
OpenShift Container Platform 4.15

Hosted control planes

Using hosted control planes with OpenShift Container Platform

Last Updated: 2024-04-03

OpenShift Container Platform 4.15 Hosted control planes

Using hosted control planes with OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for managing hosted control planes for OpenShift Container
Platform. With hosted control planes, you create control planes as pods on a hosting cluster without
the need for dedicated physical or virtual machines for each control plane.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW
1.1. INTRODUCTION TO HOSTED CONTROL PLANES

1.1.1. Architecture of hosted control planes
1.1.2. Benefits of hosted control planes

1.2. GLOSSARY OF COMMON CONCEPTS AND PERSONAS FOR HOSTED CONTROL PLANES
1.2.1. Concepts
1.2.2. Personas

1.3. VERSIONING FOR HOSTED CONTROL PLANES
1.4. UPGRADING SCENARIOS FOR HOSTED CONTROL PLANES

CHAPTER 2. CONFIGURING HOSTED CONTROL PLANES
2.1. BARE METAL
2.2. OPENSHIFT VIRTUALIZATION
2.3. AMAZON WEB SERVICES
2.4. IBM Z
2.5. IBM POWER
2.6. NON BARE METAL AGENT MACHINES

CHAPTER 3. MANAGING HOSTED CONTROL PLANES
3.1. UPDATES FOR HOSTED CONTROL PLANES

3.1.1. Updates for the hosted cluster
3.1.2. Updates for node pools

3.1.2.1. Replace updates for node pools
3.1.2.2. In place updates for node pools

3.2. UPDATING NODE POOLS FOR HOSTED CONTROL PLANES
3.3. PAUSING THE RECONCILIATION OF A HOSTED CLUSTER AND HOSTED CONTROL PLANE
3.4. CONFIGURING METRICS SETS FOR HOSTED CONTROL PLANES

3.4.1. Configuring the SRE metrics set
3.5. CREATING MONITORING DASHBOARDS FOR HOSTED CLUSTERS

3.5.1. Enabling monitoring dashboards
3.5.2. Dashboard customization

3.6. SCALING DOWN THE DATA PLANE TO ZERO
3.7. DELETING A HOSTED CLUSTER

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES
4.1. RECOVERING ETCD PODS FOR HOSTED CLUSTERS

4.1.1. Checking the status of a hosted cluster
4.1.2. Recovering an etcd member for a hosted cluster

4.2. BACKING UP AND RESTORING ETCD ON A HOSTED CLUSTER ON AWS
4.2.1. Taking a snapshot of etcd on a hosted cluster
4.2.2. Restoring an etcd snapshot on a hosted cluster

4.3. BACKING UP AND RESTORING ETCD ON A HOSTED CLUSTER IN AN ON-PREMISE ENVIRONMENT
4.4. DISASTER RECOVERY FOR A HOSTED CLUSTER WITHIN AN AWS REGION

4.4.1. Example environment and context
4.4.2. Overview of the backup and restore process
4.4.3. Backing up a hosted cluster
4.4.4. Restoring a hosted cluster
4.4.5. Deleting a hosted cluster from your source management cluster
4.4.6. Running a script to back up and restore a hosted cluster

CHAPTER 5. TROUBLESHOOTING HOSTED CONTROL PLANES
5.1. GATHERING INFORMATION TO TROUBLESHOOT HOSTED CONTROL PLANES

3
3
3
4
5
5
5
6
7

8
8
8
8
9
9

10

11
11
11
11
11
11

12
12
13
13
15
15
16
17
18

20
20
20
20
21
21
23
23
28
28
30
34
39
42
44

46
46

Table of Contents

1

OpenShift Container Platform 4.15 Hosted control planes

2

CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW
You can deploy OpenShift Container Platform clusters by using two different control plane
configurations: standalone or hosted control planes. The standalone configuration uses dedicated
virtual machines or physical machines to host the control plane. With hosted control planes for
OpenShift Container Platform, you create control planes as pods on a hosting cluster without the need
for dedicated virtual or physical machines for each control plane.

1.1. INTRODUCTION TO HOSTED CONTROL PLANES

You can use hosted control planes for Red Hat OpenShift Container Platform to reduce management
costs, optimize cluster deployment time, and separate management and workload concerns so that you
can focus on your applications.

Hosted control planes is available by using the multicluster engine for Kubernetes operator version 2.0
or later on the following platforms:

Bare metal by using the Agent provider

OpenShift Virtualization

Amazon Web Services, as a Technology Preview feature

IBM Z, as a Technology Preview feature

IBM Power, as a Technology Preview feature

1.1.1. Architecture of hosted control planes

OpenShift Container Platform is often deployed in a coupled, or standalone, model, where a cluster
consists of a control plane and a data plane. The control plane includes an API endpoint, a storage
endpoint, a workload scheduler, and an actuator that ensures state. The data plane includes compute,
storage, and networking where workloads and applications run.

The standalone control plane is hosted by a dedicated group of nodes, which can be physical or virtual,
with a minimum number to ensure quorum. The network stack is shared. Administrator access to a
cluster offers visibility into the cluster’s control plane, machine management APIs, and other
components that contribute to the state of a cluster.

Although the standalone model works well, some situations require an architecture where the control
plane and data plane are decoupled. In those cases, the data plane is on a separate network domain with
a dedicated physical hosting environment. The control plane is hosted by using high-level primitives
such as deployments and stateful sets that are native to Kubernetes. The control plane is treated as any
other workload.

CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW

3

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#cluster_mce_overview

1.1.2. Benefits of hosted control planes

With hosted control planes for OpenShift Container Platform, you can pave the way for a true hybrid-
cloud approach and enjoy several other benefits.

The security boundaries between management and workloads are stronger because the control
plane is decoupled and hosted on a dedicated hosting service cluster. As a result, you are less
likely to leak credentials for clusters to other users. Because infrastructure secret account
management is also decoupled, cluster infrastructure administrators cannot accidentally delete
control plane infrastructure.

With hosted control planes, you can run many control planes on fewer nodes. As a result,
clusters are more affordable.

Because the control planes consist of pods that are launched on OpenShift Container Platform,
control planes start quickly. The same principles apply to control planes and workloads, such as
monitoring, logging, and auto-scaling.

From an infrastructure perspective, you can push registries, HAProxy, cluster monitoring,
storage nodes, and other infrastructure components to the tenant’s cloud provider account,
isolating usage to the tenant.

From an operational perspective, multicluster management is more centralized, which results in
fewer external factors that affect the cluster status and consistency. Site reliability engineers
have a central place to debug issues and navigate to the cluster data plane, which can lead to
shorter Time to Resolution (TTR) and greater productivity.

OpenShift Container Platform 4.15 Hosted control planes

4

Additional resources

Hosted control planes

1.2. GLOSSARY OF COMMON CONCEPTS AND PERSONAS FOR
HOSTED CONTROL PLANES

When you use hosted control planes for OpenShift Container Platform, it is important to understand its
key concepts and the personas that are involved.

1.2.1. Concepts

hosted cluster

An OpenShift Container Platform cluster with its control plane and API endpoint hosted on a
management cluster. The hosted cluster includes the control plane and its corresponding data plane.

hosted cluster infrastructure

Network, compute, and storage resources that exist in the tenant or end-user cloud account.

hosted control plane

An OpenShift Container Platform control plane that runs on the management cluster, which is
exposed by the API endpoint of a hosted cluster. The components of a control plane include etcd,
the Kubernetes API server, the Kubernetes controller manager, and a VPN.

hosting cluster

See management cluster .

managed cluster

A cluster that the hub cluster manages. This term is specific to the cluster lifecycle that the
multicluster engine for Kubernetes Operator manages in Red Hat Advanced Cluster Management. A
managed cluster is not the same thing as a management cluster . For more information, see Managed
cluster.

management cluster

An OpenShift Container Platform cluster where the HyperShift Operator is deployed and where the
control planes for hosted clusters are hosted. The management cluster is synonymous with the
hosting cluster .

management cluster infrastructure

Network, compute, and storage resources of the management cluster.

1.2.2. Personas

cluster instance administrator

Users who assume this role are the equivalent of administrators in standalone OpenShift Container
Platform. This user has the cluster-admin role in the provisioned cluster, but might not have power
over when or how the cluster is updated or configured. This user might have read-only access to see
some configuration projected into the cluster.

cluster instance user

Users who assume this role are the equivalent of developers in standalone OpenShift Container
Platform. This user does not have a view into OperatorHub or machines.

cluster service consumer

Users who assume this role can request control planes and worker nodes, drive updates, or modify
externalized configurations. Typically, this user does not manage or access cloud credentials or

CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW

5

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#hosted-control-planes-intro
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/about/welcome-to-red-hat-advanced-cluster-management-for-kubernetes#managed-cluster

infrastructure encryption keys. The cluster service consumer persona can request hosted clusters
and interact with node pools. Users who assume this role have RBAC to create, read, update, or
delete hosted clusters and node pools within a logical boundary.

cluster service provider

Users who assume this role typically have the cluster-admin role on the management cluster and
have RBAC to monitor and own the availability of the HyperShift Operator as well as the control
planes for the tenant’s hosted clusters. The cluster service provider persona is responsible for
several activities, including the following examples:

Owning service-level objects for control plane availability, uptime, and stability

Configuring the cloud account for the management cluster to host control planes

Configuring the user-provisioned infrastructure, which includes the host awareness of
available compute resources

1.3. VERSIONING FOR HOSTED CONTROL PLANES

With each major, minor, or patch version release of OpenShift Container Platform, two components of
hosted control planes are released:

HyperShift Operator

Command-line interface (CLI)

The HyperShift Operator manages the lifecycle of hosted clusters that are represented by
HostedCluster API resources. The HyperShift Operator is released with each OpenShift Container
Platform release. After the HyperShift Operator is installed, it creates a config map called supported-
versions in the HyperShift namespace, as shown in the following example. The config map describes
the HostedCluster versions that can be deployed.

The CLI is a helper utility for development purposes. The CLI is released as part of any HyperShift
Operator release. No compatibility policies are guaranteed.

