
OpenShift Online 3

Architecture

OpenShift Online Architecture Guide

Last Updated: 2020-03-31

OpenShift Online 3 Architecture

OpenShift Online Architecture Guide

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn the architecture of OpenShift Online 3 including the infrastructure and core components.
These topics also cover authentication, networking and source code management.

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. WHAT ARE THE LAYERS?
1.2. WHAT IS THE OPENSHIFT ONLINE ARCHITECTURE?
1.3. HOW IS OPENSHIFT ONLINE SECURED?

1.3.1. TLS Support

CHAPTER 2. INFRASTRUCTURE COMPONENTS
2.1. KUBERNETES INFRASTRUCTURE

2.1.1. Overview
2.1.2. Masters
2.1.3. Nodes

2.1.3.1. Kubelet
2.1.3.2. Service Proxy
2.1.3.3. Node Object Definition

2.2. CONTAINER REGISTRY
2.2.1. Overview
2.2.2. Integrated OpenShift Container Registry
2.2.3. Third Party Registries

2.2.3.1. Authentication
2.3. WEB CONSOLE

2.3.1. Overview
2.3.2. Project Overviews
2.3.3. JVM Console
2.3.4. StatefulSets

CHAPTER 3. CORE CONCEPTS
3.1. OVERVIEW
3.2. CONTAINERS AND IMAGES

3.2.1. Containers
3.2.2. Images

Image Version Tag Policy
3.2.3. Container Registries

3.3. PODS AND SERVICES
3.3.1. Pods

3.3.1.1. Pod Restart Policy
3.3.2. Services

3.3.2.1. Service Proxy
3.3.2.2. Headless services

3.3.2.2.1. Creating a headless service
3.3.2.2.2. Endpoint discovery by using a headless service

3.3.3. Labels
3.3.4. Endpoints

3.4. PROJECTS AND USERS
3.4.1. Users
3.4.2. Namespaces
3.4.3. Projects

3.4.3.1. Projects provided at installation
3.4.4. Project Idling
3.4.5. Account Pruning

3.5. BUILDS AND IMAGE STREAMS
3.5.1. Builds

5
5
6
7
7

10
10
10
10
10
10
11
11

12
12
12
12
12
12
12
13
15
16

18
18
18
18
18
19
19

20
20
22
23
24
24
25
26
26
27
27
27
27
28
28
29
29
29
29

Table of Contents

1

. .

3.5.1.1. Source-to-Image (S2I) Build
3.5.1.2. Pipeline Build

3.5.2. Image Streams
3.5.2.1. Important terms
3.5.2.2. Configuring Image Streams
3.5.2.3. Image Stream Images
3.5.2.4. Image Stream Tags
3.5.2.5. Image Stream Change Triggers
3.5.2.6. Image Stream Mappings
3.5.2.7. Working with Image Streams

3.5.2.7.1. Getting Information about Image Streams
3.5.2.7.2. Adding Additional Tags to an Image Stream
3.5.2.7.3. Adding Tags for an External Image
3.5.2.7.4. Updating an Image Stream Tag
3.5.2.7.5. Removing Image Stream Tags from an Image Stream
3.5.2.7.6. Configuring Periodic Importing of Tags

3.6. DEPLOYMENTS
3.6.1. Replication controllers
3.6.2. Replica set
3.6.3. Jobs
3.6.4. Deployments and Deployment Configurations

3.7. TEMPLATES
3.7.1. Overview

CHAPTER 4. ADDITIONAL CONCEPTS
4.1. AUTHENTICATION

4.1.1. Overview
4.1.2. Users and Groups
4.1.3. API Authentication

4.1.3.1. Impersonation
4.1.4. OAuth

4.1.4.1. OAuth Clients
4.1.4.2. Service Accounts as OAuth Clients
4.1.4.3. Redirect URIs for Service Accounts as OAuth Clients

4.1.4.3.1. API Events for OAuth
4.1.4.3.1.1. Sample API Event Caused by a Possible Misconfiguration

4.1.4.4. Integrations
4.1.4.5. OAuth Server Metadata
4.1.4.6. Obtaining OAuth Tokens

4.2. AUTHORIZATION
4.2.1. Overview
4.2.2. Evaluating Authorization
4.2.3. Collaboration

4.3. PERSISTENT STORAGE
4.3.1. Overview
4.3.2. Lifecycle of a Volume and Claim

4.3.2.1. Provisioning
4.3.2.2. Binding
4.3.2.3. Using
4.3.2.4. Releasing
4.3.2.5. Reclaiming

4.3.2.5.1. Recycling
4.3.3. Persistent Volumes

29
30
31
32
34
35
35
36
37
39
40
41
41

42
42
42
43
43
44
45
45
46
46

47
47
47
47
47
48
48
48
49
50
52
53
55
56
57
59
59
60
61
61
61

62
62
62
62
62
62
63
63

OpenShift Online 3 Architecture

2

. .

4.3.3.1. Types of Persistent Volumes
4.3.3.2. Capacity
4.3.3.3. Access Modes
4.3.3.4. OpenShift Online Restrictions
4.3.3.5. Reclaim Policy
4.3.3.6. Phase

4.3.4. Persistent Volume Claims
4.3.4.1. Storage Class
4.3.4.2. Access Modes
4.3.4.3. Resources
4.3.4.4. Claims As Volumes

4.4. SOURCE CONTROL MANAGEMENT
4.5. ADMISSION CONTROLLERS

4.5.1. Overview
4.5.2. General Admission Rules

4.6. OTHER API OBJECTS
4.6.1. LimitRange
4.6.2. ResourceQuota
4.6.3. Resource
4.6.4. Secret
4.6.5. PersistentVolume
4.6.6. PersistentVolumeClaim

4.6.6.1. Custom Resources
4.6.7. OAuth Objects

4.6.7.1. OAuthClient
4.6.7.2. OAuthClientAuthorization
4.6.7.3. OAuthAuthorizeToken
4.6.7.4. OAuthAccessToken

4.6.8. User Objects
4.6.8.1. Identity
4.6.8.2. User
4.6.8.3. UserIdentityMapping
4.6.8.4. Group

CHAPTER 5. NETWORKING
5.1. NETWORKING

5.1.1. Overview
5.1.2. OpenShift Online DNS

5.2. ROUTES
5.2.1. Overview

63
64
64
66
66
67
67
67
68
68
68
68
69
69
69
70
70
70
70
70
71
71
71
71
71
72
72
73
74
74
75
75
76

77
77
77
77
78
78

Table of Contents

3

OpenShift Online 3 Architecture

4

CHAPTER 1. OVERVIEW
OpenShift v3 is a layered system designed to expose underlying Docker-formatted container image and
Kubernetes concepts as accurately as possible, with a focus on easy composition of applications by a
developer. For example, install Ruby, push code, and add MySQL.

Unlike OpenShift v2, more flexibility of configuration is exposed after creation in all aspects of the
model. The concept of an application as a separate object is removed in favor of more flexible
composition of "services", allowing two web containers to reuse a database or expose a database
directly to the edge of the network.

1.1. WHAT ARE THE LAYERS?

The Docker service provides the abstraction for packaging and creating Linux-based, lightweight
container images. Kubernetes provides the cluster management and orchestrates containers on
multiple hosts.

OpenShift Online adds:

Source code management, builds, and deployments for developers

Managing and promoting images at scale as they flow through your system

Application management at scale

Team and user tracking for organizing a large developer organization

Networking infrastructure that supports the cluster

Figure 1.1. OpenShift Online Architecture Overview

CHAPTER 1. OVERVIEW

5

Figure 1.1. OpenShift Online Architecture Overview

1.2. WHAT IS THE OPENSHIFT ONLINE ARCHITECTURE?

OpenShift Online has a microservices-based architecture of smaller, decoupled units that work
together. It runs on top of a Kubernetes cluster, with data about the objects stored in etcd, a reliable
clustered key-value store. Those services are broken down by function:

REST APIs, which expose each of the core objects.

Controllers, which read those APIs, apply changes to other objects, and report status or write
back to the object.

Users make calls to the REST API to change the state of the system. Controllers use the REST API to
read the user’s desired state, and then try to bring the other parts of the system into sync. For example,
when a user requests a build they create a "build" object. The build controller sees that a new build has
been created, and runs a process on the cluster to perform that build. When the build completes, the
controller updates the build object via the REST API and the user sees that their build is complete.

The controller pattern means that much of the functionality in OpenShift Online is extensible. The way
that builds are run and launched can be customized independently of how images are managed, or how
deployments happen. The controllers are performing the "business logic" of the system, taking user
actions and transforming them into reality. By customizing those controllers or replacing them with your
own logic, different behaviors can be implemented. From a system administration perspective, this also

OpenShift Online 3 Architecture

6

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/rest_api_reference/#rest-api-index

means the API can be used to script common administrative actions on a repeating schedule. Those
scripts are also controllers that watch for changes and take action. OpenShift Online makes the ability
to customize the cluster in this way a first-class behavior.

To make this possible, controllers leverage a reliable stream of changes to the system to sync their view
of the system with what users are doing. This event stream pushes changes from etcd to the REST API
and then to the controllers as soon as changes occur, so changes can ripple out through the system very
quickly and efficiently. However, since failures can occur at any time, the controllers must also be able to
get the latest state of the system at startup, and confirm that everything is in the right state. This
resynchronization is important, because it means that even if something goes wrong, then the operator
can restart the affected components, and the system double checks everything before continuing. The
system should eventually converge to the user’s intent, since the controllers can always bring the
system into sync.

1.3. HOW IS OPENSHIFT ONLINE SECURED?

The OpenShift Online and Kubernetes APIs authenticate users who present credentials, and then
authorize them based on their role. Both developers and administrators can be authenticated via a
number of means, primarily OAuth tokens and X.509 client certificates. OAuth tokens are signed with
JSON Web Algorithm RS256, which is RSA signature algorithm PKCS#1 v1.5 with SHA-256.

Developers (clients of the system) typically make REST API calls from a client program like oc or to the
web console via their browser, and use OAuth bearer tokens for most communications. Infrastructure
components (like nodes) use client certificates generated by the system that contain their identities.
Infrastructure components that run in containers use a token associated with their service account to
connect to the API.

Authorization is handled in the OpenShift Online policy engine, which defines actions like "create pod" or
"list services" and groups them into roles in a policy document. Roles are bound to users or groups by
the user or group identifier. When a user or service account attempts an action, the policy engine checks
for one or more of the roles assigned to the user (e.g., cluster administrator or administrator of the
current project) before allowing it to continue.

Since every container that runs on the cluster is associated with a service account, it is also possible to
associate secrets to those service accounts and have them automatically delivered into the container.
This enables the infrastructure to manage secrets for pulling and pushing images, builds, and the
deployment components, and also allows application code to easily leverage those secrets.

1.3.1. TLS Support

All communication channels with the REST API, as well as between master components such as etcd and
the API server, are secured with TLS. TLS provides strong encryption, data integrity, and authentication
of servers with X.509 server certificates and public key infrastructure.

OpenShift Online uses Golang’s standard library implementation of crypto/tls and does not depend on
any external crypto and TLS libraries. Additionally, the client depends on external libraries for GSSAPI
authentication and OpenPGP signatures. GSSAPI is typically provided by either MIT Kerberos or
Heimdal Kerberos, which both use OpenSSL’s libcrypto. OpenPGP signature verification is handled by
libgpgme and GnuPG.

The insecure versions SSL 2.0 and SSL 3.0 are unsupported and not available. The OpenShift Online
server and oc client only provide TLS 1.2 by default. TLS 1.0 and TLS 1.1 can be enabled in the server
configuration. Both server and client prefer modern cipher suites with authenticated encryption
algorithms and perfect forward secrecy. Cipher suites with deprecated and insecure algorithms such as
RC4, 3DES, and MD5 are disabled. Some internal clients (for example, LDAP authentication) have less
restrict settings with TLS 1.0 to 1.2 and more cipher suites enabled.

CHAPTER 1. OVERVIEW

7

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-service-accounts
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-secrets
https://golang.org/pkg/crypto/tls/

Table 1.1. Supported TLS Versions

TLS Version OpenShift Online
Server

oc Client Other Clients

SSL 2.0 Unsupported Unsupported Unsupported

SSL 3.0 Unsupported Unsupported Unsupported

TLS 1.0 No [a] No [a] Maybe [b]

TLS 1.1 No [a] No [a] Maybe [b]

TLS 1.2 Yes Yes Yes

TLS 1.3 N/A [c] N/A [c] N/A [c]

[a] Disabled by default, but can be enabled in the server configuration.

[b] Some internal clients, such as the LDAP client.

[c] TLS 1.3 is still under development.

The following list of enabled cipher suites of OpenShift Online’s server and oc client are sorted in
preferred order:

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

OpenShift Online 3 Architecture

8

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

CHAPTER 1. OVERVIEW

9

CHAPTER 2. INFRASTRUCTURE COMPONENTS

2.1. KUBERNETES INFRASTRUCTURE

2.1.1. Overview

Within OpenShift Online, Kubernetes manages containerized applications across a set of containers or
hosts and provides mechanisms for deployment, maintenance, and application-scaling. The Docker
service packages, instantiates, and runs containerized applications. A Kubernetes cluster consists of one
or more masters and a set of nodes.

NOTE

OpenShift Online uses Kubernetes 1.9 and Docker 1.13.

2.1.2. Masters

The master is the host or hosts that contain the master components, including the API server, controller
manager server, and etcd. The master manages nodes in its Kubernetes cluster and schedules pods to
run on nodes.

Table 2.1. Master Components

Component Description

API Server The Kubernetes API server validates and configures the data for pods, services, and
replication controllers. It also assigns pods to nodes and synchronizes pod information
with service configuration. Can be run as a standalone process.

etcd etcd stores the persistent master state while other components watch etcd for changes
to bring themselves into the desired state. etcd can be optionally configured for high
availability, typically deployed with 2n+1 peer services.

Controller
Manager Server

The controller manager server watches etcd for changes to replication controller
objects and then uses the API to enforce the desired state. Can be run as a standalone
process. Several such processes create a cluster with one active leader at a time.

2.1.3. Nodes

A node provides the runtime environments for containers. Each node in a Kubernetes cluster has the
required services to be managed by the master. Nodes also have the required services to run pods,
including the Docker service, a kubelet, and a service proxy.

OpenShift Online creates nodes from a cloud provider, physical systems, or virtual systems. Kubernetes
interacts with node objects that are a representation of those nodes. The master uses the information
from node objects to validate nodes with health checks. A node is ignored until it passes the health
checks, and the master continues checking nodes until they are valid. The Kubernetes documentation
has more information on node management.

2.1.3.1. Kubelet

Each node has a kubelet that updates the node as specified by a container manifest, which is a YAML file

OpenShift Online 3 Architecture

10

https://kubernetes.io/docs/concepts/architecture/nodes/#management

1

2

3

4

5

Each node has a kubelet that updates the node as specified by a container manifest, which is a YAML file
that describes a pod. The kubelet uses a set of manifests to ensure that its containers are started and
that they continue to run.

A container manifest can be provided to a kubelet by:

A file path on the command line that is checked every 20 seconds.

An HTTP endpoint passed on the command line that is checked every 20 seconds.

The kubelet watching an etcd server, such as /registry/hosts/$(hostname -f), and acting on
any changes.

The kubelet listening for HTTP and responding to a simple API to submit a new manifest.

2.1.3.2. Service Proxy

Each node also runs a simple network proxy that reflects the services defined in the API on that node.
This allows the node to do simple TCP and UDP stream forwarding across a set of back ends.

