
OpenShift Container Platform 4.15

Network Observability

The Network Observability Operator

Last Updated: 2024-03-22

OpenShift Container Platform 4.15 Network Observability

The Network Observability Operator

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions using the Network Observability Operator, which you can use
to observe and analyze network traffic flows for OpenShift Container Platform clusters.

. .

Table of Contents

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
1.1. NETWORK OBSERVABILITY OPERATOR 1.5.0

1.1.1. New features and enhancements
1.1.1.1. DNS tracking enhancements
1.1.1.2. Round-trip time (RTT)
1.1.1.3. Metrics, dashboards, and alerts enhancements
1.1.1.4. Improvements for Network Observability without Loki
1.1.1.5. Availability zones
1.1.1.6. Notable enhancements

Performance enhancements
Web console enhancements:
Configuration enhancements:

1.1.2. Bug fixes
1.1.3. Known issues

1.2. NETWORK OBSERVABILITY OPERATOR 1.4.2
1.2.1. CVEs

1.3. NETWORK OBSERVABILITY OPERATOR 1.4.1
1.3.1. CVEs
1.3.2. Bug fixes

1.4. NETWORK OBSERVABILITY OPERATOR 1.4.0
1.4.1. Channel removal
1.4.2. New features and enhancements

1.4.2.1. Notable enhancements
Web console enhancements:
Configuration enhancements:

1.4.2.2. Network Observability without Loki
1.4.2.3. DNS tracking
1.4.2.4. SR-IOV support
1.4.2.5. IPFIX exporter support
1.4.2.6. Packet drops
1.4.2.7. s390x architecture support

1.4.3. Bug fixes
1.4.4. Known issues

1.5. NETWORK OBSERVABILITY OPERATOR 1.3.0
1.5.1. Channel deprecation
1.5.2. New features and enhancements

1.5.2.1. Multi-tenancy in Network Observability
1.5.2.2. Flow-based metrics dashboard
1.5.2.3. Troubleshooting with the must-gather tool
1.5.2.4. Multiple architectures now supported

1.5.3. Deprecated features
1.5.3.1. Deprecated configuration parameter setting

1.5.4. Bug fixes
1.5.5. Known issues

1.6. NETWORK OBSERVABILITY OPERATOR 1.2.0
1.6.1. Preparing for the next update
1.6.2. New features and enhancements

1.6.2.1. Histogram in Traffic Flows view
1.6.2.2. Conversation tracking
1.6.2.3. Network Observability health alerts

1.6.3. Bug fixes

7
7
7
7
7
7
7
7
8
8
8
8
8
9
9
9
9

10
10
10
10
10
10
10
11
11
11
11
11
11

12
12
12
13
13
13
13
13
13
13
13
13
14
14
15
15
15
15
15
15
15

Table of Contents

1

. .

. .

. .

. .

. .

. .

1.6.4. Known issue
1.6.5. Notable technical changes

1.7. NETWORK OBSERVABILITY OPERATOR 1.1.0
1.7.1. Bug fix

CHAPTER 2. ABOUT NETWORK OBSERVABILITY
2.1. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR
2.2. NETWORK OBSERVABILITY OPERATOR
2.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION

2.3.1. Network Observability metrics dashboards
2.3.2. Network Observability topology views
2.3.3. Traffic flow tables

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
3.1. NETWORK OBSERVABILITY WITHOUT LOKI
3.2. INSTALLING THE LOKI OPERATOR

3.2.1. Creating a secret for Loki storage
3.2.2. Creating a LokiStack custom resource
3.2.3. Creating a new group for the cluster-admin user role
3.2.4. Custom admin group access
3.2.5. Loki deployment sizing
3.2.6. LokiStack ingestion limits and health alerts
3.2.7. Enabling multi-tenancy in Network Observability

3.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
3.4. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS
3.5. INSTALLING KAFKA (OPTIONAL)
3.6. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
4.1. VIEWING STATUSES
4.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE
4.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
5.1. VIEW THE FLOWCOLLECTOR RESOURCE
5.2. CONFIGURING THE FLOW COLLECTOR RESOURCE WITH KAFKA
5.3. EXPORT ENRICHED NETWORK FLOW DATA
5.4. UPDATING THE FLOW COLLECTOR RESOURCE
5.5. CONFIGURING QUICK FILTERS
5.6. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC
5.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS

5.7.1. Resource considerations

CHAPTER 6. NETWORK POLICY
6.1. CREATING A NETWORK POLICY FOR NETWORK OBSERVABILITY
6.2. EXAMPLE NETWORK POLICY

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC
7.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW

7.1.1. Working with the Overview view
7.1.2. Configuring advanced options for the Overview view

7.1.2.1. Managing panels and display
7.1.3. Packet drop tracking

7.1.3.1. Types of packet drops
7.1.4. DNS tracking

16
16
16
16

18
18
18
18
18
18
19

20
20
20
21
22
23
23
24
24
25
25
27
27
28

29
29
30
31

33
33
35
36
37
37
38
39
40

42
42
42

44
44
44
44
44
45
45
46

OpenShift Container Platform 4.15 Network Observability

2

. .

. .

. .

7.1.5. Round-Trip Time
7.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW

7.2.1. Working with the Traffic flows view
7.2.2. Configuring advanced options for the Traffic flows view

7.2.2.1. Managing columns
7.2.2.2. Exporting the traffic flow data

7.2.3. Working with conversation tracking
7.2.4. Working with packet drops
7.2.5. Working with DNS tracking
7.2.6. Working with RTT tracing

7.2.6.1. Using the histogram
7.2.7. Working with availability zones

7.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW
7.3.1. Working with the Topology view
7.3.2. Configuring the advanced options for the Topology view

7.3.2.1. Exporting the topology view
7.4. FILTERING THE NETWORK TRAFFIC

CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS
8.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
8.2. NETWORK OBSERVABILITY METRICS

8.2.1. includeList metrics names
8.2.1.1. PacketDrop metrics names
8.2.1.2. DNS metrics names
8.2.1.3. FlowRTT metrics names

8.3. CREATING ALERTS

CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY OPERATOR
9.1. VIEWING HEALTH INFORMATION

9.1.1. Disabling health alerts
9.2. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS
10.1. FLOWCOLLECTOR API SPECIFICATIONS

10.1.1. .metadata
10.1.2. .spec
10.1.3. .spec.agent
10.1.4. .spec.agent.ebpf
10.1.5. .spec.agent.ebpf.advanced
10.1.6. .spec.agent.ebpf.resources
10.1.7. .spec.agent.ipfix
10.1.8. .spec.agent.ipfix.clusterNetworkOperator
10.1.9. .spec.agent.ipfix.ovnKubernetes
10.1.10. .spec.consolePlugin
10.1.11. .spec.consolePlugin.advanced
10.1.12. .spec.consolePlugin.autoscaler
10.1.13. .spec.consolePlugin.portNaming
10.1.14. .spec.consolePlugin.quickFilters
10.1.15. .spec.consolePlugin.quickFilters[]
10.1.16. .spec.consolePlugin.resources
10.1.17. .spec.exporters
10.1.18. .spec.exporters[]
10.1.19. .spec.exporters[].ipfix
10.1.20. .spec.exporters[].kafka

46
47
47
47
47
48
48
49
50
51
52
53
53
53
54
54
54

57
57
57
58
58
58
59
59

61
61
61

62

64
64
65
65
66
67
70
71
71
73
73
74
75
76
76
76
77
77
78
78
78
79

Table of Contents

3

. .

. .

10.1.21. .spec.exporters[].kafka.sasl
10.1.22. .spec.exporters[].kafka.sasl.clientIDReference
10.1.23. .spec.exporters[].kafka.sasl.clientSecretReference
10.1.24. .spec.exporters[].kafka.tls
10.1.25. .spec.exporters[].kafka.tls.caCert
10.1.26. .spec.exporters[].kafka.tls.userCert
10.1.27. .spec.kafka
10.1.28. .spec.kafka.sasl
10.1.29. .spec.kafka.sasl.clientIDReference
10.1.30. .spec.kafka.sasl.clientSecretReference
10.1.31. .spec.kafka.tls
10.1.32. .spec.kafka.tls.caCert
10.1.33. .spec.kafka.tls.userCert
10.1.34. .spec.loki
10.1.35. .spec.loki.advanced
10.1.36. .spec.loki.lokiStack
10.1.37. .spec.loki.manual
10.1.38. .spec.loki.manual.statusTls
10.1.39. .spec.loki.manual.statusTls.caCert
10.1.40. .spec.loki.manual.statusTls.userCert
10.1.41. .spec.loki.manual.tls
10.1.42. .spec.loki.manual.tls.caCert
10.1.43. .spec.loki.manual.tls.userCert
10.1.44. .spec.loki.microservices
10.1.45. .spec.loki.microservices.tls
10.1.46. .spec.loki.microservices.tls.caCert
10.1.47. .spec.loki.microservices.tls.userCert
10.1.48. .spec.loki.monolithic
10.1.49. .spec.loki.monolithic.tls
10.1.50. .spec.loki.monolithic.tls.caCert
10.1.51. .spec.loki.monolithic.tls.userCert
10.1.52. .spec.processor
10.1.53. .spec.processor.advanced
10.1.54. .spec.processor.kafkaConsumerAutoscaler
10.1.55. .spec.processor.metrics
10.1.56. .spec.processor.metrics.server
10.1.57. .spec.processor.metrics.server.tls
10.1.58. .spec.processor.metrics.server.tls.provided
10.1.59. .spec.processor.metrics.server.tls.providedCaFile
10.1.60. .spec.processor.resources

CHAPTER 11. NETWORK FLOWS FORMAT REFERENCE
11.1. NETWORK FLOWS FORMAT REFERENCE

CHAPTER 12. TROUBLESHOOTING NETWORK OBSERVABILITY
12.1. USING THE MUST-GATHER TOOL
12.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM
CONSOLE
12.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA
12.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES
12.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY
12.6. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR
12.7. LOKI EMPTY RING ERROR

80
80
81
81

82
83
84
84
85
85
86
86
87
88
90
90
91

92
93
94
94
95
96
96
97
97
98
99
99

100
101
102
104
105
105
107
107
107
108
109

110
110

114
114

114
116
116
117
117
118

OpenShift Container Platform 4.15 Network Observability

4

12.8. RESOURCE TROUBLESHOOTING
12.9. LOKISTACK RATE LIMIT ERRORS

118
118

Table of Contents

5

OpenShift Container Platform 4.15 Network Observability

6

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE
NOTES

The Network Observability Operator enables administrators to observe and analyze network traffic flows
for OpenShift Container Platform clusters.

These release notes track the development of the Network Observability Operator in the OpenShift
Container Platform.

For an overview of the Network Observability Operator, see About Network Observability Operator.

1.1. NETWORK OBSERVABILITY OPERATOR 1.5.0

The following advisory is available for the Network Observability Operator 1.5.0:

Network Observability Operator 1.5.0

1.1.1. New features and enhancements

1.1.1.1. DNS tracking enhancements

In 1.5, the TCP protocol is now supported in addition to UDP. New dashboards are also added to the
Overview view of the Network Traffic page. For more information, see Configuring DNS tracking and
Working with DNS tracking.

1.1.1.2. Round-trip time (RTT)

You can use TCP handshake Round-Trip Time (RTT) captured from the fentry/tcp_rcv_established
Extended Berkeley Packet Filter (eBPF) hookpoint to read smoothed round-trip time (SRTT) and
analyze network flows. In the Overview, Network Traffic, and Topology pages in web console, you can
monitor network traffic and troubleshoot with RTT metrics, filtering, and edge labeling. For more
information, see RTT Overview and Working with RTT.

1.1.1.3. Metrics, dashboards, and alerts enhancements

The Network Observability metrics dashboards in Observe → Dashboards → NetObserv have new
metrics types you can use to create Prometheus alerts. You can now define available metrics in the
includeList specification. In previous releases, these metrics were defined in the ignoreTags
specification. For a complete list of these metrics, see Network Observability Metrics .

1.1.1.4. Improvements for Network Observability without Loki

You can create Prometheus alerts for the Netobserv dashboard using DNS, Packet drop, and RTT
metrics, even if you don’t use Loki. In the previous version of Network Observability, 1.4, these metrics
were only available for querying and analysis in the Network Traffic, Overview, and Topology views,
which are not available without Loki. For more information, see Network Observability Metrics .

1.1.1.5. Availability zones

You can configure the FlowCollector resource to collect information about the cluster availability
zones. This configuration enriches the network flow data with the topology.kubernetes.io/zone label
value applied to the nodes. For more information, see Working with availability zones.

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

7

https://access.redhat.com/errata/RHSA-2024:0853
https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

1.1.1.6. Notable enhancements

The 1.5 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.

Performance enhancements

The spec.agent.ebpf.kafkaBatchSize default is changed from 10MB to 1MB to enhance eBPF
performance when using Kafka.

IMPORTANT

When upgrading from an existing installation, this new value is not set
automatically in the configuration. If you monitor a performance regression with
the eBPF Agent memory consumption after upgrading, you might consider
reducing the kafkaBatchSize to the new value.

Web console enhancements:

There are new panels added to the Overview view for DNS and RTT: Min, Max, P90, P99.

There are new panel display options added:

Focus on one panel while keeping others viewable but with smaller focus.

Switch graph type.

Show Top and Overall.

A collection latency warning is shown in the Custom time range pop-up window.

There is enhanced visibility for the contents of the Manage panels and Manage columns pop-
up windows.

The Differentiated Services Code Point (DSCP) field for egress QoS is available for filtering
QoS DSCP in the web console Network Traffic page.

Configuration enhancements:

The LokiStack mode in the spec.loki.mode specification simplifies installation by automatically
setting URLs, TLS, cluster roles and a cluster role binding, as well as the authToken value. The
Manual mode allows more control over configuration of these settings.

The API version changes from flows.netobserv.io/v1beta1 to flows.netobserv.io/v1beta2.

1.1.2. Bug fixes

Previously, it was not possible to register the console plugin manually in the web console
interface if the automatic registration of the console plugin was disabled. If the
spec.console.register value was set to false in the FlowCollector resource, the Operator
would override and erase the plugin registration. With this fix, setting the spec.console.register
value to false does not impact the console plugin registration or registration removal. As a
result, the plugin can be safely registered manually. (NETOBSERV-1134)

Previously, using the default metrics settings, the NetObserv/Health dashboard was showing
an empty graph named Flows Overhead. This metric was only available by removing
"namespaces-flows" and "namespaces" from the ignoreTags list. With this fix, this metric is

OpenShift Container Platform 4.15 Network Observability

8

https://issues.redhat.com/browse/NETOBSERV-1134

visible when you use the default metrics setting. (NETOBSERV-1351)

Previously, the node on which the eBPF Agent was running would not resolve with a specific
cluster configuration. This resulted in cascading consequences that culminated in a failure to
provide some of the traffic metrics. With this fix, the eBPF agent’s node IP is safely provided by
the Operator, inferred from the pod status. Now, the missing metrics are restored.
(NETOBSERV-1430)

Previously, the Loki error 'Input size too long' error for the Loki Operator did not include
additional information to troubleshoot the problem. With this fix, help is directly displayed in the
web console next to the error with a direct link for more guidance. (NETOBSERV-1464)

Previously, the console plugin read timeout was forced to 30s. With the FlowCollector v1beta2
API update, you can configure the spec.loki.readTimeout specification to update this value
according to the Loki Operator queryTimeout limit. (NETOBSERV-1443)

Previously, the Operator bundle did not display some of the supported features by CSV
annotations as expected, such as features.operators.openshift.io/… With this fix, these
annotations are set in the CSV as expected. (NETOBSERV-1305)

Previously, the FlowCollector status sometimes oscillated between DeploymentInProgress
and Ready states during reconciliation. With this fix, the status only becomes Ready when all
the underlying components are fully ready.(NETOBSERV-1293)

1.1.3. Known issues

When trying to access the web console, cache issues on OCP 4.14.10 prevent access to the
Observe view. The web console shows the error message: Failed to get a valid plugin
manifest from /api/plugins/monitoring-plugin/. The recommended workaround is to update
the cluster to the latest minor version. If this does not work, you need to apply the workarounds
described in this Red Hat Knowledgebase article .(NETOBSERV-1493)

Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the Network Observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The
Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled
when the hashmap is too memory expansive.

1.2. NETWORK OBSERVABILITY OPERATOR 1.4.2

The following advisory is available for the Network Observability Operator 1.4.2:

2023:6787 Network Observability Operator 1.4.2

1.2.1. CVEs

2023-39325

2023-44487

1.3. NETWORK OBSERVABILITY OPERATOR 1.4.1

The following advisory is available for the Network Observability Operator 1.4.1:

2023:5974 Network Observability Operator 1.4.1

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

9

https://issues.redhat.com/browse/NETOBSERV-1351
https://issues.redhat.com/browse/NETOBSERV-1430
https://issues.redhat.com/browse/NETOBSERV-1464
https://issues.redhat.com/browse/NETOBSERV-1443
https://issues.redhat.com/browse/NETOBSERV-1305
https://issues.redhat.com/browse/NETOBSERV-1293
https://access.redhat.com/solutions/7052408
https://issues.redhat.com/browse/NETOBSERV-1493
https://access.redhat.com/errata/RHSA-2023:6787
https://access.redhat.com/security/cve/CVE-2023-39325
https://access.redhat.com/security/cve/CVE-2023-44487
https://access.redhat.com/errata/RHSA-2023:5974

1.3.1. CVEs

2023-44487

2023-39325

2023-29406

2023-29409

2023-39322

2023-39318

2023-39319

2023-39321

1.3.2. Bug fixes

In 1.4, there was a known issue when sending network flow data to Kafka. The Kafka message key
was ignored, causing an error with connection tracking. Now the key is used for partitioning, so
each flow from the same connection is sent to the same processor. (NETOBSERV-926)

In 1.4, the Inner flow direction was introduced to account for flows between pods running on the
same node. Flows with the Inner direction were not taken into account in the generated
Prometheus metrics derived from flows, resulting in under-evaluated bytes and packets rates.
Now, derived metrics are including flows with the Inner direction, providing correct bytes and
packets rates. (NETOBSERV-1344)

1.4. NETWORK OBSERVABILITY OPERATOR 1.4.0

The following advisory is available for the Network Observability Operator 1.4.0:

RHSA-2023:5379 Network Observability Operator 1.4.0

1.4.1. Channel removal

You must switch your channel from v1.0.x to stable to receive the latest Operator updates. The v1.0.x
channel is now removed.

1.4.2. New features and enhancements

1.4.2.1. Notable enhancements

The 1.4 release of the Network Observability Operator adds improvements and new capabilities to the
OpenShift Container Platform web console plugin and the Operator configuration.

Web console enhancements:

In the Query Options, the Duplicate flows checkbox is added to choose whether or not to
show duplicated flows.

You can now filter source and destination traffic with One-way, Back-and-forth, and
Swap filters.

