
Red Hat OpenStack Platform 16.2

Scaling Deployments with Compute Cells

A guide to creating and configuring a multi-cell overcloud

Last Updated: 2023-11-09

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute
Cells

A guide to creating and configuring a multi-cell overcloud

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides concepts and procedures for cloud administrators to configure and manage
cells to group Compute nodes in a large Red Hat OpenStack Platform (RHOSP) deployment.

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. MULTI-CELL OVERCLOUD DEPLOYMENTS
1.1. PREREQUISITES
1.2. GLOBAL COMPONENTS AND SERVICES
1.3. CELL-SPECIFIC COMPONENTS AND SERVICES
1.4. CELL DEPLOYMENTS ARCHITECTURE
1.5. CONSIDERATIONS FOR MULTI-CELL DEPLOYMENTS

CHAPTER 2. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH THE SAME NETWORKS

2.1. EXTRACTING PARAMETER INFORMATION FROM THE OVERCLOUD STACK CONTROL PLANE
2.2. CREATING A CELL ROLES FILE
2.3. DESIGNATING A HOST FOR THE CELLCONTROLLER ROLE
2.4. CONFIGURING AND DEPLOYING EACH CELL STACK WITH THE SAME NETWORK
2.5. NEXT STEPS

CHAPTER 3. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH ROUTED NETWORKS

3.1. PREREQUISITES
3.2. PREPARING THE CONTROL PLANE AND DEFAULT CELL FOR CELL NETWORK ROUTING
3.3. EXTRACTING PARAMETER INFORMATION FROM THE OVERCLOUD STACK CONTROL PLANE
3.4. CREATING CELL ROLES FILES FOR ROUTED NETWORKS
3.5. DESIGNATING HOSTS FOR CELL ROLES
3.6. CONFIGURING AND DEPLOYING EACH CELL STACK WITH ROUTED NETWORKS
3.7. ADDING A NEW CELL SUBNET AFTER DEPLOYMENT
3.8. NEXT STEPS

CHAPTER 4. CREATING AND MANAGING THE CELL WITHIN THE COMPUTE SERVICE
4.1. PREREQUISITES
4.2. CREATING THE CELL WITHIN THE COMPUTE SERVICE
4.3. ADDING COMPUTE NODES TO A CELL
4.4. CREATING A CELL AVAILABILITY ZONE
4.5. DELETING A COMPUTE NODE FROM A CELL
4.6. DELETING A CELL

3

4

5
5
5
6
6
7

9
9
9

10
11

12

13
13
13
14
15
16
18
19
19

20
20
20
21
22
23
24

Table of Contents

1

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. MULTI-CELL OVERCLOUD DEPLOYMENTS
You can use cells to divide Compute nodes in large deployments into groups, each with a message
queue and dedicated database that contains instance information.

By default, director installs the overcloud with a single cell for all Compute nodes. This cell contains all
the Compute services and databases, and all the instances and instance metadata. For larger
deployments, you can deploy the overcloud with multiple cells to accommodate a larger number of
Compute nodes. You can add cells to your environment when you install a new overcloud or at any time
afterwards.

In multi-cell deployments, each cell runs standalone copies of the cell-specific Compute services and
databases, and stores instance metadata only for instances in that cell. Global information and cell
mappings are stored in the global Controller cell, which provides security and recovery in case one of the
cells fails.

CAUTION

If you add cells to an existing overcloud, the conductor in the default cell also performs the role of the
super conductor. This has a negative effect on conductor communication with the cells in the
deployment, and on the performance of the overcloud. Also, if you take the default cell offline, you take
the super conductor offline as well, which stops the entire overcloud deployment. Therefore, to scale an
existing overcloud, do not add any Compute nodes to the default cell. Instead, add Compute nodes to
the new cells you create, allowing the default cell to act as the super conductor.

To create a multi-cell overcloud, you must perform the following tasks:

1. Configure and deploy your overcloud to handle multiple cells.

2. Create and provision the new cells that you require within your deployment.

3. Add Compute nodes to each cell.

4. Add each Compute cell to an availability zone.

1.1. PREREQUISITES

You have deployed a basic overcloud with the required number of Controller nodes.

1.2. GLOBAL COMPONENTS AND SERVICES

The following components are deployed in a Controller cell once for each overcloud, regardless of the
number of Compute cells.

Compute API

Provides the external REST API to users.

Compute scheduler

Determines on which Compute node to assign the instances.

Placement service

Monitors and allocates Compute resources to the instances.

API database

Used by the Compute API and the Compute scheduler services to track location information about

CHAPTER 1. MULTI-CELL OVERCLOUD DEPLOYMENTS

5

Used by the Compute API and the Compute scheduler services to track location information about
instances, and provides a temporary location for instances that are built but not scheduled.
In multi-cell deployments, this database also contains cell mappings that specify the database
connection for each cell.

cell0 database

Dedicated database for information about instances that failed to be scheduled.

