
OpenShift Enterprise 3.0

Installation and Configuration

OpenShift Enterprise 3.0 Installation and Configuration

Last Updated: 2019-03-14

OpenShift Enterprise 3.0 Installation and Configuration

OpenShift Enterprise 3.0 Installation and Configuration

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Installation and Configuration topics cover the basics of installing and configuring
OpenShift in your environment. Use these topics for the one-time tasks required to get OpenShift up
and running.

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. INSTALLING
2.1. OVERVIEW
2.2. PREREQUISITES

2.2.1. Overview
2.2.2. System Requirements
2.2.3. Environment Requirements

2.2.3.1. Persistent Storage
2.2.3.2. SELinux

2.2.4. Host Preparation
2.2.4.1. Software Prerequisites
2.2.4.2. Configuring Docker Storage

2.2.5. Ensuring Host Access
2.2.6. What’s Next?

2.3. QUICK INSTALLATION
2.3.1. Overview
2.3.2. Before You Begin
2.3.3. Running an Interactive Installation
2.3.4. Defining an Installation Configuration File
2.3.5. Running an Unattended Installation
2.3.6. Adding Nodes or Reinstalling the Cluster
2.3.7. Uninstalling OpenShift
2.3.8. What’s Next?

2.4. ADVANCED INSTALLATION
2.4.1. Overview
2.4.2. Before You Begin
2.4.3. Configuring Ansible

2.4.3.1. Single Master and Multiple Nodes
2.4.3.2. Single Master, Multiple etcd, and Multiple Nodes
2.4.3.3. Multiple Masters, Multiple etcd, and Multiple Nodes

2.4.4. Running the Ansible Installer
2.4.5. Configuring Fencing
2.4.6. Verifying the Installation
2.4.7. Adding Nodes to an Existing Cluster
2.4.8. Known Issues
2.4.9. What’s Next?

2.5. DEPLOYING A DOCKER REGISTRY
2.5.1. Overview
2.5.2. Deploying the Registry

2.5.2.1. Storage for the Registry
2.5.2.1.1. Production Use

2.5.3. Viewing Logs
2.5.4. File Storage
2.5.5. Accessing the Registry
2.5.6. Securing the Registry
2.5.7. Exposing the Registry
2.5.8. What’s Next?

2.6. DEPLOYING A ROUTER
2.6.1. Overview
2.6.2. Creating the Router Service Account

4

5
5
5
5
5
6
7
7
7
7
9

13
13
13
13
13
14
14
16
16
17
17
17
17
17
17
20
21
22
24
24
24
26
27
28
28
28
28
29
29
30
30
32
33
35
36
37
37
37

Table of Contents

1

. .

. .

2.6.3. Deploying the Default HAProxy Router
2.6.3.1. High Availability
2.6.3.2. Customizing the Default Routing Subdomain
2.6.3.3. Using Wildcard Certificates
2.6.3.4. Using Secured Routes
2.6.3.5. Using the Container Network Stack

2.6.4. Deploying a Customized HAProxy Router
2.6.4.1. Using Stick Tables
2.6.4.2. Rebuilding Your Router

2.6.5. Deploying the F5 Router
2.6.5.1. F5 Router Partition Paths

2.6.6. What’s Next?
2.7. FIRST STEPS

2.7.1. Overview
2.7.2. Prerequisites
2.7.3. Creating Image Streams for OpenShift Images
2.7.4. Creating Image Streams for xPaaS Middleware Images
2.7.5. Creating Database Service Templates
2.7.6. Creating InstantApp Templates
2.7.7. What’s Next?

CHAPTER 3. UPGRADING OPENSHIFT
3.1. OVERVIEW
3.2. USING THE AUTOMATED UPGRADE PLAYBOOK
3.3. UPGRADING MANUALLY

3.3.1. Upgrading Masters
3.3.2. Updating Policy Definitions
3.3.3. Upgrading Nodes
3.3.4. Upgrading the Router
3.3.5. Upgrading the Registry
3.3.6. Updating the Default Image Streams and Templates
3.3.7. Importing the Latest Images

3.4. ADDITIONAL MANUAL STEPS PER RELEASE
3.4.1. OpenShift Enterprise 3.0.1.0
3.4.2. OpenShift Enterprise 3.0.2.0

CHAPTER 4. REVISION HISTORY: INSTALLATION AND CONFIGURATION
4.1. MON MAR 28 2016
4.2. MON MAR 21 2016
4.3. MON FEB 29 2016
4.4. THU FEB 25 2016
4.5. MON FEB 22 2016
4.6. WED FEB 17 2016
4.7. MON FEB 15 2016
4.8. MON FEB 08 2016
4.9. TUE JUN 23 2015

37
38
38
39
39
41
41
42
43
43
44
45
45
45
45
46
46
46
47
48

49
49
49
50
50
51
51
52
52
53
53
54
55
56

59
59
59
59
59
59
59
60
60
60

OpenShift Enterprise 3.0 Installation and Configuration

2

Table of Contents

3

CHAPTER 1. OVERVIEW
OpenShift Installation and Configuration topics cover the basics of installing and configuring OpenShift in
your environment. Use these topics for the one-time tasks required to get OpenShift up and running. For
day to day tasks, see Administration.

OpenShift Enterprise 3.0 Installation and Configuration

4

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-index

CHAPTER 2. INSTALLING

2.1. OVERVIEW

The quick installation method allows you to use an interactive CLI utility to install OpenShift across a set
of hosts. The utility is a self-contained wrapper intended for usage on a Red Hat Enterprise Linux 7 host.

For production environments, a reference configuration implemented using Ansible playbooks is available
as the advanced installation method.

NOTE

Before beginning either installation method, start with the Prerequisites topic.

2.2. PREREQUISITES

2.2.1. Overview

OpenShift infrastructure components can be installed across multiple hosts. The following sections
outline the system requirements and instructions for preparing your environment and hosts before
installing OpenShift.

2.2.2. System Requirements

You must have an active OpenShift Enterprise subscription on your Red Hat account to proceed. If you
do not, contact your sales representative for more information.

The system requirements vary per host type:

Masters
Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: Red Hat Enterprise Linux (RHEL) 7.1 with "Minimal" installation option

2 vCPU

Minimum 8 GB RAM

Minimum 30 GB hard disk space

CHAPTER 2. INSTALLING

5

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-infrastructure-components-kubernetes-infrastructure
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master

Nodes
Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: Red Hat Enterprise Linux (RHEL) 7.1 with "Minimal" installation option

Docker 1.6.2 or later

1 vCPU

Minimum 8 GB RAM

Minimum 15 GB hard disk space

An additional minimum 15 GB unallocated space to be configured using docker-
storage-setup; see Configuring Docker Storage below.

Persistent Storage

The Kubernetes persistent volume framework allows you to provision an OpenShift cluster with
persistent storage using networked storage available in your environment. This can be done after
completing the initial OpenShift installation depending on your application needs, giving users a way to
request those resources without having any knowledge of the underlying infrastructure.

Currently NFS is fully supported, however other options are available as Technology Preview.

Configuring Core Usage

By default, OpenShift masters and nodes use all available cores in the system they run on. You can
choose the number of cores you want OpenShift to use by setting the GOMAXPROCS environment
variable.

For example, run the following before starting the server to make OpenShift only run on one core:

export GOMAXPROCS=1

Security Warning

OpenShift runs Docker containers on your hosts, and in some cases, such as build operations and the
registry service, it does so using privileged containers. Furthermore, those containers access your host’s
Docker daemon and perform docker build and docker push operations. As such, you should be
aware of the inherent security risks associated with performing docker run operations on arbitrary
images as they effectively have root access.

For more information, see these articles:

http://opensource.com/business/14/7/docker-security-selinux

https://docs.docker.com/articles/security/

To address these risks, OpenShift uses security context constraints that control the actions that pods can
perform and what it has the ability to access.

2.2.3. Environment Requirements

DNS

OpenShift Enterprise 3.0 Installation and Configuration

6

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/whats_new/#technology-preview
https://golang.org/pkg/runtime/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#containers
http://opensource.com/business/14/7/docker-security-selinux
https://docs.docker.com/articles/security/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#security-context-constraints

A wildcard for a DNS zone must ultimately resolve to the IP address of the OpenShift router.

For example, create a wildcard DNS entry for cloudapps, or something similar, that has a low TTL and
points to the public IP address of the host where the router will be deployed:

*.cloudapps.example.com. 300 IN A 192.168.133.2

In almost all cases, when referencing VMs you must use host names, and the host names that you use
must match the output of the hostname -f command on each node.

Networking

A shared network must exist between the master and node hosts.

If you plan to configure multiple masters for high-availability using the advanced installation method, you
must also select an IP to be configured as your virtual IP (VIP) during the installation process. The IP that
you select must be routable between all of your nodes, and if you configure using a FQDN it should
resolve on all nodes. The VIP is then managed by Pacemaker.

Git

You must have either Internet access and a GitHub account, or read and write access to an internal,
HTTP-based Git server.

2.2.3.1. Persistent Storage

The Kubernetes persistent volume framework allows you to provision an OpenShift cluster with
persistent storage using networked storage available in your environment. This can be done after
completing the initial OpenShift installation depending on your application needs, giving users a way to
request those resources without having any knowledge of the underlying infrastructure.

2.2.3.2. SELinux

Security-Enhanced Linux (SELinux) must be enabled on all of the servers before installing OpenShift or
the installer will fail. Also, configure SELINUXTYPE=targeted in the /etc/selinux/config file:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these three values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected processes
are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

2.2.4. Host Preparation

Before installing OpenShift, you must first prepare each host per the following.

2.2.4.1. Software Prerequisites

CHAPTER 2. INSTALLING

7

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#routers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#high-availability-masters
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master-components
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master-components
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-additional-concepts-storage

Installing Red Hat Enterprise Linux 7

A base installation of Red Hat Enterprise Linux (RHEL) 7.1 is required for master or node hosts. See the
Red Hat Enterprise Linux 7.1 Installation Guide for more information.

Registering the Hosts

Each host must be registered using Red Hat Subscription Manager (RHSM) and have an active
OpenShift Enterprise subscription attached to access the required packages.

1. On each host, register with RHSM:

subscription-manager register --username=<user_name> --password=
<password>

2. List the available subscriptions:

subscription-manager list --available

3. In the output for the previous command, find the pool ID for an OpenShift Enterprise subscription
and attach it:

subscription-manager attach --pool=<pool_id>

4. Disable all repositories and enable only the required ones:

subscription-manager repos --disable="*"
subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-3.0-rpms"

5. If you plan to configure multiple masters for high-availability using the advanced installation
method, you must also enable the High Availability Add-on for Red Hat Enterprise Linux
repository:

subscription-manager repos \
 --enable="rhel-ha-for-rhel-7-server-rpms"

Managing Base Packages

1. Install the following packages:

yum install wget git net-tools bind-utils iptables-services
bridge-utils bash-completion

2. If you plan to use the quick installation method, you must also install the GNU Compiler
Collection (gcc) and Python Virtual Environment (python-virtualenv) packages:

yum install gcc python-virtualenv

3. Update the system to the latest packages:

yum update

OpenShift Enterprise 3.0 Installation and Configuration

8

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#high-availability-masters
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Overview/index.html

4. Install the following package, which provides OpenShift utilities and pulls in other tools required
by the quick and advanced installation methods, such as Ansible and related configuration files:

yum install atomic-openshift-utils

Installing Docker

Docker version 1.6.2 or later from the rhel-7-server-ose-3.0-rpms repository must be installed and
running on master and node hosts before installing OpenShift.

1. Install Docker:

yum install docker

2. Edit the /etc/sysconfig/docker file and add --insecure-registry 172.30.0.0/16 to the
OPTIONS parameter. For example:

OPTIONS='--selinux-enabled --insecure-registry 172.30.0.0/16'

The --insecure-registry option instructs the Docker daemon to trust any Docker registry
on the indicated subnet, rather than requiring a certificate.

After installing OpenShift, you can choose to secure the integrated Docker registry, which
involves adjusting the --insecure-registry option accordingly.

IMPORTANT

172.30.0.0/16 is the default value of the servicesSubnet variable in the
master-config.yaml file. If this has changed, then the --insecure-registry
value in the above step should be adjusted to match, as it is indicating the subnet
for the registry to use. Note that the openshift_master_portal_net variable
can be set in the Ansible inventory file and used during the advanced installation
method to modify the servicesSubnet variable.

2.2.4.2. Configuring Docker Storage

Docker containers and the images they are created from are stored in Docker’s storage back end. This
storage is ephemeral and separate from any persistent storage allocated to meet the needs of your
applications.