2.1.3.3. Node Object Definition

The following is an example node object definition in Kubernetes:

apiVersion defines the API version to use.

kind set to Node identifies this as a definition for a node object.

metadata.labels lists any labels that have been added to the node.

metadata.name is a required value that defines the name of the node object. This value is shown in
the NAME column when running the oc get nodes command.

spec.externalID defines the fully-qualified domain name where the node can be reached. Defaults
to the metadata.name value when empty.

apiVersion: v1 1
kind: Node 2
metadata:
 creationTimestamp: null
 labels: 3
 kubernetes.io/hostname: node1.example.com
 name: node1.example.com 4
spec:
 externalID: node1.example.com 5
status:
 nodeInfo:
 bootID: ""
 containerRuntimeVersion: ""
 kernelVersion: ""
 kubeProxyVersion: ""
 kubeletVersion: ""
 machineID: ""
 osImage: ""
 systemUUID: ""

CHAPTER 2. INFRASTRUCTURE COMPONENTS

11

2.2. CONTAINER REGISTRY

2.2.1. Overview

OpenShift Online can utilize any server implementing the Docker registry API as a source of images,
including the Docker Hub, private registries run by third parties, and the integrated OpenShift Online
registry.

2.2.2. Integrated OpenShift Container Registry

OpenShift Online provides an integrated container registry called OpenShift Container Registry (OCR)
that adds the ability to automatically provision new image repositories on demand. This provides users
with a built-in location for their application builds to push the resulting images.

Whenever a new image is pushed to OCR, the registry notifies OpenShift Online about the new image,
passing along all the information about it, such as the namespace, name, and image metadata. Different
pieces of OpenShift Online react to new images, creating new builds and deployments.

2.2.3. Third Party Registries

OpenShift Online can create containers using images from third party registries, but it is unlikely that
these registries offer the same image notification support as the integrated OpenShift Online registry.
In this situation OpenShift Online will fetch tags from the remote registry upon imagestream creation.
Refreshing the fetched tags is as simple as running oc import-image <stream>. When new images are
detected, the previously-described build and deployment reactions occur.

2.2.3.1. Authentication

OpenShift Online can communicate with registries to access private image repositories using
credentials supplied by the user. This allows OpenShift to push and pull images to and from private
repositories. The Authentication topic has more information.

2.3. WEB CONSOLE

2.3.1. Overview

The OpenShift Online web console is a user interface accessible from a web browser. Developers can
use the web console to visualize, browse, and manage the contents of projects.

NOTE

JavaScript must be enabled to use the web console. For the best experience, use a web
browser that supports WebSockets.

From the About page in the web console, you can check the cluster’s version number.

OpenShift Online 3 Architecture

12

http://caniuse.com/#feat=websockets

2.3.2. Project Overviews

After logging in , the web console provides developers with an overview for the currently selected
project:

Figure 2.1. Web Console Project Overview

CHAPTER 2. INFRASTRUCTURE COMPONENTS

13

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-projects

Figure 2.1. Web Console Project Overview

The project selector allows you to switch between projects you have access to.

To quickly find services from within project view, type in your search criteria

Create new applications using a source repository or service from the service catalog.

Notifications related to your project.

The Overview tab (currently selected) visualizes the contents of your project with a high-level
view of each component.

Applications tab: Browse and perform actions on your deployments, pods, services, and routes.

Builds tab: Browse and perform actions on your builds and image streams.

Resources tab: View your current quota consumption and other resources.

Storage tab: View persistent volume claims and request storage for your applications.

Monitoring tab: View logs for builds, pods, and deployments, as well as event notifications for all
objects in your project.

Catalog tab: Quickly get to the catalog from within a project.

OpenShift Online 3 Architecture

14

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#view-projects
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#using-the-web-console-na

2.3.3. JVM Console

For pods based on Java images, the web console also exposes access to a hawt.io-based JVM console
for viewing and managing any relevant integration components. A Connect link is displayed in the pod’s
details on the Browse → Pods page, provided the container has a port named jolokia.

Figure 2.2. Pod with a Link to the JVM Console

After connecting to the JVM console, different pages are displayed depending on which components
are relevant to the connected pod.

Figure 2.3. JVM Console

CHAPTER 2. INFRASTRUCTURE COMPONENTS

15

http://hawt.io/

Figure 2.3. JVM Console

The following pages are available:

Page Description

JMX View and manage JMX domains and mbeans.

Threads View and monitor the state of threads.

ActiveMQ View and manage Apache ActiveMQ brokers.

Camel View and manage Apache Camel routes and dependencies.

OSGi View and manage the JBoss Fuse OSGi environment.

2.3.4. StatefulSets

A StatefulSet controller provides a unique identity to its pods and determines the order of deployments
and scaling. StatefulSet is useful for unique network identifiers, persistent storage, graceful deployment
and scaling, and graceful deletion and termination.

Figure 2.4. StatefulSet in OpenShift Online

OpenShift Online 3 Architecture

16

Figure 2.4. StatefulSet in OpenShift Online

CHAPTER 2. INFRASTRUCTURE COMPONENTS

17

CHAPTER 3. CORE CONCEPTS

3.1. OVERVIEW

The following topics provide high-level, architectural information on core concepts and objects you will
encounter when using OpenShift Online. Many of these objects come from Kubernetes, which is
extended by OpenShift Online to provide a more feature-rich development lifecycle platform.

Containers and images are the building blocks for deploying your applications.

Pods and services allow for containers to communicate with each other and proxy connections.

Projects and users provide the space and means for communities to organize and manage their
content together.

Builds and image streams allow you to build working images and react to new images.

Deployments add expanded support for the software development and deployment lifecycle.

Routes announce your service to the world.

Templates allow for many objects to be created at once based on customized parameters.

3.2. CONTAINERS AND IMAGES

3.2.1. Containers

The basic units of OpenShift Online applications are called containers. Linux container technologies are
lightweight mechanisms for isolating running processes so that they are limited to interacting with only
their designated resources.

Many application instances can be running in containers on a single host without visibility into each
others' processes, files, network, and so on. Typically, each container provides a single service (often
called a "micro-service"), such as a web server or a database, though containers can be used for arbitrary
workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. More recently
the Docker project has developed a convenient management interface for Linux containers on a host.
OpenShift Online and Kubernetes add the ability to orchestrate Docker-formatted containers across
multi-host installations.

Though you do not directly interact with the Docker CLI or service when using OpenShift Online,
understanding their capabilities and terminology is important for understanding their role in OpenShift
Online and how your applications function inside of containers. The docker RPM is available as part of
RHEL 7, as well as CentOS and Fedora, so you can experiment with it separately from OpenShift Online.
Refer to the article Get Started with Docker Formatted Container Images on Red Hat Systems for a
guided introduction.

3.2.2. Images

Containers in OpenShift Online are based on Docker-formatted container images. An image is a binary
that includes all of the requirements for running a single container, as well as metadata describing its
needs and capabilities.

OpenShift Online 3 Architecture

18

https://access.redhat.com/articles/1353593
https://access.redhat.com/articles/881893

You can think of it as a packaging technology. Containers only have access to resources defined in the
image unless you give the container additional access when creating it. By deploying the same image in
multiple containers across multiple hosts and load balancing between them, OpenShift Online can
provide redundancy and horizontal scaling for a service packaged into an image.

You can use the Docker CLI directly to build images, but OpenShift Online also supplies builder images
that assist with creating new images by adding your code or configuration to existing images.

Because applications develop over time, a single image name can actually refer to many different
versions of the "same" image. Each different image is referred to uniquely by its hash (a long
hexadecimal number e.g. fd44297e2ddb050ec4f…) which is usually shortened to 12 characters (e.g.
fd44297e2ddb).

Image Version Tag Policy
Rather than version numbers, the Docker service allows applying tags (such as v1, v2.1, GA, or the
default latest) in addition to the image name to further specify the image desired, so you may see the
same image referred to as centos (implying the latest tag), centos:centos7, or fd44297e2ddb.

WARNING

Do not use the latest tag for any official OpenShift Online images. These are
images that start with openshift3/. latest can refer to a number of versions, such as
3.4, or 3.5.

How you tag the images dictates the updating policy. The more specific you are, the less frequently the
image will be updated. Use the following to determine your chosen OpenShift Online images policy:

vX.Y

The vX.Y tag points to X.Y.Z-<number>. For example, if the registry-console image is updated to
v3.4, it points to the newest 3.4.Z-<number> tag, such as 3.4.1-8.

X.Y.Z

Similar to the vX.Y example above, the X.Y.Z tag points to the latest X.Y.Z-<number>. For example,
3.4.1 would point to 3.4.1-8

X.Y.Z-<number>

The tag is unique and does not change. When using this tag, the image does not update if an image is
updated. For example, the 3.4.1-8 will always point to 3.4.1-8, even if an image is updated.

3.2.3. Container Registries

A container registry is a service for storing and retrieving Docker-formatted container images. A registry
contains a collection of one or more image repositories. Each image repository contains one or more
tagged images. Docker provides its own registry, the Docker Hub, and you can also use private or third-
party registries. Red Hat provides a registry at registry.access.redhat.com for subscribers. OpenShift
Online can also supply its own internal registry for managing custom container images.

The relationship between containers, images, and registries is depicted in the following diagram:

CHAPTER 3. CORE CONCEPTS

19

https://registry.hub.docker.com/

3.3. PODS AND SERVICES

3.3.1. Pods

OpenShift Online leverages the Kubernetes concept of a pod, which is one or more containers deployed
together on one host, and the smallest compute unit that can be defined, deployed, and managed.

Pods are the rough equivalent of a machine instance (physical or virtual) to a container. Each pod is
allocated its own internal IP address, therefore owning its entire port space, and containers within pods
can share their local storage and networking.

Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their
container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code,
may be removed after exiting, or may be retained in order to enable access to the logs of their
containers.

OpenShift Online treats pods as largely immutable; changes cannot be made to a pod definition while it
is running. OpenShift Online implements changes by terminating an existing pod and recreating it with
modified configuration, base image(s), or both. Pods are also treated as expendable, and do not
maintain state when recreated. Therefore pods should usually be managed by higher-level controllers,
rather than directly by users.

WARNING

Bare pods that are not managed by a replication controller will be not rescheduled
upon node disruption.

OpenShift Online 3 Architecture

20

Below is an example definition of a pod that provides a long-running service, which is actually a part of
the OpenShift Online infrastructure: the integrated container registry. It demonstrates many features of
pods, most of which are discussed in other topics and thus only briefly mentioned here:

Example 3.1. Pod Object Definition (YAML)

apiVersion: v1
kind: Pod
metadata:
 annotations: { ... }
 labels: 1
 deployment: docker-registry-1
 deploymentconfig: docker-registry
 docker-registry: default
 generateName: docker-registry-1- 2
spec:
 containers: 3
 - env: 4
 - name: OPENSHIFT_CA_DATA
 value: ...
 - name: OPENSHIFT_CERT_DATA
 value: ...
 - name: OPENSHIFT_INSECURE
 value: "false"
 - name: OPENSHIFT_KEY_DATA
 value: ...
 - name: OPENSHIFT_MASTER
 value: https://master.example.com:8443
 image: openshift/origin-docker-registry:v0.6.2 5
 imagePullPolicy: IfNotPresent
 name: registry
 ports: 6
 - containerPort: 5000
 protocol: TCP
 resources: {}
 securityContext: { ... } 7
 volumeMounts: 8
 - mountPath: /registry
 name: registry-storage
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-br6yz
 readOnly: true
 dnsPolicy: ClusterFirst
 imagePullSecrets:
 - name: default-dockercfg-at06w
 restartPolicy: Always 9
 serviceAccount: default 10
 volumes: 11
 - emptyDir: {}
 name: registry-storage
 - name: default-token-br6yz
 secret:
 secretName: default-token-br6yz

CHAPTER 3. CORE CONCEPTS

21

1

2

3

4

5

6

7

8

9

10

11

Pods can be "tagged" with one or more labels, which can then be used to select and manage
groups of pods in a single operation. The labels are stored in key/value format in the metadata
hash. One label in this example is docker-registry=default.

Pods must have a unique name within their namespace. A pod definition may specify the basis of a
name with the generateName attribute, and random characters will be added automatically to
generate a unique name.

containers specifies an array of container definitions; in this case (as with most), just one.

Environment variables can be specified to pass necessary values to each container.

Each container in the pod is instantiated from its own Docker-formatted container image.

The container can bind to ports which will be made available on the pod’s IP.

OpenShift Online defines a security context for containers which specifies whether they are
allowed to run as privileged containers, run as a user of their choice, and more. The default context
is very restrictive but administrators can modify this as needed.

The container specifies where external storage volumes should be mounted within the container. In
this case, there is a volume for storing the registry’s data, and one for access to credentials the
registry needs for making requests against the OpenShift Online API.

The pod restart policy with possible values Always, OnFailure, and Never. The default value is
Always.

Pods making requests against the OpenShift Online API is a common enough pattern that there is
a serviceAccount field for specifying which service account user the pod should authenticate as
when making the requests. This enables fine-grained access control for custom infrastructure
components.

The pod defines storage volumes that are available to its container(s) to use. In this case, it
provides an ephemeral volume for the registry storage and a secret volume containing the service
account credentials.

NOTE

This pod definition does not include attributes that are filled by OpenShift Online
automatically after the pod is created and its lifecycle begins. The Kubernetes pod
documentation has details about the functionality and purpose of pods.

3.3.1.1. Pod Restart Policy

A pod restart policy determines how OpenShift Online responds when containers in that pod exit. The
policy applies to all containers in that pod.

The possible values are:

Always - Tries restarting a successfully exited container on the pod continuously, with an
exponential back-off delay (10s, 20s, 40s) until the pod is restarted. The default is Always.

OnFailure - Tries restarting a failed container on the pod with an exponential back-off delay
(10s, 20s, 40s) capped at 5 minutes.

Never - Does not try to restart exited or failed containers on the pod. Pods immediately fail and

OpenShift Online 3 Architecture

22

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-service-accounts
https://kubernetes.io/docs/concepts/workloads/pods/pod/

Never - Does not try to restart exited or failed containers on the pod. Pods immediately fail and
exit.

Once bound to a node, a pod will never be bound to another node. This means that a controller is
necessary in order for a pod to survive node failure:

Condition Controller Type Restart Policy

Pods that are expected to
terminate (such as batch
computations)

Job OnFailure or Never

Pods that are expected to not
terminate (such as web servers)

Replication Controller Always.

Pods that need to run one-per-
machine

Daemonset Any

If a container on a pod fails and the restart policy is set to OnFailure, the pod stays on the node and the
container is restarted. If you do not want the container to restart, use a restart policy of Never.

If an entire pod fails, OpenShift Online starts a new pod. Developers need to address the possibility that
applications might be restarted in a new pod. In particular, applications need to handle temporary files,
locks, incomplete output, and so forth caused by previous runs.

NOTE

Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud
provider is down, the kubelet prevents OpenShift Online from restarting.

If the underlying cloud provider endpoints are not reliable, do not install a cluster using
cloud provider integration. Install the cluster as if it was in a no-cloud environment. It is
not recommended to toggle cloud provider integration on or off in an installed cluster.

For details on how OpenShift Online uses restart policy with failed containers, see the Example States in
the Kubernetes documentation.

3.3.2. Services

A Kubernetes service serves as an internal load balancer. It identifies a set of replicated pods in order to
proxy the connections it receives to them. Backing pods can be added to or removed from a service
arbitrarily while the service remains consistently available, enabling anything that depends on the service
to refer to it at a consistent address. The default service clusterIP addresses are from the OpenShift
Online internal network and they are used to permit pods to access each other.

Services are assigned an IP address and port pair that, when accessed, proxy to an appropriate backing
pod. A service uses a label selector to find all the containers running that provide a certain network
service on a certain port.

