
OpenShift Container Platform 3.5

Administrator Solutions

OpenShift Container Platform 3.5 Administrator Solutions Guide

Last Updated: 2018-12-04

OpenShift Container Platform 3.5 Administrator Solutions

OpenShift Container Platform 3.5 Administrator Solutions Guide

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Administrator Solutions topics cover the concepts explored in the Cluster Administration
reference documentation, but with a focus on presenting the content in a more accessible step-by-
step format, with easy to follow examples and sample configurations.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. MASTER AND NODE CONFIGURATION
2.1. OVERVIEW
2.2. PREREQUISITES
2.3. CONFIGURING MASTERS AND NODES

2.3.1. Making Configuration Changes Using Ansible
2.3.1.1. Using the htpasswd commmand

2.3.2. Making Manual Configuration Changes
2.4. CONFIGURATION OPTIONS

2.4.1. Master Configuration File Options
2.4.2. Node Configuration File Options

CHAPTER 3. USER AND ROLE MANAGEMENT
3.1. LIMITING AND MONITORING USERS AND PROJECTS

3.1.1. Setting Limits for Users and Projects
3.1.1.1. Configuration Options

3.1.2. Limiting the Number of Projects a User Can Have
3.1.3. Controlling and Monitoring Resource Usage

3.2. DETERMINING WHICH ROLES USERS GET BY DEFAULT
3.2.1. Leveraging Default Groups
3.2.2. Viewing Roles and Users for a Project
3.2.3. Viewing Roles and Users for the Cluster

3.3. CONTROLLING USER PERMISSIONS WITH ROLES
3.3.1. Adding a Role to a User
3.3.2. Removing a Role from a User
3.3.3. Adding a Cluster Role to a User for All Projects
3.3.4. Removing a Cluster Role from a User for All Projects
3.3.5. Adding a Role to a Group
3.3.6. Removing a Role from a Group
3.3.7. Adding a Cluster Role to a Group for All Projects
3.3.8. Removing a Cluster Role from a Group for All Projects

3.4. RESTRICTING ROLE BINDINGS
3.5. SHARING TEMPLATES FOR USE IN PROJECTS ACROSS THE CLUSTER
3.6. CREATING A CLUSTER ADMINISTRATOR USER

3.6.1. Creating an Administrator Within a Project
3.6.2. Creating a Cluster Administrator

CHAPTER 4. AUTHENTICATION
4.1. OVERVIEW
4.2. BASIC AUTHENTICATION (REMOTE)

4.2.1. Configuring Authentication on the Master
4.2.2. Troubleshooting
4.2.3. Verifying Users

4.3. REQUEST HEADER AUTHENTICATION
4.3.1. Configuring Authentication on the Master
4.3.2. Creating Users with Request Header Authentication
4.3.3. Verifying Users

4.4. KEYSTONE AUTHENTICATION
4.4.1. Configuring Authentication on the Master
4.4.2. Creating Users with Keystone Authentication
4.4.3. Verifying Users

4

5
5
5
5
5
7
9
9
9

16

19
19
19
20
23
24
24
25
26
26
28
28
28
28
28
28
29
29
29
29
32
32
32
32

34
34
34
34
35
36
36
37
39
39
39
39
40
41

Table of Contents

1

. .

4.5. LDAP AUTHENTICATION
4.5.1. Configuring Authentication on the Master
4.5.2. Creating Users with LDAP Authentication
4.5.3. Verifying Users

4.6. GITHUB AUTHENTICATION
4.6.1. Registering the Application on GitHub
4.6.2. Configuring Authentication on the Master
4.6.3. Creating Users with GitHub Authentication
4.6.4. Verifying Users

CHAPTER 5. CERTIFICATE MANAGEMENT
5.1. OVERVIEW
5.2. CHANGING AN APPLICATION’S SELF-SIGNED CERTIFICATE TO CA-SIGNED CERTIFICATE

41
41
43
43
44
44
44
46
46

47
47
47

OpenShift Container Platform 3.5 Administrator Solutions

2

Table of Contents

3

CHAPTER 1. OVERVIEW
The OpenShift Container Platform Administrator Solutions guide is new as of version 3.3, and the topics
cover the most common tasks faced by OpenShift Container Platform administrators, with a focus on
use cases and examples that guide the reader through each task.

In this initial version of the guide, you can learn how to:

Configure masters and nodes using Ansible

Set limits for users and projects

Determine which roles users get by default

Control user permissions with roles

Share templates across the cluster

Create a cluster administrator account

Configure authentication providers

Certificate Management

Your feedback on this guide would be greatly appreciated. You can let us know if you find it to be
helpful, or if there is a topic you would like us to cover, by contacting openshift-docs@redhat.com.

OpenShift Container Platform 3.5 Administrator Solutions

4

mailto:openshift-docs@redhat.com

CHAPTER 2. MASTER AND NODE CONFIGURATION

2.1. OVERVIEW

The master and node configuration files determine the make-up of your OpenShift Container Platform
cluster, and define a range of options. These include overriding the default plug-ins, connecting to etcd,
automatically creating service accounts, building image names, customizing project requests, configuring
volume plug-ins, and much more.

This topic covers the many options available for customizing your OpenShift Container Platform masters
and nodes, and shows you how to make changes to the configuration after installation.

The /etc/origin/master/master-config.yaml and /etc/origin/node/node-config.yaml files define a wide
range of options that can be configured on the OpenShift master and nodes. These options include
overriding the default plug-ins, connecting to etcd, automatically creating service accounts, building
image names, customizing project requests, configuring volume plug-ins, and much more.

2.2. PREREQUISITES

For testing environments deployed via the quick install, one master should be sufficient. The quick
installation method should not be used for production environments.

Production environments should be installed using the advanced install. In production environments, it is
a good idea to use multiple masters for the purposes of high availability (HA). A cluster architecture of
three masters is recommended, and HAproxy is the recommended solution for this.

CAUTION

If etcd is being installed on the master hosts, you must configure your cluster to use at least three
masters. It cannot use only two masters, because etcd would not be able to decide which one is
authoritative. The only way to successfully run only two masters is if you install etcd on hosts other than
the masters.

2.3. CONFIGURING MASTERS AND NODES

The method you use to configure your master and node configuration files must match the method that
was used to install your OpenShift cluster. If you followed the:

Advanced installation method using Ansible, then make your configuration changes in the
Ansible playbook.

Quick installation method, then make your changes manually in the configuration files
themselves.

2.3.1. Making Configuration Changes Using Ansible

For this section, familiarity with Ansible is assumed.

Only a portion of the available host configuration options are exposed to Ansible. After an OpenShift
Container Platform install, Ansible creates an inventory file with some substituted values. Modifying this
inventory file and re-running the Ansible installer playbook is how you customize your OpenShift
Container Platform cluster.

CHAPTER 2. MASTER AND NODE CONFIGURATION

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#master-configuration-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#node-configuration-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-install-quick-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#multiple-masters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-high-availability
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-install-quick-install
https://github.com/openshift/openshift-ansible/blob/master/inventory/byo/hosts.ose.example

While OpenShift supports using Ansible as the advanced install method, using an Ansible playbook and
inventory file, you can also use other management tools, such as Puppet, Chef, Salt).

Use Case: Configure the cluster to use HTPasswd authentication

NOTE

This use case assumes you have already set up SSH keys to all the nodes
referenced in the playbook.

The htpasswd utility is in the httpd-tools package:

yum install httpd-tools

To modify the Ansible inventory and make configuration changes:

1. Open the ./hosts inventory file:

Example 2.1. Sample inventory file:

[OSEv3:children]
masters
nodes

[OSEv3:vars]
ansible_ssh_user=cloud-user
ansible_become=true
deployment_type=openshift-enterprise

[masters]
ec2-52-6-179-239.compute-1.amazonaws.com openshift_ip=172.17.3.88
openshift_public_ip=52-6-179-239
openshift_hostname=master.example.com
openshift_public_hostname=ose3-master.public.example.com
containerized=True
[nodes]
ec2-52-6-179-239.compute-1.amazonaws.com openshift_ip=172.17.3.88
openshift_public_ip=52-6-179-239
openshift_hostname=master.example.com
openshift_public_hostname=ose3-master.public.example.com
containerized=True openshift_schedulable=False
ec2-52-95-5-36.compute-1.amazonaws.com openshift_ip=172.17.3.89
openshift_public_ip=52.3.5.36 openshift_hostname=node.example.com
openshift_public_hostname=ose3-node.public.example.com
containerized=True

2. Add the following new variables to the [OSEv3:vars] section of the file:

htpasswd auth
openshift_master_identity_providers=[{'name': 'htpasswd_auth',
'login': 'true', 'challenge': 'true', 'kind':
'HTPasswdPasswordIdentityProvider', 'filename':
'/etc/origin/master/htpasswd'}]
Defining htpasswd users

OpenShift Container Platform 3.5 Administrator Solutions

6

https://puppet.com/
https://www.chef.io/
http://saltstack.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#ensuring-host-access

openshift_master_htpasswd_users={'<name>': '<hashed-password>',
'<name>': '<hashed-password>'}
or
#openshift_master_htpasswd_file=<path/to/local/pre-
generated/htpasswdfile>

For HTPasswd authentication, you can use either the openshift_master_htpasswd_users
variable to create the specified user(s) and password(s) or the
openshift_master_htpasswd_file variable to specify a pre-generated flat file (the
htpasswd file) with the users and passwords already created.

Because OpenShift Container Platform requires a hashed password to configure HTPasswd
authentication, you can use the htpasswd command, as shown in the following section, to
generate the hashed password(s) for your user(s) or to create the flat file with the users and
associated hashed passwords.

