
Red Hat OpenStack Platform 14

Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an
OpenStack cloud

Last Updated: 2020-04-14

Red Hat OpenStack Platform 14 Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an OpenStack
cloud

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide contains information on how to install Red Hat OpenStack Platform 14 in an enterprise
environment using the Red Hat OpenStack Platform director. This includes installing the director,
planning your environment, and creating an OpenStack environment with the director.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. UNDERCLOUD
1.2. OVERCLOUD
1.3. HIGH AVAILABILITY
1.4. CONTAINERIZATION
1.5. CEPH STORAGE

PART I. DIRECTOR INSTALLATION AND CONFIGURATION

CHAPTER 2. PLANNING YOUR UNDERCLOUD
2.1. CONTAINERIZED UNDERCLOUD
2.2. PREPARING YOUR UNDERCLOUD NETWORKING
2.3. DETERMINING ENVIRONMENT SCALE
2.4. UNDERCLOUD DISK SIZING
2.5. UNDERCLOUD REPOSITORIES

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION
3.1. PREPARING THE UNDERCLOUD
3.2. CONFIGURING AN UNDERCLOUD PROXY
3.3. INSTALLING CEPH-ANSIBLE
3.4. PREPARING CONTAINER IMAGES
3.5. CONTAINER IMAGE PREPARATION PARAMETERS
3.6. LAYERING IMAGE PREPARATION ENTRIES
3.7. MODIFYING IMAGES DURING PREPARATION
3.8. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
3.9. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
3.10. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
3.11. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

CHAPTER 4. INSTALLING DIRECTOR
4.1. CONFIGURING THE DIRECTOR
4.2. DIRECTOR CONFIGURATION PARAMETERS
4.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES
4.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD CONFIGURATION
4.5. CONFIGURING HIERADATA ON THE UNDERCLOUD
4.6. INSTALLING THE DIRECTOR
4.7. OBTAINING IMAGES FOR OVERCLOUD NODES

4.7.1. Single CPU architecture overclouds
4.7.2. Multiple CPU architecture overclouds

4.8. SETTING A NAMESERVER FOR THE CONTROL PLANE
4.9. UPDATING THE UNDERCLOUD CONFIGURATION
4.10. NEXT STEPS

PART II. BASIC OVERCLOUD DEPLOYMENT

CHAPTER 5. PLANNING YOUR OVERCLOUD
5.1. NODE ROLES
5.2. OVERCLOUD NETWORKS
5.3. OVERCLOUD STORAGE
5.4. OVERCLOUD SECURITY
5.5. OVERCLOUD HIGH AVAILABILITY
5.6. CONTROLLER NODE REQUIREMENTS
5.7. COMPUTE NODE REQUIREMENTS

7
7
8

10
10
11

12

13
13
13
14
14
15

17
17
19
19

20
20
22
23
23
24
24
25

28
28
28
33
33
34
35
35
36
37
39
39
40

41

42
42
43
44
45
45
46
47

Table of Contents

1

. .

. .

. .

. .

5.8. CEPH STORAGE NODE REQUIREMENTS
5.9. OBJECT STORAGE NODE REQUIREMENTS
5.10. OVERCLOUD REPOSITORIES

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS
6.1. REGISTERING NODES FOR THE OVERCLOUD
6.2. INSPECTING THE HARDWARE OF NODES
6.3. TAGGING NODES INTO PROFILES
6.4. SETTING UEFI BOOT MODE
6.5. DEFINING THE ROOT DISK
6.6. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A RED HAT SUBSCRIPTION ENTITLEMENT

6.7. CREATING ARCHITECTURE SPECIFIC ROLES
6.8. ENVIRONMENT FILES
6.9. CREATING AN ENVIRONMENT FILE THAT DEFINES NODE COUNTS AND FLAVORS
6.10. CREATING AN ENVIRONMENT FILE FOR UNDERCLOUD CA TRUST
6.11. DEPLOYMENT COMMAND
6.12. DEPLOYMENT COMMAND OPTIONS
6.13. INCLUDING ENVIRONMENT FILES IN AN OVERCLOUD DEPLOYMENT
6.14. VALIDATING THE OVERCLOUD CONFIGURATION BEFORE DEPLOYMENT OPERATIONS
6.15. OVERCLOUD DEPLOYMENT OUTPUT
6.16. ACCESSING THE OVERCLOUD
6.17. NEXT STEPS

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES
7.1. CREATING A USER FOR CONFIGURING NODES
7.2. REGISTERING THE OPERATING SYSTEM FOR NODES
7.3. CONFIGURING SSL/TLS ACCESS TO THE DIRECTOR
7.4. CONFIGURING NETWORKING FOR THE CONTROL PLANE
7.5. USING A SEPARATE NETWORK FOR OVERCLOUD NODES
7.6. MAPPING PRE-PROVISIONED NODE HOSTNAMES
7.7. CONFIGURING CEPH STORAGE FOR PRE-PROVISIONED NODES
7.8. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES
7.9. OVERCLOUD DEPLOYMENT OUTPUT
7.10. ACCESSING THE OVERCLOUD
7.11. SCALING PRE-PROVISIONED NODES
7.12. REMOVING A PRE-PROVISIONED OVERCLOUD
7.13. COMPLETING THE OVERCLOUD CREATION

PART III. POST DEPLOYMENT OPERATIONS

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION
8.1. CHECKING OVERCLOUD DEPLOYMENT STATUS
8.2. MANAGING CONTAINERIZED SERVICES
8.3. CREATING THE OVERCLOUD TENANT NETWORK
8.4. CREATING THE OVERCLOUD EXTERNAL NETWORK
8.5. CREATING ADDITIONAL FLOATING IP NETWORKS
8.6. CREATING THE OVERCLOUD PROVIDER NETWORK
8.7. CREATING A BASIC OVERCLOUD FLAVOR
8.8. VALIDATING THE OVERCLOUD
8.9. MODIFYING THE OVERCLOUD ENVIRONMENT
8.10. RUNNING THE DYNAMIC INVENTORY SCRIPT
8.11. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
8.12. MIGRATING INSTANCES FROM A COMPUTE NODE

47
48
49

52
52
54
55
56
56

58
59
59
60
60
62
62
66
68
68
69
69

70
71
71
72
73
74
76
77
77
78
79
79
80
80

81

82
82
82
84
84
85
86
86
87
88
89
90
90

Red Hat OpenStack Platform 14 Director Installation and Usage

2

. .

. .

. .

. .

. .

. .

. .

. .

8.13. PROTECTING THE OVERCLOUD FROM REMOVAL
8.14. REMOVING THE OVERCLOUD
8.15. REVIEW THE TOKEN FLUSH INTERVAL

CHAPTER 9. CONFIGURING THE OVERCLOUD WITH ANSIBLE
9.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-DOWNLOAD)
9.2. CONFIG-DOWNLOAD WORKING DIRECTORY
9.3. ENABLING ACCESS TO CONFIG-DOWNLOAD WORKING DIRECTORIES
9.4. CHECKING CONFIG-DOWNLOAD LOG
9.5. RUNNING CONFIG-DOWNLOAD MANUALLY
9.6. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY
9.7. CREATING CONFIG-DOWNLOAD FILES MANUALLY
9.8. CONFIG-DOWNLOAD TOP LEVEL FILES
9.9. CONFIG-DOWNLOAD TAGS
9.10. CONFIG-DOWNLOAD DEPLOYMENT STEPS
9.11. NEXT STEPS

CHAPTER 10. SCALING OVERCLOUD NODES
10.1. ADDING NODES TO THE OVERCLOUD
10.2. INCREASING NODE COUNTS FOR ROLES
10.3. REMOVING COMPUTE NODES
10.4. REPLACING CEPH STORAGE NODES
10.5. REPLACING OBJECT STORAGE NODES
10.6. BLACKLISTING NODES

CHAPTER 11. REPLACING CONTROLLER NODES
11.1. PREPARING FOR CONTROLLER REPLACEMENT
11.2. REMOVING A CEPH MONITOR DAEMON
11.3. PREPARING THE CLUSTER FOR CONTROLLER REPLACEMENT
11.4. REPLACING A CONTROLLER NODE
11.5. TRIGGERING THE CONTROLER NODE REPLACEMENT
11.6. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT

CHAPTER 12. REBOOTING NODES
12.1. REBOOTING THE UNDERCLOUD NODE
12.2. REBOOTING CONTROLLER AND COMPOSABLE NODES
12.3. REBOOTING STANDALONE CEPH MON NODES
12.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER
12.5. REBOOTING COMPUTE NODES

PART IV. ADDITIONAL DIRECTOR OPERATIONS AND CONFIGURATION

CHAPTER 13. ADDITIONAL INTROSPECTION OPERATIONS
13.1. PERFORMING INDIVIDUAL NODE INTROSPECTION
13.2. PERFORMING NODE INTROSPECTION AFTER INITIAL INTROSPECTION
13.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE INFORMATION

CHAPTER 14. AUTOMATICALLY DISCOVER BARE METAL NODES
14.1. REQUIREMENTS
14.2. ENABLE AUTO-DISCOVERY
14.3. TEST AUTO-DISCOVERY
14.4. USE RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

CHAPTER 15. CREATING VIRTUALIZED CONTROL PLANES
15.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE

91
91

92

93
93
93
94
94
94
96
97
98
98
99

100

101
101
102
103
105
105
106

109
109
110
112
113
114
115

117
117
117
118
118
119

121

122
122
122
122

128
128
128
129
129

131
131

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

15.2. BENEFITS AND LIMITATIONS OF VIRTUALIZING YOUR RHOSP OVERCLOUD CONTROL PLANE
15.3. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED HAT VIRTUALIZATION DRIVER

CHAPTER 16. CONFIGURING DIRECT DEPLOY
16.1. CONFIGURING THE DIRECT DEPLOY INTERFACE ON THE UNDERCLOUD

Procedure

PART V. TROUBLESHOOTING

CHAPTER 17. TROUBLESHOOTING DIRECTOR ISSUES
17.1. TROUBLESHOOTING NODE REGISTRATION
17.2. TROUBLESHOOTING HARDWARE INTROSPECTION
17.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS
17.4. TROUBLESHOOTING OVERCLOUD CREATION

17.4.1. Accessing deployment command history
17.4.2. Orchestration
17.4.3. Bare Metal Provisioning
17.4.4. Checking overcloud configuration failures

17.5. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
17.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
17.7. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION

17.7.1. Overcloud Stack Modifications
17.7.2. Controller Service Failures
17.7.3. Containerized Service Failures
17.7.4. Compute Service Failures
17.7.5. Ceph Storage Service Failures

17.8. CREATING AN SOSREPORT
17.9. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

PART VI. APPENDICES

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
A.1. INITIALIZING THE SIGNING HOST
A.2. CREATING A CERTIFICATE AUTHORITY
A.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
A.4. CREATING AN SSL/TLS KEY
A.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
A.6. CREATING THE SSL/TLS CERTIFICATE
A.7. USING THE CERTIFICATE WITH THE UNDERCLOUD

APPENDIX B. POWER MANAGEMENT DRIVERS
B.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
B.2. REDFISH
B.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
B.4. INTEGRATED LIGHTS-OUT (ILO)
B.5. CISCO UNIFIED COMPUTING SYSTEM (UCS)
B.6. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
B.7. RED HAT VIRTUALIZATION
B.8. MANUAL MANAGEMENT

APPENDIX C. WHOLE DISK IMAGES
C.1. DOWNLOADING THE BASE CLOUD IMAGE
C.2. DISK IMAGE ENVIRONMENT VARIABLES
C.3. CUSTOMIZING THE DISK LAYOUT

C.3.1. Modifying the Partitioning Schema

131
132

135
135
135

136

137
137
137
139
140
140
140
141

142
142
143
144
144
144
145
146
146
147
147

149

150
150
150
150
151
151
152
152

154
154
154
154
155
155
156
156
157

158
159
159
160
160

Red Hat OpenStack Platform 14 Director Installation and Usage

4

. .

. .

. .

. .

C.3.2. Modifying the Image Size
C.4. CREATING A SECURITY HARDENED WHOLE DISK IMAGE
C.5. UPLOADING A SECURITY HARDENED WHOLE DISK IMAGE

APPENDIX D. ALTERNATIVE BOOT MODES
D.1. STANDARD PXE

APPENDIX E. AUTOMATIC PROFILE TAGGING
E.1. POLICY FILE SYNTAX
E.2. POLICY FILE EXAMPLE
E.3. IMPORTING POLICY FILES
E.4. AUTOMATIC PROFILE TAGGING PROPERTIES

APPENDIX F. SECURITY ENHANCEMENTS
F.1. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

APPENDIX G. RED HAT OPENSTACK PLATFORM FOR POWER
G.1. CEPH STORAGE
G.2. COMPOSABLE SERVICES

163
163
164

165
165

166
166
167
169
170

171
171

173
173
173

Table of Contents

5

Red Hat OpenStack Platform 14 Director Installation and Usage

6

CHAPTER 1. INTRODUCTION
The Red Hat OpenStack Platform director is a toolset for installing and managing a complete
OpenStack environment. Director is based primarily on the OpenStack project TripleO, which is an
abbreviation of "OpenStack-On-OpenStack". This project consists of OpenStack components that you
can use to install a fully operational OpenStack environment. This includes OpenStack components that
provision and control bare metal systems to use as OpenStack nodes. This provides a simple method for
installing a complete Red Hat OpenStack Platform environment that is both lean and robust.

The Red Hat OpenStack Platform director uses two main concepts: an undercloud and an overcloud.
The undercloud installs and configures the overcloud. The next few sections outline the concept of
each.

1.1. UNDERCLOUD

The undercloud is the main management node that contains the OpenStack Platform director toolset. It
is a single-system OpenStack installation that includes components for provisioning and managing the
OpenStack nodes that form your OpenStack environment (the overcloud). The components that form
the undercloud have multiple functions:

Environment Planning

The undercloud includes planning functions for users to create and assign certain node roles. The
undercloud includes a default set of nodes: Compute, Controller, and various storage roles. You can
also design custom roles. Additionally, you can select which OpenStack Platform services to include
on each node role, which provides a method to model new node types or isolate certain components
on their own host.

Bare Metal System Control

The undercloud uses the out-of-band management interface, usually Intelligent Platform
Management Interface (IPMI), of each node for power management control and a PXE-based
service to discover hardware attributes and install OpenStack on each node. You can use this feature
to provision bare metal systems as OpenStack nodes. See Appendix B, Power Management Drivers
for a full list of power management drivers.

Orchestration

The undercloud contains a set of YAML templates that represent a set of plans for your environment.
The undercloud imports these plans and follows their instructions to create the resulting OpenStack

CHAPTER 1. INTRODUCTION

7

environment. The plans also include hooks that you can use to incorporate your own customizations
as certain points in the environment creation process.

Undercloud Components

The undercloud uses OpenStack components as its base tool set. Each component operates within a
separate container on the undercloud:

OpenStack Identity (keystone) - Provides authentication and authorization for the director’s
components.

OpenStack Bare Metal (ironic) and OpenStack Compute (nova) - Manages bare metal
nodes.

OpenStack Networking (neutron) and Open vSwitch - Controls networking for bare metal
nodes.

OpenStack Image Service (glance) - Stores images that director writes to bare metal
machines.

OpenStack Orchestration (heat) and Puppet - Provides orchestration of nodes and
configuration of nodes after the director writes the overcloud image to disk.

OpenStack Telemetry (ceilometer) - Performs monitoring and data collection. This also
includes:

OpenStack Telemetry Metrics (gnocchi) - Provides a time series database for metrics.

OpenStack Telemetry Alarming (aodh) - Provides an alarming component for
monitoring.

OpenStack Telemetry Event Storage (panko) - Provides event storage for monitoring.

OpenStack Workflow Service (mistral) - Provides a set of workflows for certain director-
specific actions, such as importing and deploying plans.

OpenStack Messaging Service (zaqar) - Provides a messaging service for the OpenStack
Workflow Service.

OpenStack Object Storage (swift) - Provides object storage for various OpenStack
Platform components, including:

Image storage for OpenStack Image Service

Introspection data for OpenStack Bare Metal

Deployment plans for OpenStack Workflow Service

1.2. OVERCLOUD

The overcloud is the resulting Red Hat OpenStack Platform environment that the undercloud creates.
The overcloud consists of multiple nodes with different roles that you define based on the OpenStack
Platform environment that you want to create. The undercloud includes a default set of overcloud node
roles:

Controller

Controller nodes provide administration, networking, and high availability for the OpenStack

Red Hat OpenStack Platform 14 Director Installation and Usage

8

Controller nodes provide administration, networking, and high availability for the OpenStack
environment. A recommended OpenStack environment contains three Controller nodes together in
a high availability cluster.
A default Controller node contains the following components:

OpenStack Dashboard (horizon)

OpenStack Identity (keystone)

OpenStack Compute (nova) API

OpenStack Networking (neutron)

OpenStack Image Service (glance)

OpenStack Block Storage (cinder)

OpenStack Object Storage (swift)

OpenStack Orchestration (heat)

OpenStack Telemetry Metrics (gnocchi)

OpenStack Telemetry Alarming (aodh)

OpenStack Telemetry Event Storage (panko)

OpenStack Clustering (sahara)

OpenStack Shared File Systems (manila)

OpenStack Bare Metal (ironic)

MariaDB

Open vSwitch

Pacemaker and Galera for high availability services.

Compute

Compute nodes provide computing resources for the OpenStack environment. You can add more
Compute nodes to scale out your environment over time. A default Compute node contains the
following components:

OpenStack Compute (nova)

KVM/QEMU

OpenStack Telemetry (ceilometer) agent

Open vSwitch

Storage

Storage nodes that provide storage for the OpenStack environment. The following list contains
information about the various types of storage node in Red Hat OpenStack Platform:

Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object

CHAPTER 1. INTRODUCTION

9

Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object
Storage Daemon (OSD). Additionally, the director installs Ceph Monitor onto the Controller
nodes in situations where you deploy Ceph Storage nodes as part of your environment.

Block storage (cinder) - Used as external block storage for highly available Controller nodes.
This node contains the following components:

OpenStack Block Storage (cinder) volume

OpenStack Telemetry agents

Open vSwitch.

Object storage (swift) - These nodes provide a external storage layer for OpenStack Swift.
The Controller nodes access object storage nodes through the Swift proxy. Object storage
node contains the following components:

OpenStack Object Storage (swift) storage

OpenStack Telemetry agents

Open vSwitch.

1.3. HIGH AVAILABILITY

The Red Hat OpenStack Platform director uses a Controller node cluster to provide highly available
services to your OpenStack Platform environment. For each service, the director installs the same
components on all Controller node and manages the Controller nodes together as a single service. This
type of cluster configuration provides a fallback in the event of operational failures on a single Controller
node. This provides OpenStack users with a certain degree of continuous operation.

The OpenStack Platform director uses some key pieces of software to manage components on the
Controller node:

Pacemaker - Pacemaker is a cluster resource manager. Pacemaker manages and monitors the
availability of OpenStack components across all nodes in the cluster.

HAProxy - Provides load balancing and proxy services to the cluster.

Galera - Replicates the Red Hat OpenStack Platform database across the cluster.

Memcached - Provides database caching.

NOTE

From version 13 and later, you can use the director to deploy High Availability for
Compute Instances (Instance HA). With Instance HA you can automate
evacuating instances from a Compute node when the Compute node fails.

1.4. CONTAINERIZATION

Each OpenStack Platform service on the undercloud and overcloud runs inside an individual Linux
container on their respective node. This containerization provides a method to isolate services, maintain
the environment, and upgrade OpenStack Platform. Red Hat supports several methods of obtaining
container images for your overcloud:

Red Hat OpenStack Platform 14 Director Installation and Usage

10

Pulling container images directly from the Red Hat Container Catalog

Hosting container images on the undercloud

Hosting container images on a Satellite 6 server

This guide containers information about configuring your container image registry details and perform
basic container operations.

1.5. CEPH STORAGE

It is common for large organizations using OpenStack to serve thousands of clients or more. Each
OpenStack client is likely to have their own unique needs when consuming block storage resources.
Deploying glance (images), cinder (volumes) and/or nova (Compute) on a single node can become
impossible to manage in large deployments with thousands of clients. Scaling OpenStack externally
resolves this challenge.

However, there is also a practical requirement to virtualize the storage layer with a solution like Red Hat
Ceph Storage so that you can scale the Red Hat OpenStack Platform storage layer from tens of
terabytes to petabytes (or even exabytes) of storage. Red Hat Ceph Storage provides this storage
virtualization layer with high availability and high performance while running on commodity hardware.
While virtualization might seem like it comes with a performance penalty, Ceph stripes block device
images as objects across the cluster, meaning that large Ceph Block Device images have better
performance than a standalone disk. Ceph Block devices also support caching, copy-on-write cloning,
and copy-on-read cloning for enhanced performance.

See Red Hat Ceph Storage for additional information about Red Hat Ceph Storage.

NOTE

For multi-architecture clouds, Red Hat supports only pre-installed or external Ceph
implementation. See Integrating an Overcloud with an Existing Red Hat Ceph Cluster and
Appendix G, Red Hat OpenStack Platform for POWER for more details.

CHAPTER 1. INTRODUCTION

11

https://access.redhat.com/products/red-hat-ceph-storage
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/integrating_an_overcloud_with_an_existing_red_hat_ceph_cluster/

PART I. DIRECTOR INSTALLATION AND CONFIGURATION

Red Hat OpenStack Platform 14 Director Installation and Usage

12

CHAPTER 2. PLANNING YOUR UNDERCLOUD

2.1. CONTAINERIZED UNDERCLOUD

The undercloud is the node that controls the configuration, installation, and management of your final
OpenStack Platform environment, which is called the overcloud. The undercloud itself uses OpenStack
Platform components in the form of containers to create a toolset called OpenStack Platform director.
This means the undercloud pulls a set of container images from a registry source, generates
configuration for the containers, and runs each OpenStack Platform service as a container. As a result,
the undercloud provides a containerized set of services you can use as a toolset for creating and
managing your overcloud.

Since both the undercloud and overcloud uses containers, both use the same architecture to pull,
configure, and run containers. This architecture is based on the OpenStack Orchestration service (heat)
for provisioning nodes and uses Ansible for configuring services and containers. It is useful to have some
familiarity with Heat and Ansible to help you troubleshoot issues you might encounter.

2.2. PREPARING YOUR UNDERCLOUD NETWORKING

The undercloud requires access to two main networks:

The Provisioning or Control Plane network, which is the network the director uses to provision
your nodes and access them over SSH when executing Ansible configuration. This network also
enables SSH access from the undercloud to overcloud nodes. The undercloud contains DHCP
services for introspection and provisioning other nodes on this network, which means no other
DHCP services should exist on this network. The director configures the interface for this
network.

The External network that enables access to OpenStack Platform repositories, container
image sources, and other servers such as DNS servers or NTP servers. Use this network for
standard access the undercloud from your workstation. You must manually configure an
interface on the undercloud to access the external network.

The undercloud requires a minimum of 2 x 1 Gbps Network Interface Cards: one for the Provisioning or
Control Plane network and one for the External network. However, it is recommended to use a 10
Gbps interface for Provisioning network traffic, especially if provisioning a large number of nodes in your
overcloud environment.

Note the following:

Do not use the same Provisioning or Control Plane NIC as the one that you use to access the
director machine from your workstation. The director installation creates a bridge by using the
Provisioning NIC, which drops any remote connections. Use the External NIC for remote
connections to the director system.

The Provisioning network requires an IP range that fits your environment size. Use the following
guidelines to determine the total number of IP addresses to include in this range:

Include at least one temporary IP address for each node connected to the Provisioning
network during introspection.

Include at least one permanent IP address for each node connected to the Provisioning
network during deployment.

Include an extra IP address for the virtual IP of the overcloud high availability cluster on the

CHAPTER 2. PLANNING YOUR UNDERCLOUD

13

Include an extra IP address for the virtual IP of the overcloud high availability cluster on the
Provisioning network.

Include additional IP addresses within this range for scaling the environment.

2.3. DETERMINING ENVIRONMENT SCALE

Prior to installing the undercloud, it is recommended to determine the scale of your environment. Include
the following factors when planningyour environment:

How many nodes in your overcloud? The undercloud manages each node within an overcloud.
Provisioning overcloud nodes consumes resources on the undercloud. You must provide your
undercloud with enough resources to adequately provision and control overcloud nodes.

How many simultaneous operations do you want the undercloud perform? Most OpenStack
services on the undercloud use a set of workers. Each worker performs an operation specific to
that service. Multiple workers provide simultaneous operations. The default number of workers
on the undercloud is determined by halving the undercloud’s total CPU thread count [1]. For
example, if your undercloud has a CPU with 16 threads, then the director services spawn 8
workers by default. The director also uses a set of minimum and maximum caps by default:

Service Minimum Maximum

OpenStack Orchestration (heat) 4 24

All other service 2 12

The undercloud has the minimum CPU and memory requirements:

An 8-thread 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions. This
provides 4 workers for each undercloud service.

A minimum of 24 GB of RAM.

The ceph-ansible playbook consumes 1 GB resident set size (RSS) per 10 hosts deployed
by the undercloud. If the deployed overcloud will use an existing Ceph cluster, or if it will
deploy a new Ceph cluster, then provision undercloud RAM accordingly.

To use a larger number of workers, increase your undercloud’s vCPUs and memory using the following
recommendations:

Minimum: Use 1.5 GB of memory per thread. For example, a machine with 48 threads should
have 72 GB of RAM. This provides the minimum coverage for 24 Heat workers and 12 workers
for other services.

Recommended: Use 3 GB of memory per thread. For example, a machine with 48 threads
should have 144 GB of RAM. This provides the recommended coverage for 24 Heat workers and
12 workers for other services.

2.4. UNDERCLOUD DISK SIZING

The recommended minimum undercloud disk size is 100 GB of available disk space on the root disk:

Red Hat OpenStack Platform 14 Director Installation and Usage

14

20 GB for container images

10 GB to accommodate QCOW2 image conversion and caching during the node provisioning
process

70 GB+ for general usage, logging, metrics, and growth

2.5. UNDERCLOUD REPOSITORIES

Enable the following repositories for the installation and configuration of the undercloud.

Table 2.1. Core repositories

Name Repository Description of Requirement

Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rpms Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 7 Server
- Extras (RPMs)

rhel-7-server-extras-rpms Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 7 Server
- RH Common (RPMs)

rhel-7-server-rh-common-
rpms

Contains tools for deploying and
configuring Red Hat OpenStack
Platform.

Red Hat Satellite Tools for RHEL
7 Server RPMs x86_64

rhel-7-server-satellite-tools-
6.3-rpms

Tools for managing hosts with Red
Hat Satellite 6.

Red Hat Enterprise Linux High
Availability (for RHEL 7 Server)
(RPMs)

rhel-ha-for-rhel-7-server-
rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat OpenStack Platform 14
for RHEL 7 (RPMs)

rhel-7-server-openstack-14-
rpms

Core Red Hat OpenStack
Platform repository, which
contains packages for Red Hat
OpenStack Platform director.

Table 2.2. Ceph repositories

Name Repository Description of Requirement

Red Hat Ceph Storage Tools 3 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-3-tools-
rpms

Provides tools for nodes to
communicate with the Ceph
Storage cluster. The undercloud
requires the ceph-ansible
package from this repository if
you plan to use Ceph Storage in
your overcloud.

IBM POWER repositories

These repositories are used for Openstack Platform on POWER PC architecture. Use these repositories

CHAPTER 2. PLANNING YOUR UNDERCLOUD

15

These repositories are used for Openstack Platform on POWER PC architecture. Use these repositories
in place of equivalents in the Core repositories.

Name Repository Description of Requirement

Red Hat Enterprise Linux for IBM
Power, little endian

rhel-7-for-power-le-rpms Base operating system repository
for ppc64le systems.

Red Hat OpenStack Platform 14
for RHEL 7 (RPMs)

rhel-7-server-openstack-14-
for-power-le-rpms

Core Red Hat OpenStack
Platform repository for ppc64le
systems.

[1] In this instance, thread count refers to the number of CPU cores multiplied by the hyper-threading value

Red Hat OpenStack Platform 14 Director Installation and Usage

16

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

3.1. PREPARING THE UNDERCLOUD

The director installation requires the following:

A non-root user to execute commands.

Directories to organize images and templates

A resolvable hostname

A Red Hat subscription

The command line tools for image preparation and director installation

This procedure shows how to create these items.

Procedure

1. Log into your undercloud as the root user.

2. Create the stack user:

[root@director ~]# useradd stack

3. Set a password for the user:

[root@director ~]# passwd stack

4. Disable password requirements when using sudo:

[root@director ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack
[root@director ~]# chmod 0440 /etc/sudoers.d/stack

5. Switch to the new stack user:

[root@director ~]# su - stack
[stack@director ~]$

6. Create directories for system images and Heat templates.

[stack@director ~]$ mkdir ~/images
[stack@director ~]$ mkdir ~/templates

The director uses system images and Heat templates to create the overcloud environment. Red
Hat recommends creating these directories to help you organize your local file system.

7. Check the base and full hostname of the undercloud:

[stack@director ~]$ hostname
[stack@director ~]$ hostname -f

If either of the previous commands do not report the correct fully-qualified hostname or report

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

17

If either of the previous commands do not report the correct fully-qualified hostname or report
an error, use hostnamectl to set a hostname:

[stack@director ~]$ sudo hostnamectl set-hostname manager.example.com
[stack@director ~]$ sudo hostnamectl set-hostname --transient manager.example.com

8. Edit the /etc/hosts to include an entry for the system’s hostname. The IP address in /etc/hosts
must match the address that you plan to use for your undercloud public API. For example, if the
system is named manager.example.com and uses 10.0.0.1 for its IP address, then /etc/hosts
requires an entry like:

10.0.0.1 manager.example.com manager

9. Register your system either with the Red Hat Content Delivery Network or with a Red Hat
Satellite. For example, run the following command to register the system to the Content
Delivery Network. Enter your Customer Portal user name and password when prompted:

[stack@director ~]$ sudo subscription-manager register

10. Find the entitlement pool ID for Red Hat OpenStack Platform director. For example:

[stack@director ~]$ sudo subscription-manager list --available --all --matches="Red Hat
OpenStack"
Subscription Name: Name of SKU
Provides: Red Hat Single Sign-On
 Red Hat Enterprise Linux Workstation
 Red Hat CloudForms
 Red Hat OpenStack
 Red Hat Software Collections (for RHEL Workstation)
 Red Hat Virtualization
SKU: SKU-Number
Contract: Contract-Number
Pool ID: Valid-Pool-Number-123456
Provides Management: Yes
Available: 1
Suggested: 1
Service Level: Support-level
Service Type: Service-Type
Subscription Type: Sub-type
Ends: End-date
System Type: Physical

11. Locate the Pool ID value and attach the Red Hat OpenStack Platform 14 entitlement:

[stack@director ~]$ sudo subscription-manager attach --pool=Valid-Pool-Number-123456

12. Disable all default repositories, and then enable the required Red Hat Enterprise Linux
repositories:

[stack@director ~]$ sudo subscription-manager repos --disable=*
[stack@director ~]$ sudo subscription-manager repos --enable=rhel-7-server-rpms --
enable=rhel-7-server-extras-rpms --enable=rhel-7-server-rh-common-rpms --enable=rhel-ha-
for-rhel-7-server-rpms --enable=rhel-7-server-openstack-14-rpms

Red Hat OpenStack Platform 14 Director Installation and Usage

18

These repositories contain packages the director installation requires.

13. Perform an update on your system to ensure you have the latest base system packages:

[stack@director ~]$ sudo yum update -y
[stack@director ~]$ sudo reboot

14. Install the command line tools for director installation and configuration:

[stack@director ~]$ sudo yum install -y python-tripleoclient

3.2. CONFIGURING AN UNDERCLOUD PROXY

If your environment uses a proxy, you can pre-configure the undercloud to use the proxy details. This
procedure is optional and only applies to users requiring proxy configuration.

Procedure

1. Log into the undercloud host as the root user.

2. Edit the /etc/environment file:

vi /etc/environment

3. Add the following parameters to the /etc/environment.:

http_proxy

The proxy to use for standard HTTP requests.

https_proxy

The proxy to use for HTTPs requests.

no_proxy

A comma-separated list of IP addresses and domains excluded from proxy communications.
Include all IP addresses and domains relevant to the undercloud.

http_proxy=https://10.0.0.1:8080/
https_proxy=https://10.0.0.1:8080/
no_proxy=127.0.0.1,192.168.24.1,192.168.24.2,192.168.24.3

4. Restart your shell session. For example, logout and re-login to the undercloud.

3.3. INSTALLING CEPH-ANSIBLE

The following procedure installs the ceph-ansible package if you plan to create an overcloud with Ceph
Storage nodes. If you do not plan to create Ceph Storage nodes in your overcloud, you do not need this
package.

Procedure

1. Enable the Ceph Tools repository:

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

19

[stack@director ~]$ sudo subscription-manager repos --enable=rhel-7-server-rhceph-3-tools-
rpms

2. Install the ceph-ansible package:

[stack@director ~]$ sudo yum install -y ceph-ansible

3.4. PREPARING CONTAINER IMAGES

The undercloud configuration requires initial registry configuration to determine where to obtain images
and how to store them. Complete the following steps to generate and customize an environment file for
preparing your container images.

Procedure

1. Log in to your undercloud host as the stack user.

2. Generate the default container image preparation file:

$ openstack tripleo container image prepare default \
 --local-push-destination \
 --output-env-file containers-prepare-parameter.yaml

This command includes the following additional options:

--local-push-destination sets the registry on the undercloud as the location for container
images. This means the director pulls the necessary images from the Red Hat Container
Catalog and pushes them to the registry on the undercloud. The director uses this registry
as the container image source. To pull directly from the Red Hat Container Catalog, omit
this option.

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images. In this case, the name of the file is
containers-prepare-parameter.yaml.

NOTE

You can also use the same containers-prepare-parameter.yaml file to
define a container image source for both the undercloud and the overcloud.

3. Edit the containers-prepare-parameter.yaml and make the modifications to suit your
requirements.

3.5. CONTAINER IMAGE PREPARATION PARAMETERS

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the
ContainerImagePrepare Heat parameter. This parameter defines a list of strategies for preparing a set
of images:

parameter_defaults:
 ContainerImagePrepare:
 - (strategy one)

Red Hat OpenStack Platform 14 Director Installation and Usage

20

 - (strategy two)
 - (strategy three)
 ...

Each strategy accepts a set of sub-parameters that define which images to use and what to do with
them. The following table contains information about the sub-parameters you can use with each
ContainerImagePrepare strategy:

Parameter Description

excludes List of image name substrings to exclude from a
strategy.

includes List of image name substrings to include in a
strategy. At least one image name must match an
existing image. All excludes are ignored if includes
is specified.

modify_append_tag String to append to the tag for the destination image.
For example, if you pull an image with the tag 14.0-
89 and set the modify_append_tag to -hotfix, the
director tags the final image as 14.0-89-hotfix.

modify_only_with_labels A dictionary of image labels that filter the images to
modify. If an image matches the labels defined, the
director includes the image in the modification
process.

modify_role String of ansible role names to run during upload but
before pushing the image to the destination registry.

modify_vars Dictionary of variables to pass to modify_role.

push_destination The namespace of the registry to push images during
the upload process. When you specify a namespace
for this parameter, all image parameters use this
namespace too. If set to true, the
push_destination is set to the undercloud registry
namespace. It is not recommended to set this
parameters to false in production environments.

pull_source The source registry from where to pull the original
container images.

set A dictionary of key: value definitions that define
where to obtain the initial images.

tag_from_label Defines the label pattern to tag the resulting images.
Usually sets to \{version}-\{release}.

The set parameter accepts a set of key: value definitions. The following table contains information

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

21

The set parameter accepts a set of key: value definitions. The following table contains information
about the keys:

Key Description

ceph_image The name of the Ceph Storage container image.

ceph_namespace The namespace of the Ceph Storage container
image.

ceph_tag The tag of the Ceph Storage container image.

name_prefix A prefix for each OpenStack service image.

name_suffix A suffix for each OpenStack service image.

namespace The namespace for each OpenStack service image.

neutron_driver The driver to use to determine which OpenStack
Networking (neutron) container to use. Use a null
value to set to the standard neutron-server
container. Set to ovn to use OVN-based containers.
Set to odl to use OpenDaylight-based containers.

tag The tag that the director uses to identify the images
to pull from the source registry. You usually keep this
key set to latest.