Super conductor

This service exists only in multi-cell deployments to coordinate between the global services and each
Compute cell. This service also sends failed instance information to the cell0 database.

1.3. CELL-SPECIFIC COMPONENTS AND SERVICES

The following components are deployed in each Compute cell.

Cell database

Contains most of the information about instances. Used by the global API, the conductor, and the
Compute services.

Conductor

Coordinates database queries and long-running tasks from the global services, and insulates
Compute nodes from direct database access.

Message queue

Messaging service used by all services to communicate with each other within the cell and with the
global services.

1.4. CELL DEPLOYMENTS ARCHITECTURE

The default overcloud that director installs has a single cell for all Compute nodes. You can scale your
overcloud by adding more cells, as illustrated by the following architecture diagrams.

Single-cell deployment architecture

The following diagram shows an example of the basic structure and interaction in a default single-cell
overcloud.

In this deployment, all services are configured to use a single conductor to communicate between the
Compute API and the Compute nodes, and a single database stores all live instance data.

In smaller deployments this configuration might be sufficient, but if any global API service or database

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

6

In smaller deployments this configuration might be sufficient, but if any global API service or database
fails, the entire Compute deployment cannot send or receive information, regardless of high availability
configurations.

Multi-cell deployment architecture

The following diagram shows an example of the basic structure and interaction in a custom multi-cell
overcloud.

In this deployment, the Compute nodes are divided to multiple cells, each with their own conductor,
database, and message queue. The global services use the super conductor to communicate with each
cell, and the global database contains only information required for the whole overcloud.

The cell-level services cannot access global services directly. This isolation provides additional security
and fail-safe capabilities in case of cell failure.

IMPORTANT

Do not run any Compute services on the first cell, which is named "default". Instead,
deploy each new cell containing the Compute nodes separately.

1.5. CONSIDERATIONS FOR MULTI-CELL DEPLOYMENTS

Maximum number of Compute nodes in a multi-cell deployment

The maximum number of Compute nodes is 500 across all cells.

Cross-cell instance migrations

Migrating an instance from a host in one cell to a host in another cell is not supported. This limitation
affects the following operations:

cold migration

live migration

CHAPTER 1. MULTI-CELL OVERCLOUD DEPLOYMENTS

7

unshelve

resize

evacuation

Service quotas

Compute service quotas are calculated dynamically at each resource consumption point, instead of
statically in the database. In multi-cell deployments, unreachable cells cannot provide usage
information in real-time, which might cause the quotas to be exceeded when the cell is reachable
again.
You can use the Placement service and API database to configure the quota calculation to withstand
failed or unreachable cells.

API database

The Compute API database is always global for all cells and cannot be duplicated for each cell.

Console proxies

You must configure console proxies for each cell, because console token authorizations are stored in
cell databases. Each console proxy server needs to access the database.connection information of
the corresponding cell database.

Compute metadata API

If you use the same network for all the cells in your multiple cell environment, you must run the
Compute metadata API globally so that it can bridge between the cells. When the Compute
metadata API is run globally it needs access to the api_database.connection information.
If you deploy a multiple cell environment with routed networks, you must run the Compute metadata
API separately in each cell to improve performance and data isolation. When the Compute metadata
API runs in each cell, the neutron-metadata-agent service must point to the corresponding nova-
api-metadata service.

You use the parameter NovaLocalMetadataPerCell to control where the Compute metadata API
runs.

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

8

CHAPTER 2. CONFIGURING AND DEPLOYING A MULTI-CELL
ENVIRONMENT WITH THE SAME NETWORKS

To configure your Red Hat OpenStack (RHOSP) deployment to handle multiple cells by using the same
networks, you must perform the following tasks:

1. Extract parameter information from the control plane of the overcloud stack.

2. Create a cell roles file. You can use the default Compute role for the Compute nodes in a cell,
and the dedicated CellController role for the cell controller node. You can also create custom
roles for use in your multi-cell environment, such as a custom role for each cell stack. For more
information on creating custom roles, see Composable services and custom roles .

3. Configure a cell controller flavor for the CellController role.

NOTE

If you created a custom role for your multi-cell environment, you must also
configure a flavor for the custom role.

4. Configure each cell.

5. Deploy each cell stack.

2.1. EXTRACTING PARAMETER INFORMATION FROM THE
OVERCLOUD STACK CONTROL PLANE

Extract parameter information from the first cell, named default, in the basic overcloud stack.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Export the cell configuration and password information from the default cell in the overcloud
stack to a new common environment file for the multi-cell deployment:

(undercloud)$ sudo --preserve-env openstack overcloud cell export \
 --output-file common/default_cell_export.yaml

This command exports the EndpointMap, HostsEntry, AllNodesConfig, GlobalConfig
parameters, and the password information, to the common environment file.

TIP

If the environment file already exists, enter the command with the --force-overwrite or -f
option.

