
OpenShift Container Platform 3.11

Creating Images

OpenShift Container Platform 3.11 Image Creation Guide

Last Updated: 2020-04-07

OpenShift Container Platform 3.11 Creating Images

OpenShift Container Platform 3.11 Image Creation Guide

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

These topics contain the best practices on writing and testing Docker images that can be used on
OpenShift Container Platform 3.11.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. GUIDELINES
2.1. OVERVIEW
2.2. GENERAL CONTAINER IMAGE GUIDELINES

Reuse Images
Maintain Compatibility Within Tags
Avoid Multiple Processes
Use exec in Wrapper Scripts
Clean Temporary Files
Place Instructions in the Proper Order
Mark Important Ports
Set Environment Variables
Avoid Default Passwords
Avoid SSHD
Use Volumes for Persistent Data
External Guidelines

2.3. OPENSHIFT CONTAINER PLATFORM-SPECIFIC GUIDELINES
Enable Images for Source-To-Image (S2I)
Support Arbitrary User IDs
Use Services for Inter-image Communication
Provide Common Libraries
Use Environment Variables for Configuration
Set Image Metadata
Clustering
Logging
Liveness and Readiness Probes
Templates

2.4. EXTERNAL REFERENCES

CHAPTER 3. IMAGE METADATA
3.1. OVERVIEW
3.2. DEFINING IMAGE METADATA

CHAPTER 4. S2I REQUIREMENTS
4.1. OVERVIEW
4.2. BUILD PROCESS
4.3. S2I SCRIPTS
4.4. USING IMAGES WITH ONBUILD INSTRUCTIONS
4.5. EXTERNAL REFERENCES

CHAPTER 5. TESTING S2I IMAGES
5.1. OVERVIEW
5.2. TESTING REQUIREMENTS
5.3. GENERATING SCRIPTS AND TOOLS
5.4. TESTING LOCALLY
5.5. BASIC TESTING WORKFLOW
5.6. USING OPENSHIFT CONTAINER PLATFORM FOR BUILDING THE IMAGE

CHAPTER 6. CUSTOM BUILDER
6.1. OVERVIEW
6.2. CUSTOM BUILDER IMAGE

4

5
5
5
5
5
5
5
6
6
7
7
7
7
7
7
8
8
8
9

10
10
10
11
11
11
11
11

12
12
12

14
14
14
15
18
18

20
20
20
20
20
21
22

23
23
23

Table of Contents

1

6.3. CUSTOM BUILDER WORKFLOW 24

OpenShift Container Platform 3.11 Creating Images

2

Table of Contents

3

CHAPTER 1. OVERVIEW
This guide provides best practices on writing and testing container images that can be used on
OpenShift Container Platform. Once you have created an image, you can push it to the internal registry.

OpenShift Container Platform 3.11 Creating Images

4

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-registry-overview

CHAPTER 2. GUIDELINES

2.1. OVERVIEW

When creating container images to run on OpenShift Container Platform there are a number of best
practices to consider as an image author to ensure a good experience for consumers of those images.
Because images are intended to be immutable and used as-is, the following guidelines help ensure that
your images are highly consumable and easy to use on OpenShift Container Platform.

2.2. GENERAL CONTAINER IMAGE GUIDELINES

The following guidelines apply when creating a container image in general, and are independent of
whether the images are used on OpenShift Container Platform.

Reuse Images
Wherever possible, we recommend that you base your image on an appropriate upstream image using
the FROM statement. This ensures your image can easily pick up security fixes from an upstream image
when it is updated, rather than you having to update your dependencies directly.

In addition, use tags in the FROM instruction (for example, rhel:rhel7) to make it clear to users exactly
which version of an image your image is based on. Using a tag other than latest ensures your image is
not subjected to breaking changes that might go into the latest version of an upstream image.

Maintain Compatibility Within Tags
When tagging your own images, we recommend that you try to maintain backwards compatibility within a
tag. For example, if you provide an image named foo and it currently includes version 1.0, you might
provide a tag of foo:v1. When you update the image, as long as it continues to be compatible with the
original image, you can continue to tag the new image foo:v1, and downstream consumers of this tag will
be able to get updates without being broken.

If you later release an incompatible update, then you should switch to a new tag, for example foo:v2. This
allows downstream consumers to move up to the new version at will, but not be inadvertently broken by
the new incompatible image. Any downstream consumer using foo:latest takes on the risk of any
incompatible changes being introduced.

Avoid Multiple Processes
We recommend that you do not start multiple services, such as a database and SSHD, inside one
container. This is not necessary because containers are lightweight and can be easily linked together for
orchestrating multiple processes. OpenShift Container Platform allows you to easily colocate and co-
manage related images by grouping them into a single pod.