NOTE

The set section might contains several parameters that begin with openshift_. These
parameters are for various scenarios involving OpenShift-on-OpenStack.

3.6. LAYERING IMAGE PREPARATION ENTRIES

The value of the ContainerImagePrepare parameter is a YAML list. This means you can specify multiple
entries. The following example demonstrates two entries where the director uses the latest version of all
images except for the nova-api image, which uses the version tagged with 14.0-44:

ContainerImagePrepare:
- tag_from_label: "{version}-{release}"
 push_destination: true
 excludes:
 - nova-api
 set:
 namespace: registry.access.redhat.com/rhosp14
 name_prefix: openstack-
 name_suffix: ''
 tag: latest
- push_destination: true
 includes:

Red Hat OpenStack Platform 14 Director Installation and Usage

22

 - nova-api
 set:
 namespace: registry.access.redhat.com/rhosp14
 tag: 14.0-44

The includes and excludes entries control image filtering for each entry. The images that match the
includes strategy take precedence over excludes matches. The image name must include the
includes or excludes value to be considered a match.

3.7. MODIFYING IMAGES DURING PREPARATION

It is possible to modify images during image preparation, then immediately deploy with modified images.
Scenarios for modifying images include:

As part of a continuous integration pipeline where images are modified with the changes being
tested before deployment.

As part of a development workflow where local changes need to be deployed for testing and
development.

When changes need to be deployed but are not available through an image build pipeline. For
example, adding proprietry add-ons or emergency fixes.

To modify an image during preparation, invoke an Ansible role on each image that you want to modify.
The role takes a source image, makes the requested changes, and tags the result. The prepare
command can push the image to the destination registry and set the Heat parameters to refer to the
modified image.

The Ansible role tripleo-modify-image conforms with the required role interface, and provides the
behaviour necessary for the modify use-cases. Modification is controlled using modify-specific keys in
the ContainerImagePrepare parameter:

modify_role specifies the Ansible role to invoke for each image to modify.

modify_append_tag appends a string to the end of the source image tag. This makes it obvious
that the resulting image has been modified. Use this parameter to skip modification if the
push_destination registry already contains the modified image. It is recommended to change
modify_append_tag whenever you modify the image.

modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use-case that the tripleo-modify-image role handles, set the tasks_from variable to the
required file in that role.

While developing and testing the ContainerImagePrepare entries that modify images, it is
recommended to run the image prepare command without any additional options to confirm the image
is modified as expected:

sudo openstack tripleo container image prepare \
 -e ~/containers-prepare-parameter.yaml

3.8. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES

The following example ContainerImagePrepare entry updates in all packages on the images using the
undercloud host’s yum repository configuration:

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

23

ContainerImagePrepare:
- push_destination: true
 ...
 modify_role: tripleo-modify-image
 modify_append_tag: "-updated"
 modify_vars:
 tasks_from: yum_update.yml
 compare_host_packages: true
 yum_repos_dir_path: /etc/yum.repos.d
 ...

3.9. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES

You can install a directory of RPM files in your container images. This is useful for installing hotfixes,
local package builds, or any package not available through a package repository. For example, the
following ContainerImagePrepare entry installs some hotfix packages only on the nova-compute
image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: rpm_install.yml
 rpms_path: /home/stack/nova-hotfix-pkgs
 ...

3.10. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

For maximum flexibility, you can specify a directory containing a Dockerfile to make the required
changes. When you invoke the tripleo-modify-image role, the role generates a Dockerfile.modified file
that changes the FROM directive and adds extra LABEL directives. The following example runs the
custom Dockerfile on the nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: modify_image.yml
 modify_dir_path: /home/stack/nova-custom
 ...

An example /home/stack/nova-custom/Dockerfile` follows. After running any USER root directives,
you must switch back to the original image default user:

FROM registry.access.redhat.com/rhosp14/openstack-nova-compute:latest

Red Hat OpenStack Platform 14 Director Installation and Usage

24

USER "root"

COPY customize.sh /tmp/
RUN /tmp/customize.sh

USER "nova"

3.11. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple
images into a Satellite server and manage them as part of an application life cycle. The Satellite also acts
as a registry for other container-enabled systems to use. For more details information on managing
container images, see "Managing Container Images" in the Red Hat Satellite 6 Content Management
Guide.

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an
example organization called ACME. Substitute this organization for your own Satellite 6 organization.

Procedure

1. Create a list of all container images, including the Ceph images:

$ sudo docker search "registry.access.redhat.com/rhosp14" | awk '{ print $2 }' | grep -v beta |
sed "s/registry.access.redhat.com\///g" | tail -n+2 > satellite_images
$ echo "rhceph/rhceph-3-rhel7" >> satellite_images_names

2. Copy the satellite_images_names file to a system that contains the Satellite 6 hammer tool.
Alternatively, use the instructions in the Hammer CLI Guide to install the hammer tool to the
undercloud.

3. Run the following hammer command to create a new product (OSP14 Containers) in your
Satellite organization:

$ hammer product create \
 --organization "ACME" \
 --name "OSP14 Containers"

This custom product will contain our images.

4. Add the base container image to the product:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP14 Containers" \
 --content-type docker \
 --url https://registry.access.redhat.com \
 --docker-upstream-name rhosp14/openstack-base \
 --name base

5. Add the overcloud container images from the satellite_images file.

$ while read IMAGE; do \
 IMAGENAME=$(echo $IMAGE | cut -d"/" -f2 | sed "s/openstack-//g" | sed "s/:.*//g") ; \

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

25

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html/content_management_guide/managing_container_images
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html-single/hammer_cli_guide/

 hammer repository create \
 --organization "ACME" \
 --product "OSP14 Containers" \
 --content-type docker \
 --url https://registry.access.redhat.com \
 --docker-upstream-name $IMAGE \
 --name $IMAGENAME ; done < satellite_images_names

6. Synchronize the container images:

$ hammer product synchronize \
 --organization "ACME" \
 --name "OSP14 Containers"

Wait for the Satellite server to complete synchronization.

NOTE

Depending on your configuration, hammer might ask for your Satellite server
username and password. You can configure hammer to automatically login using
a configuration file. For more information, see the "Authentication" section in the
Hammer CLI Guide .

7. If your Satellite 6 server uses content views, create a new content view version to incorporate
the images and promote it along environments in your application life cycle. This largely
depends on how you structure your application lifecycle. For example, if you have an
environment called production in your lifecycle and you want the container images available in
that environment, create a content view that includes the container images and promote that
content view to the production environment. For more information, see "Managing Container
Images with Content Views".

8. Check the available tags for the base image:

$ hammer docker tag list --repository "base" \
 --organization "ACME" \
 --environment "production" \
 --content-view "myosp14" \
 --product "OSP14 Containers"

This command displays tags for the OpenStack Platform container images within a content view
for an particular environment.

9. Return to the undercloud and generate a default environment file for preparing images using
your Satellite server as a source. Run the following example command to generate the
environment file:

(undercloud) $ openstack tripleo container image prepare default \
 --output-env-file containers-prepare-parameter.yaml

--output-env-file is an environment file name. The contents of this file will include the
parameters for preparing your container images for the undercloud. In this case, the name
of the file is containers-prepare-parameter.yaml.

10. Edit the containers-prepare-parameter.yaml file and modify the following parameters:

namespace - The URL and port of the registry on the Satellite server. The default registry

Red Hat OpenStack Platform 14 Director Installation and Usage

26

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html-single/hammer_cli_guide/#sect-CLI_Guide-Authentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/content_management_guide/managing_container_images#managing_container_images_with_content_views

namespace - The URL and port of the registry on the Satellite server. The default registry
port on Red Hat Satellite is 5000.

name_prefix - The prefix is based on a Satellite 6 convention. This differs depending on
whether you use content views:

If you use content views, the structure is [org]-[environment]-[content view]-
[product]-. For example: acme-production-myosp14-osp14_containers-.

If you do not use content views, the structure is [org]-[product]-. For example: acme-
osp14_containers-.

ceph_namespace, ceph_image, ceph_tag - If using Ceph Storage, include the additional
parameters to define the Ceph Storage container image location. Note that ceph_image
now includes a Satellite-specific prefix. This prefix is the same value as the name_prefix
option.

The following example environment file contains Satellite-specific parameters:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 ceph_image: acme-production-myosp14-osp14_containers-rhceph-3-rhel7
 ceph_namespace: satellite.example.com:5000
 ceph_tag: latest
 name_prefix: acme-production-myosp14-osp14_containers-
 name_suffix: ''
 namespace: satellite.example.com:5000
 neutron_driver: null
 tag: latest
 ...
 tag_from_label: '{version}-{release}'

Use this environment file when creating both your undercloud and overcloud.

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

27

CHAPTER 4. INSTALLING DIRECTOR

4.1. CONFIGURING THE DIRECTOR

The director installation process requires certain settings in the undercloud.conf configuration file,
which the director reads from the stack user’s home directory. This procedure demonstrates how to use
the default template as a foundation for your configuration.

Procedure

1. Copy the default template to the stack user’s home directory:

[stack@director ~]$ cp \
 /usr/share/python-tripleoclient/undercloud.conf.sample \
 ~/undercloud.conf

2. Edit the undercloud.conf file. This file contains settings to configure your undercloud. If you
omit or comment out a parameter, the undercloud installation uses the default value.

4.2. DIRECTOR CONFIGURATION PARAMETERS

The following list contains information about parameters for configuring the undercloud.conf file. Keep
all parameters within their relevant sections to avoid errors.

Defaults

The following parameters are defined in the [DEFAULT] section of the undercloud.conf file:

additional_architectures

A list of additional (kernel) architectures that an overcloud supports. Currently the overcloud
supports ppc64le architecture.

NOTE

When enabling support for ppc64le, you must also set ipxe_enabled to False

certificate_generation_ca

The certmonger nickname of the CA that signs the requested certificate. Use this option only if you
have set the generate_service_certificate parameter. If you select the local CA, certmonger
extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and adds the
certificate to the trust chain.

clean_nodes

Defines whether to wipe the hard drive between deployments and after introspection.

cleanup

Cleanup temporary files. Set this to False to leave the temporary files used during deployment in
place after the command is run. This is useful for debugging the generated files or if errors occur.

container_images_file

Heat environment file with container image information. This can either be:

Parameters for all required container images

Or the ContainerImagePrepare parameter to drive the required image preparation. Usually

Red Hat OpenStack Platform 14 Director Installation and Usage

28

Or the ContainerImagePrepare parameter to drive the required image preparation. Usually
the file containing this parameter is named containers-prepare-parameter.yaml.

custom_env_files

Additional environment file to add to the undercloud installation.

deployment_user

The user installing the undercloud. Leave this parameter unset to use the current default user
(stack).

discovery_default_driver

Sets the default driver for automatically enrolled nodes. Requires enable_node_discovery enabled
and you must include the driver in the enabled_hardware_types list.

docker_insecure_registries

A list of insecure registries for docker to use. Use this parameter if you want to pull images from
another source, such as a private container registry. In most cases, docker has the certificates to pull
container images from either the Red Hat Container Catalog or from your Satellite server if the
undercloud is registered to Satellite.

docker_registry_mirror

An optional registry-mirror configured in /etc/docker/daemon.json

enable_ironic; enable_ironic_inspector; enable_mistral; enable_tempest; enable_validations;
enable_zaqar

Defines the core services to enable for director. Leave these parameters set to true.

enable_ui

Defines whether to install the director web UI. Use this parameter to perform overcloud planning and
deployments through a graphical web interface. Note that the UI is only available with SSL/TLS
enabled using either the undercloud_service_certificate or generate_service_certificate.

enable_node_discovery

Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use
the fake_pxe driver as a default but you can set discovery_default_driver to override. You can also
use introspection rules to specify driver information for newly enrolled nodes.

enable_novajoin

Defines whether to install the novajoin metadata service in the Undercloud.

enable_routed_networks

Defines whether to enable support for routed control plane networks.

enable_swift_encryption

Defines whether to enable Swift encryption at-rest.

enable_telemetry

Defines whether to install OpenStack Telemetry services (gnocchi, aodh, panko) in the undercloud.
Set enable_telemetry parameter to true if you want to install and configure telemetry services
automatically. The default value is false, which disables telemetry on the undercloud. This parameter
is required if using other products that consume metrics data, such as Red Hat CloudForms.

enabled_hardware_types

A list of hardware types to enable for the undercloud.

generate_service_certificate

Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used
for the undercloud_service_certificate parameter. The undercloud installation saves the resulting
certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the

CHAPTER 4. INSTALLING DIRECTOR

29

certificate_generation_ca parameter signs this certificate.

heat_container_image

URL for the heat container image to use. Leave unset.

heat_native

Use native heat templates. Leave as true.

hieradata_override

Path to hieradata override file that configures Puppet hieradata on the director, providing custom
configuration to services beyond the undercloud.conf parameters. If set, the undercloud installation
copies this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy. See
Configuring hieradata on the undercloud for details on using this feature.

inspection_extras

Defines whether to enable extra hardware collection during the inspection process. This parameter
requires python-hardware or python-hardware-detect package on the introspection image.

inspection_interface

The bridge the director uses for node introspection. This is a custom bridge that the director
configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default
br-ctlplane.

inspection_runbench

Runs a set of benchmarks during node introspection. Set this parameter to true to enable the
benchmarks. This option is necessary if you intend to perform benchmark analysis when inspecting
the hardware of registered nodes.

ipa_otp

Defines the one time password to register the Undercloud node to an IPA server. This is required
when enable_novajoin is enabled.

ipxe_enabled

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set to false
to set to standard PXE.

local_interface

The chosen interface for the director’s Provisioning NIC. This is also the device the director uses for
DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr command. For example, this is the result of an ip addr command:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000
 link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic eth0
 valid_lft 3462sec preferred_lft 3462sec
 inet6 fe80::5054:ff:fe75:2409/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
 link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently not
configured. In this case, set the local_interface to eth1. The configuration script attaches this
interface to a custom bridge defined with the inspection_interface parameter.

local_ip

The IP address defined for the director’s Provisioning NIC. This is also the IP address that the
director uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24

Red Hat OpenStack Platform 14 Director Installation and Usage

30

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/director_installation_and_usage/index#configuring-hieradata-on-the-undercloud

unless you use a different subnet for the Provisioning network, for example, if it conflicts with an
existing IP address or subnet in your environment.

local_mtu

MTU to use for the local_interface. Do not exceed 1500 for the undercloud.

local_subnet

The local subnet to use for PXE boot and DHCP interfaces. The local_ip address should reside in
this subnet. The default is ctlplane-subnet.

net_config_override

Path to network configuration override template. If you set this parameter, the undercloud uses a
JSON format template to configure the networking with os-net-config. The undercloud ignores the
network parameters set in undercloud.conf. See /usr/share/python-
tripleoclient/undercloud.conf.sample for an example.

output_dir

Directory to output state, processed heat templates, and Ansible deployment files.

overcloud_domain_name

The DNS domain name to use when deploying the overcloud.

NOTE

When configuring the overcloud, the CloudDomain parameter must be set to a
matching value. Set this parameter in an environment file when you configure your
overcloud.

roles_file

The roles file to override for undercloud installation. It is highly recommended to leave unset so that
the director installation uses the default roles file.

scheduler_max_attempts

Maximum number of times the scheduler attempts to deploy an instance. This value must be greater
or equal to the number of bare metal nodes that you expect to deploy at once to work around
potential race condition when scheduling.

service_principal

The Kerberos principal for the service using the certificate. Use this parameter only if your CA
requires a Kerberos principal, such as in FreeIPA.

subnets

List of routed network subnets for provisioning and introspection. See Subnets for more information.
The default value includes only the ctlplane-subnet subnet.

templates

Heat templates file to override.

undercloud_admin_host

The IP address defined for the director Admin API when using SSL/TLS. This is an IP address for
administration endpoint access over SSL/TLS. The director configuration attaches the director’s IP
address to its software bridge as a routed IP address, which uses the /32 netmask.

undercloud_debug

Sets the log level of undercloud services to DEBUG. Set this value to true to enable.

undercloud_enable_selinux

Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to

CHAPTER 4. INSTALLING DIRECTOR

31

Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to
true unless you are debugging an issue.

undercloud_hostname

Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures
all system host name settings. If left unset, the undercloud uses the current host name, but the user
must configure all system host name settings appropriately.

undercloud_log_file

The path to a log file to store the undercloud install/upgrade logs. By default, the log file is install-
undercloud.log within the home directory. For example, /home/stack/install-undercloud.log.

undercloud_nameservers

A list of DNS nameservers to use for the undercloud hostname resolution.

undercloud_ntp_servers

A list of network time protocol servers to help synchronize the undercloud date and time.

undercloud_public_host

The IP address defined for the director Public API when using SSL/TLS. This is an IP address for
accessing the director endpoints externally over SSL/TLS. The director configuration attaches this
IP address to the director software bridge as a routed IP address, which uses the /32 netmask.

undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you
obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed
certificate.

undercloud_update_packages

Defines whether to update packages during the undercloud installation.

Subnets

Each provisioning subnet is a named section in the undercloud.conf file. For example, to create a
subnet called ctlplane-subnet, use the following sample in your undercloud.conf file:

[ctlplane-subnet]
cidr = 192.168.24.0/24
dhcp_start = 192.168.24.5
dhcp_end = 192.168.24.24
inspection_iprange = 192.168.24.100,192.168.24.120
gateway = 192.168.24.1
masquerade = true

You can specify as many provisioning networks as necessary to suit your environment.

gateway

The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the
External network. Leave this as the default 192.168.24.1 unless you use a different IP address for the
director or want to use an external gateway directly.

NOTE

The director configuration also enables IP forwarding automatically using the relevant
sysctl kernel parameter.

cidr

Red Hat OpenStack Platform 14 Director Installation and Usage

32

The network that the director uses to manage overcloud instances. This is the Provisioning network,
which the undercloud neutron service manages. Leave this as the default 192.168.24.0/24 unless you
use a different subnet for the Provisioning network.

masquerade

Defines whether to masquerade the network defined in the cidr for external access. This provides
the Provisioning network with a degree of network address translation (NAT) so that the
Provisioning network has external access through the director.

dhcp_start; dhcp_end

The start and end of the DHCP allocation range for overcloud nodes. Ensure this range contains
enough IP addresses to allocate your nodes.

Modify the values of these parameters to suit your configuration. When complete, save the file.

4.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES

You configure the main parameters for the undercloud through the undercloud.conf file. You can also
configure Heat parameters specific to the undercloud installation. You accomplish this with an
environment file containing your Heat parameters.

Procedure

1. Create an environment file at /home/stack/templates/custom-undercloud-params.yaml.

2. Edit this file and include your Heat parameters. The following example shows how to enable
debugging for certain OpenStack Platform services:

parameter_defaults:
 Debug: True

Save this file when you have finished.

3. Edit your undercloud.conf file and scroll to the custom_env_files parameter. Edit the
parameter to point to your environment file:

custom_env_files = /home/stack/templates/custom-undercloud-params.yaml

NOTE

You can specify multiple environment files using a comma-separated list.

The director installation includes this environment file during the next undercloud installation or
upgrade operation.

4.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD
CONFIGURATION

The following table shows some common Heat parameters you might set in a custom environment file
for your undercloud.

CHAPTER 4. INSTALLING DIRECTOR

33

Parameter Description

AdminPassword Sets the undercloud admin user password.

AdminEmail Sets the undercloud admin user email address.

Debug Enables debug mode.

TimeZone The timezone to set on the undercloud. The default
value is: UTC.

Set these parameters in your custom environment file under the parameter_defaults section:

parameter_defaults:
 Debug: True
 AdminPassword: "myp@ssw0rd!"
 AdminEmail: "admin@example.com"
 TimeZone: "AEST"

4.5. CONFIGURING HIERADATA ON THE UNDERCLOUD

You can provide custom configuration for services beyond the available undercloud.conf parameters
by configuring Puppet hieradata on the director. Perform the following procedure to use this feature.

Procedure

1. Create a hieradata override file, for example, /home/stack/hieradata.yaml.

2. Add the customized hieradata to the file. For example, add the following to modify the
Compute (nova) service parameter force_raw_images from the default value of "True" to
"False":

nova::compute::force_raw_images: False

If there is no Puppet implementation for the parameter you want to set, then use the following
method to configure the parameter:

nova::config::nova_config:
 DEFAULT/<parameter_name>:
 value: <parameter_value>

For example:

nova::config::nova_config:
 DEFAULT/network_allocate_retries:
 value: 20
 ironic/serial_console_state_timeout:
 value: 15

3. Set the hieradata_override parameter to the path of the hieradata file in your

Red Hat OpenStack Platform 14 Director Installation and Usage

34

3. Set the hieradata_override parameter to the path of the hieradata file in your
undercloud.conf:

hieradata_override = /home/stack/hieradata.yaml

4.6. INSTALLING THE DIRECTOR

Complete the following procedure to install the director and perform some basic post-installation tasks.

Procedure

1. Run the following command to install the director on the undercloud:

[stack@director ~]$ openstack undercloud install

This launches the director’s configuration script. The director installs additional packages and
configures its services according to the configuration in the undercloud.conf. This script takes
several minutes to complete.

The script generates two files when complete:

undercloud-passwords.conf - A list of all passwords for the director’s services.

stackrc - A set of initialization variables to help you access the director’s command line
tools.

2. The script also starts all OpenStack Platform service containers automatically. Check the
enabled containers using the following command:

[stack@director ~]$ sudo docker ps

3. The script adds the stack user to the docker group to give the stack user access to container
management commands. Refresh the stack user’s permissions with the following command:

[stack@director ~]$ exec su -l stack

The command prompts you to log in again. Enter the stack user’s password.

4. To initialize the stack user to use the command line tools, run the following command:

[stack@director ~]$ source ~/stackrc

The prompt now indicates OpenStack commands authenticate and execute against the
undercloud;

(undercloud) [stack@director ~]$

The director installation is complete. You can now use the director’s command line tools.

4.7. OBTAINING IMAGES FOR OVERCLOUD NODES

The director requires several disk images for provisioning overcloud nodes. This includes:

CHAPTER 4. INSTALLING DIRECTOR

35

An introspection kernel and ramdisk - Used for bare metal system introspection over PXE boot.

A deployment kernel and ramdisk - Used for system provisioning and deployment.

An overcloud kernel, ramdisk, and full image - A base overcloud system that is written to the
node’s hard disk.

The following procedure shows how to obtain and install these images.

4.7.1. Single CPU architecture overclouds

These images and procedures are necessary for deployment of the overcloud with the default CPU
architecture, x86-64.

Procedure

1. Source the stackrc file to enable the director’s command line tools:

[stack@director ~]$ source ~/stackrc

2. Install the rhosp-director-images and rhosp-director-images-ipa packages:

(undercloud) [stack@director ~]$ sudo yum install rhosp-director-images rhosp-director-
images-ipa

3. Extract the images archives to the images directory in the stack user’s home
(/home/stack/images):

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ for i in /usr/share/rhosp-director-images/overcloud-
full-latest-14.0.tar /usr/share/rhosp-director-images/ironic-python-agent-latest-14.0.tar; do tar
-xvf $i; done

4. Import these images into the director:

(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
/home/stack/images/

This script uploads the following images into the director:

bm-deploy-kernel

bm-deploy-ramdisk

overcloud-full

overcloud-full-initrd

overcloud-full-vmlinuz

The script also installs the introspection images on the director’s PXE server.

5. To check these images have uploaded successfully, run:

(undercloud) [stack@director images]$ openstack image list

Red Hat OpenStack Platform 14 Director Installation and Usage

36

+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
765a46af-4417-4592-91e5-a300ead3faf6	bm-deploy-ramdisk
09b40e3d-0382-4925-a356-3a4b4f36b514	bm-deploy-kernel
ef793cd0-e65c-456a-a675-63cd57610bd5	overcloud-full
9a51a6cb-4670-40de-b64b-b70f4dd44152	overcloud-full-initrd
4f7e33f4-d617-47c1-b36f-cbe90f132e5d	overcloud-full-vmlinuz
+--------------------------------------+------------------------+

This list does not show the introspection PXE images. The director copies these files to
/var/lib/ironic/httpboot.

(undercloud) [stack@director images]$ ls -l /var/lib/ironic/httpboot
total 417296
-rwxr-xr-x. 1 root root 6639920 Jan 29 14:48 agent.kernel
-rw-r--r--. 1 root root 420656424 Jan 29 14:48 agent.ramdisk
-rw-r--r--. 1 42422 42422 758 Jan 29 14:29 boot.ipxe
-rw-r--r--. 1 42422 42422 488 Jan 29 14:16 inspector.ipxe

4.7.2. Multiple CPU architecture overclouds

NOTE

First ensure additional_architectures is set to ppc64le in undercloud.conf, you must
also set ipxe_enabled to False

These are the images and procedures needed for deployment of the overcloud to enable support of
additional CPU architectures.

The procedure that follows uses the ppc64le image in its examples.

Procedure

1. Source the stackrc file to enable the director’s command line tools:

[stack@director ~]$ source ~/stackrc

2. Install the rhosp-director-images-all package:

(undercloud) [stack@director ~]$ sudo yum install rhosp-director-images-all

3. Extract the archives to an architecture specific directory under the images directory on the
stack user’s home (/home/stack/images):

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ for arch in x86_64 ppc64le ; do mkdir $arch ; done
(undercloud) [stack@director images]$ for arch in x86_64 ppc64le ; do for i in
/usr/share/rhosp-director-images/overcloud-full-latest-14.0-${arch}.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-14.0-${arch}.tar ; do tar -C $arch -xf $i ; done ;
done

4. Import these images into the director:

CHAPTER 4. INSTALLING DIRECTOR

37

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
~/images/ppc64le --architecture ppc64le --whole-disk --http-boot /tftpboot/ppc64le
(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
~/images/x86_64/ --http-boot /tftpboot

This uploads the following images into the director:

bm-deploy-kernel

bm-deploy-ramdisk

overcloud-full

overcloud-full-initrd

overcloud-full-vmlinuz

ppc64le-bm-deploy-kernel

ppc64le-bm-deploy-ramdisk

ppc64le-overcloud-full
The script also installs the introspection images on the director’s PXE server.

5. To check these images have uploaded successfully, run:

(undercloud) [stack@director images]$ openstack image list
+--------------------------------------+---------------------------+--------+
| ID | Name | Status |
+--------------------------------------+---------------------------+--------+
6d1005ba-ec82-473b-8e33-88aadb5b6792	bm-deploy-kernel	active
fb723b33-9f11-45f5-b25b-c008bf509290	bm-deploy-ramdisk	active
6a6096ba-8f79-4343-b77c-4349f7b94960	overcloud-full	active
de2a1bde-9351-40d2-bbd7-7ce9d6eb50d8	overcloud-full-initrd	active
67073533-dd2a-4a95-8e8b-0f108f031092	overcloud-full-vmlinuz	active
69a9ffe5-06dc-4d81-a122-e5d56ed46c98	ppc64le-bm-deploy-kernel	active
464dd809-f130-4055-9a39-cf6b63c1944e	ppc64le-bm-deploy-ramdisk	active
f0fedcd0-3f28-4b44-9c88-619419007a03	ppc64le-overcloud-full	active
+--------------------------------------+---------------------------+--------+

This list does not show the introspection PXE images. The director copies these files to
/tftpboot.

(undercloud) [stack@director images]$ ls -l /tftpboot /tftpboot/ppc64le/
/tftpboot:
total 422624
-rwxr-xr-x. 1 root root 6385968 Aug 8 19:35 agent.kernel
-rw-r--r--. 1 root root 425530268 Aug 8 19:35 agent.ramdisk
-rwxr--r--. 1 ironic ironic 20832 Aug 8 02:08 chain.c32
-rwxr--r--. 1 ironic ironic 715584 Aug 8 02:06 ipxe.efi
-rw-r--r--. 1 root root 22 Aug 8 02:06 map-file
drwxr-xr-x. 2 ironic ironic 62 Aug 8 19:34 ppc64le
-rwxr--r--. 1 ironic ironic 26826 Aug 8 02:08 pxelinux.0
drwxr-xr-x. 2 ironic ironic 21 Aug 8 02:06 pxelinux.cfg
-rwxr--r--. 1 ironic ironic 69631 Aug 8 02:06 undionly.kpxe

Red Hat OpenStack Platform 14 Director Installation and Usage

38

/tftpboot/ppc64le/:
total 457204
-rwxr-xr-x. 1 root root 19858896 Aug 8 19:34 agent.kernel
-rw-r--r--. 1 root root 448311235 Aug 8 19:34 agent.ramdisk
-rw-r--r--. 1 ironic-inspector ironic-inspector 336 Aug 8 02:06 default

NOTE

The default overcloud-full.qcow2 image is a flat partition image. However, you can also
import and use whole disk images. See Appendix C, Whole Disk Images for more
information.

4.8. SETTING A NAMESERVER FOR THE CONTROL PLANE

If you intend for the overcloud to resolve external hostnames, such as cdn.redhat.com, it is
recommended to set a nameserver on the overcloud nodes. For a standard overcloud without network
isolation, the nameserver is defined using the undercloud’s control plane subnet. Complete the following
procedure to define nameservers for the environment.

Procedure

1. Source the stackrc file to enable the director’s command line tools:

[stack@director ~]$ source ~/stackrc

2. Set the nameservers for the ctlplane-subnet subnet:

(undercloud) [stack@director images]$ openstack subnet set --dns-nameserver
[nameserver1-ip] --dns-nameserver [nameserver2-ip] ctlplane-subnet

Use the --dns-nameserver option for each nameserver.

3. View the subnet to verify the nameserver:

(undercloud) [stack@director images]$ openstack subnet show ctlplane-subnet
+-------------------+---+
| Field | Value |
+-------------------+---+
...	
dns_nameservers	8.8.8.8
...	
+-------------------+---+

IMPORTANT

If you aim to isolate service traffic onto separate networks, the overcloud nodes use the
DnsServers parameter in your network environment files.

4.9. UPDATING THE UNDERCLOUD CONFIGURATION

In the future, you might have to change the undercloud configuration to suit new requirements. To make

CHAPTER 4. INSTALLING DIRECTOR

39

In the future, you might have to change the undercloud configuration to suit new requirements. To make
changes to your undercloud configuration after installation, edit the relevant configuration files and re-
run the openstack undercloud install command.

Procedure

1. Modify the undercloud configuration files. For example, edit the undercloud.conf file and add
the idrac hardware type to the list of enabled hardware types:

enabled_hardware_types = ipmi,redfish,idrac

2. Run the openstack undercloud install command to refresh your undercloud with the new
changes:

[stack@director ~]$ openstack undercloud install

Wait until the command runs to completion.

3. Initialize the stack user to use the command line tools,:

[stack@director ~]$ source ~/stackrc

The prompt now indicates OpenStack commands authenticate and execute against the
undercloud:

(undercloud) [stack@director ~]$

Verify the director has applied the new configuration. For this example, check the list of enabled
hardware types:

+

(undercloud) [stack@director ~]$ openstack baremetal driver list
+---------------------+----------------+
| Supported driver(s) | Active host(s) |
+---------------------+----------------+
idrac	unused
ipmi	unused
redfish	unused
+---------------------+----------------+

The undercloud re-configuration is complete.

4.10. NEXT STEPS

This completes the director configuration and installation. The next chapter explores basic overcloud
configuration, including registering nodes, inspecting them, and then tagging them into various node
roles.

Red Hat OpenStack Platform 14 Director Installation and Usage

40

PART II. BASIC OVERCLOUD DEPLOYMENT

PART II. BASIC OVERCLOUD DEPLOYMENT

41

CHAPTER 5. PLANNING YOUR OVERCLOUD
The following section contains some guidelines for planning various aspects of your Red Hat OpenStack
Platform environment. This includes defining node roles, planning your network topology, and storage.

5.1. NODE ROLES

The director includes multiple default node types for building your overcloud. These node types are:

Controller

Provides key services for controlling your environment. This includes the dashboard (horizon),
authentication (keystone), image storage (glance), networking (neutron), orchestration (heat), and
high availability services. A Red Hat OpenStack Platform environment requires three Controller
nodes for a highly available production-level environment.

NOTE

Environments with one node can only be used for testing purposes, not for
production. Environments with two nodes or more than three nodes are not
supported.

Compute

A physical server that acts as a hypervisor and contains the processing capabilities required for
running virtual machines in the environment. A basic Red Hat OpenStack Platform environment
requires at least one Compute node.

Ceph Storage

A host that provides Red Hat Ceph Storage. Additional Ceph Storage hosts scale into a cluster. This
deployment role is optional.

Swift Storage

A host that provides external object storage the OpenStack Object Storage (swift) service. This
deployment role is optional.

The following table contains some examples some examples of different overclouds and defines the
node types for each scenario.

Table 5.1. Node Deployment Roles for Scenarios

 Controller Compute Ceph Storage Swift Storage Total

Small
overcloud

3 1 - - 4

Medium
overcloud

3 3 - - 6

Medium
overcloud with
additional
Object storage

3 3 - 3 9

Red Hat OpenStack Platform 14 Director Installation and Usage

42

Medium
overcloud with
Ceph Storage
cluster

3 3 3 - 9

In addition, consider whether to split individual services into custom roles. For more information about
the composable roles architecture, see "Composable Services and Custom Roles" in the Advanced
Overcloud Customization guide.

5.2. OVERCLOUD NETWORKS

It is important to plan your environment’s networking topology and subnets so that you can properly
map roles and services to communicate with each other correctly. Red Hat OpenStack Platform uses the
Openstack Networking (neutron) service, which operates autonomously and manages software-based
networks, static and floating IP addresses, and DHCP.

By default, the director configures nodes to use the Provisioning / Control Plane for connectivity.
However, it is possible to isolate network traffic into a series of composable networks , which you can
customize and assign services.

In a typical Red Hat OpenStack Platform installation, the number of network types often exceeds the
number of physical network links. In order to connect all the networks to the proper hosts, the overcloud
uses VLAN tagging to deliver more than one network per interface. Most of the networks are isolated
subnets but some networks require a Layer 3 gateway to provide routing for Internet access or
infrastructure network connectivity. If using VLANs to isolate your network traffic types, use a switch
that supports 802.1Q standards to provide tagged VLANs.

NOTE

It is recommended that you deploy a project network (tunneled with GRE or VXLAN)
even if you intend to use a neutron VLAN mode (with tunneling disabled) at deployment
time. This requires minor customization at deployment time and leaves the option
available to use tunnel networks as utility networks or virtualization networks in the future.
You still create Tenant networks using VLANs, but you can also create VXLAN tunnels for
special-use networks without consuming tenant VLANs. It is possible to add VXLAN
capability to a deployment with a Tenant VLAN, but it is not possible to add a Tenant
VLAN to an existing overcloud without causing disruption.

The director also includes a set of templates to configure NICs with isolated composable networks. The
following configurations are the default configurations:

Single NIC configuration - One NIC for the Provisioning network on the native VLAN and
tagged VLANs that use subnets for the different overcloud network types.

Bonded NIC configuration - One NIC for the Provisioning network on the native VLAN and the
two NICs in a bond for tagged VLANs for the different overcloud network types.

Multiple NIC configuration - Each NIC uses a subnet for a different overcloud network type.

You can also create your own templates to map a specific NIC configuration.

The following details are also important when considering your network configuration:

CHAPTER 5. PLANNING YOUR OVERCLOUD

43

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/advanced_overcloud_customization/#Roles

During the overcloud creation, you refer to NICs using a single name across all overcloud
machines. Ideally, you should use the same NIC on each overcloud node for each respective
network to avoid confusion. For example, use the primary NIC for the Provisioning network and
the secondary NIC for the OpenStack services.

Set all overcloud systems to PXE boot off the Provisioning NIC, and disable PXE boot on the
External NIC and any other NICs on the system. Also ensure that the Provisioning NIC has PXE
boot at the top of the boot order, ahead of hard disks and CD/DVD drives.

All overcloud bare metal systems require a supported power management interface, such as an
Intelligent Platform Management Interface (IPMI). This allows the director to control the power
management of each node.