The default storage back end is a thin pool on loopback devices which is not supported for production
use and only appropriate for proof of concept environments. For production environments, you must
create a thin pool logical volume and re-configure Docker to use that volume.

You can use the docker-storage-setup script included with Docker to create a thin pool device and
configure Docker’s storage driver. This can be done after installing Docker and should be done before
creating images or containers. The script reads configuration options from the /etc/sysconfig/docker-
storage-setup file and supports three options for creating the logical volume:

Option A) Use an additional block device.

Option B) Use an existing, specified volume group.

CHAPTER 2. INSTALLING

9

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-persistent-volumes

Option C) Use the remaining free space from the volume group where your root file system is
located.

Option A is the most robust option, however it requires adding an additional block device to your host
before configuring Docker storage. Options B and C both require leaving free space available when
provisioning your host.

NOTE

See the Managing Storage with Docker Formatted Containers on Red Hat Enterprise
Linux and Red Hat Enterprise Linux Atomic Host Knowledgebase article for more details
about docker-storage-setup and basic instructions on storage management in Red Hat
Enterprise Linux 7.

1. Create the docker-pool volume using one of the following three options:

Option A) Use an additional block device.
In /etc/sysconfig/docker-storage-setup, set DEVS to the path of the block device you wish
to use. Set VG to the volume group name you wish to create; docker-vg is a reasonable
choice. For example:

cat <<EOF > /etc/sysconfig/docker-storage-setup
DEVS=/dev/vdc
VG=docker-vg
EOF

Then run docker-storage-setup and review the output to ensure the docker-pool volume
was created:

docker-storage-setup
[5/1868]
0
Checking that no-one is using this disk right now ...
OK

Disk /dev/vdc: 31207 cylinders, 16 heads, 63 sectors/track
sfdisk: /dev/vdc: unrecognized partition table type

Old situation:
sfdisk: No partitions found

New situation:
Units: sectors of 512 bytes, counting from 0

 Device Boot Start End #sectors Id System
/dev/vdc1 2048 31457279 31455232 8e Linux LVM
/dev/vdc2 0 - 0 0 Empty
/dev/vdc3 0 - 0 0 Empty
/dev/vdc4 0 - 0 0 Empty
Warning: partition 1 does not start at a cylinder boundary
Warning: partition 1 does not end at a cylinder boundary
Warning: no primary partition is marked bootable (active)
This does not matter for LILO, but the DOS MBR will not boot this
disk.
Successfully wrote the new partition table

OpenShift Enterprise 3.0 Installation and Configuration

10

https://access.redhat.com/articles/1492923

Re-reading the partition table ...

If you created or changed a DOS partition, /dev/foo7, say, then
use dd(1)
to zero the first 512 bytes: dd if=/dev/zero of=/dev/foo7 bs=512
count=1
(See fdisk(8).)
 Physical volume "/dev/vdc1" successfully created
 Volume group "docker-vg" successfully created
 Rounding up size to full physical extent 16.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume docker-vg/docker-pool and
docker-vg/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted docker-vg/docker-pool to thin pool.
 Logical volume "docker-pool" changed.

Option B) Use an existing, specified volume group.
In /etc/sysconfig/docker-storage-setup, set VG to the desired volume group. For example:

cat <<EOF > /etc/sysconfig/docker-storage-setup
VG=docker-vg
EOF

Then run docker-storage-setup and review the output to ensure the docker-pool volume
was created:

docker-storage-setup
 Rounding up size to full physical extent 16.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume docker-vg/docker-pool and
docker-vg/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted docker-vg/docker-pool to thin pool.
 Logical volume "docker-pool" changed.

Option C) Use the remaining free space from the volume group where your root file
system is located.
Verify that the volume group where your root file system resides has the desired free space,
then run docker-storage-setup and review the output to ensure the docker-pool volume
was created:

docker-storage-setup
 Rounding up size to full physical extent 32.00 MiB
 Logical volume "docker-poolmeta" created.
 Logical volume "docker-pool" created.
 WARNING: Converting logical volume rhel/docker-pool and
rhel/docker-poolmeta to pool's data and metadata volumes.
 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Converted rhel/docker-pool to thin pool.
 Logical volume "docker-pool" changed.

CHAPTER 2. INSTALLING

11

2. Verify your configuration. You should have a dm.thinpooldev value in the
/etc/sysconfig/docker-storage file and a docker-pool logical volume:

cat /etc/sysconfig/docker-storage
DOCKER_STORAGE_OPTIONS=--storage-opt dm.fs=xfs --storage-opt
dm.thinpooldev=/dev/mapper/docker--vg-docker--pool

lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move
Log Cpy%Sync Convert
 docker-pool rhel twi-a-t--- 9.29g 0.00 0.12

IMPORTANT

Before using Docker or OpenShift, verify that the docker-pool logical volume is
large enough to meet your needs. The docker-pool volume should be 60% of the
available volume group and will grow to fill the volume group via LVM monitoring.

3. Check if Docker is running:

systemctl is-active docker

4. If Docker has not yet been started on the host, enable and start the service:

systemctl enable docker
systemctl start docker

If Docker is already running, re-initialize Docker:

WARNING

This will destroy any Docker containers or images currently on the host.

systemctl stop docker
rm -rf /var/lib/docker/*
systemctl restart docker

If there is any content in /var/lib/docker/, it must be deleted. Files will be present if Docker has
been used prior to the installation of OpenShift.

Reconfiguring Docker Storage

Should you need to reconfigure Docker storage after having created the docker-pool, you should first
remove the docker-pool logical volume. If you are using a dedicated volume group, you should also
remove the volume group and any associated physical volumes before reconfiguring docker-storage-
setup according to the instructions above.

See Logical Volume Manager Administration for more detailed information on LVM management.

OpenShift Enterprise 3.0 Installation and Configuration

12

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/index.html

2.2.5. Ensuring Host Access

The quick and advanced installation methods require a user that has access to all hosts. If you want to
run the installer as a non-root user, passwordless sudo rights must be configured on each destination
host.

For example, you can generate an SSH key on the host where you will invoke the installation process:

ssh-keygen

Do not use a password.

An easy way to distribute your SSH keys is by using a bash loop:

for host in master.example.com \
 node1.example.com \
 node2.example.com; \
 do ssh-copy-id -i ~/.ssh/id_rsa.pub $host; \
 done

Modify the host names in the above command according to your configuration.

2.2.6. What’s Next?

Now that your environment and hosts are properly set up, you can install OpenShift Enterprise using the
quick installation or advanced installation method.

2.3. QUICK INSTALLATION

2.3.1. Overview

The quick installation method allows you to use an interactive CLI utility to install OpenShift across a set
of hosts. The installation utility can deploy OpenShift components on targeted hosts by installing RPMs.

This installation method is provided to make the installation experience easier by interactively gathering
the data needed to run on each host. The utility is a self-contained wrapper intended for usage on a Red
Hat Enterprise Linux (RHEL) 7 system.

In addition to running interactive installations from scratch, the atomic-openshift-installer
command can also be run or re-run using a predefined installation configuration file. This file can be used
with the installation utility to:

run an unattended installation,

add nodes to an existing cluster,

upgrade your cluster, or

reinstall the OpenShift cluster completely.

Alternatively, you can use the advanced installation method for more complex environments.

2.3.2. Before You Begin

CHAPTER 2. INSTALLING

13

The installation utility allows you to install OpenShift master and node components on a defined set of
hosts.

NOTE

By default, any hosts you designate as masters during the installation process are
automatically also configured as nodes so that the masters are configured as part of the
OpenShift SDN. The node component on the masters, however, are marked
unschedulable, which blocks pods from being scheduled on it. After the installation, you
can mark them schedulable if you want.

Before installing OpenShift, you must first satisfy the prerequisites on your hosts, which includes verifying
system and environment requirements and properly installing and configuring Docker. You must also be
prepared to provide or validate the following information for each of your targeted hosts during the course
of the installation:

User name on the target host that should run the Ansible-based installation (can be root or non-
root)

Host name

Whether to install components for master, node, or both

Internal and external IP addresses

After following the instructions in the Prerequisites topic, you can continue to running an interactive or
unattended installation.

2.3.3. Running an Interactive Installation

NOTE

Ensure you have read through Before You Begin.

You can start the interactive installation by running:

$ atomic-openshift-installer install

Then follow the on-screen instructions to install a new OpenShift Enterprise cluster.

After it has finished, ensure that you back up the ~/.config/openshift/installer.cfg.ymlinstallation
configuration file that is created, as it is required if you later want to re-run the installation, add hosts to
the cluster, or upgrade your cluster. Then, see What’s Next for the next steps on configuring your
OpenShift cluster.

2.3.4. Defining an Installation Configuration File

The installation utility can use a predefined installation configuration file, which contains information
about your installation, individual hosts, and cluster. When running an interactive installation, an
installation configuration file based on your answers is created for you in
~/.config/openshift/installer.cfg.yml. The file is created if you are instructed to exit the installation to
manually modify the configuration or when the installation completes. You can also create the
configuration file manually from scratch to perform an unattended installation.

OpenShift Enterprise 3.0 Installation and Configuration

14

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#marking-nodes-as-unschedulable-or-schedulable

1

2

3

4

5

6

7 8

9 10

11 12

Example 2.1. Installation Configuration File Specification

The version of this installation configuration file.

The OpenShift variant to install. For OSE, set this to openshift-enterprise.

A valid version your selected variant. If not specified, this defaults to the newest version for the
specified variant. For example: 3.0.

Defines which user Ansible uses to SSH in to remote systems for gathering facts and for the
installation. By default, this is the root user, but you can set it to any user that has sudo
privileges.

Defines where the Ansible logs are stored. By default, this is the /tmp/ansible.log file.

Defines a list of the hosts onto which you want to install the OpenShift master and node
components.

Required. Allows the installer to connect to the system and gather facts before proceeding with
the install.

Required for unattended installations. If these details are not specified, then this information is
pulled from the facts gathered by the installation utility, and you are asked to confirm the details.
If undefined for an unattended installation, the installation fails.

Determines the type of services that are installed. At least one of these must be set to true for
the configuration file to be considered valid.

version: v1 1

variant: openshift-enterprise 2

variant_version: 3.0 3

ansible_ssh_user: root 4

ansible_log_path: /tmp/ansible.log 5

hosts: 6

- ip: 10.0.0.1 7

 hostname: master-private.example.com 8

 public_ip: 24.222.0.1 9

 public_hostname: master.example.com 10

 master: true 11

 node: true 12

 connect_to: 24.222.0.1 13
- ip: 10.0.0.2
 hostname: node1-private.example.com
 public_ip: 24.222.0.2
 public_hostname: node1.example.com
 node: true
 connect_to: 10.0.0.2
- ip: 10.0.0.3
 hostname: node2-private.example.com
 public_ip: 24.222.0.3
 public_hostname: node2.example.com
 node: true
 connect_to: 10.0.0.3

CHAPTER 2. INSTALLING

15

13 The IP address that Ansible attempts to connect to when installing, upgrading, or uninstalling the
systems. If the configuration file was auto-generated, then this is the value you first enter for the
host during that interactive install process.

2.3.5. Running an Unattended Installation

NOTE

Ensure you have read through the Before You Begin.

Unattended installations allow you to define your hosts and cluster configuration in an installation
configuration file before running the installation utility so that you do not have to go through all of the
interactive installation questions and answers. It also allows you to resume an interactive installation you
may have left unfinished, and quickly get back to where you left off.

To run an unattended installation, first define an installation configuration file at
~/.config/openshift/installer.cfg.yml. Then, run the installation utility with the -u flag:

$ atomic-openshift-installer -u install

By default in interactive or unattended mode, the installation utility uses the configuration file located at
~/.config/openshift/installer.cfg.yml if the file exists. If it does not exist, attempting to start an
unattended installation fails. Alternatively, you can specify a different location for the configuration file
using the -c option, but doing so will require you to specify the file location every time you run the
installation:

$ atomic-openshift-installer -u -c </path/to/file> install

After the unattended installation finishes, ensure that you back up the
~/.config/openshift/installer.cfg.yml file that was used, as it is required if you later want to re-run the
installation, add hosts to the cluster, or upgrade your cluster. Then, see What’s Next for the next steps on
configuring your OpenShift cluster.

2.3.6. Adding Nodes or Reinstalling the Cluster

Whether you began the process using an interactive or unattended installation, you can re-run the
installation as long as you have an installation configuration file at ~/.config/openshift/installer.cfg.yml
(or specify its location with the -c option).

