscription details:

AZURE_SUBSCRIPTION_ID

AZURE_CLIENT_ID

AZURE_CLIENT_SECRET

AZURE_TENANT_ID

These are used to create additional cloud instances in the same virtual private cloud (VPC) of
the cluster.

You must have the Azure CLI tool installed and configured.

3.1.4. Prerequisites for peer pods using IBM Z or IBM(R) LinuxONE with RHEL KVM

You can install the OpenShift sandboxed containers Operator on IBM Z using the OpenShift CLI (oc).

NOTE

While this document refers only to IBM Z, all information in it also applies to IBM®
LinuxONE.

If you are using IBM Z to create peer pods, you must ensure the following requirements:

Your OpenShift Container Platform cluster must be installed on IBM Z, with at least one
compute node.

You have installed the following tools on the IBM Z KVM host

$ SG=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].SecurityGroups[*].GroupId' --output text --region
${AWS_REGION})

$ aws ec2 authorize-security-group-ingress --group-id ${SG} --protocol tcp --port 15150 --
source-group ${SG} --region ${AWS_REGION}

$ aws ec2 authorize-security-group-ingress --group-id ${SG} --protocol tcp --port 9000 --
source-group ${SG} --region ${AWS_REGION}

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

29

libvirt

podman

git

tar

virt-customize

You must have the oc CLI tool installed and configured.

If you want to test peer pods in a non-production environment, the following requirements must be met:

Your OpenShift Container Platform cluster must be version 4.14 or later.

You have a multi-node OpenShift Container Platform cluster with three control nodes and two
compute nodes set up.

Cluster nodes and peer pods must run on a single IBM Z KVM host logical partition (LPAR).

Your cluster setup ensures that peer pod virtual machines (VMs) and cluster nodes are part of
the same subnet, allowing connection between node and peer pod VM.

3.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS
WORKLOADS USING PEER PODS WITH THE WEB CONSOLE

You can deploy OpenShift sandboxed containers workloads from the web console. First, you must install
the OpenShift sandboxed containers Operator, then create a secret object, the VM image, and a peer-
pod ConfigMap. The secret object and ConfigMap are unique, depending on your cloud provider. Finally,
you must create the KataConfig custom resource (CR). Once you are ready to deploy a workload in a
sandboxed container, you must manually add kata-remote as the runtimeClassName to the workload
YAML file.

3.2.1. Installing the OpenShift sandboxed containers Operator using the web console

You can install the OpenShift sandboxed containers Operator from the OpenShift Container Platform
web console.

Prerequisites

You have OpenShift Container Platform 4.15 installed.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. From the Administrator perspective in the web console, navigate to Operators →
OperatorHub.

2. In the Filter by keyword field, type OpenShift sandboxed containers.

3. Select the OpenShift sandboxed containers tile.

4. Read the information about the Operator and click Install.

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

30

5. On the Install Operator page:

a. Select stable from the list of available Update Channel options.

b. Verify that Operator recommended Namespace is selected for Installed Namespace. This
installs the Operator in the mandatory openshift-sandboxed-containers-operator
namespace. If this namespace does not yet exist, it is automatically created.

NOTE

Attempting to install the OpenShift sandboxed containers Operator in a
namespace other than openshift-sandboxed-containers-operator causes
the installation to fail.

c. Verify that Automatic is selected for Approval Strategy. Automatic is the default value,
and enables automatic updates to OpenShift sandboxed containers when a new z-stream
release is available.

6. Click Install.

The OpenShift sandboxed containers Operator is now installed on your cluster.

Verification

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

2. Verify that the OpenShift sandboxed containers Operator is listed in the in operators list.

3.2.2. Configuring peer-pod parameters for AWS using the web console

You must create a secret object and a ConfigMap to deploy OpenShift sandboxed containers using
peer pods on AWS.

After creating the secret object, you must still create the KataConfig custom resource (CR) to deploy
OpenShift sandboxed containers using peer pods.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

3.2.2.1. Creating a secret object for AWS using the web console

Set your AWS access keys and configure your network in a secret object. The secret object is used to
create the pod VM image and used by peer pods.

When creating a secret object for AWS, you must set specific environment values. You can retrieve
some of these values before creating the secret object. Retrieving these values must be done using the
CLI. For more information, see Creating a secret object for AWS using the CLI .

In addition, in the AWS web console, you must generate and save the following values:

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

31

https://access.redhat.com/documentation/en-us/openshift_sandboxed_containers/1.5/html-single/openshift_sandboxed_containers_user_guide/index#sandboxed-containers-create-secret-object-peer-pods-aws-cli_deploying-sandboxed-containers-peer-pods

1

2

3

4

5

6

AWS_ACCESS_KEY_ID

AWS_SECRET_ACCESS_KEY

Procedure

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator from the list of operators.

3. Click the Import icon (+) in the top right corner.

4. In the Import YAML window, paste the following YAML manifest:

Enter the AWS_ACCESS_KEY_ID value you prepared before you began.

Enter the AWS_SECRET_ACCESS_KEY value you prepared before you began.

Enter the AWS_REGION value you retrieved.

Enter the AWS_SUBNET_ID value you retrieved.

Enter the AWS_VPC_ID value you retrieved.

Enter the AWS_SG_IDS value you retrieved.

5. Click Create.

The secret object is created. You can see it listed under Workloads → Secrets.

3.2.2.2. Creating a peer-pod ConfigMap for AWS using the web console

You can create a peer-pod ConfigMap for AWS using the web console.

Procedure

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AWS_ACCESS_KEY_ID: "<enter value>" 1
 AWS_SECRET_ACCESS_KEY: "<enter value>" 2
 AWS_REGION: "<enter value>" 3
 AWS_SUBNET_ID: "<enter value>" 4
 AWS_VPC_ID: "<enter value>" 5
 AWS_SG_IDS: "<enter value>" 6

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

32

1

2

2. Select the OpenShift sandboxed containers Operator from the list of operators.

3. Click the Import icon (+) in the top right corner.

4. In the Import YAML window, paste the following YAML manifest:

Defines the default instance type that is used when a type is not defined in the workload.

Lists all of the instance types you can specify when creating the pod. This allows you to
define smaller instances for workloads that need less memory and CPU, or larger instances
for larger workloads.

5. Click Create.

The ConfigMap object is created. You can see it listed under Workloads → ConfigMaps.

Once you create the KataConfig CR, you can run OpenShift sandboxed containers using peer pods on
AWS.

3.2.3. Configuring peer-pod parameters for Azure using the web console

You must create a secret object and a ConfigMap in order to deploy OpenShift sandboxed containers
using peer pods on Microsoft Azure.

After creating the secret object, you must still create the KataConfig custom resource (CR) to deploy
OpenShift sandboxed containers using peer pods.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

3.2.3.1. Creating a secret object for Azure using the web console

Set your Azure access keys and configure your network in a secret object. The secret object is used to
create the pod VM image and used by peer pods.

When creating a secret object for Azure, you must set specific environment values. You can retrieve

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "aws"
 VXLAN_PORT: "9000"
 PODVM_INSTANCE_TYPE: "t3.medium" 1
 PODVM_INSTANCE_TYPES: "t2.small,t2.medium,t3.large" 2
 PROXY_TIMEOUT: "5m"

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

33

1

2

3

4

5

6

When creating a secret object for Azure, you must set specific environment values. You can retrieve
these values before creating the secret object. Retrieving these values must be done using the CLI. For
more information, see Creating a secret object for Azure using the CLI .

Procedure

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator from the list of operators.

3. Click the Import icon (+) in the top right corner.

4. In the Import YAML window, paste the following YAML manifest:

Enter the AZURE_CLIENT_ID value you generated in the RBAC file.

Enter the AZURE_CLIENT_SECRET value you generated in the RBAC file.

Enter the AZURE_TENANT_ID value you generated in the RBAC file.

Enter the AZURE_SUBSCRIPTION_ID value you retrieved.

Enter the AZURE_REGION value you retrieved.

Enter the AZURE_RESOURCE_GROUP value you retrieved.

5. Click Create.

The secret object is created. You can see it listed under Workloads → Secrets.

3.2.3.2. Creating a peer-pod ConfigMap for Azure using the web console

You can create a peer-pod ConfigMap for Azure using the web console.

Procedure

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AZURE_CLIENT_ID: "<enter value>" 1
 AZURE_CLIENT_SECRET: "<enter value>" 2
 AZURE_TENANT_ID: "<enter value>" 3
 AZURE_SUBSCRIPTION_ID: "<enter value>" 4
 AZURE_REGION: "<enter value>" 5
 AZURE_RESOURCE_GROUP: "<enter value>" 6

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

34

https://access.redhat.com/documentation/en-us/openshift_sandboxed_containers/1.5/html-single/openshift_sandboxed_containers_user_guide/index#sandboxed-containers-create-secret-object-peer-pods-azure-cli_deploying-sandboxed-containers-peer-pods

1

2

3

4

2. Select the OpenShift sandboxed containers Operator from the list of operators.

3. Click the Import icon (+) in the top right corner.

4. In the Import YAML window, paste the following YAML manifest:

Defines the default instance size that is used when an instance is not defined in the
workload.

List all of the instance sizes you can specify when creating the pod. This allows you to
define smaller instances for workloads that need less memory and CPU, or larger instances
for larger workloads.

Enter the AZURE_SUBNET_ID value that you retrieved.

Enter the AZURE_NSG_ID value that you retrieved.

