
OpenShift Container Platform 3.11

Container-native Virtualization User’s Guide

Container-native Virtualization User's Guide

Last Updated: 2022-05-02

OpenShift Container Platform 3.11 Container-native Virtualization User’s
Guide

Container-native Virtualization User's Guide

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn to use CNV

. .

Table of Contents

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION
1.1. PRODUCT OVERVIEW

1.1.1. Introduction to Container-native Virtualization
1.2. WEB CONSOLE OPERATIONS

1.2.1. Managing virtual machines
1.2.1.1. Creating a virtual machine with the interactive wizard
1.2.1.2. Creating a virtual machine using a YAML configuration file
1.2.1.3. Editing a virtual machine
1.2.1.4. Editing the YAML of a virtual machine
1.2.1.5. Viewing the events of a virtual machine
1.2.1.6. Deleting a virtual machine

1.2.2. Controlling virtual machines
1.2.2.1. Starting a virtual machine
1.2.2.2. Stopping a virtual machine
1.2.2.3. Restarting a virtual machine

1.2.3. Accessing virtual machine consoles
1.2.3.1. Virtual machine console sessions
1.2.3.2. Connecting to the VNC console
1.2.3.3. Connecting to the serial console

1.2.4. Managing virtual machine NICs
1.2.4.1. Creating a NIC for a virtual machine
1.2.4.2. Deleting a NIC from a virtual machine

1.2.5. Managing virtual machine disks
1.2.5.1. Creating a disk for a virtual machine
1.2.5.2. Deleting a disk from a virtual machine

1.2.6. Managing virtual machine templates
1.2.6.1. Creating a virtual machine template with the interactive wizard
1.2.6.2. Editing the YAML of a virtual machine template
1.2.6.3. Deleting a virtual machine template

1.3. CLI OPERATIONS
1.3.1. Before you begin

1.3.1.1. OpenShift Container Platform client commands
1.3.1.2. Virtctl commands
1.3.1.3. Ensure correct OpenShift Container Platform project

1.3.2. Configuring networking for virtual machines
1.3.2.1. Viewing guest IP addresses
1.3.2.2. Configuring masquerade mode

1.3.3. Importing and uploading virtual machines and disk images
1.3.3.1. Uploading a local disk image to a new PVC
1.3.3.2. Importing an existing virtual machine image with DataVolumes
1.3.3.3. Importing a virtual machine disk to a PVC
1.3.3.4. Cloning an existing PVC and creating a virtual machine using a dataVolumeTemplate
1.3.3.5. Cloning the PVC of an existing virtual machine disk

1.3.4. Creating new blank disk images
1.3.4.1. Creating a blank disk image with a DataVolume manifest
1.3.4.2. Creating a blank disk image with a PVC manifest

1.3.5. Managing virtual machines
1.3.5.1. Creating a new virtual machine from the CLI
1.3.5.2. Deleting virtual machines and virtual machine PVCs

1.3.6. Controlling virtual machines
1.3.6.1. Controlling virtual machines

4
4
4
4
4
4
5
6
6
7
7
7
7
8
8
9
9
9
9

10
10
10
10
10
11
11
11

12
12
13
13
13
13
14
14
14
15
16
16
17
19
21
23
24
24
25
25
25
26
27
27

Table of Contents

1

1.3.7. Accessing virtual machine consoles
1.3.7.1. Accessing the serial console of a VMI
1.3.7.2. Accessing the graphical console of a VMI with VNC
1.3.7.3. Accessing a virtual machine instance via SSH

1.3.8. Events, logs, errors, and metrics
1.3.8.1. Events
1.3.8.2. Logs
1.3.8.3. Metrics

1.4. MANAGING VIRTIO DRIVERS FOR MICROSOFT WINDOWS VIRTUAL MACHINES
1.4.1. VirtIO drivers for Microsoft Windows virtual machines
1.4.2. Adding VirtIO drivers container disk to a virtual machine
1.4.3. Installing VirtIO drivers during Windows installation
1.4.4. Installing VirtIO drivers on an existing Windows virtual machine
1.4.5. Removing the VirtIO container disk from a virtual machine

1.5. ADVANCED VIRTUAL MACHINE CONFIGURATION
1.5.1. Using an Open vSwitch bridge as the network source for a VM
1.5.2. PXE booting with a specified MAC address
1.5.3. Configuring guest memory overcommitment
1.5.4. Disabling guest memory overhead accounting

1.6. CLUSTER MAINTENANCE TASKS
1.6.1. Manually refreshing TLS certificates

1.7. REFERENCE
1.7.1. Virtual machine wizard fields
1.7.2. Virtual machine template wizard fields
1.7.3. Cloud-init fields
1.7.4. Networking fields
1.7.5. Storage fields
1.7.6. Virtual machine actions

1.7.6.1. Supported VirtIO drivers for Microsoft Windows virtual machines in Container-native Virtualization
1.7.6.2. Types of storage volumes for virtual machines
1.7.6.3. Template: PVC configuration file
1.7.6.4. Template: VM configuration file
1.7.6.5. Template: Windows VMI configuration file
1.7.6.6. Template: VM configuration file (DataVolume)
1.7.6.7. Template: DataVolume import configuration file
1.7.6.8. Template: DataVolume clone configuration file
1.7.6.9. Template: VMI configuration file for PXE booting

27
27
27
28
28
29
29
29
30
30
30
31
31
32
33
33
34
37
37
38
38
39
39
40
41

42
42
43
43
43
44
45
45
46
47
48
48

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

2

Table of Contents

3

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

1.1. PRODUCT OVERVIEW

1.1.1. Introduction to Container-native Virtualization

Container-native Virtualization is an add-on to OpenShift Container Platform that allows virtual machine
workloads to run and be managed alongside container workloads. You can create virtual machines from
disk images imported using the containerized data importer (CDI) controller, or from scratch within
OpenShift Container Platform.

Container-native Virtualization introduces two new objects to OpenShift Container Platform:

Virtual Machine: The virtual machine in OpenShift Container Platform

Virtual Machine Instance: A running instance of the virtual machine

With the Container-native Virtualization add-on, virtual machines run in pods and have the same
network and storage capabilities as standard pods.

Existing virtual machine disks are imported into persistent volumes (PVs), which are made accessible to
Container-native Virtualization virtual machines using persistent volume claims (PVCs). In OpenShift
Container Platform, the virtual machine object can be modified or replaced as needed, without affecting
the persistent data stored on the PV.

IMPORTANT

Container-native Virtualization is currently a Technology Preview feature. For details
about Red Hat support for Container-native Virtualization, see the Container-native
Virtualization - Technology Preview Support Policy.

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

1.2. WEB CONSOLE OPERATIONS

1.2.1. Managing virtual machines

1.2.1.1. Creating a virtual machine with the interactive wizard

The web console features an interactive wizard that guides you through Basic Settings, Networking,
and Storage screens to simplify the process of creating virtual machines. All required fields are marked
by a *. The wizard prevents you from moving to the next screen until the required fields have been
completed.

NICs and storage disks can be created and attached to virtual machines after they have been created.

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

4

https://access.redhat.com/articles/3742571
https://access.redhat.com/support/offerings/techpreview/

Bootable Disk

If either URL or Container are selected as the Provision Source in the Basic Settings screen, a
rootdisk disk is created and attached to the virtual machine as the Bootable Disk. You can modify the
rootdisk but you cannot remove it.

A Bootable Disk is not required for virtual machines provisioned from a PXE source if there are no disks
attached to the virtual machine. If one or more disks are attached to the virtual machine, you must select
one as the Bootable Disk.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Click Create Virtual Machine and select Create with Wizard.

3. Fill in all required Basic Settings. Selecting a Template automatically fills in these fields.

4. Click Next to progress to the Networking screen. A nic0 NIC is attached by default.

a. (Optional) Click Create NIC to create additional NICs.

b. (Optional) You can remove any or all NICs by clicking the ⋮ button and selecting Remove
NIC. A virtual machine does not need a NIC attached to be created. NICs can be created
after the virtual machine has been created.

5. Click Next to progress to the Storage screen.

a. (Optional) Click Create Disk to create additional disks. These disks can be removed by
clicking the ⋮ button and selecting Remove Disk.

b. (Optional) Click on a disk to modify available fields. Click the ✓ button to save the update.

c. (Optional) Click Attach Disk to choose an available disk from the Select Storage drop-
down list.

6. Click Create Virtual Machine >. The Results screen displays the JSON configuration file for the
virtual machine.

The virtual machine is listed in Workloads → Virtual Machines.

1.2.1.2. Creating a virtual machine using a YAML configuration file

Create a virtual machine by writing or pasting a YAML configuration file in the web console in the
Workloads → Virtual Machines screen. A valid example virtual machine configuration is provided by
default whenever you open the YAML edit screen.

If your YAML configuration is invalid when you click Create, an error message indicates the parameter in
which the error occurs. Only one error is shown at a time.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration you have made.

Procedure

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

5

1. Click Workloads → Virtual Machines from the side menu.

2. Click Create Virtual Machine and select Create from YAML.

3. Write or paste your virtual machine configuration in the editable window.

a. Alternatively, use the example virtual machine provided by default in the YAML screen.