This collocation ensures the containers share a network namespace and storage for communication.
Updates are also less disruptive as each image can be updated less frequently and independently. Signal
handling flows are also clearer with a single process as you do not need to manage routing signals to
spawned processes.

Use exec in Wrapper Scripts
See the "Always exec in Wrapper Scripts" section of the Project Atomic documentation for more
information.

Also note that your process runs as PID 1 when running in a container. This means that if your main
process terminates, the entire container is stopped, killing any child processes you may have launched
from your PID 1 process.

See the "Docker and the PID 1 zombie reaping problem" blog article for additional implications. Also see

CHAPTER 2. GUIDELINES

5

http://www.projectatomic.io/docs/docker-image-author-guidance

See the "Docker and the PID 1 zombie reaping problem" blog article for additional implications. Also see
the "Demystifying the init system (PID 1)" blog article for a deep dive on PID 1 and init systems.

Clean Temporary Files
All temporary files you create during the build process should be removed. This also includes any files
added with the ADD command. For example, we strongly recommended that you run the yum clean
command after performing yum install operations.

You can prevent the yum cache from ending up in an image layer by creating your RUN statement as
follows:

RUN yum -y install mypackage && yum -y install myotherpackage && yum clean all -y

Note that if you instead write:

RUN yum -y install mypackage
RUN yum -y install myotherpackage && yum clean all -y

Then the first yum invocation leaves extra files in that layer, and these files cannot be removed when
the yum clean operation is run later. The extra files are not visible in the final image, but they are
present in the underlying layers.

The current container build process does not allow a command run in a later layer to shrink the space
used by the image when something was removed in an earlier layer. However, this may change in the
future. This means that if you perform an rm command in a later layer, although the files are hidden it
does not reduce the overall size of the image to be downloaded. Therefore, as with the yum clean
example, it is best to remove files in the same command that created them, where possible, so they do
not end up written to a layer.

In addition, performing multiple commands in a single RUN statement reduces the number of layers in
your image, which improves download and extraction time.

Place Instructions in the Proper Order
The container builder reads the Dockerfile and runs the instructions from top to bottom. Every
instruction that is successfully executed creates a layer which can be reused the next time this or
another image is built. It is very important to place instructions that will rarely change at the top of your
Dockerfile. Doing so ensures the next builds of the same image are very fast because the cache is not
invalidated by upper layer changes.

For example, if you are working on a Dockerfile that contains an ADD command to install a file you are
iterating on, and a RUN command to yum install a package, it is best to put the ADD command last:

FROM foo
RUN yum -y install mypackage && yum clean all -y
ADD myfile /test/myfile

This way each time you edit myfile and rerun podman build or docker build, the system reuses the
cached layer for the yum command and only generates the new layer for the ADD operation.

If instead you wrote the Dockerfile as:

FROM foo
ADD myfile /test/myfile
RUN yum -y install mypackage && yum clean all -y

OpenShift Container Platform 3.11 Creating Images

6

http://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://felipec.wordpress.com/2013/11/04/init/

Then each time you changed myfile and reran podman build or docker build, the ADD operation
would invalidate the RUN layer cache, so the yum operation would need to be rerun as well.

Mark Important Ports
See the "Always EXPOSE Important Ports" section of the Project Atomic documentation for more
information.

Set Environment Variables
It is good practice to set environment variables with the ENV instruction. One example is to set the
version of your project. This makes it easy for people to find the version without looking at the
Dockerfile. Another example is advertising a path on the system that could be used by another process,
such as JAVA_HOME.

Avoid Default Passwords
It is best to avoid setting default passwords. Many people will extend the image and forget to remove or
change the default password. This can lead to security issues if a user in production is assigned a well-
known password. Passwords should be configurable using an environment variable instead. See the
Using Environment Variables for Configuration topic for more information.

If you do choose to set a default password, ensure that an appropriate warning message is displayed
when the container is started. The message should inform the user of the value of the default password
and explain how to change it, such as what environment variable to set.

Avoid SSHD
It is best to avoid running SSHD in your image. You can use the podman exec or docker exec
command to access containers that are running on the local host. Alternatively, you can use the oc exec
command or the oc rsh command to access containers that are running on the OpenShift Container
Platform cluster. Installing and running SSHD in your image opens up additional vectors for attack and
requirements for security patching.

Use Volumes for Persistent Data
Images should use a Docker volume for persistent data. This way OpenShift Container Platform mounts
the network storage to the node running the container, and if the container moves to a new node the
storage is reattached to that node. By using the volume for all persistent storage needs, the content is
preserved even if the container is restarted or moved. If your image writes data to arbitrary locations
within the container, that content might not be preserved.