5. Click Create.

The ConfigMap ̀object is created. You can see it listed under Workloads → ConfigMaps.

3.2.3.3. Creating an SSH key secret object for Azure using the web console

You must create an SSH key secret object to use peer pods with Azure. If you do not already have an
SSH key to create the object, you must generate one using the CLI. Fo more information, see

Procedure

1. From the Administrator perspective in the web console, navigate to Workloads → Secrets.

2. In the Secrets window, in the top left corner, verify that you are in the openshift-sandboxed-
containers-operator project.

3. Click Create and select Key/value secret from the list.

4. In the Secret name field, enter ssh-key-secret.

5. In the Key field, enter id_rsa.pub.

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "azure"
 VXLAN_PORT: "9000"
 AZURE_INSTANCE_SIZE: "Standard_B2als_v2" 1
 AZURE_INSTANCE_SIZES:
"Standard_DC2as_v5,Standard_DC4as_v5,Standard_DC8as_v5" 2
 AZURE_SUBNET_ID: "<enter value>" 3
 AZURE_NSG_ID: "<enter value>" 4
 PROXY_TIMEOUT: "5m"
 DISABLECVM: "true"

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

35

6. In the Value field, paste your public SSH key.

7. Click Create.

The SSH key secret object is created. You can see it listed under Workloads → Secrets.

Once you create the KataConfig CR, you can run OpenShift sandboxed containers using peer pods on
Azure.

3.2.4. Creating the KataConfig custom resource in the web console

You must create one KataConfig custom resource (CR) to enable installing kata-remote as a
RuntimeClass on your cluster nodes.

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

NOTE

Kata for peer pods is installed on all worker nodes by default. If you want to install kata-
remote as a RuntimeClass only on specific nodes, you can add labels to those nodes,
then define the label in the KataConfig CR when you create it.

Procedure

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

2. Select the OpenShift sandboxed containers Operator from the list of operators.

3. In the KataConfig tab, click Create KataConfig.

4. In the Create KataConfig page, enter the following details:

Name: Enter a name for the KataConfig resource. By default, the name is defined as
example-kataconfig.

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

36

example-kataconfig.

Labels (Optional): Enter any relevant, identifying attributes to the KataConfig resource.
Each label represents a key-value pair.

checkNodeEligibility (Optional, not relevant for peer pods): Select this checkbox to use
the Node Feature Discovery Operator (NFD) to detect node eligibility to run kata as a
RuntimeClass. For more information, see "Checking whether cluster nodes are eligible to
run OpenShift sandboxed containers".

enablePeerPods (For peer pods): Select this checkbox to enable peer pods and use
OpenShift sandboxed containers in a public cloud environment.

kataConfigPoolSelector: By default, kata-remote is installed as a RuntimeClass on all
nodes. If you want to install kata-remote as a RuntimeClass only on selected nodes, you
must add a matchExpression:

a. Expand the kataConfigPoolSelector area.

b. In the kataConfigPoolSelector, expand matchExpressions. This is a list of label
selector requirements.

c. Click Add matchExpressions.

d. In the key field, add the label key the selector applies to.

e. In the operator field, add the key’s relationship to the label values. Valid operators are
In, NotIn, Exists, and DoesNotExist.

f. Expand the values area, and then click Add value.

g. In the Value field, enter true or false for key label value.

logLevel: Define the level of log data retrieved for nodes running kata-remote as a
RuntimeClass. For more information, see "Collecting OpenShift sandboxed containers
data".

5. Click Create.

The new KataConfig CR is created and begins to install kata-remote as a RuntimeClass on the worker
nodes. Wait for the installation to complete and the worker nodes to reboot before continuing to the
next step.

NOTE

When you run the CR, the VM image is created. The image creation is done through the
cloud provider and it may use additional resources.

IMPORTANT

OpenShift sandboxed containers installs kata-remote only as a secondary, optional
runtime on the cluster and not as the primary runtime.

Verification

1. In the KataConfig tab, select the new KataConfig CR.

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

37

2. In the KataConfig page, select the YAML tab.

3. Monitor the status field.
A message appears each time there is an update. Click Reload to view the updated KataConfig
CR.

The status field has conditions and kataNodes subfields. The kataNodes subfield is a
collection of node lists, each of which lists nodes in a particular state of kata installation.

When all workers under kataNodes are listed as installed, and the condition InProgress is
False without specifying a reason, this indicates that kata is installed on the cluster. For more
information, see "Installation and uninstall transitions".

3.2.5. Deploying a workload with peer pods in a sandboxed container using the web
console

OpenShift sandboxed containers installs Kata as a secondary, optional runtime on your cluster, and not
as the primary runtime.

To deploy a pod-templated workload using peer pods in a sandboxed container, you must manually add
kata-remote as the runtimeClassName to the workload YAML file.

You must also define whether the workload should be deployed using a default instance size or type
which you previously defined in the ConfigMap by adding an annotation to the YAML file. The use of an
instance size or an instance type depends on your cloud provider. If you do not want to define the
instance size or type manually, you must add an annotation to define the use of an automatic instance
size or type, based on the memory available.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

You have created a secret object and peer-pod ConfigMap unique to your cloud provider.

You have created a KataConfig custom resource (CR).

Procedure

1. From the Administrator perspective in the web console, expand Workloads and select the type
of workload you want to create.

2. In the workload page, click to create the workload.

3. In the YAML file for the workload, in the spec field where the container is listed, add
runtimeClassName: kata-remote.

4. In the YAML file for the workload, add an annotation to define whether to use a default instance
size or type, or an automatic instance size or type. Instance size is used for specific cloud
providers, while instance type is used for other cloud providers.

For a specific instance size type, add the following annotation:

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

38

1

Define which instance size or type the workload should use. You pre-defined these default
sizes or types previously when creating the ConfigMap for peer pods. Choose from one of
those.

For an automatic instance size or type, add the following annotations:

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance size or type based on the amount of memory available.

Example for Pod object

This example uses a previously defined instance size for peer pods using Azure. Peer pods
using AWS use instance types.

5. Click Save.

OpenShift Container Platform creates the workload and begins scheduling it.

3.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS
WORKLOADS USING PEER PODS WITH THE CLI

You can deploy OpenShift sandboxed containers workloads using the CLI. First, you must install the

io.katacontainers.config.hypervisor.machine_type: <instance type/instance size>

io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
io.katacontainers.config.hypervisor.default_memory: <memory>

apiVersion: v1
kind: Pod
metadata:
 name: hello-openshift
 labels:
 app: hello-openshift
 annotations:
 io.katacontainers.config.hypervisor.machine_type: Standard_DC4as_v5 1
spec:
 runtimeClassName: kata-remote
 containers:
 - name: hello-openshift
 image: quay.io/openshift/origin-hello-openshift
 ports:
 - containerPort: 8888
 securityContext:
 privileged: false
 allowPrivilegeEscalation: false
 runAsNonRoot: true
 runAsUser: 1001
 capabilities:
 drop:
 - ALL
 seccompProfile:
 type: RuntimeDefault

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

39

OpenShift sandboxed containers Operator, then create the KataConfig custom resource. Once you are
ready to deploy a workload in a sandboxed container, you must add kata-remote as the
runtimeClassName to the workload YAML file.

3.3.1. Installing the OpenShift sandboxed containers Operator using the CLI

You can install the OpenShift sandboxed containers Operator using the OpenShift Container Platform
CLI.

Prerequisites

You have OpenShift Container Platform 4.15 installed on your cluster.

For installations on IBM Z or IBM® LinuxONE, you must have OpenShift Container Platform 4.14
or later installed.

IMPORTANT

Deploying OpenShift sandboxed containers workloads on IBM Z using peer pods
is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the
development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have subscribed to the OpenShift sandboxed containers catalog.

NOTE

Subscribing to the OpenShift sandboxed containers catalog provides openshift-
sandboxed-containers-operator namespace access to the OpenShift
sandboxed containers Operator.

Procedure

1. Create the Namespace object for the OpenShift sandboxed containers Operator.

a. Create a Namespace object YAML file that contains the following manifest:

b. Create the Namespace object:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sandboxed-containers-operator

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

40

https://access.redhat.com/support/offerings/techpreview/

2. Create the OperatorGroup object for the OpenShift sandboxed containers Operator.

a. Create an OperatorGroup object YAML file that contains the following manifest:

b. Create the OperatorGroup object:

3. Create the Subscription object to subscribe the Namespace to the OpenShift sandboxed
containers Operator.

a. Create a Subscription object YAML file that contains the following manifest:

b. Create the Subscription object:

The OpenShift sandboxed containers Operator is now installed on your cluster.

NOTE

All the object file names listed above are suggestions. You can create the object YAML
files using other names.

Verification

Ensure that the Operator is correctly installed:

$ oc create -f Namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 targetNamespaces:
 - openshift-sandboxed-containers-operator

$ oc create -f OperatorGroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-sandboxed-containers-operator
 namespace: openshift-sandboxed-containers-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: sandboxed-containers-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: sandboxed-containers-operator.v1.5.2

$ oc create -f Subscription.yaml

$ oc get csv -n openshift-sandboxed-containers-operator

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

41

Example output

Additional resources

Installing from OperatorHub using the CLI

3.3.2. Setting up peer pods for AWS using the CLI

To set up peer pods for use on AWS, you must create a secret object, an AWS image VM (AMI), and a
peer-pod ConfigMap.

