
OpenShift Container Platform 4.9

Security and compliance

Learning about and managing security for OpenShift Container Platform

Last Updated: 2023-04-19

OpenShift Container Platform 4.9 Security and compliance

Learning about and managing security for OpenShift Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document discusses container security, configuring certificates, and enabling encryption to
help secure the cluster.

. .

. .

Table of Contents

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM SECURITY AND COMPLIANCE
1.1. SECURITY OVERVIEW

Container security
Auditing
Certificates
Encrypting data
Vulnerability scanning

1.2. COMPLIANCE OVERVIEW
Compliance checking
File integrity checking

1.3. ADDITIONAL RESOURCES

CHAPTER 2. CONTAINER SECURITY
2.1. UNDERSTANDING CONTAINER SECURITY

2.1.1. What are containers?
2.1.2. What is OpenShift Container Platform?

2.2. UNDERSTANDING HOST AND VM SECURITY
2.2.1. Securing containers on Red Hat Enterprise Linux CoreOS (RHCOS)
2.2.2. Comparing virtualization and containers
2.2.3. Securing OpenShift Container Platform

2.3. HARDENING RHCOS
2.3.1. Choosing what to harden in RHCOS
2.3.2. Choosing how to harden RHCOS

2.3.2.1. Hardening before installation
2.3.2.2. Hardening during installation
2.3.2.3. Hardening after the cluster is running

2.4. CONTAINER IMAGE SIGNATURES
2.4.1. Enabling signature verification for Red Hat Container Registries
2.4.2. Verifying the signature verification configuration
2.4.3. Additional resources

2.5. UNDERSTANDING COMPLIANCE
2.5.1. Understanding compliance and risk management

2.6. SECURING CONTAINER CONTENT
2.6.1. Securing inside the container
2.6.2. Creating redistributable images with UBI
2.6.3. Security scanning in RHEL

2.6.3.1. Scanning OpenShift images
2.6.4. Integrating external scanning

2.6.4.1. Image metadata
2.6.4.1.1. Example annotation keys
2.6.4.1.2. Example annotation values

2.6.4.2. Annotating image objects
2.6.4.2.1. Example annotate CLI command

2.6.4.3. Controlling pod execution
2.6.4.3.1. Example annotation

2.6.4.4. Integration reference
2.6.4.4.1. Example REST API call

2.7. USING CONTAINER REGISTRIES SECURELY
2.7.1. Knowing where containers come from?
2.7.2. Immutable and certified containers
2.7.3. Getting containers from Red Hat Registry and Ecosystem Catalog

11
11
11
11
11

12
12
12
12
12
12

13
13
14
14
15
15
16
17
17
18
18
18
18
18
19
19
23
27
27
27
27
28
28
29
29
29
29
30
31
32
32
32
32
32
32
33
33
33
34

Table of Contents

1

. .

2.7.4. OpenShift Container Registry
2.7.5. Storing containers using Red Hat Quay

2.8. SECURING THE BUILD PROCESS
2.8.1. Building once, deploying everywhere
2.8.2. Managing builds
2.8.3. Securing inputs during builds
2.8.4. Designing your build process
2.8.5. Building Knative serverless applications
2.8.6. Additional resources

2.9. DEPLOYING CONTAINERS
2.9.1. Controlling container deployments with triggers
2.9.2. Controlling what image sources can be deployed
2.9.3. Using signature transports
2.9.4. Creating secrets and config maps
2.9.5. Automating continuous deployment

2.10. SECURING THE CONTAINER PLATFORM
2.10.1. Isolating containers with multitenancy
2.10.2. Protecting control plane with admission plugins

2.10.2.1. Security context constraints (SCCs)
2.10.2.2. Granting roles to service accounts

2.10.3. Authentication and authorization
2.10.3.1. Controlling access using OAuth
2.10.3.2. API access control and management
2.10.3.3. Red Hat Single Sign-On
2.10.3.4. Secure self-service web console

2.10.4. Managing certificates for the platform
2.10.4.1. Configuring custom certificates

2.11. SECURING NETWORKS
2.11.1. Using network namespaces
2.11.2. Isolating pods with network policies
2.11.3. Using multiple pod networks
2.11.4. Isolating applications
2.11.5. Securing ingress traffic
2.11.6. Securing egress traffic

2.12. SECURING ATTACHED STORAGE
2.12.1. Persistent volume plugins
2.12.2. Shared storage
2.12.3. Block storage

2.13. MONITORING CLUSTER EVENTS AND LOGS
2.13.1. Watching cluster events
2.13.2. Logging
2.13.3. Audit logs

CHAPTER 3. CONFIGURING CERTIFICATES
3.1. REPLACING THE DEFAULT INGRESS CERTIFICATE

3.1.1. Understanding the default ingress certificate
3.1.2. Replacing the default ingress certificate

Additional resources
3.2. ADDING API SERVER CERTIFICATES

3.2.1. Add an API server named certificate
3.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING CERTIFICATE SECRETS

3.3.1. Understanding service serving certificates
3.3.2. Add a service certificate

34
35
35
35
36
37
38
38
39
39
39
40
42
42
43
43
43
44
44
44
45
45
45
45
45
46
46
46
47
47
47
47
47
48
48
48
49
49
49
49
50
51

52
52
52
52
53
53
53
55
55
56

OpenShift Container Platform 4.9 Security and compliance

2

. .

3.3.3. Add the service CA bundle to a config map
3.3.4. Add the service CA bundle to an API service
3.3.5. Add the service CA bundle to a custom resource definition
3.3.6. Add the service CA bundle to a mutating webhook configuration
3.3.7. Add the service CA bundle to a validating webhook configuration
3.3.8. Manually rotate the generated service certificate
3.3.9. Manually rotate the service CA certificate

3.4. UPDATING THE CA BUNDLE
3.4.1. Understanding the CA Bundle certificate
3.4.2. Replacing the CA Bundle certificate

Additional resources

CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS
4.1. USER-PROVIDED CERTIFICATES FOR THE API SERVER

4.1.1. Purpose
4.1.2. Location
4.1.3. Management
4.1.4. Expiration
4.1.5. Customization

Additional resources
4.2. PROXY CERTIFICATES

4.2.1. Purpose
Additional resources

4.2.2. Managing proxy certificates during installation
4.2.3. Location
4.2.4. Expiration
4.2.5. Services
4.2.6. Management
4.2.7. Customization
4.2.8. Renewal

4.3. SERVICE CA CERTIFICATES
4.3.1. Purpose
4.3.2. Expiration
4.3.3. Management
4.3.4. Services

Additional resources
4.4. NODE CERTIFICATES

4.4.1. Purpose
4.4.2. Management

Additional resources
4.5. BOOTSTRAP CERTIFICATES

4.5.1. Purpose
4.5.2. Management
4.5.3. Expiration
4.5.4. Customization

4.6. ETCD CERTIFICATES
4.6.1. Purpose
4.6.2. Expiration
4.6.3. Management
4.6.4. Services

Additional resources
4.7. OLM CERTIFICATES

4.7.1. Management

57
58
58
59
60
61

62
63
63
64
64

65
65
65
65
65
65
65
65
65
65
66
66
66
67
67
67
67
68
68
68
68
69
69
70
70
70
70
70
70
70
70
70
71
71
71
71
71
71
71
71
71

Table of Contents

3

. .

4.8. AGGREGATED API CLIENT CERTIFICATES
4.8.1. Purpose
4.8.2. Management
4.8.3. Expiration
4.8.4. Customization

4.9. MACHINE CONFIG OPERATOR CERTIFICATES
4.9.1. Purpose
4.9.2. Management
4.9.3. Expiration
4.9.4. Customization

4.10. USER-PROVIDED CERTIFICATES FOR DEFAULT INGRESS
4.10.1. Purpose
4.10.2. Location
4.10.3. Management
4.10.4. Expiration
4.10.5. Services
4.10.6. Customization

Additional resources
4.11. INGRESS CERTIFICATES

4.11.1. Purpose
4.11.2. Location
4.11.3. Workflow
4.11.4. Expiration
4.11.5. Services
4.11.6. Management
4.11.7. Renewal

4.12. MONITORING AND OPENSHIFT LOGGING OPERATOR COMPONENT CERTIFICATES
4.12.1. Expiration
4.12.2. Management

4.13. CONTROL PLANE CERTIFICATES
4.13.1. Location
4.13.2. Management

CHAPTER 5. COMPLIANCE OPERATOR
5.1. COMPLIANCE OPERATOR RELEASE NOTES

5.1.1. OpenShift Compliance Operator 1.0.0
5.1.1.1. New features and enhancements
5.1.1.2. Bug fixes

5.1.2. OpenShift Compliance Operator 0.1.61
5.1.2.1. New features and enhancements
5.1.2.2. Bug fixes

5.1.3. OpenShift Compliance Operator 0.1.59
5.1.3.1. New features and enhancements
5.1.3.2. Bug fixes

5.1.4. OpenShift Compliance Operator 0.1.57
5.1.4.1. New features and enhancements
5.1.4.2. Bug fixes
5.1.4.3. Deprecations

5.1.5. OpenShift Compliance Operator 0.1.53
5.1.5.1. Bug fixes
5.1.5.2. Known issue

5.1.6. OpenShift Compliance Operator 0.1.52
5.1.6.1. New features and enhancements

72
72
72
72
72
72
72
72
73
73
73
73
73
73
73
73
74
74
74
74
74
74
76
76
76
76
77
77
77
77
77
77

78
78
78
78
78
78
78
79
80
80
80
80
80
80
81

82
82
83
83
83

OpenShift Container Platform 4.9 Security and compliance

4

5.1.6.2. Bug fixes
5.1.6.3. Known issue

5.1.7. OpenShift Compliance Operator 0.1.49
5.1.7.1. Bug fixes

5.1.8. OpenShift Compliance Operator 0.1.48
5.1.8.1. Bug fixes

5.1.9. OpenShift Compliance Operator 0.1.47
5.1.9.1. New features and enhancements
5.1.9.2. Bug fixes

5.1.10. OpenShift Compliance Operator 0.1.44
5.1.10.1. New features and enhancements
5.1.10.2. Templating and variable use
5.1.10.3. Bug fixes

5.1.11. Release Notes for Compliance Operator 0.1.39
5.1.11.1. New features and enhancements

5.1.12. Additional resources
5.2. SUPPORTED COMPLIANCE PROFILES

5.2.1. Compliance profiles
5.2.2. Additional resources

5.3. INSTALLING THE COMPLIANCE OPERATOR
5.3.1. Installing the Compliance Operator through the web console
5.3.2. Installing the Compliance Operator using the CLI
5.3.3. Additional resources

5.4. UPDATING THE COMPLIANCE OPERATOR
5.4.1. Preparing for an Operator update
5.4.2. Changing the update channel for an Operator
5.4.3. Manually approving a pending Operator update

5.5. COMPLIANCE OPERATOR SCANS
5.5.1. Running compliance scans
5.5.2. Scheduling the result server pod on a worker node
5.5.3. ScanSetting Custom Resource
5.5.4. Applying resource requests and limits
5.5.5. Scheduling Pods with container resource requests

5.6. UNDERSTANDING THE COMPLIANCE OPERATOR
5.6.1. Compliance Operator profiles

5.7. MANAGING THE COMPLIANCE OPERATOR
5.7.1. ProfileBundle CR example
5.7.2. Updating security content
5.7.3. Additional resources

5.8. TAILORING THE COMPLIANCE OPERATOR
5.8.1. Creating a new tailored profile
5.8.2. Using tailored profiles to extend existing ProfileBundles

5.9. RETRIEVING COMPLIANCE OPERATOR RAW RESULTS
5.9.1. Obtaining Compliance Operator raw results from a persistent volume

5.10. MANAGING COMPLIANCE OPERATOR RESULT AND REMEDIATION
5.10.1. Filters for compliance check results
5.10.2. Reviewing a remediation
5.10.3. Applying remediation when using customized machine config pools
5.10.4. Evaluating KubeletConfig rules against default configuration values
5.10.5. Scanning custom node pools
5.10.6. Remediating KubeletConfig sub pools
5.10.7. Applying a remediation
5.10.8. Remediating a platform check manually

83
83
84
84
84
85
85
85
85
85
86
87
87
87
87
88
88
88
90
90
90
91

92
93
93
93
94
94
94
98

100
100
101
102
102
105
105
106
107
107
107
108
110
110
112
112
114
115
116
116
118
118
119

Table of Contents

5

5.10.9. Updating remediations
5.10.10. Unapplying a remediation
5.10.11. Removing a KubeletConfig remediation
5.10.12. Inconsistent ComplianceScan
5.10.13. Additional resources

5.11. PERFORMING ADVANCED COMPLIANCE OPERATOR TASKS
5.11.1. Using the ComplianceSuite and ComplianceScan objects directly
5.11.2. Setting PriorityClass for ScanSetting scans
5.11.3. Using raw tailored profiles
5.11.4. Performing a rescan
5.11.5. Setting custom storage size for results

5.11.5.1. Using custom result storage values
5.11.6. Applying remediations generated by suite scans
5.11.7. Automatically update remediations
5.11.8. Creating a custom SCC for the Compliance Operator
5.11.9. Additional resources

5.12. TROUBLESHOOTING THE COMPLIANCE OPERATOR
5.12.1. Anatomy of a scan

5.12.1.1. Compliance sources
5.12.1.2. The ScanSetting and ScanSettingBinding objects lifecycle and debugging
5.12.1.3. ComplianceSuite custom resource lifecycle and debugging
5.12.1.4. ComplianceScan custom resource lifecycle and debugging

5.12.1.4.1. Pending phase
5.12.1.4.2. Launching phase
5.12.1.4.3. Running phase
5.12.1.4.4. Aggregating phase
5.12.1.4.5. Done phase

5.12.1.5. ComplianceRemediation controller lifecycle and debugging
5.12.1.6. Useful labels

5.12.2. Increasing Compliance Operator resource limits
5.12.3. Configuring Operator resource constraints
5.12.4. Configuring ScanSetting timeout
5.12.5. Getting support

5.13. UNINSTALLING THE COMPLIANCE OPERATOR
5.13.1. Uninstalling the OpenShift Compliance Operator from OpenShift Container Platform using the web
console
5.13.2. Uninstalling the OpenShift Compliance Operator from OpenShift Container Platform using the CLI

5.14. USING THE OC-COMPLIANCE PLUGIN
5.14.1. Installing the oc-compliance plugin
5.14.2. Fetching raw results
5.14.3. Re-running scans
5.14.4. Using ScanSettingBinding custom resources
5.14.5. Printing controls
5.14.6. Fetching compliance remediation details
5.14.7. Viewing ComplianceCheckResult object details

5.15. UNDERSTANDING THE CUSTOM RESOURCE DEFINITIONS
5.15.1. CRDs workflow
5.15.2. Defining the compliance scan requirements

5.15.2.1. ProfileBundle object
5.15.2.2. Profile object
5.15.2.3. Rule object
5.15.2.4. TailoredProfile object

5.15.3. Configuring the compliance scan settings

120
121
121
123
124
124
124
125
126
126
127
127
128
128
128
130
130
131
131
131
132
132
132
132
133
134
135
135
136
137
137
138
139
139

139
140
141
141

142
143
143
144
145
147
147
147
147
148
148
149
150
151

OpenShift Container Platform 4.9 Security and compliance

6

. .

5.15.3.1. ScanSetting object
5.15.4. Processing the compliance scan requirements with compliance scans settings

5.15.4.1. ScanSettingBinding object
5.15.5. Tracking the compliance scans

5.15.5.1. ComplianceSuite object
5.15.5.2. Advanced ComplianceScan Object

5.15.6. Viewing the compliance results
5.15.6.1. ComplianceCheckResult object
5.15.6.2. ComplianceRemediation object

CHAPTER 6. FILE INTEGRITY OPERATOR
6.1. FILE INTEGRITY OPERATOR RELEASE NOTES

6.1.1. OpenShift File Integrity Operator 1.2.1
6.1.2. OpenShift File Integrity Operator 1.2.0

6.1.2.1. New features and enhancements
6.1.3. OpenShift File Integrity Operator 1.0.0
6.1.4. OpenShift File Integrity Operator 0.1.32

6.1.4.1. Bug fixes
6.1.5. OpenShift File Integrity Operator 0.1.30

6.1.5.1. Bug fixes
6.1.6. OpenShift File Integrity Operator 0.1.24

6.1.6.1. New features and enhancements
6.1.6.2. Bug fixes

6.1.7. OpenShift File Integrity Operator 0.1.22
6.1.7.1. Bug fixes

6.1.8. OpenShift File Integrity Operator 0.1.21
6.1.8.1. New features and enhancements
6.1.8.2. Bug fixes

6.1.9. Additional resources
6.2. INSTALLING THE FILE INTEGRITY OPERATOR

6.2.1. Installing the File Integrity Operator using the web console
6.2.2. Installing the File Integrity Operator using the CLI
6.2.3. Additional resources

6.3. UPDATING THE FILE INTEGRITY OPERATOR
6.3.1. Preparing for an Operator update
6.3.2. Changing the update channel for an Operator
6.3.3. Manually approving a pending Operator update

6.4. UNDERSTANDING THE FILE INTEGRITY OPERATOR
6.4.1. Creating the FileIntegrity custom resource
6.4.2. Checking the FileIntegrity custom resource status
6.4.3. FileIntegrity custom resource phases
6.4.4. Understanding the FileIntegrityNodeStatuses object
6.4.5. FileIntegrityNodeStatus CR status types

6.4.5.1. FileIntegrityNodeStatus CR success example
6.4.5.2. FileIntegrityNodeStatus CR failure status example

6.4.6. Understanding events
6.5. CONFIGURING THE CUSTOM FILE INTEGRITY OPERATOR

6.5.1. Viewing FileIntegrity object attributes
6.5.2. Important attributes
6.5.3. Examine the default configuration
6.5.4. Understanding the default File Integrity Operator configuration
6.5.5. Supplying a custom AIDE configuration
6.5.6. Defining a custom File Integrity Operator configuration

151
153
153
154
154
155
156
156
157

160
160
160
160
160
160
160
160
161
161
161
161
161
161
161

162
162
162
162
162
162
163
164
164
164
165
165
166
166
168
168
168
169
169
170
172
173
173
173
174
174
175
175

Table of Contents

7

. .

. .

. .

. .

. .

. .

. .

. .

6.5.7. Changing the custom File Integrity configuration
6.6. PERFORMING ADVANCED CUSTOM FILE INTEGRITY OPERATOR TASKS

6.6.1. Reinitializing the database
6.6.2. Machine config integration
6.6.3. Exploring the daemon sets

6.7. TROUBLESHOOTING THE FILE INTEGRITY OPERATOR
6.7.1. General troubleshooting
6.7.2. Checking the AIDE configuration
6.7.3. Determining the FileIntegrity object’s phase
6.7.4. Determining that the daemon set’s pods are running on the expected nodes

CHAPTER 7. VIEWING AUDIT LOGS
7.1. ABOUT THE API AUDIT LOG
7.2. VIEWING THE AUDIT LOGS
7.3. FILTERING AUDIT LOGS
7.4. GATHERING AUDIT LOGS
7.5. ADDITIONAL RESOURCES

CHAPTER 8. CONFIGURING THE AUDIT LOG POLICY
8.1. ABOUT AUDIT LOG POLICY PROFILES
8.2. CONFIGURING THE AUDIT LOG POLICY
8.3. CONFIGURING THE AUDIT LOG POLICY WITH CUSTOM RULES
8.4. DISABLING AUDIT LOGGING

CHAPTER 9. CONFIGURING TLS SECURITY PROFILES
9.1. UNDERSTANDING TLS SECURITY PROFILES
9.2. VIEWING TLS SECURITY PROFILE DETAILS
9.3. CONFIGURING THE TLS SECURITY PROFILE FOR THE INGRESS CONTROLLER
9.4. CONFIGURING THE TLS SECURITY PROFILE FOR THE CONTROL PLANE
9.5. CONFIGURING THE TLS SECURITY PROFILE FOR THE KUBELET

CHAPTER 10. CONFIGURING SECCOMP PROFILES
10.1. ENABLING THE DEFAULT SECCOMP PROFILE FOR ALL PODS
10.2. CONFIGURING A CUSTOM SECCOMP PROFILE

10.2.1. Setting up the custom seccomp profile
10.2.2. Applying the custom seccomp profile to the workload

10.3. ADDITIONAL RESOURCES

CHAPTER 11. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS

11.1. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS

CHAPTER 12. ENCRYPTING ETCD DATA
12.1. ABOUT ETCD ENCRYPTION
12.2. ENABLING ETCD ENCRYPTION
12.3. DISABLING ETCD ENCRYPTION

CHAPTER 13. SCANNING PODS FOR VULNERABILITIES
13.1. RUNNING THE RED HAT QUAY CONTAINER SECURITY OPERATOR
13.2. QUERYING IMAGE VULNERABILITIES FROM THE CLI

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)
14.1. ABOUT DISK ENCRYPTION TECHNOLOGY

14.1.1. Disk encryption technology comparison
14.1.1.1. Key escrow

177
177
177
178
178
178
178
179
179
179

180
180
181

184
185
185

187
187
188
189
190

193
193
194
196
198
201

204
204
205
205
206
206

208
208

210
210
210
212

214
214
216

217
217
217
217

OpenShift Container Platform 4.9 Security and compliance

8

14.1.1.2. TPM encryption
14.1.1.3. Network-Bound Disk Encryption (NBDE)
14.1.1.4. Secret sharing encryption

14.1.2. Tang server disk encryption
14.1.3. Tang server location planning
14.1.4. Tang server sizing requirements
14.1.5. Logging considerations

14.2. TANG SERVER INSTALLATION CONSIDERATIONS
14.2.1. Installation scenarios
14.2.2. Installing a Tang server

14.2.2.1. Compute requirements
14.2.2.2. Automatic start at boot
14.2.2.3. HTTP versus HTTPS

14.2.3. Installation considerations with Network-Bound Disk Encryption
14.3. TANG SERVER ENCRYPTION KEY MANAGEMENT

14.3.1. Backing up keys for a Tang server
14.3.2. Recovering keys for a Tang server
14.3.3. Rekeying Tang servers

14.3.3.1. Generating a new Tang server key
14.3.3.2. Rekeying all NBDE nodes
14.3.3.3. Troubleshooting temporary rekeying errors for Tang servers
14.3.3.4. Troubleshooting permanent rekeying errors for Tang servers

14.3.4. Deleting old Tang server keys
14.4. DISASTER RECOVERY CONSIDERATIONS

14.4.1. Loss of a client machine
14.4.2. Planning for a loss of client network connectivity
14.4.3. Unexpected loss of network connectivity
14.4.4. Recovering network connectivity manually
14.4.5. Emergency recovery of network connectivity
14.4.6. Loss of a network segment
14.4.7. Loss of a Tang server
14.4.8. Rekeying compromised key material

217
218
219
219

220
221
222
222
222
222
223
223
223
223
224
224
224
224
225
227
230
230
232
233
233
233
234
234
235
235
235
236

Table of Contents

9

OpenShift Container Platform 4.9 Security and compliance

10

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM SECURITY
AND COMPLIANCE

1.1. SECURITY OVERVIEW

It is important to understand how to properly secure various aspects of your OpenShift Container
Platform cluster.

Container security
A good starting point to understanding OpenShift Container Platform security is to review the concepts
in Understanding container security . This and subsequent sections provide a high-level walkthrough of
the container security measures available in OpenShift Container Platform, including solutions for the
host layer, the container and orchestration layer, and the build and application layer. These sections also
include information on the following topics:

Why container security is important and how it compares with existing security standards.

Which container security measures are provided by the host (RHCOS and RHEL) layer and
which are provided by OpenShift Container Platform.

How to evaluate your container content and sources for vulnerabilities.

How to design your build and deployment process to proactively check container content.

How to control access to containers through authentication and authorization.

How networking and attached storage are secured in OpenShift Container Platform.

Containerized solutions for API management and SSO.

Auditing
OpenShift Container Platform auditing provides a security-relevant chronological set of records
documenting the sequence of activities that have affected the system by individual users,
administrators, or other components of the system. Administrators can configure the audit log policy
and view audit logs .

Certificates
Certificates are used by various components to validate access to the cluster. Administrators can
replace the default ingress certificate, add API server certificates, or add a service certificate .

You can also review more details about the types of certificates used by the cluster:

User-provided certificates for the API server

Proxy certificates

Service CA certificates

Node certificates

Bootstrap certificates

etcd certificates

OLM certificates

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM SECURITY AND COMPLIANCE

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#security-understanding
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#audit-log-policy-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#audit-log-view
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#replacing-default-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#api-server-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-user-provided-certificates-for-the-api-server
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-proxy-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-service-ca-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-node-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-bootstrap-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-etcd-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-olm-certificates

Aggregated API client certificates

Machine Config Operator certificates

User-provided certificates for default ingress

Ingress certificates

Monitoring and cluster logging Operator component certificates

Control plane certificates

Encrypting data
You can enable etcd encryption for your cluster to provide an additional layer of data security. For
example, it can help protect the loss of sensitive data if an etcd backup is exposed to the incorrect
parties.

Vulnerability scanning
Administrators can use the Red Hat Quay Container Security Operator to run vulnerability scans and
review information about detected vulnerabilities.

1.2. COMPLIANCE OVERVIEW

For many OpenShift Container Platform customers, regulatory readiness, or compliance, on some level
is required before any systems can be put into production. That regulatory readiness can be imposed by
national standards, industry standards, or the organization’s corporate governance framework.

Compliance checking
Administrators can use the Compliance Operator to run compliance scans and recommend
remediations for any issues found. The oc-compliance plugin is an OpenShift CLI (oc) plugin that
provides a set of utilities to easily interact with the Compliance Operator.

File integrity checking
Administrators can use the File Integrity Operator to continually run file integrity checks on cluster
nodes and provide a log of files that have been modified.

1.3. ADDITIONAL RESOURCES

Understanding authentication

Configuring the internal OAuth server

Understanding identity provider configuration

Using RBAC to define and apply permissions

Managing security context constraints

OpenShift Container Platform 4.9 Security and compliance

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-aggregated-api-client-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-machine-config-operator-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-user-provided-certificates-for-default-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-ingress-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-monitoring-and-cluster-logging-operator-component-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-control-plane-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#encrypting-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#pod-vulnerability-scan
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#understanding-compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#using-oc-compliance-plug-in
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#understanding-file-integrity-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#configuring-internal-oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#understanding-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#managing-pod-security-policies

CHAPTER 2. CONTAINER SECURITY

2.1. UNDERSTANDING CONTAINER SECURITY

Securing a containerized application relies on multiple levels of security:

Container security begins with a trusted base container image and continues through the
container build process as it moves through your CI/CD pipeline.

IMPORTANT

Image streams by default do not automatically update. This default behavior
might create a security issue because security updates to images referenced by
an image stream do not automatically occur. For information about how to
override this default behavior, see Configuring periodic importing of
imagestreamtags.

When a container is deployed, its security depends on it running on secure operating systems
and networks, and establishing firm boundaries between the container itself and the users and
hosts that interact with it.

Continued security relies on being able to scan container images for vulnerabilities and having
an efficient way to correct and replace vulnerable images.

Beyond what a platform such as OpenShift Container Platform offers out of the box, your organization
will likely have its own security demands. Some level of compliance verification might be needed before
you can even bring OpenShift Container Platform into your data center.

Likewise, you may need to add your own agents, specialized hardware drivers, or encryption features to
OpenShift Container Platform, before it can meet your organization’s security standards.

This guide provides a high-level walkthrough of the container security measures available in OpenShift
Container Platform, including solutions for the host layer, the container and orchestration layer, and the
build and application layer. It then points you to specific OpenShift Container Platform documentation
to help you achieve those security measures.

This guide contains the following information:

Why container security is important and how it compares with existing security standards.

Which container security measures are provided by the host (RHCOS and RHEL) layer and
which are provided by OpenShift Container Platform.

How to evaluate your container content and sources for vulnerabilities.

How to design your build and deployment process to proactively check container content.

How to control access to containers through authentication and authorization.

How networking and attached storage are secured in OpenShift Container Platform.

Containerized solutions for API management and SSO.

The goal of this guide is to understand the incredible security benefits of using OpenShift Container
Platform for your containerized workloads and how the entire Red Hat ecosystem plays a part in making

CHAPTER 2. CONTAINER SECURITY

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/images/#images-imagestreams-import_image-streams-managing

and keeping containers secure. It will also help you understand how you can engage with the OpenShift
Container Platform to achieve your organization’s security goals.

2.1.1. What are containers?

Containers package an application and all its dependencies into a single image that can be promoted
from development, to test, to production, without change. A container might be part of a larger
application that works closely with other containers.

Containers provide consistency across environments and multiple deployment targets: physical servers,
virtual machines (VMs), and private or public cloud.

Some of the benefits of using containers include:

Infrastructure Applications

Sandboxed application processes on a shared Linux
operating system kernel

Package my application and all of its dependencies

Simpler, lighter, and denser than virtual machines Deploy to any environment in seconds and enable
CI/CD

Portable across different environments Easily access and share containerized components

See Understanding Linux containers from the Red Hat Customer Portal to find out more about Linux
containers. To learn about RHEL container tools, see Building, running, and managing containers in the
RHEL product documentation.

2.1.2. What is OpenShift Container Platform?

Automating how containerized applications are deployed, run, and managed is the job of a platform such
as OpenShift Container Platform. At its core, OpenShift Container Platform relies on the Kubernetes
project to provide the engine for orchestrating containers across many nodes in scalable data centers.

Kubernetes is a project, which can run using different operating systems and add-on components that
offer no guarantees of supportability from the project. As a result, the security of different Kubernetes
platforms can vary.

OpenShift Container Platform is designed to lock down Kubernetes security and integrate the platform
with a variety of extended components. To do this, OpenShift Container Platform draws on the
extensive Red Hat ecosystem of open source technologies that include the operating systems,
authentication, storage, networking, development tools, base container images, and many other
components.

OpenShift Container Platform can leverage Red Hat’s experience in uncovering and rapidly deploying
fixes for vulnerabilities in the platform itself as well as the containerized applications running on the
platform. Red Hat’s experience also extends to efficiently integrating new components with OpenShift
Container Platform as they become available and adapting technologies to individual customer needs.

Additional resources

OpenShift Container Platform architecture

OpenShift Container Platform 4.9 Security and compliance

14

https://www.redhat.com/en/topics/containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/architecture/#architecture

OpenShift Security Guide

2.2. UNDERSTANDING HOST AND VM SECURITY

Both containers and virtual machines provide ways of separating applications running on a host from the
operating system itself. Understanding RHCOS, which is the operating system used by OpenShift
Container Platform, will help you see how the host systems protect containers and hosts from each
other.

2.2.1. Securing containers on Red Hat Enterprise Linux CoreOS (RHCOS)

Containers simplify the act of deploying many applications to run on the same host, using the same
kernel and container runtime to spin up each container. The applications can be owned by many users
and, because they are kept separate, can run different, and even incompatible, versions of those
applications at the same time without issue.

In Linux, containers are just a special type of process, so securing containers is similar in many ways to
securing any other running process. An environment for running containers starts with an operating
system that can secure the host kernel from containers and other processes running on the host, as well
as secure containers from each other.

Because OpenShift Container Platform 4.9 runs on RHCOS hosts, with the option of using Red Hat
Enterprise Linux (RHEL) as worker nodes, the following concepts apply by default to any deployed
OpenShift Container Platform cluster. These RHEL security features are at the core of what makes
running containers in OpenShift Container Platform more secure:

Linux namespaces enable creating an abstraction of a particular global system resource to make
it appear as a separate instance to processes within a namespace. Consequently, several
containers can use the same computing resource simultaneously without creating a conflict.
Container namespaces that are separate from the host by default include mount table, process
table, network interface, user, control group, UTS, and IPC namespaces. Those containers that
need direct access to host namespaces need to have elevated permissions to request that
access. See Overview of Containers in Red Hat Systems from the RHEL 8 container
documentation for details on the types of namespaces.

SELinux provides an additional layer of security to keep containers isolated from each other and
from the host. SELinux allows administrators to enforce mandatory access controls (MAC) for
every user, application, process, and file.

WARNING

Disabling SELinux on RHCOS is not supported.

CGroups (control groups) limit, account for, and isolate the resource usage (CPU, memory, disk
I/O, network, etc.) of a collection of processes. CGroups are used to ensure that containers on
the same host are not impacted by each other.

Secure computing mode (seccomp) profiles can be associated with a container to restrict
available system calls. See page 94 of the OpenShift Security Guide for details about seccomp.



CHAPTER 2. CONTAINER SECURITY

15

https://www.redhat.com/en/resources/openshift-security-guide-ebook
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index
https://access.redhat.com/articles/5059881

Deploying containers using RHCOS reduces the attack surface by minimizing the host
environment and tuning it for containers. The CRI-O container engine further reduces that
attack surface by implementing only those features required by Kubernetes and OpenShift
Container Platform to run and manage containers, as opposed to other container engines that
implement desktop-oriented standalone features.

RHCOS is a version of Red Hat Enterprise Linux (RHEL) that is specially configured to work as control
plane (master) and worker nodes on OpenShift Container Platform clusters. So RHCOS is tuned to
efficiently run container workloads, along with Kubernetes and OpenShift Container Platform services.

To further protect RHCOS systems in OpenShift Container Platform clusters, most containers, except
those managing or monitoring the host system itself, should run as a non-root user. Dropping the
privilege level or creating containers with the least amount of privileges possible is recommended best
practice for protecting your own OpenShift Container Platform clusters.

Additional resources

How nodes enforce resource constraints

Managing security context constraints

Supported platforms for OpenShift clusters

Requirements for a cluster with user-provisioned infrastructure

Choosing how to configure RHCOS

Ignition

Kernel arguments

Kernel modules

FIPS cryptography

Disk encryption

Chrony time service

About the OpenShift Update Service

2.2.2. Comparing virtualization and containers

Traditional virtualization provides another way to keep application environments separate on the same
physical host. However, virtual machines work in a different way than containers. Virtualization relies on a
hypervisor spinning up guest virtual machines (VMs), each of which has its own operating system (OS),
represented by a running kernel, as well as the running application and its dependencies.

With VMs, the hypervisor isolates the guests from each other and from the host kernel. Fewer individuals
and processes have access to the hypervisor, reducing the attack surface on the physical server. That
said, security must still be monitored: one guest VM might be able to use hypervisor bugs to gain access
to another VM or the host kernel. And, when the OS needs to be patched, it must be patched on all guest
VMs using that OS.

Containers can be run inside guest VMs, and there might be use cases where this is desirable. For
example, you might be deploying a traditional application in a container, perhaps to lift-and-shift an
application to the cloud.

OpenShift Container Platform 4.9 Security and compliance

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cri-o_runtime/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#allocate-node-enforcement_nodes-nodes-resources-configuring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#managing-pod-security-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/architecture/#supported-platforms-for-openshift-clusters_architecture-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-requirements-user-infra_installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/architecture/#rhcos-configured_architecture-rhcos
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/architecture/#rhcos-about-ignition_architecture-rhcos
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-special-config-kargs_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-special-config-kmod_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-fips
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-special-config-encrypt-disk_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-special-config-chrony_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/updating_clusters/#update-service-about_understanding-openshift-updates

Container separation on a single host, however, provides a more lightweight, flexible, and easier-to-
scale deployment solution. This deployment model is particularly appropriate for cloud-native
applications. Containers are generally much smaller than VMs and consume less memory and CPU.

See Linux Containers Compared to KVM Virtualization in the RHEL 7 container documentation to learn
about the differences between container and VMs.

2.2.3. Securing OpenShift Container Platform

When you deploy OpenShift Container Platform, you have the choice of an installer-provisioned
infrastructure (there are several available platforms) or your own user-provisioned infrastructure. Some
low-level security-related configuration, such as enabling FIPS compliance or adding kernel modules
required at first boot, might benefit from a user-provisioned infrastructure. Likewise, user-provisioned
infrastructure is appropriate for disconnected OpenShift Container Platform deployments.

Keep in mind that, when it comes to making security enhancements and other configuration changes to
OpenShift Container Platform, the goals should include:

Keeping the underlying nodes as generic as possible. You want to be able to easily throw away
and spin up similar nodes quickly and in prescriptive ways.

Managing modifications to nodes through OpenShift Container Platform as much as possible,
rather than making direct, one-off changes to the nodes.

In pursuit of those goals, most node changes should be done during installation through Ignition or later
using MachineConfigs that are applied to sets of nodes by the Machine Config Operator. Examples of
security-related configuration changes you can do in this way include:

Adding kernel arguments

Adding kernel modules

Enabling support for FIPS cryptography

Configuring disk encryption

Configuring the chrony time service

Besides the Machine Config Operator, there are several other Operators available to configure
OpenShift Container Platform infrastructure that are managed by the Cluster Version Operator (CVO).
The CVO is able to automate many aspects of OpenShift Container Platform cluster updates.

2.3. HARDENING RHCOS

RHCOS was created and tuned to be deployed in OpenShift Container Platform with few if any changes
needed to RHCOS nodes. Every organization adopting OpenShift Container Platform has its own
requirements for system hardening. As a RHEL system with OpenShift-specific modifications and
features added (such as Ignition, ostree, and a read-only /usr to provide limited immutability), RHCOS
can be hardened just as you would any RHEL system. Differences lie in the ways you manage the
hardening.

A key feature of OpenShift Container Platform and its Kubernetes engine is to be able to quickly scale
applications and infrastructure up and down as needed. Unless it is unavoidable, you do not want to
make direct changes to RHCOS by logging into a host and adding software or changing settings. You
want to have the OpenShift Container Platform installer and control plane manage changes to RHCOS
so new nodes can be spun up without manual intervention.

CHAPTER 2. CONTAINER SECURITY

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_compared_to_kvm_virtualization

So, if you are setting out to harden RHCOS nodes in OpenShift Container Platform to meet your
security needs, you should consider both what to harden and how to go about doing that hardening.

2.3.1. Choosing what to harden in RHCOS

The RHEL 8 Security Hardening guide describes how you should approach security for any RHEL
system.

Use this guide to learn how to approach cryptography, evaluate vulnerabilities, and assess threats to
various services. Likewise, you can learn how to scan for compliance standards, check file integrity,
perform auditing, and encrypt storage devices.

With the knowledge of what features you want to harden, you can then decide how to harden them in
RHCOS.

2.3.2. Choosing how to harden RHCOS

Direct modification of RHCOS systems in OpenShift Container Platform is discouraged. Instead, you
should think of modifying systems in pools of nodes, such as worker nodes and control plane nodes.
When a new node is needed, in non-bare metal installs, you can request a new node of the type you want
and it will be created from an RHCOS image plus the modifications you created earlier.

There are opportunities for modifying RHCOS before installation, during installation, and after the
cluster is up and running.

2.3.2.1. Hardening before installation

For bare metal installations, you can add hardening features to RHCOS before beginning the OpenShift
Container Platform installation. For example, you can add kernel options when you boot the RHCOS
installer to turn security features on or off, such as various SELinux booleans or low-level settings, such
as symmetric multithreading.

WARNING

Disabling SELinux on RHCOS nodes is not supported.

Although bare metal RHCOS installations are more difficult, they offer the opportunity of getting
operating system changes in place before starting the OpenShift Container Platform installation. This
can be important when you need to ensure that certain features, such as disk encryption or special
networking settings, be set up at the earliest possible moment.

2.3.2.2. Hardening during installation

You can interrupt the OpenShift Container Platform installation process and change Ignition configs.
Through Ignition configs, you can add your own files and systemd services to the RHCOS nodes. You
can also make some basic security-related changes to the install-config.yaml file used for installation.
Contents added in this way are available at each node’s first boot.

2.3.2.3. Hardening after the cluster is running

After the OpenShift Container Platform cluster is up and running, there are several ways to apply



OpenShift Container Platform 4.9 Security and compliance

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#scanning-container-and-container-images-for-vulnerabilities_scanning-the-system-for-security-compliance-and-vulnerabilities

After the OpenShift Container Platform cluster is up and running, there are several ways to apply
hardening features to RHCOS:

Daemon set: If you need a service to run on every node, you can add that service with a
Kubernetes DaemonSet object.

Machine config: MachineConfig objects contain a subset of Ignition configs in the same format.
By applying machine configs to all worker or control plane nodes, you can ensure that the next
node of the same type that is added to the cluster has the same changes applied.

All of the features noted here are described in the OpenShift Container Platform product
documentation.

Additional resources

OpenShift Security Guide

Choosing how to configure RHCOS

Modifying Nodes

Manually creating the installation configuration file

Creating the Kubernetes manifest and Ignition config files

Installing RHCOS by using an ISO image

Customizing nodes

Adding kernel arguments to Nodes

Installation configuration parameters - see fips

Support for FIPS cryptography

RHEL core crypto components

2.4. CONTAINER IMAGE SIGNATURES

Red Hat delivers signatures for the images in the Red Hat Container Registries. Those signatures can be
automatically verified when being pulled to OpenShift Container Platform 4 clusters by using the
Machine Config Operator (MCO).

Quay.io serves most of the images that make up OpenShift Container Platform, and only the release
image is signed. Release images refer to the approved OpenShift Container Platform images, offering a
degree of protection against supply chain attacks. However, some extensions to OpenShift Container
Platform, such as logging, monitoring, and service mesh, are shipped as Operators from the Operator
Lifecycle Manager (OLM). Those images ship from the Red Hat Ecosystem Catalog Container images
registry.

To verify the integrity of those images between Red Hat registries and your infrastructure, enable
signature verification.

2.4.1. Enabling signature verification for Red Hat Container Registries

Enabling container signature validation for Red Hat Container Registries requires writing a signature

CHAPTER 2. CONTAINER SECURITY

19

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://access.redhat.com/articles/5059881
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/architecture/#rhcos-deployed_architecture-rhcos
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-nodes-managing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-initializing-manual_installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-user-infra-generate-k8s-manifest-ignition_installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-user-infra-machines-iso_installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-nodes-kernel-arguments_nodes-nodes-managing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-configuration-parameters_installing-aws-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-fips
https://access.redhat.com/articles/3359851
https://quay.io/
https://catalog.redhat.com/software/containers/explore

Enabling container signature validation for Red Hat Container Registries requires writing a signature
verification policy file specifying the keys to verify images from these registries. For RHEL8 nodes, the
registries are already defined in /etc/containers/registries.d by default.

Procedure

1. Create a Butane config file, 51-worker-rh-registry-trust.bu, containing the necessary
configuration for the worker nodes.

NOTE

See "Creating machine configs with Butane" for information about Butane.

variant: openshift
version: 4.9.0
metadata:
 name: 51-worker-rh-registry-trust
 labels:
 machineconfiguration.openshift.io/role: worker
storage:
 files:
 - path: /etc/containers/policy.json
 mode: 0644
 overwrite: true
 contents:
 inline: |
 {
 "default": [
 {
 "type": "insecureAcceptAnything"
 }
],
 "transports": {
 "docker": {
 "registry.access.redhat.com": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
],
 "registry.redhat.io": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
]
 },
 "docker-daemon": {
 "": [
 {
 "type": "insecureAcceptAnything"
 }
]

OpenShift Container Platform 4.9 Security and compliance

20

2. Use Butane to generate a machine config YAML file, 51-worker-rh-registry-trust.yaml,
containing the file to be written to disk on the worker nodes:

3. Apply the created machine config:

4. Check that the worker machine config pool has rolled out with the new machine config:

a. Check that the new machine config was created:

Sample output

 }
 }
 }

$ butane 51-worker-rh-registry-trust.bu -o 51-worker-rh-registry-trust.yaml

$ oc apply -f 51-worker-rh-registry-trust.yaml

$ oc get mc

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION AGE
00-master a2178ad522c49ee330b0033bb5cb5ea132060b0a
3.2.0 25m
00-worker a2178ad522c49ee330b0033bb5cb5ea132060b0a
3.2.0 25m
01-master-container-runtime
a2178ad522c49ee330b0033bb5cb5ea132060b0a 3.2.0 25m
01-master-kubelet a2178ad522c49ee330b0033bb5cb5ea132060b0a
3.2.0 25m
01-worker-container-runtime
a2178ad522c49ee330b0033bb5cb5ea132060b0a 3.2.0 25m
01-worker-kubelet a2178ad522c49ee330b0033bb5cb5ea132060b0a
3.2.0 25m
51-master-rh-registry-trust 3.2.0 13s
51-worker-rh-registry-trust 3.2.0 53s 1
99-master-generated-crio-seccomp-use-default 3.2.0
25m
99-master-generated-registries
a2178ad522c49ee330b0033bb5cb5ea132060b0a 3.2.0 25m
99-master-ssh 3.2.0 28m
99-worker-generated-crio-seccomp-use-default 3.2.0
25m
99-worker-generated-registries
a2178ad522c49ee330b0033bb5cb5ea132060b0a 3.2.0 25m
99-worker-ssh 3.2.0 28m
rendered-master-af1e7ff78da0a9c851bab4be2777773b
a2178ad522c49ee330b0033bb5cb5ea132060b0a 3.2.0 8s
rendered-master-cd51fd0c47e91812bfef2765c52ec7e6
a2178ad522c49ee330b0033bb5cb5ea132060b0a 3.2.0 24m
rendered-worker-2b52f75684fbc711bd1652dd86fd0b82

CHAPTER 2. CONTAINER SECURITY

21

1

2

1

New machine config

New rendered machine config

b. Check that the worker machine config pool is updating with the new machine config:

Sample output

When the UPDATING field is True, the machine config pool is updating with the new
machine config. When the field becomes False, the worker machine config pool has
rolled out to the new machine config.

5. If your cluster uses any RHEL7 worker nodes, when the worker machine config pool is updated,
create YAML files on those nodes in the /etc/containers/registries.d directory, which specify
the location of the detached signatures for a given registry server. The following example works
only for images hosted in registry.access.redhat.com and registry.redhat.io.

a. Start a debug session to each RHEL7 worker node:

b. Change your root directory to /host:

c. Create a /etc/containers/registries.d/registry.redhat.io.yaml file that contains the
following:

d. Create a /etc/containers/registries.d/registry.access.redhat.com.yaml file that contains
the following:

a2178ad522c49ee330b0033bb5cb5ea132060b0a 3.2.0 24m
rendered-worker-be3b3bce4f4aa52a62902304bac9da3c
a2178ad522c49ee330b0033bb5cb5ea132060b0a 3.2.0 48s 2

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-af1e7ff78da0a9c851bab4be2777773b True False
False 3 3 3 0 30m
worker rendered-worker-be3b3bce4f4aa52a62902304bac9da3c False True
False 3 0 0 0 30m 1

$ oc debug node/<node_name>

sh-4.2# chroot /host

docker:
 registry.redhat.io:
 sigstore: https://registry.redhat.io/containers/sigstore

docker:
 registry.access.redhat.com:
 sigstore: https://access.redhat.com/webassets/docker/content/sigstore

OpenShift Container Platform 4.9 Security and compliance

22

e. Exit the debug session.

2.4.2. Verifying the signature verification configuration

After you apply the machine configs to the cluster, the Machine Config Controller detects the new
MachineConfig object and generates a new rendered-worker-<hash> version.

Prerequisites

You enabled signature verification by using a machine config file.

Procedure

1. On the command line, run the following command to display information about a desired worker:

Example output of initial worker monitoring

$ oc describe machineconfigpool/worker

Name: worker
Namespace:
Labels: machineconfiguration.openshift.io/mco-built-in=
Annotations: <none>
API Version: machineconfiguration.openshift.io/v1
Kind: MachineConfigPool
Metadata:
 Creation Timestamp: 2019-12-19T02:02:12Z
 Generation: 3
 Resource Version: 16229
 Self Link: /apis/machineconfiguration.openshift.io/v1/machineconfigpools/worker
 UID: 92697796-2203-11ea-b48c-fa163e3940e5
Spec:
 Configuration:
 Name: rendered-worker-f6819366eb455a401c42f8d96ab25c02
 Source:
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 00-worker
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 01-worker-container-runtime
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 01-worker-kubelet
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 51-worker-rh-registry-trust
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 99-worker-92697796-2203-11ea-b48c-fa163e3940e5-registries
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 99-worker-ssh
 Machine Config Selector:

CHAPTER 2. CONTAINER SECURITY

23

 Match Labels:
 machineconfiguration.openshift.io/role: worker
 Node Selector:
 Match Labels:
 node-role.kubernetes.io/worker:
 Paused: false
Status:
 Conditions:
 Last Transition Time: 2019-12-19T02:03:27Z
 Message:
 Reason:
 Status: False
 Type: RenderDegraded
 Last Transition Time: 2019-12-19T02:03:43Z
 Message:
 Reason:
 Status: False
 Type: NodeDegraded
 Last Transition Time: 2019-12-19T02:03:43Z
 Message:
 Reason:
 Status: False
 Type: Degraded
 Last Transition Time: 2019-12-19T02:28:23Z
 Message:
 Reason:
 Status: False
 Type: Updated
 Last Transition Time: 2019-12-19T02:28:23Z
 Message: All nodes are updating to rendered-worker-
f6819366eb455a401c42f8d96ab25c02
 Reason:
 Status: True
 Type: Updating
 Configuration:
 Name: rendered-worker-d9b3f4ffcfd65c30dcf591a0e8cf9b2e
 Source:
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 00-worker
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 01-worker-container-runtime
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 01-worker-kubelet
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 99-worker-92697796-2203-11ea-b48c-fa163e3940e5-registries
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 99-worker-ssh
 Degraded Machine Count: 0
 Machine Count: 1
 Observed Generation: 3
 Ready Machine Count: 0

OpenShift Container Platform 4.9 Security and compliance

24

2. Run the oc describe command again:

Example output after the worker is updated

NOTE

 Unavailable Machine Count: 1
 Updated Machine Count: 0
Events: <none>

$ oc describe machineconfigpool/worker

...
 Last Transition Time: 2019-12-19T04:53:09Z
 Message: All nodes are updated with rendered-worker-
f6819366eb455a401c42f8d96ab25c02
 Reason:
 Status: True
 Type: Updated
 Last Transition Time: 2019-12-19T04:53:09Z
 Message:
 Reason:
 Status: False
 Type: Updating
 Configuration:
 Name: rendered-worker-f6819366eb455a401c42f8d96ab25c02
 Source:
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 00-worker
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 01-worker-container-runtime
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 01-worker-kubelet
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 51-worker-rh-registry-trust
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 99-worker-92697796-2203-11ea-b48c-fa163e3940e5-registries
 API Version: machineconfiguration.openshift.io/v1
 Kind: MachineConfig
 Name: 99-worker-ssh
 Degraded Machine Count: 0
 Machine Count: 3
 Observed Generation: 4
 Ready Machine Count: 3
 Unavailable Machine Count: 0
 Updated Machine Count: 3
...

CHAPTER 2. CONTAINER SECURITY

25

NOTE

The Observed Generation parameter shows an increased count based on the
generation of the controller-produced configuration. This controller updates this
value even if it fails to process the specification and generate a revision. The
Configuration Source value points to the 51-worker-rh-registry-trust
configuration.

3. Confirm that the policy.json file exists with the following command:

Example output

4. Confirm that the registry.redhat.io.yaml file exists with the following command:

$ oc debug node/<node> -- chroot /host cat /etc/containers/policy.json

Starting pod/<node>-debug ...
To use host binaries, run `chroot /host`
{
 "default": [
 {
 "type": "insecureAcceptAnything"
 }
],
 "transports": {
 "docker": {
 "registry.access.redhat.com": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
],
 "registry.redhat.io": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
]
 },
 "docker-daemon": {
 "": [
 {
 "type": "insecureAcceptAnything"
 }
]
 }
 }
}

$ oc debug node/<node> -- chroot /host cat
/etc/containers/registries.d/registry.redhat.io.yaml

OpenShift Container Platform 4.9 Security and compliance

26

Example output

5. Confirm that the registry.access.redhat.com.yaml file exists with the following command:

Example output

2.4.3. Additional resources

Machine Config Overview

2.5. UNDERSTANDING COMPLIANCE

For many OpenShift Container Platform customers, regulatory readiness, or compliance, on some level
is required before any systems can be put into production. That regulatory readiness can be imposed by
national standards, industry standards or the organization’s corporate governance framework.

2.5.1. Understanding compliance and risk management

FIPS compliance is one of the most critical components required in highly secure environments, to
ensure that only supported cryptographic technologies are allowed on nodes.

IMPORTANT

The use of FIPS Validated / Modules in Process cryptographic libraries is only supported
on OpenShift Container Platform deployments on the x86_64 architecture.

To understand Red Hat’s view of OpenShift Container Platform compliance frameworks, refer to the
Risk Management and Regulatory Readiness chapter of the OpenShift Security Guide Book .

Additional resources

Installing a cluster in FIPS mode

2.6. SECURING CONTAINER CONTENT

To ensure the security of the content inside your containers you need to start with trusted base images,

Starting pod/<node>-debug ...
To use host binaries, run `chroot /host`
docker:
 registry.redhat.io:
 sigstore: https://registry.redhat.io/containers/sigstore

$ oc debug node/<node> -- chroot /host cat
/etc/containers/registries.d/registry.access.redhat.com.yaml

Starting pod/<node>-debug ...
To use host binaries, run `chroot /host`
docker:
 registry.access.redhat.com:
 sigstore: https://access.redhat.com/webassets/docker/content/sigstore

CHAPTER 2. CONTAINER SECURITY

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/post-installation_configuration/#machine-config-overview-post-install-machine-configuration-tasks
https://access.redhat.com/articles/5059881
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-fips-mode_installing-fips

To ensure the security of the content inside your containers you need to start with trusted base images,
such as Red Hat Universal Base Images, and add trusted software. To check the ongoing security of your
container images, there are both Red Hat and third-party tools for scanning images.