All data that needs to be preserved even after the container is destroyed must be written to a volume.
Container engines support a readonly flag for containers which can be used to strictly enforce good
practices about not writing data to ephemeral storage in a container. Designing your image around that
capability now will make it easier to take advantage of it later.

Furthermore, explicitly defining volumes in your Dockerfile makes it easy for consumers of the image to
understand what volumes they need to define when running your image.

See the Kubernetes documentation for more information on how volumes are used in OpenShift
Container Platform.

NOTE

Even with persistent volumes, each instance of your image has its own volume, and the
filesystem is not shared between instances. This means the volume cannot be used to
share state in a cluster.

External Guidelines
See the following references for other guidelines:

CHAPTER 2. GUIDELINES

7

http://www.projectatomic.io/docs/docker-image-author-guidance
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-executing-remote-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-ssh-environment
https://docs.docker.com/reference/builder/#volume
https://kubernetes.io/docs/concepts/storage/volumes/

Docker documentation - Best practices for writing Dockerfiles

Project Atomic documentation - Guidance for Container Image Authors

2.3. OPENSHIFT CONTAINER PLATFORM-SPECIFIC GUIDELINES

The following are guidelines that apply when creating container images specifically for use on OpenShift
Container Platform.

Enable Images for Source-To-Image (S2I)
For images that are intended to run application code provided by a third party, such as a Ruby image
designed to run Ruby code provided by a developer, you can enable your image to work with the
Source-to-Image (S2I) build tool. S2I is a framework which makes it easy to write images that take
application source code as an input and produce a new image that runs the assembled application as
output.

For example, this Python image defines S2I scripts for building various versions of Python applications.

For more details about how to write S2I scripts for your image, see the S2I Requirements topic.

Support Arbitrary User IDs
By default, OpenShift Container Platform runs containers using an arbitrarily assigned user ID. This
provides additional security against processes escaping the container due to a container engine
vulnerability and thereby achieving escalated permissions on the host node.

For an image to support running as an arbitrary user, directories and files that may be written to by
processes in the image should be owned by the root group and be read/writable by that group. Files to
be executed should also have group execute permissions.

Adding the following to your Dockerfile sets the directory and file permissions to allow users in the root
group to access them in the built image:

RUN chgrp -R 0 /some/directory && \
 chmod -R g+rwX /some/directory

Because the container user is always a member of the root group, the container user can read and write
these files.

WARNING

Care must be taken when altering the directories and file permissions of sensitive
areas of a container (no different than to a normal system).

If applied to sensitive areas, such as /etc/passwd, this can allow the modification of
such files by unintended users potentially exposing the container or host. CRI-O
supports the insertion of random user IDs into the container’s /etc/passwd, so
changing it’s permissions should never be required.

In addition, the processes running in the container must not listen on privileged ports (ports below
1024), since they are not running as a privileged user.



OpenShift Container Platform 3.11 Creating Images

8

https://docs.docker.com/articles/dockerfile_best-practices/
http://www.projectatomic.io/docs/docker-image-author-guidance/
https://github.com/openshift/source-to-image
https://github.com/sclorg/s2i-python-container

Because the user ID of the container is generated dynamically, it will not have an associated entry in
/etc/passwd. This can cause problems for applications that expect to be able to look up their user ID.
One way to address this problem is to use nss wrapper and dynamically create a passwd file with the
container’s user ID as part of the image’s start script:

export USER_ID=$(id -u)
export GROUP_ID=$(id -g)
envsubst < ${HOME}/passwd.template > /tmp/passwd
export LD_PRELOAD=/usr/lib64/libnss_wrapper.so
export NSS_WRAPPER_PASSWD=/tmp/passwd
export NSS_WRAPPER_GROUP=/etc/group

Where passwd.template contains:

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
postgres:x:${USER_ID}:${GROUP_ID}:PostgreSQL Server:${HOME}:/bin/bash

Additionally, you must install the nss_wrapper and gettext packages in your image for this to work. The
latter provides the envsubst command. For example you can add this line to your Dockerfile for yum-
based images:

RUN yum -y install nss_wrapper gettext

Lastly, the final USER declaration in the Dockerfile should specify the user ID (numeric value) and not
the user name. This allows OpenShift Container Platform to validate the authority the image is
attempting to run with and prevent running images that are trying to run as root, because running
containers as a privileged user exposes potential security holes . If the image does not specify a USER, it
inherits the USER from the parent image.

IMPORTANT

If your S2I image does not include a USER declaration with a numeric user, your builds will
fail by default. In order to allow images that use either named users or the root (0) user to
build in OpenShift Container Platform, you can add the project’s builder service account
(system:serviceaccount:<your-project>:builder) to the privileged security context
constraint (SCC). Alternatively, you can allow all images to run as any user .