The API, hypershift.openshift.io, provides a way to create and manage lightweight, flexible,
heterogeneous OpenShift Container Platform clusters at scale. The API exposes two user-facing
resources: HostedCluster and NodePool. A HostedCluster resource encapsulates the control plane
and common data plane configuration. When you create a HostedCluster resource, you have a fully
functional control plane with no attached nodes. A NodePool resource is a scalable set of worker nodes
that is attached to a HostedCluster resource.

The API version policy generally aligns with the policy for Kubernetes API versioning.

 apiVersion: v1
 data:
 supported-versions: '{"versions":["4.15"]}'
 kind: ConfigMap
 metadata:
 labels:
 hypershift.openshift.io/supported-versions: "true"
 name: supported-versions
 namespace: hypershift

OpenShift Container Platform 4.15 Hosted control planes

6

https://kubernetes.io/docs/reference/using-api/#api-versioning

1.4. UPGRADING SCENARIOS FOR HOSTED CONTROL PLANES

Consider the following information before you upgrade:

You use bare metal as a management cluster platform.

You use Agent or KubeVirt as a Hosted cluster platform.

NOTE

The management cluster is based on the installer-provisioned infrastructure (IPI).

Review the following scenarios:

While running your management cluster on OpenShift Container Platform 4.14, you can upgrade
the multicluster engine (MCE) version from 2.4 to 2.5. Then, you can upgrade your hosted
cluster and node pools from OpenShift Container Platform 4.14 to OpenShift Container
Platform 4.15.

If you want to upgrade management cluster, MCE, hosted cluster, and node pools to their latest
versions:

Upgrade your management cluster from OpenShift Container Platform 4.14 to OpenShift
Container Platform 4.15

Upgrade the MCE version from 2.4 to 2.5

Upgrade your hosted cluster and node pools from OpenShift Container Platform 4.14 to
OpenShift Container Platform 4.15

Additional resources

Configuring node tuning in a hosted cluster

Advanced node tuning for hosted clusters by setting kernel boot parameters

CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#node-tuning-hosted-cluster_node-tuning-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#advanced-node-tuning-hosted-cluster_node-tuning-operator

CHAPTER 2. CONFIGURING HOSTED CONTROL PLANES
To get started with hosted control planes for OpenShift Container Platform, you first configure your
hosted cluster on the provider that you want to use. Then, you complete a few management tasks.

You can view the procedures by selecting from one of the following providers:

2.1. BARE METAL

Hosted control plane sizing guidance

Installing the hosted control plane command line interface

Distributing hosted cluster workloads

Bare metal firewall and port requirements

Bare metal infrastructure requirements: Review the infrastructure requirements to create a
hosted cluster on bare metal.

Configuring hosted control plane clusters on bare metal :

Configure DNS

Create a hosted cluster and verify cluster creation

Scale the NodePool object for the hosted cluster

Handle ingress traffic for the hosted cluster

Enable node auto-scaling for the hosted cluster

Configuring hosted control planes in a disconnected environment

2.2. OPENSHIFT VIRTUALIZATION

Hosted control plane sizing guidance

Installing the hosted control plane command line interface

Distributing hosted cluster workloads

Managing hosted control plane clusters on OpenShift Virtualization : Create OpenShift
Container Platform clusters with worker nodes that are hosted by KubeVirt virtual machines.

Configuring hosted control planes in a disconnected environment

2.3. AMAZON WEB SERVICES

IMPORTANT

OpenShift Container Platform 4.15 Hosted control planes

8

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-sizing-guidance
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-install-cli
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-cluster-workload-distributing
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#firewall-port-reqs-bare-metal
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#infrastructure-reqs-bare-metal
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#configuring-hosting-service-cluster-configure-bm
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#configure-hosted-disconnected
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-sizing-guidance
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-install-cli
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-cluster-workload-distributing
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-control-planes-manage-kubevirt
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#configure-hosted-disconnected

IMPORTANT

Hosted control planes on the AWS platform is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

AWS infrastructure requirements: Review the infrastructure requirements to create a hosted
cluster on AWS.

Configuring hosted control plane clusters on AWS (Technology Preview) : The tasks to
configure hosted control plane clusters on AWS include creating the AWS S3 OIDC secret,
creating a routable public zone, enabling external DNS, enabling AWS PrivateLink, and
deploying a hosted cluster.

Deploying the SR-IOV Operator for hosted control planes : After you configure and deploy your
hosting service cluster, you can create a subscription to the Single Root I/O Virtualization (SR-
IOV) Operator on a hosted cluster. The SR-IOV pod runs on worker machines rather than the
control plane.

2.4. IBM Z

IMPORTANT

Hosted control planes on the IBM Z platform is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Installing the hosted control plane command line interface

Configuring the hosting cluster on x86 bare metal for IBM Z compute nodes (Technology
Preview)

2.5. IBM POWER

IMPORTANT

CHAPTER 2. CONFIGURING HOSTED CONTROL PLANES

9

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosting-cluster-aws-infra-reqs
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosting-service-cluster-configure-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#sriov-operator-hosted-control-planes_configuring-sriov-operator
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-install-cli
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#configuring-hosting-service-cluster-ibmz

IMPORTANT

Hosted control planes on the IBM Power platform is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Installing the hosted control plane command line interface

Configuring the hosting cluster on a 64-bit x86 OpenShift Container Platform cluster to create
hosted control planes for IBM Power compute nodes (Technology Preview)

2.6. NON BARE METAL AGENT MACHINES

IMPORTANT

Hosted control planes clusters using non bare metal agent machines is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Installing the hosted control plane command line interface

Configuring hosted control plane clusters using non bare metal agent machines (Technology
Preview)

OpenShift Container Platform 4.15 Hosted control planes

10

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-install-cli
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#config-hosted-service-ibmpower
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#hosted-install-cli
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#configuring-hosting-service-cluster-configure-agent-non-bm

CHAPTER 3. MANAGING HOSTED CONTROL PLANES
After you configure your environment for hosted control planes and create a hosted cluster, you can
further manage your clusters and nodes.

3.1. UPDATES FOR HOSTED CONTROL PLANES

Updates for hosted control planes involve updating the hosted cluster and the node pools. For a cluster
to remain fully operational during an update process, you must meet the requirements of the
Kubernetes version skew policy while completing the control plane and node updates.

3.1.1. Updates for the hosted cluster

The spec.release value dictates the version of the control plane. The HostedCluster object transmits
the intended spec.release value to the HostedControlPlane.spec.release value and runs the
appropriate Control Plane Operator version.

The hosted control plane manages the rollout of the new version of the control plane components along
with any OpenShift Container Platform components through the new version of the Cluster Version
Operator (CVO).

3.1.2. Updates for node pools

With node pools, you can configure the software that is running in the nodes by exposing the
spec.release and spec.config values. You can start a rolling node pool update in the following ways:

Changing the spec.release or spec.config values.

Changing any platform-specific field, such as the AWS instance type. The result is a set of new
instances with the new type.

Changing the cluster configuration, if the change propagates to the node.

Node pools support replace updates and in-place updates. The nodepool.spec.release value dictates
the version of any particular node pool. A NodePool object completes a replace or an in-place rolling
update according to the .spec.management.upgradeType value.

After you create a node pool, you cannot change the update type. If you want to change the update
type, you must create a node pool and delete the other one.

3.1.2.1. Replace updates for node pools

A replace update creates instances in the new version while it removes old instances from the previous
version. This update type is effective in cloud environments where this level of immutability is cost
effective.

Replace updates do not preserve any manual changes because the node is entirely re-provisioned.

3.1.2.2. In place updates for node pools

An in-place update directly updates the operating systems of the instances. This type is suitable for
environments where the infrastructure constraints are higher, such as bare metal.

In-place updates can preserve manual changes, but will report errors if you make manual changes to any

CHAPTER 3. MANAGING HOSTED CONTROL PLANES

11

https://kubernetes.io/releases/version-skew-policy/

In-place updates can preserve manual changes, but will report errors if you make manual changes to any
file system or operating system configuration that the cluster directly manages, such as kubelet
certificates.

3.2. UPDATING NODE POOLS FOR HOSTED CONTROL PLANES

On hosted control planes, you update your version of OpenShift Container Platform by updating the
node pools. The node pool version must not surpass the hosted control plane version.

Procedure

To start the process to update to a new version of OpenShift Container Platform, change the
spec.release.image value of the node pool by entering the following command:

Verification

To verify that the new version was rolled out, check the .status.version value and the status
conditions.

3.3. PAUSING THE RECONCILIATION OF A HOSTED CLUSTER AND
HOSTED CONTROL PLANE

If you are a cluster instance administrator, you can pause the reconciliation of a hosted cluster and
hosted control plane. You might want to pause reconciliation when you back up and restore an etcd
database or when you need to debug problems with a hosted cluster or hosted control plane.

Procedure

1. To pause reconciliation for a hosted cluster and hosted control plane, populate the pausedUntil
field of the HostedCluster resource, as shown in the following examples. In the examples, the
value for pausedUntil is defined in an environment variable prior to the command.

To pause the reconciliation until a specific time, specify an RFC339 timestamp:

The reconciliation is paused until the specified time is passed.

To pause the reconciliation indefinitely, pass a Boolean value of true:

The reconciliation is paused until you remove the field from the HostedCluster resource.

When the pause reconciliation field is populated for the HostedCluster resource, the field is
automatically added to the associated HostedControlPlane resource.

$ oc -n NAMESPACE patch HC HCNAME --patch '{"spec":{"release":{"image": "example"}}}'
--type=merge

PAUSED_UNTIL="2022-03-03T03:28:48Z"
oc patch -n <hosted-cluster-namespace> hostedclusters/<hosted-cluster-name> -p
'{"spec":{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge

PAUSED_UNTIL="true"
oc patch -n <hosted-cluster-namespace> hostedclusters/<hosted-cluster-name> -p
'{"spec":{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge

OpenShift Container Platform 4.15 Hosted control planes

12

2. To remove the pausedUntil field, enter the following patch command:

3.4. CONFIGURING METRICS SETS FOR HOSTED CONTROL PLANES

Hosted control planes for Red Hat OpenShift Container Platform creates ServiceMonitor resources in
each control plane namespace that allow a Prometheus stack to gather metrics from the control planes.
The ServiceMonitor resources use metrics relabelings to define which metrics are included or excluded
from a particular component, such as etcd or the Kubernetes API server. The number of metrics that are
produced by control planes directly impacts the resource requirements of the monitoring stack that
gathers them.