Make a note of the following details for each overcloud system: the MAC address of the
Provisioning NIC, the IP address of the IPMI NIC, IPMI username, and IPMI password. This
information will be useful later when setting up the overcloud nodes.

If an instance needs to be accessible from the external internet, you can allocate a floating IP
address from a public network and associate it with an instance. The instance still retains its
private IP but network traffic uses NAT to traverse through to the floating IP address. Note that
a floating IP address can only be assigned to a single instance rather than multiple private IP
addresses. However, the floating IP address is reserved only for use by a single tenant, allowing
the tenant to associate or disassociate with a particular instance as required. This configuration
exposes your infrastructure to the external internet. As a result, you might need to check that
you are following suitable security practices.

To mitigate the risk of network loops in Open vSwitch, only a single interface or a single bond
may be a member of a given bridge. If you require multiple bonds or interfaces, you can
configure multiple bridges.

Red Hat recommends using DNS host name resolution so that your overcloud nodes can
connect to external services, such as the Red Hat Content Delivery Network and network time
servers.

NOTE

You can virtualize the overcloud control plane if you are using Red Hat Virtualization
(RHV). See Creating virtualized control planes for details.

5.3. OVERCLOUD STORAGE

NOTE

Using LVM on a guest instance that uses a back end cinder-volume of any driver or back-
end type results in issues with performance, volume visibility and availability, and data
corruption. These issues can be mitigated using a LVM filter. For more information, see
section 2.1 Back Ends in the Storage Guide and KCS article 3213311, "Using LVM on a
cinder volume exposes the data to the compute host."

The director includes different storage options for the overcloud environment:

Ceph Storage Nodes

The director creates a set of scalable storage nodes using Red Hat Ceph Storage. The overcloud
uses these nodes for the following storage types:

Red Hat OpenStack Platform 14 Director Installation and Usage

44

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/storage_guide/#ch-backends
https://access.redhat.com/solutions/3213311

Images - Glance manages images for VMs. Images are immutable. OpenStack treats images
as binary blobs and downloads them accordingly. You can use glance to store images in a
Ceph Block Device.

Volumes - Cinder volumes are block devices. OpenStack uses volumes to boot VMs, or to
attach volumes to running VMs. OpenStack manages volumes using cinder services. You can
use cinder to boot a VM using a copy-on-write clone of an image.

File Systems - Manila shares are backed by file systems. OpenStack users manage shares
using manila services. You can use manila to manage shares backed by a CephFS file system
with data on the Ceph Storage Nodes.

Guest Disks - Guest disks are guest operating system disks. By default, when you boot a
virtual machine with nova, the virtual machine disk appears as a file on the filesystem of the
hypervisor (usually under /var/lib/nova/instances/<uuid>/). Every virtual machine inside
Ceph can be booted without using Cinder. As a result, you can perform maintenance
operations easily with the live-migration process. Additionally, if your hypervisor dies it is also
convenient to trigger nova evacuate and run the virtual machine elsewhere.

IMPORTANT

For information about supported image formats, see the Image Service
chapter in the Instances and Images Guide .

See Red Hat Ceph Storage Architecture Guide for additional information.

Swift Storage Nodes

The director creates an external object storage node. This is useful in situations where you need to
scale or replace controller nodes in your overcloud environment but need to retain object storage
outside of a high availability cluster.

5.4. OVERCLOUD SECURITY

Your OpenStack Platform implementation is only as secure as its environment. Follow good security
principles in your networking environment to ensure that network access is properly controlled:

Use network segmentation to mitigate network movement and isolate sensitive data. A flat
network is much less secure.

Restrict services access and ports to a minimum.

Enforce proper firewall rules and password usage.

Ensure that SELinux is enabled.

For details about securing your system, see the following Red Hat guides:

Red Hat Enterprise Linux 7 Security Guide

Red Hat Enterprise Linux 7 SELinux User’s and Administrator’s Guide

5.5. OVERCLOUD HIGH AVAILABILITY

To deploy a highly-available overcloud, the director configures multiple Controller, Compute and

CHAPTER 5. PLANNING YOUR OVERCLOUD

45

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/instances_and_images_guide/ch-image-service
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/architecture_guide/index
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

Storage nodes to work together as a single cluster. In case of node failure, an automated fencing and
re-spawning process is triggered based on the type of node that failed. For information about overcloud
high availability architecture and services, see Understanding Red Hat OpenStack Platform High
Availability.

You can also configure high availability for Compute instances with the director (Instance HA). This high
availability mechanism automates evacuation and re-spawning of instances on Compute nodes in case
of node failure. The requirements for Instance HA are the same as the general overcloud requirements,
but you must perform a few additional steps to prepare your environment for the deployment. For
information about how Instance HA works and installation instructions, see the High Availability for
Compute Instances guide.

5.6. CONTROLLER NODE REQUIREMENTS

Controller nodes host the core services in a Red Hat OpenStack Platform environment, such as the
Horizon dashboard, the back-end database server, Keystone authentication, and High Availability
services.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

The minimum amount of memory is 32 GB. However, the amount of recommended memory depends
on the number of vCPUs (which is based on CPU cores multiplied by hyper-threading value). Use the
following calculations to determine your RAM requirements:

Controller RAM minimum calculation:

Use 1.5 GB of memory per vCPU. For example, a machine with 48 vCPUs should have 72
GB of RAM.

Controller RAM recommended calculation:

Use 3 GB of memory per vCPU. For example, a machine with 48 vCPUs should have 144
GB of RAM

For more information about measuring memory requirements, see "Red Hat OpenStack Platform
Hardware Requirements for Highly Available Controllers" on the Red Hat Customer Portal.

Disk Storage and Layout

A minimum amount of 40 GB storage is required, if the Object Storage service (swift) is not running
on the controller nodes. However, the Telemetry (gnocchi) and Object Storage services are both
installed on the Controller, with both configured to use the root disk. These defaults are suitable for
deploying small overclouds built on commodity hardware. These environments are typical of proof-
of-concept and test environments. These defaults also allow the deployment of overclouds with
minimal planning but offer little in terms of workload capacity and performance.
In an enterprise environment, however, this could cause a significant bottleneck, as Telemetry
accesses storage constantly. This results in heavy disk I/O usage, which severely impacts the
performance of all other Controller services. In this type of environment, you must plan your
overcloud and configure it accordingly.

Red Hat provides several configuration recommendations for both Telemetry and Object Storage.
See Deployment Recommendations for Specific Red Hat OpenStack Platform Services for details.

Network Interface Cards

Red Hat OpenStack Platform 14 Director Installation and Usage

46

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/understanding_red_hat_openstack_platform_high_availability/#overview
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/high_availability_for_compute_instances/
https://access.redhat.com/articles/2431181
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/deployment_recommendations_for_specific_red_hat_openStack_platform_services

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

Virtualization Support

Red Hat only supports virtualized controller nodes on Red Hat Virtualization platforms. See
Virtualized control planes for details.

5.7. COMPUTE NODE REQUIREMENTS

Compute nodes are responsible for running virtual machine instances after they are launched. Compute
nodes must support hardware virtualization. Compute nodes must also have enough memory and disk
space to support the requirements of the virtual machine instances they host.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions, and the
AMD-V or Intel VT hardware virtualization extensions enabled. It is recommended this
processor has a minimum of 4 cores.

IBM POWER 8 processor.

Memory

A minimum of 6 GB of RAM. Add additional RAM to this requirement based on the amount of
memory that you intend to make available to virtual machine instances.

Disk Space

A minimum of 40 GB of available disk space.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic.

Power Management

Each Compute node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

5.8. CEPH STORAGE NODE REQUIREMENTS

Ceph Storage nodes are responsible for providing object storage in a Red Hat OpenStack Platform
environment.

Placement Groups

Ceph uses Placement Groups to facilitate dynamic and efficient object tracking at scale. In the case
of OSD failure or cluster re-balancing, Ceph can move or replicate a placement group and its
contents, which means a Ceph cluster can re-balance and recover efficiently. The default Placement
Group count that Director creates is not always optimal so it is important to calculate the correct
Placement Group count according to your requirements. You can use the Placement Group
calculator to calculate the correct count: Placement Groups (PGs) per Pool Calculator

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

CHAPTER 5. PLANNING YOUR OVERCLOUD

47

https://access.redhat.com/labs/cephpgc/

Memory

Red Hat typically recommends a baseline of 16GB of RAM per OSD host, with an additional 2 GB of
RAM per OSD daemon.

Disk Layout

Sizing is dependant on your storage need. The recommended Red Hat Ceph Storage node
configuration requires at least three or more disks in a layout similar to the following example:

/dev/sda - The root disk. The director copies the main Overcloud image to the disk. This
should be at minimum 40 GB of available disk space.

/dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For
example, /dev/sdb1, /dev/sdb2, /dev/sdb3, and onward. The journal disk is usually a solid
state drive (SSD) to aid with system performance.

/dev/sdc and onward - The OSD disks. Use as many disks as necessary for your storage
requirements.

NOTE

Red Hat OpenStack Platform director uses ceph-ansible, which does not
support installing the OSD on the root disk of Ceph Storage nodes. This
means you need at least two or more disks for a supported Ceph Storage
node.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic. It is recommended to use a 10 Gbps interface for storage node,
especially if creating an OpenStack Platform environment that serves a high volume of traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

See the Deploying an Overcloud with Containerized Red Hat Ceph guide for more information about
installing an overcloud with a Ceph Storage cluster.

5.9. OBJECT STORAGE NODE REQUIREMENTS

Object Storage nodes provides an object storage layer for the overcloud. The Object Storage proxy is
installed on Controller nodes. The storage layer requires bare metal nodes with multiple number of disks
per node.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space. For optimal performance, it is recommended to use 2 GB per 1
TB of hard disk space, especially for workloads with files smaller than 100GB.

Disk Space

Storage requirements depends on the capacity needed for the workload. It is recommended to use
SSD drives to store the account and container data. The capacity ratio of account and container

Red Hat OpenStack Platform 14 Director Installation and Usage

48

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/

data to objects is approximately 1 per cent. For example, for every 100TB of hard drive capacity,
provide 1TB of SSD capacity for account and container data.
However, this depends on the type of stored data. If storing mostly small objects, provide more SSD
space. For large objects (videos, backups), use less SSD space.

Disk Layout

The recommended node configuration requires a disk layout similar to the following example:

/dev/sda - The root disk. The director copies the main overcloud image to the disk.

/dev/sdb - Used for account data.

/dev/sdc - Used for container data.

/dev/sdd and onward - The object server disks. Use as many disks as necessary for your
storage requirements.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

5.10. OVERCLOUD REPOSITORIES

You must enable the following repositories to install and configure the overcloud.

Table 5.2. Core repositories

Name Repository Description of Requirement

Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rpms Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 7 Server
- Extras (RPMs)

rhel-7-server-extras-rpms Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 7 Server
- RH Common (RPMs)

rhel-7-server-rh-common-
rpms

Contains tools for deploying and
configuring Red Hat OpenStack
Platform.

Red Hat Satellite Tools for RHEL
7 Server RPMs x86_64

rhel-7-server-satellite-tools-
6.3-rpms

Tools for managing hosts with Red
Hat Satellite 6.

Red Hat Enterprise Linux High
Availability (for RHEL 7 Server)
(RPMs)

rhel-ha-for-rhel-7-server-
rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat OpenStack Platform 14
for RHEL 7 (RPMs)

rhel-7-server-openstack-14-
rpms

Core Red Hat OpenStack
Platform repository.

CHAPTER 5. PLANNING YOUR OVERCLOUD

49

Table 5.3. Ceph repositories

Name Repository Description of Requirement

Red Hat Ceph Storage OSD 3 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-3-osd-
rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Object Storage daemon. Installed
on Ceph Storage nodes.

Red Hat Ceph Storage MON 3 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-3-mon-
rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Monitor daemon. Installed on
Controller nodes in OpenStack
environments using Ceph Storage
nodes.

Red Hat Ceph Storage Tools 3 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-3-tools-
rpms

Provides tools for nodes to
communicate with the Ceph
Storage cluster. This repository
should be enabled for all nodes
when deploying an overcloud with
a Ceph Storage cluster.

Red Hat OpenStack 14 Director
Deployment Tools for RHEL 7
(RPMs)

rhel-7-server-openstack-14-
deployment-tools-rpms

(For Ceph Storage Nodes)
Provides a set of deployment
tools that are compatible with the
current version of Red Hat
OpenStack Platform director.
Installed on Ceph nodes without
an active Red Hat OpenStack
Platform subscription.

Table 5.4. NFV repositories

Name Repository Description of Requirement

Enterprise Linux for Real Time for
NFV (RHEL 7 Server) (RPMs)

rhel-7-server-nfv-rpms Repository for Real Time KVM
(RT-KVM) for NFV. Contains
packages to enable the real time
kernel. This repository should be
enabled for all Compute nodes
targeted for RT-KVM. NOTE: You
need a separate subscription to a
Red Hat OpenStack Platform
for Real Time SKU before you
can access this repository.

IBM POWER repositories

Enable the following repositories to use Openstack Platform on POWER PC architecture. Use these
repositories in place of equivalents in the Core repositories.

Red Hat OpenStack Platform 14 Director Installation and Usage

50

Name Repository Description of Requirement

Red Hat Enterprise Linux for IBM
Power, little endian

rhel-7-for-power-le-rpms Base operating system repository
for ppc64le systems.

Red Hat OpenStack Platform 14
for RHEL 7 (RPMs)

rhel-7-server-openstack-14-
for-power-le-rpms

Core Red Hat OpenStack
Platform repository for ppc64le
systems.

CHAPTER 5. PLANNING YOUR OVERCLOUD

51

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI
TOOLS

This chapter contains basic configuration procedures to deploy an OpenStack Platform environment
using the CLI tools. An overcloud with a basic configuration contains no custom features. However, you
can add advanced configuration options to this basic overcloud and customize it to your specifications
using the instructions in the Advanced Overcloud Customization guide.

6.1. REGISTERING NODES FOR THE OVERCLOUD

The director requires a node definition template, which you create manually. This template uses a JSON
or YAML format, and contains the hardware and power management details for your nodes.

Procedure

1. Create a template that lists your nodes. Use the following JSON and YAML template examples
to understand how to structure your node definition template:

Example JSON template

{
 "nodes":[
 {
 "mac":[
 "bb:bb:bb:bb:bb:bb"
],
 "name":"node01",
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.205"
 },
 {
 "mac":[
 "cc:cc:cc:cc:cc:cc"
],
 "name":"node02",
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.206"
 }
]
}

Example YAML template

Red Hat OpenStack Platform 14 Director Installation and Usage

52

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/advanced_overcloud_customization/

nodes:
 - mac:
 - "bb:bb:bb:bb:bb:bb"
 name: "node01"
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"
 pm_addr: "192.168.24.205"
 - mac:
 - cc:cc:cc:cc:cc:cc
 name: "node02"
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"
 pm_addr: "192.168.24.206"

This template contains the following attributes:

name

The logical name for the node.

pm_type

The power management driver to use. This example uses the IPMI driver (ipmi).

NOTE

IPMI is the preferred supported power management driver. For more
supported power management types and their options, see Appendix B,
Power Management Drivers . If these power management drivers do not work
as expected, use IPMI for your power management.

pm_user; pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI device.

pm_port (Optional)

The port to access the specific IPMI device.

mac

(Optional) A list of MAC addresses for the network interfaces on the node. Use only the
MAC address for the Provisioning NIC of each system.

cpu

(Optional) The number of CPUs on the node.

memory

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

53

(Optional) The amount of memory in MB.

disk

(Optional) The size of the hard disk in GB.

arch

(Optional) The system architecture.

IMPORTANT

When building a multi-architecture cloud, the arch key is mandatory to
distinguish nodes using x86_64 and ppc64le architectures.

2. After creating the template, run the following command to verify the formatting and syntax:

(undercloud) $ openstack overcloud node import --validate-only ~/nodes.json

3. Save the file to the stack user’s home directory (/home/stack/nodes.json), then run the
following commands to import the template to the director:

$ source ~/stackrc
(undercloud) $ openstack overcloud node import ~/nodes.json

This command registers each node from the template into the director.

4. Wait for the node registration and configuration to completes. Once complete, confirm the
director has successfully registered the nodes:

(undercloud) $ openstack baremetal node list

6.2. INSPECTING THE HARDWARE OF NODES

The director can run an introspection process on each node. This process boots an introspection agent
over PXE on each node. The introspection agent collects hardware data from the node and sends it
back to the director. The director then stores this introspection data in the OpenStack Object Storage
(swift) service running on the director. The director uses hardware information for various purposes
such as profile tagging, benchmarking, and manual root disk assignment.

Procedure

1. Run the following command to inspect the hardware attributes of each node:

(undercloud) $ openstack overcloud node introspect --all-manageable --provide

The --all-manageable option introspects only nodes in a managed state. In this example, all
nodes are in a managed state.

The --provide option resets all nodes to an available state after introspection.

2. Monitor the progress of the introspection using the following command in a separate terminal
window:

(undercloud) $ sudo tail -f /var/log/containers/ironic-inspector/ironic-inspector.log

Red Hat OpenStack Platform 14 Director Installation and Usage

54

IMPORTANT

Ensure this process runs to completion. This process usually takes 15 minutes for
bare metal nodes.

3. After the introspection completes, all nodes change to an available state.

6.3. TAGGING NODES INTO PROFILES

After registering and inspecting the hardware of each node, tag the nodes into specific profiles. These
profile tags match your nodes to flavors, which assigns the flavors to deployment roles. The following
example shows the relationships across roles, flavors, profiles, and nodes for Controller nodes:

Type Description

Role The Controller role defines how the director
configures controller nodes.

Flavor The control flavor defines the hardware profile for
nodes to use as controllers. You assign this flavor to
the Controller role so the director can decide which
nodes to use.

Profile The control profile is a tag you apply to the control
flavor. This defines the nodes that belong to the
flavor.

Node You also apply the control profile tag to individual
nodes, which groups them to the control flavor and,
as a result, the director configures them using the
Controller role.

Default profile flavors compute, control, swift-storage, ceph-storage, and block-storage are created
during undercloud installation and are usable without modification in most environments.

Procedure

1. To tag a node into a specific profile, add a profile option to the properties/capabilities
parameter for each node. For example, to tag your nodes to use Controller and Compute
profiles respectively, use the following commands:

(undercloud) $ openstack baremetal node set --property
capabilities='profile:compute,boot_option:local' 58c3d07e-24f2-48a7-bbb6-6843f0e8ee13
(undercloud) $ openstack baremetal node set --property
capabilities='profile:control,boot_option:local' 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0

The addition of the profile:compute and profile:control options tag the two nodes into each
respective profiles.

These commands also set the boot_option:local parameter, which defines how each node

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

55

These commands also set the boot_option:local parameter, which defines how each node
boots.

2. After completing node tagging, check the assigned profiles or possible profiles:

(undercloud) $ openstack overcloud profiles list

6.4. SETTING UEFI BOOT MODE

The default boot mode is the legacy BIOS mode. Newer systems might require UEFI boot mode instead
of the legacy BIOS mode. Complete the following steps to change the boot mode to UEFI mode.

Procedure

1. Set the following parameters in your undercloud.conf file:

ipxe_enabled = True
inspection_enable_uefi = True

2. Save the undercloud.conf file and run the undercloud installation:

$ openstack undercloud install

Wait until the installation script completes.

3. Set the boot mode to uefi for each registered node. For example, to add or replace the existing
boot_mode parameters in the capabilities property, run the following command:

$ NODE=<NODE NAME OR ID> ; openstack baremetal node set --property
capabilities="boot_mode:uefi,$(openstack baremetal node show $NODE -f json -c properties
| jq -r .properties.capabilities | sed "s/boot_mode:[^,]*,//g")" $NODE

NOTE

Check that you have retained the profile and boot_option capabilities:

$ openstack baremetal node show r530-12 -f json -c properties | jq -r
.properties.capabilities

4. Set the boot mode to uefi for each flavor:

$ openstack flavor set --property capabilities:boot_mode='uefi' control

6.5. DEFINING THE ROOT DISK

Director must identify the root disk during provisioning in the case of nodes with multiple disks. For
example, most Ceph Storage nodes use multiple disks. By default, the director writes the overcloud
image to the root disk during the provisioning process.

There are several properties that you can define to help the director identify the root disk:

model (String): Device identifier.

Red Hat OpenStack Platform 14 Director Installation and Usage

56

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1.

by_path (String): The unique PCI path of the device. Use this property if you do not want to use
the UUID of the device.

IMPORTANT

Use the name property only for devices with persistent names. Do not use name to set
the root disk for any other device because this value can change when the node boots.

Complete the following steps to specify the root device using its serial number.

Procedure

1. Check the disk information from the hardware introspection of each node. Run the following
command to display the disk information of a node:

(undercloud) $ openstack baremetal introspection data save 1a4e30da-b6dc-499d-ba87-
0bd8a3819bc0 | jq ".inventory.disks"

For example, the data for one node might show three disks:

[
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sda",
 "wwn_vendor_extension": "0x1ea4dcc412a9632b",
 "wwn_with_extension": "0x61866da04f3807001ea4dcc412a9632b",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380700",
 "serial": "61866da04f3807001ea4dcc412a9632b"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdb",

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

57

 "wwn_vendor_extension": "0x1ea4e13c12e36ad6",
 "wwn_with_extension": "0x61866da04f380d001ea4e13c12e36ad6",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380d00",
 "serial": "61866da04f380d001ea4e13c12e36ad6"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdc",
 "wwn_vendor_extension": "0x1ea4e31e121cfb45",
 "wwn_with_extension": "0x61866da04f37fc001ea4e31e121cfb45",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f37fc00",
 "serial": "61866da04f37fc001ea4e31e121cfb45"
 }
]

2. Change to the root_device parameter for the node definition. The following example shows
how to set the root device to disk 2, which has 61866da04f380d001ea4e13c12e36ad6 as the
serial number:

(undercloud) $ openstack baremetal node set --property root_device='{"serial":
"61866da04f380d001ea4e13c12e36ad6"}' 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0

NOTE

Ensure that you configure the BIOS of each node to include booting from the
root disk that you choose. Configure the boot order to boot from the network
first, then to boot from the root disk.

The director identifies the specific disk to use as the root disk. When you run the openstack overcloud
deploy command, the director provisions and writes the Overcloud image to the root disk.

6.6. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A
RED HAT SUBSCRIPTION ENTITLEMENT

By default, the director writes the QCOW2 overcloud-full image to the root disk during the provisioning
process. The overcloud-full image uses a valid Red Hat subscription. However, you can also use the
overcloud-minimal image if you do not require any other OpenStack services on your node and you do
not want to use one of your Red Hat OpenStack Platform subscription entitlements. Use the overcloud-
minimal image option to avoid reaching the limit of your paid Red Hat subscriptions.

Procedure

1. To configure director to use the overcloud-minimal image, create an environment file that
contains the following image definition:

parameter_defaults:
 <roleName>Image: overcloud-minimal

2. Replace <roleName> with the name of the role and append Image to the name of the role. The

Red Hat OpenStack Platform 14 Director Installation and Usage

58

2. Replace <roleName> with the name of the role and append Image to the name of the role. The
following example shows an overcloud-minimal image for Ceph storage nodes:

parameter_defaults:
 CephStorageImage: overcloud-minimal

3. Pass the environment file to the openstack overcloud deploy command.

NOTE

The overcloud-minimal image supports only standard Linux bridges and not OVS
because OVS is an OpenStack service that requires an OpenStack subscription
entitlement.

6.7. CREATING ARCHITECTURE SPECIFIC ROLES

When building a multi-architecture cloud, you must add any architecture specific roles to the
roles_data.yaml file. The following example includes the ComputePPC64LE role along with the default
roles:

openstack overcloud roles generate \
 --roles-path /usr/share/openstack-tripleo-heat-templates/roles -o ~/templates/roles_data.yaml \
 Controller Compute ComputePPC64LE BlockStorage ObjectStorage CephStorage

The Creating a Custom Role File section has information on roles.

6.8. ENVIRONMENT FILES

The undercloud includes a set of Heat templates that form the plan for your overcloud creation. You can
customize aspects of the overcloud using environment files, which are YAML-formatted files that
override parameters and resources in the core Heat template collection. You can include as many
environment files as necessary. However, the order of the environment files is important as the
parameters and resources defined in subsequent environment files take precedence. Use the following
list as an example of the environment file order:

The number of nodes and the flavors for each role. It is vital to include this information for
overcloud creation.

The location of the container images for containerized OpenStack services.

Any network isolation files, starting with the initialization file (environments/network-
isolation.yaml) from the heat template collection, then your custom NIC configuration file, and
finally any additional network configurations. See the following chapters in the Advanced
Overcloud Customization guide for more information:

"Basic network isolation"

"Custom composable networks"

"Custom network interface templates"

Any external load balancing environment files if you are using an external load balancer. See
External Load Balancing for the Overcloud for more information.

Any storage environment files such as Ceph Storage, NFS, iSCSI, etc.

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

59

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/advanced_overcloud_customization/#sect-Creating_a_Custom_Roles_File
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/basic-network-isolation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/custom-composable-networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/external_load_balancing_for_the_overcloud/index

Any environment files for Red Hat CDN or Satellite registration.

Any other custom environment files.

It is recommended to keep your custom environment files organized in a separate directory, such as the
templates directory.

You can customize advanced features for your overcloud using the Advanced Overcloud Customization
guide.

IMPORTANT

A basic overcloud uses local LVM storage for block storage, which is not a supported
configuration. It is recommended to use an external storage solution, such as Red Hat
Ceph Storage, for block storage.

NOTE

The environment file extension must be .yaml or .template, or it will not be treated as a
custom template resource.

The next few sections contain information about creating some environment files necessary for your
overcloud.

6.9. CREATING AN ENVIRONMENT FILE THAT DEFINES NODE
COUNTS AND FLAVORS

By default, the director deploys an overcloud with 1 Controller node and 1 Compute node using the
baremetal flavor. However, this is only suitable for a proof-of-concept deployment. You can override
the default configuration by specifying different node counts and flavors. For a small scale production
environment, you might want to consider at least 3 Controller nodes and 3 Compute nodes, and assign
specific flavors to ensure the nodes have the appropriate resource specifications. Complete the
following steps to create an environment file named node-info.yaml that stores the node counts and
flavor assignments.

Procedure

1. Create a node-info.yaml file in the /home/stack/templates/ directory:

(undercloud) $ touch /home/stack/templates/node-info.yaml

2. Edit the file to include the node counts and flavors your need. This example contains 3
Controller nodes and 3 Compute nodes:

parameter_defaults:
 OvercloudControllerFlavor: control
 OvercloudComputeFlavor: compute
 ControllerCount: 3
 ComputeCount: 3

6.10. CREATING AN ENVIRONMENT FILE FOR UNDERCLOUD CA
TRUST

Red Hat OpenStack Platform 14 Director Installation and Usage

60

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/advanced_overcloud_customization/

If your undercloud uses TLS and the Certificate Authority (CA) is not publicly trusted, you can use the
CA for SSL endpoint encryption that the undercloud operates. To ensure the undercloud endpoints
accessible to the rest of your deployment, configure your overcloud nodes to trust the undercloud CA.

NOTE

For this approach to work, your overcloud nodes must have a network route to the
undercloud’s public endpoint. It is likely that deployments that rely on spine-leaf
networking will need to apply this configuration.

There are two types of custom certificates you can use in the undercloud:

User-provided certificates - This definition applies when you have provided your own
certificate. This could be from your own CA, or it might be self-signed. This is passed using the
undercloud_service_certificate option. In this case, you must either trust the self-signed
certificate, or the CA (depending on your deployment).

Auto-generated certificates - This definition applies when you use certmonger to generate
the certificate using its own local CA. This is enabled using the generate_service_certificate
option in the undercloud.conf file. In this case, the director generates a CA certificate at
/etc/pki/ca-trust/source/anchors/cm-local-ca.pem and the director configures the
undercloud’s HAProxy instance to use a server certificate. Add the CA certificate to the inject-
trust-anchor-hiera.yaml file to present the certificate to OpenStack Platform.

This example uses a self-signed certificate located in /home/stack/ca.crt.pem. If you use auto-
generated certificates, use /etc/pki/ca-trust/source/anchors/cm-local-ca.pem instead.

Procedure

1. Open the certificate file and copy only the certificate portion. Do not include the key:

$ vi /home/stack/ca.crt.pem

The certificate portion you need will look similar to this shortened example:

-----BEGIN CERTIFICATE-----
MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNV
BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmFsZWlnaDEQMA4GA1UECg
wH
UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBAMMCzE5Mi4xNjguMC4yMB4XDTE3
-----END CERTIFICATE-----

2. Create a new YAML file called /home/stack/inject-trust-anchor-hiera.yaml with the following
contents, and include the certificate you copied from the PEM file:

parameter_defaults:
 CAMap:
 undercloud-ca:
 content: |
 -----BEGIN CERTIFICATE-----
 MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNV

BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmFsZWlnaDEQMA4GA1UECg
wH

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

61

UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBAMMCzE5Mi4xNjguMC4yMB4XDTE3
 -----END CERTIFICATE-----

NOTE

The certificate string must follow the PEM format.

NOTE

The CAMap parameter might contain other certificates relevant to SSL/TLS
configuration.

The CA certificate is copied to each overcloud node during the overcloud deployment. As a result, each
node trusts the encryption presented by the undercloud’s SSL endpoints. For more information about
environment files, see Section 6.13, “Including environment files in an overcloud deployment” .

6.11. DEPLOYMENT COMMAND

The final stage in creating your OpenStack environment is to run the openstack overcloud deploy
command to create the overcloud. Before running this command, you should familiarize yourself with
key options and how to include custom environment files.

WARNING

Do not run openstack overcloud deploy as a background process. The overcloud
creation might hang mid-deployment if run as a background process.

6.12. DEPLOYMENT COMMAND OPTIONS

The following table lists the additional parameters for the openstack overcloud deploy command.

Table 6.1. Deployment command options

Parameter Description

--templates [TEMPLATES] The directory containing the Heat templates to
deploy. If blank, the command uses the default
template location at /usr/share/openstack-
tripleo-heat-templates/

--stack STACK The name of the stack to create or update

-t [TIMEOUT], --timeout [TIMEOUT] Deployment timeout in minutes

--libvirt-type [LIBVIRT_TYPE] Virtualization type to use for hypervisors



Red Hat OpenStack Platform 14 Director Installation and Usage

62

--ntp-server [NTP_SERVER] Network Time Protocol (NTP) server to use to
synchronize time. You can also specify multiple NTP
servers in a comma-separated list, for example: --
ntp-server
0.centos.pool.org,1.centos.pool.org. For a high
availability cluster deployment, it is essential that
your controllers are consistently referring to the
same time source. Note that a typical environment
might already have a designated NTP time source
with established practices.

--no-proxy [NO_PROXY] Defines custom values for the environment variable
no_proxy, which excludes certain hostnames from
proxy communication.

--overcloud-ssh-user
OVERCLOUD_SSH_USER

Defines the SSH user to access the overcloud nodes.
Normally SSH access occurs through the heat-
admin user.

-e [EXTRA HEAT TEMPLATE], --extra-
template [EXTRA HEAT TEMPLATE]

Extra environment files to pass to the overcloud
deployment. You can specify this option more than
once. Note that the order of environment files
passed to the openstack overcloud deploy
command is important. For example, parameters
from each sequential environment file override the
same parameters from earlier environment files.

--environment-directory The directory containing environment files to include
in deployment. The deploy command processes
these environment files in numerical, then
alphabetical order.

--validation-errors-nonfatal The overcloud creation process performs a set of
pre-deployment checks. This option exits if any non-
fatal errors occur from the pre-deployment checks. It
is advisable to use this option as any errors can cause
your deployment to fail.

--validation-warnings-fatal The overcloud creation process performs a set of
pre-deployment checks. This option exits if any non-
critical warnings occur from the pre-deployment
checks.

--dry-run Performs validation check on the overcloud but does
not actually create the overcloud.

--skip-postconfig Skip the overcloud post-deployment configuration.

--force-postconfig Force the overcloud post-deployment configuration.

Parameter Description

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

63

--skip-deploy-identifier Skip generation of a unique identifier for the
DeployIdentifier parameter. The software
configuration deployment steps only trigger if there
is an actual change to the configuration. Use this
option with caution and only if you are confident you
do not need to run the software configuration, such
as scaling out certain roles.

--answers-file ANSWERS_FILE Path to a YAML file with arguments and parameters.

--rhel-reg Register overcloud nodes to the Customer Portal or
Satellite 6.

--reg-method Registration method to use for the overcloud nodes.
satellite for Red Hat Satellite 6 or Red Hat Satellite
5, portal for Customer Portal.

--reg-org [REG_ORG] Organization to use for registration.

--reg-force Register the system even if it is already registered.

--reg-sat-url [REG_SAT_URL] The base URL of the Satellite server to register
overcloud nodes. Use the Satellite’s HTTP URL and
not the HTTPS URL for this parameter. For example,
use http://satellite.example.com and not
https://satellite.example.com. The overcloud
creation process uses this URL to determine whether
the server is a Red Hat Satellite 5 or Red Hat
Satellite 6 server. If the server is a Red Hat Satellite
6 server, the overcloud obtains the katello-ca-
consumer-latest.noarch.rpm file, registers with
subscription-manager, and installs katello-
agent. If the server is a Red Hat Satellite 5 server,
the overcloud obtains the RHN-ORG-TRUSTED-
SSL-CERT file and registers with rhnreg_ks.

--reg-activation-key
[REG_ACTIVATION_KEY]

Activation key to use for registration.

Parameter Description

Run the following command to view a full list of options:

(undercloud) $ openstack help overcloud deploy

Some command line parameters are outdated or deprecated in favor of using Heat template
parameters, which you include in the parameter_defaults section on an environment file. The following
table maps deprecated parameters to their Heat Template equivalents.

Table 6.2. Mapping Deprecated CLI Parameters to Heat Template Parameters

Red Hat OpenStack Platform 14 Director Installation and Usage

64

http://satellite.example.com
https://satellite.example.com

Parameter Description Heat Template Parameter

--control-scale The number of Controller nodes
to scale out

ControllerCount

--compute-scale The number of Compute nodes to
scale out

ComputeCount

--ceph-storage-scale The number of Ceph Storage
nodes to scale out

CephStorageCount

--block-storage-scale The number of Cinder nodes to
scale out

BlockStorageCount

--swift-storage-scale The number of Swift nodes to
scale out

ObjectStorageCount

--control-flavor The flavor to use for Controller
nodes

OvercloudControllerFlavor

--compute-flavor The flavor to use for Compute
nodes

OvercloudComputeFlavor

--ceph-storage-flavor The flavor to use for Ceph
Storage nodes

OvercloudCephStorageFlavo
r

--block-storage-flavor The flavor to use for Cinder nodes OvercloudBlockStorageFlav
or

--swift-storage-flavor The flavor to use for Swift storage
nodes

OvercloudSwiftStorageFlavo
r

--neutron-flat-networks Defines the flat networks to
configure in neutron plugins.
Defaults to "datacentre" to
permit external network creation

NeutronFlatNetworks

--neutron-physical-bridge An Open vSwitch bridge to create
on each hypervisor. This defaults
to "br-ex". Typically, this should
not need to be changed

HypervisorNeutronPhysicalB
ridge

--neutron-bridge-mappings The logical to physical bridge
mappings to use. Defaults to
mapping the external bridge on
hosts (br-ex) to a physical name
(datacentre). You would use this
for the default floating network

NeutronBridgeMappings

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

65

--neutron-public-interface Defines the interface to bridge
onto br-ex for network nodes

NeutronPublicInterface

--neutron-network-type The tenant network type for
Neutron

NeutronNetworkType

--neutron-tunnel-types The tunnel types for the Neutron
tenant network. To specify
multiple values, use a comma
separated string

NeutronTunnelTypes

--neutron-tunnel-id-ranges Ranges of GRE tunnel IDs to
make available for tenant network
allocation

NeutronTunnelIdRanges

--neutron-vni-ranges Ranges of VXLAN VNI IDs to
make available for tenant network
allocation

NeutronVniRanges

--neutron-network-vlan-
ranges

The Neutron ML2 and Open
vSwitch VLAN mapping range to
support. Defaults to permitting
any VLAN on the datacentre
physical network

NeutronNetworkVLANRange
s

--neutron-mechanism-
drivers

The mechanism drivers for the
neutron tenant network. Defaults
to "openvswitch". To specify
multiple values, use a comma-
separated string

NeutronMechanismDrivers

--neutron-disable-tunneling Disables tunneling in case you aim
to use a VLAN segmented
network or flat network with
Neutron

No parameter mapping.