After setting up peer pods for AWS, you must still create the KataConfig custom resource (CR) to
deploy OpenShift sandboxed containers using peer pods.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

3.3.2.1. Creating a secret object for AWS using the CLI

Set your AWS access keys and configure your network in a secret object. The secret object is used to
create the pod VM image and used by peer pods.

When creating a secret object for AWS, you must set specific environment values. You can retrieve
some of these values before creating the secret object. However, you must have the following values
prepared:

AWS_ACCESS_KEY_ID

AWS_SECRET_ACCESS_KEY

You can generate these values in the AWS console.

Procedure

1. Collect the necessary parameter values for the secret object. Make sure to write down each
value.

a. Retrieve the instance ID:

This value is not needed for the secret object itself, but is used to retrieve other values for
the secret object.

NAME DISPLAY VERSION REPLACES PHASE
openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.5.2 1.5.1
Succeeded

$ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' -o
jsonpath='{.items[0].spec.providerID}' | sed 's#[^]*/##g')

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

42

https://docs.openshift.com/container-platform/latest/operators/admin/olm-adding-operators-to-cluster.html

1

2

3

4

5

6

b. Retrieve the AWS region:

c. Retrieve the AWS subnet ID:

d. Retrieve the AWS VPC ID:

e. Retrieve the AWS security group IDs:

2. Create a YAML file with the following manifest:

Enter the AWS_ACCESS_KEY_ID value you prepared before you began.

Enter the AWS_SECRET_ACCESS_KEY value you prepared before you began.

Enter the AWS_REGION value you retrieved.

Enter the AWS_SUBNET_ID value you retrieved.

Enter the AWS_VPC_ID value you retrieved.

Enter the AWS_SG_IDS value you retrieved.

$ AWS_REGION=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.aws.region}') && echo "AWS_REGION:
\"$AWS_REGION\""

$ AWS_SUBNET_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --
query 'Reservations[*].Instances[*].SubnetId' --region ${AWS_REGION} --output text) &&
echo "AWS_SUBNET_ID: \"$AWS_SUBNET_ID\""

$ AWS_VPC_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].VpcId' --region ${AWS_REGION} --output text) && echo
"AWS_VPC_ID: \"$AWS_VPC_ID\""

$ AWS_SG_IDS=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} --query
'Reservations[*].Instances[*].SecurityGroups[*].GroupId' --region ${AWS_REGION} --
output text)
&& echo "AWS_SG_IDS: \"$AWS_SG_IDS\""

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AWS_ACCESS_KEY_ID: "<enter value>" 1
 AWS_SECRET_ACCESS_KEY: "<enter value>" 2
 AWS_REGION: "<enter value>" 3
 AWS_SUBNET_ID: "<enter value>" 4
 AWS_VPC_ID: "<enter value>" 5
 AWS_SG_IDS: "<enter value>" 6

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

43

1

2

3. Apply the secret object:

The secret object is applied.

3.3.2.2. Creating a peer-pod ConfigMap for AWS using the CLI

When creating a ConfigMap for AWS, you must set the AMI ID. You can retrieve this value before you
create the ConfigMap.

Procedure

1. Create a YAML file with the following manifest:

Defines the default instance type that is used when a type is not defined in the workload.

Lists all of the instance types you can specify when creating the pod. This allows you to
define smaller instances for workloads that need less memory and CPU, or larger instances
for larger workloads.

2. Apply the ConfigMap:

The ConfigMap is applied. Once you create the KataConfig CR, you can run OpenShift sandboxed
containers using peer pods on AWS.

3.3.3. Setting up peer pods for Azure using the CLI

To set up peer pods for use on Microsoft Azure, you must create a secret object, an Azure image VM, a
peer-pod ConfigMap, and an SSH key secret object.

After setting up peer pods for Azure, you must still create the KataConfig custom resource (CR) to
deploy OpenShift sandboxed containers using peer pods.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have installed the OpenShift CLI (oc).

$ oc apply -f peer-pods-secret.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "aws"
 VXLAN_PORT: "9000"
 PODVM_INSTANCE_TYPE: "t3.medium" 1
 PODVM_INSTANCE_TYPES: "t2.small,t2.medium,t3.large" 2
 PROXY_TIMEOUT: "5m"

$ oc apply -f peer-pods-cm.yaml

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

44

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

You must have the Azure CLI tool installed and configured.

3.3.3.1. Creating a secret object for Azure using the CLI

Set your Azure access keys and configure your network in a secret object. The secret object is used to
create the pod VM image and used by peer pods.

When creating a secret object for Azure, you must set specific environment values. You can retrieve
these values before creating the secret object. In addition, you must create a role-based access control
(RBAC) file. This file generates the following values:

AZURE_CLIENT_ID

AZURE_CLIENT_SECRET

AZURE_TENANT_ID

Procedure

1. Retrieve the Azure subscription ID:

2. Generate the RBAC content. This generates the client ID, client secret, and the tenant ID:

The following output appears:

3. Save the values in the RBAC output to use in the secret object.

4. Collect the additional parameter values for the secret object. Make sure to write down each
value.

a. Retrieve the resource group:

b. Retrieve the Azure region:

$ AZURE_SUBSCRIPTION_ID=$(az account list --query "[?isDefault].id" -o tsv) && echo
"AZURE_SUBSCRIPTION_ID: \"$AZURE_SUBSCRIPTION_ID\""

$ az ad sp create-for-rbac --role Contributor --scopes
/subscriptions/$AZURE_SUBSCRIPTION_ID --query "{ client_id: appId, client_secret:
password, tenant_id: tenant }

{
 "client_id": `AZURE_CLIENT_ID`,
 "client_secret": `AZURE_CLIENT_SECRET`,
 "tenant_id": `AZURE_TENANT_ID`
}

$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster -o
jsonpath='{.status.platformStatus.azure.resourceGroupName}') && echo
"AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

45

1

2

3

4

5

6

5. Create a YAML file with the following manifest:

Enter the AZURE_CLIENT_ID value you generated in the RBAC file.

Enter the AZURE_CLIENT_SECRET value you generated in the RBAC file.

Enter the AZURE_TENANT_ID value you generated in the RBAC file.

Enter the AZURE_SUBSCRIPTION_ID value you retrieved.

Enter the AZURE_REGION value you retrieved.

Enter the AZURE_RESOURCE_GROUP value you retrieved.

6. Apply the secret object:

The secret object is applied.

3.3.3.2. Creating a peer-pod ConfigMap for Azure using the CLI

When creating a ConfigMap for Azure, you must set specific configuration values. You can retrieve
these values before you create the ConfigMap.

Procedure

1. Collect the configuration values for the Azure peer-pod ConfigMap. Make sure to write down
each value.

a. Retrieve the Azure VNet name:

$ AZURE_REGION=$(az group show --resource-group
${AZURE_RESOURCE_GROUP} --query "{Location:location}" --output tsv) && echo
"AZURE_REGION: \"$AZURE_REGION\""

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 AZURE_CLIENT_ID: "<enter value>" 1
 AZURE_CLIENT_SECRET: "<enter value>" 2
 AZURE_TENANT_ID: "<enter value>" 3
 AZURE_SUBSCRIPTION_ID: "<enter value>" 4
 AZURE_REGION: "<enter value>" 5
 AZURE_RESOURCE_GROUP: "<enter value>" 6

$ oc apply -f peer-pods-secret.yaml

$ AZURE_VNET_NAME=$(az network vnet list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Name:name}" --output tsv)

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

46

1

2

3

4

This value is not needed for the ConfigMap, but is used to retrieve the Azure subnet ID.

b. Retrieve the Azure subnet ID:

c. Retrieve the Azure network security group (NSG) ID:

2. Create a YAML file with the following manifest:

Defines the default instance size that is used when an instance is not defined in the
workload.

List all of the instance sizes you can specify when creating the pod. This allows you to
define smaller instances for workloads that need less memory and CPU, or larger instances
for larger workloads.

Enter the AZURE_SUBNET_ID value that you retrieved.

Enter the AZURE_NSG_ID value that you retrieved.

3. Apply the ConfigMap:

The ConfigMap is deployed.

3.3.3.3. Creating an SSH key secret object for Azure using the CLI

You must generate an SSH key and create an SSH key secret object to use peer pods with Azure.

$ AZURE_SUBNET_ID=$(az network vnet subnet list --resource-group
${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME --query "[].{Id:id}
| [? contains(Id, 'worker')]" --output tsv) && echo "AZURE_SUBNET_ID:
\"$AZURE_SUBNET_ID\""

$ AZURE_NSG_ID=$(az network nsg list --resource-group
${AZURE_RESOURCE_GROUP} --query "[].{Id:id}" --output tsv) && echo
"AZURE_NSG_ID: \"$AZURE_NSG_ID\""

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "azure"
 VXLAN_PORT: "9000"
 AZURE_INSTANCE_SIZE: "Standard_B2als_v2" 1
 AZURE_INSTANCE_SIZES:
"Standard_DC2as_v5,Standard_DC4as_v5,Standard_DC8as_v5" 2
 AZURE_SUBNET_ID: "<enter value>" 3
 AZURE_NSG_ID: "<enter value>" 4
 PROXY_TIMEOUT: "5m"
 DISABLECVM: "true"

$ oc apply -f peer-pods-cm.yaml

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

47

Procedure

1. Generate the SSH key:

2. Create the SSH secret object:

The SSH key is created and the SSH key secret object is created. Once you create the KataConfig CR,
you can run OpenShift sandboxed containers using peer pods on Azure.