The Network Observability metrics dashboards in Observe → Dashboards → NetObserv and

OpenShift Container Platform 4.15 Network Observability

10

https://access.redhat.com/security/cve/cve-2023-44487
https://access.redhat.com/security/cve/cve-2023-39325
https://access.redhat.com/security/cve/cve-2023-29406
https://access.redhat.com/security/cve/CVE-2023-29409
https://access.redhat.com/security/cve/cve-2023-39322
https://access.redhat.com/security/cve/cve-2023-39318
https://access.redhat.com/security/cve/cve-2023-39319
https://access.redhat.com/security/cve/cve-2023-39321
https://issues.redhat.com/browse/NETOBSERV-926
https://issues.redhat.com/browse/NETOBSERV-1344
https://access.redhat.com/errata/RHSA-2023:5379

The Network Observability metrics dashboards in Observe → Dashboards → NetObserv and
NetObserv / Health are modified as follows:

The NetObserv dashboard shows top bytes, packets sent, packets received per nodes,
namespaces, and workloads. Flow graphs are removed from this dashboard.

The NetObserv / Health dashboard shows flows overhead as well as top flow rates per
nodes, namespaces, and workloads.

Infrastructure and Application metrics are shown in a split-view for namespaces and
workloads.

For more information, see Network Observability metrics and Quick filters.

Configuration enhancements:

You now have the option to specify different namespaces for any configured ConfigMap or
Secret reference, such as in certificates configuration.

The spec.processor.clusterName parameter is added so that the name of the cluster appears
in the flows data. This is useful in a multi-cluster context. When using OpenShift Container
Platform, leave empty to make it automatically determined.

For more information, see Flow Collector sample resource and Flow Collector API Reference.

1.4.2.2. Network Observability without Loki

The Network Observability Operator is now functional and usable without Loki. If Loki is not installed, it
can only export flows to KAFKA or IPFIX format and provide metrics in the Network Observability
metrics dashboards. For more information, see Network Observability without Loki .

1.4.2.3. DNS tracking

In 1.4, the Network Observability Operator makes use of eBPF tracepoint hooks to enable DNS tracking.
You can monitor your network, conduct security analysis, and troubleshoot DNS issues in the Network
Traffic and Overview pages in the web console.

For more information, see Configuring DNS tracking and Working with DNS tracking.

1.4.2.4. SR-IOV support

You can now collect traffic from a cluster with Single Root I/O Virtualization (SR-IOV) device. For more
information, see Configuring the monitoring of SR-IOV interface traffic .

1.4.2.5. IPFIX exporter support

You can now export eBPF-enriched network flows to the IPFIX collector. For more information, see
Export enriched network flow data .

1.4.2.6. Packet drops

In the 1.4 release of the Network Observability Operator, eBPF tracepoint hooks are used to enable
packet drop tracking. You can now detect and analyze the cause for packet drops and make decisions to
optimize network performance. In OpenShift Container Platform 4.14 and later, both host drops and
OVS drops are detected. In OpenShift Container Platform 4.13, only host drops are detected. For more
information, see Configuring packet drop tracking and Working with packet drops.

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

11

1.4.2.7. s390x architecture support

Network Observability Operator can now run on s390x architecture. Previously it ran on amd64,
ppc64le, or arm64.

1.4.3. Bug fixes

Previously, the Prometheus metrics exported by Network Observability were computed out of
potentially duplicated network flows. In the related dashboards, from Observe → Dashboards,
this could result in potentially doubled rates. Note that dashboards from the Network Traffic
view were not affected. Now, network flows are filtered to eliminate duplicates prior to metrics
calculation, which results in correct traffic rates displayed in the dashboards. (NETOBSERV-
1131)

Previously, the Network Observability Operator agents were not able to capture traffic on
network interfaces when configured with Multus or SR-IOV, non-default network namespaces.
Now, all available network namespaces are recognized and used for capturing flows, allowing
capturing traffic for SR-IOV. There are configurations needed for the FlowCollector and
SRIOVnetwork custom resource to collect traffic. (NETOBSERV-1283)

Previously, in the Network Observability Operator details from Operators → Installed
Operators, the FlowCollector Status field might have reported incorrect information about
the state of the deployment. The status field now shows the proper conditions with improved
messages. The history of events is kept, ordered by event date. (NETOBSERV-1224)

Previously, during spikes of network traffic load, certain eBPF pods were OOM-killed and went
into a CrashLoopBackOff state. Now, the eBPF agent memory footprint is improved, so pods
are not OOM-killed and entering a CrashLoopBackOff state. (NETOBSERV-975)

Previously when processor.metrics.tls was set to PROVIDED the insecureSkipVerify option
value was forced to be true. Now you can set insecureSkipVerify to true or false, and provide
a CA certificate if needed. (NETOBSERV-1087)

1.4.4. Known issues

Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes
temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater. (NETOBSERV-980)

Currently, when spec.agent.ebpf.features includes DNSTracking, larger DNS packets require
the eBPF agent to look for DNS header outside of the 1st socket buffer (SKB) segment. A new
eBPF agent helper function needs to be implemented to support it. Currently, there is no
workaround for this issue. (NETOBSERV-1304)

Currently, when spec.agent.ebpf.features includes DNSTracking, DNS over TCP packets
requires the eBPF agent to look for DNS header outside of the 1st SKB segment. A new eBPF
agent helper function needs to be implemented to support it. Currently, there is no workaround
for this issue. (NETOBSERV-1245)

Currently, when using a KAFKA deployment model, if conversation tracking is configured,
conversation events might be duplicated across Kafka consumers, resulting in inconsistent
tracking of conversations, and incorrect volumetric data. For that reason, it is not recommended
to configure conversation tracking when deploymentModel is set to KAFKA. (NETOBSERV-
926)

OpenShift Container Platform 4.15 Network Observability

12

https://issues.redhat.com/browse/NETOBSERV-1131
https://issues.redhat.com/browse/NETOBSERV-1283
https://issues.redhat.com/browse/NETOBSERV-1224
https://issues.redhat.com/browse/NETOBSERV-975
https://issues.redhat.com/browse/NETOBSERV-1087
https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-1304
https://issues.redhat.com/browse/NETOBSERV-1245
https://issues.redhat.com/browse/NETOBSERV-926

Currently, when the processor.metrics.server.tls.type is configured to use a PROVIDED
certificate, the operator enters an unsteady state that might affect its performance and
resource consumption. It is recommended to not use a PROVIDED certificate until this issue is
resolved, and instead using an auto-generated certificate, setting
processor.metrics.server.tls.type to AUTO. (NETOBSERV-1293

Since the 1.3.0 release of the Network Observability Operator, installing the Operator causes a
warning kernel taint to appear. The reason for this error is that the Network Observability eBPF
agent has memory constraints that prevent preallocating the entire hashmap table. The
Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that pre-allocation is disabled
when the hashmap is too memory expansive.

1.5. NETWORK OBSERVABILITY OPERATOR 1.3.0

The following advisory is available for the Network Observability Operator 1.3.0:

RHSA-2023:3905 Network Observability Operator 1.3.0

1.5.1. Channel deprecation

You must switch your channel from v1.0.x to stable to receive future Operator updates. The v1.0.x
channel is deprecated and planned for removal in the next release.

1.5.2. New features and enhancements

1.5.2.1. Multi-tenancy in Network Observability

System administrators can allow and restrict individual user access, or group access, to the
flows stored in Loki. For more information, see Multi-tenancy in Network Observability .

1.5.2.2. Flow-based metrics dashboard

This release adds a new dashboard, which provides an overview of the network flows in your
OpenShift Container Platform cluster. For more information, see Network Observability metrics.

1.5.2.3. Troubleshooting with the must-gather tool

Information about the Network Observability Operator can now be included in the must-gather
data for troubleshooting. For more information, see Network Observability must-gather.

1.5.2.4. Multiple architectures now supported

Network Observability Operator can now run on an amd64, ppc64le, or arm64 architectures.
Previously, it only ran on amd64.

1.5.3. Deprecated features

1.5.3.1. Deprecated configuration parameter setting

The release of Network Observability Operator 1.3 deprecates the spec.Loki.authToken HOST setting.
When using the Loki Operator, you must now only use the FORWARD setting.

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

13

https://issues.redhat.com/browse/NETOBSERV-1293)
https://access.redhat.com/errata/RHSA-2023:3905

1.5.4. Bug fixes

Previously, when the Operator was installed from the CLI, the Role and RoleBinding that are
necessary for the Cluster Monitoring Operator to read the metrics were not installed as
expected. The issue did not occur when the operator was installed from the web console. Now,
either way of installing the Operator installs the required Role and RoleBinding.
(NETOBSERV-1003)

Since version 1.2, the Network Observability Operator can raise alerts when a problem occurs
with the flows collection. Previously, due to a bug, the related configuration to disable alerts,
spec.processor.metrics.disableAlerts was not working as expected and sometimes
ineffectual. Now, this configuration is fixed so that it is possible to disable the alerts.
(NETOBSERV-976)

Previously, when Network Observability was configured with spec.loki.authToken set to
DISABLED, only a kubeadmin cluster administrator was able to view network flows. Other
types of cluster administrators received authorization failure. Now, any cluster administrator is
able to view network flows. (NETOBSERV-972)

Previously, a bug prevented users from setting spec.consolePlugin.portNaming.enable to
false. Now, this setting can be set to false to disable port-to-service name translation.
(NETOBSERV-971)

Previously, the metrics exposed by the console plugin were not collected by the Cluster
Monitoring Operator (Prometheus), due to an incorrect configuration. Now the configuration
has been fixed so that the console plugin metrics are correctly collected and accessible from
the OpenShift Container Platform web console. (NETOBSERV-765)

Previously, when processor.metrics.tls was set to AUTO in the FlowCollector, the flowlogs-
pipeline servicemonitor did not adapt the appropriate TLS scheme, and metrics were not
visible in the web console. Now the issue is fixed for AUTO mode. (NETOBSERV-1070)

Previously, certificate configuration, such as used for Kafka and Loki, did not allow specifying a
namespace field, implying that the certificates had to be in the same namespace where Network
Observability is deployed. Moreover, when using Kafka with TLS/mTLS, the user had to
manually copy the certificate(s) to the privileged namespace where the eBPF agent pods are
deployed and manually manage certificate updates, such as in the case of certificate rotation.
Now, Network Observability setup is simplified by adding a namespace field for certificates in
the FlowCollector resource. As a result, users can now install Loki or Kafka in different
namespaces without needing to manually copy their certificates in the Network Observability
namespace. The original certificates are watched so that the copies are automatically updated
when needed. (NETOBSERV-773)

Previously, the SCTP, ICMPv4 and ICMPv6 protocols were not covered by the Network
Observability agents, resulting in a less comprehensive network flows coverage. These protocols
are now recognized to improve the flows coverage. (NETOBSERV-934)

1.5.5. Known issues

When processor.metrics.tls is set to PROVIDED in the FlowCollector, the flowlogs-pipeline
servicemonitor is not adapted to the TLS scheme. (NETOBSERV-1087)

Since the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate change periodically affects the flowlogs-pipeline pods and results in dropped flows
rather than flows written to Loki. The problem self-corrects after some time, but it still causes

OpenShift Container Platform 4.15 Network Observability

14

https://issues.redhat.com/browse/NETOBSERV-1003
https://issues.redhat.com/browse/NETOBSERV-976
https://issues.redhat.com/browse/NETOBSERV-972
https://issues.redhat.com/browse/NETOBSERV-971
https://issues.redhat.com/browse/NETOBSERV-765
https://issues.redhat.com/browse/NETOBSERV-1070
https://issues.redhat.com/browse/NETOBSERV-773
https://issues.redhat.com/browse/NETOBSERV-934
https://issues.redhat.com/browse/NETOBSERV-1087

temporary flow data loss during the Loki certificate change. This issue has only been observed in
large-scale environments of 120 nodes or greater.(NETOBSERV-980)

When you install the Operator, a warning kernel taint can appear. The reason for this error is that
the Network Observability eBPF agent has memory constraints that prevent preallocating the
entire hashmap table. The Operator eBPF agent sets the BPF_F_NO_PREALLOC flag so that
pre-allocation is disabled when the hashmap is too memory expansive.

1.6. NETWORK OBSERVABILITY OPERATOR 1.2.0

The following advisory is available for the Network Observability Operator 1.2.0:

RHSA-2023:1817 Network Observability Operator 1.2.0

1.6.1. Preparing for the next update

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. Until the 1.2 release of the Network Observability Operator, the only channel available
was v1.0.x. The 1.2 release of the Network Observability Operator introduces the stable update channel
for tracking and receiving updates. You must switch your channel from v1.0.x to stable to receive future
Operator updates. The v1.0.x channel is deprecated and planned for removal in a following release.

1.6.2. New features and enhancements

1.6.2.1. Histogram in Traffic Flows view

You can now choose to show a histogram bar chart of flows over time. The histogram enables
you to visualize the history of flows without hitting the Loki query limit. For more information,
see Using the histogram.

1.6.2.2. Conversation tracking

You can now query flows by Log Type, which enables grouping network flows that are part of
the same conversation. For more information, see Working with conversations.

1.6.2.3. Network Observability health alerts

The Network Observability Operator now creates automatic alerts if the flowlogs-pipeline is
dropping flows because of errors at the write stage or if the Loki ingestion rate limit has been
reached. For more information, see Viewing health information.

1.6.3. Bug fixes

Previously, after changing the namespace value in the FlowCollector spec, eBPF agent pods
running in the previous namespace were not appropriately deleted. Now, the pods running in the
previous namespace are appropriately deleted. (NETOBSERV-774)

Previously, after changing the caCert.name value in the FlowCollector spec (such as in Loki
section), FlowLogs-Pipeline pods and Console plug-in pods were not restarted, therefore they
were unaware of the configuration change. Now, the pods are restarted, so they get the
configuration change. (NETOBSERV-772)

Previously, network flows between pods running on different nodes were sometimes not
correctly identified as being duplicates because they are captured by different network

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

15

https://issues.redhat.com/browse/NETOBSERV-980
https://access.redhat.com/errata/RHSA-2023:1817
https://issues.redhat.com/browse/NETOBSERV-774
https://issues.redhat.com/browse/NETOBSERV-772

interfaces. This resulted in over-estimated metrics displayed in the console plug-in. Now, flows
are correctly identified as duplicates, and the console plug-in displays accurate metrics.
(NETOBSERV-755)

The "reporter" option in the console plug-in is used to filter flows based on the observation
point of either source node or destination node. Previously, this option mixed the flows
regardless of the node observation point. This was due to network flows being incorrectly
reported as Ingress or Egress at the node level. Now, the network flow direction reporting is
correct. The "reporter" option filters for source observation point, or destination observation
point, as expected. (NETOBSERV-696)

Previously, for agents configured to send flows directly to the processor as gRPC+protobuf
requests, the submitted payload could be too large and is rejected by the processors' GRPC
server. This occurred under very-high-load scenarios and with only some configurations of the
agent. The agent logged an error message, such as: grpc: received message larger than max . As
a consequence, there was information loss about those flows. Now, the gRPC payload is split
into several messages when the size exceeds a threshold. As a result, the server maintains
connectivity. (NETOBSERV-617)

1.6.4. Known issue

In the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate transition periodically affects the flowlogs-pipeline pods and results in dropped
flows rather than flows written to Loki. The problem self-corrects after some time, but it still
causes temporary flow data loss during the Loki certificate transition. (NETOBSERV-980)

1.6.5. Notable technical changes

Previously, you could install the Network Observability Operator using a custom namespace.
This release introduces the conversion webhook which changes the ClusterServiceVersion.
Because of this change, all the available namespaces are no longer listed. Additionally, to enable
Operator metrics collection, namespaces that are shared with other Operators, like the
openshift-operators namespace, cannot be used. Now, the Operator must be installed in the
openshift-netobserv-operator namespace. You cannot automatically upgrade to the new
Operator version if you previously installed the Network Observability Operator using a custom
namespace. If you previously installed the Operator using a custom namespace, you must delete
the instance of the Operator that was installed and re-install your operator in the openshift-
netobserv-operator namespace. It is important to note that custom namespaces, such as the
commonly used netobserv namespace, are still possible for the FlowCollector, Loki, Kafka, and
other plug-ins. (NETOBSERV-907)(NETOBSERV-956)

1.7. NETWORK OBSERVABILITY OPERATOR 1.1.0

The following advisory is available for the Network Observability Operator 1.1.0:

RHSA-2023:0786 Network Observability Operator Security Advisory Update

The Network Observability Operator is now stable and the release channel is upgraded to v1.1.0.

1.7.1. Bug fix

Previously, unless the Loki authToken configuration was set to FORWARD mode,
authentication was no longer enforced, allowing any user who could connect to the OpenShift
Container Platform console in an OpenShift Container Platform cluster to retrieve flows

OpenShift Container Platform 4.15 Network Observability

16

https://issues.redhat.com/browse/NETOBSERV-755
https://issues.redhat.com/browse/NETOBSERV-696
https://issues.redhat.com/browse/NETOBSERV-617
https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-907
https://https//issues.redhat.com/browse/NETOBSERV-956
https://access.redhat.com/errata/RHSA-2023:0786

without authentication. Now, regardless of the Loki authToken mode, only cluster
administrators can retrieve flows. (BZ#2169468)

CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

17

https://bugzilla.redhat.com/show_bug.cgi?id=2169468

CHAPTER 2. ABOUT NETWORK OBSERVABILITY
Red Hat offers cluster administrators the Network Observability Operator to observe the network traffic
for OpenShift Container Platform clusters. The Network Observability Operator uses the eBPF
technology to create network flows. The network flows are then enriched with OpenShift Container
Platform information and stored in Loki. You can view and analyze the stored network flows information
in the OpenShift Container Platform console for further insight and troubleshooting.

2.1. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY
OPERATOR

Loki Operator: Loki is the backend that is used to store all collected flows. It is recommended to
install Loki to use with the Network Observability Operator. You can choose to use Network
Observability without Loki, but there are some considerations for doing this, as described in the
linked section. If you choose to install Loki, it is recommended to use the Loki Operator, as it is
supported by Red Hat.

Grafana Operator: You can install Grafana for creating custom dashboards and querying
capabilities, by using an open source product, such as the Grafana Operator. Red Hat does not
support the Grafana Operator.

AMQ Streams Operator: Kafka provides scalability, resiliency and high availability in the
OpenShift Container Platform cluster for large scale deployments. If you choose to use Kafka, it
is recommended to use the AMQ Streams Operator, because it is supported by Red Hat.

2.2. NETWORK OBSERVABILITY OPERATOR

The Network Observability Operator provides the Flow Collector API custom resource definition. A Flow
Collector instance is created during installation and enables configuration of network flow collection.
The Flow Collector instance deploys pods and services that form a monitoring pipeline where network
flows are then collected and enriched with the Kubernetes metadata before storing in Loki. The eBPF
agent, which is deployed as a daemonset object, creates the network flows.

2.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION

OpenShift Container Platform console integration offers overview, topology view and traffic flow tables.

2.3.1. Network Observability metrics dashboards

On the Overview tab in the OpenShift Container Platform console, you can view the overall aggregated
metrics of the network traffic flow on the cluster. You can choose to display the information by node,
namespace, owner, pod, zone, and service. Filters and display options can further refine the metrics. For
more information, see Observing the network traffic from the Overview view .

In Observe → Dashboards, the Netobserv dashboard provides a quick overview of the network flows in
your OpenShift Container Platform cluster. The Netobserv/Health dashboard provides metrics about
the health of the Operator. For more information, see Network Observability Metrics and Viewing health
information.

