
OpenShift Container Platform 3.7

Day Two Operations Guide

OpenShift Container Platform 3.7 Day Two Operations Guide

Last Updated: 2019-04-23

OpenShift Container Platform 3.7 Day Two Operations Guide

OpenShift Container Platform 3.7 Day Two Operations Guide

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

While the OpenShift Container Platform Cluster administration guide is focused more on
configuration, this guide will describe an overview of common daily maintenance tasks.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. RUN-ONCE TASKS
2.1. NTP SYNCHRONIZATION
2.2. ENTROPY
2.3. CHECKING THE DEFAULT STORAGE CLASS

CHAPTER 3. ENVIRONMENT HEALTH CHECKS
3.1. CHECKING COMPLETE ENVIRONMENT HEALTH

Procedure
3.2. CREATING ALERTS USING PROMETHEUS
3.3. HOST HEALTH
3.4. ROUTER AND REGISTRY HEALTH
3.5. NETWORK CONNECTIVITY

3.5.1. Connectivity on master hosts
3.5.2. Connectivity on node instances

Procedure
3.6. STORAGE
3.7. DOCKER STORAGE
3.8. API SERVICE STATUS
3.9. CONTROLLER ROLE VERIFICATION
3.10. VERIFYING CORRECT MAXIMUM TRANSMISSION UNIT (MTU) SIZE

Prerequisites

CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP
4.1. CREATING A MASTER HOST BACKUP

Procedure
4.2. CREATING A NODE HOST BACKUP

Procedure
4.3. BACKING UP REGISTRY CERTIFICATES

Procedure
4.4. BACKING UP OTHER INSTALLATION FILES

Procedure
4.5. BACKING UP APPLICATION DATA

Procedure
4.6. ETCD BACKUP

4.6.1. Backing up etcd
4.6.1.1. Backing up etcd configuration files

Procedure
4.6.1.2. Backing up etcd data

Prerequisites
Procedure

4.7. BACKING UP A PROJECT
Procedure

4.8. BACKING UP PERSISTENT VOLUME CLAIMS
Procedure

CHAPTER 5. HOST-LEVEL TASKS
5.1. ADDING A HOST TO THE CLUSTER
5.2. MASTER HOST TASKS

5.2.1. Deprecating a master host
5.2.1.1. Creating a master host backup

5

6
6
6
7

9
9
9
9

10
11
12
12
13
13
16
17
17
18
19
19

22
22
23
26
26
29
29
29
29
30
30
31
31
31
32
32
32
33
35
35
37
37

39
39
39
39
39

Table of Contents

1

Procedure
5.2.1.2. Backing up etcd

5.2.1.2.1. Backing up etcd configuration files
Procedure

5.2.1.2.2. Backing up etcd data
Prerequisites
Procedure

5.2.1.3. Deprecating a master host
Procedure

5.2.1.4. Removing an etcd host
Procedure
Procedure

5.2.2. Creating a master host backup
Procedure

5.2.3. Restoring a master host backup
Procedure

5.3. NODE HOST TASKS
5.3.1. Deprecating a node host

Prerequisites
Procedure
5.3.1.1. Replacing a node host

5.3.2. Creating a node host backup
Procedure

5.3.3. Restoring a node host backup
Procedure

5.3.4. Node maintenance and next steps
5.4. ETCD TASKS

5.4.1. etcd backup
5.4.1.1. Backing up etcd

5.4.1.1.1. Backing up etcd configuration files
Procedure

5.4.1.1.2. Backing up etcd data
Prerequisites
Procedure

5.4.2. Restoring etcd
5.4.2.1. Restoring etcd v2 & v3 data

Procedure
5.4.2.1.1. Fix the peerURLS parameter

5.4.2.1.1.1. Procedure
5.4.2.2. Restoring etcd for v3

Procedure
5.4.3. Replacing an etcd host
5.4.4. Scaling etcd

Prerequisites
5.4.4.1. Adding a new etcd host using Ansible

Procedure
5.4.4.2. Manually adding a new etcd host

Procedure
Modify the current etcd cluster
Modify the new etcd host
Modify each OpenShift Container Platform master

5.4.5. Removing an etcd host
Procedure

39
43
43
43
43
43
44
45
45
47
47
47
49
49
53
53
54
54
54
54
61
61
61
64
64
65
65
65
66
66
66
66
66
67
68
68
68
70
70
71
71
72
72
72
74
74
75
75
75
78
80
81
81

OpenShift Container Platform 3.7 Day Two Operations Guide

2

. .

. .

Procedure

CHAPTER 6. PROJECT-LEVEL TASKS
6.1. BACKING UP A PROJECT

Procedure
6.2. RESTORING A PROJECT

Procedure
6.2.1. Backing up persistent volume claims

Procedure
6.2.2. Restoring persistent volume claims

6.2.2.1. Restoring files to an existing PVC
Procedure

6.2.2.2. Restoring data to a new PVC
Procedure

6.2.3. Pruning images and containers

CHAPTER 7. DOCKER TASKS
7.1. INCREASING DOCKER STORAGE

7.1.1. Evacuating the node
Procedure

7.1.2. Increasing storage
Prerequisites
Procedure

7.1.3. Changing the storage backend
7.1.3.1. Evacuating the node

7.2. MANAGING DOCKER CERTIFICATES
7.2.1. Installing a certificate authority certificate for external registries

Procedure
7.2.2. Docker certificates backup

Procedure
7.2.3. Docker certificates restore

7.3. MANAGING DOCKER REGISTRIES
7.3.1. Docker search external registries

Procedure
7.3.2. Docker external registries whitelist and blacklist

Procedure
7.3.3. Secure registries
7.3.4. Insecure registries

Procedure
7.3.5. Authenticated registries

Procedure
7.3.6. ImagePolicy admission plug-in

Procedure
7.3.7. Import images from external registries

Procedure
7.3.8. OpenShift Container Platform registry integration

7.3.8.1. Connect the registry project with the cluster
Procedure

81

84
84
84
86
86
86
86
88
88
88
88
88
89

91
91
91
91
91
92
92
94
94
96
97
97
98
98
99
99
99
99

100
100
102
102
102
103
103
105
105
106
106
108
108
109

Table of Contents

3

OpenShift Container Platform 3.7 Day Two Operations Guide

4

CHAPTER 1. OVERVIEW
This section is built for OpenShift Container Platform administrators with a fresh installation.

While the OpenShift Container Platform Cluster administration guide is focused more on configuration,
this guide describes an overview of common daily maintenance tasks.

CHAPTER 1. OVERVIEW

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-index

CHAPTER 2. RUN-ONCE TASKS
After installing OpenShift Container Platform, your system might need extra configuration to ensure your
hosts consistently run smoothly.

While these are classified as run-once tasks, you can perform any of these at any time if any
circumstances change.

2.1. NTP SYNCHRONIZATION

NTP (Network Time Protocol) is for keeping hosts in sync with the world clock. Time synchronization is
important for time sensitive operations, such as log keeping and time stamps, and is highly
recommended for Kubernetes, which OpenShift Container Platform is built on. OpenShift Container
Platform operations include etcd leader election, health checks for pods and some other issues, and
helps prevent time skew problems.

Depending on your instance, NTP might not be enabled by default. To verify that a host is configured to
use NTP:

$ timedatectl
 Local time: Thu 2017-12-21 14:58:34 UTC
 Universal time: Thu 2017-12-21 14:58:34 UTC
 RTC time: Thu 2017-12-21 14:58:34
 Time zone: Etc/UTC (UTC, +0000)
 NTP enabled: yes
NTP synchronized: yes
 RTC in local TZ: no
 DST active: n/a

If both NTP enabled and NTP synchronized are yes, then NTP synchronization is active.

If no, install and enable the ntp or chrony RPM package.

For NTP:

timedatectl set-ntp true

For chrony:

yum install chrony
systemctl enable chronyd --now

IMPORTANT

Time synchronization should be enabled on all hosts in the cluster, whether using NTP or
any other method.

For more information about the timedatectl command, timezones, and clock configuration, see
Configuring the date and time and UTC, Timezones, and DST.

2.2. ENTROPY

OpenShift Container Platform 3.7 Day Two Operations Guide

6

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-configuring_the_date_and_time
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/s1-utc_timezones_and_dst

OpenShift Container Platform uses entropy to generate random numbers for objects such as IDs or SSL
traffic. These operations wait until there is enough entropy to complete the task. Without enough
entropy, the kernel is not able to generate these random numbers with sufficient speed, which can lead
to timeouts and the refusal of secure connections.

To check available entropy:

$ cat /proc/sys/kernel/random/entropy_avail
2683

The available entropy should be verified on all node hosts in the cluster. Ideally, this value should be
above 1000.

NOTE

Red Hat recommends monitoring this value and issuing an alert if the value is under 800.

Alternatively, you can use the rngtest command to check not only the available entropy, but if your
system can feed enough entropy as well:

$ cat /dev/random | rngtest -c 100

The rngtest command is available from the rng-tools

If the above takes around 30 seconds to complete, then there is not enough entropy available.

Depending on your environment, entropy can be increased in multiple ways. For more information, see
the following blog post: https://developers.redhat.com/blog/2017/10/05/entropy-rhel-based-cloud-
instances/.

Generally, you can increase entropy by installing the rng-tools package and enabling the rngd
service:

yum install rng-tools
systemctl enable --now rngd

Once the rngd service has started, entropy should increase to a sufficient level.

2.3. CHECKING THE DEFAULT STORAGE CLASS

For proper functionality of dynamically provisioned persistent storage, the default storage class needs to
be defined. During the installation, this default storage class is defined for common cloud providers, such
as Amazon Web Services (AWS), Google Cloud Platform (GCP), and more.

To verify that the default storage class is defined:

$ oc get storageclass
NAME TYPE
ssd kubernetes.io/gce-pd
standard (default) kubernetes.io/gce-pd

The above output is taken from an OpenShift Container Platform instance running on GCP, where two
kinds of persistent storage are available: standard (HDD) and SSD. Notice the standard storage class is

CHAPTER 2. RUN-ONCE TASKS

7

https://developers.redhat.com/blog/2017/10/05/entropy-rhel-based-cloud-instances/

configured as the default. If there is no storage class defined, or none is set as a default, see the
Dynamic Provisioning and Creating Storage Classes section for instructions on how to set up a storage
class as suggested.

OpenShift Container Platform 3.7 Day Two Operations Guide

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-persistent-storage-dynamically-provisioning-pvs

CHAPTER 3. ENVIRONMENT HEALTH CHECKS
This topic contains steps to verify the overall health of the OpenShift Container Platform cluster and the
various components, as well as describing the intended behavior.

Knowing the verification process for the various components is the first step to troubleshooting issues. If
experiencing issues, you can use the checks provided in this section to diagnose any problems.

3.1. CHECKING COMPLETE ENVIRONMENT HEALTH

To verify the end-to-end functionality of an OpenShift Container Platform cluster, build and deploy an
example application.

Procedure

1. Create a new project named validate, as well as an example application from the cakephp-
mysql-example template:

$ oc new-project validate
$ oc new-app cakephp-mysql-example

You can check the logs to follow the build:

$ oc logs -f bc/cakephp-mysql-example

2. Once the build is complete, two pods should be running: a database and an application:

$ oc get pods
NAME READY STATUS RESTARTS
AGE
cakephp-mysql-example-1-build 0/1 Completed 0 1m
cakephp-mysql-example-2-247xm 1/1 Running 0
39s
mysql-1-hbk46 1/1 Running 0
1m

3. Visit the application URL. The Cake PHP framework welcome page should be visible. The URL
should have the following format cakephp-mysql-example-validate.<app_domain>.

4. Once the functionality has been verified, the validate project can be deleted:

$ oc delete project validate

All resources within the project will be deleted as well.

3.2. CREATING ALERTS USING PROMETHEUS

You can integrate OpenShift Container Platform with Prometheus to create visuals and alerts to help
diagnose any environment issues before they arise. These issues can include if a node goes down, if a
pod is consuming too much CPU or memory, and more.

See the Prometheus on OpenShift Container Platform section in the Installation and configuration guide
for more information.

CHAPTER 3. ENVIRONMENT HEALTH CHECKS

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#openshift-prometheus

IMPORTANT

Prometheus on OpenShift Container Platform is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during the
development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

3.3. HOST HEALTH

To verify that the cluster is up and running, connect to a master instance, and run the following:

$ oc get nodes
NAME STATUS AGE VERSION
ocp-infra-node-1clj Ready 1h
v1.6.1+5115d708d7
ocp-infra-node-86qr Ready 1h
v1.6.1+5115d708d7
ocp-infra-node-g8qw Ready 1h
v1.6.1+5115d708d7
ocp-master-94zd Ready,SchedulingDisabled 1h
v1.6.1+5115d708d7
ocp-master-gjkm Ready,SchedulingDisabled 1h
v1.6.1+5115d708d7
ocp-master-wc8w Ready,SchedulingDisabled 1h
v1.6.1+5115d708d7
ocp-node-c5dg Ready 1h
v1.6.1+5115d708d7
ocp-node-ghxn Ready 1h
v1.6.1+5115d708d7
ocp-node-w135 Ready 1h
v1.6.1+5115d708d7

The above cluster example consists of three master hosts, three infrastructure node hosts, and three
node hosts. All of them are running. All hosts in the cluster should be visible in this output.

The Ready status means that master hosts can communicate with node hosts and that the nodes are
ready to run pods (excluding the nodes in which scheduling is disabled).

Before you run etcd commands, source the etcd.conf file:

source /etc/etcd/etcd.conf

You can check the basic etcd health status from any master instance with the etcdctl command:

etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-file=$ETCD_PEER_KEY_FILE
\
 --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS cluster-
health
member 59df5107484b84df is healthy: got healthy result from
https://10.156.0.5:2379

OpenShift Container Platform 3.7 Day Two Operations Guide

10

https://access.redhat.com/support/offerings/techpreview/

member 6df7221a03f65299 is healthy: got healthy result from
https://10.156.0.6:2379
member fea6dfedf3eecfa3 is healthy: got healthy result from
https://10.156.0.9:2379
cluster is healthy

However, to get more information about etcd hosts, including the associated master host:

etcdctl --cert-file=$ETCD_PEER_CERT_FILE --key-file=$ETCD_PEER_KEY_FILE
\
 --ca-file=/etc/etcd/ca.crt --endpoints=$ETCD_LISTEN_CLIENT_URLS member
list
295750b7103123e0: name=ocp-master-zh8d peerURLs=https://10.156.0.7:2380
clientURLs=https://10.156.0.7:2379 isLeader=true
b097a72f2610aea5: name=ocp-master-qcg3 peerURLs=https://10.156.0.11:2380
clientURLs=https://10.156.0.11:2379 isLeader=false
fea6dfedf3eecfa3: name=ocp-master-j338 peerURLs=https://10.156.0.9:2380
clientURLs=https://10.156.0.9:2379 isLeader=false

All etcd hosts should contain the master host name if the etcd cluster is co-located with master services,
or all etcd instances should be visible if etcd is running separately.

NOTE

etcdctl2 is an alias for the etcdctl tool that contains the proper flags to query the
etcd cluster in v2 data model, as well as, etcdctl3 for v3 data model.

3.4. ROUTER AND REGISTRY HEALTH

To check if a router service is running:

$ oc -n default get deploymentconfigs/router
NAME REVISION DESIRED CURRENT TRIGGERED BY
router 1 3 3 config

The values in the DESIRED and CURRENT columns should match the number of nodes hosts.

Use the same command to check the registry status:

$ oc -n default get deploymentconfigs/docker-registry
NAME REVISION DESIRED CURRENT TRIGGERED BY
docker-registry 1 3 3 config

NOTE

Multiple running instances of the container registry require backend storage supporting
writes by multiple processes. If the chosen infrastructure provider does not contain this
ability, running a single instance of a container registry is acceptable.

To verify that all pods are running and on which hosts:

$ oc -n default get pods -o wide
NAME READY STATUS RESTARTS AGE IP

CHAPTER 3. ENVIRONMENT HEALTH CHECKS

11

NODE
docker-registry-1-54nhl 1/1 Running 0 2d
172.16.2.3 ocp-infra-node-tl47
docker-registry-1-jsm2t 1/1 Running 0 2d
172.16.8.2 ocp-infra-node-62rc
docker-registry-1-qbt4g 1/1 Running 0 2d
172.16.14.3 ocp-infra-node-xrtz
registry-console-2-gbhcz 1/1 Running 0 2d
172.16.8.4 ocp-infra-node-62rc
router-1-6zhf8 1/1 Running 0 2d
10.156.0.4 ocp-infra-node-62rc
router-1-ffq4g 1/1 Running 0 2d
10.156.0.10 ocp-infra-node-tl47
router-1-zqxbl 1/1 Running 0 2d
10.156.0.8 ocp-infra-node-xrtz

NOTE

If OpenShift Container Platform is using an external container registry, the internal registry
service does not need to be running.

3.5. NETWORK CONNECTIVITY

Network connectivity has two main networking layers: the cluster network for node interaction, and the
software defined network (SDN) for pod interaction. OpenShift Container Platform supports multiple
network configurations, often optimized for a specific infrastructure provider.

NOTE

Due to the complexity of networking, not all verification scenarios are covered in this
section.

3.5.1. Connectivity on master hosts

etcd and master hosts

Master services keep their state synchronized using the etcd key-value store. Communication between
master and etcd services is important, whether those etcd services are collocated on master hosts, or
running on hosts designated only for the etcd service. This communication happens on TCP ports 2379
and 2380. See the Host health section for methods to check this communication.

SkyDNS

SkyDNS provides name resolution of local services running in OpenShift Container Platform. This
service uses TCP and UDP port 8053.

To verify the name resolution:

$ dig +short docker-registry.default.svc.cluster.local
172.30.150.7

If the answer matches the output of the following, SkyDNS service is working correctly:

$ oc get svc/docker-registry -n default

OpenShift Container Platform 3.7 Day Two Operations Guide

12

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry 172.30.150.7 <none> 5000/TCP 3d

API service and web console

Both the API service and web console share the same port, usually TCP 8443 or 443, depending on the
setup. This port needs to be available within the cluster and to everyone who needs to work with the
deployed environment. The URLs under which this port is reachable may differ for internal cluster and for
external clients.

In the following example, the https://internal-master.example.com:443 URL is used by the
internal cluster, and the https://master.example.com:443 URL is used by external clients. On
any node host:

$ curl https://internal-master.example.com:443/version
{
 "major": "1",
 "minor": "6",
 "gitVersion": "v1.6.1+5115d708d7",
 "gitCommit": "fff65cf",
 "gitTreeState": "clean",
 "buildDate": "2017-10-11T22:44:25Z",
 "goVersion": "go1.7.6",
 "compiler": "gc",
 "platform": "linux/amd64"
}

This must be reachable from client’s network:

$ curl -k https://master.example.com:443/healthz
ok

3.5.2. Connectivity on node instances

The SDN connecting pod communication on nodes uses UDP port 4789 by default.

To verify node host functionality, create a new application. The following example ensures the node
reaches the docker registry, which is running on an infrastructure node:

Procedure

1. Create a new project:

$ oc new-project sdn-test

2. Deploy an httpd application:

$ oc new-app centos/httpd-24-
centos7~https://github.com/sclorg/httpd-ex

Wait until the build is complete:

$ oc get pods
NAME READY STATUS RESTARTS AGE

CHAPTER 3. ENVIRONMENT HEALTH CHECKS

13

https://internal-master.example.com:443
https://master.example.com:443

httpd-ex-1-205hz 1/1 Running 0 34s
httpd-ex-1-build 0/1 Completed 0 1m

3. Connect to the running pod:

$ oc rsh po/<pod-name>

For example:

$ oc rsh po/httpd-ex-1-205hz

4. Check the healthz path of the internal registry service:

$ curl -kv https://docker-
registry.default.svc.cluster.local:5000/healthz
* About to connect() to docker-registry.default.svc.cluster.locl
port 5000 (#0)
* Trying 172.30.150.7...
* Connected to docker-registry.default.svc.cluster.local
(172.30.150.7) port 5000 (#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* skipping SSL peer certificate verification
* SSL connection using TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
* Server certificate:
* subject: CN=172.30.150.7
* start date: Nov 30 17:21:51 2017 GMT
* expire date: Nov 30 17:21:52 2019 GMT
* common name: 172.30.150.7
* issuer: CN=openshift-signer@1512059618
> GET /healthz HTTP/1.1
> User-Agent: curl/7.29.0
> Host: docker-registry.default.svc.cluster.local:5000
> Accept: */*
>
< HTTP/1.1 200 OK
< Cache-Control: no-cache
< Date: Mon, 04 Dec 2017 16:26:49 GMT
< Content-Length: 0
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host docker-registry.default.svc.cluster.local
left intact

sh-4.2$ *exit*

The HTTP/1.1 200 OK response means the node is correctly connecting.

5. Clean up the test project:

$ oc delete project sdn-test
project "sdn-test" deleted

6. The node host is listening on TCP port 10250. This port needs to be reachable by all master
hosts on any node, and if monitoring is deployed in the cluster, the infrastructure nodes must

OpenShift Container Platform 3.7 Day Two Operations Guide

14

have access to this port on all instances as well. Broken communication on this port can be
detected with the following command:

$ oc get nodes
NAME STATUS AGE VERSION
ocp-infra-node-1clj Ready 4d
v1.6.1+5115d708d7
ocp-infra-node-86qr Ready 4d
v1.6.1+5115d708d7
ocp-infra-node-g8qw Ready 4d
v1.6.1+5115d708d7
ocp-master-94zd Ready,SchedulingDisabled 4d
v1.6.1+5115d708d7
ocp-master-gjkm Ready,SchedulingDisabled 4d
v1.6.1+5115d708d7
ocp-master-wc8w Ready,SchedulingDisabled 4d
v1.6.1+5115d708d7
ocp-node-c5dg Ready 4d
v1.6.1+5115d708d7
ocp-node-ghxn Ready 4d
v1.6.1+5115d708d7
ocp-node-w135 NotReady 4d
v1.6.1+5115d708d7

In the output above, the node service on the ocp-node-w135 node is not reachable by the
master services, which is represented by its NotReady status.

7. The last service is the router, which is responsible for routing connections to the correct services
running in the OpenShift Container Platform cluster. Routers listen on TCP ports 80 and 443 on
infrastructure nodes for ingress traffic. Before routers can start working, DNS must be
configured:

$ dig *.apps.example.com

; <<>> DiG 9.11.1-P3-RedHat-9.11.1-8.P3.fc27 <<>> *.apps.example.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45790
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;*.apps.example.com. IN A

;; ANSWER SECTION:
*.apps.example.com. 3571 IN CNAME apps.example.com.
apps.example.com. 3561 IN A 35.xx.xx.92

;; Query time: 0 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Tue Dec 05 16:03:52 CET 2017
;; MSG SIZE rcvd: 105

CHAPTER 3. ENVIRONMENT HEALTH CHECKS

15

The IP address, in this case 35.xx.xx.92, should be pointing to the load balancer distributing
ingress traffic to all infrastructure nodes. To verify the functionality of the routers, check the
registry service once more, but this time from outside the cluster:

$ curl -kv https://docker-registry-default.apps.example.com/healthz
* Trying 35.xx.xx.92...
* TCP_NODELAY set
* Connected to docker-registry-default.apps.example.com
(35.xx.xx.92) port 443 (#0)
...
< HTTP/2 200
< cache-control: no-cache
< content-type: text/plain; charset=utf-8
< content-length: 0
< date: Tue, 05 Dec 2017 15:13:27 GMT
<
* Connection #0 to host docker-registry-default.apps.example.com
left intact

3.6. STORAGE

Master instances need at least 40 GB of hard disk space for the /var directory. Check the disk usage of
a master host using the df command:

$ df -hT
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda1 xfs 45G 2.8G 43G 7% /
devtmpfs devtmpfs 3.6G 0 3.6G 0% /dev
tmpfs tmpfs 3.6G 0 3.6G 0% /dev/shm
tmpfs tmpfs 3.6G 63M 3.6G 2% /run
tmpfs tmpfs 3.6G 0 3.6G 0% /sys/fs/cgroup
tmpfs tmpfs 732M 0 732M 0% /run/user/1000
tmpfs tmpfs 732M 0 732M 0% /run/user/0

Node instances need at least 15 GB space for the /var directory, and at least another 15 GB for Docker
storage (/var/lib/docker in this case). Depending on the size of the cluster and the amount of
ephemeral storage desired for pods, a separate partition should be created for
/var/lib/origin/openshift.local.volumes on the nodes.