2.6.1. Securing inside the container

Applications and infrastructures are composed of readily available components, many of which are open
source packages such as, the Linux operating system, JBoss Web Server, PostgreSQL, and Node.js.

Containerized versions of these packages are also available. However, you need to know where the
packages originally came from, what versions are used, who built them, and whether there is any
malicious code inside them.

Some questions to answer include:

Will what is inside the containers compromise your infrastructure?

Are there known vulnerabilities in the application layer?

Are the runtime and operating system layers current?

By building your containers from Red Hat Universal Base Images (UBI) you are assured of a foundation
for your container images that consists of the same RPM-packaged software that is included in Red Hat
Enterprise Linux. No subscriptions are required to either use or redistribute UBI images.

To assure ongoing security of the containers themselves, security scanning features, used directly from
RHEL or added to OpenShift Container Platform, can alert you when an image you are using has
vulnerabilities. OpenSCAP image scanning is available in RHEL and the Red Hat Quay Container
Security Operator can be added to check container images used in OpenShift Container Platform.

2.6.2. Creating redistributable images with UBI

To create containerized applications, you typically start with a trusted base image that offers the
components that are usually provided by the operating system. These include the libraries, utilities, and
other features the application expects to see in the operating system’s file system.

Red Hat Universal Base Images (UBI) were created to encourage anyone building their own containers
to start with one that is made entirely from Red Hat Enterprise Linux rpm packages and other content.
These UBI images are updated regularly to keep up with security patches and free to use and
redistribute with container images built to include your own software.

Search the Red Hat Ecosystem Catalog to both find and check the health of different UBI images. As
someone creating secure container images, you might be interested in these two general types of UBI
images:

UBI: There are standard UBI images for RHEL 7 and 8 (ubi7/ubi and ubi8/ubi), as well as
minimal images based on those systems (ubi7/ubi-minimal and ubi8/ubi-mimimal). All of
these images are preconfigured to point to free repositories of RHEL software that you can add
to the container images you build, using standard yum and dnf commands. Red Hat encourages
people to use these images on other distributions, such as Fedora and Ubuntu.

Red Hat Software Collections: Search the Red Hat Ecosystem Catalog for rhscl/ to find
images created to use as base images for specific types of applications. For example, there are
Apache httpd (rhscl/httpd-*), Python (rhscl/python-*), Ruby (rhscl/ruby-*), Node.js
(rhscl/nodejs-*) and Perl (rhscl/perl-*) rhscl images.

Keep in mind that while UBI images are freely available and redistributable, Red Hat support for these

OpenShift Container Platform 4.9 Security and compliance

28

https://access.redhat.com/articles/4238681
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#container-security-operator-setup
https://catalog.redhat.com/software/containers/explore

Keep in mind that while UBI images are freely available and redistributable, Red Hat support for these
images is only available through Red Hat product subscriptions.

See Using Red Hat Universal Base Images in the Red Hat Enterprise Linux documentation for
information on how to use and build on standard, minimal and init UBI images.

2.6.3. Security scanning in RHEL

For Red Hat Enterprise Linux (RHEL) systems, OpenSCAP scanning is available from the openscap-
utils package. In RHEL, you can use the openscap-podman command to scan images for
vulnerabilities. See Scanning containers and container images for vulnerabilities in the Red Hat
Enterprise Linux documentation.

OpenShift Container Platform enables you to leverage RHEL scanners with your CI/CD process. For
example, you can integrate static code analysis tools that test for security flaws in your source code and
software composition analysis tools that identify open source libraries to provide metadata on those
libraries such as known vulnerabilities.

2.6.3.1. Scanning OpenShift images

For the container images that are running in OpenShift Container Platform and are pulled from Red Hat
Quay registries, you can use an Operator to list the vulnerabilities of those images. The Red Hat Quay
Container Security Operator can be added to OpenShift Container Platform to provide vulnerability
reporting for images added to selected namespaces.

Container image scanning for Red Hat Quay is performed by the Clair security scanner . In Red Hat
Quay, Clair can search for and report vulnerabilities in images built from RHEL, CentOS, Oracle, Alpine,
Debian, and Ubuntu operating system software.

2.6.4. Integrating external scanning

OpenShift Container Platform makes use of object annotations to extend functionality. External tools,
such as vulnerability scanners, can annotate image objects with metadata to summarize results and
control pod execution. This section describes the recognized format of this annotation so it can be
reliably used in consoles to display useful data to users.

2.6.4.1. Image metadata

There are different types of image quality data, including package vulnerabilities and open source
software (OSS) license compliance. Additionally, there may be more than one provider of this metadata.
To that end, the following annotation format has been reserved:

quality.images.openshift.io/<qualityType>.<providerId>: {}

Table 2.1. Annotation key format

Component Description Acceptable values

qualityType Metadata type vulnerability
license
operations
policy

CHAPTER 2. CONTAINER SECURITY

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#using_red_hat_universal_base_images_standard_minimal_and_runtimes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#container-security-operator-setup
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#quay-security-scanner
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

providerId Provider ID string openscap
redhatcatalog
redhatinsights
blackduck
jfrog

Component Description Acceptable values

2.6.4.1.1. Example annotation keys

quality.images.openshift.io/vulnerability.blackduck: {}
quality.images.openshift.io/vulnerability.jfrog: {}
quality.images.openshift.io/license.blackduck: {}
quality.images.openshift.io/vulnerability.openscap: {}

The value of the image quality annotation is structured data that must adhere to the following format:

Table 2.2. Annotation value format

Field Required? Description Type

name Yes Provider display name String

timestamp Yes Scan timestamp String

description No Short description String

reference Yes URL of information
source or more details.
Required so user may
validate the data.

String

scannerVersion No Scanner version String

compliant No Compliance pass or fail Boolean

summary No Summary of issues
found

List (see table below)

The summary field must adhere to the following format:

Table 2.3. Summary field value format

Field Description Type

OpenShift Container Platform 4.9 Security and compliance

30

label Display label for component (for
example, "critical," "important,"
"moderate," "low," or "health")

String

data Data for this component (for
example, count of vulnerabilities
found or score)

String

severityIndex Component index allowing for
ordering and assigning graphical
representation. The value is range
0..3 where 0 = low.

Integer

reference URL of information source or
more details. Optional.

String

Field Description Type

2.6.4.1.2. Example annotation values

This example shows an OpenSCAP annotation for an image with vulnerability summary data and a
compliance boolean:

OpenSCAP annotation

This example shows the Container images section of the Red Hat Ecosystem Catalog annotation for an
image with health index data with an external URL for additional details:

Red Hat Ecosystem Catalog annotation

{
 "name": "OpenSCAP",
 "description": "OpenSCAP vulnerability score",
 "timestamp": "2016-09-08T05:04:46Z",
 "reference": "https://www.open-scap.org/930492",
 "compliant": true,
 "scannerVersion": "1.2",
 "summary": [
 { "label": "critical", "data": "4", "severityIndex": 3, "reference": null },
 { "label": "important", "data": "12", "severityIndex": 2, "reference": null },
 { "label": "moderate", "data": "8", "severityIndex": 1, "reference": null },
 { "label": "low", "data": "26", "severityIndex": 0, "reference": null }
]
}

{
 "name": "Red Hat Ecosystem Catalog",
 "description": "Container health index",
 "timestamp": "2016-09-08T05:04:46Z",
 "reference": "https://access.redhat.com/errata/RHBA-2016:1566",
 "compliant": null,
 "scannerVersion": "1.2",

CHAPTER 2. CONTAINER SECURITY

31

https://catalog.redhat.com/software/containers/explore

2.6.4.2. Annotating image objects

While image stream objects are what an end user of OpenShift Container Platform operates against,
image objects are annotated with security metadata. Image objects are cluster-scoped, pointing to a
single image that may be referenced by many image streams and tags.

2.6.4.2.1. Example annotate CLI command

Replace <image> with an image digest, for example
sha256:401e359e0f45bfdcf004e258b72e253fd07fba8cc5c6f2ed4f4608fb119ecc2:

2.6.4.3. Controlling pod execution

Use the images.openshift.io/deny-execution image policy to programmatically control if an image can
be run.

2.6.4.3.1. Example annotation

2.6.4.4. Integration reference

In most cases, external tools such as vulnerability scanners develop a script or plugin that watches for
image updates, performs scanning, and annotates the associated image object with the results.
Typically this automation calls the OpenShift Container Platform 4.9 REST APIs to write the annotation.
See OpenShift Container Platform REST APIs for general information on the REST APIs.

2.6.4.4.1. Example REST API call

The following example call using curl overrides the value of the annotation. Be sure to replace the values
for <token>, <openshift_server>, <image_id>, and <image_annotation>.

Patch API call

 "summary": [
 { "label": "Health index", "data": "B", "severityIndex": 1, "reference": null }
]
}

$ oc annotate image <image> \
 quality.images.openshift.io/vulnerability.redhatcatalog='{ \
 "name": "Red Hat Ecosystem Catalog", \
 "description": "Container health index", \
 "timestamp": "2020-06-01T05:04:46Z", \
 "compliant": null, \
 "scannerVersion": "1.2", \
 "reference": "https://access.redhat.com/errata/RHBA-2020:2347", \
 "summary": "[\
 { "label": "Health index", "data": "B", "severityIndex": 1, "reference": null }]" }'

annotations:
 images.openshift.io/deny-execution: true

$ curl -X PATCH \
 -H "Authorization: Bearer <token>" \

OpenShift Container Platform 4.9 Security and compliance

32

The following is an example of PATCH payload data:

Patch call data

Additional resources

Image stream objects

2.7. USING CONTAINER REGISTRIES SECURELY

Container registries store container images to:

Make images accessible to others

Organize images into repositories that can include multiple versions of an image

Optionally limit access to images, based on different authentication methods, or make them
publicly available

There are public container registries, such as Quay.io and Docker Hub where many people and
organizations share their images. The Red Hat Registry offers supported Red Hat and partner images,
while the Red Hat Ecosystem Catalog offers detailed descriptions and health checks for those images.
To manage your own registry, you could purchase a container registry such as Red Hat Quay.

From a security standpoint, some registries provide special features to check and improve the health of
your containers. For example, Red Hat Quay offers container vulnerability scanning with Clair security
scanner, build triggers to automatically rebuild images when source code changes in GitHub and other
locations, and the ability to use role-based access control (RBAC) to secure access to images.

2.7.1. Knowing where containers come from?

There are tools you can use to scan and track the contents of your downloaded and deployed container
images. However, there are many public sources of container images. When using public container
registries, you can add a layer of protection by using trusted sources.

2.7.2. Immutable and certified containers

Consuming security updates is particularly important when managing immutable containers. Immutable
containers are containers that will never be changed while running. When you deploy immutable

 -H "Content-Type: application/merge-patch+json" \
 https://<openshift_server>:6443/apis/image.openshift.io/v1/images/<image_id> \
 --data '{ <image_annotation> }'

{
"metadata": {
 "annotations": {
 "quality.images.openshift.io/vulnerability.redhatcatalog":
 "{ 'name': 'Red Hat Ecosystem Catalog', 'description': 'Container health index', 'timestamp': '2020-
06-01T05:04:46Z', 'compliant': null, 'reference': 'https://access.redhat.com/errata/RHBA-2020:2347',
'summary': [{'label': 'Health index', 'data': '4', 'severityIndex': 1, 'reference': null}] }"
 }
 }
}

CHAPTER 2. CONTAINER SECURITY

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/images/#overview-of-images
https://access.redhat.com/products/red-hat-quay

containers, you do not step into the running container to replace one or more binaries. From an
operational standpoint, you rebuild and redeploy an updated container image to replace a container
instead of changing it.

Red Hat certified images are:

Free of known vulnerabilities in the platform components or layers

Compatible across the RHEL platforms, from bare metal to cloud

Supported by Red Hat

The list of known vulnerabilities is constantly evolving, so you must track the contents of your deployed
container images, as well as newly downloaded images, over time. You can use Red Hat Security
Advisories (RHSAs) to alert you to any newly discovered issues in Red Hat certified container images,
and direct you to the updated image. Alternatively, you can go to the Red Hat Ecosystem Catalog to
look up that and other security-related issues for each Red Hat image.

2.7.3. Getting containers from Red Hat Registry and Ecosystem Catalog

Red Hat lists certified container images for Red Hat products and partner offerings from the Container
Images section of the Red Hat Ecosystem Catalog. From that catalog, you can see details of each
image, including CVE, software packages listings, and health scores.

Red Hat images are actually stored in what is referred to as the Red Hat Registry , which is represented by
a public container registry (registry.access.redhat.com) and an authenticated registry
(registry.redhat.io). Both include basically the same set of container images, with registry.redhat.io
including some additional images that require authentication with Red Hat subscription credentials.

Container content is monitored for vulnerabilities by Red Hat and updated regularly. When Red Hat
releases security updates, such as fixes to glibc, DROWN, or Dirty Cow, any affected container images
are also rebuilt and pushed to the Red Hat Registry.

Red Hat uses a health index to reflect the security risk for each container provided through the Red
Hat Ecosystem Catalog. Because containers consume software provided by Red Hat and the errata
process, old, stale containers are insecure whereas new, fresh containers are more secure.

To illustrate the age of containers, the Red Hat Ecosystem Catalog uses a grading system. A freshness
grade is a measure of the oldest and most severe security errata available for an image. "A" is more up to
date than "F". See Container Health Index grades as used inside the Red Hat Ecosystem Catalog for
more details on this grading system.

See the Red Hat Product Security Center for details on security updates and vulnerabilities related to
Red Hat software. Check out Red Hat Security Advisories to search for specific advisories and CVEs.

2.7.4. OpenShift Container Registry

OpenShift Container Platform includes the OpenShift Container Registry , a private registry running as an
integrated component of the platform that you can use to manage your container images. The
OpenShift Container Registry provides role-based access controls that allow you to manage who can
pull and push which container images.

OpenShift Container Platform also supports integration with other private registries that you might
already be using, such as Red Hat Quay.

Additional resources

OpenShift Container Platform 4.9 Security and compliance

34

https://access.redhat.com/security/security-updates/#/security-advisories
https://catalog.redhat.com/software/containers/explore
https://access.redhat.com/security/vulnerabilities/drown
https://access.redhat.com/blogs/766093/posts/2757141
https://access.redhat.com/articles/2803031
https://access.redhat.com/security/
https://access.redhat.com/security/security-updates/#/security-advisories

Integrated OpenShift Container Platform registry

2.7.5. Storing containers using Red Hat Quay

Red Hat Quay is an enterprise-quality container registry product from Red Hat. Development for Red
Hat Quay is done through the upstream Project Quay. Red Hat Quay is available to deploy on-premise
or through the hosted version of Red Hat Quay at Quay.io.

Security-related features of Red Hat Quay include:

Time machine: Allows images with older tags to expire after a set period of time or based on a
user-selected expiration time.

Repository mirroring: Lets you mirror other registries for security reasons, such hosting a public
repository on Red Hat Quay behind a company firewall, or for performance reasons, to keep
registries closer to where they are used.

Action log storage: Save Red Hat Quay logging output to Elasticsearch storage to allow for
later search and analysis.

Clair security scanning: Scan images against a variety of Linux vulnerability databases, based
on the origins of each container image.

Internal authentication: Use the default local database to handle RBAC authentication to Red
Hat Quay or choose from LDAP, Keystone (OpenStack), JWT Custom Authentication, or
External Application Token authentication.

External authorization (OAuth): Allow authorization to Red Hat Quay from GitHub, GitHub
Enterprise, or Google Authentication.

Access settings: Generate tokens to allow access to Red Hat Quay from docker, rkt,
anonymous access, user-created accounts, encrypted client passwords, or prefix username
autocompletion.

Ongoing integration of Red Hat Quay with OpenShift Container Platform continues, with several
OpenShift Container Platform Operators of particular interest. The Quay Bridge Operator lets you
replace the internal OpenShift Container Platform registry with Red Hat Quay. The Quay Red Hat Quay
Container Security Operator lets you check vulnerabilities of images running in OpenShift Container
Platform that were pulled from Red Hat Quay registries.

2.8. SECURING THE BUILD PROCESS

In a container environment, the software build process is the stage in the life cycle where application
code is integrated with the required runtime libraries. Managing this build process is key to securing the
software stack.

2.8.1. Building once, deploying everywhere

Using OpenShift Container Platform as the standard platform for container builds enables you to
guarantee the security of the build environment. Adhering to a "build once, deploy everywhere"
philosophy ensures that the product of the build process is exactly what is deployed in production.

It is also important to maintain the immutability of your containers. You should not patch running
containers, but rebuild and redeploy them.

As your software moves through the stages of building, testing, and production, it is important that the

CHAPTER 2. CONTAINER SECURITY

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/registry/#registry-overview
https://access.redhat.com/products/red-hat-quay
https://docs.projectquay.io/welcome.html
https://quay.io
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#repo-mirroring-in-red-hat-quay
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#proc_manage-log-storage
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#quay-security-scanner
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#quay-bridge-operator
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#container-security-operator-setup

As your software moves through the stages of building, testing, and production, it is important that the
tools making up your software supply chain be trusted. The following figure illustrates the process and
tools that could be incorporated into a trusted software supply chain for containerized software:

OpenShift Container Platform can be integrated with trusted code repositories (such as GitHub) and
development platforms (such as Che) for creating and managing secure code. Unit testing could rely on
Cucumber and JUnit. You could inspect your containers for vulnerabilities and compliance issues with
Anchore or Twistlock, and use image scanning tools such as AtomicScan or Clair. Tools such as Sysdig
could provide ongoing monitoring of your containerized applications.

2.8.2. Managing builds

You can use Source-to-Image (S2I) to combine source code and base images. Builder images make use
of S2I to enable your development and operations teams to collaborate on a reproducible build
environment. With Red Hat S2I images available as Universal Base Image (UBI) images, you can now
freely redistribute your software with base images built from real RHEL RPM packages. Red Hat has
removed subscription restrictions to allow this.

When developers commit code with Git for an application using build images, OpenShift Container
Platform can perform the following functions:

Trigger, either by using webhooks on the code repository or other automated continuous
integration (CI) process, to automatically assemble a new image from available artifacts, the S2I
builder image, and the newly committed code.

Automatically deploy the newly built image for testing.

Promote the tested image to production where it can be automatically deployed using a CI
process.

OpenShift Container Platform 4.9 Security and compliance

36

https://cucumber.io/
https://junit.org/
https://anchore.com
https://sysdig.com

You can use the integrated OpenShift Container Registry to manage access to final images. Both S2I
and native build images are automatically pushed to your OpenShift Container Registry.

In addition to the included Jenkins for CI, you can also integrate your own build and CI environment with
OpenShift Container Platform using RESTful APIs, as well as use any API-compliant image registry.

2.8.3. Securing inputs during builds

In some scenarios, build operations require credentials to access dependent resources, but it is
undesirable for those credentials to be available in the final application image produced by the build.
You can define input secrets for this purpose.

For example, when building a Node.js application, you can set up your private mirror for Node.js modules.
To download modules from that private mirror, you must supply a custom .npmrc file for the build that
contains a URL, user name, and password. For security reasons, you do not want to expose your
credentials in the application image.

Using this example scenario, you can add an input secret to a new BuildConfig object:

1. Create the secret, if it does not exist:

This creates a new secret named secret-npmrc, which contains the base64 encoded content of
the ~/.npmrc file.

2. Add the secret to the source section in the existing BuildConfig object:

$ oc create secret generic secret-npmrc --from-file=.npmrc=~/.npmrc

source:
 git:
 uri: https://github.com/sclorg/nodejs-ex.git
 secrets:

CHAPTER 2. CONTAINER SECURITY

37

3. To include the secret in a new BuildConfig object, run the following command:

2.8.4. Designing your build process

You can design your container image management and build process to use container layers so that you
can separate control.

For example, an operations team manages base images, while architects manage middleware, runtimes,
databases, and other solutions. Developers can then focus on application layers and focus on writing
code.

Because new vulnerabilities are identified daily, you need to proactively check container content over
time. To do this, you should integrate automated security testing into your build or CI process. For
example:

SAST / DAST – Static and Dynamic security testing tools.

Scanners for real-time checking against known vulnerabilities. Tools like these catalog the open
source packages in your container, notify you of any known vulnerabilities, and update you when
new vulnerabilities are discovered in previously scanned packages.

Your CI process should include policies that flag builds with issues discovered by security scans so that
your team can take appropriate action to address those issues. You should sign your custom built
containers to ensure that nothing is tampered with between build and deployment.

Using GitOps methodology, you can use the same CI/CD mechanisms to manage not only your
application configurations, but also your OpenShift Container Platform infrastructure.

2.8.5. Building Knative serverless applications

 - destinationDir: .
 secret:
 name: secret-npmrc

$ oc new-build \
 openshift/nodejs-010-centos7~https://github.com/sclorg/nodejs-ex.git \
 --build-secret secret-npmrc

OpenShift Container Platform 4.9 Security and compliance

38

Relying on Kubernetes and Kourier, you can build, deploy, and manage serverless applications by using
OpenShift Serverless in OpenShift Container Platform.

As with other builds, you can use S2I images to build your containers, then serve them using Knative
services. View Knative application builds through the Topology view of the OpenShift Container
Platform web console.

2.8.6. Additional resources

Understanding image builds

Triggering and modifying builds

Creating build inputs

Input secrets and config maps

About OpenShift Serverless

Viewing application composition using the Topology view

2.9. DEPLOYING CONTAINERS

You can use a variety of techniques to make sure that the containers you deploy hold the latest
production-quality content and that they have not been tampered with. These techniques include
setting up build triggers to incorporate the latest code and using signatures to ensure that the container
comes from a trusted source and has not been modified.

2.9.1. Controlling container deployments with triggers

If something happens during the build process, or if a vulnerability is discovered after an image has been
deployed, you can use tooling for automated, policy-based deployment to remediate. You can use
triggers to rebuild and replace images, ensuring the immutable containers process, instead of patching
running containers, which is not recommended.

CHAPTER 2. CONTAINER SECURITY

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#understanding-image-builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#triggering-builds-build-hooks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#creating-build-inputs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-input-secrets-configmaps_creating-build-inputs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/serverless/#about-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/building_applications/#odc-viewing-application-composition-using-topology-view

For example, you build an application using three container image layers: core, middleware, and
applications. An issue is discovered in the core image and that image is rebuilt. After the build is
complete, the image is pushed to your OpenShift Container Registry. OpenShift Container Platform
detects that the image has changed and automatically rebuilds and deploys the application image,
based on the defined triggers. This change incorporates the fixed libraries and ensures that the
production code is identical to the most current image.

You can use the oc set triggers command to set a deployment trigger. For example, to set a trigger for
a deployment called deployment-example:

2.9.2. Controlling what image sources can be deployed

It is important that the intended images are actually being deployed, that the images including the
contained content are from trusted sources, and they have not been altered. Cryptographic signing
provides this assurance. OpenShift Container Platform enables cluster administrators to apply security

$ oc set triggers deploy/deployment-example \
 --from-image=example:latest \
 --containers=web

OpenShift Container Platform 4.9 Security and compliance

40

policy that is broad or narrow, reflecting deployment environment and security requirements. Two
parameters define this policy:

one or more registries, with optional project namespace

trust type, such as accept, reject, or require public key(s)

You can use these policy parameters to allow, deny, or require a trust relationship for entire registries,
parts of registries, or individual images. Using trusted public keys, you can ensure that the source is
cryptographically verified. The policy rules apply to nodes. Policy may be applied uniformly across all
nodes or targeted for different node workloads (for example, build, zone, or environment).

Example image signature policy file

{
 "default": [{"type": "reject"}],
 "transports": {
 "docker": {
 "access.redhat.com": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
]
 },
 "atomic": {
 "172.30.1.1:5000/openshift": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"
 }
],
 "172.30.1.1:5000/production": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/etc/pki/example.com/pubkey"
 }
],
 "172.30.1.1:5000": [{"type": "reject"}]
 }
 }
}

The policy can be saved onto a node as /etc/containers/policy.json. Saving this file to a node is best
accomplished using a new MachineConfig object. This example enforces the following rules:

Require images from the Red Hat Registry (registry.access.redhat.com) to be signed by the
Red Hat public key.

Require images from your OpenShift Container Registry in the openshift namespace to be
signed by the Red Hat public key.

Require images from your OpenShift Container Registry in the production namespace to be

CHAPTER 2. CONTAINER SECURITY

41

Require images from your OpenShift Container Registry in the production namespace to be
signed by the public key for example.com.

Reject all other registries not specified by the global default definition.

2.9.3. Using signature transports

A signature transport is a way to store and retrieve the binary signature blob. There are two types of
signature transports.

atomic: Managed by the OpenShift Container Platform API.

docker: Served as a local file or by a web server.

The OpenShift Container Platform API manages signatures that use the atomic transport type. You
must store the images that use this signature type in your OpenShift Container Registry. Because the
docker/distribution extensions API auto-discovers the image signature endpoint, no additional
configuration is required.

Signatures that use the docker transport type are served by local file or web server. These signatures
are more flexible; you can serve images from any container image registry and use an independent
server to deliver binary signatures.

However, the docker transport type requires additional configuration. You must configure the nodes
with the URI of the signature server by placing arbitrarily-named YAML files into a directory on the host
system, /etc/containers/registries.d by default. The YAML configuration files contain a registry URI and
a signature server URI, or sigstore:

Example registries.d file

In this example, the Red Hat Registry, access.redhat.com, is the signature server that provides
signatures for the docker transport type. Its URI is defined in the sigstore parameter. You might name
this file /etc/containers/registries.d/redhat.com.yaml and use the Machine Config Operator to
automatically place the file on each node in your cluster. No service restart is required since policy and
registries.d files are dynamically loaded by the container runtime.

2.9.4. Creating secrets and config maps

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, dockercfg files, and private source repository
credentials. Secrets decouple sensitive content from pods. You can mount secrets into containers using
a volume plugin or the system can use secrets to perform actions on behalf of a pod.

For example, to add a secret to your deployment configuration so that it can access a private image
repository, do the following:

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Create a new project.

docker:
 access.redhat.com:
 sigstore: https://access.redhat.com/webassets/docker/content/sigstore

OpenShift Container Platform 4.9 Security and compliance

42

3. Navigate to Resources → Secrets and create a new secret. Set Secret Type to Image Secret
and Authentication Type to Image Registry Credentials to enter credentials for accessing a
private image repository.

4. When creating a deployment configuration (for example, from the Add to Project → Deploy
Image page), set the Pull Secret to your new secret.

Config maps are similar to secrets, but are designed to support working with strings that do not contain
sensitive information. The ConfigMap object holds key-value pairs of configuration data that can be
consumed in pods or used to store configuration data for system components such as controllers.

2.9.5. Automating continuous deployment

You can integrate your own continuous deployment (CD) tooling with OpenShift Container Platform.

By leveraging CI/CD and OpenShift Container Platform, you can automate the process of rebuilding the
application to incorporate the latest fixes, testing, and ensuring that it is deployed everywhere within the
environment.

Additional resources

Input secrets and config maps

2.10. SECURING THE CONTAINER PLATFORM

OpenShift Container Platform and Kubernetes APIs are key to automating container management at
scale. APIs are used to:

Validate and configure the data for pods, services, and replication controllers.

Perform project validation on incoming requests and invoke triggers on other major system
components.

Security-related features in OpenShift Container Platform that are based on Kubernetes include:

Multitenancy, which combines Role-Based Access Controls and network policies to isolate
containers at multiple levels.

Admission plugins, which form boundaries between an API and those making requests to the
API.

OpenShift Container Platform uses Operators to automate and simplify the management of
Kubernetes-level security features.

2.10.1. Isolating containers with multitenancy

Multitenancy allows applications on an OpenShift Container Platform cluster that are owned by multiple
users, and run across multiple hosts and namespaces, to remain isolated from each other and from
outside attacks. You obtain multitenancy by applying role-based access control (RBAC) to Kubernetes
namespaces.

In Kubernetes, namespaces are areas where applications can run in ways that are separate from other
applications. OpenShift Container Platform uses and extends namespaces by adding extra annotations,
including MCS labeling in SELinux, and identifying these extended namespaces as projects. Within the

CHAPTER 2. CONTAINER SECURITY

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cicd/#builds-input-secrets-configmaps_creating-build-inputs

scope of a project, users can maintain their own cluster resources, including service accounts, policies,
constraints, and various other objects.

RBAC objects are assigned to projects to authorize selected users to have access to those projects.
That authorization takes the form of rules, roles, and bindings:

Rules define what a user can create or access in a project.

Roles are collections of rules that you can bind to selected users or groups.

Bindings define the association between users or groups and roles.

Local RBAC roles and bindings attach a user or group to a particular project. Cluster RBAC can attach
cluster-wide roles and bindings to all projects in a cluster. There are default cluster roles that can be
assigned to provide admin, basic-user, cluster-admin, and cluster-status access.

2.10.2. Protecting control plane with admission plugins

While RBAC controls access rules between users and groups and available projects, admission plugins
define access to the OpenShift Container Platform master API. Admission plugins form a chain of rules
that consist of:

Default admissions plugins: These implement a default set of policies and resources limits that
are applied to components of the OpenShift Container Platform control plane.

Mutating admission plugins: These plugins dynamically extend the admission chain. They call out
to a webhook server and can both authenticate a request and modify the selected resource.

Validating admission plugins: These validate requests for a selected resource and can both
validate the request and ensure that the resource does not change again.

API requests go through admissions plugins in a chain, with any failure along the way causing the request
to be rejected. Each admission plugin is associated with particular resources and only responds to
requests for those resources.

2.10.2.1. Security context constraints (SCCs)

You can use security context constraints (SCCs) to define a set of conditions that a pod must run with
to be accepted into the system.

Some aspects that can be managed by SCCs include:

Running of privileged containers

Capabilities a container can request to be added

Use of host directories as volumes

SELinux context of the container

Container user ID

If you have the required permissions, you can adjust the default SCC policies to be more permissive, if
required.

2.10.2.2. Granting roles to service accounts

OpenShift Container Platform 4.9 Security and compliance

44

You can assign roles to service accounts, in the same way that users are assigned role-based access.
There are three default service accounts created for each project. A service account:

is limited in scope to a particular project

derives its name from its project

is automatically assigned an API token and credentials to access the OpenShift Container
Registry

Service accounts associated with platform components automatically have their keys rotated.

2.10.3. Authentication and authorization

2.10.3.1. Controlling access using OAuth

You can use API access control via authentication and authorization for securing your container
platform. The OpenShift Container Platform master includes a built-in OAuth server. Users can obtain
OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to authenticate using an identity provider , such as LDAP,
GitHub, or Google. The identity provider is used by default for new OpenShift Container Platform
deployments, but you can configure this at initial installation time or post-installation.

2.10.3.2. API access control and management

Applications can have multiple, independent API services which have different endpoints that require
management. OpenShift Container Platform includes a containerized version of the 3scale API gateway
so that you can manage your APIs and control access.

3scale gives you a variety of standard options for API authentication and security, which can be used
alone or in combination to issue credentials and control access: standard API keys, application ID and
key pair, and OAuth 2.0.

You can restrict access to specific endpoints, methods, and services and apply access policy for groups
of users. Application plans allow you to set rate limits for API usage and control traffic flow for groups of
developers.

For a tutorial on using APIcast v2, the containerized 3scale API Gateway, see Running APIcast on Red
Hat OpenShift in the 3scale documentation.

2.10.3.3. Red Hat Single Sign-On

The Red Hat Single Sign-On server enables you to secure your applications by providing web single sign-
on capabilities based on standards, including SAML 2.0, OpenID Connect, and OAuth 2.0. The server
can act as a SAML or OpenID Connect–based identity provider (IdP), mediating with your enterprise
user directory or third-party identity provider for identity information and your applications using
standards-based tokens. You can integrate Red Hat Single Sign-On with LDAP-based directory
services including Microsoft Active Directory and Red Hat Enterprise Linux Identity Management.

2.10.3.4. Secure self-service web console

OpenShift Container Platform provides a self-service web console to ensure that teams do not access
other environments without authorization. OpenShift Container Platform ensures a secure multitenant
master by providing the following:

CHAPTER 2. CONTAINER SECURITY

45

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.0/html/deployment_options/apicast-openshift

Access to the master uses Transport Layer Security (TLS)

Access to the API Server uses X.509 certificates or OAuth access tokens

Project quota limits the damage that a rogue token could do

The etcd service is not exposed directly to the cluster

2.10.4. Managing certificates for the platform

OpenShift Container Platform has multiple components within its framework that use REST-based
HTTPS communication leveraging encryption via TLS certificates. OpenShift Container Platform’s
installer configures these certificates during installation. There are some primary components that
generate this traffic:

masters (API server and controllers)

etcd

nodes

registry

router

2.10.4.1. Configuring custom certificates

You can configure custom serving certificates for the public hostnames of the API server and web
console during initial installation or when redeploying certificates. You can also use a custom CA.

Additional resources

Introduction to OpenShift Container Platform

Using RBAC to define and apply permissions

About admission plugins

Managing security context constraints

SCC reference commands

Examples of granting roles to service accounts

Configuring the internal OAuth server

Understanding identity provider configuration

Certificate types and descriptions

Proxy certificates

2.11. SECURING NETWORKS

Network security can be managed at several levels. At the pod level, network namespaces can prevent
containers from seeing other pods or the host system by restricting network access. Network policies

OpenShift Container Platform 4.9 Security and compliance

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/architecture/#architecture-platform-introduction_architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/architecture/#admission-plug-ins
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#managing-pod-security-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#security-context-constraints-command-reference_configuring-internal-oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#service-accounts-granting-roles_understanding-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#configuring-internal-oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#understanding-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-user-provided-certificates-for-the-api-server
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#cert-types-proxy-certificates

give you control over allowing and rejecting connections. You can manage ingress and egress traffic to
and from your containerized applications.

2.11.1. Using network namespaces

OpenShift Container Platform uses software-defined networking (SDN) to provide a unified cluster
network that enables communication between containers across the cluster.

Network policy mode, by default, makes all pods in a project accessible from other pods and network
endpoints. To isolate one or more pods in a project, you can create NetworkPolicy objects in that
project to indicate the allowed incoming connections. Using multitenant mode, you can provide project-
level isolation for pods and services.

2.11.2. Isolating pods with network policies

Using network policies, you can isolate pods from each other in the same project. Network policies can
deny all network access to a pod, only allow connections for the ingress controller, reject connections
from pods in other projects, or set similar rules for how networks behave.

Additional resources

About network policy

2.11.3. Using multiple pod networks

Each running container has only one network interface by default. The Multus CNI plugin lets you create
multiple CNI networks, and then attach any of those networks to your pods. In that way, you can do
things like separate private data onto a more restricted network and have multiple network interfaces on
each node.

Additional resources

Using multiple networks

2.11.4. Isolating applications

OpenShift Container Platform enables you to segment network traffic on a single cluster to make
multitenant clusters that isolate users, teams, applications, and environments from non-global
resources.

Additional resources

Configuring network isolation using OpenShiftSDN

2.11.5. Securing ingress traffic

There are many security implications related to how you configure access to your Kubernetes services
from outside of your OpenShift Container Platform cluster. Besides exposing HTTP and HTTPS routes,
ingress routing allows you to set up NodePort or LoadBalancer ingress types. NodePort exposes an
application’s service API object from each cluster worker. LoadBalancer lets you assign an external load
balancer to an associated service API object in your OpenShift Container Platform cluster.

Additional resources

CHAPTER 2. CONTAINER SECURITY

47

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#understanding-multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-multitenant-isolation

Configuring ingress cluster traffic

2.11.6. Securing egress traffic

OpenShift Container Platform provides the ability to control egress traffic using either a router or
firewall method. For example, you can use IP whitelisting to control database access. A cluster
administrator can assign one or more egress IP addresses to a project in an OpenShift Container
Platform SDN network provider. Likewise, a cluster administrator can prevent egress traffic from going
outside of an OpenShift Container Platform cluster using an egress firewall.

By assigning a fixed egress IP address, you can have all outgoing traffic assigned to that IP address for a
particular project. With the egress firewall, you can prevent a pod from connecting to an external
network, prevent a pod from connecting to an internal network, or limit a pod’s access to specific internal
subnets.

Additional resources

Configuring an egress firewall to control access to external IP addresses

Configuring egress IPs for a project

2.12. SECURING ATTACHED STORAGE

OpenShift Container Platform supports multiple types of storage, both for on-premise and cloud
providers. In particular, OpenShift Container Platform can use storage types that support the Container
Storage Interface.

2.12.1. Persistent volume plugins

Containers are useful for both stateless and stateful applications. Protecting attached storage is a key
element of securing stateful services. Using the Container Storage Interface (CSI), OpenShift Container
Platform can incorporate storage from any storage back end that supports the CSI interface.

OpenShift Container Platform provides plugins for multiple types of storage, including:

Red Hat OpenShift Container Storage *

AWS Elastic Block Stores (EBS) *

AWS Elastic File System (EFS) *

Azure Disk *

Azure File *

OpenStack Cinder *

GCE Persistent Disks *

VMware vSphere *

Network File System (NFS)

FlexVolume

Fibre Channel

OpenShift Container Platform 4.9 Security and compliance

48

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-ingress-cluster-traffic-ingress-controller
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-egress-firewall
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#assigning-egress-ips

iSCSI

Plugins for those storage types with dynamic provisioning are marked with an asterisk (*). Data in transit
is encrypted via HTTPS for all OpenShift Container Platform components communicating with each
other.

You can mount a persistent volume (PV) on a host in any way supported by your storage type. Different
types of storage have different capabilities and each PV’s access modes are set to the specific modes
supported by that particular volume.

For example, NFS can support multiple read/write clients, but a specific NFS PV might be exported on
the server as read-only. Each PV has its own set of access modes describing that specific PV’s
capabilities, such as ReadWriteOnce, ReadOnlyMany, and ReadWriteMany.

2.12.2. Shared storage

For shared storage providers like NFS, the PV registers its group ID (GID) as an annotation on the PV
resource. Then, when the PV is claimed by the pod, the annotated GID is added to the supplemental
groups of the pod, giving that pod access to the contents of the shared storage.

2.12.3. Block storage

For block storage providers like AWS Elastic Block Store (EBS), GCE Persistent Disks, and iSCSI,
OpenShift Container Platform uses SELinux capabilities to secure the root of the mounted volume for
non-privileged pods, making the mounted volume owned by and only visible to the container with which
it is associated.

Additional resources

Understanding persistent storage

Configuring CSI volumes

Dynamic provisioning

Persistent storage using NFS

Persistent storage using AWS Elastic Block Store

Persistent storage using GCE Persistent Disk

2.13. MONITORING CLUSTER EVENTS AND LOGS

The ability to monitor and audit an OpenShift Container Platform cluster is an important part of
safeguarding the cluster and its users against inappropriate usage.

There are two main sources of cluster-level information that are useful for this purpose: events and
logging.

2.13.1. Watching cluster events

Cluster administrators are encouraged to familiarize themselves with the Event resource type and
review the list of system events to determine which events are of interest. Events are associated with a
namespace, either the namespace of the resource they are related to or, for cluster events, the default

CHAPTER 2. CONTAINER SECURITY

49

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/#understanding-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/#persistent-storage-using-csi
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/#dynamic-provisioning
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/#persistent-storage-using-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/#persistent-storage-using-aws-ebs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/#persistent-storage-using-gce

namespace. The default namespace holds relevant events for monitoring or auditing a cluster, such as
node events and resource events related to infrastructure components.

The master API and oc command do not provide parameters to scope a listing of events to only those
related to nodes. A simple approach would be to use grep:

Example output

A more flexible approach is to output the events in a form that other tools can process. For example, the
following example uses the jq tool against JSON output to extract only NodeHasDiskPressure events:

Example output

Events related to resource creation, modification, or deletion can also be good candidates for detecting
misuse of the cluster. The following query, for example, can be used to look for excessive pulling of
images:

Example output

NOTE

When a namespace is deleted, its events are deleted as well. Events can also expire and
are deleted to prevent filling up etcd storage. Events are not stored as a permanent
record and frequent polling is necessary to capture statistics over time.

2.13.2. Logging

$ oc get event -n default | grep Node

1h 20h 3 origin-node-1.example.local Node Normal NodeHasDiskPressure ...

$ oc get events -n default -o json \
 | jq '.items[] | select(.involvedObject.kind == "Node" and .reason == "NodeHasDiskPressure")'

{
 "apiVersion": "v1",
 "count": 3,
 "involvedObject": {
 "kind": "Node",
 "name": "origin-node-1.example.local",
 "uid": "origin-node-1.example.local"
 },
 "kind": "Event",
 "reason": "NodeHasDiskPressure",
 ...
}

$ oc get events --all-namespaces -o json \
 | jq '[.items[] | select(.involvedObject.kind == "Pod" and .reason == "Pulling")] | length'

4

OpenShift Container Platform 4.9 Security and compliance

50

Using the oc log command, you can view container logs, build configs and deployments in real time.
Different can users have access different access to logs:

Users who have access to a project are able to see the logs for that project by default.

Users with admin roles can access all container logs.

To save your logs for further audit and analysis, you can enable the cluster-logging add-on feature to
collect, manage, and view system, container, and audit logs. You can deploy, manage, and upgrade
OpenShift Logging through the OpenShift Elasticsearch Operator and Red Hat OpenShift Logging
Operator.

2.13.3. Audit logs

With audit logs, you can follow a sequence of activities associated with how a user, administrator, or
other OpenShift Container Platform component is behaving. API audit logging is done on each server.

Additional resources

List of system events

Understanding OpenShift Logging

Viewing audit logs

CHAPTER 2. CONTAINER SECURITY

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-containers-events
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/#cluster-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#audit-log-view

1

CHAPTER 3. CONFIGURING CERTIFICATES

3.1. REPLACING THE DEFAULT INGRESS CERTIFICATE

3.1.1. Understanding the default ingress certificate

By default, OpenShift Container Platform uses the Ingress Operator to create an internal CA and issue a
wildcard certificate that is valid for applications under the .apps sub-domain. Both the web console and
CLI use this certificate as well.

The internal infrastructure CA certificates are self-signed. While this process might be perceived as bad
practice by some security or PKI teams, any risk here is minimal. The only clients that implicitly trust
these certificates are other components within the cluster. Replacing the default wildcard certificate
with one that is issued by a public CA already included in the CA bundle as provided by the container
userspace allows external clients to connect securely to applications running under the .apps sub-
domain.

3.1.2. Replacing the default ingress certificate

You can replace the default ingress certificate for all applications under the .apps subdomain. After you
replace the certificate, all applications, including the web console and CLI, will have encryption provided
by specified certificate.

Prerequisites

You must have a wildcard certificate for the fully qualified .apps subdomain and its
corresponding private key. Each should be in a separate PEM format file.

The private key must be unencrypted. If your key is encrypted, decrypt it before importing it
into OpenShift Container Platform.

The certificate must include the subjectAltName extension showing *.apps.<clustername>.
<domain>.

The certificate file can contain one or more certificates in a chain. The wildcard certificate must
be the first certificate in the file. It can then be followed with any intermediate certificates, and
the file should end with the root CA certificate.

Copy the root CA certificate into an additional PEM format file.

Procedure

1. Create a config map that includes only the root CA certificate used to sign the wildcard
certificate:

</path/to/example-ca.crt> is the path to the root CA certificate file on your local file
system.

2. Update the cluster-wide proxy configuration with the newly created config map:

$ oc create configmap custom-ca \
 --from-file=ca-bundle.crt=</path/to/example-ca.crt> \ 1
 -n openshift-config

OpenShift Container Platform 4.9 Security and compliance

52

1

2

3

1

3. Create a secret that contains the wildcard certificate chain and key:

<secret> is the name of the secret that will contain the certificate chain and private key.

</path/to/cert.crt> is the path to the certificate chain on your local file system.

</path/to/cert.key> is the path to the private key associated with this certificate.

4. Update the Ingress Controller configuration with the newly created secret:

Replace <secret> with the name used for the secret in the previous step.

Additional resources

Replacing the CA Bundle certificate

Proxy certificate customization

3.2. ADDING API SERVER CERTIFICATES

The default API server certificate is issued by an internal OpenShift Container Platform cluster CA.
Clients outside of the cluster will not be able to verify the API server’s certificate by default. This
certificate can be replaced by one that is issued by a CA that clients trust.

3.2.1. Add an API server named certificate

The default API server certificate is issued by an internal OpenShift Container Platform cluster CA. You
can add one or more alternative certificates that the API server will return based on the fully qualified
domain name (FQDN) requested by the client, for example when a reverse proxy or load balancer is
used.

Prerequisites

You must have a certificate for the FQDN and its corresponding private key. Each should be in a
separate PEM format file.

The private key must be unencrypted. If your key is encrypted, decrypt it before importing it
into OpenShift Container Platform.

$ oc patch proxy/cluster \
 --type=merge \
 --patch='{"spec":{"trustedCA":{"name":"custom-ca"}}}'

$ oc create secret tls <secret> \ 1
 --cert=</path/to/cert.crt> \ 2
 --key=</path/to/cert.key> \ 3
 -n openshift-ingress

$ oc patch ingresscontroller.operator default \
 --type=merge -p \
 '{"spec":{"defaultCertificate": {"name": "<secret>"}}}' \ 1
 -n openshift-ingress-operator

CHAPTER 3. CONFIGURING CERTIFICATES

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#ca-bundle-understanding_updating-ca-bundle
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#customization

1

2

3

1

2

The certificate must include the subjectAltName extension showing the FQDN.

The certificate file can contain one or more certificates in a chain. The certificate for the API
server FQDN must be the first certificate in the file. It can then be followed with any
intermediate certificates, and the file should end with the root CA certificate.

WARNING

Do not provide a named certificate for the internal load balancer (host name api-
int.<cluster_name>.<base_domain>). Doing so will leave your cluster in a
degraded state.

Procedure

1. Login to the new API as the kubeadmin user.

2. Get the kubeconfig file.

3. Create a secret that contains the certificate chain and private key in the openshift-config
namespace.

<secret> is the name of the secret that will contain the certificate chain and private key.

</path/to/cert.crt> is the path to the certificate chain on your local file system.

</path/to/cert.key> is the path to the private key associated with this certificate.

4. Update the API server to reference the created secret.

Replace <FQDN> with the FQDN that the API server should provide the certificate for.

Replace <secret> with the name used for the secret in the previous step.



$ oc login -u kubeadmin -p <password> https://FQDN:6443

$ oc config view --flatten > kubeconfig-newapi

$ oc create secret tls <secret> \ 1
 --cert=</path/to/cert.crt> \ 2
 --key=</path/to/cert.key> \ 3
 -n openshift-config

$ oc patch apiserver cluster \
 --type=merge -p \
 '{"spec":{"servingCerts": {"namedCertificates":
 [{"names": ["<FQDN>"], 1
 "servingCertificate": {"name": "<secret>"}}]}}}' 2

OpenShift Container Platform 4.9 Security and compliance

54

5. Examine the apiserver/cluster object and confirm the secret is now referenced.

Example output

6. Check the kube-apiserver operator, and verify that a new revision of the Kubernetes API server
rolls out. It may take a minute for the operator to detect the configuration change and trigger a
new deployment. While the new revision is rolling out, PROGRESSING will report True.

Do not continue to the next step until PROGRESSING is listed as False, as shown in the
following output:

Example output

If PROGRESSING is showing True, wait a few minutes and try again.

3.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING
CERTIFICATE SECRETS

3.3.1. Understanding service serving certificates

Service serving certificates are intended to support complex middleware applications that require
encryption. These certificates are issued as TLS web server certificates.

The service-ca controller uses the x509.SHA256WithRSA signature algorithm to generate service
certificates.

The generated certificate and key are in PEM format, stored in tls.crt and tls.key respectively, within a
created secret. The certificate and key are automatically replaced when they get close to expiration.

The service CA certificate, which issues the service certificates, is valid for 26 months and is
automatically rotated when there is less than 13 months validity left. After rotation, the previous service
CA configuration is still trusted until its expiration. This allows a grace period for all affected services to
refresh their key material before the expiration. If you do not upgrade your cluster during this grace
period, which restarts services and refreshes their key material, you might need to manually restart
services to avoid failures after the previous service CA expires.

NOTE

$ oc get apiserver cluster -o yaml

...
spec:
 servingCerts:
 namedCertificates:
 - names:
 - <FQDN>
 servingCertificate:
 name: <secret>
...

$ oc get clusteroperators kube-apiserver

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
kube-apiserver 4.9.0 True False False 145m

CHAPTER 3. CONFIGURING CERTIFICATES

55

1

2

NOTE

You can use the following command to manually restart all pods in the cluster. Be aware
that running this command causes a service interruption, because it deletes every running
pod in every namespace. These pods will automatically restart after they are deleted.

3.3.2. Add a service certificate

To secure communication to your service, generate a signed serving certificate and key pair into a secret
in the same namespace as the service.

The generated certificate is only valid for the internal service DNS name <service.name>.
<service.namespace>.svc, and is only valid for internal communications. If your service is a headless
service (no clusterIP value set), the generated certificate also contains a wildcard subject in the format
of *.<service.name>.<service.namespace>.svc.

IMPORTANT

Because the generated certificates contain wildcard subjects for headless services, you
must not use the service CA if your client must differentiate between individual pods. In
this case:

Generate individual TLS certificates by using a different CA.

Do not accept the service CA as a trusted CA for connections that are directed to
individual pods and must not be impersonated by other pods. These connections
must be configured to trust the CA that was used to generate the individual TLS
certificates.

Prerequisites:

You must have a service defined.

Procedure

1. Annotate the service with service.beta.openshift.io/serving-cert-secret-name:

Replace <service_name> with the name of the service to secure.

<secret_name> will be the name of the generated secret containing the certificate and
key pair. For convenience, it is recommended that this be the same as <service_name>.

For example, use the following command to annotate the service test1:

$ for I in $(oc get ns -o jsonpath='{range .items[*]} {.metadata.name}{"\n"} {end}'); \
 do oc delete pods --all -n $I; \
 sleep 1; \
 done

$ oc annotate service <service_name> \ 1
 service.beta.openshift.io/serving-cert-secret-name=<secret_name> 2

$ oc annotate service test1 service.beta.openshift.io/serving-cert-secret-name=test1

OpenShift Container Platform 4.9 Security and compliance

56

1

2. Examine the service to confirm that the annotations are present:

Example output

3. After the cluster generates a secret for your service, your Pod spec can mount it, and the pod
will run after it becomes available.

Additional resources

You can use a service certificate to configure a secure route using reencrypt TLS termination.
For more information, see Creating a re-encrypt route with a custom certificate .

3.3.3. Add the service CA bundle to a config map

A pod can access the service CA certificate by mounting a ConfigMap object that is annotated with
service.beta.openshift.io/inject-cabundle=true. Once annotated, the cluster automatically injects the
service CA certificate into the service-ca.crt key on the config map. Access to this CA certificate allows
TLS clients to verify connections to services using service serving certificates.

IMPORTANT

After adding this annotation to a config map all existing data in it is deleted. It is
recommended to use a separate config map to contain the service-ca.crt, instead of
using the same config map that stores your pod configuration.

Procedure

1. Annotate the config map with service.beta.openshift.io/inject-cabundle=true:

Replace <config_map_name> with the name of the config map to annotate.

NOTE

Explicitly referencing the service-ca.crt key in a volume mount will prevent a pod
from starting until the config map has been injected with the CA bundle. This
behavior can be overridden by setting the optional field to true for the volume’s
serving certificate configuration.

For example, use the following command to annotate the config map test1:

$ oc describe service <service_name>

...
Annotations: service.beta.openshift.io/serving-cert-secret-name: <service_name>
 service.beta.openshift.io/serving-cert-signed-by: openshift-service-serving-
signer@1556850837
...

$ oc annotate configmap <config_map_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

CHAPTER 3. CONFIGURING CERTIFICATES

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ingress-creating-a-reencrypt-route-with-a-custom-certificate_secured-routes

1

2. View the config map to ensure that the service CA bundle has been injected:

The CA bundle is displayed as the value of the service-ca.crt key in the YAML output:

3.3.4. Add the service CA bundle to an API service

You can annotate an APIService object with service.beta.openshift.io/inject-cabundle=true to have
its spec.caBundle field populated with the service CA bundle. This allows the Kubernetes API server to
validate the service CA certificate used to secure the targeted endpoint.

Procedure

1. Annotate the API service with service.beta.openshift.io/inject-cabundle=true:

Replace <api_service_name> with the name of the API service to annotate.

