
OpenShift Container Platform 3.11

Upgrading Clusters

OpenShift Container Platform 3.11 Upgrading Clusters

Last Updated: 2022-02-24

OpenShift Container Platform 3.11 Upgrading Clusters

OpenShift Container Platform 3.11 Upgrading Clusters

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Upgrade your OpenShift Container Platform 3.11 cluster with this guide

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UPGRADE METHODS AND STRATEGIES
1.1. UPGRADE STRATEGIES

1.1.1. In-place Upgrades
1.1.2. Blue-green Deployments

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES
2.1. UPGRADE WORKFLOW
2.2. PREREQUISITES
2.3. PREPARING FOR AN UPGRADE

2.3.1. Updating policy definitions
2.3.2. Upgrade phases
2.3.3. Node upgrade parameters
2.3.4. Ansible hooks for upgrades

2.3.4.1. Limitations
2.3.4.2. Using hooks
2.3.4.3. Available upgrade hooks

2.3.5. Special considerations for upgrading OpenShift Container Platform
2.3.5.1. Special considerations for large-scale upgrades
2.3.5.2. Special considerations when using gcePD

2.4. UPGRADING TO THE LATEST OPENSHIFT CONTAINER PLATFORM RELEASE
2.5. UPGRADING OPENSHIFT CONTAINER PLATFORM WHEN USING CONTAINERIZED GLUSTERFS
2.6. UPGRADING OPTIONAL COMPONENTS

2.6.1. Upgrading the EFK Logging Stack
2.6.1.1. Determining if fields have dots in field names
2.6.1.2. Upgrading if fields have dots in field names
2.6.1.3. Upgrading if fields do not have dots

2.6.2. Upgrading cluster metrics
2.7. VERIFYING THE UPGRADE

CHAPTER 3. PERFORMING BLUE-GREEN CLUSTER UPGRADES
3.1. PREPARING FOR A BLUE-GREEN UPGRADE

3.1.1. Sharing software entitlements
3.1.2. Labeling blue nodes
3.1.3. Creating and labeling green nodes
3.1.4. Verifying green nodes

3.2. PREPARING THE GREEN NODES
3.3. EVACUATING AND DECOMMISSIONING BLUE NODES

CHAPTER 4. UPDATING OPERATING SYSTEMS
4.1. UPDATING THE OPERATING SYSTEM ON A HOST

4.1.1. Upgrading Nodes Running OpenShift Container Storage

CHAPTER 5. DOWNGRADING A CLUSTER
5.1. VERIFYING BACKUPS
5.2. SHUTTING DOWN THE CLUSTER
5.3. REMOVING RPMS AND STATIC PODS
5.4. REINSTALLING RPMS
5.5. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE

Procedure
5.6. VERIFYING THE DOWNGRADE

3
3
3
3

4
4
4
5
7
8
9

10
10
10
11

12
12
13
13
14
16
16
17
17
19

20
20

22
23
23
23
24
24
25
26

28
28
28

30
30
30
31
31
31
32
32

Table of Contents

1

OpenShift Container Platform 3.11 Upgrading Clusters

2

CHAPTER 1. UPGRADE METHODS AND STRATEGIES
When new versions of OpenShift Container Platform are released, you can upgrade your existing cluster
to apply the latest enhancements and bug fixes. This includes upgrading from previous minor versions,
such as release 3.10 to 3.11, and applying asynchronous errata updates within a minor version (3.11.z
releases). See the OpenShift Container Platform 3.11 Release Notes to review the latest changes.

NOTE

Due to the core architectural changes between the major versions, OpenShift Enterprise
2 environments cannot be upgraded to OpenShift Container Platform 3 and require a
fresh installation.

The OpenShift Container Platform upgrade process uses Ansible playbooks to automate the tasks
needed to upgrade your cluster. You must use the inventory file that you used during initial installation
or during the last time that the upgrade was successful to run the upgrade playbook. Using this method
allows you to choose between either upgrade strategy: in-place upgrades or blue-green deployments.

Unless noted otherwise, node and masters within a major version are forward and backward compatible
across one minor version , so upgrading your cluster should go smoothly. However, you should not run
mismatched versions longer than necessary to upgrade the entire cluster.

Before upgrading, ensure that all OpenShift Container Platform services are running well. In the event
of a control plane upgrade failure, check the versions of your masters to ensure that all versions are the
same. If your masters are all the same version, re-run the upgrade. If they differ, downgrade the masters
to match the lower versioned master, then re-run the upgrade.

1.1. UPGRADE STRATEGIES

There are two strategies you can take for performing the OpenShift Container Platform cluster
upgrade: in-place upgrades or blue-green deployments.

1.1.1. In-place Upgrades

With in-place upgrades, the cluster upgrade is performed on all hosts in a single, running cluster: first
masters and then nodes. Pods are evacuated off of nodes and recreated on other running nodes before
a node upgrade begins; this helps reduce downtime of user applications.

1.1.2. Blue-green Deployments

The blue-green deployment upgrade method follows a similar flow to the in-place method: masters and
etcd servers are still upgraded first, however a parallel environment is created for new nodes instead of
upgrading them in-place.

This method allows administrators to switch traffic from the old set of nodes (e.g., the "blue"
deployment) to the new set (e.g., the "green" deployment) after the new deployment has been verified.
If a problem is detected, it is also then easy to rollback to the old deployment quickly.

CHAPTER 1. UPGRADE METHODS AND STRATEGIES

3

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/release_notes/#release-notes-ocp-3-11-release-notes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/release_notes/#release-notes-v2-vs-v3
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER
UPGRADES

If you installed using the standard cluster installation process, and the inventory file that was used is
available, you can use upgrade playbooks to automate the cluster upgrade process.

To upgrade OpenShift Container Platform, you run Ansible playbooks with the same inventory file that
you used during installation. You run the same v3_11 upgrade playbooks to:

Upgrade existing OpenShift Container Platform version 3.10 clusters to version 3.11.

Upgrade OpenShift Container Platform version 3.11 clusters to the latest asynchronous errata
update.

IMPORTANT

Running Ansible playbooks with the --tags or --check options is not supported by Red
Hat.

2.1. UPGRADE WORKFLOW

The 3.10 to 3.11 control plane upgrade performs the following steps for you:

Back up all etcd data for recovery purposes.

Update the API and controllers from 3.10 to 3.11.

Update internal data structures to 3.11.

Update the default router, if one exists, from 3.10 to 3.11.

Update the default registry, if one exists, from 3.10 to 3.11.

Update the default image streams and InstantApp templates.

The 3.10 to 3.11 node upgrade performs a rolling update of nodes, which:

Marks a subset of nodes unschedulable and drains them of pods.

Updates node components from 3.10 to 3.11.

Returns those nodes to service.

2.2. PREREQUISITES

Before you upgrade your cluster:

Review the OpenShift Container Platform 3.11 Release Notes . The release notes contain
important notices about changes to OpenShift Container Platform and its function.

If you are completing a large-scale upgrade, which involves at least 10 worker nodes and
thousands of projects and pods, review Special considerations for large-scale upgrades to
prevent upgrade failures.

If you are completing a disconnected cluster update, you must update your image registry with

OpenShift Container Platform 3.11 Upgrading Clusters

4

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#instal-planning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/release_notes/#ocp-311-asynchronous-errata-updates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/release_notes/#release-notes-ocp-3-11-release-notes

If you are completing a disconnected cluster update, you must update your image registry with
new image versions or the cluster update will fail. For example, when updating from 3.11.153 to
3.11.157, make sure the v3.11.157 image tags are present.

Upgrade the cluster to the latest asynchronous release of version 3.10 . If your cluster is at a
version earlier than 3.10, you must first upgrade incrementally. For example, upgrade from 3.7 to
3.9 (the 3.8 version was skipped), and then from 3.9 to 3.10.