To re-run an installation, use the install subcommand again in interactive or unattended mode:

$ atomic-openshift-installer install

The installer will detect your installed environment and allow you to either add an additional node or
perform a clean install:

Gathering information from hosts...
Installed environment detected.
By default the installer only adds new nodes to an installed environment.
Do you want to (1) only add additional nodes or (2) perform a clean
install?:

OpenShift Enterprise 3.0 Installation and Configuration

16

Choose one of the options and follow the on-screen instructions to complete your desired task.

2.3.7. Uninstalling OpenShift

You can uninstall OpenShift using the installation utility by running:

$ atomic-openshift-installer uninstall

2.3.8. What’s Next?

Now that you have a working OpenShift Enterprise instance, you can:

Configure authentication; by default, authentication is set to Deny All.

Deploy an integrated Docker registry.

Deploy a router.

2.4. ADVANCED INSTALLATION

2.4.1. Overview

For production environments, a reference configuration implemented using Ansible playbooks is available
as the advanced installation method for installing OpenShift hosts. Familiarity with Ansible is assumed,
however you can use this configuration as a reference to create your own implementation using the
configuration management tool of your choosing.

Alternatively, you can use the quick installation method for trial installations.

IMPORTANT

Running Ansible playbooks with the --tags or --check options is not supported by Red
Hat.

2.4.2. Before You Begin

Before installing OpenShift, you must first see the Prerequisites topic to prepare your hosts, which
includes verifying system and environment requirements per component type and properly installing and
configuring Docker. It also includes installing Ansible version 1.8.4 or later, as the advanced installation
method is based on Ansible playbooks and as such requires directly invoking Ansible.

After following the instructions in the Prerequisites topic, you can continue to Configuring Ansible.

2.4.3. Configuring Ansible

The /etc/ansible/hosts file is Ansible’s inventory file for the playbook to use during the installation. The
inventory file describes the configuration for your OpenShift cluster. You must replace the default
contents of the file with your desired configuration.

The following sections describe commonly-used variables to set in your inventory file during an
advanced installation, followed by example inventory files you can use as a starting point for your
installation. The examples describe various environment topographies. You can choose an example that

CHAPTER 2. INSTALLING

17

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-configuring-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#DenyAllPasswordIdentityProvider
http://www.ansible.com

matches your requirements, modify it to match your own environment, and use it as your inventory file
when running the Ansible installer.

NOTE

Before running the Ansible installer, any hosts you intend to designate as masters during
the installation process should also be configured as unschedulable nodes, in order to
configure the masters as part of the OpenShift SDN.

Configuring Host Variables

To assign environment variables to hosts during the Ansible install, indicate the desired variables in the
/etc/ansible/hosts file after the host entry in the [masters] or [nodes] sections. For example:

[masters]
ec2-52-6-179-239.compute-1.amazonaws.com openshift_public_hostname=ose3-
master.public.example.com

The following table describes variables for use with the Ansible installer that can be assigned to
individual host entries:

Table 2.1. Host Variables

Variable Purpose

openshift_hostname This variable overrides the internal cluster host name
for the system. Use this when the system’s default IP
address does not resolve to the system host name.

openshift_public_hostname This variable overrides the system’s public host
name. Use this for cloud installations, or for hosts on
networks using a network address translation (NAT).

openshift_ip This variable overrides the cluster internal IP address
for the system. Use this when using an interface that
is not configured with the default route.

openshift_public_ip This variable overrides the system’s public IP
address. Use this for cloud installations, or for hosts
on networks using a network address translation
(NAT).

Configuring Cluster Variables

To assign environment variables during the Ansible install that apply more globally to your OpenShift
cluster overall, indicate the desired variables in the /etc/ansible/hosts file on separate, single lines
within the [OSEv3:vars] section. For example:

[OSEv3:vars]

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',

OpenShift Enterprise 3.0 Installation and Configuration

18

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#openshift-sdn

'filename': '/etc/openshift/openshift-passwd'}]

osm_default_subdomain=apps.test.example.com

The following table describes variables for use with the Ansible installer that can be assigned cluster-
wide:

Table 2.2. Cluster Variables

Variable Purpose

ansible_ssh_user This variable sets the SSH user for the installer to use and defaults to
root. This user should allow SSH-based authentication without requiring
a password. If using SSH key-based authentication, then the key should
be managed by an SSH agent.

ansible_sudo If ansible_ssh_user is not root, this variable must be set to true
and the user must be configured for passwordless sudo.

openshift_master_clust
er_hostname

This variable overrides the host name for the cluster, which defaults to
the host name of the master.

openshift_master_clust
er_public_hostname

This variable overrides the public host name for the cluster, which
defaults to the host name of the master. If you use an external load
balancer, specify the address of the external load balancer.

For example:

---- openshift_master_cluster_public_hostname=openshift-
ansible.public.example.com ----

openshift_master_ident
ity_providers

This variable overrides the identity provider, which defaults to Deny All.

osm_default_subdomain This variable overrides the default subdomain to use for exposed routes.

osm_default_node_selec
tor

This variable overrides the node selector that projects will use by default
when placing pods.

osm_cluster_network_ci
dr

This variable overrides the SDN cluster network CIDR block. This is the
network from which pod IPs are assigned. This network block should be
a private block and should not conflict with existing network blocks in
your infrastructure that pods may require access to. Defaults to
10.1.0.0/16 and can not be re-configured after deployment.

osm_host_subnet_length This variable specifies the size of the per host subnet allocated for pod
IPs by OpenShift SDN. Defaults to /8 which means that from the
10.1.0.0/16 cluster network a subnet of size /24 is allocated to each host
(i.e., 10.1.0.0/24, 10.1.1.0/24, 10.1.2.0/24, and so on). This can not be
re-configured after deployment.

Configuring Node Host Labels

CHAPTER 2. INSTALLING

19

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-configuring-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#DenyAllPasswordIdentityProvider
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#sdn-design-on-masters
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#sdn-design-on-masters

You can assign labels to node hosts during the Ansible install by configuring the /etc/ansible/hosts file.
Labels are useful for determining the placement of pods onto nodes using the scheduler.

To assign labels to a node host during an Ansible install, use the openshift_node_labels variable
with the desired labels added to the desired node host entry in the [nodes] section. For example:

[nodes]
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"

2.4.3.1. Single Master and Multiple Nodes

The following table describes an example environment for a single master and two nodes:

Host Name Infrastructure Component to Install

master.example.com Master and node

node1.example.com Node

node2.example.com

You can see these example hosts present in the [masters] and [nodes] sections of the following
example inventory file:

Example 2.2. Single Master and Multiple Nodes Inventory File

Create an OSEv3 group that contains the masters and nodes groups
[OSEv3:children]
masters
nodes

Set variables common for all OSEv3 hosts
[OSEv3:vars]
SSH user, this user should allow ssh based auth without requiring a
password
ansible_ssh_user=root

If ansible_ssh_user is not root, ansible_sudo must be set to true
#ansible_sudo=true

product_type=openshift
deployment_type=enterprise

uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/openshift/openshift-passwd'}]

host group for masters
[masters]

OpenShift Enterprise 3.0 Installation and Configuration

20

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#configurable-predicates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#node

master.example.com

host group for nodes, includes region info
[nodes]
master.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

NOTE

Moving from a single master cluster to multiple masters after installation is not supported.

2.4.3.2. Single Master, Multiple etcd, and Multiple Nodes

The following table describes an example environment for a single master, three etcd hosts, and two
nodes:

Host Name Infrastructure Component to Install

master.example.com Master and node

etcd1.example.com etcd

etcd2.example.com

etcd3.example.com

node1.example.com Node

node2.example.com

NOTE

When specifying multiple etcd hosts, external etcd is installed and configured. Clustering
of OpenShift’s embedded etcd is not supported. Also, moving from a single master cluster
to multiple masters after installation is not supported.

You can see these example hosts present in the [masters], [nodes], and [etcd] sections of the
following example inventory file:

Example 2.3. Single Master, Multiple etcd, and Multiple Nodes Inventory File

Create an OSEv3 group that contains the masters and nodes groups

CHAPTER 2. INSTALLING

21

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#node

[OSEv3:children]
masters
nodes
etcd

Set variables common for all OSEv3 hosts
[OSEv3:vars]
ansible_ssh_user=root
product_type=openshift
deployment_type=enterprise

uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider
#openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':
'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider',
'filename': '/etc/openshift/openshift-passwd'}]

host group for masters
[masters]
master.example.com

host group for etcd
[etcd]
etcd1.example.com
etcd2.example.com
etcd3.example.com

host group for nodes, includes region info
[nodes]
master.example.com openshift_node_labels="{'region': 'infra', 'zone':
'default'}"
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

2.4.3.3. Multiple Masters, Multiple etcd, and Multiple Nodes

The following describes an example environment for three masters, three etcd hosts, and two nodes:

Host Name Infrastructure Component to Install

master1.example.com Master (clustered using Pacemaker) and node

master2.example.com

master3.example.com

OpenShift Enterprise 3.0 Installation and Configuration

22

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#high-availability-masters

etcd1.example.com etcd

etcd2.example.com

etcd3.example.com

node1.example.com Node

node2.example.com

Host Name Infrastructure Component to Install

NOTE

When specifying multiple etcd hosts, external etcd is installed and configured. Clustering
of OpenShift’s embedded etcd is not supported.

You can see these example hosts present in the [masters], [nodes], and [etcd] sections of the
following example inventory file:

Example 2.4. Multiple Masters, Multiple etcd, and Multiple Nodes Inventory File

Create an OSEv3 group that contains the masters and nodes groups
[OSEv3:children]
masters
nodes
etcd

Set variables common for all OSEv3 hosts
[OSEv3:vars]
ansible_ssh_user=root
product_type=openshift
deployment_type=enterprise

uncomment the following to enable htpasswd authentication; defaults to
DenyAllPasswordIdentityProvider
openshift_master_identity_providers=[{'name': 'htpasswd_auth',
'login': 'true', 'challenge': 'true', 'kind':
'HTPasswdPasswordIdentityProvider', 'filename':
'/etc/openshift/openshift-passwd'}]

master cluster ha variables using pacemaker or RHEL HA
openshift_master_cluster_method=pacemaker
openshift_master_cluster_password=openshift_cluster
openshift_master_cluster_vip=192.168.133.25
openshift_master_cluster_public_vip=192.168.133.25
openshift_master_cluster_hostname=openshift-master.example.com
openshift_master_cluster_public_hostname=openshift-master.example.com

host group for masters

CHAPTER 2. INSTALLING

23

[masters]
master1.example.com
master2.example.com
master3.example.com

host group for etcd
[etcd]
etcd1.example.com
etcd2.example.com
etcd3.example.com

host group for nodes, includes region info
[nodes]
master[1:3].example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"
node1.example.com openshift_node_labels="{'region': 'primary', 'zone':
'east'}"
node2.example.com openshift_node_labels="{'region': 'primary', 'zone':
'west'}"

To use this example, modify the file to match your environment and specifications, and save it as
/etc/ansible/hosts.

Note the following when using this configuration:

Installing multiple masters requires that you configure a fencing device after running the installer.

When specifying multiple masters, the installer handles creating and starting the high availability
(HA) cluster. If during that process the pcs status command indicates that an HA cluster
already exists, the installer skips HA cluster configuration.

NOTE

Moving from a single master cluster to multiple masters after installation is not supported.

2.4.4. Running the Ansible Installer

After you’ve configured Ansible by defining an inventory file in /etc/ansible/hosts, you can run the
Ansible installer:

ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/byo/config.yml

If for any reason the installation fails, before re-running the installer, see Known Issues to check for any
specific instructions or workarounds.

2.4.5. Configuring Fencing

If you installed OpenShift using a configuration for multiple masters, you must configure a fencing device.
See Fencing: Configuring STONITH in the High Availability Add-on for Red Hat Enterprise Linux
documentation for instructions, then continue to Verifying the Installation.