For example, use the following command to annotate the API service test1:

2. View the API service to ensure that the service CA bundle has been injected:

The CA bundle is displayed in the spec.caBundle field in the YAML output:

3.3.5. Add the service CA bundle to a custom resource definition

You can annotate a CustomResourceDefinition (CRD) object with service.beta.openshift.io/inject-

$ oc annotate configmap test1 service.beta.openshift.io/inject-cabundle=true

$ oc get configmap <config_map_name> -o yaml

apiVersion: v1
data:
 service-ca.crt: |
 -----BEGIN CERTIFICATE-----
...

$ oc annotate apiservice <api_service_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

$ oc annotate apiservice test1 service.beta.openshift.io/inject-cabundle=true

$ oc get apiservice <api_service_name> -o yaml

apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
...
spec:
 caBundle: <CA_BUNDLE>
...

OpenShift Container Platform 4.9 Security and compliance

58

1

You can annotate a CustomResourceDefinition (CRD) object with service.beta.openshift.io/inject-
cabundle=true to have its spec.conversion.webhook.clientConfig.caBundle field populated with the
service CA bundle. This allows the Kubernetes API server to validate the service CA certificate used to
secure the targeted endpoint.

NOTE

The service CA bundle will only be injected into the CRD if the CRD is configured to use a
webhook for conversion. It is only useful to inject the service CA bundle if a CRD’s
webhook is secured with a service CA certificate.

Procedure

1. Annotate the CRD with service.beta.openshift.io/inject-cabundle=true:

Replace <crd_name> with the name of the CRD to annotate.

For example, use the following command to annotate the CRD test1:

2. View the CRD to ensure that the service CA bundle has been injected:

The CA bundle is displayed in the spec.conversion.webhook.clientConfig.caBundle field in
the YAML output:

3.3.6. Add the service CA bundle to a mutating webhook configuration

You can annotate a MutatingWebhookConfiguration object with service.beta.openshift.io/inject-
cabundle=true to have the clientConfig.caBundle field of each webhook populated with the service
CA bundle. This allows the Kubernetes API server to validate the service CA certificate used to secure
the targeted endpoint.

NOTE

$ oc annotate crd <crd_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

$ oc annotate crd test1 service.beta.openshift.io/inject-cabundle=true

$ oc get crd <crd_name> -o yaml

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
...
spec:
 conversion:
 strategy: Webhook
 webhook:
 clientConfig:
 caBundle: <CA_BUNDLE>
...

CHAPTER 3. CONFIGURING CERTIFICATES

59

1

NOTE

Do not set this annotation for admission webhook configurations that need to specify
different CA bundles for different webhooks. If you do, then the service CA bundle will be
injected for all webhooks.

Procedure

1. Annotate the mutating webhook configuration with service.beta.openshift.io/inject-
cabundle=true:

Replace <mutating_webhook_name> with the name of the mutating webhook
configuration to annotate.

For example, use the following command to annotate the mutating webhook configuration
test1:

2. View the mutating webhook configuration to ensure that the service CA bundle has been
injected:

The CA bundle is displayed in the clientConfig.caBundle field of all webhooks in the YAML
output:

3.3.7. Add the service CA bundle to a validating webhook configuration

You can annotate a ValidatingWebhookConfiguration object with service.beta.openshift.io/inject-
cabundle=true to have the clientConfig.caBundle field of each webhook populated with the service
CA bundle. This allows the Kubernetes API server to validate the service CA certificate used to secure
the targeted endpoint.

NOTE

$ oc annotate mutatingwebhookconfigurations <mutating_webhook_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

$ oc annotate mutatingwebhookconfigurations test1 service.beta.openshift.io/inject-
cabundle=true

$ oc get mutatingwebhookconfigurations <mutating_webhook_name> -o yaml

apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
metadata:
 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
...
webhooks:
- myWebhook:
 - v1beta1
 clientConfig:
 caBundle: <CA_BUNDLE>
...

OpenShift Container Platform 4.9 Security and compliance

60

1

NOTE

Do not set this annotation for admission webhook configurations that need to specify
different CA bundles for different webhooks. If you do, then the service CA bundle will be
injected for all webhooks.

Procedure

1. Annotate the validating webhook configuration with service.beta.openshift.io/inject-
cabundle=true:

Replace <validating_webhook_name> with the name of the validating webhook
configuration to annotate.

For example, use the following command to annotate the validating webhook configuration
test1:

2. View the validating webhook configuration to ensure that the service CA bundle has been
injected:

The CA bundle is displayed in the clientConfig.caBundle field of all webhooks in the YAML
output:

3.3.8. Manually rotate the generated service certificate

You can rotate the service certificate by deleting the associated secret. Deleting the secret results in a
new one being automatically created, resulting in a new certificate.

Prerequisites

A secret containing the certificate and key pair must have been generated for the service.

$ oc annotate validatingwebhookconfigurations <validating_webhook_name> \ 1
 service.beta.openshift.io/inject-cabundle=true

$ oc annotate validatingwebhookconfigurations test1 service.beta.openshift.io/inject-
cabundle=true

$ oc get validatingwebhookconfigurations <validating_webhook_name> -o yaml

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
...
webhooks:
- myWebhook:
 - v1beta1
 clientConfig:
 caBundle: <CA_BUNDLE>
...

CHAPTER 3. CONFIGURING CERTIFICATES

61

1

Procedure

1. Examine the service to determine the secret containing the certificate. This is found in the
serving-cert-secret-name annotation, as seen below.

Example output

2. Delete the generated secret for the service. This process will automatically recreate the secret.

Replace <secret> with the name of the secret from the previous step.

3. Confirm that the certificate has been recreated by obtaining the new secret and examining the
AGE.

Example output

3.3.9. Manually rotate the service CA certificate

The service CA is valid for 26 months and is automatically refreshed when there is less than 13 months
validity left.

If necessary, you can manually refresh the service CA by using the following procedure.

WARNING

A manually-rotated service CA does not maintain trust with the previous service CA.
You might experience a temporary service disruption until the pods in the cluster
are restarted, which ensures that pods are using service serving certificates issued
by the new service CA.

Prerequisites

You must be logged in as a cluster admin.

$ oc describe service <service_name>

...
service.beta.openshift.io/serving-cert-secret-name: <secret>
...

$ oc delete secret <secret> 1

$ oc get secret <service_name>

NAME TYPE DATA AGE
<service.name> kubernetes.io/tls 2 1s



OpenShift Container Platform 4.9 Security and compliance

62

Procedure

1. View the expiration date of the current service CA certificate by using the following command.

2. Manually rotate the service CA. This process generates a new service CA which will be used to
sign the new service certificates.

3. To apply the new certificates to all services, restart all the pods in your cluster. This command
ensures that all services use the updated certificates.

WARNING

This command will cause a service interruption, as it goes through and
deletes every running pod in every namespace. These pods will
automatically restart after they are deleted.

3.4. UPDATING THE CA BUNDLE

3.4.1. Understanding the CA Bundle certificate

Proxy certificates allow users to specify one or more custom certificate authority (CA) used by platform
components when making egress connections.

The trustedCA field of the Proxy object is a reference to a config map that contains a user-provided
trusted certificate authority (CA) bundle. This bundle is merged with the Red Hat Enterprise Linux
CoreOS (RHCOS) trust bundle and injected into the trust store of platform components that make
egress HTTPS calls. For example, image-registry-operator calls an external image registry to download
images. If trustedCA is not specified, only the RHCOS trust bundle is used for proxied HTTPS
connections. Provide custom CA certificates to the RHCOS trust bundle if you want to use your own
certificate infrastructure.

The trustedCA field should only be consumed by a proxy validator. The validator is responsible for
reading the certificate bundle from required key ca-bundle.crt and copying it to a config map named
trusted-ca-bundle in the openshift-config-managed namespace. The namespace for the config map
referenced by trustedCA is openshift-config:

$ oc get secrets/signing-key -n openshift-service-ca \
 -o template='{{index .data "tls.crt"}}' \
 | base64 --decode \
 | openssl x509 -noout -enddate

$ oc delete secret/signing-key -n openshift-service-ca

$ for I in $(oc get ns -o jsonpath='{range .items[*]} {.metadata.name}{"\n"} {end}'); \
 do oc delete pods --all -n $I; \
 sleep 1; \
 done



apiVersion: v1

CHAPTER 3. CONFIGURING CERTIFICATES

63

1

3.4.2. Replacing the CA Bundle certificate

Procedure

1. Create a config map that includes the root CA certificate used to sign the wildcard certificate:

</path/to/example-ca.crt> is the path to the CA certificate bundle on your local file
system.

2. Update the cluster-wide proxy configuration with the newly created config map:

Additional resources

Replacing the default ingress certificate

Enabling the cluster-wide proxy

Proxy certificate customization

kind: ConfigMap
metadata:
 name: user-ca-bundle
 namespace: openshift-config
data:
 ca-bundle.crt: |
 -----BEGIN CERTIFICATE-----
 Custom CA certificate bundle.
 -----END CERTIFICATE-----

$ oc create configmap custom-ca \
 --from-file=ca-bundle.crt=</path/to/example-ca.crt> \ 1
 -n openshift-config

$ oc patch proxy/cluster \
 --type=merge \
 --patch='{"spec":{"trustedCA":{"name":"custom-ca"}}}'

OpenShift Container Platform 4.9 Security and compliance

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#replacing-default-ingress_replacing-default-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-proxy-configure-object_config-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#customization

CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS

4.1. USER-PROVIDED CERTIFICATES FOR THE API SERVER

4.1.1. Purpose

The API server is accessible by clients external to the cluster at api.<cluster_name>.<base_domain>.
You might want clients to access the API server at a different hostname or without the need to
distribute the cluster-managed certificate authority (CA) certificates to the clients. The administrator
must set a custom default certificate to be used by the API server when serving content.

4.1.2. Location

The user-provided certificates must be provided in a kubernetes.io/tls type Secret in the openshift-
config namespace. Update the API server cluster configuration, the apiserver/cluster resource, to
enable the use of the user-provided certificate.

4.1.3. Management

User-provided certificates are managed by the user.

4.1.4. Expiration

API server client certificate expiration is less than five minutes.

User-provided certificates are managed by the user.

4.1.5. Customization

Update the secret containing the user-managed certificate as needed.

Additional resources

Adding API server certificates

4.2. PROXY CERTIFICATES

4.2.1. Purpose

Proxy certificates allow users to specify one or more custom certificate authority (CA) certificates used
by platform components when making egress connections.

The trustedCA field of the Proxy object is a reference to a config map that contains a user-provided
trusted certificate authority (CA) bundle. This bundle is merged with the Red Hat Enterprise Linux
CoreOS (RHCOS) trust bundle and injected into the trust store of platform components that make
egress HTTPS calls. For example, image-registry-operator calls an external image registry to download
images. If trustedCA is not specified, only the RHCOS trust bundle is used for proxied HTTPS
connections. Provide custom CA certificates to the RHCOS trust bundle if you want to use your own
certificate infrastructure.

The trustedCA field should only be consumed by a proxy validator. The validator is responsible for
reading the certificate bundle from required key ca-bundle.crt and copying it to a config map named

CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#api-server-certificates

trusted-ca-bundle in the openshift-config-managed namespace. The namespace for the config map
referenced by trustedCA is openshift-config:

Additional resources

Configuring the cluster-wide proxy

4.2.2. Managing proxy certificates during installation

The additionalTrustBundle value of the installer configuration is used to specify any proxy-trusted CA
certificates during installation. For example:

Example output

4.2.3. Location

The user-provided trust bundle is represented as a config map. The config map is mounted into the file
system of platform components that make egress HTTPS calls. Typically, Operators mount the config
map to /etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem, but this is not required by the proxy. A
proxy can modify or inspect the HTTPS connection. In either case, the proxy must generate and sign a
new certificate for the connection.

Complete proxy support means connecting to the specified proxy and trusting any signatures it has
generated. Therefore, it is necessary to let the user specify a trusted root, such that any certificate chain
connected to that trusted root is also trusted.

If using the RHCOS trust bundle, place CA certificates in /etc/pki/ca-trust/source/anchors.

See Using shared system certificates in the Red Hat Enterprise Linux documentation for more
information.

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-ca-bundle
 namespace: openshift-config
data:
 ca-bundle.crt: |
 -----BEGIN CERTIFICATE-----
 Custom CA certificate bundle.
 -----END CERTIFICATE-----

$ cat install-config.yaml

...
proxy:
 httpProxy: http://<https://username:password@proxy.example.com:123/>
 httpsProxy: https://<https://username:password@proxy.example.com:123/>
 noProxy: <123.example.com,10.88.0.0/16>
additionalTrustBundle: |
 -----BEGIN CERTIFICATE-----
 <MY_HTTPS_PROXY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...

OpenShift Container Platform 4.9 Security and compliance

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-shared-system-certificates_security-hardening

4.2.4. Expiration

The user sets the expiration term of the user-provided trust bundle.

The default expiration term is defined by the CA certificate itself. It is up to the CA administrator to
configure this for the certificate before it can be used by OpenShift Container Platform or RHCOS.

NOTE

Red Hat does not monitor for when CAs expire. However, due to the long life of CAs, this
is generally not an issue. However, you might need to periodically update the trust bundle.

4.2.5. Services

By default, all platform components that make egress HTTPS calls will use the RHCOS trust bundle. If
trustedCA is defined, it will also be used.

Any service that is running on the RHCOS node is able to use the trust bundle of the node.

4.2.6. Management

These certificates are managed by the system and not the user.

4.2.7. Customization

Updating the user-provided trust bundle consists of either:

updating the PEM-encoded certificates in the config map referenced by trustedCA, or

creating a config map in the namespace openshift-config that contains the new trust bundle
and updating trustedCA to reference the name of the new config map.

The mechanism for writing CA certificates to the RHCOS trust bundle is exactly the same as writing any
other file to RHCOS, which is done through the use of machine configs. When the Machine Config
Operator (MCO) applies the new machine config that contains the new CA certificates, the node is
rebooted. During the next boot, the service coreos-update-ca-trust.service runs on the RHCOS nodes,
which automatically update the trust bundle with the new CA certificates. For example:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 50-examplecorp-ca-cert
spec:
 config:
 ignition:
 version: 3.1.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVORENDQXh5Z0F3SUJBZ0lKQU5
1bkkwRDY2MmNuTUEwR0NTcUdTSWIzRFFFQkN3VUFNSUdsTVFzd0NRWUQKV1FRR0V3SlZVek
VYTUJVR0ExVUVDQXdPVG05eWRHZ2dRMkZ5YjJ4cGJtRXhFREFPQmdOVkJBY01CMUpoYkdWcA

CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS

67

The trust store of machines must also support updating the trust store of nodes.

4.2.8. Renewal

There are no Operators that can auto-renew certificates on the RHCOS nodes.

NOTE

Red Hat does not monitor for when CAs expire. However, due to the long life of CAs, this
is generally not an issue. However, you might need to periodically update the trust bundle.

4.3. SERVICE CA CERTIFICATES

4.3.1. Purpose

service-ca is an Operator that creates a self-signed CA when an OpenShift Container Platform cluster
is deployed.

4.3.2. Expiration

A custom expiration term is not supported. The self-signed CA is stored in a secret with qualified name
service-ca/signing-key in fields tls.crt (certificate(s)), tls.key (private key), and ca-bundle.crt (CA
bundle).

Other services can request a service serving certificate by annotating a service resource with
service.beta.openshift.io/serving-cert-secret-name: <secret name>. In response, the Operator
generates a new certificate, as tls.crt, and private key, as tls.key to the named secret. The certificate is
valid for two years.

pBMmd4RmpBVUJnTlZCQW9NRFZKbFpDQklZWFFzSUVsdVl5NHhFekFSQmdOVkJBc01DbEpsWk
NCSVlYUWdTVlF4Ckh6QVpCZ05WQkFNTUVsSmxaQ0JJWVhRZ1NWUWdVbTl2ZENCRFFURWhN
QjhHQ1NxR1NJYjNEUUVKQVJZU2FXNW0KWGpDQnBURUxNQWtHQTFVRUJoTUNWVk14RnpBV
kJnTlZCQWdNRGs1dmNuUm9JRU5oY205c2FXNWhNUkF3RGdZRApXUVFIREFkU1lXeGxhV2RvTV
JZd0ZBWURWUVFLREExU1pXUWdTR0YwTENCSmJtTXVNUk13RVFZRFZRUUxEQXBTCkFXUWd
TR0YwSUVsVU1Sc3dHUVlEVlFRRERCSlNaV1FnU0dGMElFbFVJRkp2YjNRZ1EwRXhJVEFmQmdrc
WhraUcKMHcwQkNRRVdFbWx1Wm05elpXTkFjbVZrYUdGMExtTnZiVENDQVNJd0RRWUpLb1pJaH
ZjTkFRRUJCUUFEZ2dFUApCRENDQVFvQ2dnRUJBTFF0OU9KUWg2R0M1TFQxZzgwcU5oMHU1
MEJRNHNaL3laOGFFVHh0KzVsblBWWDZNSEt6CmQvaTdsRHFUZlRjZkxMMm55VUJkMmZRRGsx
QjBmeHJza2hHSUlaM2lmUDFQczRsdFRrdjhoUlNvYjNWdE5xU28KSHhrS2Z2RDJQS2pUUHhEUFdZ
eXJ1eTlpckxaaW9NZmZpM2kvZ0N1dDBaV3RBeU8zTVZINXFXRi9lbkt3Z1BFUwpZOXBvK1RkQ3ZS
Qi9SVU9iQmFNNzYxRWNyTFNNMUdxSE51ZVNmcW5obzNBakxRNmRCblBXbG82MzhabTFWZWJ
LCkNFTHloa0xXTVNGa0t3RG1uZTBqUTAyWTRnMDc1dkNLdkNzQ0F3RUFBYU5qTUdFd0hRWUR
WUjBPQkJZRUZIN1IKNXlDK1VlaElJUGV1TDhacXczUHpiZ2NaTUI4R0ExVWRJd1FZTUJhQUZIN1I0
eUMrVWVoSUlQZXVMOFpxdzNQegpjZ2NaTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3RGdZRFZS
MFBBUUgvQkFRREFnR0dNQTBHQ1NxR1NJYjNEUUVCCkR3VUFBNElCQVFCRE52RDJWbTlzQT
VBOUFsT0pSOCtlbjVYejloWGN4SkI1cGh4Y1pROGpGb0cwNFZzaHZkMGUKTUVuVXJNY2ZGZ0laN
G5qTUtUUUNNNFpGVVBBaWV5THg0ZjUySHVEb3BwM2U1SnlJTWZXK0tGY05JcEt3Q3NhawpwU2
9LdElVT3NVSks3cUJWWnhjckl5ZVFWMnFjWU9lWmh0UzV3QnFJd09BaEZ3bENFVDdaZTU4UUhtUz
Q4c2xqCjVlVGtSaml2QWxFeHJGektjbGpDNGF4S1Fsbk92VkF6eitHbTMyVTB4UEJGNEJ5ZVBWeEN
KVUh3MVRzeVRtZWwKU3hORXA3eUhvWGN3bitmWG5hK3Q1SldoMWd4VVp0eTMKLS0tLS1FTkQ
gQ0VSVElGSUNBVEUtLS0tLQo=
 mode: 0644
 overwrite: true
 path: /etc/pki/ca-trust/source/anchors/examplecorp-ca.crt

OpenShift Container Platform 4.9 Security and compliance

68

Other services can request that the CA bundle for the service CA be injected into API service or config
map resources by annotating with service.beta.openshift.io/inject-cabundle: true to support
validating certificates generated from the service CA. In response, the Operator writes its current CA
bundle to the CABundle field of an API service or as service-ca.crt to a config map.

As of OpenShift Container Platform 4.3.5, automated rotation is supported and is backported to some
4.2.z and 4.3.z releases. For any release supporting automated rotation, the service CA is valid for 26
months and is automatically refreshed when there is less than 13 months validity left. If necessary, you
can manually refresh the service CA.

The service CA expiration of 26 months is longer than the expected upgrade interval for a supported
OpenShift Container Platform cluster, such that non-control plane consumers of service CA certificates
will be refreshed after CA rotation and prior to the expiration of the pre-rotation CA.

WARNING

A manually-rotated service CA does not maintain trust with the previous service CA.
You might experience a temporary service disruption until the pods in the cluster
are restarted, which ensures that pods are using service serving certificates issued
by the new service CA.

4.3.3. Management

These certificates are managed by the system and not the user.

4.3.4. Services

Services that use service CA certificates include:

cluster-autoscaler-operator

cluster-monitoring-operator

cluster-authentication-operator

cluster-image-registry-operator

cluster-ingress-operator

cluster-kube-apiserver-operator

cluster-kube-controller-manager-operator

cluster-kube-scheduler-operator

cluster-networking-operator

cluster-openshift-apiserver-operator

cluster-openshift-controller-manager-operator

cluster-samples-operator



CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS

69

machine-config-operator

console-operator

insights-operator

machine-api-operator

operator-lifecycle-manager

This is not a comprehensive list.

Additional resources

Manually rotate service serving certificates

Securing service traffic using service serving certificate secrets

4.4. NODE CERTIFICATES

4.4.1. Purpose

Node certificates are signed by the cluster; they come from a certificate authority (CA) that is
generated by the bootstrap process. After the cluster is installed, the node certificates are auto-rotated.

4.4.2. Management

These certificates are managed by the system and not the user.

Additional resources

Working with nodes

4.5. BOOTSTRAP CERTIFICATES

4.5.1. Purpose

The kubelet, in OpenShift Container Platform 4 and later, uses the bootstrap certificate located in
/etc/kubernetes/kubeconfig to initially bootstrap. This is followed by the bootstrap initialization process
and authorization of the kubelet to create a CSR .

In that process, the kubelet generates a CSR while communicating over the bootstrap channel. The
controller manager signs the CSR, resulting in a certificate that the kubelet manages.

4.5.2. Management

These certificates are managed by the system and not the user.

4.5.3. Expiration

This bootstrap CA is valid for 10 years.

The kubelet-managed certificate is valid for one year and rotates automatically at around the 80
percent mark of that one year.

OpenShift Container Platform 4.9 Security and compliance

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-nodes-working
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-tls-bootstrapping/#bootstrap-initialization
https://kubernetes.io/docs/reference/access-authn-authz/kubelet-tls-bootstrapping/#authorize-kubelet-to-create-csr

4.5.4. Customization

You cannot customize the bootstrap certificates.

4.6. ETCD CERTIFICATES

4.6.1. Purpose

etcd certificates are signed by the etcd-signer; they come from a certificate authority (CA) that is
generated by the bootstrap process.

4.6.2. Expiration

The CA certificates are valid for 10 years. The peer, client, and server certificates are valid for three
years.

4.6.3. Management

These certificates are only managed by the system and are automatically rotated.

4.6.4. Services

etcd certificates are used for encrypted communication between etcd member peers, as well as
encrypted client traffic. The following certificates are generated and used by etcd and other processes
that communicate with etcd:

Peer certificates: Used for communication between etcd members.

Client certificates: Used for encrypted server-client communication. Client certificates are
currently used by the API server only, and no other service should connect to etcd directly
except for the proxy. Client secrets (etcd-client, etcd-metric-client, etcd-metric-signer, and
etcd-signer) are added to the openshift-config, openshift-monitoring, and openshift-kube-
apiserver namespaces.

Server certificates: Used by the etcd server for authenticating client requests.

Metric certificates: All metric consumers connect to proxy with metric-client certificates.

Additional resources

Restoring to a previous cluster state

4.7. OLM CERTIFICATES

4.7.1. Management

All certificates for OpenShift Lifecycle Manager (OLM) components (olm-operator, catalog-operator,
packageserver, and marketplace-operator) are managed by the system.

When installing Operators that include webhooks or API services in their ClusterServiceVersion (CSV)
object, OLM creates and rotates the certificates for these resources. Certificates for resources in the
openshift-operator-lifecycle-manager namespace are managed by OLM.

OLM will not update the certificates of Operators that it manages in proxy environments. These

CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS

71

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/backup_and_restore/#dr-restoring-cluster-state

OLM will not update the certificates of Operators that it manages in proxy environments. These
certificates must be managed by the user using the subscription config.

4.8. AGGREGATED API CLIENT CERTIFICATES

4.8.1. Purpose

Aggregated API client certificates are used to authenticate the KubeAPIServer when connecting to the
Aggregated API Servers.

4.8.2. Management

These certificates are managed by the system and not the user.

4.8.3. Expiration

This CA is valid for 30 days.

The managed client certificates are valid for 30 days.

CA and client certificates are rotated automatically through the use of controllers.

4.8.4. Customization

You cannot customize the aggregated API server certificates.

4.9. MACHINE CONFIG OPERATOR CERTIFICATES

4.9.1. Purpose

Machine Config Operator certificates are used to secure connections between the Red Hat Enterprise
Linux CoreOS (RHCOS) nodes and the Machine Config Server.

IMPORTANT

Currently, there is no supported way to block or restrict the machine config server
endpoint. The machine config server must be exposed to the network so that newly-
provisioned machines, which have no existing configuration or state, are able to fetch
their configuration. In this model, the root of trust is the certificate signing requests
(CSR) endpoint, which is where the kubelet sends its certificate signing request for
approval to join the cluster. Because of this, machine configs should not be used to
distribute sensitive information, such as secrets and certificates.

To ensure that the machine config server endpoints, ports 22623 and 22624, are secured
in bare metal scenarios, customers must configure proper network policies.

Additional resources

About the OpenShift SDN network plugin .

4.9.2. Management

OpenShift Container Platform 4.9 Security and compliance

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#about-openshift-sdn

These certificates are managed by the system and not the user.

4.9.3. Expiration

This CA is valid for 10 years.

The issued serving certificates are valid for 10 years.

4.9.4. Customization

You cannot customize the Machine Config Operator certificates.

4.10. USER-PROVIDED CERTIFICATES FOR DEFAULT INGRESS

4.10.1. Purpose

Applications are usually exposed at <route_name>.apps.<cluster_name>.<base_domain>. The
<cluster_name> and <base_domain> come from the installation config file. <route_name> is the host
field of the route, if specified, or the route name. For example, hello-openshift-
default.apps.username.devcluster.openshift.com. hello-openshift is the name of the route and the
route is in the default namespace. You might want clients to access the applications without the need to
distribute the cluster-managed CA certificates to the clients. The administrator must set a custom
default certificate when serving application content.

WARNING

The Ingress Operator generates a default certificate for an Ingress Controller to
serve as a placeholder until you configure a custom default certificate. Do not use
operator-generated default certificates in production clusters.

4.10.2. Location

The user-provided certificates must be provided in a tls type Secret resource in the openshift-ingress
namespace. Update the IngressController CR in the openshift-ingress-operator namespace to
enable the use of the user-provided certificate. For more information on this process, see Setting a
custom default certificate.

4.10.3. Management

User-provided certificates are managed by the user.

4.10.4. Expiration

User-provided certificates are managed by the user.

4.10.5. Services

Applications deployed on the cluster use user-provided certificates for default ingress.



CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-ingress-setting-a-custom-default-certificate_configuring-ingress

4.10.6. Customization

Update the secret containing the user-managed certificate as needed.

Additional resources

Replacing the default ingress certificate

4.11. INGRESS CERTIFICATES

4.11.1. Purpose

The Ingress Operator uses certificates for:

Securing access to metrics for Prometheus.

Securing access to routes.

4.11.2. Location

To secure access to Ingress Operator and Ingress Controller metrics, the Ingress Operator uses service
serving certificates. The Operator requests a certificate from the service-ca controller for its own
metrics, and the service-ca controller puts the certificate in a secret named metrics-tls in the
openshift-ingress-operator namespace. Additionally, the Ingress Operator requests a certificate for
each Ingress Controller, and the service-ca controller puts the certificate in a secret named router-
metrics-certs-<name>, where <name> is the name of the Ingress Controller, in the openshift-ingress
namespace.

Each Ingress Controller has a default certificate that it uses for secured routes that do not specify their
own certificates. Unless you specify a custom certificate, the Operator uses a self-signed certificate by
default. The Operator uses its own self-signed signing certificate to sign any default certificate that it
generates. The Operator generates this signing certificate and puts it in a secret named router-ca in the
openshift-ingress-operator namespace. When the Operator generates a default certificate, it puts the
default certificate in a secret named router-certs-<name> (where <name> is the name of the Ingress
Controller) in the openshift-ingress namespace.

WARNING

The Ingress Operator generates a default certificate for an Ingress Controller to
serve as a placeholder until you configure a custom default certificate. Do not use
Operator-generated default certificates in production clusters.

4.11.3. Workflow

Figure 4.1. Custom certificate workflow



OpenShift Container Platform 4.9 Security and compliance

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#replacing-default-ingress

Figure 4.1. Custom certificate workflow

namespace/openshift-
ingress

namespace/openshift-
ingress-operator

deployments/router-
default

3

ingresscontrollers/
default

Reference Contents are copied

0

Figure 4.2. Default certificate workflow

namespace/openshift-
ingress

namespace/openshift-
ingress-operator

deployments/router-
default

3

ingresscontrollers/
default

Reference Contents are copied

0

 An empty defaultCertificate field causes the Ingress Operator to use its self-signed CA to
generate a serving certificate for the specified domain.

 The default CA certificate and key generated by the Ingress Operator. Used to sign Operator-
generated default serving certificates.

 In the default workflow, the wildcard default serving certificate, created by the Ingress Operator
and signed using the generated default CA certificate. In the custom workflow, this is the user-provided
certificate.

 The router deployment. Uses the certificate in secrets/router-certs-default as its default front-
end server certificate.

 In the default workflow, the contents of the wildcard default serving certificate (public and private
parts) are copied here to enable OAuth integration. In the custom workflow, this is the user-provided
certificate.

 The public (certificate) part of the default serving certificate. Replaces the configmaps/router-ca
resource.

 The user updates the cluster proxy configuration with the CA certificate that signed the
ingresscontroller serving certificate. This enables components like auth, console, and the registry to
trust the serving certificate.

CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS

75

 The cluster-wide trusted CA bundle containing the combined Red Hat Enterprise Linux CoreOS
(RHCOS) and user-provided CA bundles or an RHCOS-only bundle if a user bundle is not provided.

 The custom CA certificate bundle, which instructs other components (for example, auth and
console) to trust an ingresscontroller configured with a custom certificate.

 The trustedCA field is used to reference the user-provided CA bundle.

 The Cluster Network Operator injects the trusted CA bundle into the proxy-ca config map.

 OpenShift Container Platform 4.9 and newer use default-ingress-cert.

4.11.4. Expiration

The expiration terms for the Ingress Operator’s certificates are as follows:

The expiration date for metrics certificates that the service-ca controller creates is two years
after the date of creation.

The expiration date for the Operator’s signing certificate is two years after the date of creation.

The expiration date for default certificates that the Operator generates is two years after the
date of creation.

You cannot specify custom expiration terms on certificates that the Ingress Operator or service-ca
controller creates.

You cannot specify expiration terms when installing OpenShift Container Platform for certificates that
the Ingress Operator or service-ca controller creates.

4.11.5. Services

Prometheus uses the certificates that secure metrics.

The Ingress Operator uses its signing certificate to sign default certificates that it generates for Ingress
Controllers for which you do not set custom default certificates.

Cluster components that use secured routes may use the default Ingress Controller’s default
certificate.

Ingress to the cluster via a secured route uses the default certificate of the Ingress Controller by which
the route is accessed unless the route specifies its own certificate.

4.11.6. Management

Ingress certificates are managed by the user. See Replacing the default ingress certificate for more
information.

4.11.7. Renewal

The service-ca controller automatically rotates the certificates that it issues. However, it is possible to
use oc delete secret <secret> to manually rotate service serving certificates.

OpenShift Container Platform 4.9 Security and compliance

76

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#replacing-default-ingress

The Ingress Operator does not rotate its own signing certificate or the default certificates that it
generates. Operator-generated default certificates are intended as placeholders for custom default
certificates that you configure.

4.12. MONITORING AND OPENSHIFT LOGGING OPERATOR
COMPONENT CERTIFICATES

4.12.1. Expiration

Monitoring components secure their traffic with service CA certificates. These certificates are valid for 2
years and are replaced automatically on rotation of the service CA, which is every 13 months.

If the certificate lives in the openshift-monitoring or openshift-logging namespace, it is system
managed and rotated automatically.

4.12.2. Management

These certificates are managed by the system and not the user.

4.13. CONTROL PLANE CERTIFICATES

4.13.1. Location

Control plane certificates are included in these namespaces:

openshift-config-managed

openshift-kube-apiserver

openshift-kube-apiserver-operator

openshift-kube-controller-manager

openshift-kube-controller-manager-operator

openshift-kube-scheduler

4.13.2. Management

Control plane certificates are managed by the system and rotated automatically.

In the rare case that your control plane certificates have expired, see Recovering from expired control
plane certificates.

CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS

77

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/backup_and_restore/#dr-recovering-expired-certs

CHAPTER 5. COMPLIANCE OPERATOR

5.1. COMPLIANCE OPERATOR RELEASE NOTES

The Compliance Operator lets OpenShift Container Platform administrators describe the required
compliance state of a cluster and provides them with an overview of gaps and ways to remediate them.

These release notes track the development of the Compliance Operator in the OpenShift Container
Platform.

For an overview of the Compliance Operator, see Understanding the Compliance Operator .

To access the latest release, see Updating the Compliance Operator.

5.1.1. OpenShift Compliance Operator 1.0.0

The following advisory is available for the OpenShift Compliance Operator 1.0.0:

RHBA-2023:1682 - OpenShift Compliance Operator bug fix update

5.1.1.1. New features and enhancements

The Compliance Operator is now stable and the release channel is upgraded to stable. Future
releases will follow Semantic Versioning. To access the latest release, see Updating the
Compliance Operator.

5.1.1.2. Bug fixes

Before this update, the compliance_operator_compliance_scan_error_total metric had an
ERROR label with a different value for each error message. With this update, the
compliance_operator_compliance_scan_error_total metric does not increase in values.
(OCPBUGS-1803)

Before this update, the ocp4-api-server-audit-log-maxsize rule would result in a FAIL state.
With this update, the error message has been removed from the metric, decreasing the
cardinality of the metric in line with best practices. (OCPBUGS-7520)

Before this update, the rhcos4-enable-fips-mode rule description was misleading that FIPS
could be enabled after installation. With this update, the rhcos4-enable-fips-mode rule
description clarifies that FIPS must be enabled at install time. (OCPBUGS-8358)

5.1.2. OpenShift Compliance Operator 0.1.61

The following advisory is available for the OpenShift Compliance Operator 0.1.61:

RHBA-2023:0557 - OpenShift Compliance Operator bug fix update

5.1.2.1. New features and enhancements

The Compliance Operator now supports timeout configuration for Scanner Pods. The timeout is
specified in the ScanSetting object. If the scan is not completed within the timeout, the scan
retries until the maximum number of retries is reached. See Configuring ScanSetting timeout
for more information.

OpenShift Container Platform 4.9 Security and compliance

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#understanding-compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#olm-preparing-upgrade_compliance-operator-updating
https://access.redhat.com/errata/RHBA-2023:1682
https://semver.org/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#olm-preparing-upgrade_compliance-operator-updating
https://issues.redhat.com/browse/OCPBUGS-1803
https://issues.redhat.com/browse/OCPBUGS-7520
https://issues.redhat.com/browse/OCPBUGS-8358
https://access.redhat.com/errata/RHBA-2023:0557
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#compliance-timeout_compliance-troubleshooting

5.1.2.2. Bug fixes

Before this update, Compliance Operator remediations required variables as inputs.
Remediations without variables set were applied cluster-wide and resulted in stuck nodes, even
though it appeared the remediation applied correctly. With this update, the Compliance
Operator validates if a variable needs to be supplied using a TailoredProfile for a remediation.
(OCPBUGS-3864)

Before this update, the instructions for ocp4-kubelet-configure-tls-cipher-suites were
incomplete, requiring users to refine the query manually. With this update, the query provided in
ocp4-kubelet-configure-tls-cipher-suites returns the actual results to perform the audit steps.
(OCPBUGS-3017)

Before this update,ScanSettingBinding objects created without a settingRef variable did not
use an appropriate default value. With this update, the ScanSettingBinding objects without a
settingRef variable use the default value. (OCPBUGS-3420)

Before this update, system reserved parameters were not generated in kubelet configuration
files, causing the Compliance Operator to fail to unpause the machine config pool. With this
update, the Compliance Operator omits system reserved parameters during machine
configuration pool evaluation. (OCPBUGS-4445)

Before this update, ComplianceCheckResult objects did not have correct descriptions. With
this update, the Compliance Operator sources the ComplianceCheckResult information from
the rule description. (OCPBUGS-4615)

Before this update, the Compliance Operator did not check for empty kubelet configuration
files when parsing machine configurations. As a result, the Compliance Operator would panic
and crash. With this update, the Compliance Operator implements improved checking of the
kubelet configuration data structure and only continues if it is fully rendered. (OCPBUGS-4621)

Before this update, the Compliance Operator generated remediations for kubelet evictions
based on machine config pool name and a grace period, resulting in multiple remediations for a
single eviction rule. With this update, the Compliance Operator applies all remediations for a
single rule. (OCPBUGS-4338)

Before this update, re-running scans on remediations that previously Applied might have been
marked as Outdated after rescans were performed, despite no changes in the remediation
content. The comparison of scans did not account for remediation metadata correctly. With this
update, remediations retain the previously generated Applied status. (OCPBUGS-6710)

Before this update, a regression occurred when attempting to create a ScanSettingBinding
that was using a TailoredProfile with a non-default MachineConfigPool marked the
ScanSettingBinding as Failed. With this update, functionality is restored and custom
ScanSettingBinding using a TailoredProfile performs correctly. (OCPBUGS-6827)

Before this update, some kubelet configuration parameters did not have default values. With
this update, the following parameters contain default values (OCPBUGS-6708):

ocp4-cis-kubelet-enable-streaming-connections

ocp4-cis-kubelet-eviction-thresholds-set-hard-imagefs-available

ocp4-cis-kubelet-eviction-thresholds-set-hard-imagefs-inodesfree

ocp4-cis-kubelet-eviction-thresholds-set-hard-memory-available

CHAPTER 5. COMPLIANCE OPERATOR

79

https://issues.redhat.com/browse/OCPBUGS-3864
https://issues.redhat.com/browse/OCPBUGS-3017
https://issues.redhat.com/browse/OCPBUGS-3420
https://issues.redhat.com/browse/OCPBUGS-4445
https://issues.redhat.com/browse/OCPBUGS-4615
https://issues.redhat.com/browse/OCPBUGS-4621
https://issues.redhat.com/browse/OCPBUGS-4338
https://issues.redhat.com/browse/OCPBUGS-6710
https://issues.redhat.com/browse/OCPBUGS-6827
https://issues.redhat.com/browse/OCPBUGS-6708

ocp4-cis-kubelet-eviction-thresholds-set-hard-nodefs-available

Before this update, the selinux_confinement_of_daemons rule failed running on the kubelet
because of the permissions necessary for the kubelet to run. With this update, the
selinux_confinement_of_daemons rule is disabled. (OCPBUGS-6968)

5.1.3. OpenShift Compliance Operator 0.1.59

The following advisory is available for the OpenShift Compliance Operator 0.1.59:

RHBA-2022:8538 - OpenShift Compliance Operator bug fix update

5.1.3.1. New features and enhancements

The Compliance Operator now supports Payment Card Industry Data Security Standard (PCI-
DSS) ocp4-pci-dss and ocp4-pci-dss-node profiles on the ppc64le architecture.

5.1.3.2. Bug fixes

Previously, the Compliance Operator did not support the Payment Card Industry Data Security
Standard (PCI DSS) ocp4-pci-dss and ocp4-pci-dss-node profiles on different architectures
such as ppc64le. Now, the Compliance Operator supports ocp4-pci-dss and ocp4-pci-dss-
node profiles on the ppc64le architecture. (OCPBUGS-3252)

Previously, after the recent update to version 0.1.57, the rerunner service account (SA) was no
longer owned by the cluster service version (CSV), which caused the SA to be removed during
the Operator upgrade. Now, the CSV owns the rerunner SA in 0.1.59, and upgrades from any
previous version will not result in a missing SA. (OCPBUGS-3452)

In 0.1.57, the Operator started the controller metrics endpoint listening on port 8080. This
resulted in TargetDown alerts since cluster monitoring expected port is 8383. With 0.1.59, the
Operator starts the endpoint listening on port 8383 as expected. (OCPBUGS-3097)

5.1.4. OpenShift Compliance Operator 0.1.57

The following advisory is available for the OpenShift Compliance Operator 0.1.57:

RHBA-2022:6657 - OpenShift Compliance Operator bug fix update

5.1.4.1. New features and enhancements

KubeletConfig checks changed from Node to Platform type. KubeletConfig checks the
default configuration of the KubeletConfig. The configuration files are aggregated from all
nodes into a single location per node pool. See Evaluating KubeletConfig rules against default
configuration values.

The ScanSetting Custom Resource now allows users to override the default CPU and memory
limits of scanner pods through the scanLimits attribute. For more information, see Increasing
Compliance Operator resource limits.

A PriorityClass object can now be set through ScanSetting. This ensures the Compliance
Operator is prioritized and minimizes the chance that the cluster falls out of compliance. For
more information, see Setting PriorityClass for ScanSetting scans.

5.1.4.2. Bug fixes

OpenShift Container Platform 4.9 Security and compliance

80

https://issues.redhat.com/browse/OCPBUGS-6968
https://access.redhat.com/errata/RHBA-2022:8538
https://issues.redhat.com/browse/OCPBUGS-3252
https://issues.redhat.com/browse/OCPBUGS-3452
https://issues.redhat.com/browse/OCPBUGS-3097
https://access.redhat.com/errata/RHBA-2022:6657
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#compliance-evaluate-kubeletconfig-rules_compliance-remediation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#compliance-increasing-operator-limits_compliance-troubleshooting
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#compliance-priorityclass_compliance-advanced

Previously, the Compliance Operator hard-coded notifications to the default openshift-
compliance namespace. If the Operator were installed in a non-default namespace, the
notifications would not work as expected. Now, notifications work in non-default openshift-
compliance namespaces. (BZ#2060726)

Previously, the Compliance Operator was unable to evaluate default configurations used by
kubelet objects, resulting in inaccurate results and false positives. This new feature evaluates
the kubelet configuration and now reports accurately. (BZ#2075041)

Previously, the Compliance Operator reported the ocp4-kubelet-configure-event-creation
rule in a FAIL state after applying an automatic remediation because the eventRecordQPS
value was set higher than the default value. Now, the ocp4-kubelet-configure-event-creation
rule remediation sets the default value, and the rule applies correctly. (BZ#2082416)

The ocp4-configure-network-policies rule requires manual intervention to perform effectively.
New descriptive instructions and rule updates increase applicability of the ocp4-configure-
network-policies rule for clusters using Calico CNIs. (BZ#2091794)

Previously, the Compliance Operator would not clean up pods used to scan infrastructure when
using the debug=true option in the scan settings. This caused pods to be left on the cluster
even after deleting the ScanSettingBinding. Now, pods are always deleted when a
ScanSettingBinding is deleted.(BZ#2092913)

Previously, the Compliance Operator used an older version of the operator-sdk command that
caused alerts about deprecated functionality. Now, an updated version of the operator-sdk
command is included and there are no more alerts for deprecated functionality. (BZ#2098581)

Previously, the Compliance Operator would fail to apply remediations if it could not determine
the relationship between kubelet and machine configurations. Now, the Compliance Operator
has improved handling of the machine configurations and is able to determine if a kubelet
configuration is a subset of a machine configuration. (BZ#2102511)

Previously, the rule for ocp4-cis-node-master-kubelet-enable-cert-rotation did not properly
describe success criteria. As a result, the requirements for RotateKubeletClientCertificate
were unclear. Now, the rule for ocp4-cis-node-master-kubelet-enable-cert-rotation reports
accurately regardless of the configuration present in the kubelet configuration file.
(BZ#2105153)

Previously, the rule for checking idle streaming timeouts did not consider default values,
resulting in inaccurate rule reporting. Now, more robust checks ensure increased accuracy in
results based on default configuration values. (BZ#2105878)

Previously, the Compliance Operator would fail to fetch API resources when parsing machine
configurations without Ignition specifications, which caused the api-check-pods processes to
crash loop. Now, the Compliance Operator handles Machine Config Pools that do not have
Ignition specifications correctly. (BZ#2117268)

Previously, rules evaluating the modprobe configuration would fail even after applying
remediations due to a mismatch in values for the modprobe configuration. Now, the same
values are used for the modprobe configuration in checks and remediations, ensuring
consistent results. (BZ#2117747)

5.1.4.3. Deprecations

Specifying Install into all namespaces in the cluster or setting the WATCH_NAMESPACES
environment variable to "" no longer affects all namespaces. Any API resources installed in
namespaces not specified at the time of Compliance Operator installation is no longer be

CHAPTER 5. COMPLIANCE OPERATOR

81

https://bugzilla.redhat.com/show_bug.cgi?id=2060726
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#compliance-evaluate-kubeletconfig-rules_compliance-remediation
https://bugzilla.redhat.com/show_bug.cgi?id=2075041
https://bugzilla.redhat.com/show_bug.cgi?id=2082416
https://bugzilla.redhat.com/show_bug.cgi?id=2091794
https://bugzilla.redhat.com/show_bug.cgi?id=2092913
https://bugzilla.redhat.com/show_bug.cgi?id=2098581
https://bugzilla.redhat.com/show_bug.cgi?id=2102511
https://bugzilla.redhat.com/show_bug.cgi?id=2105153
https://bugzilla.redhat.com/show_bug.cgi?id=2105878
https://bugzilla.redhat.com/show_bug.cgi?id=2117268
https://bugzilla.redhat.com/show_bug.cgi?id=2117747

operational. API resources might require creation in the selected namespace, or the openshift-
compliance namespace by default. This change improves the Compliance Operator’s memory
usage.

5.1.5. OpenShift Compliance Operator 0.1.53

The following advisory is available for the OpenShift Compliance Operator 0.1.53:

RHBA-2022:5537 - OpenShift Compliance Operator bug fix update

5.1.5.1. Bug fixes

Previously, the ocp4-kubelet-enable-streaming-connections rule contained an incorrect
variable comparison, resulting in false positive scan results. Now, the Compliance Operator
provides accurate scan results when setting streamingConnectionIdleTimeout.
(BZ#2069891)

Previously, group ownership for /etc/openvswitch/conf.db was incorrect on IBM Z
architectures, resulting in ocp4-cis-node-worker-file-groupowner-ovs-conf-db check failures.
Now, the check is marked NOT-APPLICABLE on IBM Z architecture systems. (BZ#2072597)

Previously, the ocp4-cis-scc-limit-container-allowed-capabilities rule reported in a FAIL state
due to incomplete data regarding the security context constraints (SCC) rules in the
deployment. Now, the result is MANUAL, which is consistent with other checks that require
human intervention. (BZ#2077916)

Previously, the following rules failed to account for additional configuration paths for API
servers and TLS certificates and keys, resulting in reported failures even if the certificates and
keys were set properly:

ocp4-cis-api-server-kubelet-client-cert

ocp4-cis-api-server-kubelet-client-key

ocp4-cis-kubelet-configure-tls-cert

ocp4-cis-kubelet-configure-tls-key

Now, the rules report accurately and observe legacy file paths specified in the kubelet
configuration file. (BZ#2079813)

Previously, the content_rule_oauth_or_oauthclient_inactivity_timeout rule did not account
for a configurable timeout set by the deployment when assessing compliance for timeouts. This
resulted in the rule failing even if the timeout was valid. Now, the Compliance Operator uses the
var_oauth_inactivity_timeout variable to set valid timeout length. (BZ#2081952)

Previously, the Compliance Operator used administrative permissions on namespaces not
labeled appropriately for privileged use, resulting in warning messages regarding pod security-
level violations. Now, the Compliance Operator has appropriate namespace labels and
permission adjustments to access results without violating permissions. (BZ#2088202)

Previously, applying auto remediations for rhcos4-high-master-sysctl-kernel-yama-ptrace-
scope and rhcos4-sysctl-kernel-core-pattern resulted in subsequent failures of those rules in
scan results, even though they were remediated. Now, the rules report PASS accurately, even
after remediations are applied.(BZ#2094382)

Previously, the Compliance Operator would fail in a CrashLoopBackoff state because of out-

OpenShift Container Platform 4.9 Security and compliance

82

https://access.redhat.com/errata/RHBA-2022:5537
https://bugzilla.redhat.com/show_bug.cgi?id=2069891
https://bugzilla.redhat.com/show_bug.cgi?id=2072597
https://bugzilla.redhat.com/show_bug.cgi?id=2077916
https://bugzilla.redhat.com/show_bug.cgi?id=2079813
https://bugzilla.redhat.com/show_bug.cgi?id=2081952
https://bugzilla.redhat.com/show_bug.cgi?id=2088202
https://bugzilla.redhat.com/show_bug.cgi?id=2094382

Previously, the Compliance Operator would fail in a CrashLoopBackoff state because of out-
of-memory exceptions. Now, the Compliance Operator is improved to handle large machine
configuration data sets in memory and function correctly. (BZ#2094854)

5.1.5.2. Known issue

When "debug":true is set within the ScanSettingBinding object, the pods generated by the
ScanSettingBinding object are not removed when that binding is deleted. As a workaround, run
the following command to delete the remaining pods:

(BZ#2092913)

5.1.6. OpenShift Compliance Operator 0.1.52

The following advisory is available for the OpenShift Compliance Operator 0.1.52:

RHBA-2022:4657 - OpenShift Compliance Operator bug fix update

5.1.6.1. New features and enhancements

The FedRAMP high SCAP profile is now available for use in OpenShift Container Platform
environments. For more information, See Supported compliance profiles .

5.1.6.2. Bug fixes

Previously, the OpenScap container would crash due to a mount permission issue in a security
environment where DAC_OVERRIDE capability is dropped. Now, executable mount permissions
are applied to all users. (BZ#2082151)

Previously, the compliance rule ocp4-configure-network-policies could be configured as
MANUAL. Now, compliance rule ocp4-configure-network-policies is set to AUTOMATIC.
(BZ#2072431)

Previously, the Cluster Autoscaler would fail to scale down because the Compliance Operator
scan pods were never removed after a scan. Now, the pods are removed from each node by
default unless explicitly saved for debugging purposes. (BZ#2075029)

Previously, applying the Compliance Operator to the KubeletConfig would result in the node
going into a NotReady state due to unpausing the Machine Config Pools too early. Now, the
Machine Config Pools are unpaused appropriately and the node operates correctly.
(BZ#2071854)

Previously, the Machine Config Operator used base64 instead of url-encoded code in the
latest release, causing Compliance Operator remediation to fail. Now, the Compliance Operator
checks encoding to handle both base64 and url-encoded Machine Config code and the
remediation applies correctly. (BZ#2082431)

5.1.6.3. Known issue

When "debug":true is set within the ScanSettingBinding object, the pods generated by the
ScanSettingBinding object are not removed when that binding is deleted. As a workaround, run
the following command to delete the remaining pods:

$ oc delete pods -l compliance.openshift.io/scan-name=ocp4-cis

CHAPTER 5. COMPLIANCE OPERATOR

83

https://bugzilla.redhat.com/show_bug.cgi?id=2094854
https://bugzilla.redhat.com/show_bug.cgi?id=2092913
https://access.redhat.com/errata/RHBA-2022:4657
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/compliance_operator/#compliance-operator-supported-profiles
https://bugzilla.redhat.com/show_bug.cgi?id=2082151
https://bugzilla.redhat.com/show_bug.cgi?id=2072431
https://bugzilla.redhat.com/show_bug.cgi?id=2075029
https://bugzilla.redhat.com/show_bug.cgi?id=2071854
https://bugzilla.redhat.com/show_bug.cgi?id=2082431

(BZ#2092913)

5.1.7. OpenShift Compliance Operator 0.1.49

The following advisory is available for the OpenShift Compliance Operator 0.1.49:

RHBA-2022:1148 - OpenShift Compliance Operator bug fix and enhancement update

5.1.7.1. Bug fixes

Previously, the openshift-compliance content did not include platform-specific checks for
network types. As a result, OVN- and SDN-specific checks would show as failed instead of not-
applicable based on the network configuration. Now, new rules contain platform checks for
networking rules, resulting in a more accurate assessment of network-specific checks.
(BZ#1994609)

Previously, the ocp4-moderate-routes-protected-by-tls rule incorrectly checked TLS settings
that results in the rule failing the check, even if the connection secure SSL/TLS protocol. Now,
the check properly evaluates TLS settings that are consistent with the networking guidance and
profile recommendations. (BZ#2002695)

Previously, ocp-cis-configure-network-policies-namespace used pagination when requesting
namespaces. This caused the rule to fail because the deployments truncated lists of more than
500 namespaces. Now, the entire namespace list is requested, and the rule for checking
configured network policies works for deployments with more than 500 namespaces.
(BZ#2038909)

Previously, remediations using the sshd jinja macros were hard-coded to specific sshd
configurations. As a result, the configurations were inconsistent with the content the rules were
checking for and the check would fail. Now, the sshd configuration is parameterized and the
rules apply successfully. (BZ#2049141)

Previously, the ocp4-cluster-version-operator-verify-integrity always checked the first entry
in the Cluter Version Operator (CVO) history. As a result, the upgrade would fail in situations
where subsequent versions of {product-name} would be verified. Now, the compliance check
result for ocp4-cluster-version-operator-verify-integrity is able to detect verified versions and
is accurate with the CVO history. (BZ#2053602)

Previously, the ocp4-api-server-no-adm-ctrl-plugins-disabled rule did not check for a list of
empty admission controller plugins. As a result, the rule would always fail, even if all admission
plugins were enabled. Now, more robust checking of the ocp4-api-server-no-adm-ctrl-plugins-
disabled rule accurately passes with all admission controller plugins enabled. (BZ#2058631)

Previously, scans did not contain platform checks for running against Linux worker nodes. As a
result, running scans against worker nodes that were not Linux-based resulted in a never ending
scan loop. Now, the scan schedules appropriately based on platform type and labels complete
successfully. (BZ#2056911)

5.1.8. OpenShift Compliance Operator 0.1.48

The following advisory is available for the OpenShift Compliance Operator 0.1.48:

RHBA-2022:0416 - OpenShift Compliance Operator bug fix and enhancement update

$ oc delete pods -l compliance.openshift.io/scan-name=ocp4-cis

OpenShift Container Platform 4.9 Security and compliance

84

https://bugzilla.redhat.com/show_bug.cgi?id=2092913
https://access.redhat.com/errata/RHBA-2022:1148
https://bugzilla.redhat.com/show_bug.cgi?id=1994609
https://bugzilla.redhat.com/show_bug.cgi?id=2002695
https://bugzilla.redhat.com/show_bug.cgi?id=2038909
https://bugzilla.redhat.com/show_bug.cgi?id=2049141
https://bugzilla.redhat.com/show_bug.cgi?id=2053602
https://bugzilla.redhat.com/show_bug.cgi?id=2058631
https://bugzilla.redhat.com/show_bug.cgi?id=2056911
https://access.redhat.com/errata/RHBA-2022:0416

5.1.8.1. Bug fixes

Previously, some rules associated with extended Open Vulnerability and Assessment Language
(OVAL) definitions had a checkType of None. This was because the Compliance Operator was
not processing extended OVAL definitions when parsing rules. With this update, content from
extended OVAL definitions is parsed so that these rules now have a checkType of either Node
or Platform. (BZ#2040282)

Previously, a manually created MachineConfig object for KubeletConfig prevented a
KubeletConfig object from being generated for remediation, leaving the remediation in the
Pending state. With this release, a KubeletConfig object is created by the remediation,
regardless if there is a manually created MachineConfig object for KubeletConfig. As a result,
KubeletConfig remediations now work as expected. (BZ#2040401)

5.1.9. OpenShift Compliance Operator 0.1.47

The following advisory is available for the OpenShift Compliance Operator 0.1.47:

RHBA-2022:0014 - OpenShift Compliance Operator bug fix and enhancement update

5.1.9.1. New features and enhancements

The Compliance Operator now supports the following compliance benchmarks for the Payment
Card Industry Data Security Standard (PCI DSS):

ocp4-pci-dss

ocp4-pci-dss-node

Additional rules and remediations for FedRAMP moderate impact level are added to the OCP4-
moderate, OCP4-moderate-node, and rhcos4-moderate profiles.