Use Services for Inter-image Communication
For cases where your image needs to communicate with a service provided by another image, such as a
web front end image that needs to access a database image to store and retrieve data, your image
should consume an OpenShift Container Platform service. Services provide a static endpoint for access

CHAPTER 2. GUIDELINES

9

https://cwrap.org/nss_wrapper.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#security-warning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#grant-access-to-the-privileged-scc
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#enable-images-to-run-with-user-in-the-dockerfile
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#services

which does not change as containers are stopped, started, or moved. In addition, services provide load
balancing for requests.

Provide Common Libraries
For images that are intended to run application code provided by a third party, ensure that your image
contains commonly used libraries for your platform. In particular, provide database drivers for common
databases used with your platform. For example, provide JDBC drivers for MySQL and PostgreSQL if
you are creating a Java framework image. Doing so prevents the need for common dependencies to be
downloaded during application assembly time, speeding up application image builds. It also simplifies the
work required by application developers to ensure all of their dependencies are met.

Use Environment Variables for Configuration
Users of your image should be able to configure it without having to create a downstream image based
on your image. This means that the runtime configuration should be handled using environment
variables. For a simple configuration, the running process can consume the environment variables
directly. For a more complicated configuration or for runtimes which do not support this, configure the
runtime by defining a template configuration file that is processed during startup. During this processing,
values supplied using environment variables can be substituted into the configuration file or used to
make decisions about what options to set in the configuration file.

It is also possible and recommended to pass secrets such as certificates and keys into the container
using environment variables. This ensures that the secret values do not end up committed in an image
and leaked into a container image registry.

Providing environment variables allows consumers of your image to customize behavior, such as
database settings, passwords, and performance tuning, without having to introduce a new layer on top
of your image. Instead, they can simply define environment variable values when defining a pod and
change those settings without rebuilding the image.

For extremely complex scenarios, configuration can also be supplied using volumes that would be
mounted into the container at runtime. However, if you elect to do it this way you must ensure that your
image provides clear error messages on startup when the necessary volume or configuration is not
present.

This topic is related to the Using Services for Inter-image Communication topic in that configuration like
datasources should be defined in terms of environment variables that provide the service endpoint
information. This allows an application to dynamically consume a datasource service that is defined in
the OpenShift Container Platform environment without modifying the application image.

In addition, tuning should be done by inspecting the cgroups settings for the container. This allows the
image to tune itself to the available memory, CPU, and other resources. For example, Java-based
images should tune their heap based on the cgroup maximum memory parameter to ensure they do not
exceed the limits and get an out-of-memory error.

See the following references for more on how to manage cgroup quotas in containers:

Blog article - Resource management in Docker

Docker documentation - Runtime Metrics

Blog article - Memory inside Linux containers

Set Image Metadata
Defining image metadata helps OpenShift Container Platform better consume your container images,
allowing OpenShift Container Platform to create a better experience for developers using your image.
For example, you can add metadata to provide helpful descriptions of your image, or offer suggestions
on other images that may also be needed.

OpenShift Container Platform 3.11 Creating Images

10

https://goldmann.pl/blog/2014/09/11/resource-management-in-docker
https://docs.docker.com/engine/admin/runmetrics/
http://fabiokung.com/2014/03/13/memory-inside-linux-containers

See the Image Metadata topic for more information on supported metadata and how to define them.

Clustering
You must fully understand what it means to run multiple instances of your image. In the simplest case,
the load balancing function of a service handles routing traffic to all instances of your image. However,
many frameworks need to share information in order to perform leader election or failover state; for
example, in session replication.

Consider how your instances accomplish this communication when running in OpenShift Container
Platform. Although pods can communicate directly with each other, their IP addresses change anytime
the pod starts, stops, or is moved. Therefore, it is important for your clustering scheme to be dynamic.

Logging
It is best to send all logging to standard out. OpenShift Container Platform collects standard out from
containers and sends it to the centralized logging service where it can be viewed. If you need to separate
log content, prefix the output with an appropriate keyword, which makes it possible to filter the
messages.

If your image logs to a file, users must use manual operations to enter the running container and retrieve
or view the log file.

Liveness and Readiness Probes
Document example liveness and readiness probes that can be used with your image. These probes will
allow users to deploy your image with confidence that traffic will not be routed to the container until it is
prepared to handle it, and that the container will be restarted if the process gets into an unhealthy state.

Templates
Consider providing an example template with your image. A template will give users an easy way to
quickly get your image deployed with a working configuration. Your template should include the liveness
and readiness probes you documented with the image, for completeness.