2.4.6. Verifying the Installation

OpenShift Enterprise 3.0 Installation and Configuration

24

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Reference/ch-fencing-HAAR.html

After the installer completes, you can verify that the master is started and nodes are registered and
reporting in Ready status by running the following as root:

oc get nodes

NAME LABELS
STATUS
master.example.com
kubernetes.io/hostname=master.example.com,region=infra,zone=default
Ready,SchedulingDisabled
node1.example.com
kubernetes.io/hostname=node1.example.com,region=primary,zone=east
Ready
node2.example.com
kubernetes.io/hostname=node2.example.com,region=primary,zone=west
Ready

Multiple etcd Hosts

If you installed multiple etcd hosts:

1. On a etcd host, verify the etcd cluster health, substituting for the FQDNs of your etcd hosts in
the following:

etcdctl -C \

https://etcd1.example.com:2379,https://etcd2.example.com:2379,https:
//etcd3.example.com:2379 \
 --ca-file=/etc/openshift/master/master.etcd-ca.crt \
 --cert-file=/etc/openshift/master/master.etcd-client.crt \
 --key-file=/etc/openshift/master/master.etcd-client.key cluster-
health

2. Also verify the member list is correct:

etcdctl -C \

https://etcd1.example.com:2379,https://etcd2.example.com:2379,https:
//etcd3.example.com:2379 \
 --ca-file=/etc/openshift/master/master.etcd-ca.crt \
 --cert-file=/etc/openshift/master/master.etcd-client.crt \
 --key-file=/etc/openshift/master/master.etcd-client.key member
list

Multiple Masters

If you installed multiple masters:

1. On a master host, determine which host is currently running as the active master:

pcs status

2. After determining the active master, put the specified host into standby mode:

pcs cluster standby <host1_name>

CHAPTER 2. INSTALLING

25

3. Verify the master is now running on another host:

pcs status

4. After verifying the master is running on another node, re-enable the host on standby for normal
operation by running:

pcs cluster unstandby <host1_name>

Red Hat recommends that you also verify your installation by consulting the High Availability Add-on for
Red Hat Enterprise Linux documentation.

2.4.7. Adding Nodes to an Existing Cluster

After your cluster is installed, you can install additional nodes (including masters) and add them to your
cluster by running the scaleup.yml playbook. This playbook queries the master, generates and
distributes new certificates for the new nodes, then runs the configuration playbooks on the new nodes
only.

This process is similar to re-running the installer in the quick installation method to add nodes, however
you have more configuration options available when using the advanced method and running the
playbooks directly.

You must have an existing inventory file (for example, /etc/ansible/hosts) that is representative of your
current cluster configuration in order to run the scaleup.yml playbook. If you previously used the
atomic-openshift-installer command to run your installation, you can check
~/.config/openshift/.ansible/hosts for the last inventory file that the installer generated and use or
modify that as needed as your inventory file. You must then specify the file location with -i when calling
ansible-playbook later.

IMPORTANT

The recommended maximum number of nodes is 300.

To add nodes to an existing cluster:

1. Ensure you have the latest playbooks by updating the atomic-openshift-utils package:

yum update atomic-openshift-utils

2. Edit your /etc/ansible/hosts file and add new_nodes to the [OSEv3:children] section:

[OSEv3:children]
masters
nodes
new_nodes

3. Then, create a [new_nodes] section much like the existing [nodes] section, specifying host
information for any new nodes you want to add. For example:

[nodes]
master[1:3].example.com openshift_node_labels="{'region': 'infra',

OpenShift Enterprise 3.0 Installation and Configuration

26

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/High_Availability_Add-On_Reference/index.html

'zone': 'default'}"
node1.example.com openshift_node_labels="{'region': 'primary',
'zone': 'east'}"
node2.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"

[new_nodes]
node3.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"

See Configuring Host Variables for more options.

4. Now run the scaleup.yml playbook. If your inventory file is located somewhere other than the
default /etc/ansible/hosts, specify the location with the -i option:
For additional nodes:

ansible-playbook [-i /path/to/file] \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/scaleup.yml

For additional masters:

ansible-playbook [-i /path/to/file] \
 usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
master/scaleup.yml

5. After the playbook completes successfully, verify the installation.

6. Finally, move any hosts you had defined in the [new_nodes] section up into the [nodes] section
(but leave the [new_nodes] section definition itself in place) so that subsequent runs using this
inventory file are aware of the nodes but do not handle them as new nodes. For example:

[nodes]
master[1:3].example.com openshift_node_labels="{'region': 'infra',
'zone': 'default'}"
node1.example.com openshift_node_labels="{'region': 'primary',
'zone': 'east'}"
node2.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"
node3.example.com openshift_node_labels="{'region': 'primary',
'zone': 'west'}"

[new_nodes]

2.4.8. Known Issues

The following are known issues for specified installation configurations.

Multiple Masters

On failover, it is possible for the controller manager to overcorrect, which causes the system to
run more pods than what was intended. However, this is a transient event and the system does
correct itself over time. See https://github.com/GoogleCloudPlatform/kubernetes/issues/10030
for details.

CHAPTER 2. INSTALLING

27

https://github.com/GoogleCloudPlatform/kubernetes/issues/10030

1

2

3

On failure of the Ansible installer, you must start from a clean operating system installation. If
you are using virtual machines, start from a fresh image. If you are use bare metal machines:

1. Run the following on a master host:

pcs cluster destroy --all

2. Then, run the following on all node hosts:

yum -y remove openshift openshift-* etcd docker

rm -rf /etc/openshift /var/lib/openshift /etc/etcd \
 /var/lib/etcd /etc/sysconfig/openshift*
/etc/sysconfig/docker* \
 /root/.kube/config /etc/ansible/facts.d /usr/share/openshift

2.4.9. What’s Next?

Now that you have a working OpenShift instance, you can:

Configure authentication; by default, authentication is set to Deny All.

Deploy an integrated Docker registry.

Deploy a router.

Populate your OpenShift installation with a useful set of Red Hat-provided image streams and
templates.

2.5. DEPLOYING A DOCKER REGISTRY

2.5.1. Overview

OpenShift can build Docker images from your source code, deploy them, and manage their lifecycle. To
enable this, OpenShift provides an internal, integrated Docker registry that can be deployed in your
OpenShift environment to locally manage images.

2.5.2. Deploying the Registry

To deploy the integrated Docker registry, use the oadm registry command as a user with cluster
administrator privileges. For example:

$ oadm registry --config=/etc/openshift/master/admin.kubeconfig \ 1

 --credentials=/etc/openshift/master/openshift-registry.kubeconfig \ 2
 --images='registry.access.redhat.com/openshift3/ose-

${component}:${version}' 3

--config is the path to the CLI configuration file for the cluster administrator.

--credentials is the path to the CLI configuration file for the openshift-registry.

Required to pull the correct image for OpenShift Enterprise.

OpenShift Enterprise 3.0 Installation and Configuration

28

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-configuring-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#DenyAllPasswordIdentityProvider
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#integrated-openshift-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/cli_reference/#cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/cli_reference/#cli-reference-manage-cli-profiles

This creates a service and a deployment configuration, both called docker-registry. Once deployed
successfully, a pod is created with a name similar to docker-registry-1-cpty9 .

To see a full list of options that you can specify when creating the registry:

$ oadm registry --help

2.5.2.1. Storage for the Registry

The registry stores Docker images and metadata. If you simply deploy a pod with the registry, it uses an
ephemeral volume that is destroyed if the pod exits. Any images anyone has built or pushed into the
registry would disappear.

2.5.2.1.1. Production Use

For production use, attach a remote volume or define and use persistent storage using NFS.

For example, to use an existing persistent volume claim:

$ oc volume deploymentconfigs/docker-registry --add --name=v1 -t pvc \
 --claim-name=<pvc_name> --overwrite

Or, to attach an existing NFS volume to the registry:

$ oc volume deploymentconfigs/docker-registry \
 --add --overwrite --name=registry-storage --mount-path=/registry \
 --source='{"nfs": { "server": "<fqdn>", "path": "/path/to/export"}}'

For non-production use, you can use the --mount-host=<path> option to specify a directory for the
registry to use for persistent storage. The registry volume is then created as a host-mount at the
specified <path>.

IMPORTANT

The --mount-host option mounts a directory from the node on which the registry
container lives. If you scale up the docker-registry deployment configuration, it is
possible that your registry pods and containers will run on different nodes, which can
result in two or more registry containers, each with its own local storage. This will lead to
unpredictable behavior, as subsequent requests to pull the same image repeatedly may
not always succeed, depending on which container the request ultimately goes to.

The --mount-host option requires that the registry container run in privileged mode. This is
automatically enabled when you specify --mount-host. However, not all pods are allowed to run
privileged containers by default. If you still want to use this option:

1. Create a new service account in the default project for the registry to run as. The following
example creates a service account named registry:

$ echo \
 '{"kind":"ServiceAccount","apiVersion":"v1","metadata":
{"name":"registry"}}' \
 | oc create -n default -f -

CHAPTER 2. INSTALLING

29

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-service-accounts

2. To add the new registry service account to the list of users allowed to run privileged containers:

a. Edit the privilegedsecurity context constraint (SCC):

$ oc edit scc privileged

b. Add a line under users with the user name system:serviceaccount:default:registry.

3. Create the registry and specify that it use the new registry service account:

$ oadm registry --service-account=registry \
 --config=/etc/openshift/master/admin.kubeconfig \
 --credentials=/etc/openshift/master/openshift-
registry.kubeconfig \
 --images='registry.access.redhat.com/openshift3/ose-
${component}:${version}' \
 --mount-host=<path>

2.5.3. Viewing Logs

To view the logs for the Docker registry, run the oc logs indicating the desired pod:

$ oc logs docker-registry-1-da73t
2015-05-01T19:48:36.300593110Z time="2015-05-01T19:48:36Z" level=info
msg="version=v2.0.0+unknown"
2015-05-01T19:48:36.303294724Z time="2015-05-01T19:48:36Z" level=info
msg="redis not configured" instance.id=9ed6c43d-23ee-453f-9a4b-
031fea646002
2015-05-01T19:48:36.303422845Z time="2015-05-01T19:48:36Z" level=info
msg="using inmemory layerinfo cache" instance.id=9ed6c43d-23ee-453f-9a4b-
031fea646002
2015-05-01T19:48:36.303433991Z time="2015-05-01T19:48:36Z" level=info
msg="Using OpenShift Auth handler"
2015-05-01T19:48:36.303439084Z time="2015-05-01T19:48:36Z" level=info
msg="listening on :5000" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002

2.5.4. File Storage

Tag and image metadata is stored in OpenShift, but the registry stores layer and signature data in a
volume that is mounted into the registry container at /registry. As oc exec does not work on privileged
containers, to view a registry’s contents you must manually SSH into the node housing the registry pod’s
container, then run docker exec on the container itself:

1. List the current pods to find the pod name of your Docker registry:

oc get pods

Then, use oc describe to find the host name for the node running the container:

oc describe pod <pod_name>

2. Log into the desired node:

OpenShift Enterprise 3.0 Installation and Configuration

30

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#security-context-constraints

ssh node.example.com

3. List the running containers on the node host and identify the container ID for the Docker registry:

docker ps | grep ose-docker-registry

4. List the registry contents using the docker exec command:

docker exec -it 4c01db0b339c find /registry
/registry/docker
/registry/docker/registry
/registry/docker/registry/v2

/registry/docker/registry/v2/blobs 1
/registry/docker/registry/v2/blobs/sha256
/registry/docker/registry/v2/blobs/sha256/ed
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3
d83c648c24f92cece5f89d95ac6c34ce751111810
/registry/docker/registry/v2/blobs/sha256/ed/ede17b139a271d6b1331ca3

d83c648c24f92cece5f89d95ac6c34ce751111810/data 2
/registry/docker/registry/v2/blobs/sha256/a3
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd
84406680ae93d633cb16422d00e8a7c22955b46d4
/registry/docker/registry/v2/blobs/sha256/a3/a3ed95caeb02ffe68cdd9fd
84406680ae93d633cb16422d00e8a7c22955b46d4/data
/registry/docker/registry/v2/blobs/sha256/f7
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f
259582bb33502bdb0fcf5011e03c60577c4284845
/registry/docker/registry/v2/blobs/sha256/f7/f72a00a23f01987b42cb26f
259582bb33502bdb0fcf5011e03c60577c4284845/data

/registry/docker/registry/v2/repositories 3
/registry/docker/registry/v2/repositories/p1

/registry/docker/registry/v2/repositories/p1/pause 4
/registry/docker/registry/v2/repositories/p1/pause/_manifests
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c

068b1cf/signatures 5
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf/signatures/sha256
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf/signatures/sha256/ede17b139a271d6b1331ca3d83c648c24f92cece5f
89d95ac6c34ce751111810
/registry/docker/registry/v2/repositories/p1/pause/_manifests/revisi
ons/sha256/e9a2ac6418981897b399d3709f1b4a6d2723cd38a4909215ce2752a5c
068b1cf/signatures/sha256/ede17b139a271d6b1331ca3d83c648c24f92cece5f

89d95ac6c34ce751111810/link 6

CHAPTER 2. INSTALLING

31

1

2

3

4

5

6

7

8

9

/registry/docker/registry/v2/repositories/p1/pause/_uploads 7

/registry/docker/registry/v2/repositories/p1/pause/_layers 8
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3
ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/a3
ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4/link

9
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f7
2a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845
/registry/docker/registry/v2/repositories/p1/pause/_layers/sha256/f7
2a00a23f01987b42cb26f259582bb33502bdb0fcf5011e03c60577c4284845/link

This directory stores all layers and signatures as blobs.

