
Red Hat OpenStack Platform 12

Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an
OpenStack cloud

Last Updated: 2019-03-07

Red Hat OpenStack Platform 12 Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an OpenStack
cloud

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to install Red Hat OpenStack Platform 12 in an enterprise environment
using the Red Hat OpenStack Platform director. This includes installing the director, planning your
environment, and creating an OpenStack environment with the director.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. UNDERCLOUD
1.2. OVERCLOUD
1.3. HIGH AVAILABILITY
1.4. CEPH STORAGE

CHAPTER 2. REQUIREMENTS
2.1. ENVIRONMENT REQUIREMENTS
2.2. UNDERCLOUD REQUIREMENTS

2.2.1. Virtualization Support
2.3. NETWORKING REQUIREMENTS
2.4. OVERCLOUD REQUIREMENTS

2.4.1. Compute Node Requirements
2.4.2. Controller Node Requirements
2.4.3. Ceph Storage Node Requirements
2.4.4. Object Storage Node Requirements

2.5. REPOSITORY REQUIREMENTS

CHAPTER 3. PLANNING YOUR OVERCLOUD
3.1. PLANNING NODE DEPLOYMENT ROLES
3.2. PLANNING NETWORKS
3.3. PLANNING STORAGE

CHAPTER 4. INSTALLING THE UNDERCLOUD
4.1. CREATING A DIRECTOR INSTALLATION USER
4.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES
4.3. SETTING THE HOSTNAME FOR THE SYSTEM
4.4. REGISTERING YOUR SYSTEM
4.5. INSTALLING THE DIRECTOR PACKAGES
4.6. CONFIGURING THE DIRECTOR
4.7. OBTAINING IMAGES FOR OVERCLOUD NODES
4.8. SETTING A NAMESERVER ON THE UNDERCLOUD’S NEUTRON SUBNET
4.9. BACKING UP THE UNDERCLOUD
4.10. COMPLETING THE UNDERCLOUD CONFIGURATION

CHAPTER 5. CONFIGURING CONTAINER REGISTRY DETAILS
5.1. USING THE CONTAINER IMAGE PREPARATION COMMAND
5.2. ADDING CONTAINER IMAGES FOR ADDITIONAL SERVICES
5.3. CONFIGURING THE OVERCLOUD TO USE A REMOTE REGISTRY
5.4. CONFIGURING THE OVERCLOUD TO USE THE UNDERCLOUD AS A LOCAL REGISTRY
5.5. CONFIGURING A SATELLITE SERVER AS AN IMAGE REGISTRY

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS
6.1. REGISTERING NODES FOR THE OVERCLOUD
6.2. INSPECTING THE HARDWARE OF NODES
6.3. AUTOMATICALLY DISCOVER BARE METAL NODES
6.4. TAGGING NODES INTO PROFILES
6.5. DEFINING THE ROOT DISK FOR NODES
6.6. CONFIGURE OVERCLOUD NODES TO TRUST THE UNDERCLOUD CA
6.7. CUSTOMIZING THE OVERCLOUD WITH ENVIRONMENT FILES
6.8. CREATING THE OVERCLOUD WITH THE CLI TOOLS
6.9. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
6.10. MANAGING OVERCLOUD PLANS

6
6
7
9
9

11
11
12
12
15
17
17
18
18
19
20

23
23
24
28

30
30
30
30
31
32
32
37
38
39
39

40
40
42
44
45
46

51
52
53
60
63
64
66
67
68
73
76

Table of Contents

1

. .

. .

. .

. .

6.11. VALIDATING OVERCLOUD TEMPLATES AND PLANS
6.12. MONITORING THE OVERCLOUD CREATION
6.13. ACCESSING THE OVERCLOUD
6.14. COMPLETING THE OVERCLOUD CREATION

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI
7.1. ACCESSING THE WEB UI
7.2. NAVIGATING THE WEB UI
7.3. IMPORTING AN OVERCLOUD PLAN IN THE WEB UI
7.4. REGISTERING NODES IN THE WEB UI
7.5. INSPECTING THE HARDWARE OF NODES IN THE WEB UI
7.6. TAGGING NODES INTO PROFILES IN THE WEB UI
7.7. EDITING OVERCLOUD PLAN PARAMETERS IN THE WEB UI
7.8. ASSIGNING NODES TO ROLES IN THE WEB UI
7.9. EDITING ROLE PARAMETERS IN THE WEB UI
7.10. STARTING THE OVERCLOUD CREATION IN THE WEB UI
7.11. COMPLETING THE OVERCLOUD CREATION

CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES
8.1. CREATING A USER FOR CONFIGURING NODES
8.2. REGISTERING THE OPERATING SYSTEM FOR NODES
8.3. INSTALLING THE USER AGENT ON NODES
8.4. CONFIGURING SSL/TLS ACCESS TO THE DIRECTOR
8.5. CONFIGURING NETWORKING FOR THE CONTROL PLANE
8.6. USING A SEPARATE NETWORK FOR OVERCLOUD NODES
8.7. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES
8.8. POLLING THE METADATA SERVER
8.9. MONITORING THE OVERCLOUD CREATION
8.10. ACCESSING THE OVERCLOUD
8.11. SCALING PRE-PROVISIONED NODES
8.12. REMOVING A PRE-PROVISIONED OVERCLOUD
8.13. COMPLETING THE OVERCLOUD CREATION

CHAPTER 9. PERFORMING TASKS AFTER OVERCLOUD CREATION
9.1. MANAGING CONTAINERIZED SERVICES
9.2. CREATING THE OVERCLOUD TENANT NETWORK
9.3. CREATING THE OVERCLOUD EXTERNAL NETWORK
9.4. CREATING ADDITIONAL FLOATING IP NETWORKS
9.5. CREATING THE OVERCLOUD PROVIDER NETWORK
9.6. CREATING A BASIC OVERCLOUD FLAVOR
9.7. VALIDATING THE OVERCLOUD
9.8. MODIFYING THE OVERCLOUD ENVIRONMENT
9.9. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
9.10. MIGRATING VMS FROM AN OVERCLOUD COMPUTE NODE
9.11. RUNNING ANSIBLE AUTOMATION
9.12. PROTECTING THE OVERCLOUD FROM REMOVAL
9.13. REMOVING THE OVERCLOUD
9.14. REVIEW THE TOKEN FLUSH INTERVAL

CHAPTER 10. SCALING THE OVERCLOUD
10.1. ADDING ADDITIONAL NODES
10.2. REMOVING COMPUTE NODES
10.3. REPLACING COMPUTE NODES
10.4. REPLACING CONTROLLER NODES

76
77
77
78

79
79
81
84
85
87
88
89
90
90
92
94

95
96
96
97
98
98
99

102
103
105
105
106
107
107

108
108
109
110
111
111
112
113
113
114
115
116
117
117
118

119
119
121
122
122

Red Hat OpenStack Platform 12 Director Installation and Usage

2

. .

. .

. .

. .

10.4.1. Preliminary Checks
10.4.2. Removing a Ceph Monitor Daemon
10.4.3. Node Replacement
10.4.4. Manual Intervention
10.4.5. Finalizing Overcloud Services
10.4.6. Finalizing L3 Agent Router Hosting
10.4.7. Finalizing Compute Services
10.4.8. Conclusion

10.5. REPLACING CEPH STORAGE NODES
10.6. REPLACING OBJECT STORAGE NODES
10.7. BLACKLISTING NODES

CHAPTER 11. REBOOTING NODES
11.1. REBOOTING THE DIRECTOR
11.2. REBOOTING CONTROLLER NODES
11.3. REBOOTING CEPH STORAGE NODES
11.4. REBOOTING COMPUTE NODES
11.5. REBOOTING OBJECT STORAGE NODES

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES
12.1. TROUBLESHOOTING NODE REGISTRATION
12.2. TROUBLESHOOTING HARDWARE INTROSPECTION
12.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS
12.4. TROUBLESHOOTING OVERCLOUD CREATION

12.4.1. Orchestration
12.4.2. Bare Metal Provisioning
12.4.3. Post-Deployment Configuration

12.5. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
12.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
12.7. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION

12.7.1. Overcloud Stack Modifications
12.7.2. Controller Service Failures
12.7.3. Containerized Service Failures
12.7.4. Compute Service Failures
12.7.5. Ceph Storage Service Failures

12.8. TUNING THE UNDERCLOUD
12.9. CREATING AN SOSREPORT
12.10. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
A.1. INITIALIZING THE SIGNING HOST
A.2. CREATING A CERTIFICATE AUTHORITY
A.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
A.4. CREATING AN SSL/TLS KEY
A.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
A.6. CREATING THE SSL/TLS CERTIFICATE
A.7. USING THE CERTIFICATE WITH THE UNDERCLOUD

APPENDIX B. POWER MANAGEMENT DRIVERS
B.1. DELL REMOTE ACCESS CONTROLLER (DRAC)
B.2. INTEGRATED LIGHTS-OUT (ILO)
B.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)
B.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
B.5. VIRTUAL BASEBOARD MANAGEMENT CONTROLLER (VBMC)

123
124
125
127
129
129
130
130
130
130
132

134
134
134
135
136
137

139
139
139
141
142
143
143
144
146
146
147
147
148
149
150
151
151
152
152

154
154
154
154
155
155
156
156

158
158
158
159
159
160

Table of Contents

3

. .

