& RedHat

OpenShift Container Platform 3.11

Container Security Guide

OpenShift Container Platform 3.11 Container Security Guide

Last Updated: 2021-09-02

OpenShift Container Platform 3.11 Container Security Guide

OpenShift Container Platform 3.11 Container Security Guide

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Secure your cluster using these recommendations

Table of Contents

CHAPTERL.INTRODUCTION ... it

1.1. ABOUT THIS GUIDE

1.2. WHAT ARE CONTAINERS?
Further Reading

1.3. CONTAINER SECURITY IN OPENSHIFT CONTAINER PLATFORM
Further Reading

CHAPTER 2. CONTAINER HOSTS AND MULTI-TENANCY ...t

2.1. HOW CONTAINERS ARE SECURED ON RHEL
Further Reading

2.2. MULTI-TENANCY: VIRTUALIZATION VERSUS CONTAINERS
Further Reading

CHAPTER 3. CONTAINER CONTENT ... i

3.1. SECURITY INSIDE THE CONTAINER
Further Reading
3.2. CONTAINER CONTENT SCANNING
3.3. INTEGRATING EXTERNAL SCANNING TOOLS WITH OPENSHIFT
3.3.1. Image Metadata
3.3.1.1. Example Annotation Keys
3.3.1.2. Example Annotation Values
3.3.2. Annotating Image Objects
3.3.2.1. Example Annotate CLI Command
3.3.3. Controlling Pod Execution
3.3.3.1. Example Annotation
3.3.4. Integration Reference
3.3.4.1. Example REST API Call

CHAPTER 4. REGISTRIES ... o i et

4.1. WHERE DO YOUR CONTAINERS COME FROM?

4.2. IMMUTABLE AND CERTIFIED CONTAINERS
Further Reading

4.3. RED HAT REGISTRY AND RED HAT CONTAINER CATALOG
Further Reading

4.4, OPENSHIFT CONTAINER REGISTRY
Further Reading

CHAPTERS.BUILDPROCESS i

5.1. BUILD ONCE, DEPLOY EVERYWHERE

5.2. BUILD MANAGEMENT AND SECURITY
Further Reading

5.3. SECURING INPUTS DURING BUILDS
Further Reading

5.4, DESIGNING YOUR BUILD PROCESS
Further Reading

CHAPTER 6. DEPLOYMENT ... e

6.1. CONTROLLING WHAT CAN BE DEPLOYED IN A CONTAINER
Further Reading
6.2. CONTROLLING WHAT IMAGE SOURCES CAN BE DEPLOYED
6.2.1. Signature Transports
Further Reading

Table of Contents

a N N DM D

(o]

N o oo

OpenShift Container Platform 3.11 Container Security Guide

6.3. SECRETS AND CONFIGMAPS
Further Reading

6.4. SECURITY CONTEXT CONSTRAINTS (SCCS)
Further Reading

6.5. CONTINUOUS DEPLOYMENT TOOLING

CHAPTER 7. SECURING THE CONTAINER PLATFORM
7.1. CONTAINER ORCHESTRATION
Further Reading
7.2. AUTHENTICATION AND AUTHORIZATION
7.2.1. Controlling Access Using OAuth
Further Reading
7.2.2. APl Access Control and Management
7.2.3. Red Hat SSO
7.2.4. Secure Self-service Web Console
Further Reading
7.3. MANAGING CERTIFICATES FOR THE PLATFORM
7.3.1. Configuring Custom Certificates
Further Reading

CHAPTER 8. NETWORK SECURITY .. i i e et e ittt cee e

8.1. NETWORK NAMESPACES
Further Reading
8.2. ISOLATING APPLICATIONS

CHAPTER O. ATTACHED STORAGE ... i i i i i ittt

9.1. PERSISTENT VOLUME PLUG-INS
Further Reading

9.2. SHARED STORAGE
Further Reading

9.3. BLOCK STORAGE
Further Reading

CHAPTER 10. MONITORING CLUSTEREVENTSAND LOGS i

10.1. INTRODUCTION
10.2. CLUSTER EVENTS
10.3. CLUSTER LOGS
10.3.1. Service Logs
10.3.2. Master APl Audit Log

21
21
22
22
22

23
23
23
23
23
24
24
24
24
25
25
25
26

27
27
27
27

28
28
28
28
28
28
28

30
30
31
31
31

Table of Contents

OpenShift Container Platform 3.11 Container Security Guide

CHAPTER 1. INTRODUCTION

1.1. ABOUT THIS GUIDE

This guide provides a high-level walkthrough of the container security measures available in OpenShift
Container Platform, including solutions for the host layer, the container and orchestration layer, and the
build and application layer. This guide contains the following information:

® Why container security is important and how it compares with existing security standards.

® Which container security measures are provided by the host (RHEL) layer and which are
provided by OpenShift Container Platform.

® How to evaluate your container content and sources for vulnerabilities.

® How to design your build and deployment process to proactively check container content.
® How to control access to containers via authentication and authorization.

® How networking and attached storage are secured in OpenShift Container Platform.

e Containerized solutions for APl management and SSO.

1.2. WHAT ARE CONTAINERS?

Containers package an application and all its dependencies into a single image that can be promoted
from development, to test, to production, without change.

Containers provide consistency across environments and multiple deployment targets: physical servers,
virtual machines (VMs), and private or public cloud.

Some of the benefits of using containers include:

INFRASTRUCTURE APPLICATIONS

Sandboxed application processes on a shared Linux Package my application and all of its dependencies

OS kernel

Simpler, lighter, and denser than virtual machines Deploy to any environment in seconds and enable
Cl/CD

Portable across different environments Easily access and share containerized components

Further Reading
® OpenShift Container Platform Architecture: Core Concepts = Containers and Images

® Red Hat Enterprise Linux Atomic Host Container Security Guide

1.3. CONTAINER SECURITY IN OPENSHIFT CONTAINER PLATFORM

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-core-concepts-containers-and-images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/

CHAPTER 1. INTRODUCTION

This guide describes the key elements of security for each layer of the container solution stack, while
also showing how OpenShift Container Platform can be used to to create, deploy, and manage
containers at scale, with security in mind at every stage and every layer.

Further Reading

® Red Hat Enterprise Linux Atomic Host Overview of Containers in Red Hat Systems

® Red Hat Enterprise Linux Atomic Host Container Security Guide

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/

OpenShift Container Platform 3.11 Container Security Guide

CHAPTER 2. CONTAINER HOSTS AND MULTI-TENANCY

2.1. HOW CONTAINERS ARE SECURED ON RHEL

Containers enable you to simplify multi-tenancy deployments by deploying multiple applications on a
single host, using the kernel and the docker runtime to spin up each container.