4. (Optional) Click Download to download the YAML configuration file in its present state.

5. Click Create to create the virtual machine.

The virtual machine is listed in Workloads → Virtual Machines.

1.2.1.3. Editing a virtual machine

You can edit some values of a virtual machine in the web console, either by editing the YAML directly, or
from the Virtual Machine Overview screen.

When editing from the Virtual Machine Overview screen, the virtual machine must be Off.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a Virtual Machine.

3. Click Edit to make editable fields available.

4. You can change the Flavor but only to Custom, which provides additional fields for CPU and
Memory.

5. Click Save.

The updated values are shown after the operation is processed.

1.2.1.4. Editing the YAML of a virtual machine

You can edit the YAML configuration of a virtual machine directly within the web console.

Not all parameters can be updated. If you edit values that cannot be changed and click Save, an error
message indicates the parameter that was not able to be updated.

The YAML configuration can be edited while the virtual machine is Running, however the changes will
only take effect after the virtual machine has been stopped and started again.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration you have made.

Procedure

1. Click Workloads → Virtual Machine from the side menu.

2. Select a virtual machine.

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

6

3. Click the YAML tab to display the editable configuration.

a. (Optional) You can click Download to download the YAML file locally in its current state.

4. Edit the file and click Save.

A confirmation message shows that the modification has been successful, including the updated version
number for the object.

1.2.1.5. Viewing the events of a virtual machine

You can view the stream events for a running a virtual machine from the Virtual Machine Details screen
of the web console.

The ▮▮ button pauses the events stream.
The ▶ button continues a paused events stream.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a Virtual Machine.

3. Click Events to view all events for the virtual machine.

1.2.1.6. Deleting a virtual machine

Deleting a virtual machine permanently removes it from the cluster.

Delete a virtual machine using the ⋮ button of the virtual machine in the Workloads → Virtual
Machines list, or using the Actions control of the Virtual Machine Details screen.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Click the ⋮ button of the virtual machine to delete and select Delete Virtual Machine.

a. Alternatively, click the virtual machine name to open the Virtual Machine Details screen
and click Actions → Delete Virtual Machine.

3. In the confirmation pop-up window, click Delete to permanently delete the virtual machine.

1.2.2. Controlling virtual machines

1.2.2.1. Starting a virtual machine

Virtual machines can be started using the ⋮ button of each virtual machine in the Workloads → Virtual
Machines list.

These same control operations can be done using the Actions control of the Virtual Machine Details
screen.

Procedure

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

7

1. Click Workloads → Virtual Machine from the side menu.

2. Click the ⋮ button of the virtual machine and select Start Virtual Machine.

a. Alternatively, click the virtual machine name to open the Virtual Machine Details screen
and click Actions and select Start Virtual Machine.

3. In the confirmation pop-up window, click Start to start the virtual machine.

NOTE

When a virtual machine provisioned from a URL source is started for the first time, the
virtual machine will be in the Importing state while Container-native Virtualization
imports the container from the URL endpoint. This may take several minutes depending
on the size of the image.

1.2.2.2. Stopping a virtual machine

A running virtual machines can be stopped using the ⋮ button of each virtual machine in the Workloads
→ Virtual Machines list.

These same control operations can be done using the Actions control of the Virtual Machine Details
screen.

Procedure

1. Click Workloads → Virtual Machine from the side menu.

2. Click the ⋮ button of the virtual machine and select Stop Virtual Machine.

a. Alternatively, click the virtual machine name to open the Virtual Machine Details screen
and click Actions and select Stop Virtual Machine.

3. In the confirmation pop-up window, click Stop to stop the virtual machine.

1.2.2.3. Restarting a virtual machine

A running virtual machines can be restarted using the ⋮ button of each virtual machine in the
Workloads → Virtual Machines list.

These same control operations can be done using the Actions control of the Virtual Machine Details
screen.

IMPORTANT

Do not restart a virtual machine while it has a status of Importing. This will result in an
error for the virtual machine and is a known issue .

Procedure

1. Click Workloads → Virtual Machine from the side menu.

2. Click the ⋮ button of the virtual machine and select Restart Virtual Machine.

a. Alternatively, click the virtual machine name to open the Virtual Machine Details screen
and click Actions and select Restart Virtual Machine.

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/container-native_virtualization_release_notes/#RN_known_issues

3. In the confirmation pop-up window, click Restart to restart the virtual machine.

1.2.3. Accessing virtual machine consoles

1.2.3.1. Virtual machine console sessions

You can connect to the VNC and serial consoles of a running virtual machine from the Consoles tab in
the Virtual Machine Details screen of the web console.

There are two consoles available: the graphical VNC Console and the Serial Console. The VNC
Console opens by default whenever you navigate to the Consoles tab. You can switch between the
consoles using the VNC Console|Serial Console drop-down list.

Console sessions remain active in the background unless they are disconnected. When the Disconnect
before switching checkbox is active and you switch consoles, the current console session is
disconnected and a new session with the selected console connects to the virtual machine. This ensures
only one console session is open at a time.

Options for the VNC Console

The Send Key button lists key combinations to send to the virtual machine.

Options for the Serial Console

Use the Disconnect button to manually disconnect the Serial Console session from the virtual machine.
Use the Reconnect button to manually open a Serial Console session to the virtual machine.

1.2.3.2. Connecting to the VNC console

Connect to the VNC console of a running virtual machine from the Consoles tab in the Virtual Machine
Details screen of the web console.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a virtual machine.

3. Click Consoles. The VNC console opens by default.

1.2.3.3. Connecting to the serial console

Connect to the Serial Console of a running virtual machine from the Consoles tab in the Virtual
Machine Details screen of the web console.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a virtual machine.

3. Click Consoles. The VNC console opens by default.

4. Click the VNC Console drop-down list and select Serial Console.

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

9

1.2.4. Managing virtual machine NICs

1.2.4.1. Creating a NIC for a virtual machine

Create and attach additional NICs to a virtual machine from the web console.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a virtual machine template.

3. Click Network Interfaces to display the NICs already attached to the virtual machine.

4. Click Create NIC to create a new slot in the list.

5. Fill in the NAME, NETWORK, and MAC ADDRESS details for the new NIC.

6. Click the ✓ button to save and attach the NIC to the virtual machine.

1.2.4.2. Deleting a NIC from a virtual machine

Deleting a NIC from a virtual machine detaches and permanently deletes the NIC.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a virtual machine.

3. Click Network Interfaces to display the NICs already attached to the virtual machine.

4. Click the ⋮ button of the NIC you wish to delete and select Delete.

5. In the confirmation pop-up window, click Delete to detach and delete the NIC.

1.2.5. Managing virtual machine disks

1.2.5.1. Creating a disk for a virtual machine

Create and attach additional storage disks to a virtual machine from the web console.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a virtual machine.

3. Click Disks to display the disks already attached to the virtual machine.

4. Click Create Disk to create a new slot in the list.

5. Fill in the NAME, SIZE, and optional STORAGE CLASS details for the new disk.

6. Click the ✓ button to save and attach the disk to the virtual machine.

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

10

1.2.5.2. Deleting a disk from a virtual machine

Deleting a disk from a virtual machine detaches and permanently deletes the disk.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a virtual machine.

3. Click Disks to display the disks already attached to the virtual machine.

4. Click the ⋮ button of the disk you wish to delete and select Delete.

5. Click Confirm to detach and delete the disk.

1.2.6. Managing virtual machine templates

1.2.6.1. Creating a virtual machine template with the interactive wizard

Virtual machines templates are an easy way to create multiple virtual machines with similar
configuration. After a template is created, reference the template when creating virtual machines.

The web console features an interactive wizard that guides you through Basic Settings, Networking,
and Storage screens to simplify the process of creating virtual machine templates. All required fields are
marked by a *. The wizard prevents you from moving to the next screen until the required fields have
been completed.

NICs and storage disks can be created and attached to virtual machines after they have been created.

Bootable Disk

If either URL or Container are selected as the Provision Source in the Basic Settings screen, a
rootdisk disk is created and attached to virtual machines as the Bootable Disk. You can modify the
rootdisk but you cannot remove it.

A Bootable Disk is not required for virtual machines provisioned from a PXE source if there are no disks
attached to the virtual machine. If one or more disks are attached to the virtual machine, you must select
one as the Bootable Disk.

Procedure

1. Click Workloads → Virtual Machine Templates from the side menu.

2. Click Create Template and select Create with Wizard.

3. Fill in all required Basic Settings.

4. Click Next to progress to the Networking screen. An nic0 NIC is attached by default.

a. (Optional) Click Create NIC to create additional NICs.

b. (Optional) You can remove any or all NICs by clicking the ⋮ button and selecting Remove
NIC. Virtual machines created from a template do not need a NIC attached. NICs can be
created after a virtual machine has been created.

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

11

5. Click Next to progress to the Storage screen.

a. (Optional) Click Create Disk to create additional disks. These disks can be removed by
clicking the ⋮ button and selecting Remove Disk.

b. (Optional) Click on a disk to modify available fields. Click the ✓ button to save the update.

c. (Optional) Click Attach Disk to choose an available disk from the Select Storage drop-
down list.