Run the Environment health checks to verify the cluster’s health. In this process, you confirm
that the nodes are in the Ready state and running the expected starting version and that there
are no diagnostic errors or warnings.

Ensure that your cluster meets the current prerequisites. If it does not, your upgrade might fail.

The day before the upgrade, validate OpenShift Container Platform storage migration to
ensure potential issues are resolved before the outage window. The following command
updates the stored version of API objects for etcd storage:

$ oc adm migrate storage --include=* --loglevel=2 --config
/etc/origin/master/admin.kubeconfig

2.3. PREPARING FOR AN UPGRADE

After you satisfy the prerequisites, prepare for an automated upgrade:

1. Pull the latest subscription data from Red Hat Subscription Manager:

subscription-manager refresh

2. If you are upgrading from OpenShift Container Platform 3.10 to 3.11:

a. Back up the files that you need if you must downgrade to OpenShift Container Platform
3.10:

i. On master hosts, back up the following files:

/etc/origin/master/master-config.yaml
/etc/origin/master/master.env
/etc/origin/master/scheduler.json

ii. On node hosts, including masters, back up the following files:

/etc/origin/node/node-config.yaml

iii. On etcd hosts, including masters that have etcd co-located on them, back up the
following file:

/etc/etcd/etcd.conf

b. The upgrade process creates a backup of all etcd data for recovery purposes, but ensure
that you have a recent etcd backup at /backup/etcd-xxxxxx/backup.db before continuing.
Manual etcd backup steps are described in the Day Two Operations Guide .

NOTE

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

5

https://docs.openshift.com/container-platform/3.10/release_notes/ocp_3_10_release_notes.html#ocp-3-10-45
https://docs.openshift.com/container-platform/3.9/release_notes/ocp_3_9_release_notes.html#ocp-39-about-this-release
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#day-two-environment-health-checks
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-config-install-prerequisites
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/day_two_operations_guide/#etcd-backup_environment-backup

NOTE

When you upgrade OpenShift Container Platform, your etcd configuration
does not change. Whether you run etcd as static pods on master hosts or as
a separate service on master hosts or separate hosts does not change after
you upgrade.

c. Manually disable the 3.10 repository and enable the 3.11 repository on each master and node
host. You must also enable the rhel-7-server-ansible-2.9-rpms repository, if it is not
already enabled:

For cloud installations and on-premise installations on x86_64 servers, run the following
command:

subscription-manager repos \
 --disable="rhel-7-server-ose-3.10-rpms" \
 --disable="rhel-7-server-ansible-2.4-rpms" \
 --enable="rhel-7-server-ose-3.11-rpms" \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ansible-2.9-rpms"
yum clean all

For on-premise installations on IBM POWER8 servers, run the following command:

subscription-manager repos \
 --disable="rhel-7-for-power-le-ose-3.10-rpms" \
 --enable="rhel-7-for-power-le-rpms" \
 --enable="rhel-7-for-power-le-extras-rpms" \
 --enable="rhel-7-for-power-le-optional-rpms" \
 --enable="rhel-7-server-ansible-2.9-for-power-le-rpms" \
 --enable="rhel-7-server-for-power-le-rhscl-rpms" \
 --enable="rhel-7-for-power-le-ose-3.11-rpms"
yum clean all

For on-premise installations on IBM POWER9 servers, run the following command:

subscription-manager repos \
 --disable="rhel-7-for-power-le-ose-3.10-rpms" \
 --enable="rhel-7-for-power-9-rpms" \
 --enable="rhel-7-for-power-9-extras-rpms" \
 --enable="rhel-7-for-power-9-optional-rpms" \
 --enable="rhel-7-server-ansible-2.9-for-power-9-rpms" \
 --enable="rhel-7-server-for-power-9-rhscl-rpms" \
 --enable="rhel-7-for-power-9-ose-3.11-rpms"
yum clean all

d. Ensure that you have the latest version of the openshift-ansible package on the host you
run the upgrade playbooks on:

yum update -y openshift-ansible

e. Prepare for the Cluster Monitoring Operator. In version 3.11, the Cluster Monitoring

OpenShift Container Platform 3.11 Upgrading Clusters

6

e. Prepare for the Cluster Monitoring Operator. In version 3.11, the Cluster Monitoring
Operator is installed on an infrastructure node by default. If your cluster does not use
infrastructure nodes:

Add an infrastructure node to your cluster.

Disable the Cluster Monitoring Operator by adding
openshift_cluster_monitoring_operator_install=false to your inventory file.

Specify which node to install the Cluster Monitoring Operator on by marking it with the
openshift_cluster_monitoring_operator_node_selector.

f. If you use the standard OpenShift Container Platform registry, prepare for the change from
registry.access.redhat.com to registry.redhat.io. Complete the configuration steps in
Accessing and Configuring the Red Hat Registry .

3. Review and update your inventory file.

a. Ensure that any manual configuration changes you made to your master or node
configuration files since your last Ansible playbook run, whether that was initial installation
or your most recent cluster upgrade, are in the inventory file. For any variables that are
relevant to the manual changes you made, apply the equivalent appropriate changes to
your inventory files before running the upgrade. Otherwise, your manual changes might be
overwritten by default values during the upgrade, which could cause pods to not run
properly or other cluster stability issues.

b. By default, the installer checks to see if your certificates will expire within a year and fails if
they will expire within that time. To change the number of days that your certificate is valid,
specify a new value for the openshift_certificate_expiry_warning_days parameter. For
example, to ensure that your certificates are valid for 180 days, specify
openshift_certificate_expiry_warning_days=180.

c. To skip checking if your certificates will expire, set
openshift_certificate_expiry_fail_on_warn=False.

d. If you made any changes to admissionConfig settings in your master configuration files,
review the openshift_master_admission_plugin_config variable in Configuring Your
Inventory File. Failure to do so might cause pods to get stuck in Pending state if you had
ClusterResourceOverride settings manually configured previously, as described in
Configuring Masters for Overcommitment.

e. If you used the openshift_hostname parameter in versions of OpenShift Container
Platform before 3.10, ensure that the openshift_kubelet_name_override parameter is still
in your inventory file and set to the value of openshift_hostname that you used in previous
versions.

IMPORTANT

You must not remove the openshift_kubelet_name_override parameter
from your inventory file after you upgrade.

f. If you manually manage the cluster’s /etc/origin/master/htpasswd file, add
openshift_master_manage_htpasswd=false to your inventory file to prevent the upgrade
process from overwriting the htpasswd file.

2.3.1. Updating policy definitions

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-adding-hosts-to-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-configuring-red-hat-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#configuring-masters-for-overcommitment

During a cluster upgrade, and on every restart of any master, the default cluster roles are automatically
reconciled to restore any missing permissions.

1. If you customized default cluster roles and want to ensure a role reconciliation does not modify
them, protect each role from reconciliation:

$ oc annotate clusterrole.rbac <role_name> --overwrite
rbac.authorization.kubernetes.io/autoupdate=false

WARNING

You must manually update the roles that contain this setting to include any
new or required permissions after upgrading.

2. Generate a default bootstrap policy template file:

$ oc adm create-bootstrap-policy-file --filename=policy.json

NOTE

The contents of the file vary based on the OpenShift Container Platform version,
but the file contains only the default policies.

3. Update the policy.json file to include any cluster role customizations.

4. Use the policy file to automatically reconcile roles and role bindings that are not reconcile
protected:

$ oc auth reconcile -f policy.json

5. Reconcile security context constraints:

oc adm policy reconcile-sccs \
 --additive-only=true \
 --confirm

2.3.2. Upgrade phases

You can upgrade the OpenShift Container Platform cluster in one or more phases. You can choose to
upgrade all hosts in one phase by running a single Ansible playbook or upgrade the control plane, or
master components, and nodes in multiple phases using separate playbooks.