3.3.4. Setting up peer pods for IBM Z using the CLI

To set up peer pods for use on an OpenShift Container Platform cluster running on IBM Z, you must
create a secret object, a RHEL KVM image VM, and a peer-pod ConfigMap, which hold the credentials
that are required for the communication between libvirt and the KVM host.

After setting up peer pods for IBM Z, you must create the KataConfig custom resource (CR) to deploy
OpenShift sandboxed containers using peer pods.

Prerequisites

You have installed OpenShift Container Platform 4.14 or later on your cluster.

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

You have libvirt installed on your KVM host and you have administrator privileges.

3.3.4.1. Setting up libvirt on the KVM host

You must set up libvirt on the KVM host. Peer pods on IBM Z use the libvirt provider of the cloud API
Adaptor to create and manage virtual machines.

Procedure

1. Log in to IBM Z KVM host and set the shell variables to be used by libvirt for storage
management.

a. Set the name of the libvirt pool by running the following command:

b. Set the name of the libvirt pool by running the following command:

c. Set the path of the default storage pool location, by running the following command:

$ ssh-keygen -f ./id_rsa -N ""

$ oc create secret generic ssh-key-secret -n openshift-sandboxed-containers-operator --
from-file=id_rsa.pub=./id_rsa.pub --from-file=id_rsa=./id_rsa

$ export LIBVIRT_POOL=<name_of_libvirt_pool_to_create>

$ export LIBVIRT_VOL_NAME=<name_of_libvirt_volume_to_create>

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

48

1 To ensure libvirt has read and write access permissions, use a subdirectory of libvirt’s
storage directory. The default is /var/lib/libvirt/images/.

2. Create a libvirt pool by running the following command:

3. Start the libvirt pool by running the following command:

4. Create a libvirt volume for the pool by running the following command:

3.3.4.2. Creating a peer-pod VM image for IBM Z

To run OpenShift sandboxed containers using peer pods on IBM Z, you must first create a KVM guest
from which the libvirt provider starts the peer-pod VM.

Once the image is created, upload the image to the volume that you created in the previous step.

Prerequisites

IBM z15 or later, or IBM® LinuxONE III or later.

At least one LPAR running on RHEL 9 or later with KVM.

Procedure

1. Set the RHEL ORG_ID and ACTIVATION_KEY shell variables for your system.

a. When using a subscribed RHEL system, set the shell environment variables to the files
holding the organization ID and the activation key for Red Hat Subscription Management
(RHSM) by running the following commands:

b. When using an unsubscribed RHEL system, set the appropriate subscription values by
running the following commands:

$ export LIBVIRT_POOL_DIRECTORY=<name_of_target_directory> 1

$ virsh pool-define-as $LIBVIRT_POOL --type dir --target "$LIBVIRT_POOL_DIRECTORY"

$ virsh pool-start $LIBVIRT_POOL

$ virsh -c qemu:///system \
 vol-create-as --pool $LIBVIRT_POOL \
 --name $LIBVIRT_VOL_NAME \
 --capacity 20G \
 --allocation 2G \
 --prealloc-metadata \
 --format qcow2

$ export ORG_ID=$(cat ~/.rh_subscription/orgid)

$ export ACTIVATION_KEY=$(cat ~/.rh_subscription/activation_key)

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

49

1

2. Log in to your IBM Z system and perform the following steps:

a. Download an s390x RHEL KVM guest image from the Red Hat Customer Portal to your
libvirt storage directory to grant libvirt correct access. The default directory is
/var/lib/libvirt/images. The image is used to generate the peer pod VM image, which will
include the relevant binaries.

b. Set the IMAGE_URL shell environment variable for the downloaded image by running the
following command:

Enter the path of the KVM guest image that you downloaded in the previous step.

c. Register the guest KVM image by running the following command:

d. Customize the guest KVM image by running the following command:

e. Set the checksum of the image by running the following command:

3.3.4.2.1. Building the peer-pod VM QCOW2 image

To run OpenShift sandboxed containers using peer pods on IBM Z, you must build a peer-pod VM
QCOW2 image.

Procedure

1. Clone the cloud-api-adaptor repository onto your build workstation by running the following
command:

2. Change into the podvm directory by running the following command:

3. Create a builder image from which the final QCOW2 image is generated.

a. When using a subscribed RHEL system, run the following command:

$ export ORG_ID=<RHEL_ORGID_VALUE>

$ export ACTIVATION_KEY=<RHEL_ACVTIVATION_KEY>

$ export IMAGE_URL=<location_of_downloaded_KVM_guest_image> 1

$ export REGISTER_CMD="subscription-manager register --org=${ORG_ID} \
 --activationkey=${ACTIVATION_KEY}"

$ virt-customize -v -x -a ${IMAGE_URL} --run-command "${REGISTER_CMD}"

$ export IMAGE_CHECKSUM=$(sha256sum ${IMAGE_URL} | awk '{ print $1 }')

$ git clone --single-branch https://github.com/confidential-containers/cloud-api-adaptor.git

$ cd cloud-api-adaptor && git checkout 8577093

$ podman build -t podvm_builder_rhel_s390x \

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

50

https://access.redhat.com/downloads/content/433/ver=/rhel---9
https://github.com/confidential-containers/cloud-api-adaptor

b. When using an unsubscribed RHEL system, run the following command:

4. Generate an intermediate image package with the required binaries for running peer pods by
running the following command:

NOTE

This process is expected to take significant time.

5. Extract the binaries and build the peer-pod QCOW2 image by running the following command:

6. Extract the peer pod QCOW2 image to a directory of your choice by running the following
commands:

 --build-arg ARCH="s390x" \
 --build-arg GO_VERSION="1.21.3" \
 --build-arg PROTOC_VERSION="25.1" \
 --build-arg PACKER_VERSION="v1.9.4" \
 --build-arg RUST_VERSION="1.72.0" \
 --build-arg YQ_VERSION="v4.35.1" \
 --build-arg
YQ_CHECKSUM="sha256:4e6324d08630e7df733894a11830412a43703682d65a76f1fc9
25aac08268a45" \
 -f podvm/Dockerfile.podvm_builder.rhel .

$ podman build -t podvm_builder_rhel_s390x \
 --build-arg ORG_ID=$ORG_ID \
 --build-arg ACTIVATION_KEY=$ACTIVATION_KEY \
 --build-arg ARCH="s390x" \
 --build-arg GO_VERSION="1.21.3" \
 --build-arg PROTOC_VERSION="25.1" \
 --build-arg PACKER_VERSION="v1.9.4" \
 --build-arg RUST_VERSION="1.72.0" \
 --build-arg YQ_VERSION="v4.35.1" \
 --build-arg
YQ_CHECKSUM="sha256:4e6324d08630e7df733894a11830412a43703682d65a76f1fc9
25aac08268a45" \
 -f podvm/Dockerfile.podvm_builder.rhel .

$ podman build -t podvm_binaries_rhel_s390x \
 --build-arg BUILDER_IMG="podvm_builder_rhel_s390x:latest" \
 --build-arg ARCH=s390x \
 -f podvm/Dockerfile.podvm_binaries.rhel .

$ podman build -t podvm_rhel_s390x \
 --build-arg ARCH=s390x \
 --build-arg CLOUD_PROVIDER=libvirt \
 --build-arg BUILDER_IMG="localhost/podvm_builder_rhel_s390x:latest" \
 --build-arg BINARIES_IMG="localhost/podvm_binaries_rhel_s390x:latest" \
 -v ${IMAGE_URL}:/tmp/rhel.qcow2:Z \
 --build-arg IMAGE_URL="/tmp/rhel.qcow2" \
 --build-arg IMAGE_CHECKSUM=${IMAGE_CHECKSUM} \
 -f podvm/Dockerfile.podvm.rhel .

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

51

1 Enter the image_output_directory where to extract the final QCOW image.

7. Upload the peer pod QCOW2 image to your libvirt volume:

3.3.4.3. Creating a RHEL secret for peer-pod credentials

When creating a secret object for IBM Z, you must set specific environment values. You can retrieve
some of these values before creating the secret object. However, you must have the following values
prepared:

LIBVIRT_POOL

LIBVIRT_VOL_NAME

LIBVIRT_URI

LIBVIRT_URI is the default gateway IP address of your libvirt network. Check your libvirt network setup
to obtain this value.

NOTE

If your libvirt installation is using the default bridge virtual network, you can obtain the
LIBVIRT_URI by running the following commands:

Procedure

1. Create a YAML file peer-pods-secret.yaml with the following manifest:

$ export IMAGE_OUTPUT_DIR=<image_output_directory> 1

$ mkdir -p $IMAGE_OUTPUT_DIR

$ podman save podvm_rhel_s390x | tar -xO --no-wildcards-match-slash '*.tar' | tar -x -C
${IMAGE_OUTPUT_DIR}

$ virsh -c qemu:///system vol-upload \
 --vol $ LIBVIRT_VOL_NAME \
 $IMAGE_OUTPUT_DIR/podvm-*.qcow2 \
 --pool $LIBVIRT_POOL --sparse

$ virtint=$(bridge_line=$(virsh net-info default | grep Bridge); echo
"${bridge_line//Bridge:/}" | tr -d [:blank:])

$ LIBVIRT_URI=$(ip -4 addr show $virtint | grep -oP '(?<=inet\s)\d+(\.\d+){3}')

apiVersion: v1
kind: Secret
metadata:
 name: peer-pods-secret
 namespace: openshift-sandboxed-containers-operator
type: Opaque
stringData:
 CLOUD_PROVIDER: "libvirt" 1

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

52

1

2

3

4

Enter libvirt as the cloud provider.