6. Click Create Virtual Machine Template >. The Results screen displays the JSON configuration
file for the virtual machine template.

The template is listed in Workloads → Virtual Machine Templates.

1.2.6.2. Editing the YAML of a virtual machine template

You can edit the YAML configuration of a virtual machine template directly within the web console.

Not all parameters can be updated. If you edit values that cannot be changed and click Save, an error
message shows, indicating the parameter that was not able to be updated.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration you have made.

Procedure

1. Click Workloads → Virtual Machine Template from the side menu.

2. Select a template.

3. Click the YAML tab to display the editable configuration.

a. (Optional) You can click Download to download the YAML file locally in its current state.

4. Edit the file and click Save.

A confirmation message shows the modification has been successful, including the updated version
number for the object.

1.2.6.3. Deleting a virtual machine template

Deleting a virtual machine template permanently removes it from the cluster.

Delete a virtual machine template using the ⋮ button of the template in the Workloads → Virtual
Machines Templates list, or using the Actions control of the Virtual Machine Templates Details
screen.

Procedure

1. Click Workloads → Virtual Machine Templates from the side menu.

2. Click the ⋮ button of the template to delete and select Delete Template.

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

12

a. Alternatively, click the template name to open the Virtual Machine Template Details
screen and click Actions → Delete Template.

3. In the confirmation pop-up window, click Delete to permanently delete the template.

1.3. CLI OPERATIONS

1.3.1. Before you begin

1.3.1.1. OpenShift Container Platform client commands

The oc client is a command-line utility for managing OpenShift Container Platform resources. The
following table contains the oc commands that you use with Container-native Virtualization.

Table 1.1. oc commands

Command Description

oc get <object_type> Display a list of objects for the specified object type in the
project.

oc describe <object_type>
<resource_name>

Display details of the specific resource.

oc create -f <config> Create a resource from a filename or from stdin.

oc process -f <config> Process a template into a configuration file. Templates have
"parameters", which are either generated on creation or set by
the user, as well as metadata describing the template.

oc apply -f <file> Apply a configuration to a resource by filename or stdin.

See the OpenShift Container Platform CLI Reference Guide , or run the oc --help command, for
definitive information on the OpenShift Container Platform client.

1.3.1.2. Virtctl commands

The virtctl client is a command-line utility for managing Container-native Virtualization resources. The
following table contains the virtctl commands used throughout the Container-native Virtualization
documentation.

Table 1.2. Virtctl client

Command Description

virtctl start <vm> Start a virtual machine, creating a virtual machine instance.

virtctl stop <vmi> Stop a virtual machine instance.

virtctl restart <vmi> Restart a virtual machine instance.

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/#cli-reference-index

virtctl expose <vm> Create a service that forwards a designated port of a virtual
machine or virtual machine instance and expose the service
on the specified port of the node.

virtctl console <vmi> Connect to a serial console of a virtual machine instance.

virtctl vnc <vmi> Open a VNC connection to a virtual machine instance.

virtctl image-upload <… > Upload a virtual machine disk from a client machine to the
cluster.

Command Description

1.3.1.3. Ensure correct OpenShift Container Platform project

Before you modify objects using the shell or web console, ensure you use the correct project. In the
shell, use the following commands:

Command Description

oc projects List all available projects. The current project is marked with
an asterisk.

oc project <project_name> Switch to another project.

oc new-project <project_name> Create a new project.

In the Web Console click the Project list and select the appropriate project or create a new one.

1.3.2. Configuring networking for virtual machines

1.3.2.1. Viewing guest IP addresses

You can view the IP addresses that are assigned to your Linux virtual machines by installing a QEMU
guest agent on the virtual machine. When the guest agent is running, you can view the virtual machine IP
addresses for each interface by checking the VMI status on the command line.

Procedure

1. Install the QEMU guest agent on the virtual machine:

$ yum install -y qemu-guest-agent

2. Start the QEMU guest agent service:

$ systemctl start qemu-guest-agent

3. View the IP address information for a VMI:

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

14

$ oc describe vmi <vmi_name>

...
Interfaces:
 Interface Name: eth0
 Ip Address: 10.244.0.37/24
 Ip Addresses:
 10.244.0.37/24
 fe80::858:aff:fef4:25/64
 Mac: 0a:58:0a:f4:00:25
 Name: default
 Interface Name: v2
 Ip Address: 1.1.1.7/24
 Ip Addresses:
 1.1.1.7/24
 fe80::f4d9:70ff:fe13:9089/64
 Mac: f6:d9:70:13:90:89
 Interface Name: v1
 Ip Address: 1.1.1.1/24
 Ip Addresses:
 1.1.1.1/24
 1.1.1.2/24
 1.1.1.4/24
 2001:de7:0:f101::1/64
 2001:db8:0:f101::1/64
 fe80::1420:84ff:fe10:17aa/64
 Mac: 16:20:84:10:17:aa

NOTE

You can also view the IP address information by running ip addr on the virtual
machine, or by running oc get vmi -o yaml.

1.3.2.2. Configuring masquerade mode

You can use masquerade mode to hide a virtual machine’s outgoing traffic behind the pod IP address.
Masquerade mode uses Network Address Translation (NAT) to connect virtual machines to the pod
network backend through a Linux bridge.

Enable masquerade mode and allow traffic to enter the virtual machine by editing your virtual machine
configuration file.

Prerequisites

The virtual machine must be configured to use DHCP to acquire IPv4 addresses.

Procedure

1. Edit the interfaces spec of your virtual machine configuration file:

kind: VM
spec:
 domain:
 devices:
 interfaces:

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

15

1

2

Connect using masquerade mode

Allow incoming traffic on port 80

1.3.3. Importing and uploading virtual machines and disk images

1.3.3.1. Uploading a local disk image to a new PVC

You can use virtctl image-upload to upload a virtual machine disk image from a client machine to your
OpenShift Container Platform cluster. This creates a PVC that can be associated with a virtual machine
after the upload has completed.

Prerequisites

A virtual machine disk image, in RAW or QCOW2 format. It can be compressed using xz or gzip.

kubevirt-virtctl must be installed on the client machine.

The client machine must be configured to trust the OpenShift router’s certificate.

Procedure

1. Identify the following items:

File location of the VM disk image you want to upload

Name and size desired for the resulting PVC

2. Remove the existing passthrough route:

$ oc delete route -n cdi cdi-uploadproxy-route

3. Create a secured route using re-encryption termination:

$ oc get secret -n cdi cdi-upload-proxy-ca-key -o=jsonpath="{.data['tls\.crt']}" | base64 -d >
ca.pem

$ oc create route reencrypt cdi-uploadproxy-route -n cdi --service=cdi-uploadproxy --dest-ca-
cert=ca.pem

4. Use the virtctl image-upload command to upload your VM image, making sure to include your
chosen parameters. For example:

 - name: red
 masquerade: {} 1
 ports:
 - port: 80 2
 networks:
 - name: red
 pod: {}

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#overview

$ virtctl image-upload --uploadproxy-url=https://$(oc get route cdi-uploadproxy-route -n cdi -
o=jsonpath='{.status.ingress[0].host}') --pvc-name=upload-fedora-pvc --pvc-size=10Gi --
image-path=/images/fedora28.qcow2

CAUTION

To allow insecure server connections when using HTTPS, use the --insecure parameter. Be
aware that when you use the --insecure flag, the authenticity of the upload endpoint is not
verified.

5. To verify that the PVC was created, view all PVC objects:

$ oc get pvc

Next, you can create a virtual machine object to bind to the PVC.

1.3.3.2. Importing an existing virtual machine image with DataVolumes

DataVolume objects provide orchestration of import, clone, and upload operations associated with an
underlying PVC. DataVolumes are integrated with KubeVirt and they can prevent a virtual machine from
being started before the PVC has been prepared.

CAUTION

When you import a disk image into a PersistentVolumeClaim, the disk image is expanded to use the full
storage capacity that is requested in the PVC. To use this space, the disk partitions and file system(s) in
the virtual machine might need to be expanded.

The resizing procedure varies based on the operating system installed on the VM. Refer to the operating
system documentation for details.

Prerequisites

The virtual machine disk can be RAW or QCOW2 format and can be compressed using xz or gz.

The disk image must be available at either an HTTP or S3 endpoint.