This file contains the blob’s contents.

This directory stores all the image repositories.

This directory is for a single image repository p1/pause.

This directory contains signatures for a particular image manifest revision.

This file contains a reference back to a blob (which contains the signature data).

This directory contains any layers that are currently being uploaded and staged for the
given repository.

This directory contains links to all the layers this repository references.

This file contains a reference to a specific layer that has been linked into this repository via
an image.

2.5.5. Accessing the Registry

To access the registry directly, such as to perform docker push or docker pull operations, you
must first log in to the registry using an access token.

1. Ensure you are logged in to OpenShift as a regular user:

$ oc login

NOTE

System users, such as system:admin, cannot obtain access tokens, and
therefore cannot be used to access the registry directly.

2. Get your access token:

$ oc whoami -t

3. Log in to the Docker registry:

OpenShift Enterprise 3.0 Installation and Configuration

32

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#users

$ docker login -u <username> -e <any_email_address> \
 -p <token_value> <registry_service_host:port>

You can now perform docker pull and docker push operations against your registry. For example:

1. Pull an arbitrary image:

$ docker pull docker.io/busybox

2. Tag the new image with the form <registry_ip:port>/<project>/<image>:

$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox

3. Push the newly-tagged image to your registry:

$ docker push 172.30.124.220:5000/openshift/busybox
...
cf2616975b4a: Image successfully pushed
Digest:
sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403ca
b55

2.5.6. Securing the Registry

Optionally, you can secure the registry so that it serves traffic via TLS:

1. Deploy the registry.

2. Fetch the service IP and port of the registry:

$ oc get svc docker-registry
NAME LABELS
SELECTOR IP(S) PORT(S)
docker-registry docker-registry=default docker-
registry=default 172.30.124.220 5000/TCP

3. You can use an existing server certificate, or create a key and server certificate valid for
specified IPs and host names, signed by a specified CA. To create a server certificate for the
registry service IP and the docker-registry.default.svc.cluster.local host name:

$ oadm ca create-server-cert --signer-cert=ca.crt \
 --signer-key=ca.key --signer-serial=ca.serial.txt \
 --hostnames='docker-
registry.default.svc.cluster.local,172.30.124.220' \
 --cert=registry.crt --key=registry.key

4. Create the secret for the registry certificates:

$ oc secrets new registry-secret registry.crt registry.key

5. Add the secret to the registry pod’s service account (i.e., the default service account):

$ oc secrets add serviceaccounts/default secrets/registry-secret

CHAPTER 2. INSTALLING

33

6. Add the secret volume to the registry deployment configuration:

$ oc volume dc/docker-registry --add --type=secret \
 --secret-name=registry-secret -m /etc/secrets

7. Enable TLS by adding the following environment variables to the registry deployment
configuration:

$ oc env dc/docker-registry \
 REGISTRY_HTTP_TLS_CERTIFICATE=/etc/secrets/registry.crt \
 REGISTRY_HTTP_TLS_KEY=/etc/secrets/registry.key

See more details on overriding registry options.

8. Validate the registry is running in TLS mode. Wait until the docker-registry pod status changes
to Running and verify the Docker logs for the registry container. You should find an entry for
listening on :5000, tls.

$ oc get pods
POD IP CONTAINER(S) IMAGE(S)
HOST LABELS
STATUS CREATED MESSAGE
docker-registry-1-da73t 172.17.0.1
openshiftdev.local/127.0.0.1 deployment=docker-registry-
4,deploymentconfig=docker-registry,docker-registry=default Running
38 hours

$ oc logs docker-registry-1-da73t | grep tls
time="2015-05-27T05:05:53Z" level=info msg="listening on :5000, tls"
instance.id=deeba528-c478-41f5-b751-dc48e4935fc2

9. Copy the CA certificate to the Docker certificates directory. This must be done on all nodes in the
cluster:

$ sudo mkdir -p /etc/docker/certs.d/172.30.124.220:5000
$ sudo cp ca.crt /etc/docker/certs.d/172.30.124.220:5000

$ sudo mkdir -p /etc/docker/certs.d/docker-
registry.default.svc.cluster.local:5000
$ sudo cp ca.crt /etc/docker/certs.d/docker-
registry.default.svc.cluster.local:5000

10. Remove the --insecure-registry option only for this particular registry in the
/etc/sysconfig/docker file. Then, reload the daemon and restart the docker service to reflect
this configuration change:

$ sudo systemctl daemon-reload
$ sudo systemctl restart docker

11. Validate the docker client connection. Running docker push to the registry or docker pull
from the registry should succeed. Make sure you have logged into the registry.

$ docker tag|push <registry/image> <internal_registry/project/image>

OpenShift Enterprise 3.0 Installation and Configuration

34

https://github.com/docker/distribution/blob/master/docs/configuration.md#override-configuration-options
https://docs.docker.com/reference/commandline/push/
https://docs.docker.com/reference/commandline/pull/

1

2

3

For example:

$ docker pull busybox
$ docker tag docker.io/busybox 172.30.124.220:5000/openshift/busybox
$ docker push 172.30.124.220:5000/openshift/busybox
...
cf2616975b4a: Image successfully pushed
Digest:
sha256:3662dd821983bc4326bee12caec61367e7fb6f6a3ee547cbaff98f77403ca
b55

2.5.7. Exposing the Registry

To expose your internal registry externally, it is recommended that you run a secure registry. To expose
the registry you must first have deployed a router.

1. Deploy the registry.

2. Secure the registry.

3. Deploy a router.

4. Create your passthrough route with oc create -f <filename>.json. The passthrough
route will point to the registry service that you have created.

apiVersion: v1
kind: Route
metadata:
 name: registry
spec:

 host: <host> 1
 to:
 kind: Service

 name: docker-registry 2
 tls:

 termination: passthrough 3

The host for your route. You must be able to resolve this name externally via DNS to the
router’s IP address.

The service name for your registry.

Specify this route as a passthrough route.

NOTE

Passthrough is currently the only type of route supported for exposing the secure
registry.

5. Next, you must trust the certificates being used for the registry on your host system. The
certificates referenced were created when you secured your registry.

CHAPTER 2. INSTALLING

35

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#passthrough-termination

$ sudo mkdir -p /etc/docker/certs.d/<host>
$ sudo cp <ca certificate file> /etc/docker/certs.d/<host>
$ sudo systemctl restart docker

6. Log in to the registry using the information from securing the registry. However, this time point to
the host name used in the route rather than your service IP. You should now be able to tag and
push images using the route host.

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED

$ docker pull busybox
$ docker tag busybox <host>/test/busybox
$ docker push <host>/test/busybox
The push refers to a repository [<host>/test/busybox] (len: 1)
8c2e06607696: Image already exists
6ce2e90b0bc7: Image successfully pushed
cf2616975b4a: Image successfully pushed
Digest:
sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8c
a31

$ docker pull <host>/test/busybox
latest: Pulling from <host>/test/busybox
cf2616975b4a: Already exists
6ce2e90b0bc7: Already exists
8c2e06607696: Already exists
Digest:
sha256:6c7e676d76921031532d7d9c0394d0da7c2906f4cb4c049904c4031147d8c
a31
Status: Image is up to date for <host>/test/busybox:latest

$ oc get imagestreams -n test
NAME DOCKER REPO TAGS UPDATED
busybox 172.30.11.215:5000/test/busybox latest 2 seconds ago

NOTE

Your image streams will have the IP address and port of the registry service, not
the route name and port. See oc get imagestreams for details.

NOTE

In the <host>/test/busybox example above, test refers to the project name.

2.5.8. What’s Next?

After you have a registry deployed, you can:

Configure authentication; by default, authentication is set to Deny All.

Deploy a router.

OpenShift Enterprise 3.0 Installation and Configuration

36

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-configuring-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#DenyAllPasswordIdentityProvider

Populate your OpenShift installation with a useful set of Red Hat-provided image streams and
templates.

2.6. DEPLOYING A ROUTER

2.6.1. Overview

The OpenShift router is the ingress point for all external traffic destined for services in your OpenShift
installation. OpenShift provides and supports the following two router plug-ins:

The HAProxy template router is the default plug-in. It uses the openshift3/ose-haproxy-router
image to run an HAProxy instance alongside the template router plug-in inside a container on
OpenShift. It currently supports HTTP(S) traffic and TLS-enabled traffic via SNI. The router’s
container listens on the host network interface, unlike most containers that listen only on private
IPs. The router proxies external requests for route names to the IPs of actual pods identified by
the service associated with the route.

The F5 router integrates with an existing F5 BIG-IP® system in your environment to synchronize
routes. F5 BIG-IP® version 11.4 or newer is required in order to have the F5 iControl REST API.

NOTE

The F5 router plug-in is available starting in OpenShift Enterprise 3.0.2.

2.6.2. Creating the Router Service Account

Starting in OpenShift Enterprise 3.0.1.0, you must first create a service account for the router before
deploying. This service account must have permissions to a security context constraint (SCC) that
allows it to specify host ports.

Create a service account, for example named router:

$ echo \
 '{"kind":"ServiceAccount","apiVersion":"v1","metadata":
{"name":"router"}}' \
 | oc create -f -

Edit the privileged SCC:

$ oc edit scc privileged

Add the router service account in the form of system:serviceaccount:<project>:<name> to the users
section:

...
users:
- system:serviceaccount:openshift-infra:build-controller
- system:serviceaccount:default:router

2.6.3. Deploying the Default HAProxy Router

The oadm router command is provided with the administrator CLI to simplify the tasks of setting up

CHAPTER 2. INSTALLING

37

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#haproxy-template-router
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#f5-router
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#security-context-constraints

routers in a new installation. Just about every form of communication between OpenShift components is
secured by TLS and uses various certificates and authentication methods. Use the --credentials
option to specify what credentials the router should use to contact the master.

IMPORTANT

Routers directly attach to port 80 and 443 on all interfaces on a host. Restrict routers to
hosts where port 80/443 is available and not being consumed by another service, and set
this using node selectors and the scheduler configuration. As an example, you can
achieve this by dedicating infrastructure nodes to run services such as routers.

First, ensure you have created the router service account before deploying a router.

To check if a default router, named router, already exists:

$ oadm router --dry-run \
 --credentials='/etc/openshift/master/openshift-router.kubeconfig' \
 --service-account=router

To see what the default router would look like if created:

$ oadm router -o yaml \
 --credentials='/etc/openshift/master/openshift-router.kubeconfig' \
 --service-account=router

To create a router if it does not exist:

$ oadm router <router_name> --replicas=<number> \
 --credentials='/etc/openshift/master/openshift-router.kubeconfig' \
 --service-account=router

Multiple instances are created on different hosts according to the scheduler policy.

To use a different router image and view the router configuration that would be used:

$ oadm router <router_name> -o <format> --images=<image> \
 --credentials='/etc/openshift/master/openshift-router.kubeconfig' \
 --service-account=router

For example:

$ oadm router region-west -o yaml --images=myrepo/somerouter:mytag \
 --credentials='/etc/openshift/master/openshift-router.kubeconfig' \
 --service-account=router

2.6.3.1. High Availability

You can set up a highly-available router on your OpenShift cluster using IP failover.

2.6.3.2. Customizing the Default Routing Subdomain

OpenShift Enterprise 3.0 Installation and Configuration

38

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-scheduler
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-scheduler
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-high-availability

You can customize the suffix used as the default routing subdomain for your environment using the
master configuration file (the /etc/openshift/master/master-config.yaml file by default). The following
example shows how you can set the configured suffix to v3.openshift.test:

Example 2.5. Master Configuration Snippet

routingConfig:
 subdomain: v3.openshift.test

NOTE

This change requires a restart of the master if it is running.

With the OpenShift master(s) running the above configuration, the generated host name for the example
of a host added to a namespace mynamespace would be:

Example 2.6. Generated Host Name

myroute-mynamespace.v3.openshift.test

2.6.3.3. Using Wildcard Certificates

A TLS-enabled route that does not include a certificate uses the router’s default certificate instead. In
most cases, this certificate should be provided by a trusted certificate authority, but for convenience you
can use the OpenShift CA to create the certificate. For example:

$ CA=/etc/openshift/master
$ oadm ca create-server-cert --signer-cert=$CA/ca.crt \
 --signer-key=$CA/ca.key --signer-serial=$CA/ca.serial.txt \
 --hostnames='*.cloudapps.example.com' \
 --cert=cloudapps.crt --key=cloudapps.key

The router expects the certificate and key to be in PEM format in a single file:

$ cat cloudapps.crt cloudapps.key $CA/ca.crt > cloudapps.router.pem

From there you can use the --default-cert flag:

$ oadm router --default-cert=cloudapps.router.pem \
 --credentials="$KUBECONFIG" --service-account=router

NOTE

Browsers only consider wildcards valid for subdomains one level deep. So in this
example, the certificate would be valid for a.cloudapps.example.com but not for
a.b.cloudapps.example.com.