2.2. CREATING A CELL ROLES FILE

CHAPTER 2. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH THE SAME NETWORKS

9

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/chap-roles

You can create a common cell roles file for use by all cell stacks when the stacks use the same network
and no custom roles are required.

Procedure

Generate a new roles data file named cell_roles_data.yaml that includes the Compute and
CellController roles:

(undercloud)$ openstack overcloud roles generate \
 --roles-path /usr/share/openstack-tripleo-heat-templates/roles \
 -o common/cell_roles_data.yaml Compute CellController

2.3. DESIGNATING A HOST FOR THE CELLCONTROLLER ROLE

To designate a bare metal node for the CellController role, you must configure a flavor and resource
class to use to tag the node for the CellController role. The following procedure creates a flavor and a
bare metal resource class for the CellController role.

TIP

If you created a custom role for your multiple cell environment, you can follow this procedure to
configure the flavor and resource class for the custom role, by substituting the cell controller names
with the name of your custom role.

Procedure

1. Create the cellcontroller overcloud flavor for the cell controller node:

(undercloud)$ openstack flavor create --id auto \
 --ram <ram_size_mb> --disk <disk_size_gb> \
 --vcpus <no_vcpus> cellcontroller

Replace <ram_size_mb> with the RAM of the bare metal node, in MB.

Replace <disk_size_gb> with the size of the disk on the bare metal node, in GB.

Replace <no_vcpus> with the number of CPUs on the bare metal node.

NOTE

These properties are not used for scheduling instances. However, the
Compute scheduler does use the disk size to determine the root partition
size.

2. Retrieve a list of your nodes to identify their UUIDs:

(undercloud)$ openstack baremetal node list

3. Tag each bare metal node that you want to designate as a cell controller with a custom cell
controller resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.CELL-CONTROLLER <node>

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

10

Replace <node> with the ID of the bare metal node.

4. Associate the cellcontroller flavor with the custom cell controller resource class:

(undercloud)$ openstack flavor set \
 --property resources:CUSTOM_BAREMETAL_CELL_CONTROLLER=1 \
 cellcontroller

To determine the name of a custom resource class that corresponds to a resource class of a
Bare Metal service node, convert the resource class to uppercase, replace each punctuation
mark with an underscore, and prefix with CUSTOM_.

NOTE

A flavor can request only one instance of a bare metal resource class.

5. Set the following flavor properties to prevent the Compute scheduler from using the bare metal
flavor properties to schedule instances:

(undercloud)$ openstack flavor set \
 --property resources:VCPU=0 --property resources:MEMORY_MB=0 \
 --property resources:DISK_GB=0 cellcontroller

2.4. CONFIGURING AND DEPLOYING EACH CELL STACK WITH THE
SAME NETWORK

You must configure each cell stack to use the networks of the overcloud stack, and identify the cell as an
additional cell in the deployment. You must also configure the node flavors, and the number of
Controller and Compute nodes in the cell.

Procedure

1. Create a new directory for the new cells:

(undercloud)$ mkdir cells

2. Create a new environment file for each additional cell in the cell directory, cells, for cell-specific
parameters, for example, /cells/cell1.yaml.

3. Add the following parameters to each environment file, updating the parameter values for each
cell in your deployment:

resource_registry:
 OS::TripleO::Network::Ports::OVNDBsVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml

parameter_defaults:
 # Disable network creation in order to use the `network_data.yaml` file from the overcloud
stack,
 # and create ports for the nodes in the separate stacks on the existing networks.

CHAPTER 2. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH THE SAME NETWORKS

11

 ManageNetworks: false

 # Specify that this is an additional cell
 NovaAdditionalCell: True

 # The DNS names for the VIPs for the cell
 CloudName: cell1.ooo.test
 CloudNameInternal: cell1.internalapi.ooo.test
 CloudNameStorage: cell1.storage.ooo.test
 CloudNameStorageManagement: cell1.storagemgmt.ooo.test
 CloudNameCtlplane: cell1.ctlplane.ooo.test

 # Map the flavors to use for the CellController and Compute roles
 OvercloudCellControllerFlavor: cellcontroller
 OvercloudComputeFlavor: compute

 # Number of controllers/computes in the cell
 CellControllerCount: 3
 ComputeCount: 1

 # Node names must be unique across all cells
 ComputeHostnameFormat: 'cell1-compute-%index%'
 CellControllerHostnameFormat: 'cell1-cellcontroller-%index%'

4. To allocate a network resource to the cell and register cells to the network, add the following
parameters to each environment file:

resource_registry:
 OS::TripleO::CellController::Net::SoftwareConfig: /home/stack/templates/nic-
configs/cellcontroller.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml

5. Add the environment files to the stack with your other environment files and deploy the cell
stack:

(undercloud)$ openstack overcloud deploy --templates \
 --stack cell1 \
 -e [your environment files] \
 -r $HOME/common/cell_roles_data.yaml \
 -e $HOME/common/default_cell_export.yaml \
 -e $HOME/cells/cell1.yaml

Repeat this step for each cell stack until all your cell stacks are deployed.