NOTE

If your OpenShift Container Platform cluster uses GlusterFS pods, you must perform the
upgrade in multiple phases. See Special Considerations When Using Containerized
GlusterFS for details on how to upgrade with GlusterFS.

OpenShift Container Platform 3.11 Upgrading Clusters

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#roles

When upgrading in separate phases, the control plane phase includes upgrading:

Master components

Node services running on masters

Docker or CRI-O running on masters

Docker or CRI-O running on any stand-alone etcd hosts

If you upgrade only the nodes, you must first upgrade the control plane. The node phase includes
upgrading:

Node services running on stand-alone nodes

Docker or CRI-O running on stand-alone nodes

Nodes that run master components are upgraded only during the control plane upgrade phase. This
ensures that the node services and container engines on masters are not upgraded twice, once during
the control plane phase and again during the node phase.

2.3.3. Node upgrade parameters

Whether you upgrade in a single or multiple phases, you can customize how the node portion of the
upgrade progresses by passing certain Ansible variables to an upgrade playbook using the -e option.

Set the openshift_upgrade_nodes_serial variable to an integer or percentage to control how
many node hosts are upgraded at the same time. The default is 1, which upgrades one node at
a time.
For example, to upgrade 20 percent of the total number of detected nodes at a time, run:

$ ansible-playbook -i <path/to/inventory/file> \
 </path/to/upgrade/playbook> \
 -e openshift_upgrade_nodes_serial="20%"

Set the openshift_upgrade_nodes_label to specify that only nodes with a certain label are
upgraded.
For example, to only upgrade nodes in the group1 region, two at a time:

$ ansible-playbook -i <path/to/inventory/file> \
 </path/to/upgrade/playbook> \
 -e openshift_upgrade_nodes_serial="2" \
 -e openshift_upgrade_nodes_label="region=group1"

NOTE

See Managing Nodes for more information about node labels.

Set the openshift_upgrade_nodes_max_fail_percentage variable to specify how many nodes
can fail in each batch of upgrades. If the percentage of failed nodes exceeds your value, the
playbook stops the upgrade process.

Set the openshift_upgrade_nodes_drain_timeout variable to specify the length of time to
wait before marking a node as failed.

In this example, 10 nodes are upgraded at a time, the upgrade stops if more than 20 percent of

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#updating-labels-on-nodes

In this example, 10 nodes are upgraded at a time, the upgrade stops if more than 20 percent of
the nodes fail, and a node is marked as failed if it takes more than 600 seconds to drain the
node:

$ ansible-playbook -i <path/to/inventory/file> \
 </path/to/upgrade/playbook> \
 -e openshift_upgrade_nodes_serial=10 \
 -e openshift_upgrade_nodes_max_fail_percentage=20 \
 -e openshift_upgrade_nodes_drain_timeout=600

2.3.4. Ansible hooks for upgrades

When upgrading OpenShift Container Platform, you can execute custom tasks during specific
operations through a system called hooks. Hooks allow cluster administrators to provide files defining
tasks to execute before or after specific areas during upgrades. You can use hooks to validate or modify
custom infrastructure when upgrading OpenShift Container Platform.

Because when a hook fails, the operation fail, design hooks that are idempotent, or can run multiple
times and provide the same results.

2.3.4.1. Limitations

Hooks have no defined or versioned interface. They can use internal openshift-ansible
variables, but there is no guarantee these variables will remain in future releases. In the future,
hooks might be versioned, giving you advance warning that your hook needs to be updated to
work with the latest openshift-ansible.

Hooks have no error handling, so an error in a hook halts the upgrade process. If you get an
error, you must address the problem and then start the upgrade again.

You can run node upgrade hooks on only nodes, not masters. To run the hooks on masters, you
must specify a master hook for those nodes.

2.3.4.2. Using hooks

You define hooks in the hosts inventory file under the OSEv3:vars section.

Each hook must point to a YAML file that defines Ansible tasks. This file is used as an include, meaning
that the file cannot be a playbook, but is a set of tasks. Best practice suggests using absolute paths to
the hook file to avoid any ambiguity.

Example hook definitions in an inventory file

[OSEv3:vars]
openshift_master_upgrade_pre_hook=/usr/share/custom/pre_master.yml
openshift_master_upgrade_hook=/usr/share/custom/master.yml
openshift_master_upgrade_post_hook=/usr/share/custom/post_master.yml

openshift_node_upgrade_pre_hook=/usr/share/custom/pre_node.yml
openshift_node_upgrade_hook=/usr/share/custom/node.yml
openshift_node_upgrade_post_hook=/usr/share/custom/post_node.yml

Example pre_master.yml task

OpenShift Container Platform 3.11 Upgrading Clusters

10

Trivial example forcing an operator to ack the start of an upgrade
file=/usr/share/custom/pre_master.yml

- name: note the start of a master upgrade
 debug:
 msg: "Master upgrade of {{ inventory_hostname }} is about to start"

- name: require an operator agree to start an upgrade
 pause:
 prompt: "Hit enter to start the master upgrade"

2.3.4.3. Available upgrade hooks

Table 2.1. Master Upgrade Hooks

Hook name Description

openshift_master_upgrade_pre_hook
Runs before each master is upgraded.

This hook runs against each master in serial.

If a task must run against a different host,
the task must use delegate_to or
local_action.

openshift_master_upgrade_hook
Runs after each master is upgraded but
before its service or system restart.

This hook runs against each master in serial.

If a task must run against a different host,
the task must use delegate_to or
local_action.

openshift_master_upgrade_post_hook
Runs after each master is upgraded and its
service or system restarts.

This hook runs against each master in serial.

If a task must run against a different host,
the task must use delegate_to or
local_action.

Table 2.2. Node upgrade hooks

Hook name Description

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

11

http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation

openshift_node_upgrade_pre_hook
Runs before each node is upgraded.

This hook runs against each node in serial.

If a task must run against a different host,
the task must use delegate_to or
local_action.

openshift_node_upgrade_hook
Runs after each node is upgraded but before
it is marked schedulable again.

This hook runs against each node in serial.

If a task must run against a different host,
they task must use delegate_to or
local_action.

openshift_node_upgrade_post_hook
Runs after each node is upgraded. It is the
last node upgrade action.

This hook runs against each node in serial.

If a task must run against a different host,
the task must use delegate_to or
local_action.

Hook name Description

2.3.5. Special considerations for upgrading OpenShift Container Platform

If your OpenShift Container Platform cluster uses a mixed environment or gcePD storage, you need to
take more steps before you upgrade it.

Before you upgrade a mixed environment, such as one with Red Hat Enterprise Linux (RHEL) and RHEL
Atomic Host, set values in the inventory file for both the openshift_pkg_version and
openshift_image_tag parameters. Setting these values ensures that all nodes in your cluster run the
same version of OpenShift Container Platform. While this is a best practice for major updates, such as
from OpenShift Container Platform 2 to OpenShift Container Platform 3, setting these values are
mandatory for minor version upgrades.

For example, to upgrade from OpenShift Container Platform 3.9 to OpenShift Container Platform 3.10,
set the following parameters and values:

openshift_pkg_version=-3.10.16
openshift_image_tag=v3.10.16

NOTE

These parameters can also be present in other, non-mixed, environments.

2.3.5.1. Special considerations for large-scale upgrades

OpenShift Container Platform 3.11 Upgrading Clusters

12

http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation

For large-scale cluster upgrades, which involve at least 10 worker nodes and thousands of projects and
pods, the API object storage migration should be performed prior to running the upgrade playbooks,
and then again after the upgrade has successfully completed. Otherwise, the upgrade process will fail.

Refer to the Running the pre- and post- API server model object migration outside of the upgrade
window section of the Recommendations for large-scale OpenShift upgrades for further guidance.