--validation-errors-fatal The overcloud creation process
performs a set of pre-deployment
checks. This option exits if any
fatal errors occur from the pre-
deployment checks. It is advisable
to use this option as any errors
can cause your deployment to fail.

No parameter mapping

Parameter Description Heat Template Parameter

These parameters are scheduled for removal in a future version of Red Hat OpenStack Platform.

6.13. INCLUDING ENVIRONMENT FILES IN AN OVERCLOUD
DEPLOYMENT

Red Hat OpenStack Platform 14 Director Installation and Usage

66

Use the -e option to include an environment file to customize your overcloud. You can include as many
environment files as necessary. However, the order of the environment files is important as the
parameters and resources defined in subsequent environment files take precedence. Use the following
list as an example of the environment file order:

The number of nodes and the flavors for each role. It is vital to include this information for
overcloud creation.

The location of the container images for containerized OpenStack services.

Any network isolation files, starting with the initialization file (environments/network-
isolation.yaml) from the heat template collection, then your custom NIC configuration file, and
finally any additional network configurations. See the following chapters in the Advanced
Overcloud Customization guide for more information:

"Basic network isolation"

"Custom composable networks"

"Custom network interface templates"

Any external load balancing environment files if you are using an external load balancer. See
External Load Balancing for the Overcloud for more information.

Any storage environment files such as Ceph Storage, NFS, iSCSI, etc.

Any environment files for Red Hat CDN or Satellite registration.

Any other custom environment files.

Any environment files added to the overcloud using the -e option become part of your overcloud’s stack
definition.

The following command is an example of how to start the overcloud creation using environment files
defined earlier in this scenario:

(undercloud) $ openstack overcloud deploy --templates \
 -e /home/stack/templates/node-info.yaml\
 -e /home/stack/containers-prepare-parameter.yaml \
 -e /home/stack/inject-trust-anchor-hiera.yaml
 -r /home/stack/templates/roles_data.yaml \

This command contains the following additional options:

--templates

Creates the overcloud using the Heat template collection in /usr/share/openstack-tripleo-heat-
templates as a foundation

-e /home/stack/templates/node-info.yaml

Adds an environment file to define how many nodes and which flavors to use for each role.

-e /home/stack/containers-prepare-parameter.yaml

Adds the container image preparation environment file. You generated this file during the
undercloud installation and can use the same file for your overcloud creation.

-e /home/stack/inject-trust-anchor-hiera.yaml

Adds an environment file to install a custom certificate in the undercloud.

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

67

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/basic-network-isolation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/custom-composable-networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/external_load_balancing_for_the_overcloud/index

-r /home/stack/templates/roles_data.yaml

(optional) The generated roles data if using custom roles or enabling a multi architecture cloud. See
Section 6.7, “Creating architecture specific roles” for more information.

The director requires these environment files for re-deployment and post-deployment functions in
Chapter 8, Performing Tasks after Overcloud Creation. Failure to include these files can result in damage
to your overcloud.

To modify the overcloud configuration at a later stage, perform the following actions:

1. Modify parameters in the custom environment files and Heat templates

2. Run the openstack overcloud deploy command again with the same environment files

Do not edit the overcloud configuration directly as such manual configuration gets overridden by the
director’s configuration when updating the overcloud stack with the director.

6.14. VALIDATING THE OVERCLOUD CONFIGURATION BEFORE
DEPLOYMENT OPERATIONS

Before executing an overcloud deployment operation, validate your Heat templates and environment
files for any errors.

Procedure

1. The core Heat templates for the overcloud are in a Jinja2 format. To validate your templates,
render a version without Jinja2 formatting using the following commands:

$ cd /usr/share/openstack-tripleo-heat-templates
$./tools/process-templates.py -o ~/overcloud-validation

2. Use the following command to validate the template syntax:

(undercloud) $ openstack orchestration template validate --show-nested \
 --template ~/overcloud-validation/overcloud.yaml
 -e ~/overcloud-validation/overcloud-resource-registry-puppet.yaml \
 -e [ENVIRONMENT FILE] \
 -e [ENVIRONMENT FILE]

The validation requires the overcloud-resource-registry-puppet.yaml environment file to
include overcloud-specific resources. Add any additional environment files to this command
with -e option. Also include the --show-nested option to resolve parameters from nested
templates.

3. The validation command identifies any syntax errors in the template. If the template syntax
validates successfully, the command returns a preview of the resulting overcloud template.

6.15. OVERCLOUD DEPLOYMENT OUTPUT

Once the overcloud creation completes, the director provides a recap of the Ansible plays executed to
configure the overcloud:

PLAY RECAP ***

Red Hat OpenStack Platform 14 Director Installation and Usage

68

overcloud-compute-0 : ok=160 changed=67 unreachable=0 failed=0
overcloud-controller-0 : ok=210 changed=93 unreachable=0 failed=0
undercloud : ok=10 changed=7 unreachable=0 failed=0

Tuesday 15 October 2018 18:30:57 +1000 (0:00:00.107) 1:06:37.514 ******
==

The director also provides details to access your overcloud.

Ansible passed.
Overcloud configuration completed.
Overcloud Endpoint: http://192.168.24.113:5000
Overcloud Horizon Dashboard URL: http://192.168.24.113:80/dashboard
Overcloud rc file: /home/stack/overcloudrc
Overcloud Deployed

6.16. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your overcloud from
the director host. The director saves this file, overcloudrc, in your stack user’s home director. Run the
following command to use this file:

(undercloud) $ source ~/overcloudrc

This loads environment variables necessary to interact with your overcloud from the director host’s CLI.
The command prompt changes to indicate this:

(overcloud) $

To return to interacting with the director’s host, run the following command:

(overcloud) $ source ~/stackrc
(undercloud) $

Each node in the overcloud also contains a heat-admin user. The stack user has SSH access to this user
on each node. To access a node over SSH, find the IP address of the desired node:

(undercloud) $ openstack server list

Then connect to the node using the heat-admin user and the node’s IP address:

(undercloud) $ ssh heat-admin@192.168.24.23

6.17. NEXT STEPS

This concludes the creation of the overcloud using the command line tools. For post-creation functions,
see Chapter 8, Performing Tasks after Overcloud Creation.

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS

69

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD USING
PRE-PROVISIONED NODES

This chapter contains basic configuration procedures for using pre-provisioned nodes to configure an
OpenStack Platform environment. This scenario differs from the standard overcloud creation scenarios
in several ways:

You can provision nodes using an external tool and let the director control the overcloud
configuration only.

You can use nodes without relying on the director’s provisioning methods. This is useful if you
want to create an overcloud without power management control or use networks with
DHCP/PXE boot restrictions.

The director does not use OpenStack Compute (nova), OpenStack Bare Metal (ironic), or
OpenStack Image (glance) to manage nodes.

Pre-provisioned nodes can use a custom partitioning layout that does not rely on the QCOW2
overcloud-full image.

This scenario includes only basic configuration with no custom features. However, you can add advanced
configuration options to this basic overcloud and customize it to your specifications using the
instructions in the Advanced Overcloud Customization guide.

IMPORTANT

Combining pre-provisioned nodes with director-provisioned nodes in an overcloud is not
supported.

Requirements

The director node created in Chapter 4, Installing director .

A set of bare metal machines for your nodes. The number of nodes required depends on the
type of overcloud you intend to create. These machines must comply with the requirements set
for each node type. These nodes require Red Hat Enterprise Linux 7.6 or later installed as the
host operating system. Red Hat recommends using the latest version available.

One network connection for managing the pre-provisioned nodes. This scenario requires
uninterrupted SSH access to the nodes for orchestration agent configuration.

One network connection for the Control Plane network. There are two main scenarios for this
network:

Using the Provisioning Network as the Control Plane, which is the default scenario. This
network is usually a layer-3 (L3) routable network connection from the pre-provisioned
nodes to the director. The examples for this scenario use following IP address assignments:

Table 7.1. Provisioning Network IP Assignments

Node Name IP Address

Director 192.168.24.1

Red Hat OpenStack Platform 14 Director Installation and Usage

70

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/advanced_overcloud_customization/

Controller 0 192.168.24.2

Compute 0 192.168.24.3

Node Name IP Address

Using a separate network. In situations where the director’s Provisioning network is a private
non-routable network, you can define IP addresses for nodes from any subnet and
communicate with the director over the Public API endpoint. There are certain caveats to
this scenario, which this chapter examines later in Section 7.5, “Using a Separate Network
for Overcloud Nodes”.

All other network types in this example also use the Control Plane network for OpenStack
services. However, you can create additional networks for other network traffic types.

7.1. CREATING A USER FOR CONFIGURING NODES

When configuring an overcloud with pre-provisioned nodes, the director requires SSH access to the
overcloud nodes as the stack user. To create the stack user, complete the following steps:

1. On each overcloud node, create the stack user and set a password on each node. For example,
run the following commands on the Controller node:

[root@controller-0 ~]# useradd stack
[root@controller-0 ~]# passwd stack # specify a password

2. Disable password requirements for this user when using sudo:

[root@controller-0 ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a
/etc/sudoers.d/stack
[root@controller-0 ~]# chmod 0440 /etc/sudoers.d/stack

3. After creating and configuring the stack user on all pre-provisioned nodes, copy the stack
user’s public SSH key from the director node to each overcloud node. For example, to copy the
director’s public SSH key to the Controller node, run the following command:

[stack@director ~]$ ssh-copy-id stack@192.168.24.2

7.2. REGISTERING THE OPERATING SYSTEM FOR NODES

Each node requires access to a Red Hat subscription.

IMPORTANT

Standalone Ceph nodes are an exception and do not require a Red Hat OpenStack
Platform subscription. For standalone Ceph nodes, director requires newer ansible
packages to be installed. It is essential to enable rhel-7-server-openstack-14-
deployment-tools-rpms repository on all Ceph nodes without active Red Hat
OpenStack Platform subscriptions to obtain Red Hat OpenStack Platform-compatible
deployment tools.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

71

Complete the following steps on each node to register each respective node to the Red Hat Content
Delivery Network:

1. Run the registration command and enter your Customer Portal user name and password when
prompted:

[root@controller-0 ~]# sudo subscription-manager register

2. Find the entitlement pool for the Red Hat OpenStack Platform 14:

[root@controller-0 ~]# sudo subscription-manager list --available --all --matches="Red Hat
OpenStack"

3. Use the pool ID located in the previous step to attach the Red Hat OpenStack Platform 14
entitlements:

[root@controller-0 ~]# sudo subscription-manager attach --pool=pool_id

4. Disable all default repositories:

[root@controller-0 ~]# sudo subscription-manager repos --disable=*

5. Enable the required Red Hat Enterprise Linux repositories.

a. For x86_64 systems, run:

[root@controller-0 ~]# sudo subscription-manager repos --enable=rhel-7-server-rpms --
enable=rhel-7-server-extras-rpms --enable=rhel-7-server-rh-common-rpms --
enable=rhel-ha-for-rhel-7-server-rpms --enable=rhel-7-server-openstack-14-rpms --
enable=rhel-7-server-rhceph-3-osd-rpms --enable=rhel-7-server-rhceph-3-mon-rpms --
enable=rhel-7-server-rhceph-3-tools-rpms

b. For POWER systems, run:

[root@controller-0 ~]# sudo subscription-manager repos --enable=rhel-7-for-power-le-
rpms --enable=rhel-7-server-openstack-14-for-power-le-rpms

IMPORTANT

Enable only the repositories listed. Additional repositories can cause package and
software conflicts. Do not enable any additional repositories.

6. Update your system to ensure you have the latest base system packages:

[root@controller-0 ~]# sudo yum update -y
[root@controller-0 ~]# sudo reboot

The node is now ready to use for your overcloud.

7.3. CONFIGURING SSL/TLS ACCESS TO THE DIRECTOR

If the director uses SSL/TLS, the pre-provisioned nodes require the certificate authority file used to

Red Hat OpenStack Platform 14 Director Installation and Usage

72

If the director uses SSL/TLS, the pre-provisioned nodes require the certificate authority file used to
sign the director’s SSL/TLS certificates. If using your own certificate authority, perform the following
actions on each overcloud node:

1. Copy the certificate authority file to the /etc/pki/ca-trust/source/anchors/ directory on each
pre-provisioned node.

2. Run the following command on each overcloud node:

[root@controller-0 ~]# sudo update-ca-trust extract

These steps ensure the overcloud nodes can access the director’s Public API over SSL/TLS.

7.4. CONFIGURING NETWORKING FOR THE CONTROL PLANE

The pre-provisioned overcloud nodes obtain metadata from the director using standard HTTP requests.
This means all overcloud nodes require L3 access to either:

The director’s Control Plane network, which is the subnet defined with the network_cidr
parameter in your undercloud.conf file. The overcloud nodes require either direct access to this
subnet or routable access to the subnet.

The director’s Public API endpoint, specified as the undercloud_public_host parameter in your
undercloud.conf file. This option is available if you do not have an L3 route to the Control Plane
or you aim to use SSL/TLS communication. See Section 7.5, “Using a Separate Network for
Overcloud Nodes” for additional information about configuring your overcloud nodes to use the
Public API endpoint.

The director uses the Control Plane network to manage and configure a standard overcloud. For an
overcloud with pre-provisioned nodes, your network configuration might require some modification to
accommodate communication between the director and the pre-provisioned nodes.

Using Network Isolation

You can use network isolation to group services to use specific networks, including the Control Plane.
There are multiple network isolation strategies in the The Advanced Overcloud Customization guide.
You can also define specific IP addresses for nodes on the control plane. For more information about
isolating networks and creating predictable node placement strategies, see the following sections in the
Advanced Overcloud Customizations guide:

"Basic network isolation"

"Controlling Node Placement"

NOTE

If you use network isolation, ensure your NIC templates do not include the NIC used for
undercloud access. These template can reconfigure the NIC, which introduces
connectivity and configuration problems during deployment.

Assigning IP Addresses

If you do not use network isolation, you can use a single Control Plane network to manage all services.
This requires manual configuration of the Control Plane NIC on each node to use an IP address within
the Control Plane network range. If using the director’s Provisioning network as the Control Plane,

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

73

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/advanced_overcloud_customization/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/basic-network-isolation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/sect-controlling_node_placement

ensure the chosen overcloud IP addresses fall outside of the DHCP ranges for both provisioning
(dhcp_start and dhcp_end) and introspection (inspection_iprange).

During standard overcloud creation, the director creates OpenStack Networking (neutron) ports and
automatically assigns IP addresses to the overcloud nodes on the Provisioning / Control Plane network.
However, this can cause the director to assign different IP addresses to the ones you configure manually
for each node. In this situation, use a predictable IP address strategy to force the director to use the pre-
provisioned IP assignments on the Control Plane.

For example, you can use an environment file ctlplane-assignments.yaml with the following IP
assignments to implement a predictable IP strategy:

resource_registry:
 OS::TripleO::DeployedServer::ControlPlanePort: /usr/share/openstack-tripleo-heat-
templates/deployed-server/deployed-neutron-port.yaml

parameter_defaults:
 DeployedServerPortMap:
 controller-0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.24.2
 subnets:
 - cidr: 24
 compute-0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.24.3
 subnets:
 - cidr: 24

In this example, the OS::TripleO::DeployedServer::ControlPlanePort resource passes a set of
parameters to the director and defines the IP assignments of our pre-provisioned nodes. The
DeployedServerPortMap parameter defines the IP addresses and subnet CIDRs that correspond to
each overcloud node. The mapping defines the following attributes:

1. The name of the assignment, which follows the format <node_hostname>-<network> where
the <node_hostname> value matches the short hostname for the node and <network>
matches the lowercase name of the network. For example: controller-0-ctlplane for controller-
0.example.com and compute-0-ctlplane for compute-0.example.com.

2. The IP assignments, which use the following parameter patterns:

fixed_ips/ip_address - Defines the fixed IP addresses for the control plane. Use multiple
ip_address parameters in a list to define multiple IP addresses.

subnets/cidr - Defines the CIDR value for the subnet.

A later section in this chapter uses the resulting environment file (ctlplane-assignments.yaml) as part
of the openstack overcloud deploy command.

7.5. USING A SEPARATE NETWORK FOR OVERCLOUD NODES

By default, the director uses the Provisioning network as the overcloud Control Plane. However, if this
network is isolated and non-routable, nodes cannot communicate with the director’s Internal API during
configuration. In this situation, you might need to define a separate network for the nodes and configure
them to communicate with the director over the Public API.

Red Hat OpenStack Platform 14 Director Installation and Usage

74

There are several requirements for this scenario:

The overcloud nodes must accommodate the basic network configuration from Section 7.4,
“Configuring Networking for the Control Plane”.

You must enable SSL/TLS on the director for Public API endpoint usage. For more information,
see Section 4.2, “Director configuration parameters” and Appendix A, SSL/TLS Certificate
Configuration.

You must define an accessible fully qualified domain name (FQDN) for director. This FQDN
must resolve to a routable IP address for the director. Use the undercloud_public_host
parameter in the undercloud.conf file to set this FQDN.

The examples in this section use IP address assignments that differ from the main scenario:

Table 7.2. Provisioning Network IP Assignments

Node Name IP Address or FQDN

Director (Internal API) 192.168.24.1 (Provisioning Network and Control
Plane)

Director (Public API) 10.1.1.1 / director.example.com

Overcloud Virtual IP 192.168.100.1

Controller 0 192.168.100.2

Compute 0 192.168.100.3

The following sections provide additional configuration for situations that require a separate network for
overcloud nodes.

IP Address Assignments

The method for IP assignments is similar to Section 7.4, “Configuring Networking for the Control Plane” .
However, since the Control Plane is not routable from the deployed servers, you must use the
DeployedServerPortMap parameter to assign IP addresses from your chosen overcloud node subnet,
including the virtual IP address to access the Control Plane. The following example is a modified version
of the ctlplane-assignments.yaml environment file from Section 7.4, “Configuring Networking for the
Control Plane” that accommodates this network architecture:

resource_registry:
 OS::TripleO::DeployedServer::ControlPlanePort: /usr/share/openstack-tripleo-heat-
templates/deployed-server/deployed-neutron-port.yaml
 OS::TripleO::Network::Ports::ControlPlaneVipPort: /usr/share/openstack-tripleo-heat-
templates/deployed-server/deployed-neutron-port.yaml
 OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml 1

parameter_defaults:
 NeutronPublicInterface: eth1
 EC2MetadataIp: 192.168.100.1 2

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

75

1

2

 ControlPlaneDefaultRoute: 192.168.100.1
 DeployedServerPortMap:
 control_virtual_ip:
 fixed_ips:
 - ip_address: 192.168.100.1
 subnets:
 - cidr: 24
 controller-0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.100.2
 subnets:
 - cidr: 24
 compute-0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.100.3
 subnets:
 - cidr: 24

The RedisVipPort resource is mapped to network/ports/noop.yaml. This mapping is necessary
because the default Redis VIP address comes from the Control Plane. In this situation, we use a
noop to disable this Control Plane mapping.

The EC2MetadataIp and ControlPlaneDefaultRoute parameters are set to the value of the
Control Plane virtual IP address. The default NIC configuration templates require these parameters
and you must set them to use a pingable IP address to pass the validations performed during
deployment. Alternatively, customize the NIC configuration so they do not require these
parameters.

7.6. MAPPING PRE-PROVISIONED NODE HOSTNAMES

When configuring pre-provisioned nodes, you must map Heat-based hostnames to their actual
hostnames so that ansible-playbook can reach a resolvable host. Use the HostnameMap to map these
values.

Procedure

1. Create an environment file, for example hostname-map.yaml, and include the HostnameMap
parameter and the hostname mappings. Use the following syntax:

parameter_defaults:
 HostnameMap:
 [HEAT HOSTNAME]: [ACTUAL HOSTNAME]
 [HEAT HOSTNAME]: [ACTUAL HOSTNAME]

The [HEAT HOSTNAME] usually conforms to the following convention: [STACK NAME]-
[ROLE]-[INDEX]:

parameter_defaults:
 HostnameMap:
 overcloud-controller-0: controller-00-rack01
 overcloud-controller-1: controller-01-rack02
 overcloud-controller-2: controller-02-rack03

Red Hat OpenStack Platform 14 Director Installation and Usage

76

 overcloud-novacompute-0: compute-00-rack01
 overcloud-novacompute-1: compute-01-rack01
 overcloud-novacompute-2: compute-02-rack01

2. Save the hostname-map.yaml file.

7.7. CONFIGURING CEPH STORAGE FOR PRE-PROVISIONED NODES

When using ceph-ansible and servers that are already deployed, you must run commands, such as the
following, from the undercloud before deployment:

export OVERCLOUD_HOSTS="192.168.1.8 192.168.1.42"

bash /usr/share/openstack-tripleo-heat-templates/deployed-server/scripts/enable-ssh-admin.sh

Using the example export command, set the OVERCLOUD_HOSTS variable to a space-separated list
of IP addresses of the overcloud hosts intended to be used as Ceph clients (such as the Compute, Block
Storage, Image, File System, Telemetry services, and so forth). The enable-ssh-admin.sh script
configures a user on the overcloud nodes that Ansible uses to configure Ceph clients.

7.8. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES

The overcloud deployment uses the standard CLI methods from Section 6.11, “Deployment command” .
For pre-provisioned nodes, the deployment command requires some additional options and
environment files from the core Heat template collection:

--disable-validations - Disables basic CLI validations for services not used with pre-
provisioned infrastructure, otherwise the deployment will fail.

environments/deployed-server-environment.yaml - Primary environment file for creating
and configuring pre-provisioned infrastructure. This environment file substitutes the
OS::Nova::Server resources with OS::Heat::DeployedServer resources.

environments/deployed-server-bootstrap-environment-rhel.yaml - Environment file to
execute a bootstrap script on the pre-provisioned servers. This script installs additional
packages and includes basic configuration for overcloud nodes.

environments/deployed-server-pacemaker-environment.yaml - Environment file for
Pacemaker configuration on pre-provisioned Controller nodes. The namespace for the
resources registered in this file use the Controller role name from deployed-server/deployed-
server-roles-data.yaml, which is ControllerDeployedServer by default.

deployed-server/deployed-server-roles-data.yaml - An example custom roles file. This file
replicates the default roles_data.yaml but also includes the disable_constraints: True
parameter for each role. This parameter disables orchestration constraints in the generated role
templates. These constraints are for services that pre-provisioned infrastructure does not use.
If you want to use a custom roles file, ensure you include the disable_constraints: True
parameter for each role:

- name: ControllerDeployedServer
 disable_constraints: True
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::CACerts

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

77

 - OS::TripleO::Services::CephMon
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephRgw
 ...

The following command is an example overcloud deployment command with the environment files
specific to the pre-provisioned architecture:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy \
 [other arguments] \
 --disable-validations \
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-server-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-server-bootstrap-
environment-rhel.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-server-pacemaker-
environment.yaml \
 -e /home/stack/templates/hostname-map.yaml /
 -r /usr/share/openstack-tripleo-heat-templates/deployed-server/deployed-server-roles-data.yaml
 --overcloud-ssh-user stack \
 --overcloud-ssh-key ~/.ssh/id_rsa \
 [OTHER OPTIONS]

The --overcloud-ssh-user and --overcloud-ssh-key options are used to SSH into each overcloud node
during the configuration stage, create an initial tripleo-admin user, and inject an SSH key into
/home/tripleo-admin/.ssh/authorized_keys. To inject the SSH key, specify the credentials for the
initial SSH connection with --overcloud-ssh-user and --overcloud-ssh-key (defaults to ~/.ssh/id_rsa).
To limit exposure to the private key you specify with the --overcloud-ssh-key option, the director never
passes this key to any API service, such as Heat or Mistral, and only the director’s openstack overcloud
deploy command uses this key to enable access for the tripleo-admin user.

7.9. OVERCLOUD DEPLOYMENT OUTPUT

Once the overcloud creation completes, the director provides a recap of the Ansible plays executed to
configure the overcloud:

PLAY RECAP ***
compute-0 : ok=160 changed=67 unreachable=0 failed=0
controller-0 : ok=210 changed=93 unreachable=0 failed=0
undercloud : ok=10 changed=7 unreachable=0 failed=0

Tuesday 15 October 2018 18:30:57 +1000 (0:00:00.107) 1:06:37.514 ******
==

The director also provides details to access your overcloud.

Ansible passed.
Overcloud configuration completed.
Overcloud Endpoint: http://192.168.24.113:5000
Overcloud Horizon Dashboard URL: http://192.168.24.113:80/dashboard
Overcloud rc file: /home/stack/overcloudrc
Overcloud Deployed

Red Hat OpenStack Platform 14 Director Installation and Usage

78

7.10. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your overcloud from
the director host. The director saves this file, overcloudrc, in your stack user’s home director. Run the
following command to use this file:

(undercloud) $ source ~/overcloudrc

This loads environment variables necessary to interact with your overcloud from the director host’s CLI.
The command prompt changes to indicate this:

(overcloud) $

To return to interacting with the director’s host, run the following command:

(overcloud) $ source ~/stackrc
(undercloud) $

7.11. SCALING PRE-PROVISIONED NODES

The process for scaling pre-provisioned nodes is similar to the standard scaling procedures in
Chapter 10, Scaling overcloud nodes . However, the process for adding new pre-provisioned nodes
differs since pre-provisioned nodes do not use the standard registration and management process from
OpenStack Bare Metal (ironic) and OpenStack Compute (nova).

Scaling Up Pre-Provisioned Nodes

When scaling up the overcloud with pre-provisioned nodes, you must configure the orchestration agent
on each node to correspond to the director’s node count.

Perform the following actions to scale up overcloud nodes:

1. Prepare the new pre-provisioned nodes according to the Requirements.

2. Scale up the nodes. See Chapter 10, Scaling overcloud nodes for these instructions.

3. After executing the deployment command, wait until the director creates the new node
resources and launches the configuration.

Scaling Down Pre-Provisioned Nodes

When scaling down the overcloud with pre-provisioned nodes, follow the scale down instructions as
normal as shown in Chapter 10, Scaling overcloud nodes .

In most scaling operations, you must obtain the UUID value of the node you want to remove and pass
this value to the openstack overcloud node delete command. To obtain this UUID, list the resources
for the specific role:

$ openstack stack resource list overcloud -c physical_resource_id -c stack_name -n5 --filter
type=OS::TripleO::<RoleName>Server

Replace <RoleName> with the actual name of the role that you want to scale down. For example, for the
ComputeDeployedServer role, run the following command:

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

79

$ openstack stack resource list overcloud -c physical_resource_id -c stack_name -n5 --filter
type=OS::TripleO::ComputeDeployedServerServer

Use the stack_name column in the command output to identify the UUID associated with each node.
The stack_name includes the integer value of the index of the node in the Heat resource group:

+------------------------------------+----------------------------------+
| physical_resource_id | stack_name |
+------------------------------------+----------------------------------+
294d4e4d-66a6-4e4e-9a8b-	overcloud-ComputeDeployedServer-
03ec80beda41	no7yfgnh3z7e-1-ytfqdeclwvcg
d8de016d-	overcloud-ComputeDeployedServer-
8ff9-4f29-bc63-21884619abe5	no7yfgnh3z7e-0-p4vb3meacxwn
8c59f7b1-2675-42a9-ae2c-	overcloud-ComputeDeployedServer-
2de4a066f2a9	no7yfgnh3z7e-2-mmmaayxqnf3o
+------------------------------------+----------------------------------+

The indices 0, 1, or 2 in the stack_name column correspond to the node order in the Heat resource
group. Pass the corresponding UUID value from the physical_resource_id column to openstack
overcloud node delete command.

Once you have removed overcloud nodes from the stack, power off these nodes. In a standard
deployment, the bare metal services on the director control this function. However, with pre-provisioned
nodes, you must either manually shutdown these nodes or use the power management control for each
physical system. If you do not power off the nodes after removing them from the stack, they might
remain operational and reconnect as part of the overcloud environment.

After powering off the removed nodes, reprovision them to a base operating system configuration so
that they do not unintentionally join the overcloud in the future

NOTE

Do not attempt to reuse nodes previously removed from the overcloud without first
reprovisioning them with a fresh base operating system. The scale down process only
removes the node from the overcloud stack and does not uninstall any packages.

7.12. REMOVING A PRE-PROVISIONED OVERCLOUD

To remove an entire overcloud that uses pre-provisioned nodes, follow the same procedure as a
standard overcloud. See Section 8.14, “Removing the Overcloud” for more details.

After removing the overcloud, power off all nodes and reprovision them to a base operating system
configuration.

NOTE

Do not attempt to reuse nodes previously removed from the overcloud without first
reprovisioning them with a fresh base operating system. The removal process only
deletes the overcloud stack and does not uninstall any packages.

7.13. COMPLETING THE OVERCLOUD CREATION

This concludes the creation of the overcloud using pre-provisioned nodes. For post-creation functions,
see Chapter 8, Performing Tasks after Overcloud Creation.

Red Hat OpenStack Platform 14 Director Installation and Usage

80

PART III. POST DEPLOYMENT OPERATIONS

PART III. POST DEPLOYMENT OPERATIONS

81

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD
CREATION

This chapter contains information about some of the functions you can perform after creating your
overcloud.

8.1. CHECKING OVERCLOUD DEPLOYMENT STATUS

To check the deployment status of the overcloud, use the openstack overcloud status command. This
command returns the result of all deployment steps.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the deployment status command:

$ openstack overcloud status

The output of this command displays the status of the overcloud:

+-----------+---------------------+---------------------+-------------------+
| Plan Name | Created | Updated | Deployment Status |
+-----------+---------------------+---------------------+-------------------+
| overcloud | 2018-05-03 21:24:50 | 2018-05-03 21:27:59 | DEPLOY_SUCCESS |
+-----------+---------------------+---------------------+-------------------+

If your overcloud uses a different name, use the --plan argument to select an overcloud with a
different name:

$ openstack overcloud status --plan my-deployment

8.2. MANAGING CONTAINERIZED SERVICES

OpenStack Platform runs services in containers on the undercloud and overcloud nodes. In certain
situations, you might need to control the individual services on a host. This section contains information
about some common docker commands you can run on a node to manage containerized services. For
more comprehensive information about using docker to manage containers, see "Working with Docker
formatted containers" in the Getting Started with Containers guide.

Listing containers and images

To list running containers, run the following command:

$ sudo docker ps

To include stopped or failed containers in the command output, add the --all option to the command:

$ sudo docker ps --all

Red Hat OpenStack Platform 14 Director Installation and Usage

82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/using_the_docker_command_and_service#working_with_docker_formatted_containers

To list container images, run the following command:

$ sudo docker images

Inspecting container properties

To view the properties of a container or container images, use the docker inspect command. For
example, to inspect the keystone container, run the following command:

$ sudo docker inspect keystone

Managing basic container operations

To restart a containerized service, use the docker restart command. For example, to restart the
keystone container, run the following command:

$ sudo docker restart keystone

To stop a containerized service, use the docker stop command. For example, to stop the keystone
container, run the following command:

$ sudo docker stop keystone

To start a stopped containerized service, use the docker start command. For example, to start the
keystone container, run the following command:

$ sudo docker start keystone

NOTE

Any changes to the service configuration files within the container revert after restarting
the container. This is because the container regenerates the service configuration based
on files on the node’s local file system in /var/lib/config-data/puppet-generated/. For
example, if you edit /etc/keystone/keystone.conf within the keystone container and
restart the container, the container regenerates the configuration using /var/lib/config-
data/puppet-generated/keystone/etc/keystone/keystone.conf on the node’s local file
system, which overwrites any the changes made within the container before the restart.

Monitoring containers

To check the logs for a containerized service, use the docker logs command. For example, to view the
logs for the keystone container, run the following command:

$ sudo docker logs keystone

Accessing containers

To enter the shell for a containerized service, use the docker exec command to launch /bin/bash. For
example, to enter the shell for the keystone container, run the following command:

$ sudo docker exec -it keystone /bin/bash

To enter the shell for the keystone container as the root user, run the following command:

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

83

$ sudo docker exec --user 0 -it <NAME OR ID> /bin/bash

To exit from the container, run the following command:

exit

Enabling swift-ring-builder on undercloud and overcloud

For continuity considerations in Object Storage (swift) builds, the swift-ring-builder and
swift_object_server commands are no longer packaged on the undercloud or overcloud nodes.
However, the commands are still available in the containers. To run them inside the respective
containers:

docker exec -ti -u swift swift_object_server swift-ring-builder /etc/swift/object.builder

If you require these commands, install the following package as the stack user on the undercloud or the
heat-admin user on the overcloud:

sudo yum install -y python-swift
sudo yum install -y python2-swiftclient

For information about troubleshooting OpenStack Platform containerized services, see Section 17.7.3,
“Containerized Service Failures”.

8.3. CREATING THE OVERCLOUD TENANT NETWORK

The overcloud requires a Tenant network for instances. Source the overcloud and create an initial
Tenant network in Neutron:

$ source ~/overcloudrc
(overcloud) $ openstack network create default
(overcloud) $ openstack subnet create default --network default --gateway 172.20.1.1 --subnet-range
172.20.0.0/16

These command creates a basic Neutron network named default. The overcloud automatically assigns
IP addresses from this network using an internal DHCP mechanism.

Confirm the created network:

(overcloud) $ openstack network list
+-----------------------+-------------+--------------------------------------+
| id | name | subnets |
+-----------------------+-------------+--------------------------------------+
| 95fadaa1-5dda-4777... | default | 7e060813-35c5-462c-a56a-1c6f8f4f332f |
+-----------------------+-------------+--------------------------------------+

8.4. CREATING THE OVERCLOUD EXTERNAL NETWORK

You must create the External network on the overcloud so that you can assign floating IP addresses to
instances.

Using a Native VLAN

Red Hat OpenStack Platform 14 Director Installation and Usage

84

This procedure assumes a dedicated interface or native VLAN for the External network.

Source the overcloud and create an External network in Neutron:

$ source ~/overcloudrc
(overcloud) $ openstack network create public --external --provider-network-type flat --provider-
physical-network datacentre
(overcloud) $ openstack subnet create public --network public --dhcp --allocation-pool
start=10.1.1.51,end=10.1.1.250 --gateway 10.1.1.1 --subnet-range 10.1.1.0/24

In this example, you create a network with the name public. The overcloud requires this specific name
for the default floating IP pool. This name is also important for the validation tests in Section 8.8,
“Validating the Overcloud”.

This command also maps the network to the datacentre physical network. As a default, datacentre
maps to the br-ex bridge. Leave this option as the default unless you have used custom neutron settings
during the overcloud creation.

Using a Non-Native VLAN

If you are not using the native VLAN, run the following commands to assign the network to a VLAN:

$ source ~/overcloudrc
(overcloud) $ openstack network create public --external --provider-network-type vlan --provider-
physical-network datacentre --provider-segment 104
(overcloud) $ openstack subnet create public --network public --dhcp --allocation-pool
start=10.1.1.51,end=10.1.1.250 --gateway 10.1.1.1 --subnet-range 10.1.1.0/24

The provider:segmentation_id value defines the VLAN to use. In this case, you can use 104.

Confirm the created network:

(overcloud) $ openstack network list
+-----------------------+-------------+--------------------------------------+
| id | name | subnets |
+-----------------------+-------------+--------------------------------------+
| d474fe1f-222d-4e32... | public | 01c5f621-1e0f-4b9d-9c30-7dc59592a52f |
+-----------------------+-------------+--------------------------------------+

8.5. CREATING ADDITIONAL FLOATING IP NETWORKS

Floating IP networks can use any bridge, not just br-ex, as long as you meet the following conditions:

NeutronExternalNetworkBridge is set to "''" in your network environment file.