The following example changes the authentication method from the default deny all setting to
htpasswd and use the specified file to generate user IDs and passwords for the jsmith and
bloblaw users.

htpasswd auth
openshift_master_identity_providers=[{'name': 'htpasswd_auth',
'login': 'true', 'challenge': 'true', 'kind':
'HTPasswdPasswordIdentityProvider', 'filename':
'/etc/origin/master/htpasswd'}]
Defining htpasswd users
openshift_master_htpasswd_users={'jsmith':
'$apr1$wIwXkFLI$bAygtKGmPOqaJftB', 'bloblaw':
'7IRJ$2ODmeLoxf4I6sUEKfiA$2aDJqLJe'}
or
#openshift_master_htpasswd_file=<path/to/local/pre-
generated/htpasswdfile>

3. Re-run the ansible playbook for these modifications to take effect:

$ ansible-playbook -b -i ./hosts ~/src/openshift-
ansible/playbooks/byo/config.yml

The playbook updates the configuration, and restarts the OpenShift master service to apply the
changes.

You have now modified the master and node configuration files using Ansible, but this is just a simple
use case. From here you can see which master and node configuration options are exposed to Ansible
and customize your own Ansible inventory.

2.3.1.1. Using the htpasswd commmand

To configure the OpenShift Container Platform cluster to use HTPasswd authentication, you need at
least one user with a hashed password to include in the inventory file.

You can:

Generate the username and password to add directly to the ./hosts inventory file.

Create a flat file to pass the credentials to the ./hosts inventory file.

CHAPTER 2. MASTER AND NODE CONFIGURATION

7

https://github.com/openshift/openshift-ansible/blob/master/inventory/byo/hosts.ose.example

To create a user and hashed password:

1. Run the following command to add the specified user:

$ htpasswd -n <user_name>

NOTE

You can include the -b option to supply the password on the command line:

$ htpasswd -nb <user_name> <password>

2. Enter and confirm a clear-text password for the user.
For example:

$ htpasswd -n myuser
New password:
Re-type new password:
myuser:$apr1$vdW.cI3j$WSKIOzUPs6Q

The command generates a hashed version of the password.

You can then use the hashed password when configuring HTPasswd authentication. The hashed
password is the string after the :. In the above example,you would enter:

openshift_master_htpasswd_users={'myuser':
'$apr1$wIwXkFLI$bAygtISk2eKGmqaJftB'}

To create a flat file with a user name and hashed password:

1. Execute the following command:

$ htpasswd -c </path/to/users.htpasswd> <user_name>

NOTE

You can include the -b option to supply the password on the command line:

$ htpasswd -c -b <user_name> <password>

2. Enter and confirm a clear-text password for the user.
For example:

htpasswd -c users.htpasswd user1
New password:
Re-type new password:
Adding password for user user1

The command generates a file that includes the user name and a hashed version of the user’s
password.

OpenShift Container Platform 3.5 Administrator Solutions

8

You can then use the password file when configuring HTPasswd authentication.

NOTE

For more information on the htpasswd command, see HTPasswd Identity Provider.

2.3.2. Making Manual Configuration Changes

After installing OpenShift Container Platform using the quick install, you can make modifications to the
master and node configuration files to customize your cluster.

Use Case: Configure the cluster to use HTPasswd authentication

To manually modify a configuration file:

1. Open the configuration file you want to modify, which in this case is the
/etc/origin/master/master-config.yaml file:

2. Add the following new variables to the identityProviders stanza of the file:

oauthConfig:
 ...
 identityProviders:
 - name: my_htpasswd_provider
 challenge: true
 login: true
 mappingMethod: claim
 provider:
 apiVersion: v1
 kind: HTPasswdPasswordIdentityProvider
 file: /path/to/users.htpasswd

3. Save your changes and close the file.

4. Restart the master for the changes to take effect:

$ systemctl restart atomic-openshift-master

You have now manually modified the master and node configuration files, but this is just a simple use
case. From here you can see all the master and node configuration options, and further customize your
own cluster by making further modifications.

2.4. CONFIGURATION OPTIONS

2.4.1. Master Configuration File Options

The table below contains the options available for configuring your OpenShift Container Platform
master-config.yaml file. Use this table as a reference, and then follow the section on making manual
configuration changes and substitute in whatever values you want to change.

Table 2.1. Master Configuration File Options

CHAPTER 2. MASTER AND NODE CONFIGURATION

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#HTPasswdPasswordIdentityProvider
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-install-quick-install

Option Description

servingInfo Describes how to start serving. For example:

servingInfo:
 bindAddress: 0.0.0.0:8443
 bindNetwork: tcp4
 certFile: master.server.crt
 clientCA: ca.crt
 keyFile: master.server.key
 maxRequestsInFlight: 500
 requestTimeoutSeconds: 3600

corsAllowedO
rigins

Specifies the host name to use to access the API server from a web application.

apiLevels A list of API levels that should be enabled on startup; for example, v1beta3 and v1.

apiServerArg
uments

Contains key value pairs that match the API server’s command-line arguments and are
passed directly to the Kubernetes API server. These are not migrated, but if you
reference a value that does not exist, then the server will not start.

apiServerArguments:
 event-ttl:
 - "15m"

assetConfig If present, then the asset server starts based on the defined parameters. For example:

assetConfig:
 logoutURL: ""
 masterPublicURL: https://master.ose32.example.com:8443
 publicURL:
https://master.ose32.example.com:8443/console/
 servingInfo:
 bindAddress: 0.0.0.0:8443
 bindNetwork: tcp4
 certFile: master.server.crt
 clientCA: ""
 keyFile: master.server.key
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 0

controllers A list of the controllers that should be started. If set to none, then no controllers will
start automatically. The default value is * which will start all controllers. When using *,
you may exclude controllers by prepending a - in front of the controller name. No other
values are recognized at this time.

pauseControl
lers

When set to true, this instructs the master to not automatically start controllers, but
instead to wait until a notification to the server is received before launching them.

OpenShift Container Platform 3.5 Administrator Solutions

10

controllerLe
aseTTL

Enables controller election, instructing the master to attempt to acquire a lease before
controllers start, and renewing it within a number of seconds defined by this value.
Setting this value as a non-negative forces pauseControllers=true. The value
default is off (0, or omitted) and controller election can be disabled with -1.

admissionCon
fig

Contains admission control plug-in configuration. OpenShift has a configurable list of
admission controller plug-ins that are triggered whenever API objects are created or
modified. This option allows you to override the default list of plug-ins; for example,
disabling some plug-ins, adding others, changing the ordering, and specifying
configuration. Both the list of plug-ins and their configuration can be controlled from
Ansible.

disabledFeat
ures

Lists features that should not be started. This is defined as omitempty because it is
unlikely that you would want to manually disable features.

etcdStorageC
onfig

Contains information about how API resources are stored in etcd. These values are
only relevant when etcd is the backing store for the cluster.

etcdClientIn
fo

Contains information about how to connect to etcd. Specifies if etcd is run as embedded
or non-embedded, and the hosts. The rest of the configuration is handled by the Ansible
inventory. For example:

etcdClientInfo:
 ca: ca.crt
 certFile: master.etcd-client.crt
 keyFile: master.etcd-client.key
 urls:
 - https://m1.aos.example.com:4001

kubernetesMa
sterConfig

Contains information about how to connect to kubelet’s KubernetesMasterConfig. If
present, then start the kubernetes master in this process.

etcdConfig If present, then etcd starts based on the defined parameters. For example:

etcdConfig:
 address: master.ose32.example.com:4001
 peerAddress: master.ose32.example.com:7001
 peerServingInfo:
 bindAddress: 0.0.0.0:7001
 certFile: etcd.server.crt
 clientCA: ca.crt
 keyFile: etcd.server.key
 servingInfo:
 bindAddress: 0.0.0.0:4001
 certFile: etcd.server.crt
 clientCA: ca.crt
 keyFile: etcd.server.key
 storageDirectory: /var/lib/origin/openshift.local.etcd

Option Description

CHAPTER 2. MASTER AND NODE CONFIGURATION

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-additional-concepts-admission-controllers

oauthConfig If present, then the /oauth endpoint starts based on the defined parameters. For
example:

oauthConfig:
 assetPublicURL:
https://master.ose32.example.com:8443/console/
 grantConfig:
 method: auto
 identityProviders:
 - challenge: true
 login: true
 mappingMethod: claim
 name: htpasswd_all
 provider:
 apiVersion: v1
 kind: HTPasswdPasswordIdentityProvider
 file: /etc/origin/openshift-passwd
 masterCA: ca.crt
 masterPublicURL: https://master.ose32.example.com:8443
 masterURL: https://master.ose32.example.com:8443
 sessionConfig:
 sessionMaxAgeSeconds: 3600
 sessionName: ssn
 sessionSecretsFile: /etc/origin/master/session-
secrets.yaml
 tokenConfig:
 accessTokenMaxAgeSeconds: 86400
 authorizeTokenMaxAgeSeconds: 500

assetConfig If present, then the asset server starts based on the defined parameters. For example:

assetConfig:
 logoutURL: ""
 masterPublicURL: https://master.ose32.example.com:8443
 publicURL:
https://master.ose32.example.com:8443/console/
 servingInfo:
 bindAddress: 0.0.0.0:8443
 bindNetwork: tcp4
 certFile: master.server.crt
 clientCA: ""
 keyFile: master.server.key
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 0

dnsConfig If present, then start the DNS server based on the defined parameters. For example:

dnsConfig:
 bindAddress: 0.0.0.0:8053
 bindNetwork: tcp4

Option Description

OpenShift Container Platform 3.5 Administrator Solutions

12

serviceAccou
ntConfig

Holds options related to service accounts:

LimitSecretReferences (boolean): Controls whether or not to allow a
service account to reference any secret in a namespace without explicitly
referencing them.

ManagedNames (string): A list of service account names that will be auto-
created in every namespace. If no names are specified, then the
ServiceAccountsController will not be started.

MasterCA (string): The certificate authority for verifying the TLS connection
back to the master. The service account controller will automatically inject the
contents of this file into pods so that they can verify connections to the master.

PrivateKeyFile (string): Contains a PEM-encoded private RSA key, used
to sign service account tokens. If no private key is specified, then the service
account TokensController will not be started.