Instead of producing a fixed number of metrics that apply to all situations, you can configure a metrics
set that identifies a set of metrics to produce for each control plane. The following metrics sets are
supported:

Telemetry: These metrics are needed for telemetry. This set is the default set and is the
smallest set of metrics.

SRE: This set includes the necessary metrics to produce alerts and allow the troubleshooting of
control plane components.

All: This set includes all of the metrics that are produced by standalone OpenShift Container
Platform control plane components.

To configure a metrics set, set the METRICS_SET environment variable in the HyperShift Operator
deployment by entering the following command:

3.4.1. Configuring the SRE metrics set

When you specify the SRE metrics set, the HyperShift Operator looks for a config map named sre-
metric-set with a single key: config. The value of the config key must contain a set of RelabelConfigs
that are organized by control plane component.

You can specify the following components:

etcd

kubeAPIServer

kubeControllerManager

openshiftAPIServer

openshiftControllerManager

openshiftRouteControllerManager

cvo

olm

oc patch -n <hosted-cluster-namespace> hostedclusters/<hosted-cluster-name> -p '{"spec":
{"pausedUntil":null}}' --type=merge

$ oc set env -n hypershift deployment/operator METRICS_SET=All

CHAPTER 3. MANAGING HOSTED CONTROL PLANES

13

catalogOperator

registryOperator

nodeTuningOperator

controlPlaneOperator

hostedClusterConfigOperator

A configuration of the SRE metrics set is illustrated in the following example:

kubeAPIServer:
 - action: "drop"
 regex: "etcd_(debugging|disk|server).*"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex: "apiserver_admission_controller_admission_latencies_seconds_.*"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex: "apiserver_admission_step_admission_latencies_seconds_.*"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex:
"scheduler_(e2e_scheduling_latency_microseconds|scheduling_algorithm_predicate_evaluation|scheduli
ng_algorithm_priority_evaluation|scheduling_algorithm_preemption_evaluation|scheduling_algorithm_lat
ency_microseconds|binding_latency_microseconds|scheduling_latency_seconds)"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex:
"apiserver_(request_count|request_latencies|request_latencies_summary|dropped_requests|storage_d
ata_key_generation_latencies_microseconds|storage_transformation_failures_total|storage_transformat
ion_latencies_microseconds|proxy_tunnel_sync_latency_secs)"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex:
"docker_(operations|operations_latency_microseconds|operations_errors|operations_timeout)"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex:
"reflector_(items_per_list|items_per_watch|list_duration_seconds|lists_total|short_watches_total|watch_
duration_seconds|watches_total)"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex:
"etcd_(helper_cache_hit_count|helper_cache_miss_count|helper_cache_entry_count|request_cache_ge
t_latencies_summary|request_cache_add_latencies_summary|request_latencies_summary)"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex: "transformation_(transformation_latencies_microseconds|failures_total)"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex:
"network_plugin_operations_latency_microseconds|sync_proxy_rules_latency_microseconds|rest_client
_request_latency_seconds"
 sourceLabels: ["__name__"]

OpenShift Container Platform 4.15 Hosted control planes

14

3.5. CREATING MONITORING DASHBOARDS FOR HOSTED CLUSTERS

The HyperShift Operator can create or delete monitoring dashboards in the management cluster for
each hosted cluster that it manages.

3.5.1. Enabling monitoring dashboards

 - action: "drop"
 regex: "apiserver_request_duration_seconds_bucket;
(0.15|0.25|0.3|0.35|0.4|0.45|0.6|0.7|0.8|0.9|1.25|1.5|1.75|2.5|3|3.5|4.5|6|7|8|9|15|25|30|50)"
 sourceLabels: ["__name__", "le"]
kubeControllerManager:
 - action: "drop"
 regex: "etcd_(debugging|disk|request|server).*"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex: "rest_client_request_latency_seconds_(bucket|count|sum)"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex: "root_ca_cert_publisher_sync_duration_seconds_(bucket|count|sum)"
 sourceLabels: ["__name__"]
openshiftAPIServer:
 - action: "drop"
 regex: "etcd_(debugging|disk|server).*"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex: "apiserver_admission_controller_admission_latencies_seconds_.*"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex: "apiserver_admission_step_admission_latencies_seconds_.*"
 sourceLabels: ["__name__"]
 - action: "drop"
 regex: "apiserver_request_duration_seconds_bucket;
(0.15|0.25|0.3|0.35|0.4|0.45|0.6|0.7|0.8|0.9|1.25|1.5|1.75|2.5|3|3.5|4.5|6|7|8|9|15|25|30|50)"
 sourceLabels: ["__name__", "le"]
openshiftControllerManager:
 - action: "drop"
 regex: "etcd_(debugging|disk|request|server).*"
 sourceLabels: ["__name__"]
openshiftRouteControllerManager:
 - action: "drop"
 regex: "etcd_(debugging|disk|request|server).*"
 sourceLabels: ["__name__"]
olm:
 - action: "drop"
 regex: "etcd_(debugging|disk|server).*"
 sourceLabels: ["__name__"]
catalogOperator:
 - action: "drop"
 regex: "etcd_(debugging|disk|server).*"
 sourceLabels: ["__name__"]
cvo:
 - action: drop
 regex: "etcd_(debugging|disk|server).*"
 sourceLabels: ["__name__"]

CHAPTER 3. MANAGING HOSTED CONTROL PLANES

15

To enable monitoring dashboards in a hosted cluster, complete the following steps:

Procedure

1. Create the hypershift-operator-install-flags config map in the local-cluster namespace, being
sure to specify the --monitoring-dashboards flag in the data.installFlagsToAdd section. For
example:

2. Wait a couple of minutes for the HyperShift Operator deployment in the hypershift namespace
to be updated to include the following environment variable:

 - name: MONITORING_DASHBOARDS
 value: "1"

When monitoring dashboards are enabled, for each hosted cluster that the HyperShift Operator
manages, the Operator creates a config map named cp-[NAMESPACE]-[NAME] in the
openshift-config-managed namespace, where NAMESPACE is the namespace of the hosted
cluster and NAME is the name of the hosted cluster. As a result, a new dashboard is added in
the administrative console of the management cluster.

3. To view the dashboard, log in to the management cluster’s console and go to the dashboard for
the hosted cluster by clicking Observe → Dashboards.

4. Optional: To disable a monitoring dashboards in a hosted cluster, remove the --monitoring-
dashboards flag from the hypershift-operator-install-flags config map. When you delete a
hosted cluster, its corresponding dashboard is also deleted.

3.5.2. Dashboard customization

To generate dashboards for each hosted cluster, the HyperShift Operator uses a template that is stored
in the monitoring-dashboard-template config map in the operator namespace (hypershift). This
template contains a set of Grafana panels that contain the metrics for the dashboard. You can edit the
content of the config map to customize the dashboards.

When a dashboard is generated, the following strings are replaced with values that correspond to a
specific hosted cluster:

Name Description

__NAME__ The name of the hosted cluster

__NAMESPACE__ The namespace of the hosted cluster

kind: ConfigMap
apiVersion: v1
metadata:
 name: hypershift-operator-install-flags
 namespace: local-cluster
data:
 installFlagsToAdd: "--monitoring-dashboards"
 installFlagsToRemove: ""

OpenShift Container Platform 4.15 Hosted control planes

16

__CONTROL_PLANE_NAMESPACE__ The namespace where the control plane pods of the
hosted cluster are placed

__CLUSTER_ID__ The UUID of the hosted cluster, which matches the
_id label of the hosted cluster metrics

3.6. SCALING DOWN THE DATA PLANE TO ZERO

If you are not using the hosted control plane, to save the resources and cost you can scale down a data
plane to zero.

NOTE

Ensure you are prepared to scale down the data plane to zero. Because the workload
from the worker nodes disappears after scaling down.

Procedure

1. Set the kubeconfig file to access the hosted cluster by running the following command:

2. Get the name of the NodePool resource associated to your hosted cluster by running the
following command:

3. Optional: To prevent the pods from draining, add the nodeDrainTimeout field in the NodePool
resource by running the following command:

Example output

$ export KUBECONFIG=<install_directory>/auth/kubeconfig

$ oc get nodepool --namespace <HOSTED_CLUSTER_NAMESPACE>

$ oc edit NodePool <nodepool> -o yaml --namespace
<HOSTED_CLUSTER_NAMESPACE>

apiVersion: hypershift.openshift.io/v1alpha1
kind: NodePool
metadata:
...
 name: nodepool-1
 namespace: clusters
...
spec:
 arch: amd64
 clusterName: clustername 1
 management:
 autoRepair: false
 replace:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0

CHAPTER 3. MANAGING HOSTED CONTROL PLANES

17

1

2

Defines the name of your hosted cluster.

Specifies the total amount of time that the controller spends to drain a node. By default,
the nodeDrainTimeout: 0s setting blocks the node draining process.

NOTE

To allow the node draining process to continue for a certain period of time, you
can set the value of the nodeDrainTimeout field accordingly, for example,
nodeDrainTimeout: 1m.

4. Scale down the NodePool resource associated to your hosted cluster by running the following
command:

NOTE

After scaling down the data plan to zero, some pods in the control plane stay in
the Pending status and the hosted control plane stays up and running. If
necessary, you can scale up the NodePool resource.

5. Optional: Scale up the NodePool resource associated to your hosted cluster by running the
following command:

After rescaling the NodePool resource, wait for couple of minutes for the NodePool resource
to become available in a Ready state.

3.7. DELETING A HOSTED CLUSTER

The steps to delete a hosted cluster differ depending on which provider you use.

Procedure

If the cluster is on AWS, follow the instructions in Destroying a hosted cluster on AWS .

If the cluster is on bare metal, follow the instructions in Destroying a hosted cluster on bare
metal.