2.3.5.2. Special considerations when using gcePD

Because the default gcePD storage provider uses an RWO (Read-Write Only) access mode, you cannot
perform a rolling upgrade on the registry or scale the registry to multiple pods. Therefore, when
upgrading OpenShift Container Platform, you must specify the following environment variables in your
Ansible inventory file:

[OSEv3:vars]

openshift_hosted_registry_storage_provider=gcs
openshift_hosted_registry_storage_gcs_bucket=bucket01
openshift_hosted_registry_storage_gcs_keyfile=test.key
openshift_hosted_registry_storage_gcs_rootdirectory=/registry

2.4. UPGRADING TO THE LATEST OPENSHIFT CONTAINER
PLATFORM RELEASE

To upgrade an existing OpenShift Container Platform 3.10 or 3.11 cluster to the latest 3.11 release:

1. Prepare for an upgrade to ensure you use the latest upgrade playbooks.

2. Ensure the openshift_deployment_type parameter in your inventory file is set to openshift-
enterprise.

3. To enable rolling, full system restarts of the hosts, set the openshift_rolling_restart_mode
parameter in your inventory file to system. Otherwise, the service is restarted on masters, but
the systems do not reboot.

NOTE

The openshift_rolling_restart_mode only works for master hosts.

See Configuring Cluster Variables for details.

4. If you modified the oreg_url parameter to change the cluster image registry location, you must
run the imageconfig playbook to update the image location:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i </path/to/inventory/file> \
 playbooks/openshift-node/imageconfig.yml

5. Upgrade your nodes.
If your inventory file is located somewhere other than the default /etc/ansible/hosts, add the -i
flag to specify its location. If you previously used the atomic-openshift-installer command to
run your installation, you can check ~/.config/openshift/hosts for the last inventory file that
was used.

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

13

https://access.redhat.com/articles/3208381
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-cluster-variables

1

To upgrade control plane and nodes in a single phase, run the upgrade.yml playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i </path/to/inventory/file> \
 playbooks/byo/openshift-cluster/upgrades/v3_11/upgrade.yml

To upgrade the control plane and nodes in separate phases:

a. Upgrade the control plane by running the upgrade_control_plane.yaml playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i </path/to/inventory/file> \
 playbooks/byo/openshift-cluster/upgrades/v3_11/upgrade_control_plane.yml

b. Upgrade the nodes by running the upgrade_nodes.yaml playbook:

$ cd /usr/share/ansible/openshift-ansible
$ ansible-playbook -i </path/to/inventory/file> \
 playbooks/byo/openshift-cluster/upgrades/v3_11/upgrade_nodes.yml \
 [-e <customized_node_upgrade_variables>] 1

See Customizing Node Upgrades for any desired
<customized_node_upgrade_variables>.

If you are upgrading the nodes in groups as described in Customizing Node Upgrades,
continue running the upgrade_nodes.yml playbook until all nodes are upgraded.

6. If you did not enable automated reboot of the master hosts by using openshift_rolling_restart
variable=system in step 3 of this procedure, you can manually reboot all master hosts together
with all node hosts after the upgrade has completed. Rebooting the hosts is optional.

7. If you use aggregated logging, upgrade the EFK logging stack .

8. If you use cluster metrics, upgrade cluster metrics.

9. Verify the upgrade.

2.5. UPGRADING OPENSHIFT CONTAINER PLATFORM WHEN USING
CONTAINERIZED GLUSTERFS

When upgrading OpenShift Container Platform, you must upgrade the set of nodes where GlusterFS
pods run. However, because these pods run as part of a daemonset, you cannot use drain or
unschedule commands to terminate and evacuate the GlusterFS pods. To avoid data availability and
cluster corruption, you must also upgrade nodes that host GlusterFS pods one at a time to ensure that
the upgrade process completes on a node that runs GlusterFS before the upgrade starts on the next
node.

To upgrade OpenShift Container Platform if you use containerized GlusterFS:

1. Upgrade the control plane (the master nodes and etcd nodes).

2. Upgrade standard infra nodes (router, registry, logging, and metrics).

NOTE

OpenShift Container Platform 3.11 Upgrading Clusters

14

1 2 3 4

NOTE

If any of the nodes in those groups are running GlusterFS, perform step 4 of this
procedure at the same time. GlusterFS nodes must be upgraded along with
other nodes in their class (app versus infra), one at a time.

3. Upgrade standard nodes running application containers.

NOTE

If any of the nodes in those groups are running GlusterFS, perform step 4 of this
procedure at the same time. GlusterFS nodes must be upgraded along with
other nodes in their class (app versus infra), one at a time.

4. Upgrade the OpenShift Container Platform nodes running GlusterFS one at a time.

a. Add the following parameters in the inventory file at /etc/ansible/hosts:

openshift_hosted_registry_storage_kind=glusterfs
openshift_storage_glusterfs_heketi_image=registry.access.redhat.com/rhgs3/rhgs-
volmanager-rhel7:<your_cns_vesion> 1
openshift_storage_glusterfs_image=registry.access.redhat.com/rhgs3/rhgs-server-rhel7:
<your_cns_vesion> 2
openshift_storage_glusterfs_block_image=registry.access.redhat.com/rhgs3/rhgs-
gluster-block-prov-rhel7:<your_cns_vesion> 3
openshift_storage_glusterfs_s3_image=registry.access.redhat.com/rhgs3/rhgs-s3-
server-rhel7:<your_cns_vesion> 4

Specify the CNS version, such as v3.9 or v3.11.3.

b. Update the image tags from latest to <your_cns_version>, such as v3.9 or v3.11.3, on the
following resources, if they are present in your configuration:

$ oc edit -n <glusterfs_namespace> ds glusterfs-<name>
$ oc edit -n <glusterfs_namespace> dc heketi-<name>
$ oc edit -n <glusterfs_namespace> dc glusterblock-<name>-provisioner-dc
$ oc edit -n <glusterfs_namespace> dc gluster-<name>-<account>-s3

c. Add a label to the node you want to upgrade so that only one node is upgraded at a time:

$ oc label node <node_name> type=upgrade

d. Do not terminate the GlusterFS pod you want to restart.

e. To run the upgrade playbook on a single GlusterFS node, use -e
openshift_upgrade_nodes_label="type=upgrade".

NOTE

The GlusterFS pod should not be terminated.

f. Wait for the GlusterFS pod to respawn and appear.

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

15

g. Run basic health checks after each pod restart to ensure they pass.

h. oc rsh into the pod and verify all volumes are healed:

$ oc rsh <GlusterFS_pod_name>
$ for vol in `gluster volume list`; do gluster volume heal $vol info; done

Ensure all of the volumes are healed and there are no outstanding tasks. The heal info
command lists all pending entries for a given volume’s heal process. A volume is considered
healed when Number of entries for that volume is 0.

i. Remove the upgrade label and go to the next GlusterFS node.

$ oc label node <node_name> type-

2.6. UPGRADING OPTIONAL COMPONENTS

If you installed an EFK logging stack or cluster metrics, you must separately upgrade the component.

2.6.1. Upgrading the EFK Logging Stack

To upgrade an existing EFK logging stack deployment, you review your parameters and run the
openshift-logging/config.yml playbook.

NOTE

The upgrade can replace your logging-fluentd and logging-curator ConfigMaps. If you
want to retain your current logging-fluentd and logging-curator ConfigMaps, set the
openshift_logging_fluentd_replace_configmap and
openshift_logging_curator_replace_configmap parameters to no in the inventory host
file.

The EFK upgrade also upgrades Elasticsearch from version 2 to version 5. For important information on
changes in Elasticsearch 5, you should review the Elasticsearch breaking changes.