You must have an operating system (OS) that can secure the host kernel and secure containers from
each other. In Linux, containers are just a special type of process, so securing containers is the same as
securing any running process. Containers should run as a non-root user. Dropping the privilege level or
creating containers with the least amount of privileges possible is recommended.

Because OpenShift Container Platform runs on Red Hat Enterprise Linux (RHEL) and RHEL Atomic
Host, the following concepts apply by default to any deployed OpenShift Container Platform cluster
and are at the core of what make containers secure on the platform.

® [inux namespaces enable creating an abstraction of a particular global system resource to make
it appear as a separate instance to processes within a namespace. Consequently, several
containers can use the same resource simultaneously without creating a conflict. See Overview
of Containers in Red Hat Systems for details on the types of namespaces (e.g., mount, PID, and
network).

® SElinux provides an additional layer of security to keep containers isolated from each other and
from the host. SELinux allows administrators to enforce mandatory access controls (MAC) for
every user, application, process, and file.

® CGroups (control groups) limit, account for, and isolate the resource usage (CPU, memory, disk
I/O, network, etc.) of a collection of processes. CGroups are used to ensure that containers on

the same host are not impacted by each other.

® Secure computing mode (seccomp) profiles can be associated with a container to restrict
available system calls.

® Deploying containers using RHEL Atomic Host reduces the attack surface by minimizing the
host environment and tuning it for containers.

Further Reading

® | inux man page: namespaces(/)

® Red Hat Enterprise Linux Atomic Host Overview of Containers in Red Hat Systems : Secure
Containers with SELinux

® Red Hat Enterprise Linux Resource Management Guide : Introduction to Control Groups
(CGroups)

® Red Hat Enterprise Linux Atomic Host Container Security Guide : Linux Capabilities and seccomp

® Kernel documentation: seccomp

2.2. MULTI-TENANCY: VIRTUALIZATION VERSUS CONTAINERS

Traditional virtualization also enables multi-tenancy, but in a very different way from containers.
Virtualization relies on a hypervisor spinning up guest virtual machines (VMs), each of which has its own
operating system (OS), as well as the running application and its dependencies.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_architecture
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#secure_containers_with_selinux
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Resource_Management_Guide/chap-Introduction_to_Control_Groups.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

CHAPTER 2. CONTAINER HOSTS AND MULTI-TENANCY

With VMs, the hypervisor isolates the guests from each other and from the host kernel. Fewer individuals
and processes have access to the hypervisor, reducing the attack surface on the physical server. That
said, security must still be monitored: one guest VM may be able to use hypervisor bugs to gain access to
another VM or the host kernel. And, when the OS needs patching, it must be patched on all guest VMs
using that OS.

Containers can be run inside guest VMs, and there may be use cases where this is desirable. For
example, you may be deploying a traditional application in a container, perhaps in order to lift-and-shift
an application to the cloud. However, container multi-tenancy on a single host provides a more
lightweight, flexible, and easier-to-scale deployment solution. This deployment model is particularly
appropriate for cloud-native applications.

Further Reading

® Red Hat Enterprise Linux Atomic Host Overview of Containers in Red Hat Systems : Linux
Containers Compared to KVM Virtualization

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers#linux_containers_compared_to_kvm_virtualization

OpenShift Container Platform 3.11 Container Security Guide

CHAPTER 3. CONTAINER CONTENT

3.1. SECURITY INSIDE THE CONTAINER

Applications and infrastructures are composed of readily available components, many of which are open
source packages such as, the Linux operating system, JBoss Web Server, PostgreSQL, and Node.js.

Containerized versions of these packages are also available. However, you need to know where the
packages originally came from, who built them, and whether there is any malicious code inside them.

Some questions to answer include:
e Will what is inside the containers compromise your infrastructure?
® Are there known vulnerabilities in the application layer?
® Are the runtime and OS layers current?

Further Reading
® OpenShift Container Platform Using Images

o Reference documentation on framework, database, and service container images provided
by Red Hat for use on OpenShift Container Platform

3.2. CONTAINER CONTENT SCANNING

Container scanning tools can leverage continuously updated vulnerability databases to ensure that you
always have the latest information on known vulnerabilities for your container content. The list of known
vulnerabilities constantly evolves; you must check the contents of your container images when you first
download them and continue to track vulnerability status over time for all of your approved and
deployed images.

RHEL provides a pluggable API to support multiple scanners. You can also use Red Hat CloudForms
with OpenSCAP to scan container images for security issues. See the Red Hat Enterprise Linux Security
Guide for general information on OpenSCAP in RHEL, and the Red Hat CloudForms Policies and
Profiles Guide for specifics on OpenSCAP integration.

OpenShift Container Platform enables you to leverage such scanners with your CI/CD process. For
example, you can integrate static code analysis tools that test for security flaws in your source code and
software composition analysis tools that identify open source libraries in order to provide metadata on
those libraries such as known vulnerabilities. This is covered in more detail in Build Process.

3.3.INTEGRATING EXTERNAL SCANNING TOOLS WITH OPENSHIFT

OpenShift Container Platform makes use of object annotations to extend functionality. External tools,
such as vulnerability scanners, may annotate image objects with metadata to summarize results and
control pod execution. This section describes the recognized format of this annotation so it may be
reliably used in consoles to display useful data to users.

3.3.1. Image Metadata

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/security_guide/index#scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.2/html-single/policies_and_profiles_guide/#openscap
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

CHAPTER 3. CONTAINER CONTENT

There are different types of image quality data, including package vulnerabilities and open source
software (OSS) license compliance. Additionally, there may be more than one provider of this metadata.
To that end, the following annotation format has been reserved:

I quality.images.openshift.io/<quality Type>.<providerld>: {}

Table 3.1. Annotation Key Format

Component Description Acceptable Values

qualityType Metadata type vulnerability
license
operations
policy

providerld Provider ID string openscap

redhatcatalog
redhatinsights
blackduck
jfrog

3.3.1.1. Example Annotation Keys

quality.images.openshift.io/vulnerability.blackduck: {}
quality.images.openshift.io/vulnerability.jfrog: {}
quality.images.openshift.io/license.blackduck: {}
quality.images.openshift.io/vulnerability.openscap: {}

The value of the image quality annotation is structured data that must adhere to the following format:

Table 3.2. Annotation Value Format

Required? Description

hame Yes Provider display name String
timestamp Yes Scan timestamp String
description No Short description String
reference Yes URL of information String

source and/or more
details. Required so user
may validate the data.

scannerVersion No Scanner version String

compliant No Compliance pass/fail Boolean

OpenShift Container Platform 3.11 Container Security Guide

Field Required? Description Type
summary No Summary of issues List (see table below)
found

The summary field must adhere to the following format:

Table 3.3. Summary Field Value Format

Field Description Type

label Display label for component (for String
example, “critical," "i

important,”
"moderate," "low," or "health")

data Data for this component (for String
example, count of vulnerabilities
found or score)

severitylndex Component index allowing for Integer
ordering and assigning graphical
representation. The value is range
0..3 where 0 = low.

reference URL of information source and/or String
more details. Optional.