You have mapped the additional bridge during deployment. For example, to map a new bridge
called br-floating to the floating physical network, include the NeutronBridgeMappings
parameter in an environment file:

parameter_defaults:
 NeutronBridgeMappings: "datacentre:br-ex,floating:br-floating"

Create the Floating IP network after creating the overcloud:

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

85

$ source ~/overcloudrc
(overcloud) $ openstack network create ext-net --external --provider-physical-network floating --
provider-network-type vlan --provider-segment 105
(overcloud) $ openstack subnet create ext-subnet --network ext-net --dhcp --allocation-pool
start=10.1.2.51,end=10.1.2.250 --gateway 10.1.2.1 --subnet-range 10.1.2.0/24

8.6. CREATING THE OVERCLOUD PROVIDER NETWORK

A provider network is a network physically attached to a network that exists outside of the deployed
overcloud. This can be an existing infrastructure network or a network that provides external access
directly to instances through routing instead of floating IPs.

When creating a provider network, you associate it with a physical network, which uses a bridge mapping.
This is similar to floating IP network creation. You add the provider network to both the Controller and
the Compute nodes because the Compute nodes attach VM virtual network interfaces directly to the
attached network interface.

For example, if the desired provider network is a VLAN on the br-ex bridge, use the following command
to add a provider network on VLAN 201:

$ source ~/overcloudrc
(overcloud) $ openstack network create provider_network --provider-physical-network datacentre --
provider-network-type vlan --provider-segment 201 --share

This command creates a shared network. It is also possible to specify a tenant instead of specifying --
share. The new network is available only to the specified tenant. If you mark a provider network as
external, only the operator may create ports on that network.

Add a subnet to a provider network if you want neutron to provide DHCP services to the tenant
instances:

(overcloud) $ openstack subnet create provider-subnet --network provider_network --dhcp --
allocation-pool start=10.9.101.50,end=10.9.101.100 --gateway 10.9.101.254 --subnet-range
10.9.101.0/24

Other networks might require access externally through the provider network. In this situation, create a
new router so that other networks can route traffic through the provider network:

(overcloud) $ openstack router create external
(overcloud) $ openstack router set --external-gateway provider_network external

Attach other networks to this router. For example, run the following command to attach a subnet
‘subnet1’ to the router:

(overcloud) $ openstack router add subnet external subnet1

This command adds subnet1 to the routing table and allows traffic using subnet1 to route to the
provider network.

8.7. CREATING A BASIC OVERCLOUD FLAVOR

Validation steps in this guide assume that your installation contains flavors. If you have not already

Red Hat OpenStack Platform 14 Director Installation and Usage

86

Validation steps in this guide assume that your installation contains flavors. If you have not already
created at least one flavor, use the following commands to create a basic set of default flavors that
have a range of storage and processing capabilities:

$ openstack flavor create m1.tiny --ram 512 --disk 0 --vcpus 1
$ openstack flavor create m1.smaller --ram 1024 --disk 0 --vcpus 1
$ openstack flavor create m1.small --ram 2048 --disk 10 --vcpus 1
$ openstack flavor create m1.medium --ram 3072 --disk 10 --vcpus 2
$ openstack flavor create m1.large --ram 8192 --disk 10 --vcpus 4
$ openstack flavor create m1.xlarge --ram 8192 --disk 10 --vcpus 8

Command options

ram

Use the ram option to define the maximum RAM for the flavor.

disk

Use the disk option to define the hard disk space for the flavor.

vcpus

Use the vcpus option to define the quantity of virtual CPUs for the flavor.

Use $ openstack flavor create --help to learn more about the openstack flavor create command.

8.8. VALIDATING THE OVERCLOUD

The overcloud uses the OpenStack Integration Test Suite (tempest) tool set to conduct a series of
integration tests. This section contains information about preparations for running the integration tests.
For full instruction on using the OpenStack Integration Test Suite, see the OpenStack Integration Test
Suite Guide.

Before Running the Integration Test Suite

If running this test from the undercloud, ensure that the undercloud host has access to the overcloud’s
Internal API network. For example, add a temporary VLAN on the undercloud host to access the Internal
API network (ID: 201) using the 172.16.0.201/24 address:

$ source ~/stackrc
(undercloud) $ sudo ovs-vsctl add-port br-ctlplane vlan201 tag=201 -- set interface vlan201
type=internal
(undercloud) $ sudo ip l set dev vlan201 up; sudo ip addr add 172.16.0.201/24 dev vlan201

Before running the OpenStack Integration Test Suite, check that the heat_stack_owner role exists in
your overcloud:

$ source ~/overcloudrc
(overcloud) $ openstack role list
+----------------------------------+------------------+
| ID | Name |
+----------------------------------+------------------+
| 6226a517204846d1a26d15aae1af208f | swiftoperator |
| 7c7eb03955e545dd86bbfeb73692738b | heat_stack_owner |
+----------------------------------+------------------+

If the role does not exist, create it:

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

87

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/openstack_integration_test_suite_guide/

(overcloud) $ openstack role create heat_stack_owner

After Running the Integration Test Suite

After completing the validation, remove any temporary connections to the overcloud’s Internal API. In
this example, use the following commands to remove the previously created VLAN on the undercloud:

$ source ~/stackrc
(undercloud) $ sudo ovs-vsctl del-port vlan201

8.9. MODIFYING THE OVERCLOUD ENVIRONMENT

Sometimes you might want to modify the overcloud to add additional features, or change the way it
operates. To modify the overcloud, make modifications to your custom environment files and Heat
templates, then rerun the openstack overcloud deploy command from your initial overcloud creation.
For example, if you created an overcloud using Section 6.11, “Deployment command” , rerun the following
command:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e ~/templates/node-info.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 --ntp-server pool.ntp.org

The director checks the overcloud stack in heat, and then updates each item in the stack with the
environment files and heat templates. The director does not recreate the overcloud, but rather changes
the existing overcloud.

IMPORTANT

Removing parameters from custom environment files does not revert the parameter
value to the default configuration. You must identify the default value from the core heat
template collection in /usr/share/openstack-tripleo-heat-templates and set the value in
your custom environment file manually.

If you aim to include a new environment file, add it to the openstack overcloud deploy command with
the`-e` option. For example:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e ~/templates/new-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 -e ~/templates/node-info.yaml \
 --ntp-server pool.ntp.org

This command includes the new parameters and resources from the environment file into the stack.

IMPORTANT

Red Hat OpenStack Platform 14 Director Installation and Usage

88

IMPORTANT

It is not advisable to make manual modifications to the overcloud configuration as the
director might overwrite these modifications later.

8.10. RUNNING THE DYNAMIC INVENTORY SCRIPT

The director can run Ansible-based automation on your OpenStack Platform environment. The director
uses the tripleo-ansible-inventory command to generate a dynamic inventory of nodes in your
environment.

Procedure

1. To view a dynamic inventory of nodes, run the tripleo-ansible-inventory command after
sourcing stackrc:

$ source ~/stackrc
(undercloud) $ tripleo-ansible-inventory --list

The --list option returns details about all hosts. This command outputs the dynamic inventory in
a JSON format:

{"overcloud": {"children": ["controller", "compute"], "vars": {"ansible_ssh_user": "heat-admin"}},
"controller": ["192.168.24.2"], "undercloud": {"hosts": ["localhost"], "vars":
{"overcloud_horizon_url": "http://192.168.24.4:80/dashboard", "overcloud_admin_password":
"abcdefghijklm12345678", "ansible_connection": "local"}}, "compute": ["192.168.24.3"]}

2. To execute Ansible playbooks on your environment, run the ansible command and include the
full path of the dynamic inventory tool using the -i option. For example:

(undercloud) $ ansible [HOSTS] -i /bin/tripleo-ansible-inventory [OTHER OPTIONS]

Replace [HOSTS] with the type of hosts to use. For example:

controller for all Controller nodes

compute for all Compute nodes

overcloud for all overcloud child nodes i.e. controller and compute

undercloud for the undercloud

"*" for all nodes

Replace [OTHER OPTIONS] with additional Ansible options. Some useful options include:

--ssh-extra-args='-o StrictHostKeyChecking=no' to bypasses confirmation on host
key checking.

-u [USER] to change the SSH user that executes the Ansible automation. The default
SSH user for the overcloud is automatically defined using the ansible_ssh_user
parameter in the dynamic inventory. The -u option overrides this parameter.

-m [MODULE] to use a specific Ansible module. The default is command, which
executes Linux commands.

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

89

-a [MODULE_ARGS] to define arguments for the chosen module.

IMPORTANT

Custom Ansible automation on the overcloud is not part of the standard overcloud stack.
Subsequent execution of the openstack overcloud deploy command might override
Ansible-based configuration for OpenStack Platform services on overcloud nodes.

8.11. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD

If you have an existing OpenStack environment and want to migrate its virtual machines to your Red Hat
OpenStack Platform environment, complete the following steps:

1. Create a new image by taking a snapshot of a running server and download the image.

$ source ~/overcloudrc
(overcloud) $ openstack server image create instance_name --name image_name
(overcloud) $ openstack image save image_name --file exported_vm.qcow2

1. Upload the exported image into the overcloud and launch a new instance.

(overcloud) $ openstack image create imported_image --file exported_vm.qcow2 --disk-format qcow2
--container-format bare
(overcloud) $ openstack server create imported_instance --key-name default --flavor m1.demo --
image imported_image --nic net-id=net_id

IMPORTANT

These commands copy each VM disk from the existing OpenStack environment and into
the new Red Hat OpenStack Platform. Snapshots using QCOW will lose their original
layering system.

8.12. MIGRATING INSTANCES FROM A COMPUTE NODE

In some situations, you might perform maintenance on an overcloud Compute node. To prevent
downtime, migrate the VMs on the Compute node to another Compute node in the overcloud.

The director configures all Compute nodes to provide secure migration. All Compute nodes also require
a shared SSH key to provide each host’s nova user with access to other Compute nodes during the
migration process. The director creates this key using the OS::TripleO::Services::NovaCompute
composable service. This composable service is one of the main services included on all Compute roles
by default (see "Composable Services and Custom Roles" in Advanced Overcloud Customization).

Procedure

1. From the undercloud, select a Compute Node and disable it:

$ source ~/overcloudrc
(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service set [hostname] nova-compute --disable

2. List all instances on the Compute node:

Red Hat OpenStack Platform 14 Director Installation and Usage

90

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/roles

(overcloud) $ openstack server list --host [hostname] --all-projects

3. Use one of the following commands to migrate your instances:

a. Migrate the instance to a specific host of your choice:

(overcloud) $ openstack server migrate [instance-id] --live [target-host]--wait

b. Let nova-scheduler automatically select the target host:

(overcloud) $ nova live-migration [instance-id]

c. Live migrate all instances at once:

$ nova host-evacuate-live [hostname]

NOTE

The nova command might cause some deprecation warnings, which are safe
to ignore.

4. Wait until migration completes.

5. Confirm the migration was successful:

(overcloud) $ openstack server list --host [hostname] --all-projects

6. Continue migrating instances until none remain on the chosen Compute Node.

This process migrates all instances from a Compute node. You can now perform maintenance on the
node without any instance downtime. To return the Compute node to an enabled state, run the
following command:

$ source ~/overcloudrc
(overcloud) $ openstack compute service set [hostname] nova-compute --enable

8.13. PROTECTING THE OVERCLOUD FROM REMOVAL

Heat contains a set of default policies in code that you can override by creating /etc/heat/policy.json
and adding customized rules. Add the following policy to deny everyone the permissions for deleting the
overcloud.

{"stacks:delete": "rule:deny_everybody"}

This prevents removal of the overcloud with the heat client. To allow removal of the overcloud, delete
the custom policy and save /etc/heat/policy.json.

8.14. REMOVING THE OVERCLOUD

Delete any existing overcloud:

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

91

$ source ~/stackrc
(undercloud) $ openstack overcloud delete overcloud

Confirm the deletion of the overcloud:

(undercloud) $ openstack stack list

Deletion takes a few minutes.

Once the removal completes, follow the standard steps in the deployment scenarios to recreate your
overcloud.

8.15. REVIEW THE TOKEN FLUSH INTERVAL

The Identity Service (keystone) uses a token-based system for access control against the other
OpenStack services. Over time, the database accumulates a large number of unused tokens. A default
cron job flushes the token table every day. It is recommended that you monitor your environment and
adjust the token flush interval as needed.

To adjust the interval, include the KeystoneCronToken parameter in an environment file. For more
information, see the Overcloud Parameters guide.

Red Hat OpenStack Platform 14 Director Installation and Usage

92

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/overcloud_parameters/identity-keystone-parameters

CHAPTER 9. CONFIGURING THE OVERCLOUD WITH ANSIBLE
Ansible is the main method to apply the overcloud configuration. This chapter provides steps how to
interact with the overcloud’s Ansible configuration.

Although director generates the Ansible playbooks automatically, it is a good idea to familiarize yourself
with Ansible syntax. See https://docs.ansible.com/ for more information about how to use Ansible.

NOTE

Ansible also uses the concept of roles, which are different to OpenStack Platform
director roles.

9.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-
DOWNLOAD)

The config-download feature is the director’s method of configuring the overcloud. The director uses
config-download in conjunction with OpenStack Orchestration (heat) and OpenStack Workflow
Service (mistral) to generate the software configuration and apply the configuration to each overcloud
node. Although Heat creates all deployment data from SoftwareDeployment resources to perform the
overcloud installation and configuration, Heat does not apply any of the configuration. Heat only
provides the configuration data through the Heat API. When the director creates the stack, a Mistral
workflow queries the Heat API to obtain the configuration data, generate a set of Ansible playbooks,
and applies the Ansible playbooks to the overcloud.

As a result, when running the openstack overcloud deploy command, the following process occurs:

The director creates a new deployment plan based on openstack-tripleo-heat-templates and
includes any environment files and parameters to customize the plan.

The director uses Heat to interpret the deployment plan and create the overcloud stack and all
descendant resources. This includes provisioning nodes through OpenStack Bare Metal
(ironic).

Heat also creates the software configuration from the deployment plan. The director compiles
the Ansible playbooks from this software configuration.

The director generates a temporary user (`tripleo-admin1) on the overcloud nodes specifically
for Ansible SSH access.

The director downloads the Heat software configuration and generates a set of Ansible
playbooks using Heat outputs.

The director applies the Ansible playbooks to the overcloud nodes using ansible-playbook.

9.2. CONFIG-DOWNLOAD WORKING DIRECTORY

The director generates a set of Ansible playbooks for the config-download process. These playbooks
are stored in a working directory within the /var/lib/mistral/. This directory is named after the name of
the overcloud, which is overcloud by default.

The working directory contains a set of sub-directories named after each overcloud role. These sub-
directories contain all tasks relevant to the configuration of the nodes in the overcloud role. These sub-
directories also contain additional sub-directories named after each specific node. These sub-

CHAPTER 9. CONFIGURING THE OVERCLOUD WITH ANSIBLE

93

https://docs.ansible.com/

directories contain node-specific variables to apply to the overcloud role tasks. As a result, the
overcloud roles within the working directory use the following structure:

─ /var/lib/mistral/overcloud
 |
 ├── Controller
 │ ├── overcloud-controller-0
 | ├── overcloud-controller-1
 │ └── overcloud-controller-2
 ├── Compute
 │ ├── overcloud-compute-0
 | ├── overcloud-compute-1
 │ └── overcloud-compute-2
 ...

Each working directory is a local Git repository that records changes after each deployment operation.
This helps you track configuration changes between each deployment.

9.3. ENABLING ACCESS TO CONFIG-DOWNLOAD WORKING
DIRECTORIES

The mistral user in the OpenStack Workflow Service (mistral) containers own all files in the
/var/lib/mistral/ working directories. You can grant the stack user on the undercloud access to all files in
this directory. This helps with performing certain operations within the directory.

Procedure

1. Use the setfacl command to grant the stack user on the undercloud access to the files in the
/var/lib/mistral directory:

$ sudo setfacl -R -m u:stack:rwx /var/lib/mistral

This command retains mistral user access to the directory.

9.4. CHECKING CONFIG-DOWNLOAD LOG

During the config-download process, Ansible creates a log file on the undercloud in the config-
download working directory.

Procedure

1. View the log with the less command within the config-download working directory. The
following example uses the overcloud working directory:

$ less /var/lib/mistral/overcloud/ansible.log

9.5. RUNNING CONFIG-DOWNLOAD MANUALLY

The working directory in /var/lib/mistral/overcloud contains the playbooks and scripts necessary to
interact with ansible-playbook directly. This procedure shows how to interact with these files.

Procedure

Red Hat OpenStack Platform 14 Director Installation and Usage

94

1. Change to the directory of the Ansible playbook::

$ cd /var/lib/mistral/overcloud/

2. Run the ansible-playbook-command.sh command to reproduce the deployment:

$./ansible-playbook-command.sh

You can pass additional Ansible arguments to this script, which are then passed unchanged to
the ansible-playbook command. This makes it is possible to take further advantage of Ansible
features, such as check mode (--check), limiting hosts (--limit), or overriding variables (-e). For
example:

$./ansible-playbook-command.sh --limit Controller

3. The working directory contains a playbook called deploy_steps_playbook.yaml, which runs the
overcloud configuration. To view this playbook, run the following command:

$ less deploy_steps_playbook.yaml

The playbook uses various task files contained with the working directory. Some task files are
common to all OpenStack Platform roles and some are specific to certain OpenStack Platform
roles and servers.

4. The working directory also contains sub-directories that correspond to each role defined in your
overcloud’s roles_data file. For example:

$ ls Controller/

Each OpenStack Platform role directory also contains sub-directories for individual servers of
that role type. The directories use the composable role hostname format. For example:

$ ls Controller/overcloud-controller-0

5. The Ansible tasks are tagged. To see the full list of tags use the CLI argument --list-tags for
ansible-playbook:

$ ansible-playbook -i tripleo-ansible-inventory.yaml --list-tags deploy_steps_playbook.yaml

Then apply tagged configuration using the --tags, --skip-tags, or --start-at-task with the
ansible-playbook-command.sh script. For example:

$./ansible-playbook-command.sh --tags overcloud

6. When config-download configures Ceph, Ansible executes ceph-ansible from within the
config-download external_deploy_steps_tasks playbook. When you run config-download
manually, the second Ansible execution does not inherit the ssh_args argument. To pass
Ansible environment variables to this execution, use a heat environment file. For example:

parameter_defaults:
 CephAnsibleEnvironmentVariables:
 ANSIBLE_HOST_KEY_CHECKING: 'False'
 ANSIBLE_PRIVATE_KEY_FILE: '/home/stack/.ssh/id_rsa'

CHAPTER 9. CONFIGURING THE OVERCLOUD WITH ANSIBLE

95

WARNING

When using ansible-playbook CLI arguments such as --tags, --skip-tags, or --start-
at-task, do not run or apply deployment configuration out of order. These CLI
arguments are a convenient way to rerun previously failed tasks or iterating over an
initial deployment. However, to guarantee a consistent deployment, you must run all
tasks from deploy_steps_playbook.yaml in order.

9.6. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY

The config-download working directory is a local Git repository. Each time a deployment operation
runs, the director adds a Git commit to the working directory with the relevant changes. You can
perform Git operations to view configuration for the deployment at different stages and compare the
configuration with different deployments.

Be aware of the limitations of the working directory. For example, using Git to revert to a previous
version of the config-download working directory only affects the configuration in the working
directory. It does not affect the following configurations:

The overcloud data schema: Applying a previous version of the working directory software
configuration does not undo data migration and schema changes.

The hardware layout of the overcloud: Reverting to previous software configuration does not
undo changes related to overcloud hardware, such as scaling up or down.

The Heat stack: Reverting to earlier revisions of the working directory has no effect on the
configuration stored in the Heat stack. The Heat stack creates a new version of the software
configuration that applies to the overcloud. To make permanent changes to the overcloud,
modify the environment files applied to the overcloud stack prior to rerunning openstack
overcloud deploy.

Complete the following steps to compare different commits of the config-download working directory.

Procedure

1. Change to the config-download working directory for your overcloud. In this case, the working
directory is for the overcloud named overcloud:

$ cd /var/lib/mistral/overcloud

2. Run the git log command to list the commits in your working directory. You can also format the
log output to show the date:

$ git log --format=format:"%h%x09%cd%x09"
a7e9063 Mon Oct 8 21:17:52 2018 +1000
dfb9d12 Fri Oct 5 20:23:44 2018 +1000
d0a910b Wed Oct 3 19:30:16 2018 +1000
...



Red Hat OpenStack Platform 14 Director Installation and Usage

96

By default, the most recent commit appears first.

3. Run the git diff command against two commit hashes to see all changes between the
deployments:

$ git diff a7e9063 dfb9d12

9.7. CREATING CONFIG-DOWNLOAD FILES MANUALLY

In certain circumstances, you might generate your own config-download files outside of the standard
workflow. For example, you can generate the overcloud Heat stack using the --stack-only option with
the openstack overcloud deploy command so that you can apply the configuration separately.
Complete the following steps to create your own config-download files manually.

Procedure

1. Generate the config-download files:

$ openstack overcloud config download \
 --name overcloud \
 --config-dir ~/config-download

--name is the overcloud to use for the Ansible file export.

--config-dir is the location to save the config-download files,

2. Change to the directory that contains your config-download files:

$ cd ~/config-download

3. Generate a static inventory file:

$ tripleo-ansible-inventory \
 --ansible_ssh_user heat-admin \
 --static-yaml-inventory inventory.yaml

Use the config-download files and the static inventory file to perform a configuration. To execute the
deployment playbook, run the ansible-playbook command:

$ ansible-playbook \
 -i inventory.yaml \
 --private-key ~/.ssh/id_rsa \
 --become \
 ~/config-download/deploy_steps_playbook.yaml

To generate an overcloudrc file manually from this configuration, run the following command:

$ openstack action execution run \
 --save-result \
 --run-sync \
 tripleo.deployment.overcloudrc \
 '{"container":"overcloud"}' \
 | jq -r '.["result"]["overcloudrc.v3"]' > overcloudrc.v3

CHAPTER 9. CONFIGURING THE OVERCLOUD WITH ANSIBLE

97

9.8. CONFIG-DOWNLOAD TOP LEVEL FILES

The following file are important top level files within a config-download working directory.

Ansible configuration and execution

The following files are specific to configuring and executing Ansible within the config-download
working directory.

ansible.cfg

Configuration file used when running ansible-playbook.

ansible.log

Log file from the last run of ansible-playbook.

ansible-errors.json

JSON structured file that contains any deployment errors

ansible-playbook-command.sh

Executable script to rerun the ansible-playbook command from the last deployment operation.

ssh_private_key

Private SSH key that Ansible uses to access the overcloud nodes.

tripleo-ansible-inventory.yaml

Ansible inventory file that contains hosts and variables for all the overcloud nodes.

overcloud-config.tar.gz

Archive of the working directory.

Playbooks

The following files are playbooks within the config-download working directory.

deploy_steps_playbook.yaml

Main deployment steps. This playbook performs the main configuration operations for your
overcloud.

pre_upgrade_rolling_steps_playbook.yaml

Pre upgrade steps for major upgrade

upgrade_steps_playbook.yaml

Major upgrade steps.

post_upgrade_steps_playbook.yaml

Post upgrade steps for major upgrade.

update_steps_playbook.yaml

Minor update steps.

fast_forward_upgrade_playbook.yaml

Fast forward upgrade tasks. Use this playbook only when upgrading from one long-life version of
OpenStack Platform to the next. Do not use this playbook for this release of OpenStack Platform.

9.9. CONFIG-DOWNLOAD TAGS

The playbooks use tagged tasks to control the tasks applied to the overcloud. Use tags with the
ansible-playbook CLI arguments --tags or --skip-tags to control which tasks to execute. The following
list contains information about the tags that are enabled by default:

Red Hat OpenStack Platform 14 Director Installation and Usage

98

facts

Fact gathering operations.

common_roles

Ansible roles common to all nodes.

overcloud

All plays for overcloud deployment.

pre_deploy_steps

Deployments that happen before the deploy_steps operations.

host_prep_steps

Host preparation steps.

deploy_steps

Deployment steps.

post_deploy_steps

Steps that happen after the deploy_steps operations.

external

All external deployment tasks.

external_deploy_steps

External deployment tasks that run on the undercloud only.

9.10. CONFIG-DOWNLOAD DEPLOYMENT STEPS

The deploy_steps_playbook.yaml playbook is used to configure the overcloud. This playbook applies
all software configuration necessary to deploy a full overcloud based on the overcloud deployment plan.

This section contains a summary the different Ansible plays used within this playbook. The play names in
this section are the same names used within the playbook and displayed in the ansible-playbook
output. This section also contains information about the Ansible tags that are set on each play.

Gather facts from undercloud

Fact gathering for the undercloud node.
Tags: facts

Gather facts from overcloud

Fact gathering for the overcloud nodes.
Tags: facts

Load global variables

Loads all variables from global_vars.yaml.
Tags: always

Common roles for TripleO servers

Applies common ansible roles to all overcloud nodes, including tripleo-bootstrap for installing
bootstrap packages and tripleo-ssh-known-hosts for configuring ssh known hosts.
Tags: common_roles

Overcloud deploy step tasks for step 0

CHAPTER 9. CONFIGURING THE OVERCLOUD WITH ANSIBLE

99

Applies tasks from the deploy_steps_tasks template interface.
Tags: overcloud, deploy_steps

Server deployments

Applies server specific Heat deployments for configuration such as networking and hieradata.
Includes NetworkDeployment, <Role>Deployment, <Role>AllNodesDeployment, etc.
Tags: overcloud, pre_deploy_steps

Host prep steps

Applies tasks from the host_prep_steps template interface.
Tags: overcloud, host_prep_steps

External deployment step [1,2,3,4,5]

Applies tasks from the external_deploy_steps_tasks template interface. Ansible runs these tasks
against the undercloud node only.
Tags: external, external_deploy_steps

Overcloud deploy step tasks for [1,2,3,4,5]

Applies tasks from the deploy_steps_tasks template interface.
Tags: overcloud, deploy_steps

Overcloud common deploy step tasks [1,2,3,4,5]

Applies the common tasks performed at each step, including puppet host configuration, docker-
puppet.py, and paunch (container configuration).
Tags: overcloud, deploy_steps

Server Post Deployments

Applies server specific Heat deployments for configuration performed after the 5-step deployment
process.
Tags: overcloud, post_deploy_steps

External deployment Post Deploy tasks

Applies tasks from the external_post_deploy_steps_tasks template interface. Ansible runs these
tasks against the undercloud node only.
Tags: external, external_deploy_steps

9.11. NEXT STEPS

You can now continue your regular overcloud operations.

Red Hat OpenStack Platform 14 Director Installation and Usage

100

CHAPTER 10. SCALING OVERCLOUD NODES

WARNING

Do not use openstack server delete to remove nodes from the overcloud. Read
the procedures defined in this section to properly remove and replace nodes.

There might be situations where you need to add or remove nodes after the creation of the overcloud.
For example, you might need to add more Compute nodes to the overcloud. This situation requires
updating the overcloud.

Use the following table to determine support for scaling each node type:

Table 10.1. Scale Support for Each Node Type

Node Type Scale Up? Scale Down? Notes

Controller N N You can replace
Controller nodes using
the procedures in
Chapter 11, Replacing
Controller Nodes.

Compute Y Y

Ceph Storage Nodes Y N You must have at least 1
Ceph Storage node
from the initial
overcloud creation.

Object Storage Nodes Y Y

IMPORTANT

Ensure to leave at least 10 GB free space before scaling the overcloud. This free space
accommodates image conversion and caching during the node provisioning process.

10.1. ADDING NODES TO THE OVERCLOUD

Complete the following steps to add more nodes to the director node pool.

Procedure

1. Create a new JSON file (newnodes.json) containing the new node details to register:

{
 "nodes":[



CHAPTER 10. SCALING OVERCLOUD NODES

101

 {
 "mac":[
 "dd:dd:dd:dd:dd:dd"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.207"
 },
 {
 "mac":[
 "ee:ee:ee:ee:ee:ee"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.208"
 }
]
}

2. Run the following command to register the new nodes:

$ source ~/stackrc
(undercloud) $ openstack overcloud node import newnodes.json

3. After registering the new nodes, run the following commands to launch the introspection
process for each new node:

(undercloud) $ openstack baremetal node manage [NODE UUID]
(undercloud) $ openstack overcloud node introspect [NODE UUID] --provide

This process detects and benchmarks the hardware properties of the nodes.

10.2. INCREASING NODE COUNTS FOR ROLES

Complete the following steps to scale overcloud nodes for a specific role, such as a Compute node.

Procedure

1. Tag each new node with the role you want. For example, to tag a node with the Compute role,
run the following command:

(undercloud) $ openstack baremetal node set --property
capabilities='profile:compute,boot_option:local' [NODE UUID]

2. Scaling the overcloud requires that you edit the environment file that contains your node

Red Hat OpenStack Platform 14 Director Installation and Usage

102

2. Scaling the overcloud requires that you edit the environment file that contains your node
counts and re-deploy the overcloud. For example, to scale your overcloud to 5 Compute nodes,
edit the ComputeCount parameter:

parameter_defaults:
 ...
 ComputeCount: 5
 ...

3. Rerun the deployment command with the updated file, which in this example is called node-
info.yaml:

(undercloud) $ openstack overcloud deploy --templates -e /home/stack/templates/node-
info.yaml [OTHER_OPTIONS]

Ensure you include all environment files and options from your initial overcloud creation. This
includes the same scale parameters for non-Compute nodes.

4. Wait until the deployment operation completes.

10.3. REMOVING COMPUTE NODES

There might be situations where you need to remove Compute nodes from the overcloud. For example,
you might need to replace a problematic Compute node.

IMPORTANT

Before removing a Compute node from the overcloud, migrate the workload from the
node to other Compute nodes. See Section 8.12, “Migrating instances from a Compute
node” for more details.

Prerequisites

The placement service package, python2-osc-placement, is installed on the undercloud.

Procedure

1. Source the overcloud configuration:

$ source ~/overcloudrc

2. Disable the Compute service on the outgoing node on the overcloud to prevent the node from
scheduling new instances:

(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service set <hostname> nova-compute --disable

TIP

Use the --disable-reason option to add a short explanation on why the service is being
disabled. This is useful if you intend to redeploy the Compute service at a later point.

CHAPTER 10. SCALING OVERCLOUD NODES

103

3. Source the undercloud configuration:

(overcloud) $ source ~/stackrc

4. Identify the UUID of the overcloud stack:

(undercloud) $ openstack stack list

5. Identify the UUIDs of the nodes to delete:

(undercloud) $ openstack server list

6. Delete the nodes from the overcloud stack and update the plan accordingly:

(undercloud) $ openstack overcloud node delete --stack <stack_uuid> [node1_uuid]
[node2_uuid] [node3_uuid]

7. Ensure the openstack overcloud node delete command runs to completion:

(undercloud) $ openstack stack list

The status of the overcloud stack shows UPDATE_COMPLETE when the delete operation is
complete.

IMPORTANT

If you intend to redeploy the Compute service using the same host name, then
you need to use the existing service records for the redeployed node. If this is the
case, skip the remaining steps in this procedure, and proceed with the
instructions detailed in Redeploying the Compute service using the same host
name.

8. Remove the Compute service from the node:

(undercloud) $ source ~/overcloudrc
(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service delete <service-id>

9. Remove the Open vSwitch agent from the node:

(overcloud) $ openstack network agent list
(overcloud) $ openstack network agent delete <openvswitch-agent-id>

10. Remove the deleted Compute service as a resource provider from the Placement service:

(overcloud) $ openstack resource provider list
(overcloud) $ openstack resource provider delete <uuid>

11. Decrease the ComputeCount parameter in the environment file that contains your node
counts. This file is usually named node-info.yaml. For example, decrease the node count from
five nodes to three nodes if you removed two nodes:

Red Hat OpenStack Platform 14 Director Installation and Usage

104

parameter_defaults:
 ...
 ComputeCount: 3
 ...

Decreasing the node count ensures director provisions no new nodes when you run openstack
overcloud deploy.

You are now free to remove the node from the overcloud and re-provision it for other purposes.

Redeploying the Compute service using the same host name

To redeploy a disabled Compute service, re-enable it once a Compute node with the same host name is
up again.

Procedure

1. Remove the deleted Compute service as a resource provider from the Placement service:

(undercloud) $ source ~/overcloudrc
(overcloud) $ openstack resource provider list
(overcloud) $ openstack resource provider delete <uuid>

2. Check the status of the Compute service:

(overcloud) $ openstack compute service list --long
...
| ID | Binary | Host | Zone | Status | State | Updated At | Disabled
Reason |
| 80 | nova-compute | compute-1.localdomain | nova | disabled | up | 2018-07-
13T14:35:04.000000 | gets re-provisioned |
...

3. Once the service state of the redeployed Compute node is "up" again, re-enable the service:

(overcloud) $ openstack compute service set compute-1.localdomain nova-compute --enable

10.4. REPLACING CEPH STORAGE NODES

You can use the director to replace Ceph Storage nodes in a director-created cluster. You can find
these instructions in the Deploying an Overcloud with Containerized Red Hat Ceph guide.

10.5. REPLACING OBJECT STORAGE NODES

Follow the instructions in this section to understand how to replace Object Storage nodes while
maintaining the integrity of the cluster. This example involves a three-node Object Storage cluster in
which the node overcloud-objectstorage-1 must be replaced. The goal of the procedure is to add one
more node and then remove overcloud-objectstorage-1, effectively replacing it.

Procedure

1. Increase the Object Storage count using the ObjectStorageCount parameter. This parameter is
usually located in node-info.yaml, which is the environment file containing your node counts:

CHAPTER 10. SCALING OVERCLOUD NODES

105

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/

parameter_defaults:
 ObjectStorageCount: 4

The ObjectStorageCount parameter defines the quantity of Object Storage nodes in your
environment. In this situation, we scale from 3 to 4 nodes.

2. Run the deployment command with the updated ObjectStorageCount parameter:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates -e node-info.yaml
ENVIRONMENT_FILES

3. After the deployment command completes, the overcloud contains an additional Object Storage
node.

4. Replicate data to the new node. Before removing a node (in this case, overcloud-
objectstorage-1), wait for a replication pass to finish on the new node. Check the replication
pass progress in the /var/log/swift/swift.log file. When the pass finishes, the Object Storage
service should log entries similar to the following example:

Mar 29 08:49:05 localhost object-server: Object replication complete.
Mar 29 08:49:11 localhost container-server: Replication run OVER
Mar 29 08:49:13 localhost account-server: Replication run OVER

5. To remove the old node from the ring, reduce the ObjectStorageCount parameter to the omit
the old node. In this case, reduce it to 3:

parameter_defaults:
 ObjectStorageCount: 3

6. Create a new environment file named remove-object-node.yaml. This file identifies and
removes the specified Object Storage node. The following content specifies the removal of
overcloud-objectstorage-1:

parameter_defaults:
 ObjectStorageRemovalPolicies:
 [{'resource_list': ['1']}]

7. Include both the node-info.yaml and remove-object-node.yaml files in the deployment
command:

(undercloud) $ openstack overcloud deploy --templates -e node-info.yaml
ENVIRONMENT_FILES -e remove-object-node.yaml

The director deletes the Object Storage node from the overcloud and updates the rest of the nodes on
the overcloud to accommodate the node removal.

IMPORTANT

Make sure to include all environment files and options from your initial overcloud creation.
This includes the same scale parameters for non-Compute nodes.

10.6. BLACKLISTING NODES

Red Hat OpenStack Platform 14 Director Installation and Usage

106

You can exclude overcloud nodes from receiving an updated deployment. This is useful in scenarios
where you aim to scale new nodes while excluding existing nodes from receiving an updated set of
parameters and resources from the core Heat template collection. In other words, the blacklisted nodes
are isolated from the effects of the stack operation.

Use the DeploymentServerBlacklist parameter in an environment file to create a blacklist.

Setting the Blacklist

The DeploymentServerBlacklist parameter is a list of server names. Write a new environment file, or
add the parameter value to an existing custom environment file and pass the file to the deployment
command:

parameter_defaults:
 DeploymentServerBlacklist:
 - overcloud-compute-0
 - overcloud-compute-1
 - overcloud-compute-2

NOTE

The server names in the parameter value are the names according to OpenStack
Orchestration (heat), not the actual server hostnames.

Include this environment file with your openstack overcloud deploy command:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e server-blacklist.yaml \
 [OTHER OPTIONS]

Heat blacklists any servers in the list from receiving updated Heat deployments. After the stack
operation completes, any blacklisted servers remain unchanged. You can also power off or stop the os-
collect-config agents during the operation.