Remediations for KubeletConfig are now available in node-level profiles.

5.1.9.2. Bug fixes

Previously, if your cluster was running OpenShift Container Platform 4.6 or earlier, remediations
for USBGuard-related rules would fail for the moderate profile. This is because the
remediations created by the Compliance Operator were based on an older version of USBGuard
that did not support drop-in directories. Now, invalid remediations for USBGuard-related rules
are not created for clusters running OpenShift Container Platform 4.6. If your cluster is using
OpenShift Container Platform 4.6, you must manually create remediations for USBGuard-
related rules.
Additionally, remediations are created only for rules that satisfy minimum version requirements.
(BZ#1965511)

Previously, when rendering remediations, the compliance operator would check that the
remediation was well-formed by using a regular expression that was too strict. As a result, some
remediations, such as those that render sshd_config, would not pass the regular expression
check and therefore, were not created. The regular expression was found to be unnecessary
and removed. Remediations now render correctly. (BZ#2033009)

5.1.10. OpenShift Compliance Operator 0.1.44

The following advisory is available for the OpenShift Compliance Operator 0.1.44:

CHAPTER 5. COMPLIANCE OPERATOR

85

https://bugzilla.redhat.com/show_bug.cgi?id=2040282
https://bugzilla.redhat.com/show_bug.cgi?id=2040401
https://access.redhat.com/errata/RHBA-2022:0014
https://bugzilla.redhat.com/show_bug.cgi?id=1965511
https://bugzilla.redhat.com/show_bug.cgi?id=2033009

RHBA-2021:4530 - OpenShift Compliance Operator bug fix and enhancement update

5.1.10.1. New features and enhancements

In this release, the strictNodeScan option is now added to the ComplianceScan,
ComplianceSuite and ScanSetting CRs. This option defaults to true which matches the
previous behavior, where an error occurred if a scan was not able to be scheduled on a node.
Setting the option to false allows the Compliance Operator to be more permissive about
scheduling scans. Environments with ephemeral nodes can set the strictNodeScan value to
false, which allows a compliance scan to proceed, even if some of the nodes in the cluster are
not available for scheduling.

You can now customize the node that is used to schedule the result server workload by
configuring the nodeSelector and tolerations attributes of the ScanSetting object. These
attributes are used to place the ResultServer pod, the pod that is used to mount a PV storage
volume and store the raw Asset Reporting Format (ARF) results. Previously, the nodeSelector
and the tolerations parameters defaulted to selecting one of the control plane nodes and
tolerating the node-role.kubernetes.io/master taint. This did not work in environments where
control plane nodes are not permitted to mount PVs. This feature provides a way for you to
select the node and tolerate a different taint in those environments.

The Compliance Operator can now remediate KubeletConfig objects.

A comment containing an error message is now added to help content developers differentiate
between objects that do not exist in the cluster compared to objects that cannot be fetched.

Rule objects now contain two new attributes, checkType and description. These attributes
allow you to determine if the rule pertains to a node check or platform check, and also allow you
to review what the rule does.

This enhancement removes the requirement that you have to extend an existing profile to
create a tailored profile. This means the extends field in the TailoredProfile CRD is no longer
mandatory. You can now select a list of rule objects to create a tailored profile. Note that you
must select whether your profile applies to nodes or the platform by setting the
compliance.openshift.io/product-type: annotation or by setting the -node suffix for the
TailoredProfile CR.

In this release, the Compliance Operator is now able to schedule scans on all nodes irrespective
of their taints. Previously, the scan pods would only tolerated the node-
role.kubernetes.io/master taint, meaning that they would either ran on nodes with no taints or
only on nodes with the node-role.kubernetes.io/master taint. In deployments that use custom
taints for their nodes, this resulted in the scans not being scheduled on those nodes. Now, the
scan pods tolerate all node taints.

In this release, the Compliance Operator supports the following North American Electric
Reliability Corporation (NERC) security profiles:

ocp4-nerc-cip

ocp4-nerc-cip-node

rhcos4-nerc-cip

In this release, the Compliance Operator supports the NIST 800-53 Moderate-Impact Baseline
for the Red Hat OpenShift - Node level, ocp4-moderate-node, security profile.

OpenShift Container Platform 4.9 Security and compliance

86

https://access.redhat.com/errata/RHBA-2021:4530

5.1.10.2. Templating and variable use

In this release, the remediation template now allows multi-value variables.

With this update, the Compliance Operator can change remediations based on variables that
are set in the compliance profile. This is useful for remediations that include deployment-
specific values such as time outs, NTP server host names, or similar. Additionally, the
ComplianceCheckResult objects now use the label compliance.openshift.io/check-has-
value that lists the variables a check has used.

5.1.10.3. Bug fixes

Previously, while performing a scan, an unexpected termination occurred in one of the scanner
containers of the pods. In this release, the Compliance Operator uses the latest OpenSCAP
version 1.3.5 to avoid a crash.

Previously, using autoReplyRemediations to apply remediations triggered an update of the
cluster nodes. This was disruptive if some of the remediations did not include all of the required
input variables. Now, if a remediation is missing one or more required input variables, it is
assigned a state of NeedsReview. If one or more remediations are in a NeedsReview state, the
machine config pool remains paused, and the remediations are not applied until all of the
required variables are set. This helps minimize disruption to the nodes.

The RBAC Role and Role Binding used for Prometheus metrics are changed to 'ClusterRole' and
'ClusterRoleBinding' to ensure that monitoring works without customization.

Previously, if an error occurred while parsing a profile, rules or variables objects were removed
and deleted from the profile. Now, if an error occurs during parsing, the profileparser annotates
the object with a temporary annotation that prevents the object from being deleted until after
parsing completes. (BZ#1988259)

Previously, an error occurred if titles or descriptions were missing from a tailored profile.
Because the XCCDF standard requires titles and descriptions for tailored profiles, titles and
descriptions are now required to be set in TailoredProfile CRs.

Previously, when using tailored profiles, TailoredProfile variable values were allowed to be set
using only a specific selection set. This restriction is now removed, and TailoredProfile variables
can be set to any value.

5.1.11. Release Notes for Compliance Operator 0.1.39

The following advisory is available for the OpenShift Compliance Operator 0.1.39:

RHBA-2021:3214 - OpenShift Compliance Operator bug fix and enhancement update

5.1.11.1. New features and enhancements

Previously, the Compliance Operator was unable to parse Payment Card Industry Data Security
Standard (PCI DSS) references. Now, the Operator can parse compliance content that ships
with PCI DSS profiles.

Previously, the Compliance Operator was unable to execute rules for AU-5 control in the
moderate profile. Now, permission is added to the Operator so that it can read
Prometheusrules.monitoring.coreos.com objects and run the rules that cover AU-5 control in
the moderate profile.

CHAPTER 5. COMPLIANCE OPERATOR

87

https://bugzilla.redhat.com/show_bug.cgi?id=1988259
https://access.redhat.com/errata/RHBA-2021:3214

5.1.12. Additional resources

Understanding the Compliance Operator

5.2. SUPPORTED COMPLIANCE PROFILES

There are several profiles available as part of the Compliance Operator (CO) installation.

IMPORTANT

The Compliance Operator might report incorrect results on managed platforms, such as
OpenShift Dedicated, Red Hat OpenShift Service on AWS, and Azure Red Hat
OpenShift. For more information, see the Red Hat Knowledgebase Solution #6983418 .

5.2.1. Compliance profiles

The Compliance Operator provides the following compliance profiles:

Table 5.1. Supported compliance profiles

Profil
e

Profile title Comp
liance
Opera
tor
versio
n

Industry compliance benchmark Suppo
rted
archit
ectur
es

ocp4-
cis

CIS Red Hat OpenShift Container
Platform 4 Benchmark

0.1.39
+

CIS Benchmarks ™
footnote:cisbenchmark[To locate the
CIS RedHat OpenShift Container
Platform v4 Benchmark, go to CIS
Benchmarks and type Kubernetes
in the search box. Click on
Kubernetes and then Download
Latest CIS Benchmark, where you
can then register to download the
benchmark.]

x86_
64
ppc6
4le
s390
x

ocp4-
cis-
node

CIS Red Hat OpenShift Container
Platform 4 Benchmark

0.1.39
+

CIS Benchmarks ™
footnote:cisbenchmark[]

x86_
64
ppc6
4le
s390
x

ocp4-
e8

Australian Cyber Security Centre
(ACSC) Essential Eight

0.1.39
+

ACSC Hardening Linux Workstations
and Servers

x86_
64

ocp4-
moder
ate

NIST 800-53 Moderate-Impact
Baseline for Red Hat OpenShift -
Platform level

0.1.39
+

NIST SP-800-53 Release Search x86_
64

OpenShift Container Platform 4.9 Security and compliance

88

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#understanding-compliance-operator
https://access.redhat.com/solutions/6983418
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cyber.gov.au/acsc/view-all-content/publications/hardening-linux-workstations-and-servers
https://nvd.nist.gov/800-53/Rev4/impact/moderate

rhcos
4-e8

Australian Cyber Security Centre
(ACSC) Essential Eight

0.1.39
+

ACSC Hardening Linux Workstations
and Servers

x86_
64

rhcos
4-
moder
ate

NIST 800-53 Moderate-Impact
Baseline for Red Hat Enterprise Linux
CoreOS

0.1.39
+

NIST SP-800-53 Release Search x86_
64

ocp4-
moder
ate-
node

NIST 800-53 Moderate-Impact
Baseline for Red Hat OpenShift -
Node level

0.1.44
+

NIST SP-800-53 Release Search x86_
64

ocp4-
nerc-
cip

North American Electric Reliability
Corporation (NERC) Critical
Infrastructure Protection (CIP)
cybersecurity standards profile for
the Red Hat OpenShift Container
Platform - Platform level

0.1.44
+

NERC CIP Standards x86_
64

ocp4-
nerc-
cip-
node

North American Electric Reliability
Corporation (NERC) Critical
Infrastructure Protection (CIP)
cybersecurity standards profile for
the Red Hat OpenShift Container
Platform - Node level

0.1.44
+

NERC CIP Standards x86_
64

rhcos
4-
nerc-
cip

North American Electric Reliability
Corporation (NERC) Critical
Infrastructure Protection (CIP)
cybersecurity standards profile for
Red Hat Enterprise Linux CoreOS

0.1.44
+

NERC CIP Standards x86_
64

ocp4-
pci-
dss

PCI-DSS v3.2.1 Control Baseline for
Red Hat OpenShift Container
Platform 4

0.1.47
+

PCI Security Standards ® Council
Document Library

x86_
64
ppc6
4le

ocp4-
pci-
dss-
node

PCI-DSS v3.2.1 Control Baseline for
Red Hat OpenShift Container
Platform 4

0.1.47
+

PCI Security Standards ® Council
Document Library

x86_
64
ppc6
4le

Profil
e

Profile title Comp
liance
Opera
tor
versio
n

Industry compliance benchmark Suppo
rted
archit
ectur
es

CHAPTER 5. COMPLIANCE OPERATOR

89

https://www.cyber.gov.au/acsc/view-all-content/publications/hardening-linux-workstations-and-servers
https://nvd.nist.gov/800-53/Rev4/impact/moderate
https://nvd.nist.gov/800-53/Rev4/impact/moderate
https://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
https://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
https://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
https://www.pcisecuritystandards.org/document_library?document=pci_dss
https://www.pcisecuritystandards.org/document_library?document=pci_dss

ocp4-
high

NIST 800-53 High-Impact Baseline
for Red Hat OpenShift - Platform
level

0.1.52
+

NIST SP-800-53 Release Search x86_
64

ocp4-
high-
node

NIST 800-53 High-Impact Baseline
for Red Hat OpenShift - Node level

0.1.52
+

NIST SP-800-53 Release Search x86_
64

rhcos
4-high

NIST 800-53 High-Impact Baseline
for Red Hat Enterprise Linux CoreOS

0.1.52
+

NIST SP-800-53 Release Search x86_
64

Profil
e

Profile title Comp
liance
Opera
tor
versio
n

Industry compliance benchmark Suppo
rted
archit
ectur
es

5.2.2. Additional resources

For more information about viewing the compliance profiles available in your system, see
Compliance Operator profiles in Understanding the Compliance Operator.

5.3. INSTALLING THE COMPLIANCE OPERATOR

Before you can use the Compliance Operator, you must ensure it is deployed in the cluster.

5.3.1. Installing the Compliance Operator through the web console

Prerequisites

You must have admin privileges.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. Search for the Compliance Operator, then click Install.

3. Keep the default selection of Installation mode and namespace to ensure that the Operator
will be installed to the openshift-compliance namespace.

4. Click Install.

Verification

To confirm that the installation is successful:

1. Navigate to the Operators → Installed Operators page.

2. Check that the Compliance Operator is installed in the openshift-compliance namespace and
its status is Succeeded.

OpenShift Container Platform 4.9 Security and compliance

90

https://csrc.nist.gov/Projects/risk-management/sp800-53-controls/release-search#!/800-53
https://csrc.nist.gov/Projects/risk-management/sp800-53-controls/release-search#!/800-53
https://csrc.nist.gov/Projects/risk-management/sp800-53-controls/release-search#!/800-53
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#compliance_profiles_understanding-compliance

If the Operator is not installed successfully:

1. Navigate to the Operators → Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads → Pods page and check the logs in any pods in the openshift-
compliance project that are reporting issues.

IMPORTANT

If the restricted Security Context Constraints (SCC) have been modified to contain the
system:authenticated group or has added requiredDropCapabilities, the Compliance
Operator may not function properly due to permissions issues.

You can create a custom SCC for the Compliance Operator scanner pod service account.
For more information, see Creating a custom SCC for the Compliance Operator .

5.3.2. Installing the Compliance Operator using the CLI

Prerequisites

You must have admin privileges.

Procedure

1. Define a Namespace object:

Example namespace-object.yaml

2. Create the Namespace object:

3. Define an OperatorGroup object:

Example operator-group-object.yaml

apiVersion: v1
kind: Namespace
metadata:
 labels:
 openshift.io/cluster-monitoring: "true"
 name: openshift-compliance

$ oc create -f namespace-object.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: compliance-operator
 namespace: openshift-compliance
spec:
 targetNamespaces:
 - openshift-compliance

CHAPTER 5. COMPLIANCE OPERATOR

91

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#compliance-custom-scc_compliance-advanced

4. Create the OperatorGroup object:

5. Define a Subscription object:

Example subscription-object.yaml

6. Create the Subscription object:

NOTE

If you are setting the global scheduler feature and enable defaultNodeSelector, you
must create the namespace manually and update the annotations of the openshift-
compliance namespace, or the namespace where the Compliance Operator was
installed, with openshift.io/node-selector: “”. This removes the default node selector
and prevents deployment failures.

Verification

1. Verify the installation succeeded by inspecting the CSV file:

2. Verify that the Compliance Operator is up and running:

IMPORTANT

If the restricted Security Context Constraints (SCC) have been modified to contain the
system:authenticated group or has added requiredDropCapabilities, the Compliance
Operator may not function properly due to permissions issues.

You can create a custom SCC for the Compliance Operator scanner pod service account.
For more information, see Creating a custom SCC for the Compliance Operator .

5.3.3. Additional resources

$ oc create -f operator-group-object.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: compliance-operator-sub
 namespace: openshift-compliance
spec:
 channel: "release-0.1"
 installPlanApproval: Automatic
 name: compliance-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f subscription-object.yaml

$ oc get csv -n openshift-compliance

$ oc get deploy -n openshift-compliance

OpenShift Container Platform 4.9 Security and compliance

92

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#compliance-custom-scc_compliance-advanced

The Compliance Operator is supported in a restricted network environment. For more
information, see Using Operator Lifecycle Manager on restricted networks .

5.4. UPDATING THE COMPLIANCE OPERATOR

As a cluster administrator, you can update the Compliance Operator on your OpenShift Container
Platform cluster.

5.4.1. Preparing for an Operator update

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. You can change the update channel to start tracking and receiving updates from a
newer channel.

The names of update channels in a subscription can differ between Operators, but the naming scheme
typically follows a common convention within a given Operator. For example, channel names might
follow a minor release update stream for the application provided by the Operator (1.2, 1.3) or a release
frequency (stable, fast).

NOTE

You cannot change installed Operators to a channel that is older than the current
channel.

Red Hat Customer Portal Labs include the following application that helps administrators prepare to
update their Operators:

Red Hat OpenShift Container Platform Operator Update Information Checker

You can use the application to search for Operator Lifecycle Manager-based Operators and verify the
available Operator version per update channel across different versions of OpenShift Container
Platform. Cluster Version Operator-based Operators are not included.

5.4.2. Changing the update channel for an Operator

You can change the update channel for an Operator by using the OpenShift Container Platform web
console.

TIP

If the approval strategy in the subscription is set to Automatic, the update process initiates as soon as a
new Operator version is available in the selected channel. If the approval strategy is set to Manual, you
must manually approve pending updates.

Prerequisites

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → Installed
Operators.

2. Click the name of the Operator you want to change the update channel for.

CHAPTER 5. COMPLIANCE OPERATOR

93

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#olm-restricted-networks
https://access.redhat.com/labs/ocpouic/

3. Click the Subscription tab.

4. Click the name of the update channel under Channel.

5. Click the newer update channel that you want to change to, then click Save.

6. For subscriptions with an Automatic approval strategy, the update begins automatically.
Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.
For subscriptions with a Manual approval strategy, you can manually approve the update from
the Subscription tab.

5.4.3. Manually approving a pending Operator update

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin.

Prerequisites

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Operators that have a pending update display a status with Upgrade available. Click the name
of the Operator you want to update.

3. Click the Subscription tab. Any update requiring approval are displayed next to Upgrade
Status. For example, it might display 1 requires approval.

4. Click 1 requires approval, then click Preview Install Plan.

5. Review the resources that are listed as available for update. When satisfied, click Approve.

6. Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.

5.5. COMPLIANCE OPERATOR SCANS

The ScanSetting and ScanSettingBinding APIs are recommended to run compliance scans with the
Compliance Operator. For more information on these API objects, run:

or

5.5.1. Running compliance scans

You can run a scan using the Center for Internet Security (CIS) profiles. For convenience, the

$ oc explain scansettings

$ oc explain scansettingbindings

OpenShift Container Platform 4.9 Security and compliance

94

You can run a scan using the Center for Internet Security (CIS) profiles. For convenience, the
Compliance Operator creates a ScanSetting object with reasonable defaults on startup. This
ScanSetting object is named default.

NOTE

For all-in-one control plane and worker nodes, the compliance scan runs twice on the
worker and control plane nodes. The compliance scan might generate inconsistent scan
results. You can avoid inconsistent results by defining only a single role in the
ScanSetting object.

Procedure

1. Inspect the ScanSetting object by running:

Example output

$ oc describe scansettings default -n openshift-compliance

Name: default
Namespace: openshift-compliance
Labels: <none>
Annotations: <none>
API Version: compliance.openshift.io/v1alpha1
Kind: ScanSetting
Metadata:
 Creation Timestamp: 2022-10-10T14:07:29Z
 Generation: 1
 Managed Fields:
 API Version: compliance.openshift.io/v1alpha1
 Fields Type: FieldsV1
 fieldsV1:
 f:rawResultStorage:
 .:
 f:nodeSelector:
 .:
 f:node-role.kubernetes.io/master:
 f:pvAccessModes:
 f:rotation:
 f:size:
 f:tolerations:
 f:roles:
 f:scanTolerations:
 f:schedule:
 f:showNotApplicable:
 f:strictNodeScan:
 Manager: compliance-operator
 Operation: Update
 Time: 2022-10-10T14:07:29Z
 Resource Version: 56111
 UID: c21d1d14-3472-47d7-a450-b924287aec90
Raw Result Storage:
 Node Selector:
 node-role.kubernetes.io/master:
 Pv Access Modes:

CHAPTER 5. COMPLIANCE OPERATOR

95

1

2

3

4 5

6

7

The Compliance Operator creates a persistent volume (PV) that contains the results of the
scans. By default, the PV will use access mode ReadWriteOnce because the Compliance
Operator cannot make any assumptions about the storage classes configured on the
cluster. Additionally, ReadWriteOnce access mode is available on most clusters. If you
need to fetch the scan results, you can do so by using a helper pod, which also binds the
volume. Volumes that use the ReadWriteOnce access mode can be mounted by only one
pod at time, so it is important to remember to delete the helper pods. Otherwise, the
Compliance Operator will not be able to reuse the volume for subsequent scans.

The Compliance Operator keeps results of three subsequent scans in the volume; older
scans are rotated.

The Compliance Operator will allocate one GB of storage for the scan results.

If the scan setting uses any profiles that scan cluster nodes, scan these node roles.

The default scan setting object scans all the nodes.

The default scan setting object runs scans at 01:00 each day.

As an alternative to the default scan setting, you can use default-auto-apply, which has the
following settings:

 ReadWriteOnce 1
 Rotation: 3 2
 Size: 1Gi 3
 Tolerations:
 Effect: NoSchedule
 Key: node-role.kubernetes.io/master
 Operator: Exists
 Effect: NoExecute
 Key: node.kubernetes.io/not-ready
 Operator: Exists
 Toleration Seconds: 300
 Effect: NoExecute
 Key: node.kubernetes.io/unreachable
 Operator: Exists
 Toleration Seconds: 300
 Effect: NoSchedule
 Key: node.kubernetes.io/memory-pressure
 Operator: Exists
Roles:
 master 4
 worker 5
Scan Tolerations: 6
 Operator: Exists
Schedule: 0 1 * * * 7
Show Not Applicable: false
Strict Node Scan: true
Events: <none>

Name: default-auto-apply
Namespace: openshift-compliance
Labels: <none>

OpenShift Container Platform 4.9 Security and compliance

96

Annotations: <none>
API Version: compliance.openshift.io/v1alpha1
Auto Apply Remediations: true
Auto Update Remediations: true
Kind: ScanSetting
Metadata:
 Creation Timestamp: 2022-10-18T20:21:00Z
 Generation: 1
 Managed Fields:
 API Version: compliance.openshift.io/v1alpha1
 Fields Type: FieldsV1
 fieldsV1:
 f:autoApplyRemediations: 1
 f:autoUpdateRemediations: 2
 f:rawResultStorage:
 .:
 f:nodeSelector:
 .:
 f:node-role.kubernetes.io/master:
 f:pvAccessModes:
 f:rotation:
 f:size:
 f:tolerations:
 f:roles:
 f:scanTolerations:
 f:schedule:
 f:showNotApplicable:
 f:strictNodeScan:
 Manager: compliance-operator
 Operation: Update
 Time: 2022-10-18T20:21:00Z
 Resource Version: 38840
 UID: 8cb0967d-05e0-4d7a-ac1c-08a7f7e89e84
Raw Result Storage:
 Node Selector:
 node-role.kubernetes.io/master:
 Pv Access Modes:
 ReadWriteOnce
 Rotation: 3
 Size: 1Gi
 Tolerations:
 Effect: NoSchedule
 Key: node-role.kubernetes.io/master
 Operator: Exists
 Effect: NoExecute
 Key: node.kubernetes.io/not-ready
 Operator: Exists
 Toleration Seconds: 300
 Effect: NoExecute
 Key: node.kubernetes.io/unreachable
 Operator: Exists
 Toleration Seconds: 300
 Effect: NoSchedule
 Key: node.kubernetes.io/memory-pressure
 Operator: Exists
Roles:

CHAPTER 5. COMPLIANCE OPERATOR

97

1 2 Setting autoUpdateRemediations and autoApplyRemediations flags to true allows you
to easily create ScanSetting objects that auto-remediate without extra steps.

2. Create a ScanSettingBinding object that binds to the default ScanSetting object and scans
the cluster using the cis and cis-node profiles. For example:

3. Create the ScanSettingBinding object by running:

At this point in the process, the ScanSettingBinding object is reconciled and based on the
Binding and the Bound settings. The Compliance Operator creates a ComplianceSuite object
and the associated ComplianceScan objects.

4. Follow the compliance scan progress by running:

The scans progress through the scanning phases and eventually reach the DONE phase when
complete. In most cases, the result of the scan is NON-COMPLIANT. You can review the scan
results and start applying remediations to make the cluster compliant. See Managing
Compliance Operator remediation for more information.

5.5.2. Scheduling the result server pod on a worker node

The result server pod mounts the persistent volume (PV) that stores the raw Asset Reporting Format
(ARF) scan results. The nodeSelector and tolerations attributes enable you to configure the location
of the result server pod.

 master
 worker
Scan Tolerations:
 Operator: Exists
Schedule: 0 1 * * *
Show Not Applicable: false
Strict Node Scan: true
Events: <none>

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSettingBinding
metadata:
 name: cis-compliance
 namespace: openshift-compliance
profiles:
 - name: ocp4-cis-node
 kind: Profile
 apiGroup: compliance.openshift.io/v1alpha1
 - name: ocp4-cis
 kind: Profile
 apiGroup: compliance.openshift.io/v1alpha1
settingsRef:
 name: default
 kind: ScanSetting
 apiGroup: compliance.openshift.io/v1alpha1

$ oc create -f <file-name>.yaml -n openshift-compliance

$ oc get compliancescan -w -n openshift-compliance

OpenShift Container Platform 4.9 Security and compliance

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#compliance-operator-remediation

1

2

This is helpful for those environments where control plane nodes are not permitted to mount persistent
volumes.

Procedure

Create a ScanSetting custom resource (CR) for the Compliance Operator:

a. Define the ScanSetting CR, and save the YAML file, for example, rs-workers.yaml:

The Compliance Operator uses this node to store scan results in ARF format.

The result server pod tolerates all taints.

b. To create the ScanSetting CR, run the following command:

Verification

To verify that the ScanSetting object is created, run the following command:

Example output

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSetting
metadata:
 name: rs-on-workers
 namespace: openshift-compliance
rawResultStorage:
 nodeSelector:
 node-role.kubernetes.io/worker: "" 1
 pvAccessModes:
 - ReadWriteOnce
 rotation: 3
 size: 1Gi
 tolerations:
 - operator: Exists 2
roles:
- worker
- master
scanTolerations:
 - operator: Exists
schedule: 0 1 * * *

$ oc create -f rs-workers.yaml

$ oc get scansettings rs-on-workers -n openshift-compliance -o yaml

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSetting
metadata:
 creationTimestamp: "2021-11-19T19:36:36Z"
 generation: 1
 name: rs-on-workers
 namespace: openshift-compliance

CHAPTER 5. COMPLIANCE OPERATOR

99

5.5.3. ScanSetting Custom Resource

The ScanSetting Custom Resource now allows you to override the default CPU and memory limits of
scanner pods through the scan limits attribute. The Compliance Operator will use defaults of 500Mi
memory, 100m CPU for the scanner container, and 200Mi memory with 100m CPU for the api-
resource-collector container. To set the memory limits of the Operator, modify the Subscription
object if installed through OLM or the Operator deployment itself.

To increase the default CPU and memory limits of the Compliance Operator, see Increasing Compliance
Operator resource limits.

IMPORTANT

Increasing the memory limit for the Compliance Operator or the scanner pods is needed
if the default limits are not sufficient and the Operator or scanner pods are ended by the
Out Of Memory (OOM) process.

5.5.4. Applying resource requests and limits

When the kubelet starts a container as part of a Pod, the kubelet passes that container’s requests and
limits for memory and CPU to the container runtime. In Linux, the container runtime configures the
kernel cgroups that apply and enforce the limits you defined.

The CPU limit defines how much CPU time the container can use. During each scheduling interval, the
Linux kernel checks to see if this limit is exceeded. If so, the kernel waits before allowing the cgroup to
resume execution.

If several different containers (cgroups) want to run on a contended system, workloads with larger CPU
requests are allocated more CPU time than workloads with small requests. The memory request is used
during Pod scheduling. On a node that uses cgroups v2, the container runtime might use the memory
request as a hint to set memory.min and memory.low values.

If a container attempts to allocate more memory than this limit, the Linux kernel out-of-memory
subsystem activates and intervenes by stopping one of the processes in the container that tried to
allocate memory. The memory limit for the Pod or container can also apply to pages in memory-backed
volumes, such as an emptyDir.

 resourceVersion: "48305"
 uid: 43fdfc5f-15a7-445a-8bbc-0e4a160cd46e
rawResultStorage:
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 pvAccessModes:
 - ReadWriteOnce
 rotation: 3
 size: 1Gi
 tolerations:
 - operator: Exists
roles:
- worker
- master
scanTolerations:
- operator: Exists
schedule: 0 1 * * *
strictNodeScan: true

OpenShift Container Platform 4.9 Security and compliance

100

The kubelet tracks tmpfs emptyDir volumes as container memory is used, rather than as local
ephemeral storage. If a container exceeds its memory request and the node that it runs on becomes
short of memory overall, the Pod’s container might be evicted.

IMPORTANT

A container may not exceed its CPU limit for extended periods. Container run times do
not stop Pods or containers for excessive CPU usage. To determine whether a container
cannot be scheduled or is being killed due to resource limits, see Troubleshooting the
Compliance Operator.

5.5.5. Scheduling Pods with container resource requests

When a Pod is created, the scheduler selects a Node for the Pod to run on. Each node has a maximum
capacity for each resource type in the amount of CPU and memory it can provide for the Pods. The
scheduler ensures that the sum of the resource requests of the scheduled containers is less than the
capacity nodes for each resource type.

Although memory or CPU resource usage on nodes is very low, the scheduler might still refuse to place
a Pod on a node if the capacity check fails to protect against a resource shortage on a node.

For each container, you can specify the following resource limits and request:

Although you can specify requests and limits for only individual containers, it is also useful to consider
the overall resource requests and limits for a pod. For a particular resource, a container resource request
or limit is the sum of the resource requests or limits of that type for each container in the pod.

Example container resource requests and limits

spec.containers[].resources.limits.cpu
spec.containers[].resources.limits.memory
spec.containers[].resources.limits.hugepages-<size>
spec.containers[].resources.requests.cpu
spec.containers[].resources.requests.memory
spec.containers[].resources.requests.hugepages-<size>

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: app
 image: images.my-company.example/app:v4
 resources:
 requests: 1
 memory: "64Mi"
 cpu: "250m"
 limits: 2
 memory: "128Mi"
 cpu: "500m"
 - name: log-aggregator
 image: images.my-company.example/log-aggregator:v6
 resources:
 requests:

CHAPTER 5. COMPLIANCE OPERATOR

101

1

2

The container is requesting 64 Mi of memory and 250 m CPU.

The container’s limits are 128 Mi of memory and 500 m CPU.

5.6. UNDERSTANDING THE COMPLIANCE OPERATOR

The Compliance Operator lets OpenShift Container Platform administrators describe the required
compliance state of a cluster and provides them with an overview of gaps and ways to remediate them.
The Compliance Operator assesses compliance of both the Kubernetes API resources of OpenShift
Container Platform, as well as the nodes running the cluster. The Compliance Operator uses
OpenSCAP, a NIST-certified tool, to scan and enforce security policies provided by the content.

IMPORTANT

The Compliance Operator is available for Red Hat Enterprise Linux CoreOS (RHCOS)
deployments only.

5.6.1. Compliance Operator profiles

There are several profiles available as part of the Compliance Operator installation. You can use the oc
get command to view available profiles, profile details, and specific rules.

View the available profiles:

Example output

These profiles represent different compliance benchmarks. Each profile has the product name
that it applies to added as a prefix to the profile’s name. ocp4-e8 applies the Essential 8

 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

$ oc get -n openshift-compliance profiles.compliance

NAME AGE
ocp4-cis 94m
ocp4-cis-node 94m
ocp4-e8 94m
ocp4-high 94m
ocp4-high-node 94m
ocp4-moderate 94m
ocp4-moderate-node 94m
ocp4-nerc-cip 94m
ocp4-nerc-cip-node 94m
ocp4-pci-dss 94m
ocp4-pci-dss-node 94m
rhcos4-e8 94m
rhcos4-high 94m
rhcos4-moderate 94m
rhcos4-nerc-cip 94m

OpenShift Container Platform 4.9 Security and compliance

102

benchmark to the OpenShift Container Platform product, while rhcos4-e8 applies the Essential
8 benchmark to the Red Hat Enterprise Linux CoreOS (RHCOS) product.

Run the following command to view the details of the rhcos4-e8 profile:

Example output

$ oc get -n openshift-compliance -oyaml profiles.compliance rhcos4-e8

apiVersion: compliance.openshift.io/v1alpha1
description: 'This profile contains configuration checks for Red Hat Enterprise Linux
 CoreOS that align to the Australian Cyber Security Centre (ACSC) Essential Eight.
 A copy of the Essential Eight in Linux Environments guide can be found at the ACSC
 website: https://www.cyber.gov.au/acsc/view-all-content/publications/hardening-linux-
workstations-and-servers'
id: xccdf_org.ssgproject.content_profile_e8
kind: Profile
metadata:
 annotations:
 compliance.openshift.io/image-digest: pb-rhcos4hrdkm
 compliance.openshift.io/product: redhat_enterprise_linux_coreos_4
 compliance.openshift.io/product-type: Node
 creationTimestamp: "2022-10-19T12:06:49Z"
 generation: 1
 labels:
 compliance.openshift.io/profile-bundle: rhcos4
 name: rhcos4-e8
 namespace: openshift-compliance
 ownerReferences:
 - apiVersion: compliance.openshift.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ProfileBundle
 name: rhcos4
 uid: 22350850-af4a-4f5c-9a42-5e7b68b82d7d
 resourceVersion: "43699"
 uid: 86353f70-28f7-40b4-bf0e-6289ec33675b
rules:
- rhcos4-accounts-no-uid-except-zero
- rhcos4-audit-rules-dac-modification-chmod
- rhcos4-audit-rules-dac-modification-chown
- rhcos4-audit-rules-execution-chcon
- rhcos4-audit-rules-execution-restorecon
- rhcos4-audit-rules-execution-semanage
- rhcos4-audit-rules-execution-setfiles
- rhcos4-audit-rules-execution-setsebool
- rhcos4-audit-rules-execution-seunshare
- rhcos4-audit-rules-kernel-module-loading-delete
- rhcos4-audit-rules-kernel-module-loading-finit
- rhcos4-audit-rules-kernel-module-loading-init
- rhcos4-audit-rules-login-events
- rhcos4-audit-rules-login-events-faillock
- rhcos4-audit-rules-login-events-lastlog
- rhcos4-audit-rules-login-events-tallylog
- rhcos4-audit-rules-networkconfig-modification

CHAPTER 5. COMPLIANCE OPERATOR

103

Run the following command to view the details of the rhcos4-audit-rules-login-events rule:

Example output

- rhcos4-audit-rules-sysadmin-actions
- rhcos4-audit-rules-time-adjtimex
- rhcos4-audit-rules-time-clock-settime
- rhcos4-audit-rules-time-settimeofday
- rhcos4-audit-rules-time-stime
- rhcos4-audit-rules-time-watch-localtime
- rhcos4-audit-rules-usergroup-modification
- rhcos4-auditd-data-retention-flush
- rhcos4-auditd-freq
- rhcos4-auditd-local-events
- rhcos4-auditd-log-format
- rhcos4-auditd-name-format
- rhcos4-auditd-write-logs
- rhcos4-configure-crypto-policy
- rhcos4-configure-ssh-crypto-policy
- rhcos4-no-empty-passwords
- rhcos4-selinux-policytype
- rhcos4-selinux-state
- rhcos4-service-auditd-enabled
- rhcos4-sshd-disable-empty-passwords
- rhcos4-sshd-disable-gssapi-auth
- rhcos4-sshd-disable-rhosts
- rhcos4-sshd-disable-root-login
- rhcos4-sshd-disable-user-known-hosts
- rhcos4-sshd-do-not-permit-user-env
- rhcos4-sshd-enable-strictmodes
- rhcos4-sshd-print-last-log
- rhcos4-sshd-set-loglevel-info
- rhcos4-sysctl-kernel-dmesg-restrict
- rhcos4-sysctl-kernel-kptr-restrict
- rhcos4-sysctl-kernel-randomize-va-space
- rhcos4-sysctl-kernel-unprivileged-bpf-disabled
- rhcos4-sysctl-kernel-yama-ptrace-scope
- rhcos4-sysctl-net-core-bpf-jit-harden
title: Australian Cyber Security Centre (ACSC) Essential Eight

$ oc get -n openshift-compliance -oyaml rules rhcos4-audit-rules-login-events

apiVersion: compliance.openshift.io/v1alpha1
checkType: Node
description: |-
 The audit system already collects login information for all users and root. If the auditd
daemon is configured to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix.rules in the directory
/etc/audit/rules.d in order to watch for attempted manual edits of files involved in storing
logon events:

 -w /var/log/tallylog -p wa -k logins
 -w /var/run/faillock -p wa -k logins
 -w /var/log/lastlog -p wa -k logins

OpenShift Container Platform 4.9 Security and compliance

104

5.7. MANAGING THE COMPLIANCE OPERATOR

This section describes the lifecycle of security content, including how to use an updated version of
compliance content and how to create a custom ProfileBundle object.

5.7.1. ProfileBundle CR example

The ProfileBundle object requires two pieces of information: the URL of a container image that
contains the contentImage and the file that contains the compliance content. The contentFile
parameter is relative to the root of the file system. You can define the built-in rhcos4 ProfileBundle
object as shown in the following example:

 If the auditd daemon is configured to use the auditctl utility to read audit rules during
daemon startup, add the following lines to /etc/audit/audit.rules file in order to watch for
unattempted manual edits of files involved in storing logon events:

 -w /var/log/tallylog -p wa -k logins
 -w /var/run/faillock -p wa -k logins
 -w /var/log/lastlog -p wa -k logins
id: xccdf_org.ssgproject.content_rule_audit_rules_login_events
kind: Rule
metadata:
 annotations:
 compliance.openshift.io/image-digest: pb-rhcos4hrdkm
 compliance.openshift.io/rule: audit-rules-login-events
 control.compliance.openshift.io/NIST-800-53: AU-2(d);AU-12(c);AC-6(9);CM-6(a)
 control.compliance.openshift.io/PCI-DSS: Req-10.2.3
 policies.open-cluster-management.io/controls: AU-2(d),AU-12(c),AC-6(9),CM-6(a),Req-
10.2.3
 policies.open-cluster-management.io/standards: NIST-800-53,PCI-DSS
 creationTimestamp: "2022-10-19T12:07:08Z"
 generation: 1
 labels:
 compliance.openshift.io/profile-bundle: rhcos4
 name: rhcos4-audit-rules-login-events
 namespace: openshift-compliance
 ownerReferences:
 - apiVersion: compliance.openshift.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ProfileBundle
 name: rhcos4
 uid: 22350850-af4a-4f5c-9a42-5e7b68b82d7d
 resourceVersion: "44819"
 uid: 75872f1f-3c93-40ca-a69d-44e5438824a4
rationale: Manual editing of these files may indicate nefarious activity, such as
 an attacker attempting to remove evidence of an intrusion.
severity: medium
title: Record Attempts to Alter Logon and Logout Events
warning: Manual editing of these files may indicate nefarious activity, such as an
 attacker attempting to remove evidence of an intrusion.

apiVersion: compliance.openshift.io/v1alpha1
kind: ProfileBundle
metadata:

CHAPTER 5. COMPLIANCE OPERATOR

105

1

2

Location of the file containing the compliance content.

Content image location.

IMPORTANT

The base image used for the content images must include coreutils.

5.7.2. Updating security content

Security content is included as container images that the ProfileBundle objects refer to. To accurately
track updates to ProfileBundles and the custom resources parsed from the bundles such as rules or
profiles, identify the container image with the compliance content using a digest instead of a tag:

Example output

 creationTimestamp: "2022-10-19T12:06:30Z"
 finalizers:
 - profilebundle.finalizers.compliance.openshift.io
 generation: 1
 name: rhcos4
 namespace: openshift-compliance
 resourceVersion: "46741"
 uid: 22350850-af4a-4f5c-9a42-5e7b68b82d7d
spec:
 contentFile: ssg-rhcos4-ds.xml 1
 contentImage: registry.redhat.io/compliance/openshift-compliance-content-rhel8@sha256:900e...
2

status:
 conditions:
 - lastTransitionTime: "2022-10-19T12:07:51Z"
 message: Profile bundle successfully parsed
 reason: Valid
 status: "True"
 type: Ready
 dataStreamStatus: VALID

$ oc -n openshift-compliance get profilebundles rhcos4 -oyaml

apiVersion: compliance.openshift.io/v1alpha1
kind: ProfileBundle
metadata:
 creationTimestamp: "2022-10-19T12:06:30Z"
 finalizers:
 - profilebundle.finalizers.compliance.openshift.io
 generation: 1
 name: rhcos4
 namespace: openshift-compliance
 resourceVersion: "46741"
 uid: 22350850-af4a-4f5c-9a42-5e7b68b82d7d
spec:
 contentFile: ssg-rhcos4-ds.xml
 contentImage: registry.redhat.io/compliance/openshift-compliance-content-rhel8@sha256:900e...

OpenShift Container Platform 4.9 Security and compliance

106

1 Security container image.

Each ProfileBundle is backed by a deployment. When the Compliance Operator detects that the
container image digest has changed, the deployment is updated to reflect the change and parse the
content again. Using the digest instead of a tag ensures that you use a stable and predictable set of
profiles.

5.7.3. Additional resources

The Compliance Operator is supported in a restricted network environment. For more
information, see Using Operator Lifecycle Manager on restricted networks .

5.8. TAILORING THE COMPLIANCE OPERATOR

While the Compliance Operator comes with ready-to-use profiles, they must be modified to fit the
organizations’ needs and requirements. The process of modifying a profile is called tailoring.

The Compliance Operator provides the TailoredProfile object to help tailor profiles.

5.8.1. Creating a new tailored profile

You can write a tailored profile from scratch using the TailoredProfile object. Set an appropriate title
and description and leave the extends field empty. Indicate to the Compliance Operator what type of
scan will this custom profile generate:

Node scan: Scans the Operating System.

Platform scan: Scans the OpenShift configuration.

Procedure

Set the following annotation on the TailoredProfile object:

+ .Example new-profile.yaml

1
status:
 conditions:
 - lastTransitionTime: "2022-10-19T12:07:51Z"
 message: Profile bundle successfully parsed
 reason: Valid
 status: "True"
 type: Ready
 dataStreamStatus: VALID

apiVersion: compliance.openshift.io/v1alpha1
kind: TailoredProfile
metadata:
 name: new-profile
 annotations:
 compliance.openshift.io/product-type: Node 1
spec:

CHAPTER 5. COMPLIANCE OPERATOR

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#olm-restricted-networks

1

2

3

Set Node or Platform accordingly.

Use the description field to describe the function of the new TailoredProfile object.

Give your TailoredProfile object a title with the title field.

NOTE

Adding the -node suffix to the name field of the TailoredProfile object is similar to
adding the Node product type annotation and generates an Operating System scan.

5.8.2. Using tailored profiles to extend existing ProfileBundles

While the TailoredProfile CR enables the most common tailoring operations, the XCCDF standard
allows even more flexibility in tailoring OpenSCAP profiles. In addition, if your organization has been
using OpenScap previously, you may have an existing XCCDF tailoring file and can reuse it.

The ComplianceSuite object contains an optional TailoringConfigMap attribute that you can point to
a custom tailoring file. The value of the TailoringConfigMap attribute is a name of a config map, which
must contain a key called tailoring.xml and the value of this key is the tailoring contents.

Procedure

1. Browse the available rules for the Red Hat Enterprise Linux CoreOS (RHCOS) ProfileBundle:

2. Browse the available variables in the same ProfileBundle:

3. Create a tailored profile named nist-moderate-modified:

a. Choose which rules you want to add to the nist-moderate-modified tailored profile. This
example extends the rhcos4-moderate profile by disabling two rules and changing one
value. Use the rationale value to describe why these changes were made:

Example new-profile-node.yaml

 extends:
 description: My custom profile 2
 title: Custom profile 3

$ oc get rules.compliance -n openshift-compliance -l compliance.openshift.io/profile-
bundle=rhcos4

$ oc get variables.compliance -n openshift-compliance -l compliance.openshift.io/profile-
bundle=rhcos4

apiVersion: compliance.openshift.io/v1alpha1
kind: TailoredProfile
metadata:
 name: nist-moderate-modified
spec:
 extends: rhcos4-moderate
 description: NIST moderate profile
 title: My modified NIST moderate profile

OpenShift Container Platform 4.9 Security and compliance

108

Table 5.2. Attributes for spec variables

Attribute Description

extends Name of the Profile object upon which this TailoredProfile is
built.

title Human-readable title of the TailoredProfile.

disableRules A list of name and rationale pairs. Each name refers to a name
of a rule object that is to be disabled. The rationale value is
human-readable text describing why the rule is disabled.

manualRules A list of name and rationale pairs. When a manual rule is added,
the check result status will always be manual and remediation
will not be generated. This attribute is automatic and by default
has no values when set as a manual rule.

enableRules A list of name and rationale pairs. Each name refers to a name
of a rule object that is to be enabled. The rationale value is
human-readable text describing why the rule is enabled.

description Human-readable text describing the TailoredProfile.

setValues A list of name, rationale, and value groupings. Each name refers
to a name of the value set. The rationale is human-readable
text describing the set. The value is the actual setting.

b. Add the tailoredProfile.spec.manualRules attribute:

Example tailoredProfile.spec.manualRules.yaml

 disableRules:
 - name: rhcos4-file-permissions-var-log-messages
 rationale: The file contains logs of error messages in the system
 - name: rhcos4-account-disable-post-pw-expiration
 rationale: No need to check this as it comes from the IdP
 setValues:
 - name: rhcos4-var-selinux-state
 rationale: Organizational requirements
 value: permissive

apiVersion: compliance.openshift.io/v1alpha1
kind: TailoredProfile
metadata:
 name: ocp4-manual-scc-check
spec:
 extends: ocp4-cis
 description: This profile extends ocp4-cis by forcing the SCC check to always return
MANUAL
 title: OCP4 CIS profile with manual SCC check

CHAPTER 5. COMPLIANCE OPERATOR

109

1

c. Create the TailoredProfile object:

The TailoredProfile object is created in the default openshift-compliance
namespace.

Example output

4. Define the ScanSettingBinding object to bind the new nist-moderate-modified tailored
profile to the default ScanSetting object.

Example new-scansettingbinding.yaml

5. Create the ScanSettingBinding object:

Example output

5.9. RETRIEVING COMPLIANCE OPERATOR RAW RESULTS

When proving compliance for your OpenShift Container Platform cluster, you might need to provide the
scan results for auditing purposes.

5.9.1. Obtaining Compliance Operator raw results from a persistent volume

 manualRules:
 - name: ocp4-scc-limit-container-allowed-capabilities
 rationale: We use third party software that installs its own SCC with extra privileges

$ oc create -n openshift-compliance -f new-profile-node.yaml 1

tailoredprofile.compliance.openshift.io/nist-moderate-modified created

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSettingBinding
metadata:
 name: nist-moderate-modified
profiles:
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-moderate
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: TailoredProfile
 name: nist-moderate-modified
settingsRef:
 apiGroup: compliance.openshift.io/v1alpha1
 kind: ScanSetting
 name: default

$ oc create -n openshift-compliance -f new-scansettingbinding.yaml

scansettingbinding.compliance.openshift.io/nist-moderate-modified created

OpenShift Container Platform 4.9 Security and compliance

110

Procedure

The Compliance Operator generates and stores the raw results in a persistent volume. These results are
in Asset Reporting Format (ARF).

1. Explore the ComplianceSuite object:

Example output

This shows the persistent volume claims where the raw results are accessible.

2. Verify the raw data location by using the name and namespace of one of the results:

Example output

3. Fetch the raw results by spawning a pod that mounts the volume and copying the results:

Example pod.yaml

$ oc get compliancesuites nist-moderate-modified \
-o json -n openshift-compliance | jq '.status.scanStatuses[].resultsStorage'

{
 "name": "ocp4-moderate",
 "namespace": "openshift-compliance"
}
{
 "name": "nist-moderate-modified-master",
 "namespace": "openshift-compliance"
}
{
 "name": "nist-moderate-modified-worker",
 "namespace": "openshift-compliance"
}

$ oc get pvc -n openshift-compliance rhcos4-moderate-worker

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
rhcos4-moderate-worker Bound pvc-548f6cfe-164b-42fe-ba13-a07cfbc77f3a 1Gi RWO
gp2 92m

$ oc create -n openshift-compliance -f pod.yaml

apiVersion: "v1"
kind: Pod
metadata:
 name: pv-extract
spec:
 containers:
 - name: pv-extract-pod
 image: registry.access.redhat.com/ubi8/ubi
 command: ["sleep", "3000"]
 volumeMounts:

CHAPTER 5. COMPLIANCE OPERATOR

111

4. After the pod is running, download the results:

IMPORTANT

Spawning a pod that mounts the persistent volume will keep the claim as Bound.
If the volume’s storage class in use has permissions set to ReadWriteOnce, the
volume is only mountable by one pod at a time. You must delete the pod upon
completion, or it will not be possible for the Operator to schedule a pod and
continue storing results in this location.

5. After the extraction is complete, the pod can be deleted:

5.10. MANAGING COMPLIANCE OPERATOR RESULT AND
REMEDIATION

Each ComplianceCheckResult represents a result of one compliance rule check. If the rule can be
remediated automatically, a ComplianceRemediation object with the same name, owned by the
ComplianceCheckResult is created. Unless requested, the remediations are not applied automatically,
which gives an OpenShift Container Platform administrator the opportunity to review what the
remediation does and only apply a remediation once it has been verified.

5.10.1. Filters for compliance check results

By default, the ComplianceCheckResult objects are labeled with several useful labels that allow you to
query the checks and decide on the next steps after the results are generated.

List checks that belong to a specific suite:

List checks that belong to a specific scan:

Not all ComplianceCheckResult objects create ComplianceRemediation objects. Only
ComplianceCheckResult objects that can be remediated automatically do. A
ComplianceCheckResult object has a related remediation if it is labeled with the
compliance.openshift.io/automated-remediation label. The name of the remediation is the same as
the name of the check.

 - mountPath: "/workers-scan-results"
 name: workers-scan-vol
 volumes:
 - name: workers-scan-vol
 persistentVolumeClaim:
 claimName: rhcos4-moderate-worker

$ oc cp pv-extract:/workers-scan-results -n openshift-compliance .