PublicKeyFiles (string): A list of files, each containing a PEM-encoded
public RSA key. If any file contains a private key, then OpenShift uses the
public portion of the key. The list of public keys is used to verify service
account tokens; each key is tried in order until either the list is exhausted or
verification succeeds. If no keys are specified, then service account
authentication will not be available.

masterClient
s

Holds all the client connection information for controllers and other system components:

OpenShiftLoopbackKubeConfig (string): the .kubeconfig filename for
system components to loopback to this master.

ExternalKubernetesKubeConfig (string): the .kubeconfig filename for
proxying to Kubernetes.

imageConfig Holds options that describe how to build image names for system components:

Format (string): Describes how to determine image names for system
components

Latest (boolean): Defines whether to attempt to use the latest system
component images or the latest release.

Option Description

CHAPTER 2. MASTER AND NODE CONFIGURATION

13

imagePolicyC
onfig

Controls limits and behavior for importing images:

MaxImagesBulkImportedPerRepository (integer): Controls the
number of images that are imported when a user does a bulk import of a
Docker repository. This number is set low to prevent users from importing
large numbers of images accidentally. This can be set to -1 for no limit.

DisableScheduledImport (boolean): Allows scheduled background
import of images to be disabled.

ScheduledImageImportMinimumIntervalSeconds (integer): The
minimum number of seconds that can elapse between when image streams
scheduled for background import are checked against the upstream repository.
The default value is 900 (15 minutes).

MaxScheduledImageImportsPerMinute (integer): The maximum
number of image streams that can be imported in the background, per minute.
The default value is 60. This can be set to -1 for unlimited imports.

This can be controlled with the Ansible inventory .

policyConfig Holds information about where to locate critical pieces of bootstrapping policy. This is
controlled by Ansible, so you may not need to modify this:

BootstrapPolicyFile (string): Points to a template that contains roles
and rolebindings that will be created if no policy object exists in the master
namespace.

OpenShiftSharedResourcesNamespace (string): The namespace
where shared OpenShift resources are located, such as shared templates.

OpenShiftInfrastructureNamespace (string): The namespace
where OpenShift infrastructure resources are located, such as controller
service accounts.

Option Description

OpenShift Container Platform 3.5 Administrator Solutions

14

https://github.com/openshift/openshift-ansible/blob/master/inventory/byo/hosts.ose.example

projectConfi
g

Holds information about project creation and defaults:

DefaultNodeSelector (string): Holds the default project node label
selector.

ProjectRequestMessage (string): The string presented to a user if they
are unable to request a project via the projectrequest API endpoint.

ProjectRequestTemplate (string): The template to use for creating
projects in response to projectrequest. It is in the format
<namespace>/<template>. It is optional, and if it is not specified, a
default template is used.

SecurityAllocator: Controls the automatic allocation of UIDs and MCS
labels to a project. If nil, allocation is disabled:

mcsAllocatorRange (string): Defines the range of MCS categories
that will be assigned to namespaces. The format is
<prefix>/<numberOfLabels>[,<maxCategory>]. The default
is s0/2 and will allocate from c0 → c1023, which means a total of 535k
labels are available. If this value is changed after startup, new projects
may receive labels that are already allocated to other projects. The prefix
may be any valid SELinux set of terms (including user, role, and type).
However, leaving the prefix at its default allows the server to set them
automatically. For example, s0:/2 would allocate labels from s0:c0,c0 to
s0:c511,c511 whereas s0:/2,512 would allocate labels from
s0:c0,c0,c0 to s0:c511,c511,511.

mcsLabelsPerProject (integer): Defines the number of labels to
reserve per project. The default is 5 to match the default UID and MCS
ranges.

uidAllocatorRange (string): Defines the total set of Unix user IDs
(UIDs) automatically allocated to projects, and the size of the block each
namespace gets. For example, 1000-1999/10 would allocate ten UIDs
per namespace, and would be able to allocate up to 100 blocks before
running out of space. The default is to allocate from 1 billion to 2 billion in
10k blocks, which is the expected size of ranges for container images
when user namespaces are started.

routingConfi
g

Holds information about routing and route generation:

Subdomain (string): The suffix appended to $service.$namespace. to form
the default route hostname. Can be controlled via Ansible with
openshift_master_default_subdomain. Example:

routingConfig:
 subdomain: ""

Option Description

CHAPTER 2. MASTER AND NODE CONFIGURATION

15

networkConfi
g

To be passed to the compiled-in-network plug-in. Many of the options here can be
controlled in the Ansible inventory.

NetworkPluginName (string)

ClusterNetworkCIDR (string)

HostSubnetLength (unsigned integer)

ServiceNetworkCIDR (string)

ExternalIPNetworkCIDRs (string array): Controls which values are
acceptable for the service external IP field. If empty, no external IP may be set.
It can contain a list of CIDRs which are checked for access. If a CIDR is
prefixed with !, then IPs in that CIDR are rejected. Rejections are applied first,
then the IP is checked against one of the allowed CIDRs. For security
purposes, you should ensure this range does not overlap with your nodes,
pods, or service CIDRs.

For Example:

networkConfig:
 clusterNetworkCIDR: 10.3.0.0/16
 hostSubnetLength: 8
 networkPluginName: example/openshift-ovs-subnet
serviceNetworkCIDR must match
kubernetesMasterConfig.servicesSubnet
 serviceNetworkCIDR: 179.29.0.0/16

volumeConfig Contains options for configuring volume plug-ins in the master node:

DynamicProvisioningEnabled (boolean): Default value is true, and
toggles dynamic provisioning off when false.

Option Description

2.4.2. Node Configuration File Options

The table below contains the options available for configuring your OpenShift Container Platform node-
config.yaml file. Use this table as a reference, and then follow the section on making manual
configuration changes and substitute in whatever values you want to change.

Table 2.2. Node Configuration File Options

Option Description

nodeName The value of the nodeName (string) is used to identify this particular node in the
cluster. If possible, this should be your fully qualified hostname. If you are describing a
set of static nodes to the master, then this value must match one of the values in the
list.

OpenShift Container Platform 3.5 Administrator Solutions

16

nodeIP A node may have multiple IPs. This specifies the IP to use for pod traffic routing. If left
unspecified, a network look-up is performed on the nodeName, and the first non-
loopback address is used.

servingInfo Describes how to start serving.

masterKubeCo
nfig

The filename for the .kubeconfig file that describes how to connect this node to the
master.

dnsDomain Holds the domain suffix.

dnsIP (string) Contains the IP. Can be controlled with openshift_dns_ip in the Ansible
inventory.

dockerConfig Holds Docker-related configuration options.

imageConfig Holds options that describe how to build image names for system components.

iptablesSync
Period

(string) How often iptables rules are refreshed. This can be controlled with
openshift_node_iptables_sync_period from the Ansible inventory. If the
dnsIP parameter is omitted, the value defaults to the kubernetes service IP, which is
the first nameserver in the pod’s /etc/resolv.conf file.

kubeletArgum
ents,omitemp
ty

Key-value pairs that are passed directly to the Kubelet that matches the Kubelet’s
command line arguments. These are not migrated or validated, so if you use them, then
they may become invalid. Use caution, because these values override other settings in
the node configuration that may cause invalid configurations.

masterKubeCo
nfig

The filename for the .kubeconfig file that describes how to connect this node to the
master.

networkPlugi
nName,omitem
pty

Deprecated and maintained for backward compatibility, use
NetworkConfig.NetworkPluginName instead.

networkConfi
g

Provides network options for the node:

NetworkPluginName (string): Specifies the networking plug-in.

MTU (unsigned integer): Maximum transmission unit for the network packets.

volumeDirect
ory

The directory that volumes will be stored under.

imageConfig Holds options that describe how to build image names for system components.

Option Description

CHAPTER 2. MASTER AND NODE CONFIGURATION

17

allowDisable
dDocker

If this is set to true, then the Kubelet will ignore errors from Docker. This means that a
node can start on a machine that does not have Docker started.

podManifestC
onfig

Holds the configuration for enabling the Kubelet to create pods based from a manifest
file or files placed locally on the node.

authConfig Holds authn/authz configuration options.

dockerConfig Holds Docker-related configuration options.

kubeletArgum
ents,omitemp
ty

Key-value pairs that are passed directly to the Kubelet that matches the Kubelet’s
command line arguments. These are not migrated or validated, so if you use them, then
they may become invalid. Use caution, because these values override other settings in
the node configuration that may cause invalid configurations.

proxyArgumen
ts,omitempty

ProxyArguments are key-value pairs that are passed directly to the Proxy that
matches the Proxy’s command-line arguments. These are not migrated or validated, so
if you use them they may become invalid. Use caution, because these values override
other settings in the node configuration that may cause invalid configurations.

iptablesSync
Period

(string) How often iptables rules are refreshed. This can be controlled with
openshift_node_iptables_sync_period from the Ansible inventory.

volumeConfig Contains options for configuring volumes on the node. It can be used to apply a
filesystem quota if the underlying volume directory is on XFS with grpquota enabled.

Option Description

OpenShift Container Platform 3.5 Administrator Solutions

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#master-node-config-volume-config

CHAPTER 3. USER AND ROLE MANAGEMENT

3.1. LIMITING AND MONITORING USERS AND PROJECTS

3.1.1. Setting Limits for Users and Projects

How can I create limits for users and projects?

You can place limits within your OpenShift cluster using ResourceQuotas and LimitRanges. These
quotas and limits allow you to control pod and container limits, object counts, and compute resources.
Currently, these limits and quotas only apply to projects and not to users. However, you can make a
quota-like limit on how many project requests a user can make.

Creating a quota in a project to limit the number of pods

To create a quota in the "awesomeproject" that limits the number of pods that can be created to a
maximum of 10:

1. Create a resource-quota.yaml file with the following contents:

2. Create the quota using the file you just wrote to apply it to the "awesomeproject":

After the quota has been in effect for a little while, you can view the usage statistics for the hard
limit set on pods.