CHAPTER 10. SCALING OVERCLOUD NODES

107

WARNING

Exercise caution when blacklisting nodes. Only use a blacklist if you fully
understand how to apply the requested change with a blacklist in effect. It is
possible to create a hung stack or configure the overcloud incorrectly using
the blacklist feature. For example, if a cluster configuration changes applies
to all members of a Pacemaker cluster, blacklisting a Pacemaker cluster
member during this change can cause the cluster to fail.

Do not use the blacklist during update or upgrade procedures. Those
procedures have their own methods for isolating changes to particular
servers. See the Upgrading Red Hat OpenStack Platform documentation for
more information.

When adding servers to the blacklist, further changes to those nodes are
not supported until the server is removed from the blacklist. This includes
updates, upgrades, scale up, scale down, and node replacement.

Clearing the Blacklist

To clear the blacklist for subsequent stack operations, edit the DeploymentServerBlacklist to use an
empty array:

parameter_defaults:
 DeploymentServerBlacklist: []

WARNING

Do not just omit the DeploymentServerBlacklist parameter. If you omit the
parameter, the overcloud deployment uses the previously saved value.





Red Hat OpenStack Platform 14 Director Installation and Usage

108

CHAPTER 11. REPLACING CONTROLLER NODES
In certain circumstances a Controller node in a high availability cluster might fail. In these situations, you
must remove the node from the cluster and replace it with a new Controller node.

Complete the steps in this section to replace a Controller node. The Controller node replacement
process involves running the openstack overcloud deploy command to update the overcloud with a
request to replace a Controller node.

IMPORTANT

The following procedure applies only to high availability environments. Do not use this
procedure if using only one Controller node.

11.1. PREPARING FOR CONTROLLER REPLACEMENT

Before attempting to replace an overcloud Controller node, it is important to check the current state of
your Red Hat OpenStack Platform environment. Checking the current state can help avoid
complications during the Controller replacement process. Use the following list of preliminary checks to
determine if it is safe to perform a Controller node replacement. Run all commands for these checks on
the undercloud.

Procedure

1. Check the current status of the overcloud stack on the undercloud:

$ source stackrc
(undercloud) $ openstack stack list --nested

The overcloud stack and its subsequent child stacks should have either a
CREATE_COMPLETE or UPDATE_COMPLETE.

2. Install the database client tools:

(undercloud) $ sudo yum -y install mariadb

3. Configure root user access to the database:

(undercloud) $ sudo cp /var/lib/config-data/puppet-generated/mysql/root/.my.cnf /root/.

4. Perform a backup of the undercloud databases:

(undercloud) $ mkdir /home/stack/backup
(undercloud) $ sudo mysqldump --all-databases --quick --single-transaction | gzip >
/home/stack/backup/dump_db_undercloud.sql.gz

5. Check that your undercloud contains 10 GB free storage to accommodate for image caching
and conversion when provisioning the new node:

(undercloud) $ df -h

6. Check the status of Pacemaker on the running Controller nodes. For example, if 192.168.0.47 is

CHAPTER 11. REPLACING CONTROLLER NODES

109

6. Check the status of Pacemaker on the running Controller nodes. For example, if 192.168.0.47 is
the IP address of a running Controller node, use the following command to get the Pacemaker
status:

(undercloud) $ ssh heat-admin@192.168.0.47 'sudo pcs status'

The output should show all services running on the existing nodes and stopped on the failed
node.

7. Check the following parameters on each node of the overcloud MariaDB cluster:

wsrep_local_state_comment: Synced

wsrep_cluster_size: 2
Use the following command to check these parameters on each running Controller node. In
this example, the Controller node IP addresses are 192.168.0.47 and 192.168.0.46:

(undercloud) $ for i in 192.168.0.47 192.168.0.46 ; do echo "*** $i ***" ; ssh heat-
admin@$i "sudo mysql -p\$(sudo hiera -c /etc/puppet/hiera.yaml
mysql::server::root_password) --execute=\"SHOW STATUS LIKE
'wsrep_local_state_comment'; SHOW STATUS LIKE 'wsrep_cluster_size';\""; done

8. Check the RabbitMQ status. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to get the status:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo docker exec \$(sudo docker ps -f
name=rabbitmq-bundle -q) rabbitmqctl cluster_status"

The running_nodes key should only show the two available nodes and not the failed node.

9. Disable fencing, if enabled. For example, if 192.168.0.47 is the IP address of a running Controller
node, use the following command to check the status of fencing:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs property show stonith-enabled"

Run the following command to disable fencing:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs property set stonith-enabled=false"

10. Check the Compute services are active on the director node:

(undercloud) $ openstack hypervisor list

The output should show all non-maintenance mode nodes as up.

11. Ensure all undercloud containers are running:

(undercloud) $ sudo docker ps

11.2. REMOVING A CEPH MONITOR DAEMON

Follow this procedure to remove a ceph-mon daemon from the storage cluster. If your Controller node

Red Hat OpenStack Platform 14 Director Installation and Usage

110

Follow this procedure to remove a ceph-mon daemon from the storage cluster. If your Controller node
is running a Ceph monitor service, complete the following steps to remove the ceph-mon daemon. This
procedure assumes the Controller is reachable.

NOTE

Adding a new Controller to the cluster also adds a new Ceph monitor daemon
automatically.

Procedure

1. Connect to the Controller you want to replace and become root:

ssh heat-admin@192.168.0.47
sudo su -

NOTE

If the controller is unreachable, skip steps 1 and 2 and continue the procedure at
step 3 on any working controller node.

2. As root, stop the monitor:

systemctl stop ceph-mon@<monitor_hostname>

For example:

systemctl stop ceph-mon@overcloud-controller-1

3. Disconnect from the controller to be replaced.

4. Connect to one of the existing controllers.

ssh heat-admin@192.168.0.46
sudo su -

5. Remove the monitor from the cluster:

ceph mon remove <mon_id>

6. On all Controller nodes, remove the monitor entry from /etc/ceph/ceph.conf. For example, if
you remove controller-1, then remove the IP and hostname for controller-1.
Before:

mon host = 172.18.0.21,172.18.0.22,172.18.0.24
mon initial members = overcloud-controller-2,overcloud-controller-1,overcloud-controller-0

After:

mon host = 172.18.0.22,172.18.0.24
mon initial members = overcloud-controller-2,overcloud-controller-0

NOTE

CHAPTER 11. REPLACING CONTROLLER NODES

111

NOTE

The director updates the ceph.conf file on the relevant overcloud nodes when
you add the replacement controller node. Normally, director manages this
configuration file exclusively and you should not edit the file manually. However,
you can edit the file manually to ensure consistency in case the other nodes
restart before you add the new node.

7. Optionally, archive the monitor data and save the archive on another server:

mv /var/lib/ceph/mon/<cluster>-<daemon_id> /var/lib/ceph/mon/removed-<cluster>-
<daemon_id>

11.3. PREPARING THE CLUSTER FOR CONTROLLER REPLACEMENT

Before replacing the old node, you must ensure that Pacemaker is no longer running on the node and
then remove that node from the Pacemaker cluster.

Procedure

1. Get a list of IP addresses for the Controller nodes:

(undercloud) $ openstack server list -c Name -c Networks
+------------------------+-----------------------+
| Name | Networks |
+------------------------+-----------------------+
overcloud-compute-0	ctlplane=192.168.0.44
overcloud-controller-0	ctlplane=192.168.0.47
overcloud-controller-1	ctlplane=192.168.0.45
overcloud-controller-2	ctlplane=192.168.0.46
+------------------------+-----------------------+

2. If the old node is still reachable, log in to one of the remaining nodes and stop pacemaker on the
old node. For this example, stop pacemaker on overcloud-controller-1:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs status | grep -w Online | grep -w
overcloud-controller-1"
(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs cluster stop overcloud-controller-1"

NOTE

In case the old node is physically unavailable or stopped, it is not necessary to
perform the previous operation, as pacemaker is already stopped on that node.

3. After stopping Pacemaker on the old node, delete the old node from the Corosync
configuration on each node and restart Corosync. To check the status of Pacemaker on the old
node, run the pcs status command and verify that the status is Stopped.
The following example command logs in to overcloud-controller-0 and overcloud-controller-2
to remove overcloud-controller-1:

Red Hat OpenStack Platform 14 Director Installation and Usage

112

(undercloud) $ for NAME in overcloud-controller-0 overcloud-controller-2; do IP=$(openstack
server list -c Networks -f value --name $NAME | cut -d "=" -f 2) ; ssh heat-admin@$IP "sudo
pcs cluster node remove overcloud-controller-1; sudo pcs cluster reload corosync"; done

4. Log in to one of the remaining nodes and delete the node from the cluster with the crm_node
command:

(undercloud) $ ssh heat-admin@192.168.0.47
[heat-admin@overcloud-controller-0 ~]$ sudo crm_node -R overcloud-controller-1 --force

5. The overcloud database must continue to run during the replacement procedure. To ensure
Pacemaker does not stop Galera during this procedure, select a running Controller node and run
the following command on the undercloud using the Controller node’s IP address:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs resource unmanage galera-bundle"

11.4. REPLACING A CONTROLLER NODE

To replace a Controller node, identify the index of the node that you want to replace.

If the node is a virtual node, identify the node that contains the failed disk and restore the disk
from a backup. Ensure that the MAC address of the NIC used for PXE boot on the failed server
remains the same after disk replacement.

If the node is a bare metal node, replace the disk, prepare the new disk with your overcloud
configuration, and perform a node introspection on the new hardware.

Complete the following example steps to replace the the overcloud-controller-1 node with the
overcloud-controller-3 node. The overcloud-controller-3 node has the ID 75b25e9a-948d-424a-9b3b-
f0ef70a6eacf.

IMPORTANT

To replace the node with an existing ironic node, enable maintenance mode on the
outgoing node so that the director does not automatically reprovision the node.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Identify the index of the overcloud-controller-1 node:

$ INSTANCE=$(openstack server list --name overcloud-controller-1 -f value -c ID)

3. Identify the bare metal node associated with the instance:

$ NODE=$(openstack baremetal node list -f csv --quote minimal | grep $INSTANCE | cut -f1
-d,)

4. Set the node to maintenance mode:

CHAPTER 11. REPLACING CONTROLLER NODES

113

$ openstack baremetal node maintenance set $NODE

5. If the Controller node is a virtual node, run the following command on the Controller host to
replace the virtual disk from a backup:

$ cp <VIRTUAL_DISK_BACKUP> /var/lib/libvirt/images/<VIRTUAL_DISK>

Replace <VIRTUAL_DISK_BACKUP> with the path to the backup of the failed virtual disk, and
replace <VIRTUAL_DISK> with the name of the virtual disk that you want to replace.

If you do not have a backup of the outgoing node, you must use a new virtualized node.

If the Controller node is a bare metal node, complete the following steps to replace the disk with
a new bare metal disk:

a. Replace the physical hard drive or solid state drive.

b. Prepare the node with the same configuration as the failed node.

6. List unassociated nodes and identify the ID of the new node:

$ openstack baremetal node list --unassociated

7. Tag the new node with the control profile:

(undercloud) $ openstack baremetal node set --property
capabilities='profile:control,boot_option:local' 75b25e9a-948d-424a-9b3b-f0ef70a6eacf

11.5. TRIGGERING THE CONTROLER NODE REPLACEMENT

Complete the following steps to remove the old Controller node and replace it with a new Controller
node.

Procedure

1. Create an environment file (~/templates/remove-controller.yaml) that defines the node index
to remove:

parameters:
 ControllerRemovalPolicies:
 [{'resource_list': ['1']}]

2. Run your overcloud deployment command, including the remove-controller.yaml environment
file along with any other environment files relevant to your environment:

(undercloud) $ openstack overcloud deploy --templates \
 -e /home/stack/templates/remove-controller.yaml \
 -e /home/stack/templates/node-info.yaml \
 [OTHER OPTIONS]

NOTE

Red Hat OpenStack Platform 14 Director Installation and Usage

114

NOTE

Include -e ~/templates/remove-controller.yaml only for this instance of the
deployment command. Remove this environment file from subsequent
deployment operations.

3. The director removes the old node, creates a new one, and updates the overcloud stack. You
can check the status of the overcloud stack with the following command:

(undercloud) $ openstack stack list --nested

4. Once the deployment command completes, the director shows the old node replaced with the
new node:

(undercloud) $ openstack server list -c Name -c Networks
+------------------------+-----------------------+
| Name | Networks |
+------------------------+-----------------------+
overcloud-compute-0	ctlplane=192.168.0.44
overcloud-controller-0	ctlplane=192.168.0.47
overcloud-controller-2	ctlplane=192.168.0.46
overcloud-controller-3	ctlplane=192.168.0.48
+------------------------+-----------------------+

The new node now hosts running control plane services.

11.6. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT

After completing the node replacement, complete the following steps to finalize the Controller cluster.

Procedure

1. Log into a Controller node.

2. Enable Pacemaker management of the Galera cluster and start Galera on the new node:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource refresh galera-bundle
[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource manage galera-bundle

3. Perform a final status check to make sure services are running correctly:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs status

NOTE

If any services have failed, use the pcs resource refresh command to resolve
and restart the failed services.

4. Exit to the director

[heat-admin@overcloud-controller-0 ~]$ exit

CHAPTER 11. REPLACING CONTROLLER NODES

115

5. Source the overcloudrc file so that you can interact with the overcloud:

$ source ~/overcloudrc

6. Check the network agents in your overcloud environment:

(overcloud) $ openstack network agent list

7. If any agents appear for the old node, remove them:

(overcloud) $ for AGENT in $(openstack network agent list --host overcloud-controller-
1.localdomain -c ID -f value) ; do openstack network agent delete $AGENT ; done

8. If necessary, add your router to the L3 agent host on the new node. Use the following example
command to add a router named r1 to the L3 agent using the UUID 2d1c1dc1-d9d4-4fa9-b2c8-
f29cd1a649d4:

(overcloud) $ openstack network agent add router --l3 2d1c1dc1-d9d4-4fa9-b2c8-
f29cd1a649d4 r1

9. Compute services for the removed node still exist in the overcloud and require removal. Check
the compute services for the removed node:

[stack@director ~]$ source ~/overcloudrc
(overcloud) $ openstack compute service list --host overcloud-controller-1.localdomain

10. Remove the compute services for the removed node:

(overcloud) $ for SERVICE in $(openstack compute service list --host overcloud-controller-
1.localdomain -c ID -f value) ; do openstack compute service delete $SERVICE ; done

Red Hat OpenStack Platform 14 Director Installation and Usage

116

CHAPTER 12. REBOOTING NODES
You may need to reboot the nodes in the undercloud and overcloud. Use the following procedures to
understand how to reboot different node types. Be aware of the following notes:

If rebooting all nodes in one role, it is advisable to reboot each node individually. If you reboot all
nodes in a role simultaneously, you might encounter service downtime during the reboot
operation.

If rebooting all nodes in your OpenStack Platform environment, reboot the nodes in the
following sequential order:

Recommended Node Reboot Order

1. Reboot the undercloud node

2. Reboot Controller and other composable nodes

3. Reboot standalone Ceph MON nodes

4. Reboot Ceph Storage nodes

5. Reboot Compute nodes

12.1. REBOOTING THE UNDERCLOUD NODE

Complete the following steps to reboot the undercloud node.

Procedure

1. Log into the undercloud as the stack user.

2. Reboot the undercloud:

$ sudo reboot

3. Wait until the node boots.

12.2. REBOOTING CONTROLLER AND COMPOSABLE NODES

Complete the following steps to reboot controller nodes and standalone nodes based on composable
roles, excluding Compute nodes and Ceph Storage nodes.

Procedure

1. Select a node to reboot. Log into the node and stop the cluster before rebooting:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster stop

2. Reboot the node:

[heat-admin@overcloud-controller-0 ~]$ sudo reboot

CHAPTER 12. REBOOTING NODES

117

3. Wait until the node boots.

4. Re-enable the cluster for the node:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster start

5. Log into the node and check the services:

a. If the node uses Pacemaker services, check the node has rejoined the cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs status

b. If the node uses Systemd services, check all services are enabled:

[heat-admin@overcloud-controller-0 ~]$ sudo systemctl status

c. If the node uses containerized services, check all containers on the node are active:

[heat-admin@overcloud-controller-0 ~]$ sudo docker ps

12.3. REBOOTING STANDALONE CEPH MON NODES

Procedure

1. Log into a Ceph MON node.

2. Reboot the node:

$ sudo reboot

3. Wait until the node boots and rejoins the MON cluster.

Repeat these steps for each MON node in the cluster.

12.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER

Complete the following steps to reboot a cluster of Ceph Storage (OSD) nodes.

Procedure

1. Log into a Ceph MON or Controller node and disable Ceph Storage cluster rebalancing
temporarily:

$ sudo ceph osd set noout
$ sudo ceph osd set norebalance

2. Select the first Ceph Storage node to reboot and log into the node.

3. Reboot the node:

$ sudo reboot

Red Hat OpenStack Platform 14 Director Installation and Usage

118

4. Wait until the node boots.

5. Log into the node and check the cluster status:

$ sudo ceph -s

Check the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph storage nodes.

7. When complete, log into a Ceph MON or Controller node and enable cluster rebalancing again:

$ sudo ceph osd unset noout
$ sudo ceph osd unset norebalance

8. Perform a final status check to verify the cluster reports HEALTH_OK:

$ sudo ceph status

12.5. REBOOTING COMPUTE NODES

Complete the following steps to reboot Compute nodes. To ensure minimal downtime of instances in
your OpenStack Platform environment, this procedure also includes instructions about migrating
instances from the Compute node you want to reboot. This involves the following workflow:

Select and disable the Compute node you want to reboot so that it does not provision new
instances.

Migrate the instances to another Compute node.

Reboot the empty Compute node.

Enable the empty Compute node.

Procedure

1. Log into the undercloud as the stack user.

2. List all Compute nodes and their UUIDs:

$ source ~/stackrc
(undercloud) $ openstack server list --name compute

Identify the UUID of the Compute node you want to reboot.

3. From the undercloud, select a Compute Node. Disable the node:

$ source ~/overcloudrc
(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service set [hostname] nova-compute --disable

4. List all instances on the Compute node:

CHAPTER 12. REBOOTING NODES

119

(overcloud) $ openstack server list --host [hostname] --all-projects

5. Use one of the following commands to migrate your instances:

a. Migrate the instance to a different host:

(overcloud) $ openstack server migrate [instance-id] --live [target-host]--wait

b. Let nova-scheduler automatically select the target host:

(overcloud) $ nova live-migration [instance-id]

c. Live migrate all instances at once:

$ nova host-evacuate-live [hostname]

NOTE

The nova command might cause some deprecation warnings, which are safe
to ignore.

6. Wait until migration completes.

7. Confirm the migration was successful:

(overcloud) $ openstack server list --host [hostname] --all-projects

8. Continue migrating instances until none remain on the chosen Compute Node.

9. Log into the Compute Node. Reboot the node:

[heat-admin@overcloud-compute-0 ~]$ sudo reboot

10. Wait until the node boots.

11. Enable the Compute Node again:

$ source ~/overcloudrc
(overcloud) $ openstack compute service set [hostname] nova-compute --enable

12. Check whether the Compute node is enabled:

(overcloud) $ openstack compute service list

Red Hat OpenStack Platform 14 Director Installation and Usage

120

PART IV. ADDITIONAL DIRECTOR OPERATIONS AND
CONFIGURATION

PART IV. ADDITIONAL DIRECTOR OPERATIONS AND CONFIGURATION

121

CHAPTER 13. ADDITIONAL INTROSPECTION OPERATIONS

13.1. PERFORMING INDIVIDUAL NODE INTROSPECTION

To perform a single introspection on an available node, run the following commands to set the node to
management mode and perform the introspection:

(undercloud) $ openstack baremetal node manage [NODE UUID]
(undercloud) $ openstack overcloud node introspect [NODE UUID] --provide

After the introspection completes, the node changes to an available state.

13.2. PERFORMING NODE INTROSPECTION AFTER INITIAL
INTROSPECTION

After an initial introspection, all nodes should enter an available state due to the --provide option. To
perform introspection on all nodes after the initial introspection, set all nodes to a manageable state
and run the bulk introspection command:

(undercloud) $ for node in $(openstack baremetal node list --fields uuid -f value) ; do openstack
baremetal node manage $node ; done
(undercloud) $ openstack overcloud node introspect --all-manageable --provide

After the introspection completes, all nodes change to an available state.

13.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE
INFORMATION

Network introspection retrieves link layer discovery protocol (LLDP) data from network switches. The
following commands show a subset of LLDP information for all interfaces on a node, or full information
for a particular node and interface. This can be useful for troubleshooting. The director enables LLDP
data collection by default.

To get a list of interfaces on a node, run the following command:

(undercloud) $ openstack baremetal introspection interface list [NODE UUID]

For example:

(undercloud) $ openstack baremetal introspection interface list c89397b7-a326-41a0-907d-
79f8b86c7cd9
+-----------+-------------------+------------------------+-------------------+----------------+
| Interface | MAC Address | Switch Port VLAN IDs | Switch Chassis ID | Switch Port ID |
+-----------+-------------------+------------------------+-------------------+----------------+
p2p2	00:0a:f7:79:93:19	[103, 102, 18, 20, 42]	64:64:9b:31:12:00	510
p2p1	00:0a:f7:79:93:18	[101]	64:64:9b:31:12:00	507
em1	c8:1f:66:c7:e8:2f	[162]	08:81:f4:a6:b3:80	515
em2	c8:1f:66:c7:e8:30	[182, 183]	08:81:f4:a6:b3:80	559
+-----------+-------------------+------------------------+-------------------+----------------+

To view interface data and switch port information, run the following command:

Red Hat OpenStack Platform 14 Director Installation and Usage

122

(undercloud) $ openstack baremetal introspection interface show [NODE UUID] [INTERFACE]

For example:

(undercloud) $ openstack baremetal introspection interface show c89397b7-a326-41a0-907d-
79f8b86c7cd9 p2p1
+--------------------------------------+--
--------------------------------------+
| Field | Value
|
+--------------------------------------+--
--------------------------------------+
| interface | p2p1
|
| mac | 00:0a:f7:79:93:18
|
| node_ident | c89397b7-a326-41a0-907d-79f8b86c7cd9
|
| switch_capabilities_enabled | [u'Bridge', u'Router']
|
| switch_capabilities_support | [u'Bridge', u'Router']
|
| switch_chassis_id | 64:64:9b:31:12:00
|
| switch_port_autonegotiation_enabled | True
|
| switch_port_autonegotiation_support | True
|
| switch_port_description | ge-0/0/2.0
|
| switch_port_id | 507
|
| switch_port_link_aggregation_enabled | False
|
| switch_port_link_aggregation_id | 0
|
| switch_port_link_aggregation_support | True
|
| switch_port_management_vlan_id | None
|
| switch_port_mau_type | Unknown
|
| switch_port_mtu | 1514
|
| switch_port_physical_capabilities | [u'1000BASE-T fdx', u'100BASE-TX fdx', u'100BASE-TX hdx',
u'10BASE-T fdx', u'10BASE-T hdx', u'Asym and Sym PAUSE fdx'] |
| switch_port_protocol_vlan_enabled | None
|
| switch_port_protocol_vlan_ids | None
|
| switch_port_protocol_vlan_support | None
|
| switch_port_untagged_vlan_id | 101
|
| switch_port_vlan_ids | [101]

CHAPTER 13. ADDITIONAL INTROSPECTION OPERATIONS

123

|
| switch_port_vlans | [{u'name': u'RHOS13-PXE', u'id': 101}]
|
| switch_protocol_identities | None
|
| switch_system_name | rhos-compute-node-sw1
|
+--------------------------------------+--
--------------------------------------+

Retrieving Hardware Introspection Details

The Bare Metal service hardware inspection extras (inspection_extras) is enabled by default to retrieve
hardware details. You can use these hardware details to configure your overcloud. See Configuring the
Director for details on the inspection_extras parameter in the undercloud.conf file.

For example, the numa_topology collector is part of these hardware inspection extras and includes the
following information for each NUMA node:

RAM (in kilobytes)

Physical CPU cores and their sibling threads

NICs associated with the NUMA node

Use the openstack baremetal introspection data save _UUID_ | jq .numa_topology command to
retrieve this information, with the UUID of the bare-metal node.

The following example shows the retrieved NUMA information for a bare-metal node:

{
 "cpus": [
 {
 "cpu": 1,
 "thread_siblings": [
 1,
 17
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 10,
 26
],
 "numa_node": 1
 },
 {
 "cpu": 0,
 "thread_siblings": [
 0,
 16
],
 "numa_node": 0
 },

Red Hat OpenStack Platform 14 Director Installation and Usage

124

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/director_installation_and_usage/installing-the-undercloud#configuring-the-director

 {
 "cpu": 5,
 "thread_siblings": [
 13,
 29
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 15,
 31
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 7,
 23
],
 "numa_node": 0
 },
 {
 "cpu": 1,
 "thread_siblings": [
 9,
 25
],
 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 6,
 22
],
 "numa_node": 0
 },
 {
 "cpu": 3,
 "thread_siblings": [
 11,
 27
],
 "numa_node": 1
 },
 {
 "cpu": 5,
 "thread_siblings": [
 5,
 21
],
 "numa_node": 0
 },

CHAPTER 13. ADDITIONAL INTROSPECTION OPERATIONS

125

 {
 "cpu": 4,
 "thread_siblings": [
 12,
 28
],
 "numa_node": 1
 },
 {
 "cpu": 4,
 "thread_siblings": [
 4,
 20
],
 "numa_node": 0
 },
 {
 "cpu": 0,
 "thread_siblings": [
 8,
 24
],
 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 14,
 30
],
 "numa_node": 1
 },
 {
 "cpu": 3,
 "thread_siblings": [
 3,
 19
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 2,
 18
],
 "numa_node": 0
 }
],
 "ram": [
 {
 "size_kb": 66980172,
 "numa_node": 0
 },
 {
 "size_kb": 67108864,

Red Hat OpenStack Platform 14 Director Installation and Usage

126

 "numa_node": 1
 }
],
 "nics": [
 {
 "name": "ens3f1",
 "numa_node": 1
 },
 {
 "name": "ens3f0",
 "numa_node": 1
 },
 {
 "name": "ens2f0",
 "numa_node": 0
 },
 {
 "name": "ens2f1",
 "numa_node": 0
 },
 {
 "name": "ens1f1",
 "numa_node": 0
 },
 {
 "name": "ens1f0",
 "numa_node": 0
 },
 {
 "name": "eno4",
 "numa_node": 0
 },
 {
 "name": "eno1",
 "numa_node": 0
 },
 {
 "name": "eno3",
 "numa_node": 0
 },
 {
 "name": "eno2",
 "numa_node": 0
 }
]
}

CHAPTER 13. ADDITIONAL INTROSPECTION OPERATIONS

127

CHAPTER 14. AUTOMATICALLY DISCOVER BARE METAL
NODES

You can use auto-discovery to register undercloud nodes and generate their metadata, without first
having to create an instackenv.json file. This improvement can help reduce the time spent initially
collecting information about a node, for example, removing the need to collate the IPMI IP addresses
and subsequently create the instackenv.json.

14.1. REQUIREMENTS

All overcloud nodes BMCs must be configured to be accessible to director through the IPMI.

All overcloud nodes must be configured to PXE boot from the NIC connected to the undercloud
control plane network.

14.2. ENABLE AUTO-DISCOVERY

1. Enable Bare Metal auto-discovery in undercloud.conf:

enable_node_discovery = True
discovery_default_driver = ipmi

enable_node_discovery - When enabled, any node that boots the introspection ramdisk
using PXE will be enrolled in ironic.

discovery_default_driver - Sets the driver to use for discovered nodes. For example, ipmi.

2. Add your IPMI credentials to ironic:

a. Add your IPMI credentials to a file named ipmi-credentials.json. You must replace the
username and password values in this example to suit your environment:

[
 {
 "description": "Set default IPMI credentials",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true}
],
 "actions": [
 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 }
]

3. Import the IPMI credentials file into ironic:

$ openstack baremetal introspection rule import ipmi-credentials.json

Red Hat OpenStack Platform 14 Director Installation and Usage

128

14.3. TEST AUTO-DISCOVERY

1. Power on the required nodes.

2. Run the openstack baremetal node list command. You should see the new nodes listed in an
enrolled state:

$ openstack baremetal node list
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+
| UUID | Name | Instance UUID | Power State | Provisioning State |
Maintenance |
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+
| c6e63aec-e5ba-4d63-8d37-bd57628258e8 | None | None | power off | enroll |
False |
| 0362b7b2-5b9c-4113-92e1-0b34a2535d9b | None | None | power off | enroll |
False |
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+

3. Set the resource class for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node set $NODE --resource-class baremetal ; done

4. Configure the kernel and ramdisk for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node manage $NODE ; done
$ openstack overcloud node configure --all-manageable

5. Set all nodes to available:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node provide $NODE ; done

14.4. USE RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

If you have a heterogeneous hardware environment, you can use introspection rules to assign
credentials and remote management credentials. For example, you might want a separate discovery rule
to handle your Dell nodes that use DRAC:

1. Create a file named dell-drac-rules.json with the following contents:

[
 {
 "description": "Set default IPMI credentials",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "ne", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [

CHAPTER 14. AUTOMATICALLY DISCOVER BARE METAL NODES

129

 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 },
 {
 "description": "Set the vendor driver for Dell hardware",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "eq", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [
 {"action": "set-attribute", "path": "driver", "value": "idrac"},
 {"action": "set-attribute", "path": "driver_info/drac_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/drac_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/drac_address",
 "value": "{data[inventory][bmc_address]}"}
]
 }
]

You must replace the username and password values in this example to suit your environment:

2. Import the rule into ironic:

$ openstack baremetal introspection rule import dell-drac-rules.json

Red Hat OpenStack Platform 14 Director Installation and Usage

130

CHAPTER 15. CREATING VIRTUALIZED CONTROL PLANES
A virtualized control plane is a control plane located on virtual machines (VMs) rather than on bare metal.
A virtualized control plane reduces the number of bare metal machines required for the control plane.

This chapter explains how to virtualize your Red Hat OpenStack Platform (RHOSP) control plane for the
overcloud using RHOSP and Red Hat Virtualization.

15.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE

You use the OpenStack Platform director to provision an overcloud using Controller nodes that are
deployed in a Red Hat Virtualization cluster. You can then deploy these virtualized controllers as the
virtualized control plane nodes.

NOTE

Virtualized Controller nodes are supported only on Red Hat Virtualization.

The following architecture diagram illustrates how to deploy a virtualized control plane. You distribute
the overcloud with the Controller nodes running on VMs on Red Hat Virtualization. You run the Compute
and storage nodes on bare metal.

NOTE

You run the OpenStack virtualized undercloud on Red Hat Virtualization.

Virtualized control plane architecture

The OpenStack Bare Metal Provisioning (ironic) service includes a driver for Red Hat Virtualization VMs,
staging-ovirt. You can use this driver to manage virtual nodes within a Red Hat Virtualization
environment. You can also use it to deploy overcloud controllers as virtual machines within a Red Hat
Virtualization environment.

15.2. BENEFITS AND LIMITATIONS OF VIRTUALIZING YOUR RHOSP
OVERCLOUD CONTROL PLANE

Although there are a number of benefits to virtualizing your RHOSP overcloud control plane, this is not
an option in every configuration.

CHAPTER 15. CREATING VIRTUALIZED CONTROL PLANES

131

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/director_installation_and_usage/index#sect-Red_Hat_Virtualization

Benefits

Virtualizing the overloud control plane has a number of benefits that prevent downtime and improve
performance.

You can allocate resources to the virtualized controllers dynamically, using hot add and hot
remove to scale CPU and memory as required. This prevents downtime and facilitates increased
capacity as the platform grows.

You can deploy additional infrastructure VMs on the same Red Hat Virtualization cluster. This
minimizes the server footprint in the data center and maximizes the efficiency of the physical
nodes.

You can use composable roles to define more complex RHOSP control planes. This allows you
to allocate resources to specific components of the control plane.

You can maintain systems without service interruption by using the VM live migration feature.

You can integrate third-party or custom tools supported by Red Hat Virtualization.

Limitations

Virtualized control planes limit the types of configurations that you can use.

Virtualized Ceph Storage nodes and Compute nodes are not supported.

Block Storage (cinder) image-to-volume is not supported for back ends that use Fiber Channel.
Red Hat Virtualization does not support N_Port ID Virtualization (NPIV). Therefore, Block
Storage (cinder) drivers that need to map LUNs from a storage back end to the controllers,
where cinder-volume runs by default, do not work. You need to create a dedicated role for
cinder-volume instead of including it on the virtualized controllers. For more information, see
Composable Services and Custom Roles.

15.3. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED
HAT VIRTUALIZATION DRIVER

This section details how to provision a virtualized RHOSP control plane for the overcloud using RHOSP
and Red Hat Virtualization.

Prerequisites

You must have a 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

You must have the following software already installed and configured:

Red Hat Virtualization. For more information, see Red Hat Virtualization Documentation
Suite.

Red Hat OpenStack Platform (RHOSP). For more information, see Director Installation and
Usage.

You must have the virtualized Controller nodes prepared in advance. These requirements are
the same as for bare-metal Controller nodes. For more information, see Controller Node
Requirements.

You must have the bare-metal nodes being used as overcloud Compute nodes, and the storage
nodes, prepared in advance. For hardware specifications, see the Compute Node Requirements

Red Hat OpenStack Platform 14 Director Installation and Usage

132

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/advanced_overcloud_customization/index#Roles
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/director_installation_and_usage/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/director_installation_and_usage/index#controller-node-requirements
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/director_installation_and_usage/index#compute-node-requirements

and Ceph Storage Node Requirements . To deploy overcloud Compute nodes on POWER
(ppc64le) hardware, see Red Hat OpenStack Platform for POWER .

You must have the logical networks created, and your cluster or host networks ready to use
network isolation with multiple networks. For more information, see Logical Networks.

You must have the internal BIOS clock of each node set to UTC. This prevents issues with
future-dated file timestamps when hwclock synchronizes the BIOS clock before applying the
timezone offset.

TIP

To avoid performance bottlenecks, use composable roles and keep the data plane services on the bare-
metal Controller nodes.

Procedure

1. Enable the staging-ovirt driver in the director undercloud by adding the driver to
enabled_hardware_types in the undercloud.conf configuration file:

enabled_hardware_types = ipmi,redfish,ilo,idrac,staging-ovirt

2. Verify that the undercloud contains the staging-ovirt driver:

(undercloud) [stack@undercloud ~]$ openstack baremetal driver list

If the undercloud is set up correctly, the command returns the following result:

 +---------------------+-----------------------+
 | Supported driver(s) | Active host(s) |
 +---------------------+-----------------------+
idrac	localhost.localdomain
ilo	localhost.localdomain
ipmi	localhost.localdomain
pxe_drac	localhost.localdomain
pxe_ilo	localhost.localdomain
pxe_ipmitool	localhost.localdomain
redfish	localhost.localdomain
staging-ovirt	localhost.localdomain

3. Update the overcloud node definition template, for instance, nodes.json, to register the VMs
hosted on Red Hat Virtualization with director. For more information, see Registering Nodes for
the Overcloud. Use the following key:value pairs to define aspects of the VMs to deploy with
your overcloud:

Table 15.1. Configuring the VMs for the overcloud

Key Set to this value

pm_type OpenStack Bare Metal Provisioning (ironic)
service driver for oVirt/RHV VMs, staging-
ovirt.

CHAPTER 15. CREATING VIRTUALIZED CONTROL PLANES

133

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/director_installation_and_usage/index#ceph-storage-node-requirements
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/director_installation_and_usage/index#appe-OSP_on_POWER
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html/administration_guide/chap-logical_networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/director_installation_and_usage/index#sect-Registering_Nodes_for_the_Overcloud

pm_user Red Hat Virtualization Manager username.

pm_password Red Hat Virtualization Manager password.

pm_addr Hostname or IP of the Red Hat Virtualization
Manager server.

pm_vm_name Name of the virtual machine in Red Hat
Virtualization Manager where the controller is
created.