Enter the libvirt_gateway_uri value you retrieved.

Enter the libvirt_pool value you retrieved.

Enter the libvirt_volume value you retrieved.

2. Create the secret object:

The secret object is applied.

3.3.4.4. Creating a peer-pod ConfigMap for IBM Z using the CLI

When creating a ConfigMap for IBM Z, you must use the libvirt provider.

Procedure

1. Create a YAML file peer-pods-cm.yaml with the following manifest:

2. Apply the ConfigMap:

The ConfigMap is applied.

3.3.4.5. Creating an SSH key secret object for IBM Z using the CLI

You must generate an SSH key pair and create an SSH key secret object to use peer pods with IBM Z.

Procedure

1. Generate the SSH key:

2. Copy the SSH public key to your KVM host:

 LIBVIRT_URI: "<libvirt_gateway_uri>" 2
 LIBVIRT_POOL: "<libvirt_pool>" 3
 LIBVIRT_VOL_NAME: "<libvirt_volume>" 4

$ oc apply -f peer-pods-secret.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: peer-pods-cm
 namespace: openshift-sandboxed-containers-operator
data:
 CLOUD_PROVIDER: "libvirt"
 PROXY_TIMEOUT: "15m"

$ oc apply -f peer-pods-cm.yaml

$ ssh-keygen -f ./id_rsa -N ""

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

53

1 Enter the IP address of your KVM host.

3. Create the secret object:

4. Delete the SSH keys:

The secret object is created. Once you create the KataConfig CR, you can run OpenShift sandboxed
containers using peer pods on IBM Z.

3.3.5. Creating the KataConfig custom resource using the CLI

You must create one KataConfig custom resource (CR) to install kata-remote as a RuntimeClass on
your nodes. Creating the KataConfig CR triggers the OpenShift sandboxed containers Operator to do
the following:

Install the needed RHCOS extensions, such as QEMU and kata-containers, on your RHCOS
node.

Ensure that the CRI-O runtime is configured with the correct runtime handlers.

Create a RuntimeClass CR named kata-remote with a default configuration. This enables
users to configure workloads to use kata-remote as the runtime by referencing the CR in the
RuntimeClassName field. This CR also specifies the resource overhead for the runtime.

NOTE

Kata for peer pods is installed on all worker nodes by default. If you want to install kata-
remote as a RuntimeClass only on specific nodes, you can add labels to those nodes,
and then define the label in the KataConfig CR when you create it.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

IMPORTANT

$ ssh-copy-id -i ./id_rsa.pub <KVM_HOST_ADDRESS> 1

$ oc create secret generic ssh-key-secret \
 -n openshift-sandboxed-containers-operator \
 --from-file=id_rsa.pub=./id_rsa.pub \
 --from-file=id_rsa=./id_rsa

$ shred –remove id_rsa.pub id_rsa

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

54

https://github.com/cri-o/cri-o

1

IMPORTANT

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard disk drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Procedure

1. Create a YAML file with the following manifest:

2. (Optional) If you want to install kata-remote as a RuntimeClass only on selected nodes, create
a YAML file that includes the label in the manifest:

Labels in kataConfigPoolSelector only support single values; nodeSelector syntax is not
supported.

3. Create the KataConfig resource:

The new KataConfig CR is created and begins to install kata-remote as a RuntimeClass on the worker
nodes. Wait for the kata-remote installation to complete and the worker nodes to reboot before
continuing to the next step.

NOTE

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 enablePeerPods: true
 logLevel: info

apiVersion: kataconfiguration.openshift.io/v1
kind: KataConfig
metadata:
 name: cluster-kataconfig
spec:
 enablePeerPods: true
 logLevel: info
 kataConfigPoolSelector:
 matchLabels:
 <label_key>: '<label_value>' 1

$ oc create -f cluster-kataconfig.yaml

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

55

NOTE

When you run the CR, the VM image is created. The image creation is done through the
cloud provider and it may use additional resources.

IMPORTANT

OpenShift sandboxed containers installs kata-remote only as a secondary, optional
runtime on the cluster and not as the primary runtime.

Verification

Monitor the installation progress:

When all workers under kataNodes are listed as installed, and the condition InProgress is
False without specifying a reason, this indicates that kata is installed on the cluster. For more
information, see "Installation and uninstall transitions".

Additional resources

Understanding how to update labels on nodes

3.3.6. Deploying a workload with peer pods in a sandboxed container using the CLI

OpenShift sandboxed containers installs Kata as a secondary, optional runtime on your cluster, and not
as the primary runtime.

To deploy a pod-templated workload using peer pods in a sandboxed container, you must add kata-
remote as the runtimeClassName to the workload YAML file.

You must also define whether the workload should be deployed using a default instance size or type
which you previously defined in the ConfigMap by adding an annotation to the YAML file. The use of an
instance size or an instance type depends on your cloud provider. If you do not want to define the
instance size or type manually, you must add an annotation to define the use of an automatic instance
size or type, based on the memory available.

Prerequisites

You have installed OpenShift Container Platform 4.15 on your cluster.

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift sandboxed containers Operator.

You have created a secret object and peer-pod ConfigMap unique to your cloud provider.

You have created a KataConfig custom resource (CR).

Procedure

1. Add runtimeClassName: kata-remote to any pod-templated object:

Pod objects

$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

56

https://docs.openshift.com/container-platform/latest/nodes/nodes/nodes-nodes-working.html#nodes-nodes-working-updating_nodes-nodes-working

Pod objects

ReplicaSet objects

ReplicationController objects

StatefulSet objects

Deployment objects

DeploymentConfig objects

2. Add an annotation to the pod-templated object, defining whether to use a specific instance size
or type, or an automatic instance size or type. Instance size is used for specific cloud providers,
while instance type is used for other cloud providers.

For a specific instance size or type, add the following annotation:

Define which instance size or type the workload should use. You pre-defined these default
sizes or types previously when creating the ConfigMap for peer pods. Choose from one of
those.

For an automatic instance size or type, add the following annotations:

Define the amount of memory available for the workload to use. The workload will run on an
automatic instance size or type based on the amount of memory available.

Example for Pod object

io.katacontainers.config.hypervisor.machine_type: <instance type/instance size>

io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
io.katacontainers.config.hypervisor.default_memory: <memory>

apiVersion: v1
kind: Pod
metadata:
 name: hello-openshift
 labels:
 app: hello-openshift
 annotations:
 io.katacontainers.config.hypervisor.machine_type: Standard_DC4as_v5 1
spec:
 runtimeClassName: kata-remote
 containers:
 - name: hello-openshift
 image: quay.io/openshift/origin-hello-openshift
 ports:
 - containerPort: 8888
 securityContext:
 privileged: false
 allowPrivilegeEscalation: false
 runAsNonRoot: true
 runAsUser: 1001
 capabilities:
 drop:

CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS

57

1 This example uses a previously defined instance size for peer pods using Azure. Peer pods
using AWS use instance types.

OpenShift Container Platform creates the workload and begins scheduling it.

Verification

Inspect the runtimeClassName field on a pod-templated object. If the runtimeClassName is
kata-remote, then the workload is running on OpenShift sandboxed containers, using peer pods.

3.4. ADDITIONAL RESOURCES

The OpenShift sandboxed containers Operator is supported in a restricted network
environment. For more information, see Using Operator Lifecycle Manager on restricted
networks.

When using a disconnected cluster on a restricted network, you must configure proxy support in
Operator Lifecycle Manager to access the OperatorHub. Using a proxy allows the cluster to
fetch the OpenShift sandboxed containers Operator.

 - ALL
 seccompProfile:
 type: RuntimeDefault

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

58

https://docs.openshift.com/container-platform/latest/operators/admin/olm-restricted-networks.html
https://docs.openshift.com/container-platform/latest/operators/admin/olm-configuring-proxy-support.html

CHAPTER 4. MONITORING OPENSHIFT SANDBOXED
CONTAINERS

You can use the OpenShift Container Platform web console to monitor metrics related to the health
status of your sandboxed workloads and nodes.

OpenShift sandboxed containers has a pre-configured dashboard available in the web console, and
administrators can also access and query raw metrics through Prometheus.

4.1. ABOUT OPENSHIFT SANDBOXED CONTAINERS METRICS

OpenShift sandboxed containers metrics enable administrators to monitor how their sandboxed
containers are running. You can query for these metrics in Metrics UI in the web console.

OpenShift sandboxed containers metrics are collected for the following categories:

Kata agent metrics

Kata agent metrics display information about the kata agent process running in the VM embedded in
your sandboxed containers. These metrics include data from /proc/<pid>/[io, stat, status].

Kata guest OS metrics

Kata guest OS metrics display data from the guest OS running in your sandboxed containers. These
metrics include data from /proc/[stats, diskstats, meminfo, vmstats] and /proc/net/dev.

Hypervisor metrics

Hypervisor metrics display data regarding the hypervisor running the VM embedded in your
sandboxed containers. These metrics mainly include data from /proc/<pid>/[io, stat, status].

Kata monitor metrics

Kata monitor is the process that gathers metric data and makes it available to Prometheus. The kata
monitor metrics display detailed information about the resource usage of the kata-monitor process
itself. These metrics also include counters from Prometheus data collection.

Kata containerd shim v2 metrics

Kata containerd shim v2 metrics display detailed information about the kata shim process. These
metrics include data from /proc/<pid>/[io, stat, status] and detailed resource usage metrics.