$ df -hT
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda1 xfs 25G 2.4G 23G 10% /
devtmpfs devtmpfs 3.6G 0 3.6G 0% /dev
tmpfs tmpfs 3.6G 0 3.6G 0% /dev/shm
tmpfs tmpfs 3.6G 147M 3.5G 4% /run
tmpfs tmpfs 3.6G 0 3.6G 0% /sys/fs/cgroup
/dev/sdb xfs 25G 2.7G 23G 11% /var/lib/docker
/dev/sdc xfs 50G 33M 50G 1%
/var/lib/origin/openshift.local.volumes
tmpfs tmpfs 732M 0 732M 0% /run/user/1000

Persistent storage for pods should be handled outside of the instances running the OpenShift Container
Platform cluster. Persistent volumes for pods can be provisioned by the infrastructure provider, or with
the use of container native storage or container ready storage.

OpenShift Container Platform 3.7 Day Two Operations Guide

16

3.7. DOCKER STORAGE

Docker Storage can be backed by one of two options. The first is a thin pool logical volume with device
mapper, the second, since Red Hat Enterprise Linux version 7.4, is an overlay2 file system. The overlay2
file system is generally recommended due to the ease of setup and increased performance.

The Docker storage disk is mounted as /var/lib/docker and formatted with xfs file system. Docker
storage is configured to use overlay2 filesystem:

$ cat /etc/sysconfig/docker-storage
DOCKER_STORAGE_OPTIONS='--storage-driver overlay2'

To verify this storage driver is used by Docker:

docker info
Containers: 4
 Running: 4
 Paused: 0
 Stopped: 0
Images: 4
Server Version: 1.12.6
Storage Driver: overlay2
 Backing Filesystem: xfs
Logging Driver: journald
Cgroup Driver: systemd
Plugins:
 Volume: local
 Network: overlay host bridge null
 Authorization: rhel-push-plugin
Swarm: inactive
Runtimes: docker-runc runc
Default Runtime: docker-runc
Security Options: seccomp selinux
Kernel Version: 3.10.0-693.11.1.el7.x86_64
Operating System: Employee SKU
OSType: linux
Architecture: x86_64
Number of Docker Hooks: 3
CPUs: 2
Total Memory: 7.147 GiB
Name: ocp-infra-node-1clj
ID: T7T6:IQTG:WTUX:7BRU:5FI4:XUL5:PAAM:4SLW:NWKL:WU2V:NQOW:JPHC
Docker Root Dir: /var/lib/docker
Debug Mode (client): false
Debug Mode (server): false
Registry: https://registry.access.redhat.com/v1/
WARNING: bridge-nf-call-iptables is disabled
WARNING: bridge-nf-call-ip6tables is disabled
Insecure Registries:
 127.0.0.0/8
Registries: registry.access.redhat.com (secure),
registry.access.redhat.com (secure), docker.io (secure)

3.8. API SERVICE STATUS

CHAPTER 3. ENVIRONMENT HEALTH CHECKS

17

The OpenShift API service, atomic-openshift-master-api.service, runs on all master
instances. To see the status of the service:

$ systemctl status atomic-openshift-master-api.service
● atomic-openshift-master-api.service - Atomic OpenShift Master API
 Loaded: loaded (/usr/lib/systemd/system/atomic-openshift-master-
api.service; enabled; vendor preset: disabled)
 Active: active (running) since Thu 2017-11-30 11:40:19 EST; 5 days ago
 Docs: https://github.com/openshift/origin
 Main PID: 30047 (openshift)
 Memory: 65.0M
 CGroup: /system.slice/atomic-openshift-master-api.service
 └─30047 /usr/bin/openshift start master api --
config=/etc/origin/master/ma...

Dec 06 09:15:49 ocp-master-94zd atomic-openshift-master-api[30047]: I1206
09:15:49.85...
Dec 06 09:15:50 ocp-master-94zd atomic-openshift-master-api[30047]: I1206
09:15:50.96...
Dec 06 09:15:52 ocp-master-94zd atomic-openshift-master-api[30047]: I1206
09:15:52.34...

The API service exposes a health check, which can be queried externally with:

$ curl -k https://master.example.com/healthz
ok

3.9. CONTROLLER ROLE VERIFICATION

The OpenShift Container Platform controller service, atomic-openshift-master-
controllers.service, is available across all master hosts. The service runs in active/passive mode,
meaning it should only be running on one master at any time.

The OpenShift Container Platform controllers execute a procedure to choose which host runs the
service. The current running value is stored in an annotation in a special configmap stored in the
kube-system project.

Verify the master host running the atomic-openshift-master-controllers service as a
cluster-admin user:

$ oc get -n kube-system cm openshift-master-controllers -o yaml
apiVersion: v1
kind: ConfigMap
metadata:
 annotations:
 control-plane.alpha.kubernetes.io/leader: '{"holderIdentity":"master-
ose-master-0.example.com-10.19.115.212-
dnwrtcl4","leaseDurationSeconds":15,"acquireTime":"2018-02-
17T18:16:54Z","renewTime":"2018-02-19T13:50:33Z","leaderTransitions":16}'
 creationTimestamp: 2018-02-02T10:30:04Z
 name: openshift-master-controllers
 namespace: kube-system
 resourceVersion: "17349662"

OpenShift Container Platform 3.7 Day Two Operations Guide

18

 selfLink: /api/v1/namespaces/kube-system/configmaps/openshift-master-
controllers
 uid: 08636843-0804-11e8-8580-fa163eb934f0

The command outputs the current master controller in the control-
plane.alpha.kubernetes.io/leader annotation, within the holderIdentity property as:

master-<hostname>-<ip>-<8_random_characters>

Find the hostname of the master host by filtering the output using the following:

$ oc get -n kube-system cm openshift-master-controllers -o json | jq -r
'.metadata.annotations[] | fromjson.holderIdentity | match("^master-(.*)-
[0-9.]*-[0-9a-z]{8}$") | .captures[0].string'
ose-master-0.example.com

3.10. VERIFYING CORRECT MAXIMUM TRANSMISSION UNIT (MTU)
SIZE

Verifying the maximum transmission unit (MTU) prevents a possible networking misconfiguration that
can masquerade as an SSL certificate issue.

When a packet is larger than the MTU size that is transmitted over HTTP, the physical network router is
able to break the packet into multiple packets to transmit the data. However, when a packet is larger than
the MTU size is that transmitted over HTTPS, the router is forced to drop the packet.

Installation produces certificates that provide secure connections to multiple components that include:

master hosts

node hosts

infrastructure nodes

registry

router

These certificates can be found within the /etc/origin/master directory for the master nodes and
/etc/origin/node directory for the infra and app nodes.

After installation, you can verify connectivity to the REGISTRY_OPENSHIFT_SERVER_ADDR using the
process outlined in the Network connectivity section.

Prerequisites

1. From a master host, get the HTTPS address:

$ oc get dc docker-registry -o
jsonpath='{.spec.template.spec.containers[].env[?
(@.name=="OPENSHIFT_DEFAULT_REGISTRY")].value}{"\n"}'
docker-registry.default.svc:5000

The above gives the output of docker-registry.default.svc:5000.

CHAPTER 3. ENVIRONMENT HEALTH CHECKS

19

2. Append /healthz to the value given above, use it to check on all hosts (master, infrastructure,
node):

$ curl -v https://docker-registry.default.svc:5000/healthz
* About to connect() to docker-registry.default.svc port 5000 (#0)
* Trying 172.30.11.171...
* Connected to docker-registry.default.svc (172.30.11.171) port 5000
(#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* CAfile: /etc/pki/tls/certs/ca-bundle.crt
 CApath: none
* SSL connection using TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
* Server certificate:
* subject: CN=172.30.11.171
* start date: Oct 18 05:30:10 2017 GMT
* expire date: Oct 18 05:30:11 2019 GMT
* common name: 172.30.11.171
* issuer: CN=openshift-signer@1508303629
> GET /healthz HTTP/1.1
> User-Agent: curl/7.29.0
> Host: docker-registry.default.svc:5000
> Accept: */*
>
< HTTP/1.1 200 OK
< Cache-Control: no-cache
< Date: Tue, 24 Oct 2017 19:42:35 GMT
< Content-Length: 0
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host docker-registry.default.svc left intact

The above example output shows the MTU size being used to ensure the SSL connection is
correct. The attempt to connect is successful, followed by connectivity being established and
completes with initializing the NSS with the certpath and all the server certificate information
regarding the docker-registry.

An improper MTU size results in a timeout:

$ curl -v https://docker-registry.default.svc:5000/healthz
* About to connect() to docker-registry.default.svc port 5000 (#0)
* Trying 172.30.11.171...
* Connected to docker-registry.default.svc (172.30.11.171) port 5000
(#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb

The above example shows that the connection is established, but it cannot finish initializing NSS
with certpath. The issue deals with improper MTU size set within the
/etc/origin/node/node-config.yaml file.

To fix this issue, adjust the MTU size within the /etc/origin/node/node-config.yaml to
50 bytes smaller than the MTU size being used by the OpenShift SDN Ethernet device.

3. View the MTU size of the desired Ethernet device (i.e. eth0):

$ ip link show eth0

OpenShift Container Platform 3.7 Day Two Operations Guide

20

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP mode DEFAULT qlen 1000
 link/ether fa:16:3e:92:6a:86 brd ff:ff:ff:ff:ff:ff

The above shows MTU set to 1500.

4. To change the MTU size, modify the /etc/origin/node/node-config.yaml file and set a
value that is 50 bytes smaller than output provided by the ip command.
For example, if the MTU size is set to 1500, adjust the MTU size to 1450 within the
/etc/origin/node/node-config.yaml file:

5. Save the changes and reboot the node:

NOTE

You must change the MTU size on all masters and nodes that are part of the
OpenShift Container Platform SDN. Also, the MTU size of the tun0 interface must
be the same across all nodes that are part of the cluster.

6. Once the node is back online, confirm the issue no longer exists by re-running the original curl
command.

$ curl -v https://docker-registry.default.svc:5000/healthz

If the timeout persists, continue to adjust the MTU size in increments of 50 bytes and repeat the
process.

networkConfig:
 mtu: 1450

CHAPTER 3. ENVIRONMENT HEALTH CHECKS

21

CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP
Creating an environment-wide backup involves copying important data to assist with restoration in the
case of crashing instances, or corrupt data. After backups have been created, they can be restored onto
a newly installed version of the relevant component.

In OpenShift Container Platform, you can back up, saving state to separate storage, at the cluster level.
The full state of an environment backup includes:

Cluster data files

etcd data on each master

API objects

Registry storage

Volume storage

Perform a back up on a regular basis to prevent data loss.

IMPORTANT

The following process describes a generic way of backing up applications and the
OpenShift Container Platform cluster. It cannot take into account custom requirements.
Use these steps as a foundation for a full backup and restoration procedure for your
cluster. You must take all necessary precautions to prevent data loss.

Backup and restore is not guaranteed. You are responsible for backing up your own data.

4.1. CREATING A MASTER HOST BACKUP

Perform this backup process before any change to the OpenShift Container Platform infrastructure, such
as a system update, upgrade, or any other significant modification. Back up data regularly to ensure that
recent data is available if a failure occurs.

OpenShift Container Platform files

The master instances run important services, such as the API, controllers. The /etc/origin/master
directory stores many important files:

The configuration, the API, controllers, services, and more

Certificates generated by the installation

All cloud provider-related configuration

Keys and other authentication files, such as htpasswd if you use htpasswd

And more

You can customize OpenShift Container Platform services, such as increasing the log level or using
proxies. The configuration files are stored in the /etc/sysconfig directory.

Because the masters are also unschedulable nodes, back up the entire /etc/origin directory.

OpenShift Container Platform 3.7 Day Two Operations Guide

22

Procedure

IMPORTANT

You must perform the following steps on each master node.

1. Create a backup of the master host configuration files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo cp -aR /etc/origin ${MYBACKUPDIR}/etc
$ sudo cp -aR /etc/sysconfig/atomic-* ${MYBACKUPDIR}/etc/sysconfig/

NOTE

The configuration file is stored in the /etc/sysconfig/atomic-openshift-
master-api, and /etc/sysconfig/atomic-openshift-master-
controllers directories.

WARNING

The /etc/origin/master/ca.serial.txt file is generated on only the
first master listed in the Ansible host inventory. If you deprecate the first
master host, copy the /etc/origin/master/ca.serial.txt file to the
rest of master hosts before the process.

2. Other important files that need to be considered when planning a backup include:

File Description

/etc/cni/* Container Network Interface configuration (if
used)

/etc/sysconfig/iptables Where the iptables rules are stored

/etc/sysconfig/docker-storage-
setup

The input file for container-storage-
setup command

/etc/sysconfig/docker The docker configuration file

/etc/sysconfig/docker-network docker networking configuration (i.e. MTU)

/etc/sysconfig/docker-storage docker storage configuration (generated by
container-storage-setup)

/etc/dnsmasq.conf Main configuration file for dnsmasq



CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP

23

/etc/dnsmasq.d/* Different dnsmasq configuration files

/etc/sysconfig/flanneld flannel configuration file (if used)

/etc/pki/ca-trust/source/anchors/ Certificates added to the system (i.e. for external
registries)

Create a backup of those files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo mkdir -p ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors
$ sudo cp -aR /etc/sysconfig/{iptables,docker-*,flanneld} \
 ${MYBACKUPDIR}/etc/sysconfig/
$ sudo cp -aR /etc/dnsmasq* /etc/cni ${MYBACKUPDIR}/etc/
$ sudo cp -aR /etc/pki/ca-trust/source/anchors/* \
 ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors/

3. If a package is accidentally removed or you need to resore a file that is included in an rpm
package, having a list of rhel packages installed on the system can be useful.

NOTE

If you use Red Hat Satellite features, such as content views or the facts store,
provide a proper mechanism to reinstall the missing packages and a historical
data of packages installed in the systems.

To create a list of the current rhel packages installed in the system:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}
$ rpm -qa | sort | sudo tee $MYBACKUPDIR/packages.txt

4. If you used the previous steps, the following files are present in the backup directory:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo find ${MYBACKUPDIR} -mindepth 1 -type f -printf '%P\n'
etc/sysconfig/atomic-openshift-master
etc/sysconfig/atomic-openshift-master-api
etc/sysconfig/atomic-openshift-master-controllers
etc/sysconfig/atomic-openshift-node
etc/sysconfig/flanneld
etc/sysconfig/iptables
etc/sysconfig/docker-network
etc/sysconfig/docker-storage
etc/sysconfig/docker-storage-setup
etc/sysconfig/docker-storage-setup.rpmnew
etc/origin/master/ca.crt
etc/origin/master/ca.key
etc/origin/master/ca.serial.txt
etc/origin/master/ca-bundle.crt
etc/origin/master/master.proxy-client.crt

OpenShift Container Platform 3.7 Day Two Operations Guide

24

etc/origin/master/master.proxy-client.key
etc/origin/master/service-signer.crt
etc/origin/master/service-signer.key
etc/origin/master/serviceaccounts.private.key
etc/origin/master/serviceaccounts.public.key
etc/origin/master/openshift-master.crt
etc/origin/master/openshift-master.key
etc/origin/master/openshift-master.kubeconfig
etc/origin/master/master.server.crt
etc/origin/master/master.server.key
etc/origin/master/master.kubelet-client.crt
etc/origin/master/master.kubelet-client.key
etc/origin/master/admin.crt
etc/origin/master/admin.key
etc/origin/master/admin.kubeconfig
etc/origin/master/etcd.server.crt
etc/origin/master/etcd.server.key
etc/origin/master/master.etcd-client.key
etc/origin/master/master.etcd-client.csr
etc/origin/master/master.etcd-client.crt
etc/origin/master/master.etcd-ca.crt
etc/origin/master/policy.json
etc/origin/master/scheduler.json
etc/origin/master/htpasswd
etc/origin/master/session-secrets.yaml
etc/origin/master/openshift-router.crt
etc/origin/master/openshift-router.key
etc/origin/master/registry.crt
etc/origin/master/registry.key
etc/origin/master/master-config.yaml
etc/origin/generated-configs/master-master-
1.example.com/master.server.crt
...[OUTPUT OMITTED]...
etc/origin/cloudprovider/openstack.conf
etc/origin/node/system:node:master-0.example.com.crt
etc/origin/node/system:node:master-0.example.com.key
etc/origin/node/ca.crt
etc/origin/node/system:node:master-0.example.com.kubeconfig
etc/origin/node/server.crt
etc/origin/node/server.key
etc/origin/node/node-dnsmasq.conf
etc/origin/node/resolv.conf
etc/origin/node/node-config.yaml
etc/origin/node/flannel.etcd-client.key
etc/origin/node/flannel.etcd-client.csr
etc/origin/node/flannel.etcd-client.crt
etc/origin/node/flannel.etcd-ca.crt
etc/pki/ca-trust/source/anchors/openshift-ca.crt
etc/pki/ca-trust/source/anchors/registry-ca.crt
etc/dnsmasq.conf
etc/dnsmasq.d/origin-dns.conf
etc/dnsmasq.d/origin-upstream-dns.conf
etc/dnsmasq.d/node-dnsmasq.conf
packages.txt

If needed, you can compress the files to save space:

CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP

25

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo tar -zcvf /backup/$(hostname)-$(date +%Y%m%d).tar.gz
$MYBACKUPDIR
$ sudo rm -Rf ${MYBACKUPDIR}

To create any of these files from scratch, the openshift-ansible-contrib repository contains the
backup_master_node.sh script, which performs the previous steps. The script creates a directory on
the host where you run the script and copies all the files previously mentioned.

NOTE

The openshift-ansible-contrib script is not supported by Red Hat, but the
reference architecture team performs testing to ensure the code operates as defined and
is secure.

You can run the script on every master host with:

$ mkdir ~/git
$ cd ~/git
$ git clone https://github.com/openshift/openshift-ansible-contrib.git
$ cd openshift-ansible-contrib/reference-architecture/day2ops/scripts
$./backup_master_node.sh -h

4.2. CREATING A NODE HOST BACKUP

Creating a backup of a node host is a different use case from backing up a master host. Because master
hosts contain many important files, creating a backup is highly recommended. However, the nature of
nodes is that anything special is replicated over the nodes in case of failover, and they typically do not
contain data that is necessary to run an environment. If a backup of a node contains something
necessary to run an environment, then a creating a backup is recommended.

The backup process is to be performed before any change to the infrastructure, such as a system
update, upgrade, or any other significant modification. Backups should be performed on a regular basis
to ensure the most recent data is available if a failure occurs.

OpenShift Container Platform files

Node instances run applications in the form of pods, which are based on containers. The
/etc/origin/ and /etc/origin/node directories house important files, such as:

The configuration of the node services

Certificates generated by the installation

Cloud provider-related configuration

Keys and other authentication files, such as the dnsmasq configuration

The OpenShift Container Platform services can be customized to increase the log level, use proxies, and
more, and the configuration files are stored in the /etc/sysconfig directory.

Procedure

1. Create a backup of the node configuration files:

OpenShift Container Platform 3.7 Day Two Operations Guide

26

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo cp -aR /etc/origin ${MYBACKUPDIR}/etc
$ sudo cp -aR /etc/sysconfig/atomic-openshift-node
${MYBACKUPDIR}/etc/sysconfig/

2. OpenShift Container Platform uses specific files that must be taken into account when planning
the backup policy, including:

File Description

/etc/cni/* Container Network Interface configuration (if
used)

/etc/sysconfig/iptables Where the iptables rules are stored

/etc/sysconfig/docker-storage-
setup

The input file for container-storage-
setup command

/etc/sysconfig/docker The docker configuration file

/etc/sysconfig/docker-network docker networking configuration (i.e. MTU)

/etc/sysconfig/docker-storage docker storage configuration (generated by
container-storage-setup)

/etc/dnsmasq.conf Main configuration file for dnsmasq

/etc/dnsmasq.d/* Different dnsmasq configuration files

/etc/sysconfig/flanneld flannel configuration file (if used)

/etc/pki/ca-trust/source/anchors/ Certificates added to the system (i.e. for external
registries)

To create those files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo mkdir -p ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors
$ sudo cp -aR /etc/sysconfig/{iptables,docker-*,flanneld} \
 ${MYBACKUPDIR}/etc/sysconfig/
$ sudo cp -aR /etc/dnsmasq* /etc/cni ${MYBACKUPDIR}/etc/
$ sudo cp -aR /etc/pki/ca-trust/source/anchors/* \
 ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors/

3. If a package is accidentally removed, or a file included in an rpm package should be restored,
having a list of rhel packages installed on the system can be useful.

CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP

27

NOTE

If using Red Hat Satellite features, such as content views or the facts store,
provide a proper mechanism to reinstall the missing packages and a historical
data of packages installed in the systems.

To create a list of the current rhel packages installed in the system:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}
$ rpm -qa | sort | sudo tee $MYBACKUPDIR/packages.txt

4. The following files should now be present in the backup directory:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo find ${MYBACKUPDIR} -mindepth 1 -type f -printf '%P\n'
etc/sysconfig/atomic-openshift-node
etc/sysconfig/flanneld
etc/sysconfig/iptables
etc/sysconfig/docker-network
etc/sysconfig/docker-storage
etc/sysconfig/docker-storage-setup
etc/sysconfig/docker-storage-setup.rpmnew
etc/origin/node/system:node:app-node-0.example.com.crt
etc/origin/node/system:node:app-node-0.example.com.key
etc/origin/node/ca.crt
etc/origin/node/system:node:app-node-0.example.com.kubeconfig
etc/origin/node/server.crt
etc/origin/node/server.key
etc/origin/node/node-dnsmasq.conf
etc/origin/node/resolv.conf
etc/origin/node/node-config.yaml
etc/origin/node/flannel.etcd-client.key
etc/origin/node/flannel.etcd-client.csr
etc/origin/node/flannel.etcd-client.crt
etc/origin/node/flannel.etcd-ca.crt
etc/origin/cloudprovider/openstack.conf
etc/pki/ca-trust/source/anchors/openshift-ca.crt
etc/pki/ca-trust/source/anchors/registry-ca.crt
etc/dnsmasq.conf
etc/dnsmasq.d/origin-dns.conf
etc/dnsmasq.d/origin-upstream-dns.conf
etc/dnsmasq.d/node-dnsmasq.conf
packages.txt

If needed, the files can be compressed to save space:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo tar -zcvf /backup/$(hostname)-$(date +%Y%m%d).tar.gz
$MYBACKUPDIR
$ sudo rm -Rf ${MYBACKUPDIR}

OpenShift Container Platform 3.7 Day Two Operations Guide

28

To create any of these files from scratch, the openshift-ansible-contrib repository contains the
backup_master_node.sh script, which performs the previous steps. The script creates a directory on
the host running the script and copies all the files previously mentioned.

NOTE

The openshift-ansible-contrib script is not supported by Red Hat, but the
reference architecture team performs testing to ensure the code operates as defined and
is secure.

The script can be executed on every master host with:

$ mkdir ~/git
$ cd ~/git
$ git clone https://github.com/openshift/openshift-ansible-contrib.git
$ cd openshift-ansible-contrib/reference-architecture/day2ops/scripts
$./backup_master_node.sh -h

4.3. BACKING UP REGISTRY CERTIFICATES

If you use an external secured registry, you must save all the registry certificates. The registry is secured
by default.

IMPORTANT

You must perform the following steps on each cluster node.