If the cluster is on OpenShift Virtualization, follow the instructions in Destroying a hosted
cluster on OpenShift Virtualization.

Next steps

 strategy: RollingUpdate
 upgradeType: Replace
 nodeDrainTimeout: 0s 2
...

$ oc scale nodepool/<NODEPOOL_NAME> --namespace
<HOSTED_CLUSTER_NAMESPACE> --replicas=0

$ oc scale nodepool/<NODEPOOL_NAME> --namespace
<HOSTED_CLUSTER_NAMESPACE> --replicas=1

OpenShift Container Platform 4.15 Hosted control planes

18

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#hypershift-cluster-destroy-aws
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#hypershift-cluster-destroy-bm
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#hypershift-cluster-destroy-kubevirt

If you want to disable the hosted control plane feature, see Disabling the hosted control plane feature .

CHAPTER 3. MANAGING HOSTED CONTROL PLANES

19

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#disable-hosted-control-planes

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY
FOR HOSTED CONTROL PLANES

If you need to back up and restore etcd on a hosted cluster or provide disaster recovery for a hosted
cluster, see the following procedures.

4.1. RECOVERING ETCD PODS FOR HOSTED CLUSTERS

In hosted clusters, etcd pods run as part of a stateful set. The stateful set relies on persistent storage to
store etcd data for each member. In a highly available control plane, the size of the stateful set is three
pods, and each member has its own persistent volume claim.

4.1.1. Checking the status of a hosted cluster

To check the status of your hosted cluster, complete the following steps.

Procedure

1. Enter the running etcd pod that you want to check by entering the following command:

2. Set up the etcdctl environment by entering the following commands:

3. Print the endpoint status for each cluster member by entering the following command:

4.1.2. Recovering an etcd member for a hosted cluster

An etcd member of a 3-node cluster might fail because of corrupted or missing data. To recover the
etcd member, complete the following steps.

Procedure

1. If you need to confirm that the etcd member is failing, enter the following command:

The output resembles this example if the etcd member is failing:

$ oc rsh -n <control_plane_namespace> -c etcd etcd-0

sh-4.4$ export ETCDCTL_API=3

sh-4.4$ export ETCDCTL_CACERT=/etc/etcd/tls/etcd-ca/ca.crt

sh-4.4$ export ETCDCTL_CERT=/etc/etcd/tls/client/etcd-client.crt

sh-4.4$ export ETCDCTL_KEY=/etc/etcd/tls/client/etcd-client.key

sh-4.4$ export ETCDCTL_ENDPOINTS=https://etcd-client:2379

sh-4.4$ etcdctl endpoint health --cluster -w table

$ oc get pods -l app=etcd -n <control_plane_namespace>

OpenShift Container Platform 4.15 Hosted control planes

20

Example output

2. Delete the persistent volume claim of the failing etcd member and the pod by entering the
following command:

3. When the pod restarts, verify that the etcd member is added back to the etcd cluster and is
correctly functioning by entering the following command:

Example output

4.2. BACKING UP AND RESTORING ETCD ON A HOSTED CLUSTER ON
AWS

If you use hosted control planes for OpenShift Container Platform, the process to back up and restore
etcd is different from the usual etcd backup process.

The following procedures are specific to hosted control planes on AWS.

IMPORTANT

Hosted control planes on the AWS platform is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

4.2.1. Taking a snapshot of etcd on a hosted cluster

As part of the process to back up etcd for a hosted cluster, you take a snapshot of etcd. After you take
the snapshot, you can restore it, for example, as part of a disaster recovery operation.

IMPORTANT

This procedure requires API downtime.

NAME READY STATUS RESTARTS AGE
etcd-0 2/2 Running 0 64m
etcd-1 2/2 Running 0 45m
etcd-2 1/2 CrashLoopBackOff 1 (5s ago) 64m

$ oc delete pvc/data-etcd-2 pod/etcd-2 --wait=false

$ oc get pods -l app=etcd -n $CONTROL_PLANE_NAMESPACE

NAME READY STATUS RESTARTS AGE
etcd-0 2/2 Running 0 67m
etcd-1 2/2 Running 0 48m
etcd-2 2/2 Running 0 2m2s

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/backup_and_restore/#backing-up-etcd-data_backup-etcd
https://access.redhat.com/support/offerings/techpreview/

Procedure

1. Pause reconciliation of the hosted cluster by entering this command:

2. Stop all etcd-writer deployments by entering this command:

3. Take an etcd snapshot by using the exec command in each etcd container:

4. Copy the snapshot data to a location where you can retrieve it later, such as an S3 bucket, as
shown in the following example.

NOTE

The following example uses signature version 2. If you are in a region that
supports signature version 4, such as the us-east-2 region, use signature version
4. Otherwise, if you use signature version 2 to copy the snapshot to an S3 bucket,
the upload fails and signature version 2 is deprecated.

Example

5. If you want to be able to restore the snapshot on a new cluster later, save the encryption secret
that the hosted cluster references, as shown in this example:

Example

$ oc patch -n clusters hostedclusters/${CLUSTER_NAME} -p '{"spec":
{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge

$ oc scale deployment -n ${HOSTED_CLUSTER_NAMESPACE} --replicas=0 kube-
apiserver openshift-apiserver openshift-oauth-apiserver

$ oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- env ETCDCTL_API=3
/usr/bin/etcdctl --cacert /etc/etcd/tls/client/etcd-client-ca.crt --cert /etc/etcd/tls/client/etcd-
client.crt --key /etc/etcd/tls/client/etcd-client.key --endpoints=localhost:2379 snapshot save
/var/lib/data/snapshot.db
$ oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- env ETCDCTL_API=3
/usr/bin/etcdctl -w table snapshot status /var/lib/data/snapshot.db

BUCKET_NAME=somebucket
FILEPATH="/${BUCKET_NAME}/${CLUSTER_NAME}-snapshot.db"
CONTENT_TYPE="application/x-compressed-tar"
DATE_VALUE=`date -R`
SIGNATURE_STRING="PUT\n\n${CONTENT_TYPE}\n${DATE_VALUE}\n${FILEPATH}"
ACCESS_KEY=accesskey
SECRET_KEY=secret
SIGNATURE_HASH=`echo -en ${SIGNATURE_STRING} | openssl sha1 -hmac
${SECRET_KEY} -binary | base64`

oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- curl -X PUT -T
"/var/lib/data/snapshot.db" \
 -H "Host: ${BUCKET_NAME}.s3.amazonaws.com" \
 -H "Date: ${DATE_VALUE}" \
 -H "Content-Type: ${CONTENT_TYPE}" \
 -H "Authorization: AWS ${ACCESS_KEY}:${SIGNATURE_HASH}" \
 https://${BUCKET_NAME}.s3.amazonaws.com/${CLUSTER_NAME}-snapshot.db

OpenShift Container Platform 4.15 Hosted control planes

22

Example

Next steps

Restore the etcd snapshot.

4.2.2. Restoring an etcd snapshot on a hosted cluster

If you have a snapshot of etcd from your hosted cluster, you can restore it. Currently, you can restore an
etcd snapshot only during cluster creation.

To restore an etcd snapshot, you modify the output from the create cluster --render command and
define a restoreSnapshotURL value in the etcd section of the HostedCluster specification.

Prerequisites

You took an etcd snapshot on a hosted cluster.

Procedure

1. On the aws command-line interface (CLI), create a pre-signed URL so that you can download
your etcd snapshot from S3 without passing credentials to the etcd deployment:

2. Modify the HostedCluster specification to refer to the URL:

3. Ensure that the secret that you referenced from the spec.secretEncryption.aescbc value
contains the same AES key that you saved in the previous steps.

4.3. BACKING UP AND RESTORING ETCD ON A HOSTED CLUSTER IN
AN ON-PREMISE ENVIRONMENT

By backing up and restoring etcd on a hosted cluster, you can fix failures, such as corrupted or missing

oc get hostedcluster $CLUSTER_NAME -o=jsonpath='{.spec.secretEncryption.aescbc}'
{"activeKey":{"name":"CLUSTER_NAME-etcd-encryption-key"}}

Save this secret, or the key it contains so the etcd data can later be decrypted
oc get secret ${CLUSTER_NAME}-etcd-encryption-key -o=jsonpath='{.data.key}'

ETCD_SNAPSHOT=${ETCD_SNAPSHOT:-"s3://${BUCKET_NAME}/${CLUSTER_NAME}-
snapshot.db"}
ETCD_SNAPSHOT_URL=$(aws s3 presign ${ETCD_SNAPSHOT})

spec:
 etcd:
 managed:
 storage:
 persistentVolume:
 size: 4Gi
 type: PersistentVolume
 restoreSnapshotURL:
 - "${ETCD_SNAPSHOT_URL}"
 managementType: Managed

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

23

By backing up and restoring etcd on a hosted cluster, you can fix failures, such as corrupted or missing
data in an etcd member of a three node cluster. If multiple members of the etcd cluster encounter data
loss or have a CrashLoopBackOff status, this approach helps prevent an etcd quorum loss.

IMPORTANT

This procedure requires API downtime.

Prerequisites

The oc and jq binaries have been installed.

Procedure

1. First, set up your environment variables and scale down the API servers:

a. Set up environment variables for your hosted cluster by entering the following commands,
replacing values as necessary:

b. Pause reconciliation of the hosted cluster by entering the following command, replacing
values as necessary:

c. Scale down the API servers by entering the following commands:

i. Scale down the kube-apiserver:

ii. Scale down the openshift-apiserver:

iii. Scale down the openshift-oauth-apiserver:

2. Next, take a snapshot of etcd by using one of the following methods:

a. Use a previously backed-up snapshot of etcd.