4.2. VIEWING METRICS FOR OPENSHIFT SANDBOXED CONTAINERS

You can access the metrics for OpenShift sandboxed containers in the Metrics page in the web
console.

Prerequisites

You have OpenShift Container Platform 4.15 installed.

You have OpenShift sandboxed containers installed.

You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure

1. From the Administrator perspective in the web console, navigate to Observe → Metrics.

CHAPTER 4. MONITORING OPENSHIFT SANDBOXED CONTAINERS

59

2. In the input field, enter the query for the metric you want to observe.
All kata-related metrics begin with kata. Typing kata will display a list with all of the available
kata metrics.

The metrics from your query are visualized on the page.

Additional resources

For more information about creating PromQL queries to view metrics, see Querying metrics.

4.3. VIEWING THE OPENSHIFT SANDBOXED CONTAINERS
DASHBOARD

You can access the OpenShift sandboxed containers dashboard in the Dashboards page in the web
console.

Prerequisites

You have OpenShift Container Platform 4.15 installed.

You have OpenShift sandboxed containers installed.

You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure

1. From the Administrator perspective in the web console, navigate to Observe → Dashboards.

2. From the Dashboard drop-down list, select the Sandboxed Containers dashboard.

3. Optional: Select a time range for the graphs in the Time Range list.

Select a pre-defined time period.

Set a custom time range by selecting Custom time range in the Time Range list.

a. Define the date and time range for the data you want to view.

b. Click Save to save the custom time range.

4. Optional: Select a Refresh Interval.

The dashboard appears on the page with the following metrics from the Kata guest OS category:

Number of running VMs

Displays the total number of sandboxed containers running on your cluster.

CPU Usage (per VM)

Displays the CPU usage for each individual sandboxed container.

Memory Usage (per VM)

Displays the memory usage for each individual sandboxed container.

Hover over each of the graphs within a dashboard to display detailed information about specific items.

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

60

https://docs.openshift.com/container-platform/latest/monitoring/querying-metrics.html

4.4. ADDITIONAL RESOURCES

For more information about gathering data for support, see Gathering data about your cluster .

CHAPTER 4. MONITORING OPENSHIFT SANDBOXED CONTAINERS

61

https://docs.openshift.com/container-platform/latest/support/gathering-cluster-data.html

CHAPTER 5. UNINSTALLING OPENSHIFT SANDBOXED
CONTAINERS

You can uninstall OpenShift sandboxed containers by using either the OpenShift Container Platform
web console or OpenShift CLI (oc). Both procedures are explained below.

5.1. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS USING
THE WEB CONSOLE

Use the OpenShift Container Platform web console to delete the relevant OpenShift sandboxed
containers pods, resources, and namespace.

5.1.1. Deleting OpenShift sandboxed containers pods using the web console

To uninstall OpenShift sandboxed containers, you must first delete all running pods that use kata as the
runtimeClass.

Prerequisites

You have OpenShift Container Platform 4.15 installed on your cluster.

You have access to the cluster as a user with the cluster-admin role.

You have a list of the pods that use kata as the runtimeClass.

Procedure

1. From the Administrator perspective, navigate to Workloads → Pods.

2. Search for the pod that you want to delete using the Search by name field.

3. Click the pod name to open it.

4. On the Details page, check that kata is displayed for Runtime class.

5. Click the Actions menu and select Delete Pod.

6. Click Delete in the confirmation window.

Additional resources

You can retrieve a list of running pods that use kata as the runtimeClass from the OpenShift CLI. For
details, see Deleting OpenShift sandboxed containers pods .

5.1.2. Deleting the KataConfig custom resource using the web console

Deleting the KataConfig custom resource (CR) removes and uninstalls the kata runtime and its related
resources from your cluster.

IMPORTANT

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

62

IMPORTANT

Deleting the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Prerequisites

You have OpenShift Container Platform 4.15 installed on your cluster.

You have access to the cluster as a user with the cluster-admin role.

You have no running pods that use kata as the runtimeClass.

Procedure

1. From the Administrator perspective, navigate to Operators → Installed Operators.

2. Search for the OpenShift sandboxed containers Operator using the Search by name field.

3. Click the Operator to open it, and then select the KataConfig tab.

4. Click the Options menu for the KataConfig resource, and then select Delete
KataConfig.

5. Click Delete in the confirmation window.

Wait for the kata runtime and resources to uninstall and for the worker nodes to reboot before
continuing to the next step.

5.1.3. Deleting the OpenShift sandboxed containers Operator using the web console

Deleting the OpenShift sandboxed containers Operator removes the catalog subscription, Operator
group, and cluster service version (CSV) for that Operator.

Prerequisites

You have OpenShift Container Platform 4.15 installed on your cluster.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. From the Administrator perspective, navigate to Operators → Installed Operators.

CHAPTER 5. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS

63

2. Search for the OpenShift sandboxed containers Operator using the Search by name field.

3. Click the Options menu for the Operator and select Uninstall Operator.

4. Click Uninstall in the confirmation window.

5.1.4. Deleting the OpenShift sandboxed containers namespace using the web
console

After you run the preceding commands, your cluster is restored to the state that it was prior to the
installation process. You can now revoke namespace access to the Operator by deleting the openshift-
sandboxed-containers-operator namespace.

Prerequisites

You have OpenShift Container Platform 4.15 installed on your cluster.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. From the Administrator perspective, navigate to Administration → Namespaces.

2. Search for the openshift-sandboxed-containers-operator namespace using the Search by
name field.

3. Click the Options menu for the namespace and select Delete Namespace.

NOTE

If the Delete Namespace option is not available, you do not have permission to
delete the namespace.

4. In the Delete Namespace pane, enter openshift-sandboxed-containers-operator and click
Delete.

5. Click Delete.

5.1.5. Deleting the KataConfig custom resource definition using the web console

The KataConfig custom resource definition (CRD) lets you define the KataConfig CR. To complete the
uninstall process, delete the KataConfig CRD from your cluster.

Prerequisites

You have OpenShift Container Platform 4.15 installed on your cluster.

You have access to the cluster as a user with the cluster-admin role.

You have removed the KataConfig CR from your cluster.

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

64

You have removed the OpenShift sandboxed containers Operator from your cluster.

Procedure

1. From the Administrator perspective, navigate to Administration →
CustomResourceDefinitions.

2. Search for KataConfig using the Search by name field.

3. Click the Options menu for the KataConfig CRD, and then select Delete
CustomResourceDefinition.

4. Click Delete in the confirmation window.

5. Wait for the KataConfig CRD to disappear from the list. This can take several minutes.

5.2. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS USING
THE CLI

You can uninstall OpenShift sandboxed containers by using the OpenShift Container Platform
command-line interface (CLI). Follow the steps below in the order that they are presented.

5.2.1. Deleting OpenShift sandboxed containers pods using the CLI

To uninstall OpenShift sandboxed containers, you must first delete all running pods that use kata as the
runtimeClass.

Prerequisites

You have installed the OpenShift CLI (oc).

You have the command-line JSON processor (jq) installed.

Procedure

1. Search for pods that use kata as the runtimeClass by running the following command:

2. To delete each pod, run the following command:

5.2.2. Deleting the KataConfig custom resource using the CLI

Remove and uninstall the kata runtime and all its related resources, such as CRI-O config and
RuntimeClass, from your cluster.

Prerequisites

$ oc get pods -A -o json | jq -r '.items[] | select(.spec.runtimeClassName ==
"kata").metadata.name'

$ oc delete pod <pod-name>

CHAPTER 5. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS

65

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html

You have OpenShift Container Platform 4.15 installed on your cluster.

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

IMPORTANT

Deleting the KataConfig CR automatically reboots the worker nodes. The reboot can
take from 10 to more than 60 minutes. Factors that impede reboot time are as follows:

A larger OpenShift Container Platform deployment with a greater number of
worker nodes.

Activation of the BIOS and Diagnostics utility.

Deployment on a hard drive rather than an SSD.

Deployment on physical nodes such as bare metal, rather than on virtual nodes.

A slow CPU and network.

Procedure

1. Delete the KataConfig custom resource by running the following command:

The OpenShift sandboxed containers Operator removes all resources that were initially created to
enable the runtime on your cluster.

IMPORTANT

During deletion, the CLI stops responding until all worker nodes reboot. Wait for the
process to complete before performing the verification or continuing to the next
procedure.

Verification

To verify that the KataConfig custom resource is deleted, run the following command:

Example output

5.2.3. Deleting the OpenShift sandboxed containers Operator using the CLI

Remove the OpenShift sandboxed containers Operator from your cluster by deleting the Operator
subscription, Operator group, cluster service version (CSV), and namespace.

Prerequisites

$ oc delete kataconfig <KataConfig_CR_Name>

$ oc get kataconfig <KataConfig_CR_Name>

No KataConfig instances exist

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

66

You have OpenShift Container Platform 4.10 installed on your cluster.

You have installed the OpenShift CLI (oc).

You have installed the comand-line JSON processor (jq).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Fetch the cluster service version (CSV) name for OpenShift sandboxed containers from the
subscription by running the following command:

2. Delete the OpenShift sandboxed containers Operator subscription from Operator Lifecyle
Manager (OLM) by running the following command:

3. Delete the CSV name for OpenShift sandboxed containers by running the following command:

4. Fetch the OpenShift sandboxed containers Operator group name by running the following
command:

5. Delete the OpenShift sandboxed containers Operator group name by running the following
command:

6. Delete the OpenShift sandboxed containers namespace by running the following command:

5.2.4. Deleting the KataConfig custom resource definition using the CLI

The KataConfig custom resource definition (CRD) lets you define the KataConfig CR. Delete the
KataConfig CRD from your cluster.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have removed the KataConfig CR from your cluster.