. .

. .

. .

. .

B.6. FAKE PXE DRIVER

APPENDIX C. WHOLE DISK IMAGES
C.1. DOWNLOADING THE BASE CLOUD IMAGE
C.2. SETTING THE ENVIRONMENT VARIABLES
C.3. CUSTOMIZING THE DISK LAYOUT

C.3.1. Modifying the Partitioning Schema
C.3.2. Modifying the Image Size

C.4. CREATING A SECURITY HARDENED WHOLE DISK IMAGE
C.5. UPLOADING A SECURITY HARDENED WHOLE DISK IMAGE

APPENDIX D. ALTERNATIVE BOOT MODES
D.1. STANDARD PXE
D.2. UEFI BOOT MODE

APPENDIX E. AUTOMATIC PROFILE TAGGING
E.1. POLICY FILE SYNTAX
E.2. POLICY FILE EXAMPLE
E.3. IMPORTING POLICY FILES
E.4. AUTOMATIC PROFILE TAGGING PROPERTIES

APPENDIX F. SECURITY ENHANCEMENTS
F.1. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

APPENDIX G. RED HAT OPENSTACK PLATFORM FOR POWER (TECHNOLOGY PREVIEW)

162

163
164
164
165
166
167
168
168

170
170
170

171
171
172
174
174

176
176

178

Red Hat OpenStack Platform 12 Director Installation and Usage

4

Table of Contents

5

CHAPTER 1. INTRODUCTION
The Red Hat OpenStack Platform director is a toolset for installing and managing a complete OpenStack
environment. It is based primarily on the OpenStack project TripleO, which is an abbreviation for
"OpenStack-On-OpenStack". This project takes advantage of OpenStack components to install a fully
operational OpenStack environment. This includes new OpenStack components that provision and
control bare metal systems to use as OpenStack nodes. This provides a simple method for installing a
complete Red Hat OpenStack Platform environment that is both lean and robust.

The Red Hat OpenStack Platform director uses two main concepts: an undercloud and an overcloud.
The undercloud installs and configures the overcloud. The next few sections outline the concept of each.

1.1. UNDERCLOUD

The undercloud is the main director node. It is a single-system OpenStack installation that includes
components for provisioning and managing the OpenStack nodes that form your OpenStack environment
(the overcloud). The components that form the undercloud provide the multiple functions:

Environment Planning

The undercloud provides planning functions for users to create and assign certain node roles. The
undercloud includes a default set of nodes such as Compute, Controller, and various storage roles,
but also provides the ability to use custom roles. In addition, you can select which OpenStack
Platform services to include on each node role, which provides a method to model new node types or
isolate certain components on their own host.

Bare Metal System Control

The undercloud uses out-of-band management interface, usually Intelligent Platform Management
Interface (IPMI), of each node for power management control and a PXE-based service to discover
hardware attributes and install OpenStack to each node. This provides a method to provision bare
metal systems as OpenStack nodes. See Appendix B, Power Management Drivers for a full list of
power management drivers.

Orchestration

The undercloud provides a set of YAML templates that acts as a set of plans for your environment.
The undercloud imports these plans and follows their instructions to create the resulting OpenStack
environment. The plans also include hooks that allow you to incorporate your own customizations as
certain points in the environment creation process.

Red Hat OpenStack Platform 12 Director Installation and Usage

6

Command Line Tools and a Web UI

The Red Hat OpenStack Platform director performs these undercloud functions through a terminal-
based command line interface or a web-based user interface.

Undercloud Components

The undercloud uses OpenStack components as its base tool set. This includes the following
components:

OpenStack Identity (keystone) - Provides authentication and authorization for the director’s
components.

OpenStack Bare Metal (ironic) and OpenStack Compute (nova) - Manages bare metal nodes.

OpenStack Networking (neutron) and Open vSwitch - Controls networking for bare metal
nodes.

OpenStack Image Service (glance) - Stores images that are written to bare metal machines.

OpenStack Orchestration (heat) and Puppet - Provides orchestration of nodes and
configuration of nodes after the director writes the overcloud image to disk.

OpenStack Telemetry (ceilometer) - Performs monitoring and data collection. This also
includes:

OpenStack Telemetry Metrics (gnocchi) - Provides a time series database for metrics.

OpenStack Telemetry Alarming (aodh) - Provides an alarming component for monitoring.

OpenStack Telemetry Event Storage (panko) - Provides event storage for monitoring.

OpenStack Workflow Service (mistral) - Provides a set of workflows for certain director-
specific actions, such as importing and deploying plans.

OpenStack Messaging Service (zaqar) - Provides a messaging service for the OpenStack
Workflow Service.

OpenStack Object Storage (swift) - Provides object storage for various OpenStack Platform
components, including:

Image storage for OpenStack Image Service

Introspection data for OpenStack Bare Metal

Deployment plans for OpenStack Workflow Service

1.2. OVERCLOUD

The overcloud is the resulting Red Hat OpenStack Platform environment created using the undercloud.
This includes different nodes roles which you define based on the OpenStack Platform environment you
aim to create. The undercloud includes a default set of overcloud node roles, which include:

Controller

Nodes that provide administration, networking, and high availability for the OpenStack environment.
An ideal OpenStack environment recommends three of these nodes together in a high availability
cluster.
A default Controller node contains the following components:

CHAPTER 1. INTRODUCTION

7

OpenStack Dashboard (horizon)

OpenStack Identity (keystone)

OpenStack Compute (nova) API

OpenStack Networking (neutron)

OpenStack Image Service (glance)

OpenStack Block Storage (cinder)

OpenStack Object Storage (swift)

OpenStack Orchestration (heat)

OpenStack Telemetry (ceilometer)

OpenStack Telemetry Metrics (gnocchi)

OpenStack Telemetry Alarming (aodh)

OpenStack Telemetry Event Storage (panko)

OpenStack Clustering (sahara)

OpenStack Shared File Systems (manila)

OpenStack Bare Metal (ironic)

MariaDB

Open vSwitch

Pacemaker and Galera for high availability services.

Compute

These nodes provide computing resources for the OpenStack environment. You can add more
Compute nodes to scale out your environment over time. A default Compute node contains the
following components:

OpenStack Compute (nova)

KVM/QEMU

OpenStack Telemetry (ceilometer) agent

Open vSwitch

Storage

Nodes that provide storage for the OpenStack environment. This includes nodes for:

Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object
Storage Daemon (OSD). In addition, the director installs Ceph Monitor onto the Controller
nodes in situations where it deploys Ceph Storage nodes.

Red Hat OpenStack Platform 12 Director Installation and Usage

8

Block storage (cinder) - Used as external block storage for HA Controller nodes. This node
contains the following components:

OpenStack Block Storage (cinder) volume

OpenStack Telemetry (ceilometer) agent

Open vSwitch.

Object storage (swift) - These nodes provide a external storage layer for OpenStack Swift.
The Controller nodes access these nodes through the Swift proxy. This node contains the
following components:

OpenStack Object Storage (swift) storage

OpenStack Telemetry (ceilometer) agent

Open vSwitch.

1.3. HIGH AVAILABILITY

The Red Hat OpenStack Platform director uses a Controller node cluster to provide high availability
services to your OpenStack Platform environment. The director installs a duplicate set of components on
each Controller node and manages them together as a single service. This type of cluster configuration
provides a fallback in the event of operational failures on a single Controller node; this provides
OpenStack users with a certain degree of continuous operation.

The OpenStack Platform director uses some key pieces of software to manage components on the
Controller node:

Pacemaker - Pacemaker is a cluster resource manager. Pacemaker manages and monitors the
availability of OpenStack components across all nodes in the cluster.

HAProxy - Provides load balancing and proxy services to the cluster.

Galera - Replicates the Red Hat OpenStack Platform database across the cluster.

Memcached - Provides database caching.

NOTE

Red Hat OpenStack Platform director automatically configures the bulk of high availability
on Controller nodes. However, the nodes require some manual configuration to enable
power management controls. This guide includes these instructions.

1.4. CEPH STORAGE

It is common for large organizations using OpenStack to serve thousands of clients or more. Each
OpenStack client is likely to have their own unique needs when consuming block storage resources.
Deploying glance (images), cinder (volumes) and/or nova (Compute) on a single node can become
impossible to manage in large deployments with thousands of clients. Scaling OpenStack externally
resolves this challenge.

However, there is also a practical requirement to virtualize the storage layer with a solution like Red Hat
Ceph Storage so that you can scale the Red Hat OpenStack Platform storage layer from tens of

CHAPTER 1. INTRODUCTION

9

terabytes to petabytes (or even exabytes) of storage. Red Hat Ceph Storage provides this storage
virtualization layer with high availability and high performance while running on commodity hardware.
While virtualization might seem like it comes with a performance penalty, Ceph stripes block device
images as objects across the cluster; this means large Ceph Block Device images have better
performance than a standalone disk. Ceph Block devices also support caching, copy-on-write cloning,
and copy-on-read cloning for enhanced performance.

See Red Hat Ceph Storage for additional information about Red Hat Ceph Storage.