2.4. EXTERNAL REFERENCES

Docker basics

Dockerfile reference

Project Atomic Guidance for Container Image Authors

CHAPTER 2. GUIDELINES

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#container-health-checks-using-probes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#container-health-checks-using-probes
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/reference/builder/
http://www.projectatomic.io/docs/docker-image-author-guidance

CHAPTER 3. IMAGE METADATA

3.1. OVERVIEW

Defining image metadata helps OpenShift Container Platform better consume your container images,
allowing OpenShift Container Platform to create a better experience for developers using your image.
For example, you can add metadata to provide helpful descriptions of your image, or offer suggestions
on other images that may also be needed.

This topic only defines the metadata needed by the current set of use cases. Additional metadata or use
cases may be added in the future.

3.2. DEFINING IMAGE METADATA

You can use the LABEL instruction in a Dockerfile to define image metadata. Labels are similar to
environment variables in that they are key value pairs attached to an image or a container. Labels are
different from environment variable in that they are not visible to the running application and they can
also be used for fast look-up of images and containers.

To include spaces within a label value, enclose the value in quotes ("). Do not include spaces between
comma-separated values. See the Docker documentation for more information on the LABEL
instruction.

The label names should typically be namespaced. The namespace should be set accordingly to reflect
the project that is going to pick up the labels and use them. For OpenShift Container Platform the
namespace should be set to io.openshift and for Kubernetes the namespace is io.k8s.

See the Docker custom metadata documentation for details about the format.

Table 3.1. Supported Metadata

Variable Description

io.openshift.tags This label contains a list of tags represented as list of comma-separated string
values. The tags are the way to categorize the container images into broad
areas of functionality. Tags help UI and generation tools to suggest relevant
container images during the application creation process.

LABEL io.openshift.tags mongodb,mongodb24,nosql

io.openshift.wants Specifies a list of tags that the generation tools and the UI might use to provide
relevant suggestions if you don’t have the container images with given tags
already. For example, if the container image wants mysql and redis and you
don’t have the container image with redis tag, then UI might suggest you to
add this image into your deployment.

LABEL io.openshift.wants mongodb,redis

OpenShift Container Platform 3.11 Creating Images

12

https://docs.docker.com/engine/reference/builder/#label
https://docs.docker.com/engine/userguide/labels-custom-metadata

io.k8s.description This label can be used to give the container image consumers more detailed
information about the service or functionality this image provides. The UI can
then use this description together with the container image name to provide
more human friendly information to end users.

LABEL io.k8s.description "The MySQL 5.5 Server with master-slave
replication support"

io.openshift.non-
scalable

An image might use this variable to suggest that it does not support scaling.
The UI will then communicate this to consumers of that image. Being not-
scalable basically means that the value of replicas should initially not be set
higher than 1.

LABEL io.openshift.non-scalable true

io.openshift.min-
memory and
io.openshift.min-cpu

This label suggests how much resources the container image might need in
order to work properly. The UI might warn the user that deploying this container
image may exceed their user quota. The values must be compatible with
Kubernetes quantity.

LABEL io.openshift.min-memory 8Gi
LABEL io.openshift.min-cpu 4

Variable Description

CHAPTER 3. IMAGE METADATA

13

CHAPTER 4. S2I REQUIREMENTS

4.1. OVERVIEW

Source-to-Image (S2I) is a framework that makes it easy to write images that take application source
code as an input and produce a new image that runs the assembled application as output.

The main advantage of using S2I for building reproducible container images is the ease of use for
developers. As a builder image author, you must understand two basic concepts in order for your images
to provide the best possible S2I performance: the build process and S2I scripts.

4.2. BUILD PROCESS

The build process consists of the following three fundamental elements, which are combined into a final
container image:

sources

S2I scripts

builder image

During the build process, S2I must place sources and scripts inside the builder image. To do so, S2I
creates a tar file that contains the sources and scripts, then streams that file into the builder image.
Before executing the assemble script, S2I untars that file and places its contents into the location
specified by the io.openshift.s2i.destination label from the builder image, with the default location
being the /tmp directory.

For this process to happen, your image must supply the tar archiving utility (the tar command available
in $PATH) and the command line interpreter (the /bin/sh command); this allows your image to use the
fastest possible build path. If the tar or /bin/sh command is not available, the s2i build process is forced
to automatically perform an additional container build to put both the sources and the scripts inside the
image, and only then run the usual build.

See the following diagram for the basic S2I build workflow:

Figure 4.1. Build Workflow

OpenShift Container Platform 3.11 Creating Images

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#source-build

Run build’s responsibility is to untar the sources, scripts and artifacts (if such exist) and invoke
the assemble script. If this is the second run (after catching tar or /bin/sh not found error) it is
responsible only for invoking assemble script, since both scripts and sources are already there.