Procedure

1. Identify an HTTP or S3 file server that hosts the virtual disk image that you want to import. You
need the complete URL in the correct format:

http://www.example.com/path/to/data

s3://bucketName/fileName

2. If your data source requires authentication credentials, edit the endpoint-secret.yaml file and
apply it to the cluster:

apiVersion: v1
kind: Secret
metadata:
 name: <endpoint-secret>
 labels:

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

17

http://www.example.com/path/to/data

 app: containerized-data-importer
type: Opaque
data:
 accessKeyId: "" # <optional: your key or user name, base64 encoded>
 secretKey: "" # <optional: your secret or password, base64 encoded>

$ oc apply -f endpoint-secret.yaml

3. Edit the VM configuration file, optionally including the secretRef parameter. In our example, we
used a Fedora image:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume
 name: vm-fedora-datavolume
spec:
 dataVolumeTemplates:
 - metadata:
 creationTimestamp: null
 name: fedora-dv
 spec:
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi
 storageClassName: local
 source:
 http:
 url:
https://download.fedoraproject.org/pub/fedora/linux/releases/28/Cloud/x86_64/images/Fedora-
Cloud-Base-28-1.1.x86_64.qcow2
 secretRef: "" # Optional
 status: {}
 running: false
 template:
 metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: datavolumedisk1
 machine:
 type: ""
 resources:
 requests:

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

18

1

 memory: 64M
 terminationGracePeriodSeconds: 0
 volumes:
 - dataVolume:
 name: fedora-dv
 name: datavolumedisk1
status: {}

4. Create the virtual machine:

$ oc create -f vm-<name>-datavolume.yaml

The virtual machine and a DataVolume will now be created. The CDI controller creates an
underlying PVC with the correct annotation and begins the import process. When the import
completes, the DataVolume status changes to Succeeded and the virtual machine will be
allowed to start.

DataVolume provisioning happens in the background, so there is no need to monitor it. You can
start the VM and it will not run until the import is complete.

Optional verification steps

1. Run $ oc get pods and look for the importer pod. This pod downloads the image from the
specified URL and stores it on the provisioned PV.

2. Monitor the DataVolume status until it shows Succeeded.

$ oc describe dv <data-label> 1

The data label for the DataVolume specified in the VirtualMachine configuration file.

3. To verify that provisioning is complete and that the VMI has started, try accessing its serial
console:

$ virtctl console <vm-fedora-datavolume>

1.3.3.3. Importing a virtual machine disk to a PVC

The process of importing a virtual machine disk is handled by the CDI controller. When a PVC is created
with special cdi.kubevirt.io/storage.import annotations, the controller creates a short-lived import pod
that attaches to the PV and downloads the virtual disk image into the PV.

You cannot import images from insecure registries using the Containerized Data Importer, even if you
mark a registry as insecure with the openshift_docker_insecure_registries attribute in your OpenShift
Container Platform inventory file.

CAUTION

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

19

CAUTION

When you import a disk image into a PersistentVolumeClaim, the disk image is expanded to use the full
storage capacity that is requested in the PVC. To use this space, the disk partitions and file system(s) in
the virtual machine might need to be expanded.

The resizing procedure varies based on the operating system installed on the VM. Refer to the operating
system documentation for details.

Prerequisites

The virtual machine disk can be RAW or QCOW2 format and can be compressed using xz or
gzip.

The disk image must be available at either an HTTP or S3 endpoint.

NOTE

For locally provisioned storage, the PV needs to be created before the PVC. This is not
required for OpenShift Container Storage, for which the PVs are created dynamically.

Procedure

1. Identify an HTTP or S3 file server hosting the virtual disk image that you want to import. You
need the complete URL, in either format:

http://www.example.com/path/to/data

s3://bucketName/fileName
Use this URL as the cdi.kubevirt.io/storage.import.endpoint annotation value in your PVC
configuration file.

For example: cdi.kubevirt.io/storage.import.endpoint:
https://download.fedoraproject.org/pub/fedora/linux/releases/28/Cloud/x86_64/images
/Fedora-Cloud-Base-28-1.1.x86_64.qcow2

2. If the file server requires authentication credentials, edit the endpoint-secret.yaml file:

apiVersion: v1
kind: Secret
metadata:
 name: endpoint-secret
 labels:
 app: containerized-data-importer
type: Opaque
data:
 accessKeyId: "" # <optional: your key or user name, base64 encoded>
 secretKey: "" # <optional: your secret or password, base64 encoded>

a. Save the value of metadata.name to use with the cdi.kubevirt.io/storage.import.secret
annotation in your PVC configuration file.
For example: cdi.kubevirt.io/storage.import.secret: endpoint-secret

3. Apply endpoint-secret.yaml to the cluster:

$ oc apply -f endpoint-secret.yaml

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

20

1

2

1

4. Edit the PVC configuration file, making sure to include the required annotations.
For example:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: "example-vmdisk-volume"
 labels:
 app: containerized-data-importer
 annotations:
 cdi.kubevirt.io/storage.import.endpoint:
"https://download.fedoraproject.org/pub/fedora/linux/releases/28/Cloud/x86_64/images/Fedora-
Cloud-Base-28-1.1.x86_64.qcow2" 1
 cdi.kubevirt.io/storage.import.secret: "endpoint-secret" 2
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi

Endpoint annotation for the import image URL

Endpoint annotation for the authorization secret

5. Create the PVC using the oc CLI:

$ oc create -f <pvc.yaml> 1

The PersistentVolumeClaim file name.

After the disk image is successfully imported into the PV, the import pod expires, and you can
bind the PVC to a virtual machine object within OpenShift Container Platform.

Next, create a virtual machine object to bind to the PVC.

1.3.3.4. Cloning an existing PVC and creating a virtual machine using a
dataVolumeTemplate

You can create a virtual machine that clones the PVC of an existing virtual machine into a DataVolume.
By referencing a dataVolumeTemplate in the virtual machine spec, the source PVC is cloned to a
DataVolume, which is then automatically used for the creation of the virtual machine.

NOTE

When a DataVolume is created as part of the DataVolumeTemplate of a virtual machine,
the lifecycle of the DataVolume is then dependent on the virtual machine: If the virtual
machine is deleted, the DataVolume and associated PVC will also be deleted.

Prerequisites

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

21

A PVC of an existing virtual machine disk. The associated virtual machine must be powered
down, or the clone process will be queued until the PVC is available.

Procedure

1. Examine the DataVolume you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a VirtualMachine object. The following virtual machine example, <vm-
dv-clone>, clones <my-favorite-vm-disk> (located in the <source-namespace> namespace)
and creates the 2Gi <favorite-clone> DataVolume, referenced in the virtual machine as the
<favorite-clone> volume.
For example:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
 name: vm-dv-clone 1
spec:
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: root-disk
 resources:
 requests:
 memory: 64M
 volumes:
 - dataVolume:
 name: favorite-clone
 name: root-disk
 dataVolumeTemplates:
 - metadata:
 name: favorite-clone
 spec:
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi
 source:
 pvc:
 namespace: "source-namespace"
 name: "my-favorite-vm-disk"

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

22

1 The virtual machine to create.

3. Create the virtual machine with the PVC-cloned DataVolume:

$ oc create -f <vm-clone-dvt>.yaml

1.3.3.5. Cloning the PVC of an existing virtual machine disk

You can clone a PVC of an existing virtual machine disk into a new DataVolume. The new DataVolume
can then be used for a new virtual machine.

NOTE

When a DataVolume is created independently of a virtual machine, the lifecycle of the
DataVolume is independent of the virtual machine: If the virtual machine is deleted,
neither the DataVolume nor its associated PVC will be deleted.

Prerequisites

A PVC of an existing virtual machine disk. The associated virtual machine must be powered
down, or the clone process will be queued until the PVC is available.

Procedure

1. Examine the DataVolume you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a DataVolume object that specifies the following parameters:

metadata:
name

The name of the new DataVolume.

source:
pvc:
namespace

The namespace in which the source PVC exists.

source:
pvc: name

The name of the source PVC.

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

23

storage The size of the new DataVolume. Be sure to allocate enough space or the cloning
operation fails. The size must be the same or larger as the source PVC.

For example:

apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: cloner-datavolume
spec:
 source:
 pvc:
 namespace: "<source-namespace>"
 name: "<my-favorite-vm-disk>"
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi

3. Start the PVC clone by creating the DataVolume:

$ oc create -f <datavolume>.yaml

DataVolumes prevent a virtual machine from starting before the PVC is prepared so you can create a
virtual machine that references the new DataVolume while the PVC clones.

1.3.4. Creating new blank disk images

1.3.4.1. Creating a blank disk image with a DataVolume manifest

You can use blank disks to increase your storage capacity or create new data partitions. You can create
a new blank disk image in a PersistentVolumeClaim with a DataVolume manifest file.

Prerequisites

Container-native Virtualization 1.4

At least one available PersistentVolume

Procedure

1. Create the DataVolume manifest file:

apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: blank-image-datavolume
spec:
 source:
 blank: {}

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

24

 pvc:
 # Optional: Set the storage class or omit to accept the default
 # storageClassName: "hostpath"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

2. Deploy the DataVolume manifest to create the blank disk image:

$ oc create -f blank-image-datavolume.yaml

1.3.4.2. Creating a blank disk image with a PVC manifest

You can use blank disks to increase your storage capacity or create new data partitions. You can create
a new blank disk image in a PersistentVolumeClaim with a PVC manifest file.