3.3.1.2. Example Annotation Values

This example shows an OpenSCAP annotation for an image with vulnerability summary data and a
compliance boolean:

OpenSCAP Annotation

"name": "OpenSCAP",

"description™: "OpenSCAP vulnerability score",

"timestamp": "2016-09-08T05:04:46Z",

"reference": "https://www.open-scap.org/930492",

"compliant": true,

"scannerVersion": "1.2",

"summary": [
{ "label": "critical", "data": "4", "severitylndex": 3, "reference": null },
{ "label": "important", "data": "12", "severityIndex": 2, "reference": null },
{ "label": "moderate", "data": "8", "severitylndex": 1, "reference": null },
{ "label": "low", "data": "26", "severitylndex": 0, "reference": null }

]
}

This example shows a Red Hat Container Catalog annotation for an image with health index data with an
external URL for additional details:

10

CHAPTER 3. CONTAINER CONTENT

Red Hat Container Catalog Annotation

"name": "Red Hat Container Catalog",
"description™: "Container health index",
"timestamp": "2016-09-08T05:04:46Z",
"reference": "https://access.redhat.com/errata/RHBA-2016:1566",
"compliant": null,
"scannerVersion": "1.2",
"summary": [
{ "label": "Health index", "data": "B", "severitylndex": 1, "reference": null }

]
}

3.3.2. Annotating Image Objects

While image stream objects are what an end-user of OpenShift Container Platform operates against,
image objects are annotated with security metadata. Image objects are cluster-scoped, pointing to a
single image that may be referenced by many image streams and tags.

3.3.2.1. Example Annotate CLI Command

Replace <image> with an image digest, for example
sha256:fec8a395afe3e804b3db5chb277869142d2b5¢c561ebb517585566e160ff321988:

$ oc annotate image <image> \
quality.images.openshift.io/vulnerability.redhatcatalog='{ \
"name": "Red Hat Container Catalog", \
"description”: "Container health index", \
"timestamp": "2016-09-08T05:04:46Z", \
"compliant": null, \
"scannerVersion": "1.2",\
"reference": "https://access.redhat.com/errata/RHBA-2016:1566", \
"summary": "\
{ "label": "Health index", "data": "B", "severitylndex": 1, "reference™: null }]" }'

3.3.3. Controlling Pod Execution
To programmatically control if an image may be run, the images.openshift.io/deny-execution image

policy may be used. See Image Policy for more information.

3.3.3.1. Example Annotation

annotations:
images.openshift.io/deny-execution: true

3.3.4. Integration Reference

In most cases, external tools such as vulnerability scanners will develop a script or plug-in that watches
for image updates, performs scanning, and annotates the associated image object with the results.
Typically this automation calls the OpenShift Container Platform REST API to write the annotation. See
REST API Reference for general information on the REST APl and PATCH call to update images.

1

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-image-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/api_reference/#rest-api-index

OpenShift Container Platform 3.11 Container Security Guide

3.3.4.1. Example REST API Call

The following example call using curl overrides the value of the annotation. Be sure to replace the values
for <tokens, <openshift_servers, <image_id>, and <image_annotation>.

Patch API Call

$ curl -X PATCH \
-H "Authorization: Bearer <token>"\
-H "Content-Type: application/merge-patch+json" \
https://<openshift_server>:8443/oapi/vi/images/<image_id>\
--data '{ <image_annotation> }'

The following is an example of PATCH payload data:

Patch Call Data

{

"metadata”: {
"annotations": {
"quality.images.openshift.io/vulnerability.redhatcatalog":

"{ 'name": 'Red Hat Container Catalog', 'description’: '‘Container health index', 'timestamp': '2016-
09-08T05:04:46Z', 'compliant”: null, 'reference': 'https://access.redhat.com/errata/RHBA-2016:1566",
'summary': [{'label': 'Health index', 'data’: '4', 'severitylndex': 1, 'reference’: null}] }"

}

}
}

12

CHAPTER 4. REGISTRIES

CHAPTER 4. REGISTRIES

4.1. WHERE DO YOUR CONTAINERS COME FROM?

There are tools you can use to scan and track the contents of your downloaded and deployed container
images. However, there are many public sources of container images. When using public container
registries, you can add a layer of protection by using trusted sources.

4.2. IMMUTABLE AND CERTIFIED CONTAINERS

Consuming security updates is particularly important when managing immutable containers. Immutable
containers are containers that will never be changed while running. When you deploy immutable
containers, you do not step into the running container to replace one or more binaries; you rebuild and
redeploy an updated container image.

Red Hat certified images are:
® Free of known vulnerabilities in the platform components or layers.
® Compatible across the RHEL platforms, from bare metal to cloud.
® Supported by Red Hat.

The list of known vulnerabilities is constantly evolving, so you must track the contents of your deployed
container images, as well as newly downloaded images, over time. You can use Red Hat Security
Advisories (RHSASs) to alert you to any newly discovered issues in Red Hat certified container images,
and direct you to the updated image.

Further Reading
® More on immutable containers in OpenShift Container Platform:

o OpenShift Container Platform Architecture: Image Streams

o OpenShift Container Platform Developer Guide: Referencing Images in Image Streams

4.3. RED HAT REGISTRY AND RED HAT CONTAINER CATALOG

Red Hat provides certified containers for Red Hat products and partner offerings via the Red Hat
Registry, which is a public container registry hosted by Red Hat at registry.redhat.io. The Red Hat
Container Catalog enables you to identify bug fix or security advisories associated with container images
provided in the Red Hat Registry.

Container content is monitored for vulnerabilities by Red Hat and updated regularly. When Red Hat
releases security updates, such as fixes to glibc, Drown, or Dirty Cow, any affected container images are
also rebuilt and pushed to the Red Hat Registry.

Red Hat uses a "health index" for security risk with containers provided through the Red Hat Container
Catalog. These containers consume software provided by Red Hat and the errata process, so old, stale
containers are insecure whereas new, fresh containers are more secure.

To illustrate the age of containers, the Red Hat Container Catalog uses a grading system. A freshness
grade is a measure of the oldest and most severe security errata available for an image. "A" is more up-
to-date than "F". See Container Health Index grades as used inside the Red Hat Container Catalog for
more details on this grading system.