3. If required, list the quotas defined in the project to see the names of all defined quotas:

4. Describe the resource quota for which you want statistics:

5. Optionally, you can configure the quota synchronization period, which controls how long to wait
before restoring quota usage after resources are deleted.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: resource-quota
spec:
 hard:
 pods: "10"

$ oc create -f resource-quota.yaml -n awesomeproject

$ oc get quota -n awesomeproject
NAME AGE
resource-quota 39m

$ oc describe quota resource-quota -n awesomeproject
Name: resource-quota
Namespace: awesomeproject
Resource Used Hard
-------- ---- ----
pods 3 10

CHAPTER 3. USER AND ROLE MANAGEMENT

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-quota
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#configuring-quota-sync-period

1

2

3

4

5

6. If you want to remove an active quota to no longer enforce the limits of a project:

3.1.1.1. Configuration Options

The procedure above is just a basic example. The following are references to all the available options for
limits and quotas:

This LimitRange example explains all the container limits and pod limits that you can place within your
project:

Example 3.1. Limit Range Object Definition

The name of the limit range object.

The maximum amount of CPU that a pod can request on a node across all containers.

The maximum amount of memory that a pod can request on a node across all containers.

The minimum amount of CPU that a pod can request on a node across all containers.

The minimum amount of memory that a pod can request on a node across all containers.

$ oc delete quota <quota_name>

apiVersion: "v1"
kind: "LimitRange"
metadata:

 name: "core-resource-limits" 1
spec:
 limits:
 - type: "Pod"
 max:

 cpu: "2" 2

 memory: "1Gi" 3
 min:

 cpu: "200m" 4

 memory: "6Mi" 5
 - type: "Container"
 max:

 cpu: "2" 6

 memory: "1Gi" 7
 min:

 cpu: "100m" 8

 memory: "4Mi" 9
 default:

 cpu: "300m" 10

 memory: "200Mi" 11
 defaultRequest:

 cpu: "200m" 12

 memory: "100Mi" 13
 maxLimitRequestRatio:

 cpu: "10" 14

OpenShift Container Platform 3.5 Administrator Solutions

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#container-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#pod-limits

6

7

8

9

10

11

12

13

14

1

2

3

The maximum amount of CPU that a single container in a pod can request.

The maximum amount of memory that a single container in a pod can request.

The minimum amount of CPU that a single container in a pod can request.

The minimum amount of memory that a single container in a pod can request.

The default amount of CPU that a container will be limited to use if not specified.

The default amount of memory that a container will be limited to use if not specified.

The default amount of CPU that a container will request to use if not specified.

The default amount of memory that a container will request to use if not specified.

The maximum amount of CPU burst that a container can make as a ratio of its limit over request.

For more information on how CPU and memory are measured, see Compute Resources.

Example 3.2. OpenShift Container Platform Limit Range Object Definition

The maximum size of an image that can be pushed to an internal registry.

The maximum number of unique image tags per image stream’s spec.

The maximum number of unique image references per image stream’s status.

These ResourceQuota examples explain all the Object Counts and Compute Resources that you can
place within your project:

object-counts.yaml

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "openshift-resource-limits"
spec:
 limits:
 - type: openshift.io/Image
 max:

 storage: 1Gi 1
 - type: openshift.io/ImageStream
 max:

 openshift.io/image-tags: 20 2

 openshift.io/images: 30 3

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts

CHAPTER 3. USER AND ROLE MANAGEMENT

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#sample-resource-quota-definitions
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#sample-resource-quota-definitions

1

2

3

4

5

1

1

2

3

4

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.

The total number of replication controllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

openshift-object-counts.yaml

The total number of image streams that can exist in the project.

compute-resources.yaml

The total number of pods in a non-terminal state that can exist in the project.

Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.

Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

spec:
 hard:

 configmaps: "10" 1

 persistentvolumeclaims: "4" 2

 replicationcontrollers: "20" 3

 secrets: "10" 4

 services: "10" 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:

 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:

 pods: "4" 1

 requests.cpu: "1" 2

 requests.memory: 1Gi 3

 limits.cpu: "2" 4

 limits.memory: 2Gi 5

OpenShift Container Platform 3.5 Administrator Solutions

22

5 Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

3.1.2. Limiting the Number of Projects a User Can Have

You can limit the number of projects that a user may request by categorizing users with label selectors
with the oc label command. A label selector consists of the label name and the label value:

label=value

Once users are labeled, you must modify the default project template in the master-config.yaml file
using an admission control plug-in. This allows some users to create more projects than others, and you
can define different values (or levels) for each label.

Limiting how many projects a user can request by defining three different privilege levels

The label is named level, and the possible values are bronze, silver, gold, and platinum.
Platinum users do not have a maximum number of project requests, gold users can request up to 10
projects, silver users up to 7 projects, bronze users up to 5 projects, and any users without a label are by
default only allowed 2 projects.

Each user can only have one value per label. For example, a user cannot be both gold and silver for
the level label. However, when configuring the master-config.yaml file, you could select users that have
any value for a label with a wildcard; for example, level=*.

To define privilege levels for project requests:

1. Apply label selectors to users. For example, to apply the level label selector with a value of
bronze:

Repeat this step for all bronze users, and then for the other levels.

2. Optionally, verify the previous step by viewing the list of labeled users for each value:

If you need to remove a label from a user to make a correction:

3. Modify the master-config.yaml file to define project limits for this label with the numbers stated
in this use case. Find the admissionConfig line and create the configuration below it:

$ oc label user <user_name> level=bronze

$ oc get users -l level=bronze
$ oc get users -l level=silver
$ oc get users -l level=gold
$ oc get users -l level=platinum

$ oc label user <user_name> level-

admissionConfig:
 pluginConfig:
 ProjectRequestLimit:
 configuration:
 apiVersion: v1
 kind: ProjectRequestLimitConfig

CHAPTER 3. USER AND ROLE MANAGEMENT

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#limit-projects-per-user
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#modifying-the-template-for-new-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-additional-concepts-admission-controllers

4. Restart the master host for the changes to take effect.

NOTE

If you use a custom project template to limit the number of projects per user, then you
must ensure that you keep the modifications by including the following:

ProjectRequester = "openshift.io/requester"

Ownership is established using the openshift.io/requester annotation, so your
custom project template must have the same annotation.

3.1.3. Controlling and Monitoring Resource Usage

If you configure a project to have ResourceQuota restrictions, then the amount of the defined quota
currently being used is stored on the ResourceQuota object itself. In that case, you could check the
amount of used resources, such as CPU usage:

However, this would not tell you what is actually being consumed. To determine what is actually being
consumed, use the oc describe command:

Alternatively, you can set up cluster metrics for more detailed statistics.

3.2. DETERMINING WHICH ROLES USERS GET BY DEFAULT

When a user first logs in, there is a default set of permissions that is applied to that user. The scope of
permissions that a user can have is controlled by the various types of roles within OpenShift:

ClusterRoles

ClusterRoleBindings

Roles (project-scoped)

 limits:
 - selector:
 level: platinum
 - selector:
 level: gold
 maxProjects: 10
 - selector:
 level: silver
 maxProjects: 7
 - selector:
 level: bronze
 maxProjects: 5
 - maxProjects: 2

$ systemctl restart atomic-openshift-master

$ oc get quota

$ oc describe quota <quota-name>

OpenShift Container Platform 3.5 Administrator Solutions

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-cluster-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-manage-authorization-policy

RoleBindings (project-scoped)

You may want to modify the default set of permissions. In order to do this, it’s important to understand
the default groups and roles assigned, and to be aware of the roles and users bound to each project or
the entire cluster.

3.2.1. Leveraging Default Groups

There are special groups that are assigned to users. You can target users with these groups, but you
cannot modify them. These special groups are as follows:

Group Description

system:authenticated This is assigned to all users who are identifiable to the API. Everyone
who is not system:anonymous (the user) is in this group.

system:authenticated:o
auth

This is assigned to all users who have identified using an oauth token
issued by the embedded oauth server. This is not applied to service
accounts (they use service account tokens), or certificate users.

system:unauthenticated This is assigned to users who have not presented credentials. Invalid
credentials are rejected with a 401 error, so this is specifically users who
did not try to authenticate at all.

You may find it helpful to target users with the special groups listed above. For example, you could
share a template with all users by granting system:authenticated access to the template.

The "default" permissions of users are defined by which roles are bound to the
system:authenticated and sytem:authenticated:oauth groups. As mentioned above, you are
not able to modify membership to these groups, but you can change the roles bound to these groups.
For example, to bind a role to the system:authenticated group for all projects in the cluster:

$ oc adm policy add-cluster-role-to-group <role> system:authenticated

Currently, by default the system:authenticated and sytem:authenticated:oauth groups
receive the following roles:

Role Description

shared-resource-viewer For the openshift project. Allows users to see templates and pull
images.

basic-user For the the entire cluster. Allows users to see their own account, check
for information about requesting projects, see which projects they can
view, and check their own permissions.

self-provisioner Allows users to request projects.

system:oauth-token-
deleter

Allows users to delete any oauth token for which they know the details.

CHAPTER 3. USER AND ROLE MANAGEMENT

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#managing-role-bindings

cluster-status Allows users to see which APIs are enabled, and basic API server
information such as versions.

system:webhook Allows users to hit the webhooks for a build if they have enough
additional information.