Prerequisites

Container-native Virtualization 1.4

At least one available PersistentVolume

Procedure

1. Create the PVC manifest file:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: "blank-image-pvc"
 labels:
 app: containerized-data-importer
 annotations:
 cdi.kubevirt.io/storage.import.source: "none"
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 4Gi
 # Optional: Set the storage class or omit to accept the default
 # storageClassName: local

2. Deploy the PVC manifest to create the blank disk image:

$ oc create -f blank-image-pvc.yaml

1.3.5. Managing virtual machines

1.3.5.1. Creating a new virtual machine from the CLI

The spec object of the VirtualMachine configuration file references the virtual machine settings, such as

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

25

The spec object of the VirtualMachine configuration file references the virtual machine settings, such as
the number of cores and the amount of memory, the disk type, and the volumes to use.

Attach the virtual machine disk to the virtual machine by referencing the relevant PVC claimName as a
volume.

NOTE

ReplicaSet is not currently supported in Container-native Virtualization.

See the Reference section for information about volume types and sample configuration files.

Table 1.3. Domain settings

Setting Description

cores The number of cores inside the virtual machine. Must
be a value greater than or equal to 1.

memory The amount of RAM allocated to the virtual machine
by the node. Specify the denomination with M for
Megabyte or Gi for Gigabyte.

disks: name The Name of the volume which is referenced. Must
match the name of a volume.

Table 1.4. Volume settings

Setting Description

name The Name of the volume. Must be a DNS_LABEL and
unique within the virtual machine.

persistentVolumeClaim The PVC to attach to the virtual machine. The
claimName of the PVC must be in the same project
as the virtual machine.

See the kubevirt API Reference for a definitive list of virtual machine settings.

To create a virtual machine with the OpenShift Container Platform client:

$ oc create -f <vm.yaml>

Virtual machines are created in a Stopped state. Run a virtual machine instance by starting it .

1.3.5.2. Deleting virtual machines and virtual machine PVCs

When you delete a virtual machine, the PVC it uses is unbound. If you do not plan to bind this PVC to a
different VM, delete it, too.

You can only delete objects in the project you are currently working in, unless you specify the -n

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

26

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubevirt.io/api-reference/master/definitions.html#_v1_virtualmachinespec

You can only delete objects in the project you are currently working in, unless you specify the -n
<project_name> option.

$ oc delete vm fedora-vm

$ oc delete pvc fedora-vm-pvc

1.3.6. Controlling virtual machines

1.3.6.1. Controlling virtual machines

You can start, stop, or restart a virtual machine, depending on its current state.

Use the virtctl client utility to change the state of the virtual machine, open virtual console sessions with
the virtual machines, and expose virtual machine ports as services.

The virtctl syntax is: virtctl <action> <vm_name> <options>

You can only control objects in the project you are currently working in, unless you specify the -n
<project_name> option.

Examples:

$ virtctl start example-vm

$ virtctl restart example-vm

$ virtctl stop example-vm

oc get vm lists the virtual machines in the project. oc get vmi lists running virtual machine instances.

1.3.7. Accessing virtual machine consoles

1.3.7.1. Accessing the serial console of a VMI

The virtctl console command opens a serial console to the specified virtual machine instance.

Prerequisites

The virtual machine instance you want to access must be running

Procedure

1. Connect to the serial console with virtctl:

$ virtctl console <VMI>

1.3.7.2. Accessing the graphical console of a VMI with VNC

The virtctl client utility can use remote-viewer to open a graphical console to a running virtual machine
instance. This is installed with the virt-viewer package.

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

27

Prerequisites

virt-viewer must be installed.

The virtual machine instance you want to access must be running.

NOTE

If you use virtctl via SSH on a remote machine, you must forward the X session to your
machine for this procedure to work.

Procedure

1. Connect to the graphical interface with the virtctl utility:

$ virtctl vnc <VMI>

2. If the command failed, try using the -v flag to collect troubleshooting information:

$ virtctl vnc <VMI> -v 4

1.3.7.3. Accessing a virtual machine instance via SSH

You can use SSH to access a virtual machine, but first you must expose port 22 on the VM.

The virtctl expose command forwards a virtual machine instance port to a node port and creates a
service for enabled access. The following example creates the fedora-vm-ssh service which forwards
port 22 of the <fedora-vm> virtual machine to a port on the node:

Prerequisites

The virtual machine instance you want to access must be running.

Procedure

1. Run the following command to create the fedora-vm-ssh service:

$ virtctl expose vm <fedora-vm> --port=20022 --target-port=22 --name=fedora-vm-ssh --
type=NodePort

2. Check the service to find out which port the service acquired:

$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
fedora-vm-ssh NodePort 127.0.0.1 <none> 20022:32551/TCP 6s

3. Log in to the virtual machine instance via SSH, using the ipAddress of the node and the port
that you found in Step 2:

$ ssh username@<node IP> -p 32551

1.3.8. Events, logs, errors, and metrics

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

28

1.3.8.1. Events

OpenShift Container Platform events are records of important life-cycle information in a project and are
useful for monitoring and troubleshooting resource scheduling, creation, and deletion issues.

To retrieve the events for the project, run:

$ oc get events

Events are also included in the resource description, which you can retrieve by using the OpenShift
Container Platform client.

$ oc describe <resource_type> <resource_name>
$ oc describe vm <fedora-vm>
$ oc describe vmi <fedora-vm>
$ oc describe pod virt-launcher-fedora-vm-<random>

Resource descriptions also include configuration, scheduling, and status details.

1.3.8.2. Logs

Logs are collected for OpenShift Container Platform builds, deployments, and pods. Virtual machine
logs can be retrieved from the virtual machine launcher pod.

$ oc logs virt-launcher-fedora-vm-zzftf

The -f option follows the log output in real time, which is useful for monitoring progress and error
checking.

If the launcher pod is failing to start, use the --previous option to see the logs of the last attempt.

WARNING

ErrImagePull and ImagePullBackOff errors can be caused by an incorrect
deployment configuration or problems with the images being referenced.

1.3.8.3. Metrics

OpenShift Container Platform Metrics collects memory, CPU, and network performance information for
nodes, components, and containers in the cluster. The specific information collected depends on how
the Metrics subsystem is configured. For more information on configuring Metrics, see the OpenShift
Container Platform Configuring Clusters Guide.

The oc CLI command adm top uses the Heapster API to fetch data about the current state of pods and
nodes in the cluster.

To retrieve metrics for a pod:

$ oc adm top pod <pod_name>

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#install-config-cluster-metrics

1

To retrieve metrics for the nodes in the cluster:

$ oc adm top node

The OpenShift Container Platform web console can represent metric information graphically over a time
range.

1.4. MANAGING VIRTIO DRIVERS FOR MICROSOFT WINDOWS
VIRTUAL MACHINES

1.4.1. VirtIO drivers for Microsoft Windows virtual machines

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines to run
properly in Container-native Virtualization. The supported drivers are available in the virtio-win
container disk of the Red Hat Container Catalog.

The virtio-win container disk must be attached to the virtual machine as a SATA CD drive to enable
driver installation. The VirtIO drivers can be installed during Windows installation on the virtual machine ,
or added to an existing Windows installation .

After the drivers are installed, the virtio-win container disk can be removed from the virtual machine .

1.4.2. Adding VirtIO drivers container disk to a virtual machine

Container-native Virtualization distributes VirtIO drivers for Microsoft Windows as a container disk,
available from the Red Hat Container Catalog. To install or add these drivers to a Windows virtual
machine, attach the virtio-win container disk to the virtual machine as a SATA CD drive.

Procedure

Add the cnv-tech-preview/virtio-win container disk as a cdrom disk in the Windows virtual
machine configuration file. The container disk will be downloaded from the registry if it is not
already present in the cluster.

Container-native Virtualization boots virtual machines disks in the order defined in the
VirtualMachine configuration file. You can either define other disks for the virtual machine before
the virtio-win container disk, or use the optional bootOrder parameter to ensure the virtual
machine boots from the correct disk. If you specify the bootOrder for a disk, it must be specified
for all disks in the configuration.

After the virtual machine has been created and started, the VirtIO drivers can be installed from the

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2 1
 cdrom:
 bus: sata
volumes:
 - containerDisk:
 image: cnv-tech-preview/virtio-win
 name: virtiocontainerdisk

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

30

After the virtual machine has been created and started, the VirtIO drivers can be installed from the
attached SATA CD drive during Windows installation on the virtual machine , or added to an existing
Windows installation.

After the drivers have been installed, you can remove the virtio-win container disk from the virtual
machine.

1.4.3. Installing VirtIO drivers during Windows installation

Install the VirtIO drivers during Windows installation to the virtual machine. At a minimum, you must
install a supported storage driver to select the storage destination for the Windows installation.

Prerequisites

Virtual machine with VirtIO drivers container disk attached as a SATA CD drive .

Windows installation media accessible by the virtual machine.

NOTE

This procedure uses a generic approach to the Windows installation and the installation
method may differ between versions of Windows. Refer to the documentation for the
version of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Begin the Windows installation process.

3. Select the Advanced installation.

4. The storage destination will not be recognised until the driver is loaded. Click Load driver.

5. The drivers are attached as a SATA CD driver. Click OK and browse the CD drive for the storage
driver to load. The drivers are arranged hierarchically according to their driver type, operating
system, and CPU architecture.