CSV_NAME=$(oc get csv -n openshift-sandboxed-containers-operator -o=custom-
columns=:metadata.name)

$ oc delete subscription sandboxed-containers-operator -n openshift-sandboxed-containers-
operator

$ oc delete csv ${CSV_NAME} -n openshift-sandboxed-containers-operator

$ OG_NAME=$(oc get operatorgroup -n openshift-sandboxed-containers-operator -
o=jsonpath={..name})

$ oc delete operatorgroup ${OG_NAME} -n openshift-sandboxed-containers-operator

$ oc delete namespace openshift-sandboxed-containers-operator

CHAPTER 5. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS

67

You have removed the OpenShift sandboxed containers Operator from your cluster.

Procedure

1. Delete the KataConfig CRD by running the following command:

Verification

To verify that the KataConfig CRD is deleted, run the following command:

Example output

$ oc delete crd kataconfigs.kataconfiguration.openshift.io

$ oc get crd kataconfigs.kataconfiguration.openshift.io

Unknown CR KataConfig

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

68

CHAPTER 6. UPGRADING OPENSHIFT SANDBOXED
CONTAINERS

The upgrade of the OpenShift sandboxed containers components consists of the following three steps:

Upgrading OpenShift Container Platform to update the Kata runtime and its dependencies.

Upgrading the OpenShift sandboxed containers Operator to update the Operator subscription.

Manually patching the KataConfig custom resource (CR) to update the monitor pods.

You can upgrade OpenShift Container Platform before or after the OpenShift sandboxed containers
Operator upgrade, with the one exception noted below. Always apply the KataConfig patch
immediately after upgrading OpenShift sandboxed containers Operator.

IMPORTANT

If you are upgrading to OpenShift Container Platform 4.11 with OpenShift sandboxed
containers 1.3, the recommended order is to first upgrade OpenShift sandboxed
containers from 1.2 to 1.3, and then upgrade OpenShift Container Platform from 4.10 to
4.11.

6.1. UPGRADING THE OPENSHIFT SANDBOXED CONTAINERS
RESOURCES

The OpenShift sandboxed containers resources are deployed onto the cluster using Red Hat Enterprise
Linux CoreOS (RHCOS) extensions.

The RHCOS extension sandboxed containers contains the required components to run Kata
Containers such as the Kata containers runtime, the hypervisor QEMU, and other dependencies. You
upgrade the extension by upgrading the cluster to a new release of OpenShift Container Platform.

For more information about upgrading OpenShift Container Platform, see Updating Clusters.

6.2. UPGRADING THE OPENSHIFT SANDBOXED CONTAINERS
OPERATOR

Use Operator Lifecycle Manager (OLM) to upgrade the OpenShift sandboxed containers Operator
either manually or automatically. Selecting between manual or automatic upgrade during the initial
deployment determines the future upgrade mode. For manual upgrades, the web console shows the
available updates that can be installed by the cluster administrator.

For more information about upgrading the OpenShift sandboxed containers Operator in Operator
Lifecycle Manager (OLM), see Updating installed Operators.

6.3. UPGRADING THE OPENSHIFT SANDBOXED CONTAINERS
MONITOR PODS

After upgrading OpenShift sandboxed containers, you need to update the monitor image in the
KataConfig CR to upgrade the monitor pods. Otherwise, the monitor pods will continue running images
from the previous version.

You can perform the update using the web console or the CLI.

CHAPTER 6. UPGRADING OPENSHIFT SANDBOXED CONTAINERS

69

https://docs.openshift.com/container-platform/latest/updating/index.html
https://docs.openshift.com/container-platform/latest/operators/admin/olm-upgrading-operators.html

6.3.1. Upgrading the monitor pods using the web console

The KataConfig YAML file in the OpenShift Container Platform contains the version number for the
monitor image. Update the version number with the correct version.

Prerequisites

You have OpenShift Container Platform 4.15 installed on your cluster.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. From the Administrator perspective of OpenShift Container Platform, navigate to Operators
→ Installed Operators.

2. Select the OpenShift sandboxed containers Operator and go to the KataConfig tab.

3. Search for the KataConfig resource using the Search by name field. The default name for the
KataConfig resource is example-kataconfig.

4. Select the KataConfig resource and go to the KataConfig tab.

5. Modify the version number for kataMonitorImage:

6. Click Save.

6.3.2. Upgrading the monitor pods using the CLI

You can manually patch the monitor image in the KataConfig CR to update the monitor pods.

Prerequisites

You have OpenShift Container Platform 4.15 installed on your cluster.

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

In the OpenShift Container Platform CLI, run the following command:

where: <kataconfig_name>:: specifies the name of your Kata configuration file, such as
example-kataconfig.

 checkNodeEligibility: false
 kataConfigPoolSelector: null
 kataMonitorImage: 'registry.redhat.io/openshift-sandboxed-containers/osc-monitor-
rhel8:1.3.0'

$ oc patch kataconfig <kataconfig_name> --type merge --patch
'{"spec":{"kataMonitorImage":"registry.redhat.io/openshift-sandboxed-containers/osc-monitor-
rhel8:1.3.0"}}'

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

70

CHAPTER 7. COLLECTING OPENSHIFT SANDBOXED
CONTAINERS DATA

When troubleshooting OpenShift sandboxed containers, you can open a support case and provide
debugging information using the must-gather tool.

If you are a cluster administrator, you can also review logs on your own, enabling a more detailed level of
logs.

7.1. COLLECTING OPENSHIFT SANDBOXED CONTAINERS DATA FOR
RED HAT SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including virtual machines and other data related to OpenShift sandboxed containers.

For prompt support, supply diagnostic information for both OpenShift Container Platform and
OpenShift sandboxed containers.

7.1.1. Using the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, including:

Resource definitions

Service logs

By default, the oc adm must-gather command uses the default plugin image and writes into ./must-
gather.local.

Alternatively, you can collect specific information by running the command with the appropriate
arguments as described in the following sections:

To collect data related to one or more specific features, use the --image argument with an
image, as listed in a following section.
For example:

To collect the audit logs, use the -- /usr/bin/gather_audit_logs argument, as described in a
following section.
For example:

NOTE

Audit logs are not collected as part of the default set of information to reduce
the size of the files.

$ oc adm must-gather --image=registry.redhat.io/openshift-sandboxed-containers/osc-must-
gather-rhel9:1.5.0

$ oc adm must-gather -- /usr/bin/gather_audit_logs

CHAPTER 7. COLLECTING OPENSHIFT SANDBOXED CONTAINERS DATA

71

When you run oc adm must-gather, a new pod with a random name is created in a new project on the
cluster. The data is collected on that pod and saved in a new directory that starts with must-
gather.local. This directory is created in the current working directory.

For example:

Optionally, you can run the oc adm must-gather command in a specific namespace by using the --run-
namespace option.

For example:

7.2. ABOUT OPENSHIFT SANDBOXED CONTAINERS LOG DATA

When you collect log data about your cluster, the following features and objects are associated with
OpenShift sandboxed containers:

All namespaces and their child objects that belong to any OpenShift sandboxed containers
resources

All OpenShift sandboxed containers custom resource definitions (CRDs)

The following OpenShift sandboxed containers component logs are collected for each pod running with
the kata runtime:

Kata agent logs

Kata runtime logs

QEMU logs

Audit logs

CRI-O logs

7.3. ENABLING DEBUG LOGS FOR OPENSHIFT SANDBOXED
CONTAINERS

As a cluster administrator, you can collect a more detailed level of logs for OpenShift sandboxed
containers. You can also enhance logging by changing the logLevel field in the KataConfig CR. This
changes the log_level in the CRI-O runtime for the worker nodes running OpenShift sandboxed
containers.

Procedure

1. Change the logLevel field in your existing KataConfig CR to debug:

NAMESPACE NAME READY STATUS RESTARTS AGE
...
openshift-must-gather-5drcj must-gather-bklx4 2/2 Running 0 72s
openshift-must-gather-5drcj must-gather-s8sdh 2/2 Running 0 72s
...

$ oc adm must-gather --run-namespace <namespace> --image=registry.redhat.io/openshift-
sandboxed-containers/osc-must-gather-rhel9:1.5.0

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

72

NOTE

When running this command, reference the name of your KataConfig CR. This is the
name you used to create the CR when setting up OpenShift sandboxed containers.

Verification

1. Monitor the kata-oc machine config pool until the UPDATED field appears as True, meaning all
worker nodes are updated:

Example output

2. Verify that the log_level was updated in CRI-O:

a. Open an oc debug session to a node in the machine config pool and run chroot /host.

b. Verify the changes in the crio.conf file:

Example output

7.3.1. Viewing debug logs for OpenShift sandboxed containers

Cluster administrators can use the enhanced debug logs for OpenShift sandboxed containers to
troubleshoot issues. The logs for each node are printed to the node journal.