13

https://access.redhat.com/security/security-updates/#/security-advisories
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#referencing-images-in-image-streams
https://registry.redhat.io
https://access.redhat.com/containers
https://access.redhat.com/articles/2803031

OpenShift Container Platform 3.11 Container Security Guide

Further Reading

® Red Hat Container Catalog FAQ
® Red Hat Product Security Center

® Red Hat Security Advisories

4.4. OPENSHIFT CONTAINER REGISTRY

OpenShift Container Platform includes the OpenShift Container Registry, a private registry that runs
integrated with the platform that you can use to manage your container images. The OpenShift
Container Registry provides role-based access controls that allow you to manage who can pull and push
which container images.

OpenShift Container Platform also supports integration with other private registries you may already be
using.

Further Reading

® OpenShift Container Platform Architecture: Infrastructure Components = Image Registry

14

https://access.redhat.com/containers#/faq
https://access.redhat.com/security/
https://access.redhat.com/security/security-updates/#/security-advisories
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-infrastructure-components-image-registry

CHAPTER 5. BUILD PROCESS

CHAPTER 5. BUILD PROCESS

5.1. BUILD ONCE, DEPLOY EVERYWHERE

In a container environment, the software build process is the stage in the life cycle where application
code is integrated with the required runtime libraries. Managing this build process is key to securing the
software stack.

Using OpenShift Container Platform as the standard platform for container builds enables you to
guarantee the security of the build environment. Adhering to a "build once, deploy everywhere"

philosophy ensures that the product of the build process is exactly what is deployed in production.

It is also important to maintain the immutability of your containers. You should not patch running
containers, but rebuild and redeploy them.

5.2. BUILD MANAGEMENT AND SECURITY
You can use source-to-Image (S2l) to combine source code and base images. Builder images make use
of S2I to enable your development and operations teams to collaborate on a reproducible build

environment.

When developers commit code with Git for an application using build images, OpenShift Container
Platform can perform the following functions:

® Trigger, either via webhooks on the code repository or other automated continuous integration
(Cl) process, to automatically assemble a new image from available artifacts, the S2I builder
image, and the newly committed code.

e Automatically deploy the newly-built image for testing.

® Promote the tested image to production where it can be automatically deployed using ClI
process.

Source 2 Image

Code. Q}git*— L

DEV

Bwld@ %n -B -

Contalines
Image

You can use OpenShift Container Registry to manage access to final images. Both S2I and native build
images are automatically pushed to the OpenShift Container Registry.

15

OpenShift Container Platform 3.11 Container Security Guide

In addition to the included Jenkins for Cl, you can also integrate your own build / Cl environment with
OpenShift Container Platform using RESTful APIs, as well as use any APl-compliant image registry.

Further Reading
® OpenShift Container Platform Developer Guide
o How Builds Work
o Triggering Builds
® OpenShift Container Platform Architecture: Source-to-Image (S2I) Build

® OpenShift Container Platform Using Images: Other Images — Jenkins

5.3. SECURING INPUTS DURING BUILDS

In some scenarios, build operations require credentials to access dependent resources, but it is
undesirable for those credentials to be available in the final application image produced by the build.
You can define input secrets for this purpose.

For example, when building a Node.js application, you can set up your private mirror for Node.js modules.
In order to download modules from that private mirror, you have to supply a custom .npmrc file for the
build that contains a URL, user name, and password. For security reasons, you do not want to expose
your credentials in the application image.

Using this example scenario, you can add an input secret to a new BuildConfig:

1. Create the secret, if it does not exist:
I $ oc create secret generic secret-npmrc --from-file=.npmrc=~/.npmrc

This creates a new secret named secret-npmrc, which contains the base64 encoded content of
the ~/.npmrc file.

2. Add the secret to the source section in the existing BuildConfig:

source:
git:
uri: https://github.com/sclorg/nodejs-ex.git
secrets:
- secret:
name: secret-npmrc

3. Toinclude the secret in a new BuildConfig, run the following command:

$ oc new-build \
openshift/nodejs-010-centos7~https://github.com/sclorg/nodejs-ex.git \
--build-secret secret-npmrc

Further Reading

® OpenShift Container Platform Developer Guide: Input Secrets

5.4. DESIGNING YOUR BUILD PROCESS

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-how-builds-work
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-triggering-builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/using_images/#using-images-other-images-jenkins
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#using-secrets-during-build

CHAPTER 5. BUILD PROCESS

You can design your container image management and build process to use container layers so that you
can separate control.

¢
o\ o

Operations Architects Application
developers

For example, an operations team manages base images, while architects manage middleware, runtimes,
databases, and other solutions. Developers can then focus on application layers and just write code.

Because new vulnerabilities are identified daily, you need to proactively check container content over
time. To do this, you should integrate automated security testing into your build or Cl process. For
example:

® SAST / DAST - Static and Dynamic security testing tools.

® Scanners for real-time checking against known vulnerabilities. Tools like these catalog the open
source packages in your container, notify you of any known vulnerabilities, and update you when
new vulnerabilities are discovered in previously scanned packages.

Your Cl process should include policies that flag builds with issues discovered by security scans so that
your team can take appropriate action to address those issues. You should sign your custom built

containers to ensure that nothing is tampered with between build and deployment.

Further Reading

® Red Hat Enterprise Linux Atomic Host Managing Containers : Signing Container Images

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/signing_container_images

OpenShift Container Platform 3.11 Container Security Guide

CHAPTER 6. DEPLOYMENT

6.1. CONTROLLING WHAT CAN BE DEPLOYED IN A CONTAINER

If something happens during the build process, or if a vulnerability is discovered after an image has been
deployed, you can use tooling for automated, policy-based deployment. You can use triggers to rebuild
and replace images instead of patching running containers, which is not recommended.

Can configure triggers for
automated deployments,

git O builds, and maore.
-
= m

=N
Developer

— i ——— e —————— —

Builder

Can configure different
deploymant sirategies |ike
AMB, Rolling upgradea,
Automated basa updates,
and more.

For example, you build an application using three container image layers: core, middleware, and
applications. An issue is discovered in the core image and that image is rebuilt. After the build is
complete, the image is pushed to the OpenShift Container Registry. OpenShift Container Platform
detects that the image has changed and automatically rebuilds and deploys the application image,
based on the defined triggers. This change incorporates the fixed libraries and ensures that the
production code is identical to the most current image.