Procedure

1. Back up the registry certificates:

cd /etc/docker/certs.d/
tar cf /tmp/docker-registry-certs-$(hostname).tar *

2. Move the backup to an external location.

NOTE

When working with one or more external secured registry, any host that pulls or pushes
images must trust the registry certificates to run pods.

4.4. BACKING UP OTHER INSTALLATION FILES

Back up the files that you used to install OpenShift Container Platform.

Procedure

1. Because the restoration procedure involves a complete reinstallation, save all the files used in
the initial installation. These files might include:

Ansible playbooks and inventory files from the cluster installation

CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#exposing-the-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#exposing-the-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-install-advanced-install

/etc/yum.repos.d/ose.repo from the disconnected installation method

2. Backup the procedures for post-installation steps. Some installations might involve steps that are
not included in the installer. These steps might include changes to the services outside of the
control of OpenShift Container Platform or the installation of extra services like monitoring
agents. Additional configuration that is not yet supported by the advanced installer might also be
affected, such as using multiple authentication providers.

4.5. BACKING UP APPLICATION DATA

In many cases, you can back up application data by using the oc rsync command, assuming rsync is
installed within the container image. The Red Hat rhel7 base image contains rsync. Therefore, all
images that are based on rhel7 contain it as well. See Troubleshooting and Debugging CLI Operations -
rsync.

WARNING

This is a generic backup of application data and does not take into account
application-specific backup procedures, for example, special export and import
procedures for database systems.

Other means of backup might exist depending on the type of the persistent volume you use, for example,
Cinder, NFS, or Gluster.

The paths to back up are also application specific. You can determine what path to back up by looking at
the mountPath for volumes in the deploymentconfig.

NOTE

You can perform this type of application data backup only while the application pod is
running.

Procedure

Example of backing up a Jenkins deployment’s application data

1. Get the application data mountPath from the deploymentconfig:

$ oc get dc/jenkins -o jsonpath='{ .spec.template.spec.containers[?
(@.name=="jenkins")].volumeMounts[?(@.name=="jenkins-
data")].mountPath }'
/var/lib/jenkins

2. Get the name of the pod that is currently running:

$ oc get pod --selector=deploymentconfig=jenkins -o jsonpath='{
.metadata.name }'
jenkins-1-37nux



OpenShift Container Platform 3.7 Day Two Operations Guide

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-install-disconnected-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cli_reference/#cli-operations-rsync

3. Use the oc rsync command to copy application data:

$ oc rsync jenkins-1-37nux:/var/lib/jenkins /tmp/

4.6. ETCD BACKUP

etcd is the key value store for all object definitions, as well as the persistent master state. Other
components watch for changes, then bring themselves into the desired state.

OpenShift Container Platform versions prior to 3.5 use etcd version 2 (v2), while 3.5 and later use
version 3 (v3). The data model between the two versions of etcd is different. etcd v3 can use both the v2
and v3 data models, whereas etcd v2 can only use the v2 data model. In an etcd v3 server, the v2 and
v3 data stores exist in parallel and are independent.

For both v2 and v3 operations, you can use the ETCDCTL_API environment variable to use the proper
API:

$ etcdctl -v
etcdctl version: 3.2.5
API version: 2
$ ETCDCTL_API=3 etcdctl version
etcdctl version: 3.2.5
API version: 3.2

See Migrating etcd Data (v2 to v3) section for information about how to migrate to v3.

The etcd backup process is composed of two different procedures:

Configuration backup: Including the required etcd configuration and certificates

Data backup: Including both v2 and v3 data model.

You can perform the data backup process on any host that has connectivity to the etcd cluster, where the
proper certificates are provided, and where the etcdctl tool is installed.

NOTE

The backup files must be copied to an external system, ideally outside the OpenShift
Container Platform environment, and then encrypted.

Note that the etcd backup still has all the references to current storage volumes. When you restore etcd,
OpenShift Container Platform starts launching the previous pods on nodes and reattaching the same
storage. This process is no different than the process of when you remove a node from the cluster and
add a new one back in its place. Anything attached to that node is reattached to the pods on whatever
nodes they are rescheduled to.

4.6.1. Backing up etcd

When you back up etcd, you must back up both the etcd configuration files and the etcd data.

4.6.1.1. Backing up etcd configuration files

The etcd configuration files to be preserved are all stored in the /etc/etcd directory of the instances

CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/upgrading_clusters/#migrating-etcd-data-v2-to-v3

where etcd is running. This includes the etcd configuration file (/etc/etcd/etcd.conf) and the
required certificates for cluster communication. All those files are generated at installation time by the
Ansible installer.

Procedure
For each etcd member of the cluster, back up the etcd configuration.

$ ssh master-0
mkdir -p /backup/etcd-config-$(date +%Y%m%d)/
cp -R /etc/etcd/ /backup/etcd-config-$(date +%Y%m%d)/

NOTE

The certificates and configuration files on each etcd cluster member are unique.

4.6.1.2. Backing up etcd data

Prerequisites

NOTE

The OpenShift Container Platform installer creates aliases to avoid typing all the flags
named etcdctl2 for etcd v2 tasks and etcdctl3 for etcd v3 tasks.

However, the etcdctl3 alias does not provide the full endpoint list to the etcdctl
command, so the --endpoints option with all the endpoints must be provided.

Before backing up etcd:

etcdctl binaries should be available or, in containerized installations, the rhel7/etcd
container should be available

Ensure connectivity with the etcd cluster (port 2379/tcp)

Ensure the proper certificates to connect to the etcd cluster

1. To ensure the etcd cluster is working, check its health.

If you use the etcd v2 API, run the following command:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://*master-0.example.com*:2379,\
 https://*master-1.example.com*:2379,\
 https://*master-2.example.com*:2379"\
 cluster-health
member 5ee217d19001 is healthy: got healthy result from
https://192.168.55.12:2379
member 2a529ba1840722c0 is healthy: got healthy result from
https://192.168.55.8:2379
member ed4f0efd277d7599 is healthy: got healthy result from
https://192.168.55.13:2379
cluster is healthy

OpenShift Container Platform 3.7 Day Two Operations Guide

32

If you use the etcd v3 API, run the following command:

ETCDCTL_API=3 etcdctl --cert="/etc/etcd/peer.crt" \
 --key=/etc/etcd/peer.key \
 --cacert="/etc/etcd/ca.crt" \
 --endpoints="https://*master-0.example.com*:2379,\
 https://*master-1.example.com*:2379,\
 https://*master-2.example.com*:2379"
 endpoint health
https://master-0.example.com:2379 is healthy: successfully
committed proposal: took = 5.011358ms
https://master-1.example.com:2379 is healthy: successfully
committed proposal: took = 1.305173ms
https://master-2.example.com:2379 is healthy: successfully
committed proposal: took = 1.388772ms

2. Check the member list.

If you use the etcd v2 API, run the following command:

etcdctl2 member list
2a371dd20f21ca8d: name=master-1.example.com
peerURLs=https://192.168.55.12:2380
clientURLs=https://192.168.55.12:2379 isLeader=false
40bef1f6c79b3163: name=master-0.example.com
peerURLs=https://192.168.55.8:2380
clientURLs=https://192.168.55.8:2379 isLeader=false
95dc17ffcce8ee29: name=master-2.example.com
peerURLs=https://192.168.55.13:2380
clientURLs=https://192.168.55.13:2379 isLeader=true

If you use the etcd v3 API, run the following command:

etcdctl3 member list
2a371dd20f21ca8d, started, master-1.example.com,
https://192.168.55.12:2380, https://192.168.55.12:2379
40bef1f6c79b3163, started, master-0.example.com,
https://192.168.55.8:2380, https://192.168.55.8:2379
95dc17ffcce8ee29, started, master-2.example.com,
https://192.168.55.13:2380, https://192.168.55.13:2379

Procedure

NOTE

While the etcdctl backup command is used to perform the backup, etcd v3 has no
concept of a backup. Instead, you either take a snapshot from a live member with the
etcdctl snapshot save command or copy the member/snap/db file from an etcd
data directory.

The etcdctl backup command rewrites some of the metadata contained in the
backup, specifically, the node ID and cluster ID, which means that in the backup, the node
loses its former identity. To recreate a cluster from the backup, you create a new, single-
node cluster, then add the rest of the nodes to the cluster. The metadata is rewritten to
prevent the new node from joining an existing cluster.

CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP

33

Back up the etcd data:

If you use the v2 API, take the following actions:

a. Stop all etcd services:

systemctl stop etcd.service

b. Create the etcd data backup and copy the etcd db file:

mkdir -p /backup/etcd-$(date +%Y%m%d)
etcdctl2 backup \
 --data-dir /var/lib/etcd \
 --backup-dir /backup/etcd-$(date +%Y%m%d)
cp /var/lib/etcd/member/snap/db /backup/etcd-$(date +%Y%m%d)

c. Start all etcd services:

systemctl start etcd.service

If you use the v3 API, run the following commands:

IMPORTANT

Because clusters upgraded from previous versions of OpenShift Container
Platform might contain v2 data stores, back up both v2 and v3 datastores.

a. Back up etcd v3 data:

systemctl show etcd --property=ActiveState,SubState
mkdir -p /backup/etcd-$(date +%Y%m%d)
etcdctl3 snapshot save */backup/etcd-$(date +%Y%m%d)*/db
Snapshot saved at /backup/etcd-<date>/db

b. Back up etcd v2 data:

systemctl stop etcd.service
etcdctl2 backup \
 --data-dir /var/lib/etcd \
 --backup-dir /backup/etcd-$(date +%Y%m%d)
cp /var/lib/etcd/member/snap/db /backup/etcd-$(date +%Y%m%d)
systemctl start etcd.service

NOTE

The etcdctl snapshot save command requires the etcd service to be
running.

In these commands, a /backup/etcd-<date>/ directory is created, where <date>
represents the current date, which must be an external NFS share, S3 bucket, or any
external storage location.

OpenShift Container Platform 3.7 Day Two Operations Guide

34

In the case of an all-in-one cluster, the etcd data directory is located in the
/var/lib/origin/openshift.local.etcd directory.

4.7. BACKING UP A PROJECT

Creating a backup of all relevant data involves exporting all important information, then restoring into a
new project.

NOTE

Currently, a OpenShift Container Platform project back up and restore tool is being
developed by Red Hat. See the following bug for more information:

bugzilla 1303205.

Procedure

1. List all the relevant data to back up:

$ oc get all
NAME TYPE FROM LATEST
bc/ruby-ex Source Git 1

NAME TYPE FROM STATUS STARTED
DURATION
builds/ruby-ex-1 Source Git@c457001 Complete 2 minutes ago
35s

NAME DOCKER REPO
TAGS UPDATED
is/guestbook 10.111.255.221:5000/myproject/guestbook
latest 2 minutes ago
is/hello-openshift 10.111.255.221:5000/myproject/hello-openshift
latest 2 minutes ago
is/ruby-22-centos7 10.111.255.221:5000/myproject/ruby-22-centos7
latest 2 minutes ago
is/ruby-ex 10.111.255.221:5000/myproject/ruby-ex
latest 2 minutes ago

NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/guestbook 1 1 1
config,image(guestbook:latest)
dc/hello-openshift 1 1 1
config,image(hello-openshift:latest)
dc/ruby-ex 1 1 1
config,image(ruby-ex:latest)

NAME DESIRED CURRENT READY AGE
rc/guestbook-1 1 1 1 2m
rc/hello-openshift-1 1 1 1 2m
rc/ruby-ex-1 1 1 1 2m

NAME CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
svc/guestbook 10.111.105.84 <none> 3000/TCP

CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP

35

https://bugzilla.redhat.com/show_bug.cgi?id=1303205

2m
svc/hello-openshift 10.111.230.24 <none>
8080/TCP,8888/TCP 2m
svc/ruby-ex 10.111.232.117 <none> 8080/TCP
2m

NAME READY STATUS RESTARTS AGE
po/guestbook-1-c010g 1/1 Running 0 2m
po/hello-openshift-1-4zw2q 1/1 Running 0 2m
po/ruby-ex-1-build 0/1 Completed 0 2m
po/ruby-ex-1-rxc74 1/1 Running 0 2m

2. Export the project objects to a .yaml or .json file.

To export the project objects into a project.yaml file:

$ oc export all -o yaml > project.yaml

To export the project objects into a project.json file:

$ oc export all -o json > project.json

3. Export the project’s role bindings, secrets, service accounts, and persistent
volume claims:

$ for object in rolebindings serviceaccounts secrets imagestreamtags
podpreset cms egressnetworkpolicies rolebindingrestrictions
limitranges resourcequotas pvcs templates cronjobs statefulsets hpas
deployments replicasets poddisruptionbudget endpoints
do
 oc export $object -o yaml > $object.yaml
done

4. To list all the namespaced objects:

$ oc api-resources --namespaced=true -o name

5. Some exported objects can rely on specific metadata or references to unique IDs in the project.
This is a limitation on the usability of the recreated objects.
When using imagestreams, the image parameter of a deploymentconfig can point to a
specific sha checksum of an image in the internal registry that would not exist in a restored
environment. For instance, running the sample "ruby-ex" as oc new-app centos/ruby-22-
centos7~https://github.com/sclorg/ruby-ex.git creates an imagestream ruby-
ex using the internal registry to host the image:

$ oc get dc ruby-ex -o jsonpath="
{.spec.template.spec.containers[].image}"
10.111.255.221:5000/myproject/ruby-
ex@sha256:880c720b23c8d15a53b01db52f7abdcbb2280e03f686a5c8edfef1a2a7
b21cee

If importing the deploymentconfig as it is exported with oc export it fails if the image does
not exist.

OpenShift Container Platform 3.7 Day Two Operations Guide

36

4.8. BACKING UP PERSISTENT VOLUME CLAIMS

You can synchronize persistent data from inside of a container to a server.

IMPORTANT

Depending on the provider that is hosting the OpenShift Container Platform environment,
the ability to launch third party snapshot services for backup and restore purposes also
exists. As OpenShift Container Platform does not have the ability to launch these
services, this guide does not describe these steps.

Consult any product documentation for the correct backup procedures of specific applications. For
example, copying the mysql data directory itself does not create a usable backup. Instead, run the
specific backup procedures of the associated application and then synchronize any data. This includes
using snapshot solutions provided by the OpenShift Container Platform hosting platform.

Procedure

1. View the project and pods:

$ oc get pods
NAME READY STATUS RESTARTS AGE
demo-1-build 0/1 Completed 0 2h
demo-2-fxx6d 1/1 Running 0 1h

2. Describe the desired pod to find the volumes that are currently used by a persistent volume:

$ oc describe pod demo-2-fxx6d
Name: demo-2-fxx6d
Namespace: test
Security Policy: restricted
Node: ip-10-20-6-20.ec2.internal/10.20.6.20
Start Time: Tue, 05 Dec 2017 12:54:34 -0500
Labels: app=demo
 deployment=demo-2
 deploymentconfig=demo
Status: Running
IP: 172.16.12.5
Controllers: ReplicationController/demo-2
Containers:
 demo:
 Container ID:
docker://201f3e55b373641eb36945d723e1e212ecab847311109b5cee1fd010942
4217a
 Image: docker-
registry.default.svc:5000/test/demo@sha256:0a9f2487a0d95d51511e49d20
dc9ff6f350436f935968b0c83fcb98a7a8c381a
 Image ID: docker-pullable://docker-
registry.default.svc:5000/test/demo@sha256:0a9f2487a0d95d51511e49d20
dc9ff6f350436f935968b0c83fcb98a7a8c381a
 Port: 8080/TCP
 State: Running
 Started: Tue, 05 Dec 2017 12:54:52 -0500
 Ready: True
 Restart Count: 0

CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP

37

 Volume Mounts:
 /opt/app-root/src/uploaded from persistent-volume (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-
token-8mmrk (ro)
 Environment Variables: <none>
...omitted...

This output shows that the persistent data is in the /opt/app-root/src/uploaded directory.

3. Copy the data locally:

$ oc rsync demo-2-fxx6d:/opt/app-root/src/uploaded ./demo-app
receiving incremental file list
uploaded/
uploaded/ocp_sop.txt
uploaded/lost+found/

sent 38 bytes received 190 bytes 152.00 bytes/sec
total size is 32 speedup is 0.14

The ocp_sop.txt file is downloaded to the local system to be backed up by backup software
or another backup mechanism.

NOTE

You can also use the previous steps if a pod starts without needing to use a pvc,
but you later decide that a pvc is necessary. You can preserve the data and then
use the restorate process to populate the new storage.

OpenShift Container Platform 3.7 Day Two Operations Guide

38

CHAPTER 5. HOST-LEVEL TASKS

5.1. ADDING A HOST TO THE CLUSTER

For information on adding master or node hosts to a cluster, see the Adding hosts to an existing cluster
section in the Install and configuration guide.

5.2. MASTER HOST TASKS

5.2.1. Deprecating a master host

Deprecating a master host removes it from the OpenShift Container Platform environment.

The reasons to deprecate or scale down master hosts include hardware re-sizing or replacing the
underlying infrastructure.

Highly available OpenShift Container Platform environments require at least three master hosts and
three etcd nodes. Usually, the master hosts are colocated with the etcd services. If you deprecate a
master host, you must also deprecate the etcd service on that host.

IMPORTANT

Ensure that the master and etcd services are always deployed in odd numbers due to the
voting mechanisms that take place among those services.

5.2.1.1. Creating a master host backup

Perform this backup process before any change to the OpenShift Container Platform infrastructure, such
as a system update, upgrade, or any other significant modification. Back up data regularly to ensure that
recent data is available if a failure occurs.

OpenShift Container Platform files

The master instances run important services, such as the API, controllers. The /etc/origin/master
directory stores many important files:

The configuration, the API, controllers, services, and more

Certificates generated by the installation

All cloud provider-related configuration

Keys and other authentication files, such as htpasswd if you use htpasswd

And more

You can customize OpenShift Container Platform services, such as increasing the log level or using
proxies. The configuration files are stored in the /etc/sysconfig directory.

Because the masters are also unschedulable nodes, back up the entire /etc/origin directory.

Procedure

CHAPTER 5. HOST-LEVEL TASKS

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-adding-hosts-to-cluster

IMPORTANT

You must perform the following steps on each master node.

1. Create a backup of the master host configuration files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo cp -aR /etc/origin ${MYBACKUPDIR}/etc
$ sudo cp -aR /etc/sysconfig/atomic-* ${MYBACKUPDIR}/etc/sysconfig/

NOTE

The configuration file is stored in the /etc/sysconfig/atomic-openshift-
master-api, and /etc/sysconfig/atomic-openshift-master-
controllers directories.

WARNING

The /etc/origin/master/ca.serial.txt file is generated on only the
first master listed in the Ansible host inventory. If you deprecate the first
master host, copy the /etc/origin/master/ca.serial.txt file to the
rest of master hosts before the process.

2. Other important files that need to be considered when planning a backup include:

File Description

/etc/cni/* Container Network Interface configuration (if
used)

/etc/sysconfig/iptables Where the iptables rules are stored

/etc/sysconfig/docker-storage-
setup

The input file for container-storage-
setup command

/etc/sysconfig/docker The docker configuration file

/etc/sysconfig/docker-network docker networking configuration (i.e. MTU)

/etc/sysconfig/docker-storage docker storage configuration (generated by
container-storage-setup)

/etc/dnsmasq.conf Main configuration file for dnsmasq

/etc/dnsmasq.d/* Different dnsmasq configuration files



OpenShift Container Platform 3.7 Day Two Operations Guide

40

/etc/sysconfig/flanneld flannel configuration file (if used)

/etc/pki/ca-trust/source/anchors/ Certificates added to the system (i.e. for external
registries)

Create a backup of those files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo mkdir -p ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors
$ sudo cp -aR /etc/sysconfig/{iptables,docker-*,flanneld} \
 ${MYBACKUPDIR}/etc/sysconfig/
$ sudo cp -aR /etc/dnsmasq* /etc/cni ${MYBACKUPDIR}/etc/
$ sudo cp -aR /etc/pki/ca-trust/source/anchors/* \
 ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors/

3. If a package is accidentally removed or you need to resore a file that is included in an rpm
package, having a list of rhel packages installed on the system can be useful.

NOTE

If you use Red Hat Satellite features, such as content views or the facts store,
provide a proper mechanism to reinstall the missing packages and a historical
data of packages installed in the systems.

To create a list of the current rhel packages installed in the system:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}
$ rpm -qa | sort | sudo tee $MYBACKUPDIR/packages.txt

4. If you used the previous steps, the following files are present in the backup directory:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo find ${MYBACKUPDIR} -mindepth 1 -type f -printf '%P\n'
etc/sysconfig/atomic-openshift-master
etc/sysconfig/atomic-openshift-master-api
etc/sysconfig/atomic-openshift-master-controllers
etc/sysconfig/atomic-openshift-node
etc/sysconfig/flanneld
etc/sysconfig/iptables
etc/sysconfig/docker-network
etc/sysconfig/docker-storage
etc/sysconfig/docker-storage-setup
etc/sysconfig/docker-storage-setup.rpmnew
etc/origin/master/ca.crt
etc/origin/master/ca.key
etc/origin/master/ca.serial.txt
etc/origin/master/ca-bundle.crt
etc/origin/master/master.proxy-client.crt
etc/origin/master/master.proxy-client.key
etc/origin/master/service-signer.crt

CHAPTER 5. HOST-LEVEL TASKS

41

etc/origin/master/service-signer.key
etc/origin/master/serviceaccounts.private.key
etc/origin/master/serviceaccounts.public.key
etc/origin/master/openshift-master.crt
etc/origin/master/openshift-master.key
etc/origin/master/openshift-master.kubeconfig
etc/origin/master/master.server.crt
etc/origin/master/master.server.key
etc/origin/master/master.kubelet-client.crt
etc/origin/master/master.kubelet-client.key
etc/origin/master/admin.crt
etc/origin/master/admin.key
etc/origin/master/admin.kubeconfig
etc/origin/master/etcd.server.crt
etc/origin/master/etcd.server.key
etc/origin/master/master.etcd-client.key
etc/origin/master/master.etcd-client.csr
etc/origin/master/master.etcd-client.crt
etc/origin/master/master.etcd-ca.crt
etc/origin/master/policy.json
etc/origin/master/scheduler.json
etc/origin/master/htpasswd
etc/origin/master/session-secrets.yaml
etc/origin/master/openshift-router.crt
etc/origin/master/openshift-router.key
etc/origin/master/registry.crt
etc/origin/master/registry.key
etc/origin/master/master-config.yaml
etc/origin/generated-configs/master-master-
1.example.com/master.server.crt
...[OUTPUT OMITTED]...
etc/origin/cloudprovider/openstack.conf
etc/origin/node/system:node:master-0.example.com.crt
etc/origin/node/system:node:master-0.example.com.key
etc/origin/node/ca.crt
etc/origin/node/system:node:master-0.example.com.kubeconfig
etc/origin/node/server.crt
etc/origin/node/server.key
etc/origin/node/node-dnsmasq.conf
etc/origin/node/resolv.conf
etc/origin/node/node-config.yaml
etc/origin/node/flannel.etcd-client.key
etc/origin/node/flannel.etcd-client.csr
etc/origin/node/flannel.etcd-client.crt
etc/origin/node/flannel.etcd-ca.crt
etc/pki/ca-trust/source/anchors/openshift-ca.crt
etc/pki/ca-trust/source/anchors/registry-ca.crt
etc/dnsmasq.conf
etc/dnsmasq.d/origin-dns.conf
etc/dnsmasq.d/origin-upstream-dns.conf
etc/dnsmasq.d/node-dnsmasq.conf
packages.txt

If needed, you can compress the files to save space:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)

OpenShift Container Platform 3.7 Day Two Operations Guide

42

$ sudo tar -zcvf /backup/$(hostname)-$(date +%Y%m%d).tar.gz
$MYBACKUPDIR
$ sudo rm -Rf ${MYBACKUPDIR}

To create any of these files from scratch, the openshift-ansible-contrib repository contains the
backup_master_node.sh script, which performs the previous steps. The script creates a directory on
the host where you run the script and copies all the files previously mentioned.