Role Description

3.2.2. Viewing Roles and Users for a Project

To view a list of all users that are bound to the project and their roles:

3.2.3. Viewing Roles and Users for the Cluster

To view a list of users and what they have access to across the entire cluster:

$ oc get rolebindings
NAME ROLE USERS GROUPS
SERVICE ACCOUNTS SUBJECTS
system:image-pullers /system:image-puller
system:serviceaccounts:asdfasdf4asdf
admin /admin jsmith
system:deployers /system:deployer
deployer
system:image-builders /system:image-builder
builder

$ oc get clusterrolebindings
NAME ROLE
USERS GROUPS SERVICE
ACCOUNTS SUBJECTS
system:job-controller /system:job-controller
openshift-infra/job-controller
system:build-controller /system:build-controller
openshift-infra/build-controller
system:node-admins /system:node-admin
system:master system:node-admins
registry-registry-role /system:registry
default/registry
system:pv-provisioner-controller /system:pv-provisioner-
controller
openshift-infra/pv-provisioner-controller
basic-users /basic-user
system:authenticated
system:namespace-controller /system:namespace-
controller
openshift-infra/namespace-controller
system:discovery-binding /system:discovery
system:authenticated, system:unauthenticated
system:build-strategy-custom-binding /system:build-strategy-
custom system:authenticated
cluster-status-binding /cluster-status

OpenShift Container Platform 3.5 Administrator Solutions

26

system:authenticated, system:unauthenticated
system:webhooks /system:webhook
system:authenticated, system:unauthenticated
system:gc-controller /system:gc-controller
openshift-infra/gc-controller
cluster-readers /cluster-reader
system:cluster-readers
system:pv-recycler-controller /system:pv-recycler-
controller
openshift-infra/pv-recycler-controller
system:daemonset-controller /system:daemonset-
controller
openshift-infra/daemonset-controller
cluster-admins /cluster-admin
system:admin system:cluster-admins
system:hpa-controller /system:hpa-controller
openshift-infra/hpa-controller
system:build-strategy-source-binding /system:build-strategy-
source system:authenticated
system:replication-controller /system:replication-
controller
openshift-infra/replication-controller
system:sdn-readers /system:sdn-reader
system:nodes
system:build-strategy-docker-binding /system:build-strategy-
docker system:authenticated
system:routers /system:router
system:routers
system:oauth-token-deleters /system:oauth-token-
deleter system:authenticated,
system:unauthenticated
system:node-proxiers /system:node-proxier
system:nodes
system:nodes /system:node
system:nodes
self-provisioners /self-provisioner
system:authenticated:oauth
system:service-serving-cert-controller /system:service-serving-
cert-controller
openshift-infra/service-serving-cert-controller
system:registrys /system:registry
system:registries
system:pv-binder-controller /system:pv-binder-
controller
openshift-infra/pv-binder-controller
system:build-strategy-jenkinspipeline-binding /system:build-strategy-
jenkinspipeline system:authenticated
system:deployment-controller /system:deployment-
controller
openshift-infra/deployment-controller
system:masters /system:master
system:masters
system:service-load-balancer-controller /system:service-load-
balancer-controller
openshift-infra/service-load-balancer-controller

CHAPTER 3. USER AND ROLE MANAGEMENT

27

These commands can generate huge lists, so you may want to pipe the output into a text file that you
can search through more easily.

3.3. CONTROLLING USER PERMISSIONS WITH ROLES

You can define roles (or permissions) for a user before their initial log in so they can start working
immediately. You can assign many different types of roles to users such as admin, basic-user, self-
provisioner, and cluster-reader.

For a complete list of all available roles:

The following section includes examples of some common operations related to adding (binding) and
removing roles from users and groups. For a complete list of available local policy operations, see
Managing Role Bindings.

3.3.1. Adding a Role to a User

To bind a role to a user for the current project:

You can specify a project with the -n flag.

3.3.2. Removing a Role from a User

To remove a role from a user for the current project:

You can specify a project with the -n flag.

3.3.3. Adding a Cluster Role to a User for All Projects

To bind a cluster role to a user for all projects:

3.3.4. Removing a Cluster Role from a User for All Projects

To remove a cluster role from a user for all projects:

3.3.5. Adding a Role to a Group

To bind a role to a specified group in the current project:

$ oc adm policy

$ oc adm policy add-role-to-user <role> <user_name>

$ oc adm policy remove-role-from-user <role> <user_name>

$ oc adm policy add-cluster-role-to-user <role> <user_name>

$ oc adm policy remove-cluster-role-from-user <role> <user_name>

$ oc adm policy add-role-to-group <role> <groupname>

OpenShift Container Platform 3.5 Administrator Solutions

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-manage-authorization-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#managing-role-bindings
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#cluster-policy-and-local-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#cluster-policy-and-local-policy

You can specify a project with the -n flag.

3.3.6. Removing a Role from a Group

To remove a role from a specified group in the current project:

You can specify a project with the -n flag.

3.3.7. Adding a Cluster Role to a Group for All Projects

To bind a role to a specified group for all projects in the cluster:

3.3.8. Removing a Cluster Role from a Group for All Projects

To remove a role from a specified group for all projects in the cluster:

3.4. RESTRICTING ROLE BINDINGS

By default, a project administrator can create role bindings within the project that specify any users,
groups, or service accounts in the cluster as subjects of those bindings. However, the cluster
administrator can define restrictions in order to allow only specific subjects.

The administrator defines these restrictions in the form of RoleBindingRestriction objects. An
individual RoleBindingRestriction object is specific to a project or namespace. Role bindings in a
namespace are restricted by the RoleBindingRestriction objects in that namespace. Restrictions
on subjects are enforced as follows:

1. If no RoleBindingRestriction object exists within a particular namespace, then no
restrictions are enforced in that namespace (for example, any subject is allowed).

2. If any RoleBindingRestriction object in the namespace matches a subject, then that
subject is allowed.

3. If one or more RoleBindingRestriction objects exist in the namespace, but none matches
a given subject, then that subject is not allowed.

Each RoleBindingRestriction object can match subjects of one type: users, groups, or service
accounts. Users can be matched by name, label selector, or group membership. Groups can be
matched by name or label selector. Service accounts can be matched by name or namespace.

Role binding restrictions are enforced by the RestrictSubjectBindings admission control plug-in,
which is disabled by default. To enable it, add the following stanza to the master-config.yaml file:

$ oc adm policy remove-role-from-group <role> <groupname>

$ oc adm policy add-cluster-role-to-group <role> <groupname>

$ oc adm policy remove-cluster-role-from-group <role> <groupname>

admissionConfig:
 pluginConfig:
 openshift.io/RestrictSubjectBindings:

CHAPTER 3. USER AND ROLE MANAGEMENT

29

1

2

3

4

Restart the OpenShift Container Platform master for the change to take effect:

The following example creates a role binding restriction that permits role bindings that have matching
users as subjects:

Example Role Binding Restriction Matching Users

Match against user subjects. A RoleBindingRestriction specification must specify exactly one
of userrestriction, grouprestriction, or serviceaccountrestriction.

Match any user with the name john or jane.

Match any user that is in the group1 group.

Match any user that matches the specified label selector.

With the foregoing RoleBindingRestriction, role bindings with the subject john or jane will be
allowed. Role bindings with subjects that are members of the group1 group, or that match the specified
label, will also be allowed. The admission control plug-in will prohibit bindings with any subject that is not
matched by some RoleBindingRestriction in the namespace:

Example of RoleBindingRestriction Enforcement

 configuration:
 apiversion: v1
 kind: DefaultAdmissionConfig

systemctl restart atomic-openshift-master

$ oc create -f - -n group1 <<EOF
apiVersion: v1
kind: RoleBindingRestriction
metadata:
 name: match-users
spec:

 userrestriction: 1

 users: 2
 - john
 - jane

 groups: 3
 - group1

 labels: 4
 - mvp: true
EOF
rolebindingrestriction "match-users" created

$ oc adm policy add-role-to-user view joe -n group1
Error from server: rolebindings "view" is forbidden: rolebindings to User
"joe" are not allowed in project "group1"
$ oc adm policy add-role-to-user view john jane -n group1
$ oc get rolebindings/view -n group1
NAME ROLE USERS GROUPS SERVICE ACCOUNTS SUBJECTS
view /view john, jane

OpenShift Container Platform 3.5 Administrator Solutions

30

1

2

3

1

2

3

4

The following example creates a role binding restriction that permits role bindings with the group group2
as the subject:

Example Role Binding Restriction Matching Groups

Match against group subjects.

Match any group with the name group2.

Match any group that matches the specified label selector.

Example Role Binding Restriction Matching Service Accounts

Match against service account subjects.

Match any service account with the name service_account_name1 in the namespace called
namespace1.

Match any service account with the name service_account_name2 in the same namespace as
the RoleBindingRestriction object.

Match any service account in the namespace2 namespace.

$ oc create -f - -n group2 <<EOF
apiVersion: v1
kind: RoleBindingRestriction
metadata:
 name: match-groups
spec:

 grouprestriction: 1
 groups:

 - group2 2
 labels:

 - division: four 3
EOF
rolebindingrestriction "match-groups" created

$ oc create -f - -n group2 <<EOF
apiVersion: v1
kind: RoleBindingRestriction
metadata:
 name: match-sa
spec:

 serviceaccountrestriction: 1
 serviceaccounts:
 - name: service_account_name1

 namespace: namespace1 2
 - name: service_account_name2

 namespace: "" 3
 namespaces:

 - namespace2 4
EOF
rolebindingrestriction "match-sa" created

CHAPTER 3. USER AND ROLE MANAGEMENT

31

3.5. SHARING TEMPLATES FOR USE IN PROJECTS ACROSS THE
CLUSTER

Templates are project-scoped resources, so you cannot create them to be readily available at a cluster
level. The easiest way to share templates across the entire cluster is with the openshift project, which
by default is already set up to share templates. The templates can be annotated, and are displayed in
the web console where users can access them. Users have get access only to the templates and
images in this project, via the shared-resource-viewer role.

The shared-resource-viewer role exists to allow templates to be shared across project boundaries.
Users with this role have the ability to see all existing templates and pull images from that project.
However, the user still needs to know which project to look in, because they will not be able to view the
project in their oc get projects list.

By default, this role is granted to the system:authenticated group in the openshift project. This
allows users to process the specified template from the openshift project and create the items in the
current project:

You can also add the registry viewer role to a user, allowing them to view and pull images from a project:

3.6. CREATING A CLUSTER ADMINISTRATOR USER

Cluster administrator is a very powerful role, which has ultimate control within the cluster, including the
power to destroy that cluster. You can grant this role to other users if they absolutely need to have
ultimate control. However, you may first want to examine the other available roles if you do not want to
create such a powerful user. For example, admin is a constrained role that has the power to do many
things inside of their project, but cannot affect (or destroy) the entire cluster.