$ CLUSTER_NAME=my-cluster

$ HOSTED_CLUSTER_NAMESPACE=clusters

$ CONTROL_PLANE_NAMESPACE="${HOSTED_CLUSTER_NAMESPACE}-
${CLUSTER_NAME}"

$ oc patch -n ${HOSTED_CLUSTER_NAMESPACE}
hostedclusters/${CLUSTER_NAME} -p '{"spec":{"pausedUntil":"true"}}' --type=merge

$ oc scale -n ${CONTROL_PLANE_NAMESPACE} deployment/kube-apiserver --
replicas=0

$ oc scale -n ${CONTROL_PLANE_NAMESPACE} deployment/openshift-apiserver -
-replicas=0

$ oc scale -n ${CONTROL_PLANE_NAMESPACE} deployment/openshift-oauth-
apiserver --replicas=0

OpenShift Container Platform 4.15 Hosted control planes

24

b. If you have an available etcd pod, take a snapshot from the active etcd pod by completing
the following steps:

i. List etcd pods by entering the following command:

ii. Take a snapshot of the pod database and save it locally to your machine by entering the
following commands:

iii. Verify that the snapshot is successful by entering the following command:

c. Make a local copy of the snapshot by entering the following command:

i. Make a copy of the snapshot database from etcd persistent storage:

A. List etcd pods by entering the following command:

B. Find a pod that is running and set its name as the value of ETCD_POD:
ETCD_POD=etcd-0, and then copy its snapshot database by entering the following
command:

3. Next, scale down the etcd statefulset by entering the following command:

a. Delete volumes for second and third members by entering the following command:

$ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd

$ ETCD_POD=etcd-0

$ oc exec -n ${CONTROL_PLANE_NAMESPACE} -c etcd -t ${ETCD_POD} -- env
ETCDCTL_API=3 /usr/bin/etcdctl \
--cacert /etc/etcd/tls/etcd-ca/ca.crt \
--cert /etc/etcd/tls/client/etcd-client.crt \
--key /etc/etcd/tls/client/etcd-client.key \
--endpoints=https://localhost:2379 \
snapshot save /var/lib/snapshot.db

$ oc exec -n ${CONTROL_PLANE_NAMESPACE} -c etcd -t ${ETCD_POD} -- env
ETCDCTL_API=3 /usr/bin/etcdctl -w table snapshot status /var/lib/snapshot.db

$ oc cp -c etcd
${CONTROL_PLANE_NAMESPACE}/${ETCD_POD}:/var/lib/snapshot.db
/tmp/etcd.snapshot.db

$ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd

$ oc cp -c etcd
${CONTROL_PLANE_NAMESPACE}/${ETCD_POD}:/var/lib/data/member/snap/
db /tmp/etcd.snapshot.db

$ oc scale -n ${CONTROL_PLANE_NAMESPACE} statefulset/etcd --replicas=0

$ oc delete -n ${CONTROL_PLANE_NAMESPACE} pvc/data-etcd-1 pvc/data-etcd-2

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

25

b. Create a pod to access the first etcd member’s data:

i. Get the etcd image by entering the following command:

ii. Create a pod that allows access to etcd data:

iii. Check the status of the etcd-data pod and wait for it to be running by entering the
following command:

iv. Get the name of the etcd-data pod by entering the following command:

c. Copy an etcd snapshot into the pod by entering the following command:

$ ETCD_IMAGE=$(oc get -n ${CONTROL_PLANE_NAMESPACE} statefulset/etcd -
o jsonpath='{ .spec.template.spec.containers[0].image }')

$ cat << EOF | oc apply -n ${CONTROL_PLANE_NAMESPACE} -f -
apiVersion: apps/v1
kind: Deployment
metadata:
 name: etcd-data
spec:
 replicas: 1
 selector:
 matchLabels:
 app: etcd-data
 template:
 metadata:
 labels:
 app: etcd-data
 spec:
 containers:
 - name: access
 image: $ETCD_IMAGE
 volumeMounts:
 - name: data
 mountPath: /var/lib
 command:
 - /usr/bin/bash
 args:
 - -c
 - |-
 while true; do
 sleep 1000
 done
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: data-etcd-0
EOF

$ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd-data

$ DATA_POD=$(oc get -n ${CONTROL_PLANE_NAMESPACE} pods --no-headers
-l app=etcd-data -o name | cut -d/ -f2)

OpenShift Container Platform 4.15 Hosted control planes

26

d. Remove old data from the etcd-data pod by entering the following commands:

e. Restore the etcd snapshot by entering the following command:

f. Remove the temporary etcd snapshot from the pod by entering the following command:

g. Delete data access deployment by entering the following command:

h. Scale up the etcd cluster by entering the following command:

i. Wait for the etcd member pods to return and report as available by entering the following
command:

j. Scale up all etcd-writer deployments by entering the following command:

4. Restore reconciliation of the hosted cluster by entering the following command:

$ oc cp /tmp/etcd.snapshot.db
${CONTROL_PLANE_NAMESPACE}/${DATA_POD}:/var/lib/restored.snap.db

$ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- rm -rf /var/lib/data

$ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- mkdir -p
/var/lib/data

$ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- etcdutl snapshot
restore /var/lib/restored.snap.db \
 --data-dir=/var/lib/data --skip-hash-check \
 --name etcd-0 \
 --initial-cluster-token=etcd-cluster \
 --initial-cluster etcd-0=https://etcd-0.etcd-
discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380,etcd-1=https://etcd-1.etcd-
discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380,etcd-2=https://etcd-2.etcd-
discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380 \
 --initial-advertise-peer-urls https://etcd-0.etcd-
discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380

$ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- rm
/var/lib/restored.snap.db

$ oc delete -n ${CONTROL_PLANE_NAMESPACE} deployment/etcd-data

$ oc scale -n ${CONTROL_PLANE_NAMESPACE} statefulset/etcd --replicas=3

$ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd -w

$ oc scale deployment -n ${CONTROL_PLANE_NAMESPACE} --replicas=3 kube-
apiserver openshift-apiserver openshift-oauth-apiserver

$ oc patch -n ${CLUSTER_NAMESPACE} hostedclusters/${CLUSTER_NAME} -p '{"spec":
{"pausedUntil":""}}' --type=merge

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

27

4.4. DISASTER RECOVERY FOR A HOSTED CLUSTER WITHIN AN AWS
REGION

In a situation where you need disaster recovery (DR) for a hosted cluster, you can recover a hosted
cluster to the same region within AWS. For example, you need DR when the upgrade of a management
cluster fails and the hosted cluster is in a read-only state.

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The DR process involves three main steps:

1. Backing up the hosted cluster on the source management cluster

2. Restoring the hosted cluster on a destination management cluster

3. Deleting the hosted cluster from the source management cluster

Your workloads remain running during the process. The Cluster API might be unavailable for a period,
but that will not affect the services that are running on the worker nodes.

IMPORTANT

Both the source management cluster and the destination management cluster must
have the --external-dns flags to maintain the API server URL, as shown in this example:

Example: External DNS flags

That way, the server URL ends with https://api-sample-hosted.sample-
hosted.aws.openshift.com.

If you do not include the --external-dns flags to maintain the API server URL, the hosted
cluster cannot be migrated.

4.4.1. Example environment and context

Consider an scenario where you have three clusters to restore. Two are management clusters, and one is
a hosted cluster. You can restore either the control plane only or the control plane and the nodes. Before
you begin, you need the following information:

Source MGMT Namespace: The source management namespace

--external-dns-provider=aws \
--external-dns-credentials=<AWS Credentials location> \
--external-dns-domain-filter=<DNS Base Domain>

OpenShift Container Platform 4.15 Hosted control planes

28

https://access.redhat.com/support/offerings/techpreview/
https://api-sample-hosted.sample-hosted.aws.openshift.com

Source MGMT ClusterName: The source management cluster name

Source MGMT Kubeconfig: The source management kubeconfig file

Destination MGMT Kubeconfig: The destination management kubeconfig file

HC Kubeconfig: The hosted cluster kubeconfig file

SSH key file: The SSH public key

Pull secret: The pull secret file to access the release images

AWS credentials

AWS region

Base domain: The DNS base domain to use as an external DNS

S3 bucket name: The bucket in the AWS region where you plan to upload the etcd backup

This information is shown in the following example environment variables.

Example environment variables

SSH_KEY_FILE=${HOME}/.ssh/id_rsa.pub
BASE_PATH=${HOME}/hypershift
BASE_DOMAIN="aws.sample.com"
PULL_SECRET_FILE="${HOME}/pull_secret.json"
AWS_CREDS="${HOME}/.aws/credentials"
AWS_ZONE_ID="Z02718293M33QHDEQBROL"

CONTROL_PLANE_AVAILABILITY_POLICY=SingleReplica
HYPERSHIFT_PATH=${BASE_PATH}/src/hypershift
HYPERSHIFT_CLI=${HYPERSHIFT_PATH}/bin/hypershift
HYPERSHIFT_IMAGE=${HYPERSHIFT_IMAGE:-"quay.io/${USER}/hypershift:latest"}
NODE_POOL_REPLICAS=${NODE_POOL_REPLICAS:-2}

MGMT Context
MGMT_REGION=us-west-1
MGMT_CLUSTER_NAME="${USER}-dev"
MGMT_CLUSTER_NS=${USER}
MGMT_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT_CLUSTER_NS}-
${MGMT_CLUSTER_NAME}"
MGMT_KUBECONFIG="${MGMT_CLUSTER_DIR}/kubeconfig"

MGMT2 Context
MGMT2_CLUSTER_NAME="${USER}-dest"
MGMT2_CLUSTER_NS=${USER}
MGMT2_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT2_CLUSTER_NS}-
${MGMT2_CLUSTER_NAME}"
MGMT2_KUBECONFIG="${MGMT2_CLUSTER_DIR}/kubeconfig"

Hosted Cluster Context
HC_CLUSTER_NS=clusters
HC_REGION=us-west-1
HC_CLUSTER_NAME="${USER}-hosted"
HC_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${HC_CLUSTER_NS}-

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

29

4.4.2. Overview of the backup and restore process

The backup and restore process works as follows:

1. On management cluster 1, which you can think of as the source management cluster, the control
plane and workers interact by using the external DNS API. The external DNS API is accessible,
and a load balancer sits between the management clusters.

2. You take a snapshot of the hosted cluster, which includes etcd, the control plane, and the
worker nodes. During this process, the worker nodes continue to try to access the external DNS
API even if it is not accessible, the workloads are running, the control plane is saved in a local
manifest file, and etcd is backed up to an S3 bucket. The data plane is active and the control
plane is paused.