2.3.2. Network Observability topology views

The OpenShift Container Platform console offers the Topology tab which displays a graphical
representation of the network flows and the amount of traffic. The topology view represents traffic

OpenShift Container Platform 4.15 Network Observability

18

between the OpenShift Container Platform components as a network graph. You can refine the graph
by using the filters and display options. You can access the information for node, namespace, owner,
pod, and service.

2.3.3. Traffic flow tables

The traffic flow table view provides a view for raw flows, non aggregated filtering options, and
configurable columns. The OpenShift Container Platform console offers the Traffic flows tab which
displays the data of the network flows and the amount of traffic.

CHAPTER 2. ABOUT NETWORK OBSERVABILITY

19

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY
OPERATOR

Installing Loki is a recommended prerequisite for using the Network Observability Operator. You can
choose to use Network Observability without Loki , but there are some considerations for doing this,
described in the previously linked section.

The Loki Operator integrates a gateway that implements multi-tenancy and authentication with Loki for
data flow storage. The LokiStack resource manages Loki, which is a scalable, highly-available, multi-
tenant log aggregation system, and a web proxy with OpenShift Container Platform authentication. The
LokiStack proxy uses OpenShift Container Platform authentication to enforce multi-tenancy and
facilitate the saving and indexing of data in Loki log stores.

NOTE

The Loki Operator can also be used for configuring the LokiStack log store . The Network
Observability Operator requires a dedicated LokiStack separate from the logging.

3.1. NETWORK OBSERVABILITY WITHOUT LOKI

You can use Network Observability without Loki by not performing the Loki installation steps and
skipping directly to "Installing the Network Observability Operator". If you only want to export flows to a
Kafka consumer or IPFIX collector, or you only need dashboard metrics, then you do not need to install
Loki or provide storage for Loki. Without Loki, there won’t be a Network Traffic panel under Observe,
which means there is no overview charts, flow table, or topology. The following table compares available
features with and without Loki:

Table 3.1. Comparison of feature availability with and without Loki

 With Loki Without Loki

Exporters

Flow-based metrics and
dashboards

Traffic Flow Overview, Table and
Topology views

Quick Filters

OpenShift Container Platform
console Network Traffic tab
integration

Additional resources

Export enriched network flow data .

3.2. INSTALLING THE LOKI OPERATOR

OpenShift Container Platform 4.15 Network Observability

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/logging/#cluster-logging-loki

The Loki Operator versions 5.7+ are the supported Loki Operator versions for Network Observabilty;
these versions provide the ability to create a LokiStack instance using the openshift-network tenant
configuration mode and provide fully-automatic, in-cluster authentication and authorization support for
Network Observability. There are several ways you can install Loki. One way is by using the OpenShift
Container Platform web console Operator Hub.

Prerequisites

Supported Log Store (AWS S3, Google Cloud Storage, Azure, Swift, Minio, OpenShift Data
Foundation)

OpenShift Container Platform 4.10+

Linux Kernel 4.18+

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Loki Operator from the list of available Operators, and click Install.

3. Under Installation Mode, select All namespaces on the cluster.

Verification

1. Verify that you installed the Loki Operator. Visit the Operators → Installed Operators page and
look for Loki Operator.

2. Verify that Loki Operator is listed with Status as Succeeded in all the projects.

IMPORTANT

To uninstall Loki, refer to the uninstallation process that corresponds with the method
you used to install Loki. You might have remaining ClusterRoles and
ClusterRoleBindings, data stored in object store, and persistent volume that must be
removed.

3.2.1. Creating a secret for Loki storage

The Loki Operator supports a few log storage options, such as AWS S3, Google Cloud Storage, Azure,
Swift, Minio, OpenShift Data Foundation. The following example shows how to create a secret for AWS
S3 storage. The secret created in this example, loki-s3, is referenced in "Creating a LokiStack resource".
You can create this secret in the web console or CLI.

1. Using the web console, navigate to the Project → All Projects dropdown and select Create
Project. Name the project netobserv and click Create.

2. Navigate to the Import icon, +, in the top right corner. Paste your YAML file into the editor.
The following shows an example secret YAML file for S3 storage:

apiVersion: v1
kind: Secret
metadata:
 name: loki-s3
 namespace: netobserv 1

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

21

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

1 The installation examples in this documentation use the same namespace, netobserv,
across all components. You can optionally use a different namespace for the different
components

Verification

Once you create the secret, you should see it listed under Workloads → Secrets in the web
console.

Additional resources

Flow Collector API Reference

Flow Collector sample resource

Loki object storage

3.2.2. Creating a LokiStack custom resource

You can deploy a LokiStack using the web console or CLI to create a namespace, or new project.

Procedure

1. Navigate to Operators → Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator. In the details, under Provided APIs, select LokiStack.

3. Click Create LokiStack.

4. Ensure the following fields are specified in either Form View or YAML view:

stringData:
 access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK
 access_key_secret:
d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
 bucketnames: s3-bucket-name
 endpoint: https://s3.eu-central-1.amazonaws.com
 region: eu-central-1

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv 1
spec:
 size: 1x.small
 storage:
 schemas:
 - version: v12
 effectiveDate: '2022-06-01'
 secret:
 name: loki-s3
 type: s3

OpenShift Container Platform 4.15 Network Observability

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/logging/#logging-loki-storage_installing-log-storage

1

2

The installation examples in this documentation use the same namespace, netobserv,
across all components. You can optionally use a different namespace.

Use a storage class name that is available on the cluster for ReadWriteOnce access mode.
You can use oc get storageclasses to see what is available on your cluster.

IMPORTANT

You must not reuse the same LokiStack that is used for cluster logging.

5. Click Create.

3.2.3. Creating a new group for the cluster-admin user role

IMPORTANT

Querying application logs for multiple namespaces as a cluster-admin user, where the
sum total of characters of all of the namespaces in the cluster is greater than 5120, results
in the error Parse error: input size too long (XXXX > 5120). For better control over
access to logs in LokiStack, make the cluster-admin user a member of the cluster-
admin group. If the cluster-admin group does not exist, create it and add the desired
users to it.

Use the following procedure to create a new group for users with cluster-admin permissions.

Procedure

1. Enter the following command to create a new group:

2. Enter the following command to add the desired user to the cluster-admin group:

3. Enter the following command to add cluster-admin user role to the group:

3.2.4. Custom admin group access

If you have a large deployment with a number of users who require broader permissions, you can create a
custom group using the adminGroup field. Users who are members of any group specified in the
adminGroups field of the LokiStack CR are considered admins. Admin users have access to all
application logs in all namespaces, if they also get assigned the cluster-logging-application-view role.

Example LokiStack CR

 storageClassName: gp3 2
 tenants:
 mode: openshift-network

$ oc adm groups new cluster-admin

$ oc adm groups add-users cluster-admin <username>

$ oc adm policy add-cluster-role-to-group cluster-admin cluster-admin

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

23

1

2

3

Custom admin groups are only available in this mode.

Entering an empty list [] value for this field disables admin groups.

Overrides the default groups (system:cluster-admins, cluster-admin, dedicated-admin)

3.2.5. Loki deployment sizing

Sizing for Loki follows the format of <N>x.<size> where the value <N> is number of instances and
<size> specifies performance capabilities.

Table 3.2. Loki sizing

 1x.demo 1x.extra-small 1x.small 1x.medium

Data transfer Demo use only 100GB/day 500GB/day 2TB/day

Queries per
second (QPS)

Demo use only 1-25 QPS at
200ms

25-50 QPS at
200ms

25-75 QPS at
200ms

Replication factor None 2 2 2

Total CPU
requests

None 14 vCPUs 34 vCPUs 54 vCPUs

Total memory
requests

None 31Gi 67Gi 139Gi

Total disk
requests

40Gi 430Gi 430Gi 590Gi

3.2.6. LokiStack ingestion limits and health alerts

The LokiStack instance comes with default settings according to the configured size. It is possible to
override some of these settings, such as the ingestion and query limits. You might want to update them
if you get Loki errors showing up in the Console plugin, or in flowlogs-pipeline logs. An automatic alert
in the web console notifies you when these limits are reached.

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
 tenants:
 mode: openshift-network 1
 openshift:
 adminGroups: 2
 - cluster-admin
 - custom-admin-group 3

OpenShift Container Platform 4.15 Network Observability

24

Here is an example of configured limits:

For more information about these settings, see the LokiStack API reference.

3.2.7. Enabling multi-tenancy in Network Observability

Multi-tenancy in the Network Observability Operator allows and restricts individual user access, or
group access, to the flows stored in Loki. Access is enabled for project admins. Project admins who have
limited access to some namespaces can access flows for only those namespaces.

Prerequisite

You have installed at least Loki Operator version 5.7

You must be logged in as a project administrator

Procedure

1. Authorize reading permission to user1 by running the following command:

Now, the data is restricted to only allowed user namespaces. For example, a user that has
access to a single namespace can see all the flows internal to this namespace, as well as flows
going from and to this namespace. Project admins have access to the Administrator perspective
in the OpenShift Container Platform console to access the Network Flows Traffic page.

3.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

You can install the Network Observability Operator using the OpenShift Container Platform web
console Operator Hub. When you install the Operator, it provides the FlowCollector custom resource
definition (CRD). You can set specifications in the web console when you create the FlowCollector.

IMPORTANT

The actual memory consumption of the Operator depends on your cluster size and the
number of resources deployed. Memory consumption might need to be adjusted
accordingly. For more information refer to "Network Observability controller manager
pod runs out of memory" in the "Important Flow Collector configuration considerations"
section.

spec:
 limits:
 global:
 ingestion:
 ingestionBurstSize: 40
 ingestionRate: 20
 maxGlobalStreamsPerTenant: 25000
 queries:
 maxChunksPerQuery: 2000000
 maxEntriesLimitPerQuery: 10000
 maxQuerySeries: 3000

$ oc adm policy add-cluster-role-to-user netobserv-reader user1

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

25

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-IngestionLimitSpec
https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

Prerequisites

If you choose to use Loki, install the Loki Operator version 5.7+.

You must have cluster-admin privileges.

One of the following supported architectures is required: amd64, ppc64le, arm64, or s390x.

Any CPU supported by Red Hat Enterprise Linux (RHEL) 9.

Must be configured with OVN-Kubernetes or OpenShift SDN as the main network plugin, and
optionally using secondary interfaces, such as Multus and SR-IOV.

NOTE

Additionally, this installation example uses the netobserv namespace, which is used
across all components. You can optionally use a different namespace.

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Network Observability Operator from the list of available Operators in the
OperatorHub, and click Install.

3. Select the checkbox Enable Operator recommended cluster monitoring on this Namespace.

4. Navigate to Operators → Installed Operators. Under Provided APIs for Network Observability,
select the Flow Collector link.

5. Navigate to the Flow Collector tab, and click Create FlowCollector. Make the following
selections in the form view:

a. spec.agent.ebpf.Sampling: Specify a sampling size for flows. Lower sampling sizes will have
higher impact on resource utilization. For more information, see the "FlowCollector API
reference", spec.agent.ebpf.

b. If you are using Loki, set the following specifications:

i. spec.loki.mode: Set this to the LokiStack mode, which automatically sets URLs, TLS,
cluster roles and a cluster role binding, as well as the authToken value. Alternatively, the
Manual mode allows more control over configuration of these settings.

ii. spec.loki.lokistack.name: Set this to the name of your LokiStack resource. In this
documentation, loki is used.

c. Optional: If you are in a large-scale environment, consider configuring the FlowCollector
with Kafka for forwarding data in a more resilient, scalable way. See "Configuring the Flow
Collector resource with Kafka storage" in the "Important Flow Collector configuration
considerations" section.

d. Optional: Configure other optional settings before the next step of creating the
FlowCollector. For example, if you choose not to use Loki, then you can configure
exporting flows to Kafka or IPFIX. See "Export enriched network flow data to Kafka and
IPFIX" and more in the "Important Flow Collector configuration considerations" section.

6. Click Create.

OpenShift Container Platform 4.15 Network Observability

26

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39

Verification

To confirm this was successful, when you navigate to Observe you should see Network Traffic listed in
the options.

In the absence of Application Traffic within the OpenShift Container Platform cluster, default filters
might show that there are "No results", which results in no visual flow. Beside the filter selections, select
Clear all filters to see the flow.

3.4. IMPORTANT FLOW COLLECTOR CONFIGURATION
CONSIDERATIONS

Once you create the FlowCollector instance, you can reconfigure it, but the pods are terminated and
recreated again, which can be disruptive. Therefore, you can consider configuring the following options
when creating the FlowCollector for the first time:

Configuring the Flow Collector resource with Kafka

Export enriched network flow data to Kafka or IPFIX

Configuring monitoring for SR-IOV interface traffic

Working with conversation tracking

Working with DNS tracking

Working with packet drops

Additional resources

For more general information about Flow Collector specifications and the Network Observability
Operator architecture and resource use, see the following resources:

Flow Collector API Reference

Flow Collector sample resource

Resource considerations

Troubleshooting Network Observability controller manager pod runs out of memory

Network Observability architecture

3.5. INSTALLING KAFKA (OPTIONAL)

The Kafka Operator is supported for large scale environments. Kafka provides high-throughput and low-
latency data feeds for forwarding network flow data in a more resilient, scalable way. You can install the
Kafka Operator as Red Hat AMQ Streams from the Operator Hub, just as the Loki Operator and
Network Observability Operator were installed. Refer to "Configuring the FlowCollector resource with
Kafka" to configure Kafka as a storage option.

NOTE

To uninstall Kafka, refer to the uninstallation process that corresponds with the method
you used to install.

CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

27

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2

Additional resources

Configuring the FlowCollector resource with Kafka .

3.6. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

You can uninstall the Network Observability Operator using the OpenShift Container Platform web
console Operator Hub, working in the Operators → Installed Operators area.

Procedure

1. Remove the FlowCollector custom resource.

a. Click Flow Collector, which is next to the Network Observability Operator in the Provided
APIs column.

b. Click the options menu for the cluster and select Delete FlowCollector.

2. Uninstall the Network Observability Operator.

a. Navigate back to the Operators → Installed Operators area.

b. Click the options menu next to the Network Observability Operator and select
Uninstall Operator.

c. Home → Projects and select openshift-netobserv-operator

d. Navigate to Actions and select Delete Project

3. Remove the FlowCollector custom resource definition (CRD).

a. Navigate to Administration → CustomResourceDefinitions.

b. Look for FlowCollector and click the options menu .

c. Select Delete CustomResourceDefinition.

IMPORTANT

The Loki Operator and Kafka remain if they were installed and must be
removed separately. Additionally, you might have remaining data stored in an
object store, and a persistent volume that must be removed.

OpenShift Container Platform 4.15 Network Observability

28

CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN
OPENSHIFT CONTAINER PLATFORM

Network Observability is an OpenShift operator that deploys a monitoring pipeline to collect and enrich
network traffic flows that are produced by the Network Observability eBPF agent.

4.1. VIEWING STATUSES

The Network Observability Operator provides the Flow Collector API. When a Flow Collector resource is
created, it deploys pods and services to create and store network flows in the Loki log store, as well as to
display dashboards, metrics, and flows in the OpenShift Container Platform web console.

Procedure

1. Run the following command to view the state of FlowCollector:

Example output

NAME AGENT SAMPLING (EBPF) DEPLOYMENT MODEL STATUS
cluster EBPF 50 DIRECT Ready

2. Check the status of pods running in the netobserv namespace by entering the following
command:

Example output

NAME READY STATUS RESTARTS AGE
flowlogs-pipeline-56hbp 1/1 Running 0 147m
flowlogs-pipeline-9plvv 1/1 Running 0 147m
flowlogs-pipeline-h5gkb 1/1 Running 0 147m
flowlogs-pipeline-hh6kf 1/1 Running 0 147m
flowlogs-pipeline-w7vv5 1/1 Running 0 147m
netobserv-plugin-cdd7dc6c-j8ggp 1/1 Running 0 147m

flowlogs-pipeline pods collect flows, enriches the collected flows, then send flows to the Loki storage.
netobserv-plugin pods create a visualization plugin for the OpenShift Container Platform Console.

1. Check the status of pods running in the namespace netobserv-privileged by entering the
following command:

Example output

NAME READY STATUS RESTARTS AGE
netobserv-ebpf-agent-4lpp6 1/1 Running 0 151m
netobserv-ebpf-agent-6gbrk 1/1 Running 0 151m

$ oc get flowcollector/cluster

$ oc get pods -n netobserv

$ oc get pods -n netobserv-privileged

CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

29

netobserv-ebpf-agent-klpl9 1/1 Running 0 151m
netobserv-ebpf-agent-vrcnf 1/1 Running 0 151m
netobserv-ebpf-agent-xf5jh 1/1 Running 0 151m

netobserv-ebpf-agent pods monitor network interfaces of the nodes to get flows and send them to
flowlogs-pipeline pods.

1. If you are using the Loki Operator, check the status of pods running in the openshift-operators-
redhat namespace by entering the following command:

Example output

NAME READY STATUS RESTARTS AGE
loki-operator-controller-manager-5f6cff4f9d-jq25h 2/2 Running 0 18h
lokistack-compactor-0 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-qhkhv 1/1 Running 0 18h
lokistack-distributor-654f87c5bc-skxgm 1/1 Running 0 18h
lokistack-gateway-796dc6ff7-c54gz 2/2 Running 0 18h
lokistack-index-gateway-0 1/1 Running 0 18h
lokistack-index-gateway-1 1/1 Running 0 18h
lokistack-ingester-0 1/1 Running 0 18h
lokistack-ingester-1 1/1 Running 0 18h
lokistack-ingester-2 1/1 Running 0 18h
lokistack-querier-66747dc666-6vh5x 1/1 Running 0 18h
lokistack-querier-66747dc666-cjr45 1/1 Running 0 18h
lokistack-querier-66747dc666-xh8rq 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-b2xfb 1/1 Running 0 18h
lokistack-query-frontend-85c6db4fbd-jm94f 1/1 Running 0 18h

4.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE

The Network Observability Operator provides the FlowCollector API, which is instantiated at
installation and configured to reconcile the eBPF agent, the flowlogs-pipeline, and the netobserv-
plugin components. Only a single FlowCollector per cluster is supported.

The eBPF agent runs on each cluster node with some privileges to collect network flows. The flowlogs-
pipeline receives the network flows data and enriches the data with Kubernetes identifiers. If you are
using Loki, the flowlogs-pipeline sends flow logs data to Loki for storing and indexing. The netobserv-
plugin, which is a dynamic OpenShift Container Platform web console plugin, queries Loki to fetch
network flows data. Cluster-admins can view the data in the web console.

$ oc get pods -n openshift-operators-redhat

OpenShift Container Platform 4.15 Network Observability

30

If you are using the Kafka option, the eBPF agent sends the network flow data to Kafka, and the
flowlogs-pipeline reads from the Kafka topic before sending to Loki, as shown in the following diagram.

4.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND
CONFIGURATION

You can inspect the status and view the details of the FlowCollector using the oc describe command.

CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

31

Procedure

1. Run the following command to view the status and configuration of the Network Observability
Operator:

$ oc describe flowcollector/cluster

OpenShift Container Platform 4.15 Network Observability

32

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY
OPERATOR

You can update the Flow Collector API resource to configure the Network Observability Operator and
its managed components. The Flow Collector is explicitly created during installation. Since this resource
operates cluster-wide, only a single FlowCollector is allowed, and it has to be named cluster.