Like pods, services are REST objects. The following example shows the definition of a service for the
pod defined above:

Example 3.2. Service Object Definition (YAML)

CHAPTER 3. CORE CONCEPTS

23

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states
http://kubernetes.io/docs/user-guide/services

1

2

3

4

5

The service name docker-registry is also used to construct an environment variable with the
service IP that is inserted into other pods in the same namespace. The maximum name length is
63 characters.

The label selector identifies all pods with the docker-registry=default label attached as its
backing pods.

Virtual IP of the service, allocated automatically at creation from a pool of internal IPs.

Port the service listens on.

Port on the backing pods to which the service forwards connections.

The Kubernetes documentation has more information on services.

3.3.2.1. Service Proxy

OpenShift Online has an iptables-based implementation of the service-routing infrastructure. It uses
probabilistic iptables rewriting rules to distribute incoming service connections between the endpoint
pods. It also requires that all endpoints are always able to accept connections.

3.3.2.2. Headless services

If your application does not need load balancing or single-service IP addresses, you can create a
headless service. When you create a headless service, no load-balancing or proxying is done and no
cluster IP is allocated for this service. For such services, DNS is automatically configured depending on
whether the service has selectors defined or not.

Services with selectors: For headless services that define selectors, the endpoints controller creates
Endpoints records in the API and modifies the DNS configuration to return A records (addresses) that
point directly to the pods backing the service.

Services without selectors: For headless services that do not define selectors, the endpoints controller
does not create Endpoints records. However, the DNS system looks for and configures the following
records:

For ExternalName type services, CNAME records.

For all other service types, A records for any endpoints that share a name with the service.

apiVersion: v1
kind: Service
metadata:
 name: docker-registry 1
spec:
 selector: 2
 docker-registry: default
 clusterIP: 172.30.136.123 3
 ports:
 - nodePort: 0
 port: 5000 4
 protocol: TCP
 targetPort: 5000 5

OpenShift Online 3 Architecture

24

http://kubernetes.io/docs/user-guide/services/

1

2

3

3.3.2.2.1. Creating a headless service

Creating a headless service is similar to creating a standard service, but you do not declare the ClusterIP
address. To create a headless service, add the clusterIP: None parameter value to the service YAML
definition.

For example, for a group of pods that you want to be a part of the same cluster or service.

List of pods

You can define the headless service as:

Headless service definition

Name of the headless service.

Setting clusterIP variable to None declares a headless service.

Selects all pods that have frontend label.

Also, headless service does not have any IP address of its own.

$ oc get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
frontend-1-287hw 1/1 Running 0 7m 172.17.0.3 node_1
frontend-1-68km5 1/1 Running 0 7m 172.17.0.6 node_1

apiVersion: v1
kind: Service
metadata:
 labels:
 app: ruby-helloworld-sample
 template: application-template-stibuild
 name: frontend-headless 1
spec:
 clusterIP: None 2
 ports:
 - name: web
 port: 5432
 protocol: TCP
 targetPort: 8080
 selector:
 name: frontend 3
 sessionAffinity: None
 type: ClusterIP
status:
 loadBalancer: {}

$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
frontend ClusterIP 172.30.232.77 <none> 5432/TCP 12m
frontend-headless ClusterIP None <none> 5432/TCP 10m

CHAPTER 3. CORE CONCEPTS

25

3.3.2.2.2. Endpoint discovery by using a headless service

The benefit of using a headless service is that you can discover a pod’s IP address directly. Standard
services act as load balancer or proxy and give access to the workload object by using the service name.
With headless services, the service name resolves to the set of IP addresses of the pods that are
grouped by the service.

When you look up the DNS A record for a standard service, you get the loadbalanced IP of the service.

But for a headless service, you get the list of IPs of individual pods.

NOTE

For using a headless service with a StatefulSet and related use cases where you need to
resolve DNS for the pod during initialization and termination, set
publishNotReadyAddresses to true (the default value is false). When
publishNotReadyAddresses is set to true, it indicates that DNS implementations must
publish the notReadyAddresses of subsets for the Endpoints associated with the
Service.

3.3.3. Labels

Labels are used to organize, group, or select API objects. For example, pods are "tagged" with labels,
and then services use label selectors to identify the pods they proxy to. This makes it possible for
services to reference groups of pods, even treating pods with potentially different containers as related
entities.

Most objects can include labels in their metadata. So labels can be used to group arbitrarily-related
objects; for example, all of the pods, services, replication controllers, and deployment configurations of
a particular application can be grouped.

Labels are simple key/value pairs, as in the following example:

Consider:

A pod consisting of an nginx container, with the label role=webserver.

A pod consisting of an Apache httpd container, with the same label role=webserver.

A service or replication controller that is defined to use pods with the role=webserver label treats both
of these pods as part of the same group.

The Kubernetes documentation has more information on labels.

$ dig frontend.test A +search +short
172.30.232.77

$ dig frontend-headless.test A +search +short
172.17.0.3
172.17.0.6

labels:
 key1: value1
 key2: value2

OpenShift Online 3 Architecture

26

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels

3.3.4. Endpoints

The servers that back a service are called its endpoints, and are specified by an object of type Endpoints
with the same name as the service. When a service is backed by pods, those pods are normally specified
by a label selector in the service specification, and OpenShift Online automatically creates the
Endpoints object pointing to those pods.

In some cases, you may want to create a service but have it be backed by external hosts rather than by
pods in the OpenShift Online cluster. In this case, you can leave out the selector field in the service, and
create the Endpoints object manually .

Note that OpenShift Online will not let most users manually create an Endpoints object that points to an
IP address in the network blocks reserved for pod and service IPs. Only cluster admins or other users
with permission to create resources under endpoints/restricted can create such Endpoint objects.

3.4. PROJECTS AND USERS

3.4.1. Users

Interaction with OpenShift Online is associated with a user. An OpenShift Online user object represents
an actor which may be granted permissions in the system by

Several types of users can exist:

Regular users This is the way most interactive OpenShift Online users will be represented. Regular
users are created automatically in the system upon first login, or can be created via the
API. Regular users are represented with the User object. Examples: joe alice

System users Many of these are created automatically when the infrastructure is defined, mainly for
the purpose of enabling the infrastructure to interact with the API securely. They
include a cluster administrator (with access to everything), a per-node user, users for
use by routers and registries, and various others. Finally, there is an anonymous
system user that is used by default for unauthenticated requests. Examples:
system:admin system:openshift-registry system:node:node1.example.com

Service accounts These are special system users associated with projects; some are created
automatically when the project is first created, while project administrators can create
more for the purpose of defining access to the contents of each project. Service
accounts are represented with the ServiceAccount object. Examples:
system:serviceaccount:default:deployer
system:serviceaccount:foo:builder

Every user must authenticate in some way in order to access OpenShift Online. API requests with no
authentication or invalid authentication are authenticated as requests by the anonymous system user.
Once authenticated, policy determines what the user is authorized to do.

3.4.2. Namespaces

A Kubernetes namespace provides a mechanism to scope resources in a cluster. In OpenShift Online, a
project is a Kubernetes namespace with additional annotations.

Namespaces provide a unique scope for:

CHAPTER 3. CORE CONCEPTS

27

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-integrating-external-services

Named resources to avoid basic naming collisions.

Delegated management authority to trusted users.

The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no namespace,
including nodes and users.

The Kubernetes documentation has more information on namespaces.

3.4.3. Projects

A project is a Kubernetes namespace with additional annotations, and is the central vehicle by which
access to resources for regular users is managed. A project allows a community of users to organize and
manage their content in isolation from other communities. Users must be given access to projects by
administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

The mandatory name is a unique identifier for the project and is most visible when using the CLI
tools or API. The maximum name length is 63 characters.

The optional displayName is how the project is displayed in the web console (defaults to
name).

The optional description can be a more detailed description of the project and is also visible in
the web console.

Each project scopes its own set of:

Objects Pods, services, replication controllers, etc.

Policies Rules for which users can or cannot perform actions on objects.

Constraints Quotas for each kind of object that can be limited.

Service accounts Service accounts act automatically with designated access to objects in the project.

Cluster administrators can create projects and delegate administrative rights for the project to any
member of the user community. Cluster administrators can also allow developers to create their own
projects.

Developers and administrators can interact with projects using the CLI or the web console.

3.4.3.1. Projects provided at installation

OpenShift Online comes with a number of projects out of the box, and openshift is the most essential
to users:

openshift A user-facing project, mainly for housing objects for day-to-day tasks. These include any
application objects for access by multiple projects, such as templates and images. These objects should
be those that do not require communication between the pods.

OpenShift Online 3 Architecture

28

https://kubernetes.io/docs/tasks/administer-cluster/namespaces/
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/cli_reference/#cli-reference-index

3.4.4. Project Idling

In OpenShift Online Starter, a project that is inactive for more than 24 hours is idled. When a project’s
network activity falls below a configured threshold, a project is deemed inactive. When a project is idled,
the replica count is set to 0 and all pods are deleted. All persistent volumes (PVs) and persistent volume
claims (PVCs) in the project are left untouched. Upon receiving network traffic, the replica count will be
scaled back to whatever it was before being idled.

In the web console, you will see your deployment as Idled due to inactivity and you can manually scale
the deployment back up.

If network traffic does not restore a project’s replica counts, then you may have to manually scale up the
deployment.

3.4.5. Account Pruning

If your OpenShift Online Starter account is inactive, meaning that you have had no running pods in your
project for 3 days, you will receive a warning email that your account is to be deprovisioned. If you do not
take corrective action and create pods within 5 days, your account is automatically deprovisioned. Once
your account is deprovisioned, you can register again.

3.5. BUILDS AND IMAGE STREAMS

3.5.1. Builds

A build is the process of transforming input parameters into a resulting object. Most often, the process
is used to transform input parameters or source code into a runnable image. A BuildConfig object is the
definition of the entire build process.

OpenShift Online leverages Kubernetes by creating Docker-formatted containers from build images
and pushing them to a container registry.

Build objects share common characteristics: inputs for a build, the need to complete a build process,
logging the build process, publishing resources from successful builds, and publishing the final status of
the build. Builds take advantage of resource restrictions, specifying limitations on resources such as
CPU usage, memory usage, and build or pod execution time.

The resulting object of a build depends on the builder used to create it. For Docker and S2I builds, the
resulting objects are runnable images. For Custom builds, the resulting objects are whatever the builder
image author has specified.

Additionally, the Pipeline build strategy can be used to implement sophisticated workflows:

continuous integration

continuous deployment

For a list of build commands, see the Developer’s Guide.

For more information on how OpenShift Online leverages Docker for builds, see the upstream
documentation.

3.5.1.1. Source-to-Image (S2I) Build

Source-to-Image (S2I) is a tool for building reproducible, Docker-formatted container images. It

CHAPTER 3. CORE CONCEPTS

29

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-how-builds-work
https://github.com/openshift/origin/blob/master/docs/builds.md#how-it-works
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/creating_images/#creating-images-s2i

produces ready-to-run images by injecting application source into a container image and assembling a
new image. The new image incorporates the base image (the builder) and built source and is ready to
use with the docker run command. S2I supports incremental builds, which re-use previously
downloaded dependencies, previously built artifacts, etc.

The advantages of S2I include the following:

Image
flexibility

S2I scripts can be written to inject application code into almost any existing Docker-
formatted container image, taking advantage of the existing ecosystem. Note that, currently,
S2I relies on tar to inject application source, so the image needs to be able to process tarred
content.

Speed With S2I, the assemble process can perform a large number of complex operations without
creating a new layer at each step, resulting in a fast process. In addition, S2I scripts can be
written to re-use artifacts stored in a previous version of the application image, rather than
having to download or build them each time the build is run.

Patchability S2I allows you to rebuild the application consistently if an underlying image needs a patch
due to a security issue.

Operational
efficiency

By restricting build operations instead of allowing arbitrary actions, as a Dockerfile would
allow, the PaaS operator can avoid accidental or intentional abuses of the build system.

Operational
security

Building an arbitrary Dockerfile exposes the host system to root privilege escalation. This can
be exploited by a malicious user because the entire Docker build process is run as a user with
Docker privileges. S2I restricts the operations performed as a root user and can run the
scripts as a non-root user.

User
efficiency

S2I prevents developers from performing arbitrary yum install type operations, which could
slow down development iteration, during their application build.

Ecosystem S2I encourages a shared ecosystem of images where you can leverage best practices for
your applications.

Reproducibili
ty

Produced images can include all inputs including specific versions of build tools and
dependencies. This ensures that the image can be reproduced precisely.

3.5.1.2. Pipeline Build

The Pipeline build strategy allows developers to define a Jenkins pipeline for execution by the Jenkins
pipeline plugin. The build can be started, monitored, and managed by OpenShift Online in the same way
as any other build type.

Pipeline workflows are defined in a Jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

The first time a project defines a build configuration using a Pipeline strategy, OpenShift Online
instantiates a Jenkins server to execute the pipeline. Subsequent Pipeline build configurations in the
project share this Jenkins server.

NOTE

OpenShift Online 3 Architecture

30

NOTE

The Jenkins server is not automatically removed, even if all Pipeline build configurations
are deleted. It must be manually deleted by the user.

For more information about Jenkins Pipelines, see the Jenkins documentation.

3.5.2. Image Streams

An image stream and its associated tags provide an abstraction for referencing Docker images from
within OpenShift Online. The image stream and its tags allow you to see what images are available and
ensure that you are using the specific image you need even if the image in the repository changes.

Image streams do not contain actual image data, but present a single virtual view of related images,
similar to an image repository.

You can configure Builds and Deployments to watch an image stream for notifications when new
images are added and react by performing a Build or Deployment, respectively.

For example, if a Deployment is using a certain image and a new version of that image is created, a
Deployment could be automatically performed to pick up the new version of the image.

However, if the image stream tag used by the Deployment or Build is not updated, then even if the
Docker image in the Docker registry is updated, the Build or Deployment will continue using the previous
(presumably known good) image.

The source images can be stored in any of the following:

OpenShift Online’s integrated registry

An external registry, for example registry.access.redhat.com or hub.docker.com

Other image streams in the OpenShift Online cluster

When you define an object that references an image stream tag (such as a Build or Deployment
configuration), you point to an image stream tag, not the Docker repository. When you Build or Deploy
your application, OpenShift Online queries the Docker repository using the image stream tag to locate
the associated ID of the image and uses that exact image.

The image stream metadata is stored in the etcd instance along with other cluster information.

The following image stream contains two tags: 34 which points to a Python v3.4 image and 35 which
points to a Python v3.5 image:

oc describe is python
Name: python
Namespace: imagestream
Created: 25 hours ago
Labels: app=python
Annotations: openshift.io/generated-by=OpenShiftWebConsole
 openshift.io/image.dockerRepositoryCheck=2017-10-03T19:48:00Z
Docker Pull Spec: docker-registry.default.svc:5000/imagestream/python
Image Lookup: local=false
Unique Images: 2
Tags: 2

CHAPTER 3. CORE CONCEPTS

31

https://jenkins.io/doc/pipeline/
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#image-change-triggers
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#image-change-trigger

34
 tagged from centos/python-34-centos7

 * centos/python-34-
centos7@sha256:28178e2352d31f240de1af1370be855db33ae9782de737bb005247d8791a54d0
 14 seconds ago

35
 tagged from centos/python-35-centos7

 * centos/python-35-
centos7@sha256:2efb79ca3ac9c9145a63675fb0c09220ab3b8d4005d35e0644417ee552548b10
 7 seconds ago

Using image streams has several significant benefits:

You can tag, rollback a tag, and quickly deal with images, without having to re-push using the
command line.

You can trigger Builds and Deployments when a new image is pushed to the registry. Also,
OpenShift Online has generic triggers for other resources (such as Kubernetes objects).