NOTE

The openshift-ansible-contrib script is not supported by Red Hat, but the
reference architecture team performs testing to ensure the code operates as defined and
is secure.

You can run the script on every master host with:

$ mkdir ~/git
$ cd ~/git
$ git clone https://github.com/openshift/openshift-ansible-contrib.git
$ cd openshift-ansible-contrib/reference-architecture/day2ops/scripts
$./backup_master_node.sh -h

5.2.1.2. Backing up etcd

When you back up etcd, you must back up both the etcd configuration files and the etcd data.

5.2.1.2.1. Backing up etcd configuration files

The etcd configuration files to be preserved are all stored in the /etc/etcd directory of the instances
where etcd is running. This includes the etcd configuration file (/etc/etcd/etcd.conf) and the
required certificates for cluster communication. All those files are generated at installation time by the
Ansible installer.

Procedure
For each etcd member of the cluster, back up the etcd configuration.

$ ssh master-0
mkdir -p /backup/etcd-config-$(date +%Y%m%d)/
cp -R /etc/etcd/ /backup/etcd-config-$(date +%Y%m%d)/

NOTE

The certificates and configuration files on each etcd cluster member are unique.

5.2.1.2.2. Backing up etcd data

Prerequisites

CHAPTER 5. HOST-LEVEL TASKS

43

NOTE

The OpenShift Container Platform installer creates aliases to avoid typing all the flags
named etcdctl2 for etcd v2 tasks and etcdctl3 for etcd v3 tasks.

However, the etcdctl3 alias does not provide the full endpoint list to the etcdctl
command, so the --endpoints option with all the endpoints must be provided.

Before backing up etcd:

etcdctl binaries should be available or, in containerized installations, the rhel7/etcd
container should be available

Ensure connectivity with the etcd cluster (port 2379/tcp)

Ensure the proper certificates to connect to the etcd cluster

Procedure

NOTE

While the etcdctl backup command is used to perform the backup, etcd v3 has no
concept of a backup. Instead, you either take a snapshot from a live member with the
etcdctl snapshot save command or copy the member/snap/db file from an etcd
data directory.

The etcdctl backup command rewrites some of the metadata contained in the
backup, specifically, the node ID and cluster ID, which means that in the backup, the node
loses its former identity. To recreate a cluster from the backup, you create a new, single-
node cluster, then add the rest of the nodes to the cluster. The metadata is rewritten to
prevent the new node from joining an existing cluster.

Back up the etcd data:

If you use the v2 API, take the following actions:

a. Stop all etcd services:

systemctl stop etcd.service

b. Create the etcd data backup and copy the etcd db file:

mkdir -p /backup/etcd-$(date +%Y%m%d)
etcdctl2 backup \
 --data-dir /var/lib/etcd \
 --backup-dir /backup/etcd-$(date +%Y%m%d)
cp /var/lib/etcd/member/snap/db /backup/etcd-$(date +%Y%m%d)

c. Start all etcd services:

systemctl start etcd.service

If you use the v3 API, run the following commands:

OpenShift Container Platform 3.7 Day Two Operations Guide

44

IMPORTANT

Because clusters upgraded from previous versions of OpenShift Container
Platform might contain v2 data stores, back up both v2 and v3 datastores.

a. Back up etcd v3 data:

systemctl show etcd --property=ActiveState,SubState
mkdir -p /backup/etcd-$(date +%Y%m%d)
etcdctl3 snapshot save */backup/etcd-$(date +%Y%m%d)*/db
Snapshot saved at /backup/etcd-<date>/db

b. Back up etcd v2 data:

systemctl stop etcd.service
etcdctl2 backup \
 --data-dir /var/lib/etcd \
 --backup-dir /backup/etcd-$(date +%Y%m%d)
cp /var/lib/etcd/member/snap/db /backup/etcd-$(date +%Y%m%d)
systemctl start etcd.service

NOTE

The etcdctl snapshot save command requires the etcd service to be
running.

In these commands, a /backup/etcd-<date>/ directory is created, where <date>
represents the current date, which must be an external NFS share, S3 bucket, or any
external storage location.

In the case of an all-in-one cluster, the etcd data directory is located in the
/var/lib/origin/openshift.local.etcd directory.

5.2.1.3. Deprecating a master host

Master hosts run important services, such as the OpenShift Container Platform API and controllers
services. In order to deprecate a master host, these services must be stopped.

The OpenShift Container Platform API service is an active/active service, so stopping the service does
not affect the environment as long as the requests are sent to a separate master server. However, the
OpenShift Container Platform controllers service is an active/passive service, where the services
leverage etcd to decide the active master.

Deprecating a master host in a multi-master architecture includes removing the master from the load
balancer pool to avoid new connections attempting to use that master. This process depends heavily on
the load balancer used. The steps below show the details of removing the master from haproxy. In the
event that OpenShift Container Platform is running on a cloud provider, or using a F5 appliance, see the
specific product documents to remove the master from rotation.

Procedure

1. Remove the backend section in the /etc/haproxy/haproxy.cfg configuration file. For
example, if deprecating a master named master-0.example.com using haproxy, ensure the
host name is removed from the following:

CHAPTER 5. HOST-LEVEL TASKS

45

backend mgmt8443
 balance source
 mode tcp
 # MASTERS 8443
 server master-1.example.com 192.168.55.12:8443 check
 server master-2.example.com 192.168.55.13:8443 check

2. Then, restart the haproxy service.

$ sudo systemctl restart haproxy

3. Once the master is removed from the load balancer, disable the API and controller services:

$ sudo systemctl disable --now atomic-openshift-master-api
$ sudo systemctl disable --now atomic-openshift-master-controllers

4. Because the master host is a unschedulable OpenShift Container Platform node, follow the
steps in the Deprecating a node host section.

5. Remove the master host from the [masters] and [nodes] groups in the
/etc/ansible/hosts Ansible inventory file to avoid issues if running any Ansible tasks using
that inventory file.

WARNING

Deprecating the first master host listed in the Ansible inventory file requires
extra precautions.

The /etc/origin/master/ca.serial.txt file is generated on only the
first master listed in the Ansible host inventory. If you deprecate the first
master host, copy the /etc/origin/master/ca.serial.txt file to the
rest of master hosts before the process.

6. The kubernetes service includes the master host IPs as endpoints. To verify that the master
has been properly deprecated, review the kubernetes service output and see if the
deprecated master has been removed:

$ oc describe svc kubernetes -n default
Name: kubernetes
Namespace: default
Labels: component=apiserver
 provider=kubernetes
Annotations: <none>
Selector: <none>
Type: ClusterIP
IP: 10.111.0.1
Port: https 443/TCP
Endpoints: 192.168.55.12:8443,192.168.55.13:8443
Port: dns 53/UDP



OpenShift Container Platform 3.7 Day Two Operations Guide

46

Endpoints: 192.168.55.12:8053,192.168.55.13:8053
Port: dns-tcp 53/TCP
Endpoints: 192.168.55.12:8053,192.168.55.13:8053
Session Affinity: ClientIP
Events: <none>

After the master has been successfully deprecated, the host where the master was previously
running can be safely deleted.

5.2.1.4. Removing an etcd host

If an etcd host fails beyond restoration, remove it from the cluster.

Steps to be performed on all masters hosts

Procedure

1. Remove each other etcd host from the etcd cluster. Run the following command for each etcd
node:

etcdctl -C https://<surviving host IP address>:2379 \
 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key member remove <failed member ID>

2. Restart the master API service on every master:

systemctl restart atomic-openshift-master-api

Or, if using a single master cluster installation:

systemctl restart atomic-openshift-master

Steps to be performed in the current etcd cluster

Procedure

1. Remove the failed host from the cluster:

etcdctl2 cluster-health
member 5ee217d19001 is healthy: got healthy result from
https://192.168.55.12:2379
member 2a529ba1840722c0 is healthy: got healthy result from
https://192.168.55.8:2379
failed to check the health of member 8372784203e11288 on
https://192.168.55.21:2379: Get https://192.168.55.21:2379/health:
dial tcp 192.168.55.21:2379: getsockopt: connection refused
member 8372784203e11288 is unreachable: [https://192.168.55.21:2379]
are all unreachable
member ed4f0efd277d7599 is healthy: got healthy result from
https://192.168.55.13:2379
cluster is healthy

etcdctl2 member remove 8372784203e11288 1
Removed member 8372784203e11288 from cluster

CHAPTER 5. HOST-LEVEL TASKS

47

1

etcdctl2 cluster-health
member 5ee217d19001 is healthy: got healthy result from
https://192.168.55.12:2379
member 2a529ba1840722c0 is healthy: got healthy result from
https://192.168.55.8:2379
member ed4f0efd277d7599 is healthy: got healthy result from
https://192.168.55.13:2379
cluster is healthy

The remove command requires the etcd ID, not the hostname.

2. To ensure the etcd configuration does not use the failed host when the etcd service is restarted,
modify the /etc/etcd/etcd.conf file on all remaining etcd hosts and remove the failed host
in the value for the ETCD_INITIAL_CLUSTER variable:

vi /etc/etcd/etcd.conf

For example:

ETCD_INITIAL_CLUSTER=master-
0.example.com=https://192.168.55.8:2380,master-
1.example.com=https://192.168.55.12:2380,master-
2.example.com=https://192.168.55.13:2380

becomes:

ETCD_INITIAL_CLUSTER=master-
0.example.com=https://192.168.55.8:2380,master-
1.example.com=https://192.168.55.12:2380

NOTE

Restarting the etcd services is not required, because the failed host is removed
using etcdctl.

3. Modify the Ansible inventory file to reflect the current status of the cluster and to avoid issues
when re-running a playbook:

[OSEv3:children]
masters
nodes
etcd

... [OUTPUT ABBREVIATED] ...

[etcd]
master-0.example.com
master-1.example.com

4. If you are using Flannel, modify the flanneld service configuration located at
/etc/sysconfig/flanneld on every host and remove the etcd host:

OpenShift Container Platform 3.7 Day Two Operations Guide

48

FLANNEL_ETCD_ENDPOINTS=https://master-
0.example.com:2379,https://master-1.example.com:2379,https://master-
2.example.com:2379

5. Restart the flanneld service:

systemctl restart flanneld.service

5.2.2. Creating a master host backup

Perform this backup process before any change to the OpenShift Container Platform infrastructure, such
as a system update, upgrade, or any other significant modification. Back up data regularly to ensure that
recent data is available if a failure occurs.

OpenShift Container Platform files

The master instances run important services, such as the API, controllers. The /etc/origin/master
directory stores many important files:

The configuration, the API, controllers, services, and more

Certificates generated by the installation

All cloud provider-related configuration

Keys and other authentication files, such as htpasswd if you use htpasswd

And more

You can customize OpenShift Container Platform services, such as increasing the log level or using
proxies. The configuration files are stored in the /etc/sysconfig directory.

Because the masters are also unschedulable nodes, back up the entire /etc/origin directory.

Procedure

IMPORTANT

You must perform the following steps on each master node.

1. Create a backup of the master host configuration files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo cp -aR /etc/origin ${MYBACKUPDIR}/etc
$ sudo cp -aR /etc/sysconfig/atomic-* ${MYBACKUPDIR}/etc/sysconfig/

NOTE

The configuration file is stored in the /etc/sysconfig/atomic-openshift-
master-api, and /etc/sysconfig/atomic-openshift-master-
controllers directories.

CHAPTER 5. HOST-LEVEL TASKS

49

WARNING

The /etc/origin/master/ca.serial.txt file is generated on only the
first master listed in the Ansible host inventory. If you deprecate the first
master host, copy the /etc/origin/master/ca.serial.txt file to the
rest of master hosts before the process.

2. Other important files that need to be considered when planning a backup include:

File Description

/etc/cni/* Container Network Interface configuration (if
used)

/etc/sysconfig/iptables Where the iptables rules are stored

/etc/sysconfig/docker-storage-
setup

The input file for container-storage-
setup command

/etc/sysconfig/docker The docker configuration file

/etc/sysconfig/docker-network docker networking configuration (i.e. MTU)

/etc/sysconfig/docker-storage docker storage configuration (generated by
container-storage-setup)

/etc/dnsmasq.conf Main configuration file for dnsmasq

/etc/dnsmasq.d/* Different dnsmasq configuration files

/etc/sysconfig/flanneld flannel configuration file (if used)

/etc/pki/ca-trust/source/anchors/ Certificates added to the system (i.e. for external
registries)

Create a backup of those files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo mkdir -p ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors
$ sudo cp -aR /etc/sysconfig/{iptables,docker-*,flanneld} \
 ${MYBACKUPDIR}/etc/sysconfig/
$ sudo cp -aR /etc/dnsmasq* /etc/cni ${MYBACKUPDIR}/etc/
$ sudo cp -aR /etc/pki/ca-trust/source/anchors/* \
 ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors/



OpenShift Container Platform 3.7 Day Two Operations Guide

50

3. If a package is accidentally removed or you need to resore a file that is included in an rpm
package, having a list of rhel packages installed on the system can be useful.

NOTE

If you use Red Hat Satellite features, such as content views or the facts store,
provide a proper mechanism to reinstall the missing packages and a historical
data of packages installed in the systems.

To create a list of the current rhel packages installed in the system:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}
$ rpm -qa | sort | sudo tee $MYBACKUPDIR/packages.txt

4. If you used the previous steps, the following files are present in the backup directory:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo find ${MYBACKUPDIR} -mindepth 1 -type f -printf '%P\n'
etc/sysconfig/atomic-openshift-master
etc/sysconfig/atomic-openshift-master-api
etc/sysconfig/atomic-openshift-master-controllers
etc/sysconfig/atomic-openshift-node
etc/sysconfig/flanneld
etc/sysconfig/iptables
etc/sysconfig/docker-network
etc/sysconfig/docker-storage
etc/sysconfig/docker-storage-setup
etc/sysconfig/docker-storage-setup.rpmnew
etc/origin/master/ca.crt
etc/origin/master/ca.key
etc/origin/master/ca.serial.txt
etc/origin/master/ca-bundle.crt
etc/origin/master/master.proxy-client.crt
etc/origin/master/master.proxy-client.key
etc/origin/master/service-signer.crt
etc/origin/master/service-signer.key
etc/origin/master/serviceaccounts.private.key
etc/origin/master/serviceaccounts.public.key
etc/origin/master/openshift-master.crt
etc/origin/master/openshift-master.key
etc/origin/master/openshift-master.kubeconfig
etc/origin/master/master.server.crt
etc/origin/master/master.server.key
etc/origin/master/master.kubelet-client.crt
etc/origin/master/master.kubelet-client.key
etc/origin/master/admin.crt
etc/origin/master/admin.key
etc/origin/master/admin.kubeconfig
etc/origin/master/etcd.server.crt
etc/origin/master/etcd.server.key
etc/origin/master/master.etcd-client.key
etc/origin/master/master.etcd-client.csr
etc/origin/master/master.etcd-client.crt
etc/origin/master/master.etcd-ca.crt

CHAPTER 5. HOST-LEVEL TASKS

51

etc/origin/master/policy.json
etc/origin/master/scheduler.json
etc/origin/master/htpasswd
etc/origin/master/session-secrets.yaml
etc/origin/master/openshift-router.crt
etc/origin/master/openshift-router.key
etc/origin/master/registry.crt
etc/origin/master/registry.key
etc/origin/master/master-config.yaml
etc/origin/generated-configs/master-master-
1.example.com/master.server.crt
...[OUTPUT OMITTED]...
etc/origin/cloudprovider/openstack.conf
etc/origin/node/system:node:master-0.example.com.crt
etc/origin/node/system:node:master-0.example.com.key
etc/origin/node/ca.crt
etc/origin/node/system:node:master-0.example.com.kubeconfig
etc/origin/node/server.crt
etc/origin/node/server.key
etc/origin/node/node-dnsmasq.conf
etc/origin/node/resolv.conf
etc/origin/node/node-config.yaml
etc/origin/node/flannel.etcd-client.key
etc/origin/node/flannel.etcd-client.csr
etc/origin/node/flannel.etcd-client.crt
etc/origin/node/flannel.etcd-ca.crt
etc/pki/ca-trust/source/anchors/openshift-ca.crt
etc/pki/ca-trust/source/anchors/registry-ca.crt
etc/dnsmasq.conf
etc/dnsmasq.d/origin-dns.conf
etc/dnsmasq.d/origin-upstream-dns.conf
etc/dnsmasq.d/node-dnsmasq.conf
packages.txt

If needed, you can compress the files to save space:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo tar -zcvf /backup/$(hostname)-$(date +%Y%m%d).tar.gz
$MYBACKUPDIR
$ sudo rm -Rf ${MYBACKUPDIR}

To create any of these files from scratch, the openshift-ansible-contrib repository contains the
backup_master_node.sh script, which performs the previous steps. The script creates a directory on
the host where you run the script and copies all the files previously mentioned.

NOTE

The openshift-ansible-contrib script is not supported by Red Hat, but the
reference architecture team performs testing to ensure the code operates as defined and
is secure.

You can run the script on every master host with:

$ mkdir ~/git

OpenShift Container Platform 3.7 Day Two Operations Guide

52

$ cd ~/git
$ git clone https://github.com/openshift/openshift-ansible-contrib.git
$ cd openshift-ansible-contrib/reference-architecture/day2ops/scripts
$./backup_master_node.sh -h

5.2.3. Restoring a master host backup

After creating a backup of important master host files, if they become corrupted or accidentally removed,
you can restore the files by copying the files back to master, ensuring they contain the proper content,
and restarting the affected services.

Procedure

1. Restore the /etc/origin/master/master-config.yaml file:

MYBACKUPDIR=*/backup/$(hostname)/$(date +%Y%m%d)*
cp /etc/origin/master/master-config.yaml
/etc/origin/master/master-config.yaml.old
cp /backup/$(hostname)/$(date +%Y%m%d)/origin/master/master-
config.yaml /etc/origin/master/master-config.yaml
systemctl restart atomic-openshift-master-api
systemctl restart atomic-openshift-master-controllers

WARNING

Restarting the master services can lead to downtime. However, you can
remove the master host from the highly available load balancer pool, then
perform the restore operation. Once the service has been properly restored,
you can add the master host back to the load balancer pool.

NOTE

Perform a full reboot of the affected instance to restore the iptables
configuration.

2. If you cannot restart OpenShift Container Platform because packages are missing, reinstall the
packages.

a. Get the list of the current installed packages:

$ rpm -qa | sort > /tmp/current_packages.txt

b. View the differences between the package lists:

$ diff /tmp/current_packages.txt ${MYBACKUPDIR}/packages.txt

> ansible-2.4.0.0-5.el7.noarch

c. Reinstall the missing packages:



CHAPTER 5. HOST-LEVEL TASKS

53

1

yum reinstall -y <packages> 1

Replace <packages> with the packages that are different between the package lists.

3. Restore a system certificate by copying the certificate to the /etc/pki/ca-
trust/source/anchors/ directory and execute the update-ca-trust:

$ MYBACKUPDIR=*/backup/$(hostname)/$(date +%Y%m%d)*
$ sudo cp ${MYBACKUPDIR}/external_certificates/my_company.crt
/etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust

NOTE

Always ensure the user ID and group ID are restored when the files are copied
back, as well as the SELinux context.

5.3. NODE HOST TASKS

5.3.1. Deprecating a node host

The procedure is the same whether deprecating an infrastructure node or an application node.

Prerequisites
Ensure enough capacity is available to migrate the existing pods from the node set to be removed.
Removing an infrastructure node is advised only when at least two more nodes will stay online after the
infrastructure node is removed.

Procedure

1. List all available nodes to find the node to deprecate:

$ oc get nodes
NAME STATUS AGE VERSION
ocp-infra-node-b7pl Ready 23h
v1.6.1+5115d708d7
ocp-infra-node-p5zj Ready 23h
v1.6.1+5115d708d7
ocp-infra-node-rghb Ready 23h
v1.6.1+5115d708d7
ocp-master-dgf8 Ready,SchedulingDisabled 23h
v1.6.1+5115d708d7
ocp-master-q1v2 Ready,SchedulingDisabled 23h
v1.6.1+5115d708d7
ocp-master-vq70 Ready,SchedulingDisabled 23h
v1.6.1+5115d708d7
ocp-node-020m Ready 23h
v1.6.1+5115d708d7
ocp-node-7t5p Ready 23h
v1.6.1+5115d708d7
ocp-node-n0dd Ready 23h
v1.6.1+5115d708d7

OpenShift Container Platform 3.7 Day Two Operations Guide

54

As an example, this topic deprecates the ocp-infra-node-b7pl infrastructure node.

2. Describe the node and its running services:

$ oc describe node ocp-infra-node-b7pl
Name: ocp-infra-node-b7pl
Role:
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/instance-type=n1-standard-2
 beta.kubernetes.io/os=linux
 failure-domain.beta.kubernetes.io/region=europe-west3
 failure-domain.beta.kubernetes.io/zone=europe-west3-c
 kubernetes.io/hostname=ocp-infra-node-b7pl
 role=infra
Annotations: volumes.kubernetes.io/controller-managed-attach-
detach=true
Taints: <none>
CreationTimestamp: Wed, 22 Nov 2017 09:36:36 -0500
Phase:
Conditions:
 ...
Addresses: 10.156.0.11,ocp-infra-node-b7pl
Capacity:
 cpu: 2
 memory: 7494480Ki
 pods: 20
Allocatable:
 cpu: 2
 memory: 7392080Ki
 pods: 20
System Info:
 Machine ID: bc95ccf67d047f2ae42c67862c202e44
 System UUID: 9762CC3D-E23C-AB13-B8C5-FA16F0BCCE4C
 Boot ID: ca8bf088-905d-4ec0-beec-8f89f4527ce4
 Kernel Version: 3.10.0-693.5.2.el7.x86_64
 OS Image: Employee SKU
 Operating System: linux
 Architecture: amd64
 Container Runtime Version: docker://1.12.6
 Kubelet Version: v1.6.1+5115d708d7
 Kube-Proxy Version: v1.6.1+5115d708d7
ExternalID: 437740049672994824
Non-terminated Pods: (2 in total)
 Namespace Name CPU Requests CPU Limits Memory Requests Memory
Limits
 --------- ---- ------------ ---------- --------------- ---

 default docker-registry-1-5szjs 100m (5%) 0 (0%) 256Mi (3%)0
(0%)
 default router-1-vzlzq 100m (5%) 0 (0%) 256Mi (3%)0 (0%)
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 CPU Requests CPU Limits Memory Requests Memory Limits
 ------------ ---------- --------------- -------------
 200m (10%) 0 (0%) 512Mi (7%) 0 (0%)
Events: <none>

CHAPTER 5. HOST-LEVEL TASKS

55

The output above shows that the node is running two pods: router-1-vzlzq and docker-
registry-1-5szjs. Two more infrastructure nodes are available to migrate these two pods.

NOTE

The cluster described above is a highly available cluster, this means both the
router and docker-registry services are running on all infrastructure nodes.

3. Mark a node as unschedulable and evacuate all of its pods:

$ oc adm drain ocp-infra-node-b7pl --delete-local-data
node "ocp-infra-node-b7pl" cordoned
WARNING: Deleting pods with local storage: docker-registry-1-5szjs
pod "docker-registry-1-5szjs" evicted
pod "router-1-vzlzq" evicted
node "ocp-infra-node-b7pl" drained

If the pod has attached local storage (for example, EmptyDir), the --delete-local-data
option must be provided. Generally, pods running in production should use the local storage only
for temporary or cache files, but not for anything important or persistent. For regular storage,
applications should use object storage or persistent volumes. In this case, the docker-
registry pod’s local storage is empty, because the object storage is used instead to store the
container images.

NOTE

The above operation deletes existing pods running on the node. Then, new pods
are created according to the replication controller.