5.1. VIEW THE FLOWCOLLECTOR RESOURCE

You can view and edit YAML directly in the OpenShift Container Platform web console.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab. There, you can modify the FlowCollector resource to
configure the Network Observability operator.

The following example shows a sample FlowCollector resource for OpenShift Container Platform
Network Observability operator:

Sample FlowCollector resource

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF 1
 ebpf:
 sampling: 50 2
 logLevel: info
 privileged: false
 resources:
 requests:
 memory: 50Mi
 cpu: 100m
 limits:
 memory: 800Mi
 processor: 3
 logLevel: info
 resources:
 requests:
 memory: 100Mi
 cpu: 100m
 limits:
 memory: 800Mi
 logTypes: Flows
 advanced:

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

33

1

2

3

4

5

The Agent specification, spec.agent.type, must be EBPF. eBPF is the only OpenShift Container
Platform supported option.

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. Lower
sampling values might consume a large amount of computational, memory and storage resources.
You can mitigate this by specifying a sampling ratio value. A value of 100 means 1 flow every 100 is
sampled. A value of 0 or 1 means all flows are captured. The lower the value, the increase in
returned flows and the accuracy of derived metrics. By default, eBPF sampling is set to a value of
50, so 1 flow every 50 is sampled. Note that more sampled flows also means more storage needed.
It is recommend to start with default values and refine empirically, to determine which setting your
cluster can manage.

The Processor specification spec.processor. can be set to enable conversation tracking. When
enabled, conversation events are queryable in the web console. The spec.processor.logTypes
value is Flows. The spec.processor.advanced values are Conversations, EndedConversations,
or ALL. Storage requirements are highest for All and lowest for EndedConversations.

The Loki specification, spec.loki, specifies the Loki client. The default values match the Loki install
paths mentioned in the Installing the Loki Operator section. If you used another installation method
for Loki, specify the appropriate client information for your install.

The LokiStack mode automatically sets a few configurations: querierUrl, ingesterUrl and
statusUrl, tenantID, and corresponding TLS configuration. Cluster roles and a cluster role binding
are created for reading and writing logs to Loki. And authToken is set to Forward. You can set
these manually using the Manual mode.

 conversationEndTimeout: 10s
 conversationHeartbeatInterval: 30s
 loki: 4
 mode: LokiStack 5
 consolePlugin:
 register: true
 logLevel: info
 portNaming:
 enable: true
 portNames:
 "3100": loki
 quickFilters: 6
 - name: Applications
 filter:
 src_namespace!: 'openshift-,netobserv'
 dst_namespace!: 'openshift-,netobserv'
 default: true
 - name: Infrastructure
 filter:
 src_namespace: 'openshift-,netobserv'
 dst_namespace: 'openshift-,netobserv'
 - name: Pods network
 filter:
 src_kind: 'Pod'
 dst_kind: 'Pod'
 default: true
 - name: Services network
 filter:
 dst_kind: 'Service'

OpenShift Container Platform 4.15 Network Observability

34

6

1

2

3

4

The spec.quickFilters specification defines filters that show up in the web console. The
Application filter keys,src_namespace and dst_namespace, are negated (!), so the Application

Additional resources

For more information about conversation tracking, see Working with conversations.

5.2. CONFIGURING THE FLOW COLLECTOR RESOURCE WITH KAFKA

You can configure the FlowCollector resource to use Kafka for high-throughput and low-latency data
feeds. A Kafka instance needs to be running, and a Kafka topic dedicated to OpenShift Container
Platform Network Observability must be created in that instance. For more information, see Kafka
documentation with AMQ Streams.

Prerequisites

Kafka is installed. Red Hat supports Kafka with AMQ Streams Operator.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the Network Observability Operator, select Flow
Collector.

3. Select the cluster and then click the YAML tab.

4. Modify the FlowCollector resource for OpenShift Container Platform Network Observability
Operator to use Kafka, as shown in the following sample YAML:

Sample Kafka configuration in FlowCollector resource

Set spec.deploymentModel to Kafka instead of Direct to enable the Kafka deployment model.

spec.kafka.address refers to the Kafka bootstrap server address. You can specify a port if needed,
for instance kafka-cluster-kafka-bootstrap.netobserv:9093 for using TLS on port 9093.

spec.kafka.topic should match the name of a topic created in Kafka.

spec.kafka.tls can be used to encrypt all communications to and from Kafka with TLS or mTLS.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 deploymentModel: Kafka 1
 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv" 2
 topic: network-flows 3
 tls:
 enable: false 4

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

35

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/using-the-topic-operator-str

2

3

1 4

spec.kafka.tls can be used to encrypt all communications to and from Kafka with TLS or mTLS.
When enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the

5.3. EXPORT ENRICHED NETWORK FLOW DATA

You can send network flows to Kafka, IPFIX, or both at the same time. Any processor or storage that
supports Kafka or IPFIX input, such as Splunk, Elasticsearch, or Fluentd, can consume the enriched
network flow data.

Prerequisites

Your Kafka or IPFIX collector endpoint(s) are available from Network Observability flowlogs-
pipeline pods.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster and then select the YAML tab.

4. Edit the FlowCollector to configure spec.exporters as follows:

The Network Observability Operator exports all flows to the configured Kafka topic.

You can encrypt all communications to and from Kafka with SSL/TLS or mTLS. When
enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the
namespace where the flowlogs-pipeline processor component is deployed (default:
netobserv). It must be referenced with spec.exporters.tls.caCert. When using mTLS,
client secrets must be available in these namespaces as well (they can be generated for
instance using the AMQ Streams User Operator) and referenced with
spec.exporters.tls.userCert.

You can export flows to IPFIX instead of or in conjunction with exporting flows to Kafka.

You have the option to specify transport. The default value is tcp but you can also specify

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 exporters:
 - type: Kafka 1
 kafka:
 address: "kafka-cluster-kafka-bootstrap.netobserv"
 topic: netobserv-flows-export 2
 tls:
 enable: false 3
 - type: IPFIX 4
 ipfix:
 targetHost: "ipfix-collector.ipfix.svc.cluster.local"
 targetPort: 4739
 transport: tcp or udp 5

OpenShift Container Platform 4.15 Network Observability

36

5 You have the option to specify transport. The default value is tcp but you can also specify
udp.

5. After configuration, network flows data can be sent to an available output in a JSON format. For
more information, see Network flows format reference .

Additional resources

For more information about specifying flow format, see Network flows format reference .

5.4. UPDATING THE FLOW COLLECTOR RESOURCE

As an alternative to editing YAML in the OpenShift Container Platform web console, you can configure
specifications, such as eBPF sampling, by patching the flowcollector custom resource (CR):

Procedure

1. Run the following command to patch the flowcollector CR and update the
spec.agent.ebpf.sampling value:

5.5. CONFIGURING QUICK FILTERS

You can modify the filters in the FlowCollector resource. Exact matches are possible using double-
quotes around values. Otherwise, partial matches are used for textual values. The bang (!) character,
placed at the end of a key, means negation. See the sample FlowCollector resource for more context
about modifying the YAML.

NOTE

The filter matching types "all of" or "any of" is a UI setting that the users can modify from
the query options. It is not part of this resource configuration.

Here is a list of all available filter keys:

Table 5.1. Filter keys

Unive
rsal*

Sourc
e

Destin
ation

Description

names
pace

src_n
ames
pace

dst_n
ames
pace

Filter traffic related to a specific namespace.

name src_n
ame

dst_n
ame

Filter traffic related to a given leaf resource name, such as a specific pod,
service, or node (for host-network traffic).

$ oc patch flowcollector cluster --type=json -p "[{"op": "replace", "path":
"/spec/agent/ebpf/sampling", "value": <new value>}] -n netobserv"

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

37

kind src_k
ind

dst_k
ind

Filter traffic related to a given resource kind. The resource kinds include the leaf
resource (Pod, Service or Node), or the owner resource (Deployment and
StatefulSet).

owner
_name

src_o
wner
_nam
e

dst_o
wner
_nam
e

Filter traffic related to a given resource owner; that is, a workload or a set of
pods. For example, it can be a Deployment name, a StatefulSet name, etc.

resour
ce

src_r
esou
rce

dst_r
esou
rce

Filter traffic related to a specific resource that is denoted by its canonical
name, that identifies it uniquely. The canonical notation is
kind.namespace.name for namespaced kinds, or node.name for nodes.
For example, Deployment.my-namespace.my-web-server.

addre
ss

src_a
ddre
ss

dst_a
ddre
ss

Filter traffic related to an IP address. IPv4 and IPv6 are supported. CIDR
ranges are also supported.

mac src_
mac

dst_
mac

Filter traffic related to a MAC address.

port src_p
ort

dst_p
ort

Filter traffic related to a specific port.

host_a
ddres
s

src_h
ost_a
ddre
ss

dst_h
ost_a
ddre
ss

Filter traffic related to the host IP address where the pods are running.

proto
col

N/A N/A Filter traffic related to a protocol, such as TCP or UDP.

Unive
rsal*

Sourc
e

Destin
ation

Description

Universal keys filter for any of source or destination. For example, filtering name: 'my-pod'
means all traffic from my-pod and all traffic to my-pod, regardless of the matching type used,
whether Match all or Match any.

5.6. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC

In order to collect traffic from a cluster with a Single Root I/O Virtualization (SR-IOV) device, you must
set the FlowCollector spec.agent.ebpf.privileged field to true. Then, the eBPF agent monitors other
network namespaces in addition to the host network namespaces, which are monitored by default. When
a pod with a virtual functions (VF) interface is created, a new network namespace is created. With
SRIOVNetwork policy IPAM configurations specified, the VF interface is migrated from the host
network namespace to the pod network namespace.

Prerequisites

Access to an OpenShift Container Platform cluster with a SR-IOV device.

OpenShift Container Platform 4.15 Network Observability

38

1

The SRIOVNetwork custom resource (CR) spec.ipam configuration must be set with an IP
address from the range that the interface lists or from other plugins.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster and then select the YAML tab.

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for SR-IOV monitoring

The spec.agent.ebpf.privileged field value must be set to true to enable SR-IOV monitoring.

Additional resources

For more information about creating the SriovNetwork custom resource, see Creating an additional
SR-IOV network attachment with the CNI VRF plugin.

5.7. RESOURCE MANAGEMENT AND PERFORMANCE
CONSIDERATIONS

The amount of resources required by Network Observability depends on the size of your cluster and
your requirements for the cluster to ingest and store observability data. To manage resources and set
performance criteria for your cluster, consider configuring the following settings. Configuring these
settings might meet your optimal setup and observability needs.

The following settings can help you manage resources and performance from the outset:

eBPF Sampling

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. Smaller
sampling values might consume a large amount of computational, memory and storage resources.
You can mitigate this by specifying a sampling ratio value. A value of 100 means 1 flow every 100 is
sampled. A value of 0 or 1 means all flows are captured. Smaller values result in an increase in
returned flows and the accuracy of derived metrics. By default, eBPF sampling is set to a value of 50,
so 1 flow every 50 is sampled. Note that more sampled flows also means more storage needed.
Consider starting with the default values and refine empirically, in order to determine which setting
your cluster can manage.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 privileged: true 1

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#cnf-creating-an-additional-sriov-network-with-vrf-plug-in_configuring-sriov-device

Restricting or excluding interfaces

Reduce the overall observed traffic by setting the values for spec.agent.ebpf.interfaces and
spec.agent.ebpf.excludeInterfaces. By default, the agent fetches all the interfaces in the system,
except the ones listed in excludeInterfaces and lo (local interface). Note that the interface names
might vary according to the Container Network Interface (CNI) used.

The following settings can be used to fine-tune performance after the Network Observability has been
running for a while:

Resource requirements and limits

Adapt the resource requirements and limits to the load and memory usage you expect on your
cluster by using the spec.agent.ebpf.resources and spec.processor.resources specifications. The
default limits of 800MB might be sufficient for most medium-sized clusters.

Cache max flows timeout

Control how often flows are reported by the agents by using the eBPF agent’s
spec.agent.ebpf.cacheMaxFlows and spec.agent.ebpf.cacheActiveTimeout specifications. A
larger value results in less traffic being generated by the agents, which correlates with a lower CPU
load. However, a larger value leads to a slightly higher memory consumption, and might generate
more latency in the flow collection.

5.7.1. Resource considerations

The following table outlines examples of resource considerations for clusters with certain workload
sizes.

IMPORTANT

The examples outlined in the table demonstrate scenarios that are tailored to specific
workloads. Consider each example only as a baseline from which adjustments can be
made to accommodate your workload needs.

Table 5.2. Resource recommendations

 Extra small (10
nodes)

Small (25 nodes) Medium (65
nodes) [2]

Large (120 nodes)
[2]

Worker Node
vCPU and
memory

4 vCPUs| 16GiB

mem [1]

16 vCPUs| 64GiB

mem [1]

16 vCPUs| 64GiB

mem [1]

16 vCPUs| 64GiB

Mem [1]

LokiStack size 1x.extra-small 1x.small 1x.small 1x.medium

Network
Observability
controller
memory limit

400Mi (default) 400Mi (default) 400Mi (default) 400Mi (default)

eBPF sampling
rate

50 (default) 50 (default) 50 (default) 50 (default)

OpenShift Container Platform 4.15 Network Observability

40

eBPF memory
limit

800Mi (default) 800Mi (default) 800Mi (default) 1600Mi

FLP memory limit 800Mi (default) 800Mi (default) 800Mi (default) 800Mi (default)

FLP Kafka
partitions

N/A 48 48 48

Kafka consumer
replicas

N/A 24 24 24

Kafka brokers N/A 3 (default) 3 (default) 3 (default)

 Extra small (10
nodes)

Small (25 nodes) Medium (65
nodes) [2]

Large (120 nodes)
[2]

1. Tested with AWS M6i instances.

2. In addition to this worker and its controller, 3 infra nodes (size M6i.12xlarge) and 1 workload
node (size M6i.8xlarge) were tested.

CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

41

CHAPTER 6. NETWORK POLICY
As a user with the admin role, you can create a network policy for the netobserv namespace to secure
inbound access to the Network Observability Operator.

6.1. CREATING A NETWORK POLICY FOR NETWORK OBSERVABILITY

You might need to create a network policy to secure ingress traffic to the netobserv namespace. In the
web console, you can create a network policy using the form view.

Procedure

1. Navigate to Networking → NetworkPolicies.

2. Select the netobserv project from the Project dropdown menu.

3. Name the policy. For this example, the policy name is allow-ingress.

4. Click Add ingress rule three times to create three ingress rules.

5. Specify the following in the form:

a. Make the following specifications for the first Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from the same
namespace.

b. Make the following specifications for the second Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from inside the
cluster.

ii. Click + Add namespace selector.

iii. Add the label, kubernetes.io/metadata.name, and the selector, openshift-console.

c. Make the following specifications for the third Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from inside the
cluster.

ii. Click + Add namespace selector.

iii. Add the label, kubernetes.io/metadata.name, and the selector, openshift-monitoring.

Verification

1. Navigate to Observe → Network Traffic.

2. View the Traffic Flows tab, or any tab, to verify that the data is displayed.

3. Navigate to Observe → Dashboards. In the NetObserv/Health selection, verify that the flows
are being ingested and sent to Loki, which is represented in the first graph.

6.2. EXAMPLE NETWORK POLICY

OpenShift Container Platform 4.15 Network Observability

42

1

2

3

The following annotates an example NetworkPolicy object for the netobserv namespace:

Sample network policy

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object. In this documentation, it would be the
project in which the Network Observability Operator is installed, which is the netobserv project.

A selector that matches the pods from which the policy object allows ingress traffic. The default is
that the selector matches pods in the same namespace as the NetworkPolicy.

When the namespaceSelector is specified, the selector matches pods in the specified namespace.

Additional resources

Creating a network policy using the CLI

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-ingress
 namespace: netobserv
spec:
 podSelector: {} 1
 ingress:
 - from:
 - podSelector: {} 2
 namespaceSelector: 3
 matchLabels:
 kubernetes.io/metadata.name: openshift-console
 - podSelector: {}
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: openshift-monitoring
 policyTypes:
 - Ingress
status: {}

CHAPTER 6. NETWORK POLICY

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#nw-networkpolicy-object_creating-network-policy

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC
As an administrator, you can observe the network traffic in the OpenShift Container Platform console
for detailed troubleshooting and analysis. This feature helps you get insights from different graphical
representations of traffic flow. There are several available views to observe the network traffic.

7.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW

The Overview view displays the overall aggregated metrics of the network traffic flow on the cluster. As
an administrator, you can monitor the statistics with the available display options.

7.1.1. Working with the Overview view

As an administrator, you can navigate to the Overview view to see the graphical representation of the
flow rate statistics.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Overview tab.

You can configure the scope of each flow rate data by clicking the menu icon.

7.1.2. Configuring advanced options for the Overview view

You can customize the graphical view by using advanced options. To access the advanced options, click
Show advanced options. You can configure the details in the graph by using the Display options drop-
down menu. The options available are as follows:

Scope: Select to view the components that network traffic flows between. You can set the
scope to Node, Namespace, Owner, Zones, Cluster or Resource. Owner is an aggregation of
resources. Resource can be a pod, service, node, in case of host-network traffic, or an unknown
IP address. The default value is Namespace.

Truncate labels: Select the required width of the label from the drop-down list. The default
value is M.

7.1.2.1. Managing panels and display

You can select the required panels to be displayed, reorder them, and focus on a specific panel. To add
or remove panels, click Manage panels.

The following panels are shown by default:

Top X average bytes rates

Top X bytes rates stacked with total

Other panels can be added in Manage panels:

Top X average packets rates

Top X packets rates stacked with total

OpenShift Container Platform 4.15 Network Observability

44

Query options allows you to choose whether to show the Top 5, Top 10, or Top 15 rates.

7.1.3. Packet drop tracking

You can configure graphical representation of network flow records with packet loss in the Overview
view. By employing eBPF tracepoint hooks, you can gain valuable insights into packet drops for TCP,
UDP, SCTP, ICMPv4, and ICMPv6 protocols, which can result in the following actions:

Identification: Pinpoint the exact locations and network paths where packet drops are occurring.
Determine whether specific devices, interfaces, or routes are more prone to drops.

Root cause analysis: Examine the data collected by the eBPF program to understand the causes
of packet drops. For example, are they a result of congestion, buffer issues, or specific network
events?

Performance optimization: With a clearer picture of packet drops, you can take steps to optimize
network performance, such as adjust buffer sizes, reconfigure routing paths, or implement
Quality of Service (QoS) measures.

When packet drop tracking is enabled, you can see the following panels in the Overview by default:

Top X packet dropped state stacked with total

Top X packet dropped cause stacked with total

Top X average dropped packets rates

Top X dropped packets rates stacked with total

Other packet drop panels are available to add in Manage panels:

Top X average dropped bytes rates

Top X dropped bytes rates stacked with total

7.1.3.1. Types of packet drops

Two kinds of packet drops are detected by Network Observability: host drops and OVS drops. Host
drops are prefixed with SKB_DROP and OVS drops are prefixed with OVS_DROP. Dropped flows are
shown in the side panel of the Traffic flows table along with a link to a description of each drop type.
Examples of host drop reasons are as follows:

SKB_DROP_REASON_NO_SOCKET: the packet dropped due to a missing socket.

SKB_DROP_REASON_TCP_CSUM: the packet dropped due to a TCP checksum error.