It is important to note that Elasticsearch 5 has some significant changes to the index structures.
Previously, Elasticsearch permitted a dot character, ., in field names. In version 5, Elasticsearch
interprets any dot in an Elasticsearch field name as nested structure. If you have a field with a dot, the
string after the dot is interpreted as the type of field, leading to mapping conflicts during the upgrade.

To help identify potential conflicts, OpenShift Container Platform provides a script that examines your
Elasticsearch fields to determine if any fields contain a dot in the name.

For example, the following fields were allowed in Elasticsearch 2:

{
 "field": 123 // "field" is of type number
}

// Any dot in field name is treated as any other valid character in the field name.
// It is just part of the field name.
{
 "field.name": "Bob" // "field.name" is of type String

In Elasticsearch 5 and higher the field string would become the field and the name string would become

OpenShift Container Platform 3.11 Upgrading Clusters

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#configuring-ansible
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/breaking-changes-5.0.html

1

In Elasticsearch 5 and higher the field string would become the field and the name string would become
a type for the field:

{
 "field": 123 // "field" is of type number
}

// Any dot in field name is always interpreted as nested structure.
{
 "field" : { // "field" is of type Object
 "name": "Bob" // "name" is of type String
 }
}

Upgrading in this case would result in the field field having two different types, which is not permitted.

If you need to keep these conflicting indices, you need to reindex the data and change the documents
to get rid of conflicting data structure. For more information, see Upgrading fields with dots to 5.x .

2.6.1.1. Determining if fields have dots in field names

You can run the following script to determine if your indices contain any fields with a dot in the name.

NOTE

The following command uses the jq JSON processor to get directly at the necessary
data. Red Hat Enterprise Linux (RHEL), depending on version, might not provide a
package for jq. You might need to install this from external sources, or unsupported
locations.

oc exec -c elasticsearch -n $LOGGING_NS $pod -- es_util --query='_mapping?
pretty&filter_path=**.mappings.*.properties' \
 | jq '.[].mappings[].properties | keys' \
 | jq .[] \
 | egrep -e "\."

The upgrade path depends on whether the indices have fields with dots or do not have fields with dots .

2.6.1.2. Upgrading if fields have dots in field names

If the script above indicates your indices contain fields with a dot in the name, use the following steps to
correct this issue and upgrade.

To upgrade your EFK stack:

1. Review how to specify logging Ansible variables and update your Ansible inventory file to at
least set the following required variable in the [OSEv3:vars] section:

[OSEv3:vars]

openshift_logging_install_logging=true 1

Enables the ability to upgrade the logging stack.

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

17

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/dots-in-names.html#_upgrading_fields_with_dots_to_5_x
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#aggregate-logging-ansible-variables

2. Update any other openshift_logging_* variables that you want to override the default values
for, as described in Specifying Logging Ansible Variables .
You can set the openshift_logging_elasticsearch_replace_configmap parameter to true to
replace your logging-elasticsearch ConfigMap with the current default values. In some cases,
using an older ConfigMap can cause the upgrade to fail. The default is set to false. For more
information, see the parameter in specify logging Ansible variables .

NOTE

If your Fluentd DeploymentConfig object and DaemonSet object for the EFK
components are already set with:

 image: <image_name>:<vX.Y>
 imagePullPolicy: IfNotPresent

The latest version <image_name> might not be pulled if there is already one with
the same <image_name:vX.Y> stored locally on the node where the pod is being
re-deployed. If your image version is v3.11, and you want to upgrade to the latest
version using the playbook, set the openshift_image_tag=v3.11.<Z> or
oreg_url=registry.access.redhat.com/openshift3/ose-${component}:v3.11.
<Z> Ansible parameter.

3. Dechedule your Fluentd pods to stop data ingestion and ensure the cluster state does not
change.
For example, you can change the node selector in Fluentd pods to one that does not match any
nodes.

oc patch daemonset logging-fluentd -p '{"spec": {"template": {"spec": {"nodeSelector": {"non-
existing": "true"}}}}}'

4. Perform an Elasticsearch Index flush on all relevant indices. The flush process persists all logs
from memory to disk, which prevents log loss when Elasticsearch is shutdown during the
upgrade.

5. Perform an online or offline backup:

Perform an online backup of specific Elasticsearch indices the entire cluster.

Perform an offline backup:

a. Scale down all Elasticsearch DeploymentConfig to 0:

$ oc scale dc <name> -n openshift-logging --replicas=0

b. Back up external persistent volumes using the appropriate method for your
organization.

6. For any file name with a dot character, you need to take one of the following actions before
upgrading:

Deleting the indices. This is the better approach to avoid mapping conflicts during the
upgrade.

Reindexing the data and changing the documents to get rid of conflicting data structure.

OpenShift Container Platform 3.11 Upgrading Clusters

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#aggregate-logging-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#aggregate-logging-ansible-variables
https://www.elastic.co/guide/en/elasticsearch/reference/2.4/indices-flush.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html

1

Reindexing the data and changing the documents to get rid of conflicting data structure.
This method retain the data. For information on potential mapping conflicts see Mappging
changes in the Elasticsearch documentation.

7. Repeat the on-line or offline backup.

8. Run the openshift-logging/config.yml playbook according to the deploying the EFK stack
instructions to complete the logging upgrade. You run the installation playbook for the new
OpenShift Container Platform version to upgrade the logging deployment.

2.6.1.3. Upgrading if fields do not have dots

If the script above indicates your indices do not contain fields with a dot in the name, use the following
steps to upgrade.

1. Review how to specify logging Ansible variables and update your Ansible inventory file to at
least set the following required variable in the [OSEv3:vars] section:

[OSEv3:vars]

openshift_logging_install_logging=true 1

Enables the ability to upgrade the logging stack.

2. Update any other openshift_logging_* variables that you want to override the default values
for, as described in Specifying Logging Ansible Variables .
You can set the openshift_logging_elasticsearch_replace_configmap parameter to true to
replace your logging-elasticsearch ConfigMap with the current default values. In some cases,
using an older ConfigMap can cause the upgrade to fail. The default is set to false. For more
information, see the parameter in specify logging Ansible variables .

NOTE

If your Fluentd DeploymentConfig object and DaemonSet object for the EFK
components are already set with:

 image: <image_name>:<vX.Y>
 imagePullPolicy: IfNotPresent

The latest version <image_name> might not be pulled if there is already one with
the same <image_name:vX.Y> stored locally on the node where the pod is being
re-deployed. If your image version is v3.11, and you want to upgrade to the latest
version using the playbook, set the openshift_image_tag=v3.11.<Z> or
oreg_url=registry.access.redhat.com/openshift3/ose-${component}:v3.11.
<Z> Ansible parameter.

3. Optionally, dechedule your Fluentd pods and scale down your Elasticsearch pods to stop data
ingestion and ensure the cluster state does not change.
For example, you can change the node selector in Fluentd pods to one that does not match any
nodes.

oc patch daemonset logging-fluentd -p '{"spec": {"template": {"spec": {"nodeSelector": {"non-
existing": "true"}}}}}'

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

19

https://www.elastic.co/guide/en/elasticsearch/reference/5.5/breaking_50_mapping_changes.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#deploying-the-efk-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#aggregate-logging-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#aggregate-logging-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#aggregate-logging-ansible-variables

1

2

3

4. Optionally, perform and online or offline backup:

Perform an online backup of specific Elasticsearch indices the entire cluster.

Perform an offline backup:

a. Scale down all Elasticsearch DeploymentConfigs to 0:

$ oc scale dc <name> -n openshift-logging --replicas=0

b. Back up external persistent volumes using the appropriate method for your
organization.

5. Run the openshift-logging/config.yml playbook according to the deploying the EFK stack
instructions to complete the logging upgrade. You run the installation playbook for the new
OpenShift Container Platform version to upgrade the logging deployment.