Key Set to this value

For example:

{
 "nodes": [
 {
 "name":"osp13-controller-0",
 "pm_type":"staging-ovirt",
 "mac":[
 "00:1a:4a:16:01:56"
],
 "cpu":"2",
 "memory":"4096",
 "disk":"40",
 "arch":"x86_64",
 "pm_user":"admin@internal",
 "pm_password":"password",
 "pm_addr":"rhvm.example.com",
 "pm_vm_name":"{vernum}-controller-0",
 "capabilities": "profile:control,boot_option:local"
 },
 }

Configure one controller on each Red Hat Virtualization Host

4. Configure an affinity group in Red Hat Virtualization with "soft negative affinity" to ensure high
availability is implemented for your controller VMs. For more information, see Affinity Groups.

5. Open the Red Hat Virtualization Manager interface, and use it to map each VLAN to a separate
logical vNIC in the controller VMs. For more information, see Logical Networks.

6. Set no_filter in the vNIC of the director and controller VMs, and restart the VMs, to disable the
MAC spoofing filter on the networks attached to the controller VMs. For more information, see
Virtual Network Interface Cards .

7. Deploy the overcloud to include the new virtualized controller nodes in your environment:

(undercloud) [stack@undercloud ~]$ openstack overcloud deploy --templates

Red Hat OpenStack Platform 14 Director Installation and Usage

134

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html-single/virtual_machine_management_guide/index#sect-Affinity_Groups
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html/administration_guide/chap-logical_networks
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html-single/administration_guide/index#sect-Virtual_Network_Interface_Cards

CHAPTER 16. CONFIGURING DIRECT DEPLOY
When provisioning nodes, the director mounts the overcloud base operating system image on an iSCSI
mount and then copies the image to disk on each node. Direct deploy is an alternative method that
writes disk images from a HTTP location directly to disk on bare metal nodes.

16.1. CONFIGURING THE DIRECT DEPLOY INTERFACE ON THE
UNDERCLOUD

The iSCSI deploy interface is the default deploy interface. However, you can enable the direct deploy
interface to download an image from a HTTP location to the target disk.

NOTE

Your overcloud node memory tmpfs must have at least 6GB of RAM.

Procedure

1. Create or modify a custom environment file /home/stack/undercloud_custom_env.yaml and
specify the IronicDefaultDeployInterface.

parameter_defaults:
 IronicDefaultDeployInterface: direct

If you register your nodes with iscsi, you must retain the iscsi value in the
IronicDefaultDeployInterface parameter:

parameter_defaults:
 IronicDefaultDeployInterface: direct,iscsi

2. Include the custom environment file in DEFAULT section of the undercloud.conf file.

custom_env_files = /home/stack/undercloud_custom_env.yaml

3. Perform the undercloud installation:

$ openstack undercloud install

Specify the deploy interface for a node:

$ openstack baremetal node set <NODE> --deploy-interface direct

CHAPTER 16. CONFIGURING DIRECT DEPLOY

135

PART V. TROUBLESHOOTING

Red Hat OpenStack Platform 14 Director Installation and Usage

136

CHAPTER 17. TROUBLESHOOTING DIRECTOR ISSUES
Errors can occur at certain stages of the director’s processes. This section contains some information
about diagnosing common problems.

Note the common logs for the director’s components:

The /var/log directory contains logs for many common OpenStack Platform components as well
as logs for standard Red Hat Enterprise Linux applications.

ironic-inspector also stores the ramdisk logs in /var/log/ironic-inspector/ramdisk/ as gz-
compressed tar files. Filenames contain date, time, and the IPMI address of the node. Use these
logs to diagnose introspection issues.

17.1. TROUBLESHOOTING NODE REGISTRATION

Issues with node registration usually occur due to issues with incorrect node details. In this case, use
ironic to fix problems with node data registered. Here are a few examples:

Identify the assigned port UUID:

$ source ~/stackrc
(undercloud) $ openstack baremetal port list --node [NODE UUID]

Update the MAC address:

(undercloud) $ openstack baremetal port set --address=[NEW MAC] [PORT UUID]

Configure a new IPMI address on the node:

(undercloud) $ openstack baremetal node set --driver-info ipmi_address=[NEW IPMI ADDRESS]
[NODE UUID]

17.2. TROUBLESHOOTING HARDWARE INTROSPECTION

The introspection process must run to completion. However, the ironic discovery daemon (ironic-
inspector) times out after a default one hour period if the discovery ramdisk does not respond.
Sometimes this might indicate a bug in the discovery ramdisk but usually this time-out occurs due to an
environment misconfiguration, particularly BIOS boot settings.

This section contains information about common scenarios where environment misconfiguration occurs
and advice about how to diagnose and resolve them.

Errors with Starting Node Introspection

Normally the introspection process uses the openstack overcloud node introspect command.
However, if running the introspection directly with ironic-inspector, the introspection might fail to
discover nodes in the AVAILABLE state, which is meant for deployment and not for discovery. In this
situation, change the node status to the MANAGEABLE state before discovery:

$ source ~/stackrc
(undercloud) $ openstack baremetal node manage [NODE UUID]

CHAPTER 17. TROUBLESHOOTING DIRECTOR ISSUES

137

When discovery completes, revert the node state to AVAILABLE before provisioning:

(undercloud) $ openstack baremetal node provide [NODE UUID]

Stopping the Discovery Process

To stop the introspection process, run the following command:

$ source ~/stackrc
(undercloud) $ openstack baremetal introspection abort [NODE UUID]

You can also wait until the process times out. If necessary, change the timeout setting in /etc/ironic-
inspector/inspector.conf to another duration in minutes.

Accessing the Introspection Ramdisk

The introspection ramdisk uses a dynamic login element. This means you can provide either a temporary
password or an SSH key to access the node during introspection debugging. Complete the following
procedure to configure ramdisk access:

1. Run the openssl passwd -1 command with a temporary password to generate an MD5 hash:

$ openssl passwd -1 mytestpassword
1enjRSyIw$/fYUpJwr6abFy/d.koRgQ/

2. Edit the /httpboot/inspector.ipxe file, find the line starting with kernel, and append the
rootpwd parameter and the MD5 hash. For example:

kernel http://192.2.0.1:8088/agent.kernel ipa-inspection-callback-
url=http://192.168.0.1:5050/v1/continue ipa-inspection-collectors=default,extra-hardware,logs
systemd.journald.forward_to_console=yes BOOTIF=${mac} ipa-debug=1 ipa-inspection-
benchmarks=cpu,mem,disk rootpwd="1enjRSyIw$/fYUpJwr6abFy/d.koRgQ/" selinux=0

Alternatively, append your public SSH key to the sshkey parameter.

NOTE

Include quotation marks for both the rootpwd and sshkey parameters.

3. Start the introspection and identify the IP address from either the arp command or the DHCP
logs:

$ arp
$ sudo journalctl -u openstack-ironic-inspector-dnsmasq

4. SSH as a root user with the temporary password or the SSH key.

$ ssh root@192.168.24.105

Checking Introspection Storage

The director uses OpenStack Object Storage (swift) to save the hardware data obtained during the
introspection process. If this service is not running, the introspection can fail. Check all services related
to OpenStack Object Storage to ensure the service is running:

Red Hat OpenStack Platform 14 Director Installation and Usage

138

$ sudo docker ps --filter name=".*swift.*"

17.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS

The OpenStack Workflow (mistral) service groups multiple OpenStack tasks into workflows. Red Hat
OpenStack Platform uses a set of these workflow to perform common functions across the director,
including bare metal node control, validations, plan management, and overcloud deployment.

For example, when running the openstack overcloud deploy command, the OpenStack Workflow
service executes two workflows. The first workflow uploads the deployment plan:

Removing the current plan files
Uploading new plan files
Started Mistral Workflow. Execution ID: aef1e8c6-a862-42de-8bce-073744ed5e6b
Plan updated

The second workflow starts the overcloud deployment:

Deploying templates in the directory /tmp/tripleoclient-LhRlHX/tripleo-heat-templates
Started Mistral Workflow. Execution ID: 97b64abe-d8fc-414a-837a-1380631c764d
2016-11-28 06:29:26Z [overcloud]: CREATE_IN_PROGRESS Stack CREATE started
2016-11-28 06:29:26Z [overcloud.Networks]: CREATE_IN_PROGRESS state changed
2016-11-28 06:29:26Z [overcloud.HeatAuthEncryptionKey]: CREATE_IN_PROGRESS state
changed
2016-11-28 06:29:26Z [overcloud.ServiceNetMap]: CREATE_IN_PROGRESS state changed
...

Workflow Objects

OpenStack Workflow uses the following objects to track the workflow:

Actions

A particular instruction that OpenStack performs once an associated task runs. Examples include
running shell scripts or performing HTTP requests. Some OpenStack components have in-built
actions that OpenStack Workflow uses.

Tasks

Defines the action to run and the result of running the action. These tasks usually have actions or
other workflows associated with them. Once a task completes, the workflow directs to another task,
usually depending on whether the task succeeded or failed.

Workflows

A set of tasks grouped together and executed in a specific order.

Executions

Defines a particular action, task, or workflow running.

Workflow Error Diagnosis

OpenStack Workflow also provides robust logging of executions, which helps identify issues with certain
command failures. For example, if a workflow execution fails, you can identify the point of failure. List
the workflow executions that have the failed state ERROR:

$ source ~/stackrc
(undercloud) $ openstack workflow execution list | grep "ERROR"

CHAPTER 17. TROUBLESHOOTING DIRECTOR ISSUES

139

Get the UUID of the failed workflow execution (for example, dffa96b0-f679-4cd2-a490-
4769a3825262) and view the execution and its output:

(undercloud) $ openstack workflow execution show dffa96b0-f679-4cd2-a490-4769a3825262
(undercloud) $ openstack workflow execution output show dffa96b0-f679-4cd2-a490-4769a3825262

These commands return information about the failed task in the execution. The openstack workflow
execution show command also displays the workflow used for the execution (for example,
tripleo.plan_management.v1.publish_ui_logs_to_swift). You can view the full workflow definition
using the following command:

(undercloud) $ openstack workflow definition show
tripleo.plan_management.v1.publish_ui_logs_to_swift

This is useful for identifying where in the workflow a particular task occurs.

You can also view action executions and their results using a similar command syntax:

(undercloud) $ openstack action execution list
(undercloud) $ openstack action execution show 8a68eba3-0fec-4b2a-adc9-5561b007e886
(undercloud) $ openstack action execution output show 8a68eba3-0fec-4b2a-adc9-5561b007e886

This is useful for identifying a specific action that causes issues.

17.4. TROUBLESHOOTING OVERCLOUD CREATION

The overcloud deployment can fail at one of three layers:

Orchestration (heat and nova services)

Bare Metal Provisioning (ironic service)

Post-Deployment Configuration (Ansible and Puppet)

If an overcloud deployment has failed at any of these levels, use the OpenStack clients and service log
files to diagnose the failed deployment. You can also run the following command to display details of the
failure:

$ openstack stack failures list <OVERCLOUD_NAME> --long

Replace <OVERCLOUD_NAME> with the name of your overcloud.

17.4.1. Accessing deployment command history

Understanding historical director deployment commands and arguments can be useful for
troubleshooting and support. You can view this information in /home/stack/.tripleo/history.

17.4.2. Orchestration

In most cases, Heat shows the failed overcloud stack after the overcloud creation fails:

$ source ~/stackrc
(undercloud) $ openstack stack list --nested --property status=FAILED

Red Hat OpenStack Platform 14 Director Installation and Usage

140

+-----------------------+------------+--------------------+----------------------+
| id | stack_name | stack_status | creation_time |
+-----------------------+------------+--------------------+----------------------+
| 7e88af95-535c-4a55... | overcloud | CREATE_FAILED | 2015-04-06T17:57:16Z |
+-----------------------+------------+--------------------+----------------------+

If the stack list is empty, this indicates an issue with the initial Heat setup. Check your Heat templates
and configuration options, and check for any error messages that presented after running openstack
overcloud deploy.

17.4.3. Bare Metal Provisioning

Check the bare metal service to see all registered nodes and their current status:

$ source ~/stackrc
(undercloud) $ openstack baremetal node list

+----------+------+---------------+-------------+-----------------+-------------+
| UUID | Name | Instance UUID | Power State | Provision State | Maintenance |
+----------+------+---------------+-------------+-----------------+-------------+
| f1e261...| None | None | power off | available | False |
| f0b8c1...| None | None | power off | available | False |
+----------+------+---------------+-------------+-----------------+-------------+

Here are some common issues that can occur from the provisioning process:

Review the Provision State and Maintenance columns in the resulting table. Check for the
following:

An empty table, or fewer nodes than you expect

Maintenance is set to True

Provision State is set to manageable. This usually indicates an issue with the registration or
discovery processes. For example, if Maintenance sets itself to True automatically, the
nodes are usually using the wrong power management credentials.

If Provision State is available, then the problem occurred before bare metal deployment has
even started.

If Provision State is active and Power State is power on, the bare metal deployment has
finished successfully. This means that the problem occurred during the post-deployment
configuration step.

If Provision State is wait call-back for a node, the bare metal provisioning process has not yet
finished for this node. Wait until this status changes, otherwise, connect to the virtual console of
the failed node and check the output.

If Provision State is error or deploy failed, then bare metal provisioning has failed for this node.
Check the bare metal node’s details:

(undercloud) $ openstack baremetal node show [NODE UUID]

Look for last_error field, which contains error description. If the error message is vague, you can
use logs to clarify it:

CHAPTER 17. TROUBLESHOOTING DIRECTOR ISSUES

141

(undercloud) $ sudo journalctl -u openstack-ironic-conductor -u openstack-ironic-api

If you see wait timeout error and the node Power State is power on, connect to the virtual
console of the failed node and check the output.

17.4.4. Checking overcloud configuration failures

If an overcloud deployment operation fails at the Ansible configuration stage, use the openstack
overcloud failures command to show failed configuration steps.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the deployment failures command:

$ openstack overcloud failures

17.5. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE
PROVISIONING NETWORK

Discovery and deployment tasks will fail if the destination hosts are allocated an IP address which is
already in use. To prevent these failures, you can perform a port scan of the Provisioning network to
determine whether the discovery IP range and host IP range are free.

Perform the following steps from the undercloud host:

Install nmap:

$ sudo yum install nmap

Use nmap to scan the IP address range for active addresses. This example scans the 192.168.24.0/24
range, replace this with the IP subnet of the Provisioning network (using CIDR bitmask notation):

$ sudo nmap -sn 192.168.24.0/24

Review the output of the nmap scan:

For example, you should see the IP address(es) of the undercloud, and any other hosts that are present
on the subnet. If any of the active IP addresses conflict with the IP ranges in undercloud.conf, you will
need to either change the IP address ranges or free up the IP addresses before introspecting or
deploying the overcloud nodes.

$ sudo nmap -sn 192.168.24.0/24

Starting Nmap 6.40 (http://nmap.org) at 2015-10-02 15:14 EDT
Nmap scan report for 192.168.24.1
Host is up (0.00057s latency).
Nmap scan report for 192.168.24.2
Host is up (0.00048s latency).

Red Hat OpenStack Platform 14 Director Installation and Usage

142

Nmap scan report for 192.168.24.3
Host is up (0.00045s latency).
Nmap scan report for 192.168.24.5
Host is up (0.00040s latency).
Nmap scan report for 192.168.24.9
Host is up (0.00019s latency).
Nmap done: 256 IP addresses (5 hosts up) scanned in 2.45 seconds

17.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS

Sometimes the /var/log/nova/nova-conductor.log contains the following error:

NoValidHost: No valid host was found. There are not enough hosts available.

This error occurs when the Compute Scheduler cannot find a bare metal node suitable for booting the
new instance. This usually means there is a mismatch between resources that the Compute service
expects to find and resources that the Bare Metal service advertised to Compute. Check the following
in this case:

1. Ensure the introspection succeeds. If the introspection fails, check that each node contains the
required ironic node properties:

$ source ~/stackrc
(undercloud) $ openstack baremetal node show [NODE UUID]

Check the properties JSON field has valid values for keys cpus, cpu_arch, memory_mb and
local_gb.

2. Check that the Compute flavor used does not exceed the node properties above for a required
number of nodes:

(undercloud) $ openstack flavor show [FLAVOR NAME]

3. Run the openstack baremetal node list command to ensure sufficient nodes in the available
state. Nodes in manageable state usually signify a failed introspection.

4. Run the openstack baremetal node list command to check that the nodes are not in
maintenace mode. If a node changes to maintenance mode automatically, the likely cause is an
issue with incorrect power management credentials. Check the power management credentials
and then remove maintenance mode:

(undercloud) $ openstack baremetal node maintenance unset [NODE UUID]

5. If you are using the Automated Health Check (AHC) tools to perform automatic node tagging,
check that you have enough nodes corresponding to each flavor/profile. Run the openstack
baremetal node show command on a node and check the capabilities key in the properties
field. For example, a node tagged for the Compute role should contain profile:compute.

6. It takes some time for node information to propagate from Bare Metal to Compute after
introspection. However, if you performed some steps manually, there might be a short period of
time when nodes are not available to nova. Use the following command to check the total
resources in your system:

(undercloud) $ openstack hypervisor stats show

CHAPTER 17. TROUBLESHOOTING DIRECTOR ISSUES

143

17.7. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION

After creating your overcloud, you might want to perform certain overcloud operations in the future. For
example, you might want to scale your available nodes, or replace faulty nodes. Certain issues might
arise when performing these operations. This section contains information to consider when diagnosing
and troubleshooting failed post-creation operations.

17.7.1. Overcloud Stack Modifications

Problems can occur when you modify the overcloud stack through the director. Examples of stack
modifications include the following operations:

Scaling Nodes

Removing Nodes

Replacing Nodes

Modifying the stack is similar to the process of creating the stack, in that the director checks the
availability of the requested number of nodes, provisions additional or removes existing nodes, and then
applies the Puppet configuration. Use the guidelines in the following sections when you modify the
overcloud stack. These sections contain information to consider when diagnosing issues on specific
node types.

17.7.2. Controller Service Failures

The overcloud Controller nodes contain the bulk of Red Hat OpenStack Platform services. Likewise, you
might use multiple Controller nodes in a high availability cluster. If a certain service on a node is faulty,
the high availability cluster provides a certain level of failover. However, to ensure your overcloud
operates at full capacity you must diagnose the faulty service.

The Controller nodes use Pacemaker to manage the resources and services in the high availability
cluster. The Pacemaker Configuration System (pcs) command is a tool that manages a Pacemaker
cluster. Run the pcs command on a Controller node in the cluster to perform configuration and
monitoring functions. Use the following commands to troubleshoot overcloud services on a high
availability cluster:

pcs status

Provides a status overview of the entire cluster including enabled resources, failed resources, and
online nodes.

pcs resource show

Shows a list of resources and the respective nodes for each resource

pcs resource disable [resource]

Stop a particular resource.

pcs resource enable [resource]

Start a particular resource.

pcs cluster standby [node]

Place a node in standby mode. The node is no longer available in the cluster. This is useful for
performing maintenance on a specific node without affecting the cluster.

pcs cluster unstandby [node]

Remove a node from standby mode. The node becomes available in the cluster again.

Red Hat OpenStack Platform 14 Director Installation and Usage

144

Use these Pacemaker commands to identify the faulty component and/or node. After identifying the
component, view the respective component log file in /var/log/.

17.7.3. Containerized Service Failures

If a containerized service fails during or after overcloud deployment, use the following commands to
determine the root cause for the failure:

Checking the container logs

Each container retains standard output from its main process. Use this output as a log to help determine
what actually occurs during a container run. For example, to view the log for the keystone container, use
the following command:

$ sudo docker logs keystone

In most cases, this log contains information about the cause of a container’s failure.

Inspecting the container

In some situations, you might need to verify information about a container. For example, use the
following command to view keystone container data:

$ sudo docker inspect keystone

This command returns a JSON object containing low-level configuration data. You can pipe the output
to the jq command to parse specific data. For example, to view the container mounts for the keystone
container, run the following command:

$ sudo docker inspect keystone | jq .[0].Mounts

You can also use the --format option to parse data to a single line, which is useful for running commands
against sets of container data. For example, to recreate the options used to run the keystone container,
use the following inspect command with the --format option:

$ sudo docker inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range .Mounts}} -v
{{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}' keystone

NOTE

The --format option uses Go syntax to create queries.

Use these options in conjunction with the docker run command to recreate the container for
troubleshooting purposes:

$ OPTIONS=$(sudo docker inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range
.Mounts}} -v {{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}'
keystone)
$ sudo docker run --rm $OPTIONS /bin/bash

Running commands in the container

In some cases, you might need to obtain information from within a container through a specific Bash
command. In this situation, use the following docker command to execute commands within a running

CHAPTER 17. TROUBLESHOOTING DIRECTOR ISSUES

145

container. For example, run the docker exec command to run a command inside the keystone
container:

$ sudo docker exec -ti keystone <COMMAND>

NOTE

The -ti options run the command through an interactive pseudoterminal.

Replace <COMMAND> with the command you want to run. For example, each container has a health
check script to verify the service connection. You can run the health check script for keystone with the
following command:

$ sudo docker exec -ti keystone /openstack/healthcheck

To access the container’s shell, run docker exec using /bin/bash as the command you want to run inside
the container:

$ sudo docker exec -ti keystone /bin/bash

Exporting a container

When a container fails, you might need to investigate the full contents of the file. In this case, you can
export the full file system of a container as a tar archive. For example, to export the keystone
container’s file system, run the following command:

$ sudo docker export keystone -o keystone.tar

This command create the keystone.tar archive, which you can extract and explore.

17.7.4. Compute Service Failures

Compute nodes use the Compute service to perform hypervisor-based operations. This means the
main diagnosis for Compute nodes revolves around this service. For example, to view the status of the
container, run the following command:

View the status of the container:

$ sudo docker ps -f name=nova_compute

The primary log file for Compute nodes is /var/log/containers/nova/nova-compute.log. If
issues occur with Compute node communication, this log file is usually a good place to start a
diagnosis.

If performing maintenance on the Compute node, migrate the existing instances from the host
to an operational Compute node, then disable the node. See Section 8.12, “Migrating instances
from a Compute node” for more information on node migrations.

17.7.5. Ceph Storage Service Failures

For any issues that occur with Red Hat Ceph Storage clusters, see "Logging Configuration Reference"
in the Red Hat Ceph Storage Configuration Guide . This section contains information about diagnosing
logs for all Ceph storage services.

Red Hat OpenStack Platform 14 Director Installation and Usage

146

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/2/html/configuration_guide/logging_configuration_reference

17.8. CREATING AN SOSREPORT

If you need to contact Red Hat for support on OpenStack Platform, you might need to generate an
sosreport. See the following knowledgebase article for more information about creating an sosreport:

"How to collect all required logs for Red Hat Support to investigate an OpenStack issue"

17.9. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

Use the following logs to find out information about the undercloud and overcloud when
troubleshooting.

Table 17.1. Important Logs for the Undercloud

Information Log Location

OpenStack Compute log /var/log/containers/nova/nova-compute.log

OpenStack Compute API interactions /var/log/nova/nova-api.log

OpenStack Compute Conductor log /var/log/nova/nova-conductor.log

OpenStack Orchestration log heat-engine.log

OpenStack Orchestration API interactions heat-api.log

OpenStack Orchestration CloudFormations log /var/log/heat/heat-api-cfn.log

OpenStack Bare Metal Conductor log ironic-conductor.log

OpenStack Bare Metal API interactions ironic-api.log

Introspection /var/log/ironic-inspector/ironic-inspector.log

OpenStack Workflow Engine log /var/log/mistral/engine.log

OpenStack Workflow Executor log /var/log/mistral/executor.log

OpenStack Workflow API interactions /var/log/mistral/api.log

Table 17.2. Important Logs for the Overcloud

Information Log Location

Cloud-Init Log /var/log/cloud-init.log

Overcloud Configuration (Summary of Last Puppet
Run)

/var/lib/puppet/state/last_run_summary.yaml

CHAPTER 17. TROUBLESHOOTING DIRECTOR ISSUES

147

https://access.redhat.com/solutions/2055933

Overcloud Configuration (Report from Last Puppet
Run)

/var/lib/puppet/state/last_run_report.yaml

Overcloud Configuration (All Puppet Reports) /var/lib/puppet/reports/overcloud-*/*

Overcloud Configuration (stdout from each Puppet
Run)

/var/run/heat-config/deployed/*-stdout.log

Overcloud Configuration (stderr from each Puppet
Run)

/var/run/heat-config/deployed/*-stderr.log

High availability log /var/log/pacemaker.log

Information Log Location

Red Hat OpenStack Platform 14 Director Installation and Usage

148

PART VI. APPENDICES

PART VI. APPENDICES

149

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
You can configure the undercloud to use SSL/TLS for communication over public endpoints. However,
if want to you use a SSL certificate with your own certificate authority, you must complete the following
configuration steps.

NOTE

For more information about creating overcloud SSL/TLS certificates, see "Enabling
SSL/TLS on Overcloud Public Endpoints" in the Advanced Overcloud Customization
guide.

A.1. INITIALIZING THE SIGNING HOST

The signing host is the host that generates and signs new certificates with a certificate authority. If you
have never created SSL certificates on the chosen signing host, you might need to initialize the host so
that it can sign new certificates.

The /etc/pki/CA/index.txt file contains records of all signed certificates. Check if this file exists. If it does
not exist, create an empty file:

$ sudo touch /etc/pki/CA/index.txt

The /etc/pki/CA/serial file identifies the next serial number to use for the next certificate to sign. Check
if this file exists. If the file does not exist, create a new file with a new starting value:

$ echo '1000' | sudo tee /etc/pki/CA/serial

A.2. CREATING A CERTIFICATE AUTHORITY

Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might want to use your own certificate authority. For example, you might want to have an internal-only
certificate authority.

Generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -out ca.crt.pem

The openssl req command asks for certain details about your authority. Enter these details at the
prompt.

These commands create a certificate authority file called ca.crt.pem.

A.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS

For any external clients aiming to communicate using SSL/TLS, copy the certificate authority file to
each client that requires access to your Red Hat OpenStack Platform environment.

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

After you copy the certificate authority file to each client, run the following command on each client to

Red Hat OpenStack Platform 14 Director Installation and Usage

150

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html/advanced_overcloud_customization/

After you copy the certificate authority file to each client, run the following command on each client to
add the certificate to the certificate authority trust bundle:

$ sudo update-ca-trust extract

A.4. CREATING AN SSL/TLS KEY

Run the following commands to generate the SSL/TLS key (server.key.pem) that you use at different
points to generate your undercloud or overcloud certificates:

$ openssl genrsa -out server.key.pem 2048

A.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST

Complete the following steps to create a certificate signing request for either the undercloud or
overcloud.

Copy the default OpenSSL configuration file:

$ cp /etc/pki/tls/openssl.cnf .

Edit the new openssl.cnf file and configure the SSL parameters to use for the director. An example of
the types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland
localityName = Locality Name (eg, city)
localityName_default = Brisbane
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat
commonName = Common Name
commonName_default = 192.168.0.1
commonName_max = 64

[v3_req]
Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
IP.1 = 192.168.0.1
DNS.1 = instack.localdomain
DNS.2 = vip.localdomain
DNS.3 = 192.168.0.1

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION

151

Set the commonName_default to one of the following entries:

If using an IP address to access the director over SSL/TLS, use the undercloud_public_host
parameter in undercloud.conf.

If using a fully qualified domain name to access the director over SSL/TLS, use the domain
name.

Edit the alt_names section to include the following entries:

IP - A list of IP addresses that clients use to access the director over SSL.

DNS - A list of domain names that clients use to access the director over SSL. Also include the
Public API IP address as a DNS entry at the end of the alt_names section.

For more information about openssl.cnf, run the man openssl.cnf command.

Run the following command to generate a certificate signing request (server.csr.pem):

$ openssl req -config openssl.cnf -key server.key.pem -new -out server.csr.pem

Ensure that you include the SSL/TLS key you created in Section A.4, “Creating an SSL/TLS Key” with
the -key option.

Use the server.csr.pem file to create the SSL/TLS certificate in the next section.

A.6. CREATING THE SSL/TLS CERTIFICATE

Run the following command to create a certificate for your undercloud or overcloud:

$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in server.csr.pem -out
server.crt.pem -cert ca.crt.pem -keyfile ca.key.pem

This command uses the following options:

The configuration file specifying the v3 extensions. Include the configuration file with the -
config option.

The certificate signing request from Section A.5, “Creating an SSL/TLS Certificate Signing
Request” to generate and sign the certificate with a certificate authority. Include the certificate
signing request with the -in option.

The certificate authority you created in Section A.2, “Creating a Certificate Authority” , which
signs the certificate. Include the certificate authority with the -cert option.

The certificate authority private key you created in Section A.2, “Creating a Certificate
Authority”. Include the private key with the -keyfile option.

This command creates a new certificate named server.crt.pem. Use this certificate in conjunction with
the SSL/TLS key from Section A.4, “Creating an SSL/TLS Key” to enable SSL/TLS.

A.7. USING THE CERTIFICATE WITH THE UNDERCLOUD

Run the following command to combine the certificate and key:

Red Hat OpenStack Platform 14 Director Installation and Usage

152

$ cat server.crt.pem server.key.pem > undercloud.pem

This command creates a undercloud.pem file. Specify the location of this file for the
undercloud_service_certificate option in your undercloud.conf file. This .pem file also requires a
special SELinux context so that the HAProxy tool can read it. To configure the SELinux context,
complete the following example steps:

$ sudo mkdir /etc/pki/instack-certs
$ sudo cp ~/undercloud.pem /etc/pki/instack-certs/.
$ sudo semanage fcontext -a -t etc_t "/etc/pki/instack-certs(/.*)?"
$ sudo restorecon -R /etc/pki/instack-certs

Add the undercloud.pem file location to the undercloud_service_certificate option in the
undercloud.conf file:

undercloud_service_certificate = /etc/pki/instack-certs/undercloud.pem

In addition, ensure you add your certificate authority from Section A.2, “Creating a Certificate Authority”
to the undercloud’s list of trusted Certificate Authorities so that different services within the undercloud
have access to the certificate authority:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

Continue installing the undercloud according to the instructions in Section 4.1, “Configuring the
director”.

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION

153

APPENDIX B. POWER MANAGEMENT DRIVERS
Although IPMI is the main method the director uses for power management control, the director also
supports other power management types. This appendix contains a list of the power management
features that the director supports. Use these power management settings for Section 6.1, “Registering
Nodes for the Overcloud”.

B.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)

The standard power management method using a baseboard management controller (BMC).

pm_type

Set this option to ipmi.

pm_user; pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI controller.

pm_port (Optional)

The port to connect to the IPMI controller.

B.2. REDFISH

A standard RESTful API for IT infrastructure developed by the Distributed Management Task Force
(DMTF)

pm_type

Set this option to redfish.

pm_user; pm_password

The Redfish username and password.

pm_addr

The IP address of the Redfish controller.

pm_system_id

The canonical path to the system resource. This path must include the root service, version, and the
path/unqiue ID for the system. For example: /redfish/v1/Systems/CX34R87.

redfish_verify_ca

If the Redfish service in your baseboard management controller (BMC) is not configured to use a
valid TLS certificate signed by a recognized certificate authority (CA), the Redfish client in ironic fails
to connect to the BMC. Set the redfish_verify_ca option to false to mute the error. However, be
aware that disabling BMC authentication compromises the access security of your BMC.

B.3. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features including power
management and server monitoring.

pm_type

Set this option to idrac.

pm_user; pm_password

Red Hat OpenStack Platform 14 Director Installation and Usage

154

The DRAC username and password.

pm_addr

The IP address of the DRAC host.

B.4. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring.

pm_type

Set this option to ilo.

pm_user; pm_password

The iLO username and password.

pm_addr

The IP address of the iLO interface.

To enable this driver, add ilo to the enabled_hardware_types option in your
undercloud.conf and rerun openstack undercloud install.

The director also requires an additional set of utilities for iLo. Install the python-proliantutils
package and restart the openstack-ironic-conductor service:

$ sudo yum install python-proliantutils
$ sudo systemctl restart openstack-ironic-conductor.service

HP nodes must have a minimum ILO firmware version of 1.85 (May 13 2015) for successful
introspection. The director has been successfully tested with nodes using this ILO firmware
version.

Using a shared iLO port is not supported.

B.5. CISCO UNIFIED COMPUTING SYSTEM (UCS)

UCS from Cisco is a data center platform that combines compute, network, storage access, and
virtualization resources. This driver focuses on the power management for bare metal systems
connected to the UCS.

pm_type

Set this option to cisco-ucs-managed.

pm_user; pm_password

The UCS username and password.

pm_addr

The IP address of the UCS interface.

pm_service_profile

The UCS service profile to use. Usually takes the format of org-root/ls-[service_profile_name]. For
example:

"pm_service_profile": "org-root/ls-Nova-1"

APPENDIX B. POWER MANAGEMENT DRIVERS

155

To enable this driver, add cisco-ucs-managed to the enabled_hardware_types option in
your undercloud.conf and rerun the openstack undercloud install command.

The director also requires an additional set of utilities for UCS. Install the python-UcsSdk
package and restart the openstack-ironic-conductor service:

$ sudo yum install python-UcsSdk
$ sudo systemctl restart openstack-ironic-conductor.service

B.6. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER
(IRMC)

Fujitsu’s iRMC is a Baseboard Management Controller (BMC) with integrated LAN connection and
extended functionality. This driver focuses on the power management for bare metal systems
connected to the iRMC.

IMPORTANT

iRMC S4 or higher is required.

pm_type

Set this option to irmc.

pm_user; pm_password

The username and password for the iRMC interface.

pm_addr

The IP address of the iRMC interface.

pm_port (Optional)

The port to use for iRMC operations. The default is 443.

pm_auth_method (Optional)

The authentication method for iRMC operations. Use either basic or digest. The default is basic

pm_client_timeout (Optional)

Timeout (in seconds) for iRMC operations. The default is 60 seconds.

pm_sensor_method (Optional)

Sensor data retrieval method. Use either ipmitool or scci. The default is ipmitool.

To enable this driver, add irmc to the enabled_hardware_types option in your
undercloud.conf and rerun the openstack undercloud install command.

If you enable SCCI as the sensor method, you must also install an additional set of utilities.
Install the python-scciclient package and restart the openstack-ironic-conductor service:

$ yum install python-scciclient
$ sudo systemctl restart openstack-ironic-conductor.service

B.7. RED HAT VIRTUALIZATION

This driver provides control over virtual machines in Red Hat Virtualization through its RESTful API.

Red Hat OpenStack Platform 14 Director Installation and Usage

156

pm_type

Set this option to staging-ovirt.

pm_user; pm_password

The username and password for your Red Hat Virtualization environment. The username also
includes the authentication provider. For example: admin@internal.

pm_addr

The IP address of the Red Hat Virtualization REST API.

pm_vm_name

The name of the virtual machine to control.

mac

A list of MAC addresses for the network interfaces on the node. Use only the MAC address for the
Provisioning NIC of each system.

To enable this driver, add staging-ovirt to the enabled_hardware_types option in your
undercloud.conf and rerun the openstack undercloud install command.

B.8. MANUAL MANAGEMENT

Use the ‘manual-management’ driver to control bare metal devices that do not have power
management. The director does not control the registered bare metal devices, and you must perform
manual power operations at certain points in the introspection and deployment processes.

IMPORTANT

This option is only available for testing and evaluation purposes. It is not recommended
for Red Hat OpenStack Platform enterprise environments.

pm_type

Set this option to manual-management.

This driver does not use any authentication details because it does not control power
management.

To enable this driver, add manual-management to the enabled_hardware_types option in
your undercloud.conf and rerun the openstack undercloud install command.

When performing introspection on nodes, manually start the nodes after running the
openstack overcloud node introspect command.

When performing overcloud deployment, check the node status with the ironic node-list
command. Wait until the node status changes from deploying to deploy wait-callback and
then manually start the nodes.

After the overcloud provisioning process completes, reboot the nodes. To check the
completion of provisioning, check the node status with the ironic node-list command, wait
until the node status changes to active, then manually reboot all overcloud nodes.