$ oc delete pod pv-extract -n openshift-compliance

$ oc get -n openshift-compliance compliancecheckresults \
 -l compliance.openshift.io/suite=workers-compliancesuite

$ oc get -n openshift-compliance compliancecheckresults \
-l compliance.openshift.io/scan=workers-scan

OpenShift Container Platform 4.9 Security and compliance

112

List all failing checks that can be remediated automatically:

List all failing checks sorted by severity:

Example output

List all failing checks that must be remediated manually:

The manual remediation steps are typically stored in the description attribute in the
ComplianceCheckResult object.

Table 5.3. ComplianceCheckResult Status

ComplianceCheckResult Status Description

PASS Compliance check ran to completion and passed.

FAIL Compliance check ran to completion and failed.

INFO Compliance check ran to completion and found
something not severe enough to be considered an
error.

$ oc get -n openshift-compliance compliancecheckresults \
-l 'compliance.openshift.io/check-status=FAIL,compliance.openshift.io/automated-remediation'

$ oc get compliancecheckresults -n openshift-compliance \
-l 'compliance.openshift.io/check-status=FAIL,compliance.openshift.io/check-severity=high'

NAME STATUS SEVERITY
nist-moderate-modified-master-configure-crypto-policy FAIL high
nist-moderate-modified-master-coreos-pti-kernel-argument FAIL high
nist-moderate-modified-master-disable-ctrlaltdel-burstaction FAIL high
nist-moderate-modified-master-disable-ctrlaltdel-reboot FAIL high
nist-moderate-modified-master-enable-fips-mode FAIL high
nist-moderate-modified-master-no-empty-passwords FAIL high
nist-moderate-modified-master-selinux-state FAIL high
nist-moderate-modified-worker-configure-crypto-policy FAIL high
nist-moderate-modified-worker-coreos-pti-kernel-argument FAIL high
nist-moderate-modified-worker-disable-ctrlaltdel-burstaction FAIL high
nist-moderate-modified-worker-disable-ctrlaltdel-reboot FAIL high
nist-moderate-modified-worker-enable-fips-mode FAIL high
nist-moderate-modified-worker-no-empty-passwords FAIL high
nist-moderate-modified-worker-selinux-state FAIL high
ocp4-moderate-configure-network-policies-namespaces FAIL high
ocp4-moderate-fips-mode-enabled-on-all-nodes FAIL high

$ oc get -n openshift-compliance compliancecheckresults \
-l 'compliance.openshift.io/check-status=FAIL,!compliance.openshift.io/automated-remediation'

CHAPTER 5. COMPLIANCE OPERATOR

113

MANUAL Compliance check does not have a way to
automatically assess the success or failure and must
be checked manually.

INCONSISTENT Compliance check reports different results from
different sources, typically cluster nodes.

ERROR Compliance check ran, but could not complete
properly.

NOT-APPLICABLE Compliance check did not run because it is not
applicable or not selected.

ComplianceCheckResult Status Description

5.10.2. Reviewing a remediation

Review both the ComplianceRemediation object and the ComplianceCheckResult object that owns
the remediation. The ComplianceCheckResult object contains human-readable descriptions of what
the check does and the hardening trying to prevent, as well as other metadata like the severity and the
associated security controls. The ComplianceRemediation object represents a way to fix the problem
described in the ComplianceCheckResult. After first scan, check for remediations with the state
MissingDependencies.

Below is an example of a check and a remediation called sysctl-net-ipv4-conf-all-accept-redirects. This
example is redacted to only show spec and status and omits metadata:

The remediation payload is stored in the spec.current attribute. The payload can be any Kubernetes
object, but because this remediation was produced by a node scan, the remediation payload in the
above example is a MachineConfig object. For Platform scans, the remediation payload is often a
different kind of an object (for example, a ConfigMap or Secret object), but typically applying that

spec:
 apply: false
 current:
 object:
 apiVersion: machineconfiguration.openshift.io/v1
 kind: MachineConfig
 spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_all_accept_redirects.conf
 mode: 0644
 contents:
 source: data:,net.ipv4.conf.all.accept_redirects%3D0
 outdated: {}
status:
 applicationState: NotApplied

OpenShift Container Platform 4.9 Security and compliance

114

remediation is up to the administrator, because otherwise the Compliance Operator would have
required a very broad set of permissions to manipulate any generic Kubernetes object. An example of
remediating a Platform check is provided later in the text.

To see exactly what the remediation does when applied, the MachineConfig object contents use the
Ignition objects for the configuration. See the Ignition specification for further information about the
format. In our example, the spec.config.storage.files[0].path attribute specifies the file that is being
create by this remediation (/etc/sysctl.d/75-sysctl_net_ipv4_conf_all_accept_redirects.conf) and
the spec.config.storage.files[0].contents.source attribute specifies the contents of that file.

NOTE

The contents of the files are URL-encoded.

Use the following Python script to view the contents:

Example output

5.10.3. Applying remediation when using customized machine config pools

When you create a custom MachineConfigPool, add a label to the MachineConfigPool so that
machineConfigPoolSelector present in the KubeletConfig can match the label with
MachineConfigPool.

IMPORTANT

Do not set protectKernelDefaults: false in the KubeletConfig file, because the
MachineConfigPool object might fail to unpause unexpectedly after the Compliance
Operator finishes applying remediation.

Procedure

1. List the nodes.

Example output

2. Add a label to nodes.

$ echo "net.ipv4.conf.all.accept_redirects%3D0" | python3 -c "import sys, urllib.parse;
print(urllib.parse.unquote(''.join(sys.stdin.readlines())))"

net.ipv4.conf.all.accept_redirects=0

$ oc get nodes -n openshift-compliance

NAME STATUS ROLES AGE VERSION
ip-10-0-128-92.us-east-2.compute.internal Ready master 5h21m v1.23.3+d99c04f
ip-10-0-158-32.us-east-2.compute.internal Ready worker 5h17m v1.23.3+d99c04f
ip-10-0-166-81.us-east-2.compute.internal Ready worker 5h17m v1.23.3+d99c04f
ip-10-0-171-170.us-east-2.compute.internal Ready master 5h21m v1.23.3+d99c04f
ip-10-0-197-35.us-east-2.compute.internal Ready master 5h22m v1.23.3+d99c04f

CHAPTER 5. COMPLIANCE OPERATOR

115

https://coreos.github.io/ignition/specs/

1

Example output

3. Create custom MachineConfigPool CR.

The labels field defines label name to add for Machine config pool(MCP).

4. Verify MCP created successfully.

5.10.4. Evaluating KubeletConfig rules against default configuration values

OpenShift Container Platform infrastructure might contain incomplete configuration files at run time,
and nodes assume default configuration values for missing configuration options. Some configuration
options can be passed as command line arguments. As a result, the Compliance Operator cannot verify
if the configuration file on the node is complete because it might be missing options used in the rule
checks.

To prevent false negative results where the default configuration value passes a check, the Compliance
Operator uses the Node/Proxy API to fetch the configuration for each node in a node pool, then all
configuration options that are consistent across nodes in the node pool are stored in a file that
represents the configuration for all nodes within that node pool. This increases the accuracy of the scan
results.

No additional configuration changes are required to use this feature with default master and worker
node pools configurations.

5.10.5. Scanning custom node pools

The Compliance Operator does not maintain a copy of each node pool configuration. The Compliance
Operator aggregates consistent configuration options for all nodes within a single node pool into one
copy of the configuration file. The Compliance Operator then uses the configuration file for a particular

$ oc -n openshift-compliance \
label node ip-10-0-166-81.us-east-2.compute.internal \
node-role.kubernetes.io/<machine_config_pool_name>=

node/ip-10-0-166-81.us-east-2.compute.internal labeled

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: <machine_config_pool_name>
 labels:
 pools.operator.machineconfiguration.openshift.io/<machine_config_pool_name>: '' 1
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,
<machine_config_pool_name>]}
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/<machine_config_pool_name>: ""

$ oc get mcp -w

OpenShift Container Platform 4.9 Security and compliance

116

node pool to evaluate rules against nodes within that pool.

If your cluster uses custom node pools outside the default worker and master node pools, you must
supply additional variables to ensure the Compliance Operator aggregates a configuration file for that
node pool.

Procedure

1. To check the configuration against all pools in an example cluster containing master, worker,
and custom example node pools, set the value of the ocp-var-role-master and opc-var-role-
worker fields to example in the TailoredProfile object:

2. Add the example role to the ScanSetting object that will be stored in the ScanSettingBinding
CR:

3. Create a scan that uses the ScanSettingBinding CR:

apiVersion: compliance.openshift.io/v1alpha1
kind: TailoredProfile
metadata:
 name: cis-example-tp
spec:
 extends: ocp4-cis
 title: My modified NIST profile to scan example nodes
 setValues:
 - name: ocp4-var-role-master
 value: example
 rationale: test for example nodes
 - name: ocp4-var-role-worker
 value: example
 rationale: test for example nodes
 description: cis-example-scan

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSetting
metadata:
 name: default
 namespace: openshift-compliance
rawResultStorage:
 rotation: 3
 size: 1Gi
roles:
- worker
- master
- example
scanTolerations:
- effect: NoSchedule
 key: node-role.kubernetes.io/master
 operator: Exists
schedule: '0 1 * * *'

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSettingBinding
metadata:
 name: cis

CHAPTER 5. COMPLIANCE OPERATOR

117

The Compliance Operator checks the runtime KubeletConfig through the Node/Proxy API object and
then uses variables such as ocp-var-role-master and ocp-var-role-worker to determine the nodes it
performs the check against. In the ComplianceCheckResult, the KubeletConfig rules are shown as
ocp4-cis-kubelet-*. The scan passes only if all selected nodes pass this check.

Verification

The Platform KubeletConfig rules are checked through the Node/Proxy object. You can find
those rules by running the following command:

5.10.6. Remediating KubeletConfig sub pools

KubeletConfig remediation labels can be applied to MachineConfigPool sub-pools.

Procedure

Add a label to the sub-pool MachineConfigPool CR:

5.10.7. Applying a remediation

The boolean attribute spec.apply controls whether the remediation should be applied by the
Compliance Operator. You can apply the remediation by setting the attribute to true:

After the Compliance Operator processes the applied remediation, the status.ApplicationState
attribute would change to Applied or to Error if incorrect. When a machine config remediation is
applied, that remediation along with all other applied remediations are rendered into a MachineConfig

 namespace: openshift-compliance
profiles:
- apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-cis
- apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-cis-node
- apiGroup: compliance.openshift.io/v1alpha1
 kind: TailoredProfile
 name: cis-example-tp
settingsRef:
 apiGroup: compliance.openshift.io/v1alpha1
 kind: ScanSetting
 name: default

$ oc get rules -o json | jq '.items[] | select(.checkType == "Platform") | select(.metadata.name
| contains("ocp4-kubelet-")) | .metadata.name'

$ oc label mcp <sub-pool-name> pools.operator.machineconfiguration.openshift.io/<sub-
pool-name>=

$ oc -n openshift-compliance \
patch complianceremediations/<scan-name>-sysctl-net-ipv4-conf-all-accept-redirects \
--patch '{"spec":{"apply":true}}' --type=merge

OpenShift Container Platform 4.9 Security and compliance

118

object named 75-$scan-name-$suite-name. That MachineConfig object is subsequently rendered by
the Machine Config Operator and finally applied to all the nodes in a machine config pool by an instance
of the machine control daemon running on each node.

Note that when the Machine Config Operator applies a new MachineConfig object to nodes in a pool,
all the nodes belonging to the pool are rebooted. This might be inconvenient when applying multiple
remediations, each of which re-renders the composite 75-$scan-name-$suite-name MachineConfig
object. To prevent applying the remediation immediately, you can pause the machine config pool by
setting the .spec.paused attribute of a MachineConfigPool object to true.

The Compliance Operator can apply remediations automatically. Set autoApplyRemediations: true in
the ScanSetting top-level object.

WARNING

Applying remediations automatically should only be done with careful consideration.

5.10.8. Remediating a platform check manually

Checks for Platform scans typically have to be remediated manually by the administrator for two
reasons:

It is not always possible to automatically determine the value that must be set. One of the
checks requires that a list of allowed registries is provided, but the scanner has no way of
knowing which registries the organization wants to allow.

Different checks modify different API objects, requiring automated remediation to possess root
or superuser access to modify objects in the cluster, which is not advised.

Procedure

1. The example below uses the ocp4-ocp-allowed-registries-for-import rule, which would fail on a
default OpenShift Container Platform installation. Inspect the rule oc get
rule.compliance/ocp4-ocp-allowed-registries-for-import -oyaml, the rule is to limit the
registries the users are allowed to import images from by setting the
allowedRegistriesForImport attribute, The warning attribute of the rule also shows the API
object checked, so it can be modified and remediate the issue:

Example output



$ oc edit image.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Image
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2020-09-10T10:12:54Z"
 generation: 2
 name: cluster

CHAPTER 5. COMPLIANCE OPERATOR

119

2. Re-run the scan:

5.10.9. Updating remediations

When a new version of compliance content is used, it might deliver a new and different version of a
remediation than the previous version. The Compliance Operator will keep the old version of the
remediation applied. The OpenShift Container Platform administrator is also notified of the new version
to review and apply. A ComplianceRemediation object that had been applied earlier, but was updated
changes its status to Outdated. The outdated objects are labeled so that they can be searched for
easily.

The previously applied remediation contents would then be stored in the spec.outdated attribute of a
ComplianceRemediation object and the new updated contents would be stored in the spec.current
attribute. After updating the content to a newer version, the administrator then needs to review the
remediation. As long as the spec.outdated attribute exists, it would be used to render the resulting
MachineConfig object. After the spec.outdated attribute is removed, the Compliance Operator re-
renders the resulting MachineConfig object, which causes the Operator to push the configuration to
the nodes.

Procedure

1. Search for any outdated remediations:

Example output

The currently applied remediation is stored in the Outdated attribute and the new, unapplied
remediation is stored in the Current attribute. If you are satisfied with the new version, remove
the Outdated field. If you want to keep the updated content, remove the Current and Outdated
attributes.

2. Apply the newer version of the remediation:

 resourceVersion: "363096"
 selfLink: /apis/config.openshift.io/v1/images/cluster
 uid: 2dcb614e-2f8a-4a23-ba9a-8e33cd0ff77e
spec:
 allowedRegistriesForImport:
 - domainName: registry.redhat.io
status:
 externalRegistryHostnames:
 - default-route-openshift-image-registry.apps.user-cluster-09-10-12-
07.devcluster.openshift.com
 internalRegistryHostname: image-registry.openshift-image-registry.svc:5000

$ oc -n openshift-compliance \
annotate compliancescans/rhcos4-e8-worker compliance.openshift.io/rescan=

$ oc -n openshift-compliance get complianceremediations \
-l complianceoperator.openshift.io/outdated-remediation=

NAME STATE
workers-scan-no-empty-passwords Outdated

OpenShift Container Platform 4.9 Security and compliance

120

3. The remediation state will switch from Outdated to Applied:

Example output

4. The nodes will apply the newer remediation version and reboot.

5.10.10. Unapplying a remediation

It might be required to unapply a remediation that was previously applied.

Procedure

1. Set the apply flag to false:

2. The remediation status will change to NotApplied and the composite MachineConfig object
would be re-rendered to not include the remediation.

IMPORTANT

All affected nodes with the remediation will be rebooted.

5.10.11. Removing a KubeletConfig remediation

KubeletConfig remediations are included in node-level profiles. In order to remove a KubeletConfig
remediation, you must manually remove it from the KubeletConfig objects. This example demonstrates
how to remove the compliance check for the one-rule-tp-node-master-kubelet-eviction-thresholds-
set-hard-imagefs-available remediation.

Procedure

1. Locate the scan-name and compliance check for the one-rule-tp-node-master-kubelet-
eviction-thresholds-set-hard-imagefs-available remediation:

Example output

$ oc -n openshift-compliance patch complianceremediations workers-scan-no-empty-
passwords \
--type json -p '[{"op":"remove", "path":/spec/outdated}]'

$ oc get -n openshift-compliance complianceremediations workers-scan-no-empty-
passwords

NAME STATE
workers-scan-no-empty-passwords Applied

$ oc -n openshift-compliance \
patch complianceremediations/rhcos4-moderate-worker-sysctl-net-ipv4-conf-all-accept-
redirects \
--patch '{"spec":{"apply":false}}' --type=merge

$ oc -n openshift-compliance get remediation \ one-rule-tp-node-master-kubelet-eviction-
thresholds-set-hard-imagefs-available -o yaml

CHAPTER 5. COMPLIANCE OPERATOR

121

1

2

The scan name of the remediation.

The remediation that was added to the KubeletConfig objects.

NOTE

If the remediation invokes an evictionHard kubelet configuration, you must
specify all of the evictionHard parameters: memory.available,
nodefs.available, nodefs.inodesFree, imagefs.available, and
imagefs.inodesFree. If you do not specify all parameters, only the specified
parameters are applied and the remediation will not function properly.

2. Remove the remediation:

a. Set apply to false for the remediation object:

apiVersion: compliance.openshift.io/v1alpha1
kind: ComplianceRemediation
metadata:
 annotations:
 compliance.openshift.io/xccdf-value-used: var-kubelet-evictionhard-imagefs-available
 creationTimestamp: "2022-01-05T19:52:27Z"
 generation: 1
 labels:
 compliance.openshift.io/scan-name: one-rule-tp-node-master 1
 compliance.openshift.io/suite: one-rule-ssb-node
 name: one-rule-tp-node-master-kubelet-eviction-thresholds-set-hard-imagefs-available
 namespace: openshift-compliance
 ownerReferences:
 - apiVersion: compliance.openshift.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ComplianceCheckResult
 name: one-rule-tp-node-master-kubelet-eviction-thresholds-set-hard-imagefs-available
 uid: fe8e1577-9060-4c59-95b2-3e2c51709adc
 resourceVersion: "84820"
 uid: 5339d21a-24d7-40cb-84d2-7a2ebb015355
spec:
 apply: true
 current:
 object:
 apiVersion: machineconfiguration.openshift.io/v1
 kind: KubeletConfig
 spec:
 kubeletConfig:
 evictionHard:
 imagefs.available: 10% 2
 outdated: {}
 type: Configuration
status:
 applicationState: Applied

$ oc -n openshift-compliance patch \
complianceremediations/one-rule-tp-node-master-kubelet-eviction-thresholds-set-hard-

OpenShift Container Platform 4.9 Security and compliance

122

b. Using the scan-name, find the KubeletConfig object that the remediation was applied to:

Example output

c. Manually remove the remediation, imagefs.available: 10%, from the KubeletConfig
object:

IMPORTANT

All affected nodes with the remediation will be rebooted.

NOTE

You must also exclude the rule from any scheduled scans in your tailored profiles that
auto-applies the remediation, otherwise, the remediation will be re-applied during the
next scheduled scan.

5.10.12. Inconsistent ComplianceScan

The ScanSetting object lists the node roles that the compliance scans generated from the
ScanSetting or ScanSettingBinding objects would scan. Each node role usually maps to a machine
config pool.

IMPORTANT

It is expected that all machines in a machine config pool are identical and all scan results
from the nodes in a pool should be identical.

If some of the results are different from others, the Compliance Operator flags a
ComplianceCheckResult object where some of the nodes will report as INCONSISTENT. All
ComplianceCheckResult objects are also labeled with compliance.openshift.io/inconsistent-check.

Because the number of machines in a pool might be quite large, the Compliance Operator attempts to
find the most common state and list the nodes that differ from the common state. The most common
state is stored in the compliance.openshift.io/most-common-status annotation and the annotation
compliance.openshift.io/inconsistent-source contains pairs of hostname:status of check statuses
that differ from the most common status. If no common state can be found, all the hostname:status
pairs are listed in the compliance.openshift.io/inconsistent-source annotation.

If possible, a remediation is still created so that the cluster can converge to a compliant status. However,
this might not always be possible and correcting the difference between nodes must be done manually.
The compliance scan must be re-run to get a consistent result by annotating the scan with the

imagefs-available \
-p '{"spec":{"apply":false}}' --type=merge

$ oc -n openshift-compliance get kubeletconfig \
--selector compliance.openshift.io/scan-name=one-rule-tp-node-master

NAME AGE
compliance-operator-kubelet-master 2m34s

$ oc edit -n openshift-compliance KubeletConfig compliance-operator-kubelet-master

CHAPTER 5. COMPLIANCE OPERATOR

123

compliance.openshift.io/rescan= option:

5.10.13. Additional resources

Modifying nodes.

5.11. PERFORMING ADVANCED COMPLIANCE OPERATOR TASKS

The Compliance Operator includes options for advanced users for the purpose of debugging or
integration with existing tooling.

5.11.1. Using the ComplianceSuite and ComplianceScan objects directly

While it is recommended that users take advantage of the ScanSetting and ScanSettingBinding
objects to define the suites and scans, there are valid use cases to define the ComplianceSuite objects
directly:

Specifying only a single rule to scan. This can be useful for debugging together with the debug:
true attribute which increases the OpenSCAP scanner verbosity, as the debug mode tends to
get quite verbose otherwise. Limiting the test to one rule helps to lower the amount of debug
information.

Providing a custom nodeSelector. In order for a remediation to be applicable, the nodeSelector
must match a pool.

Pointing the Scan to a bespoke config map with a tailoring file.

For testing or development when the overhead of parsing profiles from bundles is not required.

The following example shows a ComplianceSuite that scans the worker machines with only a single rule:

The ComplianceSuite object and the ComplianceScan objects referred to above specify several
attributes in a format that OpenSCAP expects.

To find out the profile, content, or rule values, you can start by creating a similar Suite from ScanSetting
and ScanSettingBinding or inspect the objects parsed from the ProfileBundle objects like rules or

$ oc -n openshift-compliance \
annotate compliancescans/rhcos4-e8-worker compliance.openshift.io/rescan=

apiVersion: compliance.openshift.io/v1alpha1
kind: ComplianceSuite
metadata:
 name: workers-compliancesuite
spec:
 scans:
 - name: workers-scan
 profile: xccdf_org.ssgproject.content_profile_moderate
 content: ssg-rhcos4-ds.xml
 contentImage: quay.io/complianceascode/ocp4:latest
 debug: true
 rule: xccdf_org.ssgproject.content_rule_no_direct_root_logins
 nodeSelector:
 node-role.kubernetes.io/worker: ""

OpenShift Container Platform 4.9 Security and compliance

124

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/nodes/#nodes-nodes-managing-about_nodes-nodes-managing

1

profiles. Those objects contain the xccdf_org identifiers you can use to refer to them from a
ComplianceSuite.

5.11.2. Setting PriorityClass for ScanSetting scans

In large scale environments, the default PriorityClass object can be too low to guarantee Pods execute
scans on time. For clusters that must maintain compliance or guarantee automated scanning, it is
recommended to set the PriorityClass variable to ensure the Compliance Operator is always given
priority in resource constrained situations.

Procedure

Set the PriorityClass variable:

If the PriorityClass referenced in the ScanSetting cannot be found, the Operator will
leave the PriorityClass empty, issue a warning, and continue scheduling scans without a
PriorityClass.

apiVersion: compliance.openshift.io/v1alpha1
strictNodeScan: true
metadata:
 name: default
 namespace: openshift-compliance
priorityClass: compliance-high-priority 1
kind: ScanSetting
showNotApplicable: false
rawResultStorage:
 nodeSelector:
 node-role.kubernetes.io/master: ''
 pvAccessModes:
 - ReadWriteOnce
 rotation: 3
 size: 1Gi
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
 operator: Exists
 - effect: NoExecute
 key: node.kubernetes.io/not-ready
 operator: Exists
 tolerationSeconds: 300
 - effect: NoExecute
 key: node.kubernetes.io/unreachable
 operator: Exists
 tolerationSeconds: 300
 - effect: NoSchedule
 key: node.kubernetes.io/memory-pressure
 operator: Exists
schedule: 0 1 * * *
roles:
 - master
 - worker
scanTolerations:
 - operator: Exists

CHAPTER 5. COMPLIANCE OPERATOR

125

5.11.3. Using raw tailored profiles

While the TailoredProfile CR enables the most common tailoring operations, the XCCDF standard
allows even more flexibility in tailoring OpenSCAP profiles. In addition, if your organization has been
using OpenScap previously, you may have an existing XCCDF tailoring file and can reuse it.

The ComplianceSuite object contains an optional TailoringConfigMap attribute that you can point to
a custom tailoring file. The value of the TailoringConfigMap attribute is a name of a config map which
must contain a key called tailoring.xml and the value of this key is the tailoring contents.

Procedure

1. Create the ConfigMap object from a file:

2. Reference the tailoring file in a scan that belongs to a suite:

5.11.4. Performing a rescan

Typically you will want to re-run a scan on a defined schedule, like every Monday or daily. It can also be
useful to re-run a scan once after fixing a problem on a node. To perform a single scan, annotate the
scan with the compliance.openshift.io/rescan= option:

A rescan generates four additional mc for rhcos-moderate profile:

Example output

$ oc -n openshift-compliance \
create configmap nist-moderate-modified \
--from-file=tailoring.xml=/path/to/the/tailoringFile.xml

apiVersion: compliance.openshift.io/v1alpha1
kind: ComplianceSuite
metadata:
 name: workers-compliancesuite
spec:
 debug: true
 scans:
 - name: workers-scan
 profile: xccdf_org.ssgproject.content_profile_moderate
 content: ssg-rhcos4-ds.xml
 contentImage: quay.io/complianceascode/ocp4:latest
 debug: true
 tailoringConfigMap:
 name: nist-moderate-modified
 nodeSelector:
 node-role.kubernetes.io/worker: ""

$ oc -n openshift-compliance \
annotate compliancescans/rhcos4-e8-worker compliance.openshift.io/rescan=

$ oc get mc

75-worker-scan-chronyd-or-ntpd-specify-remote-server

OpenShift Container Platform 4.9 Security and compliance

126

IMPORTANT

When the scan setting default-auto-apply label is applied, remediations are applied
automatically and outdated remediations automatically update. If there are remediations
that were not applied due to dependencies, or remediations that had been outdated,
rescanning applies the remediations and might trigger a reboot. Only remediations that
use MachineConfig objects trigger reboots. If there are no updates or dependencies to
be applied, no reboot occurs.

5.11.5. Setting custom storage size for results

While the custom resources such as ComplianceCheckResult represent an aggregated result of one
check across all scanned nodes, it can be useful to review the raw results as produced by the scanner.
The raw results are produced in the ARF format and can be large (tens of megabytes per node), it is
impractical to store them in a Kubernetes resource backed by the etcd key-value store. Instead, every
scan creates a persistent volume (PV) which defaults to 1GB size. Depending on your environment, you
may want to increase the PV size accordingly. This is done using the rawResultStorage.size attribute
that is exposed in both the ScanSetting and ComplianceScan resources.

A related parameter is rawResultStorage.rotation which controls how many scans are retained in the
PV before the older scans are rotated. The default value is 3, setting the rotation policy to 0 disables the
rotation. Given the default rotation policy and an estimate of 100MB per a raw ARF scan report, you can
calculate the right PV size for your environment.

5.11.5.1. Using custom result storage values

Because OpenShift Container Platform can be deployed in a variety of public clouds or bare metal, the
Compliance Operator cannot determine available storage configurations. By default, the Compliance
Operator will try to create the PV for storing results using the default storage class of the cluster, but a
custom storage class can be configured using the rawResultStorage.StorageClassName attribute.

IMPORTANT

If your cluster does not specify a default storage class, this attribute must be set.

Configure the ScanSetting custom resource to use a standard storage class and create persistent
volumes that are 10GB in size and keep the last 10 results:

Example ScanSetting CR

75-worker-scan-configure-usbguard-auditbackend
75-worker-scan-service-usbguard-enabled
75-worker-scan-usbguard-allow-hid-and-hub

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSetting
metadata:
 name: default
 namespace: openshift-compliance
rawResultStorage:
 storageClassName: standard
 rotation: 10
 size: 10Gi
roles:

CHAPTER 5. COMPLIANCE OPERATOR

127

5.11.6. Applying remediations generated by suite scans

Although you can use the autoApplyRemediations boolean parameter in a ComplianceSuite object,
you can alternatively annotate the object with compliance.openshift.io/apply-remediations. This
allows the Operator to apply all of the created remediations.

Procedure

Apply the compliance.openshift.io/apply-remediations annotation by running:

5.11.7. Automatically update remediations

In some cases, a scan with newer content might mark remediations as OUTDATED. As an administrator,
you can apply the compliance.openshift.io/remove-outdated annotation to apply new remediations
and remove the outdated ones.

Procedure

Apply the compliance.openshift.io/remove-outdated annotation:

Alternatively, set the autoUpdateRemediations flag in a ScanSetting or ComplianceSuite object to
update the remediations automatically.

5.11.8. Creating a custom SCC for the Compliance Operator

In some environments, you must create a custom Security Context Constraints (SCC) file to ensure the
correct permissions are available to the Compliance Operator api-resource-collector.

Prerequisites

You must have admin privileges.

Procedure

1. Define the SCC in a YAML file named restricted-adjusted-compliance.yaml:

SecurityContextConstraints object definition

- worker
- master
scanTolerations:
- effect: NoSchedule
 key: node-role.kubernetes.io/master
 operator: Exists
schedule: '0 1 * * *'

$ oc -n openshift-compliance \
annotate compliancesuites/workers-compliancesuite compliance.openshift.io/apply-remediations=

$ oc -n openshift-compliance \
annotate compliancesuites/workers-compliancesuite compliance.openshift.io/remove-outdated=

OpenShift Container Platform 4.9 Security and compliance

128

1

2

The priority of this SCC must be higher than any other SCC that applies to the
system:authenticated group.

Service Account used by Compliance Operator Scanner pod.

2. Create the SCC:

Example output

Verification

 allowHostDirVolumePlugin: false
 allowHostIPC: false
 allowHostNetwork: false
 allowHostPID: false
 allowHostPorts: false
 allowPrivilegeEscalation: true
 allowPrivilegedContainer: false
 allowedCapabilities: null
 apiVersion: security.openshift.io/v1
 defaultAddCapabilities: null
 fsGroup:
 type: MustRunAs
 kind: SecurityContextConstraints
 metadata:
 name: restricted-adjusted-compliance
 priority: 30 1
 readOnlyRootFilesystem: false
 requiredDropCapabilities:
 - KILL
 - SETUID
 - SETGID
 - MKNOD
 runAsUser:
 type: MustRunAsRange
 seLinuxContext:
 type: MustRunAs
 supplementalGroups:
 type: RunAsAny
 users:
 - system:serviceaccount:openshift-compliance:api-resource-collector 2
 volumes:
 - configMap
 - downwardAPI
 - emptyDir
 - persistentVolumeClaim
 - projected
 - secret

$ oc create -n openshift-compliance -f restricted-adjusted-compliance.yaml

securitycontextconstraints.security.openshift.io/restricted-adjusted-compliance created

CHAPTER 5. COMPLIANCE OPERATOR

129

1. Verify the SCC was created:

Example output

5.11.9. Additional resources

Managing security context constraints

5.12. TROUBLESHOOTING THE COMPLIANCE OPERATOR

This section describes how to troubleshoot the Compliance Operator. The information can be useful
either to diagnose a problem or provide information in a bug report. Some general tips:

The Compliance Operator emits Kubernetes events when something important happens. You
can either view all events in the cluster using the command:

Or view events for an object like a scan using the command:

The Compliance Operator consists of several controllers, approximately one per API object. It
could be useful to filter only those controllers that correspond to the API object having issues. If
a ComplianceRemediation cannot be applied, view the messages from the remediationctrl
controller. You can filter the messages from a single controller by parsing with jq:

The timestamps are logged as seconds since UNIX epoch in UTC. To convert them to a human-
readable date, use date -d @timestamp --utc, for example:

Many custom resources, most importantly ComplianceSuite and ScanSetting, allow the debug
option to be set. Enabling this option increases verbosity of the OpenSCAP scanner pods, as
well as some other helper pods.

If a single rule is passing or failing unexpectedly, it could be helpful to run a single scan or a suite
with only that rule to find the rule ID from the corresponding ComplianceCheckResult object
and use it as the rule attribute value in a Scan CR. Then, together with the debug option
enabled, the scanner container logs in the scanner pod would show the raw OpenSCAP logs.

$ oc get -n openshift-compliance scc restricted-adjusted-compliance

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP
SUPGROUP PRIORITY READONLYROOTFS VOLUMES
restricted-adjusted-compliance false <no value> MustRunAs MustRunAsRange
MustRunAs RunAsAny 30 false
["configMap","downwardAPI","emptyDir","persistentVolumeClaim","projected","secret"]

 $ oc get events -n openshift-compliance

$ oc describe -n openshift-compliance compliancescan/cis-compliance

$ oc -n openshift-compliance logs compliance-operator-775d7bddbd-gj58f \
| jq -c 'select(.logger == "profilebundlectrl")'

$ date -d @1596184628.955853 --utc

OpenShift Container Platform 4.9 Security and compliance

130

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#managing-security-context-constraints

5.12.1. Anatomy of a scan

The following sections outline the components and stages of Compliance Operator scans.

5.12.1.1. Compliance sources

The compliance content is stored in Profile objects that are generated from a ProfileBundle object.
The Compliance Operator creates a ProfileBundle object for the cluster and another for the cluster
nodes.

The ProfileBundle objects are processed by deployments labeled with the Bundle name. To
troubleshoot an issue with the Bundle, you can find the deployment and view logs of the pods in a
deployment:

5.12.1.2. The ScanSetting and ScanSettingBinding objects lifecycle and debugging

With valid compliance content sources, the high-level ScanSetting and ScanSettingBinding objects
can be used to generate ComplianceSuite and ComplianceScan objects:

$ oc get -n openshift-compliance profilebundle.compliance

$ oc get -n openshift-compliance profile.compliance

$ oc logs -n openshift-compliance -lprofile-bundle=ocp4 -c profileparser

$ oc get -n openshift-compliance deployments,pods -lprofile-bundle=ocp4

$ oc logs -n openshift-compliance pods/<pod-name>

$ oc describe -n openshift-compliance pod/<pod-name> -c profileparser

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSetting
metadata:
 name: my-companys-constraints
debug: true
For each role, a separate scan will be created pointing
to a node-role specified in roles
roles:
 - worker

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSettingBinding
metadata:
 name: my-companys-compliance-requirements
profiles:
 # Node checks
 - name: rhcos4-e8
 kind: Profile
 apiGroup: compliance.openshift.io/v1alpha1
 # Cluster checks
 - name: ocp4-e8

CHAPTER 5. COMPLIANCE OPERATOR

131

Both ScanSetting and ScanSettingBinding objects are handled by the same controller tagged with
logger=scansettingbindingctrl. These objects have no status. Any issues are communicated in form of
events:

Now a ComplianceSuite object is created. The flow continues to reconcile the newly created
ComplianceSuite.

5.12.1.3. ComplianceSuite custom resource lifecycle and debugging

The ComplianceSuite CR is a wrapper around ComplianceScan CRs. The ComplianceSuite CR is
handled by controller tagged with logger=suitectrl. This controller handles creating scans from a suite,
reconciling and aggregating individual Scan statuses into a single Suite status. If a suite is set to execute
periodically, the suitectrl also handles creating a CronJob CR that re-runs the scans in the suite after
the initial run is done:

Example output

For the most important issues, events are emitted. View them with oc describe
compliancesuites/<name>. The Suite objects also have a Status subresource that is updated when
any of Scan objects that belong to this suite update their Status subresource. After all expected scans
are created, control is passed to the scan controller.

5.12.1.4. ComplianceScan custom resource lifecycle and debugging

The ComplianceScan CRs are handled by the scanctrl controller. This is also where the actual scans
happen and the scan results are created. Each scan goes through several phases:

5.12.1.4.1. Pending phase

The scan is validated for correctness in this phase. If some parameters like storage size are invalid, the
scan transitions to DONE with ERROR result, otherwise proceeds to the Launching phase.

5.12.1.4.2. Launching phase

In this phase, several config maps that contain either environment for the scanner pods or directly the

 kind: Profile
 apiGroup: compliance.openshift.io/v1alpha1
settingsRef:
 name: my-companys-constraints
 kind: ScanSetting
 apiGroup: compliance.openshift.io/v1alpha1

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuiteCreated 9m52s scansettingbindingctrl ComplianceSuite openshift-compliance/my-
companys-compliance-requirements created

$ oc get cronjobs

NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
<cron_name> 0 1 * * * False 0 <none> 151m

OpenShift Container Platform 4.9 Security and compliance

132

In this phase, several config maps that contain either environment for the scanner pods or directly the
script that the scanner pods will be evaluating. List the config maps:

These config maps will be used by the scanner pods. If you ever needed to modify the scanner behavior,
change the scanner debug level or print the raw results, modifying the config maps is the way to go.
Afterwards, a persistent volume claim is created per scan to store the raw ARF results:

The PVCs are mounted by a per-scan ResultServer deployment. A ResultServer is a simple HTTP
server where the individual scanner pods upload the full ARF results to. Each server can run on a
different node. The full ARF results might be very large and you cannot presume that it would be
possible to create a volume that could be mounted from multiple nodes at the same time. After the scan
is finished, the ResultServer deployment is scaled down. The PVC with the raw results can be mounted
from another custom pod and the results can be fetched or inspected. The traffic between the scanner
pods and the ResultServer is protected by mutual TLS protocols.

Finally, the scanner pods are launched in this phase; one scanner pod for a Platform scan instance and
one scanner pod per matching node for a node scan instance. The per-node pods are labeled with the
node name. Each pod is always labeled with the ComplianceScan name:

Example output

+ The scan then proceeds to the Running phase.

5.12.1.4.3. Running phase

The running phase waits until the scanner pods finish. The following terms and processes are in use in
the running phase:

init container: There is one init container called content-container. It runs the contentImage
container and executes a single command that copies the contentFile to the /content directory
shared with the other containers in this pod.

scanner: This container runs the scan. For node scans, the container mounts the node
filesystem as /host and mounts the content delivered by the init container. The container also
mounts the entrypoint ConfigMap created in the Launching phase and executes it. The
default script in the entrypoint ConfigMap executes OpenSCAP and stores the result files in
the /results directory shared between the pod’s containers. Logs from this pod can be viewed
to determine what the OpenSCAP scanner checked. More verbose output can be viewed with
the debug flag.

$ oc -n openshift-compliance get cm \
-l compliance.openshift.io/scan-name=rhcos4-e8-worker,complianceoperator.openshift.io/scan-
script=

$ oc get pvc -n openshift-compliance -lcompliance.openshift.io/scan-name=rhcos4-e8-worker

$ oc get pods -lcompliance.openshift.io/scan-name=rhcos4-e8-worker,workload=scanner --show-
labels

NAME READY STATUS RESTARTS AGE LABELS
rhcos4-e8-worker-ip-10-0-169-90.eu-north-1.compute.internal-pod 0/2 Completed 0 39m
compliance.openshift.io/scan-name=rhcos4-e8-worker,targetNode=ip-10-0-169-90.eu-north-
1.compute.internal,workload=scanner

CHAPTER 5. COMPLIANCE OPERATOR

133

logcollector: The logcollector container waits until the scanner container finishes. Then, it
uploads the full ARF results to the ResultServer and separately uploads the XCCDF results
along with scan result and OpenSCAP result code as a ConfigMap. These result config maps
are labeled with the scan name (compliance.openshift.io/scan-name=rhcos4-e8-worker):

Example output

Scanner pods for Platform scans are similar, except:

There is one extra init container called api-resource-collector that reads the OpenSCAP
content provided by the content-container init, container, figures out which API resources the
content needs to examine and stores those API resources to a shared directory where the
scanner container would read them from.

The scanner container does not need to mount the host file system.

When the scanner pods are done, the scans move on to the Aggregating phase.

5.12.1.4.4. Aggregating phase

In the aggregating phase, the scan controller spawns yet another pod called the aggregator pod. Its
purpose it to take the result ConfigMap objects, read the results and for each check result create the
corresponding Kubernetes object. If the check failure can be automatically remediated, a
ComplianceRemediation object is created. To provide human-readable metadata for the checks and
remediations, the aggregator pod also mounts the OpenSCAP content using an init container.

When a config map is processed by an aggregator pod, it is labeled the compliance-
remediations/processed label. The result of this phase are ComplianceCheckResult objects:

Example output

$ oc describe cm/rhcos4-e8-worker-ip-10-0-169-90.eu-north-1.compute.internal-pod

 Name: rhcos4-e8-worker-ip-10-0-169-90.eu-north-1.compute.internal-pod
 Namespace: openshift-compliance
 Labels: compliance.openshift.io/scan-name-scan=rhcos4-e8-worker
 complianceoperator.openshift.io/scan-result=
 Annotations: compliance-remediations/processed:
 compliance.openshift.io/scan-error-msg:
 compliance.openshift.io/scan-result: NON-COMPLIANT
 OpenSCAP-scan-result/node: ip-10-0-169-90.eu-north-1.compute.internal

 Data
 ====
 exit-code:

 2
 results:

 <?xml version="1.0" encoding="UTF-8"?>
 ...

$ oc get compliancecheckresults -lcompliance.openshift.io/scan-name=rhcos4-e8-worker

OpenShift Container Platform 4.9 Security and compliance

134

and ComplianceRemediation objects:

Example output

After these CRs are created, the aggregator pod exits and the scan moves on to the Done phase.

5.12.1.4.5. Done phase

In the final scan phase, the scan resources are cleaned up if needed and the ResultServer deployment
is either scaled down (if the scan was one-time) or deleted if the scan is continuous; the next scan
instance would then recreate the deployment again.

It is also possible to trigger a re-run of a scan in the Done phase by annotating it:

After the scan reaches the Done phase, nothing else happens on its own unless the remediations are set
to be applied automatically with autoApplyRemediations: true. The OpenShift Container Platform
administrator would now review the remediations and apply them as needed. If the remediations are set
to be applied automatically, the ComplianceSuite controller takes over in the Done phase, pauses the
machine config pool to which the scan maps to and applies all the remediations in one go. If a
remediation is applied, the ComplianceRemediation controller takes over.

5.12.1.5. ComplianceRemediation controller lifecycle and debugging

The example scan has reported some findings. One of the remediations can be enabled by toggling its
apply attribute to true:

The ComplianceRemediation controller (logger=remediationctrl) reconciles the modified object. The
result of the reconciliation is change of status of the remediation object that is reconciled, but also a
change of the rendered per-suite MachineConfig object that contains all the applied remediations.

The MachineConfig object always begins with 75- and is named after the scan and the suite:

NAME STATUS SEVERITY
rhcos4-e8-worker-accounts-no-uid-except-zero PASS high
rhcos4-e8-worker-audit-rules-dac-modification-chmod FAIL medium

$ oc get complianceremediations -lcompliance.openshift.io/scan-name=rhcos4-e8-worker

NAME STATE
rhcos4-e8-worker-audit-rules-dac-modification-chmod NotApplied
rhcos4-e8-worker-audit-rules-dac-modification-chown NotApplied
rhcos4-e8-worker-audit-rules-execution-chcon NotApplied
rhcos4-e8-worker-audit-rules-execution-restorecon NotApplied
rhcos4-e8-worker-audit-rules-execution-semanage NotApplied
rhcos4-e8-worker-audit-rules-execution-setfiles NotApplied

$ oc -n openshift-compliance \
annotate compliancescans/rhcos4-e8-worker compliance.openshift.io/rescan=

$ oc patch complianceremediations/rhcos4-e8-worker-audit-rules-dac-modification-chmod --patch
'{"spec":{"apply":true}}' --type=merge

$ oc get mc | grep 75-

CHAPTER 5. COMPLIANCE OPERATOR

135

Example output

The remediations the mc currently consists of are listed in the machine config’s annotations:

Example output

The ComplianceRemediation controller’s algorithm works like this:

All currently applied remediations are read into an initial remediation set.

If the reconciled remediation is supposed to be applied, it is added to the set.

A MachineConfig object is rendered from the set and annotated with names of remediations in
the set. If the set is empty (the last remediation was unapplied), the rendered MachineConfig
object is removed.

If and only if the rendered machine config is different from the one already applied in the
cluster, the applied MC is updated (or created, or deleted).

Creating or modifying a MachineConfig object triggers a reboot of nodes that match the
machineconfiguration.openshift.io/role label - see the Machine Config Operator
documentation for more details.

The remediation loop ends once the rendered machine config is updated, if needed, and the reconciled
remediation object status is updated. In our case, applying the remediation would trigger a reboot. After
the reboot, annotate the scan to re-run it:

The scan will run and finish. Check for the remediation to pass:

Example output

5.12.1.6. Useful labels

Each pod that is spawned by the Compliance Operator is labeled specifically with the scan it belongs to

75-rhcos4-e8-worker-my-companys-compliance-requirements 3.2.0
2m46s

$ oc describe mc/75-rhcos4-e8-worker-my-companys-compliance-requirements

Name: 75-rhcos4-e8-worker-my-companys-compliance-requirements
Labels: machineconfiguration.openshift.io/role=worker
Annotations: remediation/rhcos4-e8-worker-audit-rules-dac-modification-chmod:

$ oc -n openshift-compliance \
annotate compliancescans/rhcos4-e8-worker compliance.openshift.io/rescan=

$ oc -n openshift-compliance \
get compliancecheckresults/rhcos4-e8-worker-audit-rules-dac-modification-chmod

NAME STATUS SEVERITY
rhcos4-e8-worker-audit-rules-dac-modification-chmod PASS medium

OpenShift Container Platform 4.9 Security and compliance

136

Each pod that is spawned by the Compliance Operator is labeled specifically with the scan it belongs to
and the work it does. The scan identifier is labeled with the compliance.openshift.io/scan-name label.
The workload identifier is labeled with the workload label.

The Compliance Operator schedules the following workloads:

scanner: Performs the compliance scan.

resultserver: Stores the raw results for the compliance scan.

aggregator: Aggregates the results, detects inconsistencies and outputs result objects
(checkresults and remediations).

suitererunner: Will tag a suite to be re-run (when a schedule is set).

profileparser: Parses a datastream and creates the appropriate profiles, rules and variables.

When debugging and logs are required for a certain workload, run:

5.12.2. Increasing Compliance Operator resource limits

In some cases, the Compliance Operator might require more memory than the default limits allow. The
best way to mitigate this issue is to set custom resource limits.

To increase the default memory and CPU limits of scanner pods, see `ScanSetting` Custom resource .

Procedure

1. To increase the Operator’s memory limits to 500 Mi, create the following patch file named co-
memlimit-patch.yaml:

2. Apply the patch file:

5.12.3. Configuring Operator resource constraints

The resources field defines Resource Constraints for all the containers in the Pod created by the
Operator Lifecycle Manager (OLM).

NOTE

Resource Constraints applied in this process overwrites the existing resource constraints.

Procedure

$ oc logs -l workload=<workload_name> -c <container_name>

spec:
 config:
 resources:
 limits:
 memory: 500Mi

$ oc patch sub compliance-operator -nopenshift-compliance --patch-file co-memlimit-
patch.yaml --type=merge

CHAPTER 5. COMPLIANCE OPERATOR

137

1

2

Inject a request of 0.25 cpu and 64 Mi of memory, and a limit of 0.5 cpu and 128 Mi of memory in
each container by editing the Subscription object:

5.12.4. Configuring ScanSetting timeout

The ScanSetting object has a timeout option that can be specified in the ComplianceScanSetting
object as a duration string, such as 1h30m. If the scan does not finish within the specified timeout, the
scan reattempts until the maxRetryOnTimeout limit is reached.

Procedure

To set a timeout and maxRetryOnTimeout in ScanSetting, modify an existing ScanSetting
object:

The timeout variable is defined as a duration string, such as 1h30m. The default value is
30m. To disable the timeout, set the value to 0s.

The maxRetryOnTimeout variable defines how many times a retry is attempted. The
default value is 3.

kind: Subscription
metadata:
 name: custom-operator
spec:
 package: etcd
 channel: alpha
 config:
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSetting
metadata:
 name: default
 namespace: openshift-compliance
rawResultStorage:
 rotation: 3
 size: 1Gi
roles:
- worker
- master
scanTolerations:
- effect: NoSchedule
 key: node-role.kubernetes.io/master
 operator: Exists
schedule: '0 1 * * *'
timeout: '10m0s' 1
maxRetryOnTimeout: 3 2

OpenShift Container Platform 4.9 Security and compliance

138

5.12.5. Getting support

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager. Insights provides
details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for
the most relevant documentation component. Please provide specific details, such as the section name
and OpenShift Container Platform version.

5.13. UNINSTALLING THE COMPLIANCE OPERATOR

You can remove the OpenShift Compliance Operator from your cluster by using the OpenShift
Container Platform web console or the CLI.

5.13.1. Uninstalling the OpenShift Compliance Operator from OpenShift Container
Platform using the web console

To remove the Compliance Operator, you must first delete the objects in the namespace. After the
objects are removed, you can remove the Operator and its namespace by deleting the openshift-
compliance project.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

The OpenShift Compliance Operator must be installed.

Procedure

To remove the Compliance Operator by using the OpenShift Container Platform web console:

1. Go to the Operators → Installed Operators → Compliance Operator page.

a. Click All instances.

b. In All namespaces, click the Options menu and delete all ScanSettingBinding,
ComplainceSuite, ComplianceScan, and ProfileBundle objects.

2. Switch to the Administration → Operators → Installed Operators page.

3. Click the Options menu on the Compliance Operator entry and select Uninstall
Operator.

CHAPTER 5. COMPLIANCE OPERATOR

139

http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12385632

4. Switch to the Home → Projects page.

5. Search for 'compliance'.

6. Click the Options menu next to the openshift-compliance project, and select Delete
Project.

a. Confirm the deletion by typing openshift-compliance in the dialog box, and click Delete.

5.13.2. Uninstalling the OpenShift Compliance Operator from OpenShift Container
Platform using the CLI

To remove the Compliance Operator, you must first delete the objects in the namespace. After the
objects are removed, you can remove the Operator and its namespace by deleting the openshift-
compliance project.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

The OpenShift Compliance Operator must be installed.

Procedure

1. Delete all objects in the namespace.

a. Delete the ScanSettingBinding objects:

b. Delete the ScanSetting objects:

c. Delete the ComplianceSuite objects:

d. Delete the ComplianceScan objects:

e. Obtain the ProfileBundle objects:

Example output

$ oc delete ssb <ScanSettingBinding-name> -n openshift-compliance

$ oc delete ss <ScanSetting-name> -n openshift-compliance

$ oc delete suite <compliancesuite-name> -n openshift-compliance

$ oc delete scan <compliancescan-name> -n openshift-compliance

$ oc get profilebundle.compliance -n openshift-compliance

NAME CONTENTIMAGE CONTENTFILE
STATUS
ocp4 registry.redhat.io/compliance/openshift-compliance-content-rhel8@sha256:

OpenShift Container Platform 4.9 Security and compliance

140

f. Delete the ProfileBundle objects:

Example output

2. Delete the Subscription object:

3. Delete the CSV object:

4. Delete the project:

Example output

Verification

1. Confirm the namespace is deleted:

Example output

5.14. USING THE OC-COMPLIANCE PLUGIN

Although the Compliance Operator automates many of the checks and remediations for the cluster, the
full process of bringing a cluster into compliance often requires administrator interaction with the
Compliance Operator API and other components. The oc-compliance plugin makes the process easier.

5.14.1. Installing the oc-compliance plugin

Procedure

1. Extract the oc-compliance image to get the oc-compliance binary:

<hash> ssg-ocp4-ds.xml VALID
rhcos4 registry.redhat.io/compliance/openshift-compliance-content-rhel8@sha256:
<hash> ssg-rhcos4-ds.xml VALID

$ oc delete profilebundle.compliance ocp4 rhcos4 -n openshift-compliance

profilebundle.compliance.openshift.io "ocp4" deleted
profilebundle.compliance.openshift.io "rhcos4" deleted

$ oc delete sub <Subscription-Name> -n openshift-compliance

$ oc delete CSV -n openshift-compliance

$ oc delete project -n openshift-compliance

project.project.openshift.io "openshift-compliance" deleted

$ oc get project/openshift-compliance

Error from server (NotFound): namespaces "openshift-compliance" not found

CHAPTER 5. COMPLIANCE OPERATOR

141

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#understanding-compliance-operator

Example output

You can now run oc-compliance.

5.14.2. Fetching raw results

When a compliance scan finishes, the results of the individual checks are listed in the resulting
ComplianceCheckResult custom resource (CR). However, an administrator or auditor might require
the complete details of the scan. The OpenSCAP tool creates an Advanced Recording Format (ARF)
formatted file with the detailed results. This ARF file is too large to store in a config map or other
standard Kubernetes resource, so a persistent volume (PV) is created to contain it.

Procedure

Fetching the results from the PV with the Compliance Operator is a four-step process.
However, with the oc-compliance plugin, you can use a single command:

<object-type> can be either scansettingbinding, compliancescan or compliancesuite,
depending on which of these objects the scans were launched with.