6. Repeat the previous two steps for all required drivers.

7. Complete the Windows installation.

After Windows has been installed, you can remove the VirtIO driver container disk from the virtual
machine configuration file.

1.4.4. Installing VirtIO drivers on an existing Windows virtual machine

Install VirtIO drivers on an existing Windows virtual machine.

Prerequisites

Windows virtual machine with VirtIO drivers container disk attached as a SATA CD drive .

NOTE

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

31

NOTE

This procedure uses a generic approach to adding drivers to Windows. The process may
differ slightly between versions of Windows. Refer to the documentation for the version
of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Log in to a Windows user session.

3. Open Device Manager and expand Other devices to list any Unknown device.

a. You may need to open the Device Properties to identify the unknown device. Right-click
the device and select Properties.

b. Click the Details tab and select Hardware Ids in the drop-down list.

c. Compare the Value for the Hardware Ids with the supported VirtIO drivers.

4. Right-click the device and select Update Driver Software.

5. Click Browse my computer for driver software and browse to the location of the driver. The
drivers are arranged hierarchically according to their driver type, operating system, and CPU
architecture.

6. Click Next to install the driver.

7. After the driver installs, click Close to close the window.

8. Reboot the virtual machine to complete the driver installation.

After the drivers have been installed, you can remove the disk from the virtual machine configuration
file.

1.4.5. Removing the VirtIO container disk from a virtual machine

After you have installed all required VirtIO drivers to the virtual machine, the virtio-win container disk no
longer needs to be attached to the virtual machine. Remove the virtio-win container disk from the
virtual machine configuration file.

Procedure

1. Edit the virtual machine configuration in the web console, or edit the configuration file in your
preferred editor, and remove the disk and the volume.

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2
 cdrom:
 bus: sata
volumes:

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

32

2. Reboot the virtual machine for the changes to take effect.

1.5. ADVANCED VIRTUAL MACHINE CONFIGURATION

1.5.1. Using an Open vSwitch bridge as the network source for a VM

With Container-native Virtualization, you can connect a virtual machine instance to an Open vSwitch
bridge that is configured on the node.

Prerequisites

A cluster running OpenShift Container Platform 3.11 or newer

Procedure

1. Prepare the cluster host networks (optional).
If the host network needs additional configuration changes, such as bonding, refer to the Red
Hat Enterprise Linux networking guide.

2. Configure interfaces and bridges on all cluster hosts.
On each node, choose an interface connected to the desired network. Then, create an Open
vSwitch bridge and specify the interface you chose as the bridge’s port.

In this example, we create bridge br1 and connect it to interface eth1. This bridge must be
configured on all nodes. If it is only available on a subset of nodes, make sure that VMIs have
nodeSelector constraints in place.

NOTE

 Any connections to `eth1` are lost once the interface is
assigned to the bridge, so another interface must be present on the host.

$ ovs-vsctl add-br br1
$ ovs-vsctl add-port br1 eth1
$ ovs-vsctl show
8d004495-ea9a-44e1-b00c-3b65648dae5f
 Bridge br1
 Port br1
 Interface br1
 type: internal
 Port "eth1"
 Interface "eth1"
 ovs_version: "2.8.1"

3. Configure the network on the cluster.
L2 networks are treated as cluster-wide resources. Define the network in a network attachment
definition YAML file. You can define the network using the NetworkAttachmentDefinition
CRD.

The NetworkAttachmentDefinition CRD object contains information about pod-to-network

 - containerDisk:
 image: cnv-tech-preview/virtio-win
 name: virtiocontainerdisk

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

33

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/

The NetworkAttachmentDefinition CRD object contains information about pod-to-network
attachment. In the following example, there is an attachment to Open vSwitch bridge br1 and
traffic is tagged to VLAN 100.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vlan-100-net-conf
spec:
 config: '{
 "cniVersion": "0.3.1",
 "type": "ovs",
 "bridge": "br1",
 "vlan": 100
 }'

NOTE

"vlan" is optional. If omitted, the VMI will be attached through a trunk.

4. Edit the virtual machine instance configuration file to include the details of the interface and
network.
Specify that the network is connected to the previously created
NetworkAttachmentDefinition. In this scenario, vlan-100-net is connected to the
NetworkAttachmentDefinition called vlan-100-net-conf:

networks:
- name: default
 pod: {}
- name: vlan-100-net
 multus:
 networkName: vlan-100-net-conf

After you start the VMI, the eth0 interface connects to the default cluster network and eth1
connects to VLAN 100 using bridge br1 on the node running the VMI.

1.5.2. PXE booting with a specified MAC address

PXE booting, or network booting, is supported in Container-native Virtualization. Network booting allows
a computer to boot and load an operating system or other program without requiring a locally attached
storage device. For example, you can use it to choose your desired OS image from a PXE server when
deploying a new host.

The Reference section has a configuration file template for PXE booting.

Prerequisites

A cluster running OpenShift Container Platform 3.11 or newer

A configured interface that allows PXE booting

Procedure

1. Configure a PXE network on the cluster:
a. Create NetworkAttachmentDefinition of PXE network pxe-net-conf:

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

34

a. Create NetworkAttachmentDefinition of PXE network pxe-net-conf:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: pxe-net-conf
spec:
 config: '{
 "cniVersion": "0.3.1",
 "type": "ovs",
 "bridge": "br1"
 }'

NOTE

In this example, the VMI will be attached through a trunk port to the Open
vSwitch bridge <br1>.

b. Create Open vSwitch bridge <br1> and connect it to interface <eth1>, which is connected
to a network that allows for PXE booting:

$ ovs-vsctl add-br br1
$ ovs-vsctl add-port br1 eth1
$ ovs-vsctl show
8d004495-ea9a-44e1-b00c-3b65648dae5f
 Bridge br1
 Port br1
 Interface br1
 type: internal
 Port "eth1"
 Interface "eth1"
 ovs_version: "2.8.1"

NOTE

This bridge must be configured on all nodes. If it is only available on a subset
of nodes, make sure that VMIs have nodeSelector constraints in place.

2. Edit the virtual machine instance configuration file to include the details of the interface and
network.

a. Specify the network and MAC address, if required by the PXE server. If the MAC address is
not specified, a value is assigned automatically. However, note that at this time, MAC
addresses assigned automatically are not persistent.
Ensure that bootOrder is set to 1 so that the interface boots first. In this example, the
interface is connected to a network called <pxe-net>:

interfaces:
- masquerade: {}
 name: default
- bridge: {}

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

35

 name: pxe-net
 macAddress: de:00:00:00:00:de
 bootOrder: 1

NOTE

Boot order is global for interfaces and disks.

b. Assign a boot device number to the disk to ensure proper booting after OS provisioning.
Set the disk bootOrder value to 2:

devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 bootOrder: 2

c. Specify that the network is connected to the previously created
NetworkAttachmentDefinition. In this scenario, <pxe-net> is connected to the
NetworkAttachmentDefinition called <pxe-net-conf>:

networks:
- name: default
 pod: {}
- name: pxe-net
 multus:
 networkName: pxe-net-conf

3. Create the virtual machine instance:

$ oc create -f vmi-pxe-boot.yaml
virtualmachineinstance.kubevirt.io "vmi-pxe-boot" created

4. Wait for the virtual machine instance to run:

$ oc get vmi vmi-pxe-boot -o yaml | grep -i phase
 phase: Running

5. View the virtual machine instance using VNC:

$ virtctl vnc vmi-pxe-boot

6. Watch the boot screen to verify that the PXE boot is successful.

7. Log in to the VMI:

$ virtctl console vmi-pxe-boot

8. Verify the interfaces and MAC address on the VM, and that the interface connected to the
bridge has the specified MAC address. In this case, we used eth1 for the PXE boot, without an IP
address. The other interface, eth0, got an IP address from OpenShift Container Platform.

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

36

$ ip addr
...
3. eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen
1000
 link/ether de:00:00:00:00:de brd ff:ff:ff:ff:ff:ff

1.5.3. Configuring guest memory overcommitment

If your virtual workload requires more memory than available, you can use memory overcommitment to
allocate all or most of the host’s memory to your virtual machine instances. Enabling memory
overcommitment means you can maximize resources that are normally reserved for the host.

For example, if the host has 32 GB RAM, you can leverage memory overcommitment to fit 8 VMs with 4
GB RAM each. This works under the assumption that the VMs will not use all of their memory at the
same time.

Prerequisites

A cluster running OpenShift Container Platform 3.11 or newer

Procedure

To explicitly tell the VMI that it has more memory available than what has been requested from the
cluster, set spec.domain.memory.guest to a higher value than
spec.domain.resources.requests.memory. This process is called memory overcommitment.

In this example, <1024M> is requested from the cluster, but the VMI is told that it has <2048M>
available. As long as there is enough free memory available on the node, the VMI will consume up to
2048M.

kind: VirtualMachine
spec:
 template:
 domain:
 resources:
 requests:
 memory: <1024M>
 memory:
 guest: <2048M>

NOTE

The same eviction rules as those for pods apply to the VMI if the node gets under
memory pressure.