2.6.3.4. Using Secured Routes

CHAPTER 2. INSTALLING

39

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#master-configuration-files
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#route-hostnames

Currently, password protected key files are not supported. HAProxy prompts for a password upon
starting and does not have a way to automate this process. To remove a passphrase from a keyfile, you
can run:

openssl rsa -in <passwordProtectedKey.key> -out <new.key>

Here is an example of how to use a secure edge terminated route with TLS termination occurring on the
router before traffic is proxied to the destination. The secure edge terminated route specifies the TLS
certificate and key information. The TLS certificate is served by the router front end.

First, start up a router instance:

oadm router --replicas=1 --credentials=$KUBECONFIG --service-
account=router

Next, create a private key, csr and certificate for our edge secured route. The instructions on how to do
that would be specific to your certificate authority and provider. For a simple self-signed certificate for a
domain named www.example.test, see the example shown below:

sudo openssl genrsa -out example-test.key 2048
#
sudo openssl req -new -key example-test.key -out example-test.csr \
 -subj "/C=US/ST=CA/L=Mountain View/O=OS3/OU=Eng/CN=www.example.test"
#
sudo openssl x509 -req -days 366 -in example-test.csr \
 -signkey example-test.key -out example-test.crt

Generate a route configuration file using the above certificate and key. Make sure to replace
servicename my-service with the name of your service.

servicename="my-service"
echo "
apiVersion: v1
kind: Route
metadata:
 name: secured-edge-route
spec:
 host: www.example.test
 to:
 kind: Service
 name: $servicename
 tls:
 termination: edge
 key: |
$(openssl rsa -in example-test.key | sed 's/^/ /')
 certificate: |
$(openssl x509 -in example-test.crt | sed 's/^/ /')

" > example-test-route.yaml

Finally add the route to OpenShift (and the router) via:

oc create -f example-test-route.yaml

OpenShift Enterprise 3.0 Installation and Configuration

40

Make sure your DNS entry for www.example.test points to your router instance(s) and the route to
your domain should be available. The example below uses curl along with a local resolver to simulate the
DNS lookup:

routerip="4.1.1.1" # replace with IP address of one of your router
instances.
curl -k --resolve www.example.test:443:$routerip
https://www.example.test/

2.6.3.5. Using the Container Network Stack

The OpenShift router runs inside a Docker container and the default behavior is to use the network stack
of the host (i.e., the node where the router container runs). This default behavior benefits performance
because network traffic from remote clients does not need to take multiple hops through user space to
reach the target service and container.

Additionally, this default behavior enables the router to get the actual source IP address of the remote
connection rather than getting the node’s IP address. This is useful for defining ingress rules based on
the originating IP, supporting sticky sessions, and monitoring traffic, among other uses.

This host network behavior is controlled by the --host-network router command line option, and the
default behaviour is the equivalent of using --host-network=true. If you wish to run the router with
the container network stack, use the --host-network=false option when creating the router. For
example:

$ oadm router \
 --credentials='/etc/openshift/master/openshift-router.kubeconfig' \
 --service-account=router \
 --host-network=false

Internally, this means the router container must publish the 80 and 443 ports in order for the external
network to communicate with the router.

NOTE

Running with the container network stack means that the router sees the source IP
address of a connection to be the NATed IP address of the node, rather than the actual
remote IP address.

2.6.4. Deploying a Customized HAProxy Router

The HAProxy router is based on a golang template that generates the HAProxy configuration file from a
list of routes. If you want a customized template router to meet your needs, you can customize the
template file, build a new Docker image, and run a customized router.

One common case for this might be implementing new features within the application back ends. For
example, it might be desirable in a highly-available setup to use stick-tables that synchronizes between
peers. The router plug-in provides all the facilities necessary to make this customization.

You can obtain a new haproxy-config.template file from the latest router image by running:

docker run --rm --interactive=true --tty --entrypoint=cat \
 registry.access.redhat.com/openshift3/ose-haproxy-router:v3.0.2.0
haproxy-config.template

CHAPTER 2. INSTALLING

41

http://golang.org/pkg/text/template/

1

Save this content to a file for use as the basis of your customized template.

2.6.4.1. Using Stick Tables

The following example customization can be used in a highly-available routing setup to use stick-tables
that synchronize between peers.

Adding a Peer Section

In order to synchronize stick-tables amongst peers you must a define a peers section in your HAProxy
configuration. This section determines how HAProxy will identify and connect to peers. The plug-in
provides data to the template under the .PeerEndpoints variable to allow you to easily identify
members of the router service. You may add a peer section to the haproxy-config.template file inside
the router image by adding:

{{ if (len .PeerEndpoints) gt 0 }}
peers openshift_peers
 {{ range $endpointID, $endpoint := .PeerEndpoints }}
 peer {{$endpoint.TargetName}} {{$endpoint.IP}}:1937
 {{ end }}
{{ end }}

Changing the Reload Script

When using stick-tables, you have the option of telling HAProxy what it should consider the name of the
local host in the peer section. When creating endpoints, the plug-in attempts to set the TargetName to
the value of the endpoint’s TargetRef.Name. If TargetRef is not set, it will set the TargetName to the
IP address. The TargetRef.Name corresponds with the Kubernetes host name, therefore you can add
the -L option to the reload-haproxy script to identify the local host in the peer section.

peer_name=$HOSTNAME 1

if [-n "$old_pid"]; then
 /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name -sf
$old_pid
else
 /usr/sbin/haproxy -f $config_file -p $pid_file -L $peer_name
fi

Must match an endpoint target name that is used in the peer section.

Modifying Back Ends

Finally, to use the stick-tables within back ends, you can modify the HAProxy configuration to use the
stick-tables and peer set. The following is an example of changing the existing back end for TCP
connections to use stick-tables:

 {{ if eq $cfg.TLSTermination "passthrough" }}
backend be_tcp_{{$cfgIdx}}
 balance leastconn
 timeout check 5000ms
 stick-table type ip size 1m expire 5m{{ if (len $.PeerEndpoints) gt 0 }}
peers openshift_peers {{ end }}

OpenShift Enterprise 3.0 Installation and Configuration

42

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#configuring-a-highly-available-routing-service

 stick on src
 {{ range $endpointID, $endpoint :=
$serviceUnit.EndpointTable }}
 server {{$endpointID}} {{$endpoint.IP}}:{{$endpoint.Port}} check inter
5000ms
 {{ end }}
 {{ end }}

After this modification, you can rebuild your router.

2.6.4.2. Rebuilding Your Router

After you have made any desired modifications to the template, such as the example stick tables
customization, you must rebuild your router for your changes to go in effect:

1. Rebuild the Docker image to include your customized template.

2. Push the resulting image to your repository.

3. Create the router specifying your new image, either:

a. in the pod’s object definition directly, or

b. by adding the --images=<repo>/<image>:<tag> flag to the oadm router command
when creating a highly-available routing service.

2.6.5. Deploying the F5 Router

NOTE

The F5 router plug-in is available starting in OpenShift Enterprise 3.0.2.

The F5 router plug-in is provided as a Docker image and run as a pod, just like the default HAProxy
router. Deploying the F5 router is done similarly as well, using the oadm router command but
providing additional flags (or environment variables) to specify the following parameters for the F5 BIG-
IP® host:

Flag Description

--type=f5-
router

Specifies that an F5 router should be launched (the default --type is haproxy-
router).

--external-
host

Specifies the F5 BIG-IP® host’s management interface’s host name or IP address.

--external-
host-
username

Specifies the F5 BIG-IP® user name (typically admin).

--external-
host-
password

Specifies the F5 BIG-IP® password.

CHAPTER 2. INSTALLING

43

https://access.redhat.com/articles/881893#createimage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#configuring-a-highly-available-routing-service

1

--external-
host-http-
vserver

Specifies the name of the F5 virtual server for HTTP connections.

--external-
host-https-
vserver

Specifies the name of the F5 virtual server for HTTPS connections.

--external-
host-
private-key

Specifies the path to the SSH private key file for the F5 BIG-IP® host. Required to
upload and delete key and certificate files for routes.

--external-
host-
insecure

A Boolean flag that indicates that the F5 router should skip strict certificate verification
with the F5 BIG-IP® host.

Flag Description

As with the HAProxy router, the oadm router command creates the service and deployment
configuration objects, and thus the replication controllers and pod(s) in which the F5 router itself runs.
The replication controller restarts the F5 router in case of crashes. Because the F5 router is only
watching routes and endpoints and configuring F5 BIG-IP® accordingly, running the F5 router in this
way along with an appropriately configured F5 BIG-IP® deployment should satisfy high-availability
requirements.

To deploy the F5 router:

1. First, establish a tunnel using a ramp node, which allows for the routing of traffic to pods through
the OpenShift SDN.

2. Ensure you have created the router service account.

3. Run the oadm router command with the appropriate flags. For example:

$ oadm router \
 --type=f5-router \
 --external-host=10.0.0.2 \
 --external-host-username=admin \
 --external-host-password=mypassword \
 --external-host-http-vserver=ose-vserver \
 --external-host-https-vserver=https-ose-vserver \
 --external-host-private-key=/path/to/key \
 --credentials='/etc/openshift/master/openshift-

router.kubeconfig' \ 1
 --service-account=router

--credentials is the path to the CLI configuration file for the openshift-router. It is
recommended using an openshift-router specific profile with appropriate permissions.

2.6.5.1. F5 Router Partition Paths

OpenShift Enterprise 3.0 Installation and Configuration

44

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#establishing-a-tunnel-using-a-ramp-node
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/cli_reference/#cli-reference-manage-cli-profiles

Partition paths allow you to store your OpenShift routing configuration in a custom F5 BIG-IP®
administrative partition, instead of the default /Common partition. You can use custom administrative
partitions to secure F5 BIG-IP® environments. This means that an OpenShift-specific configuration
stored in F5 BIG-IP® system objects reside within a logical container, allowing administrators to define
access control policies on that specific administrative partition.

See the F5 BIG-IP® documentation for more information about administrative partitions.

Use the --external-host-partition-path flag when deploying the F5 router to specify a partition
path:

$ oadm router --external-host-partition-path=/OpenShift/zone1 ...

2.6.6. What’s Next?

If you deployed an HAProxy router, you can learn more about monitoring the router.

If you have not yet done so, you can:

Configure authentication; by default, authentication is set to Deny All.

Deploy an integrated Docker registry.

Populate your OpenShift installation with a useful set of Red Hat-provided image streams and
templates.

2.7. FIRST STEPS

2.7.1. Overview

You can populate your OpenShift installation with a useful set of Red Hat-provided image streams and
templates to make it easy for developers to create new applications. By default, the quick installation and
advanced installation methods automatically create these sets in the openshift project, which is a
default project to which all users have view access.

Use the following instructions to create the objects yourself. The files are installed on the file system of
your master.

NOTE

This topic is only necessary if you installed OpenShift using a method other than the quick
installation or the advanced installation. Image streams and templates will be
automatically populated in the openshift project when using these methods.

2.7.2. Prerequisites

The integrated Docker registry service must be deployed in your OpenShift installation.

You must be able to run the following CLI commands with cluster-admin privileges, because
they operate on the default openshiftproject.

You must have cloned the repository that contains the supported imagestreams:

$ git clone https://github.com/openshift/openshift-ansible

CHAPTER 2. INSTALLING

45

https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/tmos_management_guide_10_0_0/tmos_partitions.html
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-router
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-configuring-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#DenyAllPasswordIdentityProvider
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-core-concepts-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#projects
https://github.com/openshift/openshift-ansible/tree/master/roles/openshift_examples/files

2.7.3. Creating Image Streams for OpenShift Images

The core set of image streams provide images that can be used to build Node.js, Perl, PHP, Python,
and Ruby applications. It also defines images for MongoDB, MySQL, and PostgreSQL to support data
storage.

If your node hosts are subscribed using Red Hat Subscription Manager and you want to use the Red Hat
Enterprise Linux (RHEL) 7 based images:

$ oc create -f \
 openshift-ansible/roles/openshift_examples/files/examples/image-
streams/image-streams-rhel7.json \
 -n openshift

Alternatively, to create the core set of image streams that use the CentOS 7 based images:

$ oc create -f \
 openshift-ansible/roles/openshift_examples/files/examples/image-
streams/image-streams-centos7.json \
 -n openshift

It is not possible to create both the CentOS and RHEL sets of image streams because they use the same
names. If you desire to have both sets of image streams available to users, either create one set in a
different project, or edit one of the files and modify the image stream names to make them unique.