<object-name> is the name of the binding, suite, or scan object to gather the ARF file for, and
<output-path> is the local directory to place the results.
For example:

Example output

View the list of files in the directory:

Example output

$ podman run --rm -v ~/.local/bin:/mnt/out:Z registry.redhat.io/compliance/oc-compliance-
rhel8:stable /bin/cp /usr/bin/oc-compliance /mnt/out/

W0611 20:35:46.486903 11354 manifest.go:440] Chose linux/amd64 manifest from the
manifest list.

$ oc compliance fetch-raw <object-type> <object-name> -o <output-path>

$ oc compliance fetch-raw scansettingbindings my-binding -o /tmp/

Fetching results for my-binding scans: ocp4-cis, ocp4-cis-node-worker, ocp4-cis-node-master
Fetching raw compliance results for scan 'ocp4-cis'.......
The raw compliance results are available in the following directory: /tmp/ocp4-cis
Fetching raw compliance results for scan 'ocp4-cis-node-worker'...........
The raw compliance results are available in the following directory: /tmp/ocp4-cis-node-
worker
Fetching raw compliance results for scan 'ocp4-cis-node-master'......
The raw compliance results are available in the following directory: /tmp/ocp4-cis-node-
master

$ ls /tmp/ocp4-cis-node-master/

OpenShift Container Platform 4.9 Security and compliance

142

Extract the results:

View the results:

Example output

5.14.3. Re-running scans

Although it is possible to run scans as scheduled jobs, you must often re-run a scan on demand,
particularly after remediations are applied or when other changes to the cluster are made.

Procedure

Rerunning a scan with the Compliance Operator requires use of an annotation on the scan
object. However, with the oc-compliance plugin you can rerun a scan with a single command.
Enter the following command to rerun the scans for the ScanSettingBinding object named
my-binding:

Example output

5.14.4. Using ScanSettingBinding custom resources

When using the ScanSetting and ScanSettingBinding custom resources (CRs) that the Compliance
Operator provides, it is possible to run scans for multiple profiles while using a common set of scan
options, such as schedule, machine roles, tolerations, and so on. While that is easier than working with
multiple ComplianceSuite or ComplianceScan objects, it can confuse new users.

The oc compliance bind subcommand helps you create a ScanSettingBinding CR.

Procedure

1. Run:

ocp4-cis-node-master-ip-10-0-128-89.ec2.internal-pod.xml.bzip2 ocp4-cis-node-master-ip-10-0-150-
5.ec2.internal-pod.xml.bzip2 ocp4-cis-node-master-ip-10-0-163-32.ec2.internal-pod.xml.bzip2

$ bunzip2 -c resultsdir/worker-scan/worker-scan-stage-459-tqkg7-compute-0-pod.xml.bzip2 >
resultsdir/worker-scan/worker-scan-ip-10-0-170-231.us-east-2.compute.internal-pod.xml

$ ls resultsdir/worker-scan/

worker-scan-ip-10-0-170-231.us-east-2.compute.internal-pod.xml
worker-scan-stage-459-tqkg7-compute-0-pod.xml.bzip2
worker-scan-stage-459-tqkg7-compute-1-pod.xml.bzip2

$ oc compliance rerun-now scansettingbindings my-binding

Rerunning scans from 'my-binding': ocp4-cis
Re-running scan 'openshift-compliance/ocp4-cis'

CHAPTER 5. COMPLIANCE OPERATOR

143

If you omit the -S flag, the default scan setting provided by the Compliance Operator is
used.

The object type is the Kubernetes object type, which can be profile or tailoredprofile. More
than one object can be provided.

The object name is the name of the Kubernetes resource, such as .metadata.name.

Add the --dry-run option to display the YAML file of the objects that are created.
For example, given the following profiles and scan settings:

Example output

Example output

2. To apply the default settings to the ocp4-cis and ocp4-cis-node profiles, run:

Example output

Once the ScanSettingBinding CR is created, the bound profile begins scanning for both
profiles with the related settings. Overall, this is the fastest way to begin scanning with the
Compliance Operator.

5.14.5. Printing controls

$ oc compliance bind [--dry-run] -N <binding name> [-S <scansetting name>]
<objtype/objname> [..<objtype/objname>]

$ oc get profile.compliance -n openshift-compliance

NAME AGE
ocp4-cis 9m54s
ocp4-cis-node 9m54s
ocp4-e8 9m54s
ocp4-moderate 9m54s
ocp4-ncp 9m54s
rhcos4-e8 9m54s
rhcos4-moderate 9m54s
rhcos4-ncp 9m54s
rhcos4-ospp 9m54s
rhcos4-stig 9m54s

$ oc get scansettings -n openshift-compliance

NAME AGE
default 10m
default-auto-apply 10m

$ oc compliance bind -N my-binding profile/ocp4-cis profile/ocp4-cis-node

Creating ScanSettingBinding my-binding

OpenShift Container Platform 4.9 Security and compliance

144

Compliance standards are generally organized into a hierarchy as follows:

A benchmark is the top-level definition of a set of controls for a particular standard. For
example, FedRAMP Moderate or Center for Internet Security (CIS) v.1.6.0.

A control describes a family of requirements that must be met in order to be in compliance with
the benchmark. For example, FedRAMP AC-01 (access control policy and procedures).

A rule is a single check that is specific for the system being brought into compliance, and one or
more of these rules map to a control.

The Compliance Operator handles the grouping of rules into a profile for a single benchmark. It
can be difficult to determine which controls that the set of rules in a profile satisfy.

Procedure

The oc compliance controls subcommand provides a report of the standards and controls that
a given profile satisfies:

Example output

5.14.6. Fetching compliance remediation details

The Compliance Operator provides remediation objects that are used to automate the changes
required to make the cluster compliant. The fetch-fixes subcommand can help you understand exactly
which configuration remediations are used. Use the fetch-fixes subcommand to extract the remediation
objects from a profile, rule, or ComplianceRemediation object into a directory to inspect.

Procedure

1. View the remediations for a profile:

Example output

$ oc compliance controls profile ocp4-cis-node

+-----------+----------+
| FRAMEWORK | CONTROLS |
+-----------+----------+
| CIS-OCP | 1.1.1 |
+ +----------+
| | 1.1.10 |
+ +----------+
| | 1.1.11 |
+ +----------+
...

$ oc compliance fetch-fixes profile ocp4-cis -o /tmp

No fixes to persist for rule 'ocp4-api-server-api-priority-flowschema-catch-all' 1
No fixes to persist for rule 'ocp4-api-server-api-priority-gate-enabled'
No fixes to persist for rule 'ocp4-api-server-audit-log-maxbackup'
Persisted rule fix to /tmp/ocp4-api-server-audit-log-maxsize.yaml
No fixes to persist for rule 'ocp4-api-server-audit-log-path'

CHAPTER 5. COMPLIANCE OPERATOR

145

1 The No fixes to persist warning is expected whenever there are rules in a profile that do
not have a corresponding remediation, because either the rule cannot be remediated
automatically or a remediation was not provided.

2. You can view a sample of the YAML file. The head command will show you the first 10 lines:

Example output

3. View the remediation from a ComplianceRemediation object created after a scan:

Example output

Example output

4. You can view a sample of the YAML file. The head command will show you the first 10 lines:

Example output

No fixes to persist for rule 'ocp4-api-server-auth-mode-no-aa'
No fixes to persist for rule 'ocp4-api-server-auth-mode-node'
No fixes to persist for rule 'ocp4-api-server-auth-mode-rbac'
No fixes to persist for rule 'ocp4-api-server-basic-auth'
No fixes to persist for rule 'ocp4-api-server-bind-address'
No fixes to persist for rule 'ocp4-api-server-client-ca'
Persisted rule fix to /tmp/ocp4-api-server-encryption-provider-cipher.yaml
Persisted rule fix to /tmp/ocp4-api-server-encryption-provider-config.yaml

$ head /tmp/ocp4-api-server-audit-log-maxsize.yaml

apiVersion: config.openshift.io/v1
kind: APIServer
metadata:
 name: cluster
spec:
 maximumFileSizeMegabytes: 100

$ oc get complianceremediations -n openshift-compliance

NAME STATE
ocp4-cis-api-server-encryption-provider-cipher NotApplied
ocp4-cis-api-server-encryption-provider-config NotApplied

$ oc compliance fetch-fixes complianceremediations ocp4-cis-api-server-encryption-provider-
cipher -o /tmp

Persisted compliance remediation fix to /tmp/ocp4-cis-api-server-encryption-provider-
cipher.yaml

$ head /tmp/ocp4-cis-api-server-encryption-provider-cipher.yaml

apiVersion: config.openshift.io/v1

OpenShift Container Platform 4.9 Security and compliance

146

WARNING

Use caution before applying remediations directly. Some remediations might not be
applicable in bulk, such as the usbguard rules in the moderate profile. In these cases,
allow the Compliance Operator to apply the rules because it addresses the
dependencies and ensures that the cluster remains in a good state.

5.14.7. Viewing ComplianceCheckResult object details

When scans are finished running, ComplianceCheckResult objects are created for the individual scan
rules. The view-result subcommand provides a human-readable output of the
ComplianceCheckResult object details.

Procedure

Run:

5.15. UNDERSTANDING THE CUSTOM RESOURCE DEFINITIONS

The Compliance Operator in the OpenShift Container Platform provides you with several Custom
Resource Definitions (CRDs) to accomplish the compliance scans. To run a compliance scan, it
leverages the predefined security policies, which are derived from the ComplianceAsCode community
project. The Compliance Operator converts these security policies into CRDs, which you can use to run
compliance scans and get remediations for the issues found.

5.15.1. CRDs workflow

The CRD provides you the following workflow to complete the compliance scans:

1. Define your compliance scan requirements

2. Configure the compliance scan settings

3. Process compliance requirements with compliance scans settings

4. Monitor the compliance scans

5. Check the compliance scan results

5.15.2. Defining the compliance scan requirements

kind: APIServer
metadata:
 name: cluster
spec:
 encryption:
 type: aescbc



$ oc compliance view-result ocp4-cis-scheduler-no-bind-address

CHAPTER 5. COMPLIANCE OPERATOR

147

https://github.com/ComplianceAsCode/content

1

By default, the Compliance Operator CRDs include ProfileBundle and Profile objects, in which you can
define and set the rules for your compliance scan requirements. You can also customize the default
profiles by using a TailoredProfile object.

5.15.2.1. ProfileBundle object

When you install the Compliance Operator, it includes ready-to-run ProfileBundle objects. The
Compliance Operator parses the ProfileBundle object and creates a Profile object for each profile in
the bundle. It also parses Rule and Variable objects, which are used by the Profile object.

Example ProfileBundle object

Indicates whether the Compliance Operator was able to parse the content files.

NOTE

When the contentFile fails, an errorMessage attribute appears, which provides details of
the error that occurred.

Troubleshooting

When you roll back to a known content image from an invalid image, the ProfileBundle object stops
responding and displays PENDING state. As a workaround, you can move to a different image than the
previous one. Alternatively, you can delete and re-create the ProfileBundle object to return to the
working state.

5.15.2.2. Profile object

The Profile object defines the rules and variables that can be evaluated for a certain compliance
standard. It contains parsed out details about an OpenSCAP profile, such as its XCCDF identifier and
profile checks for a Node or Platform type. You can either directly use the Profile object or further
customize it using a TailorProfile object.

NOTE

You cannot create or modify the Profile object manually because it is derived from a
single ProfileBundle object. Typically, a single ProfileBundle object can include several
Profile objects.

Example Profile object

apiVersion: compliance.openshift.io/v1alpha1
kind: ProfileBundle
 name: <profile bundle name>
 namespace: openshift-compliance
status:
 dataStreamStatus: VALID 1

apiVersion: compliance.openshift.io/v1alpha1
description: <description of the profile>
id: xccdf_org.ssgproject.content_profile_moderate 1
kind: Profile

OpenShift Container Platform 4.9 Security and compliance

148

1

2

3

Specify the XCCDF name of the profile. Use this identifier when you define a ComplianceScan
object as the value of the profile attribute of the scan.

Specify either a Node or Platform. Node profiles scan the cluster nodes and platform profiles scan
the Kubernetes platform.

Specify the list of rules for the profile. Each rule corresponds to a single check.

5.15.2.3. Rule object

The Rule object, which forms the profiles, are also exposed as objects. Use the Rule object to define
your compliance check requirements and specify how it could be fixed.

Example Rule object

metadata:
 annotations:
 compliance.openshift.io/product: <product name>
 compliance.openshift.io/product-type: Node 2
 creationTimestamp: "YYYY-MM-DDTMM:HH:SSZ"
 generation: 1
 labels:
 compliance.openshift.io/profile-bundle: <profile bundle name>
 name: rhcos4-moderate
 namespace: openshift-compliance
 ownerReferences:
 - apiVersion: compliance.openshift.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ProfileBundle
 name: <profile bundle name>
 uid: <uid string>
 resourceVersion: "<version number>"
 selfLink: /apis/compliance.openshift.io/v1alpha1/namespaces/openshift-compliance/profiles/rhcos4-
moderate
 uid: <uid string>
rules: 3
- rhcos4-account-disable-post-pw-expiration
- rhcos4-accounts-no-uid-except-zero
- rhcos4-audit-rules-dac-modification-chmod
- rhcos4-audit-rules-dac-modification-chown
title: <title of the profile>

 apiVersion: compliance.openshift.io/v1alpha1
 checkType: Platform 1
 description: <description of the rule>
 id: xccdf_org.ssgproject.content_rule_configure_network_policies_namespaces 2
 instructions: <manual instructions for the scan>
 kind: Rule
 metadata:
 annotations:
 compliance.openshift.io/rule: configure-network-policies-namespaces
 control.compliance.openshift.io/CIS-OCP: 5.3.2
 control.compliance.openshift.io/NERC-CIP: CIP-003-3 R4;CIP-003-3 R4.2;CIP-003-3

CHAPTER 5. COMPLIANCE OPERATOR

149

1

2

3

Specify the type of check this rule executes. Node profiles scan the cluster nodes and Platform
profiles scan the Kubernetes platform. An empty value indicates there is no automated check.

Specify the XCCDF name of the rule, which is parsed directly from the datastream.

Specify the severity of the rule when it fails.

NOTE

The Rule object gets an appropriate label for an easy identification of the associated
ProfileBundle object. The ProfileBundle also gets specified in the OwnerReferences of
this object.

5.15.2.4. TailoredProfile object

Use the TailoredProfile object to modify the default Profile object based on your organization
requirements. You can enable or disable rules, set variable values, and provide justification for the
customization. After validation, the TailoredProfile object creates a ConfigMap, which can be
referenced by a ComplianceScan object.

TIP

You can use the TailoredProfile object by referencing it in a ScanSettingBinding object. For more
information about ScanSettingBinding, see ScanSettingBinding object.

Example TailoredProfile object

 R5;CIP-003-3 R6;CIP-004-3 R2.2.4;CIP-004-3 R3;CIP-007-3 R2;CIP-007-3 R2.1;CIP-007-3
 R2.2;CIP-007-3 R2.3;CIP-007-3 R5.1;CIP-007-3 R6.1
 control.compliance.openshift.io/NIST-800-53: AC-4;AC-4(21);CA-3(5);CM-6;CM-6(1);CM-7;CM-
7(1);SC-7;SC-7(3);SC-7(5);SC-7(8);SC-7(12);SC-7(13);SC-7(18)
 labels:
 compliance.openshift.io/profile-bundle: ocp4
 name: ocp4-configure-network-policies-namespaces
 namespace: openshift-compliance
 rationale: <description of why this rule is checked>
 severity: high 3
 title: <summary of the rule>

apiVersion: compliance.openshift.io/v1alpha1
kind: TailoredProfile
metadata:
 name: rhcos4-with-usb
spec:
 extends: rhcos4-moderate 1
 title: <title of the tailored profile>
 disableRules:
 - name: <name of a rule object to be disabled>
 rationale: <description of why this rule is checked>
status:
 id: xccdf_compliance.openshift.io_profile_rhcos4-with-usb 2
 outputRef:

OpenShift Container Platform 4.9 Security and compliance

150

1

2

3

4

This is optional. Name of the Profile object upon which the TailoredProfile is built. If no value is set,
a new profile is created from the enableRules list.

Specifies the XCCDF name of the tailored profile.

Specifies the ConfigMap name, which can be used as the value of the tailoringConfigMap.name
attribute of a ComplianceScan.

Shows the state of the object such as READY, PENDING, and FAILURE. If the state of the object
is ERROR, then the attribute status.errorMessage provides the reason for the failure.

With the TailoredProfile object, it is possible to create a new Profile object using the TailoredProfile
construct. To create a new Profile, set the following configuration parameters :

an appropriate title

extends value must be empty

scan type annotation on the TailoredProfile object:

NOTE

If you have not set the product-type annotation, the Compliance Operator
defaults to Platform scan type. Adding the -node suffix to the name of the
TailoredProfile object results in node scan type.

5.15.3. Configuring the compliance scan settings

After you have defined the requirements of the compliance scan, you can configure it by specifying the
type of the scan, occurrence of the scan, and location of the scan. To do so, Compliance Operator
provides you with a ScanSetting object.

5.15.3.1. ScanSetting object

Use the ScanSetting object to define and reuse the operational policies to run your scans. By default,
the Compliance Operator creates the following ScanSetting objects:

default - it runs a scan every day at 1 AM on both master and worker nodes using a 1Gi
Persistent Volume (PV) and keeps the last three results. Remediation is neither applied nor
updated automatically.

default-auto-apply - it runs a scan every day at 1AM on both control plane and worker nodes
using a 1Gi Persistent Volume (PV) and keeps the last three results. Both
autoApplyRemediations and autoUpdateRemediations are set to true.

Example ScanSetting object

 name: rhcos4-with-usb-tp 3
 namespace: openshift-compliance
 state: READY 4

compliance.openshift.io/product-type: Platform/Node

Name: default-auto-apply

CHAPTER 5. COMPLIANCE OPERATOR

151

Namespace: openshift-compliance
Labels: <none>
Annotations: <none>
API Version: compliance.openshift.io/v1alpha1
Auto Apply Remediations: true
Auto Update Remediations: true
Kind: ScanSetting
Metadata:
 Creation Timestamp: 2022-10-18T20:21:00Z
 Generation: 1
 Managed Fields:
 API Version: compliance.openshift.io/v1alpha1
 Fields Type: FieldsV1
 fieldsV1:
 f:autoApplyRemediations: 1
 f:autoUpdateRemediations: 2
 f:rawResultStorage:
 .:
 f:nodeSelector:
 .:
 f:node-role.kubernetes.io/master:
 f:pvAccessModes:
 f:rotation:
 f:size:
 f:tolerations:
 f:roles:
 f:scanTolerations:
 f:schedule:
 f:showNotApplicable:
 f:strictNodeScan:
 Manager: compliance-operator
 Operation: Update
 Time: 2022-10-18T20:21:00Z
 Resource Version: 38840
 UID: 8cb0967d-05e0-4d7a-ac1c-08a7f7e89e84
Raw Result Storage:
 Node Selector:
 node-role.kubernetes.io/master:
 Pv Access Modes:
 ReadWriteOnce
 Rotation: 3 3
 Size: 1Gi 4
 Tolerations:
 Effect: NoSchedule
 Key: node-role.kubernetes.io/master
 Operator: Exists
 Effect: NoExecute
 Key: node.kubernetes.io/not-ready
 Operator: Exists
 Toleration Seconds: 300
 Effect: NoExecute
 Key: node.kubernetes.io/unreachable
 Operator: Exists
 Toleration Seconds: 300
 Effect: NoSchedule
 Key: node.kubernetes.io/memory-pressure

OpenShift Container Platform 4.9 Security and compliance

152

1

2

3

4

6

5

Set to true to enable auto remediations. Set to false to disable auto remediations.

Set to true to enable auto remediations for content updates. Set to false to disable auto
remediations for content updates.

Specify the number of stored scans in the raw result format. The default value is 3. As the older
results get rotated, the administrator must store the results elsewhere before the rotation
happens.

Specify the storage size that should be created for the scan to store the raw results. The default
value is 1Gi

Specify how often the scan should be run in cron format.

NOTE

To disable the rotation policy, set the value to 0.

Specify the node-role.kubernetes.io label value to schedule the scan for Node type. This value
has to match the name of a MachineConfigPool.

5.15.4. Processing the compliance scan requirements with compliance scans settings

When you have defined the compliance scan requirements and configured the settings to run the scans,
then the Compliance Operator processes it using the ScanSettingBinding object.

5.15.4.1. ScanSettingBinding object

Use the ScanSettingBinding object to specify your compliance requirements with reference to the
Profile or TailoredProfile object. It is then linked to a ScanSetting object, which provides the
operational constraints for the scan. Then the Compliance Operator generates the ComplianceSuite
object based on the ScanSetting and ScanSettingBinding objects.

Example ScanSettingBinding object

 Operator: Exists
Roles: 5
 master
 worker
Scan Tolerations:
 Operator: Exists
Schedule: "0 1 * * *" 6
Show Not Applicable: false
Strict Node Scan: true
Events: <none>

apiVersion: compliance.openshift.io/v1alpha1
kind: ScanSettingBinding
metadata:
 name: <name of the scan>
profiles: 1
 # Node checks
 - name: rhcos4-with-usb

CHAPTER 5. COMPLIANCE OPERATOR

153

1

2

Specify the details of Profile or TailoredProfile object to scan your environment.

Specify the operational constraints, such as schedule and storage size.

The creation of ScanSetting and ScanSettingBinding objects results in the compliance suite. To get
the list of compliance suite, run the following command:

IMPORTANT

If you delete ScanSettingBinding, then compliance suite also is deleted.

5.15.5. Tracking the compliance scans

After the creation of compliance suite, you can monitor the status of the deployed scans using the
ComplianceSuite object.

5.15.5.1. ComplianceSuite object

The ComplianceSuite object helps you keep track of the state of the scans. It contains the raw settings
to create scans and the overall result.

For Node type scans, you should map the scan to the MachineConfigPool, since it contains the
remediations for any issues. If you specify a label, ensure it directly applies to a pool.

Example ComplianceSuite object

 kind: TailoredProfile
 apiGroup: compliance.openshift.io/v1alpha1
 # Cluster checks
 - name: ocp4-moderate
 kind: Profile
 apiGroup: compliance.openshift.io/v1alpha1
settingsRef: 2
 name: my-companys-constraints
 kind: ScanSetting
 apiGroup: compliance.openshift.io/v1alpha1

$ oc get compliancesuites

apiVersion: compliance.openshift.io/v1alpha1
kind: ComplianceSuite
metadata:
 name: <name of the scan>
spec:
 autoApplyRemediations: false 1
 schedule: "0 1 * * *" 2
 scans: 3
 - name: workers-scan
 scanType: Node
 profile: xccdf_org.ssgproject.content_profile_moderate
 content: ssg-rhcos4-ds.xml
 contentImage: quay.io/complianceascode/ocp4:latest
 rule: "xccdf_org.ssgproject.content_rule_no_netrc_files"

OpenShift Container Platform 4.9 Security and compliance

154

1

2

3

4

5

Set to true to enable auto remediations. Set to false to disable auto remediations.

Specify how often the scan should be run in cron format.

Specify a list of scan specifications to run in the cluster.

Indicates the progress of the scans.

Indicates the overall verdict of the suite.

The suite in the background creates the ComplianceScan object based on the scans parameter. You
can programmatically fetch the ComplianceSuites events. To get the events for the suite, run the
following command:

IMPORTANT

You might create errors when you manually define the ComplianceSuite, since it
contains the XCCDF attributes.

5.15.5.2. Advanced ComplianceScan Object

The Compliance Operator includes options for advanced users for debugging or integrating with
existing tooling. While it is recommended that you not create a ComplianceScan object directly, you
can instead manage it using a ComplianceSuite object.

Example Advanced ComplianceScan object

 nodeSelector:
 node-role.kubernetes.io/worker: ""
status:
 Phase: DONE 4
 Result: NON-COMPLIANT 5
 scanStatuses:
 - name: workers-scan
 phase: DONE
 result: NON-COMPLIANT

$ oc get events --field-selector involvedObject.kind=ComplianceSuite,involvedObject.name=<name of
the suite>

apiVersion: compliance.openshift.io/v1alpha1
kind: ComplianceScan
metadata:
 name: <name of the scan>
spec:
 scanType: Node 1
 profile: xccdf_org.ssgproject.content_profile_moderate 2
 content: ssg-ocp4-ds.xml
 contentImage: quay.io/complianceascode/ocp4:latest 3
 rule: "xccdf_org.ssgproject.content_rule_no_netrc_files" 4
 nodeSelector: 5
 node-role.kubernetes.io/worker: ""

CHAPTER 5. COMPLIANCE OPERATOR

155

1

2

3

4

5

6

7

Specify either Node or Platform. Node profiles scan the cluster nodes and platform profiles scan
the Kubernetes platform.

Specify the XCCDF identifier of the profile that you want to run.

Specify the container image that encapsulates the profile files.

It is optional. Specify the scan to run a single rule. This rule has to be identified with the XCCDF ID,
and has to belong to the specified profile.

NOTE

If you skip the rule parameter, then scan runs for all the available rules of the
specified profile.

If you are on the OpenShift Container Platform and wants to generate a remediation, then
nodeSelector label has to match the MachineConfigPool label.

NOTE

If you do not specify nodeSelector parameter or match the MachineConfig label,
scan will still run, but it will not create remediation.

Indicates the current phase of the scan.

Indicates the verdict of the scan.

IMPORTANT

If you delete a ComplianceSuite object, then all the associated scans get deleted.

When the scan is complete, it generates the result as Custom Resources of the
ComplianceCheckResult object. However, the raw results are available in ARF format. These results
are stored in a Persistent Volume (PV), which has a Persistent Volume Claim (PVC) associated with the
name of the scan. You can programmatically fetch the ComplianceScans events. To generate events
for the suite, run the following command:

5.15.6. Viewing the compliance results

When the compliance suite reaches the DONE phase, you can view the scan results and possible
remediations.

5.15.6.1. ComplianceCheckResult object

When you run a scan with a specific profile, several rules in the profiles are verified. For each of these

status:
 phase: DONE 6
 result: NON-COMPLIANT 7

oc get events --field-selector involvedObject.kind=ComplianceScan,involvedObject.name=<name of
the suite>

OpenShift Container Platform 4.9 Security and compliance

156

1

2

When you run a scan with a specific profile, several rules in the profiles are verified. For each of these
rules, a ComplianceCheckResult object is created, which provides the state of the cluster for a specific
rule.

Example ComplianceCheckResult object

Describes the severity of the scan check.

Describes the result of the check. The possible values are:

PASS: check was successful.

FAIL: check was unsuccessful.

INFO: check was successful and found something not severe enough to be considered an
error.

MANUAL: check cannot automatically assess the status and manual check is required.

INCONSISTENT: different nodes report different results.

ERROR: check run successfully, but could not complete.

NOTAPPLICABLE: check did not run as it is not applicable.

To get all the check results from a suite, run the following command:

5.15.6.2. ComplianceRemediation object

For a specific check you can have a datastream specified fix. However, if a Kubernetes fix is available,

apiVersion: compliance.openshift.io/v1alpha1
kind: ComplianceCheckResult
metadata:
 labels:
 compliance.openshift.io/check-severity: medium
 compliance.openshift.io/check-status: FAIL
 compliance.openshift.io/suite: example-compliancesuite
 compliance.openshift.io/scan-name: workers-scan
 name: workers-scan-no-direct-root-logins
 namespace: openshift-compliance
 ownerReferences:
 - apiVersion: compliance.openshift.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ComplianceScan
 name: workers-scan
description: <description of scan check>
instructions: <manual instructions for the scan>
id: xccdf_org.ssgproject.content_rule_no_direct_root_logins
severity: medium 1
status: FAIL 2

oc get compliancecheckresults \
-l compliance.openshift.io/suite=workers-compliancesuite

CHAPTER 5. COMPLIANCE OPERATOR

157

1

2

3

For a specific check you can have a datastream specified fix. However, if a Kubernetes fix is available,
then the Compliance Operator creates a ComplianceRemediation object.

Example ComplianceRemediation object

true indicates the remediation was applied. false indicates the remediation was not applied.

Includes the definition of the remediation.

Indicates remediation that was previously parsed from an earlier version of the content. The
Compliance Operator still retains the outdated objects to give the administrator a chance to review
the new remediations before applying them.

To get all the remediations from a suite, run the following command:

To list all failing checks that can be remediated automatically, run the following command:

apiVersion: compliance.openshift.io/v1alpha1
kind: ComplianceRemediation
metadata:
 labels:
 compliance.openshift.io/suite: example-compliancesuite
 compliance.openshift.io/scan-name: workers-scan
 machineconfiguration.openshift.io/role: worker
 name: workers-scan-disable-users-coredumps
 namespace: openshift-compliance
 ownerReferences:
 - apiVersion: compliance.openshift.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ComplianceCheckResult
 name: workers-scan-disable-users-coredumps
 uid: <UID>
spec:
 apply: false 1
 object:
 current: 2
 apiVersion: machineconfiguration.openshift.io/v1
 kind: MachineConfig
 spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:,%2A%20%20%20%20%20hard%20%20%20core%20%20%20%200
 filesystem: root
 mode: 420
 path: /etc/security/limits.d/75-disable_users_coredumps.conf
 outdated: {} 3

oc get complianceremediations \
-l compliance.openshift.io/suite=workers-compliancesuite

OpenShift Container Platform 4.9 Security and compliance

158

To list all failing checks that can be remediated manually, run the following command:

oc get compliancecheckresults \
-l 'compliance.openshift.io/check-status in (FAIL),compliance.openshift.io/automated-remediation'

oc get compliancecheckresults \
-l 'compliance.openshift.io/check-status in (FAIL),!compliance.openshift.io/automated-remediation'

CHAPTER 5. COMPLIANCE OPERATOR

159

CHAPTER 6. FILE INTEGRITY OPERATOR

6.1. FILE INTEGRITY OPERATOR RELEASE NOTES

The File Integrity Operator for OpenShift Container Platform continually runs file integrity checks on
RHCOS nodes.

These release notes track the development of the File Integrity Operator in the OpenShift Container
Platform.

For an overview of the File Integrity Operator, see Understanding the File Integrity Operator .

To access the latest release, see Updating the File Integrity Operator.

6.1.1. OpenShift File Integrity Operator 1.2.1

The following advisory is available for the OpenShift File Integrity Operator 1.2.1:

RHBA-2023:1684 OpenShift File Integrity Operator Bug Fix Update

This release includes updated container dependencies.

6.1.2. OpenShift File Integrity Operator 1.2.0

The following advisory is available for the OpenShift File Integrity Operator 1.2.0:

RHBA-2023:1273 OpenShift File Integrity Operator Enhancement Update

6.1.2.1. New features and enhancements

The File Integrity Operator Custom Resource (CR) now contains an initialDelay feature that
specifies the number of seconds to wait before starting the first AIDE integrity check. For more
information, see Creating the FileIntegrity custom resource.

The File Integrity Operator is now stable and the release channel is upgraded to stable. Future
releases will follow Semantic Versioning. To access the latest release, see Updating the File
Integrity Operator.

6.1.3. OpenShift File Integrity Operator 1.0.0

The following advisory is available for the OpenShift File Integrity Operator 1.0.0:

RHBA-2023:0037 OpenShift File Integrity Operator Bug Fix Update

6.1.4. OpenShift File Integrity Operator 0.1.32

The following advisory is available for the OpenShift File Integrity Operator 0.1.32:

RHBA-2022:7095 OpenShift File Integrity Operator Bug Fix Update

6.1.4.1. Bug fixes

Previously, alerts issued by the File Integrity Operator did not set a namespace, making it

OpenShift Container Platform 4.9 Security and compliance

160

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#understanding-file-integrity-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#olm-preparing-upgrade_file-integrity-operator-updating
https://access.redhat.com/errata/RHBA-2023:1684
https://access.redhat.com/errata/RHBA-2023:1273
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#understanding-file-integrity-custom-resource_file-integrity-operator
https://semver.org/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#olm-preparing-upgrade_file-integrity-operator-updating
https://access.redhat.com/errata/RHBA-2023:0037
https://access.redhat.com/errata/RHBA-2022:7095

Previously, alerts issued by the File Integrity Operator did not set a namespace, making it
difficult to understand from which namespace the alert originated. Now, the Operator sets the
appropriate namespace, providing more information about the alert. (BZ#2112394)

Previously, The File Integrity Operator did not update the metrics service on Operator startup,
causing the metrics targets to be unreachable. With this release, the File Integrity Operator now
ensures the metrics service is updated on Operator startup. (BZ#2115821)

6.1.5. OpenShift File Integrity Operator 0.1.30

The following advisory is available for the OpenShift File Integrity Operator 0.1.30:

RHBA-2022:5538 OpenShift File Integrity Operator Bug Fix and Enhancement Update

6.1.5.1. Bug fixes

Previously, alerts issued by the File Integrity Operator did not set a namespace, making it
difficult to understand where the alert originated. Now, the Operator sets the appropriate
namespace, increasing understanding of the alert. (BZ#2101393)

6.1.6. OpenShift File Integrity Operator 0.1.24

The following advisory is available for the OpenShift File Integrity Operator 0.1.24:

RHBA-2022:1331 OpenShift File Integrity Operator Bug Fix

6.1.6.1. New features and enhancements

You can now configure the maximum number of backups stored in the FileIntegrity Custom
Resource (CR) with the config.maxBackups attribute. This attribute specifies the number of
AIDE database and log backups left over from the re-init process to keep on the node. Older
backups beyond the configured number are automatically pruned. The default is set to five
backups.

6.1.6.2. Bug fixes

Previously, upgrading the Operator from versions older than 0.1.21 to 0.1.22 could cause the re-
init feature to fail. This was a result of the Operator failing to update configMap resource labels.
Now, upgrading to the latest version fixes the resource labels. (BZ#2049206)

Previously, when enforcing the default configMap script contents, the wrong data keys were
compared. This resulted in the aide-reinit script not being updated properly after an Operator
upgrade, and caused the re-init process to fail. Now, daemonSets run to completion and the
AIDE database re-init process executes successfully. (BZ#2072058)

6.1.7. OpenShift File Integrity Operator 0.1.22

The following advisory is available for the OpenShift File Integrity Operator 0.1.22:

RHBA-2022:0142 OpenShift File Integrity Operator Bug Fix

6.1.7.1. Bug fixes

Previously, a system with a File Integrity Operator installed might interrupt the OpenShift

CHAPTER 6. FILE INTEGRITY OPERATOR

161

https://bugzilla.redhat.com/show_bug.cgi?id=2112394
https://bugzilla.redhat.com/show_bug.cgi?id=2115821
https://access.redhat.com/errata/RHBA-2022:5538
https://bugzilla.redhat.com/show_bug.cgi?id=2101393
https://access.redhat.com/errata/RHBA-2022:1331
https://bugzilla.redhat.com/show_bug.cgi?id=2049206
https://bugzilla.redhat.com/show_bug.cgi?id=2072058
https://access.redhat.com/errata/RHBA-2022:0142

Container Platform update, due to the /etc/kubernetes/aide.reinit file. This occurred if the
/etc/kubernetes/aide.reinit file was present, but later removed prior to the ostree validation.
With this update, /etc/kubernetes/aide.reinit is moved to the /run directory so that it does not
conflict with the OpenShift Container Platform update. (BZ#2033311)

6.1.8. OpenShift File Integrity Operator 0.1.21

The following advisory is available for the OpenShift File Integrity Operator 0.1.21:

RHBA-2021:4631 OpenShift File Integrity Operator Bug Fix and Enhancement Update

6.1.8.1. New features and enhancements

The metrics related to FileIntegrity scan results and processing metrics are displayed on the
monitoring dashboard on the web console. The results are labeled with the prefix of
file_integrity_operator_.

If a node has an integrity failure for more than 1 second, the default PrometheusRule provided
in the operator namespace alerts with a warning.

The following dynamic Machine Config Operator and Cluster Version Operator related filepaths
are excluded from the default AIDE policy to help prevent false positives during node updates:

/etc/machine-config-daemon/currentconfig

/etc/pki/ca-trust/extracted/java/cacerts

/etc/cvo/updatepayloads

/root/.kube

The AIDE daemon process has stability improvements over v0.1.16, and is more resilient to errors
that might occur when the AIDE database is initialized.

6.1.8.2. Bug fixes

Previously, when the Operator automatically upgraded, outdated daemon sets were not
removed. With this release, outdated daemon sets are removed during the automatic upgrade.

6.1.9. Additional resources

Understanding the File Integrity Operator

6.2. INSTALLING THE FILE INTEGRITY OPERATOR

6.2.1. Installing the File Integrity Operator using the web console

Prerequisites

You must have admin privileges.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

OpenShift Container Platform 4.9 Security and compliance

162

https://bugzilla.redhat.com/show_bug.cgi?id=2033311
https://access.redhat.com/errata/RHBA-2021:4631
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#understanding-file-integrity-operator

2. Search for the File Integrity Operator, then click Install.

3. Keep the default selection of Installation mode and namespace to ensure that the Operator
will be installed to the openshift-file-integrity namespace.

4. Click Install.

Verification

To confirm that the installation is successful:

1. Navigate to the Operators → Installed Operators page.

2. Check that the Operator is installed in the openshift-file-integrity namespace and its status is
Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators → Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads → Pods page and check the logs in any pods in the openshift-file-
integrity project that are reporting issues.

6.2.2. Installing the File Integrity Operator using the CLI

Prerequisites

You must have admin privileges.

Procedure

1. Create a Namespace object YAML file by running:

Example output

2. Create the OperatorGroup object YAML file:

Example output

$ oc create -f <file-name>.yaml

apiVersion: v1
kind: Namespace
metadata:
 labels:
 openshift.io/cluster-monitoring: "true"
 name: openshift-file-integrity

$ oc create -f <file-name>.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

CHAPTER 6. FILE INTEGRITY OPERATOR

163

3. Create the Subscription object YAML file:

Example output

Verification

1. Verify the installation succeeded by inspecting the CSV file:

2. Verify that the File Integrity Operator is up and running:

6.2.3. Additional resources

The File Integrity Operator is supported in a restricted network environment. For more
information, see Using Operator Lifecycle Manager on restricted networks .

6.3. UPDATING THE FILE INTEGRITY OPERATOR

As a cluster administrator, you can update the File Integrity Operator on your OpenShift Container
Platform cluster.

6.3.1. Preparing for an Operator update

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. You can change the update channel to start tracking and receiving updates from a
newer channel.

The names of update channels in a subscription can differ between Operators, but the naming scheme
typically follows a common convention within a given Operator. For example, channel names might

 name: file-integrity-operator
 namespace: openshift-file-integrity
spec:
 targetNamespaces:
 - openshift-file-integrity

$ oc create -f <file-name>.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: file-integrity-operator
 namespace: openshift-file-integrity
spec:
 channel: "stable"
 installPlanApproval: Automatic
 name: file-integrity-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc get csv -n openshift-file-integrity

$ oc get deploy -n openshift-file-integrity

OpenShift Container Platform 4.9 Security and compliance

164

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#olm-restricted-networks

follow a minor release update stream for the application provided by the Operator (1.2, 1.3) or a release
frequency (stable, fast).

NOTE

You cannot change installed Operators to a channel that is older than the current
channel.

Red Hat Customer Portal Labs include the following application that helps administrators prepare to
update their Operators:

Red Hat OpenShift Container Platform Operator Update Information Checker

You can use the application to search for Operator Lifecycle Manager-based Operators and verify the
available Operator version per update channel across different versions of OpenShift Container
Platform. Cluster Version Operator-based Operators are not included.

6.3.2. Changing the update channel for an Operator

You can change the update channel for an Operator by using the OpenShift Container Platform web
console.

TIP

If the approval strategy in the subscription is set to Automatic, the update process initiates as soon as a
new Operator version is available in the selected channel. If the approval strategy is set to Manual, you
must manually approve pending updates.

Prerequisites

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → Installed
Operators.

2. Click the name of the Operator you want to change the update channel for.

3. Click the Subscription tab.

4. Click the name of the update channel under Channel.

5. Click the newer update channel that you want to change to, then click Save.

6. For subscriptions with an Automatic approval strategy, the update begins automatically.
Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.
For subscriptions with a Manual approval strategy, you can manually approve the update from
the Subscription tab.

6.3.3. Manually approving a pending Operator update

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are

CHAPTER 6. FILE INTEGRITY OPERATOR

165

https://access.redhat.com/labs/ocpouic/

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin.

Prerequisites

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Operators that have a pending update display a status with Upgrade available. Click the name
of the Operator you want to update.

3. Click the Subscription tab. Any update requiring approval are displayed next to Upgrade
Status. For example, it might display 1 requires approval.

4. Click 1 requires approval, then click Preview Install Plan.

5. Review the resources that are listed as available for update. When satisfied, click Approve.

6. Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.

6.4. UNDERSTANDING THE FILE INTEGRITY OPERATOR

The File Integrity Operator is an OpenShift Container Platform Operator that continually runs file
integrity checks on the cluster nodes. It deploys a daemon set that initializes and runs privileged
advanced intrusion detection environment (AIDE) containers on each node, providing a status object
with a log of files that are modified during the initial run of the daemon set pods.

IMPORTANT

Currently, only Red Hat Enterprise Linux CoreOS (RHCOS) nodes are supported.

6.4.1. Creating the FileIntegrity custom resource

An instance of a FileIntegrity custom resource (CR) represents a set of continuous file integrity scans
for one or more nodes.

Each FileIntegrity CR is backed by a daemon set running AIDE on the nodes matching the FileIntegrity
CR specification.

Procedure

1. Create the following example FileIntegrity CR named worker-fileintegrity.yaml to enable
scans on worker nodes:

Example FileIntegrity CR

apiVersion: fileintegrity.openshift.io/v1alpha1
kind: FileIntegrity
metadata:

OpenShift Container Platform 4.9 Security and compliance

166

1

2

3

4

5

6

7

Defines the selector for scheduling node scans.

Specify tolerations to schedule on nodes with custom taints. When not specified, a default
toleration allowing running on main and infra nodes is applied.

Define a ConfigMap containing an AIDE configuration to use.

The number of seconds to pause in between AIDE integrity checks. Frequent AIDE checks
on a node might be resource intensive, so it can be useful to specify a longer interval.
Default is 900 seconds (15 minutes).

The maximum number of AIDE database and log backups (leftover from the re-init
process) to keep on a node. Older backups beyond this number are automatically pruned
by the daemon. Default is set to 5.

The number of seconds to wait before starting the first AIDE integrity check. Default is set
to 0.

The running status of the FileIntegrity instance. Statuses are Initializing, Pending, or
Active.

Initializing The FileIntegrity object is currently initializing or re-initializing the AIDE database.

Pending The FileIntegrity deployment is still being created.

Active The scans are active and ongoing.

2. Apply the YAML file to the openshift-file-integrity namespace:

Verification

 name: worker-fileintegrity
 namespace: openshift-file-integrity
spec:
 nodeSelector: 1
 node-role.kubernetes.io/worker: ""
 tolerations: 2
 - key: "myNode"
 operator: "Exists"
 effect: "NoSchedule"
 config: 3
 name: "myconfig"
 namespace: "openshift-file-integrity"
 key: "config"
 gracePeriod: 20 4
 maxBackups: 5 5
 initialDelay: 60 6
 debug: false
status:
 phase: Active 7

$ oc apply -f worker-fileintegrity.yaml -n openshift-file-integrity

CHAPTER 6. FILE INTEGRITY OPERATOR

167

Verification

Confirm the FileIntegrity object was created successfully by running the following command:

Example output

6.4.2. Checking the FileIntegrity custom resource status

The FileIntegrity custom resource (CR) reports its status through the . status.phase subresource.

Procedure

To query the FileIntegrity CR status, run:

Example output

6.4.3. FileIntegrity custom resource phases

Pending - The phase after the custom resource (CR) is created.

Active - The phase when the backing daemon set is up and running.

Initializing - The phase when the AIDE database is being reinitialized.

6.4.4. Understanding the FileIntegrityNodeStatuses object

The scan results of the FileIntegrity CR are reported in another object called
FileIntegrityNodeStatuses.

Example output

NOTE

It might take some time for the FileIntegrityNodeStatus object results to be available.

There is one result object per node. The nodeName attribute of each FileIntegrityNodeStatus object

$ oc get fileintegrities -n openshift-file-integrity

NAME AGE
worker-fileintegrity 14s

$ oc get fileintegrities/worker-fileintegrity -o jsonpath="{ .status.phase }"

Active

$ oc get fileintegritynodestatuses

NAME AGE
worker-fileintegrity-ip-10-0-130-192.ec2.internal 101s
worker-fileintegrity-ip-10-0-147-133.ec2.internal 109s
worker-fileintegrity-ip-10-0-165-160.ec2.internal 102s

OpenShift Container Platform 4.9 Security and compliance

168

There is one result object per node. The nodeName attribute of each FileIntegrityNodeStatus object
corresponds to the node being scanned. The status of the file integrity scan is represented in the
results array, which holds scan conditions.

The fileintegritynodestatus object reports the latest status of an AIDE run and exposes the status as
Failed, Succeeded, or Errored in a status field.

Example output

6.4.5. FileIntegrityNodeStatus CR status types

These conditions are reported in the results array of the corresponding FileIntegrityNodeStatus CR
status:

Succeeded - The integrity check passed; the files and directories covered by the AIDE check
have not been modified since the database was last initialized.

Failed - The integrity check failed; some files or directories covered by the AIDE check have
been modified since the database was last initialized.

Errored - The AIDE scanner encountered an internal error.

6.4.5.1. FileIntegrityNodeStatus CR success example

Example output of a condition with a success status

$ oc get fileintegritynodestatuses.fileintegrity.openshift.io -ojsonpath='{.items[*].results}' | jq

$ oc get fileintegritynodestatuses -w

NAME NODE STATUS
example-fileintegrity-ip-10-0-134-186.us-east-2.compute.internal ip-10-0-134-186.us-east-
2.compute.internal Succeeded
example-fileintegrity-ip-10-0-150-230.us-east-2.compute.internal ip-10-0-150-230.us-east-
2.compute.internal Succeeded
example-fileintegrity-ip-10-0-169-137.us-east-2.compute.internal ip-10-0-169-137.us-east-
2.compute.internal Succeeded
example-fileintegrity-ip-10-0-180-200.us-east-2.compute.internal ip-10-0-180-200.us-east-
2.compute.internal Succeeded
example-fileintegrity-ip-10-0-194-66.us-east-2.compute.internal ip-10-0-194-66.us-east-
2.compute.internal Failed
example-fileintegrity-ip-10-0-222-188.us-east-2.compute.internal ip-10-0-222-188.us-east-
2.compute.internal Succeeded
example-fileintegrity-ip-10-0-134-186.us-east-2.compute.internal ip-10-0-134-186.us-east-
2.compute.internal Succeeded
example-fileintegrity-ip-10-0-222-188.us-east-2.compute.internal ip-10-0-222-188.us-east-
2.compute.internal Succeeded
example-fileintegrity-ip-10-0-194-66.us-east-2.compute.internal ip-10-0-194-66.us-east-
2.compute.internal Failed
example-fileintegrity-ip-10-0-150-230.us-east-2.compute.internal ip-10-0-150-230.us-east-
2.compute.internal Succeeded
example-fileintegrity-ip-10-0-180-200.us-east-2.compute.internal ip-10-0-180-200.us-east-
2.compute.internal Succeeded

CHAPTER 6. FILE INTEGRITY OPERATOR

169

In this case, all three scans succeeded and so far there are no other conditions.

6.4.5.2. FileIntegrityNodeStatus CR failure status example

To simulate a failure condition, modify one of the files AIDE tracks. For example, modify
/etc/resolv.conf on one of the worker nodes:

Example output

After some time, the Failed condition is reported in the results array of the corresponding
FileIntegrityNodeStatus object. The previous Succeeded condition is retained, which allows you to
pinpoint the time the check failed.

Alternatively, if you are not mentioning the object name, run:

Example output

[
 {
 "condition": "Succeeded",
 "lastProbeTime": "2020-09-15T12:45:57Z"
 }
]
[
 {
 "condition": "Succeeded",
 "lastProbeTime": "2020-09-15T12:46:03Z"
 }
]
[
 {
 "condition": "Succeeded",
 "lastProbeTime": "2020-09-15T12:45:48Z"
 }
]

$ oc debug node/ip-10-0-130-192.ec2.internal

Creating debug namespace/openshift-debug-node-ldfbj ...
Starting pod/ip-10-0-130-192ec2internal-debug ...
To use host binaries, run `chroot /host`
Pod IP: 10.0.130.192
If you don't see a command prompt, try pressing enter.
sh-4.2# echo "# integrity test" >> /host/etc/resolv.conf
sh-4.2# exit

Removing debug pod ...
Removing debug namespace/openshift-debug-node-ldfbj ...

$ oc get fileintegritynodestatuses.fileintegrity.openshift.io/worker-fileintegrity-ip-10-0-130-
192.ec2.internal -ojsonpath='{.results}' | jq -r

$ oc get fileintegritynodestatuses.fileintegrity.openshift.io -ojsonpath='{.items[*].results}' | jq

OpenShift Container Platform 4.9 Security and compliance

170

The Failed condition points to a config map that gives more details about what exactly failed and why:

Example output

[
 {
 "condition": "Succeeded",
 "lastProbeTime": "2020-09-15T12:54:14Z"
 },
 {
 "condition": "Failed",
 "filesChanged": 1,
 "lastProbeTime": "2020-09-15T12:57:20Z",
 "resultConfigMapName": "aide-ds-worker-fileintegrity-ip-10-0-130-192.ec2.internal-failed",
 "resultConfigMapNamespace": "openshift-file-integrity"
 }
]

$ oc describe cm aide-ds-worker-fileintegrity-ip-10-0-130-192.ec2.internal-failed

Name: aide-ds-worker-fileintegrity-ip-10-0-130-192.ec2.internal-failed
Namespace: openshift-file-integrity
Labels: file-integrity.openshift.io/node=ip-10-0-130-192.ec2.internal
 file-integrity.openshift.io/owner=worker-fileintegrity
 file-integrity.openshift.io/result-log=
Annotations: file-integrity.openshift.io/files-added: 0
 file-integrity.openshift.io/files-changed: 1
 file-integrity.openshift.io/files-removed: 0

Data

integritylog:

AIDE 0.15.1 found differences between database and filesystem!!
Start timestamp: 2020-09-15 12:58:15

Summary:
 Total number of files: 31553
 Added files: 0
 Removed files: 0
 Changed files: 1

Changed files:

changed: /hostroot/etc/resolv.conf

Detailed information about changes:

File: /hostroot/etc/resolv.conf

CHAPTER 6. FILE INTEGRITY OPERATOR

171

Due to the config map data size limit, AIDE logs over 1 MB are added to the failure config map as a
base64-encoded gzip archive. In this case, you want to pipe the output of the above command to
base64 --decode | gunzip. Compressed logs are indicated by the presence of a file-
integrity.openshift.io/compressed annotation key in the config map.

6.4.6. Understanding events

Transitions in the status of the FileIntegrity and FileIntegrityNodeStatus objects are logged by events.
The creation time of the event reflects the latest transition, such as Initializing to Active, and not
necessarily the latest scan result. However, the newest event always reflects the most recent status.

Example output

When a node scan fails, an event is created with the add/changed/removed and config map
information.

Example output

Changes to the number of added, changed, or removed files results in a new event, even if the status of
the node has not transitioned.

 SHA512 : sTQYpB/AL7FeoGtu/1g7opv6C+KT1CBJ , qAeM+a8yTgHPnIHMaRlS+so61EN8VOpg

Events: <none>

$ oc get events --field-selector reason=FileIntegrityStatus

LAST SEEN TYPE REASON OBJECT MESSAGE
97s Normal FileIntegrityStatus fileintegrity/example-fileintegrity Pending
67s Normal FileIntegrityStatus fileintegrity/example-fileintegrity Initializing
37s Normal FileIntegrityStatus fileintegrity/example-fileintegrity Active

$ oc get events --field-selector reason=NodeIntegrityStatus

LAST SEEN TYPE REASON OBJECT MESSAGE
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-134-173.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-168-238.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-169-175.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-152-92.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-158-144.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-131-30.ec2.internal
87m Warning NodeIntegrityStatus fileintegrity/example-fileintegrity node ip-10-0-152-
92.ec2.internal has changed! a:1,c:1,r:0 \ log:openshift-file-integrity/aide-ds-example-fileintegrity-ip-
10-0-152-92.ec2.internal-failed

$ oc get events --field-selector reason=NodeIntegrityStatus

OpenShift Container Platform 4.9 Security and compliance

172

Example output

6.5. CONFIGURING THE CUSTOM FILE INTEGRITY OPERATOR

6.5.1. Viewing FileIntegrity object attributes

As with any Kubernetes custom resources (CRs), you can run oc explain fileintegrity, and then look at
the individual attributes using:

6.5.2. Important attributes

Table 6.1. Important spec and spec.config attributes

Attribute Description

spec.nodeSelector A map of key-values pairs that must match with
node’s labels in order for the AIDE pods to be
schedulable on that node. The typical use is to set
only a single key-value pair where node-
role.kubernetes.io/worker: "" schedules AIDE on
all worker nodes, node.openshift.io/os_id:
"rhcos" schedules on all Red Hat Enterprise Linux
CoreOS (RHCOS) nodes.

spec.debug A boolean attribute. If set to true, the daemon
running in the AIDE deamon set’s pods would output
extra information.