You can mark a tag for periodic re-import . If the source image has changed, that change is
picked up and reflected in the image stream, which triggers the Build and/or Deployment flow,
depending upon the Build or Deployment configuration.

You can share images using fine-grained access control and quickly distribute images across
your teams.

If the source image changes, the image stream tag will still point to a known-good version of
the image, ensuring that your application will not break unexpectedly.

You can configure security around who can view and use the images through permissions on the
image stream objects.

Users that lack permission to read or list images on the cluster level can still retrieve the images
tagged in a project using image streams.

For a curated set of image streams, see the OpenShift Image Streams and Templates library .

When using image streams, it is important to understand what the image stream tag is pointing to and
how changes to tags and images can affect you. For example:

If your image stream tag points to a Docker image tag, you need to understand how that Docker
image tag is updated. For example, a Docker image tag docker.io/ruby:2.4 will probably always
point to a v2.4 ruby image. But, a Docker image tag docker.io/ruby:latest will probably change
with major versions. So, the Docker image tag that a image stream tag points to can tell you how
stable the image stream tag will be, if you choose to reference it.

If your image stream tag follows another image stream tag (it does not point directly to a
docker image tag), it is possible that the image stream tag will be updated to follow a different
image stream tag in the future. Again, this could result in picking up an incompatible version
change.

3.5.2.1. Important terms

Docker repository

OpenShift Online 3 Architecture

32

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#importing-tag-and-image-metadata
https://github.com/openshift/library

A collection of related docker images and tags identifying them. For example, the OpenShift Jenkins
images are in a Docker repository:

docker.io/openshift/jenkins-2-centos7

Docker registry

A content server that can store and service images from Docker repositories. For example:

registry.access.redhat.com

Docker image

A specific set of content that can be run as a container. Usually associated with a particular tag within
a Docker repository.

Docker image tag

A label applied to a Docker image in a repository that distinguishes a specific image. For example,
here 3.6.0 is a tag:

docker.io/openshift/jenkins-2-centos7:3.6.0

NOTE

A Docker image tag can be updated to point to new Docker image content at any time.

Docker image ID

A SHA (Secure Hash Algorithm) code that can be used to pull an image. For example:

docker.io/openshift/jenkins-2-centos7@sha256:ab312bda324

NOTE

A SHA image ID cannot change. A specific SHA identifier always references the exact
same docker image content.

Image stream

An OpenShift Online object that contains pointers to any number of Docker-formatted container
images identified by tags. You can think of an image stream as equivalent to a Docker repository.

Image stream tag

A named pointer to an image in an image stream. An image stream tag is similar to a Docker image
tag. See Image Stream Tag below.

Image stream image

An image that allows you to retrieve a specific Docker image from a particular image stream where it
is tagged. An image stream image is an API resource object that pulls together some metadata
about a particular image SHA identifier. See Image Stream Images below.

Image stream trigger

A trigger that causes a specific action when an image stream tag changes. For example, importing
can cause the value of the tag to change, which causes a trigger to fire when there are Deployments,
Builds, or other resources listening for those. See Image Stream Triggers below.

CHAPTER 3. CORE CONCEPTS

33

1

2

3

4

5

3.5.2.2. Configuring Image Streams

An image stream object file contains the following elements.

NOTE

See the Developer Guide for details on managing images and image streams.

Image Stream Object Definition

The name of the image stream.

Docker repository path where new images can be pushed to add/update them in this image stream.

The SHA identifier that this image stream tag currently references. Resources that reference this
image stream tag use this identifier.

The SHA identifier that this image stream tag previously referenced. Can be used to rollback to an
older image.

The image stream tag name.

apiVersion: v1
kind: ImageStream
metadata:
 annotations:
 openshift.io/generated-by: OpenShiftNewApp
 creationTimestamp: 2017-09-29T13:33:49Z
 generation: 1
 labels:
 app: ruby-sample-build
 template: application-template-stibuild
 name: origin-ruby-sample 1
 namespace: test
 resourceVersion: "633"
 selflink: /oapi/v1/namespaces/test/imagestreams/origin-ruby-sample
 uid: ee2b9405-c68c-11e5-8a99-525400f25e34
spec: {}
status:
 dockerImageRepository: 172.30.56.218:5000/test/origin-ruby-sample 2
 tags:
 - items:
 - created: 2017-09-02T10:15:09Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d 3
 generation: 2
 image: sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5 4
 - created: 2017-09-29T13:40:11Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
 generation: 1
 image: sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 tag: latest 5

OpenShift Online 3 Architecture

34

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-managing-images

For a sample build configuration that references an image stream, see What Is a BuildConfig? in the
Strategy stanza of the configuration.

For a sample deployment configuration that references an image stream, see Creating a Deployment
Configuration in the Strategy stanza of the configuration.

3.5.2.3. Image Stream Images

An image stream image points from within an image stream to a particular image ID.

Image stream images allow you to retrieve metadata about an image from a particular image stream
where it is tagged.

Image stream image objects are automatically created in OpenShift Online whenever you import or tag
an image into the image stream. You should never have to explicitly define an image stream image
object in any image stream definition that you use to create image streams.

The image stream image consists of the image stream name and image ID from the repository,
delimited by an @ sign:

<image-stream-name>@<image-id>

To refer to the image in the image stream object example above , the image stream image looks like:

origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d

3.5.2.4. Image Stream Tags

An image stream tag is a named pointer to an image in an image stream. It is often abbreviated as istag.
An image stream tag is used to reference or retrieve an image for a given image stream and tag.

Image stream tags can reference any local or externally managed image. It contains a history of images
represented as a stack of all images the tag ever pointed to. Whenever a new or existing image is tagged
under particular image stream tag, it is placed at the first position in the history stack. The image
previously occupying the top position will be available at the second position, and so forth. This allows
for easy rollbacks to make tags point to historical images again.

The following image stream tag is from the image stream object example above :

Image Stream Tag with Two Images in its History

 tags:
 - items:
 - created: 2017-09-02T10:15:09Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 generation: 2
 image: sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
 - created: 2017-09-29T13:40:11Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
 generation: 1
 image: sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 tag: latest

CHAPTER 3. CORE CONCEPTS

35

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#creating-a-deployment-configuration

Image stream tags can be permanent tags or tracking tags.

Permanent tags are version-specific tags that point to a particular version of an image, such as
Python 3.5.

Tracking tags are reference tags that follow another image stream tag and could be updated in
the future to change which image they follow, much like a symlink. Note that these new levels
are not guaranteed to be backwards-compatible.
For example, the latest image stream tags that ship with OpenShift Online are tracking tags.
This means consumers of the latest image stream tag will be updated to the newest level of the
framework provided by the image when a new level becomes available. A latest image stream
tag to v3.6 could be changed to v3.7 at any time. It is important to be aware that these latest
image stream tags behave differently than the Docker latest tag. The latest image stream tag,
in this case, does not point to the latest image in the Docker repository. It points to another
image stream tag, which might not be the latest version of an image. For example, if the latest
image stream tag points to v3.2 of an image, when the 3.3 version is released, the latest tag is
not automatically updated to v3.3, and remains at v3.2 until it is manually updated to point to a
v3.3 image stream tag.

NOTE

Tracking tags are limited to a single image stream and cannot reference other
image streams.

You can create your own image stream tags for your own needs. See the Recommended Tagging
Conventions.

The image stream tag is composed of the name of the image stream and a tag, separated by a colon:

<image stream name>:<tag>

For example, to refer to the
sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d image in the
image stream object example above , the image stream tag would be:

origin-ruby-sample:latest

3.5.2.5. Image Stream Change Triggers

Image stream triggers allow your Builds and Deployments to be automatically invoked when a new
version of an upstream image is available.

For example, Builds and Deployments can be automatically started when an image stream tag is
modified. This is achieved by monitoring that particular image stream tag and notifying the Build or
Deployment when a change is detected.

The ImageChange trigger results in a new replication controller whenever the content of an image
stream tag changes (when a new version of the image is pushed).

Example 3.3. An ImageChange Trigger

triggers:
 - type: "ImageChange"

OpenShift Online 3 Architecture

36

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#tag-naming

1 If the imageChangeParams.automatic field is set to false, the trigger is disabled.

With the above example, when the latest tag value of the origin-ruby-sample image stream changes
and the new image value differs from the current image specified in the deployment configuration’s
helloworld container, a new replication controller is created using the new image for the helloworld
container.

NOTE

If an ImageChange trigger is defined on a deployment configuration (with a
ConfigChange trigger and automatic=false, or with automatic=true) and the
ImageStreamTag pointed by the ImageChange trigger does not exist yet, then the
initial deployment process will automatically start as soon as an image is imported or
pushed by a build to the ImageStreamTag.

3.5.2.6. Image Stream Mappings

When the integrated registry receives a new image, it creates and sends an image stream mapping to
OpenShift Online, providing the image’s project, name, tag, and image metadata.

NOTE

Configuring image stream mappings is an advanced feature.

This information is used to create a new image (if it does not already exist) and to tag the image into the
image stream. OpenShift Online stores complete metadata about each image, such as commands, entry
point, and environment variables. Images in OpenShift Online are immutable and the maximum name
length is 63 characters.

NOTE

See the Developer Guide for details on manually tagging images.

The following image stream mapping example results in an image being tagged as test/origin-ruby-
sample:latest:

Image Stream Mapping Object Definition

 imageChangeParams:
 automatic: true 1
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 namespace: "myproject"
 containerNames:
 - "helloworld"

apiVersion: v1
kind: ImageStreamMapping
metadata:
 creationTimestamp: null

CHAPTER 3. CORE CONCEPTS

37

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-managing-images

 name: origin-ruby-sample
 namespace: test
tag: latest
image:
 dockerImageLayers:
 - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name: sha256:ee1dd2cb6df21971f4af6de0f1d7782b81fb63156801cfde2bb47b4247c23c29
 size: 196634330
 - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name: sha256:ca062656bff07f18bff46be00f40cfbb069687ec124ac0aa038fd676cfaea092
 size: 177723024
 - name: sha256:63d529c59c92843c395befd065de516ee9ed4995549f8218eac6ff088bfa6b6e
 size: 55679776
 - name: sha256:92114219a04977b5563d7dff71ec4caa3a37a15b266ce42ee8f43dba9798c966
 size: 11939149
 dockerImageMetadata:
 Architecture: amd64
 Config:
 Cmd:
 - /usr/libexec/s2i/run
 Entrypoint:
 - container-entrypoint
 Env:
 - RACK_ENV=production
 - OPENSHIFT_BUILD_NAMESPACE=test
 - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-world.git
 - EXAMPLE=sample-app
 - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Labels:
 build-date: 2015-12-23
 io.k8s.description: Platform for building and running Ruby 2.2 applications
 io.k8s.display-name: 172.30.56.218:5000/test/origin-ruby-sample:latest
 io.openshift.build.commit.author: Ben Parees <bparees@users.noreply.github.com>
 io.openshift.build.commit.date: Wed Jan 20 10:14:27 2016 -0500
 io.openshift.build.commit.id: 00cadc392d39d5ef9117cbc8a31db0889eedd442
 io.openshift.build.commit.message: 'Merge pull request #51 from php-coder/fix_url_and_sti'
 io.openshift.build.commit.ref: master
 io.openshift.build.image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
 io.openshift.build.source-location: https://github.com/openshift/ruby-hello-world.git
 io.openshift.builder-base-version: 8d95148

OpenShift Online 3 Architecture

38

3.5.2.7. Working with Image Streams

The following sections describe how to use image streams and image stream tags. For more information

 io.openshift.builder-version: 8847438ba06307f86ac877465eadc835201241df
 io.openshift.s2i.scripts-url: image:///usr/libexec/s2i
 io.openshift.tags: builder,ruby,ruby22
 io.s2i.scripts-url: image:///usr/libexec/s2i
 license: GPLv2
 name: CentOS Base Image
 vendor: CentOS
 User: "1001"
 WorkingDir: /opt/app-root/src
 Container: 86e9a4a3c760271671ab913616c51c9f3cea846ca524bf07c04a6f6c9e103a76
 ContainerConfig:
 AttachStdout: true
 Cmd:
 - /bin/sh
 - -c
 - tar -C /tmp -xf - && /usr/libexec/s2i/assemble
 Entrypoint:
 - container-entrypoint
 Env:
 - RACK_ENV=production
 - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
 - OPENSHIFT_BUILD_NAMESPACE=test
 - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-world.git
 - EXAMPLE=sample-app
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Hostname: ruby-sample-build-1-build
 Image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
 OpenStdin: true
 StdinOnce: true
 User: "1001"
 WorkingDir: /opt/app-root/src
 Created: 2016-01-29T13:40:00Z
 DockerVersion: 1.8.2.fc21
 Id: 9d7fd5e2d15495802028c569d544329f4286dcd1c9c085ff5699218dbaa69b43
 Parent: 57b08d979c86f4500dc8cad639c9518744c8dd39447c055a3517dc9c18d6fccd
 Size: 441976279
 apiVersion: "1.0"
 kind: DockerImage
 dockerImageMetadataVersion: "1.0"
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d

CHAPTER 3. CORE CONCEPTS

39

The following sections describe how to use image streams and image stream tags. For more information
on working with image streams, see Managing Images.

3.5.2.7.1. Getting Information about Image Streams

To get general information about the image stream and detailed information about all the tags it is
pointing to, use the following command:

oc describe is/<image-name>

For example:

oc describe is/python

Name: python
Namespace: default
Created: About a minute ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2017-10-02T17:05:11Z
Docker Pull Spec: docker-registry.default.svc:5000/default/python
Image Lookup: local=false
Unique Images: 1
Tags: 1

3.5
 tagged from centos/python-35-centos7

 * centos/python-35-centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
 About a minute ago

To get all the information available about particular image stream tag:

oc describe istag/<image-stream>:<tag-name>

For example:

oc describe istag/python:latest

Image Name: sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Docker Image: centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Name: sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Created: 2 minutes ago
Image Size: 251.2 MB (first layer 2.898 MB, last binary layer 72.26 MB)
Image Created: 2 weeks ago
Author: <none>
Arch: amd64
Entrypoint: container-entrypoint
Command: /bin/sh -c $STI_SCRIPTS_PATH/usage
Working Dir: /opt/app-root/src
User: 1001
Exposes Ports: 8080/tcp
Docker Labels: build-date=20170801

NOTE

OpenShift Online 3 Architecture

40

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-managing-images

NOTE

More information is output than shown.

3.5.2.7.2. Adding Additional Tags to an Image Stream

To add a tag that points to one of the existing tags, you can use the oc tag command:

oc tag <image-name:tag> <image-name:tag>

For example:

oc tag python:3.5 python:latest

Tag python:latest set to
python@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25.

Use the oc describe command to confirm the image stream has two tags, one (3.5) pointing at the
external Docker image and another tag (latest) pointing to the same image because it was created
based on the first tag.

oc describe is/python

Name: python
Namespace: default
Created: 5 minutes ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2017-10-02T17:05:11Z
Docker Pull Spec: docker-registry.default.svc:5000/default/python
Image Lookup: local=false
Unique Images: 1
Tags: 2

latest
 tagged from python@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25

 * centos/python-35-centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
 About a minute ago

3.5
 tagged from centos/python-35-centos7

 * centos/python-35-centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
 5 minutes ago

3.5.2.7.3. Adding Tags for an External Image

Use the oc tag command for all tag-related operations, such as adding tags pointing to internal or
external images:

oc tag <repositiory/image> <image-name:tag>

For example, this command maps the docker.io/python:3.6.0 image to the 3.6 tag in the python image
stream.

CHAPTER 3. CORE CONCEPTS

41

oc tag docker.io/python:3.6.0 python:3.6
Tag python:3.6 set to docker.io/python:3.6.0.