The oc set triggers command can be used to set a deployment trigger for a deployment configuration.
For example, to set an ImageChangeTrigger in a deployment configuration called frontend:

18

CHAPTER 6. DEPLOYMENT

$ oc set triggers dc/frontend \
--from-image=myproject/origin-ruby-sample:latest \
-c helloworld

Further Reading
® OpenShift Container Platform Developer Guide

o How Deployments Work
o Setting Deployment Triggers

o Application Life Cycle Management = Promoting Applications Across Environments

6.2. CONTROLLING WHAT IMAGE SOURCES CAN BE DEPLOYED

Itis important that the intended images are actually being deployed, that they are from trusted sources,
and they have not been altered. Cryptographic signing provides this assurance. OpenShift Container
Platform enables cluster administrators to apply security policy that is broad or narrow, reflecting
deployment environment and security requirements. Two parameters define this policy:

® one or more registries (with optional project namespace)
® trust type (accept, reject, or require public key(s))

With these policy parameters, registries or parts of registries, even individual images, may be whitelisted
(accept), blacklisted (reject), or define a trust relationship using trusted public key(s) to ensure the
source is cryptographically verified. The policy rules apply to nodes. Policy may be applied uniformly
across all nodes or targeted for different node workloads (for example, build, zone, or environment).

Example Image Signature Policy File

{
"default": [{"type": "reject"}],

"transports”: {
"docker": {
"access.redhat.com": |
{
"type": "signedBy",
"keyType": "GPGKeys",
"keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release”

}
]
b
"atomic": {
"172.30.1.1:5000/0penshift": [
{

"type": "signedBy",
"keyType": "GPGKeys",
"keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release”
}
8
"172.30.1.1:5000/production": |

{
"type": "signedBy",
"keyType": "GPGKeys",

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-how-deployments-work
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#triggers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-promoting-applications

OpenShift Container Platform 3.11 Container Security Guide

"keyPath": "/etc/pki/example.com/pubkey”

}
1,
"172.30.1.1:5000": [{"type": "insecureAcceptAnything"}]
}
}
}

The policy can be saved onto a node as /etc/containers/policy.json. This example enforces the
following rules:

1. Require images from the Red Hat Registry (access.redhat.com) to be signed by the Red Hat
public key.

2. Require images from the OpenShift Container Registry in the openshift namespace to be
signed by the Red Hat public key.

3. Require images from the OpenShift Container Registry in the production namespace to be
signed by the public key for example.com.

4. Reject all other registries not specified by the global default definition.

For specific instructions on configuring a host, see Enabling Image Signature Support. See the section
below for details on Signature Transports. For more details on image signature policy, see the Signature
verification policy file format source code documentation.

6.2.1. Signature Transports

A signature transport is a way to store and retrieve the binary signature blob. There are two types of
signature transports.

e atomic: Managed by the OpenShift Container Platform API.
e docker: Served as a local file or by a web server.

The OpenShift Container Platform APl manages signatures that use the atomic transport type. You
must store the images that use this signature type in the the OpenShift Container Registry. Because the
docker/distributionextensions API| auto-discovers the image signature endpoint, no additional
configuration is required.

Signatures that use the docker transport type are served by local file or web server. These signatures
are more flexible: you can serve images from any container image registry and use an independent
server to deliver binary signatures. According to the Signature access protocols, you access the
signatures for each image directly; the root of the server directory does not display its file structure.

However, the docker transport type requires additional configuration. You must configure the nodes
with the URI of the signature server by placing arbitrarily-named YAML files into a directory on the host
system, /etc/containers/registries.d by default. The YAML configuration files contain a registry URI
and a signature server URI, or sigstore:

Example Registries.d File

docker:
access.redhat.com:
sigstore: https://access.redhat.com/webassets/docker/content/sigstore

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#enabling-image-signature-support
https://github.com/containers/image/blob/cri-o-release-1.11/docs/containers-policy.json.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#reading-image-signatures-via-registry-api
https://github.com/containers/image/blob/cri-o-release-1.11/docs/signature-protocols.md

CHAPTER 6. DEPLOYMENT

In this example, the Red Hat Registry, access.redhat.com, is the signature server that provides
signatures for the docker transport type. Its URI is defined in the sigstore parameter. You might name
this file /etc/containers/registries.d/redhat.com.yaml and use Ansible to automatically place the file
on each node in your cluster. No service restart is required since policy and registries.d files are
dynamically loaded by the container runtime.

For more details, see the Registries Configuration Directory or Signature access protocols source code
documentation.

Further Reading

® OpenShift Container Platform Cluster Administration Guide
o Default Scheduling

® Red Hat Knowledgebase
o Container Image Signing Integration Guide

® Source Code Reference
o Image signing policy
o Signature transports

o Signature format

6.3. SECRETS AND CONFIGMAPS

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, dockercfg files, and private source repository
credentials. Secrets decouple sensitive content from pods. You can mount secrets into containers using
a volume plug-in or the system can use secrets to perform actions on behalf of a pod.

For example, to add a secret to your deployment configuration using the web console so that it can
access a private image repository:

1. Create a new project.
2. Navigate to Resources = Secretsand create a new secret. Set Secret Type to Image Secret
and Authentication Type to Image Registry Credentials to enter credentials for accessing a

private image repository.

3. When creating a deployment configuration (for example, from the Add to Project - Deploy
Image page), set the Pull Secretto your new secret.

ConfigMaps are similar to secrets, but are designed to support working with strings that do not contain
sensitive information. The ConfigMap object holds key-value pairs of configuration data that can be

consumed in pods or used to store configuration data for system components such as controllers.

Further Reading
® OpenShift Container Platform Developer Guide

o Secrets

o ConfigMaps

21

https://github.com/containers/image/blob/cri-o-release-1.11/docs/containers-registries.d.md
https://github.com/containers/image/blob/cri-o-release-1.11/docs/signature-protocols.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-scheduler
https://access.redhat.com/articles/2750891
https://github.com/containers/image/blob/cri-o-release-1.11/docs/containers-policy.json.md
https://github.com/containers/image/blob/cri-o-release-1.11/docs/signature-protocols.md
https://github.com/containers/image/blob/cri-o-release-1.11/docs/atomic-signature.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#dev-guide-configmaps

OpenShift Container Platform 3.11 Container Security Guide

6.4. SECURITY CONTEXT CONSTRAINTS (SCCS)

You can use security context constraints (SCCs) to define a set of conditions that a pod (a collection of
containers) must run with in order to be accepted into the system.

Some aspects that can be managed by SCCs include:
® Running of privileged containers.
® Capabilities a container can request to be added.
® Use of host directories as volumes.
® SELinux context of the container.
® Container user ID.
If you have the required permissions, you can adjust the default SCC policies to be more permissive.

Further Reading

® OpenShift Container Platform Architecture: Security Context Constraints

® OpenShift Container Platform Installing Clusters : Security Warning

o Discusses privileged containers

6.5. CONTINUOUS DEPLOYMENT TOOLING
You can integrate your own continuous deployment (CD) tooling with OpenShift Container Platform.
By leveraging Cl/CD and OpenShift Container Platform, you can automate the process of rebuilding the

application to incorporate the latest fixes, testing, and ensuring that it is deployed everywhere within the
environment.