3.6.1. Creating an Administrator Within a Project

To create a basic administrator role within a project:

3.6.2. Creating a Cluster Administrator

To create a cluster administrator with ultimate control over the cluster:

$ oc process openshift//<template-name> | oc create -f -

$ oc policy add-role-to-user registry-viewer <user-name>

$ oc adm policy add-role-to-user admin <user_name> -n <project_name>

OpenShift Container Platform 3.5 Administrator Solutions

32

WARNING

Be very careful when granting cluster administrator role to a user. Ensure that the
user truly needs that level of power within the cluster. When OpenShift is first
installed, a certificate based user is created and the credentials are saved in
admin.kubeconfig. This cluster administrator user can do absolutely anything to
any resource on the entire cluster, which can result in destruction if not used
carefully.

$ oc adm policy add-cluster-role-to-user cluster-admin <user_name>

CHAPTER 3. USER AND ROLE MANAGEMENT

33

CHAPTER 4. AUTHENTICATION

4.1. OVERVIEW

OpenShift Container Platform supports many different authentication methods, as defined in Configuring
Authentication:

Basic Authentication (Remote)

Request Header

Keystone

LDAP

GitHub

4.2. BASIC AUTHENTICATION (REMOTE)

Basic Authentication is a generic backend integration mechanism that allows users to log in to OpenShift
Container Platform with credentials validated against a remote identity provider.

CAUTION

Basic Authentication must use an HTTPS connection to the remote server in order to prevent potential
snooping of the user ID and password, and to prevent man-in-the-middle attacks.

With BasicAuthPasswordIdentityProvider configured, users send their user name and password
to OpenShift Container Platform, which then validates those credentials against a remote server by
making a server-to-server request, passing the credentials as a Basic Auth header. This requires users
to send their credentials to OpenShift Container Platform during login.

NOTE

This only works for user name/password login mechanisms, and OpenShift Container
Platform must be able to make network requests to the remote authentication server.

4.2.1. Configuring Authentication on the Master

1. If you have:

Already completed the installation of Openshift, then copy the /etc/origin/master/master-
config.yaml file into a new directory; for example:

$ mkdir basicauthconfig; cp master-config.yaml basicauthconfig

Not yet installed OpenShift Container Platform, then start the OpenShift Container Platform
API server, specifying the hostname of the (future) OpenShift Container Platform master and
a directory to store the configuration file created by the start command:

$ openshift start master --public-master=<apiserver> --write-
config=<directory>

OpenShift Container Platform 3.5 Administrator Solutions

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-configuring-authentication

For example:

$ openshift start master --public-
master=https://myapiserver.com:8443 --write-
config=basicauthconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to modify
your configuration manually after installing with Ansible, then you will lose any
modifications whenever you re-run the install tool or upgrade.

2. Edit the new master-config.yaml file’s identityProviders stanza.

3. Copy the example BasicAuthPasswordIdentityProvider configuration and paste it to
replace the existing stanza.

4. Make the following modifications to the identityProviders stanza:

a. Set the provider name to something unique and relevant to your deployment. This name is
prefixed to the returned user ID to form an identity name.

b. If required, set mappingMethod to control how mappings are established between the
provider’s identities and user objects.

c. Specify the HTTPS url to use to connect to a server that accepts credentials in Basic
authentication headers.

d. Optionally, set the ca to the certificate bundle to use in order to validate server certificates
for the configured URL, or leave it empty to use the system-trusted roots.

e. Optionally, remove or set the certFile to the client certificate to present when making
requests to the configured URL.

f. If certFile is specified, then you must set the keyFile to the key for the client certificate.

5. Save your changes and close the file.

6. Start the OpenShift Container Platform API server, specifying the configuration file you just
modified:

$ openshift start master --config=<path/to/modified/config>/master-
config.yaml

Once configured, any user logging in to the OpenShift Container Platform web console will be prompted
to log in using their Basic authentication credentials.

4.2.2. Troubleshooting

The most common issue relates to network connectivity to the backend server. For simple debugging,
run curl commands on the master. To test for a successful login, replace the <user> and
<password> in the following example command with valid credentials. To test an invalid login, replace
them with false credentials.

CHAPTER 4. AUTHENTICATION

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#basic-auth-example-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#mapping-identities-to-users

curl --cacert /path/to/ca.crt --cert /path/to/client.crt --key
/path/to/client.key -u <user>:<password> -v
https://www.example.com/remote-idp

Successful responses

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"}

The subject must be unique to the authenticated user, and must not be able to be modified.

A successful response may optionally provide additional data, such as:

A display name using the name key:

{"sub":"userid", "name": "User Name", ...}

An email address using the email key:

{"sub":"userid", "email":"user@example.com", ...}

A preferred user name using the preferred_username key:

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

The preferred_username key is useful when the unique, unchangeable subject is a database
key or UID, and a more human-readable name exists. This is used as a hint when provisioning
the OpenShift Container Platform user for the authenticated identity.

Failed responses

A 401 response indicates failed authentication.

A non-200 status or the presence of a non-empty "error" key indicates an error:
{"error":"Error message"}

4.2.3. Verifying Users

Once one or more users have logged in, you can run oc get users to view a list of users and verify
that users were created successfully.

From here, you might want to learn how to control user roles.

4.3. REQUEST HEADER AUTHENTICATION

Configuring Request Header authentication allows users to log in to OpenShift Container Platform using
request header values, such as X-Remote-User. It is typically used in combination with an
authenticating proxy, which authenticates the user and then provides OpenShift Container Platform with
the user’s identity via a request header value. This is similar to how the remote user plug-in in OpenShift
Enterprise 2 allowed administrators to provide Kerberos, LDAP, and many other forms of enterprise
authentication. The benefit of this configuration is that user credentials can be handled by the proxy and
never seen by OpenShift.

OpenShift Container Platform 3.5 Administrator Solutions

36

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/Deployment_Guide/Configuring_OpenShift_Enterprise_Authentication.html

The proxy must be able to make network requests to the OpenShift Container Platform server.
Unauthenticated login attempts are redirected to a configured proxy URL. The proxy can authenticate
browser clients regardless of how it is configured, but it must (currently) use either Basic Auth or
Kerberos in order to work with the oc CLI tooling.

For users to authenticate using this identity provider, they must access https://<master>/oauth/authorize
via an authenticating proxy. You can configure the OAuth server to redirect unauthenticated requests to
the proxy.

4.3.1. Configuring Authentication on the Master

1. If you have:

Already completed the installation of Openshift, then copy the /etc/origin/master/master-
config.yaml file into a new directory; for example:

$ mkdir reqheadauthconfig; cp master-config.yaml
reqheadauthconfig

Not yet installed OpenShift Container Platform, then start the OpenShift Container Platform
API server, specifying the hostname of the (future) OpenShift Container Platform master and
a directory to store the configuration file created by the start command:

$ openshift start master --public-master=<apiserver> --write-
config=<directory>

For example:

$ openshift start master --public-
master=https://myapiserver.com:8443 --write-
config=reqheadauthconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to modify
your configuration manually after installing with Ansible, then you will lose any
modifications whenever you re-run the install tool or upgrade.

2. Edit the new master-config.yaml file’s identityProviders stanza.

3. View the example RequestHeaderIdentityProvider configuration and use it as a guide to
replace the existing stanza.

4. Modify the identityProviders stanza based on which headers you plan to pass in.

a. Set the provider name to something unique and relevant to your deployment. This name is
prefixed to the returned user ID to form an identity name.

b. If required, set mappingMethod to control how mappings are established between the
provider’s identities and user objects.

c. Set the challenge parameter to true to redirect unauthenticated requests from clients
expecting WWW-Authenticate challenges.

CHAPTER 4. AUTHENTICATION

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#reqhead-auth-example-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#mapping-identities-to-users

d. Set the provider.challengeURL parameter to the proxy URL to which to send clients
expecting WWW-Authenticate challenges, like the oc CLI client. This parameter can
include the ${url} and ${query} tokens in the query portion of the URL.

e. Set the login parameter to true to redirect unauthenticated requests from clients
expecting login flows.

f. Set the provider.loginURL parameter to the proxy URL to which to send clients
expecting login flows, like web browser clients. This parameter can include the ${url} and
${query} tokens in the query portion of the URL.

g. Set the clientCA parameter to the certificate bundle to use to check incoming requests for
a valid client certificate before the request’s headers are checked for a user name.

WARNING

If you expect unauthenticated requests to reach the OAuth server, a
clientCA parameter (and optionally, clientCommonNames) should
be set for this identity provider. Otherwise, any direct request to the
OAuth server can impersonate any identity from this provider, merely by
setting a request header.

h. Optionally, set the clientCommonNames parameter to a list of Common Names (cn). If set,
a valid client certificate with a Common Name (cn) in the specified list must be presented
before the request headers are checked for user names. If empty, then any Common Name
is allowed. This must be used in combination with clientCA.

i. Set the headers parameter to the header names to check, in order, for the user identity.
The first header containing a value is used as the identity. This parameter is required and is
case-insensitive.

j. Optionally, set the emailHeaders parameter to the header names to check, in order, for an
email address. The first header containing a value is used as the email address. This
parameter is case-insensitive.

k. Optionally, set the nameHeaders parameter to the header names to check, in order, for a
display name. The first header containing a value is used as the display name. This
parameter is case-insensitive.

l. Optionally, set the preferredUsernameHeaders parameter to the header names to
check, in order, for a preferred user name (if different than the immutable identity
determined from the headers specified in headers). The first header containing a value is
used as the preferred user name when provisioning. This parameter is case-insensitive.

5. Save your changes and close the file.

6. Start the OpenShift Container Platform API server, specifying the configuration file you just
modified:

OpenShift Container Platform 3.5 Administrator Solutions

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#RequestHeaderIDP-urlquerytokens
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#RequestHeaderIDP-urlquerytokens

$ openshift start master --config=<path/to/modified/config>/master-
config.yaml

Once configured, any user logging in to the OpenShift Container Platform web console will be redirected
to the authenticating proxy, which will authenticate the user.

4.3.2. Creating Users with Request Header Authentication

You do not create users in OpenShift Container Platform when integrating with an external
authentication provider, such as the system that the proxy server is using as an authentication server.
That server is the system of record, meaning that users are defined there, and any user with a valid user
name for the configured authentication server can log in.