LAST SEEN TYPE REASON OBJECT MESSAGE
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-134-173.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-168-238.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-169-175.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-152-92.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-158-144.ec2.internal
114m Normal NodeIntegrityStatus fileintegrity/example-fileintegrity no changes to node ip-10-
0-131-30.ec2.internal
87m Warning NodeIntegrityStatus fileintegrity/example-fileintegrity node ip-10-0-152-
92.ec2.internal has changed! a:1,c:1,r:0 \ log:openshift-file-integrity/aide-ds-example-fileintegrity-ip-
10-0-152-92.ec2.internal-failed
40m Warning NodeIntegrityStatus fileintegrity/example-fileintegrity node ip-10-0-152-
92.ec2.internal has changed! a:3,c:1,r:0 \ log:openshift-file-integrity/aide-ds-example-fileintegrity-ip-
10-0-152-92.ec2.internal-failed

$ oc explain fileintegrity.spec

$ oc explain fileintegrity.spec.config

CHAPTER 6. FILE INTEGRITY OPERATOR

173

spec.tolerations Specify tolerations to schedule on nodes with
custom taints. When not specified, a default
toleration is applied, which allows tolerations to run
on control plane nodes.

spec.config.gracePeriod The number of seconds to pause in between AIDE
integrity checks. Frequent AIDE checks on a node
can be resource intensive, so it can be useful to
specify a longer interval. Defaults to 900, or 15
minutes.

maxBackups The maximum number of AIDE database and log
backups leftover from the re-init process to keep on
a node. Older backups beyond this number are
automatically pruned by the daemon.

spec.config.name Name of a configMap that contains custom AIDE
configuration. If omitted, a default configuration is
created.

spec.config.namespace Namespace of a configMap that contains custom
AIDE configuration. If unset, the FIO generates a
default configuration suitable for RHCOS systems.

spec.config.key Key that contains actual AIDE configuration in a
config map specified by name and namespace.
The default value is aide.conf.

spec.config.initialDelay The number of seconds to wait before starting the
first AIDE integrity check. Default is set to 0. This
attribute is optional.

Attribute Description

6.5.3. Examine the default configuration

The default File Integrity Operator configuration is stored in a config map with the same name as the
FileIntegrity CR.

Procedure

To examine the default config, run:

6.5.4. Understanding the default File Integrity Operator configuration

Below is an excerpt from the aide.conf key of the config map:

$ oc describe cm/worker-fileintegrity

OpenShift Container Platform 4.9 Security and compliance

174

The default configuration for a FileIntegrity instance provides coverage for files under the following
directories:

/root

/boot

/usr

/etc

The following directories are not covered:

/var

/opt

Some OpenShift Container Platform-specific excludes under /etc/

6.5.5. Supplying a custom AIDE configuration

Any entries that configure AIDE internal behavior such as DBDIR, LOGDIR, database, and
database_out are overwritten by the Operator. The Operator would add a prefix to /hostroot/ before all
paths to be watched for integrity changes. This makes reusing existing AIDE configs that might often not
be tailored for a containerized environment and start from the root directory easier.

NOTE

/hostroot is the directory where the pods running AIDE mount the host’s file system.
Changing the configuration triggers a reinitializing of the database.

6.5.6. Defining a custom File Integrity Operator configuration

This example focuses on defining a custom configuration for a scanner that runs on the control plane
nodes based on the default configuration provided for the worker-fileintegrity CR. This workflow might
be useful if you are planning to deploy a custom software running as a daemon set and storing its data
under /opt/mydaemon on the control plane nodes.

Procedure

@@define DBDIR /hostroot/etc/kubernetes
@@define LOGDIR /hostroot/etc/kubernetes
database=file:@@{DBDIR}/aide.db.gz
database_out=file:@@{DBDIR}/aide.db.gz
gzip_dbout=yes
verbose=5
report_url=file:@@{LOGDIR}/aide.log
report_url=stdout
PERMS = p+u+g+acl+selinux+xattrs
CONTENT_EX = sha512+ftype+p+u+g+n+acl+selinux+xattrs

/hostroot/boot/ CONTENT_EX
/hostroot/root/\..* PERMS
/hostroot/root/ CONTENT_EX

CHAPTER 6. FILE INTEGRITY OPERATOR

175

1. Make a copy of the default configuration.

2. Edit the default configuration with the files that must be watched or excluded.

3. Store the edited contents in a new config map.

4. Point the FileIntegrity object to the new config map through the attributes in spec.config.

5. Extract the default configuration:

This creates a file named aide.conf that you can edit. To illustrate how the Operator post-
processes the paths, this example adds an exclude directory without the prefix:

Example output

Exclude a path specific to control plane nodes:

Store the other content in /etc:

6. Create a config map based on this file:

7. Define a FileIntegrity CR manifest that references the config map:

The Operator processes the provided config map file and stores the result in a config map with

$ oc extract cm/worker-fileintegrity --keys=aide.conf

$ vim aide.conf

/hostroot/etc/kubernetes/static-pod-resources
!/hostroot/etc/kubernetes/aide.*
!/hostroot/etc/kubernetes/manifests
!/hostroot/etc/docker/certs.d
!/hostroot/etc/selinux/targeted
!/hostroot/etc/openvswitch/conf.db

!/opt/mydaemon/

/hostroot/etc/ CONTENT_EX

$ oc create cm master-aide-conf --from-file=aide.conf

apiVersion: fileintegrity.openshift.io/v1alpha1
kind: FileIntegrity
metadata:
 name: master-fileintegrity
 namespace: openshift-file-integrity
spec:
 nodeSelector:
 node-role.kubernetes.io/master: ""
 config:
 name: master-aide-conf
 namespace: openshift-file-integrity

OpenShift Container Platform 4.9 Security and compliance

176

The Operator processes the provided config map file and stores the result in a config map with
the same name as the FileIntegrity object:

Example output

6.5.7. Changing the custom File Integrity configuration

To change the File Integrity configuration, never change the generated config map. Instead, change the
config map that is linked to the FileIntegrity object through the spec.name, namespace, and key
attributes.

6.6. PERFORMING ADVANCED CUSTOM FILE INTEGRITY OPERATOR
TASKS

6.6.1. Reinitializing the database

If the File Integrity Operator detects a change that was planned, it might be required to reinitialize the
database.

Procedure

Annotate the FileIntegrity custom resource (CR) with file-integrity.openshift.io/re-init:

The old database and log files are backed up and a new database is initialized. The old database
and logs are retained on the nodes under /etc/kubernetes, as seen in the following output from
a pod spawned using oc debug:

Example output

To provide some permanence of record, the resulting config maps are not owned by the
FileIntegrity object, so manual cleanup is necessary. As a result, any previous integrity failures
would still be visible in the FileIntegrityNodeStatus object.

$ oc describe cm/master-fileintegrity | grep /opt/mydaemon

!/hostroot/opt/mydaemon

$ oc annotate fileintegrities/worker-fileintegrity file-integrity.openshift.io/re-init=

 ls -lR /host/etc/kubernetes/aide.*
-rw-------. 1 root root 1839782 Sep 17 15:08 /host/etc/kubernetes/aide.db.gz
-rw-------. 1 root root 1839783 Sep 17 14:30 /host/etc/kubernetes/aide.db.gz.backup-
20200917T15_07_38
-rw-------. 1 root root 73728 Sep 17 15:07 /host/etc/kubernetes/aide.db.gz.backup-
20200917T15_07_55
-rw-r--r--. 1 root root 0 Sep 17 15:08 /host/etc/kubernetes/aide.log
-rw-------. 1 root root 613 Sep 17 15:07 /host/etc/kubernetes/aide.log.backup-
20200917T15_07_38
-rw-r--r--. 1 root root 0 Sep 17 15:07 /host/etc/kubernetes/aide.log.backup-
20200917T15_07_55

CHAPTER 6. FILE INTEGRITY OPERATOR

177

6.6.2. Machine config integration

In OpenShift Container Platform 4, the cluster node configuration is delivered through MachineConfig
objects. You can assume that the changes to files that are caused by a MachineConfig object are
expected and should not cause the file integrity scan to fail. To suppress changes to files caused by
MachineConfig object updates, the File Integrity Operator watches the node objects; when a node is
being updated, the AIDE scans are suspended for the duration of the update. When the update finishes,
the database is reinitialized and the scans resume.

This pause and resume logic only applies to updates through the MachineConfig API, as they are
reflected in the node object annotations.

6.6.3. Exploring the daemon sets

Each FileIntegrity object represents a scan on a number of nodes. The scan itself is performed by pods
managed by a daemon set.

To find the daemon set that represents a FileIntegrity object, run:

To list the pods in that daemon set, run:

To view logs of a single AIDE pod, call oc logs on one of the pods.

Example output

The config maps created by the AIDE daemon are not retained and are deleted after the File Integrity
Operator processes them. However, on failure and error, the contents of these config maps are copied
to the config map that the FileIntegrityNodeStatus object points to.

6.7. TROUBLESHOOTING THE FILE INTEGRITY OPERATOR

6.7.1. General troubleshooting

Issue

You want to generally troubleshoot issues with the File Integrity Operator.

Resolution

Enable the debug flag in the FileIntegrity object. The debug flag increases the verbosity of the
daemons that run in the DaemonSet pods and run the AIDE checks.

$ oc -n openshift-file-integrity get ds/aide-worker-fileintegrity

$ oc -n openshift-file-integrity get pods -lapp=aide-worker-fileintegrity

$ oc -n openshift-file-integrity logs pod/aide-worker-fileintegrity-mr8x6

Starting the AIDE runner daemon
initializing AIDE db
initialization finished
running aide check
...

OpenShift Container Platform 4.9 Security and compliance

178

6.7.2. Checking the AIDE configuration

Issue

You want to check the AIDE configuration.

Resolution

The AIDE configuration is stored in a config map with the same name as the FileIntegrity object. All
AIDE configuration config maps are labeled with file-integrity.openshift.io/aide-conf.

6.7.3. Determining the FileIntegrity object’s phase

Issue

You want to determine if the FileIntegrity object exists and see its current status.

Resolution

To see the FileIntegrity object’s current status, run:

Once the FileIntegrity object and the backing daemon set are created, the status should switch to
Active. If it does not, check the Operator pod logs.

6.7.4. Determining that the daemon set’s pods are running on the expected nodes

Issue

You want to confirm that the daemon set exists and that its pods are running on the nodes you
expect them to run on.

Resolution

Run:

NOTE

Adding -owide includes the IP address of the node that the pod is running on.

To check the logs of the daemon pods, run oc logs.

Check the return value of the AIDE command to see if the check passed or failed.

$ oc get fileintegrities/worker-fileintegrity -o jsonpath="{ .status }"

$ oc -n openshift-file-integrity get pods -lapp=aide-worker-fileintegrity

CHAPTER 6. FILE INTEGRITY OPERATOR

179

CHAPTER 7. VIEWING AUDIT LOGS
OpenShift Container Platform auditing provides a security-relevant chronological set of records
documenting the sequence of activities that have affected the system by individual users,
administrators, or other components of the system.

7.1. ABOUT THE API AUDIT LOG

Audit works at the API server level, logging all requests coming to the server. Each audit log contains the
following information:

Table 7.1. Audit log fields

Field Description

level The audit level at which the event was generated.

auditID A unique audit ID, generated for each request.

stage The stage of the request handling when this event instance was
generated.

requestURI The request URI as sent by the client to a server.

verb The Kubernetes verb associated with the request. For non-resource
requests, this is the lowercase HTTP method.

user The authenticated user information.

impersonatedUser Optional. The impersonated user information, if the request is
impersonating another user.

sourceIPs Optional. The source IPs, from where the request originated and any
intermediate proxies.

userAgent Optional. The user agent string reported by the client. Note that the user
agent is provided by the client, and must not be trusted.

objectRef Optional. The object reference this request is targeted at. This does not
apply for List-type requests, or non-resource requests.

responseStatus Optional. The response status, populated even when the
ResponseObject is not a Status type. For successful responses, this
will only include the code. For non-status type error responses, this will
be auto-populated with the error message.

OpenShift Container Platform 4.9 Security and compliance

180

requestObject Optional. The API object from the request, in JSON format. The
RequestObject is recorded as is in the request (possibly re-encoded
as JSON), prior to version conversion, defaulting, admission or merging.
It is an external versioned object type, and might not be a valid object on
its own. This is omitted for non-resource requests and is only logged at
request level and higher.

responseObject Optional. The API object returned in the response, in JSON format. The
ResponseObject is recorded after conversion to the external type,
and serialized as JSON. This is omitted for non-resource requests and is
only logged at response level.

requestReceivedTimestamp The time that the request reached the API server.

stageTimestamp The time that the request reached the current audit stage.

annotations Optional. An unstructured key value map stored with an audit event that
may be set by plugins invoked in the request serving chain, including
authentication, authorization and admission plugins. Note that these
annotations are for the audit event, and do not correspond to the
metadata.annotations of the submitted object. Keys should uniquely
identify the informing component to avoid name collisions, for example
podsecuritypolicy.admission.k8s.io/policy. Values should be
short. Annotations are included in the metadata level.

Field Description

Example output for the Kubernetes API server:

7.2. VIEWING THE AUDIT LOGS

You can view the logs for the OpenShift API server, Kubernetes API server, and OpenShift OAuth API

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-4130-8192-
c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-kube-
controller-manager/configmaps/cert-recovery-controller-lock?timeout=35s","verb":"update","user":
{"username":"system:serviceaccount:openshift-kube-controller-manager:localhost-recovery-
client","uid":"dd4997e3-d565-4e37-80f8-7fc122ccd785","groups":
["system:serviceaccounts","system:serviceaccounts:openshift-kube-controller-
manager","system:authenticated"]},"sourceIPs":["::1"],"userAgent":"cluster-kube-controller-manager-
operator/v0.0.0 (linux/amd64) kubernetes/$Format","objectRef":
{"resource":"configmaps","namespace":"openshift-kube-controller-manager","name":"cert-recovery-
controller-lock","uid":"5c57190b-6993-425d-8101-
8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":{"metadata":
{},"code":200},"requestReceivedTimestamp":"2020-04-
02T08:27:20.200962Z","stageTimestamp":"2020-04-02T08:27:20.206710Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of ClusterRole
\"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-kube-controller-manager\""}}

CHAPTER 7. VIEWING AUDIT LOGS

181

You can view the logs for the OpenShift API server, Kubernetes API server, and OpenShift OAuth API
server for each control plane node.

Procedure

To view the audit logs:

View the OpenShift API server logs:

a. List the OpenShift API server logs that are available for each control plane node:

Example output

b. View a specific OpenShift API server log by providing the node name and the log name:

For example:

Example output

View the Kubernetes API server logs:

a. List the Kubernetes API server logs that are available for each control plane node:

$ oc adm node-logs --role=master --path=openshift-apiserver/

ci-ln-m0wpfjb-f76d1-vnb5x-master-0 audit-2021-03-09T00-12-19.834.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-0 audit.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-1 audit-2021-03-09T00-11-49.835.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-1 audit.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-2 audit-2021-03-09T00-13-00.128.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-2 audit.log

$ oc adm node-logs <node_name> --path=openshift-apiserver/<log_name>

$ oc adm node-logs ci-ln-m0wpfjb-f76d1-vnb5x-master-0 --path=openshift-
apiserver/audit-2021-03-09T00-12-19.834.log

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"381acf6d-5f30-
4c7d-8175-
c9c317ae5893","stage":"ResponseComplete","requestURI":"/metrics","verb":"get","user":
{"username":"system:serviceaccount:openshift-monitoring:prometheus-
k8s","uid":"825b60a0-3976-4861-a342-3b2b561e8f82","groups":
["system:serviceaccounts","system:serviceaccounts:openshift-
monitoring","system:authenticated"]},"sourceIPs":
["10.129.2.6"],"userAgent":"Prometheus/2.23.0","responseStatus":{"metadata":
{},"code":200},"requestReceivedTimestamp":"2021-03-
08T18:02:04.086545Z","stageTimestamp":"2021-03-
08T18:02:04.107102Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"prometheus-k8s\" of ClusterRole \"prometheus-k8s\" to
ServiceAccount \"prometheus-k8s/openshift-monitoring\""}}

$ oc adm node-logs --role=master --path=kube-apiserver/

OpenShift Container Platform 4.9 Security and compliance

182

Example output

b. View a specific Kubernetes API server log by providing the node name and the log name:

For example:

Example output

View the OpenShift OAuth API server logs:

a. List the OpenShift OAuth API server logs that are available for each control plane node:

Example output

ci-ln-m0wpfjb-f76d1-vnb5x-master-0 audit-2021-03-09T14-07-27.129.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-0 audit.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-1 audit-2021-03-09T19-24-22.620.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-1 audit.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-2 audit-2021-03-09T18-37-07.511.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-2 audit.log

$ oc adm node-logs <node_name> --path=kube-apiserver/<log_name>

$ oc adm node-logs ci-ln-m0wpfjb-f76d1-vnb5x-master-0 --path=kube-apiserver/audit-
2021-03-09T14-07-27.129.log

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"cfce8a0b-b5f5-
4365-8c9f-
79c1227d10f9","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-
kube-scheduler/serviceaccounts/openshift-kube-scheduler-sa","verb":"get","user":
{"username":"system:serviceaccount:openshift-kube-scheduler-operator:openshift-kube-
scheduler-operator","uid":"2574b041-f3c8-44e6-a057-baef7aa81516","groups":
["system:serviceaccounts","system:serviceaccounts:openshift-kube-scheduler-
operator","system:authenticated"]},"sourceIPs":["10.128.0.8"],"userAgent":"cluster-kube-
scheduler-operator/v0.0.0 (linux/amd64) kubernetes/$Format","objectRef":
{"resource":"serviceaccounts","namespace":"openshift-kube-
scheduler","name":"openshift-kube-scheduler-sa","apiVersion":"v1"},"responseStatus":
{"metadata":{},"code":200},"requestReceivedTimestamp":"2021-03-
08T18:06:42.512619Z","stageTimestamp":"2021-03-
08T18:06:42.516145Z","annotations":{"authentication.k8s.io/legacy-
token":"system:serviceaccount:openshift-kube-scheduler-operator:openshift-kube-
scheduler-
operator","authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC:
allowed by ClusterRoleBinding \"system:openshift:operator:cluster-kube-scheduler-
operator\" of ClusterRole \"cluster-admin\" to ServiceAccount \"openshift-kube-scheduler-
operator/openshift-kube-scheduler-operator\""}}

$ oc adm node-logs --role=master --path=oauth-apiserver/

ci-ln-m0wpfjb-f76d1-vnb5x-master-0 audit-2021-03-09T13-06-26.128.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-0 audit.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-1 audit-2021-03-09T18-23-21.619.log

CHAPTER 7. VIEWING AUDIT LOGS

183

b. View a specific OpenShift OAuth API server log by providing the node name and the log
name:

For example:

Example output

7.3. FILTERING AUDIT LOGS

You can use jq or another JSON parsing tool to filter the API server audit logs.

NOTE

The amount of information logged to the API server audit logs is controlled by the audit
log policy that is set.

The following procedure provides examples of using jq to filter audit logs on control plane node node-
1.example.com. See the jq Manual for detailed information on using jq.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed jq.

Procedure

ci-ln-m0wpfjb-f76d1-vnb5x-master-1 audit.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-2 audit-2021-03-09T17-36-06.510.log
ci-ln-m0wpfjb-f76d1-vnb5x-master-2 audit.log

$ oc adm node-logs <node_name> --path=oauth-apiserver/<log_name>

$ oc adm node-logs ci-ln-m0wpfjb-f76d1-vnb5x-master-0 --path=oauth-apiserver/audit-
2021-03-09T13-06-26.128.log

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"dd4c44e2-
3ea1-4830-9ab7-
c91a5f1388d6","stage":"ResponseComplete","requestURI":"/apis/user.openshift.io/v1/users
/~","verb":"get","user":{"username":"system:serviceaccount:openshift-
monitoring:prometheus-k8s","groups":
["system:serviceaccounts","system:serviceaccounts:openshift-
monitoring","system:authenticated"]},"sourceIPs":
["10.0.32.4","10.128.0.1"],"userAgent":"dockerregistry/v0.0.0 (linux/amd64)
kubernetes/$Format","objectRef":
{"resource":"users","name":"~","apiGroup":"user.openshift.io","apiVersion":"v1"},"response
Status":{"metadata":{},"code":200},"requestReceivedTimestamp":"2021-03-
08T17:47:43.653187Z","stageTimestamp":"2021-03-
08T17:47:43.660187Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"basic-users\" of ClusterRole \"basic-user\" to Group
\"system:authenticated\""}}

OpenShift Container Platform 4.9 Security and compliance

184

https://stedolan.github.io/jq/manual/

1

Filter OpenShift API server audit logs by user:

Filter OpenShift API server audit logs by user agent:

Filter Kubernetes API server audit logs by a certain API version and only output the user agent:

Filter OpenShift OAuth API server audit logs by excluding a verb:

7.4. GATHERING AUDIT LOGS

You can use the must-gather tool to collect the audit logs for debugging your cluster, which you can
review or send to Red Hat Support.

Procedure

1. Run the oc adm must-gather command with the -- /usr/bin/gather_audit_logs flag:

2. Create a compressed file from the must-gather directory that was just created in your working
directory. For example, on a computer that uses a Linux operating system, run the following
command:

Replace must-gather-local.472290403699006248 with the actual directory name.

3. Attach the compressed file to your support case on the Red Hat Customer Portal .

7.5. ADDITIONAL RESOURCES

Must-gather tool

API audit log event structure

$ oc adm node-logs node-1.example.com \
 --path=openshift-apiserver/audit.log \
 | jq 'select(.user.username == "myusername")'

$ oc adm node-logs node-1.example.com \
 --path=openshift-apiserver/audit.log \
 | jq 'select(.userAgent == "cluster-version-operator/v0.0.0 (linux/amd64)
kubernetes/$Format")'

$ oc adm node-logs node-1.example.com \
 --path=kube-apiserver/audit.log \
 | jq 'select(.requestURI | startswith("/apis/apiextensions.k8s.io/v1beta1")) | .userAgent'

$ oc adm node-logs node-1.example.com \
 --path=oauth-apiserver/audit.log \
 | jq 'select(.verb != "get")'

$ oc adm must-gather -- /usr/bin/gather_audit_logs

$ tar cvaf must-gather.tar.gz must-gather.local.472290403699006248 1

CHAPTER 7. VIEWING AUDIT LOGS

185

https://access.redhat.com
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/support/#about-must-gather_gathering-cluster-data
https://github.com/kubernetes/apiserver/blob/master/pkg/apis/audit/v1/types.go#L72

Configuring the audit log policy

Forwarding logs to third party systems

OpenShift Container Platform 4.9 Security and compliance

186

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/security_and_compliance/#audit-log-policy-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/#cluster-logging-external

CHAPTER 8. CONFIGURING THE AUDIT LOG POLICY
You can control the amount of information that is logged to the API server audit logs by choosing the
audit log policy profile to use.

8.1. ABOUT AUDIT LOG POLICY PROFILES

Audit log profiles define how to log requests that come to the OpenShift API server, the Kubernetes API
server, and the OAuth API server.

OpenShift Container Platform provides the following predefined audit policy profiles:

Profile Description

Default Logs only metadata for read and write requests; does not log request
bodies except for OAuth access token requests. This is the default
policy.

WriteRequestBodies In addition to logging metadata for all requests, logs request bodies for
every write request to the API servers (create, update, patch). This

profile has more resource overhead than the Default profile. [1]

AllRequestBodies In addition to logging metadata for all requests, logs request bodies for
every read and write request to the API servers (get, list, create,

update, patch). This profile has the most resource overhead. [1]

None No requests are logged; even OAuth access token requests and OAuth
authorize token requests are not logged.

WARNING

It is not recommended to disable audit logging by
using the None profile unless you are fully aware
of the risks of not logging data that can be
beneficial when troubleshooting issues. If you
disable audit logging and a support situation
arises, you might need to enable audit logging and
reproduce the issue in order to troubleshoot
properly.

1. Sensitive resources, such as Secret, Route, and OAuthClient objects, are never logged past the
metadata level.

By default, OpenShift Container Platform uses the Default audit log profile. You can use another audit
policy profile that also logs request bodies, but be aware of the increased resource usage (CPU,
memory, and I/O).



CHAPTER 8. CONFIGURING THE AUDIT LOG POLICY

187

1

8.2. CONFIGURING THE AUDIT LOG POLICY

You can configure the audit log policy to use when logging requests that come to the API servers.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the APIServer resource:

2. Update the spec.audit.profile field:

Set to Default, WriteRequestBodies, AllRequestBodies, or None. The default profile is
Default.

WARNING

It is not recommended to disable audit logging by using the None profile
unless you are fully aware of the risks of not logging data that can be
beneficial when troubleshooting issues. If you disable audit logging and a
support situation arises, you might need to enable audit logging and
reproduce the issue in order to troubleshoot properly.

3. Save the file to apply the changes.

Verification

Verify that a new revision of the Kubernetes API server pods is rolled out. It can take several
minutes for all nodes to update to the new revision.

Review the NodeInstallerProgressing status condition for the Kubernetes API server to verify
that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon
successful update:

$ oc edit apiserver cluster

apiVersion: config.openshift.io/v1
kind: APIServer
metadata:
...
spec:
 audit:
 profile: WriteRequestBodies 1



$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

OpenShift Container Platform 4.9 Security and compliance

188

1

1

2

In this example, the latest revision number is 12.

If the output shows a message similar to one of the following messages, the update is still in
progress. Wait a few minutes and try again.

3 nodes are at revision 11; 0 nodes have achieved new revision 12

2 nodes are at revision 11; 1 nodes are at revision 12

8.3. CONFIGURING THE AUDIT LOG POLICY WITH CUSTOM RULES

You can configure an audit log policy that defines custom rules. You can specify multiple groups and
define which profile to use for that group.

These custom rules take precedence over the top-level profile field. The custom rules are evaluated
from top to bottom, and the first that matches is applied.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the APIServer resource:

2. Add the spec.audit.customRules field:

Add one or more groups and specify the profile to use for that group. These custom rules
take precedence over the top-level profile field. The custom rules are evaluated from top
to bottom, and the first that matches is applied.

Set to Default, WriteRequestBodies, AllRequestBodies, or None. If you do not set this
top-level audit.profile field, it defaults to the Default profile.

AllNodesAtLatestRevision
3 nodes are at revision 12 1

$ oc edit apiserver cluster

apiVersion: config.openshift.io/v1
kind: APIServer
metadata:
...
spec:
 audit:
 customRules: 1
 - group: system:authenticated:oauth
 profile: WriteRequestBodies
 - group: system:authenticated
 profile: AllRequestBodies
 profile: Default 2

CHAPTER 8. CONFIGURING THE AUDIT LOG POLICY

189

1

WARNING

It is not recommended to disable audit logging by using the None profile
unless you are fully aware of the risks of not logging data that can be
beneficial when troubleshooting issues. If you disable audit logging and a
support situation arises, you might need to enable audit logging and
reproduce the issue in order to troubleshoot properly.

3. Save the file to apply the changes.

Verification

Verify that a new revision of the Kubernetes API server pods is rolled out. It can take several
minutes for all nodes to update to the new revision.

Review the NodeInstallerProgressing status condition for the Kubernetes API server to verify
that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon
successful update:

In this example, the latest revision number is 12.

If the output shows a message similar to one of the following messages, the update is still in
progress. Wait a few minutes and try again.

3 nodes are at revision 11; 0 nodes have achieved new revision 12

2 nodes are at revision 11; 1 nodes are at revision 12

8.4. DISABLING AUDIT LOGGING

You can disable audit logging for OpenShift Container Platform. When you disable audit logging, even
OAuth access token requests and OAuth authorize token requests are not logged.



$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 12 1

OpenShift Container Platform 4.9 Security and compliance

190

WARNING

It is not recommended to disable audit logging by using the None profile unless you
are fully aware of the risks of not logging data that can be beneficial when
troubleshooting issues. If you disable audit logging and a support situation arises,
you might need to enable audit logging and reproduce the issue in order to
troubleshoot properly.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the APIServer resource:

2. Set the spec.audit.profile field to None:

NOTE

You can also disable audit logging only for specific groups by specifying custom
rules in the spec.audit.customRules field.

3. Save the file to apply the changes.

Verification

Verify that a new revision of the Kubernetes API server pods is rolled out. It can take several
minutes for all nodes to update to the new revision.

Review the NodeInstallerProgressing status condition for the Kubernetes API server to verify
that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon
successful update:



$ oc edit apiserver cluster

apiVersion: config.openshift.io/v1
kind: APIServer
metadata:
...
spec:
 audit:
 profile: None

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 12 1

CHAPTER 8. CONFIGURING THE AUDIT LOG POLICY

191

1 In this example, the latest revision number is 12.

If the output shows a message similar to one of the following messages, the update is still in
progress. Wait a few minutes and try again.

3 nodes are at revision 11; 0 nodes have achieved new revision 12

2 nodes are at revision 11; 1 nodes are at revision 12

OpenShift Container Platform 4.9 Security and compliance

192

CHAPTER 9. CONFIGURING TLS SECURITY PROFILES
TLS security profiles provide a way for servers to regulate which ciphers a client can use when
connecting to the server. This ensures that OpenShift Container Platform components use
cryptographic libraries that do not allow known insecure protocols, ciphers, or algorithms.

Cluster administrators can choose which TLS security profile to use for each of the following
components:

the Ingress Controller

the control plane
This includes the Kubernetes API server, Kubernetes controller manager, Kubernetes scheduler,
OpenShift API server, OpenShift OAuth API server, OpenShift OAuth server, and etcd.

the kubelet, when it acts as an HTTP server for the Kubernetes API server

9.1. UNDERSTANDING TLS SECURITY PROFILES

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations .

You can specify one of the following TLS security profiles for each component:

Table 9.1. TLS security profiles

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the recommended configuration for the majority of clients.
It is the default TLS security profile for the Ingress Controller, kubelet,
and control plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

CHAPTER 9. CONFIGURING TLS SECURITY PROFILES

193

https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

1

Custom This profile allows you to define the TLS version and ciphers to use.

WARNING

Use caution when using a Custom profile,
because invalid configurations can cause
problems.

Profile Description

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

9.2. VIEWING TLS SECURITY PROFILE DETAILS

You can view the minimum TLS version and ciphers for the predefined TLS security profiles for each of
the following components: Ingress Controller, control plane, and kubelet.

IMPORTANT

The effective configuration of minimum TLS version and list of ciphers for a profile might
differ between components.

Procedure

View details for a specific TLS security profile:

For <component>, specify ingresscontroller, apiserver, or kubeletconfig. For <profile>,
specify old, intermediate, or custom.

For example, to check the ciphers included for the intermediate profile for the control plane:

Example output



$ oc explain <component>.spec.tlsSecurityProfile.<profile> 1

$ oc explain apiserver.spec.tlsSecurityProfile.intermediate

KIND: APIServer
VERSION: config.openshift.io/v1

DESCRIPTION:

OpenShift Container Platform 4.9 Security and compliance

194

1

View all details for the tlsSecurityProfile field of a component:

For <component>, specify ingresscontroller, apiserver, or kubeletconfig.

For example, to check all details for the tlsSecurityProfile field for the Ingress Controller:

Example output

 intermediate is a TLS security profile based on:

https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended
.29
 and looks like this (yaml):
 ciphers: - TLS_AES_128_GCM_SHA256 - TLS_AES_256_GCM_SHA384 -
 TLS_CHACHA20_POLY1305_SHA256 - ECDHE-ECDSA-AES128-GCM-SHA256 -
 ECDHE-RSA-AES128-GCM-SHA256 - ECDHE-ECDSA-AES256-GCM-SHA384 -
 ECDHE-RSA-AES256-GCM-SHA384 - ECDHE-ECDSA-CHACHA20-POLY1305 -
 ECDHE-RSA-CHACHA20-POLY1305 - DHE-RSA-AES128-GCM-SHA256 -
 DHE-RSA-AES256-GCM-SHA384 minTLSVersion: TLSv1.2

$ oc explain <component>.spec.tlsSecurityProfile 1

$ oc explain ingresscontroller.spec.tlsSecurityProfile

KIND: IngressController
VERSION: operator.openshift.io/v1

RESOURCE: tlsSecurityProfile <Object>

DESCRIPTION:
 ...

FIELDS:
 custom <>
 custom is a user-defined TLS security profile. Be extremely careful using a
 custom profile as invalid configurations can be catastrophic. An example
 custom profile looks like this:
 ciphers: - ECDHE-ECDSA-CHACHA20-POLY1305 - ECDHE-RSA-CHACHA20-
POLY1305 -
 ECDHE-RSA-AES128-GCM-SHA256 - ECDHE-ECDSA-AES128-GCM-SHA256
minTLSVersion:
 TLSv1.1

 intermediate <>
 intermediate is a TLS security profile based on:

https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended
.29
 and looks like this (yaml):
 ... 1

 modern <>
 modern is a TLS security profile based on:
 https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility and

CHAPTER 9. CONFIGURING TLS SECURITY PROFILES

195

1

2

3

Lists ciphers and minimum version for the intermediate profile here.

Lists ciphers and minimum version for the modern profile here.

Lists ciphers and minimum version for the old profile here.

9.3. CONFIGURING THE TLS SECURITY PROFILE FOR THE INGRESS
CONTROLLER

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the API server.

Sample IngressController CR that configures the Old TLS security profile

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

NOTE

The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

 looks like this (yaml):
 ... 2
 NOTE: Currently unsupported.

 old <>
 old is a TLS security profile based on:
 https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
 and looks like this (yaml):
 ... 3

 type <string>
 ...

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 old: {}
 type: Old
 ...

OpenShift Container Platform 4.9 Security and compliance

196

1

2

3

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

2. Add the spec.tlsSecurityProfile field:

Sample IngressController CR for a Custom profile

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

custom:

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

Verify that the profile is set in the IngressController CR:

Example output

$ oc edit IngressController default -n openshift-ingress-operator

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2
 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305
 - ECDHE-RSA-CHACHA20-POLY1305
 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11
 ...

$ oc describe IngressController default -n openshift-ingress-operator

Name: default
Namespace: openshift-ingress-operator

CHAPTER 9. CONFIGURING TLS SECURITY PROFILES

197

9.4. CONFIGURING THE TLS SECURITY PROFILE FOR THE CONTROL
PLANE

To configure a TLS security profile for the control plane, edit the APIServer custom resource (CR) to
specify a predefined or custom TLS security profile. Setting the TLS security profile in the APIServer
CR propagates the setting to the following control plane components:

Kubernetes API server

Kubernetes controller manager

Kubernetes scheduler

OpenShift API server

OpenShift OAuth API server

OpenShift OAuth server

etcd

If a TLS security profile is not configured, the default TLS security profile is Intermediate.

NOTE

The default TLS security profile for the Ingress Controller is based on the TLS security
profile set for the API server.

Sample APIServer CR that configures the Old TLS security profile

Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: IngressController
 ...
Spec:
 ...
 Tls Security Profile:
 Custom:
 Ciphers:
 ECDHE-ECDSA-CHACHA20-POLY1305
 ECDHE-RSA-CHACHA20-POLY1305
 ECDHE-RSA-AES128-GCM-SHA256
 ECDHE-ECDSA-AES128-GCM-SHA256
 Min TLS Version: VersionTLS11
 Type: Custom
 ...

apiVersion: config.openshift.io/v1
kind: APIServer
 ...
spec:
 tlsSecurityProfile:

OpenShift Container Platform 4.9 Security and compliance

198

1

2

The TLS security profile defines the minimum TLS version and the TLS ciphers required to
communicate with the control plane components.

You can see the configured TLS security profile in the APIServer custom resource (CR) under Spec.Tls
Security Profile. For the Custom TLS security profile, the specific ciphers and minimum TLS version
are listed.

NOTE

The control plane does not support TLS 1.3 as the minimum TLS version; the Modern
profile is not supported because it requires TLS 1.3.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the default APIServer CR to configure the TLS security profile:

2. Add the spec.tlsSecurityProfile field:

Sample APIServer CR for a Custom profile

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

 old: {}
 type: Old
 ...

$ oc edit APIServer cluster

apiVersion: config.openshift.io/v1
kind: APIServer
metadata:
 name: cluster
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2
 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305
 - ECDHE-RSA-CHACHA20-POLY1305
 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11

CHAPTER 9. CONFIGURING TLS SECURITY PROFILES

199

3

custom:

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

Verify that the TLS security profile is set in the APIServer CR:

Example output

Verify that the TLS security profile is set in the etcd CR:

Example output

$ oc describe apiserver cluster

Name: cluster
Namespace:
 ...
API Version: config.openshift.io/v1
Kind: APIServer
 ...
Spec:
 Audit:
 Profile: Default
 Tls Security Profile:
 Custom:
 Ciphers:
 ECDHE-ECDSA-CHACHA20-POLY1305
 ECDHE-RSA-CHACHA20-POLY1305
 ECDHE-RSA-AES128-GCM-SHA256
 ECDHE-ECDSA-AES128-GCM-SHA256
 Min TLS Version: VersionTLS11
 Type: Custom
 ...

$ oc describe etcd cluster

Name: cluster
Namespace:
 ...
API Version: operator.openshift.io/v1
Kind: Etcd
 ...
Spec:
 Log Level: Normal
 Management State: Managed
 Observed Config:
 Serving Info:
 Cipher Suites:
 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

OpenShift Container Platform 4.9 Security and compliance

200

9.5. CONFIGURING THE TLS SECURITY PROFILE FOR THE KUBELET

To configure a TLS security profile for the kubelet when it is acting as an HTTP server, create a
KubeletConfig custom resource (CR) to specify a predefined or custom TLS security profile for specific
nodes. If a TLS security profile is not configured, the default TLS security profile is Intermediate.

The kubelet uses its HTTP/GRPC server to communicate with the Kubernetes API server, which sends
commands to pods, gathers logs, and run exec commands on pods through the kubelet.

Sample KubeletConfig CR that configures the Old TLS security profile on worker nodes

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
kubelet.conf file on a configured node.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a KubeletConfig CR to configure the TLS security profile:

Sample KubeletConfig CR for a Custom profile

 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
 Min TLS Version: VersionTLS12
 ...

apiVersion: config.openshift.io/v1
kind: KubeletConfig
 ...
spec:
 tlsSecurityProfile:
 old: {}
 type: Old
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: ""

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-kubelet-tls-security-profile
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2
 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305

CHAPTER 9. CONFIGURING TLS SECURITY PROFILES

201

1

2

3

4

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

custom:

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

Optional: Specify the machine config pool label for the nodes you want to apply the TLS
security profile.

2. Create the KubeletConfig object:

Depending on the number of worker nodes in the cluster, wait for the configured nodes to be
rebooted one by one.

Verification

To verify that the profile is set, perform the following steps after the nodes are in the Ready state:

1. Start a debug session for a configured node:

2. Set /host as the root directory within the debug shell:

3. View the kubelet.conf file:

Example output

 - ECDHE-RSA-CHACHA20-POLY1305
 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 4

$ oc create -f <filename>

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-4.4# cat /etc/kubernetes/kubelet.conf

kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
 ...
 "tlsCipherSuites": [
 "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",

OpenShift Container Platform 4.9 Security and compliance

202

 "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
 "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
 "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
 "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
 "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"
],
 "tlsMinVersion": "VersionTLS12",

CHAPTER 9. CONFIGURING TLS SECURITY PROFILES

203

1

2

CHAPTER 10. CONFIGURING SECCOMP PROFILES
An OpenShift Container Platform container or a pod runs a single application that performs one or more
well-defined tasks. The application usually requires only a small subset of the underlying operating
system kernel APIs. Seccomp, secure computing mode, is a Linux kernel feature that can be used to limit
the process running in a container to only call a subset of the available system calls. These system calls
can be configured by creating a profile that is applied to a container or pod. Seccomp profiles are stored
as JSON files on the disk.

IMPORTANT

OpenShift workloads run unconfined by default, without any seccomp profile applied.

IMPORTANT

Seccomp profiles cannot be applied to privileged containers.

10.1. ENABLING THE DEFAULT SECCOMP PROFILE FOR ALL PODS

OpenShift Container Platform ships with a default seccomp profile that is referenced as
runtime/default. You can enable the default seccomp profile for a pod or container workload by
creating a custom Security Context Constraint (SCC).

NOTE

There is a requirement to create a custom SCC. Do not edit the default SCCs. Editing the
default SCCs can lead to issues when some of the platform pods deploy or OpenShift
Container Platform is upgraded. For more information, see the section entitled "Default
security context constraints".

Follow these steps to enable the default seccomp profile for all pods:

1. Export the available restricted SCC to a yaml file:

2. Edit the created restricted SCC yaml file:

3. Update as shown in this example:

Change to restricted-seccomp

Add seccompProfiles:

$ oc get scc restricted -o yaml > restricted-seccomp.yaml

$ vi restricted-seccomp.yaml

kind: SecurityContextConstraints
metadata:
 name: restricted 1
<..snip..>
seccompProfiles: 2
- runtime/default 3

OpenShift Container Platform 4.9 Security and compliance

204

3 Add - runtime/default

4. Create the custom SCC:

Expected output

5. Add the custom SCC to the ServiceAccount:

NOTE

The default service account is the ServiceAccount that is applied unless the user
configures a different one. OpenShift Container Platform configures the
seccomp profile of the pod based on the information in the SCC.

Expected output

In OpenShift Container Platform 4.9 the ability to add the pod annotations
seccomp.security.alpha.kubernetes.io/pod: runtime/default and
container.seccomp.security.alpha.kubernetes.io/<container_name>: runtime/default is deprecated.

10.2. CONFIGURING A CUSTOM SECCOMP PROFILE

You can configure a custom seccomp profile, which allows you to update the filters based on the
application requirements. This allows cluster administrators to have greater control over the security of
workloads running in OpenShift Container Platform.

10.2.1. Setting up the custom seccomp profile

Prerequisite

You have cluster administrator permissions.

You have created a custom security context constraints (SCC). For more information, see
"Additional resources".

You have created a custom seccomp profile.

Procedure

1. Upload your custom seccomp profile to /var/lib/kubelet/seccomp/<custom-name>.json by
using the Machine Config. See "Additional resources" for detailed steps.

$ oc create -f restricted-seccomp.yaml

securitycontextconstraints.security.openshift.io/restricted-seccomp created

$ oc adm policy add-scc-to-user restricted-seccomp -z default

clusterrole.rbac.authorization.k8s.io/system:openshift:scc:restricted-seccomp added:
"default"

CHAPTER 10. CONFIGURING SECCOMP PROFILES

205

1

1

2. Update the custom SCC by providing reference to the created custom seccomp profile:

Provide the name of your custom seccomp profile.

10.2.2. Applying the custom seccomp profile to the workload

Prerequisite

The cluster administrator has set up the custom seccomp profile. For more details, see "Setting
up the custom seccomp profile".

Procedure

Apply the seccomp profile to the workload by setting the
securityContext.seccompProfile.type field as following:

Example

Provide the name of your custom seccomp profile.

Alternatively, you can use the pod annotations seccomp.security.alpha.kubernetes.io/pod:
localhost/<custom-name>.json. However, this method is deprecated in OpenShift Container
Platform 4.9.

During deployment, the admission controller validates the following:

The annotations against the current SCCs allowed by the user role.

The SCC, which includes the seccomp profile, is allowed for the pod.

If the SCC is allowed for the pod, the kubelet runs the pod with the specified seccomp profile.

IMPORTANT

Ensure that the seccomp profile is deployed to all worker nodes.

NOTE

The custom SCC must have the appropriate priority to be automatically assigned to the
pod or meet other conditions required by the pod, such as allowing CAP_NET_ADMIN.

10.3. ADDITIONAL RESOURCES

seccompProfiles:
- localhost/<custom-name>.json 1

spec:
 securityContext:
 seccompProfile:
 type: Localhost
 localhostProfile: <custom-name>.json 1

OpenShift Container Platform 4.9 Security and compliance

206

Managing security context constraints

Post-installation machine configuration tasks

CHAPTER 10. CONFIGURING SECCOMP PROFILES

207

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#managing-security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/post-installation_configuration/#machine-configuration-tasks

1

CHAPTER 11. ALLOWING JAVASCRIPT-BASED ACCESS TO
THE API SERVER FROM ADDITIONAL HOSTS

11.1. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER
FROM ADDITIONAL HOSTS

The default OpenShift Container Platform configuration only allows the web console to send requests
to the API server.

If you need to access the API server or OAuth server from a JavaScript application using a different
hostname, you can configure additional hostnames to allow.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the APIServer resource:

2. Add the additionalCORSAllowedOrigins field under the spec section and specify one or more
additional hostnames:

The hostname is specified as a Golang regular expression that matches against CORS
headers from HTTP requests against the API server and OAuth server.

NOTE

$ oc edit apiserver.config.openshift.io cluster

apiVersion: config.openshift.io/v1
kind: APIServer
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-07-11T17:35:37Z"
 generation: 1
 name: cluster
 resourceVersion: "907"
 selfLink: /apis/config.openshift.io/v1/apiservers/cluster
 uid: 4b45a8dd-a402-11e9-91ec-0219944e0696
spec:
 additionalCORSAllowedOrigins:
 - (?i)//my\.subdomain\.domain\.com(:|\z) 1

OpenShift Container Platform 4.9 Security and compliance

208

https://github.com/google/re2/wiki/Syntax

NOTE

This example uses the following syntax:

The (?i) makes it case-insensitive.

The // pins to the beginning of the domain and matches the double slash
following http: or https:.

The \. escapes dots in the domain name.

The (:|\z) matches the end of the domain name (\z) or a port separator (:).

3. Save the file to apply the changes.

CHAPTER 11. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS

209

CHAPTER 12. ENCRYPTING ETCD DATA

12.1. ABOUT ETCD ENCRYPTION

By default, etcd data is not encrypted in OpenShift Container Platform. You can enable etcd encryption
for your cluster to provide an additional layer of data security. For example, it can help protect the loss
of sensitive data if an etcd backup is exposed to the incorrect parties.

When you enable etcd encryption, the following OpenShift API server and Kubernetes API server
resources are encrypted:

Secrets

Config maps

Routes

OAuth access tokens

OAuth authorize tokens

When you enable etcd encryption, encryption keys are created. These keys are rotated on a weekly
basis. You must have these keys to restore from an etcd backup.

NOTE

Etcd encryption only encrypts values, not keys. Resource types, namespaces, and object
names are unencrypted.

If etcd encryption is enabled during a backup, the
static_kuberesources_<datetimestamp>.tar.gz file contains the encryption keys for
the etcd snapshot. For security reasons, store this file separately from the etcd snapshot.
However, this file is required to restore a previous state of etcd from the respective etcd
snapshot.

12.2. ENABLING ETCD ENCRYPTION

You can enable etcd encryption to encrypt sensitive resources in your cluster.

OpenShift Container Platform 4.9 Security and compliance

210

1

WARNING

Do not back up etcd resources until the initial encryption process is completed. If
the encryption process is not completed, the backup might be only partially
encrypted.

After you enable etcd encryption, several changes can occur:

The etcd encryption might affect the memory consumption of a few
resources.

You might notice a transient affect on backup performance because the
leader must serve the backup.

A disk I/O can affect the node that receives the backup state.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

2. Set the encryption field type to aescbc:

The aescbc type means that AES-CBC with PKCS#7 padding and a 32 byte key is used to
perform the encryption.

3. Save the file to apply the changes.
The encryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of your cluster.

4. Verify that etcd encryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:



$ oc edit apiserver

spec:
 encryption:
 type: aescbc 1

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

CHAPTER 12. ENCRYPTING ETCD DATA

211

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that
its resources were successfully encrypted:

The output shows EncryptionCompleted upon successful encryption:

If the output shows EncryptionInProgress, encryption is still in progress. Wait a few
minutes and try again.

12.3. DISABLING ETCD ENCRYPTION

You can disable encryption of etcd data in your cluster.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Modify the APIServer object:

2. Set the encryption field type to identity:

EncryptionCompleted
All resources encrypted: routes.route.openshift.io

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: secrets, configmaps

$ oc get authentication.operator.openshift.io -o=jsonpath='{range
.items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

EncryptionCompleted
All resources encrypted: oauthaccesstokens.oauth.openshift.io,
oauthauthorizetokens.oauth.openshift.io

$ oc edit apiserver

OpenShift Container Platform 4.9 Security and compliance

212

1 The identity type is the default value and means that no encryption is performed.

3. Save the file to apply the changes.
The decryption process starts. It can take 20 minutes or longer for this process to complete,
depending on the size of your cluster.

4. Verify that etcd decryption was successful.

a. Review the Encrypted status condition for the OpenShift API server to verify that its
resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

b. Review the Encrypted status condition for the Kubernetes API server to verify that its
resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

c. Review the Encrypted status condition for the OpenShift OAuth API server to verify that
its resources were successfully decrypted:

The output shows DecryptionCompleted upon successful decryption:

If the output shows DecryptionInProgress, decryption is still in progress. Wait a few
minutes and try again.

spec:
 encryption:
 type: identity 1

$ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

$ oc get authentication.operator.openshift.io -o=jsonpath='{range
.items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

DecryptionCompleted
Encryption mode set to identity and everything is decrypted

CHAPTER 12. ENCRYPTING ETCD DATA

213

CHAPTER 13. SCANNING PODS FOR VULNERABILITIES
Using the Red Hat Quay Container Security Operator, you can access vulnerability scan results from the
OpenShift Container Platform web console for container images used in active pods on the cluster. The
Red Hat Quay Container Security Operator:

Watches containers associated with pods on all or specified namespaces

Queries the container registry where the containers came from for vulnerability information,
provided an image’s registry is running image scanning (such as Quay.io or a Red Hat Quay
registry with Clair scanning)

Exposes vulnerabilities via the ImageManifestVuln object in the Kubernetes API

Using the instructions here, the Red Hat Quay Container Security Operator is installed in the openshift-
operators namespace, so it is available to all namespaces on your OpenShift Container Platform cluster.

13.1. RUNNING THE RED HAT QUAY CONTAINER SECURITY
OPERATOR

You can start the Red Hat Quay Container Security Operator from the OpenShift Container Platform
web console by selecting and installing that Operator from the Operator Hub, as described here.

Prerequisites

Have administrator privileges to the OpenShift Container Platform cluster

Have containers that come from a Red Hat Quay or Quay.io registry running on your cluster

Procedure

1. Navigate to Operators → OperatorHub and select Security.

2. Select the Container Security Operator, then select Install to go to the Create Operator
Subscription page.

3. Check the settings. All namespaces and automatic approval strategy are selected, by default.

4. Select Install. The Container Security Operator appears after a few moments on the Installed
Operators screen.

5. Optional: You can add custom certificates to the Red Hat Quay Container Security Operator. In
this example, create a certificate named quay.crt in the current directory. Then run the
following command to add the cert to the Red Hat Quay Container Security Operator:

6. If you added a custom certificate, restart the Operator pod for the new certs to take effect.

7. Open the OpenShift Dashboard (Home → Overview). A link to Quay Image Security appears
under the status section, with a listing of the number of vulnerabilities found so far. Select the
link to see a Quay Image Security breakdown, as shown in the following figure:

$ oc create secret generic container-security-operator-extra-certs --from-file=quay.crt -n
openshift-operators

OpenShift Container Platform 4.9 Security and compliance

214

https://quay.io
https://access.redhat.com/products/red-hat-quay

8. You can do one of two things at this point to follow up on any detected vulnerabilities:

Select the link to the vulnerability. You are taken to the container registry that the container
came from, where you can see information about the vulnerability. The following figure
shows an example of detected vulnerabilities from a Quay.io registry:

Select the namespaces link to go to the ImageManifestVuln screen, where you can see the
name of the selected image and all namespaces where that image is running. The following
figure indicates that a particular vulnerable image is running in the quay-enterprise
namespace:

CHAPTER 13. SCANNING PODS FOR VULNERABILITIES

215

At this point, you know what images are vulnerable, what you need to do to fix those vulnerabilities, and
every namespace that the image was run in. So you can:

Alert anyone running the image that they need to correct the vulnerability

Stop the images from running by deleting the deployment or other object that started the pod
that the image is in

Note that if you do delete the pod, it may take several minutes for the vulnerability to reset on the
dashboard.

13.2. QUERYING IMAGE VULNERABILITIES FROM THE CLI

Using the oc command, you can display information about vulnerabilities detected by the Red Hat Quay
Container Security Operator.

Prerequisites

Be running the Red Hat Quay Container Security Operator on your OpenShift Container
Platform instance

Procedure

To query for detected container image vulnerabilities, type:

Example output

To display details for a particular vulnerability, provide the vulnerability name and its namespace
to the oc describe command. This example shows an active container whose image includes an
RPM package with a vulnerability:

Example output

$ oc get vuln --all-namespaces

NAMESPACE NAME AGE
default sha256.ca90... 6m56s
skynet sha256.ca90... 9m37s

$ oc describe vuln --namespace mynamespace sha256.ac50e3752...