2.7.4. Creating Image Streams for xPaaS Middleware Images

The xPaaS Middleware image streams provide images for JBoss EAP, JBoss JWS, and JBoss A-MQ.
They can be used to build applications for those platforms using the provided templates.

To create the xPaaS Middleware set of image streams:

$ oc create -f \
 openshift-ansible/roles/openshift_examples/files/examples/xpaas-
streams/jboss-image-streams.json \
 -n openshift

NOTE

Access to the images referenced by these image streams requires the relevant xPaaS
Middleware subscriptions.

2.7.5. Creating Database Service Templates

The database service templates make it easy to run a database image which can be utilized by other
components. For each database (MongoDB, MySQL, and PostgreSQL), two templates are defined.

One template uses ephemeral storage in the container which means data stored will be lost if the
container is restarted, for example if the pod moves. This template should be used for demonstration
purposes only.

OpenShift Enterprise 3.0 Installation and Configuration

46

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-s2i-images-nodejs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-s2i-images-perl
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-s2i-images-php
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-s2i-images-python
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-xpaas-images-eap
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-xpaas-images-jws
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-xpaas-images-a-mq
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-db-images-mongodb
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-db-images-mysql
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-db-images-postgresql

The other template defines a persistent volume for storage, however it requires your OpenShift
installation to have persistent volumes configured.

To create the core set of database templates:

$ oc create -f \
 openshift-ansible/roles/openshift_examples/files/examples/db-templates
-n openshift

After creating the templates, users are able to easily instantiate the various templates, giving them quick
access to a database deployment.

2.7.6. Creating InstantApp Templates

The InstantApp templates define a full set of objects for a running application. These include:

Build configurations to build the application from source located in a GitHub public repository

Deployment configurations to deploy the application image after it is built.

Services to provide load balancing for the application pods.

Routes to provide external access to the application.

Some of the templates also define a database deployment and service so the application can perform
database operations.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

After creating the templates, users are able to easily instantiate full applications using the various
language images provided with OpenShift. They can also customize the template parameters during
instantiation so that it builds source from their own repository rather than the sample repository, so this
provides a simple starting point for building new applications.

To create the core InstantApp templates:

$ oc create -f \
 openshift-ansible/roles/openshift_examples/files/examples/quickstart-
templates -n openshift

There is also a set of templates for creating applications using various xPaaS Middleware products
(JBoss EAP, JBoss JWS, and JBoss A-MQ), which can be registered by running:

$ oc create -f \
 openshift-ansible/roles/openshift_examples/files/examples/xpaas-
templates -n openshift

CHAPTER 2. INSTALLING

47

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-xpaas-images-eap
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-xpaas-images-jws
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/using_images/#using-images-xpaas-images-a-mq

NOTE

The xPaaS Middleware templates require the xPaaS Middleware image streams, which in
turn require the relevant xPaaS Middleware subscriptions.

NOTE

The templates which define a database use ephemeral storage for the database content.
These templates should be used for demonstration purposes only as all database data
will be lost if the database pod restarts for any reason.

2.7.7. What’s Next?

With these artifacts created, developers can now log into the web console and follow the flow for creating
from a template. Any of the database or application templates can be selected to create a running
database service or application in the current project. Note that some of the application templates define
their own database services as well.

The example applications are all built out of GitHub repositories which are referenced in the templates
by default, as seen in the SOURCE_REPOSITORY_URL parameter value. Those repositories can be
forked, and the fork can be provided as the SOURCE_REPOSITORY_URL parameter value when creating
from the templates. This allows developers to experiment with creating their own applications.

You can direct your developers to the Using the InstantApp Templates section in the Developer Guide
for these instructions.

OpenShift Enterprise 3.0 Installation and Configuration

48

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#creating-from-templates-using-the-web-console
https://github.com
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#using-the-instantapp-templates

CHAPTER 3. UPGRADING OPENSHIFT

3.1. OVERVIEW

When new versions of OpenShift are released, you can upgrade your cluster to apply the latest
enhancements and bug fixes. See the OpenShift Enterprise 3.0 Release Notes to review the latest
changes.

Unless noted otherwise, node and masters within a major version are forward and backward compatible,
so upgrading your cluster should go smoothly. However, you should not run mismatched versions longer
than necessary to upgrade the entire cluster.

Starting with OpenShift 3.0.2, if you installed using the advanced installation and the inventory file that
was used is available, you can use the upgrade playbook to automate the upgrade process.
Alternatively, you can upgrade OpenShift manually.

NOTE

This topic pertains to RPM-based installations only (i.e., the quick and advanced
installation methods) and does not currently cover container-based installations.

3.2. USING THE AUTOMATED UPGRADE PLAYBOOK

Starting with OpenShift 3.0.2, if you installed using the advanced installation and the inventory file that
was used is available, you can use the upgrade playbook to automate the upgrade process. This
playbook performs the following steps for you:

Applies the latest configuration by re-running the installation playbook.

Upgrades and restart master services.

Upgrades and restart node services.

Applies the latest cluster policies.

Updates the default router if one exists.

Updates the default registry if one exists.

Updates default image streams and InstantApp templates.

IMPORTANT

The upgrade playbook re-runs cluster configuration steps, therefore any settings that are
not stored in your inventory file will be overwritten. The playbook creates a backup of any
files that are changed, and you should carefully review the differences after the playbook
finishes to ensure that your environment is configured as expected.

IMPORTANT

Running Ansible playbooks with the --tags or --check options is not supported by Red
Hat.

CHAPTER 3. UPGRADING OPENSHIFT

49

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/whats_new/#whats-new-ose-3-0-release-notes

Ensure that you have the latest openshift-ansible code checked out, then run the playbook utilizing the
default ansible-hosts file located in /etc/ansible/hosts. If your hosts file is located somewhere else,
add the -i flag to specify the location:

cd ~/openshift-ansible
git pull https://github.com/openshift/openshift-ansible master
ansible-playbook [-i /path/to/hosts/file]
playbooks/adhoc/upgrades/upgrade.yml

After the upgrade playbook finishes, verify that all nodes are marked as Ready and that you are running
the expected versions of the docker-registry and router images:

oc get nodes
NAME LABELS
STATUS
master.example.com
kubernetes.io/hostname=master.example.com,region=infra,zone=default
Ready
node1.example.com
kubernetes.io/hostname=node1.example.com,region=primary,zone=east
Ready

oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:v3.0.2.0",
oc get -n default dc/docker-registry -ojson | grep \"image\"
 "image": "openshift3/ose-docker-registry:v3.0.2.0",

After upgrading, you can use the experimental diagnostics tool to look for common issues:

openshift ex diagnostics
...
[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

3.3. UPGRADING MANUALLY

As an alternative to using the automated upgrade playbook, you can manually upgrade your OpenShift
cluster. To manually upgrade without disruption, it is important to upgrade each component as
documented in this topic. Before you begin your upgrade, familiarize yourself with the entire procedure.
Specific releases may require additional steps to be performed at key points during the standard upgrade
process.

3.3.1. Upgrading Masters

Upgrade your masters first. On each master host, upgrade the openshift-master package:

yum upgrade openshift-master

Then, restart the openshift-master service and review its logs to ensure services have been restarted
successfully:

systemctl restart openshift-master
journalctl -r -u openshift-master

OpenShift Enterprise 3.0 Installation and Configuration

50

3.3.2. Updating Policy Definitions

After a cluster upgrade, the recommended default cluster roles may have been updated. To check if an
update is recommended for your environment, you can run:

oadm policy reconcile-cluster-roles

This command outputs a list of roles that are out of date and their new proposed values. For example:

oadm policy reconcile-cluster-roles
apiVersion: v1
items:
- apiVersion: v1
 kind: ClusterRole
 metadata:
 creationTimestamp: null
 name: admin
 rules:
 - attributeRestrictions: null
 resources:
 - builds/custom
...

NOTE

Your output will vary based on the OpenShift version and any local customizations you
have made. Review the proposed policy carefully.

You can either modify this output to re-apply any local policy changes you have made, or you can
automatically apply the new policy by running:

oadm policy reconcile-cluster-roles --confirm

3.3.3. Upgrading Nodes

After upgrading your masters, you can upgrade your nodes. When restarting the openshift-node
service, there will be a brief disruption of outbound network connectivity from running pods to services
while the service proxy is restarted. The length of this disruption should be very short and scales based
on the number of services in the entire cluster.

On each node host, upgrade all openshift packages:

yum upgrade openshift*

Then, restart the openshift-node service:

systemctl restart openshift-node

As a user with cluster-admin privileges, verify that all nodes are showing as Ready:

oc get nodes
NAME LABELS

CHAPTER 3. UPGRADING OPENSHIFT

51

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#service-proxy

1

STATUS
master.example.com kubernetes.io/hostname=master.example.com
Ready,SchedulingDisabled
node1.example.com kubernetes.io/hostname=node1.example.com
Ready
node2.example.com kubernetes.io/hostname=node2.example.com
Ready

3.3.4. Upgrading the Router

If you have previously deployed a router, the router deployment configuration must be upgraded to apply
updates contained in the router image. To upgrade your router without disrupting services, you must
have previously deployed a highly-available routing service.

IMPORTANT

If you are upgrading to OpenShift Enterprise 3.0.1.0 or 3.0.2.0, first see the Additional
Manual Instructions per Release section for important steps specific to your upgrade, then
continue with the router upgrade as described in this section.

Edit your router’s deployment configuration. For example, if it has the default router name:

oc edit dc/router

Apply the following changes:

...
spec:
 template:
 spec:
 containers:
 - env:
 ...
 image: registry.access.redhat.com/openshift3/ose-haproxy-

router:v3.0.2.0 1
 imagePullPolicy: IfNotPresent
 ...

Adjust the image version to match the version you are upgrading to.

You should see one router pod updated and then the next.

3.3.5. Upgrading the Registry

The registry must also be upgraded for changes to take effect in the registry image. If you have used a
PersistentVolumeClaim or a host mount point, you may restart the registry without losing the
contents of your registry. The registry installation topic details how to configure persistent storage.

Edit your registry’s deployment configuration:

oc edit dc/docker-registry

OpenShift Enterprise 3.0 Installation and Configuration

52

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#configuring-a-highly-available-routing-service

1

Apply the following changes:

...
spec:
 template:
 spec:
 containers:
 - env:
 ...
 image: registry.access.redhat.com/openshift3/ose-docker-

registry:v3.0.2.0 1
 imagePullPolicy: IfNotPresent
 ...

Adjust the image version to match the version you are upgrading to.

IMPORTANT

Images that are being pushed or pulled from the internal registry at the time of upgrade
will fail and should be restarted automatically. This will not disrupt pods that are already
running.

3.3.6. Updating the Default Image Streams and Templates

By default, the quick installation and advanced installation methods automatically create default image
streams, QuickStart templates, and database service templates in the openshift project, which is a
default project to which all users have view access. These objects were created during installation from
the JSON files located under /usr/share/openshift/examples. Running the latest installer will copy
newer files into place, but it does not currently update the openshift project.

You can update the openshift project by running the following commands. It is expected that you will
receive warnings about items that already exist.

oc create -n openshift -f /usr/share/openshift/examples/image-
streams/image-streams-rhel7.json
oc create -n openshift -f /usr/share/openshift/examples/db-templates
oc create -n openshift -f /usr/share/openshift/examples/quickstart-
templates
oc create -n openshift -f /usr/share/openshift/examples/xpaas-streams
oc create -n openshift -f /usr/share/openshift/examples/xpaas-templates
oc replace -n openshift -f /usr/share/openshift/examples/image-
streams/image-streams-rhel7.json
oc replace -n openshift -f /usr/share/openshift/examples/db-templates
oc replace -n openshift -f /usr/share/openshift/examples/quickstart-
templates
oc replace -n openshift -f /usr/share/openshift/examples/xpaas-streams
oc replace -n openshift -f /usr/share/openshift/examples/xpaas-templates

3.3.7. Importing the Latest Images

After updating the default image streams, you may also want to ensure that the images within those
streams are updated. For each image stream in the default openshift project, you can run:

CHAPTER 3. UPGRADING OPENSHIFT

53

oc import-image -n openshift <imagestream>

For example, get the list of all image streams in the default openshift project:

oc get is -n openshift
NAME DOCKER REPO
TAGS UPDATED
mongodb registry.access.redhat.com/openshift3/mongodb-24-rhel7
2.4,latest,v3.0.0.0 16 hours ago
mysql registry.access.redhat.com/openshift3/mysql-55-rhel7
5.5,latest,v3.0.0.0 16 hours ago
nodejs registry.access.redhat.com/openshift3/nodejs-010-rhel7
0.10,latest,v3.0.0.0 16 hours ago
...