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#security-warning

CHAPTER 7. SECURING THE CONTAINER PLATFORM

CHAPTER 7. SECURING THE CONTAINER PLATFORM

7.1. CONTAINER ORCHESTRATION
APlIs are key to automating container management at scale. APIs are used to:
® Validate and configure the data for pods, services, and replication controllers.

® Perform project validation on incoming requests and invoke triggers on other major system
components.

Further Reading

® OpenShift Container Platform Architecture: How Is OpenShift Container Platform Secured?

7.2. AUTHENTICATION AND AUTHORIZATION

7.2.1. Controlling Access Using OAuth

You can use APl access control via authentication and authorization for securing your container
platform. The OpenShift Container Platform master includes a built-in OAuth server. Users can obtain
OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to authenticate using an identity provider, such as LDAP,
GitHub, or Google. The Deny All identity provider is used by default for new OpenShift Container
Platform deployments, but you can configure this at initial installation time or post-installation. See
Configuring authentication and user agent for a full list of identity providers.

For example, to configure the GitHub identity provider post-installation:
1. Edit the master configuration file at /etc/origin/master-config.yaml.

2. Modify the oauthConfig stanza per the following:

oauthConfig:

identityProviders:
- name: github
challenge: false
login: true
mappingMethod: claim
provider:
apiVersion: v1i
kind: GitHubldentityProvider
clientlD: ...
clientSecret: ...
organizations:
- myorganization1
- myorganization2
teams:
- myorganizationi/team-a
- myorganization2/team-b

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-configuring-authentication

OpenShift Container Platform 3.11 Container Security Guide

NOTE

See the GitHub section in Configuring Authentication for more detailed
information and usage.

3. After saving your changes, restart the master services for the changes to take effect:

master-restart api
master-restart controllers

Further Reading
® OpenShift Container Platform Architecture
o Additional Concepts = Authentication
o Additional Concepts = Authorization
® OpenShift Container Platform CL/ Reference

® OpenShift Container Platform Developer Guide: CL| Authentication

7.2.2. APl Access Control and Management

Applications can have multiple, independent API services which have different endpoints that require
management. OpenShift Container Platform includes a containerized version of the 3scale API gateway
so that you can manage your APIs and control access.

3scale gives you a variety of standard options for APl authentication and security, which can be used
alone or in combination to issue credentials and control access: Standard API keys, Application ID and
key pair, and OAuth 2.0.

You can restrict access to specific end points, methods, and services and apply access policy for groups
of users. Application plans allow you to set rate limits for APl usage and control traffic flow for groups of
developers.

For a tutorial on using APIcast v2, the containerized 3scale API Gateway, see Running APIcast on Red
Hat OpenShift.

7.2.3. Red Hat SSO

The Red Hat Single Sign-On (RH-SSO) Server enables you to secure your applications by providing Web
SSO capabilities based on standards, including SAML 2.0, OpenlD Connect, and OAuth 2.0. The Server
can act as a SAML or OpenlD Connect-based identity provider (IdP), mediating with your enterprise
user directory or third-party identity provider for identity information and your applications using
standards-based tokens. You can integrate Red Hat SSO with LDAP-based directory services including
Microsoft Active Directory and Red Hat Enterprise Linux Identity Management.

See Red Hat JBoss SSO for OpenShift documentation for usage tutorials.

7.2.4. Secure Self-service Web Console

OpenShift Container Platform provides a self-service web console to ensure that teams do not access
other environments without authorization. OpenShift Container Platform ensures a secure multi-tenant
master by providing the following:

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#GitHub
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#cli-authentication
https://support.3scale.net/docs/deployment-options/apicast-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html/red_hat_jboss_sso_for_openshift/tutorials

CHAPTER 7. SECURING THE CONTAINER PLATFORM

® Access to the master uses Transport Layer Security (TLS)

® Access to the APl Server uses X.509 certificates or OAuth access tokens
® Project quota limits the damage that a rogue token could do

® FEtcdis not exposed directly to the cluster

Further Reading

® OpenShift Container Platform Architecture: Infrastructure Components = Web Console

® OpenShift Container Platform Developer Guide: Web Console Authentication

7.3. MANAGING CERTIFICATES FOR THE PLATFORM

OpenShift Container Platform has multiple components within its framework that use REST-based
HTTPS communication leveraging encryption via TLS certificates. OpenShift Container Platform'’s
Ansible-based installer configures these certificates during installation. There are some primary
components that generate this traffic:

® masters (APl server and controllers)
® etcd

® nodes

® registry

® router

7.3.1. Configuring Custom Certificates

You can configure custom serving certificates for the public host names of the APl server and web
console during initial installation or when redeploying certificates. You can also use a custom CA.

During initial cluster installations using Ansible playbooks, custom certificates can be configured using
the openshift_master_overwrite_named_certificates Ansible variable, which is configurable in the
inventory file. For example:

openshift_master_named_certificates=[{"certfile": "/path/on/host/to/custom1.crt", "keyfile":
"/path/on/host/to/customi.key", "cafile": "/path/on/host/to/custom-cai.crt"}]

See Configuring Custom Certificates section for more options and instructions on how to run the
installation playbook.

The installer provides Ansible playbooks for checking on the expiration dates of all cluster certificates.
Additional playbooks can automatically redeploy all certificates at once using the current CA, redeploy
specific certificates only, or redeploy a newly generated or custom CA on its own. See Redeploying
Certificates for more on these playbooks.

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#web-console-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#advanced-install-custom-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-redeploying-certificates

OpenShift Container Platform 3.11 Container Security Guide

IMPORTANT

The cafile certificate is imported to the ca-bundle.crt file on the masters during
installation or during redeployment of certificates. The ca-bundle.crt file is mounted to
every pod that runs in OpenShift Container Platform. Several OpenShift Container
Platform components automatically trust the named certificates by default when they
access the masterPublicURL endpoint. If you omit the cafile option from the certificates
parameter, the functionality of Web Console and several other components is reduced.

Further Reading
® OpenShift Container Platform Configuring Clusters

o Configuring Custom Certificates
o Checking Certificate Expirations

o Redeploying Certificates

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-certificate-customization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-cert-expiry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#redeploy-certificates

CHAPTER 8. NETWORK SECURITY

CHAPTER 8. NETWORK SECURITY

8.1. NETWORK NAMESPACES

OpenShift Container Platform uses software-defined networking (SDN) to provide a unified cluster
network that enables communication between containers across the cluster.

Using network namespaces, you can isolate pod networks. Each pod gets its own IP and port range to
bind to, thereby isolating pod networks from each other on the node. Pods from different projects
cannot send packets to or receive packets from pods and services of a different project. You can use
this to isolate developer, test and production environments within a cluster.