2.5. NEXT STEPS

Creating and managing the cell within the Compute service

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

12

CHAPTER 3. CONFIGURING AND DEPLOYING A MULTI-CELL
ENVIRONMENT WITH ROUTED NETWORKS

To configure your Red Hat OpenStack (RHOSP) deployment to handle multiple cells with routed
networks, you must perform the following tasks:

1. Prepare the control plane for cell network routing on the overcloud stack.

2. Extract parameter information from the control plane of the overcloud stack.

3. Configure the cell network routing on the cell stacks.

4. Create cell roles files for each stack. You can use the default Compute role as a base for the
Compute nodes in a cell, and the dedicated CellController role as a base for the cell controller
node. You can also create custom roles for use in your multi-cell environment. For more
information on creating custom roles, see Composable services and custom roles .

5. Configure a flavor for each custom role you create.

NOTE

This procedure is for an environment with a single control plane network. If your
environment has multiple control plane networks, such as a spine leaf network
environment, then you must also create a flavor for each role in each leaf network
so that you can tag nodes into each leaf. For more information, see Creating
flavors and tagging nodes for leaf networks.

6. Configure each cell.

7. Deploy each cell stack.

3.1. PREREQUISITES

You have configured your undercloud for routed networks. For more information, see
Configuring routed spine-leaf in the undercloud .

3.2. PREPARING THE CONTROL PLANE AND DEFAULT CELL FOR
CELL NETWORK ROUTING

You must configure routes on the overcloud stack for the overcloud stack to communicate with the
cells. To achieve this, create a network data file that defines all networks and subnets in the main stack,
and use this file to deploy both the overcloud stack and the cell stacks.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Create a new directory for the common stack configuration:

CHAPTER 3. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH ROUTED NETWORKS

13

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/chap-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/spine_leaf_networking/configuring-routed-spine-leaf-in-the-undercloud#creating-flavors-for-spine-leaf-nodes
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/spine_leaf_networking/configuring-routed-spine-leaf-in-the-undercloud

(undercloud)$ mkdir common

4. Copy the default network_data_subnets_routed.yaml file to your common directory to add a
composable network for your overcloud stack:

(undercloud)$ cp /usr/share/openstack-tripleo-heat-
templates/network_data_subnets_routed.yaml
~/common/network_data_routed_multi_cell.yaml

For more information on composable networks, see Custom composable networks in the
Advanced Overcloud Customization guide.

5. Update the configuration in /common/network_data_routed_multi_cell.yaml for your
network, and update the cell subnet names for easy identification, for example, change
internal_api_leaf1 to internal_api_cell1.

6. Ensure that the interfaces in the NIC template for each role include
<network_name>InterfaceRoutes, for example:

 -
 type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 addresses:
 -
 ip_netmask:
 get_param: InternalApiIpSubnet
 routes:
 get_param: InternalApiInterfaceRoutes

7. Add the network_data_routed_multi_cell.yaml file to the overcloud stack with your other
environment files and deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 --stack overcloud \
 -n /home/stack/common/network_data_routed_multi_cell.yaml \
 -e [your environment files]

3.3. EXTRACTING PARAMETER INFORMATION FROM THE
OVERCLOUD STACK CONTROL PLANE

Extract parameter information from the first cell, named default, in the basic overcloud stack.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Export the cell configuration and password information from the default cell in the overcloud
stack to a new common environment file for the multi-cell deployment:

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

14

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/custom-composable-networks

(undercloud)$ sudo --preserve-env openstack overcloud cell export \
 --output-file common/default_cell_export.yaml

This command exports the EndpointMap, HostsEntry, AllNodesConfig, GlobalConfig
parameters, and the password information, to the common environment file.

TIP

If the environment file already exists, enter the command with the --force-overwrite or -f
option.

3.4. CREATING CELL ROLES FILES FOR ROUTED NETWORKS

When each stack uses a different network, create a cell roles file for each cell stack that includes a
custom cell role.

NOTE

You must create a flavor for each custom role. For more information, see Designating
hosts for cell roles.

Procedure

1. Generate a new roles data file that includes the CellController role, along with other roles you
need for the cell stack. The following example generates the roles data file
cell1_roles_data.yaml, which includes the roles CellController and Compute:

(undercloud)$ openstack overcloud roles generate \
 --roles-path /usr/share/openstack-tripleo-heat-templates/roles \
 -o cell1/cell1_roles_data.yaml \
 Compute:ComputeCell1 \
 CellController:CellControllerCell1

2. Add the HostnameFormatDefault to each role definition in your new cell roles file:

- name: ComputeCell1
 ...
 HostnameFormatDefault: '%stackname%-compute-cell1-%index%'
 ServicesDefault:
 ...
 networks:
 ...
- name: CellControllerCell1
 ...
 HostnameFormatDefault: '%stackname%-cellcontrol-cell1-%index%'
 ServicesDefault:
 ...
 networks:
 ...