In general, every application should be deployed with a deployment configuration,
which creates pods using the replication controller.

oc adm drain will not delete any bare pods (pods that are neither mirror pods
nor managed by ReplicationController, ReplicaSet, DaemonSet,
StatefulSet, or a job). To do so, the --force option is required. Be aware
that the bare pods will not be recreated on other nodes and data may be lost
during this operation.

The example below shows the output of the replication controller of the registry:

$ oc describe rc/docker-registry-1
Name: docker-registry-1
Namespace: default
Selector: deployment=docker-registry-1,deploymentconfig=docker-
registry,docker-registry=default
Labels: docker-registry=default
 openshift.io/deployment-config.name=docker-registry
Annotations: ...
Replicas: 3 current / 3 desired
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: deployment=docker-registry-1
 deploymentconfig=docker-registry
 docker-registry=default

OpenShift Container Platform 3.7 Day Two Operations Guide

56

 Annotations: openshift.io/deployment-config.latest-version=1
 openshift.io/deployment-config.name=docker-registry
 openshift.io/deployment.name=docker-registry-1
 Service Account: registry
 Containers:
 registry:
 Image: openshift3/ose-docker-registry:v3.6.173.0.49
 Port: 5000/TCP
 Requests:
 cpu: 100m
 memory: 256Mi
 Liveness: http-get https://:5000/healthz delay=10s timeout=5s
period=10s #success=1 #failure=3
 Readiness: http-get https://:5000/healthz delay=0s timeout=5s
period=10s #success=1 #failure=3
 Environment:
 REGISTRY_HTTP_ADDR: :5000
 REGISTRY_HTTP_NET: tcp
 REGISTRY_HTTP_SECRET:
tyGEnDZmc8dQfioP3WkNd5z+Xbdfy/JVXf/NLo3s/zE=
 REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA: false
 REGISTRY_HTTP_TLS_KEY: /etc/secrets/registry.key
 OPENSHIFT_DEFAULT_REGISTRY: docker-
registry.default.svc:5000
 REGISTRY_CONFIGURATION_PATH: /etc/registry/config.yml
 REGISTRY_HTTP_TLS_CERTIFICATE: /etc/secrets/registry.crt
 Mounts:
 /etc/registry from docker-config (rw)
 /etc/secrets from registry-certificates (rw)
 /registry from registry-storage (rw)
 Volumes:
 registry-storage:
 Type: EmptyDir (a temporary directory that shares a pod's
lifetime)
 Medium:
 registry-certificates:
 Type: Secret (a volume populated by a Secret)
 SecretName: registry-certificates
 Optional: false
 docker-config:
 Type: Secret (a volume populated by a Secret)
 SecretName: registry-config
 Optional: false
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
Message
 --------- -------- ----- ---- ------------- -------- ------

 49m 49m 1 replication-controller Normal SuccessfulCreate
Created pod: docker-registry-1-dprp5

The event at the bottom of the output displays information about new pod creation. So, when
listing all pods:

$ oc get pods
NAME READY STATUS RESTARTS AGE

CHAPTER 5. HOST-LEVEL TASKS

57

docker-registry-1-dprp5 1/1 Running 0 52m
docker-registry-1-kr8jq 1/1 Running 0 1d
docker-registry-1-ncpl2 1/1 Running 0 1d
registry-console-1-g4nqg 1/1 Running 0 1d
router-1-2gshr 0/1 Pending 0 52m
router-1-85qm4 1/1 Running 0 1d
router-1-q5sr8 1/1 Running 0 1d

4. The docker-registry-1-5szjs and router-1-vzlzq pods that were running on the now
deprecated node are no longer available. Instead, two new pods have been created: docker-
registry-1-dprp5 and router-1-2gshr. As shown above, the new router pod is router-
1-2gshr, but is in the Pending state. This is because every node can be running only on one
single router and is bound to the ports 80 and 443 of the host.

5. When observing the newly created registry pod, the example below shows that the pod has been
created on the ocp-infra-node-rghb node, which is different from the deprecating node:

$ oc describe pod docker-registry-1-dprp5
Name: docker-registry-1-dprp5
Namespace: default
Security Policy: hostnetwork
Node: ocp-infra-node-rghb/10.156.0.10
...

The only difference between deprecating the infrastructure and the application node is that once
the infrastructure node is evacuated, and if there is no plan to replace that node, the services
running on infrastructure nodes can be scaled down:

$ oc scale dc/router --replicas 2
deploymentconfig "router" scaled

$ oc scale dc/docker-registry --replicas 2
deploymentconfig "docker-registry" scaled

6. Now, every infrastructure node is running only one kind of each pod:

$ oc get pods
NAME READY STATUS RESTARTS AGE
docker-registry-1-kr8jq 1/1 Running 0 1d
docker-registry-1-ncpl2 1/1 Running 0 1d
registry-console-1-g4nqg 1/1 Running 0 1d
router-1-85qm4 1/1 Running 0 1d
router-1-q5sr8 1/1 Running 0 1d

$ oc describe po/docker-registry-1-kr8jq | grep Node:
Node: ocp-infra-node-p5zj/10.156.0.9

$ oc describe po/docker-registry-1-ncpl2 | grep Node:
Node: ocp-infra-node-rghb/10.156.0.10

NOTE

To provide a full highly available cluster, at least three infrastructure nodes should
always be available.

OpenShift Container Platform 3.7 Day Two Operations Guide

58

7. To verify that the scheduling on the node is disabled:

$ oc get nodes
NAME STATUS AGE VERSION
ocp-infra-node-b7pl Ready,SchedulingDisabled 1d
v1.6.1+5115d708d7
ocp-infra-node-p5zj Ready 1d
v1.6.1+5115d708d7
ocp-infra-node-rghb Ready 1d
v1.6.1+5115d708d7
ocp-master-dgf8 Ready,SchedulingDisabled 1d
v1.6.1+5115d708d7
ocp-master-q1v2 Ready,SchedulingDisabled 1d
v1.6.1+5115d708d7
ocp-master-vq70 Ready,SchedulingDisabled 1d
v1.6.1+5115d708d7
ocp-node-020m Ready 1d
v1.6.1+5115d708d7
ocp-node-7t5p Ready 1d
v1.6.1+5115d708d7
ocp-node-n0dd Ready 1d
v1.6.1+5115d708d7

And that the node does not contain any pods:

$ oc describe node ocp-infra-node-b7pl
Name: ocp-infra-node-b7pl
Role:
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/instance-type=n1-standard-2
 beta.kubernetes.io/os=linux
 failure-domain.beta.kubernetes.io/region=europe-west3
 failure-domain.beta.kubernetes.io/zone=europe-west3-c
 kubernetes.io/hostname=ocp-infra-node-b7pl
 role=infra
Annotations: volumes.kubernetes.io/controller-managed-attach-
detach=true
Taints: <none>
CreationTimestamp: Wed, 22 Nov 2017 09:36:36 -0500
Phase:
Conditions:
 ...
Addresses: 10.156.0.11,ocp-infra-node-b7pl
Capacity:
 cpu: 2
 memory: 7494480Ki
 pods: 20
Allocatable:
 cpu: 2
 memory: 7392080Ki
 pods: 20
System Info:
 Machine ID: bc95ccf67d047f2ae42c67862c202e44
 System UUID: 9762CC3D-E23C-AB13-B8C5-FA16F0BCCE4C
 Boot ID: ca8bf088-905d-4ec0-beec-8f89f4527ce4
 Kernel Version: 3.10.0-693.5.2.el7.x86_64

CHAPTER 5. HOST-LEVEL TASKS

59

 OS Image: Employee SKU
 Operating System: linux
 Architecture: amd64
 Container Runtime Version: docker://1.12.6
 Kubelet Version: v1.6.1+5115d708d7
 Kube-Proxy Version: v1.6.1+5115d708d7
ExternalID: 437740049672994824
Non-terminated Pods: (0 in total)
 Namespace Name CPU Requests CPU Limits Memory Requests Memory
Limits
 --------- ---- ------------ ---------- --------------- -----

Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 CPU Requests CPU Limits Memory Requests Memory Limits
 ------------ ---------- --------------- -------------
 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Events: <none>

8. Remove the infrastructure instance from the backend section in the
/etc/haproxy/haproxy.cfg configuration file:

backend router80
 balance source
 mode tcp
 server infra-1.example.com 192.168.55.12:80 check
 server infra-2.example.com 192.168.55.13:80 check

backend router443
 balance source
 mode tcp
 server infra-1.example.com 192.168.55.12:443 check
 server infra-2.example.com 192.168.55.13:443 check

9. Then, restart the haproxy service.

$ sudo systemctl restart haproxy

10. Remove the node from the cluster after all pods are evicted with command:

$ oc delete node ocp-infra-node-b7pl
node "ocp-infra-node-b7pl" deleted

$ oc get nodes
NAME STATUS AGE VERSION
ocp-infra-node-p5zj Ready 1d
v1.6.1+5115d708d7
ocp-infra-node-rghb Ready 1d
v1.6.1+5115d708d7
ocp-master-dgf8 Ready,SchedulingDisabled 1d
v1.6.1+5115d708d7
ocp-master-q1v2 Ready,SchedulingDisabled 1d
v1.6.1+5115d708d7
ocp-master-vq70 Ready,SchedulingDisabled 1d

OpenShift Container Platform 3.7 Day Two Operations Guide

60

v1.6.1+5115d708d7
ocp-node-020m Ready 1d
v1.6.1+5115d708d7
ocp-node-7t5p Ready 1d
v1.6.1+5115d708d7
ocp-node-n0dd Ready 1d
v1.6.1+5115d708d7

NOTE

For more information on evacuating and draining pods or nodes, see Node maintenance
section.

5.3.1.1. Replacing a node host

In the event that a node would need to be added in place of the deprecated node, follow the Adding hosts
to an existing cluster section.

5.3.2. Creating a node host backup

Creating a backup of a node host is a different use case from backing up a master host. Because master
hosts contain many important files, creating a backup is highly recommended. However, the nature of
nodes is that anything special is replicated over the nodes in case of failover, and they typically do not
contain data that is necessary to run an environment. If a backup of a node contains something
necessary to run an environment, then a creating a backup is recommended.

The backup process is to be performed before any change to the infrastructure, such as a system
update, upgrade, or any other significant modification. Backups should be performed on a regular basis
to ensure the most recent data is available if a failure occurs.

OpenShift Container Platform files

Node instances run applications in the form of pods, which are based on containers. The
/etc/origin/ and /etc/origin/node directories house important files, such as:

The configuration of the node services

Certificates generated by the installation

Cloud provider-related configuration

Keys and other authentication files, such as the dnsmasq configuration

The OpenShift Container Platform services can be customized to increase the log level, use proxies, and
more, and the configuration files are stored in the /etc/sysconfig directory.

Procedure

1. Create a backup of the node configuration files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo cp -aR /etc/origin ${MYBACKUPDIR}/etc
$ sudo cp -aR /etc/sysconfig/atomic-openshift-node
${MYBACKUPDIR}/etc/sysconfig/

CHAPTER 5. HOST-LEVEL TASKS

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-adding-hosts-to-cluster

2. OpenShift Container Platform uses specific files that must be taken into account when planning
the backup policy, including:

File Description

/etc/cni/* Container Network Interface configuration (if
used)

/etc/sysconfig/iptables Where the iptables rules are stored

/etc/sysconfig/docker-storage-
setup

The input file for container-storage-
setup command

/etc/sysconfig/docker The docker configuration file

/etc/sysconfig/docker-network docker networking configuration (i.e. MTU)

/etc/sysconfig/docker-storage docker storage configuration (generated by
container-storage-setup)

/etc/dnsmasq.conf Main configuration file for dnsmasq

/etc/dnsmasq.d/* Different dnsmasq configuration files

/etc/sysconfig/flanneld flannel configuration file (if used)

/etc/pki/ca-trust/source/anchors/ Certificates added to the system (i.e. for external
registries)

To create those files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo mkdir -p ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors
$ sudo cp -aR /etc/sysconfig/{iptables,docker-*,flanneld} \
 ${MYBACKUPDIR}/etc/sysconfig/
$ sudo cp -aR /etc/dnsmasq* /etc/cni ${MYBACKUPDIR}/etc/
$ sudo cp -aR /etc/pki/ca-trust/source/anchors/* \
 ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors/

3. If a package is accidentally removed, or a file included in an rpm package should be restored,
having a list of rhel packages installed on the system can be useful.

NOTE

If using Red Hat Satellite features, such as content views or the facts store,
provide a proper mechanism to reinstall the missing packages and a historical
data of packages installed in the systems.

To create a list of the current rhel packages installed in the system:

OpenShift Container Platform 3.7 Day Two Operations Guide

62

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}
$ rpm -qa | sort | sudo tee $MYBACKUPDIR/packages.txt

4. The following files should now be present in the backup directory:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo find ${MYBACKUPDIR} -mindepth 1 -type f -printf '%P\n'
etc/sysconfig/atomic-openshift-node
etc/sysconfig/flanneld
etc/sysconfig/iptables
etc/sysconfig/docker-network
etc/sysconfig/docker-storage
etc/sysconfig/docker-storage-setup
etc/sysconfig/docker-storage-setup.rpmnew
etc/origin/node/system:node:app-node-0.example.com.crt
etc/origin/node/system:node:app-node-0.example.com.key
etc/origin/node/ca.crt
etc/origin/node/system:node:app-node-0.example.com.kubeconfig
etc/origin/node/server.crt
etc/origin/node/server.key
etc/origin/node/node-dnsmasq.conf
etc/origin/node/resolv.conf
etc/origin/node/node-config.yaml
etc/origin/node/flannel.etcd-client.key
etc/origin/node/flannel.etcd-client.csr
etc/origin/node/flannel.etcd-client.crt
etc/origin/node/flannel.etcd-ca.crt
etc/origin/cloudprovider/openstack.conf
etc/pki/ca-trust/source/anchors/openshift-ca.crt
etc/pki/ca-trust/source/anchors/registry-ca.crt
etc/dnsmasq.conf
etc/dnsmasq.d/origin-dns.conf
etc/dnsmasq.d/origin-upstream-dns.conf
etc/dnsmasq.d/node-dnsmasq.conf
packages.txt

If needed, the files can be compressed to save space:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo tar -zcvf /backup/$(hostname)-$(date +%Y%m%d).tar.gz
$MYBACKUPDIR
$ sudo rm -Rf ${MYBACKUPDIR}

To create any of these files from scratch, the openshift-ansible-contrib repository contains the
backup_master_node.sh script, which performs the previous steps. The script creates a directory on
the host running the script and copies all the files previously mentioned.

NOTE

The openshift-ansible-contrib script is not supported by Red Hat, but the
reference architecture team performs testing to ensure the code operates as defined and
is secure.

CHAPTER 5. HOST-LEVEL TASKS

63

The script can be executed on every master host with:

$ mkdir ~/git
$ cd ~/git
$ git clone https://github.com/openshift/openshift-ansible-contrib.git
$ cd openshift-ansible-contrib/reference-architecture/day2ops/scripts
$./backup_master_node.sh -h

5.3.3. Restoring a node host backup

After creating a backup of important node host files, if they become corrupted or accidentally removed,
you can restore the file by copying back the file, ensuring it contains the proper content and restart the
affected services.

Procedure

1. Restore the /etc/origin/node/node-config.yaml file:

MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
cp /etc/origin/node/node-config.yaml /etc/origin/node/node-
config.yaml.old
cp /backup/$(hostname)/$(date +%Y%m%d)/etc/origin/node/node-
config.yaml /etc/origin/node/node-config.yaml
systemctl restart atomic-openshift-node

WARNING

Restarting the services can lead to downtime. See Node maintenance, for tips on
how to ease the process.

NOTE

Perform a full reboot of the affected instance to restore the iptables configuration.

1. If you cannot restart OpenShift Container Platform because packages are missing, reinstall the
packages.

a. Get the list of the current installed packages:

$ rpm -qa | sort > /tmp/current_packages.txt

b. View the differences between the package lists:

$ diff /tmp/current_packages.txt ${MYBACKUPDIR}/packages.txt

> ansible-2.4.0.0-5.el7.noarch

c. Reinstall the missing packages:



OpenShift Container Platform 3.7 Day Two Operations Guide

64

1

yum reinstall -y <packages> 1

Replace <packages> with the packages that are different between the package lists.

2. Restore a system certificate by copying the certificate to the /etc/pki/ca-
trust/source/anchors/ directory and execute the update-ca-trust:

$ MYBACKUPDIR=*/backup/$(hostname)/$(date +%Y%m%d)*
$ sudo cp ${MYBACKUPDIR}/etc/pki/ca-
trust/source/anchors/my_company.crt /etc/pki/ca-
trust/source/anchors/
$ sudo update-ca-trust

NOTE

Always ensure proper user ID and group ID are restored when the files are copied
back, as well as the SELinux context.

5.3.4. Node maintenance and next steps

See Managing nodes or Managing pods topics for various node management options. These include:

Marking Nodes as Unschedulable or Schedulable

Evacuating Pods on Nodes

Setting Pod Disruption Budgets

A node can reserve a portion of its resources to be used by specific components. These include the
kubelet, kube-proxy, Docker, or other remaining system components such as sshd and
NetworkManager. See the Allocating node resources section in the Cluster Administrator guide for
more information.

5.4. ETCD TASKS

5.4.1. etcd backup

etcd is the key value store for all object definitions, as well as the persistent master state. Other
components watch for changes, then bring themselves into the desired state.

OpenShift Container Platform versions prior to 3.5 use etcd version 2 (v2), while 3.5 and later use
version 3 (v3). The data model between the two versions of etcd is different. etcd v3 can use both the v2
and v3 data models, whereas etcd v2 can only use the v2 data model. In an etcd v3 server, the v2 and
v3 data stores exist in parallel and are independent.

For both v2 and v3 operations, you can use the ETCDCTL_API environment variable to use the proper
API:

$ etcdctl -v
etcdctl version: 3.2.5
API version: 2
$ ETCDCTL_API=3 etcdctl version
etcdctl version: 3.2.5

CHAPTER 5. HOST-LEVEL TASKS

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-manage-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-manage-pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#evacuating-pods-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#managing-pods-poddisruptionbudget
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-allocating-node-resources

API version: 3.2

See Migrating etcd Data (v2 to v3) section for information about how to migrate to v3.

The etcd backup process is composed of two different procedures:

Configuration backup: Including the required etcd configuration and certificates

Data backup: Including both v2 and v3 data model.

You can perform the data backup process on any host that has connectivity to the etcd cluster, where the
proper certificates are provided, and where the etcdctl tool is installed.

NOTE

The backup files must be copied to an external system, ideally outside the OpenShift
Container Platform environment, and then encrypted.

Note that the etcd backup still has all the references to current storage volumes. When you restore etcd,
OpenShift Container Platform starts launching the previous pods on nodes and reattaching the same
storage. This process is no different than the process of when you remove a node from the cluster and
add a new one back in its place. Anything attached to that node is reattached to the pods on whatever
nodes they are rescheduled to.

5.4.1.1. Backing up etcd

When you back up etcd, you must back up both the etcd configuration files and the etcd data.

5.4.1.1.1. Backing up etcd configuration files

The etcd configuration files to be preserved are all stored in the /etc/etcd directory of the instances
where etcd is running. This includes the etcd configuration file (/etc/etcd/etcd.conf) and the
required certificates for cluster communication. All those files are generated at installation time by the
Ansible installer.

Procedure
For each etcd member of the cluster, back up the etcd configuration.

$ ssh master-0
mkdir -p /backup/etcd-config-$(date +%Y%m%d)/
cp -R /etc/etcd/ /backup/etcd-config-$(date +%Y%m%d)/

NOTE

The certificates and configuration files on each etcd cluster member are unique.

5.4.1.1.2. Backing up etcd data

Prerequisites

OpenShift Container Platform 3.7 Day Two Operations Guide

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/upgrading_clusters/#migrating-etcd-data-v2-to-v3

NOTE

The OpenShift Container Platform installer creates aliases to avoid typing all the flags
named etcdctl2 for etcd v2 tasks and etcdctl3 for etcd v3 tasks.

However, the etcdctl3 alias does not provide the full endpoint list to the etcdctl
command, so the --endpoints option with all the endpoints must be provided.

Before backing up etcd:

etcdctl binaries should be available or, in containerized installations, the rhel7/etcd
container should be available

Ensure connectivity with the etcd cluster (port 2379/tcp)

Ensure the proper certificates to connect to the etcd cluster

Procedure

NOTE

While the etcdctl backup command is used to perform the backup, etcd v3 has no
concept of a backup. Instead, you either take a snapshot from a live member with the
etcdctl snapshot save command or copy the member/snap/db file from an etcd
data directory.

The etcdctl backup command rewrites some of the metadata contained in the
backup, specifically, the node ID and cluster ID, which means that in the backup, the node
loses its former identity. To recreate a cluster from the backup, you create a new, single-
node cluster, then add the rest of the nodes to the cluster. The metadata is rewritten to
prevent the new node from joining an existing cluster.

Back up the etcd data:

If you use the v2 API, take the following actions:

a. Stop all etcd services:

systemctl stop etcd.service

b. Create the etcd data backup and copy the etcd db file:

mkdir -p /backup/etcd-$(date +%Y%m%d)
etcdctl2 backup \
 --data-dir /var/lib/etcd \
 --backup-dir /backup/etcd-$(date +%Y%m%d)
cp /var/lib/etcd/member/snap/db /backup/etcd-$(date +%Y%m%d)

c. Start all etcd services:

systemctl start etcd.service

If you use the v3 API, run the following commands:

CHAPTER 5. HOST-LEVEL TASKS

67

IMPORTANT

Because clusters upgraded from previous versions of OpenShift Container
Platform might contain v2 data stores, back up both v2 and v3 datastores.

a. Back up etcd v3 data:

systemctl show etcd --property=ActiveState,SubState
mkdir -p /backup/etcd-$(date +%Y%m%d)
etcdctl3 snapshot save */backup/etcd-$(date +%Y%m%d)*/db
Snapshot saved at /backup/etcd-<date>/db

b. Back up etcd v2 data:

systemctl stop etcd.service
etcdctl2 backup \
 --data-dir /var/lib/etcd \
 --backup-dir /backup/etcd-$(date +%Y%m%d)
cp /var/lib/etcd/member/snap/db /backup/etcd-$(date +%Y%m%d)
systemctl start etcd.service

NOTE

The etcdctl snapshot save command requires the etcd service to be
running.

In these commands, a /backup/etcd-<date>/ directory is created, where <date>
represents the current date, which must be an external NFS share, S3 bucket, or any
external storage location.

In the case of an all-in-one cluster, the etcd data directory is located in the
/var/lib/origin/openshift.local.etcd directory.

5.4.2. Restoring etcd

The restore procedure for etcd configuration files replaces the appropriate files, then restarts the service.

If an etcd host has become corrupted and the /etc/etcd/etcd.conf file is lost, restore it using:

$ ssh master-0
cp /backup/yesterday/master-0-files/etcd.conf /etc/etcd/etcd.conf
restorecon -Rv /etc/etcd/etcd.conf
systemctl restart etcd.service

In this example, the backup file is stored in the /backup/yesterday/master-0-files/etcd.conf
path where it can be used as an external NFS share, S3 bucket, or other storage solution.

5.4.2.1. Restoring etcd v2 & v3 data

The following process restores healthy data files and starts the etcd cluster as a single node, then adds
the rest of the nodes if an etcd cluster is required.

Procedure

OpenShift Container Platform 3.7 Day Two Operations Guide

68

1. Stop all etcd services:

systemctl stop etcd.service

2. To ensure the proper backup is restored, delete the etcd directories:

To back up the current etcd data before you delete the directory, run the following command:

mv /var/lib/etcd /var/lib/etcd.old
mkdir /var/lib/etcd
chown -R etcd.etcd /var/lib/etcd/
restorecon -Rv /var/lib/etcd/

Or, to delete the directory and the etcd, data, run the following command:

rm -Rf /var/lib/etcd/*

NOTE

In an all-in-one cluster, the etcd data directory is located in the
/var/lib/origin/openshift.local.etcd directory.