To add a user to OpenShift Container Platform, the user must exist on the system the proxy is using as
an authentication server, and if required you must add the users to that system.

4.3.3. Verifying Users

Once one or more users have logged in, you can run oc get users to view a list of users and verify
that users were created successfully.

From here, you might want to examine configuring LDAP failover for an example of Request Header
authentication in use with Apache. You can also learn how to control user roles.

4.4. KEYSTONE AUTHENTICATION

Keystone is an OpenStack project that provides identity, token, catalog, and policy services. You can
integrate your OpenShift Container Platform cluster with Keystone to enable shared authentication with
an OpenStack Keystone v3 server configured to store users in an internal database. Once configured,
this configuration allows users to log in to OpenShift Container Platform with their Keystone credentials.

4.4.1. Configuring Authentication on the Master

1. If you have:

Already completed the installation of Openshift, then copy the /etc/origin/master/master-
config.yaml file into a new directory; for example:

$ cd /etc/origin/master
$ mkdir keystoneconfig; cp master-config.yaml keystoneconfig

Not yet installed OpenShift Container Platform, then start the OpenShift Container Platform
API server, specifying the hostname of the (future) OpenShift Container Platform master and
a directory to store the configuration file created by the start command:

$ openshift start master --public-master=<apiserver> --write-
config=<directory>

For example:

$ openshift start master --public-
master=https://myapiserver.com:8443 --write-config=keystoneconfig

CHAPTER 4. AUTHENTICATION

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#setting-up-for-ldap-failover
http://docs.openstack.org/developer/keystone/

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to modify
your configuration manually after installing with Ansible, then you will lose any
modifications whenever you re-run the install tool or upgrade.

2. Edit the new keystoneconfig/master-config.yaml file’s identityProviders stanza.

3. Copy the example KeystonePasswordIdentityProvider configuration and paste it to
replace the existing stanza.

4. Make the following modifications to the identityProviders stanza:

a. Change the provider name ("my_keystone_provider") to match your Keystone server. This
name is prefixed to provider user names to form an identity name.

b. If required, change mappingMethod to control how mappings are established between the
provider’s identities and user objects.

c. Change the domainName to the domain name of your OpenStack Keystone server. In
Keystone, user names are domain-specific. Only a single domain is supported.

d. Specify the url to use to connect to your OpenStack Keystone server.

e. Optionally, change the ca to the certificate bundle to use in order to validate server
certificates for the configured URL.

f. Optionally, change the certFile to the client certificate to present when making requests
to the configured URL.

g. If certFile is specified, then you must change the keyFile to the key for the client
certificate.

5. Save your changes and close the file.

6. Start the OpenShift Container Platform API server, specifying the configuration file you just
modified:

$ openshift start master --config=<path/to/modified/config>/master-
config.yaml

Once configured, any user logging in to the OpenShift Container Platform web console will be prompted
to log in using their Keystone credentials.

4.4.2. Creating Users with Keystone Authentication

You do not create users in OpenShift Container Platform when integrating with an external
authentication provider, such as, in this case, Keystone. Keystone is the system of record, meaning that
users are defined in a Keystone database, and any user with a valid Keystone user name for the
configured authentication server can log in.

To add a user to OpenShift Container Platform, the user must exist in the Keystone database, and if
required you must create a new Keystone account for the user.

OpenShift Container Platform 3.5 Administrator Solutions

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#KeystonePasswordIdentityProvider
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#mapping-identities-to-users

1

4.4.3. Verifying Users

Once one or more users have logged in, you can run oc get users to view a list of users and verify
that users were created successfully:

Example 4.1. Output of oc get users command

$ oc get users
NAME UID FULL NAME
IDENTITIES
bobsmith a0c1d95c-1cb5-11e6-a04a-002186a28631 Bob Smith

keystone:bobsmith 1

Identities in OpenShift Container Platform are comprised of the identity provider name prefixed
to the Keystone user name.

From here, you might want to learn how to control user roles.

4.5. LDAP AUTHENTICATION

LDAP uses bind operations to authenticate applications, and you can integrate your OpenShift Container
Platform cluster to use LDAPv3 authentication. Configuring LDAP authentication allows users to log in to
OpenShift Container Platform with their LDAP credentials.

During authentication, the LDAP directory is searched for an entry that matches the provided user name.
If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of the
entry plus the provided password.

WARNING

The basic authentication configuration covered by this topic is not enough to create
a secure LDAP authentication solution for OpenShift Container Platform. It has a
single point of failure, meaning that if the single LDAP authentication server became
unavailable then all OpenShift Container Platform operations requiring
authentication would also be unavailable.

Additionally, this basic configuration has no access control of its own; all LDAP
users matching the configured filter are able to log into OpenShift Container
Platform.

With the SSSD failover setup, FreeIPA and Active Directory can also set rules to
specifically restrict which users can and cannot access OpenShift Container
Platform.

The following advanced topic begin where this basic LDAP authentication topic ends
and describe configuring LDAP failover.

4.5.1. Configuring Authentication on the Master

CHAPTER 4. AUTHENTICATION

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#setting-up-for-ldap-failover
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#setting-up-for-ldap-failover

1. If you have:

Already completed the installation of Openshift, then copy the /etc/origin/master/master-
config.yaml file into a new directory; for example:

$ cd /etc/origin/master
$ mkdir ldapconfig; cp master-config.yaml ldapconfig

Not yet installed OpenShift Container Platform, then start the OpenShift Container Platform
API server, specifying the hostname of the (future) OpenShift Container Platform master and
a directory to store the configuration file created by the start command:

$ openshift start master --public-master=<apiserver> --write-
config=<directory>

For example:

$ openshift start master --public-
master=https://myapiserver.com:8443 --write-config=ldapconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to modify
your configuration manually after installing with Ansible, then you will lose any
modifications whenever you re-run the install tool or upgrade.

2. Edit the new master-config.yaml file’s identityProviders stanza.

3. Copy the example LDAPPasswordIdentityProvider configuration and paste it to replace
the existing stanza.

4. Make the following modifications to the identityProviders stanza:

a. Change the provider name ("my_ldap_provider") to something unique and relevant to your
deployment. This name is prefixed to the returned user name to form an identity name.

b. If required, change mappingMethod to control how mappings are established between the
provider’s identities and user objects.

c. Change id to the attribute to use as the identity, which must be unique and immutable within
the identity provider. This option can accept multiple attributes. If more than one is specified,
they will be checked in order and the first non-empty attribute will be used. At least one
attribute is required. If none of the listed attribute have a value, then authentication fails.

d. Change email to the attribute to use as the email address. This option can accept multiple
attributes. If more than one is specified, they will be checked in order and the first non-empty
attribute will be used.

e. Change name to the attribute to use as the display name. This option can accept multiple
attributes. If more than one is specified, they will be checked in order and the first non-empty
attribute will be used.

f. Optionally, change preferredUsername to the attribute to use as the preferred OpenShift

OpenShift Container Platform 3.5 Administrator Solutions

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#ldap-example-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#mapping-identities-to-users

Container Platform user name when provisioning a user for this identity. If unspecified, the
id attribute is used as the preferred user name. This option can accept multiple attributes. If
more than one is specified, they will be checked in order and the first non-empty attribute will
be used.
The attribute you select as the preferredUsername should still be unique, even within the
identity provider. The preferredUsername attribute is only used when provisioning the
user for the initial login. Afterward, the existing OpenShift Container Platform user is looked
up by their identity provider ID, in case the preferredUsername attribute changes.

Using preferredUsername is helpful when the immutable id attribute is not a human-
recognizable value, and there is another attribute with a value that is more recognizable to
the user. For example, if the id is something like "e43adf8cc243", you could set
preferredUsername to login, which could have potentially muteable values, such as
"bobsmith".

g. Change the ca to the certificate bundle to use in order to validate server certificates for the
configured URL. If empty, system trusted roots are used. This setting only applies if
insecure: false. If the LDAP server requires a different certificate chain, this attribute should
contain the filesystem path of that certificate or certificate bundle.

h. If required, modify the insecure parameter. The default is false, and this must be false
when using ldaps:// URLs. When false, ldaps:// URLs connect using TLS, and
ldap:// URLs are upgraded to TLS. When true, no TLS connection is made to the
server, however, setting this to true creates an invalid configuration for LDAP.

i. Define an RFC 2255 URL that specifies the LDAP host and search parameters to use.

5. Save your changes and close the file.

6. Start the OpenShift Container Platform API server, specifying the configuration file you just
modified:

$ openshift start master --master-config=
<path/to/modified/config>/master-config.yaml

Once configured, any user logging in to the OpenShift Container Platform web console will be prompted
to log in using their LDAP credentials.

4.5.2. Creating Users with LDAP Authentication

You do not create users in OpenShift Container Platform when integrating with an external
authentication provider, such as, in this case, LDAP. LDAP is the system of record, meaning that users
are defined in LDAP, and any user with a valid LDAP ID for the configured authentication server can log
in.

To add a user to OpenShift Container Platform, the user must exist in the LDAP system, and if required
you must create a new LDAP account for the user.

4.5.3. Verifying Users

Once one or more users have logged in, you can run oc get users to view a list of users and verify
that users were created successfully:

Example 4.2. Output of oc get users command

CHAPTER 4. AUTHENTICATION

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#ldap-url

1

$ oc get users
NAME UID FULL NAME
IDENTITIES
bobsmith 166a2367-33fc-11e6-bb22-4ccc6a0ad630 Bob Smith

ldap_provider:uid=bsmith,ou=users,dc=example,dc=com 1

Identities in OpenShift Container Platform are comprised of the identity provider name prefixed
to the LDAP distinguished name (DN).

From here, you might want to learn how to control user roles.

4.6. GITHUB AUTHENTICATION

GitHub uses OAuth, and you can integrate your OpenShift Container Platform cluster to use that OAuth
authentication. OAuth basically facilitates a token exchange flow.