Update each image stream one at a time:

oc import-image -n openshift nodejs
Waiting for the import to complete, CTRL+C to stop waiting.
The import completed successfully.

Name: nodejs
Created: 16 hours ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2015-07-
21T13:17:00Z
Docker Pull Spec: registry.access.redhat.com/openshift3/nodejs-010-
rhel7

Tag Spec Created PullSpec
Image
0.10 latest 16 hours ago
registry.access.redhat.com/openshift3/nodejs-010-rhel7:latest
66d92cebc0e48e4e4be3a93d0f9bd54f21af7928ceaa384d20800f6e6fcf669f
latest 16 hours ago
registry.access.redhat.com/openshift3/nodejs-010-rhel7:latest
66d92cebc0e48e4e4be3a93d0f9bd54f21af7928ceaa384d20800f6e6fcf669f
v3.0.0.0 <pushed> 16 hours ago
registry.access.redhat.com/openshift3/nodejs-010-rhel7:v3.0.0.0
66d92cebc0e48e4e4be3a93d0f9bd54f21af7928ceaa384d20800f6e6fcf669f

IMPORTANT

In order to update your S2I-based applications, you must manually trigger a new build of
those applications after importing the new images using oc start-build <app-
name>.

3.4. ADDITIONAL MANUAL STEPS PER RELEASE

Some OpenShift releases may have additional instructions specific to that release that must be
performed to fully apply the updates across the cluster. Read through the following sections carefully
depending on your upgrade path, as you may be required to perform certain steps and key points during
the standard upgrade process described earlier in this topic.

OpenShift Enterprise 3.0 Installation and Configuration

54

1

2

3

See the OpenShift Enterprise 3.0 Release Notes to review the latest release notes.

3.4.1. OpenShift Enterprise 3.0.1.0

The following steps are required for the OpenShift Enterprise 3.0.1.0 release.

Creating a Service Account for the Router

The default HAProxy router was updated to utilize host ports and requires that a service account be
created and made a member of the privileged security context constraint (SCC). Additionally, "down-
then-up" rolling upgrades have been added and is now the preferred strategy for upgrading routers.

After upgrading your master and nodes but before updating to the newer router, you must create a
service account for the router. As a cluster administrator, ensure you are operating on the default
project:

oc project default

Delete any existing router service account and create a new one:

oc delete serviceaccount/router
serviceaccounts/router

echo '{"kind":"ServiceAccount","apiVersion":"v1","metadata":
{"name":"router"}}' | oc create -f -
serviceaccounts/router

Edit the privileged SCC:

oc edit scc privileged

Apply the following changes:

allowHostDirVolumePlugin: true

allowHostNetwork: true 1

allowHostPorts: true 2
allowPrivilegedContainer: true
...
users:
- system:serviceaccount:openshift-infra:build-controller

- system:serviceaccount:default:router 3

Add or update allowHostNetwork: true.

Add or update allowHostPorts: true.

Add the service account you created to the users list at the end of the file.

Edit your router’s deployment configuration:

oc edit dc/router

CHAPTER 3. UPGRADING OPENSHIFT

55

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/whats_new/#whats-new-ose-3-0-release-notes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/whats_new/#ose-3-0-1-0
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/administrator_guide/#admin-guide-manage-scc

1

2

3

Apply the following changes:

...
spec:
 replicas: 2
 selector:
 router: router
 strategy:
 resources: {}
 rollingParams:
 intervalSeconds: 1
 timeoutSeconds: 120
 updatePeriodSeconds: 1

 updatePercent: -10 1
 type: Rolling
 ...
 template:
 ...
 spec:
 ...
 dnsPolicy: ClusterFirst
 restartPolicy: Always

 serviceAccount: router 2

 serviceAccountName: router 3
...

Add updatePercent: -10 to allow down-then-up rolling upgrades.

Add serviceAccount: router to the template spec.

Add serviceAccountName: router to the template spec.

Now upgrade your router per the standard router upgrade steps.

3.4.2. OpenShift Enterprise 3.0.2.0

The following steps are required for the OpenShift Enterprise 3.0.2.0 release.

Switching the Router to Use the Host Network Stack

The default HAProxy router was updated to use the host networking stack by default instead of the
former behavior of using the container network stack, which proxied traffic to the router, which in turn
proxied the traffic to the target service and container. This new default behavior benefits performance
because network traffic from remote clients no longer needs to take multiple hops through user space in
order to reach the target service and container.

Additionally, the new default behavior enables the router to get the actual source IP address of the
remote connection. This is useful for defining ingress rules based on the originating IP, supporting sticky
sessions, and monitoring traffic, among other uses.

Existing router deployments will continue to use the container network stack unless modified to switch to
using the host network stack.

To switch the router to use the host network stack, edit your router’s deployment configuration:

OpenShift Enterprise 3.0 Installation and Configuration

56

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/whats_new/#ose-3-0-2-0

1 2 3

4

oc edit dc/router

Apply the following changes:

...
spec:
 replicas: 2
 selector:
 router: router
 ...
 template:
 ...
 spec:
 ...
 ports:

 - containerPort: 80 1
 hostPort: 80
 protocol: TCP

 - containerPort: 443 2
 hostPort: 443
 protocol: TCP

 - containerPort: 1936 3
 hostPort: 1936
 name: stats
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 dnsPolicy: ClusterFirst

 hostNetwork: true 4
 restartPolicy: Always
...

For host networking, ensure that the containerPort value matches the hostPort values for
each of the ports.

Add hostNetwork: true to the template spec.

Now upgrade your router per the standard router upgrade steps.

Configuring serviceNetworkCIDR for the SDN

Add the serviceNetworkCIDR parameter to the networkConfig section in
/etc/openshift/master/master-config.yaml. This value should match the servicesSubnet value in
the kubernetesMasterConfig section:

kubernetesMasterConfig:
 servicesSubnet: 172.30.0.0/16
...
networkConfig:
 serviceNetworkCIDR: 172.30.0.0/16

Adding the Scheduler Configuration API Version

CHAPTER 3. UPGRADING OPENSHIFT

57

1

2

The scheduler configuration file incorrectly lacked kind and apiVersion fields when deployed using
the quick or advanced installation methods. This will affect future upgrades, so it is important to add
those values if they do not exist.

Modify the /etc/openshift/master/scheduler.json file to add the kind and apiVersion fields:

{

 "kind": "Policy", 1

 "apiVersion": "v1", 2
 "predicates": [
 ...
}

Add "kind": "Policy",

Add "apiVersin": "v1",

OpenShift Enterprise 3.0 Installation and Configuration

58

CHAPTER 4. REVISION HISTORY: INSTALLATION AND
CONFIGURATION

4.1. MON MAR 28 2016

Affected Topic Description of Change

Prerequisites Updated the topics to reflect that the Ansible installer playbooks now ship with
OpenShift.

Quick Installation

Advanced Installation

4.2. MON MAR 21 2016

Affected Topic Description of Change

Installing Fixed broken links.

4.3. MON FEB 29 2016

Affected Topic Description of Change

Prerequisites Fixed the /etc/selinux/config file path in the SELinux section.

4.4. THU FEB 25 2016

Affected Topic Description of Change

Installing → Advanced
Installation

Added notes indicating that moving from a single master cluster to multiple
masters after installation is not supported.

4.5. MON FEB 22 2016

Affected Topic Description of Change

Prerequisites Added an SELinux section to include guidance that SELinux must be enabled, or
the installer will fail.

4.6. WED FEB 17 2016

CHAPTER 4. REVISION HISTORY: INSTALLATION AND CONFIGURATION

59

Affected Topic Description of Change

Installing → Advanced
Installation

Added openshift_master_cluster_method=pacemaker as a
requirement to the example inventory file in the Multiple Masters, Multiple etcd,
and Multiple Nodes section.

4.7. MON FEB 15 2016

Affected Topic Description of Change

Installing →
Prerequisites

Updated to include guidance on how to check if Docker is running.

4.8. MON FEB 08 2016

Affected Topic Description of Change

Installing → Deploying a
Docker Registry

Replaced the deprecated oc log command with the new oc logs command
in the TLS-mode example.

Installing →
Prerequisites

Updated the System Requirements section to clarify that instances can be running
on a private IaaS, not just a public one.

4.9. TUE JUN 23 2015

OpenShift Enterprise 3.0 release.

OpenShift Enterprise 3.0 Installation and Configuration

60

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. INSTALLING
	2.1. OVERVIEW
	2.2. PREREQUISITES
	2.2.1. Overview
	2.2.2. System Requirements
	2.2.3. Environment Requirements
	2.2.3.1. Persistent Storage
	2.2.3.2. SELinux

	2.2.4. Host Preparation
	2.2.4.1. Software Prerequisites
	2.2.4.2. Configuring Docker Storage

	2.2.5. Ensuring Host Access
	2.2.6. What’s Next?

	2.3. QUICK INSTALLATION
	2.3.1. Overview
	2.3.2. Before You Begin
	2.3.3. Running an Interactive Installation
	2.3.4. Defining an Installation Configuration File
	2.3.5. Running an Unattended Installation
	2.3.6. Adding Nodes or Reinstalling the Cluster
	2.3.7. Uninstalling OpenShift
	2.3.8. What’s Next?

	2.4. ADVANCED INSTALLATION
	2.4.1. Overview
	2.4.2. Before You Begin
	2.4.3. Configuring Ansible
	2.4.3.1. Single Master and Multiple Nodes
	2.4.3.2. Single Master, Multiple etcd, and Multiple Nodes
	2.4.3.3. Multiple Masters, Multiple etcd, and Multiple Nodes

	2.4.4. Running the Ansible Installer
	2.4.5. Configuring Fencing
	2.4.6. Verifying the Installation
	2.4.7. Adding Nodes to an Existing Cluster
	2.4.8. Known Issues
	2.4.9. What’s Next?

	2.5. DEPLOYING A DOCKER REGISTRY
	2.5.1. Overview
	2.5.2. Deploying the Registry
	2.5.2.1. Storage for the Registry

	2.5.3. Viewing Logs
	2.5.4. File Storage
	2.5.5. Accessing the Registry
	2.5.6. Securing the Registry
	2.5.7. Exposing the Registry
	2.5.8. What’s Next?

	2.6. DEPLOYING A ROUTER
	2.6.1. Overview
	2.6.2. Creating the Router Service Account
	2.6.3. Deploying the Default HAProxy Router
	2.6.3.1. High Availability
	2.6.3.2. Customizing the Default Routing Subdomain
	2.6.3.3. Using Wildcard Certificates
	2.6.3.4. Using Secured Routes
	2.6.3.5. Using the Container Network Stack

	2.6.4. Deploying a Customized HAProxy Router
	2.6.4.1. Using Stick Tables
	2.6.4.2. Rebuilding Your Router

	2.6.5. Deploying the F5 Router
	2.6.5.1. F5 Router Partition Paths

	2.6.6. What’s Next?

	2.7. FIRST STEPS
	2.7.1. Overview
	2.7.2. Prerequisites
	2.7.3. Creating Image Streams for OpenShift Images
	2.7.4. Creating Image Streams for xPaaS Middleware Images
	2.7.5. Creating Database Service Templates
	2.7.6. Creating InstantApp Templates
	2.7.7. What’s Next?

	CHAPTER 3. UPGRADING OPENSHIFT
	3.1. OVERVIEW
	3.2. USING THE AUTOMATED UPGRADE PLAYBOOK
	3.3. UPGRADING MANUALLY
	3.3.1. Upgrading Masters
	3.3.2. Updating Policy Definitions
	3.3.3. Upgrading Nodes
	3.3.4. Upgrading the Router
	3.3.5. Upgrading the Registry
	3.3.6. Updating the Default Image Streams and Templates
	3.3.7. Importing the Latest Images

	3.4. ADDITIONAL MANUAL STEPS PER RELEASE
	3.4.1. OpenShift Enterprise 3.0.1.0
	3.4.2. OpenShift Enterprise 3.0.2.0

	CHAPTER 4. REVISION HISTORY: INSTALLATION AND CONFIGURATION
	4.1. MON MAR 28 2016
	4.2. MON MAR 21 2016
	4.3. MON FEB 29 2016
	4.4. THU FEB 25 2016
	4.5. MON FEB 22 2016
	4.6. WED FEB 17 2016
	4.7. MON FEB 15 2016
	4.8. MON FEB 08 2016
	4.9. TUE JUN 23 2015