3. Restore a healthy backup data file to each of the etcd nodes. Perform this step on all etcd hosts,
including master hosts collocated with etcd.

cp -R /backup/etcd-xxx/* /var/lib/etcd/
mv /var/lib/etcd/db /var/lib/etcd/member/snap/db
chcon -R --reference /backup/etcd-xxx/* /var/lib/etcd/
chown -R etcd:etcd /var/lib/etcd/R

4. Run the etcd service on each host, forcing a new cluster.
This creates a custom file for the etcd service, which overwrites the execution command adding
the --force-new-cluster option:

mkdir -p /etc/systemd/system/etcd.service.d/
echo "[Service]" > /etc/systemd/system/etcd.service.d/temp.conf
echo "ExecStart=" >> /etc/systemd/system/etcd.service.d/temp.conf
sed -n '/ExecStart/s/"$/ --force-new-cluster"/p' \
 /usr/lib/systemd/system/etcd.service \
 >> /etc/systemd/system/etcd.service.d/temp.conf

systemctl daemon-reload
systemctl restart etcd

5. Check for error messages:

$ journalctl -fu etcd.service

6. Check for health status:

etcdctl2 cluster-health
member 5ee217d17301 is healthy: got healthy result from
https://192.168.55.8:2379

CHAPTER 5. HOST-LEVEL TASKS

69

cluster is healthy

7. Restart the etcd service in cluster mode:

rm -f /etc/systemd/system/etcd.service.d/temp.conf
systemctl daemon-reload
systemctl restart etcd

8. Check for health status and member list:

etcdctl2 cluster-health
member 5ee217d17301 is healthy: got healthy result from
https://192.168.55.8:2379
cluster is healthy

etcdctl2 member list
5ee217d17301: name=master-0.example.com
peerURLs=http://localhost:2380 clientURLs=https://192.168.55.8:2379
isLeader=true

9. After the first instance is running, you can restore the rest of your etcd servers.

5.4.2.1.1. Fix the peerURLS parameter

After restoring the data and creating a new cluster, the peerURLs parameter shows localhost instead
of the IP where etcd is listening for peer communication:

etcdctl2 member list
5ee217d17301: name=master-0.example.com peerURLs=http://*localhost*:2380
clientURLs=https://192.168.55.8:2379 isLeader=true

5.4.2.1.1.1. Procedure

1. Get the member ID using etcdctl member list:

`etcdctl member list`

2. Get the IP where etcd listens for peer communication:

$ ss -l4n | grep 2380

3. Update the member information with that IP:

etcdctl2 member update 5ee217d17301 https://192.168.55.8:2380
Updated member with ID 5ee217d17301 in cluster

4. To verify, check that the IP is in the member list:

$ etcdctl2 member list
5ee217d17301: name=master-0.example.com
peerURLs=https://*192.168.55.8*:2380
clientURLs=https://192.168.55.8:2379 isLeader=true

OpenShift Container Platform 3.7 Day Two Operations Guide

70

5.4.2.2. Restoring etcd for v3

The restore procedure for v3 data is similar to the restore procedure for the v2 data.

Snapshot integrity may be optionally verified at restore time. If the snapshot is taken with etcdctl
snapshot save, it will have an integrity hash that is checked by etcdctl snapshot restore. If the
snapshot is copied from the data directory, there is no integrity hash and it will only restore by using --
skip-hash-check.

IMPORTANT

The procedure to restore only the v3 data must be performed on a single etcd host. You
can then add the rest of the nodes to the cluster.

Procedure

1. Stop all etcd services:

systemctl stop etcd.service

2. Clear all old data, because etcdctl recreates it in the node where the restore procedure is
going to be performed:

rm -Rf /var/lib/etcd

3. Run the snapshot restore command, substituting the values from the
/etc/etcd/etcd.conf file:

etcdctl3 snapshot restore /backup/etcd-xxxxxx/backup.db \
 --data-dir /var/lib/etcd \
 --name master-0.example.com \
 --initial-cluster "master-0.example.com=https://192.168.55.8:2380"
\ --initial-cluster-token "etcd-cluster-1" \
 --initial-advertise-peer-urls https://192.168.55.8:2380

2017-10-03 08:55:32.440779 I | mvcc: restore compact to 1041269
2017-10-03 08:55:32.468244 I | etcdserver/membership: added member
40bef1f6c79b3163 [https://192.168.55.8:2380] to cluster
26841ebcf610583c

4. Restore permissions and selinux context to the restored files:

chown -R etcd.etcd /var/lib/etcd/
restorecon -Rv /var/lib/etcd

5. Start the etcd service:

systemctl start etcd

6. Check for any error messages:

$ journalctl -fu etcd.service

CHAPTER 5. HOST-LEVEL TASKS

71

5.4.3. Replacing an etcd host

To replace an etcd host, scale up the etcd cluster and then remove the host. This process ensures that
you keep quorum if you lose an etcd host during the replacement procedure.

WARNING

The etcd cluster must maintain a quorum during the replacement operation. This
means that at least one host must be in operation at all times.

If the host replacement operation occurs while the etcd cluster maintains a quorum,
cluster operations are usually not affected. If a large amount of etcd data must
replicate, some operations might slow down.

NOTE

Before you start any procedure involving the etcd cluster, you must have a backup of the
etcd data and configuration files so that you can restore the cluster if the procedure fails.

5.4.4. Scaling etcd

You can scale the etcd cluster vertically by adding more resources to the etcd hosts or horizontally by
adding more etcd hosts.

NOTE

Due to the voting system etcd uses, the cluster must always contain an odd number of
members.

Having a cluster with an odd number of etcd hosts can account for fault tolerance. Having
an odd number of etcd hosts does not change the number needed for a quorum but
increases the tolerance for failure. For example, with a cluster of three members, quorum
is two, which leaves a failure tolerance of one. This ensures the cluster continues to
operate if two of the members are healthy.

Having an in-production cluster of three etcd hosts is recommended.

The new host requires a fresh Red Hat Enterprise Linux version 7 dedicated host. The etcd storage
should be located on an SSD disk to achieve maximum performance and on a dedicated disk mounted
in /var/lib/etcd.

Prerequisites

1. Before you add a new etcd host, perform a backup of both etcd configuration and data to prevent
data loss.

2. Check the current etcd cluster status to avoid adding new hosts to an unhealthy cluster.

If you use the v2 etcd api, run this command:

etcdctl --cert-file=/etc/etcd/peer.crt \



OpenShift Container Platform 3.7 Day Two Operations Guide

72

 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://*master-0.example.com*:2379,\
 https://*master-1.example.com*:2379,\
 https://*master-2.example.com*:2379"\
 cluster-health
member 5ee217d19001 is healthy: got healthy result from
https://192.168.55.12:2379
member 2a529ba1840722c0 is healthy: got healthy result from
https://192.168.55.8:2379
member ed4f0efd277d7599 is healthy: got healthy result from
https://192.168.55.13:2379
cluster is healthy

If you use the v3 etcd api, run this command:

ETCDCTL_API=3 etcdctl --cert="/etc/etcd/peer.crt" \
 --key=/etc/etcd/peer.key \
 --cacert="/etc/etcd/ca.crt" \
 --endpoints="https://*master-0.example.com*:2379,\
 https://*master-1.example.com*:2379,\
 https://*master-2.example.com*:2379"
 endpoint health
https://master-0.example.com:2379 is healthy: successfully
committed proposal: took = 5.011358ms
https://master-1.example.com:2379 is healthy: successfully
committed proposal: took = 1.305173ms
https://master-2.example.com:2379 is healthy: successfully
committed proposal: took = 1.388772ms

3. Before running the scaleup playbook, ensure the new host is registered to the proper Red Hat
software channels:

subscription-manager register \
 --username=*<username>* --password=*<password>*
subscription-manager attach --pool=*<poolid>*
subscription-manager repos --disable="*"
subscription-manager repos \
 --enable=rhel-7-server-rpms \
 --enable=rhel-7-server-extras-rpms

etcd is hosted in the rhel-7-server-extras-rpms software channel.

4. Upgrade etcd and iptables on the current etcd nodes:

yum update etcd iptables-services

5. Back up the /etc/etcd configuration for the etcd hosts.

6. If the new etcd members will also be OpenShift Container Platform nodes, add the desired
number of hosts to the cluster.

7. The rest of this procedure assumes you added one host, but if you add multiple hosts, perform
all steps on each host.

CHAPTER 5. HOST-LEVEL TASKS

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-adding-hosts-to-cluster

1 2 3

5.4.4.1. Adding a new etcd host using Ansible

Procedure

1. In the Ansible inventory file, create a new group named [new_etcd] and add the new host.
Then, add the new_etcd group as a child of the [OSEv3] group:

[OSEv3:children]
masters
nodes
etcd

new_etcd 1

... [OUTPUT ABBREVIATED] ...

[etcd]
master-0.example.com
master-1.example.com
master-2.example.com

[new_etcd] 2

etcd0.example.com 3

Add these lines.

2. From the host that installed OpenShift Container Platform and hosts the Ansible inventory file,
run the etcd scaleup playbook:

$ ansible-playbook /usr/share/ansible/openshift-
ansible/playbooks/byo/openshift-etcd/scaleup.yml

3. After the playbook runs, modify the inventory file to reflect the current status by moving the new
etcd host from the [new_etcd] group to the [etcd] group:

[OSEv3:children]
masters
nodes
etcd
new_etcd

... [OUTPUT ABBREVIATED] ...

[etcd]
master-0.example.com
master-1.example.com
master-2.example.com
etcd0.example.com

4. If you use Flannel, modify the flanneld service configuration on every OpenShift Container
Platform host, located at /etc/sysconfig/flanneld, to include the new etcd host:

FLANNEL_ETCD_ENDPOINTS=https://master-
0.example.com:2379,https://master-1.example.com:2379,https://master-
2.example.com:2379,https://etcd0.example.com:2379

OpenShift Container Platform 3.7 Day Two Operations Guide

74

5. Restart the flanneld service:

systemctl restart flanneld.service

5.4.4.2. Manually adding a new etcd host

Procedure
Modify the current etcd cluster
To create the etcd certificates, run the openssl command, replacing the values with those from your
environment.

1. Create some environment variables:

export NEW_ETCD_HOSTNAME="*etcd0.example.com*"
export NEW_ETCD_IP="192.168.55.21"

export CN=$NEW_ETCD_HOSTNAME
export SAN="IP:${NEW_ETCD_IP}, DNS:${NEW_ETCD_HOSTNAME}"
export PREFIX="/etc/etcd/generated_certs/etcd-$CN/"
export OPENSSLCFG="/etc/etcd/ca/openssl.cnf"

NOTE

The custom openssl extensions used as etcd_v3_ca_* include the $SAN
environment variable as subjectAltName. See
/etc/etcd/ca/openssl.cnf for more information.

2. Create the directory to store the configuration and certificates:

mkdir -p ${PREFIX}

3. Create the server certificate request and sign it: (server.csr and server.crt)

openssl req -new -config ${OPENSSLCFG} \
 -keyout ${PREFIX}server.key \
 -out ${PREFIX}server.csr \
 -reqexts etcd_v3_req -batch -nodes \
 -subj /CN=$CN

openssl ca -name etcd_ca -config ${OPENSSLCFG} \
 -out ${PREFIX}server.crt \
 -in ${PREFIX}server.csr \
 -extensions etcd_v3_ca_server -batch

4. Create the peer certificate request and sign it: (peer.csr and peer.crt)

openssl req -new -config ${OPENSSLCFG} \
 -keyout ${PREFIX}peer.key \
 -out ${PREFIX}peer.csr \
 -reqexts etcd_v3_req -batch -nodes \
 -subj /CN=$CN

CHAPTER 5. HOST-LEVEL TASKS

75

1

openssl ca -name etcd_ca -config ${OPENSSLCFG} \
 -out ${PREFIX}peer.crt \
 -in ${PREFIX}peer.csr \
 -extensions etcd_v3_ca_peer -batch

5. Copy the current etcd configuration and ca.crt files from the current node as examples to
modify later:

cp /etc/etcd/etcd.conf ${PREFIX}
cp /etc/etcd/ca.crt ${PREFIX}

6. While still on the surviving etcd host, add the new host to the cluster. To add additional etcd
members to the cluster, you must first adjust the default localhost peer in the peerURLs value
for the first member:

a. Get the member ID for the first member using the member list command:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --
peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https:/

/172.18.0.75:2379" \ 1
 member list

Ensure that you specify the URLs of only active etcd members in the --peers
parameter value.

b. Obtain the IP address where etcd listens for cluster peers:

$ ss -l4n | grep 2380

c. Update the value of peerURLs using the etcdctl member update command by passing
the member ID and IP address obtained from the previous steps:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --
peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https:/
/172.18.0.75:2379" \
 member update 511b7fb6cc0001 https://172.18.1.18:2380

d. Re-run the member list command and ensure the peer URLs no longer include
localhost.

7. Add the new host to the etcd cluster. Note that the new host is not yet configured, so the status
stays as unstarted until the you configure the new host.

OpenShift Container Platform 3.7 Day Two Operations Guide

76

1

WARNING

You must add each member and bring it online one at a time. When you add
each additional member to the cluster, you must adjust the peerURLs list
for the current peers. The peerURLs list grows by one for each member
added. The etcdctl member add command outputs the values that you
must set in the etcd.conf file as you add each member, as described in the
following instructions.

etcdctl -C https://${CURRENT_ETCD_HOST}:2379 \
 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key member add ${NEW_ETCD_HOSTNAME}

https://${NEW_ETCD_IP}:2380 1

Added member named 10.3.9.222 with ID 4e1db163a21d7651 to cluster

ETCD_NAME="<NEW_ETCD_HOSTNAME>"
ETCD_INITIAL_CLUSTER="
<NEW_ETCD_HOSTNAME>=https://<NEW_HOST_IP>:2380,
<CLUSTERMEMBER1_NAME>=https:/<CLUSTERMEMBER2_IP>:2380,
<CLUSTERMEMBER2_NAME>=https:/<CLUSTERMEMBER2_IP>:2380,
<CLUSTERMEMBER3_NAME>=https:/<CLUSTERMEMBER3_IP>:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

In this line, 10.3.9.222 is a label for the etcd member. You can specify the host name, IP
address, or a simple name.

8. Update the sample ${PREFIX}/etcd.conf file.

a. Replace the following values with the values generated in the previous step:

ETCD_NAME

ETCD_INITIAL_CLUSTER

ETCD_INITIAL_CLUSTER_STATE

b. Modify the following variables with the new host IP from the output of the previous step. You
can use ${NEW_ETCD_IP} as the value.

ETCD_LISTEN_PEER_URLS
ETCD_LISTEN_CLIENT_URLS
ETCD_INITIAL_ADVERTISE_PEER_URLS
ETCD_ADVERTISE_CLIENT_URLS

c. If you previously used the member system as an etcd node, you must overwrite the current
values in the /etc/etcd/etcd.conf file.



CHAPTER 5. HOST-LEVEL TASKS

77

d. Check the file for syntax errors or missing IP addresses, otherwise the etcd service might
fail:

vi ${PREFIX}/etcd.conf

9. On the node that hosts the installation files, update the [etcd] hosts group in the
/etc/ansible/hosts inventory file. Remove the old etcd hosts and add the new ones.

10. Create a tgz file that contains the certificates, the sample configuration file, and the ca and copy
it to the new host:

tar -czvf /etc/etcd/generated_certs/${CN}.tgz -C ${PREFIX} .
scp /etc/etcd/generated_certs/${CN}.tgz ${CN}:/tmp/

Modify the new etcd host

1. Install iptables-services to provide iptables utilities to open the required ports for etcd:

yum install -y iptables-services

2. Create the OS_FIREWALL_ALLOW firewall rules to allow etcd to communicate:

Port 2379/tcp for clients

Port 2380/tcp for peer communication

systemctl enable iptables.service --now
iptables -N OS_FIREWALL_ALLOW
iptables -t filter -I INPUT -j OS_FIREWALL_ALLOW
iptables -A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m
tcp --dport 2379 -j ACCEPT
iptables -A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m
tcp --dport 2380 -j ACCEPT
iptables-save | tee /etc/sysconfig/iptables

NOTE

In this example, a new chain OS_FIREWALL_ALLOW is created, which is the
standard naming the OpenShift Container Platform installer uses for firewall
rules.

WARNING

If the environment is hosted in an IaaS environment, modify the security
groups for the instance to allow incoming traffic to those ports as well.

3. Install etcd:

yum install -y etcd



OpenShift Container Platform 3.7 Day Two Operations Guide

78

Ensure version etcd-2.3.7-4.el7.x86_64 or greater is installed,

4. Ensure the etcd service is not running:

systemctl disable etcd --now

5. Remove any etcd configuration and data:

rm -Rf /etc/etcd/*
rm -Rf /var/lib/etcd/*

6. Extract the certificates and configuration files:

tar xzvf /tmp/etcd0.example.com.tgz -C /etc/etcd/

7. Modify the file ownership permissions:

chown -R etcd/etcd /etc/etcd/*
chown -R etcd/etcd /var/lib/etcd/

8. Start etcd on the new host:

systemctl enable etcd --now

9. Verify that the host is part of the cluster and the current cluster health:

If you use the v2 etcd api, run the following command:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://*master-0.example.com*:2379,\
 https://*master-1.example.com*:2379,\
 https://*master-2.example.com*:2379,\
 https://*etcd0.example.com*:2379"\
 cluster-health
member 5ee217d19001 is healthy: got healthy result from
https://192.168.55.12:2379
member 2a529ba1840722c0 is healthy: got healthy result from
https://192.168.55.8:2379
member 8b8904727bf526a5 is healthy: got healthy result from
https://192.168.55.21:2379
member ed4f0efd277d7599 is healthy: got healthy result from
https://192.168.55.13:2379
cluster is healthy

If you use the v3 etcd api, run the following command:

ETCDCTL_API=3 etcdctl --cert="/etc/etcd/peer.crt" \
 --key=/etc/etcd/peer.key \
 --cacert="/etc/etcd/ca.crt" \
 --endpoints="https://*master-0.example.com*:2379,\
 https://*master-1.example.com*:2379,\
 https://*master-2.example.com*:2379,\

CHAPTER 5. HOST-LEVEL TASKS

79

 https://*etcd0.example.com*:2379"\
 endpoint health
https://master-0.example.com:2379 is healthy: successfully
committed proposal: took = 5.011358ms
https://master-1.example.com:2379 is healthy: successfully
committed proposal: took = 1.305173ms
https://master-2.example.com:2379 is healthy: successfully
committed proposal: took = 1.388772ms
https://etcd0.example.com:2379 is healthy: successfully committed
proposal: took = 1.498829ms

Modify each OpenShift Container Platform master

1. Modify the master configuration in the etcClientInfo section of the
/etc/origin/master/master-config.yaml file on every master. Add the new etcd host
to the list of the etcd servers OpenShift Container Platform uses to store the data, and remove
any failed etcd hosts:

etcdClientInfo:
 ca: master.etcd-ca.crt
 certFile: master.etcd-client.crt
 keyFile: master.etcd-client.key
 urls:
 - https://master-0.example.com:2379
 - https://master-1.example.com:2379
 - https://master-2.example.com:2379
 - https://etcd0.example.com:2379

2. Restart the master API service:

On every master:

systemctl restart atomic-openshift-master-api

Or, on a single master cluster installation:

systemctl restart atomic-openshift-master

WARNING

The number of etcd nodes must be odd, so you must add at least two
hosts.

3. If you use Flannel, modify the flanneld service configuration located at
/etc/sysconfig/flanneld on every OpenShift Container Platform host to include the new
etcd host:



OpenShift Container Platform 3.7 Day Two Operations Guide

80

FLANNEL_ETCD_ENDPOINTS=https://master-
0.example.com:2379,https://master-1.example.com:2379,https://master-
2.example.com:2379,https://etcd0.example.com:2379

4. Restart the flanneld service:

systemctl restart flanneld.service

5.4.5. Removing an etcd host

If an etcd host fails beyond restoration, remove it from the cluster.

Steps to be performed on all masters hosts

Procedure

1. Remove each other etcd host from the etcd cluster. Run the following command for each etcd
node:

etcdctl -C https://<surviving host IP address>:2379 \
 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key member remove <failed member ID>

2. Restart the master API service on every master:

systemctl restart atomic-openshift-master-api

Or, if using a single master cluster installation:

systemctl restart atomic-openshift-master

Steps to be performed in the current etcd cluster

Procedure

1. Remove the failed host from the cluster:

etcdctl2 cluster-health
member 5ee217d19001 is healthy: got healthy result from
https://192.168.55.12:2379
member 2a529ba1840722c0 is healthy: got healthy result from
https://192.168.55.8:2379
failed to check the health of member 8372784203e11288 on
https://192.168.55.21:2379: Get https://192.168.55.21:2379/health:
dial tcp 192.168.55.21:2379: getsockopt: connection refused
member 8372784203e11288 is unreachable: [https://192.168.55.21:2379]
are all unreachable
member ed4f0efd277d7599 is healthy: got healthy result from
https://192.168.55.13:2379
cluster is healthy

etcdctl2 member remove 8372784203e11288 1
Removed member 8372784203e11288 from cluster

CHAPTER 5. HOST-LEVEL TASKS

81

1

etcdctl2 cluster-health
member 5ee217d19001 is healthy: got healthy result from
https://192.168.55.12:2379
member 2a529ba1840722c0 is healthy: got healthy result from
https://192.168.55.8:2379
member ed4f0efd277d7599 is healthy: got healthy result from
https://192.168.55.13:2379
cluster is healthy

The remove command requires the etcd ID, not the hostname.

2. To ensure the etcd configuration does not use the failed host when the etcd service is restarted,
modify the /etc/etcd/etcd.conf file on all remaining etcd hosts and remove the failed host
in the value for the ETCD_INITIAL_CLUSTER variable:

vi /etc/etcd/etcd.conf

For example:

ETCD_INITIAL_CLUSTER=master-
0.example.com=https://192.168.55.8:2380,master-
1.example.com=https://192.168.55.12:2380,master-
2.example.com=https://192.168.55.13:2380

becomes:

ETCD_INITIAL_CLUSTER=master-
0.example.com=https://192.168.55.8:2380,master-
1.example.com=https://192.168.55.12:2380

NOTE

Restarting the etcd services is not required, because the failed host is removed
using etcdctl.

3. Modify the Ansible inventory file to reflect the current status of the cluster and to avoid issues
when re-running a playbook:

[OSEv3:children]
masters
nodes
etcd

... [OUTPUT ABBREVIATED] ...

[etcd]
master-0.example.com
master-1.example.com

4. If you are using Flannel, modify the flanneld service configuration located at
/etc/sysconfig/flanneld on every host and remove the etcd host:

OpenShift Container Platform 3.7 Day Two Operations Guide

82

FLANNEL_ETCD_ENDPOINTS=https://master-
0.example.com:2379,https://master-1.example.com:2379,https://master-
2.example.com:2379

5. Restart the flanneld service:

systemctl restart flanneld.service

CHAPTER 5. HOST-LEVEL TASKS

83

CHAPTER 6. PROJECT-LEVEL TASKS

6.1. BACKING UP A PROJECT

Creating a backup of all relevant data involves exporting all important information, then restoring into a
new project.

NOTE

Currently, a OpenShift Container Platform project back up and restore tool is being
developed by Red Hat. See the following bug for more information:

bugzilla 1303205.