Red Hat OpenStack Platform 12 Director Installation and Usage

10

https://access.redhat.com/products/red-hat-ceph-storage

CHAPTER 2. REQUIREMENTS
This chapter outlines the main requirements for setting up an environment to provision Red Hat
OpenStack Platform using the director. This includes the requirements for setting up the director,
accessing it, and the hardware requirements for hosts that the director provisions for OpenStack
services.

NOTE

Prior to deploying Red Hat OpenStack Platform, it is important to consider the
characteristics of the available deployment methods. For more information, refer to the
Installing and Managing Red Hat OpenStack Platform.

2.1. ENVIRONMENT REQUIREMENTS

Minimum Requirements:

1 host machine for the Red Hat OpenStack Platform director

1 host machine for a Red Hat OpenStack Platform Compute node

1 host machine for a Red Hat OpenStack Platform Controller node

Recommended Requirements:

1 host machine for the Red Hat OpenStack Platform director

3 host machines for Red Hat OpenStack Platform Compute nodes

3 host machines for Red Hat OpenStack Platform Controller nodes in a cluster

3 host machines for Red Hat Ceph Storage nodes in a cluster

Note the following:

It is recommended to use bare metal systems for all nodes. At minimum, the Compute nodes
require bare metal systems.

All overcloud bare metal systems require an Intelligent Platform Management Interface (IPMI).
This is because the director controls the power management.

Set the each node’s internal BIOS clock to UTC. This prevents issues with future-dated file
timestamps when hwclock synchronizes the BIOS clock before applying the timezone offset.

To deploy overcloud Compute nodes on POWER (ppc64le) hardware, read the overview in
Appendix G, Red Hat OpenStack Platform for POWER (Technology Preview).

CHAPTER 2. REQUIREMENTS

11

https://access.redhat.com/articles/2477851

WARNING

Do not upgrade to the Red Hat Enterprise Linux 7.3 kernel without also upgrading
from Open vSwitch (OVS) 2.4.0 to OVS 2.5.0. If only the kernel is upgraded, then
OVS will stop functioning.

2.2. UNDERCLOUD REQUIREMENTS

The undercloud system hosting the director provides provisioning and management for all nodes in the
overcloud.

An 8-core 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

A minimum of 16 GB of RAM.

A minimum of 100 GB of available disk space on the root disk. This includes:

10 GB for container images

10 GB to accommodate QCOW2 image conversion and caching during the node
provisioning process

80 GB+ for general usage, logging, metrics, and growth

A minimum of 2 x 1 Gbps Network Interface Cards. However, it is recommended to use a 10
Gbps interface for Provisioning network traffic, especially if provisioning a large number of nodes
in your overcloud environment.

The latest minor version of Red Hat Enterprise Linux installed as the host operating system.

SELinux is enabled in Enforcing mode on the host.

2.2.1. Virtualization Support

Red Hat only supports a virtualized undercloud on the following platforms:

Platform Notes

Kernel-based Virtual Machine (KVM) Hosted by Red Hat Enterprise Linux 5, 6, and 7 as
listed on certified hypervisors

Red Hat Enterprise Virtualization Hosted by Red Hat Enterprise Virtualization 3.0, 3.1,
3.2, 3.3, 3.4, 3.5, 3.6, and 4.0 as listed on certified
hypervisors

Microsoft Hyper-V Hosted by versions of Hyper-V as listed on the Red
Hat Customer Portal Certification Catalogue.

Red Hat OpenStack Platform 12 Director Installation and Usage

12

https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform

VMware ESX and ESXi Hosted by versions of ESX and ESXi as listed on the
Red Hat Customer Portal Certification Catalogue.

Platform Notes

IMPORTANT

Red Hat OpenStack Platform director requires the latest version of Red Hat Enterprise
Linux as the host operating system. This means your virtualization platform must also
support the underlying Red Hat Enterprise Linux version.

Virtual Machine Requirements

Resource requirements for a virtual undercloud are similar to those of a bare metal undercloud. You
should consider the various tuning options when provisioning such as network model, guest CPU
capabilities, storage backend, storage format, and caching mode.

Network Considerations

Note the following network considerations for your virtualized undercloud:

Power Management

The undercloud VM requires access to the overcloud nodes' power management devices. This is the
IP address set for the pm_addr parameter when registering nodes.

Provisioning network

The NIC used for the provisioning (ctlplane) network requires the ability to broadcast and serve
DHCP requests to the NICs of the overcloud’s bare metal nodes. As a recommendation, create a
bridge that connects the VM’s NIC to the same network as the bare metal NICs.

NOTE

A common problem occurs when the hypervisor technology blocks the undercloud from
transmitting traffic from an unknown address. - If using Red Hat Enterprise Virtualization,
disable anti-mac-spoofing to prevent this. - If using VMware ESX or ESXi, allow
forged transmits to prevent this.

Example Architecture

This is just an example of a basic undercloud virtualization architecture using a KVM server. It is
intended as a foundation you can build on depending on your network and resource requirements.

The KVM host uses two Linux bridges:

br-ex (eth0)

Provides outside access to the undercloud

DHCP server on outside network assigns network configuration to undercloud using the
virtual NIC (eth0)

Provides access for the undercloud to access the power management interfaces for the bare
metal servers

CHAPTER 2. REQUIREMENTS

13

https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform

br-ctlplane (eth1)

Connects to the same network as the bare metal overcloud nodes

Undercloud fulfills DHCP and PXE boot requests through virtual NIC (eth1)

Bare metal servers for the overcloud boot through PXE over this network

The KVM host requires the following packages:

$ yum install libvirt-client libvirt-daemon qemu-kvm libvirt-daemon-
driver-qemu libvirt-daemon-kvm virt-install bridge-utils rsync

The following command creates the undercloud virtual machine on the KVM host and create two virtual
NICs that connect to the respective bridges:

$ virt-install --name undercloud --memory=16384 --vcpus=4 --location
/var/lib/libvirt/images/rhel-server-7.4-x86_64-dvd.iso --disk size=100 --
network bridge=br-ex --network bridge=br-ctlplane --graphics=vnc --hvm --
os-variant=rhel7

This starts a libvirt domain. Connect to it with virt-manager and walk through the install process.
Alternatively, you can perform an unattended installation using the following options to include a kickstart
file:

--initrd-inject=/root/ks.cfg --extra-args "ks=file:/ks.cfg"

Once installation completes, SSH into the instance as the root user and follow the instructions in
Chapter 4, Installing the Undercloud

Backups

To back up a virtualized undercloud, there are multiple solutions:

Option 1: Follow the instructions in the Back Up and Restore the Director Undercloud Guide.

Option 2: Shut down the undercloud and take a copy of the undercloud virtual machine storage
backing.

Option 3: Take a snapshot of the undercloud VM if your hypervisor supports live or atomic
snapshots.

If using a KVM server, use the following procedure to take a snapshot:

1. Make sure qemu-guest-agent is running on the undercloud guest VM.

2. Create a live snapshot of the running VM:

$ virsh snapshot-create-as --domain undercloud --disk-only --atomic --
quiesce

1. Take a copy of the (now read-only) QCOW backing file

Red Hat OpenStack Platform 12 Director Installation and Usage

14

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/back_up_and_restore_the_director_undercloud/

$ rsync --sparse -avh --progress /var/lib/libvirt/images/undercloud.qcow2
1.qcow2

1. Merge the QCOW overlay file into the backing file and switch the undercloud VM back to using
the original file:

$ virsh blockcommit undercloud vda --active --verbose --pivot

2.3. NETWORKING REQUIREMENTS

The undercloud host requires at least two networks:

Provisioning network - Provides DHCP and PXE boot functions to help discover bare metal
systems for use in the overcloud. Typically, this network must use a native VLAN on a trunked
interface so that the director serves PXE boot and DHCP requests. Some server hardware
BIOSes support PXE boot from a VLAN, but the BIOS must also support translating that VLAN
into a native VLAN after booting, otherwise the undercloud will not be reachable. Currently, only
a small subset of server hardware fully supports this feature. This is also the network you use to
control power management through Intelligent Platform Management Interface (IPMI) on all
overcloud nodes.

External Network - A separate network for external access to the overcloud and undercloud. The
interface connecting to this network requires a routable IP address, either defined statically, or
dynamically through an external DHCP service.

This represents the minimum number of networks required. However, the director can isolate other Red
Hat OpenStack Platform network traffic into other networks. Red Hat OpenStack Platform supports both
physical interfaces and tagged VLANs for network isolation.

Note the following:

Typical minimal overcloud network configuration can include:

Single NIC configuration - One NIC for the Provisioning network on the native VLAN and
tagged VLANs that use subnets for the different overcloud network types.

Dual NIC configuration - One NIC for the Provisioning network and the other NIC for the
External network.

Dual NIC configuration - One NIC for the Provisioning network on the native VLAN and the
other NIC for tagged VLANs that use subnets for the different overcloud network types.

Multiple NIC configuration - Each NIC uses a subnet for a different overcloud network type.

Additional physical NICs can be used for isolating individual networks, creating bonded
interfaces, or for delegating tagged VLAN traffic.

If using VLANs to isolate your network traffic types, use a switch that supports 802.1Q standards
to provide tagged VLANs.

During the overcloud creation, you will refer to NICs using a single name across all overcloud
machines. Ideally, you should use the same NIC on each overcloud node for each respective
network to avoid confusion. For example, use the primary NIC for the Provisioning network and
the secondary NIC for the OpenStack services.