Examples of OVS drops reasons are as follows:

OVS_DROP_LAST_ACTION: OVS packets dropped due to an implicit drop action, for example
due to a configured network policy.

OVS_DROP_IP_TTL: OVS packets dropped due to an expired IP TTL.

See the Additional Resources of this section for more information about enabling and working with
packet drop tracking.

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

45

Additional resources

Working with packet drops

Network Observability metrics

7.1.4. DNS tracking

You can configure graphical representation of Domain Name System (DNS) tracking of network flows in
the Overview view. Using DNS tracking with extended Berkeley Packet Filter (eBPF) tracepoint hooks
can serve various purposes:

Network Monitoring: Gain insights into DNS queries and responses, helping network
administrators identify unusual patterns, potential bottlenecks, or performance issues.

Security Analysis: Detect suspicious DNS activities, such as domain name generation algorithms
(DGA) used by malware, or identify unauthorized DNS resolutions that might indicate a security
breach.

Troubleshooting: Debug DNS-related issues by tracing DNS resolution steps, tracking latency,
and identifying misconfigurations.

By default, when DNS tracking is enabled, you can see the following non-empty metrics represented in a
donut or line chart in the Overview:

Top X DNS Response Code

Top X average DNS latencies with overall

Top X 90th percentile DNS latencies

Other DNS tracking panels can be added in Manage panels:

Bottom X minimum DNS latencies

Top X maximum DNS latencies

Top X 99th percentile DNS latencies

This feature is supported for IPv4 and IPv6 UDP and TCP protocols.

See the Additional Resources in this section for more information about enabling and working with this
view.

Additional resources

Working with DNS tracking

Network Observability metrics

7.1.5. Round-Trip Time

You can use TCP handshake Round-Trip Time (RTT) to analyze network flows. You can use RTT
captured from the fentry/tcp_rcv_established eBPF hookpoint to read SRTT from the TCP socket to
help with the following:

Network Monitoring: Gain insights into TCP handshakes, helping network administrators

OpenShift Container Platform 4.15 Network Observability

46

Network Monitoring: Gain insights into TCP handshakes, helping network administrators
identify unusual patterns, potential bottlenecks, or performance issues.

Troubleshooting: Debug TCP-related issues by tracking latency and identifying
misconfigurations.

By default, when RTT is enabled, you can see the following TCP handshake RTT metrics represented in
the Overview:

Top X 90th percentile TCP handshake Round Trip Time with overall

Top X average TCP handshake Round Trip Time with overall

Bottom X minimum TCP handshake Round Trip Time with overall

Other RTT panels can be added in Manage panels:

Top X maximum TCP handshake Round Trip Time with overall

Top X 99th percentile TCP handshake Round Trip Time with overall

See the Additional Resources in this section for more information about enabling and working with this
view.

Additional resources

Working with RTT tracing

7.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS
VIEW

The Traffic flows view displays the data of the network flows and the amount of traffic in a table. As an
administrator, you can monitor the amount of traffic across the application by using the traffic flow
table.

7.2.1. Working with the Traffic flows view

As an administrator, you can navigate to Traffic flows table to see network flow information.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Traffic flows tab.

You can click on each row to get the corresponding flow information.

7.2.2. Configuring advanced options for the Traffic flows view

You can customize and export the view by using Show advanced options. You can set the row size by
using the Display options drop-down menu. The default value is Normal.

7.2.2.1. Managing columns

You can select the required columns to be displayed, and reorder them. To manage columns, click

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

47

You can select the required columns to be displayed, and reorder them. To manage columns, click
Manage columns.

7.2.2.2. Exporting the traffic flow data

You can export data from the Traffic flows view.

Procedure

1. Click Export data.

2. In the pop-up window, you can select the Export all data checkbox to export all the data, and
clear the checkbox to select the required fields to be exported.

3. Click Export.

7.2.3. Working with conversation tracking

As an administrator, you can you can group network flows that are part of the same conversation. A
conversation is defined as a grouping of peers that are identified by their IP addresses, ports, and
protocols, resulting in an unique Conversation Id. You can query conversation events in the web
console. These events are represented in the web console as follows:

Conversation start: This event happens when a connection is starting or TCP flag intercepted

Conversation tick: This event happens at each specified interval defined in the FlowCollector
spec.processor.conversationHeartbeatInterval parameter while the connection is active.

Conversation end: This event happens when the FlowCollector
spec.processor.conversationEndTimeout parameter is reached or the TCP flag is
intercepted.

Flow: This is the network traffic flow that occurs within the specified interval.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that spec.processor.logTypes,
conversationEndTimeout, and conversationHeartbeatInterval parameters are set according
to your observation needs. A sample configuration is as follows:

Configure FlowCollector for conversation tracking

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 processor:
 logTypes: Flows 1

OpenShift Container Platform 4.15 Network Observability

48

1

2

3

When logTypes is set to Flows, only the Flow event is exported. If you set the value to All,
both conversation and flow events are exported and visible in the Network Traffic page.
To focus only on conversation events, you can specify Conversations which exports the
Conversation start, Conversation tick and Conversation end events; or
EndedConversations exports only the Conversation end events. Storage requirements
are highest for All and lowest for EndedConversations.

The Conversation end event represents the point when the conversationEndTimeout is
reached or the TCP flag is intercepted.

The Conversation tick event represents each specified interval defined in the
FlowCollector conversationHeartbeatInterval parameter while the network connection is
active.

NOTE

If you update the logType option, the flows from the previous selection do not
clear from the console plugin. For example, if you initially set logType to
Conversations for a span of time until 10 AM and then move to
EndedConversations, the console plugin shows all conversation events before
10 AM and only ended conversations after 10 AM.

5. Refresh the Network Traffic page on the Traffic flows tab. Notice there are two new columns,
Event/Type and Conversation Id. All the Event/Type fields are Flow when Flow is the
selected query option.

6. Select Query Options and choose the Log Type, Conversation. Now the Event/Type shows
all of the desired conversation events.

7. Next you can filter on a specific conversation ID or switch between the Conversation and Flow
log type options from the side panel.

7.2.4. Working with packet drops

Packet loss occurs when one or more packets of network flow data fail to reach their destination. You
can track these drops by editing the FlowCollector to the specifications in the following YAML example.

IMPORTANT

CPU and memory usage increases when this feature is enabled.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster, and then select the YAML tab.

 advanced:
 conversationEndTimeout: 10s 2
 conversationHeartbeatInterval: 30s 3

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

49

1

2

4. Configure the FlowCollector custom resource for packet drops, for example:

Example FlowCollector configuration

You can start reporting the packet drops of each network flow by listing the PacketDrop
parameter in the spec.agent.ebpf.features specification list.

The spec.agent.ebpf.privileged specification value must be true for packet drop tracking.

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views
display new information about packet drops:

a. Select new choices in Manage panels to choose which graphical visualizations of packet
drops to display in the Overview.

b. Select new choices in Manage columns to choose which packet drop information to display
in the Traffic flows table.

i. In the Traffic Flows view, you can also expand the side panel to view more information
about packet drops. Host drops are prefixed with SKB_DROP and OVS drops are
prefixed with OVS_DROP.

c. In the Topology view, red lines are displayed where drops are present.

7.2.5. Working with DNS tracking

Using DNS tracking, you can monitor your network, conduct security analysis, and troubleshoot DNS
issues. You can track DNS by editing the FlowCollector to the specifications in the following YAML
example.

IMPORTANT

CPU and memory usage increases are observed in the eBPF agent when this feature is
enabled.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 features:
 - PacketDrop 1
 privileged: true 2

OpenShift Container Platform 4.15 Network Observability

50

1

2

2. Under the Provided APIs heading for Network Observability, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource. A sample configuration is as follows:

Configure FlowCollector for DNS tracking

You can set the spec.agent.ebpf.features parameter list to enable DNS tracking of each
network flow in the web console.

You can set sampling to a value of 1 for more accurate metrics.

5. When you refresh the Network Traffic page, there are new DNS representations you can
choose to view in the Overview and Traffic Flow views and new filters you can apply.

a. Select new DNS choices in Manage panels to display graphical visualizations and DNS
metrics in the Overview.

b. Select new choices in Manage columns to add DNS columns to the Traffic Flows view.

c. Filter on specific DNS metrics, such as DNS Id, DNS Error DNS Latency and DNS
Response Code, and see more information from the side panel. The DNS Latency and
DNS Response Code columns are shown by default.

NOTE

TCP handshake packets do not have DNS headers. TCP protocol flows without DNS
headers are shown in the traffic flow data with DNS Latency, ID, and Response code
values of "n/a". You can filter out flow data to view only flows that have DNS headers
using the Common filter "DNSError" equal to "0".

7.2.6. Working with RTT tracing

You can track RTT by editing the FlowCollector to the specifications in the following YAML example.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 features:
 - DNSTracking 1
 sampling: 1 2

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

51

1

2. In the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster, and then select the YAML tab.

4. Configure the FlowCollector custom resource for RTT tracing, for example:

Example FlowCollector configuration

You can start tracing RTT network flows by listing the FlowRTT parameter in the
spec.agent.ebpf.features specification list.

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about RTT:

a. In the Overview, select new choices in Manage panels to choose which graphical visualizations
of RTT to display.

b. In the Traffic flows table, the Flow RTT column can be seen, and you can manage display in
Manage columns.

c. In the Traffic Flows view, you can also expand the side panel to view more information about
RTT.

Example filtering

i. Click the Common filters → Protocol.

ii. Filter the network flow data based on TCP, Ingress direction, and look for FlowRTT values
greater than 10,000,000 nanoseconds (10ms).

iii. Remove the Protocol filter.

iv. Filter for Flow RTT values greater than 0 in the Common filters.

d. In the Topology view, click the Display option dropdown. Then click RTT in the edge labels
drop-down list.

7.2.6.1. Using the histogram

You can click Show histogram to display a toolbar view for visualizing the history of flows as a bar chart.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
 namespace: netobserv
 deploymentModel: Direct
 agent:
 type: eBPF
 ebpf:
 features:
 - FlowRTT 1

OpenShift Container Platform 4.15 Network Observability

52

You can click Show histogram to display a toolbar view for visualizing the history of flows as a bar chart.
The histogram shows the number of logs over time. You can select a part of the histogram to filter the
network flow data in the table that follows the toolbar.

7.2.7. Working with availability zones

You can configure the FlowCollector to collect information about the cluster availability zones. This
allows you to enrich network flow data with the topology.kubernetes.io/zone label value applied to the
nodes.

Procedure

1. In the web console, go to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that the spec.processor.addZone
parameter is set to true. A sample configuration is as follows:

Configure FlowCollector for availability zones collection

Verification

When you refresh the Network Traffic page, the Overview, Traffic Flow, and Topology views display
new information about availability zones:

1. In the Overview tab, you can see Zones as an available Scope.

2. In Network Traffic → Traffic flows, Zones are viewable under the SrcK8S_Zone and
DstK8S_Zone fields.

3. In the Topology view, you can set Zones as Scope or Group.

7.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY
VIEW

The Topology view provides a graphical representation of the network flows and the amount of traffic.
As an administrator, you can monitor the traffic data across the application by using the Topology view.

7.3.1. Working with the Topology view

As an administrator, you can navigate to the Topology view to see the details and metrics of the
component.

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector
metadata:
 name: cluster
spec:
...
 processor:
 addZone: true
...

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

53

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Topology tab.

You can click each component in the Topology to view the details and metrics of the component.

7.3.2. Configuring the advanced options for the Topology view

You can customize and export the view by using Show advanced options. The advanced options view
has the following features:

Find in view: To search the required components in the view.

Display options: To configure the following options:

Edge labels: To show the specified measurements as edge labels. The default is to show
the Average rate in Bytes.

Scope: To select the scope of components between which the network traffic flows. The
default value is Namespace.

Groups: To enhance the understanding of ownership by grouping the components. The
default value is None.

Layout: To select the layout of the graphical representation. The default value is
ColaNoForce.

Show: To select the details that need to be displayed. All the options are checked by
default. The options available are: Edges, Edges label, and Badges.

Truncate labels: To select the required width of the label from the drop-down list. The
default value is M.

Collapse groups: To expand or collapse the groups. The groups are expanded by default.
This option is disabled if Groups has the value of None.

7.3.2.1. Exporting the topology view

To export the view, click Export topology view. The view is downloaded in PNG format.

7.4. FILTERING THE NETWORK TRAFFIC

By default, the Network Traffic page displays the traffic flow data in the cluster based on the default
filters configured in the FlowCollector instance. You can use the filter options to observe the required
data by changing the preset filter.

Query Options

You can use Query Options to optimize the search results, as listed below:

Log Type: The available options Conversation and Flows provide the ability to query flows
by log type, such as flow log, new conversation, completed conversation, and a heartbeat,
which is a periodic record with updates for long conversations. A conversation is an
aggregation of flows between the same peers.

Duplicated flows: A flow might be reported from several interfaces, and from both source

OpenShift Container Platform 4.15 Network Observability

54

Duplicated flows: A flow might be reported from several interfaces, and from both source
and destination nodes, making it appear in the data several times. By selecting this query
option, you can choose to show duplicated flows. Duplicated flows have the same sources
and destinations, including ports, and also have the same protocols, with the exception of
Interface and Direction fields. Duplicates are hidden by default. Use the Direction filter in
the Common section of the dropdown list to switch between ingress and egress traffic.

Match filters: You can determine the relation between different filter parameters selected in
the advanced filter. The available options are Match all and Match any. Match all provides
results that match all the values, and Match any provides results that match any of the
values entered. The default value is Match all.

Drops filter: You can view different levels of dropped packets with the following query
options:

Fully dropped shows flow records with fully dropped packets.

Containing drops shows flow records that contain drops but can be sent.

Without drops shows records that contain sent packets.

All shows all the aforementioned records.

Limit: The data limit for internal backend queries. Depending upon the matching and the
filter settings, the number of traffic flow data is displayed within the specified limit.

Quick filters

The default values in Quick filters drop-down menu are defined in the FlowCollector configuration.
You can modify the options from console.

Advanced filters

You can set the advanced filters, Common, Source, or Destination, by selecting the parameter to be
filtered from the dropdown list. The flow data is filtered based on the selection. To enable or disable
the applied filter, you can click on the applied filter listed below the filter options.

You can toggle between One way and Back and forth filtering. The One way filter shows
only Source and Destination traffic according to your filter selections. You can use Swap to change the
directional view of the Source and Destination traffic. The Back and forth filter includes return
traffic with the Source and Destination filters. The directional flow of network traffic is shown in the
Direction column in the Traffic flows table as Ingress`or `Egress for inter-node traffic and `Inner`for
traffic inside a single node.

You can click Reset defaults to remove the existing filters, and apply the filter defined in FlowCollector
configuration.

NOTE

To understand the rules of specifying the text value, click Learn More.

Alternatively, you can access the traffic flow data in the Network Traffic tab of the Namespaces,
Services, Routes, Nodes, and Workloads pages which provide the filtered data of the corresponding
aggregations.

Additional resources

For more information about configuring quick filters in the FlowCollector, see Configuring Quick Filters

CHAPTER 7. OBSERVING THE NETWORK TRAFFIC

55

For more information about configuring quick filters in the FlowCollector, see Configuring Quick Filters
and the Flow Collector sample resource.

OpenShift Container Platform 4.15 Network Observability

56

CHAPTER 8. USING METRICS WITH DASHBOARDS AND
ALERTS

The Network Observability Operator uses the flowlogs-pipeline to generate metrics from flow logs.
You can utilize these metrics by setting custom alerts and viewing dashboards.

8.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS

On the Overview tab in the OpenShift Container Platform console, you can view the overall aggregated
metrics of the network traffic flow on the cluster. You can choose to display the information by node,
namespace, owner, pod, and service. You can also use filters and display options to further refine the
metrics.

Procedure

1. In the web console Observe → Dashboards, select the Netobserv dashboard.

2. View network traffic metrics in the following categories, with each having the subset per node,
namespace, source, and destination:

Byte rates

Packet drops

DNS

RTT

3. Select the Netobserv/Health dashboard.

4. View metrics about the health of the Operator in the following categories, with each having the
subset per node, namespace, source, and destination.

Flows

Flows Overhead

Flow rates

Agents

Processor

Operator

Infrastructure and Application metrics are shown in a split-view for namespace and workloads.

8.2. NETWORK OBSERVABILITY METRICS

Metrics generated by the flowlogs-pipeline are configurable in the
spec.processor.metrics.includeList of the FlowCollector custom resource to add or remove metrics.

You can also create alerts by using the includeList metrics in Prometheus rules, as shown in the
example "Creating alerts".

When looking for these metrics in Prometheus, such as in the Console through Observe → Metrics, or

CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS

57

When looking for these metrics in Prometheus, such as in the Console through Observe → Metrics, or
when defining alerts, all the metrics names are prefixed with `netobserv_. For example,
`netobserv_namespace_flows_total. Available metrics names are as follows.

8.2.1. includeList metrics names

Names followed by an asterisk * are enabled by default.

namespace_egress_bytes_total

namespace_egress_packets_total

namespace_ingress_bytes_total

namespace_ingress_packets_total

namespace_flows_total *

node_egress_bytes_total

node_egress_packets_total

node_ingress_bytes_total *

node_ingress_packets_total

node_flows_total

workload_egress_bytes_total

workload_egress_packets_total

workload_ingress_bytes_total *

workload_ingress_packets_total

workload_flows_total

8.2.1.1. PacketDrop metrics names

When the PacketDrop feature is enabled in spec.agent.ebpf.features (with privileged mode), the
following additional metrics are available:

namespace_drop_bytes_total

namespace_drop_packets_total *

node_drop_bytes_total

node_drop_packets_total

workload_drop_bytes_total

workload_drop_packets_total

8.2.1.2. DNS metrics names

When the DNSTracking feature is enabled in spec.agent.ebpf.features, the following additional

OpenShift Container Platform 4.15 Network Observability

58

When the DNSTracking feature is enabled in spec.agent.ebpf.features, the following additional
metrics are available:

namespace_dns_latency_seconds *

node_dns_latency_seconds

workload_dns_latency_seconds

8.2.1.3. FlowRTT metrics names

When the FlowRTT feature is enabled in spec.agent.ebpf.features, the following additional metrics are
available:

namespace_rtt_seconds *

node_rtt_seconds

workload_rtt_seconds

8.3. CREATING ALERTS

You can create custom Prometheus rules for the Netobserv dashboard metrics to trigger alerts when
some defined conditions are met.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the import icon, +.

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when the cluster ingress traffic reaches a given threshold of 10 MBps per destination
workload.

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: netobserv-alerts
 namespace: openshift-netobserv-operator
spec:
 groups:
 - name: NetObservAlerts
 rules:
 - alert: NetObservIncomingBandwidth
 annotations:
 message: |-
 {{ $labels.job }}: incoming traffic exceeding 10 MBps for 30s on {{
$labels.DstK8S_OwnerType }} {{ $labels.DstK8S_OwnerName }} ({{
$labels.DstK8S_Namespace }}).

CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS

59

1 The netobserv_workload_ingress_bytes_total metric is enabled by default in
spec.processor.metrics.includeList.

3. Click Create to apply the configuration file to the cluster.

Additional resources

For more information about creating alerts that you can see on the dashboard, see Creating
alerting rules for user-defined projects.

 summary: "High incoming traffic."
 expr: sum(rate(netobserv_workload_ingress_bytes_total
{SrcK8S_Namespace="openshift-ingress"}[1m])) by (job, DstK8S_Namespace,
DstK8S_OwnerName, DstK8S_OwnerType) > 10000000 1
 for: 30s
 labels:
 severity: warning

OpenShift Container Platform 4.15 Network Observability

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#creating-alerting-rules-for-user-defined-projects_managing-alerts

CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY
OPERATOR

You can use the web console to monitor alerts related to the health of the Network Observability
Operator.

9.1. VIEWING HEALTH INFORMATION

You can access metrics about health and resource usage of the Network Observability Operator from
the Dashboards page in the web console. A health alert banner that directs you to the dashboard can
appear on the Network Traffic and Home pages in the event that an alert is triggered. Alerts are
generated in the following cases:

The NetObservLokiError alert occurs if the flowlogs-pipeline workload is dropping flows
because of Loki errors, such as if the Loki ingestion rate limit has been reached.

The NetObservNoFlows alert occurs if no flows are ingested for a certain amount of time.

You can also view metrics about the health of the Operator in the following categories:

+ * Flows * Flows Overhead * Top flow rates per source and destination nodes * Top flow rates per
source and destination namespaces * Top flow rates per source and destination workloads *
Agents * Processor * Operator

Prerequisites

You have the Network Observability Operator installed.

You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure

1. From the Administrator perspective in the web console, navigate to Observe → Dashboards.

2. From the Dashboards dropdown, select Netobserv/Health.

3. View the metrics about the health of the Operator that are displayed on the page.

9.1.1. Disabling health alerts

You can opt out of health alerting by editing the FlowCollector resource:

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Add spec.processor.metrics.disableAlerts to disable health alerts, as in the following YAML
sample:

apiVersion: flows.netobserv.io/v1beta2
kind: FlowCollector

CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY OPERATOR

61

1 You can specify one or a list with both types of alerts to disable.

9.2. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV
DASHBOARD

You can create custom Prometheus rules for the Netobserv dashboard metrics to trigger alerts when
Loki rate limits have been reached.

Prerequisites

You have access to the cluster as a user with the cluster-admin role or with view permissions for
all projects.

You have the Network Observability Operator installed.

Procedure

1. Create a YAML file by clicking the import icon, +.

2. Add an alerting rule configuration to the YAML file. In the YAML sample that follows, an alert is
created for when Loki rate limits have been reached:

3. Click Create to apply the configuration file to the cluster.

Additional resources

metadata:
 name: cluster
spec:
 processor:
 metrics:
 disableAlerts: [NetObservLokiError, NetObservNoFlows] 1

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: loki-alerts
 namespace: openshift-netobserv-operator
spec:
 groups:
 - name: LokiRateLimitAlerts
 rules:
 - alert: LokiTenantRateLimit
 annotations:
 message: |-
 {{ $labels.job }} {{ $labels.route }} is experiencing 429 errors.
 summary: "At any number of requests are responded with the rate limit error code."
 expr: sum(irate(loki_request_duration_seconds_count{status_code="429"}[1m])) by (job,
namespace, route) / sum(irate(loki_request_duration_seconds_count[1m])) by (job,
namespace, route) * 100 > 0
 for: 10s
 labels:
 severity: warning

OpenShift Container Platform 4.15 Network Observability

62

For more information about creating alerts that you can see on the dashboard, see Creating
alerting rules for user-defined projects.

CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY OPERATOR

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/monitoring/#creating-alerting-rules-for-user-defined-projects_managing-alerts

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION
PARAMETERS

FlowCollector is the Schema for the network flows collection API, which pilots and configures the
underlying deployments.

10.1. FLOWCOLLECTOR API SPECIFICATIONS

Description

FlowCollector is the schema for the network flows collection API, which pilots and configures the
underlying deployments.

Type

object

Property Type Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

OpenShift Container Platform 4.15 Network Observability

64

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

spec object Defines the desired state of the
FlowCollector resource.

*: the mention of "unsupported",
or "deprecated" for a feature
throughout this document means
that this feature is not officially
supported by Red Hat. It might
have been, for example,
contributed by the community
and accepted without a formal
agreement for maintenance. The
product maintainers might
provide some support for these
features as a best effort only.

Property Type Description

10.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type

object

10.1.2. .spec

Description

Defines the desired state of the FlowCollector resource.

*: the mention of "unsupported", or "deprecated" for a feature throughout this document means that
this feature is not officially supported by Red Hat. It might have been, for example, contributed by
the community and accepted without a formal agreement for maintenance. The product maintainers
might provide some support for these features as a best effort only.

Type

object

Property Type Description

agent object Agent configuration for flows
extraction.

consolePlugin object consolePlugin defines the
settings related to the OpenShift
Container Platform Console
plugin, when available.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

65

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

deploymentModel string deploymentModel defines the
desired type of deployment for
flow processing. Possible values
are:
- Direct (default) to make the
flow processor listening directly
from the agents.
- Kafka to make flows sent to a
Kafka pipeline before
consumption by the processor.
Kafka can provide better
scalability, resiliency, and high
availability (for more details, see
https://www.redhat.com/en/topic
s/integration/what-is-apache-
kafka).

exporters array exporters define additional
optional exporters for custom
consumption or storage.

kafka object Kafka configuration, allowing to
use Kafka as a broker as part of
the flow collection pipeline.
Available when the
spec.deploymentModel is
Kafka.

loki object loki, the flow store, client
settings.

namespace string Namespace where Network
Observability pods are deployed.

processor object processor defines the settings
of the component that receives
the flows from the agent, enriches
them, generates metrics, and
forwards them to the Loki
persistence layer and/or any
available exporter.

Property Type Description

10.1.3. .spec.agent

Description

Agent configuration for flows extraction.

Type

OpenShift Container Platform 4.15 Network Observability

66

https://www.redhat.com/en/topics/integration/what-is-apache-kafka

object

Property Type Description

ebpf object ebpf describes the settings
related to the eBPF-based flow
reporter when spec.agent.type
is set to eBPF.

ipfix object ipfix [deprecated (*)] - describes
the settings related to the IPFIX-
based flow reporter when
spec.agent.type is set to IPFIX.

type string type selects the flows tracing
agent. Possible values are:
- eBPF (default) to use Network
Observability eBPF agent.
- IPFIX [deprecated (*)] - to use
the legacy IPFIX collector.
eBPF is recommended as it
offers better performances and
should work regardless of the CNI
installed on the cluster. IPFIX
works with OVN-Kubernetes CNI
(other CNIs could work if they
support exporting IPFIX, but they
would require manual
configuration).

10.1.4. .spec.agent.ebpf

Description

ebpf describes the settings related to the eBPF-based flow reporter when spec.agent.type is set to
eBPF.

Type

object

Property Type Description

advanced object advanced allows setting some
aspects of the internal
configuration of the eBPF agent.
This section is aimed mostly for
debugging and fine-grained
performance optimizations, such
as GOGC and GOMAXPROCS
env vars. Set these values at your
own risk.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

67

cacheActiveTimeout string cacheActiveTimeout is the
max period during which the
reporter aggregates flows before
sending. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

cacheMaxFlows integer cacheMaxFlows is the max
number of flows in an aggregate;
when reached, the reporter sends
the flows. Increasing
cacheMaxFlows and
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

excludeInterfaces array (string) excludeInterfaces contains the
interface names that are
excluded from flow tracing. An
entry enclosed by slashes, such as
/br-/, is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

Property Type Description

OpenShift Container Platform 4.15 Network Observability

68

features array (string) List of additional features to
enable. They are all disabled by
default. Enabling additional
features might have performance
impacts. Possible values are:
- PacketDrop: enable the
packets drop flows logging
feature. This feature requires
mounting the kernel debug
filesystem, so the eBPF pod has
to run as privileged. If the
spec.agent.ebpf.privileged
parameter is not set, an error is
reported.
- DNSTracking: enable the DNS
tracking feature.
- FlowRTT: enable flow latency
(RTT) calculations in the eBPF
agent during TCP handshakes.
This feature better works with
sampling set to 1.

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

interfaces array (string) interfaces contains the interface
names from where flows are
collected. If empty, the agent
fetches all the interfaces in the
system, excepting the ones listed
in ExcludeInterfaces. An entry
enclosed by slashes, such as /br-/,
is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

kafkaBatchSize integer kafkaBatchSize limits the
maximum size of a request in
bytes before being sent to a
partition. Ignored when not using
Kafka. Default: 10MB.

logLevel string logLevel defines the log level for
the Network Observability eBPF
Agent

Property Type Description

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

69

privileged boolean Privileged mode for the eBPF
Agent container. When ignored or
set to false, the operator sets
granular capabilities (BPF,
PERFMON, NET_ADMIN,
SYS_RESOURCE) to the
container. If for some reason
these capabilities cannot be set,
such as if an old kernel version not
knowing CAP_BPF is in use, then
you can turn on this mode for
more global privileges. Some
agent features require the
privileged mode, such as packet
drops tracking (see features)
and SR-IOV support.

resources object resources are the compute
resources required by this
container. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

sampling integer Sampling rate of the flow
reporter. 100 means one flow on
100 is sent. 0 or 1 means all flows
are sampled.

Property Type Description

10.1.5. .spec.agent.ebpf.advanced

Description

advanced allows setting some aspects of the internal configuration of the eBPF agent. This section
is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC and
GOMAXPROCS env vars. Set these values at your own risk.

Type

object

Property Type Description

OpenShift Container Platform 4.15 Network Observability

70

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

Property Type Description

10.1.6. .spec.agent.ebpf.resources

Description

resources are the compute resources required by this container. More info:
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

10.1.7. .spec.agent.ipfix

Description

ipfix [deprecated (*)] - describes the settings related to the IPFIX-based flow reporter when
spec.agent.type is set to IPFIX.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

71

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

cacheActiveTimeout string cacheActiveTimeout is the
max period during which the
reporter aggregates flows before
sending.

cacheMaxFlows integer cacheMaxFlows is the max
number of flows in an aggregate;
when reached, the reporter sends
the flows.

clusterNetworkOperator object clusterNetworkOperator
defines the settings related to the
OpenShift Container Platform
Cluster Network Operator, when
available.

forceSampleAll boolean forceSampleAll allows disabling
sampling in the IPFIX-based flow
reporter. It is not recommended
to sample all the traffic with
IPFIX, as it might generate cluster
instability. If you REALLY want to
do that, set this flag to true. Use
at your own risk. When it is set to
true, the value of sampling is
ignored.

ovnKubernetes object ovnKubernetes defines the
settings of the OVN-Kubernetes
CNI, when available. This
configuration is used when using
OVN’s IPFIX exports, without
OpenShift Container Platform.
When using OpenShift Container
Platform, refer to the
clusterNetworkOperator
property instead.

OpenShift Container Platform 4.15 Network Observability

72

sampling integer sampling is the sampling rate on
the reporter. 100 means one flow
on 100 is sent. To ensure cluster
stability, it is not possible to set a
value below 2. If you really want
to sample every packet, which
might impact the cluster stability,
refer to forceSampleAll.
Alternatively, you can use the
eBPF Agent instead of IPFIX.

Property Type Description

10.1.8. .spec.agent.ipfix.clusterNetworkOperator

Description

clusterNetworkOperator defines the settings related to the OpenShift Container Platform Cluster
Network Operator, when available.

Type

object

Property Type Description

namespace string Namespace where the config map
is going to be deployed.

10.1.9. .spec.agent.ipfix.ovnKubernetes

Description

ovnKubernetes defines the settings of the OVN-Kubernetes CNI, when available. This configuration
is used when using OVN’s IPFIX exports, without OpenShift Container Platform. When using
OpenShift Container Platform, refer to the clusterNetworkOperator property instead.

Type

object

Property Type Description

containerName string containerName defines the
name of the container to
configure for IPFIX.

daemonSetName string daemonSetName defines the
name of the DaemonSet
controlling the OVN-Kubernetes
pods.

namespace string Namespace where OVN-
Kubernetes pods are deployed.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

73

Property Type Description

10.1.10. .spec.consolePlugin

Description

consolePlugin defines the settings related to the OpenShift Container Platform Console plugin,
when available.

Type

object

Property Type Description

advanced object advanced allows setting some
aspects of the internal
configuration of the console
plugin. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS env vars. Set
these values at your own risk.

autoscaler object autoscaler spec of a horizontal
pod autoscaler to set up for the
plugin Deployment. Refer to
HorizontalPodAutoscaler
documentation (autoscaling/v2).

enable boolean Enables the console plugin
deployment. spec.loki.enable
must also be true

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

logLevel string logLevel for the console plugin
backend

portNaming object portNaming defines the
configuration of the port-to-
service name translation

quickFilters array quickFilters configures quick
filter presets for the Console
plugin

OpenShift Container Platform 4.15 Network Observability

74

replicas integer replicas defines the number of
replicas (pods) to start.

resources object resources, in terms of compute
resources, required by this
container. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Property Type Description

10.1.11. .spec.consolePlugin.advanced

Description

advanced allows setting some aspects of the internal configuration of the console plugin. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS env vars. Set these values at your own risk.

Type

object

Property Type Description

args array (string) args allows passing custom
arguments to underlying
components. Useful for overriding
some parameters, such as an url
or a configuration path, that
should not be publicly exposed as
part of the FlowCollector
descriptor, as they are only useful
in edge debug or support
scenarios.

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

port integer port is the plugin service port. Do
not use 9002, which is reserved
for metrics.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

75

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

register boolean register allows, when set to true,
to automatically register the
provided console plugin with the
OpenShift Container Platform
Console operator. When set to
false, you can still register it
manually by editing
console.operator.openshift.io/clus
ter with the following command:
oc patch
console.operator.openshift.i
o cluster --type='json' -p
'[{"op": "add", "path":
"/spec/plugins/-", "value":
"netobserv-plugin"}]'

Property Type Description

10.1.12. .spec.consolePlugin.autoscaler

Description

autoscaler spec of a horizontal pod autoscaler to set up for the plugin Deployment. Refer to
HorizontalPodAutoscaler documentation (autoscaling/v2).

Type

object

10.1.13. .spec.consolePlugin.portNaming

Description

portNaming defines the configuration of the port-to-service name translation

Type

object

Property Type Description

enable boolean Enable the console plugin port-
to-service name translation

portNames object (string) portNames defines additional
port names to use in the console,
for example, portNames:
{"3100": "loki"}.

10.1.14. .spec.consolePlugin.quickFilters

Description

quickFilters configures quick filter presets for the Console plugin

OpenShift Container Platform 4.15 Network Observability

76

Type

array

10.1.15. .spec.consolePlugin.quickFilters[]

Description

QuickFilter defines preset configuration for Console’s quick filters

Type

object

Required

filter

name

Property Type Description

default boolean default defines whether this filter
should be active by default or not

filter object (string) filter is a set of keys and values to
be set when this filter is selected.
Each key can relate to a list of
values using a coma-separated
string, for example, filter:
{"src_namespace":
"namespace1,namespace2"}.

name string Name of the filter, that is
displayed in the Console

10.1.16. .spec.consolePlugin.resources

Description

resources, in terms of compute resources, required by this container. More info:
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

77

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Property Type Description

10.1.17. .spec.exporters

Description

exporters define additional optional exporters for custom consumption or storage.

Type

array

10.1.18. .spec.exporters[]

Description

FlowCollectorExporter defines an additional exporter to send enriched flows to.

Type

object

Required

type

Property Type Description

ipfix object IPFIX configuration, such as the IP
address and port to send enriched
IPFIX flows to.

kafka object Kafka configuration, such as the
address and topic, to send
enriched flows to.

type string type selects the type of
exporters. The available options
are Kafka and IPFIX.

10.1.19. .spec.exporters[].ipfix

OpenShift Container Platform 4.15 Network Observability

78

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Description

IPFIX configuration, such as the IP address and port to send enriched IPFIX flows to.

Type

object

Required

targetHost

targetPort

Property Type Description

targetHost string Address of the IPFIX external
receiver

targetPort integer Port for the IPFIX external
receiver

transport string Transport protocol (TCP or
UDP) to be used for the IPFIX
connection, defaults to TCP.

10.1.20. .spec.exporters[].kafka

Description

Kafka configuration, such as the address and topic, to send enriched flows to.

Type

object

Required

address

topic

Property Type Description

address string Address of the Kafka server

sasl object SASL authentication
configuration. [Unsupported (*)].

tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

79

topic string Kafka topic to use. It must exist.
Network Observability does not
create it.

Property Type Description

10.1.21. .spec.exporters[].kafka.sasl

Description

SASL authentication configuration. [Unsupported (*)].

Type

object

Property Type Description

clientIDReference object Reference to the secret or config
map containing the client ID

clientSecretReference object Reference to the secret or config
map containing the client secret

type string Type of SASL authentication to
use, or Disabled if SASL is not
used

10.1.22. .spec.exporters[].kafka.sasl.clientIDReference

Description

Reference to the secret or config map containing the client ID

Type

object

Property Type Description

file string File name within the config map
or secret

name string Name of the config map or secret
containing the file

OpenShift Container Platform 4.15 Network Observability

80

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret"

Property Type Description

10.1.23. .spec.exporters[].kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

Type

object

Property Type Description

file string File name within the config map
or secret

name string Name of the config map or secret
containing the file

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret"

10.1.24. .spec.exporters[].kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

81

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

10.1.25. .spec.exporters[].kafka.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

OpenShift Container Platform 4.15 Network Observability

82

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret

Property Type Description

10.1.26. .spec.exporters[].kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

83

type string Type for the certificate reference:
configmap or secret

Property Type Description

10.1.27. .spec.kafka

Description

Kafka configuration, allowing to use Kafka as a broker as part of the flow collection pipeline. Available
when the spec.deploymentModel is Kafka.

Type

object

Required

address

topic

Property Type Description

address string Address of the Kafka server

sasl object SASL authentication
configuration. [Unsupported (*)].

tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093.

topic string Kafka topic to use. It must exist.
Network Observability does not
create it.

10.1.28. .spec.kafka.sasl

Description

SASL authentication configuration. [Unsupported (*)].

Type

object

Property Type Description

OpenShift Container Platform 4.15 Network Observability

84

clientIDReference object Reference to the secret or config
map containing the client ID

clientSecretReference object Reference to the secret or config
map containing the client secret

type string Type of SASL authentication to
use, or Disabled if SASL is not
used

Property Type Description

10.1.29. .spec.kafka.sasl.clientIDReference

Description

Reference to the secret or config map containing the client ID

Type

object

Property Type Description

file string File name within the config map
or secret

name string Name of the config map or secret
containing the file

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret"

10.1.30. .spec.kafka.sasl.clientSecretReference

Description

Reference to the secret or config map containing the client secret

Type

object

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

85

Property Type Description

file string File name within the config map
or secret

name string Name of the config map or secret
containing the file

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret"

10.1.31. .spec.kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

10.1.32. .spec.kafka.tls.caCert

OpenShift Container Platform 4.15 Network Observability

86

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret

10.1.33. .spec.kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

87

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret

Property Type Description

10.1.34. .spec.loki

Description

loki, the flow store, client settings.

Type

object

Property Type Description

advanced object advanced allows setting some
aspects of the internal
configuration of the Loki clients.
This section is aimed mostly for
debugging and fine-grained
performance optimizations.

enable boolean Set enable to true to store flows
in Loki. It is required for the
OpenShift Container Platform
Console plugin installation.