6. Optionally, use the Elasticsearch restore module to restore your Elasticsearch indices from the
snapshot.

2.6.2. Upgrading cluster metrics

To upgrade an existing cluster metrics deployment, you review your parameters and run the openshift-
metrics/config.yml playbook.

1. Review how to specify metrics Ansible variables and update your Ansible inventory file to at
least set the following required variable in the [OSEv3:vars] section:

[OSEv3:vars]

openshift_metrics_install_metrics=true 1
openshift_metrics_hawkular_hostname=<fqdn> 2
openshift_metrics_cassandra_storage_type=(emptydir|pv|dynamic) 3

Enables the ability to upgrade the metrics deployment.

Used for the Hawkular Metrics route. Specify a fully qualified domain name.

Specify the same type as the previous deployment.

2. Update any other openshift_metrics_* variables that you want to override the default values
for, as described in Specifying Metrics Ansible Variables .

3. Run the openshift-metrics/config.yml playbook according to the deploying the metrics
deployment instructions to complete the metrics upgrade. You run the installation playbook for
the new OpenShift Container Platform version to upgrade the logging deployment.

2.7. VERIFYING THE UPGRADE

Ensure that:

The cluster is healthy.

The master, node, and etcd services or static pods are running well.

OpenShift Container Platform 3.11 Upgrading Clusters

20

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#deploying-the-efk-stack
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/modules-snapshots.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#metrics-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#metrics-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#deploying-the-metrics-components

The OpenShift Container Platform, docker-registry, and router versions are correct.

The original applications are still available, and new application can be created.

Running oc adm diagnostics produces no errors.

To verify the upgrade:

1. Check that all nodes are marked as Ready:

oc get nodes
NAME STATUS ROLES AGE VERSION
master1.example.com Ready master 47d v1.11.0+d4cacc0
master2.example.com Ready master 47d v1.11.0+d4cacc0
master3.example.com Ready master 47d v1.11.0+d4cacc0
infra-node1.example.com Ready infra 47d v1.11.0+d4cacc0
infra-node2.example.com Ready infra 47d v1.11.0+d4cacc0
node1.example.com Ready compute 47d v1.11.0+d4cacc0
node2.example.com Ready compute 47d v1.11.0+d4cacc0

2. Verify that the static pods for the control plane are running:

oc get pods -n kube-system
NAME READY STATUS RESTARTS AGE
master-api-master1.example.com 1/1 Running 4 1h
master-controllers-master1.example.com 1/1 Running 3 1h
master-etcd-master1.example.com 1/1 Running 6 5d
[...]

3. Verify that you are running the expected versions of the docker-registry and router images, if
deployed:

oc get -n default dc/docker-registry -o json | grep \"image\"
 "image": "openshift3/ose-docker-registry:v3.11.634",
oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:v3.11.634",

4. Use the diagnostics tool on the master to look for common issues:

oc adm diagnostics
...
[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

21

CHAPTER 3. PERFORMING BLUE-GREEN CLUSTER
UPGRADES

NOTE

This topic serves as an alternative approach for node host upgrades to the in-place
upgrade method.

The blue-green deployment upgrade method follows a similar flow to the in-place method: masters and
etcd servers are still upgraded first, however a parallel environment is created for new node hosts
instead of upgrading them in-place.

This method allows administrators to switch traffic from the old set of node hosts (e.g., the blue
deployment) to the new set (e.g., the green deployment) after the new deployment has been verified. If
a problem is detected, it is also then easy to rollback to the old deployment quickly.

While blue-green is a proven and valid strategy for deploying just about any software, there are always
trade-offs. Not all environments have the same uptime requirements or the resources to properly
perform blue-green deployments.

In an OpenShift Container Platform environment, the most suitable candidate for blue-green
deployments are the node hosts. All user processes run on these systems and even critical pieces of
OpenShift Container Platform infrastructure are self-hosted on these resources. Uptime is most
important for these workloads and the additional complexity of blue-green deployments can be
justified.

The exact implementation of this approach varies based on your requirements. Often the main
challenge is having the excess capacity to facilitate such an approach.

Figure 3.1. Blue-green deployment

OpenShift Container Platform 3.11 Upgrading Clusters

22

Figure 3.1. Blue-green deployment

3.1. PREPARING FOR A BLUE-GREEN UPGRADE

After you have upgraded your master and etcd hosts using method described for In-place Upgrades, use
the following sections to prepare your environment for a blue-green upgrade of the remaining node
hosts.

3.1.1. Sharing software entitlements

Administrators must temporarily share the Red Hat software entitlements between the blue-green
deployments or provide access to the installation content by means of a system such as Red Hat
Satellite. This can be accomplished by sharing the consumer ID from the previous node host:

1. On each old node host that will be upgraded, note its system identity value, which is the
consumer ID:

subscription-manager identity | grep system
system identity: 6699375b-06db-48c4-941e-689efd6ce3aa

2. On each new RHEL 7 or RHEL Atomic Host 7 system that will replace an old node host, register
using the respective consumer ID from the previous step:

subscription-manager register --consumerid=6699375b-06db-48c4-941e-689efd6ce3aa

3.1.2. Labeling blue nodes

You must ensure that your current node hosts in production are labeled either blue or green. In this
example, the current production environment is blue, and the new environment is green.

CHAPTER 3. PERFORMING BLUE-GREEN CLUSTER UPGRADES

23

1. Get the current list of node names known to the cluster:

$ oc get nodes

2. Label all non-master node hosts (compute nodes) and dedicated infrastructure nodes in your
current production environment with color=blue:

$ oc label node --selector=node-role.kubernetes.io/compute=true color=blue

$ oc label node --selector=node-role.kubernetes.io/infra=true color=blue

In the previous command, the --selector flag is used to match a subset of the cluster using the
relevant node labels, and all matches are labeled with color=blue.

3.1.3. Creating and labeling green nodes

Create the green environment by adding an equal number of new node hosts to the existing cluster:

1. Add the new node hosts using the procedure as described in Adding Hosts to an Existing
Cluster. When updating your inventory file with the [new_nodes] group in that procedure,
ensure these variables are set:

In order to delay workload scheduling until the nodes are deemed healthy, which you verify
in later steps, set the openshift_schedulable=false variable for each new node host to
ensure they are unschedulable initially.

2. After the new nodes deploy, apply the color=green label to each new node:

$ oc label node <node_name> color=green

3.1.4. Verifying green nodes

Verify that your new green nodes are in a healthy state:

1. Verify that new nodes are detected in the cluster and are in Ready,SchedulingDisabled state:

$ oc get nodes

NAME STATUS ROLES AGE
node4.example.com Ready,SchedulingDisabled compute 1d

2. Verify that the green nodes have proper labels:

$ oc get nodes --show-labels

NAME STATUS ROLES AGE LABELS
node4.example.com Ready,SchedulingDisabled compute 1d
beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,color=green,kubernetes.io/hostna
me=m01.example.com,node-role.kubernetes.io/compute=true

3. Perform a diagnostic check for the cluster:

$ oc adm diagnostics

OpenShift Container Platform 3.11 Upgrading Clusters

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#adding-cluster-hosts_adding-hosts-to-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#node

[Note] Determining if client configuration exists for client/cluster diagnostics
Info: Successfully read a client config file at '/root/.kube/config'
Info: Using context for cluster-admin access: 'default/m01-example-com:8443/system:admin'
[Note] Performing systemd discovery

[Note] Running diagnostic: ConfigContexts[default/m01-example-com:8443/system:admin]
 Description: Validate client config context is complete and has connectivity
...
 [Note] Running diagnostic: CheckExternalNetwork
 Description: Check that external network is accessible within a pod

 [Note] Running diagnostic: CheckNodeNetwork
 Description: Check that pods in the cluster can access its own node.