Make sure the Provisioning network NIC is not the same NIC used for remote connectivity on the

CHAPTER 2. REQUIREMENTS

15

director machine. The director installation creates a bridge using the Provisioning NIC, which
drops any remote connections. Use the External NIC for remote connections to the director
system.

The Provisioning network requires an IP range that fits your environment size. Use the following
guidelines to determine the total number of IP addresses to include in this range:

Include at least one IP address per node connected to the Provisioning network.

If planning a high availability configuration, include an extra IP address for the virtual IP of
the cluster.

Include additional IP addresses within the range for scaling the environment.

NOTE

Duplicate IP addresses should be avoided on the Provisioning network. For
more information, see Section 3.2, “Planning Networks”.

NOTE

For more information on planning your IP address usage, for example, for
storage, provider, and tenant networks, see the Networking Guide.

Set all overcloud systems to PXE boot off the Provisioning NIC, and disable PXE boot on the
External NIC (and any other NICs on the system). Also ensure that the Provisioning NIC has
PXE boot at the top of the boot order, ahead of hard disks and CD/DVD drives.

All overcloud bare metal systems require a supported power management interface, such as an
Intelligent Platform Management Interface (IPMI). This allows the director to control the power
management of each node.

Make a note of the following details for each overcloud system: the MAC address of the
Provisioning NIC, the IP address of the IPMI NIC, IPMI username, and IPMI password. This
information will be useful later when setting up the overcloud nodes.

If an instance needs to be accessible from the external internet, you can allocate a floating IP
address from a public network and associate it with an instance. The instance still retains its
private IP but network traffic uses NAT to traverse through to the floating IP address. Note that a
floating IP address can only be assigned to a single instance rather than multiple private IP
addresses. However, the floating IP address is reserved only for use by a single tenant, allowing
the tenant to associate or disassociate with a particular instance as required. This configuration
exposes your infrastructure to the external internet. As a result, you might need to check that you
are following suitable security practices.

To mitigate the risk of network loops in Open vSwitch, only a single interface or a single bond
may be a member of a given bridge. If you require multiple bonds or interfaces, you can
configure multiple bridges.

It is recommended to use DNS hostname resolution so that your overcloud nodes can connect
to external services, such as the Red Hat Content Delivery Network and network time servers.

Red Hat OpenStack Platform 12 Director Installation and Usage

16

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/networking_guide/#sec-planning-ip

IMPORTANT

Your OpenStack Platform implementation is only as secure as its environment. Follow
good security principles in your networking environment to ensure that network access is
properly controlled. For example:

Use network segmentation to mitigate network movement and isolate sensitive
data; a flat network is much less secure.

Restrict services access and ports to a minimum.

Ensure proper firewall rules and password usage.

Ensure that SELinux is enabled.

For details on securing your system, see:

Red Hat Enterprise Linux 7 Security Guide

Red Hat Enterprise Linux 7 SELinux User’s and Administrator’s Guide

2.4. OVERCLOUD REQUIREMENTS

The following sections detail the requirements for individual systems and nodes in the overcloud
installation.

2.4.1. Compute Node Requirements

Compute nodes are responsible for running virtual machine instances after they are launched. Compute
nodes must support hardware virtualization. Compute nodes must also have enough memory and disk
space to support the requirements of the virtual machine instances they host.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions, and the AMD-V
or Intel VT hardware virtualization extensions enabled. It is recommended this processor has
a minimum of 4 cores.

IBM POWER 8 processor.

Memory

A minimum of 6 GB of RAM. Add additional RAM to this requirement based on the amount of memory
that you intend to make available to virtual machine instances.

Disk Space

A minimum of 40 GB of available disk space.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

CHAPTER 2. REQUIREMENTS

17

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

2.4.2. Controller Node Requirements

Controller nodes are responsible for hosting the core services in a RHEL OpenStack Platform
environment, such as the Horizon dashboard, the back-end database server, Keystone authentication,
and High Availability services.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Minimum amount of memory is 32 GB. However, the amount of recommended memory depends on
the number of vCPUs (which is based on CPU cores multiplied by hyper-threading value). Use the
following calculations as guidance:

Controller RAM minimum calculation:

Use 1.5 GB of memory per vCPU. For example, a machine with 48 vCPUs should have
72 GB of RAM.

Controller RAM recommended calculation:

Use 3 GB of memory per vCPU. For example, a machine with 48 vCPUs should have
144 GB of RAM

For more information on measuring memory requirements, see "Red Hat OpenStack Platform
Hardware Requirements for Highly Available Controllers" on the Red Hat Customer Portal.

Disk Storage and Layout

By default, the Telemetry (gnocchi) and Object Storage (swift) services are both installed on the
Controller, with both configured to use the root disk. These defaults are suitable for deploying small
overclouds built on commodity hardware; such environments are typical of proof-of-concept and test
environments. These defaults also allow the deployment of overclouds with minimal planning but
offer little in terms of workload capacity and performance.
In an enterprise environment, however, this could cause a significant bottleneck, as Telemetry
accesses storage constantly. This results in heavy disk I/O usage, which severely impacts the
performance of all other Controller services. In this type of environment, you need to plan your
overcloud and configure it accordingly.

Red Hat provides several configuration recommendations for both Telemetry and Object Storage.
See Deployment Recommendations for Specific Red Hat OpenStack Platform Services for details.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

2.4.3. Ceph Storage Node Requirements

Ceph Storage nodes are responsible for providing object storage in a RHEL OpenStack Platform
environment.

Processor

Red Hat OpenStack Platform 12 Director Installation and Usage

18

https://access.redhat.com/articles/2431181
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/deployment_recommendations_for_specific_red_hat_openStack_platform_services

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space.

Disk Space

Storage requirements depends on the amount of memory. Ideally, use at minimum 1 GB of memory
per 1 TB of hard disk space.

Disk Layout

The recommended Red Hat Ceph Storage node configuration requires at least three or more disks in
a layout similar to the following:

/dev/sda - The root disk. The director copies the main Overcloud image to the disk.

/dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For
example, /dev/sdb1, /dev/sdb2, /dev/sdb3, and onward. The journal disk is usually a
solid state drive (SSD) to aid with system performance.

/dev/sdc and onward - The OSD disks. Use as many disks as necessary for your storage
requirements.

NOTE

Red Hat OpenStack Platform director uses ceph-ansible, which does not
support installing the OSD on the root disk of Ceph Storage nodes. This
means you need at least two or more disks for a supported Ceph Storage
node.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic. It is recommended to use a 10 Gbps interface for storage node,
especially if creating an OpenStack Platform environment that serves a high volume of traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

See the Deploying an Overcloud with Containerized Red Hat Ceph guide for more information about
installing an overcloud with a Ceph Storage cluster.

2.4.4. Object Storage Node Requirements

Object Storage nodes provides an object storage layer for the overcloud. The Object Storage proxy is
installed on Controller nodes. The storage layer will require bare metal nodes with multiple number of
disks per node.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space. For optimal performance, it is recommended to use 2 GB per 1
TB of hard disk space, especially for small file (less 100GB) workloads.

CHAPTER 2. REQUIREMENTS

19

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/

Disk Space

Storage requirements depends on the capacity needed for the workload. It is recommended to use
SSD drives to store the account and container data. The capacity ratio of account and container data
to objects is of about 1 per cent. For example, for every 100TB of hard drive capacity, provide 1TB of
SSD capacity for account and container data.
However, this depends on the type of stored data. If STORING mostly small objects, provide more
SSD space. For large objects (videos, backups), use less SSD space.

Disk Layout

The recommended node configuration requires a disk layout similar to the following:

/dev/sda - The root disk. The director copies the main overcloud image to the disk.

/dev/sdb - Used for account data.

/dev/sdc - Used for container data.

/dev/sdd and onward - The object server disks. Use as many disks as necessary for your
storage requirements.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power Management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server’s motherboard.

2.5. REPOSITORY REQUIREMENTS

Both the undercloud and overcloud require access to Red Hat repositories either through the Red Hat
Content Delivery Network, or through Red Hat Satellite 5 or 6. If using a Red Hat Satellite Server,
synchronize the required repositories to your OpenStack Platform environment. Use the following list of
CDN channel names as a guide:

WARNING

Do not upgrade to the Red Hat Enterprise Linux 7.3 kernel without also upgrading
from Open vSwitch (OVS) 2.4.0 to OVS 2.5.0. If only the kernel is upgraded, then
OVS will stop functioning.

Table 2.1. OpenStack Platform Repositories

Name Repository Description of Requirement

Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rpms Base operating system repository
for x86_64 systems.

Red Hat OpenStack Platform 12 Director Installation and Usage

20

Red Hat Enterprise Linux 7 Server
- Extras (RPMs)

rhel-7-server-extras-
rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 7 Server
- RH Common (RPMs)

rhel-7-server-rh-
common-rpms

Contains tools for deploying and
configuring Red Hat OpenStack
Platform.

Red Hat Satellite Tools for RHEL 7
Server RPMs x86_64

rhel-7-server-
satellite-tools-6.2-
rpms

Tools for managing hosts with
Red Hat Satellite 6.