Name: sha256.ac50e3752...
Namespace: quay-enterprise
...
Spec:
 Features:
 Name: nss-util
 Namespace Name: centos:7
 Version: 3.44.0-3.el7
 Versionformat: rpm
 Vulnerabilities:
 Description: Network Security Services (NSS) is a set of libraries...

OpenShift Container Platform 4.9 Security and compliance

216

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

14.1. ABOUT DISK ENCRYPTION TECHNOLOGY

Network-Bound Disk Encryption (NBDE) allows you to encrypt root volumes of hard drives on physical
and virtual machines without having to manually enter a password when restarting machines.

14.1.1. Disk encryption technology comparison

To understand the merits of Network-Bound Disk Encryption (NBDE) for securing data at rest on edge
servers, compare key escrow and TPM disk encryption without Clevis to NBDE on systems running Red
Hat Enterprise Linux (RHEL).

The following table presents some tradeoffs to consider around the threat model and the complexity of
each encryption solution.

Scenario Key escrow TPM disk encryption
(without Clevis)

NBDE

Protects against single-
disk theft

X X X

Protects against entire-
server theft

X X

Systems can reboot
independently from the
network

 X

No periodic rekeying X

Key is never transmitted
over a network

 X X

Supported by OpenShift X X

14.1.1.1. Key escrow

Key escrow is the traditional system for storing cryptographic keys. The key server on the network
stores the encryption key for a node with an encrypted boot disk and returns it when queried. The
complexities around key management, transport encryption, and authentication do not make this a
reasonable choice for boot disk encryption.

Although available in Red Hat Enterprise Linux (RHEL), key escrow-based disk encryption setup and
management is a manual process and not suited to OpenShift Container Platform automation
operations, including automated addition of nodes, and currently not supported by OpenShift Container
Platform.

14.1.1.2. TPM encryption

Trusted Platform Module (TPM) disk encryption is best suited for data centers or installations in remote

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

217

protected locations. Full disk encryption utilities such as dm-crypt and BitLocker encrypt disks with a
TPM bind key, and then store the TPM bind key in the TPM, which is attached to the motherboard of the
node. The main benefit of this method is that there is no external dependency, and the node is able to
decrypt its own disks at boot time without any external interaction.

TPM disk encryption protects against decryption of data if the disk is stolen from the node and analyzed
externally. However, for insecure locations this may not be sufficient. For example, if an attacker steals
the entire node, the attacker can intercept the data when powering on the node, because the node
decrypts its own disks. This applies to nodes with physical TPM2 chips as well as virtual machines with
Virtual Trusted Platform Module (VTPM) access.

14.1.1.3. Network-Bound Disk Encryption (NBDE)

Network-Bound Disk Encryption (NBDE) effectively ties the encryption key to an external server or set
of servers in a secure and anonymous way across the network. This is not a key escrow, in that the nodes
do not store the encryption key or transfer it over the network, but otherwise behaves in a similar
fashion.

Clevis and Tang are generic client and server components that provide network-bound encryption. Red
Hat Enterprise Linux CoreOS (RHCOS) uses these components in conjunction with Linux Unified Key
Setup-on-disk-format (LUKS) to encrypt and decrypt root and non-root storage volumes to accomplish
Network-Bound Disk Encryption.

When a node starts, it attempts to contact a predefined set of Tang servers by performing a
cryptographic handshake. If it can reach the required number of Tang servers, the node can construct its
disk decryption key and unlock the disks to continue booting. If the node cannot access a Tang server
due to a network outage or server unavailability, the node cannot boot and continues retrying
indefinitely until the Tang servers become available again. Because the key is effectively tied to the
node’s presence in a network, an attacker attempting to gain access to the data at rest would need to
obtain both the disks on the node, and network access to the Tang server as well.

The following figure illustrates the deployment model for NBDE.

The following figure illustrates NBDE behavior during a reboot.

OpenShift Container Platform 4.9 Security and compliance

218

14.1.1.4. Secret sharing encryption

Shamir’s secret sharing (sss) is a cryptographic algorithm to securely divide up, distribute, and re-
assemble keys. Using this algorithm, OpenShift Container Platform can support more complicated
mixtures of key protection.

When you configure a cluster node to use multiple Tang servers, OpenShift Container Platform uses sss
to set up a decryption policy that will succeed if at least one of the specified servers is available. You can
create layers for additional security. For example, you can define a policy where OpenShift Container
Platform requires both the TPM and one of the given list of Tang servers to decrypt the disk.

14.1.2. Tang server disk encryption

The following components and technologies implement Network-Bound Disk Encryption (NBDE).

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

219

Tang is a server for binding data to network presence. It makes a node containing the data available
when the node is bound to a certain secure network. Tang is stateless and does not require Transport
Layer Security (TLS) or authentication. Unlike escrow-based solutions, where the key server stores all
encryption keys and has knowledge of every encryption key, Tang never interacts with any node keys,
so it never gains any identifying information from the node.

Clevis is a pluggable framework for automated decryption that provides automated unlocking of Linux
Unified Key Setup-on-disk-format (LUKS) volumes. The Clevis package runs on the node and provides
the client side of the feature.

A Clevis pin is a plugin into the Clevis framework. There are three pin types:

TPM2

Binds the disk encryption to the TPM2.

Tang

Binds the disk encryption to a Tang server to enable NBDE.

Shamir’s secret sharing (sss)

Allows more complex combinations of other pins. It allows more nuanced policies such as the
following:

Must be able to reach one of these three Tang servers

Must be able to reach three of these five Tang servers

Must be able to reach the TPM2 AND at least one of these three Tang servers

14.1.3. Tang server location planning

When planning your Tang server environment, consider the physical and network locations of the Tang
servers.

Physical location

The geographic location of the Tang servers is relatively unimportant, as long as they are suitably

OpenShift Container Platform 4.9 Security and compliance

220

The geographic location of the Tang servers is relatively unimportant, as long as they are suitably
secured from unauthorized access or theft and offer the required availability and accessibility to run
a critical service.
Nodes with Clevis clients do not require local Tang servers as long as the Tang servers are available
at all times. Disaster recovery requires both redundant power and redundant network connectivity to
Tang servers regardless of their location.

Network location

Any node with network access to the Tang servers can decrypt their own disk partitions, or any other
disks encrypted by the same Tang servers.
Select network locations for the Tang servers that ensure the presence or absence of network
connectivity from a given host allows for permission to decrypt. For example, firewall protections
might be in place to prohibit access from any type of guest or public network, or any network jack
located in an unsecured area of the building.

Additionally, maintain network segregation between production and development networks. This
assists in defining appropriate network locations and adds an additional layer of security.

Do not deploy Tang servers on the same resource, for example, the same
rolebindings.rbac.authorization.k8s.io cluster, that they are responsible for unlocking. However, a
cluster of Tang servers and other security resources can be a useful configuration to enable support
of multiple additional clusters and cluster resources.

14.1.4. Tang server sizing requirements

The requirements around availability, network, and physical location drive the decision of how many
Tang servers to use, rather than any concern over server capacity.

Tang servers do not maintain the state of data encrypted using Tang resources. Tang servers are either
fully independent or share only their key material, which enables them to scale well.

There are two ways Tang servers handle key material:

Multiple Tang servers share key material:

You must load balance Tang servers sharing keys behind the same URL. The configuration
can be as simple as round-robin DNS, or you can use physical load balancers.

You can scale from a single Tang server to multiple Tang servers. Scaling Tang servers does
not require rekeying or client reconfiguration on the node when the Tang servers share key
material and the same URL.

Client node setup and key rotation only requires one Tang server.

Multiple Tang servers generate their own key material:

You can configure multiple Tang servers at installation time.

You can scale an individual Tang server behind a load balancer.

All Tang servers must be available during client node setup or key rotation.

When a client node boots using the default configuration, the Clevis client contacts all Tang
servers. Only n Tang servers must be online to proceed with decryption. The default value
for n is 1.

Red Hat does not support post-installation configuration that changes the behavior of the

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

221

Red Hat does not support post-installation configuration that changes the behavior of the
Tang servers.

14.1.5. Logging considerations

Centralized logging of Tang traffic is advantageous because it might allow you to detect such things as
unexpected decryption requests. For example:

A node requesting decryption of a passphrase that does not correspond to its boot sequence

A node requesting decryption outside of a known maintenance activity, such as cycling keys

14.2. TANG SERVER INSTALLATION CONSIDERATIONS

14.2.1. Installation scenarios

Consider the following recommendations when planning Tang server installations:

Small environments can use a single set of key material, even when using multiple Tang servers:

Key rotations are easier.

Tang servers can scale easily to permit high availability.

Large environments can benefit from multiple sets of key material:

Physically diverse installations do not require the copying and synchronizing of key material
between geographic regions.

Key rotations are more complex in large environments.

Node installation and rekeying require network connectivity to all Tang servers.

A small increase in network traffic can occur due to a booting node querying all Tang servers
during decryption. Note that while only one Clevis client query must succeed, Clevis queries
all Tang servers.

Further complexity:

Additional manual reconfiguration can permit the Shamir’s secret sharing (sss) of any N of
M servers online in order to decrypt the disk partition. Decrypting disks in this scenario
requires multiple sets of key material, and manual management of Tang servers and nodes
with Clevis clients after the initial installation.

High level recommendations:

For a single RAN deployment, a limited set of Tang servers can run in the corresponding
domain controller (DC).

For multiple RAN deployments, you must decide whether to run Tang servers in each
corresponding DC or whether a global Tang environment better suits the other needs and
requirements of the system.

14.2.2. Installing a Tang server

OpenShift Container Platform 4.9 Security and compliance

222

Procedure

You can install a Tang server on a Red Hat Enterprise Linux (RHEL) machine using either of the
following commands:

Install the Tang server by using the yum command:

Install the Tang server by using the dnf command:

NOTE

Installation can also be containerized and is very lightweight.

14.2.2.1. Compute requirements

The computational requirements for the Tang server are very low. Any typical server grade configuration
that you would use to deploy a server into production can provision sufficient compute capacity.

High availability considerations are solely for availability and not additional compute power to satisfy
client demands.

14.2.2.2. Automatic start at boot

Due to the sensitive nature of the key material the Tang server uses, you should keep in mind that the
overhead of manual intervention during the Tang server’s boot sequence can be beneficial.

By default, if a Tang server starts and does not have key material present in the expected local volume, it
will create fresh material and serve it. You can avoid this default behavior by either starting with pre-
existing key material or aborting the startup and waiting for manual intervention.

14.2.2.3. HTTP versus HTTPS

Traffic to the Tang server can be encrypted (HTTPS) or plaintext (HTTP). There are no significant
security advantages of encrypting this traffic, and leaving it decrypted removes any complexity or failure
conditions related to Transport Layer Security (TLS) certificate checking in the node running a Clevis
client.

While it is possible to perform passive monitoring of unencrypted traffic between the node’s Clevis
client and the Tang server, the ability to use this traffic to determine the key material is at best a future
theoretical concern. Any such traffic analysis would require large quantities of captured data. Key
rotation would immediately invalidate it. Finally, any threat actor able to perform passive monitoring has
already obtained the necessary network access to perform manual connections to the Tang server and
can perform the simpler manual decryption of captured Clevis headers.

However, because other network policies in place at the installation site might require traffic encryption
regardless of application, consider leaving this decision to the cluster administrator.

14.2.3. Installation considerations with Network-Bound Disk Encryption

Network-Bound Disk Encryption (NBDE) must be enabled when a cluster node is installed. However, you

$ sudo yum install tang

$ sudo dnf install tang

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

223

Network-Bound Disk Encryption (NBDE) must be enabled when a cluster node is installed. However, you
can change the disk encryption policy at any time after it was initialized at installation.

Additional resources

Configuring automated unlocking of encrypted volumes using policy-based decryption

Official Tang server container

Encrypting and mirroring disks during installation

14.3. TANG SERVER ENCRYPTION KEY MANAGEMENT

The cryptographic mechanism to recreate the encryption key is based on the blinded key stored on the
node and the private key of the involved Tang servers. To protect against the possibility of an attacker
who has obtained both the Tang server private key and the node’s encrypted disk, periodic rekeying is
advisable.

You must perform the rekeying operation for every node before you can delete the old key from the
Tang server. The following sections provide procedures for rekeying and deleting old keys.

14.3.1. Backing up keys for a Tang server

The Tang server uses /usr/libexec/tangd-keygen to generate new keys and stores them in the
/var/db/tang directory by default. To recover the Tang server in the event of a failure, back up this
directory. The keys are sensitive and because they are able to perform the boot disk decryption of all
hosts that have used them, the keys must be protected accordingly.

Procedure

Copy the backup key from the /var/db/tang directory to the temp directory from which you can
restore the key.

14.3.2. Recovering keys for a Tang server

You can recover the keys for a Tang server by accessing the keys from a backup.

Procedure

Restore the key from your backup folder to the /var/db/tang/ directory.
When the Tang server starts up, it advertises and uses these restored keys.

14.3.3. Rekeying Tang servers

This procedure uses a set of three Tang servers, each with unique keys, as an example.

Using redundant Tang servers reduces the chances of nodes failing to boot automatically.

Rekeying a Tang server, and all associated NBDE-encrypted nodes, is a three-step procedure.

Prerequisites

A working Network-Bound Disk Encryption (NBDE) installation on one or more nodes.

OpenShift Container Platform 4.9 Security and compliance

224

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening
https://catalog.redhat.com/software/containers/detail/5fbc405674aa0cc23b445f8f?container-tabs=overview>i-tabs=registry-tokens
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installation-special-config-storage_installing-customizing

Procedure

1. Generate a new Tang server key.

2. Rekey all NBDE-encrypted nodes so they use the new key.

3. Delete the old Tang server key.

NOTE

Deleting the old key before all NBDE-encrypted nodes have completed their
rekeying causes those nodes to become overly dependent on any other
configured Tang servers.

Figure 14.1. Example workflow for rekeying a Tang server

14.3.3.1. Generating a new Tang server key

Prerequisites

A root shell on the Linux machine running the Tang server.

To facilitate verification of the Tang server key rotation, encrypt a small test file with the old
key:

Verify that the encryption succeeded and the file can be decrypted to produce the same string
plaintext:

Procedure

1. Locate and access the directory that stores the Tang server key. This is usually the /var/db/tang
directory. Check the currently advertised key thumbprint:

echo plaintext | clevis encrypt tang '{"url":"http://localhost:7500”}' -y >/tmp/encrypted.oldkey

clevis decrypt </tmp/encrypted.oldkey

tang-show-keys 7500

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

225

Example output

2. Enter the Tang server key directory:

3. List the current Tang server keys:

Example output

During normal Tang server operations, there are two .jwk files in this directory: one for signing
and verification, and another for key derivation.

4. Disable advertisement of the old keys:

New clients setting up Network-Bound Disk Encryption (NBDE) or requesting keys will no
longer see the old keys. Existing clients can still access and use the old keys until they are
deleted. The Tang server reads but does not advertise keys stored in UNIX hidden files, which
start with the . character.

5. Generate a new key:

6. List the current Tang server keys to verify the old keys are no longer advertised, as they are now
hidden files, and new keys are present:

Example output

Tang automatically advertises the new keys.

NOTE

36AHjNH3NZDSnlONLz1-V4ie6t8

cd /var/db/tang/

ls -A1

36AHjNH3NZDSnlONLz1-V4ie6t8.jwk
gJZiNPMLRBnyo_ZKfK4_5SrnHYo.jwk

for key in *.jwk; do \
 mv -- "$key" ".$key"; \
done

/usr/libexec/tangd-keygen /var/db/tang

ls -A1

.36AHjNH3NZDSnlONLz1-V4ie6t8.jwk

.gJZiNPMLRBnyo_ZKfK4_5SrnHYo.jwk
Bp8XjITceWSN_7XFfW7WfJDTomE.jwk
WOjQYkyK7DxY_T5pMncMO5w0f6E.jwk

OpenShift Container Platform 4.9 Security and compliance

226

NOTE

More recent Tang server installations include a helper /usr/libexec/tangd-rotate-
keys directory that takes care of disabling advertisement and generating the
new keys simultaneously.

7. If you are running multiple Tang servers behind a load balancer that share the same key
material, ensure the changes made here are properly synchronized across the entire set of
servers before proceeding.

Verification

1. Verify that the Tang server is advertising the new key, and not advertising the old key:

Example output

2. Verify that the old key, while not advertised, is still available to decryption requests:

14.3.3.2. Rekeying all NBDE nodes

You can rekey all of the nodes on a remote cluster by using a DaemonSet object without incurring any
downtime to the remote cluster.

NOTE

If a node loses power during the rekeying, it is possible that it might become unbootable,
and must be redeployed via Red Hat Advanced Cluster Management (RHACM) or a
GitOps pipeline.

Prerequisites

cluster-admin access to all clusters with Network-Bound Disk Encryption (NBDE) nodes.

All Tang servers must be accessible to every NBDE node undergoing rekeying, even if the keys
of a Tang server have not changed.

Obtain the Tang server URL and key thumbprint for every Tang server.

Procedure

1. Create a DaemonSet object based on the following template. This template sets up three
redundant Tang servers, but can be easily adapted to other situations. Change the Tang server
URLs and thumbprints in the NEW_TANG_PIN environment to suit your environment:

tang-show-keys 7500

WOjQYkyK7DxY_T5pMncMO5w0f6E

clevis decrypt </tmp/encrypted.oldkey

apiVersion: apps/v1
kind: DaemonSet
metadata:

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

227

 name: tang-rekey
 namespace: openshift-machine-config-operator
spec:
 selector:
 matchLabels:
 name: tang-rekey
 template:
 metadata:
 labels:
 name: tang-rekey
 spec:
 containers:
 - name: tang-rekey
 image: registry.access.redhat.com/ubi8/ubi-minimal:8.4
 imagePullPolicy: IfNotPresent
 command:
 - "/sbin/chroot"
 - "/host"
 - "/bin/bash"
 - "-ec"
 args:
 - |
 rm -f /tmp/rekey-complete || true
 echo "Current tang pin:"
 clevis-luks-list -d $ROOT_DEV -s 1
 echo "Applying new tang pin: $NEW_TANG_PIN"
 clevis-luks-edit -f -d $ROOT_DEV -s 1 -c "$NEW_TANG_PIN"
 echo "Pin applied successfully"
 touch /tmp/rekey-complete
 sleep infinity
 readinessProbe:
 exec:
 command:
 - cat
 - /host/tmp/rekey-complete
 initialDelaySeconds: 30
 periodSeconds: 10
 env:
 - name: ROOT_DEV
 value: /dev/disk/by-partlabel/root
 - name: NEW_TANG_PIN
 value: >-
 {"t":1,"pins":{"tang":[
 {"url":"http://tangserver01:7500","thp":"WOjQYkyK7DxY_T5pMncMO5w0f6E"},
 {"url":"http://tangserver02:7500","thp":"I5Ynh2JefoAO3tNH9TgI4obIaXI"},
 {"url":"http://tangserver03:7500","thp":"38qWZVeDKzCPG9pHLqKzs6k1ons"}
]}}
 volumeMounts:
 - name: hostroot
 mountPath: /host
 securityContext:
 privileged: true
 volumes:
 - name: hostroot
 hostPath:
 path: /

OpenShift Container Platform 4.9 Security and compliance

228

In this case, even though you are rekeying tangserver01, you must specify not only the new
thumbprint for tangserver01, but also the current thumbprints for all other Tang servers. Failure
to specify all thumbprints for a rekeying operation opens up the opportunity for a man-in-the-
middle attack.

2. To distribute the daemon set to every cluster that must be rekeyed, run the following
command:

However, to run at scale, wrap the daemon set in an ACM policy. This ACM configuration must
contain one policy to deploy the daemon set, a second policy to check that all the daemon set
pods are READY, and a placement rule to apply it to the appropriate set of clusters.

NOTE

After validating that the daemon set has successfully rekeyed all servers, delete the
daemon set. If you do not delete the daemon set, it must be deleted before the next
rekeying operation.

Verification

After you distribute the daemon set, monitor the daemon sets to ensure that the rekeying has
completed successfully. The script in the example daemon set terminates with an error if the rekeying
failed, and remains in the CURRENT state if successful. There is also a readiness probe that marks the
pod as READY when the rekeying has completed successfully.

This is an example of the output listing for the daemon set before the rekeying has completed:

Example output

This is an example of the output listing for the daemon set after the rekeying has completed
successfully:

Example output

 nodeSelector:
 kubernetes.io/os: linux
 priorityClassName: system-node-critical
 restartPolicy: Always
 serviceAccount: machine-config-daemon
 serviceAccountName: machine-config-daemon

$ oc apply -f tang-rekey.yaml

$ oc get -n openshift-machine-config-operator ds tang-rekey

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
tang-rekey 1 1 0 1 0 kubernetes.io/os=linux 11s

$ oc get -n openshift-machine-config-operator ds tang-rekey

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
tang-rekey 1 1 1 1 1 kubernetes.io/os=linux 13h

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

229

Rekeying usually takes a few minutes to complete.

NOTE

If you use ACM policies to distribute the daemon sets to multiple clusters, you must
include a compliance policy that checks every daemon set’s READY count is equal to the
DESIRED count. In this way, compliance to such a policy demonstrates that all daemon
set pods are READY and the rekeying has completed successfully. You could also use an
ACM search to query all of the daemon sets' states.

14.3.3.3. Troubleshooting temporary rekeying errors for Tang servers

To determine if the error condition from rekeying the Tang servers is temporary, perform the following
procedure. Temporary error conditions might include:

Temporary network outages

Tang server maintenance

Generally, when these types of temporary error conditions occur, you can wait until the daemon set
succeeds in resolving the error or you can delete the daemon set and not try again until the temporary
error condition has been resolved.

Procedure

1. Restart the pod that performs the rekeying operation using the normal Kubernetes pod restart
policy.

2. If any of the associated Tang servers are unavailable, try rekeying until all the servers are back
online.

14.3.3.4. Troubleshooting permanent rekeying errors for Tang servers

If, after rekeying the Tang servers, the READY count does not equal the DESIRED count after an
extended period of time, it might indicate a permanent failure condition. In this case, the following
conditions might apply:

A typographical error in the Tang server URL or thumbprint in the NEW_TANG_PIN definition.

The Tang server is decommissioned or the keys are permanently lost.

Prerequisites

The commands shown in this procedure can be run on the Tang server or on any Linux system
that has network access to the Tang server.

Procedure

1. Validate the Tang server configuration by performing a simple encrypt and decrypt operation on
each Tang server’s configuration as defined in the daemon set.
This is an example of an encryption and decryption attempt with a bad thumbprint:

OpenShift Container Platform 4.9 Security and compliance

230

Example output

This is an example of an encryption and decryption attempt with a good thumbprint:

Example output

2. After you identify the root cause, remedy the underlying situation:

a. Delete the non-working daemon set.

b. Edit the daemon set definition to fix the underlying issue. This might include any of the
following actions:

Edit a Tang server entry to correct the URL and thumbprint.

Remove a Tang server that is no longer in service.

Add a new Tang server that is a replacement for a decommissioned server.

3. Distribute the updated daemon set again.

NOTE

When replacing, removing, or adding a Tang server from a configuration, the rekeying
operation will succeed as long as at least one original server is still functional, including
the server currently being rekeyed. If none of the original Tang servers are functional or
can be recovered, recovery of the system is impossible and you must redeploy the
affected nodes.

Verification

Check the logs from each pod in the daemon set to determine whether the rekeying completed
successfully. If the rekeying is not successful, the logs might indicate the failure condition.

1. Locate the name of the container that was created by the daemon set:

Example output

$ echo "okay" | clevis encrypt tang \
 '{"url":"http://tangserver02:7500","thp":"badthumbprint"}' | \
 clevis decrypt

Unable to fetch advertisement: 'http://tangserver02:7500/adv/badthumbprint'!

$ echo "okay" | clevis encrypt tang \
 '{"url":"http://tangserver03:7500","thp":"goodthumbprint"}' | \
 clevis decrypt

okay

$ oc get pods -A | grep tang-rekey

openshift-machine-config-operator tang-rekey-7ks6h 1/1 Running 20 (8m39s ago) 89m

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

231

2. Print the logs from the container. The following log is from a completed successful rekeying
operation:

Example output

14.3.4. Deleting old Tang server keys

Prerequisites

A root shell on the Linux machine running the Tang server.

Procedure

1. Locate and access the directory where the Tang server key is stored. This is usually the
/var/db/tang directory:

2. List the current Tang server keys, showing the advertised and unadvertised keys:

Example output

3. Delete the old keys:

4. List the current Tang server keys to verify the unadvertised keys are no longer present:

Example output

$ oc logs tang-rekey-7ks6h

Current tang pin:
1: sss '{"t":1,"pins":{"tang":[{"url":"http://10.46.55.192:7500"},{"url":"http://10.46.55.192:7501"},
{"url":"http://10.46.55.192:7502"}]}}'
Applying new tang pin: {"t":1,"pins":{"tang":[
 {"url":"http://tangserver01:7500","thp":"WOjQYkyK7DxY_T5pMncMO5w0f6E"},
 {"url":"http://tangserver02:7500","thp":"I5Ynh2JefoAO3tNH9TgI4obIaXI"},
 {"url":"http://tangserver03:7500","thp":"38qWZVeDKzCPG9pHLqKzs6k1ons"}
]}}
Updating binding...
Binding edited successfully
Pin applied successfully

cd /var/db/tang/

ls -A1

.36AHjNH3NZDSnlONLz1-V4ie6t8.jwk

.gJZiNPMLRBnyo_ZKfK4_5SrnHYo.jwk
Bp8XjITceWSN_7XFfW7WfJDTomE.jwk
WOjQYkyK7DxY_T5pMncMO5w0f6E.jwk

rm .*.jwk

ls -A1

OpenShift Container Platform 4.9 Security and compliance

232

Verification

At this point, the server still advertises the new keys, but an attempt to decrypt based on the old key will
fail.

1. Query the Tang server for the current advertised key thumbprints:

Example output

2. Decrypt the test file created earlier to verify decryption against the old keys fails:

Example output

If you are running multiple Tang servers behind a load balancer that share the same key material, ensure
the changes made are properly synchronized across the entire set of servers before proceeding.

14.4. DISASTER RECOVERY CONSIDERATIONS

This section describes several potential disaster situations and the procedures to respond to each of
them. Additional situations will be added here as they are discovered or presumed likely to be possible.

14.4.1. Loss of a client machine

The loss of a cluster node that uses the Tang server to decrypt its disk partition is not a disaster.
Whether the machine was stolen, suffered hardware failure, or another loss scenario is not important:
the disks are encrypted and considered unrecoverable.

However, in the event of theft, a precautionary rotation of the Tang server’s keys and rekeying of all
remaining nodes would be prudent to ensure the disks remain unrecoverable even in the event the
thieves subsequently gain access to the Tang servers.

To recover from this situation, either reinstall or replace the node.

14.4.2. Planning for a loss of client network connectivity

The loss of network connectivity to an individual node will cause it to become unable to boot in an
unattended fashion.

If you are planning work that might cause a loss of network connectivity, you can reveal the passphrase
for an onsite technician to use manually, and then rotate the keys afterwards to invalidate it:

Bp8XjITceWSN_7XFfW7WfJDTomE.jwk
WOjQYkyK7DxY_T5pMncMO5w0f6E.jwk

tang-show-keys 7500

WOjQYkyK7DxY_T5pMncMO5w0f6E

clevis decrypt </tmp/encryptValidation

Error communicating with the server!

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

233

Procedure

1. Before the network becomes unavailable, show the password used in the first slot -s 1 of device
/dev/vda2 with this command:

2. Invalidate that value and regenerate a new random boot-time passphrase with this command:

14.4.3. Unexpected loss of network connectivity

If the network disruption is unexpected and a node reboots, consider the following scenarios:

If any nodes are still online, ensure that they do not reboot until network connectivity is
restored. This is not applicable for single-node clusters.

The node will remain offline until such time that either network connectivity is restored, or a
pre-established passphrase is entered manually at the console. In exceptional circumstances,
network administrators might be able to reconfigure network segments to reestablish access,
but this is counter to the intent of NBDE, which is that lack of network access means lack of
ability to boot.

The lack of network access at the node can reasonably be expected to impact that node’s
ability to function as well as its ability to boot. Even if the node were to boot via manual
intervention, the lack of network access would make it effectively useless.

14.4.4. Recovering network connectivity manually

A somewhat complex and manually intensive process is also available to the onsite technician for
network recovery.

Procedure

1. The onsite technician extracts the Clevis header from the hard disks. Depending on BIOS
lockdown, this might involve removing the disks and installing them in a lab machine.

2. The onsite technician transmits the Clevis headers to a colleague with legitimate access to the
Tang network who then performs the decryption.

3. Due to the necessity of limited access to the Tang network, the technician should not be able to
access that network via VPN or other remote connectivity. Similarly, the technician cannot
patch the remote server through to this network in order to decrypt the disks automatically.

4. The technician reinstalls the disk and manually enters the plain text passphrase provided by
their colleague.

5. The machine successfully starts even without direct access to the Tang servers. Note that the
transmission of the key material from the install site to another site with network access must be
done carefully.

6. When network connectivity is restored, the technician rotates the encryption keys.

$ sudo clevis luks pass -d /dev/vda2 -s 1

$ sudo clevis luks regen -d /dev/vda2 -s 1

OpenShift Container Platform 4.9 Security and compliance

234

14.4.5. Emergency recovery of network connectivity

If you are unable to recover network connectivity manually, consider the following steps. Be aware that
these steps are discouraged if other methods to recover network connectivity are available.

This method must only be performed by a highly trusted technician.

Taking the Tang server’s key material to the remote site is considered to be a breach of the key
material and all servers must be rekeyed and re-encrypted.

This method must be used in extreme cases only, or as a proof of concept recovery method to
demonstrate its viability.

Equally extreme, but theoretically possible, is to power the server in question with an
Uninterruptible Power Supply (UPS), transport the server to a location with network
connectivity to boot and decrypt the disks, and then restore the server at the original location
on battery power to continue operation.

If you want to use a backup manual passphrase, you must create it before the failure situation
occurs.

Just as attack scenarios become more complex with TPM and Tang compared to a stand-alone
Tang installation, so emergency disaster recovery processes are also made more complex if
leveraging the same method.

14.4.6. Loss of a network segment

The loss of a network segment, making a Tang server temporarily unavailable, has the following
consequences:

OpenShift Container Platform nodes continue to boot as normal, provided other servers are
available.

New nodes cannot establish their encryption keys until the network segment is restored. In this
case, ensure connectivity to remote geographic locations for the purposes of high availability
and redundancy. This is because when you are installing a new node or rekeying an existing node,
all of the Tang servers you are referencing in that operation must be available.

A hybrid model for a vastly diverse network, such as five geographic regions in which each client is
connected to the closest three clients is worth investigating.

In this scenario, new clients are able to establish their encryption keys with the subset of servers that are
reachable. For example, in the set of tang1, tang2 and tang3 servers, if tang2 becomes unreachable
clients can still establish their encryption keys with tang1 and tang3, and at a later time re-establish with
the full set. This can involve either a manual intervention or a more complex automation to be available.

14.4.7. Loss of a Tang server

The loss of an individual Tang server within a load balanced set of servers with identical key material is
completely transparent to the clients.

The temporary failure of all Tang servers associated with the same URL, that is, the entire load balanced
set, can be considered the same as the loss of a network segment. Existing clients have the ability to
decrypt their disk partitions so long as another preconfigured Tang server is available. New clients
cannot enroll until at least one of these servers comes back online.

You can mitigate the physical loss of a Tang server by either reinstalling the server or restoring the

CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)

235

You can mitigate the physical loss of a Tang server by either reinstalling the server or restoring the
server from backups. Ensure that the backup and restore processes of the key material is adequately
protected from unauthorized access.

14.4.8. Rekeying compromised key material

If key material is potentially exposed to unauthorized third parties, such as through the physical theft of
a Tang server or associated data, immediately rotate the keys.

Procedure

1. Rekey any Tang server holding the affected material.

2. Rekey all clients using the Tang server.

3. Destroy the original key material.

4. Scrutinize any incidents that result in unintended exposure of the master encryption key. If
possible, take compromised nodes offline and re-encrypt their disks.

TIP

Reformatting and reinstalling on the same physical hardware, although slow, is easy to automate and
test.

OpenShift Container Platform 4.9 Security and compliance

236

	Table of Contents
	CHAPTER 1. OPENSHIFT CONTAINER PLATFORM SECURITY AND COMPLIANCE
	1.1. SECURITY OVERVIEW
	Container security
	Auditing
	Certificates
	Encrypting data
	Vulnerability scanning

	1.2. COMPLIANCE OVERVIEW
	Compliance checking
	File integrity checking

	1.3. ADDITIONAL RESOURCES

	CHAPTER 2. CONTAINER SECURITY
	2.1. UNDERSTANDING CONTAINER SECURITY
	2.1.1. What are containers?
	2.1.2. What is OpenShift Container Platform?

	2.2. UNDERSTANDING HOST AND VM SECURITY
	2.2.1. Securing containers on Red Hat Enterprise Linux CoreOS (RHCOS)
	2.2.2. Comparing virtualization and containers
	2.2.3. Securing OpenShift Container Platform

	2.3. HARDENING RHCOS
	2.3.1. Choosing what to harden in RHCOS
	2.3.2. Choosing how to harden RHCOS
	2.3.2.1. Hardening before installation
	2.3.2.2. Hardening during installation
	2.3.2.3. Hardening after the cluster is running

	2.4. CONTAINER IMAGE SIGNATURES
	2.4.1. Enabling signature verification for Red Hat Container Registries
	2.4.2. Verifying the signature verification configuration
	2.4.3. Additional resources

	2.5. UNDERSTANDING COMPLIANCE
	2.5.1. Understanding compliance and risk management

	2.6. SECURING CONTAINER CONTENT
	2.6.1. Securing inside the container
	2.6.2. Creating redistributable images with UBI
	2.6.3. Security scanning in RHEL
	2.6.3.1. Scanning OpenShift images

	2.6.4. Integrating external scanning
	2.6.4.1. Image metadata
	2.6.4.2. Annotating image objects
	2.6.4.3. Controlling pod execution
	2.6.4.4. Integration reference

	2.7. USING CONTAINER REGISTRIES SECURELY
	2.7.1. Knowing where containers come from?
	2.7.2. Immutable and certified containers
	2.7.3. Getting containers from Red Hat Registry and Ecosystem Catalog
	2.7.4. OpenShift Container Registry
	2.7.5. Storing containers using Red Hat Quay

	2.8. SECURING THE BUILD PROCESS
	2.8.1. Building once, deploying everywhere
	2.8.2. Managing builds
	2.8.3. Securing inputs during builds
	2.8.4. Designing your build process
	2.8.5. Building Knative serverless applications
	2.8.6. Additional resources

	2.9. DEPLOYING CONTAINERS
	2.9.1. Controlling container deployments with triggers
	2.9.2. Controlling what image sources can be deployed
	2.9.3. Using signature transports
	2.9.4. Creating secrets and config maps
	2.9.5. Automating continuous deployment

	2.10. SECURING THE CONTAINER PLATFORM
	2.10.1. Isolating containers with multitenancy
	2.10.2. Protecting control plane with admission plugins
	2.10.2.1. Security context constraints (SCCs)
	2.10.2.2. Granting roles to service accounts

	2.10.3. Authentication and authorization
	2.10.3.1. Controlling access using OAuth
	2.10.3.2. API access control and management
	2.10.3.3. Red Hat Single Sign-On
	2.10.3.4. Secure self-service web console

	2.10.4. Managing certificates for the platform
	2.10.4.1. Configuring custom certificates

	2.11. SECURING NETWORKS
	2.11.1. Using network namespaces
	2.11.2. Isolating pods with network policies
	2.11.3. Using multiple pod networks
	2.11.4. Isolating applications
	2.11.5. Securing ingress traffic
	2.11.6. Securing egress traffic

	2.12. SECURING ATTACHED STORAGE
	2.12.1. Persistent volume plugins
	2.12.2. Shared storage
	2.12.3. Block storage

	2.13. MONITORING CLUSTER EVENTS AND LOGS
	2.13.1. Watching cluster events
	2.13.2. Logging
	2.13.3. Audit logs

	CHAPTER 3. CONFIGURING CERTIFICATES
	3.1. REPLACING THE DEFAULT INGRESS CERTIFICATE
	3.1.1. Understanding the default ingress certificate
	3.1.2. Replacing the default ingress certificate
	Additional resources

	3.2. ADDING API SERVER CERTIFICATES
	3.2.1. Add an API server named certificate

	3.3. SECURING SERVICE TRAFFIC USING SERVICE SERVING CERTIFICATE SECRETS
	3.3.1. Understanding service serving certificates
	3.3.2. Add a service certificate
	3.3.3. Add the service CA bundle to a config map
	3.3.4. Add the service CA bundle to an API service
	3.3.5. Add the service CA bundle to a custom resource definition
	3.3.6. Add the service CA bundle to a mutating webhook configuration
	3.3.7. Add the service CA bundle to a validating webhook configuration
	3.3.8. Manually rotate the generated service certificate
	3.3.9. Manually rotate the service CA certificate

	3.4. UPDATING THE CA BUNDLE
	3.4.1. Understanding the CA Bundle certificate
	3.4.2. Replacing the CA Bundle certificate
	Additional resources

	CHAPTER 4. CERTIFICATE TYPES AND DESCRIPTIONS
	4.1. USER-PROVIDED CERTIFICATES FOR THE API SERVER
	4.1.1. Purpose
	4.1.2. Location
	4.1.3. Management
	4.1.4. Expiration
	4.1.5. Customization
	Additional resources

	4.2. PROXY CERTIFICATES
	4.2.1. Purpose
	Additional resources

	4.2.2. Managing proxy certificates during installation
	4.2.3. Location
	4.2.4. Expiration
	4.2.5. Services
	4.2.6. Management
	4.2.7. Customization
	4.2.8. Renewal

	4.3. SERVICE CA CERTIFICATES
	4.3.1. Purpose
	4.3.2. Expiration
	4.3.3. Management
	4.3.4. Services
	Additional resources

	4.4. NODE CERTIFICATES
	4.4.1. Purpose
	4.4.2. Management
	Additional resources

	4.5. BOOTSTRAP CERTIFICATES
	4.5.1. Purpose
	4.5.2. Management
	4.5.3. Expiration
	4.5.4. Customization

	4.6. ETCD CERTIFICATES
	4.6.1. Purpose
	4.6.2. Expiration
	4.6.3. Management
	4.6.4. Services
	Additional resources

	4.7. OLM CERTIFICATES
	4.7.1. Management

	4.8. AGGREGATED API CLIENT CERTIFICATES
	4.8.1. Purpose
	4.8.2. Management
	4.8.3. Expiration
	4.8.4. Customization

	4.9. MACHINE CONFIG OPERATOR CERTIFICATES
	4.9.1. Purpose
	4.9.2. Management
	4.9.3. Expiration
	4.9.4. Customization

	4.10. USER-PROVIDED CERTIFICATES FOR DEFAULT INGRESS
	4.10.1. Purpose
	4.10.2. Location
	4.10.3. Management
	4.10.4. Expiration
	4.10.5. Services
	4.10.6. Customization
	Additional resources

	4.11. INGRESS CERTIFICATES
	4.11.1. Purpose
	4.11.2. Location
	4.11.3. Workflow
	4.11.4. Expiration
	4.11.5. Services
	4.11.6. Management
	4.11.7. Renewal

	4.12. MONITORING AND OPENSHIFT LOGGING OPERATOR COMPONENT CERTIFICATES
	4.12.1. Expiration
	4.12.2. Management

	4.13. CONTROL PLANE CERTIFICATES
	4.13.1. Location
	4.13.2. Management

	CHAPTER 5. COMPLIANCE OPERATOR
	5.1. COMPLIANCE OPERATOR RELEASE NOTES
	5.1.1. OpenShift Compliance Operator 1.0.0
	5.1.1.1. New features and enhancements
	5.1.1.2. Bug fixes

	5.1.2. OpenShift Compliance Operator 0.1.61
	5.1.2.1. New features and enhancements
	5.1.2.2. Bug fixes

	5.1.3. OpenShift Compliance Operator 0.1.59
	5.1.3.1. New features and enhancements
	5.1.3.2. Bug fixes

	5.1.4. OpenShift Compliance Operator 0.1.57
	5.1.4.1. New features and enhancements
	5.1.4.2. Bug fixes
	5.1.4.3. Deprecations

	5.1.5. OpenShift Compliance Operator 0.1.53
	5.1.5.1. Bug fixes
	5.1.5.2. Known issue

	5.1.6. OpenShift Compliance Operator 0.1.52
	5.1.6.1. New features and enhancements
	5.1.6.2. Bug fixes
	5.1.6.3. Known issue

	5.1.7. OpenShift Compliance Operator 0.1.49
	5.1.7.1. Bug fixes

	5.1.8. OpenShift Compliance Operator 0.1.48
	5.1.8.1. Bug fixes

	5.1.9. OpenShift Compliance Operator 0.1.47
	5.1.9.1. New features and enhancements
	5.1.9.2. Bug fixes

	5.1.10. OpenShift Compliance Operator 0.1.44
	5.1.10.1. New features and enhancements
	5.1.10.2. Templating and variable use
	5.1.10.3. Bug fixes

	5.1.11. Release Notes for Compliance Operator 0.1.39
	5.1.11.1. New features and enhancements

	5.1.12. Additional resources

	5.2. SUPPORTED COMPLIANCE PROFILES
	5.2.1. Compliance profiles
	5.2.2. Additional resources

	5.3. INSTALLING THE COMPLIANCE OPERATOR
	5.3.1. Installing the Compliance Operator through the web console
	5.3.2. Installing the Compliance Operator using the CLI
	5.3.3. Additional resources

	5.4. UPDATING THE COMPLIANCE OPERATOR
	5.4.1. Preparing for an Operator update
	5.4.2. Changing the update channel for an Operator
	5.4.3. Manually approving a pending Operator update

	5.5. COMPLIANCE OPERATOR SCANS
	5.5.1. Running compliance scans
	5.5.2. Scheduling the result server pod on a worker node
	5.5.3. ScanSetting Custom Resource
	5.5.4. Applying resource requests and limits
	5.5.5. Scheduling Pods with container resource requests

	5.6. UNDERSTANDING THE COMPLIANCE OPERATOR
	5.6.1. Compliance Operator profiles

	5.7. MANAGING THE COMPLIANCE OPERATOR
	5.7.1. ProfileBundle CR example
	5.7.2. Updating security content
	5.7.3. Additional resources

	5.8. TAILORING THE COMPLIANCE OPERATOR
	5.8.1. Creating a new tailored profile
	5.8.2. Using tailored profiles to extend existing ProfileBundles

	5.9. RETRIEVING COMPLIANCE OPERATOR RAW RESULTS
	5.9.1. Obtaining Compliance Operator raw results from a persistent volume

	5.10. MANAGING COMPLIANCE OPERATOR RESULT AND REMEDIATION
	5.10.1. Filters for compliance check results
	5.10.2. Reviewing a remediation
	5.10.3. Applying remediation when using customized machine config pools
	5.10.4. Evaluating KubeletConfig rules against default configuration values
	5.10.5. Scanning custom node pools
	5.10.6. Remediating KubeletConfig sub pools
	5.10.7. Applying a remediation
	5.10.8. Remediating a platform check manually
	5.10.9. Updating remediations
	5.10.10. Unapplying a remediation
	5.10.11. Removing a KubeletConfig remediation
	5.10.12. Inconsistent ComplianceScan
	5.10.13. Additional resources

	5.11. PERFORMING ADVANCED COMPLIANCE OPERATOR TASKS
	5.11.1. Using the ComplianceSuite and ComplianceScan objects directly
	5.11.2. Setting PriorityClass for ScanSetting scans
	5.11.3. Using raw tailored profiles
	5.11.4. Performing a rescan
	5.11.5. Setting custom storage size for results
	5.11.5.1. Using custom result storage values

	5.11.6. Applying remediations generated by suite scans
	5.11.7. Automatically update remediations
	5.11.8. Creating a custom SCC for the Compliance Operator
	5.11.9. Additional resources

	5.12. TROUBLESHOOTING THE COMPLIANCE OPERATOR
	5.12.1. Anatomy of a scan
	5.12.1.1. Compliance sources
	5.12.1.2. The ScanSetting and ScanSettingBinding objects lifecycle and debugging
	5.12.1.3. ComplianceSuite custom resource lifecycle and debugging
	5.12.1.4. ComplianceScan custom resource lifecycle and debugging
	5.12.1.5. ComplianceRemediation controller lifecycle and debugging
	5.12.1.6. Useful labels

	5.12.2. Increasing Compliance Operator resource limits
	5.12.3. Configuring Operator resource constraints
	5.12.4. Configuring ScanSetting timeout
	5.12.5. Getting support

	5.13. UNINSTALLING THE COMPLIANCE OPERATOR
	5.13.1. Uninstalling the OpenShift Compliance Operator from OpenShift Container Platform using the web console
	5.13.2. Uninstalling the OpenShift Compliance Operator from OpenShift Container Platform using the CLI

	5.14. USING THE OC-COMPLIANCE PLUGIN
	5.14.1. Installing the oc-compliance plugin
	5.14.2. Fetching raw results
	5.14.3. Re-running scans
	5.14.4. Using ScanSettingBinding custom resources
	5.14.5. Printing controls
	5.14.6. Fetching compliance remediation details
	5.14.7. Viewing ComplianceCheckResult object details

	5.15. UNDERSTANDING THE CUSTOM RESOURCE DEFINITIONS
	5.15.1. CRDs workflow
	5.15.2. Defining the compliance scan requirements
	5.15.2.1. ProfileBundle object
	5.15.2.2. Profile object
	5.15.2.3. Rule object
	5.15.2.4. TailoredProfile object

	5.15.3. Configuring the compliance scan settings
	5.15.3.1. ScanSetting object

	5.15.4. Processing the compliance scan requirements with compliance scans settings
	5.15.4.1. ScanSettingBinding object

	5.15.5. Tracking the compliance scans
	5.15.5.1. ComplianceSuite object
	5.15.5.2. Advanced ComplianceScan Object

	5.15.6. Viewing the compliance results
	5.15.6.1. ComplianceCheckResult object
	5.15.6.2. ComplianceRemediation object

	CHAPTER 6. FILE INTEGRITY OPERATOR
	6.1. FILE INTEGRITY OPERATOR RELEASE NOTES
	6.1.1. OpenShift File Integrity Operator 1.2.1
	6.1.2. OpenShift File Integrity Operator 1.2.0
	6.1.2.1. New features and enhancements

	6.1.3. OpenShift File Integrity Operator 1.0.0
	6.1.4. OpenShift File Integrity Operator 0.1.32
	6.1.4.1. Bug fixes

	6.1.5. OpenShift File Integrity Operator 0.1.30
	6.1.5.1. Bug fixes

	6.1.6. OpenShift File Integrity Operator 0.1.24
	6.1.6.1. New features and enhancements
	6.1.6.2. Bug fixes

	6.1.7. OpenShift File Integrity Operator 0.1.22
	6.1.7.1. Bug fixes

	6.1.8. OpenShift File Integrity Operator 0.1.21
	6.1.8.1. New features and enhancements
	6.1.8.2. Bug fixes

	6.1.9. Additional resources

	6.2. INSTALLING THE FILE INTEGRITY OPERATOR
	6.2.1. Installing the File Integrity Operator using the web console
	6.2.2. Installing the File Integrity Operator using the CLI
	6.2.3. Additional resources

	6.3. UPDATING THE FILE INTEGRITY OPERATOR
	6.3.1. Preparing for an Operator update
	6.3.2. Changing the update channel for an Operator
	6.3.3. Manually approving a pending Operator update

	6.4. UNDERSTANDING THE FILE INTEGRITY OPERATOR
	6.4.1. Creating the FileIntegrity custom resource
	6.4.2. Checking the FileIntegrity custom resource status
	6.4.3. FileIntegrity custom resource phases
	6.4.4. Understanding the FileIntegrityNodeStatuses object
	6.4.5. FileIntegrityNodeStatus CR status types
	6.4.5.1. FileIntegrityNodeStatus CR success example
	6.4.5.2. FileIntegrityNodeStatus CR failure status example

	6.4.6. Understanding events

	6.5. CONFIGURING THE CUSTOM FILE INTEGRITY OPERATOR
	6.5.1. Viewing FileIntegrity object attributes
	6.5.2. Important attributes
	6.5.3. Examine the default configuration
	6.5.4. Understanding the default File Integrity Operator configuration
	6.5.5. Supplying a custom AIDE configuration
	6.5.6. Defining a custom File Integrity Operator configuration
	6.5.7. Changing the custom File Integrity configuration

	6.6. PERFORMING ADVANCED CUSTOM FILE INTEGRITY OPERATOR TASKS
	6.6.1. Reinitializing the database
	6.6.2. Machine config integration
	6.6.3. Exploring the daemon sets

	6.7. TROUBLESHOOTING THE FILE INTEGRITY OPERATOR
	6.7.1. General troubleshooting
	6.7.2. Checking the AIDE configuration
	6.7.3. Determining the FileIntegrity object’s phase
	6.7.4. Determining that the daemon set’s pods are running on the expected nodes

	CHAPTER 7. VIEWING AUDIT LOGS
	7.1. ABOUT THE API AUDIT LOG
	7.2. VIEWING THE AUDIT LOGS
	7.3. FILTERING AUDIT LOGS
	7.4. GATHERING AUDIT LOGS
	7.5. ADDITIONAL RESOURCES

	CHAPTER 8. CONFIGURING THE AUDIT LOG POLICY
	8.1. ABOUT AUDIT LOG POLICY PROFILES
	8.2. CONFIGURING THE AUDIT LOG POLICY
	8.3. CONFIGURING THE AUDIT LOG POLICY WITH CUSTOM RULES
	8.4. DISABLING AUDIT LOGGING

	CHAPTER 9. CONFIGURING TLS SECURITY PROFILES
	9.1. UNDERSTANDING TLS SECURITY PROFILES
	9.2. VIEWING TLS SECURITY PROFILE DETAILS
	9.3. CONFIGURING THE TLS SECURITY PROFILE FOR THE INGRESS CONTROLLER
	9.4. CONFIGURING THE TLS SECURITY PROFILE FOR THE CONTROL PLANE
	9.5. CONFIGURING THE TLS SECURITY PROFILE FOR THE KUBELET

	CHAPTER 10. CONFIGURING SECCOMP PROFILES
	10.1. ENABLING THE DEFAULT SECCOMP PROFILE FOR ALL PODS
	10.2. CONFIGURING A CUSTOM SECCOMP PROFILE
	10.2.1. Setting up the custom seccomp profile
	10.2.2. Applying the custom seccomp profile to the workload

	10.3. ADDITIONAL RESOURCES

	CHAPTER 11. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS
	11.1. ALLOWING JAVASCRIPT-BASED ACCESS TO THE API SERVER FROM ADDITIONAL HOSTS

	CHAPTER 12. ENCRYPTING ETCD DATA
	12.1. ABOUT ETCD ENCRYPTION
	12.2. ENABLING ETCD ENCRYPTION
	12.3. DISABLING ETCD ENCRYPTION

	CHAPTER 13. SCANNING PODS FOR VULNERABILITIES
	13.1. RUNNING THE RED HAT QUAY CONTAINER SECURITY OPERATOR
	13.2. QUERYING IMAGE VULNERABILITIES FROM THE CLI

	CHAPTER 14. NETWORK-BOUND DISK ENCRYPTION (NBDE)
	14.1. ABOUT DISK ENCRYPTION TECHNOLOGY
	14.1.1. Disk encryption technology comparison
	14.1.1.1. Key escrow
	14.1.1.2. TPM encryption
	14.1.1.3. Network-Bound Disk Encryption (NBDE)
	14.1.1.4. Secret sharing encryption

	14.1.2. Tang server disk encryption
	14.1.3. Tang server location planning
	14.1.4. Tang server sizing requirements
	14.1.5. Logging considerations

	14.2. TANG SERVER INSTALLATION CONSIDERATIONS
	14.2.1. Installation scenarios
	14.2.2. Installing a Tang server
	14.2.2.1. Compute requirements
	14.2.2.2. Automatic start at boot
	14.2.2.3. HTTP versus HTTPS

	14.2.3. Installation considerations with Network-Bound Disk Encryption

	14.3. TANG SERVER ENCRYPTION KEY MANAGEMENT
	14.3.1. Backing up keys for a Tang server
	14.3.2. Recovering keys for a Tang server
	14.3.3. Rekeying Tang servers
	14.3.3.1. Generating a new Tang server key
	14.3.3.2. Rekeying all NBDE nodes
	14.3.3.3. Troubleshooting temporary rekeying errors for Tang servers
	14.3.3.4. Troubleshooting permanent rekeying errors for Tang servers

	14.3.4. Deleting old Tang server keys

	14.4. DISASTER RECOVERY CONSIDERATIONS
	14.4.1. Loss of a client machine
	14.4.2. Planning for a loss of client network connectivity
	14.4.3. Unexpected loss of network connectivity
	14.4.4. Recovering network connectivity manually
	14.4.5. Emergency recovery of network connectivity
	14.4.6. Loss of a network segment
	14.4.7. Loss of a Tang server
	14.4.8. Rekeying compromised key material