 [Note] Running diagnostic: CheckPodNetwork
 Description: Check pod to pod communication in the cluster. In case of ovs-subnet
network plugin, all pods
should be able to communicate with each other and in case of multitenant network plugin,
pods in non-global projects
should be isolated and pods in global projects should be able to access any pod in the cluster
and vice versa.

 [Note] Running diagnostic: CheckServiceNetwork
 Description: Check pod to service communication in the cluster. In case of ovs-
subnet network plugin, all
pods should be able to communicate with all services and in case of multitenant network
plugin, services in non-global
projects should be isolated and pods in global projects should be able to access any service
in the cluster.
...

3.2. PREPARING THE GREEN NODES

To migrate pods from the blue environment to the green, you must pull the required container images.

Network latency and load on the registry can cause delays if the environment does not have sufficient
capacity. You can minimize impact to the running system by importing new image streams to trigger
new pod deployments to the new nodes.

Major releases of OpenShift Container Platform, and sometimes asynchronous errata updates,
introduce new image streams for builder images for users of Source-to-Image (S2I). Upon import, any
builds or deployments configured with image change triggers are automatically created.

Another benefit of triggering the builds is that it fetches the majority of the ancillary images to all node
hosts, such as the various builder images, the pod infrastructure image, and deployers. The green nodes
are then prepared for the expected load increase, and the remaining images more quickly migrated
during node evacuation.

When you are ready to continue with the upgrade process, follow these steps to warm the green nodes:

1. Set the green nodes to schedulable so that new pods are deployed to them:

$ oc adm manage-node --schedulable=true --selector=color=green

2. Set the blue nodes to unschedulable so that no new pods run on them:

CHAPTER 3. PERFORMING BLUE-GREEN CLUSTER UPGRADES

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#image-change-triggers

$ oc adm manage-node --schedulable=false --selector=color=blue

3. Update the node selectors for the registry and router deployment configurations to use the
node-role.kubernetes.io/infra=true label. This change starts new deployments that place the
registry and router pods on your new infrastructure nodes.

a. Edit the docker-registry deployment configuration:

$ oc edit -n default dc/docker-registry

b. Update the nodeSelector parameter to use the following value, with "true" in quotation
marks, and save your changes:

 nodeSelector:
 node-role.kubernetes.io/infra: "true"

c. Edit the router deployment configuration:

$ oc edit -n default dc/router

d. Update the nodeSelector parameter to use the following value, with "true" in quotation
marks, and save your changes:

 nodeSelector:
 node-role.kubernetes.io/infra: "true"

e. Verify that the docker-registry and router pods are running and in ready state on the new
infrastructure nodes:

$ oc get pods -n default -o wide

NAME READY STATUS RESTARTS AGE IP NODE
docker-registry-2-b7xbn 1/1 Running 0 18m 10.128.0.188 infra-
node3.example.com
router-2-mvq6p 1/1 Running 0 6m 192.168.122.184 infra-
node4.example.com

4. Update the default image streams and templates.

5. Import the latest images. This process can trigger a large number of builds, but the builds are
performed on the green nodes and, therefore, do not impact any traffic on the blue
deployment.

6. To monitor build progress across all namespaces (projects) in the cluster:

$ oc get events -w --all-namespaces

In large environments, builds rarely completely stop. However, you should see a large increase
and decrease caused by the administrative image import.

3.3. EVACUATING AND DECOMMISSIONING BLUE NODES

For larger deployments, it is possible to have other labels that help determine how evacuation can be

OpenShift Container Platform 3.11 Upgrading Clusters

26

For larger deployments, it is possible to have other labels that help determine how evacuation can be
coordinated. The most conservative approach for avoiding downtime is to evacuate one node host at a
time.

If services are composed of pods using zone anti-affinity, you can evacuate an entire zone at one time.
You must ensure that the storage volumes used are available in the new zone. Follow the directions in
your cloud provider’s documentation.

A node host evacuation is triggered whenever the node service is stopped. Node labeling is very
important and can cause issues if nodes are mislabeled or commands are run on nodes with generalized
labels. Exercise caution if master hosts are also labeled with color=blue.

When you are ready to continue with the upgrade process, follow these steps.

1. Evacuate and delete all blue nodes with the following commands:

$ oc adm manage-node --selector=color=blue --evacuate
$ oc delete node --selector=color=blue

2. After the blue node hosts no longer contain pods and have been removed from OpenShift
Container Platform, they are safe to power off. As a safety precaution, confirm that there are no
issues with the upgrade before you power off the hosts.

a. Unregister each old host:

subscription-manager clean

b. Back up any useful scripts or required files that are stored on the hosts.

c. After you are comfortable that the upgrade succeeded, remove these hosts.

CHAPTER 3. PERFORMING BLUE-GREEN CLUSTER UPGRADES

27

CHAPTER 4. UPDATING OPERATING SYSTEMS
Updating the operating system (OS) on a host, by either upgrading across major releases or updating
the system software for a minor release, can impact the OpenShift Container Platform software running
on those machines. In particular, these updates can affect the iptables rules or ovs flows that OpenShift
Container Platform requires to operate.

4.1. UPDATING THE OPERATING SYSTEM ON A HOST

To safely upgrade the OS on a host:

1. Drain the node in preparation for maintenance:

$ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

2. In order to protect sensitive packages that do not need to be updated, apply the exclude rules
to the host:

atomic-openshift-docker-excluder exclude
atomic-openshift-excluder exclude

A reboot ensures that the host is running the newest versions and means that the container
engine and OpenShift Container Platform processes have been restarted, which forces them to
check that all of the rules in other services are correct.

yum update
reboot

However, instead of rebooting a node host, you can restart the services that are affected or
preserve the iptables state. Both processes are described in the OpenShift Container Platform
iptables topic. The ovs flow rules do not need to be saved, but restarting the OpenShift
Container Platform node software fixes the flow rules.

3. Configure the host to be schedulable again:

$ oc adm uncordon <node_name>

4.1.1. Upgrading Nodes Running OpenShift Container Storage

If using OpenShift Container Storage, upgrade the OpenShift Container Platform nodes running
OpenShift Container Storage one at a time.

1. To begin, recall the project in which OpenShift Container Storage was deployed.

2. Confirm the node and pod selectors configured on the service’s daemonset.

$ oc get daemonset -n <project_name> -o wide

NOTE

Use -o wide to include the pod selector in the output.

These selectors are found under NODE-SELECTOR and SELECTOR, respectively. The

OpenShift Container Platform 3.11 Upgrading Clusters

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-iptables

These selectors are found under NODE-SELECTOR and SELECTOR, respectively. The
example commands below will use glusterfs=storage-host and glusterfs=storage-pod,
respectively.

3. Given the daemonset’s node selector, confirm which hosts have the label, and hence are
running pods from the daemonset:

$ oc get nodes --selector=glusterfs=storage-host

Chose a node which will have its operating system upgraded.

4. Remove the daemonset label from the node:

$ oc label node <node_name> glusterfs-

This will cause the OpenShift Container Storage pod to terminate on that node.

The node can now have its OS upgraded as described above.

1. To restart an OpenShift Container Storage pod on the node, relabel the node with the
daemonset label:

$ oc label node <node_name> glusterfs=storage-host

2. Wait for the OpenShift Container Storage pod to respawn and appear.

3. Given the daemonset’s pod selector, determine the name of the newly spawned pod by
searching for a pod running on the node whose OS you upgraded:

$ oc get pod -n <project_name> --selector=glusterfs=storage-pod -o wide

NOTE

Use -o wide to include which host the pod is running on in the output.

4. oc rsh into the gluster pod to check the volume heal:

$ oc rsh <pod_name>
$ for vol in `gluster volume list`; do gluster volume heal $vol info; done
$ exit

Ensure all of the volumes are healed and there are no outstanding tasks. The heal info
command lists all pending entries for a given volume’s heal process. A volume is considered
healed when Number of entries for that volume is 0. Use gluster volume status
<volume_name> for additional details about the volume. The Online state should be marked Y
for all bricks.