1.5.4. Disabling guest memory overhead accounting

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

37

WARNING

This procedure is only useful in certain use-cases and should only be attempted by
advanced users.

A small amount of memory is requested by each virtual machine instance in addition to the amount that
you request. This additional memory is used for the infrastructure wrapping each
VirtualMachineInstance process.

Though it is not usually advisable, it is possible to increase the VMI density on the node by disabling
guest memory overhead accounting.

Prerequisites

A cluster running OpenShift Container Platform 3.11 or newer

Procedure

To disable guest memory overhead accounting, edit the YAML configuration file and set the
overcommitGuestOverhead value to true. This parameter is disabled by default.

kind: VirtualMachine
spec:
 template:
 domain:
 resources:
 overcommitGuestOverhead: true
 requests:
 memory: 1024M

NOTE

If overcommitGuestOverhead is enabled, it adds the guest overhead to memory limits
(if present).

1.6. CLUSTER MAINTENANCE TASKS

1.6.1. Manually refreshing TLS certificates

The TLS certificates for Container-native Virtualization components are created at the time of
installation and are valid for one year. You must manually refresh these certificates before they expire.

To refresh the TLS certificates for Container-native Virtualization, download and run the rotate-certs
script. This script is available from the kubevirt/hyperconverged-cluster-operator repository on
GitHub.

IMPORTANT

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

38

IMPORTANT

When refreshing the certificates, the following operations are impacted:

Migrations are canceled

Image uploads are canceled

VNC and console connections are closed

Prerequisites

Ensure that you are logged in to the cluster as a user with cluster-admin privileges. The script
uses your active session to the cluster to refresh certificates in the kubevirt-hyperconverged
namespace.

Procedure

1. Download the rotate-certs.sh script from GitHub:

$ curl -O https://raw.githubusercontent.com/kubevirt/hyperconverged-cluster-
operator/master/tools/rotate-certs.sh

2. Ensure the script is executable:

$ chmod +x rotate-certs.sh

3. Run the script:

$./rotate-certs.sh -n kubevirt-hyperconverged

The TLS certificates are refreshed and valid for one year.

1.7. REFERENCE

1.7.1. Virtual machine wizard fields

Name Parameter Description

Name Name of the virtual machine.
Alphanumeric characters only, up
to a maximum of 63.

Description Optional description field.

Template Template from which to create
the virtual machine. Selecting a
template will automatically
complete other fields.

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

39

Provision Source PXE Provision virtual machine from
PXE menu. Requires a PXE-
capable NIC in the cluster.

URL Provision virtual machine from an
image available from an HTTP or
S3 endpoint.

Container Provision virtual machine from a
bootable operating system
container located in a registry
accessible from the cluster.
Example: kubevirt/cirros-
registry-disk-demo

Operating System A list of operating systems
available in the cluster. This is the
primary operating system for the
virtual machine.

Flavor small, medium, large, tiny, Custom Presets that determine the
amount of CPU and memory
allocated to the virtual machine.

Workload Profile generic A general configuration that
balances performance and
compatibility for a broad range of
workloads.

highperformance The virtual machine has a more
efficient configuration optimized
for high performance loads.

Start virtual machine on creation Select this checkbox to
automatically start the virtual
machine upon creation.

cloud-init Select this checkbox to enable the
cloud-init fields.

Name Parameter Description

1.7.2. Virtual machine template wizard fields

Name Parameter Description

Name Name of the virtual machine
template. Alphanumeric
characters only, up to a maximum
of 63.

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

40

Description Optional description field.

Provision Source PXE Provision virtual machines from
PXE menu. Requires a PXE-
capable NIC in the cluster.

URL Provision virtual machines from an
image available from a HTTP or
S3 endpoint.

Container Provision virtual machines from a
bootable operating system
container located in a registry
accessible from the cluster.
Example: kubevirt/cirros-
registry-disk-demo

Operating System A list of operating systems
available in the cluster. This is the
primary operating system for the
virtual machine.

Flavor small, medium, large, tiny, Custom Presets that determine the
amount of CPU and memory
allocated to the virtual machines.

Workload Profile generic A general configuration that
balances performance and
compatibility for a broad range of
workloads.

highperformance Virtual machines have a more
efficient configuration optimized
for high performance loads.

cloud-init Select this checkbox to enable the
cloud-init fields.

Name Parameter Description

1.7.3. Cloud-init fields

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

41

Name Description

Hostname Sets a specific hostname for the virtual machine.

Authenticated SSH Keys The user’s public key. This will be copied to
~/.ssh/authorized_keys on the virtual machine.

Use custom script Replaces other options with a textbox into which you
can paste a custom cloud-init script.

1.7.4. Networking fields

Name Description

Create NIC Create a new NIC for the virtual machine.

NIC NAME Name for the NIC.

MAC ADDRESS MAC address for the network interface. If a MAC
address is not specified, an ephemeral address is
generated for the session.

NETWORK CONFIGURATION List of available NetworkAttachmentDefinition
objects.

PXE NIC List of PXE-capable networks. Only visible if PXE
has been selected as the Provision Source.

1.7.5. Storage fields

Name Description

Create Disk Create a new disk for the virtual machine.

Attach Disk Select an existing disk, from a list of available PVCs,
to attach to the virtual machine.

DISK NAME Name of the disk.

SIZE (GB) Size, in GB, of the disk.

STORAGE CLASS Name of the underlying StorageClass.

Bootable Disk List of available disks from which the virtual machine
will boot. This is locked to rootdisk if the Provision
Source of the virtual machine is URL or Container.

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

42

1.7.6. Virtual machine actions

Table 1.5. Actions

Action Available in state Description

Start Virtual Machine Off Start the virtual machine.

Stop Virtual Machine Running or Other Stop the virtual machine.

Restart Virtual Machine Running or Other Restart the running virtual
machine.

Delete Virtual Machine All Permanently delete the virtual
machine from the cluster.

1.7.6.1. Supported VirtIO drivers for Microsoft Windows virtual machines in Container-
native Virtualization

Table 1.6. Supported drivers

Driver name Hardware ID Description

viostor VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

The block driver. May represent as
an SCSI Controller in the Other
devices group.

viorng VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

The entropy source driver. May
represent as an PCI Device in the
Other devices group.

NetKVM VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

The network driver. May represent
as an Ethernet Controller in the
Other devices group. Available
only if a VirtIO NIC is configured.

1.7.6.2. Types of storage volumes for virtual machines

ephemeral A local copy-on-write (COW) image that uses a network volume as a read-only backing
store. The backing volume must be a PersistentVolumeClaim. The ephemeral image is
created when the virtual machine starts, and stores all writes locally. The ephemeral image is
discarded when the virtual machine is stopped, restarted, or deleted. The backing volume
(PVC) is not mutated in any way.

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

43

persistentV
olumeClaim

Attaches an available PV to a virtual machine. This allows for the virtual machine data to
persist between sessions.

Importing an existing virtual machine disk into a PVC using CDI and attaching the PVC to a
virtual machine instance is the recommended method for importing existing virtual machines
into OpenShift Container Platform. There are some requirements for the disk to be used
within a PVC.

dataVolume DataVolumes build on the persistentVolumeClaim disk type by managing the process of
preparing the virtual machine disk via an import, clone, or upload operation. VMs using this
volume type are guaranteed not to start until the volume is ready.

cloudInitNo
Cloud

Attaches a disk containing the referenced cloud-init NoCloud data source, providing user
data and metadata to the virtual machine. A cloud-init installation is required inside the virtual
machine disk.

containerDis
k

References an image, such as a virtual machine disk, that is stored in the container image
registry. The image is pulled from the registry and embedded in a volume when the virtual
machine is created. A containerDisk volume is ephemeral. It is discarded when the virtual
machine is stopped, restarted, or deleted.

Container disks are not limited to a single virtual machine and are useful for creating large
numbers of virtual machine clones that do not require persistent storage.

Only RAW and QCOW2 formats are supported disk types for the container image registry.
QCOW2 is recommended for reduced image size.

emptyDisk Creates an additional sparse QCOW2 disk that is tied to the life-cycle of the virtual machine
interface. The data survives guest-initiated reboots in the virtual machine but is discarded
when the virtual machine stops or is restarted from the web console. The empty disk is used
to store application dependencies and data that otherwise exceeds the limited temporary file
system of an ephemeral disk.

The disk capacity size must also be provided.