Red Hat Enterprise Linux High
Availability (for RHEL 7 Server)
(RPMs)

rhel-ha-for-rhel-7-
server-rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat Enterprise Linux
OpenStack Platform 12 for RHEL
7 (RPMs)

rhel-7-server-
openstack-12-rpms

Core Red Hat OpenStack
Platform repository. Also contains
packages for Red Hat OpenStack
Platform director.

Red Hat Ceph Storage OSD 2 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-2-
osd-rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Object Storage daemon. Installed
on Ceph Storage nodes.

Red Hat Ceph Storage MON 2 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-2-
mon-rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Monitor daemon. Installed on
Controller nodes in OpenStack
environments using Ceph Storage
nodes.

Red Hat Ceph Storage Tools 2 for
Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rhceph-2-
tools-rpms

Provides tools for nodes to
communicate with the Ceph
Storage cluster. This repository
should be enabled for all nodes
when deploying an overcloud with
a Ceph Storage cluster.

Name Repository Description of Requirement

OpenStack Platform Repositories for IBM POWER

These repositories are used for in the Appendix G, Red Hat OpenStack Platform for POWER
(Technology Preview) feature.

CHAPTER 2. REQUIREMENTS

21

Name Repository Description of Requirement

Red Hat Enterprise Linux for IBM
Power, little endian

rhel-7-for-power-le-
rpms

Base operating system repository
for ppc64le systems.

Red Hat OpenStack Platform 12
for RHEL 7 (RPMs)

rhel-7-server-
openstack-12-for-power-
le-rpms

Core Red Hat OpenStack
Platform repository for ppc64le
systems.

NOTE

To configure repositories for your Red Hat OpenStack Platform environment in an offline
network, see "Configuring Red Hat OpenStack Platform Director in an Offline
Environment" on the Red Hat Customer Portal.

Red Hat OpenStack Platform 12 Director Installation and Usage

22

https://access.redhat.com/articles/2377701

CHAPTER 3. PLANNING YOUR OVERCLOUD
The following section provides some guidelines on planning various aspects of your Red Hat OpenStack
Platform environment. This includes defining node roles, planning your network topology, and storage.

3.1. PLANNING NODE DEPLOYMENT ROLES

The director provides multiple default node types for building your overcloud. These node types are:

Controller

Provides key services for controlling your environment. This includes the dashboard (horizon),
authentication (keystone), image storage (glance), networking (neutron), orchestration (heat), and
high availability services. A Red Hat OpenStack Platform environment requires three Controller nodes
for a highly available environment.

NOTE

Environments with one node can be used for testing purposes. Environments with two
nodes or more than three nodes are not supported.

Compute

A physical server that acts as a hypervisor, and provides the processing capabilities required for
running virtual machines in the environment. A basic Red Hat OpenStack Platform environment
requires at least one Compute node.

Ceph Storage

A host that provides Red Hat Ceph Storage. Additional Ceph Storage hosts scale into a cluster. This
deployment role is optional.

Swift Storage

A host that provides external object storage for OpenStack’s swift service. This deployment role is
optional.

The following table provides some example of different overclouds and defines the node types for each
scenario.

Table 3.1. Node Deployment Roles for Scenarios

 Controller Compute Ceph Storage Swift Storage Total

Small
overcloud

3 1 - - 4

Medium
overcloud

3 3 - - 6

Medium
overcloud with
additional
Object storage

3 3 - 3 9

CHAPTER 3. PLANNING YOUR OVERCLOUD

23

Medium
overcloud with
Ceph Storage
cluster

3 3 3 - 9

In addition, consider whether to split individual services into custom roles. For more information on the
composable roles architecture, see "Composable Services and Custom Roles" in the Advanced
Overcloud Customization guide.

3.2. PLANNING NETWORKS

It is important to plan your environment’s networking topology and subnets so that you can properly map
roles and services to correctly communicate with each other. Red Hat OpenStack Platform uses the
neutron networking service, which operates autonomously and manages software-based networks, static
and floating IP addresses, and DHCP. The director deploys this service on each Controller node in an
overcloud environment.

Red Hat OpenStack Platform maps the different services onto separate network traffic types, which are
assigned to the various subnets in your environments. These network traffic types include:

Table 3.2. Network Type Assignments

Network Type Description Used By

IPMI Network used for power
management of nodes. This
network is predefined before the
installation of the undercloud.

All nodes

Provisioning / Control Plane The director uses this network
traffic type to deploy new nodes
over PXE boot and orchestrate
the installation of OpenStack
Platform on the overcloud bare
metal servers. This network is
predefined before the installation
of the undercloud.

All nodes

Internal API The Internal API network is used
for communication between the
OpenStack services using API
communication, RPC messages,
and database communication.

Controller, Compute, Cinder
Storage, Swift Storage

Red Hat OpenStack Platform 12 Director Installation and Usage

24

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/advanced_overcloud_customization/#Roles

Tenant Neutron provides each tenant with
their own networks using either
VLAN segregation (where each
tenant network is a network
VLAN), or tunneling (through
VXLAN or GRE). Network traffic is
isolated within each tenant
network. Each tenant network has
an IP subnet associated with it,
and network namespaces means
that multiple tenant networks can
use the same address range
without causing conflicts.

Controller, Compute

Storage Block Storage, NFS, iSCSI, and
others. Ideally, this would be
isolated to an entirely separate
switch fabric for performance
reasons.

All nodes

Storage Management OpenStack Object Storage (swift)
uses this network to synchronize
data objects between participating
replica nodes. The proxy service
acts as the intermediary interface
between user requests and the
underlying storage layer. The
proxy receives incoming requests
and locates the necessary replica
to retrieve the requested data.
Services that use a Ceph backend
connect over the Storage
Management network, since they
do not interact with Ceph directly
but rather use the frontend
service. Note that the RBD driver
is an exception, as this traffic
connects directly to Ceph.

Controller, Ceph Storage, Cinder
Storage, Swift Storage

External Hosts the OpenStack Dashboard
(horizon) for graphical system
management, the public APIs for
OpenStack services, and performs
SNAT for incoming traffic destined
for instances. If the external
network uses private IP
addresses (as per RFC-1918),
then further NAT must be
performed for traffic originating
from the internet.

Controller and undercloud

CHAPTER 3. PLANNING YOUR OVERCLOUD

25

Floating IP Allows incoming traffic to reach
instances using 1-to-1 IP address
mapping between the floating IP
address, and the IP address
actually assigned to the instance
in the tenant network. If hosting
the Floating IPs on a VLAN
separate from External, you can
trunk the Floating IP VLAN to the
Controller nodes and add the
VLAN through Neutron after
overcloud creation. This provides
a means to create multiple
Floating IP networks attached to
multiple bridges. The VLANs are
trunked but are not configured as
interfaces. Instead, neutron
creates an OVS port with the
VLAN segmentation ID on the
chosen bridge for each Floating IP
network.

Controller

Management Provides access for system
administration functions such as
SSH access, DNS traffic, and
NTP traffic. This network also acts
as a gateway for non-Controller
nodes

All nodes

In a typical Red Hat OpenStack Platform installation, the number of network types often exceeds the
number of physical network links. In order to connect all the networks to the proper hosts, the overcloud
uses VLAN tagging to deliver more than one network per interface. Most of the networks are isolated
subnets but some require a Layer 3 gateway to provide routing for Internet access or infrastructure
network connectivity.

NOTE

It is recommended that you deploy a project network (tunneled with GRE or VXLAN) even
if you intend to use a neutron VLAN mode (with tunneling disabled) at deployment time.
This requires minor customization at deployment time and leaves the option available to
use tunnel networks as utility networks or virtualization networks in the future. You still
create Tenant networks using VLANs, but you can also create VXLAN tunnels for special-
use networks without consuming tenant VLANs. It is possible to add VXLAN capability to
a deployment with a Tenant VLAN, but it is not possible to add a Tenant VLAN to an
existing overcloud without causing disruption.

The director provides a method for mapping six of these traffic types to certain subnets or VLANs. These
traffic types include:

Internal API

Storage

Red Hat OpenStack Platform 12 Director Installation and Usage

26

Storage Management

Tenant Networks

External

Management

Any unassigned networks are automatically assigned to the same subnet as the Provisioning network.

The diagram below provides an example of a network topology where the networks are isolated on
separate VLANs. Each overcloud node uses two interfaces (nic2 and nic3) in a bond to deliver these
networks over their respective VLANs. Meanwhile, each overcloud node communicates with the
undercloud over the Provisioning network through a native VLAN using nic1.

The following table provides examples of network traffic mappings different network layouts:

CHAPTER 3. PLANNING YOUR OVERCLOUD

27

Table 3.3. Network Mappings

 Mappings Total Interfaces Total VLANs

Flat Network with
External Access

Network 1 -
Provisioning, Internal
API, Storage, Storage
Management, Tenant
Networks

Network 2 - External,
Floating IP (mapped
after overcloud creation)

2 2

Isolated Networks Network 1 - Provisioning

Network 2 - Internal API

Network 3 - Tenant
Networks

Network 4 - Storage

Network 5 - Storage
Management

Network 6 - Storage
Management

Network 7 - External,
Floating IP (mapped
after overcloud creation)

3 (includes 2 bonded
interfaces)

7

3.3. PLANNING STORAGE

NOTE

Using LVM on a guest instance that uses a backend cinder-volume of any driver or
backend type results in issues with performance and volume visibility and availability.
These issues can be mitigated using a LVM filter. For more information, please refer to
section 2.1 Back Ends in the Storage Guide and KCS article 3213311, "Using LVM on a
cinder volume exposes the data to the compute host."