Procedure

1. List all the relevant data to back up:

$ oc get all
NAME TYPE FROM LATEST
bc/ruby-ex Source Git 1

NAME TYPE FROM STATUS STARTED
DURATION
builds/ruby-ex-1 Source Git@c457001 Complete 2 minutes ago
35s

NAME DOCKER REPO
TAGS UPDATED
is/guestbook 10.111.255.221:5000/myproject/guestbook
latest 2 minutes ago
is/hello-openshift 10.111.255.221:5000/myproject/hello-openshift
latest 2 minutes ago
is/ruby-22-centos7 10.111.255.221:5000/myproject/ruby-22-centos7
latest 2 minutes ago
is/ruby-ex 10.111.255.221:5000/myproject/ruby-ex
latest 2 minutes ago

NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/guestbook 1 1 1
config,image(guestbook:latest)
dc/hello-openshift 1 1 1
config,image(hello-openshift:latest)
dc/ruby-ex 1 1 1
config,image(ruby-ex:latest)

NAME DESIRED CURRENT READY AGE
rc/guestbook-1 1 1 1 2m
rc/hello-openshift-1 1 1 1 2m
rc/ruby-ex-1 1 1 1 2m

NAME CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
svc/guestbook 10.111.105.84 <none> 3000/TCP

OpenShift Container Platform 3.7 Day Two Operations Guide

84

https://bugzilla.redhat.com/show_bug.cgi?id=1303205

2m
svc/hello-openshift 10.111.230.24 <none>
8080/TCP,8888/TCP 2m
svc/ruby-ex 10.111.232.117 <none> 8080/TCP
2m

NAME READY STATUS RESTARTS AGE
po/guestbook-1-c010g 1/1 Running 0 2m
po/hello-openshift-1-4zw2q 1/1 Running 0 2m
po/ruby-ex-1-build 0/1 Completed 0 2m
po/ruby-ex-1-rxc74 1/1 Running 0 2m

2. Export the project objects to a .yaml or .json file.

To export the project objects into a project.yaml file:

$ oc export all -o yaml > project.yaml

To export the project objects into a project.json file:

$ oc export all -o json > project.json

3. Export the project’s role bindings, secrets, service accounts, and persistent
volume claims:

$ for object in rolebindings serviceaccounts secrets imagestreamtags
podpreset cms egressnetworkpolicies rolebindingrestrictions
limitranges resourcequotas pvcs templates cronjobs statefulsets hpas
deployments replicasets poddisruptionbudget endpoints
do
 oc export $object -o yaml > $object.yaml
done

4. To list all the namespaced objects:

$ oc api-resources --namespaced=true -o name

5. Some exported objects can rely on specific metadata or references to unique IDs in the project.
This is a limitation on the usability of the recreated objects.
When using imagestreams, the image parameter of a deploymentconfig can point to a
specific sha checksum of an image in the internal registry that would not exist in a restored
environment. For instance, running the sample "ruby-ex" as oc new-app centos/ruby-22-
centos7~https://github.com/sclorg/ruby-ex.git creates an imagestream ruby-
ex using the internal registry to host the image:

$ oc get dc ruby-ex -o jsonpath="
{.spec.template.spec.containers[].image}"
10.111.255.221:5000/myproject/ruby-
ex@sha256:880c720b23c8d15a53b01db52f7abdcbb2280e03f686a5c8edfef1a2a7
b21cee

If importing the deploymentconfig as it is exported with oc export it fails if the image does
not exist.

CHAPTER 6. PROJECT-LEVEL TASKS

85

6.2. RESTORING A PROJECT

To restore a project, create the new project, then restore any exported files by running oc create -f
pods.json. However, restoring a project from scratch requires a specific order because some objects
depend on others. For example, you must create the configmaps before you create any pods.

Procedure

1. If the project was exported as a single file, import it by running the following commands:

$ oc new-project <projectname>
$ oc create -f project.yaml
$ oc create -f secret.yaml
$ oc create -f serviceaccount.yaml
$ oc create -f pvc.yaml
$ oc create -f rolebindings.yaml

WARNING

Some resources, such as pods and default service accounts, can fail to be
created.

6.2.1. Backing up persistent volume claims

You can synchronize persistent data from inside of a container to a server.

IMPORTANT

Depending on the provider that is hosting the OpenShift Container Platform environment,
the ability to launch third party snapshot services for backup and restore purposes also
exists. As OpenShift Container Platform does not have the ability to launch these
services, this guide does not describe these steps.

Consult any product documentation for the correct backup procedures of specific applications. For
example, copying the mysql data directory itself does not create a usable backup. Instead, run the
specific backup procedures of the associated application and then synchronize any data. This includes
using snapshot solutions provided by the OpenShift Container Platform hosting platform.

Procedure

1. View the project and pods:

$ oc get pods
NAME READY STATUS RESTARTS AGE
demo-1-build 0/1 Completed 0 2h
demo-2-fxx6d 1/1 Running 0 1h

2. Describe the desired pod to find the volumes that are currently used by a persistent volume:



OpenShift Container Platform 3.7 Day Two Operations Guide

86

$ oc describe pod demo-2-fxx6d
Name: demo-2-fxx6d
Namespace: test
Security Policy: restricted
Node: ip-10-20-6-20.ec2.internal/10.20.6.20
Start Time: Tue, 05 Dec 2017 12:54:34 -0500
Labels: app=demo
 deployment=demo-2
 deploymentconfig=demo
Status: Running
IP: 172.16.12.5
Controllers: ReplicationController/demo-2
Containers:
 demo:
 Container ID:
docker://201f3e55b373641eb36945d723e1e212ecab847311109b5cee1fd010942
4217a
 Image: docker-
registry.default.svc:5000/test/demo@sha256:0a9f2487a0d95d51511e49d20
dc9ff6f350436f935968b0c83fcb98a7a8c381a
 Image ID: docker-pullable://docker-
registry.default.svc:5000/test/demo@sha256:0a9f2487a0d95d51511e49d20
dc9ff6f350436f935968b0c83fcb98a7a8c381a
 Port: 8080/TCP
 State: Running
 Started: Tue, 05 Dec 2017 12:54:52 -0500
 Ready: True
 Restart Count: 0
 Volume Mounts:
 /opt/app-root/src/uploaded from persistent-volume (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-
token-8mmrk (ro)
 Environment Variables: <none>
...omitted...

This output shows that the persistent data is in the /opt/app-root/src/uploaded directory.

3. Copy the data locally:

$ oc rsync demo-2-fxx6d:/opt/app-root/src/uploaded ./demo-app
receiving incremental file list
uploaded/
uploaded/ocp_sop.txt
uploaded/lost+found/

sent 38 bytes received 190 bytes 152.00 bytes/sec
total size is 32 speedup is 0.14

The ocp_sop.txt file is downloaded to the local system to be backed up by backup software
or another backup mechanism.

CHAPTER 6. PROJECT-LEVEL TASKS

87

NOTE

You can also use the previous steps if a pod starts without needing to use a pvc,
but you later decide that a pvc is necessary. You can preserve the data and then
use the restorate process to populate the new storage.

6.2.2. Restoring persistent volume claims

You can restore persistent volume claim (PVC) data that you backed up. You can delete the file and then
place the file back in the expected location or migrate the persistent volume claims. You might migrate if
you need to move the storage or in a disaster scenario when the backend storage no longer exists.

Consult any product documentation for the correct restoration procedures for specific applications.

6.2.2.1. Restoring files to an existing PVC

Procedure

1. Delete the file:

$ oc rsh demo-2-fxx6d
sh-4.2$ ls */opt/app-root/src/uploaded/*
lost+found ocp_sop.txt
sh-4.2$ *rm -rf /opt/app-root/src/uploaded/ocp_sop.txt*
sh-4.2$ *ls /opt/app-root/src/uploaded/*
lost+found

2. Replace the file from the server that contains the rsync backup of the files that were in the pvc:

$ oc rsync uploaded demo-2-fxx6d:/opt/app-root/src/

3. Validate that the file is back on the pod by using oc rsh to connect to the pod and view the
contents of the directory:

$ oc rsh demo-2-fxx6d
sh-4.2$ *ls /opt/app-root/src/uploaded/*
lost+found ocp_sop.txt

6.2.2.2. Restoring data to a new PVC

The following steps assume that a new pvc has been created.

Procedure

1. Overwrite the currently defined claim-name:

$ oc volume dc/demo --add --name=persistent-volume \
 --type=persistentVolumeClaim --claim-name=filestore \ --mount-
path=/opt/app-root/src/uploaded --overwrite

2. Validate that the pod is using the new PVC:

$ oc describe dc/demo
Name: demo

OpenShift Container Platform 3.7 Day Two Operations Guide

88

Namespace: test
Created: 3 hours ago
Labels: app=demo
Annotations: openshift.io/generated-by=OpenShiftNewApp
Latest Version: 3
Selector: app=demo,deploymentconfig=demo
Replicas: 1
Triggers: Config, Image(demo@latest, auto=true)
Strategy: Rolling
Template:
 Labels: app=demo
 deploymentconfig=demo
 Annotations: openshift.io/container.demo.image.entrypoint=
["container-entrypoint","/bin/sh","-c","$STI_SCRIPTS_PATH/usage"]
 openshift.io/generated-by=OpenShiftNewApp
 Containers:
 demo:
 Image: docker-
registry.default.svc:5000/test/demo@sha256:0a9f2487a0d95d51511e49d20
dc9ff6f350436f935968b0c83fcb98a7a8c381a
 Port: 8080/TCP
 Volume Mounts:
 /opt/app-root/src/uploaded from persistent-volume (rw)
 Environment Variables: <none>
 Volumes:
 persistent-volume:
 Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the same namespace)
 ClaimName: filestore
 ReadOnly: false
...omitted...

3. Now that the deployement configuration uses the new pvc, run oc rsync to place the files onto
the new pvc:

$ oc rsync uploaded demo-3-2b8gs:/opt/app-root/src/
sending incremental file list
uploaded/
uploaded/ocp_sop.txt
uploaded/lost+found/

sent 181 bytes received 39 bytes 146.67 bytes/sec
total size is 32 speedup is 0.15

4. Validate that the file is back on the pod by using oc rsh to connect to the pod and view the
contents of the directory:

$ oc rsh demo-3-2b8gs
sh-4.2$ ls /opt/app-root/src/uploaded/
lost+found ocp_sop.txt

6.2.3. Pruning images and containers

CHAPTER 6. PROJECT-LEVEL TASKS

89

See the Pruning Resources topic for information about pruning collected data and older versions of
objects.

OpenShift Container Platform 3.7 Day Two Operations Guide

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-pruning-resources

CHAPTER 7. DOCKER TASKS
OpenShift Container Platform uses Docker to run applications in pods that are composed by any number
of containers.

As a cluster administrator, sometimes Docker requires some extra configuration in order to efficiently run
elements of the OpenShift Container Platform installation.

7.1. INCREASING DOCKER STORAGE

Increasing the amount of storage available ensures continued deployment without any outages. To do
so, a free partition must be made available that contains an appropriate amount of free capacity.

7.1.1. Evacuating the node

Procedure

1. From a master instance, or as a cluster administrator, allow the evacuation of any pod from the
node and disable scheduling of other pods on that node:

$ NODE=ose-app-node01.example.com
$ oc adm manage-node ${NODE} --schedulable=false
NAME STATUS AGE
VERSION
ose-app-node01.example.com Ready,SchedulingDisabled 20m
v1.6.1+5115d708d7

$ oc adm drain ${NODE} --ignore-daemonsets
node "ose-app-node01.example.com" already cordoned
pod "perl-1-build" evicted
pod "perl-1-3lnsh" evicted
pod "perl-1-9jzd8" evicted
node "ose-app-node01.example.com" drained

NOTE

If there are containers running with local volumes that will not migrate, run the
following command: oc adm drain ${NODE} --ignore-daemonsets --
delete-local-data.

2. List the pods on the node to verify that they have been removed:

$ oc adm manage-node ${NODE} --list-pods

Listing matched pods on node: ose-app-node01.example.com

NAME READY STATUS RESTARTS AGE

For more information on evacuating and draining pods or nodes, see Node maintenance.

7.1.2. Increasing storage

You can increase Docker storage in two ways: attaching a new disk, or extending the existing disk.

CHAPTER 7. DOCKER TASKS

91

Increasing storage with a new disk

Prerequisites

A new disk must be available to the existing instance that requires more storage. In the following
steps, the original disk is labeled /dev/xvdb, and the new disk is labeled /dev/xvdd, as
shown in the /etc/sysconfig/docker-storage-setup file:

vi /etc/sysconfig/docker-storage-setup
DEVS="/dev/xvdb /dev/xvdd"

NOTE

The process may differ depending on the underlying OpenShift Container
Platform infrastructure.

Procedure

1. Stop the docker and atomic-openshift-node services:

systemctl stop docker atomic-openshift-node

2. Run the docker-storage-setup command to extend the volume groups and logical volumes
associated with container storage:

docker-storage-setup
INFO: Volume group backing root filesystem could not be determined
INFO: Device /dev/xvdb is already partitioned and is part of volume
group docker_vol
INFO: Device node /dev/xvdd1 exists.
 Physical volume "/dev/xvdd1" successfully created.
 Volume group "docker_vol" successfully extended

3. Start the Docker services:

systemctl start docker
vgs
 VG #PV #LV #SN Attr VSize VFree
 docker_vol 2 1 0 wz--n- 64.99g <55.00g

4. A benefit in adding a disk compared to creating a new volume group and re-running docker-
storage-setup is that the images that were used on the system still exist after the new
storage has been added:

docker images
REPOSITORY TAG
IMAGE ID CREATED SIZE
docker-registry.default.svc:5000/tet/perl latest
8b0b0106fb5e 13 minutes ago 627.4 MB
registry.access.redhat.com/rhscl/perl-524-rhel7 <none>
912b01ac7570 6 days ago 559.5 MB
registry.access.redhat.com/openshift3/ose-deployer
v3.6.173.0.21 89fd398a337d 5 weeks ago 970.2
MB

OpenShift Container Platform 3.7 Day Two Operations Guide

92

registry.access.redhat.com/openshift3/ose-sti-builder
v3.6.173.0.21 99ab8895d88a 5 weeks ago 970.2
MB
registry.access.redhat.com/openshift3/ose-pod
v3.6.173.0.21 63accd48a0d7 5 weeks ago 208.6
MB

5. With the increase in storage capacity, enable the node to be schedulable in order to accept new
incoming pods.
As a cluster administrator, run the following from a master instance:

$ oc adm manage-node ${NODE} --schedulable=true

ose-master01.example.com Ready,SchedulingDisabled 24m
v1.6.1+5115d708d7
ose-master02.example.com Ready,SchedulingDisabled 24m
v1.6.1+5115d708d7
ose-master03.example.com Ready,SchedulingDisabled 24m
v1.6.1+5115d708d7
ose-infra-node01.example.com Ready 24m
v1.6.1+5115d708d7
ose-infra-node02.example.com Ready 24m
v1.6.1+5115d708d7
ose-infra-node03.example.com Ready 24m
v1.6.1+5115d708d7
ose-app-node01.example.com Ready 24m
v1.6.1+5115d708d7
ose-app-node02.example.com Ready 24m
v1.6.1+5115d708d7

Increasing storage with a new disk

1. Evacuate the node following the previous steps.

2. Stop the docker and atomic-openshift-node services:

systemctl stop docker atomic-openshift-node

3. Resize the existing disk as desired. This can can depend on your environment:

If you are using LVM (Logical Volume Manager):

Remove the logical volume:

lvremove /dev/docker_vg/docker/lv

Remove the Docker volume group:

vgremove docker_vg

Remove the physical volume:

pvremove /dev/<my_previous_disk_device>

CHAPTER 7. DOCKER TASKS

93

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/logical_volume_manager_administration/lv#LV_remove
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/logical_volume_manager_administration/vg_admin#VG_remove
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/logical_volume_manager_administration/physvol_admin#PV_remove

If you are using a cloud provider, you can detach the disk, destroy the disk, then create a
new bigger disk, and attach it to the instance.

For a non-cloud environment, the disk and file system can be resized. See the following
solution for more information:

https://access.redhat.com/solutions/199573

4. Verify that the /etc/sysconfig/container-storage-setup file is correctly configured for the new
disk by checking the device name, size, etc.

5. Run docker-storage-setup to reconfigure the new disk:

docker-storage-setup
INFO: Volume group backing root filesystem could not be determined
INFO: Device /dev/xvdb is already partitioned and is part of volume
group docker_vol
INFO: Device node /dev/xvdd1 exists.
 Physical volume "/dev/xvdd1" successfully created.
 Volume group "docker_vol" successfully extended

6. Start the Docker services:

systemctl start docker
vgs
 VG #PV #LV #SN Attr VSize VFree
 docker_vol 2 1 0 wz--n- 64.99g <55.00g

7. Start the atomic-openshift-node service:

systemctl start atomic-openshift-node

7.1.3. Changing the storage backend

With the advancements of services and file systems, changes in a storage backend may be necessary to
take advantage of new features. The following steps provide an example of changing a device mapper
backend to an overlay2 storage backend. overlay2 offers increased speed and density over
traditional device mapper.

7.1.3.1. Evacuating the node

1. From a master instance, or as a cluster administrator, allow the evacuation of any pod from the
node and disable scheduling of other pods on that node:

$ NODE=ose-app-node01.example.com
$ oc adm manage-node ${NODE} --schedulable=false
NAME STATUS AGE
VERSION
ose-app-node01.example.com Ready,SchedulingDisabled 20m
v1.6.1+5115d708d7

$ oc adm drain ${NODE} --ignore-daemonsets
node "ose-app-node01.example.com" already cordoned
pod "perl-1-build" evicted

OpenShift Container Platform 3.7 Day Two Operations Guide

94

https://access.redhat.com/solutions/199573

pod "perl-1-3lnsh" evicted
pod "perl-1-9jzd8" evicted
node "ose-app-node01.example.com" drained

NOTE

If there are containers running with local volumes that will not migrate, run the
following command: oc adm drain ${NODE} --ignore-daemonsets --
delete-local-data

2. List the pods on the node to verify that they have been removed:

$ oc adm manage-node ${NODE} --list-pods

Listing matched pods on node: ose-app-node01.example.com

NAME READY STATUS RESTARTS AGE

For more information on evacuating and draining pods or nodes, see Node maintenance.

3. With no containers currently running on the instance, stop the docker and atomic-
openshift-node service services:

systemctl stop docker atomic-openshift-node

4. Verify the name of the volume group, logical volume name, and physical volume name:

vgs
 VG #PV #LV #SN Attr VSize VFree
 docker_vol 1 1 0 wz--n- <25.00g 15.00g

lvs
LV VG Attr LSize Pool Origin Data% Meta%
Move Log Cpy%Sync Convert
 dockerlv docker_vol -wi-ao---- <10.00g

lvremove /dev/docker_vol/docker-pool -y
vgremove docker_vol -y
pvs
 PV VG Fmt Attr PSize PFree
 /dev/xvdb1 docker_vol lvm2 a-- <25.00g 15.00g

pvremove /dev/xvdb1 -y
rm -Rf /var/lib/docker/*
rm -f /etc/sysconfig/docker-storage

5. Modify the docker-storage-setup file to specify the STORAGE_DRIVER.

CHAPTER 7. DOCKER TASKS

95

NOTE

When a system is upgraded from Red Hat Enterprise Linux version 7.3 to 7.4, the
docker service attempts to use /var with the STORAGE_DRIVER of extfs. The
use of extfs as the STORAGE_DRIVER causes errors. See the following bug for
more info regarding the error:

Bugzilla ID: 1490910

DEVS=/dev/xvdb
VG=docker_vol
DATA_SIZE=95%VG
STORAGE_DRIVER=overlay2
CONTAINER_ROOT_LV_NAME=dockerlv
CONTAINER_ROOT_LV_MOUNT_PATH=/var/lib/docker
CONTAINER_ROOT_LV_SIZE=100%FREE

6. Set up the storage:

docker-storage-setup

7. Start the docker and atomic-openshift-node services:

systemctl start docker atomic-openshift-node

8. With the storage modified to use overlay2, enable the node to be schedulable in order to
accept new incoming pods.
From a master instance, or as a cluster administrator:

$ oc adm manage-node ${NODE} --schedulable=true

ose-master01.example.com Ready,SchedulingDisabled 24m
v1.6.1+5115d708d7
ose-master02.example.com Ready,SchedulingDisabled 24m
v1.6.1+5115d708d7
ose-master03.example.com Ready,SchedulingDisabled 24m
v1.6.1+5115d708d7
ose-infra-node01.example.com Ready 24m
v1.6.1+5115d708d7
ose-infra-node02.example.com Ready 24m
v1.6.1+5115d708d7
ose-infra-node03.example.com Ready 24m
v1.6.1+5115d708d7
ose-app-node01.example.com Ready 24m
v1.6.1+5115d708d7
ose-app-node02.example.com Ready 24m
v1.6.1+5115d708d7

7.2. MANAGING DOCKER CERTIFICATES

An OpenShift Container Platform internal registry is created as a pod. However, containers may be
pulled from external registries if desired. By default, registries listen on TCP port 5000. Registries
provide the option of securing exposed images via TLS or running a registry without encrypting traffic.

OpenShift Container Platform 3.7 Day Two Operations Guide

96

https://bugzilla.redhat.com/show_bug.cgi?id=1490910

WARNING

Docker interprets .crt files as CA certificates and .cert files as client certificates.
Any CA extensions must be .crt.

7.2.1. Installing a certificate authority certificate for external registries

In order to use OpenShift Container Platform with an external registry, the registry certificate authority
(CA) certificate must be trusted for all the nodes that can pull images from the registry.

NOTE

Depending on the Docker version, the process to trust a Docker registry varies. The latest
versions of Docker’s root certificate authorities are merged with system defaults. Prior to
docker version 1.13, the system default certificate is used only when no other custom
root certificates exist.

Procedure

1. Copy the CA certificate to /etc/pki/ca-trust/source/anchors/:

$ sudo cp myregistry.example.com.crt /etc/pki/ca-
trust/source/anchors/

2. Extract and add the CA certificate to the list of trusted certificates authorities:

$ sudo update-ca-trust extract

3. Verify the SSL certificate using the openssl command:

$ openssl verify myregistry.example.com.crt
myregistry.example.com.crt: OK

4. Once the certificate is in place and the trust is updated, restart the docker service to ensure the
new certificates are properly set:

$ sudo systemctl restart docker.service

For Docker versions prior to 1.13, perform the following additional steps for trusting certificates of
authority:

1. On every node create a new directory in /etc/docker/certs.d where the name of the
directory is the host name of the Docker registry:

$ sudo mkdir -p /etc/docker/certs.d/myregistry.example.com



CHAPTER 7. DOCKER TASKS

97

NOTE

The port number is not required unless the Docker registry cannot be accessed
without a port number. Addressing the port to the original Docker registry is as
follows: myregistry.example.com:port

2. Accessing the Docker registry via IP address requires the creation of a new directory within
/etc/docker/certs.d on every node where the name of the directory is the IP of the Docker
registry:

$ sudo mkdir -p /etc/docker/certs.d/10.10.10.10

3. Copy the CA certificate to the newly created Docker directories from the previous steps:

$ sudo cp myregistry.example.com.crt \
 /etc/docker/certs.d/myregistry.example.com/ca.crt

$ sudo cp myregistry.example.com.crt
/etc/docker/certs.d/10.10.10.10/ca.crt

4. Once the certificates have been copied, restart the docker service to ensure the new
certificates are used:

$ sudo systemctl restart docker.service

7.2.2. Docker certificates backup

When performing a node host backup, ensure to include the certificates for external registries.

Procedure

1. If using /etc/docker/certs.d, copy all the certificates included in the directory and store the
files:

$ sudo tar -czvf docker-registry-certs-$(hostname)-$(date
+%Y%m%d).tar.gz /etc/docker/certs.d/

2. If using a system trust, store the certificates prior to adding them within the system trust. Once
the store is complete, extract the certificate for restoration using the trust command. Identify
the system trust CAs and note the pkcs11 ID:

$ trust list
...[OUTPUT OMMITED]...
pkcs11:id=%a5%b3%e1%2b%2b%49%b6%d7%73%a1%aa%94%f5%01%e7%73%65%4c%ac%
50;type=cert
 type: certificate
 label: MyCA
 trust: anchor
 category: authority
...[OUTPUT OMMITED]...