${HC_CLUSTER_NAME}"
HC_KUBECONFIG="${HC_CLUSTER_DIR}/kubeconfig"
BACKUP_DIR=${HC_CLUSTER_DIR}/backup

BUCKET_NAME="${USER}-hosted-${MGMT_REGION}"

DNS
AWS_ZONE_ID="Z07342811SH9AA102K1AC"
EXTERNAL_DNS_DOMAIN="hc.jpdv.aws.kerbeross.com"

OpenShift Container Platform 4.15 Hosted control planes

30

3. On management cluster 2, which you can think of as the destination management cluster, you
restore etcd from the S3 bucket and restore the control plane from the local manifest file.
During this process, the external DNS API is stopped, the hosted cluster API becomes
inaccessible, and any workers that use the API are unable to update their manifest files, but the
workloads are still running.

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

31

4. The external DNS API is accessible again, and the worker nodes use it to move to management
cluster 2. The external DNS API can access the load balancer that points to the control plane.

OpenShift Container Platform 4.15 Hosted control planes

32

5. On management cluster 2, the control plane and worker nodes interact by using the external
DNS API. The resources are deleted from management cluster 1, except for the S3 backup of
etcd. If you try to set up the hosted cluster again on mangagement cluster 1, it will not work.

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

33

You can manually back up and restore your hosted cluster, or you can run a script to complete the
process. For more information about the script, see "Running a script to back up and restore a hosted
cluster".

4.4.3. Backing up a hosted cluster

To recover your hosted cluster in your target management cluster, you first need to back up all of the
relevant data.

Procedure

1. Create a configmap file to declare the source management cluster by entering this command:

2. Shut down the reconciliation in the hosted cluster and in the node pools by entering these
commands:

$ oc create configmap mgmt-parent-cluster -n default --from-
literal=from=${MGMT_CLUSTER_NAME}

PAUSED_UNTIL="true"
oc patch -n ${HC_CLUSTER_NS} hostedclusters/${HC_CLUSTER_NAME} -p '{"spec":
{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 kube-
apiserver openshift-apiserver openshift-oauth-apiserver control-plane-operator

OpenShift Container Platform 4.15 Hosted control planes

34

3. Back up etcd and upload the data to an S3 bucket by running this bash script:

TIP

Wrap this script in a function and call it from the main function.

PAUSED_UNTIL="true"
oc patch -n ${HC_CLUSTER_NS} hostedclusters/${HC_CLUSTER_NAME} -p '{"spec":
{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
oc patch -n ${HC_CLUSTER_NS} nodepools/${NODEPOOLS} -p '{"spec":
{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 kube-
apiserver openshift-apiserver openshift-oauth-apiserver control-plane-operator

ETCD Backup
ETCD_PODS="etcd-0"
if ["${CONTROL_PLANE_AVAILABILITY_POLICY}" = "HighlyAvailable"]; then
 ETCD_PODS="etcd-0 etcd-1 etcd-2"
fi

for POD in ${ETCD_PODS}; do
 # Create an etcd snapshot
 oc exec -it ${POD} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- env
ETCDCTL_API=3 /usr/bin/etcdctl --cacert /etc/etcd/tls/client/etcd-client-ca.crt --cert
/etc/etcd/tls/client/etcd-client.crt --key /etc/etcd/tls/client/etcd-client.key --
endpoints=localhost:2379 snapshot save /var/lib/data/snapshot.db
 oc exec -it ${POD} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- env
ETCDCTL_API=3 /usr/bin/etcdctl -w table snapshot status /var/lib/data/snapshot.db

 FILEPATH="/${BUCKET_NAME}/${HC_CLUSTER_NAME}-${POD}-snapshot.db"
 CONTENT_TYPE="application/x-compressed-tar"
 DATE_VALUE=`date -R`
 SIGNATURE_STRING="PUT\n\n${CONTENT_TYPE}\n${DATE_VALUE}\n${FILEPATH}"

 set +x
 ACCESS_KEY=$(grep aws_access_key_id ${AWS_CREDS} | head -n1 | cut -d= -f2 | sed
"s/ //g")
 SECRET_KEY=$(grep aws_secret_access_key ${AWS_CREDS} | head -n1 | cut -d= -f2 |
sed "s/ //g")
 SIGNATURE_HASH=$(echo -en ${SIGNATURE_STRING} | openssl sha1 -hmac
"${SECRET_KEY}" -binary | base64)
 set -x

 # FIXME: this is pushing to the OIDC bucket
 oc exec -it etcd-0 -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- curl -X PUT -T
"/var/lib/data/snapshot.db" \
 -H "Host: ${BUCKET_NAME}.s3.amazonaws.com" \
 -H "Date: ${DATE_VALUE}" \
 -H "Content-Type: ${CONTENT_TYPE}" \
 -H "Authorization: AWS ${ACCESS_KEY}:${SIGNATURE_HASH}" \
 https://${BUCKET_NAME}.s3.amazonaws.com/${HC_CLUSTER_NAME}-${POD}-
snapshot.db
done

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

35

For more information about backing up etcd, see "Backing up and restoring etcd on a hosted
cluster".

4. Back up Kubernetes and OpenShift Container Platform objects by entering the following
commands. You need to back up the following objects:

HostedCluster and NodePool objects from the HostedCluster namespace

HostedCluster secrets from the HostedCluster namespace

HostedControlPlane from the Hosted Control Plane namespace

Cluster from the Hosted Control Plane namespace

AWSCluster, AWSMachineTemplate, and AWSMachine from the Hosted Control Plane
namespace

MachineDeployments, MachineSets, and Machines from the Hosted Control Plane
namespace

ControlPlane secrets from the Hosted Control Plane namespace

mkdir -p ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
chmod 700 ${BACKUP_DIR}/namespaces/

HostedCluster
echo "Backing Up HostedCluster Objects:"
oc get hc ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS} -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-${HC_CLUSTER_NAME}.yaml
echo "--> HostedCluster"
sed -i '' -e '/^status:$/,$d' ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-
${HC_CLUSTER_NAME}.yaml

NodePool
oc get np ${NODEPOOLS} -n ${HC_CLUSTER_NS} -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-${NODEPOOLS}.yaml
echo "--> NodePool"
sed -i '' -e '/^status:$/,$ d' ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-
${NODEPOOLS}.yaml

Secrets in the HC Namespace
echo "--> HostedCluster Secrets:"
for s in $(oc get secret -n ${HC_CLUSTER_NS} | grep "^${HC_CLUSTER_NAME}" |
awk '{print $1}'); do
 oc get secret -n ${HC_CLUSTER_NS} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/secret-${s}.yaml
done

Secrets in the HC Control Plane Namespace
echo "--> HostedCluster ControlPlane Secrets:"
for s in $(oc get secret -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} | egrep -v
"docker|service-account-token|oauth-openshift|NAME|token-${HC_CLUSTER_NAME}" |
awk '{print $1}'); do
 oc get secret -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/secret-
${s}.yaml

OpenShift Container Platform 4.15 Hosted control planes

36

done

Hosted Control Plane
echo "--> HostedControlPlane:"
oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
-o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/hcp-${HC_CLUSTER_NAME}.yaml

Cluster
echo "--> Cluster:"
CL_NAME=$(oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o jsonpath={.metadata.labels.*} | grep
${HC_CLUSTER_NAME})
oc get cluster ${CL_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml
> ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/cl-
${HC_CLUSTER_NAME}.yaml

AWS Cluster
echo "--> AWS Cluster:"
oc get awscluster ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awscl-
${HC_CLUSTER_NAME}.yaml

AWS MachineTemplate
echo "--> AWS Machine Template:"
oc get awsmachinetemplate ${NODEPOOLS} -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsmt-
${HC_CLUSTER_NAME}.yaml

AWS Machines
echo "--> AWS Machine:"
CL_NAME=$(oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o jsonpath={.metadata.labels.*} | grep
${HC_CLUSTER_NAME})
for s in $(oc get awsmachines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --no-
headers | grep ${CL_NAME} | cut -f1 -d\); do
 oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} awsmachines $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsm-
${s}.yaml
done

MachineDeployments
echo "--> HostedCluster MachineDeployments:"
for s in $(oc get machinedeployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
-o name); do
 mdp_name=$(echo ${s} | cut -f 2 -d /)
 oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machinedeployment-${mdp_name}.yaml
done

MachineSets
echo "--> HostedCluster MachineSets:"
for s in $(oc get machineset -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

37

5. Clean up the ControlPlane routes by entering this command:

By entering that command, you enable the ExternalDNS Operator to delete the Route53
entries.

6. Verify that the Route53 entries are clean by running this script:

name); do
 ms_name=$(echo ${s} | cut -f 2 -d /)
 oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machineset-${ms_name}.yaml
done

Machines
echo "--> HostedCluster Machine:"
for s in $(oc get machine -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name);
do
 m_name=$(echo ${s} | cut -f 2 -d /)
 oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml >
${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machine-${m_name}.yaml
done

$ oc delete routes -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all

function clean_routes() {

 if [[-z "${1}"]];then
 echo "Give me the NS where to clean the routes"
 exit 1
 fi

 # Constants
 if [[-z "${2}"]];then
 echo "Give me the Route53 zone ID"
 exit 1
 fi

 ZONE_ID=${2}
 ROUTES=10
 timeout=40
 count=0

 # This allows us to remove the ownership in the AWS for the API route
 oc delete route -n ${1} --all

 while [${ROUTES} -gt 2]
 do
 echo "Waiting for ExternalDNS Operator to clean the DNS Records in AWS Route53
where the zone id is: ${ZONE_ID}..."
 echo "Try: (${count}/${timeout})"
 sleep 10
 if [[$count -eq timeout]];then
 echo "Timeout waiting for cleaning the Route53 DNS records"
 exit 1

OpenShift Container Platform 4.15 Hosted control planes

38

Verification

Check all of the OpenShift Container Platform objects and the S3 bucket to verify that everything looks
as expected.

Next steps

Restore your hosted cluster.

4.4.4. Restoring a hosted cluster

Gather all of the objects that you backed up and restore them in your destination management cluster.

Prerequisites

You backed up the data from your source management cluster.