The director provides different storage options for the overcloud environment. This includes:

Ceph Storage Nodes

The director creates a set of scalable storage nodes using Red Hat Ceph Storage. The overcloud
uses these nodes for:

Images - Glance manages images for VMs. Images are immutable. OpenStack treats
images as binary blobs and downloads them accordingly. You can use glance to store
images in a Ceph Block Device.

Red Hat OpenStack Platform 12 Director Installation and Usage

28

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/storage_guide/#ch-backends
https://access.redhat.com/solutions/3213311

Volumes - Cinder volumes are block devices. OpenStack uses volumes to boot VMs, or to
attach volumes to running VMs. OpenStack manages volumes using cinder services. You
can use cinder to boot a VM using a copy-on-write clone of an image.

File Systems - Manila shares are backed by file systems. OpenStack users manage shares
using manila services. You can use manila to manage shares backed by a CephFS file
system with data on the Ceph Storage Nodes.

Guest Disks - Guest disks are guest operating system disks. By default, when you boot a
virtual machine with nova, its disk appears as a file on the filesystem of the hypervisor
(usually under /var/lib/nova/instances/<uuid>/). Every virtual machine can be
booted inside Ceph directly without using cinder, which lets you perform maintenance
operations with the live-migration process. Additionally, if the hypervisor dies, you can trigger
nova evacuate and run the virtual machine elsewhere.

IMPORTANT

If you want to boot virtual machines in Ceph (ephemeral backend or boot from
volume), the glance image format must be RAW format. Ceph does not support
other image formats such as QCOW2 or VMDK for hosting a virtual machine
disk.

See Red Hat Ceph Storage Architecture Guide for additional information.

Swift Storage Nodes

The director creates an external object storage node. This is useful in situations where you need to
scale or replace controller nodes in your overcloud environment but need to retain object storage
outside of a high availability cluster.

CHAPTER 3. PLANNING YOUR OVERCLOUD

29

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/architecture-guide/

CHAPTER 4. INSTALLING THE UNDERCLOUD
The first step to creating your Red Hat OpenStack Platform environment is to install the director on the
undercloud system. This involves a few prerequisite steps to enable the necessary subscriptions and
repositories.

4.1. CREATING A DIRECTOR INSTALLATION USER

The director installation process requires a non-root user to execute commands. Use the following
commands to create the user named stack and set a password:

[root@director ~]# useradd stack
[root@director ~]# passwd stack # specify a password

Disable password requirements for this user when using sudo:

[root@director ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a
/etc/sudoers.d/stack
[root@director ~]# chmod 0440 /etc/sudoers.d/stack

Switch to the new stack user:

[root@director ~]# su - stack
[stack@director ~]$

Continue the director installation as the stack user.

4.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES

The director uses system images and Heat templates to create the overcloud environment. To keep
these files organized, we recommend creating directories for images and templates:

[stack@director ~]$ mkdir ~/images
[stack@director ~]$ mkdir ~/templates

Other sections in this guide use these two directories to store certain files.

4.3. SETTING THE HOSTNAME FOR THE SYSTEM

The director requires a fully qualified domain name for its installation and configuration process. This
means you may need to set the hostname of your director’s host. Check the hostname of your host:

[stack@director ~]$ hostname # Checks the base hostname
[stack@director ~]$ hostname -f # Checks the long hostname (FQDN)

If either commands do not report the correct hostname or report an error, use hostnamectl to set a
hostname:

[stack@director ~]$ sudo hostnamectl set-hostname manager.example.com
[stack@director ~]$ sudo hostnamectl set-hostname --transient
manager.example.com

Red Hat OpenStack Platform 12 Director Installation and Usage

30

The director also requires an entry for the system’s hostname and base name in /etc/hosts. For
example, if the system is named manager.example.com, then /etc/hosts requires an entry like:

127.0.0.1 manager.example.com manager localhost localhost.localdomain
localhost4 localhost4.localdomain4

4.4. REGISTERING YOUR SYSTEM

To install the Red Hat OpenStack Platform director, first register the host system using Red Hat
Subscription Manager, and subscribe to the required channels.

1. Register your system with the Content Delivery Network, entering your Customer Portal user
name and password when prompted:

[stack@director ~]$ sudo subscription-manager register

2. Find the entitlement pool ID for Red Hat OpenStack Platform director. For example:

[stack@director ~]$ sudo subscription-manager list --available --all
--matches="Red Hat OpenStack"
Subscription Name: Name of SKU
Provides: Red Hat Single Sign-On
 Red Hat Enterprise Linux Workstation
 Red Hat CloudForms
 Red Hat OpenStack
 Red Hat Software Collections (for RHEL
Workstation)
 Red Hat Virtualization
SKU: SKU-Number
Contract: Contract-Number
Pool ID: Valid-Pool-Number-123456
Provides Management: Yes
Available: 1
Suggested: 1
Service Level: Support-level
Service Type: Service-Type
Subscription Type: Sub-type
Ends: End-date
System Type: Physical

3. Locate the Pool ID value and attach the Red Hat OpenStack Platform 12 entitlement:

[stack@director ~]$ sudo subscription-manager attach --pool=Valid-
Pool-Number-123456

4. Disable all default repositories, and then enable the required Red Hat Enterprise Linux
repositories:

[stack@director ~]$ sudo subscription-manager repos --disable=*
[stack@director ~]$ sudo subscription-manager repos --enable=rhel-7-
server-rpms --enable=rhel-7-server-extras-rpms --enable=rhel-7-
server-rh-common-rpms --enable=rhel-ha-for-rhel-7-server-rpms --
enable=rhel-7-server-openstack-12-rpms

CHAPTER 4. INSTALLING THE UNDERCLOUD

31

These repositories contain packages the director installation requires.

IMPORTANT

Only enable the repositories listed in Section 2.5, “Repository Requirements”. Additional
repositories can cause package and software conflicts. Do not enable any additional
repositories.

Perform an update on your system to make sure you have the latest base system packages:

[stack@director ~]$ sudo yum update -y
[stack@director ~]$ sudo reboot

The system is now ready for the director installation.

4.5. INSTALLING THE DIRECTOR PACKAGES

Use the following command to install the required command line tools for director installation and
configuration:

[stack@director ~]$ sudo yum install -y python-tripleoclient

This installs all packages required for the director installation.

If you aim to create an overcloud with Ceph Storage nodes, install the additional ceph-ansible
package:

[stack@director ~]$ sudo yum install -y ceph-ansible

4.6. CONFIGURING THE DIRECTOR

The director installation process requires certain settings to determine your network configurations. The
settings are stored in a template located in the stack user’s home directory as undercloud.conf.

Red Hat provides a basic template to help determine the required settings for your installation. Copy this
template to the stack user’s home directory:

[stack@director ~]$ cp /usr/share/instack-
undercloud/undercloud.conf.sample ~/undercloud.conf

The undercloud.conf file contains settings to configure your undercloud. If you omit or comment out a
parameter, the undercloud installation uses the default value.

The template contains two sections: [DEFAULT] and [auth]. The [DEFAULT] section contains the
following parameters:

undercloud_hostname

Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures
all system host name settings. If left unset, the undercloud uses the current host name, but the user
must configure all system host name settings appropriately.

local_ip

Red Hat OpenStack Platform 12 Director Installation and Usage

32

The IP address defined for the director’s Provisioning NIC. This is also the IP address the director
uses for its DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24 unless
you are using a different subnet for the Provisioning network, for example, if it conflicts with an
existing IP address or subnet in your environment.

network_gateway

The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the
External network. Leave this as the default 192.168.24.1 unless you are either using a different IP
address for the director or want to directly use an external gateway.

NOTE

The director’s configuration script also automatically enables IP forwarding using the
relevant sysctl kernel parameter.

undercloud_public_host

The IP address defined for the director’s Public API when using SSL/TLS. This is an IP address for
accessing the director endpoints externally over SSL/TLS. The director configuration attaches this IP
address to its software bridge as a routed IP address, which uses the /32 netmask.

undercloud_admin_host

The IP address defined for the director’s Admin API when using SSL/TLS. This is an IP address for
administration endpoint access over SSL/TLS. The director configuration attaches this IP address to
its software bridge as a routed IP address, which uses the /32 netmask.

undercloud_nameservers

A list of DNS nameservers to use for the undercloud hostname resolution.

undercloud_ntp_servers

A list of network time protocol servers to help synchronize the undercloud’s date and time.

undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you
obtain this certificate from a trusted certificate authority. Otherwise generate your own self-signed
certificate using the guidelines in Appendix A, SSL/TLS Certificate Configuration. These guidelines
also contain instructions on setting the SELinux context for your certificate, whether self-signed or
from an authority.

generate_service_certificate

Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used
for the undercloud_service_certificate parameter. The undercloud installation saves the
resulting certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem.
The CA defined in the certificate_generation_ca parameter signs this certificate.

certificate_generation_ca

The certmonger nickname of the CA that signs the requested certificate. Only use this option if you
have set the generate_service_certificate parameter. If you select the local CA,
certmonger extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-
local-ca.pem and adds it to the trust chain.