If the external image is secured, you will need to create a secret with credentials for accessing that
registry. See Importing Images from Private Registries for more details.

3.5.2.7.4. Updating an Image Stream Tag

To update a tag to reflect another tag in an image stream:

oc tag <image-name:tag> <image-name:latest>

For example, the following updates the latest tag to reflect the 3.6 tag in an image stream:

oc tag python:3.6 python:latest
Tag python:latest set to
python@sha256:438208801c4806548460b27bd1fbcb7bb188273d13871ab43f.

3.5.2.7.5. Removing Image Stream Tags from an Image Stream

To remove old tags from an image stream:

oc tag -d <image-name:tag>

For example:

oc tag -d python:3.5

Deleted tag default/python:3.5.

3.5.2.7.6. Configuring Periodic Importing of Tags

When working with an external Docker registry, to periodically re-import an image (such as, to get latest
security updates), use the --scheduled flag:

oc tag <repositiory/image> <image-name:tag> --scheduled

For example:

oc tag docker.io/python:3.6.0 python:3.6 --scheduled

Tag python:3.6 set to import docker.io/python:3.6.0 periodically.

This command causes OpenShift Online to periodically update this particular image stream tag. This
period is a cluster-wide setting set to 15 minutes by default.

To remove the periodic check, re-run above command but omit the --scheduled flag. This will reset its
behavior to default.

oc tag <repositiory/image> <image-name:tag>

OpenShift Online 3 Architecture

42

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#private-registries

1

2

3

3.6. DEPLOYMENTS

3.6.1. Replication controllers

A replication controller ensures that a specified number of replicas of a pod are running at all times. If
pods exit or are deleted, the replication controller acts to instantiate more up to the defined number.
Likewise, if there are more running than desired, it deletes as many as necessary to match the defined
amount.

A replication controller configuration consists of:

1. The number of replicas desired (which can be adjusted at runtime).

2. A pod definition to use when creating a replicated pod.

3. A selector for identifying managed pods.

A selector is a set of labels assigned to the pods that are managed by the replication controller. These
labels are included in the pod definition that the replication controller instantiates. The replication
controller uses the selector to determine how many instances of the pod are already running in order to
adjust as needed.

The replication controller does not perform auto-scaling based on load or traffic, as it does not track
either. Rather, this would require its replica count to be adjusted by an external auto-scaler.

A replication controller is a core Kubernetes object called ReplicationController.

The following is an example ReplicationController definition:

The number of copies of the pod to run.

The label selector of the pod to run.

A template for the pod the controller creates.

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:
 replicas: 1 1
 selector: 2
 name: frontend
 template: 3
 metadata:
 labels: 4
 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

CHAPTER 3. CORE CONCEPTS

43

https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/

4

5

1

2

Labels on the pod should include those from the label selector.

The maximum name length after expanding any parameters is 63 characters.

3.6.2. Replica set

Similar to a replication controller, a replica set ensures that a specified number of pod replicas are
running at any given time. The difference between a replica set and a replication controller is that a
replica set supports set-based selector requirements whereas a replication controller only supports
equality-based selector requirements.

NOTE

Only use replica sets if you require custom update orchestration or do not require updates
at all, otherwise, use Deployments. Replica sets can be used independently, but are used
by deployments to orchestrate pod creation, deletion, and updates. Deployments
manage their replica sets automatically, provide declarative updates to pods, and do not
have to manually manage the replica sets that they create.

A replica set is a core Kubernetes object called ReplicaSet.

The following is an example ReplicaSet definition:

A label query over a set of resources. The result of matchLabels and matchExpressions are
logically conjoined.

Equality-based selector to specify resources with labels that match the selector.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: frontend-1
 labels:
 tier: frontend
spec:
 replicas: 3
 selector: 1
 matchLabels: 2
 tier: frontend
 matchExpressions: 3
 - {key: tier, operator: In, values: [frontend]}
 template:
 metadata:
 labels:
 tier: frontend
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

OpenShift Online 3 Architecture

44

3 Set-based selector to filter keys. This selects all resources with key equal to tier and value equal to
frontend.

3.6.3. Jobs

A job is similar to a replication controller, in that its purpose is to create pods for specified reasons. The
difference is that replication controllers are designed for pods that will be continuously running, whereas
jobs are for one-time pods. A job tracks any successful completions and when the specified amount of
completions have been reached, the job itself is completed.

The following example computes π to 2000 places, prints it out, then completes:

3.6.4. Deployments and Deployment Configurations

Building on replication controllers, OpenShift Online adds expanded support for the software
development and deployment lifecycle with the concept of deployments. In the simplest case, a
deployment just creates a new replication controller and lets it start up pods. However, OpenShift Online
deployments also provide the ability to transition from an existing deployment of an image to a new one
and also define hooks to be run before or after creating the replication controller.

The OpenShift Online DeploymentConfig object defines the following details of a deployment:

1. The elements of a ReplicationController definition.

2. Triggers for creating a new deployment automatically.

3. The strategy for transitioning between deployments.

4. Life cycle hooks.

Each time a deployment is triggered, whether manually or automatically, a deployer pod manages the
deployment (including scaling down the old replication controller, scaling up the new one, and running
hooks). The deployment pod remains for an indefinite amount of time after it completes the

apiVersion: extensions/v1
kind: Job
metadata:
 name: pi
spec:
 selector:
 matchLabels:
 app: pi
 template:
 metadata:
 name: pi
 labels:
 app: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: Never

CHAPTER 3. CORE CONCEPTS

45

1

2

3

deployment in order to retain its logs of the deployment. When a deployment is superseded by another,
the previous replication controller is retained to enable easy rollback if needed.

For detailed instructions on how to create and interact with deployments, refer to Deployments.

Here is an example DeploymentConfig definition with some omissions and callouts:

A ConfigChange trigger causes a new deployment to be created any time the replication
controller template changes.

An ImageChange trigger causes a new deployment to be created each time a new version of the
backing image is available in the named image stream.

The default Rolling strategy makes a downtime-free transition between deployments.

3.7. TEMPLATES

3.7.1. Overview

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Online. The objects to create can include anything that users have
permission to create within a project, for example services, build configurations, and deployment
configurations. A template may also define a set of labels to apply to every object defined in the
template.

See the template guide for details about creating and using templates.

apiVersion: v1
kind: DeploymentConfig
metadata:
 name: frontend
spec:
 replicas: 5
 selector:
 name: frontend
 template: { ... }
 triggers:
 - type: ConfigChange 1
 - imageChangeParams:
 automatic: true
 containerNames:
 - helloworld
 from:
 kind: ImageStreamTag
 name: hello-openshift:latest
 type: ImageChange 2
 strategy:
 type: Rolling 3

OpenShift Online 3 Architecture

46

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-basic-deployment-operations
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-templates

CHAPTER 4. ADDITIONAL CONCEPTS

4.1. AUTHENTICATION

4.1.1. Overview

The authentication layer identifies the user associated with requests to the OpenShift Online API. The
authorization layer then uses information about the requesting user to determine if the request should
be allowed.

4.1.2. Users and Groups

A user in OpenShift Online is an entity that can make requests to the OpenShift Online API. Typically,
this represents the account of a developer or administrator that is interacting with OpenShift Online.

A user can be assigned to one or more groups, each of which represent a certain set of users. Groups are
useful when to grant permissions to multiple users at once, for example allowing access to objects within
a project, versus granting them to users individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that are
automatically provisioned by OpenShift.

In the default set of virtual groups, note the following in particular:

Virtual Group Description

system:authenticated Automatically associated with all authenticated users.

system:authenticated:oaut
h

Automatically associated with all users authenticated with an OAuth access
token.

system:unauthenticated Automatically associated with all unauthenticated users.

4.1.3. API Authentication

Requests to the OpenShift Online API are authenticated using the following methods:

OAuth Access Tokens

Obtained from the OpenShift Online OAuth server using the <master>/oauth/authorize and
<master>/oauth/token endpoints.

Sent as an Authorization: Bearer… header

Sent as an access_token=… query parameter for websocket requests prior to OpenShift
Online server version 3.6.

Sent as a websocket subprotocol header in the form
base64url.bearer.authorization.k8s.io.<base64url-encoded-token> for websocket
requests in OpenShift Online server version 3.6 and later.

X.509 Client Certificates

CHAPTER 4. ADDITIONAL CONCEPTS

47

Requires a HTTPS connection to the API server.

Verified by the API server against a trusted certificate authority bundle.

The API server creates and distributes certificates to controllers to authenticate themselves.

Any request with an invalid access token or an invalid certificate is rejected by the authentication layer
with a 401 error.

If no access token or certificate is presented, the authentication layer assigns the system:anonymous
virtual user and the system:unauthenticated virtual group to the request. This allows the authorization
layer to determine which requests, if any, an anonymous user is allowed to make.

4.1.3.1. Impersonation

A request to the OpenShift Online API can include an Impersonate-User header, which indicates that
the requester wants to have the request handled as though it came from the specified user. You
impersonate a user by adding the --as=<user> flag to requests.

Before User A can impersonate User B, User A is authenticated. Then, an authorization check occurs to
ensure that User A is allowed to impersonate the user named User B. If User A is requesting to
impersonate a service account, system:serviceaccount:namespace:name, OpenShift Online confirms
that User A can impersonate the serviceaccount named name in namespace. If the check fails, the
request fails with a 403 (Forbidden) error code.

By default, project administrators and editors can impersonate service accounts in their namespace.

4.1.4. OAuth

The OpenShift Online master includes a built-in OAuth server. Users obtain OAuth access tokens to
authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured to determine the
identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns
the token for use.

4.1.4.1. OAuth Clients

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The
following OAuth clients are automatically created when starting the OpenShift Online API:

OAuth Client Usage

openshift-web-console Requests tokens for the web console.

openshift-browser-client Requests tokens at
<master>/oauth/token/request with a user-
agent that can handle interactive logins.

openshift-challenging-client Requests tokens with a user-agent that can handle
WWW-Authenticate challenges.

OpenShift Online 3 Architecture

48

1

2

3

4

OAuth Client Usage

To register additional clients:

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: oauth.openshift.io/v1
metadata:
 name: demo 1
secret: "..." 2
redirectURIs:
 - "http://www.example.com/" 3
grantMethod: prompt 4
')

The name of the OAuth client is used as the client_id parameter when making requests to
<master>/oauth/authorize and <master>/oauth/token.

The secret is used as the client_secret parameter when making requests to
<master>/oauth/token.

The redirect_uri parameter specified in requests to <master>/oauth/authorize and
<master>/oauth/token must be equal to (or prefixed by) one of the URIs in redirectURIs.

The grantMethod is used to determine what action to take when this client requests tokens and
has not yet been granted access by the user. Uses the same values seen in Grant Options.

4.1.4.2. Service Accounts as OAuth Clients

A service account can be used as a constrained form of OAuth client. Service accounts can only request
a subset of scopes that allow access to some basic user information and role-based power inside of the
service account’s own namespace:

user:info

user:check-access

role:<any_role>:<serviceaccount_namespace>

role:<any_role>:<serviceaccount_namespace>:!

When using a service account as an OAuth client:

client_id is system:serviceaccount:<serviceaccount_namespace>:
<serviceaccount_name>.

client_secret can be any of the API tokens for that service account. For example:

$ oc sa get-token <serviceaccount_name>

CHAPTER 4. ADDITIONAL CONCEPTS

49

To get WWW-Authenticate challenges, set an serviceaccounts.openshift.io/oauth-want-
challenges annotation on the service account to true.

redirect_uri must match an annotation on the service account. Redirect URIs for Service
Accounts as OAuth Clients provides more information.

4.1.4.3. Redirect URIs for Service Accounts as OAuth Clients

Annotation keys must have the prefix serviceaccounts.openshift.io/oauth-redirecturi. or
serviceaccounts.openshift.io/oauth-redirectreference. such as:

serviceaccounts.openshift.io/oauth-redirecturi.<name>

In its simplest form, the annotation can be used to directly specify valid redirect URIs. For example:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "https://example.com"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

The first and second postfixes in the above example are used to separate the two valid redirect URIs.

In more complex configurations, static redirect URIs may not be enough. For example, perhaps you want
all ingresses for a route to be considered valid. This is where dynamic redirect URIs via the
serviceaccounts.openshift.io/oauth-redirectreference. prefix come into play.

For example:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Since the value for this annotation contains serialized JSON data, it is easier to see in an expanded
format:

{
 "kind": "OAuthRedirectReference",
 "apiVersion": "v1",
 "reference": {
 "kind": "Route",
 "name": "jenkins"
 }
}

Now you can see that an OAuthRedirectReference allows us to reference the route named jenkins.
Thus, all ingresses for that route will now be considered valid. The full specification for an
OAuthRedirectReference is:

{
 "kind": "OAuthRedirectReference",
 "apiVersion": "v1",
 "reference": {
 "kind": ..., 1
 "name": ..., 2

OpenShift Online 3 Architecture

50

1

2

3

 "group": ... 3
 }
}

kind refers to the type of the object being referenced. Currently, only route is supported.

name refers to the name of the object. The object must be in the same namespace as the service
account.

group refers to the group of the object. Leave this blank, as the group for a route is the empty
string.

Both annotation prefixes can be combined to override the data provided by the reference object. For
example:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

The first postfix is used to tie the annotations together. Assuming that the jenkins route had an ingress
of https://example.com, now https://example.com/custompath is considered valid, but
https://example.com is not. The format for partially supplying override data is as follows:

Type Syntax

Scheme "https://"

Hostname "//website.com"

Port "//:8000"

Path "examplepath"

NOTE

Specifying a host name override will replace the host name data from the referenced
object, which is not likely to be desired behavior.

Any combination of the above syntax can be combined using the following format:

<scheme:>//<hostname><:port>/<path>

The same object can be referenced more than once for more flexibility:

"serviceaccounts.openshift.io/oauth-redirecturi.first": "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "//:8000"

CHAPTER 4. ADDITIONAL CONCEPTS

51

"serviceaccounts.openshift.io/oauth-redirectreference.second": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Assuming that the route named jenkins has an ingress of https://example.com, then both
https://example.com:8000 and https://example.com/custompath are considered valid.

Static and dynamic annotations can be used at the same time to achieve the desired behavior:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "
{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":
{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

4.1.4.3.1. API Events for OAuth

In some cases the API server returns an unexpected condition error message that is difficult to debug
without direct access to the API master log. The underlying reason for the error is purposely obscured in
order to avoid providing an unauthenticated user with information about the server’s state.

A subset of these errors is related to service account OAuth configuration issues. These issues are
captured in events that can be viewed by non-administrator users. When encountering an unexpected
condition server error during OAuth, run oc get events to view these events under ServiceAccount.

The following example warns of a service account that is missing a proper OAuth redirect URI:

$ oc get events | grep ServiceAccount
1m 1m 1 proxy ServiceAccount Warning
NoSAOAuthRedirectURIs service-account-oauth-client-getter
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Running oc describe sa/<service-account-name> reports any OAuth events associated with the given
service account name.