3. Extract the certificate in pem format and provide it a name. For example, myca.crt.

OpenShift Container Platform 3.7 Day Two Operations Guide

98

$ trust extract --format=pem-bundle \
 --
filter="%a5%b3%e1%2b%2b%49%b6%d7%73%a1%aa%94%f5%01%e7%73%65%4c%ac%50
;type=cert" myca.crt

4. Verify the certificate has been properly extracted via openssl:

$ openssl verify myca.crt

5. Repeat the procedure for all the required certificates and store the files in a remote location.

7.2.3. Docker certificates restore

In the event of the deletion or corruption of the Docker certificates for the external registries, the restore
mechanism uses the same steps as the installation method using the files from the backups performed
previously.

7.3. MANAGING DOCKER REGISTRIES

You can configure OpenShift Container Platform to use external docker registries to pull images.
However, you can use configuration files to allow or deny certain images or registries.

If the external registry is exposed using certificates for the network traffic, it can be named as a secure
registry. Otherwise, traffic between the registry and host is plain text and not encrypted, meaning it is an
insecure registry.

7.3.1. Docker search external registries

By default, the docker daemon has the ability to pull images from any registry, but the search operation
is performed against docker.io/ and registry.access.redhat.com. The daemon can be be
configured to search images from other registries using the --add-registry option with the docker
daemon.

NOTE

The ability to search images from the Red Hat Registry
registry.access.redhat.com exists by default in the Red Hat Enterprise Linux
docker package.

Procedure

1. To allow users to search for images using docker search with other registries, add those
registries to the /etc/containers/registries.conf file under the registries
parameter:

registries:
 - registry.access.redhat.com
 - my.registry.example.com

Prior to OpenShift Container Platform version 3.6, this was accomplished using
/etc/sysconfig/docker with the following options:

CHAPTER 7. DOCKER TASKS

99

ADD_REGISTRY="--add-registry=registry.access.redhat.com --add-
registry=my.registry.example.com"

The first registry added is the first registry searched.

2. Restart the docker daemon to allow for my.registry.example.com to be used:

$ sudo systemctl restart docker.service

Restarting the docker daemon causes the docker containers to restart.

3. Using the Ansible installer, this can be configured using the
openshift_docker_additional_registries variable in the Ansible hosts file:

openshift_docker_additional_registries=registry.access.redhat.com,my
.registry.example.com

7.3.2. Docker external registries whitelist and blacklist

Docker can be configured to block operations from external registries by configuring the registries
and block_registries flags for the docker daemon.

Procedure

1. Add the allowed registries to the /etc/containers/registries.conf file with the
registries flag:

registries:
 - registry.access.redhat.com
 - my.registry.example.com

Prior to 3.6, the /etc/sysconfig/docker file is modified instead:

ADD_REGISTRY="--add-registry=registry.access.redhat.com --add-
registry=my.registry.example.com"

NOTE

The docker.io registry can be added using the same method.

2. Block the rest of the registries:

block_registries:
 - all

3. Block the rest of the registries in older versions:

BLOCK_REGISTRY='--block-registry=all'

4. Restart the docker daemon:

$ sudo systemctl restart docker.service

OpenShift Container Platform 3.7 Day Two Operations Guide

100

Restarting the docker daemon causes the docker containers to restart.

5. In this example, the docker.io registry has been blacklisted, so any operation regarding that
registry fails:

$ sudo docker pull hello-world
Using default tag: latest
Trying to pull repository registry.access.redhat.com/hello-world ...
Trying to pull repository my.registry.example.com/hello-world ...
Trying to pull repository registry.access.redhat.com/hello-world ...
unknown: Not Found
$ sudo docker pull docker.io/hello-world
Using default tag: latest
Trying to pull repository docker.io/library/hello-world ...
All endpoints blocked.

Add docker.io back to the registries variable by modifying the file again and restarting the
service.

registries:
 - registry.access.redhat.com
 - my.registry.example.com
 - docker.io
block_registries:
 - all

or

ADD_REGISTRY="--add-registry=registry.access.redhat.com --add-
registry=my.registry.example.com --add-registry=docker.io"
BLOCK_REGISTRY='--block-registry=all'

6. Restart the Docker service:

$ sudo systemctl restart docker

7. To verify that the image is now available to be pulled:

$ sudo docker pull docker.io/hello-world
Using default tag: latest
Trying to pull repository docker.io/library/hello-world ...
latest: Pulling from docker.io/library/hello-world

9a0669468bf7: Pull complete
Digest:
sha256:0e06ef5e1945a718b02a8c319e15bae44f47039005530bc617a5d071190ed
3fc

8. If using an external registry is required, for example to modify the docker daemon configuration
file in all the node hosts that require to use that registry, create a blacklist on those nodes to
avoid malicious containers from being executed.

CHAPTER 7. DOCKER TASKS

101

Using the Ansible installer, this can be configured using the
openshift_docker_additional_registries and
openshift_docker_blocked_registries variables in the Ansible hosts file:

openshift_docker_additional_registries=registry.access.redhat.com,my
.registry.example.com
openshift_docker_blocked_registries=all

7.3.3. Secure registries

In order to be able to pull images from an external registry, it is required to trust the registry certificates,
otherwise the pull image operation fails.

In order to do so, see the Installing a Certificate Authority Certificate for External Registries section.

If using a whitelist, the external registries should be added to the registries variable, as explained
above.

7.3.4. Insecure registries

External registries that use non-trusted certificates, or without certificates at all, should be avoided.

However, any insecure registries should be added using the --insecure-registry option to allow for
the docker daemon to pull images from the repository. This is the same as the --add-registry
option, but the docker operation is not verified.

The registry should be added using both options to enable search, and, if there is a blacklist, to perform
other operations, such as pulling images.

For testing purposes, an example is shown on how to add a localhost insecure registry.

Procedure

1. Modify /etc/containers/registries.conf configuration file to add the localhost insecure
registry:

registries:
 - registry.access.redhat.com
 - my.registry.example.com
 - docker.io
insecure_registries:
 - localhost:5000
block_registries:
 - all

Prior to 3.6, modify the /etc/sysconfig/docker configuration file to add the localhost:

ADD_REGISTRY="--add-registry=registry.access.redhat.com --add-
registry=my.registry.example.com --add-registry=docker.io --add-
registry=localhost:5000"
INSECURE_REGISTRY="--insecure-registry=localhost:5000"
BLOCK_REGISTRY='--block-registry=all'

2. Restart the docker daemon to use the registry:

OpenShift Container Platform 3.7 Day Two Operations Guide

102

$ sudo systemctl restart docker.service

Restarting the docker daemon causes the docker containers to be restarted.

3. Run a Docker registry pod at localhost:

$ sudo docker run -p 5000:5000 registry:2

4. Pull an image:

$ sudo docker pull openshift/hello-openshift

5. Tag the image:

$ sudo docker tag docker.io/openshift/hello-openshift:latest
localhost:5000/hello-openshift-local:latest

6. Push the image to the local registry:

$ sudo docker push localhost:5000/hello-openshift-local:latest

7. Using the Ansible installer, this can be configured using the
openshift_docker_additional_registries,
openshift_docker_blocked_registries, and
openshift_docker_insecure_registries variables in the Ansible hosts file:

openshift_docker_additional_registries=registry.access.redhat.com,my
.registry.example.com,localhost:5000
openshift_docker_insecure_registries=localhost:5000
openshift_docker_blocked_registries=all

NOTE

You can also set the openshift_docker_insecure_registries variable to
the IP address of the host. 0.0.0.0/0 is not a valid setting.

7.3.5. Authenticated registries

Using authenticated registries with docker requires the docker daemon to log in to the registry. With
OpenShift Container Platform, a different set of steps must be performed, because the users can not run
docker login commands on the host. Authenticated registries can be used to limit the images users
can pull or who can access the external registries.

If an external docker registry requires authentication, create a special secret in the project that uses that
registry and then use that secret to perform the docker operations.

Procedure

1. Create a dockercfg secret in the project where the user is going to log in to the docker
registry:

$ oc project <my_project>

CHAPTER 7. DOCKER TASKS

103

$ oc secrets new-dockercfg <my_registry> --docker-server=
<my.registry.example.com> --docker-username=<username> --docker-
password=<my_password> --docker-email=<me@example.com>

2. If a .dockercfg file exists, create the secret using the oc command:

$ oc secrets new <my_registry> .dockercfg=<.dockercfg>

3. Populate the $HOME/.docker/config.json file:

$ oc secrets new <my_registry> .dockerconfigjson=
<.docker/config.json>

4. Use the dockercfg secret to pull images from the authenticated registry by linking the secret to
the service account performing the pull operations. The default service account to pull images is
named default:

$ oc secrets link default <my_registry> --for=pull

5. For pushing images using the S2I feature, the dockercfg secret is mounted in the S2I pod, so
it needs to be linked to the proper service account that performs the build. The default service
account used to build images is named builder.

$ oc secrets link builder <my_registry>

6. In the buildconfig, the secret should be specified for push or pull operations:

"type": "Source",
"sourceStrategy": {
 "from": {
 "kind": "DockerImage",
 "name": "*my.registry.example.com*/myproject/myimage:stable"
 },
 "pullSecret": {
 "name": "*mydockerregistry*"
 },
...[OUTPUT ABBREVIATED]...
"output": {
 "to": {
 "kind": "DockerImage",
 "name": "*my.registry.example.com*/myproject/myimage:latest"
 },
 "pushSecret": {
 "name": "*mydockerregistry*"
 },
...[OUTPUT ABBREVIATED]...

7. If the external registry delegates authentication to external services, create both dockercfg
secrets: the registry one using the registry URL and the external authentication system using its
own URL. Both secrets should be added to the service accounts.

$ oc project <my_project>
$ oc secrets new-dockercfg <my_registry> --docker-server=*

OpenShift Container Platform 3.7 Day Two Operations Guide

104

<my_registry_example.com> --docker-username=<username> --docker-
password=<my_password> --docker-email=<me@example.com>
$ oc secrets new-dockercfg <my_docker_registry_ext_auth> --docker-
server=<my.authsystem.example.com> --docker-username=<username> --
docker-password=<my_password> --docker-email=<me@example.com>
$ oc secrets link default <my_registry> --for=pull
$ oc secrets link default <my_docker_registry_ext_auth> --for=pull
$ oc secrets link builder <my_registry>
$ oc secrets link builder <my_docker_registry_ext_auth>

7.3.6. ImagePolicy admission plug-in

An admission control plug-in intercepts requests to the API, and performs checks depending on the
configured rules and allows or denies certain actions based on those rules. OpenShift Container
Platform can limit the allowed images running in the environment using the ImagePolicy admission
plug-in where it can control:

The source of images: which registries can be used to pull images

Image resolution: force pods to run with immutable digests to ensure the image does not change
due to a re-tag

Container image label restrictions: force an image to have or not have particular labels

Image annotation restrictions: force an image in the integrated container registry to have or not
have particular annotations

WARNING

ImagePolicy admission plug-in is currently considered beta.

Procedure

1. If the ImagePolicy plug-in is enabled, it needs to be modified to allow the external registries to
be used by modifying the /etc/origin/master/master-config.yaml file on every master
node:

admissionConfig:
 pluginConfig:
 openshift.io/ImagePolicy:
 configuration:
 kind: ImagePolicyConfig
 apiVersion: v1
 executionRules:
 - name: allow-images-from-other-registries
 onResources:
 - resource: pods
 - resource: builds
 matchRegistries:



CHAPTER 7. DOCKER TASKS

105

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-image-policy

 - docker.io
 - <my.registry.example.com>
 - registry.access.redhat.com

NOTE

Enabling ImagePolicy requires users to specify the registry when deploying an
application like oc new-app docker.io/kubernetes/guestbook instead
oc new-app kubernetes/guestbook, otherwise it fails.

2. To enable the admission plug-ins at installation time, the
openshift_master_admission_plugin_config variable can be used with a json
formatted string including all the pluginConfig configuration:

openshift_master_admission_plugin_config=
{"openshift.io/ImagePolicy":{"configuration":
{"kind":"ImagePolicyConfig","apiVersion":"v1","executionRules":
[{"name":"allow-images-from-other-registries","onResources":
[{"resource":"pods"},{"resource":"builds"}],"matchRegistries":
["docker.io","*my.registry.example.com*","registry.access.redhat.com
"]}]}}}

WARNING

There is a current issue to be fixed in OpenShift Container Platform 3.6.1
where ImagePolicy pods can not be deployed using default templates,
and give the following error message Failed create | Error
creating: Pod "" is invalid: spec.containers[0].\image:
Forbidden: this image is prohibited by policy.

See the Image Policy is not working as expected Red Hat Knowledgebase
article for a workaround.

7.3.7. Import images from external registries

Application developers can import images to create imagestreams using the oc import-image
command, and OpenShift Container Platform can be configured to allow or deny image imports from
external registries.

Procedure

1. To configure the allowed registries where users can import images, add the following to the
/etc/origin/master/master-config.yaml file:

imagePolicyConfig:
 allowedRegistriesForImport:
 - domainName: docker.io



OpenShift Container Platform 3.7 Day Two Operations Guide

106

https://access.redhat.com/solutions/3165041

 - domainName: '*.docker.io'
 - domainName: '*.redhat.com'
 - domainName: 'my.registry.example.com'

2. To import images from an external authenticated registry, create a secret within the desired
project.

3. Even if not recommended, if the external authenticated registry is insecure or the certificates can
not be trusted, the oc import-image command can be used with the --insecure=true
option.
If the external authenticated registry is secure, the registry certificate should be trusted in the
master hosts as they run the registry import controller as:

Copy the certificate in the /etc/pki/ca-trust/source/anchors/:

$ sudo cp <my.registry.example.com.crt> /etc/pki/ca-
trust/source/anchors/<my.registry.example.com.crt>

4. Run update-ca-trust command:

$ sudo update-ca-trust

5. Restart the master services on all the master hosts:

$ sudo systemctl restart atomic-openshift-master-api
$ sudo systemctl restart atomic-openshift-master-controllers

6. The certificate for the external registry should be trusted in the OpenShift Container Platform
registry:

$ for i in pem openssl java; do
 oc create configmap ca-trust-extracted-${i} --from-file
/etc/pki/ca-trust/extracted/${i}
 oc set volume dc/docker-registry --add -m /etc/pki/ca-
trust/extracted/${i} --configmap-name=ca-trust-extracted-${i} --name
ca-trust-extracted-${i}
done

WARNING

There is no official procedure currently for adding the certificate to the
registry pod, but the above workaround can be used.

This workaround creates configmaps with all the trusted certificates from
the system running those commands, so the recommendation is to run it
from a clean system where just the required certificates are trusted.

7. Alternatively, modify the registry image in order to trust the proper certificates rebuilding the
image using a Dockerfile as:



CHAPTER 7. DOCKER TASKS

107

FROM registry.access.redhat.com/openshift3/ose-docker-registry:v3.6
ADD <my.registry.example.com.crt> /etc/pki/ca-trust/source/anchors/
USER 0
RUN update-ca-trust extract
USER 1001

8. Rebuild the image, push it to a docker registry, and use that image as
spec.template.spec.containers["name":"registry"].image in the registry
deploymentconfig:

$ oc patch dc docker-registry -p '{"spec":{"template":{"spec":
{"containers":
[{"name":"registry","image":"*myregistry.example.com/openshift3/ose-
docker-registry:latest*"}]}}}}'

NOTE

To add the imagePolicyConfig configuration at installation, the
openshift_master_image_policy_config variable can be used with a json
formatted string including all the imagePolicyConfig configuration, like:

openshift_master_image_policy_config={"imagePolicyConfig":
{"allowedRegistriesForImport":[{"domainName":"docker.io"},
{"domainName":"*.docker.io"},{"domainName":"*.redhat.com"},
{"domainName":"*my.registry.example.com*"}]}}

For more information about the ImagePolicy, see the ImagePolicy admission plug-in section.

7.3.8. OpenShift Container Platform registry integration

You can install OpenShift Container Platform as a stand-alone container registry to provide only the
registry capabilities, but with the advantages of running in an OpenShift Container Platform platform.

For more information about the OpenShift Container Platform registry, see Installing a Stand-alone
Deployment of OpenShift Container Registry.

To integrate the OpenShift Container Platform registry, all previous sections apply. From the OpenShift
Container Platform point of view, it is treated as an external registry, but there are some extra tasks that
need to be performed, because it is a multi-tenant registry and the authorization model from OpenShift
Container Platform applies so when a new project is created, the registry does not create a project within
its environment as it is independent.

7.3.8.1. Connect the registry project with the cluster

As the registry is a full OpenShift Container Platform environment with a registry pod and a web
interface, the process to create a new project in the registry is performed using the oc new-project or
oc create command line or via the web interface.

Once the project has been created, the usual service accounts (builder, default, and deployer)
are created automatically, as well as the project administrator user is granted permissions. Different
users can be authorized to push/pull images as well as "anonymous" users.

There can be several use cases, such as allowing all the users to pull images from this new project

OpenShift Container Platform 3.7 Day Two Operations Guide

108

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cluster_administration/#admin-guide-image-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-installing-stand-alone-registry

within the registry, but if you want to have a 1:1 project relationship between OpenShift Container
Platform and the registry, where the users can push and pull images from that specific project, some
steps are required.

WARNING

The registry web console shows a token to be used for pull/push operations, but the
token showed there is a session token, so it expires. Creating a service account
with specific permissions allows the administrator to limit the permissions for the
service account, so that, for example, different service accounts can be used for
push or pull images. Then, a user does not have to configure for token expiration,
secret recreation, and other tasks, as the service account tokens will not expire.

Procedure

1. Create a new project:

$ oc new-project <my_project>

2. Create a registry project:

$ oc new-project <registry_project>

3. Create a service account in the registry project:

$ oc create serviceaccount <my_serviceaccount> -n <registry_project>

4. Give permissions to push and pull images using the registry-editor role:

$ oc adm policy add-role-to-user registry-editor -z
<my_serviceaccount> -n <registry_project>

If only pull permissions are required, the registry-viewer role can be used.

5. Get the service account token:

$ TOKEN=$(oc sa get-token <my_serviceaccount> -n <registry_project>)

6. Use the token as the password to create a dockercfg secret:

$ oc secrets new-dockercfg <my_registry>
 --docker-server=<myregistry.example.com> --docker-username=
<notused> --docker-password=${TOKEN} --docker-email=<me@example.com>

7. Use the dockercfg secret to pull images from the registry by linking the secret to the service
account performing the pull operations. The default service account to pull images is named
default:



CHAPTER 7. DOCKER TASKS

109

$ oc secrets link default <my_registry> --for=pull

8. For pushing images using the S2I feature, the dockercfg secret is mounted in the S2I pod, so
it needs to be linked to the proper service account that performs the build. The default service
account used to build images is named builder:

$ oc secrets link builder <my_registry>

9. In the buildconfig, the secret should be specified for push or pull operations:

"type": "Source",
"sourceStrategy": {
 "from": {
 "kind": "DockerImage",
 "name": "
<myregistry.example.com/registry_project/my_image:stable>"
 },
 "pullSecret": {
 "name": "<my_registry>"
 },
...[OUTPUT ABBREVIATED]...
"output": {
 "to": {
 "kind": "DockerImage",
 "name": "
<myregistry.example.com/registry_project/my_image:latest>"
 },
 "pushSecret": {
 "name": "<my_registry>"
 },
...[OUTPUT ABBREVIATED]...

OpenShift Container Platform 3.7 Day Two Operations Guide

110

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. RUN-ONCE TASKS
	2.1. NTP SYNCHRONIZATION
	2.2. ENTROPY
	2.3. CHECKING THE DEFAULT STORAGE CLASS

	CHAPTER 3. ENVIRONMENT HEALTH CHECKS
	3.1. CHECKING COMPLETE ENVIRONMENT HEALTH
	Procedure

	3.2. CREATING ALERTS USING PROMETHEUS
	3.3. HOST HEALTH
	3.4. ROUTER AND REGISTRY HEALTH
	3.5. NETWORK CONNECTIVITY
	3.5.1. Connectivity on master hosts
	3.5.2. Connectivity on node instances
	Procedure

	3.6. STORAGE
	3.7. DOCKER STORAGE
	3.8. API SERVICE STATUS
	3.9. CONTROLLER ROLE VERIFICATION
	3.10. VERIFYING CORRECT MAXIMUM TRANSMISSION UNIT (MTU) SIZE
	Prerequisites

	CHAPTER 4. CREATING AN ENVIRONMENT-WIDE BACKUP
	4.1. CREATING A MASTER HOST BACKUP
	Procedure

	4.2. CREATING A NODE HOST BACKUP
	Procedure

	4.3. BACKING UP REGISTRY CERTIFICATES
	Procedure

	4.4. BACKING UP OTHER INSTALLATION FILES
	Procedure

	4.5. BACKING UP APPLICATION DATA
	Procedure

	4.6. ETCD BACKUP
	4.6.1. Backing up etcd
	4.6.1.1. Backing up etcd configuration files
	4.6.1.2. Backing up etcd data

	4.7. BACKING UP A PROJECT
	Procedure

	4.8. BACKING UP PERSISTENT VOLUME CLAIMS
	Procedure

	CHAPTER 5. HOST-LEVEL TASKS
	5.1. ADDING A HOST TO THE CLUSTER
	5.2. MASTER HOST TASKS
	5.2.1. Deprecating a master host
	5.2.1.1. Creating a master host backup
	5.2.1.2. Backing up etcd
	5.2.1.3. Deprecating a master host
	5.2.1.4. Removing an etcd host

	5.2.2. Creating a master host backup
	Procedure

	5.2.3. Restoring a master host backup
	Procedure

	5.3. NODE HOST TASKS
	5.3.1. Deprecating a node host
	Prerequisites
	Procedure
	5.3.1.1. Replacing a node host

	5.3.2. Creating a node host backup
	Procedure

	5.3.3. Restoring a node host backup
	Procedure

	5.3.4. Node maintenance and next steps

	5.4. ETCD TASKS
	5.4.1. etcd backup
	5.4.1.1. Backing up etcd

	5.4.2. Restoring etcd
	5.4.2.1. Restoring etcd v2 & v3 data
	5.4.2.2. Restoring etcd for v3

	5.4.3. Replacing an etcd host
	5.4.4. Scaling etcd
	Prerequisites
	5.4.4.1. Adding a new etcd host using Ansible
	5.4.4.2. Manually adding a new etcd host

	5.4.5. Removing an etcd host
	Procedure
	Procedure

	CHAPTER 6. PROJECT-LEVEL TASKS
	6.1. BACKING UP A PROJECT
	Procedure

	6.2. RESTORING A PROJECT
	Procedure
	6.2.1. Backing up persistent volume claims
	Procedure

	6.2.2. Restoring persistent volume claims
	6.2.2.1. Restoring files to an existing PVC
	6.2.2.2. Restoring data to a new PVC

	6.2.3. Pruning images and containers

	CHAPTER 7. DOCKER TASKS
	7.1. INCREASING DOCKER STORAGE
	7.1.1. Evacuating the node
	Procedure

	7.1.2. Increasing storage
	Prerequisites
	Procedure

	7.1.3. Changing the storage backend
	7.1.3.1. Evacuating the node

	7.2. MANAGING DOCKER CERTIFICATES
	7.2.1. Installing a certificate authority certificate for external registries
	Procedure

	7.2.2. Docker certificates backup
	Procedure

	7.2.3. Docker certificates restore

	7.3. MANAGING DOCKER REGISTRIES
	7.3.1. Docker search external registries
	Procedure

	7.3.2. Docker external registries whitelist and blacklist
	Procedure

	7.3.3. Secure registries
	7.3.4. Insecure registries
	Procedure

	7.3.5. Authenticated registries
	Procedure

	7.3.6. ImagePolicy admission plug-in
	Procedure

	7.3.7. Import images from external registries
	Procedure

	7.3.8. OpenShift Container Platform registry integration
	7.3.8.1. Connect the registry project with the cluster