OpenShift Container Platform 4.15 Network Observability

88

lokiStack object Loki configuration for LokiStack
mode. This is useful for an easy
loki-operator configuration. It is
ignored for other modes.

manual object Loki configuration for Manual
mode. This is the most flexible
configuration. It is ignored for
other modes.

microservices object Loki configuration for
Microservices mode. Use this
option when Loki is installed using
the microservices deployment
mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-
modes/#microservices-mode). It
is ignored for other modes.

mode string mode must be set according to
the installation mode of Loki:
- Use LokiStack when Loki is
managed using the Loki Operator
- Use Monolithic when Loki is
installed as a monolithic workload
- Use Microservices when Loki
is installed as microservices, but
without Loki Operator
- Use Manual if none of the
options above match your setup

monolithic object Loki configuration for
Monolithic mode. Use this
option when Loki is installed using
the monolithic deployment mode
(https://grafana.com/docs/loki/la
test/fundamentals/architecture/
deployment-modes/#monolithic-
mode). It is ignored for other
modes.

readTimeout string readTimeout is the maximum
console plugin loki query total
time limit. A timeout of zero
means no timeout.

Property Type Description

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

89

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode
https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

writeBatchSize integer writeBatchSize is the maximum
batch size (in bytes) of Loki logs
to accumulate before sending.

writeBatchWait string writeBatchWait is the maximum
time to wait before sending a Loki
batch.

writeTimeout string writeTimeout is the maximum
Loki time connection / request
limit. A timeout of zero means no
timeout.

Property Type Description

10.1.35. .spec.loki.advanced

Description

advanced allows setting some aspects of the internal configuration of the Loki clients. This section is
aimed mostly for debugging and fine-grained performance optimizations.

Type

object

Property Type Description

staticLabels object (string) staticLabels is a map of
common labels to set on each
flow in Loki storage.

writeMaxBackoff string writeMaxBackoff is the
maximum backoff time for Loki
client connection between retries.

writeMaxRetries integer writeMaxRetries is the
maximum number of retries for
Loki client connections.

writeMinBackoff string writeMinBackoff is the initial
backoff time for Loki client
connection between retries.

10.1.36. .spec.loki.lokiStack

Description

Loki configuration for LokiStack mode. This is useful for an easy loki-operator configuration. It is
ignored for other modes.

Type

OpenShift Container Platform 4.15 Network Observability

90

object

Property Type Description

name string Name of an existing LokiStack
resource to use.

namespace string Namespace where this
LokiStack resource is located. If
omited, it is assumed to be the
same as spec.namespace.

10.1.37. .spec.loki.manual

Description

Loki configuration for Manual mode. This is the most flexible configuration. It is ignored for other
modes.

Type

object

Property Type Description

authToken string authToken describes the way to
get a token to authenticate to
Loki.
- Disabled does not send any
token with the request.
- Forward forwards the user
token for authorization.
- Host [deprecated (*)] - uses
the local pod service account to
authenticate to Loki.
When using the Loki Operator,
this must be set to Forward.

ingesterUrl string ingesterUrl is the address of an
existing Loki ingester service to
push the flows to. When using the
Loki Operator, set it to the Loki
gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

91

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network

querierUrl string querierUrl specifies the address
of the Loki querier service. When
using the Loki Operator, set it to
the Loki gateway service with the
network tenant set in path, for
example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network.

statusTls object TLS client configuration for Loki
status URL.

statusUrl string statusUrl specifies the address
of the Loki /ready, /metrics and
/config endpoints, in case it is
different from the Loki querier
URL. If empty, the querierUrl
value is used. This is useful to
show error messages and some
context in the frontend. When
using the Loki Operator, set it to
the Loki HTTP query frontend
service, for example https://loki-
query-frontend-
http.netobserv.svc:3100/.
statusTLS configuration is used
when statusUrl is set.

tenantID string tenantID is the Loki X-Scope-
OrgID that identifies the tenant
for each request. When using the
Loki Operator, set it to network,
which corresponds to a special
tenant mode.

tls object TLS client configuration for Loki
URL.

Property Type Description

10.1.38. .spec.loki.manual.statusTls

Description

TLS client configuration for Loki status URL.

Type

object

OpenShift Container Platform 4.15 Network Observability

92

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-query-frontend-http.netobserv.svc:3100/

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

10.1.39. .spec.loki.manual.statusTls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

93

type string Type for the certificate reference:
configmap or secret

Property Type Description

10.1.40. .spec.loki.manual.statusTls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret

10.1.41. .spec.loki.manual.tls

Description

TLS client configuration for Loki URL.

Type

object

OpenShift Container Platform 4.15 Network Observability

94

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

10.1.42. .spec.loki.manual.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

95

type string Type for the certificate reference:
configmap or secret

Property Type Description

10.1.43. .spec.loki.manual.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret

10.1.44. .spec.loki.microservices

Description

Loki configuration for Microservices mode. Use this option when Loki is installed using the
microservices deployment mode
(https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#microservices-mode). It is ignored for other modes.

Type

OpenShift Container Platform 4.15 Network Observability

96

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#microservices-mode

object

Property Type Description

ingesterUrl string ingesterUrl is the address of an
existing Loki ingester service to
push the flows to.

querierUrl string querierURL specifies the
address of the Loki querier
service.

tenantID string tenantID is the Loki X-Scope-
OrgID header that identifies the
tenant for each request.

tls object TLS client configuration for Loki
URL.

10.1.45. .spec.loki.microservices.tls

Description

TLS client configuration for Loki URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

10.1.46. .spec.loki.microservices.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

97

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret

10.1.47. .spec.loki.microservices.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

OpenShift Container Platform 4.15 Network Observability

98

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret

Property Type Description

10.1.48. .spec.loki.monolithic

Description

Loki configuration for Monolithic mode. Use this option when Loki is installed using the monolithic
deployment mode (https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-
modes/#monolithic-mode). It is ignored for other modes.

Type

object

Property Type Description

tenantID string tenantID is the Loki X-Scope-
OrgID header that identifies the
tenant for each request.

tls object TLS client configuration for Loki
URL.

url string url is the unique address of an
existing Loki service that points to
both the ingester and the querier.

10.1.49. .spec.loki.monolithic.tls

Description

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

99

https://grafana.com/docs/loki/latest/fundamentals/architecture/deployment-modes/#monolithic-mode

TLS client configuration for Loki URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

10.1.50. .spec.loki.monolithic.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

OpenShift Container Platform 4.15 Network Observability

100

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret

Property Type Description

10.1.51. .spec.loki.monolithic.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

101

type string Type for the certificate reference:
configmap or secret

Property Type Description

10.1.52. .spec.processor

Description

processor defines the settings of the component that receives the flows from the agent, enriches
them, generates metrics, and forwards them to the Loki persistence layer and/or any available
exporter.

Type

object

Property Type Description

addZone boolean addZone allows availability zone
awareness by labelling flows with
their source and destination
zones. This feature requires the
"topology.kubernetes.io/zone"
label to be set on nodes.

advanced object advanced allows setting some
aspects of the internal
configuration of the flow
processor. This section is aimed
mostly for debugging and fine-
grained performance
optimizations, such as GOGC and
GOMAXPROCS env vars. Set
these values at your own risk.

clusterName string clusterName is the name of the
cluster to appear in the flows
data. This is useful in a multi-
cluster context. When using
OpenShift Container Platform,
leave empty to make it
automatically determined.

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

OpenShift Container Platform 4.15 Network Observability

102

kafkaConsumerAutoscaler object kafkaConsumerAutoscaler is
the spec of a horizontal pod
autoscaler to set up for
flowlogs-pipeline-
transformer, which consumes
Kafka messages. This setting is
ignored when Kafka is disabled.
Refer to HorizontalPodAutoscaler
documentation (autoscaling/v2).

kafkaConsumerBatchSize integer kafkaConsumerBatchSize
indicates to the broker the
maximum batch size, in bytes, that
the consumer accepts. Ignored
when not using Kafka. Default:
10MB.

kafkaConsumerQueueCapaci
ty

integer kafkaConsumerQueueCapac
ity defines the capacity of the
internal message queue used in
the Kafka consumer client.
Ignored when not using Kafka.

kafkaConsumerReplicas integer kafkaConsumerReplicas
defines the number of replicas
(pods) to start for flowlogs-
pipeline-transformer, which
consumes Kafka messages. This
setting is ignored when Kafka is
disabled.

logLevel string logLevel of the processor
runtime

logTypes string logTypes defines the desired
record types to generate.
Possible values are:
- Flows (default) to export
regular network flows
- Conversations to generate
events for started conversations,
ended conversations as well as
periodic "tick" updates
- EndedConversations to
generate only ended
conversations events
- All to generate both network
flows and all conversations events

Property Type Description

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

103

metrics object Metrics define the processor
configuration regarding metrics

multiClusterDeployment boolean Set multiClusterDeployment
to true to enable multi clusters
feature. This adds clusterName
label to flows data

resources object resources are the compute
resources required by this
container. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Property Type Description

10.1.53. .spec.processor.advanced

Description

advanced allows setting some aspects of the internal configuration of the flow processor. This
section is aimed mostly for debugging and fine-grained performance optimizations, such as GOGC
and GOMAXPROCS env vars. Set these values at your own risk.

Type

object

Property Type Description

conversationEndTimeout string conversationEndTimeout is
the time to wait after a network
flow is received, to consider the
conversation ended. This delay is
ignored when a FIN packet is
collected for TCP flows (see
conversationTerminatingTim
eout instead).

conversationHeartbeatInterv
al

string conversationHeartbeatInterv
al is the time to wait between
"tick" events of a conversation

conversationTerminatingTim
eout

string conversationTerminatingTim
eout is the time to wait from
detected FIN flag to end a
conversation. Only relevant for
TCP flows.

OpenShift Container Platform 4.15 Network Observability

104

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

dropUnusedFields boolean dropUnusedFields allows,
when set to true, to drop fields
that are known to be unused by
OVS, to save storage space.

enableKubeProbes boolean enableKubeProbes is a flag to
enable or disable Kubernetes
liveness and readiness probes

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

healthPort integer healthPort is a collector HTTP
port in the Pod that exposes the
health check API

port integer Port of the flow collector (host
port). By convention, some values
are forbidden. It must be greater
than 1024 and different from
4500, 4789 and 6081.

profilePort integer profilePort allows setting up a
Go pprof profiler listening to this
port

Property Type Description

10.1.54. .spec.processor.kafkaConsumerAutoscaler

Description

kafkaConsumerAutoscaler is the spec of a horizontal pod autoscaler to set up for flowlogs-
pipeline-transformer, which consumes Kafka messages. This setting is ignored when Kafka is
disabled. Refer to HorizontalPodAutoscaler documentation (autoscaling/v2).

Type

object

10.1.55. .spec.processor.metrics

Description

Metrics define the processor configuration regarding metrics

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

105

Type

object

Property Type Description

disableAlerts array (string) disableAlerts is a list of alerts
that should be disabled. Possible
values are:
NetObservNoFlows, which is
triggered when no flows are being
observed for a certain period.
NetObservLokiError, which is
triggered when flows are being
dropped due to Loki errors.

includeList array (string) includeList is a list of metric
names to specify which ones to
generate. The names correspond
to the names in Prometheus
without the prefix. For example,
namespace_egress_packets
_total shows up as
netobserv_namespace_egre
ss_packets_total in
Prometheus. Note that the more
metrics you add, the bigger is the
impact on Prometheus workload
resources. Metrics enabled by
default are:
namespace_flows_total,
node_ingress_bytes_total,
workload_ingress_bytes_tot
al,
namespace_drop_packets_t
otal (when PacketDrop feature
is enabled),
namespace_rtt_seconds
(when FlowRTT feature is
enabled),
namespace_dns_latency_se
conds (when DNSTracking
feature is enabled). More
information, with full list of
available metrics:
https://github.com/netobserv/ne
twork-observability-
operator/blob/main/docs/Metric
s.md

server object Metrics server endpoint
configuration for Prometheus
scraper

OpenShift Container Platform 4.15 Network Observability

106

https://github.com/netobserv/network-observability-operator/blob/main/docs/Metrics.md

10.1.56. .spec.processor.metrics.server

Description

Metrics server endpoint configuration for Prometheus scraper

Type

object

Property Type Description

port integer The prometheus HTTP port

tls object TLS configuration.

10.1.57. .spec.processor.metrics.server.tls

Description

TLS configuration.

Type

object

Property Type Description

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the provided certificate. If set to
true, the providedCaFile field is
ignored.

provided object TLS configuration when type is
set to Provided.

providedCaFile object Reference to the CA file when
type is set to Provided.

type string Select the type of TLS
configuration:
- Disabled (default) to not
configure TLS for the endpoint. -
Provided to manually provide
cert file and a key file. - Auto to
use OpenShift Container
Platform auto generated
certificate using annotations.

10.1.58. .spec.processor.metrics.server.tls.provided

Description

TLS configuration when type is set to Provided.

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

107

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the certificate reference:
configmap or secret

10.1.59. .spec.processor.metrics.server.tls.providedCaFile

Description

Reference to the CA file when type is set to Provided.

Type

object

Property Type Description

file string File name within the config map
or secret

name string Name of the config map or secret
containing the file

OpenShift Container Platform 4.15 Network Observability

108

namespace string Namespace of the config map or
secret containing the file. If
omitted, the default is to use the
same namespace as where
Network Observability is
deployed. If the namespace is
different, the config map or the
secret is copied so that it can be
mounted as required.

type string Type for the file reference:
"configmap" or "secret"

Property Type Description

10.1.60. .spec.processor.resources

Description

resources are the compute resources required by this container. More info:
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. Requests cannot
exceed Limits. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS

109

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

CHAPTER 11. NETWORK FLOWS FORMAT REFERENCE
These are the specifications for network flows format, used both internally and when exporting flows to
Kafka.

11.1. NETWORK FLOWS FORMAT REFERENCE

This is the specification of the network flows format. That format is used when a Kafka exporter is
configured, for Prometheus metrics labels as well as internally for the Loki store.

The "Filter ID" column shows which related name to use when defining Quick Filters (see
spec.consolePlugin.quickFilters in the FlowCollector specification).

The "Loki label" column is useful when querying Loki directly: label fields need to be selected using
stream selectors.

Name Type Description Filter ID Loki label

Bytes number Number of bytes n/a no

DnsErrno number Error number returned from DNS tracker
ebpf hook function

dns_errno no

DnsFlags number DNS flags for DNS record n/a no

DnsFlags
Response
Code

string Parsed DNS header RCODEs name dns_flag_
response_
code

no

DnsId number DNS record id dns_id no

DnsLaten
cyMs

number Time between a DNS request and response,
in milliseconds

dns_laten
cy

no

Dscp number Differentiated Services Code Point (DSCP)
value

dscp no

DstAddr string Destination IP address (ipv4 or ipv6) dst_addre
ss

no

DstK8S_H
ostIP

string Destination node IP dst_host_
address

no

DstK8S_H
ostName

string Destination node name dst_host_
name

no

DstK8S_N
ame

string Name of the destination Kubernetes object,
such as Pod name, Service name or Node
name.

dst_name no

OpenShift Container Platform 4.15 Network Observability

110

https://grafana.com/docs/loki/latest/logql/log_queries/#log-stream-selector

DstK8S_N
amespace

string Destination namespace dst_name
space

yes

DstK8S_O
wnerNam
e

string Name of the destination owner, such as
Deployment name, StatefulSet name, etc.

dst_owner
_name

yes

DstK8S_O
wnerType

string Kind of the destination owner, such as
Deployment, StatefulSet, etc.

dst_kind no

DstK8S_T
ype

string Kind of the destination Kubernetes object,
such as Pod, Service or Node.

dst_kind yes

DstK8S_Z
one

string Destination availability zone dst_zone yes

DstMac string Destination MAC address dst_mac no

DstPort number Destination port dst_port no

Duplicate boolean Indicates if this flow was also captured from
another interface on the same host

n/a yes

Flags number Logical OR combination of unique TCP flags
comprised in the flow, as per RFC-9293, with
additional custom flags to represent the
following per-packet combinations:
- SYN+ACK (0x100)
- FIN+ACK (0x200)
- RST+ACK (0x400)

n/a no

FlowDirec
tion

number Flow direction from the node observation
point. Can be one of:
- 0: Ingress (incoming traffic, from the node
observation point)
- 1: Egress (outgoing traffic, from the node
observation point)
- 2: Inner (with the same source and
destination node)

direction yes

IcmpCode number ICMP code icmp_cod
e

no

IcmpType number ICMP type icmp_type no

Name Type Description Filter ID Loki label

CHAPTER 11. NETWORK FLOWS FORMAT REFERENCE

111

IfDirection number Flow direction from the network interface
observation point. Can be one of:
- 0: Ingress (interface incoming traffic)
- 1: Egress (interface outgoing traffic)

n/a no

Interface string Network interface interface no

K8S_Clust
erName

string Cluster name or identifier cluster_na
me

yes

K8S_Flow
Layer

string Flow layer: 'app' or 'infra' flow_layer no

Packets number Number of packets n/a no

PktDropB
ytes

number Number of bytes dropped by the kernel n/a no

PktDropL
atestDrop
Cause

string Latest drop cause pkt_drop_
cause

no

PktDropL
atestFlags

number TCP flags on last dropped packet n/a no

PktDropL
atestState

string TCP state on last dropped packet pkt_drop_
state

no

PktDropP
ackets

number Number of packets dropped by the kernel n/a no

Proto number L4 protocol protocol no

SrcAddr string Source IP address (ipv4 or ipv6) src_addre
ss

no

SrcK8S_H
ostIP

string Source node IP src_host_
address

no

SrcK8S_H
ostName

string Source node name src_host_
name

no

SrcK8S_N
ame

string Name of the source Kubernetes object, such
as Pod name, Service name or Node name.

src_name no

Name Type Description Filter ID Loki label

OpenShift Container Platform 4.15 Network Observability

112

SrcK8S_N
amespace

string Source namespace src_name
space

yes

SrcK8S_O
wnerNam
e

string Name of the source owner, such as
Deployment name, StatefulSet name, etc.

src_owner
_name

yes

SrcK8S_O
wnerType

string Kind of the source owner, such as
Deployment, StatefulSet, etc.

src_kind no

SrcK8S_T
ype

string Kind of the source Kubernetes object, such as
Pod, Service or Node.

src_kind yes

SrcK8S_Z
one

string Source availability zone src_zone yes

SrcMac string Source MAC address src_mac no

SrcPort number Source port src_port no

TimeFlow
EndMs

number End timestamp of this flow, in milliseconds n/a no

TimeFlow
RttNs

number TCP Smoothed Round Trip Time (SRTT), in
nanoseconds

time_flow
_rtt

no

TimeFlow
StartMs

number Start timestamp of this flow, in milliseconds n/a no

TimeRecei
ved

number Timestamp when this flow was received and
processed by the flow collector, in seconds

n/a no

_HashId string In conversation tracking, the conversation
identifier

id no

_RecordT
ype

string Type of record: 'flowLog' for regular flow
logs, or 'newConnection', 'heartbeat',
'endConnection' for conversation tracking

type yes

Name Type Description Filter ID Loki label

CHAPTER 11. NETWORK FLOWS FORMAT REFERENCE

113

CHAPTER 12. TROUBLESHOOTING NETWORK
OBSERVABILITY

To assist in troubleshooting Network Observability issues, you can perform some troubleshooting
actions.