$ oc describe sa/proxy | grep -A5 Events
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
Message
 --------- -------- ----- ---- ------------- -------- ------ -------
 3m 3m 1 service-account-oauth-client-getter Warning
NoSAOAuthRedirectURIs system:serviceaccount:myproject:proxy has no redirectURIs; set
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

The following is a list of the possible event errors:

No redirect URI annotations or an invalid URI is specified

Reason Message
NoSAOAuthRedirectURIs system:serviceaccount:myproject:proxy has no redirectURIs; set
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI
using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

OpenShift Online 3 Architecture

52

Invalid route specified

Reason Message
NoSAOAuthRedirectURIs [routes.route.openshift.io "<name>" not found,
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Invalid reference type specified

Reason Message
NoSAOAuthRedirectURIs [no kind "<name>" is registered for version "v1",
system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-
redirecturi.<some-value>=<redirect> or create a dynamic URI using
serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Missing SA tokens

Reason Message
NoSAOAuthTokens system:serviceaccount:myproject:proxy has no tokens

4.1.4.3.1.1. Sample API Event Caused by a Possible Misconfiguration

The following steps represent one way a user could get into a broken state and how to debug or fix the
issue:

1. Create a project utilizing a service account as an OAuth client.

a. Create YAML for a proxy service account object and ensure it uses the route proxy:

vi serviceaccount.yaml

Add the following sample code:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: proxy
 annotations:
 serviceaccounts.openshift.io/oauth-redirectreference.primary:
'{"kind":"OAuthRedirectReference","apiVersion":"v1","reference":
{"kind":"Route","name":"proxy"}}'

b. Create YAML for a route object to create a secure connection to the proxy:

vi route.yaml

Add the following sample code:

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: proxy

CHAPTER 4. ADDITIONAL CONCEPTS

53

spec:
 to:
 name: proxy
 tls:
 termination: Reencrypt
apiVersion: v1
kind: Service
metadata:
 name: proxy
 annotations:
 service.alpha.openshift.io/serving-cert-secret-name: proxy-tls
spec:
 ports:
 - name: proxy
 port: 443
 targetPort: 8443
 selector:
 app: proxy

c. Create a YAML for a deployment configuration to launch a proxy as a sidecar:

vi proxysidecar.yaml

Add the following sample code:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: proxy
spec:
 replicas: 1
 selector:
 matchLabels:
 app: proxy
 template:
 metadata:
 labels:
 app: proxy
 spec:
 serviceAccountName: proxy
 containers:
 - name: oauth-proxy
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 8443
 name: public
 args:
 - --https-address=:8443
 - --provider=openshift
 - --openshift-service-account=proxy
 - --upstream=http://localhost:8080
 - --tls-cert=/etc/tls/private/tls.crt
 - --tls-key=/etc/tls/private/tls.key
 - --cookie-secret=SECRET
 volumeMounts:

OpenShift Online 3 Architecture

54

 - mountPath: /etc/tls/private
 name: proxy-tls

 - name: app
 image: openshift/hello-openshift:latest
 volumes:
 - name: proxy-tls
 secret:
 secretName: proxy-tls

d. Create the objects

oc create -f serviceaccount.yaml
oc create -f route.yaml
oc create -f proxysidecar.yaml

2. Run oc edit sa/proxy to edit the service account and change the
serviceaccounts.openshift.io/oauth-redirectreference annotation to point to a Route that
does not exist.

apiVersion: v1
imagePullSecrets:
- name: proxy-dockercfg-08d5n
kind: ServiceAccount
metadata:
 annotations:
 serviceaccounts.openshift.io/oauth-redirectreference.primary:
'{"kind":"OAuthRedirectReference","apiVersion":"v1","reference":
{"kind":"Route","name":"notexist"}}'
...

3. Review the OAuth log for the service to locate the server error:

The authorization server encountered an unexpected condition that prevented it from fulfilling
the request.

4. Run oc get events to view the ServiceAccount event:

oc get events | grep ServiceAccount

23m 23m 1 proxy ServiceAccount Warning
NoSAOAuthRedirectURIs service-account-oauth-client-getter [routes.route.openshift.io
"notexist" not found, system:serviceaccount:myproject:proxy has no redirectURIs; set
serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic
URI using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

4.1.4.4. Integrations

All requests for OAuth tokens involve a request to <master>/oauth/authorize. Most authentication
integrations place an authenticating proxy in front of this endpoint, or configure OpenShift Online to
validate credentials against a backing Requests to <master>/oauth/authorize can come from user-
agents that cannot display interactive login pages, such as the CLI. Therefore, OpenShift Online
supports authenticating using a WWW-Authenticate challenge in addition to interactive login flows.

CHAPTER 4. ADDITIONAL CONCEPTS

55

If an authenticating proxy is placed in front of the <master>/oauth/authorize endpoint, it should send
unauthenticated, non-browser user-agents WWW-Authenticate challenges, rather than displaying an
interactive login page or redirecting to an interactive login flow.

NOTE

To prevent cross-site request forgery (CSRF) attacks against browser clients, Basic
authentication challenges should only be sent if a X-CSRF-Token header is present on
the request. Clients that expect to receive Basic WWW-Authenticate challenges should
set this header to a non-empty value.

If the authenticating proxy cannot support WWW-Authenticate challenges, or if
OpenShift Online is configured to use an identity provider that does not support WWW-
Authenticate challenges, users can visit <master>/oauth/token/request using a browser
to obtain an access token manually.

4.1.4.5. OAuth Server Metadata

Applications running in OpenShift Online may need to discover information about the built-in OAuth
server. For example, they may need to discover what the address of the <master> server is without
manual configuration. To aid in this, OpenShift Online implements the IETF OAuth 2.0 Authorization
Server Metadata draft specification.

Thus, any application running inside the cluster can issue a GET request to
https://openshift.default.svc/.well-known/oauth-authorization-server to fetch the following
information:

{
 "issuer": "https://<master>", 1
 "authorization_endpoint": "https://<master>/oauth/authorize", 2
 "token_endpoint": "https://<master>/oauth/token", 3
 "scopes_supported": [4
 "user:full",
 "user:info",
 "user:check-access",
 "user:list-scoped-projects",
 "user:list-projects"
],
 "response_types_supported": [5
 "code",
 "token"
],
 "grant_types_supported": [6
 "authorization_code",
 "implicit"
],
 "code_challenge_methods_supported": [7
 "plain",
 "S256"
]
}

OpenShift Online 3 Architecture

56

https://tools.ietf.org/html/draft-ietf-oauth-discovery-10

1

2

3

4

5

6

7

The authorization server’s issuer identifier, which is a URL that uses the https scheme and has no
query or fragment components. This is the location where .well-known RFC 5785 resources

URL of the authorization server’s authorization endpoint. See RFC 6749.

URL of the authorization server’s token endpoint. See RFC 6749.

JSON array containing a list of the OAuth 2.0 RFC 6749 scope values that this authorization server
supports. Note that not all supported scope values are advertised.

JSON array containing a list of the OAuth 2.0 response_type values that this authorization server
supports. The array values used are the same as those used with the response_types parameter
defined by "OAuth 2.0 Dynamic Client Registration Protocol" in RFC 7591 .

JSON array containing a list of the OAuth 2.0 grant type values that this authorization server
supports. The array values used are the same as those used with the grant_types parameter
defined by OAuth 2.0 Dynamic Client Registration Protocol in RFC 7591 .

JSON array containing a list of PKCE RFC 7636 code challenge methods supported by this
authorization server. Code challenge method values are used in the code_challenge_method
parameter defined in Section 4.3 of RFC 7636 . The valid code challenge method values are those
registered in the IANA PKCE Code Challenge Methods registry. See IANA OAuth Parameters.

4.1.4.6. Obtaining OAuth Tokens

The OAuth server supports standard authorization code grant and the implicit grant OAuth
authorization flows.

Run the following command to request an OAuth token by using the authorization code grant method:

When requesting an OAuth token using the implicit grant flow (response_type=token) with a client_id
configured to request WWW-Authenticate challenges (like openshift-challenging-client), these are
the possible server responses from /oauth/authorize, and how they should be handled:

Status Content Client response

302 Location header containing an
access_token parameter in the URL
fragment (RFC 4.2.2)

Use the access_token value as the OAuth
token

302 Location header containing an error query
parameter (RFC 4.1.2.1)

Fail, optionally surfacing the error (and
optional error_description) query values to
the user

302 Other Location header Follow the redirect, and process the result
using these rules

$ curl -H "X-Remote-User: <username>" \
 --cacert /etc/origin/master/ca.crt \
 --cert /etc/origin/master/admin.crt \
 --key /etc/origin/master/admin.key \
 -I https://<master-address>/oauth/authorize?response_type=token\&client_id=openshift-
challenging-client | grep -oP "access_token=\K[^&]*"

CHAPTER 4. ADDITIONAL CONCEPTS

57

https://tools.ietf.org/html/rfc5785
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636#section-4.3
http://www.iana.org/assignments/oauth-parameters
https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.2
https://tools.ietf.org/html/rfc6749#section-4.2.2
https://tools.ietf.org/html/rfc6749#section-4.1.2.1

401 WWW-Authenticate header present Respond to challenge if type is recognized
(e.g. Basic, Negotiate, etc), resubmit
request, and process the result using these
rules

401 WWW-Authenticate header missing No challenge authentication is possible. Fail
and show response body (which might contain
links or details on alternate methods to obtain
an OAuth token)

Other Other Fail, optionally surfacing response body to the
user

Status Content Client response

To request an OAuth token using the implicit grant flow:

$ curl -u <username>:<password>
'https://<master-address>:8443/oauth/authorize?client_id=openshift-challenging-
client&response_type=token' -skv / 1
/ -H "X-CSRF-Token: xxx" 2
* Trying 10.64.33.43...
* Connected to 10.64.33.43 (10.64.33.43) port 8443 (#0)
* found 148 certificates in /etc/ssl/certs/ca-certificates.crt
* found 592 certificates in /etc/ssl/certs
* ALPN, offering http/1.1
* SSL connection using TLS1.2 / ECDHE_RSA_AES_128_GCM_SHA256
* server certificate verification SKIPPED
* server certificate status verification SKIPPED
* common name: 10.64.33.43 (matched)
* server certificate expiration date OK
* server certificate activation date OK
* certificate public key: RSA
* certificate version: #3
* subject: CN=10.64.33.43
* start date: Thu, 09 Aug 2018 04:00:39 GMT
* expire date: Sat, 08 Aug 2020 04:00:40 GMT
* issuer: CN=openshift-signer@1531109367
* compression: NULL
* ALPN, server accepted to use http/1.1
* Server auth using Basic with user 'developer'
> GET /oauth/authorize?client_id=openshift-challenging-client&response_type=token HTTP/1.1
> Host: 10.64.33.43:8443
> Authorization: Basic ZGV2ZWxvcGVyOmRzc2Zkcw==
> User-Agent: curl/7.47.0
> Accept: */*
> X-CSRF-Token: xxx
>
< HTTP/1.1 302 Found
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Expires: Fri, 01 Jan 1990 00:00:00 GMT

OpenShift Online 3 Architecture

58

1

2

3

1

2

client-id is set to openshift-challenging-client and response-type is set to token.

Set X-CSRF-Token header to a non-empty value.

The token is returned in the Location header of the 302 response as
access_token=gzTwOq_mVJ7ovHliHBTgRQEEXa1aCZD9lnj7lSw3ekQ.

To view only the OAuth token value, run the following command:

client-id is set to openshift-challenging-client and response-type is set to token.

Set X-CSRF-Token header to a non-empty value.

You can also use the Code Grant method to request a token

4.2. AUTHORIZATION

4.2.1. Overview

Role-based Access Control (RBAC) objects determine whether a user is allowed to perform a given
action within a project.

It allows developers to use local roles and bindings to control who has access to their projects. Note that
authorization is a separate step from authentication, which is more about determining the identity of
who is taking the action.

Authorization is managed using:

Rules Sets of permitted verbs on a set of objects. For example, whether something can create pods.

< Location:
https://10.64.33.43:8443/oauth/token/implicit#access_token=gzTwOq_mVJ7ovHliHBTgRQEEXa1aCZ
D9lnj7lSw3ekQ&expires_in=86400&scope=user%3Afull&token_type=Bearer 3
< Pragma: no-cache
< Set-Cookie:
ssn=MTUzNTk0OTc1MnxIckVfNW5vNFlLSlF5MF9GWEF6Zm55Vl95bi1ZNE41S1NCbFJMYnN1TWV
wR1hwZmlLMzFQRklzVXRkc0RnUGEzdnBEa0NZZndXV2ZUVzN1dmFPM2dHSUlzUmVXakQ3Q09rV
XpxNlRoVmVkQU5DYmdLTE9SUWlyNkJJTm1mSDQ0N2pCV09La3gzMkMzckwxc1V1QXpybFlXT2ZY
SmI2R2FTVEZsdDBzRjJ8vk6zrQPjQUmoJCqb8Dt5j5s0b4wZlITgKlho9wlKAZI=; Path=/; HttpOnly;
Secure
< Date: Mon, 03 Sep 2018 04:42:32 GMT
< Content-Length: 0
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host 10.64.33.43 left intact

$ curl -u <username>:<password>
'https://<master-address>:8443/oauth/authorize?client_id=openshift-challenging-
client&response_type=token' 1
-skv -H "X-CSRF-Token: xxx" --stderr - | grep -oP "access_token=\K[^&]*" 2

hvqxe5aMlAzvbqfM2WWw3D6tR0R2jCQGKx0viZBxwmc

CHAPTER 4. ADDITIONAL CONCEPTS

59

Roles Collections of rules. Users and groups can be associated with, or bound to, multiple roles at the
same time.

Bindings Associations between users and/or groups with a role.

The relationships between cluster roles, local roles, cluster role bindings, local role bindings, users,
groups and service accounts are illustrated below.

4.2.2. Evaluating Authorization

Several factors are combined to make the decision when OpenShift Online evaluates authorization:

Identity In the context of authorization, both the user name and list of groups the user belongs to.

Action The action being performed. In most cases, this consists of:

Project The project being accessed.

Verb Can be get, list, create, update, delete, deletecollection or watch.

Resource
Name

The API endpoint being accessed.

OpenShift Online 3 Architecture

60

Bindings The full list of bindings.

OpenShift Online evaluates authorizations using the following steps:

1. The identity and the project-scoped action is used to find all bindings that apply to the user or
their groups.

2. Bindings are used to locate all the roles that apply.

3. Roles are used to find all the rules that apply.

4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

4.2.3. Collaboration

In OpenShift Online Pro, you can grant roles (like view or edit) to other users or groups for your
projects.

See Project Collaboration in OpenShift Online Pro for information on adding and removing
collaborators.

In OpenShift Online Starter, collaboration is not available.

4.3. PERSISTENT STORAGE

4.3.1. Overview

Managing storage is a distinct problem from managing compute resources. OpenShift Online leverages
the Kubernetes persistent volume (PV) framework to allow cluster administrators to provision persistent
storage for a cluster. Using persistent volume claims (PVCs), developers can request PV resources
without having specific knowledge of the underlying storage infrastructure.

PVCs are specific to a project and are created and used by developers as a means to use a PV. PV
resources on their own are not scoped to any single project; they can be shared across the entire
OpenShift Online cluster and claimed from any project. After a PV is bound to a PVC, however, that PV
cannot then be bound to additional PVCs. This has the effect of scoping a bound PV to a single
namespace (that of the binding project).

PVs are defined by a PersistentVolume API object, which represents a piece of existing, networked
storage in the cluster that was provisioned by the cluster administrator. It is a resource in the cluster just
like a node is a cluster resource. PVs are volume plug-ins like Volumes but have a lifecycle that is
independent of any individual pod that uses the PV. PV objects capture the details of the
implementation of the storage, be that NFS, iSCSI, or a cloud-provider-specific storage system.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

PVCs are defined by a PersistentVolumeClaim API object, which represents a request for storage by a
developer. It is similar to a pod in that pods consume node resources and PVCs consume PV resources.
For example, pods can request specific levels of resources (e.g., CPU and memory), while PVCs can

CHAPTER 4. ADDITIONAL CONCEPTS

61

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#project-collaboration-in-online-pro

request specific storage capacity and access modes (e.g, they can be mounted once read/write or many
times read-only).