3. Add the Networking service (neutron) DHCP and Metadata agents to the ComputeCell1 and
CellControllerCell1 roles, if they are not already present:

CHAPTER 3. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH ROUTED NETWORKS

15

- name: ComputeCell1
 ...
 HostnameFormatDefault: '%stackname%-compute-cell1-%index%'
 ServicesDefault:
 - OS::TripleO::Services::NeutronDhcpAgent
 - OS::TripleO::Services::NeutronMetadataAgent
 ...
 networks:
 ...
- name: CellControllerCell1
 ...
 HostnameFormatDefault: '%stackname%-cellcontrol-cell1-%index%'
 ServicesDefault:
 - OS::TripleO::Services::NeutronDhcpAgent
 - OS::TripleO::Services::NeutronMetadataAgent
 ...
 networks:
 ...

4. Add the subnets you configured in network_data_routed_multi_cell.yaml to the
ComputeCell1 and CellControllerCell1 roles:

- name: ComputeCell1
 ...
 networks:
 InternalApi:
 subnet: internal_api_subnet_cell1
 Tenant:
 subnet: tenant_subnet_cell1
 Storage:
 subnet: storage_subnet_cell1
...
- name: CellControllerCell1
 ...
 networks:
 External:
 subnet: external_subnet
 InternalApi:
 subnet: internal_api_subnet_cell1
 Storage:
 subnet: storage_subnet_cell1
 StorageMgmt:
 subnet: storage_mgmt_subnet_cell1
 Tenant:
 subnet: tenant_subnet_cell1

3.5. DESIGNATING HOSTS FOR CELL ROLES

To designate a bare metal node for a cell role, you must configure a flavor and resource class to use to
tag the node for the cell role. Perform the following procedure to create a flavor and a bare metal
resource class for the cellcontrollercell1 role. Repeat this procedure for each custom role, by
substituting the cell controller names with the name of your custom role.

Procedure

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

16

1. Create the cellcontrollercell1 overcloud flavor for the cell1 controller node:

(undercloud)$ openstack flavor create --id auto \
 --ram <ram_size_mb> --disk <disk_size_gb> \
 --vcpus <no_vcpus> cellcontrollercell1

Replace <ram_size_mb> with the RAM of the bare metal node, in MB.

Replace <disk_size_gb> with the size of the disk on the bare metal node, in GB.

Replace <no_vcpus> with the number of CPUs on the bare metal node.

NOTE

These properties are not used for scheduling instances. However, the
Compute scheduler does use the disk size to determine the root partition
size.

2. Retrieve a list of your nodes to identify their UUIDs:

(undercloud)$ openstack baremetal node list

3. Tag each bare metal node that you want to designate as a cell controller with a custom cell
controller resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.CELL-CONTROLLER <node>

Replace <node> with the ID of the bare metal node.

4. Associate the cellcontrollercell1 flavor with the custom cell controller resource class:

(undercloud)$ openstack flavor set \
 --property resources:CUSTOM_BAREMETAL_CELL_CONTROLLER=1 \
 cellcontrollercell1

To determine the name of a custom resource class that corresponds to a resource class of a
Bare Metal service node, convert the resource class to uppercase, replace each punctuation
mark with an underscore, and prefix with CUSTOM_.

NOTE

A flavor can request only one instance of a bare metal resource class.

5. Set the following flavor properties to prevent the Compute scheduler from using the bare metal
flavor properties to schedule instances:

(undercloud)$ openstack flavor set \
 --property resources:VCPU=0 --property resources:MEMORY_MB=0 \
 --property resources:DISK_GB=0 cellcontrollercell1

3.6. CONFIGURING AND DEPLOYING EACH CELL STACK WITH

CHAPTER 3. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH ROUTED NETWORKS

17

3.6. CONFIGURING AND DEPLOYING EACH CELL STACK WITH
ROUTED NETWORKS

Perform the following procedure to configure one cell stack, cell1. Repeat the procedure for each
additional cell stack you want to deploy until all your cell stacks are deployed.

Procedure

1. Create a new environment file for the additional cell in the cell directory for cell-specific
parameters, for example, /home/stack/cell1/cell1.yaml.