OpenShift Container Platform also provides the ability to control egress traffic using either a router or
firewall method. For example, you can use IP whitelisting to control database access.

Further Reading

® OpenShift Container Platform Architecture: Networking
® OpenShift Container Platform Cluster Administration: Managing Networking

® Red Hat Enterprise Linux Atomic Host Managing Containers : Running Super-Privileged
Containers

8.2. ISOLATING APPLICATIONS

OpenShift Container Platform enables you to segment network traffic on a single cluster to make multi-
tenant clusters that isolate users, teams, applications, and environments.

For example, to isolate a project network in the cluster and vice versa, run:

I $ oc adm pod-network isolate-projects <project1> <project2>

In the above example, all of the pods and services in <project1> and <project2> can not access any
pods and services from other non-global projects in the cluster and vice versa.

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-networking
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cluster_administration/#admin-guide-manage-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/running_super_privileged_containers

OpenShift Container Platform 3.11 Container Security Guide

CHAPTER 9. ATTACHED STORAGE

9.1. PERSISTENT VOLUME PLUG-INS

Containers are useful for both stateless and stateful applications. Protecting attached storage is a key
element of securing stateful services.

OpenShift Container Platform provides plug-ins for multiple types of storage, including NFS, AWS
Elastic Block Stores (EBS), GCE Persistent Disks, GlusterFS, iSCSI, RADOS (Ceph) and Cinder. Data in
transit is encrypted via HTTPS for all OpenShift Container Platform components communicating with
each other.

You can mount PersistentVolume (PV) on a host in any way supported by your storage type. Different
types of storage have different capabilities and each PV's access modes are set to the specific modes
supported by that particular volume.

For example, NFS can support multiple read/write clients, but a specific NFS PV might be exported on
the server as read-only. Each PV has its own set of access modes describing that specific PV's
capabilities, such as ReadWriteOnce, ReadOnlyMany, and ReadWriteMany.

Further Reading
® OpenShift Container Platform Architecture: Additional Concepts = Storage

® OpenShift Container Platform Configuring Clusters: Configuring Persistent Storage = Volume
Security

9.2. SHARED STORAGE

For shared storage providers like NFS, Ceph, and Gluster, the PV registers its group ID (GID) as an
annotation on the PV resource. Then, when the PV is claimed by the pod, the annotated GID is added to
the supplemental groups of the pod, giving that pod access to the contents of the shared storage.

Further Reading
® OpenShift Container Platform Configuring Clusters
o Persistent Storage Using NFS
o Persistent Storage Using Ceph RBD

o Persistent Storage Using GlusterFS

9.3.BLOCK STORAGE

For block storage providers like AWS Elastic Block Store (EBS), GCE Persistent Disks, and iSCS],
OpenShift Container Platform uses SELinux capabilities to secure the root of the mounted volume for
non-privileged pods, making the mounted volume owned by and only visible to the container with which
it is associated.

Further Reading
® OpenShift Container Platform Configuring Clusters

o Persistent Storage Using AWS Elastic Block Storage

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-persistent-storage-pod-security-context
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-ceph-rbd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-glusterfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-aws

CHAPTER 9. ATTACHED STORAGE

o Persistent Storage Using GCE Persistent Disk

o Persistent Storage Using iSCSI

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-gce
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-persistent-storage-persistent-storage-iscsi

OpenShift Container Platform 3.11 Container Security Guide

CHAPTER 10. MONITORING CLUSTER EVENTS AND LOGS

10.1. INTRODUCTION

In addition to security measures mentioned in other sections of this guide, the ability to monitor and
audit an OpenShift Container Platform cluster is an important part of safeguarding the cluster and its
users against inappropriate usage.

There are two main sources of cluster-level information that are useful for this purpose: events and logs.

10.2. CLUSTER EVENTS

Cluster administrators are encouraged to familiarize themselves with the Event resource type and
review a list of events to determine which events are of interest. Depending on the master controller
and plugin configuration, there are typically more potential event types than listed here.

Events are associated with a namespace, either the namespace of the resource they are related to or,
for cluster events, the default namespace. The default namespace holds relevant events for monitoring
or auditing a cluster, such as Node events and resource events related to infrastructure components.

The master APl and oc command do not provide parameters to scope a listing of events to only those
related to nodes. A simple approach would be to use grep:

$ oc get event -n default | grep Node
1h 20h 3 origin-node-1.example.local Node Normal NodeHasDiskPressure

A more flexible approach is to output the events in a form that other tools can process. For example, the
following example uses the jq tool against JSON output to extract only NodeHasDiskPressure events:

$ oc get events -n default -0 json \
| jq ".items][] | select(.involvedObject.kind == "Node" and .reason == "NodeHasDiskPressure")'

{

"apiVersion": "v1",

"count": 3,

"involvedObject": {
"kind": "Node",
"name": "origin-node-1.example.local",
"uid": "origin-node-1.example.local"

b

"kind": "Event",

"reason": "NodeHasDiskPressure",

Events related to resource creation, modification, or deletion can also be good candidates for detecting
misuse of the cluster. The following query, for example, can be used to look for excessive pulling of
images:

$ oc get events --all-namespaces -0 json \
| jq '[.items][] | select(.involvedObject.kind == "Pod" and .reason == "Pulling")] | length'

4

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/#events-reference

CHAPTER 10. MONITORING CLUSTER EVENTS AND LOGS

NOTE

When a namespace is deleted, its events are deleted as well. Events can also expire and
are deleted to prevent filling up etcd storage. Events are not stored as a permanent
record and frequent polling is necessary to capture statistics over time.

10.3. CLUSTER LOGS

This section describes the types of operational logs produced on the cluster.

10.3.1. Service Logs

OpenShift Container Platform produces logs for services that run on static pods in a cluster:
® API (use master-logs api api)
® Controllers (use master-logs controllers controllers)
® etcd (use master-logs etcd etcd)
® atomic-openshift-node (use journalctl -u atomic-openshift-node.service)

These logs are intended more for debugging purposes than for security auditing. You can retrieve logs
for each service with the master-logs api api, master-logs controllers controllers, or master-logs
etcd etcd commands. If your cluster runs an aggregated logging stack, like an Ops cluster, cluster
administrators can retrieve logs from the logging .operations indexes.

NOTE

The APl server, controllers, and etcd static pods run in kube-system namespace.

10.3.2. Master API Audit Log

To log master API requests by users, administrators, or system components enable audit logging for the
master API. This will create a file on each master host or, if there is no file configured, be included in the
service’s journal. Entries in the journal can be found by searching for "AUDIT".