CHAPTER 4. UPDATING OPERATING SYSTEMS

29

CHAPTER 5. DOWNGRADING A CLUSTER
After an OpenShift Container Platform upgrade, you might need to downgrade your cluster to an earlier
version. You can downgrade from OpenShift Container Platform version 3.11 to version 3.10.

WARNING

In the initial release of OpenShift Container Platform version 3.11, downgrading does
not completely restore your cluster to version 3.10. Do not downgrade.

If you need to downgrade, contact Red Hat support so they can help you determine
the best course of action.

IMPORTANT

Downgrading a cluster to version 3.10 is supported for only RPM-based installations of
OpenShift Container Platform, and you must take your entire cluster offline to
downgrade.

5.1. VERIFYING BACKUPS

1. Ensure that a backup of the master-config.yaml file, scheduler.json file, and the etcd data
directory exist on your masters:

/etc/origin/master/master-config.yaml.<timestamp>
/etc/origin/master/master.env
/etc/origin/master/scheduler.json
/var/lib/etcd/openshift-backup-xxxx

You save these files during the upgrade process.

2. Locate the copies of the following files that you created when you prepared for an upgrade.
On node and master hosts:

/etc/origin/node/node-config.yaml

On etcd hosts, including masters that have etcd co-located on them:

/etc/etcd/etcd.conf

5.2. SHUTTING DOWN THE CLUSTER

1. On all master and node hosts, stop the master and node services by removing the pod
definition and rebooting the host:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/
reboot

OpenShift Container Platform 3.11 Upgrading Clusters

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#planning-installation-types

5.3. REMOVING RPMS AND STATIC PODS

1. On all masters, nodes, and etcd members (if using a dedicated etcd cluster), remove the
following packages:

yum remove atomic-openshift \
 atomic-openshift-excluder \
 atomic-openshift-hyperkube \
 atomic-openshift-node \
 atomic-openshift-docker-excluder \
 atomic-openshift-clients

2. Verify the packages were removed successfully:

rpm -qa | grep atomic-openshift

3. On control plane hosts (master and etcd hosts), move the static pod definitions:

mkdir /etc/origin/node/pods-backup
mv /etc/origin/node/pods/* /etc/origin/node/pods-backup/

4. Reboot each host:

reboot

5.4. REINSTALLING RPMS

1. Disable the OpenShift Container Platform 3.11 repositories, and re-enable the 3.10 repositories:

subscription-manager repos \
 --disable=rhel-7-server-ose-3.11-rpms \
 --enable=rhel-7-server-ose-3.10-rpms

2. On each master and node host, install the following packages:

yum install atomic-openshift \
 atomic-openshift-node \
 atomic-openshift-docker-excluder \
 atomic-openshift-excluder \
 atomic-openshift-clients \
 atomic-openshift-hyperkube

3. On each host, verify the packages were installed successfully:

rpm -qa | grep atomic-openshift

5.5. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK
ONLINE

After you finish your changes, bring OpenShift Container Platform back online.

CHAPTER 5. DOWNGRADING A CLUSTER

31

Procedure

1. On each OpenShift Container Platform master, restore your master and node configuration
from backup and enable and restart all relevant services:

cp ${MYBACKUPDIR}/etc/origin/node/pods/* /etc/origin/node/pods/
cp ${MYBACKUPDIR}/etc/origin/master/master.env /etc/origin/master/master.env
cp ${MYBACKUPDIR}/etc/origin/master/master-config.yaml.<timestamp>
/etc/origin/master/master-config.yaml
cp ${MYBACKUPDIR}/etc/origin/node/node-config.yaml.<timestamp>
/etc/origin/node/node-config.yaml
cp ${MYBACKUPDIR}/etc/origin/master/scheduler.json.<timestamp>
/etc/origin/master/scheduler.json
master-restart api
master-restart controllers

2. On each OpenShift Container Platform node, update the node configuration maps as needed,
and enable and restart the atomic-openshift-node service:

cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-config.yaml
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-node

5.6. VERIFYING THE DOWNGRADE

To verify the downgrade:

1. Check that all nodes are marked as Ready:

oc get nodes
NAME STATUS AGE
master.example.com Ready,SchedulingDisabled 165d
node1.example.com Ready 165d
node2.example.com Ready 165d

2. Verify the successful downgrade of the registry and router, if deployed:

a. Verify you are running the v3.10 versions of the docker-registry and router images:

oc get -n default dc/docker-registry -o json | grep \"image\"
 "image": "openshift3/ose-docker-registry:v3.10",
oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:v3.10",

b. Verify that docker-registry and router pods are running and in ready state:

oc get pods -n default

NAME READY STATUS RESTARTS AGE
docker-registry-2-b7xbn 1/1 Running 0 18m
router-2-mvq6p 1/1 Running 0 6m

3. Use the diagnostics tool on the master to look for common issues and provide suggestions:

OpenShift Container Platform 3.11 Upgrading Clusters

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#modifying-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-diagnostics-tool

oc adm diagnostics
...
[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

CHAPTER 5. DOWNGRADING A CLUSTER

33

	Table of Contents
	CHAPTER 1. UPGRADE METHODS AND STRATEGIES
	1.1. UPGRADE STRATEGIES
	1.1.1. In-place Upgrades
	1.1.2. Blue-green Deployments

	CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES
	2.1. UPGRADE WORKFLOW
	2.2. PREREQUISITES
	2.3. PREPARING FOR AN UPGRADE
	2.3.1. Updating policy definitions
	2.3.2. Upgrade phases
	2.3.3. Node upgrade parameters
	2.3.4. Ansible hooks for upgrades
	2.3.4.1. Limitations
	2.3.4.2. Using hooks
	2.3.4.3. Available upgrade hooks

	2.3.5. Special considerations for upgrading OpenShift Container Platform
	2.3.5.1. Special considerations for large-scale upgrades
	2.3.5.2. Special considerations when using gcePD

	2.4. UPGRADING TO THE LATEST OPENSHIFT CONTAINER PLATFORM RELEASE
	2.5. UPGRADING OPENSHIFT CONTAINER PLATFORM WHEN USING CONTAINERIZED GLUSTERFS
	2.6. UPGRADING OPTIONAL COMPONENTS
	2.6.1. Upgrading the EFK Logging Stack
	2.6.1.1. Determining if fields have dots in field names
	2.6.1.2. Upgrading if fields have dots in field names
	2.6.1.3. Upgrading if fields do not have dots

	2.6.2. Upgrading cluster metrics

	2.7. VERIFYING THE UPGRADE

	CHAPTER 3. PERFORMING BLUE-GREEN CLUSTER UPGRADES
	3.1. PREPARING FOR A BLUE-GREEN UPGRADE
	3.1.1. Sharing software entitlements
	3.1.2. Labeling blue nodes
	3.1.3. Creating and labeling green nodes
	3.1.4. Verifying green nodes

	3.2. PREPARING THE GREEN NODES
	3.3. EVACUATING AND DECOMMISSIONING BLUE NODES

	CHAPTER 4. UPDATING OPERATING SYSTEMS
	4.1. UPDATING THE OPERATING SYSTEM ON A HOST
	4.1.1. Upgrading Nodes Running OpenShift Container Storage

	CHAPTER 5. DOWNGRADING A CLUSTER
	5.1. VERIFYING BACKUPS
	5.2. SHUTTING DOWN THE CLUSTER
	5.3. REMOVING RPMS AND STATIC PODS
	5.4. REINSTALLING RPMS
	5.5. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE
	Procedure

	5.6. VERIFYING THE DOWNGRADE