1.7.6.3. Template: PVC configuration file

pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: "example-vmdisk-volume"
 labels:
 app: containerized-data-importer
 annotations:
 kubevirt.io/storage.import.endpoint: "" # Required. Format: (http||s3)://www.myUrl.com/path/to/data
 kubevirt.io/storage.import.secretName: "" # Optional. The name of the secret containing credentials
for the data source
spec:
 accessModes:
 - ReadWriteOnce

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

44

 resources:
 requests:
 storage: 5Gi

1.7.6.4. Template: VM configuration file

vm.yaml

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 creationTimestamp: null
 labels:
 kubevirt-vm: fedora-vm
 name: fedora-vm
spec:
 running: false
 template:
 metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/domain: fedora-vm
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
 machine:
 type: ""
 resources:
 requests:
 memory: 1Gi
 terminationGracePeriodSeconds: 0
 volumes:
 - cloudInitNoCloud:
 userData: |-
 #cloud-config
 password: fedora
 chpasswd: { expire: False }
 name: cloudinitdisk
 - name: containerdisk
 persistentVolumeClaim:
 claimName: example-vmdisk-volume
status: {}

1.7.6.5. Template: Windows VMI configuration file

windows-vmi.yaml

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

45

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 labels:
 special: vmi-windows
 name: vmi-windows
spec:
 domain:
 clock:
 timer:
 hpet:
 present: false
 hyperv: {}
 pit:
 tickPolicy: delay
 rtc:
 tickPolicy: catchup
 utc: {}
 cpu:
 cores: 2
 devices:
 disks:
 - disk:
 bus: sata
 name: pvcdisk
 interfaces:
 - masquerade: {}
 model: e1000
 name: default
 features:
 acpi: {}
 apic: {}
 hyperv:
 relaxed: {}
 spinlocks:
 spinlocks: 8191
 vapic: {}
 firmware:
 uuid: 5d307ca9-b3ef-428c-8861-06e72d69f223
 machine:
 type: q35
 resources:
 requests:
 memory: 2Gi
 networks:
 - name: default
 pod: {}
 terminationGracePeriodSeconds: 0
 volumes:
 - name: pvcdisk
 persistentVolumeClaim:
 claimName: disk-windows

1.7.6.6. Template: VM configuration file (DataVolume)

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

46

example-vm-dv.yaml

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: example-vm
 name: example-vm
spec:
 dataVolumeTemplates:
 - metadata:
 name: example-dv
 spec:
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1G
 source:
 http:
 url:
"https://download.fedoraproject.org/pub/fedora/linux/releases/28/Cloud/x86_64/images/Fedora-
Cloud-Base-28-1.1.x86_64.qcow2"
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/vm: example-vm
 spec:
 domain:
 cpu:
 cores: 1
 devices:
 disks:
 - disk:
 bus: virtio
 name: example-dv-disk
 machine:
 type: q35
 resources:
 requests:
 memory: 1G
 terminationGracePeriodSeconds: 0
 volumes:
 - dataVolume:
 name: example-dv
 name: example-dv-disk

1.7.6.7. Template: DataVolume import configuration file

example-import-dv.yaml

apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

47

metadata:
 name: "example-import-dv"
spec:
 source:
 http:
 url:
"https://download.fedoraproject.org/pub/fedora/linux/releases/28/Cloud/x86_64/images/Fedora-
Cloud-Base-28-1.1.x86_64.qcow2" # Or S3
 secretRef: "" # Optional
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: "1G"

1.7.6.8. Template: DataVolume clone configuration file

example-clone-dv.yaml

apiVersion: cdi.kubevirt.io/v1alpha1
kind: DataVolume
metadata:
 name: "example-clone-dv"
spec:
 source:
 pvc:
 name: source-pvc
 namespace: example-ns
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: "1G"

1.7.6.9. Template: VMI configuration file for PXE booting

vmi-pxe-boot.yaml

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 creationTimestamp: null
 labels:
 special: vmi-pxe-boot
 name: vmi-pxe-boot
spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk

OpenShift Container Platform 3.11 Container-native Virtualization User’s Guide

48

 bootOrder: 2
 - disk:
 bus: virtio
 name: cloudinitdisk
 interfaces:
 - masquerade: {}
 name: default
 - bridge: {}
 name: pxe-net
 macAddress: de:00:00:00:00:de
 bootOrder: 1
 machine:
 type: ""
 resources:
 requests:
 memory: 1024M
 networks:
 - name: default
 pod: {}
 - multus:
 networkName: pxe-net-conf
 name: pxe-net
 terminationGracePeriodSeconds: 0
 volumes:
 - name: containerdisk
 containerDisk:
 image: kubevirt/fedora-cloud-container-disk-demo
 - cloudInitNoCloud:
 userData: |
 #!/bin/bash
 echo "fedora" | passwd fedora --stdin
 name: cloudinitdisk
status: {}

CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION

49

	Table of Contents
	CHAPTER 1. USING CONTAINER-NATIVE VIRTUALIZATION
	1.1. PRODUCT OVERVIEW
	1.1.1. Introduction to Container-native Virtualization

	1.2. WEB CONSOLE OPERATIONS
	1.2.1. Managing virtual machines
	1.2.1.1. Creating a virtual machine with the interactive wizard
	1.2.1.2. Creating a virtual machine using a YAML configuration file
	1.2.1.3. Editing a virtual machine
	1.2.1.4. Editing the YAML of a virtual machine
	1.2.1.5. Viewing the events of a virtual machine
	1.2.1.6. Deleting a virtual machine

	1.2.2. Controlling virtual machines
	1.2.2.1. Starting a virtual machine
	1.2.2.2. Stopping a virtual machine
	1.2.2.3. Restarting a virtual machine

	1.2.3. Accessing virtual machine consoles
	1.2.3.1. Virtual machine console sessions
	1.2.3.2. Connecting to the VNC console
	1.2.3.3. Connecting to the serial console

	1.2.4. Managing virtual machine NICs
	1.2.4.1. Creating a NIC for a virtual machine
	1.2.4.2. Deleting a NIC from a virtual machine

	1.2.5. Managing virtual machine disks
	1.2.5.1. Creating a disk for a virtual machine
	1.2.5.2. Deleting a disk from a virtual machine

	1.2.6. Managing virtual machine templates
	1.2.6.1. Creating a virtual machine template with the interactive wizard
	1.2.6.2. Editing the YAML of a virtual machine template
	1.2.6.3. Deleting a virtual machine template

	1.3. CLI OPERATIONS
	1.3.1. Before you begin
	1.3.1.1. OpenShift Container Platform client commands
	1.3.1.2. Virtctl commands
	1.3.1.3. Ensure correct OpenShift Container Platform project

	1.3.2. Configuring networking for virtual machines
	1.3.2.1. Viewing guest IP addresses
	1.3.2.2. Configuring masquerade mode

	1.3.3. Importing and uploading virtual machines and disk images
	1.3.3.1. Uploading a local disk image to a new PVC
	1.3.3.2. Importing an existing virtual machine image with DataVolumes
	1.3.3.3. Importing a virtual machine disk to a PVC
	1.3.3.4. Cloning an existing PVC and creating a virtual machine using a dataVolumeTemplate
	1.3.3.5. Cloning the PVC of an existing virtual machine disk

	1.3.4. Creating new blank disk images
	1.3.4.1. Creating a blank disk image with a DataVolume manifest
	1.3.4.2. Creating a blank disk image with a PVC manifest

	1.3.5. Managing virtual machines
	1.3.5.1. Creating a new virtual machine from the CLI
	1.3.5.2. Deleting virtual machines and virtual machine PVCs

	1.3.6. Controlling virtual machines
	1.3.6.1. Controlling virtual machines

	1.3.7. Accessing virtual machine consoles
	1.3.7.1. Accessing the serial console of a VMI
	1.3.7.2. Accessing the graphical console of a VMI with VNC
	1.3.7.3. Accessing a virtual machine instance via SSH

	1.3.8. Events, logs, errors, and metrics
	1.3.8.1. Events
	1.3.8.2. Logs
	1.3.8.3. Metrics

	1.4. MANAGING VIRTIO DRIVERS FOR MICROSOFT WINDOWS VIRTUAL MACHINES
	1.4.1. VirtIO drivers for Microsoft Windows virtual machines
	1.4.2. Adding VirtIO drivers container disk to a virtual machine
	1.4.3. Installing VirtIO drivers during Windows installation
	1.4.4. Installing VirtIO drivers on an existing Windows virtual machine
	1.4.5. Removing the VirtIO container disk from a virtual machine

	1.5. ADVANCED VIRTUAL MACHINE CONFIGURATION
	1.5.1. Using an Open vSwitch bridge as the network source for a VM
	1.5.2. PXE booting with a specified MAC address
	1.5.3. Configuring guest memory overcommitment
	1.5.4. Disabling guest memory overhead accounting

	1.6. CLUSTER MAINTENANCE TASKS
	1.6.1. Manually refreshing TLS certificates

	1.7. REFERENCE
	1.7.1. Virtual machine wizard fields
	1.7.2. Virtual machine template wizard fields
	1.7.3. Cloud-init fields
	1.7.4. Networking fields
	1.7.5. Storage fields
	1.7.6. Virtual machine actions
	1.7.6.1. Supported VirtIO drivers for Microsoft Windows virtual machines in Container-native Virtualization
	1.7.6.2. Types of storage volumes for virtual machines
	1.7.6.3. Template: PVC configuration file
	1.7.6.4. Template: VM configuration file
	1.7.6.5. Template: Windows VMI configuration file
	1.7.6.6. Template: VM configuration file (DataVolume)
	1.7.6.7. Template: DataVolume import configuration file
	1.7.6.8. Template: DataVolume clone configuration file
	1.7.6.9. Template: VMI configuration file for PXE booting