TIP

Ensure that the kubeconfig file of the destination management cluster is placed as it is set in the
KUBECONFIG variable or, if you use the script, in the MGMT2_KUBECONFIG variable. Use export
KUBECONFIG=<Kubeconfig FilePath> or, if you use the script, use export
KUBECONFIG=${MGMT2_KUBECONFIG}.

Procedure

1. Verify that the new management cluster does not contain any namespaces from the cluster that
you are restoring by entering these commands:

2. Re-create the deleted namespaces by entering these commands:

3. Restore the secrets in the HC namespace by entering this command:

 fi
 count=$((count+1))
 ROUTES=$(aws route53 list-resource-record-sets --hosted-zone-id ${ZONE_ID} --max-
items 10000 --output json | grep -c ${EXTERNAL_DNS_DOMAIN})
 done
}

SAMPLE: clean_routes "<HC ControlPlane Namespace>" "<AWS_ZONE_ID>"
clean_routes "${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}" "${AWS_ZONE_ID}"

Just in case
export KUBECONFIG=${MGMT2_KUBECONFIG}
BACKUP_DIR=${HC_CLUSTER_DIR}/backup

Namespace deletion in the destination Management cluster
$ oc delete ns ${HC_CLUSTER_NS} || true
$ oc delete ns ${HC_CLUSTER_NS}-{HC_CLUSTER_NAME} || true

Namespace creation
$ oc new-project ${HC_CLUSTER_NS}
$ oc new-project ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

39

4. Restore the objects in the HostedCluster control plane namespace by entering these
commands:

5. If you are recovering the nodes and the node pool to reuse AWS instances, restore the objects
in the HC control plane namespace by entering these commands:

6. Restore the etcd data and the hosted cluster by running this bash script:

$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/secret-*

Secrets
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/secret-*

Cluster
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/hcp-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/cl-*

AWS
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/awscl-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/awsmt-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/awsm-*

Machines
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machinedeployment-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machineset-*
$ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}/machine-*

ETCD_PODS="etcd-0"
if ["${CONTROL_PLANE_AVAILABILITY_POLICY}" = "HighlyAvailable"]; then
 ETCD_PODS="etcd-0 etcd-1 etcd-2"
fi

HC_RESTORE_FILE=${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-
${HC_CLUSTER_NAME}-restore.yaml
HC_BACKUP_FILE=${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-
${HC_CLUSTER_NAME}.yaml
HC_NEW_FILE=${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-
${HC_CLUSTER_NAME}-new.yaml
cat ${HC_BACKUP_FILE} > ${HC_NEW_FILE}
cat > ${HC_RESTORE_FILE} <<EOF
 restoreSnapshotURL:
EOF

for POD in ${ETCD_PODS}; do
 # Create a pre-signed URL for the etcd snapshot
 ETCD_SNAPSHOT="s3://${BUCKET_NAME}/${HC_CLUSTER_NAME}-${POD}-

OpenShift Container Platform 4.15 Hosted control planes

40

7. If you are recovering the nodes and the node pool to reuse AWS instances, restore the node
pool by entering this command:

Verification

To verify that the nodes are fully restored, use this function:

snapshot.db"
 ETCD_SNAPSHOT_URL=$(AWS_DEFAULT_REGION=${MGMT2_REGION} aws s3
presign ${ETCD_SNAPSHOT})

 # FIXME no CLI support for restoreSnapshotURL yet
 cat >> ${HC_RESTORE_FILE} <<EOF
 - "${ETCD_SNAPSHOT_URL}"
EOF
done

cat ${HC_RESTORE_FILE}

if ! grep ${HC_CLUSTER_NAME}-snapshot.db ${HC_NEW_FILE}; then
 sed -i '' -e "/type: PersistentVolume/r ${HC_RESTORE_FILE}" ${HC_NEW_FILE}
 sed -i '' -e '/pausedUntil:/d' ${HC_NEW_FILE}
fi

HC=$(oc get hc -n ${HC_CLUSTER_NS} ${HC_CLUSTER_NAME} -o name || true)
if [[${HC} == ""]];then
 echo "Deploying HC Cluster: ${HC_CLUSTER_NAME} in ${HC_CLUSTER_NS}
namespace"
 oc apply -f ${HC_NEW_FILE}
else
 echo "HC Cluster ${HC_CLUSTER_NAME} already exists, avoiding step"
fi

oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-*

timeout=40
count=0
NODE_STATUS=$(oc get nodes --kubeconfig=${HC_KUBECONFIG} | grep -v NotReady |
grep -c "worker") || NODE_STATUS=0

while [${NODE_POOL_REPLICAS} != ${NODE_STATUS}]
do
 echo "Waiting for Nodes to be Ready in the destination MGMT Cluster:
${MGMT2_CLUSTER_NAME}"
 echo "Try: (${count}/${timeout})"
 sleep 30
 if [[$count -eq timeout]];then
 echo "Timeout waiting for Nodes in the destination MGMT Cluster"
 exit 1
 fi
 count=$((count+1))
 NODE_STATUS=$(oc get nodes --kubeconfig=${HC_KUBECONFIG} | grep -v NotReady |
grep -c "worker") || NODE_STATUS=0
done

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

41

Next steps

Shut down and delete your cluster.

4.4.5. Deleting a hosted cluster from your source management cluster

After you back up your hosted cluster and restore it to your destination management cluster, you shut
down and delete the hosted cluster on your source management cluster.

Prerequisites

You backed up your data and restored it to your source management cluster.

TIP

Ensure that the kubeconfig file of the destination management cluster is placed as it is set in the
KUBECONFIG variable or, if you use the script, in the MGMT_KUBECONFIG variable. Use export
KUBECONFIG=<Kubeconfig FilePath> or, if you use the script, use export
KUBECONFIG=${MGMT_KUBECONFIG}.

Procedure

1. Scale the deployment and statefulset objects by entering these commands:

IMPORTANT

Do not scale the stateful set if the value of its
spec.persistentVolumeClaimRetentionPolicy.whenScaled field is set to
Delete, because this could lead to a loss of data.

As a workaround, update the value of the
spec.persistentVolumeClaimRetentionPolicy.whenScaled field to Retain.
Ensure that no controllers exist that reconcile the stateful set and would return
the value back to Delete, which could lead to a loss of data.

2. Delete the NodePool objects by entering these commands:

Just in case
export KUBECONFIG=${MGMT_KUBECONFIG}

Scale down deployments
oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 --all
oc scale statefulset.apps -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 --
all
sleep 15

NODEPOOLS=$(oc get nodepools -n ${HC_CLUSTER_NS} -o=jsonpath='{.items[?
(@.spec.clusterName=="'${HC_CLUSTER_NAME}'")].metadata.name}')
if [[! -z "${NODEPOOLS}"]];then
 oc patch -n "${HC_CLUSTER_NS}" nodepool ${NODEPOOLS} --type=json --patch='[{
"op":"remove", "path": "/metadata/finalizers" }]'
 oc delete np -n ${HC_CLUSTER_NS} ${NODEPOOLS}
fi

OpenShift Container Platform 4.15 Hosted control planes

42

3. Delete the machine and machineset objects by entering these commands:

4. Delete the cluster object by entering these commands:

5. Delete the AWS machines (Kubernetes objects) by entering these commands. Do not worry
about deleting the real AWS machines. The cloud instances will not be affected.

6. Delete the HostedControlPlane and ControlPlane HC namespace objects by entering these
commands:

7. Delete the HostedCluster and HC namespace objects by entering these commands:

Verification

To verify that everything works, enter these commands:

Machines
for m in $(oc get machines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name); do
 oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} --type=json --patch='[{
"op":"remove", "path": "/metadata/finalizers" }]' || true
 oc delete -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} || true
done

oc delete machineset -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all || true

Cluster
C_NAME=$(oc get cluster -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name)
oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${C_NAME} --type=json --
patch='[{ "op":"remove", "path": "/metadata/finalizers" }]'
oc delete cluster.cluster.x-k8s.io -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all

AWS Machines
for m in $(oc get awsmachine.infrastructure.cluster.x-k8s.io -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} -o name)
do
 oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} --type=json --patch='[{
"op":"remove", "path": "/metadata/finalizers" }]' || true
 oc delete -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} || true
done

Delete HCP and ControlPlane HC NS
oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
hostedcontrolplane.hypershift.openshift.io ${HC_CLUSTER_NAME} --type=json --patch='[{
"op":"remove", "path": "/metadata/finalizers" }]'
oc delete hostedcontrolplane.hypershift.openshift.io -n ${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME} --all
oc delete ns ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} || true

Delete HC and HC Namespace
oc -n ${HC_CLUSTER_NS} patch hostedclusters ${HC_CLUSTER_NAME} -p '{"metadata":
{"finalizers":null}}' --type merge || true
oc delete hc -n ${HC_CLUSTER_NS} ${HC_CLUSTER_NAME} || true
oc delete ns ${HC_CLUSTER_NS} || true

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

43

Next steps

Delete the OVN pods in the hosted cluster so that you can connect to the new OVN control plane that
runs in the new management cluster:

1. Load the KUBECONFIG environment variable with the hosted cluster’s kubeconfig path.

2. Enter this command:

4.4.6. Running a script to back up and restore a hosted cluster

To expedite the process to back up a hosted cluster and restore it within the same region on AWS, you
can modify and run a script.