4.3.2. Lifecycle of a Volume and Claim

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim checks to
the resource. The interaction between PVs and PVCs have the following lifecycle.

4.3.2.1. Provisioning

In response to requests from a developer defined in a PVC, a cluster administrator configures one or
more dynamic provisioners that provision storage and a matching PV.

Alternatively, a cluster administrator can create a number of PVs in advance that carry the details of the
real storage that is available for use. PVs exist in the API and are available for use.

4.3.2.2. Binding

When you create a PVC, you request a specific amount of storage, specify the required access mode,
and can create a storage class to describe and classify the storage. The control loop in the master
watches for new PVCs and binds the new PVC to an appropriate PV. If an appropriate PV does not exist,
a provisioner for the storage class creates one.

The PV volume might exceed your requested volume. This is especially true with manually provisioned
PVs. To minimize the excess, OpenShift Online binds to the smallest PV that matches all other criteria.

Claims remain unbound indefinitely if a matching volume does not exist or cannot be created with any
available provisioner servicing a storage class. Claims are bound as matching volumes become available.
For example, a cluster with many manually provisioned 50Gi volumes would not match a PVC requesting
100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

4.3.2.3. Using

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts that
volume for a pod. For those volumes that support multiple access modes, you must specify which mode
applies when you use the claim as a volume in a pod.

After you have a claim and that claim is bound, the bound PV belongs to you for as long as you need it.
You can schedule pods and access claimed PVs by including persistentVolumeClaim in the pod’s
volumes block. See below for syntax details.

4.3.2.4. Releasing

When you are done with a volume, you can delete the PVC object from the API, which allows reclamation
of the resource. The volume is considered "released" when the claim is deleted, but it is not yet available
for another claim. The previous claimant’s data remains on the volume and must be handled according
to policy.

4.3.2.5. Reclaiming

The reclaim policy of a PersistentVolume tells the cluster what to do with the volume after it is
released. Volumes reclaim policy can either be Retain, Recycle, or Delete.

Retain reclaim policy allows manual reclamation of the resource for those volume plug-ins that support

OpenShift Online 3 Architecture

62

Retain reclaim policy allows manual reclamation of the resource for those volume plug-ins that support
it. Delete reclaim policy deletes both the PersistentVolume object from OpenShift Online and the
associated storage asset in external infrastructure, such as AWS EBS, GCE PD, or Cinder volume.

NOTE

Dynamically provisioned volumes have a default ReclaimPolicy value of Delete. Manually
provisioned volumes have a default ReclaimPolicy value of Retain.

4.3.2.5.1. Recycling

If supported by appropriate volume plug-in, recycling performs a basic scrub (rm -rf /thevolume/*) on
the volume and makes it available again for a new claim.

WARNING

The recycle reclaim policy is deprecated in favor of dynamic provisioning and it will
be removed in future releases.

4.3.3. Persistent Volumes

Each PV contains a spec and status, which is the specification and status of the volume.

Persistent Volume Object Definition

4.3.3.1. Types of Persistent Volumes

OpenShift Online supports the following PersistentVolume plug-ins:

NFS

HostPath

GlusterFS

Ceph RBD

 apiVersion: v1
 kind: PersistentVolume
 metadata:
 name: pv0003
 spec:
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Recycle
 nfs:
 path: /tmp
 server: 172.17.0.2

CHAPTER 4. ADDITIONAL CONCEPTS

63

OpenStack Cinder

AWS Elastic Block Store (EBS)

GCE Persistent Disk

iSCSI

Fibre Channel

Azure Disk

Azure File

VMWare vSphere

Local

4.3.3.2. Capacity

Generally, a PV has a specific storage capacity. This is set using the PV’s capacity attribute.

Currently, storage capacity is the only resource that can be set or requested. Future attributes may
include IOPS, throughput, and so on.

4.3.3.3. Access Modes

A PersistentVolume can be mounted on a host in any way supported by the resource provider.
Providers will have different capabilities and each PV’s access modes are set to the specific modes
supported by that particular volume. For example, NFS can support multiple read/write clients, but a
specific NFS PV might be exported on the server as read-only. Each PV gets its own set of access
modes describing that specific PV’s capabilities.

Claims are matched to volumes with similar access modes. The only two matching criteria are access
modes and size. A claim’s access modes represent a request. Therefore, you might be granted more, but
never less. For example, if a claim requests RWO, but the only volume available is an NFS PV
(RWO+ROX+RWX), then the claim would match NFS because it supports RWO.

Direct matches are always attempted first. The volume’s modes must match or contain more modes
than you requested. The size must be greater than or equal to what is expected. If two types of volumes
(NFS and iSCSI, for example) both have the same set of access modes, then either of them can match a
claim with those modes. There is no ordering between types of volumes and no way to choose one type
over another.

All volumes with the same modes are grouped, then sorted by size (smallest to largest). The binder gets
the group with matching modes and iterates over each (in size order) until one size matches.

The access modes are:

Access Mode CLI Abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write by a single node.

ReadOnlyMany ROX The volume can be mounted read-only by many nodes.

OpenShift Online 3 Architecture

64

ReadWriteMany RWX The volume can be mounted as read-write by many nodes.

Access Mode CLI Abbreviation Description

IMPORTANT

A volume’s AccessModes are descriptors of the volume’s capabilities. They are not
enforced constraints. The storage provider is responsible for runtime errors resulting
from invalid use of the resource.

For example, Ceph offers ReadWriteOnce access mode. You must mark the claims as
read-only if you want to use the volume’s ROX capability. Errors in the provider show up
at runtime as mount errors.

The table below lists the access modes supported by different persistent volumes:

Table 4.1. Supported Access Modes for Persistent Volumes

Volume Plug-in ReadWriteOnce ReadOnlyMany ReadWriteMany

AWS EBS � - -

Azure File � � �

Azure Disk � - -

Ceph RBD � � -

Fibre Channel � � -

GCE Persistent Disk � - -

GlusterFS � � �

HostPath � - -

iSCSI � � -

NFS � � �

Openstack Cinder � - -

CHAPTER 4. ADDITIONAL CONCEPTS

65

VMWare vSphere � - -

Local � - -

Volume Plug-in ReadWriteOnce ReadOnlyMany ReadWriteMany

NOTE

If pods rely on AWS EBS, GCE Persistent Disks, or Openstack Cinder PVs, use a
recreate deployment strategy

4.3.3.4. OpenShift Online Restrictions

The following restrictions apply when using persistent volumes with OpenShift Online:

IMPORTANT

PVs are provisioned with EBS volumes (AWS).

Only RWO access mode is applicable, since EBS volumes and GCE Persistent
Disks cannot be mounted to multiple nodes.

Docker volumes are disabled.

VOLUME directive without a mapped external volume fails to be instantiated.

emptyDir is restricted to 512 Mi per project (group) per node.

If there is a single pod for a project on a particular node, then the pod can
consume up to 512 Mi of emptyDir storage.

If there are multiple pods for a project on a particular node, then those pods
will share the 512 Mi of emptyDir storage.

emptyDir has the same lifecycle as the pod:

emptyDir volumes survive container crashes/restarts.

emptyDir volumes are deleted when the pod is deleted.

4.3.3.5. Reclaim Policy

The current reclaim policies are:

Reclaim Policy Description

Retain Manual reclamation

Recycle Basic scrub (e.g, rm -rf /<volume>/*)

NOTE

OpenShift Online 3 Architecture

66

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#recreate-strategy

NOTE

Currently, only NFS and HostPath support the 'Recycle' reclaim policy.

WARNING

The recycle reclaim policy is deprecated in favor of dynamic provisioning and it will
be removed in future releases.

4.3.3.6. Phase

Volumes can be found in one of the following phases:

Phase Description

Available A free resource that is not yet bound to a claim.

Bound The volume is bound to a claim.

Released The claim was deleted, but the resource is not yet reclaimed by the
cluster.

Failed The volume has failed its automatic reclamation.

The CLI shows the name of the PVC bound to the PV.

4.3.4. Persistent Volume Claims

Each PVC contains a spec and status, which is the specification and status of the claim.

Persistent Volume Claim Object Definition

4.3.4.1. Storage Class

Claims can optionally request a specific storage class by specifying the storage class’s name in the

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi
 storageClassName: gold

CHAPTER 4. ADDITIONAL CONCEPTS

67

storageClassName attribute. Only PVs of the requested class, ones with the same storageClassName
as the PVC, can be bound to the PVC. The cluster administrator can configure dynamic provisioners to
service one or more storage classes. The cluster administrator can create a PV on demand that matches
the specifications in the PVC.

The cluster administrator can also set a default storage class for all PVCs. When a default storage class
is configured, the PVC must explicitly ask for StorageClass or storageClassName annotations set to
"" to be bound to a PV without a storage class.

4.3.4.2. Access Modes

Claims use the same conventions as volumes when requesting storage with specific access modes.

4.3.4.3. Resources

Claims, like pods, can request specific quantities of a resource. In this case, the request is for storage.
The same resource model applies to both volumes and claims.

4.3.4.4. Claims As Volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as the
pod using the claim. The cluster finds the claim in the pod’s namespace and uses it to get the
PersistentVolume backing the claim. The volume is then mounted to the host and into the pod:

4.4. SOURCE CONTROL MANAGEMENT

OpenShift Online takes advantage of preexisting source control management (SCM) systems hosted
either internally (such as an in-house Git server) or externally (for example, on GitHub, Bitbucket, etc.).
Currently, OpenShift Online only supports Git solutions.

SCM integration is tightly coupled with builds, the two points being:

Creating a BuildConfig using a repository, which allows building your application inside of
OpenShift Online. You can create a BuildConfigmanually or let OpenShift Online create it
automatically by inspecting your repository.

Triggering a build upon repository changes.

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html"
 name: mypd
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

OpenShift Online 3 Architecture

68

https://github.com/
https://bitbucket.org/
https://git-scm.com/
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-new-app
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#webhook-triggers

4.5. ADMISSION CONTROLLERS

4.5.1. Overview

Admission control plug-ins intercept requests to the master API prior to persistence of a resource, but
after the request is authenticated and authorized.

Each admission control plug-in is run in sequence before a request is accepted into the cluster. If any
plug-in in the sequence rejects the request, the entire request is rejected immediately, and an error is
returned to the end-user.

Admission control plug-ins may modify the incoming object in some cases to apply system configured
defaults. In addition, admission control plug-ins may modify related resources as part of request
processing to do things such as incrementing quota usage.

WARNING

The OpenShift Online master has a default list of plug-ins that are enabled by
default for each type of resource (Kubernetes and OpenShift Online). These are
required for the proper functioning of the master. Modifying these lists is not
recommended unless you strictly know what you are doing. Future versions of the
product may use a different set of plug-ins and may change their ordering. If you do
override the default list of plug-ins in the master configuration file, you are
responsible for updating it to reflect requirements of newer versions of the
OpenShift Online master.

4.5.2. General Admission Rules

Starting in OpenShift Online uses a single admission chain for Kubernetes and OpenShift Online
resources. This changed from and before where we had separate admission chains. This means that the
top-level admissionConfig.pluginConfig element can now contain the admission plug-in
configuration, which used to be contained in
kubernetesMasterConfig.admissionConfig.pluginConfig.

The kubernetesMasterConfig.admissionConfig.pluginConfig should be moved and merged into
admissionConfig.pluginConfig.

Also, starting in all the supported admission plug-ins are ordered in the single chain for you. You should
no longer set admissionConfig.pluginOrderOverride or the
kubernetesMasterConfig.admissionConfig.pluginOrderOverride. Instead, you should enable plug-ins
that are off by default by either adding their plug-in-specific configuration, or adding a
DefaultAdmissionConfig stanza like this:

admissionConfig:
 pluginConfig:
 AlwaysPullImages: 1
 configuration:
 kind: DefaultAdmissionConfig
 apiVersion: v1
 disable: false 2

CHAPTER 4. ADDITIONAL CONCEPTS

69

1

2

Admission plug-in name.

Indicates that a plug-in should be enabled. It is optional and shown here only for reference.

Setting disable to true will disable an admission plug-in that defaults to on.

WARNING

Admission plug-ins are commonly used to help enforce security on the API server.
Be careful when disabling them.

NOTE

If you were previously using admissionConfig elements that cannot be safely combined
into a single admission chain, you will get a warning in your API server logs and your API
server will start with two separate admission chains for legacy compatibility. Update your
admissionConfig to resolve the warning.

4.6. OTHER API OBJECTS

4.6.1. LimitRange

A limit range provides a mechanism to enforce min/max limits placed on resources in a Kubernetes
namespace.

By adding a limit range to your namespace, you can enforce the minimum and maximum amount of CPU
and Memory consumed by an individual pod or container.

4.6.2. ResourceQuota

Kubernetes can limit both the number of objects created in a namespace, and the total amount of
resources requested across objects in a namespace. This facilitates sharing of a single Kubernetes
cluster by several teams, each in a namespace, as a mechanism of preventing one team from starving
another team of cluster resources.

4.6.3. Resource

A Kubernetes Resource is something that can be requested by, allocated to, or consumed by a pod or
container. Examples include memory (RAM), CPU, disk-time, and network bandwidth.

See the Developer Guidefor more information.

4.6.4. Secret

Secrets are storage for sensitive information, such as keys, passwords, and certificates. They are
accessible by the intended pod(s), but held separately from their definitions.

OpenShift Online 3 Architecture

70

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-compute-resources
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-secrets

4.6.5. PersistentVolume

A persistent volume is an object (PersistentVolume) in the infrastructure provisioned by the cluster
administrator. Persistent volumes provide durable storage for stateful applications.

4.6.6. PersistentVolumeClaim

A PersistentVolumeClaim object is a request for storage by a pod author . Kubernetes matches the
claim against the pool of available volumes and binds them together. The claim is then used as a volume
by a pod. Kubernetes makes sure the volume is available on the same node as the pod that requires it.

4.6.6.1. Custom Resources

A custom resource is an extension of the Kubernetes API that extends the API or allows you to introduce
your own API into a project or a cluster.

4.6.7. OAuth Objects

4.6.7.1. OAuthClient

An OAuthClient represents an OAuth client, as described in RFC 6749, section 2 .

The following OAuthClient objects are automatically created:

openshift-
web-
console

Client used to request tokens for the web console

openshift-
browser-
client

Client used to request tokens at /oauth/token/request with a user-agent that can handle
interactive logins

openshift-
challengin
g-client

Client used to request tokens with a user-agent that can handle WWW-Authenticate
challenges

OAuthClient Object Definition

kind: "OAuthClient"
accessTokenMaxAgeSeconds: null 1
apiVersion: "oauth.openshift.io/v1"
metadata:
 name: "openshift-web-console" 2
 selflink: "/oapi/v1/oAuthClients/openshift-web-console"
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01Z"
respondWithChallenges: false 3
secret: "45e27750-a8aa-11e4-b2ea-3c970e4b7ffe" 4
redirectURIs:
 - "https://localhost:8443" 5

CHAPTER 4. ADDITIONAL CONCEPTS

71

https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_online/3/html-single/developer_guide/#dev-guide-persistent-volumes
https://tools.ietf.org/html/rfc6749#section-2

1

2

3

4

5

The lifetime of access tokens in seconds (see the description below).

The name is used as the client_id parameter in OAuth requests.

When respondWithChallenges is set to true, unauthenticated requests to /oauth/authorize will
result in WWW-Authenticate challenges, if supported by the configured authentication methods.

The value in the secret parameter is used as the client_secret parameter in an authorization code
flow.

One or more absolute URIs can be placed in the redirectURIs section. The redirect_uri parameter
sent with authorization requests must be prefixed by one of the specified redirectURIs.