12.1. USING THE MUST-GATHER TOOL

You can use the must-gather tool to collect information about the Network Observability Operator
resources and cluster-wide resources, such as pod logs, FlowCollector, and webhook configurations.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Run the following command to collect cluster-wide must-gather resources:

12.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE
OPENSHIFT CONTAINER PLATFORM CONSOLE

Manually configure the network traffic menu entry in the OpenShift Container Platform console when
the network traffic menu entry is not listed in Observe menu in the OpenShift Container Platform
console.

Prerequisites

You have installed OpenShift Container Platform version 4.10 or newer.

Procedure

1. Check if the spec.consolePlugin.register field is set to true by running the following
command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: false

2. Optional: Add the netobserv-plugin plugin by manually editing the Console Operator config:

$ oc adm must-gather
 --image-stream=openshift/must-gather \
 --image=quay.io/netobserv/must-gather

$ oc -n netobserv get flowcollector cluster -o yaml

OpenShift Container Platform 4.15 Network Observability

114

Example output

...
spec:
 plugins:
 - netobserv-plugin
...

3. Optional: Set the spec.consolePlugin.register field to true by running the following command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 consolePlugin:
 register: true

4. Ensure the status of console pods is running by running the following command:

5. Restart the console pods by running the following command:

6. Clear your browser cache and history.

7. Check the status of Network Observability plugin pods by running the following command:

Example output

NAME READY STATUS RESTARTS AGE
netobserv-plugin-68c7bbb9bb-b69q6 1/1 Running 0 21s

8. Check the logs of the Network Observability plugin pods by running the following command:

Example output

$ oc edit console.operator.openshift.io cluster

$ oc -n netobserv edit flowcollector cluster -o yaml

$ oc get pods -n openshift-console -l app=console

$ oc delete pods -n openshift-console -l app=console

$ oc get pods -n netobserv -l app=netobserv-plugin

$ oc logs -n netobserv -l app=netobserv-plugin

CHAPTER 12. TROUBLESHOOTING NETWORK OBSERVABILITY

115

1

12.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS
AFTER INSTALLING KAFKA

If you deployed the flow collector first with deploymentModel: KAFKA and then deployed Kafka, the
flow collector might not connect correctly to Kafka. Manually restart the flow-pipeline pods where
Flowlogs-pipeline does not consume network flows from Kafka.

Procedure

1. Delete the flow-pipeline pods to restart them by running the following command:

12.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX

INTERFACES

br-ex` and br-int are virtual bridge devices operated at OSI layer 2. The eBPF agent works at the IP and
TCP levels, layers 3 and 4 respectively. You can expect that the eBPF agent captures the network
traffic passing through br-ex and br-int, when the network traffic is processed by other interfaces such
as physical host or virtual pod interfaces. If you restrict the eBPF agent network interfaces to attach
only to br-ex and br-int, you do not see any network flow.

Manually remove the part in the interfaces or excludeInterfaces that restricts the network interfaces
to br-int and br-ex.

Procedure

1. Remove the interfaces: ['br-int', 'br-ex'] field. This allows the agent to fetch information from
all the interfaces. Alternatively, you can specify the Layer-3 interface for example, eth0. Run the
following command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
 name: cluster
spec:
 agent:
 type: EBPF
 ebpf:
 interfaces: ['br-int', 'br-ex'] 1

Specifies the network interfaces.

time="2022-12-13T12:06:49Z" level=info msg="Starting netobserv-console-plugin [build
version: , build date: 2022-10-21 15:15] at log level info" module=main
time="2022-12-13T12:06:49Z" level=info msg="listening on https://:9001" module=server

$ oc delete pods -n netobserv -l app=flowlogs-pipeline-transformer

$ oc edit -n netobserv flowcollector.yaml -o yaml

OpenShift Container Platform 4.15 Network Observability

116

1

2

12.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS
OUT OF MEMORY

You can increase memory limits for the Network Observability operator by editing the
spec.config.resources.limits.memory specification in the Subscription object.

Procedure

1. In the web console, navigate to Operators → Installed Operators

2. Click Network Observability and then select Subscription.

3. From the Actions menu, click Edit Subscription.

a. Alternatively, you can use the CLI to open the YAML configuration for the Subscription
object by running the following command:

4. Edit the Subscription object to add the config.resources.limits.memory specification and set
the value to account for your memory requirements. See the Additional resources for more
information about resource considerations:

For example, you can increase the memory limit to 800Mi.

This value should not be edited, but note that it changes depending on the most current
release of the Operator.

Additional resources

Resource considerations

12.6. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR

$ oc edit subscription netobserv-operator -n openshift-netobserv-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: netobserv-operator
 namespace: openshift-netobserv-operator
spec:
 channel: stable
 config:
 resources:
 limits:
 memory: 800Mi 1
 requests:
 cpu: 100m
 memory: 100Mi
 installPlanApproval: Automatic
 name: netobserv-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: <network_observability_operator_latest_version> 2

CHAPTER 12. TROUBLESHOOTING NETWORK OBSERVABILITY

117

Loki may return a ResourceExhausted error when network flow data sent by Network Observability
exceeds the configured maximum message size. If you are using the Red Hat Loki Operator, this
maximum message size is configured to 100 MiB.

Procedure

1. Navigate to Operators → Installed Operators, viewing All projects from the Project drop-
down menu.

2. In the Provided APIs list, select the Network Observability Operator.

3. Click the Flow Collector then the YAML view tab.

a. If you are using the Loki Operator, check that the spec.loki.batchSize value does not
exceed 98 MiB.

b. If you are using a Loki installation method that is different from the Red Hat Loki Operator,
such as Grafana Loki, verify that the grpc_server_max_recv_msg_size Grafana Loki
server setting is higher than the FlowCollector resource spec.loki.batchSize value. If it is
not, you must either increase the grpc_server_max_recv_msg_size value, or decrease the
spec.loki.batchSize value so that it is lower than the limit.

4. Click Save if you edited the FlowCollector.

12.7. LOKI EMPTY RING ERROR

The Loki "empty ring" error results in flows not being stored in Loki and not showing up in the web
console. This error might happen in various situations. A single workaround to address them all does not
exist. There are some actions you can take to investigate the logs in your Loki pods, and verify that the
LokiStack is healthy and ready.

Some of the situations where this error is observed are as follows:

After a LokiStack is uninstalled and reinstalled in the same namespace, old PVCs are not
removed, which can cause this error.

Action: You can try removing the LokiStack again, removing the PVC, then reinstalling the
LokiStack.

After a certificate rotation, this error can prevent communication with the flowlogs-pipeline
and console-plugin pods.

Action: You can restart the pods to restore the connectivity.

12.8. RESOURCE TROUBLESHOOTING

12.9. LOKISTACK RATE LIMIT ERRORS

A rate-limit placed on the Loki tenant can result in potential temporary loss of data and a 429 error: Per
stream rate limit exceeded (limit:xMB/sec) while attempting to ingest for stream. You might
consider having an alert set to notify you of this error. For more information, see "Creating Loki rate limit
alerts for the NetObserv dashboard" in the Additional resources of this section.

You can update the LokiStack CRD with the perStreamRateLimit and perStreamRateLimitBurst
specifications, as shown in the following procedure.

OpenShift Container Platform 4.15 Network Observability

118

https://grafana.com/docs/loki/latest/configure/#server

1

2

Procedure

1. Navigate to Operators → Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator, and select the LokiStack tab.

3. Create or edit an existing LokiStack instance using the YAML view to add the
perStreamRateLimit and perStreamRateLimitBurst specifications:

The default value for perStreamRateLimit is 3.

The default value for perStreamRateLimitBurst is 15.

4. Click Save.

Verification

Once you update the perStreamRateLimit and perStreamRateLimitBurst specifications, the pods in
your cluster restart and the 429 rate-limit error no longer occurs.

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: loki
 namespace: netobserv
spec:
 limits:
 global:
 ingestion:
 perStreamRateLimit: 6 1
 perStreamRateLimitBurst: 30 2
 tenants:
 mode: openshift-network
 managementState: Managed

CHAPTER 12. TROUBLESHOOTING NETWORK OBSERVABILITY

119

	Table of Contents
	CHAPTER 1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
	1.1. NETWORK OBSERVABILITY OPERATOR 1.5.0
	1.1.1. New features and enhancements
	1.1.1.1. DNS tracking enhancements
	1.1.1.2. Round-trip time (RTT)
	1.1.1.3. Metrics, dashboards, and alerts enhancements
	1.1.1.4. Improvements for Network Observability without Loki
	1.1.1.5. Availability zones
	1.1.1.6. Notable enhancements

	1.1.2. Bug fixes
	1.1.3. Known issues

	1.2. NETWORK OBSERVABILITY OPERATOR 1.4.2
	1.2.1. CVEs

	1.3. NETWORK OBSERVABILITY OPERATOR 1.4.1
	1.3.1. CVEs
	1.3.2. Bug fixes

	1.4. NETWORK OBSERVABILITY OPERATOR 1.4.0
	1.4.1. Channel removal
	1.4.2. New features and enhancements
	1.4.2.1. Notable enhancements
	1.4.2.2. Network Observability without Loki
	1.4.2.3. DNS tracking
	1.4.2.4. SR-IOV support
	1.4.2.5. IPFIX exporter support
	1.4.2.6. Packet drops
	1.4.2.7. s390x architecture support

	1.4.3. Bug fixes
	1.4.4. Known issues

	1.5. NETWORK OBSERVABILITY OPERATOR 1.3.0
	1.5.1. Channel deprecation
	1.5.2. New features and enhancements
	1.5.2.1. Multi-tenancy in Network Observability
	1.5.2.2. Flow-based metrics dashboard
	1.5.2.3. Troubleshooting with the must-gather tool
	1.5.2.4. Multiple architectures now supported

	1.5.3. Deprecated features
	1.5.3.1. Deprecated configuration parameter setting

	1.5.4. Bug fixes
	1.5.5. Known issues

	1.6. NETWORK OBSERVABILITY OPERATOR 1.2.0
	1.6.1. Preparing for the next update
	1.6.2. New features and enhancements
	1.6.2.1. Histogram in Traffic Flows view
	1.6.2.2. Conversation tracking
	1.6.2.3. Network Observability health alerts

	1.6.3. Bug fixes
	1.6.4. Known issue
	1.6.5. Notable technical changes

	1.7. NETWORK OBSERVABILITY OPERATOR 1.1.0
	1.7.1. Bug fix

	CHAPTER 2. ABOUT NETWORK OBSERVABILITY
	2.1. OPTIONAL DEPENDENCIES OF THE NETWORK OBSERVABILITY OPERATOR
	2.2. NETWORK OBSERVABILITY OPERATOR
	2.3. OPENSHIFT CONTAINER PLATFORM CONSOLE INTEGRATION
	2.3.1. Network Observability metrics dashboards
	2.3.2. Network Observability topology views
	2.3.3. Traffic flow tables

	CHAPTER 3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	3.1. NETWORK OBSERVABILITY WITHOUT LOKI
	3.2. INSTALLING THE LOKI OPERATOR
	3.2.1. Creating a secret for Loki storage
	3.2.2. Creating a LokiStack custom resource
	3.2.3. Creating a new group for the cluster-admin user role
	3.2.4. Custom admin group access
	3.2.5. Loki deployment sizing
	3.2.6. LokiStack ingestion limits and health alerts
	3.2.7. Enabling multi-tenancy in Network Observability

	3.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	3.4. IMPORTANT FLOW COLLECTOR CONFIGURATION CONSIDERATIONS
	3.5. INSTALLING KAFKA (OPTIONAL)
	3.6. UNINSTALLING THE NETWORK OBSERVABILITY OPERATOR

	CHAPTER 4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	4.1. VIEWING STATUSES
	4.2. NETWORK OBSERVABLITY OPERATOR ARCHITECTURE
	4.3. VIEWING NETWORK OBSERVABILITY OPERATOR STATUS AND CONFIGURATION

	CHAPTER 5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
	5.1. VIEW THE FLOWCOLLECTOR RESOURCE
	5.2. CONFIGURING THE FLOW COLLECTOR RESOURCE WITH KAFKA
	5.3. EXPORT ENRICHED NETWORK FLOW DATA
	5.4. UPDATING THE FLOW COLLECTOR RESOURCE
	5.5. CONFIGURING QUICK FILTERS
	5.6. CONFIGURING MONITORING FOR SR-IOV INTERFACE TRAFFIC
	5.7. RESOURCE MANAGEMENT AND PERFORMANCE CONSIDERATIONS
	5.7.1. Resource considerations

	CHAPTER 6. NETWORK POLICY
	6.1. CREATING A NETWORK POLICY FOR NETWORK OBSERVABILITY
	6.2. EXAMPLE NETWORK POLICY

	CHAPTER 7. OBSERVING THE NETWORK TRAFFIC
	7.1. OBSERVING THE NETWORK TRAFFIC FROM THE OVERVIEW VIEW
	7.1.1. Working with the Overview view
	7.1.2. Configuring advanced options for the Overview view
	7.1.2.1. Managing panels and display

	7.1.3. Packet drop tracking
	7.1.3.1. Types of packet drops

	7.1.4. DNS tracking
	7.1.5. Round-Trip Time

	7.2. OBSERVING THE NETWORK TRAFFIC FROM THE TRAFFIC FLOWS VIEW
	7.2.1. Working with the Traffic flows view
	7.2.2. Configuring advanced options for the Traffic flows view
	7.2.2.1. Managing columns
	7.2.2.2. Exporting the traffic flow data

	7.2.3. Working with conversation tracking
	7.2.4. Working with packet drops
	7.2.5. Working with DNS tracking
	7.2.6. Working with RTT tracing
	7.2.6.1. Using the histogram

	7.2.7. Working with availability zones

	7.3. OBSERVING THE NETWORK TRAFFIC FROM THE TOPOLOGY VIEW
	7.3.1. Working with the Topology view
	7.3.2. Configuring the advanced options for the Topology view
	7.3.2.1. Exporting the topology view

	7.4. FILTERING THE NETWORK TRAFFIC

	CHAPTER 8. USING METRICS WITH DASHBOARDS AND ALERTS
	8.1. VIEWING NETWORK OBSERVABILITY METRICS DASHBOARDS
	8.2. NETWORK OBSERVABILITY METRICS
	8.2.1. includeList metrics names
	8.2.1.1. PacketDrop metrics names
	8.2.1.2. DNS metrics names
	8.2.1.3. FlowRTT metrics names

	8.3. CREATING ALERTS

	CHAPTER 9. MONITORING THE NETWORK OBSERVABILITY OPERATOR
	9.1. VIEWING HEALTH INFORMATION
	9.1.1. Disabling health alerts

	9.2. CREATING LOKI RATE LIMIT ALERTS FOR THE NETOBSERV DASHBOARD

	CHAPTER 10. FLOWCOLLECTOR CONFIGURATION PARAMETERS
	10.1. FLOWCOLLECTOR API SPECIFICATIONS
	10.1.1. .metadata
	10.1.2. .spec
	10.1.3. .spec.agent
	10.1.4. .spec.agent.ebpf
	10.1.5. .spec.agent.ebpf.advanced
	10.1.6. .spec.agent.ebpf.resources
	10.1.7. .spec.agent.ipfix
	10.1.8. .spec.agent.ipfix.clusterNetworkOperator
	10.1.9. .spec.agent.ipfix.ovnKubernetes
	10.1.10. .spec.consolePlugin
	10.1.11. .spec.consolePlugin.advanced
	10.1.12. .spec.consolePlugin.autoscaler
	10.1.13. .spec.consolePlugin.portNaming
	10.1.14. .spec.consolePlugin.quickFilters
	10.1.15. .spec.consolePlugin.quickFilters[]
	10.1.16. .spec.consolePlugin.resources
	10.1.17. .spec.exporters
	10.1.18. .spec.exporters[]
	10.1.19. .spec.exporters[].ipfix
	10.1.20. .spec.exporters[].kafka
	10.1.21. .spec.exporters[].kafka.sasl
	10.1.22. .spec.exporters[].kafka.sasl.clientIDReference
	10.1.23. .spec.exporters[].kafka.sasl.clientSecretReference
	10.1.24. .spec.exporters[].kafka.tls
	10.1.25. .spec.exporters[].kafka.tls.caCert
	10.1.26. .spec.exporters[].kafka.tls.userCert
	10.1.27. .spec.kafka
	10.1.28. .spec.kafka.sasl
	10.1.29. .spec.kafka.sasl.clientIDReference
	10.1.30. .spec.kafka.sasl.clientSecretReference
	10.1.31. .spec.kafka.tls
	10.1.32. .spec.kafka.tls.caCert
	10.1.33. .spec.kafka.tls.userCert
	10.1.34. .spec.loki
	10.1.35. .spec.loki.advanced
	10.1.36. .spec.loki.lokiStack
	10.1.37. .spec.loki.manual
	10.1.38. .spec.loki.manual.statusTls
	10.1.39. .spec.loki.manual.statusTls.caCert
	10.1.40. .spec.loki.manual.statusTls.userCert
	10.1.41. .spec.loki.manual.tls
	10.1.42. .spec.loki.manual.tls.caCert
	10.1.43. .spec.loki.manual.tls.userCert
	10.1.44. .spec.loki.microservices
	10.1.45. .spec.loki.microservices.tls
	10.1.46. .spec.loki.microservices.tls.caCert
	10.1.47. .spec.loki.microservices.tls.userCert
	10.1.48. .spec.loki.monolithic
	10.1.49. .spec.loki.monolithic.tls
	10.1.50. .spec.loki.monolithic.tls.caCert
	10.1.51. .spec.loki.monolithic.tls.userCert
	10.1.52. .spec.processor
	10.1.53. .spec.processor.advanced
	10.1.54. .spec.processor.kafkaConsumerAutoscaler
	10.1.55. .spec.processor.metrics
	10.1.56. .spec.processor.metrics.server
	10.1.57. .spec.processor.metrics.server.tls
	10.1.58. .spec.processor.metrics.server.tls.provided
	10.1.59. .spec.processor.metrics.server.tls.providedCaFile
	10.1.60. .spec.processor.resources

	CHAPTER 11. NETWORK FLOWS FORMAT REFERENCE
	11.1. NETWORK FLOWS FORMAT REFERENCE

	CHAPTER 12. TROUBLESHOOTING NETWORK OBSERVABILITY
	12.1. USING THE MUST-GATHER TOOL
	12.2. CONFIGURING NETWORK TRAFFIC MENU ENTRY IN THE OPENSHIFT CONTAINER PLATFORM CONSOLE
	12.3. FLOWLOGS-PIPELINE DOES NOT CONSUME NETWORK FLOWS AFTER INSTALLING KAFKA
	12.4. FAILING TO SEE NETWORK FLOWS FROM BOTH BR-INT AND BR-EX INTERFACES
	12.5. NETWORK OBSERVABILITY CONTROLLER MANAGER POD RUNS OUT OF MEMORY
	12.6. TROUBLESHOOTING LOKI RESOURCEEXHAUSTED ERROR
	12.7. LOKI EMPTY RING ERROR
	12.8. RESOURCE TROUBLESHOOTING
	12.9. LOKISTACK RATE LIMIT ERRORS