APPENDIX B. POWER MANAGEMENT DRIVERS

157

APPENDIX C. WHOLE DISK IMAGES
The main overcloud image is a flat partition image that contains no partitioning information or
bootloader on the images itself. The director uses a separate kernel and ramdisk when booting nodes
and creates a basic partitioning layout when writing the overcloud image to disk. However, you can
create a whole disk image, which includes a partitioning layout, bootloader, and hardened security.

IMPORTANT

The following process uses the director’s image building feature. Red Hat only supports
images built using the guidelines contained in this section. Custom images built outside of
these specifications are not supported.

A security hardened image includes extra security measures necessary for Red Hat OpenStack Platform
deployments where security is an important feature. Consider the following list of recommendations
when you create a security hardened image:

The /tmp directory is mounted on a separate volume or partition and has the rw, nosuid, nodev,
noexec, and relatime flags

The /var, /var/log and the /var/log/audit directories are mounted on separate volumes or
partitions, with the rw and relatime flags

The /home directory is mounted on a separate partition or volume and has the rw, nodev, and
relatime flags

Include the following changes to the GRUB_CMDLINE_LINUX setting:

To enable auditing, add the audit=1 kernel boot flag.

To disable the kernel support for USB using boot loader configuration, add nousb.

To remove the insecure boot flags, set crashkernel=auto

Blacklist insecure modules (usb-storage, cramfs, freevxfs, jffs2, hfs, hfsplus, squashfs, udf,
vfat) and prevent these modules from loading.

Remove any insecure packages (kdump installed by kexec-tools and telnet) from the image as
they are installed by default

Add the new screen package necessary for security

To build a security hardened image, complete the following steps:

1. Download a base Red Hat Enterprise Linux 7 image

2. Set the environment variables specific to registration

3. Customize the image by modifying the partition schema and the size

4. Create the image

5. Upload the image to director

The following sections contain procedures to achieve these tasks.

Red Hat OpenStack Platform 14 Director Installation and Usage

158

C.1. DOWNLOADING THE BASE CLOUD IMAGE

Before building a whole disk image, you must download an existing cloud image of Red Hat Enterprise
Linux to use as a basis. Navigate to the Red Hat Customer Portal and select the KVM Guest Image to
download. For example, the KVM Guest Image for the latest Red Hat Enterprise Linux is available on the
following page:

"Installers and Images for Red Hat Enterprise Linux Server"

C.2. DISK IMAGE ENVIRONMENT VARIABLES

As a part of the disk image building process, the director requires a base image and registration details
to obtain packages for the new overcloud image. Define these attributes with the following Linux
environment variables.

NOTE

The image building process temporarily registers the image with a Red Hat subscription
and unregisters the system once the image building process completes.

To build a disk image, set Linux environment variables that suit your environment and requirements:

DIB_LOCAL_IMAGE

Sets the local image that you want to use as the basis for your whole disk image.

REG_ACTIVATION_KEY

Use an activation key instead of login details as part of the registration process.

REG_AUTO_ATTACH

Defines whether to attach the most compatible subscription automatically.

REG_BASE_URL

The base URL of the content delivery server containing packages for the image. The default
Customer Portal Subscription Management process uses https://cdn.redhat.com. If you use a Red
Hat Satellite 6 server, set this parameter to the base URL of your Satellite server.

REG_ENVIRONMENT

Registers to an environment within an organization.

REG_METHOD

Sets the method of registration. Use portal to register a system to the Red Hat Customer Portal. Use
satellite to register a system with Red Hat Satellite 6.

REG_ORG

The organization where you want to register the images.

REG_POOL_ID

The pool ID of the product subscription information.

REG_PASSWORD

Gives the password for the user account that registers the image.

REG_REPOS

A comma-separated string of repository names. Each repository in this string is enabled through
subscription-manager.
Use the following repositories for a security hardened whole disk image:

APPENDIX C. WHOLE DISK IMAGES

159

https://access.redhat.com/downloads/content/69/ver=/rhel---7/

rhel-7-server-rpms

rhel-7-server-extras-rpms

rhel-ha-for-rhel-7-server-rpms

rhel-7-server-optional-rpms

rhel-7-server-openstack-14-rpms

REG_SAT_URL

The base URL of the Satellite server to register Overcloud nodes. Use the Satellite’s HTTP URL and
not the HTTPS URL for this parameter. For example, use http://satellite.example.com and not
https://satellite.example.com.

REG_SERVER_URL

Gives the hostname of the subscription service to use. The default is for the Red Hat Customer
Portal at subscription.rhn.redhat.com. If using a Red Hat Satellite 6 server, set this parameter to
the hostname of your Satellite server.

REG_USER

Gives the user name for the account that registers the image.

Use the following set of example commands to export a set of environment variables and temporarily
register a local QCOW2 image to the Red Hat Customer Portal:

$ export DIB_LOCAL_IMAGE=./rhel-server-7.5-x86_64-kvm.qcow2
$ export REG_METHOD=portal
$ export REG_USER="[your username]"
$ export REG_PASSWORD="[your password]"
$ export REG_REPOS="rhel-7-server-rpms \
 rhel-7-server-extras-rpms \
 rhel-ha-for-rhel-7-server-rpms \
 rhel-7-server-optional-rpms \
 rhel-7-server-openstack-14-rpms"

C.3. CUSTOMIZING THE DISK LAYOUT

The default security hardened image size is 20G and uses predefined partitioning sizes. However, you
must modify the partitioning layout to accommodate overcloud container images. Complete the steps in
the following sections to increase the image size to 40G. You can modify the partitioning layout and
disk size to further suit your needs.

To modify the partitioning layout and disk size, perform the following steps:

Modify the partitioning schema using the DIB_BLOCK_DEVICE_CONFIG environment
variable.

Modify the global size of the image by updating the DIB_IMAGE_SIZE environment variable.

C.3.1. Modifying the Partitioning Schema

You can modify the partitioning schema to alter the partitioning size, create new partitions, or remove
existing ones. You can define a new partitioning schema with the following environment variable:

Red Hat OpenStack Platform 14 Director Installation and Usage

160

http://satellite.example.com
https://satellite.example.com

$ export DIB_BLOCK_DEVICE_CONFIG='<yaml_schema_with_partitions>'

The following YAML structure represents the modified logical volume partitioning layout to
accommodate enough space to pull overcloud container images:

export DIB_BLOCK_DEVICE_CONFIG='''
- local_loop:
 name: image0
- partitioning:
 base: image0
 label: mbr
 partitions:
 - name: root
 flags: [boot,primary]
 size: 40G
- lvm:
 name: lvm
 base: [root]
 pvs:
 - name: pv
 base: root
 options: ["--force"]
 vgs:
 - name: vg
 base: ["pv"]
 options: ["--force"]
 lvs:
 - name: lv_root
 base: vg
 extents: 23%VG
 - name: lv_tmp
 base: vg
 extents: 4%VG
 - name: lv_var
 base: vg
 extents: 45%VG
 - name: lv_log
 base: vg
 extents: 23%VG
 - name: lv_audit
 base: vg
 extents: 4%VG
 - name: lv_home
 base: vg
 extents: 1%VG
- mkfs:
 name: fs_root
 base: lv_root
 type: xfs
 label: "img-rootfs"
 mount:
 mount_point: /
 fstab:
 options: "rw,relatime"
 fsck-passno: 1

APPENDIX C. WHOLE DISK IMAGES

161

- mkfs:
 name: fs_tmp
 base: lv_tmp
 type: xfs
 mount:
 mount_point: /tmp
 fstab:
 options: "rw,nosuid,nodev,noexec,relatime"
 fsck-passno: 2
- mkfs:
 name: fs_var
 base: lv_var
 type: xfs
 mount:
 mount_point: /var
 fstab:
 options: "rw,relatime"
 fsck-passno: 2
- mkfs:
 name: fs_log
 base: lv_log
 type: xfs
 mount:
 mount_point: /var/log
 fstab:
 options: "rw,relatime"
 fsck-passno: 3
- mkfs:
 name: fs_audit
 base: lv_audit
 type: xfs
 mount:
 mount_point: /var/log/audit
 fstab:
 options: "rw,relatime"
 fsck-passno: 4
- mkfs:
 name: fs_home
 base: lv_home
 type: xfs
 mount:
 mount_point: /home
 fstab:
 options: "rw,nodev,relatime"
 fsck-passno: 2
'''

Use this sample YAML content as a basis for your image’s partition schema. Modify the partition sizes
and layout to suit your needs.

NOTE

You must define the correct partition sizes for the image as you cannot resize them after
the deployment.

Red Hat OpenStack Platform 14 Director Installation and Usage

162

1

C.3.2. Modifying the Image Size

The global sum of the modified partitioning schema might exceed the default disk size (20G). In this
situation, you might need to modify the image size. To modify the image size, edit the configuration
files that create the image.

Create a copy of the /usr/share/openstack-tripleo-common/image-yaml/overcloud-hardened-
images.yaml:

cp /usr/share/openstack-tripleo-common/image-yaml/overcloud-hardened-images.yaml \
/home/stack/overcloud-hardened-images-custom.yaml

Edit the DIB_IMAGE_SIZE in the configuration file and adjust the values as necessary:

...

environment:
DIB_PYTHON_VERSION: '2'
DIB_MODPROBE_BLACKLIST: 'usb-storage cramfs freevxfs jffs2 hfs hfsplus squashfs udf vfat
bluetooth'
DIB_BOOTLOADER_DEFAULT_CMDLINE: 'nofb nomodeset vga=normal console=tty0
console=ttyS0,115200 audit=1 nousb'
DIB_IMAGE_SIZE: '40' 1
COMPRESS_IMAGE: '1'

Adjust this value to the new total disk size.

Save this file.

IMPORTANT

When you deploy the overcloud, the director creates a RAW version of the overcloud
image. This means your undercloud must have enough free space to accommodate the
RAW image. For example, if you increase the security hardened image size to 40G, you
must have 40G of space available on the undercloud’s hard disk.

IMPORTANT

When the director writes the image to the physical disk, the director creates a 64MB
configuration drive primary partition at the end of the disk. When you create your whole
disk image, ensure the size of the physical disk accommodates this extra partition.

C.4. CREATING A SECURITY HARDENED WHOLE DISK IMAGE

After you have set the environment variables and customized the image, create the image using the
openstack overcloud image build command:

openstack overcloud image build \
--image-name overcloud-hardened-full \
--config-file /home/stack/overcloud-hardened-images-custom.yaml \ 1
--config-file /usr/share/openstack-tripleo-common/image-yaml/overcloud-hardened-images-
rhel7.yaml

APPENDIX C. WHOLE DISK IMAGES

163

1 This is the custom configuration file containing the new disk size from Section C.3.2, “Modifying the
Image Size”. If you are not using a different custom disk size, use the original

This command creates an image called overcloud-hardened-full.qcow2, which contains all the
necessary security features.

C.5. UPLOADING A SECURITY HARDENED WHOLE DISK IMAGE

Upload the image to the OpenStack Image (glance) service and start using it from the Red Hat
OpenStack Platform director. To upload a security hardened image, complete the following steps:

1. Rename the newly generated image and move the image to your images directory:

mv overcloud-hardened-full.qcow2 ~/images/overcloud-full.qcow2

2. Remove all the old overcloud images:

openstack image delete overcloud-full
openstack image delete overcloud-full-initrd
openstack image delete overcloud-full-vmlinuz

3. Upload the new overcloud image:

openstack overcloud image upload --image-path /home/stack/images --whole-disk

If you want to replace an existing image with the security hardened image, use the --update-existing
flag. This flag overwrites the original overcloud-full image with a new security hardened image.

Red Hat OpenStack Platform 14 Director Installation and Usage

164

APPENDIX D. ALTERNATIVE BOOT MODES
The default boot mode for nodes is BIOS over iPXE. The following sections contain information on
alternative boot modes for the director to use when provisioning and inspecting nodes.

D.1. STANDARD PXE

The iPXE boot process uses HTTP to boot the introspection and deployment images. Older systems
might support only a standard PXE boot, which boots over TFTP.

To change the boot process from iPXE to PXE, edit the undercloud.conf file on the director host and
set ipxe_enabled to False:

ipxe_enabled = False

Save this file and run the undercloud installation:

$ openstack undercloud install

For more information on this process, see the article "Changing from iPXE to PXE in Red Hat OpenStack
Platform director".

APPENDIX D. ALTERNATIVE BOOT MODES

165

https://access.redhat.com/articles/2142881

APPENDIX E. AUTOMATIC PROFILE TAGGING
The introspection process performs a series of benchmark tests. The director saves the data from these
tests. You can create a set of policies that use this data in various ways:

The policies can identify underperforming or unstable nodes and isolate these nodes from use
in the overcloud.

The policies can define whether to tag nodes into specific profiles automatically.

E.1. POLICY FILE SYNTAX

Policy files use a JSON format that contains a set of rules. Each rule defines a description, a condition,
and an action.

Description

This is a plain text description of the rule.

Example:

"description": "A new rule for my node tagging policy"

Conditions

A condition defines an evaluation using the following key-value pattern:

field

Defines the field to evaluate. For field types, see Section E.4, “Automatic Profile Tagging Properties”

op

Defines the operation to use for the evaluation. This includes the following attributes:

eq - Equal to

ne - Not equal to

lt - Less than

gt - Greater than

le - Less than or equal to

ge - Greater than or equal to

in-net - Checks that an IP address is in a given network

matches - Requires a full match against a given regular expression

contains - Requires a value to contain a given regular expression;

is-empty - Checks that field is empty.

invert

Boolean value to define whether to invert the result of the evaluation.

Red Hat OpenStack Platform 14 Director Installation and Usage

166

multiple

Defines the evaluation to use if multiple results exist. This parameter includes the following
attributes:

any - Requires any result to match

all - Requires all results to match

first - Requires the first result to match

value

Defines the value in the evaluation. If the field and operation result in the value, the condition return a
true result. Otherwise, the condition returns a false result.

Example:

"conditions": [
 {
 "field": "local_gb",
 "op": "ge",
 "value": 1024
 }
],

Actions

If a condition is ‘true’, the policy performs an action. The action uses the action key and additional keys
depending on the value of action:

fail - Fails the introspection. Requires a message parameter for the failure message.

set-attribute - Sets an attribute on an Ironic node. Requires a path field, which is the path to an
Ironic attribute (e.g. /driver_info/ipmi_address), and a value to set.

set-capability - Sets a capability on an Ironic node. Requires name and value fields, which are
the name and the value for a new capability. The existing value for this same capability is
replaced. For example, use this to define node profiles.

extend-attribute - The same as set-attribute but treats the existing value as a list and appends
value to it. If the optional unique parameter is set to True, nothing is added if the given value is
already in a list.

Example:

"actions": [
 {
 "action": "set-capability",
 "name": "profile",
 "value": "swift-storage"
 }
]

E.2. POLICY FILE EXAMPLE

APPENDIX E. AUTOMATIC PROFILE TAGGING

167

The following is an example JSON file (rules.json) with the introspection rules to apply:

[
 {
 "description": "Fail introspection for unexpected nodes",
 "conditions": [
 {
 "op": "lt",
 "field": "memory_mb",
 "value": 4096
 }
],
 "actions": [
 {
 "action": "fail",
 "message": "Memory too low, expected at least 4 GiB"
 }
]
 },
 {
 "description": "Assign profile for object storage",
 "conditions": [
 {
 "op": "ge",
 "field": "local_gb",
 "value": 1024
 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "profile",
 "value": "swift-storage"
 }
]
 },
 {
 "description": "Assign possible profiles for compute and controller",
 "conditions": [
 {
 "op": "lt",
 "field": "local_gb",
 "value": 1024
 },
 {
 "op": "ge",
 "field": "local_gb",
 "value": 40
 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "compute_profile",
 "value": "1"
 },

Red Hat OpenStack Platform 14 Director Installation and Usage

168

 {
 "action": "set-capability",
 "name": "control_profile",
 "value": "1"
 },
 {
 "action": "set-capability",
 "name": "profile",
 "value": null
 }
]
 }
]

This example consists of three rules:

Fail introspection if memory is lower than 4096 MiB. You can apply these types of rules if you
want to exclude certain nodes from your cloud.

Nodes with a hard drive size 1 TiB and bigger are assigned the swift-storage profile
unconditionally.

Nodes with a hard drive less than 1 TiB but more than 40 GiB can be either Compute or
Controller nodes. You can assign two capabilities (compute_profile and control_profile) so
that the openstack overcloud profiles match command can later make the final choice. For
this process to succeed, you must remove the existing profile capability, otherwise the existing
profile capability has priority.

The profile matching rules do not change any other nodes.

NOTE

Using introspection rules to assign the profile capability always overrides the existing
value. However, [PROFILE]_profile capabilities are ignored for nodes that already have a
profile capability.

E.3. IMPORTING POLICY FILES

To import policy files to the director, complete the following steps.

Import the policy file into the director:

$ openstack baremetal introspection rule import rules.json

Run the introspection process.

$ openstack overcloud node introspect --all-manageable

After introspection completes, check the nodes and their assigned profiles:

$ openstack overcloud profiles list

If you made a mistake in introspection rules, run the following command to delete all rules:

APPENDIX E. AUTOMATIC PROFILE TAGGING

169

$ openstack baremetal introspection rule purge

E.4. AUTOMATIC PROFILE TAGGING PROPERTIES

Automatic Profile Tagging evaluates the following node properties for the field attribute for each
condition:

Property Description

memory_mb The amount of memory for the node in MB.

cpus The total number of threads for the node CPU.

cpu_arch The architecture of the node CPU.

local_gb The total storage space of the node’s root disk. See
Defining the root disk for more information about
setting the root disk for a node.

Red Hat OpenStack Platform 14 Director Installation and Usage

170

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/director_installation_and_usage/#defining_the_root_disk

APPENDIX F. SECURITY ENHANCEMENTS
The following sections contain information to consider when you want harden the security of your
undercloud.

F.1. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

If you enabled SSL/TLS in the undercloud (see Section 4.2, “Director configuration parameters”), you
might want to harden the SSL/TLS ciphers and rules used with the HAProxy configuration. This
hardening helps avoid SSL/TLS vulnerabilities, such as the POODLE vulnerability.

Set the following hieradata using the hieradata_override undercloud configuration option:

tripleo::haproxy::ssl_cipher_suite

The cipher suite to use in HAProxy.

tripleo::haproxy::ssl_options

The SSL/TLS rules to use in HAProxy.

For example, you might aim to use the following cipher and rules:

Cipher: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-
POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-
AES256-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-
AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-
CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-
SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-
SHA:DES-CBC3-SHA:!DSS

Rules: no-sslv3 no-tls-tickets

Create a hieradata override file (haproxy-hiera-overrides.yaml) with the following content:

tripleo::haproxy::ssl_cipher_suite: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-
CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-
AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-
SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-
CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-
SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS
tripleo::haproxy::ssl_options: no-sslv3 no-tls-tickets

NOTE

The cipher collection is one continuous line.

Set the hieradata_override parameter in the undercloud.conf file to use the hieradata override file

APPENDIX F. SECURITY ENHANCEMENTS

171

https://access.redhat.com/solutions/1291123

Set the hieradata_override parameter in the undercloud.conf file to use the hieradata override file
you created before running openstack undercloud install:

[DEFAULT]
...
hieradata_override = haproxy-hiera-overrides.yaml
...

Red Hat OpenStack Platform 14 Director Installation and Usage

172

APPENDIX G. RED HAT OPENSTACK PLATFORM FOR POWER
In fresh Red Hat OpenStack Platform installation, you can now deploy overcloud Compute nodes on
POWER (ppc64le) hardware. For the Compute node cluster, you can choose to use the same
architecture, or have a combination of x86_64 and ppc64le systems. The undercloud, Controller nodes,
Ceph Storage nodes, and all other systems are only supported on x86_64 hardware. You can find
installation details for each system in previous sections within this guide.

G.1. CEPH STORAGE

When configuring access to external Ceph in a multi-architecture cloud, set the CephAnsiblePlaybook
parameter to /usr/share/ceph-ansible/site.yml.sample along with your client key and other Ceph-
specific parameters.

For example:

parameter_defaults:
 CephAnsiblePlaybook: /usr/share/ceph-ansible/site.yml.sample
 CephClientKey: AQDLOh1VgEp6FRAAFzT7Zw+Y9V6JJExQAsRnRQ==
 CephClusterFSID: 4b5c8c0a-ff60-454b-a1b4-9747aa737d19
 CephExternalMonHost: 172.16.1.7, 172.16.1.8

G.2. COMPOSABLE SERVICES

The following services typically form part of the Controller node and are available for use in custom roles
as Technology Preview:

Cinder

Glance

Keystone

Neutron

Swift

NOTE

Red Hat does not support features in Technology Preview.

For more information, see the documentation for composable services and custom roles for more
information. Use the following example to understand how to move the listed services from the
Controller node to a dedicated ppc64le node:

(undercloud) [stack@director ~]$ rsync -a /usr/share/openstack-tripleo-heat-templates/. ~/templates
(undercloud) [stack@director ~]$ cd ~/templates/roles
(undercloud) [stack@director roles]$ cat <<EO_TEMPLATE >ControllerPPC64LE.yaml
###
Role: ControllerPPC64LE
###
- name: ControllerPPC64LE
 description: |

APPENDIX G. RED HAT OPENSTACK PLATFORM FOR POWER

173

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/14/html-single/advanced_overcloud_customization/#Roles

 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 tags:
 - primary
 - controller
 networks:
 - External
 - InternalApi
 - Storage
 - StorageMgmt
 - Tenant
 # For systems with both IPv4 and IPv6, you may specify a gateway network for
 # each, such as ['ControlPlane', 'External']
 default_route_networks: ['External']
 HostnameFormatDefault: '%stackname%-controllerppc64le-%index%'
 ImageDefault: ppc64le-overcloud-full
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::CinderApi
 - OS::TripleO::Services::CinderBackendDellPs
 - OS::TripleO::Services::CinderBackendDellSc
 - OS::TripleO::Services::CinderBackendDellEMCUnity
 - OS::TripleO::Services::CinderBackendDellEMCVMAXISCSI
 - OS::TripleO::Services::CinderBackendDellEMCVNX
 - OS::TripleO::Services::CinderBackendDellEMCXTREMIOISCSI
 - OS::TripleO::Services::CinderBackendNetApp
 - OS::TripleO::Services::CinderBackendScaleIO
 - OS::TripleO::Services::CinderBackendVRTSHyperScale
 - OS::TripleO::Services::CinderBackup
 - OS::TripleO::Services::CinderHPELeftHandISCSI
 - OS::TripleO::Services::CinderScheduler
 - OS::TripleO::Services::CinderVolume
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GlanceRegistry
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Keystone
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::NeutronApi
 - OS::TripleO::Services::NeutronBgpVpnApi
 - OS::TripleO::Services::NeutronSfcApi
 - OS::TripleO::Services::NeutronCorePlugin
 - OS::TripleO::Services::NeutronDhcpAgent
 - OS::TripleO::Services::NeutronL2gwAgent
 - OS::TripleO::Services::NeutronL2gwApi

Red Hat OpenStack Platform 14 Director Installation and Usage

174

 - OS::TripleO::Services::NeutronL3Agent
 - OS::TripleO::Services::NeutronLbaasv2Agent
 - OS::TripleO::Services::NeutronLbaasv2Api
 - OS::TripleO::Services::NeutronLinuxbridgeAgent
 - OS::TripleO::Services::NeutronMetadataAgent
 - OS::TripleO::Services::NeutronML2FujitsuCfab
 - OS::TripleO::Services::NeutronML2FujitsuFossw
 - OS::TripleO::Services::NeutronOvsAgent
 - OS::TripleO::Services::NeutronVppAgent
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::OpenDaylightOvs
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::RsyslogSidecar
 - OS::TripleO::Services::Securetty
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::SkydiveAgent
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::SwiftProxy
 - OS::TripleO::Services::SwiftDispersion
 - OS::TripleO::Services::SwiftRingBuilder
 - OS::TripleO::Services::SwiftStorage
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned
 - OS::TripleO::Services::Vpp
 - OS::TripleO::Services::OVNController
 - OS::TripleO::Services::OVNMetadataAgent
 - OS::TripleO::Services::Ptp
EO_TEMPLATE
(undercloud) [stack@director roles]$ sed -i~ -e '/OS::TripleO::Services::\
(Cinder\|Glance\|Swift\|Keystone\|Neutron\)/d' Controller.yaml
(undercloud) [stack@director roles]$ cd ../
(undercloud) [stack@director templates]$ openstack overcloud roles generate \
 --roles-path roles -o roles_data.yaml \
 Controller Compute ComputePPC64LE ControllerPPC64LE BlockStorage ObjectStorage
CephStorage

APPENDIX G. RED HAT OPENSTACK PLATFORM FOR POWER

175

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. UNDERCLOUD
	1.2. OVERCLOUD
	1.3. HIGH AVAILABILITY
	1.4. CONTAINERIZATION
	1.5. CEPH STORAGE

	PART I. DIRECTOR INSTALLATION AND CONFIGURATION
	CHAPTER 2. PLANNING YOUR UNDERCLOUD
	2.1. CONTAINERIZED UNDERCLOUD
	2.2. PREPARING YOUR UNDERCLOUD NETWORKING
	2.3. DETERMINING ENVIRONMENT SCALE
	2.4. UNDERCLOUD DISK SIZING
	2.5. UNDERCLOUD REPOSITORIES

	CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION
	3.1. PREPARING THE UNDERCLOUD
	3.2. CONFIGURING AN UNDERCLOUD PROXY
	3.3. INSTALLING CEPH-ANSIBLE
	3.4. PREPARING CONTAINER IMAGES
	3.5. CONTAINER IMAGE PREPARATION PARAMETERS
	3.6. LAYERING IMAGE PREPARATION ENTRIES
	3.7. MODIFYING IMAGES DURING PREPARATION
	3.8. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
	3.9. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
	3.10. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
	3.11. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

	CHAPTER 4. INSTALLING DIRECTOR
	4.1. CONFIGURING THE DIRECTOR
	4.2. DIRECTOR CONFIGURATION PARAMETERS
	4.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES
	4.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD CONFIGURATION
	4.5. CONFIGURING HIERADATA ON THE UNDERCLOUD
	4.6. INSTALLING THE DIRECTOR
	4.7. OBTAINING IMAGES FOR OVERCLOUD NODES
	4.7.1. Single CPU architecture overclouds
	4.7.2. Multiple CPU architecture overclouds

	4.8. SETTING A NAMESERVER FOR THE CONTROL PLANE
	4.9. UPDATING THE UNDERCLOUD CONFIGURATION
	4.10. NEXT STEPS

	PART II. BASIC OVERCLOUD DEPLOYMENT
	CHAPTER 5. PLANNING YOUR OVERCLOUD
	5.1. NODE ROLES
	5.2. OVERCLOUD NETWORKS
	5.3. OVERCLOUD STORAGE
	5.4. OVERCLOUD SECURITY
	5.5. OVERCLOUD HIGH AVAILABILITY
	5.6. CONTROLLER NODE REQUIREMENTS
	5.7. COMPUTE NODE REQUIREMENTS
	5.8. CEPH STORAGE NODE REQUIREMENTS
	5.9. OBJECT STORAGE NODE REQUIREMENTS
	5.10. OVERCLOUD REPOSITORIES

	CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH CLI TOOLS
	6.1. REGISTERING NODES FOR THE OVERCLOUD
	6.2. INSPECTING THE HARDWARE OF NODES
	6.3. TAGGING NODES INTO PROFILES
	6.4. SETTING UEFI BOOT MODE
	6.5. DEFINING THE ROOT DISK
	6.6. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A RED HAT SUBSCRIPTION ENTITLEMENT
	6.7. CREATING ARCHITECTURE SPECIFIC ROLES
	6.8. ENVIRONMENT FILES
	6.9. CREATING AN ENVIRONMENT FILE THAT DEFINES NODE COUNTS AND FLAVORS
	6.10. CREATING AN ENVIRONMENT FILE FOR UNDERCLOUD CA TRUST
	6.11. DEPLOYMENT COMMAND
	6.12. DEPLOYMENT COMMAND OPTIONS
	6.13. INCLUDING ENVIRONMENT FILES IN AN OVERCLOUD DEPLOYMENT
	6.14. VALIDATING THE OVERCLOUD CONFIGURATION BEFORE DEPLOYMENT OPERATIONS
	6.15. OVERCLOUD DEPLOYMENT OUTPUT
	6.16. ACCESSING THE OVERCLOUD
	6.17. NEXT STEPS

	CHAPTER 7. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES
	7.1. CREATING A USER FOR CONFIGURING NODES
	7.2. REGISTERING THE OPERATING SYSTEM FOR NODES
	7.3. CONFIGURING SSL/TLS ACCESS TO THE DIRECTOR
	7.4. CONFIGURING NETWORKING FOR THE CONTROL PLANE
	7.5. USING A SEPARATE NETWORK FOR OVERCLOUD NODES
	7.6. MAPPING PRE-PROVISIONED NODE HOSTNAMES
	7.7. CONFIGURING CEPH STORAGE FOR PRE-PROVISIONED NODES
	7.8. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES
	7.9. OVERCLOUD DEPLOYMENT OUTPUT
	7.10. ACCESSING THE OVERCLOUD
	7.11. SCALING PRE-PROVISIONED NODES
	7.12. REMOVING A PRE-PROVISIONED OVERCLOUD
	7.13. COMPLETING THE OVERCLOUD CREATION

	PART III. POST DEPLOYMENT OPERATIONS
	CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION
	8.1. CHECKING OVERCLOUD DEPLOYMENT STATUS
	8.2. MANAGING CONTAINERIZED SERVICES
	8.3. CREATING THE OVERCLOUD TENANT NETWORK
	8.4. CREATING THE OVERCLOUD EXTERNAL NETWORK
	8.5. CREATING ADDITIONAL FLOATING IP NETWORKS
	8.6. CREATING THE OVERCLOUD PROVIDER NETWORK
	8.7. CREATING A BASIC OVERCLOUD FLAVOR
	8.8. VALIDATING THE OVERCLOUD
	8.9. MODIFYING THE OVERCLOUD ENVIRONMENT
	8.10. RUNNING THE DYNAMIC INVENTORY SCRIPT
	8.11. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
	8.12. MIGRATING INSTANCES FROM A COMPUTE NODE
	8.13. PROTECTING THE OVERCLOUD FROM REMOVAL
	8.14. REMOVING THE OVERCLOUD
	8.15. REVIEW THE TOKEN FLUSH INTERVAL

	CHAPTER 9. CONFIGURING THE OVERCLOUD WITH ANSIBLE
	9.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-DOWNLOAD)
	9.2. CONFIG-DOWNLOAD WORKING DIRECTORY
	9.3. ENABLING ACCESS TO CONFIG-DOWNLOAD WORKING DIRECTORIES
	9.4. CHECKING CONFIG-DOWNLOAD LOG
	9.5. RUNNING CONFIG-DOWNLOAD MANUALLY
	9.6. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY
	9.7. CREATING CONFIG-DOWNLOAD FILES MANUALLY
	9.8. CONFIG-DOWNLOAD TOP LEVEL FILES
	9.9. CONFIG-DOWNLOAD TAGS
	9.10. CONFIG-DOWNLOAD DEPLOYMENT STEPS
	9.11. NEXT STEPS

	CHAPTER 10. SCALING OVERCLOUD NODES
	10.1. ADDING NODES TO THE OVERCLOUD
	10.2. INCREASING NODE COUNTS FOR ROLES
	10.3. REMOVING COMPUTE NODES
	10.4. REPLACING CEPH STORAGE NODES
	10.5. REPLACING OBJECT STORAGE NODES
	10.6. BLACKLISTING NODES

	CHAPTER 11. REPLACING CONTROLLER NODES
	11.1. PREPARING FOR CONTROLLER REPLACEMENT
	11.2. REMOVING A CEPH MONITOR DAEMON
	11.3. PREPARING THE CLUSTER FOR CONTROLLER REPLACEMENT
	11.4. REPLACING A CONTROLLER NODE
	11.5. TRIGGERING THE CONTROLER NODE REPLACEMENT
	11.6. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT

	CHAPTER 12. REBOOTING NODES
	12.1. REBOOTING THE UNDERCLOUD NODE
	12.2. REBOOTING CONTROLLER AND COMPOSABLE NODES
	12.3. REBOOTING STANDALONE CEPH MON NODES
	12.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER
	12.5. REBOOTING COMPUTE NODES

	PART IV. ADDITIONAL DIRECTOR OPERATIONS AND CONFIGURATION
	CHAPTER 13. ADDITIONAL INTROSPECTION OPERATIONS
	13.1. PERFORMING INDIVIDUAL NODE INTROSPECTION
	13.2. PERFORMING NODE INTROSPECTION AFTER INITIAL INTROSPECTION
	13.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE INFORMATION

	CHAPTER 14. AUTOMATICALLY DISCOVER BARE METAL NODES
	14.1. REQUIREMENTS
	14.2. ENABLE AUTO-DISCOVERY
	14.3. TEST AUTO-DISCOVERY
	14.4. USE RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

	CHAPTER 15. CREATING VIRTUALIZED CONTROL PLANES
	15.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE
	15.2. BENEFITS AND LIMITATIONS OF VIRTUALIZING YOUR RHOSP OVERCLOUD CONTROL PLANE
	15.3. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED HAT VIRTUALIZATION DRIVER

	CHAPTER 16. CONFIGURING DIRECT DEPLOY
	16.1. CONFIGURING THE DIRECT DEPLOY INTERFACE ON THE UNDERCLOUD
	Procedure

	PART V. TROUBLESHOOTING
	CHAPTER 17. TROUBLESHOOTING DIRECTOR ISSUES
	17.1. TROUBLESHOOTING NODE REGISTRATION
	17.2. TROUBLESHOOTING HARDWARE INTROSPECTION
	17.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS
	17.4. TROUBLESHOOTING OVERCLOUD CREATION
	17.4.1. Accessing deployment command history
	17.4.2. Orchestration
	17.4.3. Bare Metal Provisioning
	17.4.4. Checking overcloud configuration failures

	17.5. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
	17.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
	17.7. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION
	17.7.1. Overcloud Stack Modifications
	17.7.2. Controller Service Failures
	17.7.3. Containerized Service Failures
	17.7.4. Compute Service Failures
	17.7.5. Ceph Storage Service Failures

	17.8. CREATING AN SOSREPORT
	17.9. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

	PART VI. APPENDICES
	APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
	A.1. INITIALIZING THE SIGNING HOST
	A.2. CREATING A CERTIFICATE AUTHORITY
	A.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
	A.4. CREATING AN SSL/TLS KEY
	A.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
	A.6. CREATING THE SSL/TLS CERTIFICATE
	A.7. USING THE CERTIFICATE WITH THE UNDERCLOUD

	APPENDIX B. POWER MANAGEMENT DRIVERS
	B.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
	B.2. REDFISH
	B.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
	B.4. INTEGRATED LIGHTS-OUT (ILO)
	B.5. CISCO UNIFIED COMPUTING SYSTEM (UCS)
	B.6. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	B.7. RED HAT VIRTUALIZATION
	B.8. MANUAL MANAGEMENT

	APPENDIX C. WHOLE DISK IMAGES
	C.1. DOWNLOADING THE BASE CLOUD IMAGE
	C.2. DISK IMAGE ENVIRONMENT VARIABLES
	C.3. CUSTOMIZING THE DISK LAYOUT
	C.3.1. Modifying the Partitioning Schema
	C.3.2. Modifying the Image Size

	C.4. CREATING A SECURITY HARDENED WHOLE DISK IMAGE
	C.5. UPLOADING A SECURITY HARDENED WHOLE DISK IMAGE

	APPENDIX D. ALTERNATIVE BOOT MODES
	D.1. STANDARD PXE

	APPENDIX E. AUTOMATIC PROFILE TAGGING
	E.1. POLICY FILE SYNTAX
	E.2. POLICY FILE EXAMPLE
	E.3. IMPORTING POLICY FILES
	E.4. AUTOMATIC PROFILE TAGGING PROPERTIES

	APPENDIX F. SECURITY ENHANCEMENTS
	F.1. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

	APPENDIX G. RED HAT OPENSTACK PLATFORM FOR POWER
	G.1. CEPH STORAGE
	G.2. COMPOSABLE SERVICES