The accessTokenMaxAgeSeconds value overrides the default accessTokenMaxAgeSeconds value
in the master configuration file for individual OAuth clients. Setting this value for a client allows long-
lived access tokens for that client without affecting the lifetime of other clients.

If null, the default value in the master configuration file is used.

If set to 0, the token will not expire.

If set to a value greater than 0, tokens issued for that client are given the specified expiration
time. For example, accessTokenMaxAgeSeconds: 172800 would cause the token to expire 48
hours after being issued.

4.6.7.2. OAuthClientAuthorization

An OAuthClientAuthorization represents an approval by a User for a particular OAuthClient to be
given an OAuthAccessToken with particular scopes.

Creation of OAuthClientAuthorization objects is done during an authorization request to the OAuth
server.

OAuthClientAuthorization Object Definition

4.6.7.3. OAuthAuthorizeToken

An OAuthAuthorizeToken represents an OAuth authorization code, as described in RFC 6749, section
1.3.1.

An OAuthAuthorizeToken is created by a request to the /oauth/authorize endpoint, as described in
RFC 6749, section 4.1.1 .

An OAuthAuthorizeToken can then be used to obtain an OAuthAccessToken with a request to the

kind: "OAuthClientAuthorization"
apiVersion: "oauth.openshift.io/v1"
metadata:
 name: "bob:openshift-web-console"
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01-00:00"
clientName: "openshift-web-console"
userName: "bob"
userUID: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"
scopes: []

OpenShift Online 3 Architecture

72

https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6749#section-4.1.1

1

2

3

4

5

6

An OAuthAuthorizeToken can then be used to obtain an OAuthAccessToken with a request to the
/oauth/token endpoint, as described in RFC 6749, section 4.1.3 .

OAuthAuthorizeToken Object Definition

name represents the token name, used as an authorization code to exchange for an
OAuthAccessToken.

The clientName value is the OAuthClient that requested this token.

The expiresIn value is the expiration in seconds from the creationTimestamp.

The redirectURI value is the location where the user was redirected to during the authorization
flow that resulted in this token.

userName represents the name of the User this token allows obtaining an OAuthAccessToken for.

userUID represents the UID of the User this token allows obtaining an OAuthAccessToken for.

4.6.7.4. OAuthAccessToken

An OAuthAccessToken represents an OAuth access token, as described in RFC 6749, section 1.4 .

An OAuthAccessToken is created by a request to the /oauth/token endpoint, as described in RFC
6749, section 4.1.3.

Access tokens are used as bearer tokens to authenticate to the API.

OAuthAccessToken Object Definition

kind: "OAuthAuthorizeToken"
apiVersion: "oauth.openshift.io/v1"
metadata:
 name: "MDAwYjM5YjMtMzM1MC00NDY4LTkxODItOTA2OTE2YzE0M2Fj" 1
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01-00:00"
clientName: "openshift-web-console" 2
expiresIn: 300 3
scopes: []
redirectURI: "https://localhost:8443/console/oauth" 4
userName: "bob" 5
userUID: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe" 6

kind: "OAuthAccessToken"
apiVersion: "oauth.openshift.io/v1"
metadata:
 name: "ODliOGE5ZmMtYzczYi00Nzk1LTg4MGEtNzQyZmUxZmUwY2Vh" 1
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:02-00:00"
clientName: "openshift-web-console" 2
expiresIn: 86400 3
scopes: []
redirectURI: "https://localhost:8443/console/oauth" 4

CHAPTER 4. ADDITIONAL CONCEPTS

73

https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc6749#section-1.4
https://tools.ietf.org/html/rfc6749#section-4.1.3

1

2

3

4

5

6

7

1

name is the token name, which is used as a bearer token to authenticate to the API.

The clientName value is the OAuthClient that requested this token.

The expiresIn value is the expiration in seconds from the creationTimestamp.

The redirectURI is where the user was redirected to during the authorization flow that resulted in
this token.

userName represents the User this token allows authentication as.

userUID represents the User this token allows authentication as.

authorizeToken is the name of the OAuthAuthorizationToken used to obtain this token, if any.

4.6.8. User Objects

4.6.8.1. Identity

When a user logs into OpenShift Online, they do so using a configured identity provider. This determines
the user’s identity, and provides that information to OpenShift Online.

OpenShift Online then looks for a UserIdentityMapping for that Identity:

If the Identity already exists, but is not mapped to a User, login fails.

If the Identity already exists, and is mapped to a User, the user is given an OAuthAccessToken
for the mapped User.

If the Identity does not exist, an Identity, User, and UserIdentityMapping are created, and the
user is given an OAuthAccessToken for the mapped User.

Identity Object Definition

The identity name must be in the form providerName:providerUserName.

userName: "bob" 5
userUID: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe" 6
authorizeToken: "MDAwYjM5YjMtMzM1MC00NDY4LTkxODItOTA2OTE2YzE0M2Fj" 7

kind: "Identity"
apiVersion: "user.openshift.io/v1"
metadata:
 name: "anypassword:bob" 1
 uid: "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01-00:00"
providerName: "anypassword" 2
providerUserName: "bob" 3
user:
 name: "bob" 4
 uid: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe" 5

OpenShift Online 3 Architecture

74

2

3

4

5

1

2

3

providerName is the name of the identity provider.

providerUserName is the name that uniquely represents this identity in the scope of the identity
provider.

The name in the user parameter is the name of the user this identity maps to.

The uid represents the UID of the user this identity maps to.

4.6.8.2. User

A User represents an actor in the system. Users are granted permissions by adding roles to users or to
their groups.

User objects are created automatically on first login, or can be created via the API.

NOTE

OpenShift Online user names containing /, :, and % are not supported.

User Object Definition

name is the user name used when adding roles to a user.

The values in identities are Identity objects that map to this user. May be null or empty for users
that cannot log in.

The fullName value is an optional display name of user.

4.6.8.3. UserIdentityMapping

A UserIdentityMapping maps an Identity to a User.

Creating, updating, or deleting a UserIdentityMapping modifies the corresponding fields in the Identity
and User objects.

An Identity can only map to a single User, so logging in as a particular identity unambiguously
determines the User.

A User can have multiple identities mapped to it. This allows multiple login methods to identify the same
User.

kind: "User"
apiVersion: "user.openshift.io/v1"
metadata:
 name: "bob" 1
 uid: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01-00:00"
identities:
 - "anypassword:bob" 2
fullName: "Bob User" 3

CHAPTER 4. ADDITIONAL CONCEPTS

75

1

1

2

UserIdentityMapping Object Definition

UserIdentityMapping name matches the mapped Identity name

4.6.8.4. Group

A Group represents a list of users in the system. Groups are granted permissions by adding roles to
users or to their groups.

Group Object Definition

name is the group name used when adding roles to a group.

The values in users are the names of User objects that are members of this group.

kind: "UserIdentityMapping"
apiVersion: "user.openshift.io/v1"
metadata:
 name: "anypassword:bob" 1
 uid: "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
 resourceVersion: "1"
identity:
 name: "anypassword:bob"
 uid: "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
user:
 name: "bob"
 uid: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"

kind: "Group"
apiVersion: "user.openshift.io/v1"
metadata:
 name: "developers" 1
 creationTimestamp: "2015-01-01T01:01:01-00:00"
users:
 - "bob" 2

OpenShift Online 3 Architecture

76

CHAPTER 5. NETWORKING

5.1. NETWORKING

5.1.1. Overview

Kubernetes ensures that pods are able to network with each other, and allocates each pod an IP address
from an internal network. This ensures all containers within the pod behave as if they were on the same
host. Giving each pod its own IP address means that pods can be treated like physical hosts or virtual
machines in terms of port allocation, networking, naming, service discovery, load balancing, application
configuration, and migration.

Creating links between pods is unnecessary, and it is not recommended that your pods talk to one
another directly using the IP address. Instead, it is recommended that you create a service, then interact
with the service.

5.1.2. OpenShift Online DNS

If you are running multiple services, such as frontend and backend services for use with multiple pods, in
order for the frontend pods to communicate with the backend services, environment variables are
created for user names, service IPs, and more. If the service is deleted and recreated, a new IP address
can be assigned to the service, and requires the frontend pods to be recreated in order to pick up the
updated values for the service IP environment variable. Additionally, the backend service has to be
created before any of the frontend pods to ensure that the service IP is generated properly, and that it
can be provided to the frontend pods as an environment variable.

For this reason, OpenShift Online has a built-in DNS so that the services can be reached by the service
DNS as well as the service IP/port. OpenShift Online supports split DNS by running SkyDNS on the
master that answers DNS queries for services. The master listens to port 53 by default.

When the node starts, the following message indicates the Kubelet is correctly resolved to the master:

0308 19:51:03.118430 4484 node.go:197] Started Kubelet for node
openshiftdev.local, server at 0.0.0.0:10250
I0308 19:51:03.118459 4484 node.go:199] Kubelet is setting 10.0.2.15 as a
DNS nameserver for domain "local"

If the second message does not appear, the Kubernetes service may not be available.

On a node host, each container’s nameserver has the master name added to the front, and the default
search domain for the container will be .<pod_namespace>.cluster.local. The container will then direct
any nameserver queries to the master before any other nameservers on the node, which is the default
behavior for Docker-formatted containers. The master will answer queries on the .cluster.local domain
that have the following form:

Table 5.1. DNS Example Names

Object Type Example

Default <pod_namespace>.cluster.local

Services <service>.<pod_namespace>.svc.cluster.local

CHAPTER 5. NETWORKING

77

https://github.com/skynetservices/skydns

Endpoints <name>.<namespace>.endpoints.cluster.local

Object Type Example

This prevents having to restart frontend pods in order to pick up new services, which would create a new
IP for the service. This also removes the need to use environment variables, because pods can use the
service DNS. Also, as the DNS does not change, you can reference database services as db.local in
configuration files. Wildcard lookups are also supported, because any lookups resolve to the service IP,
and removes the need to create the backend service before any of the frontend pods, since the service
name (and hence DNS) is established upfront.

This DNS structure also covers headless services, where a portal IP is not assigned to the service and the
kube-proxy does not load-balance or provide routing for its endpoints. Service DNS can still be used
and responds with multiple A records, one for each pod of the service, allowing the client to round-robin
between each pod.

5.2. ROUTES

5.2.1. Overview

An OpenShift Online route exposes a service at a host name, such as www.example.com, so that external
clients can reach it by name.

DNS resolution for a host name is handled separately from routing. Your administrator may have
configured a DNS wildcard entry that will resolve to the OpenShift Online node that is running the
OpenShift Online router. If you are using a different host name you may need to modify its DNS records
independently to resolve to the node that is running the router.

Each route consists of a name (limited to 63 characters), a service selector, and an optional security
configuration.

NOTE

Wildcard routes are disabled in OpenShift Online.

OpenShift Online 3 Architecture

78

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. WHAT ARE THE LAYERS?
	1.2. WHAT IS THE OPENSHIFT ONLINE ARCHITECTURE?
	1.3. HOW IS OPENSHIFT ONLINE SECURED?
	1.3.1. TLS Support

	CHAPTER 2. INFRASTRUCTURE COMPONENTS
	2.1. KUBERNETES INFRASTRUCTURE
	2.1.1. Overview
	2.1.2. Masters
	2.1.3. Nodes
	2.1.3.1. Kubelet
	2.1.3.2. Service Proxy
	2.1.3.3. Node Object Definition

	2.2. CONTAINER REGISTRY
	2.2.1. Overview
	2.2.2. Integrated OpenShift Container Registry
	2.2.3. Third Party Registries
	2.2.3.1. Authentication

	2.3. WEB CONSOLE
	2.3.1. Overview
	2.3.2. Project Overviews
	2.3.3. JVM Console
	2.3.4. StatefulSets

	CHAPTER 3. CORE CONCEPTS
	3.1. OVERVIEW
	3.2. CONTAINERS AND IMAGES
	3.2.1. Containers
	3.2.2. Images
	Image Version Tag Policy

	3.2.3. Container Registries

	3.3. PODS AND SERVICES
	3.3.1. Pods
	3.3.1.1. Pod Restart Policy

	3.3.2. Services
	3.3.2.1. Service Proxy
	3.3.2.2. Headless services

	3.3.3. Labels
	3.3.4. Endpoints

	3.4. PROJECTS AND USERS
	3.4.1. Users
	3.4.2. Namespaces
	3.4.3. Projects
	3.4.3.1. Projects provided at installation

	3.4.4. Project Idling
	3.4.5. Account Pruning

	3.5. BUILDS AND IMAGE STREAMS
	3.5.1. Builds
	3.5.1.1. Source-to-Image (S2I) Build
	3.5.1.2. Pipeline Build

	3.5.2. Image Streams
	3.5.2.1. Important terms
	3.5.2.2. Configuring Image Streams
	3.5.2.3. Image Stream Images
	3.5.2.4. Image Stream Tags
	3.5.2.5. Image Stream Change Triggers
	3.5.2.6. Image Stream Mappings
	3.5.2.7. Working with Image Streams

	3.6. DEPLOYMENTS
	3.6.1. Replication controllers
	3.6.2. Replica set
	3.6.3. Jobs
	3.6.4. Deployments and Deployment Configurations

	3.7. TEMPLATES
	3.7.1. Overview

	CHAPTER 4. ADDITIONAL CONCEPTS
	4.1. AUTHENTICATION
	4.1.1. Overview
	4.1.2. Users and Groups
	4.1.3. API Authentication
	4.1.3.1. Impersonation

	4.1.4. OAuth
	4.1.4.1. OAuth Clients
	4.1.4.2. Service Accounts as OAuth Clients
	4.1.4.3. Redirect URIs for Service Accounts as OAuth Clients
	4.1.4.4. Integrations
	4.1.4.5. OAuth Server Metadata
	4.1.4.6. Obtaining OAuth Tokens

	4.2. AUTHORIZATION
	4.2.1. Overview
	4.2.2. Evaluating Authorization
	4.2.3. Collaboration

	4.3. PERSISTENT STORAGE
	4.3.1. Overview
	4.3.2. Lifecycle of a Volume and Claim
	4.3.2.1. Provisioning
	4.3.2.2. Binding
	4.3.2.3. Using
	4.3.2.4. Releasing
	4.3.2.5. Reclaiming

	4.3.3. Persistent Volumes
	4.3.3.1. Types of Persistent Volumes
	4.3.3.2. Capacity
	4.3.3.3. Access Modes
	4.3.3.4. OpenShift Online Restrictions
	4.3.3.5. Reclaim Policy
	4.3.3.6. Phase

	4.3.4. Persistent Volume Claims
	4.3.4.1. Storage Class
	4.3.4.2. Access Modes
	4.3.4.3. Resources
	4.3.4.4. Claims As Volumes

	4.4. SOURCE CONTROL MANAGEMENT
	4.5. ADMISSION CONTROLLERS
	4.5.1. Overview
	4.5.2. General Admission Rules

	4.6. OTHER API OBJECTS
	4.6.1. LimitRange
	4.6.2. ResourceQuota
	4.6.3. Resource
	4.6.4. Secret
	4.6.5. PersistentVolume
	4.6.6. PersistentVolumeClaim
	4.6.6.1. Custom Resources

	4.6.7. OAuth Objects
	4.6.7.1. OAuthClient
	4.6.7.2. OAuthClientAuthorization
	4.6.7.3. OAuthAuthorizeToken
	4.6.7.4. OAuthAccessToken

	4.6.8. User Objects
	4.6.8.1. Identity
	4.6.8.2. User
	4.6.8.3. UserIdentityMapping
	4.6.8.4. Group

	CHAPTER 5. NETWORKING
	5.1. NETWORKING
	5.1.1. Overview
	5.1.2. OpenShift Online DNS

	5.2. ROUTES
	5.2.1. Overview