4.3. S2I SCRIPTS

You can write S2I scripts in any programming language, as long as the scripts are executable inside the
builder image. S2I supports multiple options providing assemble/run/save-artifacts scripts. All of these
locations are checked on each build in the following order:

CHAPTER 4. S2I REQUIREMENTS

15

1. A script specified in the BuildConfig

2. A script found in the application source .s2i/bin directory

3. A script found at the default image URL (io.openshift.s2i.scripts-url label)

Both the io.openshift.s2i.scripts-url label specified in the image and the script specified in a
BuildConfig can take one of the following forms:

image:///path_to_scripts_dir - absolute path inside the image to a directory where the S2I
scripts are located

file:///path_to_scripts_dir - relative or absolute path to a directory on the host where the S2I
scripts are located

http(s)://path_to_scripts_dir - URL to a directory where the S2I scripts are located

Table 4.1. S2I Scripts

Script Description

assemble (required) The assemble script builds the application artifacts from a source and places
them into appropriate directories inside the image. The workflow for this script
is:

1. Restore build artifacts. If you want to support incremental builds,
make sure to define save-artifacts as well (optional).

2. Place the application source in the desired location.

3. Build the application artifacts.

4. Install the artifacts into locations appropriate for them to run.

run (required) The run script executes your application.

save-artifacts (optional) The save-artifacts script gathers all dependencies that can speed up the build
processes that follow. For example:

For Ruby, gems installed by Bundler.

For Java, .m2 contents.

These dependencies are gathered into a tar file and streamed to the standard
output.

usage (optional) The usage script allows you to inform the user how to properly use your image.

OpenShift Container Platform 3.11 Creating Images

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#override-builder-image-scripts

test/run (optional) The test/run script allows you to create a simple process to check if the image
is working correctly. The proposed flow of that process is:

1. Build the image.

2. Run the image to verify the usage script.

3. Run s2i build to verify the assemble script.

4. Run s2i build again to verify the save-artifacts and assemble scripts
save and restore artifacts functionality. (optional)

5. Run the image to verify the test application is working.

See the Testing S2I Images topic for more information.

NOTE

The suggested location to put the test application built by your
test/run script is the test/test-app directory in your image
repository. See the S2I documentation for more information.

Script Description

Example S2I Scripts

NOTE

The following examples are written in Bash and it is assumed all tar contents are unpacked
into the /tmp/s2i directory.

Example 4.1. assemble script:

#!/bin/bash

restore build artifacts
if ["$(ls /tmp/s2i/artifacts/ 2>/dev/null)"]; then
 mv /tmp/s2i/artifacts/* $HOME/.
fi

move the application source
mv /tmp/s2i/src $HOME/src

build application artifacts
pushd ${HOME}
make all

install the artifacts
make install
popd

Example 4.2. run script:

CHAPTER 4. S2I REQUIREMENTS

17

https://github.com/openshift/source-to-image/blob/master/docs/cli.md#sti-create

#!/bin/bash

run the application
/opt/application/run.sh

Example 4.3. save-artifacts script:

#!/bin/bash

pushd ${HOME}
if [-d deps]; then
 # all deps contents to tar stream
 tar cf - deps
fi
popd

Example 4.4. usage script:

#!/bin/bash

inform the user how to use the image
cat <<EOF
This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image
EOF

4.4. USING IMAGES WITH ONBUILD INSTRUCTIONS

The ONBUILD instructions can be found in many official container images. For example:

Ruby

Node.js

Python

See the Docker documentation for more information on ONBUILD.

Upon startup, S2I detects whether the builder image contains sh and tar binaries which are necessary
for the S2I process to inject build inputs. If the builder image does not contain these prerequisites, it will
attempt to instead perform a container build to layer the inputs. If the builder image includes ONBUILD
instructions, S2I will instead fail the build because the ONBUILD instructions would be executed during
the layering process, and that equates to performing a generic container build which is less secure than
an S2I build and requires explicit permissions.

Therefore you should ensure that your S2I builder image either does not contain ONBUILD instructions,
or ensure that it has the necessary sh and tar binary prerequisites.

4.5. EXTERNAL REFERENCES

OpenShift Container Platform 3.11 Creating Images

18

https://docs.docker.com/engine/reference/builder/#onbuild

S2I Image Creation Tutorial

S2I Project Repository

CHAPTER 4. S2I REQUIREMENTS

19

https://blog.openshift.com/create-s2i-builder-image/
https://github.com/openshift/source-to-image

CHAPTER 5. TESTING S2I IMAGES

5.1. OVERVIEW

As an Source-to-Image (S2I) builder image author, you can test your S2I image locally and use the
OpenShift Container Platform build system for automated testing and continuous integration.