2. Add the following parameters to the environment file:

resource_registry:
 OS::TripleO::CellControllerCell1::Net::SoftwareConfig: /home/stack/templates/nic-
configs/cellcontroller.yaml
 OS::TripleO::ComputeCell1::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::Network::Ports::OVNDBsVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml

parameter_defaults:
 #Disable network creation in order to use the `network_data.yaml` file from the overcloud
stack,
 # and create ports for the nodes in the separate stacks on the existing networks.
 ManageNetworks: false

 # Specify that this is an additional cell
 NovaAdditionalCell: True

 # The DNS names for the VIPs for the cell
 CloudName: cell1.ooo.test
 CloudNameInternal: cell1.internalapi.ooo.test
 CloudNameStorage: cell1.storage.ooo.test
 CloudNameStorageManagement: cell1.storagemgmt.ooo.test
 CloudNameCtlplane: cell1.ctlplane.ooo.test

 # Map the flavors to use for the CellController and Compute roles
 OvercloudCellControllerCell1Flavor: cellcontrollercell1
 OvercloudComputeCell1Flavor: computecell1

 # Number of controllers/computes in the cell
 CellControllerCell1Count: 3
 ComputeCell1Count: 1

3. To run the Compute metadata API in each cell instead of in the global Controller, add the
following parameter to your cell environment file:

parameter_defaults:
 NovaLocalMetadataPerCell: True

4. Add the virtual IP address (VIP) information for the cell to your cell environment file:

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

18

parameter_defaults:
 ...
 VipSubnetMap:
 InternalApi: internal_api_cell1
 Storage: storage_cell1
 StorageMgmt: storage_mgmt_cell1
 External: external_subnet

This creates virtual IP addresses on the subnet associated with the L2 network segment that the
cell Controller nodes are connected to.

5. Add the environment files to the stack with your other environment files and deploy the cell
stack:

(undercloud)$ openstack overcloud deploy --templates \
 --stack cell1 \
 -e [your environment files] \
 -r /home/stack/cell1/cell1_roles_data.yaml \
 -n /home/stack/common/network_data_spine_leaf.yaml \
 -e /home/stack/common/default_cell_export.yaml \
 -e /home/stack/cell1/cell1.yaml

3.7. ADDING A NEW CELL SUBNET AFTER DEPLOYMENT

To add a new cell subnet to your overcloud stack after you have deployed your multi-cell environment,
you must update the value of NetworkDeploymentActions to include 'UPDATE'.

Procedure

1. Add the following configuration to an environment file for the overcloud stack to update the
network configuration with the new cell subnet:

parameter_defaults:
 NetworkDeploymentActions: ['CREATE','UPDATE']

2. Add the configuration for the new cell subnet to
/common/network_data_routed_multi_cell.yaml.

3. Deploy the overcloud stack:

(undercloud)$ openstack overcloud deploy --templates \
 --stack overcloud \
 -n /home/stack/common/network_data_routed_multi_cell.yaml \
 -e [your environment files]

4. Optional: Reset NetworkDeploymentActions to the default for the next deployment:

parameter_defaults:
 NetworkDeploymentActions: ['CREATE']

3.8. NEXT STEPS

Creating and managing the cell within the Compute service

CHAPTER 3. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH ROUTED NETWORKS

19

CHAPTER 4. CREATING AND MANAGING THE CELL WITHIN
THE COMPUTE SERVICE

After you have deployed the overcloud with your cell stacks, you must create the cell within the Compute
service. To create the cell within the Compute service you create entries for the cell and message queue
mappings in the global API database. You can then add Compute nodes to the cells by running the cell
host discovery on one of the Controller nodes.

To create your cells, you must perform the following tasks:

1. Use the nova-manage utility to create the cell and message queue mapping records in the
global API database.

2. Add Compute nodes to each cell.

3. Create an availability zone for each cell.

4. Add all the Compute nodes in each cell to the availability zone for the cell.

4.1. PREREQUISITES

You have configured and deployed your overcloud with multiple cells.

4.2. CREATING THE CELL WITHIN THE COMPUTE SERVICE

After you deploy the overcloud with a new cell stack, you must create the cell within the Compute
service. To create the cell within the Compute service you create entries for the cell and message queue
mappings in the global API database.

NOTE

You must repeat this process for each cell that you create and launch. You can automate
the steps in an Ansible playbook. For an example of an Ansible playbook, see the Create
the cell and discover Compute nodes section of the OpenStack community
documentation. Community documentation is provided as-is and is not officially
supported.

Procedure

1. Get the IP addresses of the control plane and cell controller:

$ CTRL_IP=$(openstack server list -f value -c Networks --name overcloud-controller-0 | sed
's/ctlplane=//')
$ CELL_CTRL_IP=$(openstack server list -f value -c Networks --name cell1-cellcontroller-0 |
sed 's/ctlplane=//')

2. Add the cell information to all Controller nodes. This information is used to connect to the cell
endpoint from the undercloud. The following example uses the prefix cell1 to specify only the
cell systems and exclude the controller systems:

(undercloud)$ CELL_INTERNALAPI_INFO=$(ssh heat-admin@${CELL_CTRL_IP} \
 egrep cell1.*\.internalapi /etc/hosts)
(undercloud)$ ansible -i /usr/bin/tripleo-ansible-inventory \

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

20

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/deploy_cellv2_basic.html#cell-create-cell

 Controller -b -m lineinfile -a "dest=/etc/hosts line=\"$CELL_INTERNALAPI_INFO\""

3. Get the message queue endpoint for the controller cell from the transport_url parameter, and
the database connection for the controller cell from the database.connection parameter:

(undercloud)$ CELL_TRANSPORT_URL=$(ssh tripleo-admin@${CELL_CTRL_IP} \
 sudo crudini --get /var/lib/config-data/puppet-generated/nova/etc/nova/nova.conf \
 DEFAULT transport_url)
(undercloud)$ CELL_MYSQL_VIP=$(ssh tripleo-admin@${CELL_CTRL_IP} \
 sudo crudini --get /var/lib/config-data/puppet-generated/nova/etc/nova/nova.conf \
 database connection | awk -F[@/] '{print $4}')

4. Log in to one of the global Controller nodes and create the cell:

$ ssh heat-admin@${CTRL_IP} sudo podman \
 exec -i -u root nova_api \
 nova-manage cell_v2 create_cell --name cell1 \
 --database_connection "{scheme}://{username}:{password}@$CELL_MYSQL_VIP/nova?
{query}" \
 --transport-url "$CELL_TRANSPORT_URL"

5. Check that the cell is created and appears in the cell list:

$ ssh heat-admin@${CTRL_IP} sudo podman \
 exec -i -u root nova_api \
 nova-manage cell_v2 list_cells --verbose

6. Restart the Compute services on the Controller nodes:

$ ansible -i /usr/bin/tripleo-ansible-inventory Controller -b -a \
"systemctl restart tripleo_nova_api tripleo_nova_conductor tripleo_nova_scheduler"

7. Check that the cell controller services are provisioned:

(overcloud)$ openstack compute service list -c Binary -c Host -c Status -c State
+----------------+-------------------------+---------+-------+
| Binary | Host | Status | State |
+----------------+-------------------------+---------+-------+
nova-conductor	controller-0.ostest	enabled	up
nova-scheduler	controller-0.ostest	enabled	up
nova-conductor	cellcontroller-0.ostest	enabled	up
nova-compute	compute-0.ostest	enabled	up
nova-compute	compute-1.ostest	enabled	up
+----------------+-------------------------+---------+-------+

4.3. ADDING COMPUTE NODES TO A CELL

Run the cell host discovery on one of the Controller nodes to discover the Compute nodes and update
the API database with the node-to-cell mappings.

Procedure

1. Log in to the undercloud as the stack user.

CHAPTER 4. CREATING AND MANAGING THE CELL WITHIN THE COMPUTE SERVICE

21

2. Get the IP address of the control plane for the cell and enter the host discovery command to
expose and assign Compute hosts to the cell:

$ CTRL_IP=$(openstack server list -f value -c Networks --name overcloud-controller-0 | sed
's/ctlplane=//')

$ ssh heat-admin@${CTRL_IP} sudo podman exec -i -u root nova_api \
 nova-manage cell_v2 discover_hosts --by-service --verbose

3. Verify that the Compute hosts were assigned to the cell:

$ ssh heat-admin@${CTRL_IP} sudo podman exec -i -u root nova_api \
 nova-manage cell_v2 list_hosts

4.4. CREATING A CELL AVAILABILITY ZONE

You must create an availability zone (AZ) for each cell to ensure that instances created on the Compute
nodes in that cell are migrated only to other Compute nodes in the same cell. Migrating instances
between cells is not supported.

After you create the cell AZ you must add all the Compute nodes in the cell to the cell AZ. The default
cell must be in a different availability zone from the Compute cells.

Procedure

1. Source the overcloudrc file:

(undercloud)$ source ~/overcloudrc

2. Create the AZ for the cell:

(overcloud)# openstack aggregate create \
 --zone <availability_zone> \
 <aggregate_name>

Replace <availability_zone> with the name you want to assign to the availability zone.

Replace <aggregate_name> with the name you want to assign to the host aggregate.

3. Optional: Add metadata to the availability zone:

(overcloud)# openstack aggregate set --property <key=value> \
 <aggregate_name>

Replace <key=value> with your metadata key-value pair. You can add as many key-value
properties as required.

Replace <aggregate_name> with the name of the availability zone host aggregate.

4. Retrieve a list of the Compute nodes assigned to the cell:

$ ssh heat-admin@${CTRL_IP} sudo podman exec -i -u root nova_api \
 nova-manage cell_v2 list_hosts

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

22

5. Add the Compute nodes assigned to the cell to the cell availability zone:

(overcloud)# openstack aggregate add host <aggregate_name> \
 <host_name>

Replace <aggregate_name> with the name of the availability zone host aggregate to add
the Compute node to.

Replace <host_name> with the name of the Compute node to add to the availability zone.

NOTE

You cannot use the OS::TripleO::Services::NovaAZConfig parameter to
automatically create the AZ during deployment, because the cell is not created
at this stage.

Migrating instances between cells is not supported. To move an instance to a
different cell, you must delete it from the old cell and re-create it in the new cell.

For more information on host aggregates and availability zones, see Creating and managing host
aggregates.

4.5. DELETING A COMPUTE NODE FROM A CELL

To delete a Compute node from a cell, you must delete all instances from the cell and delete the host
names from the Placement database.