service_principal

The Kerberos principal for the service using the certificate. Only use this if your CA requires a
Kerberos principal, such as in FreeIPA.

local_interface

CHAPTER 4. INSTALLING THE UNDERCLOUD

33

The chosen interface for the director’s Provisioning NIC. This is also the device the director uses for
its DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr command. For example, this is the result of an ip addr command:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000
 link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic
eth0
 valid_lft 3462sec preferred_lft 3462sec
 inet6 fe80::5054:ff:fe75:2409/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state
DOWN
 link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently
not configured. In this case, set the local_interface to eth1. The configuration script attaches
this interface to a custom bridge defined with the inspection_interface parameter.

local_mtu

MTU to use for the local_interface.

network_cidr

The network that the director uses to manage overcloud instances. This is the Provisioning network,
which the undercloud’s neutron service manages. Leave this as the default 192.168.24.0/24
unless you are using a different subnet for the Provisioning network.

masquerade_network

Defines the network that will masquerade for external access. This provides the Provisioning network
with a degree of network address translation (NAT) so that it has external access through the
director. Leave this as the default (192.168.24.0/24) unless you are using a different subnet for
the Provisioning network.

dhcp_start; dhcp_end

The start and end of the DHCP allocation range for overcloud nodes. Ensure this range contains
enough IP addresses to allocate your nodes.

hieradata_override

Path to hieradata override file. If set, the undercloud installation copies this file under
/etc/puppet/hieradata and sets it as the first file in the hierarchy. Use this to provide custom
configuration to services beyond the undercloud.conf parameters.

net_config_override

Path to network configuration override template. If set, the undercloud uses a JSON format template
to configure the networking with os-net-config. This ignores the network parameters set in
undercloud.conf. See /usr/share/instack-undercloud/templates/net-
config.json.template for an example.

inspection_interface

The bridge the director uses for node introspection. This is custom bridge that the director
configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default br-
ctlplane.

inspection_iprange

A range of IP address that the director’s introspection service uses during the PXE boot and

Red Hat OpenStack Platform 12 Director Installation and Usage

34

provisioning process. Use comma-separated values to define the start and end of this range. For
example, 192.168.24.100,192.168.24.120. Make sure this range contains enough IP
addresses for your nodes and does not conflict with the range for dhcp_start and dhcp_end.

inspection_extras

Defines whether to enable extra hardware collection during the inspection process. Requires
python-hardware or python-hardware-detect package on the introspection image.

inspection_runbench

Runs a set of benchmarks during node introspection. Set to true to enable. This option is necessary
if you intend to perform benchmark analysis when inspecting the hardware of registered nodes. See
Section 6.2, “Inspecting the Hardware of Nodes” for more details.

inspection_enable_uefi

Defines whether to support introspection of nodes with UEFI-only firmware. For more information, see
Appendix D, Alternative Boot Modes.

enable_node_discovery

Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use the
fake_pxe driver as a default but you can set discovery_default_driver to override. You can
also use introspection rules to specify driver information for newly enrolled nodes.

discovery_default_driver

Sets the default driver for automatically enrolled nodes. Requires enable_node_discovery
enabled and you must include the driver in the enabled_drivers list. See Appendix B, Power
Management Drivers for a list of supported drivers.

undercloud_debug

Sets the log level of undercloud services to DEBUG. Set this value to true to enable.

undercloud_update_packages

Defines whether to update packages during the undercloud installation.

enable_tempest

Defines whether to install the validation tools. The default is set to false, but you can can enable
using true.

enable_telemetry

Defines whether to install OpenStack Telemetry services (ceilometer, aodh, panko, gnocchi) in the
undercloud. In Red Hat OpenStack Platform 12, the metrics backend for telemetry is provided by
gnocchi. Setting enable_telemetry parameter to true will install and set up telemetry services
automatically. The default value is false, which disables telemetry on the undercloud. This
parameter is required if using other products that consume metrics data, such as Red Hat
CloudForms.

enable_ui

Defines Whether to install the director’s web UI. This allows you to perform overcloud planning and
deployments through a graphical web interface. For more information, see Chapter 7, Configuring a
Basic Overcloud with the Web UI. Note that the UI is only available with SSL/TLS enabled using
either the undercloud_service_certificate or generate_service_certificate.

enable_validations

Defines whether to install the requirements to run validations.

enable_legacy_ceilometer_api

Defines whether to enable legacy OpenStack Telemetry service (Ceilometer) API in the Undercloud.
Note the legacy API is deprecated and will be removed in a future release. Please use the newer
components installed with enable_telemetry.

CHAPTER 4. INSTALLING THE UNDERCLOUD

35

enable_novajoin

Defines whether to install the novajoin metadata service in the Undercloud.

ipa_otp

Defines the one time password to register the Undercloud node to an IPA server. This is required
when enable_novajoin is enabled.

ipxe_enabled

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set to
false to set to standard PXE. For more information, see Appendix D, Alternative Boot Modes.

scheduler_max_attempts

Maximum number of times the scheduler attempts to deploy an instance. Keep this greater or equal
to the number of bare metal nodes you expect to deploy at once to work around potential race
condition when scheduling.

clean_nodes

Defines whether to wipe the hard drive between deployments and after introspection.

enabled_drivers

A list of bare metal drivers to enable for the undercloud. See Appendix B, Power Management Drivers
for a list of supported drivers.

The [auth] section contains the following parameters:

undercloud_db_password; undercloud_admin_token; undercloud_admin_password;
undercloud_glance_password; etc

The remaining parameters are the access details for all of the director’s services. No change is
required for the values. The director’s configuration script automatically generates these values if
blank in undercloud.conf. You can retrieve all values after the configuration script completes.

IMPORTANT

The configuration file examples for these parameters use <None> as a placeholder
value. Setting these values to <None> leads to a deployment error.

Modify the values for these parameters to suit your network. When complete, save the file and run the
following command:

[stack@director ~]$ openstack undercloud install

This launches the director’s configuration script. The director installs additional packages and configures
its services to suit the settings in the undercloud.conf. This script takes several minutes to complete.

The configuration script generates two files when complete:

undercloud-passwords.conf - A list of all passwords for the director’s services.

stackrc - A set of initialization variables to help you access the director’s command line tools.

The configuration also starts all OpenStack Platform services automatically. Check the enabled services
using the following command:

[stack@director ~]$ sudo systemctl list-units openstack-*

Red Hat OpenStack Platform 12 Director Installation and Usage

36

The installation also adds the stack user to the docker group so the stack user has access to
container management commands. Refresh the stack user’s permissions with the following command:

[stack@director ~]$ exec su -l stack

The command prompts you to log in again. Enter the stack user’s password.

To initialize the stack user to use the command line tools, run the following command:

[stack@director ~]$ source ~/stackrc

The prompt now indicates OpenStack commands authenticate and execute against the undercloud;

(undercloud) [stack@director ~]$

You can now use the director’s command line tools.

4.7. OBTAINING IMAGES FOR OVERCLOUD NODES

The director requires several disk images for provisioning overcloud nodes. This includes:

An introspection kernel and ramdisk - Used for bare metal system introspection over PXE boot.

A deployment kernel and ramdisk - Used for system provisioning and deployment.

An overcloud kernel, ramdisk, and full image - A base overcloud system that is written to the
node’s hard disk.

Obtain these images from the rhosp-director-images and rhosp-director-images-ipa
packages:

(undercloud) [stack@director ~]$ sudo yum install rhosp-director-images
rhosp-director-images-ipa

Extract the archives to the images directory on the stack user’s home (/home/stack/images):

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ for i in /usr/share/rhosp-director-
images/overcloud-full-latest-12.0.tar /usr/share/rhosp-director-
images/ironic-python-agent-latest-12.0.tar; do tar -xvf $i; done

Import these images into the director:

(undercloud) [stack@director images]$ openstack overcloud image upload --
image-path /home/stack/images/

This uploads the following images into the director: bm-deploy-kernel, bm-deploy-ramdisk,
overcloud-full, overcloud-full-initrd, overcloud-full-vmlinuz. These are the images
for deployment and the overcloud. The script also installs the introspection images on the director’s PXE
server.

View a list of the images in the CLI:

CHAPTER 4. INSTALLING THE UNDERCLOUD

37

(undercloud) [stack@director images]$ openstack image list
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
765a46af-4417-4592-91e5-a300ead3faf6	bm-deploy-ramdisk
09b40e3d-0382-4925-a356-3a4b4f36b514	bm-deploy-kernel
ef793cd0-e65c-456a-a675-63cd57610bd5	overcloud-full
9a51a6cb-4670-40de-b64b-b70f4dd44152	overcloud-full-initrd
4f7e33f4-d617-47c1-b36f-cbe90f132e5d	overcloud-full-vmlinuz
+--------------------------------------+------------------------+

This list will not show the introspection PXE images. The director copies these files to /httpboot.

(undercloud) [stack@director images]$ ls -l /httpboot
total 341460
-rwxr-xr-x. 1 root root 5153184 Mar 31 06:58
agent.kernel
-rw-r--r--. 1 root root 344491465 Mar 31 06:59
agent.ramdisk
-rw-r--r--. 1 ironic-inspector ironic-inspector 337 Mar 31 06:23
inspector.ipxe

NOTE

The default overcloud-full.qcow2 image is a flat partition image. However, you can
also import and use whole disk images. See Appendix C, Whole Disk Images for more
information.