NOTE

Check the S2I Requirements topic to learn more about the S2I architecture before
proceeding.

As described in the S2I Requirements topic, S2I requires the assemble and run scripts to be present in
order to successfully run the S2I build. Providing the save-artifacts script reuses the build artifacts, and
providing the usage script ensures that usage information is printed to console when someone runs the
container image outside of the S2I.

The goal of testing an S2I image is to make sure that all of these described commands work properly,
even if the base container image has changed or the tooling used by the commands was updated.

5.2. TESTING REQUIREMENTS

The standard location for the test script is test/run. This script is invoked by the OpenShift Container
Platform S2I image builder and it could be a simple Bash script or a static Go binary.

The test/run script performs the S2I build, so you must have the S2I binary available in your $PATH. If
required, follow the installation instructions in the S2I README.

S2I combines the application source code and builder image, so in order to test it you need a sample
application source to verify that the source successfully transforms into a runnable container image. The
sample application should be simple, but it should exercise the crucial steps of assemble and run
scripts.

5.3. GENERATING SCRIPTS AND TOOLS

The S2I tooling comes with powerful generation tools to speed up the process of creating a new S2I
image. The s2i create command produces all the necessary S2I scripts and testing tools along with the
Makefile:

$ s2i create _<image name>_ _<destination directory>_

The generated test/run script must be adjusted to be useful, but it provides a good starting point to
begin developing.

NOTE

The test/run script produced by the s2i create command requires that the sample
application sources are inside the test/test-app directory.

5.4. TESTING LOCALLY

The easiest way to run the S2I image tests locally is to use the generated Makefile.

OpenShift Container Platform 3.11 Creating Images

20

https://github.com/openshift/source-to-image/blob/master/README.md#installation

If you did not use the s2i create command, you can copy the following Makefile template and replace
the IMAGE_NAME parameter with your image name.

Sample Makefile

IMAGE_NAME = openshift/ruby-20-centos7
CONTAINER_ENGINE := $(shell command -v podman 2> /dev/null | echo docker)

build:
 ${CONTAINER_ENGINE} build -t $(IMAGE_NAME) .

.PHONY: test
test:
 ${CONTAINER_ENGINE} build -t $(IMAGE_NAME)-candidate .
 IMAGE_NAME=$(IMAGE_NAME)-candidate test/run

5.5. BASIC TESTING WORKFLOW

The test script assumes you have already built the image you want to test. If required, first build the S2I
image. Run one of the following commands:

If you use Podman, run the following command:

$ podman build -t _<BUILDER_IMAGE_NAME>_

If you use Docker, run the following command:

$ docker build -t _<BUILDER_IMAGE_NAME>_

The following steps describe the default workflow to test S2I image builders:

1. Verify the usage script is working:

If you use Podman, run the following command:

$ podman run _<BUILDER_IMAGE_NAME>_ .

If you use Docker, run the following command:

$ docker run _<BUILDER_IMAGE_NAME>_ .

2. Build the image:

$ s2i build file:///path-to-sample-app _<BUILDER_IMAGE_NAME>_
_<OUTPUT_APPLICATION_IMAGE_NAME>_

3. Optionally, if you support save-artifacts, run step 2 once again to verify that saving and
restoring artifacts works properly.

4. Run the container:

If you use Podman, run the following command:

CHAPTER 5. TESTING S2I IMAGES

21

$ podman run _<OUTPUT_APPLICATION_IMAGE_NAME>_

If you use Docker, run the following command:

$ docker run _<OUTPUT_APPLICATION_IMAGE_NAME>_

5. Verify the container is running and the application is responding.

Running these steps is generally enough to tell if the builder image is working as expected.

5.6. USING OPENSHIFT CONTAINER PLATFORM FOR BUILDING THE
IMAGE

Once you have a Dockerfile and the other artifacts that make up your new S2I builder image, you can
put them in a git repository and use OpenShift Container Platform to build and push the image. Simply
define a Docker build that points to your repository.

If your OpenShift Container Platform instance is hosted on a public IP address, the build can be
triggered each time you push into your S2I builder image GitHub repository. See webhook triggers for
more information.

You can also use the ImageChangeTrigger to trigger a rebuild of your applications that are based on
the S2I builder image you updated. See image change triggers for more information.