You can review the logs for the following OpenShift sandboxed containers components:

Kata agent

Kata runtime (containerd-shim-kata-v2)

virtiofsd

QEMU only generates warning and error logs. These warnings and errors print to the node journal in

$ oc patch kataconfig <name_of_kataconfig_file> --type merge --patch '{"spec":{"logLevel":"debug"}}'

$ oc get mcp kata-oc

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
kata-oc rendered-kata-oc-169 False True False 3 1 1
0 9h

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-4.4# crio config | egrep 'log_level

log_level = "debug"

CHAPTER 7. COLLECTING OPENSHIFT SANDBOXED CONTAINERS DATA

73

QEMU only generates warning and error logs. These warnings and errors print to the node journal in
both the Kata runtime logs and the CRI-O logs with an extra qemuPid field.

Example of QEMU logs

The Kata runtime prints Start logging QEMU when QEMU starts, and Stop Logging QEMU when
QEMU stops. The error appears in between these two log messages with the qemuPid field. The actual
error message from QEMU appears in red.

The console of the QEMU guest is printed to the node journal as well. You can view the guest console
logs together with the Kata agent logs.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

To review the Kata agent logs and guest console logs, run:

To review the kata runtime logs, run:

To review the virtiofsd logs, run:

To review the QEMU logs, run:

Mar 11 11:57:28 openshift-worker-0 kata[2241647]: time="2023-03-11T11:57:28.587116986Z"
level=info msg="Start logging QEMU (qemuPid=2241693)" name=containerd-shim-v2 pid=2241647
sandbox=d1d4d68efc35e5ccb4331af73da459c13f46269b512774aa6bde7da34db48987
source=virtcontainers/hypervisor subsystem=qemu

Mar 11 11:57:28 openshift-worker-0 kata[2241647]: time="2023-03-11T11:57:28.607339014Z"
level=error msg="qemu-kvm: -machine q35,accel=kvm,kernel_irqchip=split,foo: Expected '=' after
parameter 'foo'" name=containerd-shim-v2 pid=2241647 qemuPid=2241693
sandbox=d1d4d68efc35e5ccb4331af73da459c13f46269b512774aa6bde7da34db48987
source=virtcontainers/hypervisor subsystem=qemu

Mar 11 11:57:28 openshift-worker-0 kata[2241647]: time="2023-03-11T11:57:28.60890737Z"
level=info msg="Stop logging QEMU (qemuPid=2241693)" name=containerd-shim-v2 pid=2241647
sandbox=d1d4d68efc35e5ccb4331af73da459c13f46269b512774aa6bde7da34db48987
source=virtcontainers/hypervisor subsystem=qemu

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t kata -g “reading guest
console”

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t kata

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t virtiofsd

$ oc debug node/<nodename> -- journalctl -D /host/var/log/journal -t kata -g "qemuPid=\d+"

OpenShift Sandboxed Containers 1.5 OpenShift sandboxed containers user guide

74

7.4. ADDITIONAL RESOURCES

For more information about gathering data for support, see Gathering data about your cluster .

CHAPTER 7. COLLECTING OPENSHIFT SANDBOXED CONTAINERS DATA

75

https://docs.openshift.com/container-platform/latest/support/gathering-cluster-data.html

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

	CHAPTER 1. UNDERSTANDING OPENSHIFT SANDBOXED CONTAINERS
	1.1. OPENSHIFT SANDBOXED CONTAINERS SUPPORTED PLATFORMS
	1.2. OPENSHIFT SANDBOXED CONTAINERS COMMON TERMS
	1.3. OPENSHIFT SANDBOXED CONTAINERS WORKLOAD MANAGEMENT
	1.3.1. OpenShift sandboxed containers building blocks
	1.3.2. RHCOS extensions
	1.3.3. OpenShift Virtualization and OpenShift sandboxed containers

	1.4. UNDERSTANDING COMPLIANCE AND RISK MANAGEMENT

	CHAPTER 2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS
	2.1. PREREQUISITES
	2.1.1. Resource requirements for OpenShift sandboxed containers
	2.1.2. Checking whether cluster nodes are eligible to run OpenShift sandboxed containers

	2.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING THE WEB CONSOLE
	2.2.1. Installing the OpenShift sandboxed containers Operator using the web console
	2.2.2. Creating the KataConfig custom resource in the web console
	2.2.3. Deploying a workload in a sandboxed container using the web console

	2.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING THE CLI
	2.3.1. Installing the OpenShift sandboxed containers Operator using the CLI
	2.3.2. Creating the KataConfig custom resource using the CLI
	2.3.3. Deploying a workload in a sandboxed container using the CLI

	2.4. INSTALLATION AND UNINSTALL TRANSITIONS
	2.5. ADDITIONAL RESOURCES

	CHAPTER 3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS
	3.1. PREREQUISITES
	3.1.1. About peer pod resource requirements in OpenShift sandboxed containers
	3.1.1.1. Modifying the peer pod VM limit per node

	3.1.2. Prerequisites for peer-pods using AWS
	3.1.2.1. Enable ports 15150 and 9000 for AWS

	3.1.3. Prerequisites for peer-pods using Azure
	3.1.4. Prerequisites for peer pods using IBM Z or IBM(R) LinuxONE with RHEL KVM

	3.2. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS WITH THE WEB CONSOLE
	3.2.1. Installing the OpenShift sandboxed containers Operator using the web console
	3.2.2. Configuring peer-pod parameters for AWS using the web console
	3.2.2.1. Creating a secret object for AWS using the web console
	3.2.2.2. Creating a peer-pod ConfigMap for AWS using the web console

	3.2.3. Configuring peer-pod parameters for Azure using the web console
	3.2.3.1. Creating a secret object for Azure using the web console
	3.2.3.2. Creating a peer-pod ConfigMap for Azure using the web console
	3.2.3.3. Creating an SSH key secret object for Azure using the web console

	3.2.4. Creating the KataConfig custom resource in the web console
	3.2.5. Deploying a workload with peer pods in a sandboxed container using the web console

	3.3. DEPLOYING OPENSHIFT SANDBOXED CONTAINERS WORKLOADS USING PEER PODS WITH THE CLI
	3.3.1. Installing the OpenShift sandboxed containers Operator using the CLI
	3.3.2. Setting up peer pods for AWS using the CLI
	3.3.2.1. Creating a secret object for AWS using the CLI
	3.3.2.2. Creating a peer-pod ConfigMap for AWS using the CLI

	3.3.3. Setting up peer pods for Azure using the CLI
	3.3.3.1. Creating a secret object for Azure using the CLI
	3.3.3.2. Creating a peer-pod ConfigMap for Azure using the CLI
	3.3.3.3. Creating an SSH key secret object for Azure using the CLI

	3.3.4. Setting up peer pods for IBM Z using the CLI
	3.3.4.1. Setting up libvirt on the KVM host
	3.3.4.2. Creating a peer-pod VM image for IBM Z
	3.3.4.3. Creating a RHEL secret for peer-pod credentials
	3.3.4.4. Creating a peer-pod ConfigMap for IBM Z using the CLI
	3.3.4.5. Creating an SSH key secret object for IBM Z using the CLI

	3.3.5. Creating the KataConfig custom resource using the CLI
	3.3.6. Deploying a workload with peer pods in a sandboxed container using the CLI

	3.4. ADDITIONAL RESOURCES

	CHAPTER 4. MONITORING OPENSHIFT SANDBOXED CONTAINERS
	4.1. ABOUT OPENSHIFT SANDBOXED CONTAINERS METRICS
	4.2. VIEWING METRICS FOR OPENSHIFT SANDBOXED CONTAINERS
	4.3. VIEWING THE OPENSHIFT SANDBOXED CONTAINERS DASHBOARD
	4.4. ADDITIONAL RESOURCES

	CHAPTER 5. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS
	5.1. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS USING THE WEB CONSOLE
	5.1.1. Deleting OpenShift sandboxed containers pods using the web console
	5.1.2. Deleting the KataConfig custom resource using the web console
	5.1.3. Deleting the OpenShift sandboxed containers Operator using the web console
	5.1.4. Deleting the OpenShift sandboxed containers namespace using the web console
	5.1.5. Deleting the KataConfig custom resource definition using the web console

	5.2. UNINSTALLING OPENSHIFT SANDBOXED CONTAINERS USING THE CLI
	5.2.1. Deleting OpenShift sandboxed containers pods using the CLI
	5.2.2. Deleting the KataConfig custom resource using the CLI
	5.2.3. Deleting the OpenShift sandboxed containers Operator using the CLI
	5.2.4. Deleting the KataConfig custom resource definition using the CLI

	CHAPTER 6. UPGRADING OPENSHIFT SANDBOXED CONTAINERS
	6.1. UPGRADING THE OPENSHIFT SANDBOXED CONTAINERS RESOURCES
	6.2. UPGRADING THE OPENSHIFT SANDBOXED CONTAINERS OPERATOR
	6.3. UPGRADING THE OPENSHIFT SANDBOXED CONTAINERS MONITOR PODS
	6.3.1. Upgrading the monitor pods using the web console
	6.3.2. Upgrading the monitor pods using the CLI

	CHAPTER 7. COLLECTING OPENSHIFT SANDBOXED CONTAINERS DATA
	7.1. COLLECTING OPENSHIFT SANDBOXED CONTAINERS DATA FOR RED HAT SUPPORT
	7.1.1. Using the must-gather tool

	7.2. ABOUT OPENSHIFT SANDBOXED CONTAINERS LOG DATA
	7.3. ENABLING DEBUG LOGS FOR OPENSHIFT SANDBOXED CONTAINERS
	7.3.1. Viewing debug logs for OpenShift sandboxed containers

	7.4. ADDITIONAL RESOURCES