Configuring GitHub authentication allows users to log in to OpenShift Container Platform with their
GitHub credentials. To prevent anyone with any GitHub user ID from logging in to your OpenShift
Container Platform cluster, you can restrict access to only those in specific GitHub organizations.

4.6.1. Registering the Application on GitHub

1. On GitHub, click Settings → OAuth applications → Developer applications → Register an
application to navigate to the page for a new OAuth application.

2. Type an application name. For example: My OpenShift Install

3. Type a homepage URL. For example: https://myapiserver.com:8443

4. Optionally, type an application description.

5. Type the authorization callback URL, where the end of the URL contains the identity provider
name (defined in the identityProviders stanza of the master configuration file, which you
configure in the next section of this topic):

<apiserver>/oauth2callback/<identityProviderName>

For example:

https://myapiserver.com:8443/oauth2callback/github/

6. Click Register application. GitHub provides a Client ID and a Client Secret. Keep this window
open so you can copy these values and paste them into the master configuration file.

4.6.2. Configuring Authentication on the Master

1. If you have:

Already completed the installation of Openshift, then copy the /etc/origin/master/master-
config.yaml file into a new directory; for example:

$ cd /etc/origin/master

OpenShift Container Platform 3.5 Administrator Solutions

44

https://github.com/settings/profile
https://github.com/settings/applications
https://github.com/settings/developers
https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://myapiserver.com:8443
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-master-node-configuration

$ mkdir githubconfig; cp master-config.yaml githubconfig

Not yet installed OpenShift Container Platform, then start the OpenShift Container Platform
API server, specifying the hostname of the (future) OpenShift Container Platform master and
a directory to store the configuration file created by the start command:

$ openshift start master --public-master=<apiserver> --write-
config=<directory>

For example:

$ openshift start master --public-
master=https://myapiserver.com:8443 --write-config=githubconfig

NOTE

If you are installing with Ansible, then you must add the identityProvider
configuration to the Ansible playbook. If you use the following steps to modify
your configuration manually after installing with Ansible, then you will lose any
modifications whenever you re-run the install tool or upgrade.

NOTE

Using openshift start master on its own would auto-detect host
names, but GitHub must be able to redirect to the exact host name that you
specified when registering the application. For this reason, you cannot auto-
detect the ID because it might redirect to the wrong address. Instead, you
must specify the hostname that web browsers use to interact with your
OpenShift Container Platform cluster.

2. Edit the new master-config.yaml file’s identityProviders stanza.

3. Copy the example GitHubIdentityProvider configuration and paste it to replace the
existing stanza.

4. Make the following modifications to the identityProviders stanza:

a. Change the provider name to match the callback URL you configured on GitHub.
For example, if you defined the callback URL as
https://myapiserver.com:8443/oauth2callback/github/ then the name must be
github.

b. Change clientID to the Client ID from GitHub that you registered previously.

c. Change clientSecret to the Client Secret from GitHub that you registered previously.

d. Change organizations or teams to include a list of one or more GitHub organizations or
teams to which a user must have membership in order to authenticate. If specified, only
GitHub users that are members of at least one of the listed organizations or teams will be
allowed to log in. If this is not specified, then any person with a valid GitHub account can log
in.

5. Save your changes and close the file.

CHAPTER 4. AUTHENTICATION

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#GitHub
https://myapiserver.com:8443/oauth2callback/github/

1

6. Start the OpenShift Container Platform API server, specifying the configuration file you just
modified:

$ openshift start master --config=<path/to/modified/config>/master-
config.yaml

Once configured, any user logging in to the OpenShift Container Platform web console will be prompted
to log in using their GitHub credentials. On their first login, the user must click authorize application to
permit GitHub to use their user name, password, and organization membership with OpenShift Container
Platform. The user is then redirected back to the web console.

4.6.3. Creating Users with GitHub Authentication

You do not create users in OpenShift Container Platform when integrating with an external
authentication provider, such as, in this case, GitHub. GitHub is the system of record, meaning that users
are defined by GitHub, and any user belonging to a specified organization can log in.

To add a user to OpenShift Container Platform, you must add that user to an approved organization on
GitHub, and if required create a new GitHub account for the user.

4.6.4. Verifying Users

Once one or more users have logged in, you can run oc get users to view a list of users and verify
that users were created successfully:

Example 4.3. Output of oc get users command

$ oc get users
NAME UID FULL NAME
IDENTITIES
bobsmith 433b5641-066f-11e6-a6d8-acfc32c1ca87 Bob Smith

github:873654 1

Identities in OpenShift Container Platform are comprised of the identity provider name and
GitHub’s internal numeric user ID. This way, if a user changes their GitHub user name or e-mail
they can still log in to OpenShift Container Platform instead of relying on the credentials
attached to the GitHub account. This creates a stable login.

From here, you might want to learn how to control user roles.

OpenShift Container Platform 3.5 Administrator Solutions

46

CHAPTER 5. CERTIFICATE MANAGEMENT

5.1. OVERVIEW

Over the lifetime of a OpenShift Container Platform cluster, certificates will enter various phases of their
lifecycle. The following procedures describe how to manage various parts of that lifecycle.

5.2. CHANGING AN APPLICATION’S SELF-SIGNED CERTIFICATE TO
CA-SIGNED CERTIFICATE

Some application templates create a self-signed certificate that is then directly presented by the
application to clients. As an example, by default and as part of the OpenShift Container Platform Ansible
installer deployment process, the metrics deployer creates self-signed certificates.

These self-signed certificates are not recognized by browsers. To mitigate this issue, use a publicly
signed certificate, then configure it to re-encrypt traffic with the self-signed certificate.

1. Delete the existing route:

$ oc delete route hawkular-metrics -n openshift-infra

With the route deleted, the certificates that will be used in the new route with the re-encrypt
strategy must be assembled from the existing wildcard and self-signed certificates created by the
metrics deployer. The following certificates must be available:

Wildcard CA certificate

Wildcard private key

Wildcard certificate

Hawkular CA certificate
Each certificate must be available as a file on the file system for the new route.

You can retrieve the Hawkular CA and store it in a file by executing the following command:

$ oc get secrets hawkular-metrics-certificate -n openshift-infra
\
 -o jsonpath='{.data.hawkular-metrics-ca\.certificate}' | base64
-d > hawkular-internal-ca.crt

2. Locate the wildcard private key, certificate, and CA certificate. Place each into a separate file,
such as wildcard.key, wildcard.crt, and wildcard.ca.

3. Create the new re-encrypt route:

$ oc create route reencrypt hawkular-metrics-reencrypt \
 -n openshift-infra \
 --hostname hawkular-metrics.ocp.example.com \
 --key wildcard.key \
 --cert wildcard.crt \
 --ca-cert wildcard.ca \
 --service hawkular-metrics \
 --dest-ca-cert hawkular-internal-ca.crt

CHAPTER 5. CERTIFICATE MANAGEMENT

47

OpenShift Container Platform 3.5 Administrator Solutions

48

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. MASTER AND NODE CONFIGURATION
	2.1. OVERVIEW
	2.2. PREREQUISITES
	2.3. CONFIGURING MASTERS AND NODES
	2.3.1. Making Configuration Changes Using Ansible
	2.3.1.1. Using the htpasswd commmand

	2.3.2. Making Manual Configuration Changes

	2.4. CONFIGURATION OPTIONS
	2.4.1. Master Configuration File Options
	2.4.2. Node Configuration File Options

	CHAPTER 3. USER AND ROLE MANAGEMENT
	3.1. LIMITING AND MONITORING USERS AND PROJECTS
	3.1.1. Setting Limits for Users and Projects
	3.1.1.1. Configuration Options

	3.1.2. Limiting the Number of Projects a User Can Have
	3.1.3. Controlling and Monitoring Resource Usage

	3.2. DETERMINING WHICH ROLES USERS GET BY DEFAULT
	3.2.1. Leveraging Default Groups
	3.2.2. Viewing Roles and Users for a Project
	3.2.3. Viewing Roles and Users for the Cluster

	3.3. CONTROLLING USER PERMISSIONS WITH ROLES
	3.3.1. Adding a Role to a User
	3.3.2. Removing a Role from a User
	3.3.3. Adding a Cluster Role to a User for All Projects
	3.3.4. Removing a Cluster Role from a User for All Projects
	3.3.5. Adding a Role to a Group
	3.3.6. Removing a Role from a Group
	3.3.7. Adding a Cluster Role to a Group for All Projects
	3.3.8. Removing a Cluster Role from a Group for All Projects

	3.4. RESTRICTING ROLE BINDINGS
	3.5. SHARING TEMPLATES FOR USE IN PROJECTS ACROSS THE CLUSTER
	3.6. CREATING A CLUSTER ADMINISTRATOR USER
	3.6.1. Creating an Administrator Within a Project
	3.6.2. Creating a Cluster Administrator

	CHAPTER 4. AUTHENTICATION
	4.1. OVERVIEW
	4.2. BASIC AUTHENTICATION (REMOTE)
	4.2.1. Configuring Authentication on the Master
	4.2.2. Troubleshooting
	4.2.3. Verifying Users

	4.3. REQUEST HEADER AUTHENTICATION
	4.3.1. Configuring Authentication on the Master
	4.3.2. Creating Users with Request Header Authentication
	4.3.3. Verifying Users

	4.4. KEYSTONE AUTHENTICATION
	4.4.1. Configuring Authentication on the Master
	4.4.2. Creating Users with Keystone Authentication
	4.4.3. Verifying Users

	4.5. LDAP AUTHENTICATION
	4.5.1. Configuring Authentication on the Master
	4.5.2. Creating Users with LDAP Authentication
	4.5.3. Verifying Users

	4.6. GITHUB AUTHENTICATION
	4.6.1. Registering the Application on GitHub
	4.6.2. Configuring Authentication on the Master
	4.6.3. Creating Users with GitHub Authentication
	4.6.4. Verifying Users

	CHAPTER 5. CERTIFICATE MANAGEMENT
	5.1. OVERVIEW
	5.2. CHANGING AN APPLICATION’S SELF-SIGNED CERTIFICATE TO CA-SIGNED CERTIFICATE