Audit log entries consist of one line recording each REST request when it is received and one line with
the HTTP response code when it completes. For example, here is a record of the system administrator
requesting a list of nodes:

2017-10-17T13:12:17.635085787Z AUDIT: id="410eda6b-88d4-4491-87ff-394804ca69a1"
ip="192.168.122.156" method="GET" user="system:admin" groups="\"system:cluster-
admins\",\"system:authenticated\"" as="<self>" asgroups="<lookup>" namespace="<none>"
uri="/api/v1/nodes"

2017-10-17T13:12:17.636081056Z AUDIT: id="410eda6b-88d4-4491-87ff-394804ca69a1"
response="200"

It might be useful to poll the log periodically for the number of recent requests per response code, as
shown in the following example:

$ tail -5000 /var/log/origin/audit-ocp.log \
| grep -Po 'response="...""\
| sort | uniq -c | sort -rn

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#aggregated-ops
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#master-node-config-audit-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#master-node-config-audit-config

OpenShift Container Platform 3.11 Container Security Guide

3288 response="200"
8 response="404"
6 response="201"

The following list describes some of the response codes in more detail:
® 200 or 201 response codes indicate a successful request.

® 400 response codes may be of interest as they indicate a malformed request, which should not
occur with most clients.

® 404 response codes are typically benign requests for a resource that does not exist.

® 500 - 599 response codes indicate server errors, which can be a result of bugs, system failures,
or even malicious activity.

If an unusual number of error responses are found, the audit log entries for corresponding requests can
be retrieved for further investigation.

NOTE

The IP address of the request is typically a cluster host or API load balancer, and there is
no record of the IP address behind a load balancer proxy request (however, load balancer
logs can be useful for determining request origin).

It can be useful to look for unusual numbers of requests by a particular user or group.

The following example lists the top 10 users by number of requests in the last 5000 lines of the audit
log:

$ tail -5000 /var/log/origin/audit-ocp.log \
| grep -Po "user="(.*?)(?7<\\)™\
| sort | uniq -c | sort -rn | head -10

976 user="system:openshift-master"

270 user="system:node:origin-node-1.example.local"

270 user="system:node:origin-master.example.local"

66 user="system:anonymous"

32 user="system:serviceaccount:kube-system:cronjob-controller"

24 user="system:serviceaccount:kube-system:pod-garbage-collector"

18 user="system:serviceaccount:kube-system:endpoint-controller"

14 user="system:serviceaccount:openshift-infra:serviceaccount-pull-secrets-controller”
11 user="test user"

4 user="test\" user"

More advanced queries generally require the use of additional log analysis tools. Auditors will need a
detailed familiarity with the OpenShift vl APl and Kubernetes vl API to aggregate request summaries
from the audit log according to which kind of resource is involved (the uri field). See REST API
Reference for details.

More advanced audit logging capabilities are available. This feature enables providing an audit policy file

to control which requests are logged and the level of detail to log. Advanced audit log entries provide
more detail in JSON format and can be logged via a webhook as opposed to file or system journal.

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/api_reference/#rest-api-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#master-node-config-advanced-audit

CHAPTER 10. MONITORING CLUSTER EVENTS AND LOGS

33

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT THIS GUIDE
	1.2. WHAT ARE CONTAINERS?
	Further Reading

	1.3. CONTAINER SECURITY IN OPENSHIFT CONTAINER PLATFORM
	Further Reading

	CHAPTER 2. CONTAINER HOSTS AND MULTI-TENANCY
	2.1. HOW CONTAINERS ARE SECURED ON RHEL
	Further Reading

	2.2. MULTI-TENANCY: VIRTUALIZATION VERSUS CONTAINERS
	Further Reading

	CHAPTER 3. CONTAINER CONTENT
	3.1. SECURITY INSIDE THE CONTAINER
	Further Reading

	3.2. CONTAINER CONTENT SCANNING
	3.3. INTEGRATING EXTERNAL SCANNING TOOLS WITH OPENSHIFT
	3.3.1. Image Metadata
	3.3.1.1. Example Annotation Keys
	3.3.1.2. Example Annotation Values

	3.3.2. Annotating Image Objects
	3.3.2.1. Example Annotate CLI Command

	3.3.3. Controlling Pod Execution
	3.3.3.1. Example Annotation

	3.3.4. Integration Reference
	3.3.4.1. Example REST API Call

	CHAPTER 4. REGISTRIES
	4.1. WHERE DO YOUR CONTAINERS COME FROM?
	4.2. IMMUTABLE AND CERTIFIED CONTAINERS
	Further Reading

	4.3. RED HAT REGISTRY AND RED HAT CONTAINER CATALOG
	Further Reading

	4.4. OPENSHIFT CONTAINER REGISTRY
	Further Reading

	CHAPTER 5. BUILD PROCESS
	5.1. BUILD ONCE, DEPLOY EVERYWHERE
	5.2. BUILD MANAGEMENT AND SECURITY
	Further Reading

	5.3. SECURING INPUTS DURING BUILDS
	Further Reading

	5.4. DESIGNING YOUR BUILD PROCESS
	Further Reading

	CHAPTER 6. DEPLOYMENT
	6.1. CONTROLLING WHAT CAN BE DEPLOYED IN A CONTAINER
	Further Reading

	6.2. CONTROLLING WHAT IMAGE SOURCES CAN BE DEPLOYED
	6.2.1. Signature Transports
	Further Reading

	6.3. SECRETS AND CONFIGMAPS
	Further Reading

	6.4. SECURITY CONTEXT CONSTRAINTS (SCCS)
	Further Reading

	6.5. CONTINUOUS DEPLOYMENT TOOLING

	CHAPTER 7. SECURING THE CONTAINER PLATFORM
	7.1. CONTAINER ORCHESTRATION
	Further Reading

	7.2. AUTHENTICATION AND AUTHORIZATION
	7.2.1. Controlling Access Using OAuth
	Further Reading

	7.2.2. API Access Control and Management
	7.2.3. Red Hat SSO
	7.2.4. Secure Self-service Web Console
	Further Reading

	7.3. MANAGING CERTIFICATES FOR THE PLATFORM
	7.3.1. Configuring Custom Certificates
	Further Reading

	CHAPTER 8. NETWORK SECURITY
	8.1. NETWORK NAMESPACES
	Further Reading

	8.2. ISOLATING APPLICATIONS

	CHAPTER 9. ATTACHED STORAGE
	9.1. PERSISTENT VOLUME PLUG-INS
	Further Reading

	9.2. SHARED STORAGE
	Further Reading

	9.3. BLOCK STORAGE
	Further Reading

	CHAPTER 10. MONITORING CLUSTER EVENTS AND LOGS
	10.1. INTRODUCTION
	10.2. CLUSTER EVENTS
	10.3. CLUSTER LOGS
	10.3.1. Service Logs
	10.3.2. Master API Audit Log