Procedure

1. Replace the variables in the following script with your information:

Validations
export KUBECONFIG=${MGMT2_KUBECONFIG}

oc get hc -n ${HC_CLUSTER_NS}
oc get np -n ${HC_CLUSTER_NS}
oc get pod -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
oc get machines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}

Inside the HostedCluster
export KUBECONFIG=${HC_KUBECONFIG}
oc get clusterversion
oc get nodes

$ oc delete pod -n openshift-ovn-kubernetes --all

Fill the Common variables to fit your environment, this is just a sample
SSH_KEY_FILE=${HOME}/.ssh/id_rsa.pub
BASE_PATH=${HOME}/hypershift
BASE_DOMAIN="aws.sample.com"
PULL_SECRET_FILE="${HOME}/pull_secret.json"
AWS_CREDS="${HOME}/.aws/credentials"
CONTROL_PLANE_AVAILABILITY_POLICY=SingleReplica
HYPERSHIFT_PATH=${BASE_PATH}/src/hypershift
HYPERSHIFT_CLI=${HYPERSHIFT_PATH}/bin/hypershift
HYPERSHIFT_IMAGE=${HYPERSHIFT_IMAGE:-"quay.io/${USER}/hypershift:latest"}
NODE_POOL_REPLICAS=${NODE_POOL_REPLICAS:-2}

MGMT Context
MGMT_REGION=us-west-1
MGMT_CLUSTER_NAME="${USER}-dev"
MGMT_CLUSTER_NS=${USER}
MGMT_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT_CLUSTER_NS}-
${MGMT_CLUSTER_NAME}"
MGMT_KUBECONFIG="${MGMT_CLUSTER_DIR}/kubeconfig"

MGMT2 Context
MGMT2_CLUSTER_NAME="${USER}-dest"

OpenShift Container Platform 4.15 Hosted control planes

44

2. Save the script to your local file system.

3. Run the script by entering the following command:

where: env_file is the name of the file where you saved the script.

The migration script is maintained at the following repository:
https://github.com/openshift/hypershift/blob/main/contrib/migration/migrate-hcp.sh.

MGMT2_CLUSTER_NS=${USER}
MGMT2_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${MGMT2_CLUSTER_NS}-
${MGMT2_CLUSTER_NAME}"
MGMT2_KUBECONFIG="${MGMT2_CLUSTER_DIR}/kubeconfig"

Hosted Cluster Context
HC_CLUSTER_NS=clusters
HC_REGION=us-west-1
HC_CLUSTER_NAME="${USER}-hosted"
HC_CLUSTER_DIR="${BASE_PATH}/hosted_clusters/${HC_CLUSTER_NS}-
${HC_CLUSTER_NAME}"
HC_KUBECONFIG="${HC_CLUSTER_DIR}/kubeconfig"
BACKUP_DIR=${HC_CLUSTER_DIR}/backup

BUCKET_NAME="${USER}-hosted-${MGMT_REGION}"

DNS
AWS_ZONE_ID="Z026552815SS3YPH9H6MG"
EXTERNAL_DNS_DOMAIN="guest.jpdv.aws.kerbeross.com"

source <env_file>

CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES

45

https://github.com/openshift/hypershift/blob/main/contrib/migration/migrate-hcp.sh

CHAPTER 5. TROUBLESHOOTING HOSTED CONTROL
PLANES

If you encounter issues with hosted control planes, see the following information to guide you through
troubleshooting.

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

5.1. GATHERING INFORMATION TO TROUBLESHOOT HOSTED
CONTROL PLANES

When you need to troubleshoot an issue with hosted control plane clusters, you can gather information
by running the hypershift dump cluster command. The command generates output for the
management cluster and the hosted cluster.

The output for the management cluster contains the following content:

Cluster-scoped resources: These resources are node definitions of the management cluster.

The hypershift-dump compressed file: This file is useful if you need to share the content with
other people.

Namespaced resources: These resources include all of the objects from the relevant
namespaces, such as config maps, services, events, and logs.

Network logs: These logs include the OVN northbound and southbound databases and the
status for each one.

Hosted clusters: This level of output involves all of the resources inside of the hosted cluster.

The output for the hosted cluster contains the following content:

Cluster-scoped resources: These resources include all of the cluster-wide objects, such as
nodes and CRDs.

Namespaced resources: These resources include all of the objects from the relevant
namespaces, such as config maps, services, events, and logs.

Although the output does not contain any secret objects from the cluster, it can contain references to
the names of secrets.

Prerequisites

You must have cluster-admin access to the management cluster.

You need the name value for the HostedCluster resource and the namespace where the CR is

OpenShift Container Platform 4.15 Hosted control planes

46

https://access.redhat.com/support/offerings/techpreview/

You need the name value for the HostedCluster resource and the namespace where the CR is
deployed.

You must have the hcp command line interface installed. For more information, see Installing
the hosted control planes command line interface.

You must have the OpenShift CLI (oc) installed.

You must ensure that the kubeconfig file is loaded and is pointing to the management cluster.

Procedure

To gather output for troubleshooting, enter the following commands:

Example output

To configure the command-line interface so that it impersonates all of the queries against the
management cluster by using a username or service account, enter the hypershift dump
cluster command with the --as flag.
The service account must have enough permissions to query all of the objects from the
namespaces, so the cluster-admin role is recommended to make sure you have enough
permissions. The service account must be located in or have permissions to query the
namespace of the HostedControlPlane resource.

If your username or service account does not have enough permissions, the output contains
only the objects that you have permissions to access. During that process, you might see
forbidden errors.

To use impersonation by using a service account, enter the following commands. Replace
values as necessary:

$ CLUSTERNAME="samplecluster"

$ CLUSTERNS="clusters"

$ mkdir clusterDump-${CLUSTERNS}-${CLUSTERNAME}

$ hypershift dump cluster \
 --name ${CLUSTERNAME} \
 --namespace ${CLUSTERNS} \
 --dump-guest-cluster \
 --artifact-dir clusterDump-${CLUSTERNS}-${CLUSTERNAME}

2023-06-06T12:18:20+02:00 INFO Archiving dump {"command": "tar", "args": ["-cvzf",
"hypershift-dump.tar.gz", "cluster-scoped-resources", "event-filter.html", "namespaces",
"network_logs", "timestamp"]}
2023-06-06T12:18:21+02:00 INFO Successfully archived dump {"duration":
"1.519376292s"}

$ CLUSTERNAME="samplecluster"

$ CLUSTERNS="clusters"

CHAPTER 5. TROUBLESHOOTING HOSTED CONTROL PLANES

47

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#hosted-install-cli

To use impersonation by using a username, enter the following commands. Replace values
as necessary:

Additional resources

Must-gather for a hosted cluster

$ SA="samplesa"

$ SA_NAMESPACE="default"

$ mkdir clusterDump-${CLUSTERNS}-${CLUSTERNAME}

$ hypershift dump cluster \
 --name ${CLUSTERNAME} \
 --namespace ${CLUSTERNS} \
 --dump-guest-cluster \
 --as "system:serviceaccount:${SA_NAMESPACE}:${SA}" \
 --artifact-dir clusterDump-${CLUSTERNS}-${CLUSTERNAME}

$ CLUSTERNAME="samplecluster"

$ CLUSTERNS="clusters"

$ CLUSTERUSER="cloud-admin"

$ mkdir clusterDump-${CLUSTERNS}-${CLUSTERNAME}

$ hypershift dump cluster \
 --name ${CLUSTERNAME} \
 --namespace ${CLUSTERNS} \
 --dump-guest-cluster \
 --as "${CLUSTERUSER}" \
 --artifact-dir clusterDump-${CLUSTERNS}-${CLUSTERNAME}

OpenShift Container Platform 4.15 Hosted control planes

48

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#trouble-hosted-cluster-backplane

	Table of Contents
	CHAPTER 1. HOSTED CONTROL PLANES OVERVIEW
	1.1. INTRODUCTION TO HOSTED CONTROL PLANES
	1.1.1. Architecture of hosted control planes
	1.1.2. Benefits of hosted control planes

	1.2. GLOSSARY OF COMMON CONCEPTS AND PERSONAS FOR HOSTED CONTROL PLANES
	1.2.1. Concepts
	1.2.2. Personas

	1.3. VERSIONING FOR HOSTED CONTROL PLANES
	1.4. UPGRADING SCENARIOS FOR HOSTED CONTROL PLANES

	CHAPTER 2. CONFIGURING HOSTED CONTROL PLANES
	2.1. BARE METAL
	2.2. OPENSHIFT VIRTUALIZATION
	2.3. AMAZON WEB SERVICES
	2.4. IBM Z
	2.5. IBM POWER
	2.6. NON BARE METAL AGENT MACHINES

	CHAPTER 3. MANAGING HOSTED CONTROL PLANES
	3.1. UPDATES FOR HOSTED CONTROL PLANES
	3.1.1. Updates for the hosted cluster
	3.1.2. Updates for node pools
	3.1.2.1. Replace updates for node pools
	3.1.2.2. In place updates for node pools

	3.2. UPDATING NODE POOLS FOR HOSTED CONTROL PLANES
	3.3. PAUSING THE RECONCILIATION OF A HOSTED CLUSTER AND HOSTED CONTROL PLANE
	3.4. CONFIGURING METRICS SETS FOR HOSTED CONTROL PLANES
	3.4.1. Configuring the SRE metrics set

	3.5. CREATING MONITORING DASHBOARDS FOR HOSTED CLUSTERS
	3.5.1. Enabling monitoring dashboards
	3.5.2. Dashboard customization

	3.6. SCALING DOWN THE DATA PLANE TO ZERO
	3.7. DELETING A HOSTED CLUSTER

	CHAPTER 4. BACKUP, RESTORE, AND DISASTER RECOVERY FOR HOSTED CONTROL PLANES
	4.1. RECOVERING ETCD PODS FOR HOSTED CLUSTERS
	4.1.1. Checking the status of a hosted cluster
	4.1.2. Recovering an etcd member for a hosted cluster

	4.2. BACKING UP AND RESTORING ETCD ON A HOSTED CLUSTER ON AWS
	4.2.1. Taking a snapshot of etcd on a hosted cluster
	4.2.2. Restoring an etcd snapshot on a hosted cluster

	4.3. BACKING UP AND RESTORING ETCD ON A HOSTED CLUSTER IN AN ON-PREMISE ENVIRONMENT
	4.4. DISASTER RECOVERY FOR A HOSTED CLUSTER WITHIN AN AWS REGION
	4.4.1. Example environment and context
	4.4.2. Overview of the backup and restore process
	4.4.3. Backing up a hosted cluster
	4.4.4. Restoring a hosted cluster
	4.4.5. Deleting a hosted cluster from your source management cluster
	4.4.6. Running a script to back up and restore a hosted cluster

	CHAPTER 5. TROUBLESHOOTING HOSTED CONTROL PLANES
	5.1. GATHERING INFORMATION TO TROUBLESHOOT HOSTED CONTROL PLANES