OpenShift Container Platform 3.11 Creating Images

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#webhook-triggers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#image-change-triggers

CHAPTER 6. CUSTOM BUILDER

6.1. OVERVIEW

By allowing you to define a specific builder image responsible for the entire build process, OpenShift
Container Platform’s Custom build strategy was designed to fill a gap created with the increased
popularity of creating container images. When there is a requirement for a build to still produce
individual artifacts (packages, JARs, WARs, installable ZIPs, and base images, for example), a Custom
builder image using the Custom build strategy is the perfect match to fill that gap.

A Custom builder image is a plain container image embedded with build process logic, for example for
building RPMs or base container images. The openshift/origin-custom-docker-builder image is
available on the Docker Hub as an example implementation of a Custom builder image.

Additionally, the Custom builder allows implementing any extended build process, for example a CI/CD
flow that runs unit or integration tests.

To fully leverage the benefits of the Custom build strategy, you must understand how to create a
Custom builder image that will be capable of building desired objects.

6.2. CUSTOM BUILDER IMAGE

Upon invocation, a custom builder image will receive the following environment variables with the
information needed to proceed with the build:

Table 6.1. Custom Builder Environment Variables

Variable Name Description

BUILD The entire serialized JSON of the Build object definition. If you need to use a
specific API version for serialization, you can set the buildAPIVersion parameter
in the custom strategy specification of the build configuration.

SOURCE_REPOSITO
RY

The URL of a Git repository with source to be built.

SOURCE_URI Uses the same value as SOURCE_REPOSITORY. Either can be used.

SOURCE_CONTEXT
_DIR

Specifies the subdirectory of the Git repository to be used when building. Only
present if defined.

SOURCE_REF The Git reference to be built.

ORIGIN_VERSION The version of the OpenShift Container Platform master that created this build
object.

OUTPUT_REGISTRY The container image registry to push the image to.

OUTPUT_IMAGE The container image tag name for the image being built.

CHAPTER 6. CUSTOM BUILDER

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#custom-strategy-options
https://hub.docker.com/r/openshift/origin-custom-docker-builder/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#custom-strategy-options

PUSH_DOCKERCFG
_PATH

The path to the container registry credentials for running a podman push or
docker push operation.

DOCKER_SOCKET Specifies the path to the Docker socket, if exposing the Docker socket was
enabled in the build configuration (if exposeDockerSocket was set to true.)

Variable Name Description

6.3. CUSTOM BUILDER WORKFLOW

Although Custom builder image authors have great flexibility in defining the build process, your builder
image must still adhere to the following required steps necessary for seamlessly running a build inside of
OpenShift Container Platform:

1. The Build object definition contains all the necessary information about input parameters for
the build.

2. Run the build process.

3. If your build produces an image, push it to the build’s output location if it is defined. Other
output locations can be passed with environment variables.

OpenShift Container Platform 3.11 Creating Images

24

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. GUIDELINES
	2.1. OVERVIEW
	2.2. GENERAL CONTAINER IMAGE GUIDELINES
	Reuse Images
	Maintain Compatibility Within Tags
	Avoid Multiple Processes
	Use exec in Wrapper Scripts
	Clean Temporary Files
	Place Instructions in the Proper Order
	Mark Important Ports
	Set Environment Variables
	Avoid Default Passwords
	Avoid SSHD
	Use Volumes for Persistent Data
	External Guidelines

	2.3. OPENSHIFT CONTAINER PLATFORM-SPECIFIC GUIDELINES
	Enable Images for Source-To-Image (S2I)
	Support Arbitrary User IDs
	Use Services for Inter-image Communication
	Provide Common Libraries
	Use Environment Variables for Configuration
	Set Image Metadata
	Clustering
	Logging
	Liveness and Readiness Probes
	Templates

	2.4. EXTERNAL REFERENCES

	CHAPTER 3. IMAGE METADATA
	3.1. OVERVIEW
	3.2. DEFINING IMAGE METADATA

	CHAPTER 4. S2I REQUIREMENTS
	4.1. OVERVIEW
	4.2. BUILD PROCESS
	4.3. S2I SCRIPTS
	4.4. USING IMAGES WITH ONBUILD INSTRUCTIONS
	4.5. EXTERNAL REFERENCES

	CHAPTER 5. TESTING S2I IMAGES
	5.1. OVERVIEW
	5.2. TESTING REQUIREMENTS
	5.3. GENERATING SCRIPTS AND TOOLS
	5.4. TESTING LOCALLY
	5.5. BASIC TESTING WORKFLOW
	5.6. USING OPENSHIFT CONTAINER PLATFORM FOR BUILDING THE IMAGE

	CHAPTER 6. CUSTOM BUILDER
	6.1. OVERVIEW
	6.2. CUSTOM BUILDER IMAGE
	6.3. CUSTOM BUILDER WORKFLOW