Procedure

1. Delete all instances from the Compute nodes in the cell.

NOTE

Migrating instances between cells is not supported. You must delete the
instances and re-create them in another cell.

2. On one of the global Controllers, delete all Compute nodes from the cell.

$ CTRL_IP=$(openstack server list -f value -c Networks --name overcloud-controller-0 | sed
's/ctlplane=//')

$ ssh heat-admin@${CTRL_IP} sudo podman \
 exec -i -u root nova_api \
 nova-manage cell_v2 list_hosts

$ ssh heat-admin@${CTRL_IP} sudo podman \
 exec -i -u root nova_api \
 nova-manage cell_v2 delete_host --cell_uuid <uuid> --host <compute>

3. Delete the resource providers for the cell from the Placement service, to ensure that the host
name is available in case you want to add Compute nodes with the same host name to another
cell later:

CHAPTER 4. CREATING AND MANAGING THE CELL WITHIN THE COMPUTE SERVICE

23

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/configuring_the_compute_service_for_instance_creation/index#assembly_creating-and-managing-host-aggregates_host-aggregates

(undercloud)$ source ~/overcloudrc

(overcloud)$ openstack resource provider list
+--------------------------------------+---------------------------------------+------------+
| uuid | name | generation |
+--------------------------------------+---------------------------------------+------------+
| 9cd04a8b-5e6c-428e-a643-397c9bebcc16 | computecell1-novacompute-0.site1.test |
11 |
+--------------------------------------+---------------------------------------+------------+

(overcloud)$ openstack resource provider \
 delete 9cd04a8b-5e6c-428e-a643-397c9bebcc16

4.6. DELETING A CELL

To delete a cell, you must first delete all instances and Compute nodes from the cell, as described in
Deleting a Compute node from a cell . Then, you delete the cell itself and the cell stack.

Procedure

1. On one of the global Controllers, delete the cell.

$ CTRL_IP=$(openstack server list -f value -c Networks --name overcloud-controller-0 | sed
's/ctlplane=//')

$ ssh heat-admin@${CTRL_IP} sudo podman \
 exec -i -u root nova_api \
 nova-manage cell_v2 list_cells

$ ssh heat-admin@${CTRL_IP} sudo podman \
 exec -i -u root nova_api \
 nova-manage cell_v2 delete_cell --cell_uuid <uuid>

2. Delete the cell stack from the overcloud.

$ openstack stack delete <stack name> --wait --yes && openstack \
 overcloud plan delete <stack_name>

NOTE

If you deployed separate cell stacks for a Controller and Compute cell, delete the
Compute cell stack first and then the Controller cell stack.

Red Hat OpenStack Platform 16.2 Scaling Deployments with Compute Cells

24

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. MULTI-CELL OVERCLOUD DEPLOYMENTS
	1.1. PREREQUISITES
	1.2. GLOBAL COMPONENTS AND SERVICES
	1.3. CELL-SPECIFIC COMPONENTS AND SERVICES
	1.4. CELL DEPLOYMENTS ARCHITECTURE
	1.5. CONSIDERATIONS FOR MULTI-CELL DEPLOYMENTS

	CHAPTER 2. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH THE SAME NETWORKS
	2.1. EXTRACTING PARAMETER INFORMATION FROM THE OVERCLOUD STACK CONTROL PLANE
	2.2. CREATING A CELL ROLES FILE
	2.3. DESIGNATING A HOST FOR THE CELLCONTROLLER ROLE
	2.4. CONFIGURING AND DEPLOYING EACH CELL STACK WITH THE SAME NETWORK
	2.5. NEXT STEPS

	CHAPTER 3. CONFIGURING AND DEPLOYING A MULTI-CELL ENVIRONMENT WITH ROUTED NETWORKS
	3.1. PREREQUISITES
	3.2. PREPARING THE CONTROL PLANE AND DEFAULT CELL FOR CELL NETWORK ROUTING
	3.3. EXTRACTING PARAMETER INFORMATION FROM THE OVERCLOUD STACK CONTROL PLANE
	3.4. CREATING CELL ROLES FILES FOR ROUTED NETWORKS
	3.5. DESIGNATING HOSTS FOR CELL ROLES
	3.6. CONFIGURING AND DEPLOYING EACH CELL STACK WITH ROUTED NETWORKS
	3.7. ADDING A NEW CELL SUBNET AFTER DEPLOYMENT
	3.8. NEXT STEPS

	CHAPTER 4. CREATING AND MANAGING THE CELL WITHIN THE COMPUTE SERVICE
	4.1. PREREQUISITES
	4.2. CREATING THE CELL WITHIN THE COMPUTE SERVICE
	4.3. ADDING COMPUTE NODES TO A CELL
	4.4. CREATING A CELL AVAILABILITY ZONE
	4.5. DELETING A COMPUTE NODE FROM A CELL
	4.6. DELETING A CELL