4.8. SETTING A NAMESERVER ON THE UNDERCLOUD’S NEUTRON
SUBNET

If you intend for the overcloud to resolve external hostnames, such as cdn.redhat.com, it is
recommended to set a nameserver on the overcloud nodes. For a standard overcloud without network
isolation, the nameserver is defined using the undercloud’s neutron subnet. Use the following
commands to define nameservers for the environment:

(undercloud) [stack@director images]$ openstack subnet list
(undercloud) [stack@director images]$ openstack subnet set --dns-
nameserver [nameserver1-ip] --dns-nameserver [nameserver2-ip] [subnet-
uuid]

View the subnet to verify the nameserver:

(undercloud) [stack@director images]$ openstack subnet show [subnet-uuid]
+-------------------+---+
| Field | Value |
+-------------------+---+
...	
dns_nameservers	8.8.8.8
...	
+-------------------+---+

Red Hat OpenStack Platform 12 Director Installation and Usage

38

IMPORTANT

If you aim to isolate service traffic onto separate networks, the overcloud nodes use the
DnsServer parameter in your network environment files.

4.9. BACKING UP THE UNDERCLOUD

Red Hat provides a process to back up important data from the undercloud host and the Red Hat
OpenStack Platform director. For more information about undercloud backups, see the "Back Up and
Restore the Director Undercloud" guide.

4.10. COMPLETING THE UNDERCLOUD CONFIGURATION

This completes the undercloud configuration. The next chapter explores basic overcloud configuration,
including registering nodes, inspecting them, and then tagging them into various node roles.

CHAPTER 4. INSTALLING THE UNDERCLOUD

39

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/back_up_and_restore_the_director_undercloud

CHAPTER 5. CONFIGURING CONTAINER REGISTRY DETAILS
A containerized overcloud requires access to a registry with the required container images. This chapter
provides information on how to prepare the registry and your overcloud configuration to use container
images for Red Hat OpenStack Platform.

This guide provides several use cases to configure your overcloud to use a registry. Before attempting
one of these use cases, it is recommended to familiarize yourself with how to use the image preparation
command. See Section 5.1, “Using the Container Image Preparation Command” for more information.

Selecting a Registry Method

Red Hat OpenStack Platform supports the following registry types:

Remote Registry

The overcloud pulls container images directly from registry.access.redhat.com. This method
is the easiest for generating the initial configuration. However, each overcloud node pulls each image
directly from the Red Hat Container Catalog, which can cause network congestion and slower
deployment. In addition, all overcloud nodes require internet access to the Red Hat Container
Catalog.

Local Registry

You create a local registry on the undercloud, synchronize the images from
registry.access.redhat.com, and the overcloud pulls the container images from the
undercloud. This method allows you to store a registry internally, which can speed up the deployment
and decrease network congestion. However, the undercloud only acts as a basic registry and
provides limited life cycle management for container images.

Satellite Server

Manage the complete application life cycle of your container images and publish them through a Red
Hat Satellite 6 server. The overcloud pulls the images from the Satellite server. This method provides
an enterprise grade solution to store, manage, and deploy Red Hat OpenStack Platform containers.

Select a method from the list and continue configuring your registry details.

5.1. USING THE CONTAINER IMAGE PREPARATION COMMAND

This section provides an overview on how to use the openstack overcloud container image
prepare command, including conceptual information on the command’s various options. You can find
proper use cases and end-to-end procedures for using this command in Selecting a Registry Method.

Generating a Container Image Environment File for the Overcloud

One of the main uses of the openstack overcloud container image prepare command is to
create an environment file that contains a list of images the overcloud uses. You include this file with your
overcloud deployment commands, such as openstack overcloud deploy. The openstack
overcloud container image prepare command uses the following options for this function:

--output-env-file

Defines the resulting environment file name.

The following snippet is an example of this file’s contents:

parameter_defaults:
 DockerAodhApiImage: registry.access.redhat.com/rhosp12/openstack-aodh-
api:latest

Red Hat OpenStack Platform 12 Director Installation and Usage

40

 DockerAodhConfigImage: registry.access.redhat.com/rhosp12/openstack-
aodh-api:latest
...

Generating a Container Image List for Import Methods

If you aim to import the OpenStack Platform container images to a different registry source, you can
generate a list of images. The syntax of list is primarily used to import container images to the container
registry on the undercloud, but you can modify the format of this list to suit other import methods, such as
Red Hat Satellite 6.

The openstack overcloud container image prepare command uses the following options for
this function:

--output-images-file

Defines the resulting file name for the import list.

The following is an example of this file’s contents:

container_images:
- imagename: registry.access.redhat.com/rhosp12/openstack-aodh-api:latest
- imagename: registry.access.redhat.com/rhosp12/openstack-aodh-
evaluator:latest
...

Setting the Namespace for Container Images

Both the --output-env-file and --output-images-file options require a namespace to
generate the resulting image locations. The openstack overcloud container image prepare
command uses the following options to set the source location of the container images to pull:

--namespace

Defines the namespace for the container images. This is usually a hostname or IP address with a
directory.

--prefix

Defines the prefix to add before the image names.

As a result, the director generates the image names using the following format:

[NAMESPACE]/[PREFIX][IMAGE NAME]

Setting Container Image Tags

The openstack overcloud container image prepare command uses the latest tag for each
container image by default. However, you can select a specific tag for an image version using the
following option:

--tag

Sets the tag for all images. All OpenStack Platform container images use the same tag to provide
version synchronicity.

You can also discover the latest versioned tag for an image using the openstack overcloud
container image tag discover command. For example:

CHAPTER 5. CONFIGURING CONTAINER REGISTRY DETAILS

41

$ sudo openstack overcloud container image tag discover \
 --image registry.access.redhat.com/rhosp12/openstack-base:latest \
 --tag-from-label version-release

This checks the tags available for the openstack-base image using the image’s version-release
label as a basis and outputs the latest versioned tag.

IMPORTANT

You must run the tag discovery command with sudo access. This command uses
docker as a sub-process, which requires sudo privileges.

5.2. ADDING CONTAINER IMAGES FOR ADDITIONAL SERVICES

The director only prepares container images for core OpenStack Platform Services [1]. Some additional
features use services that require additional container images. You enable these services with
environment files. The openstack overcloud container image prepare command uses the
following option to include environment files and their respective container images:

-e

Include environment files to enable additional container images.

NOTE

For more information on how to include environment files in a deployment, see
Section 6.9, “Including Environment Files in Overcloud Creation”.

The following table provides a sample list of additional services that use container images and their
respective environment file locations within the /usr/share/openstack-tripleo-heat-
templates directory.

Service Environment File

Ceph Storage environments/ceph-ansible/ceph-ansible.yaml

Collectd environments/services-docker/collectd.yaml

Congress environments/services-docker/congress.yaml

Fluentd environments/services-docker/fluentd-client.yaml

OpenStack Bare Metal (ironic) environments/services-docker/ironic.yaml

OpenStack Data Processing
(sahara)

environments/services-docker/sahara.yaml

OpenStack EC2-API environments/services-docker/ec2-api.yaml

Sensu environments/services-docker/sensu-client.yaml

Red Hat OpenStack Platform 12 Director Installation and Usage

42

The next few sections provide examples of including additional services.

Ceph Storage

If deploying a Red Hat Ceph Storage cluster with your overcloud, you need to include the
/usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml environment file. This file enables the composable containerized services in your
overcloud and the director needs to know these services are enabled to prepare their images.

In addition to this environment file, you also need to define the Ceph Storage container location, which is
different from the OpenStack Platform services. Use the --set option to set the following parameters
specific to Ceph Storage:

--set ceph_namespace

Defines the namespace for the Ceph Storage container image. This functions similar to the --
namespace option.

--set ceph_image

Defines the name of the Ceph Storage container image. Usually,this is rhceph-2-rhel7.

--set ceph_tag

Defines the tag to use for the Ceph Storage container image. This functions similar to the --tag
option.

The following snippet is an example that includes Ceph Storage in your container image files:

$ openstack overcloud container image prepare \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-
ansible/ceph-ansible.yaml \
 --set ceph_namespace=registry.access.redhat.com/rhceph \
 --set ceph_image=rhceph-2-rhel7 \
 --set ceph_tag=<CEPH_TAG> \
 ...

OpenStack Bare Metal (ironic)

If deploying OpenStack Bare Metal (ironic) in your overcloud, you need to include the
/usr/share/openstack-tripleo-heat-templates/environments/services-
docker/ironic.yaml environment file so the director can prepare the images. The following snippet
is an example on how to include this environment file:

$ openstack overcloud container image prepare \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-
docker/ironic.yaml \
 ...

OpenStack Data Processing (sahara)

If deploying OpenStack Data Processing (sahara) in your overcloud, you need to include the
/usr/share/openstack-tripleo-heat-templates/environments/services-
docker/sahara.yaml environment file so the director can prepare the images. The following snippet
is an example on how to include this environment file:

CHAPTER 5. CONFIGURING CONTAINER REGISTRY DETAILS

43

$ openstack overcloud container image prepare \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-
docker/sahara.yaml \
 ...

5.3. CONFIGURING THE OVERCLOUD TO USE A REMOTE REGISTRY

Red Hat hosts the overcloud container images on registry.access.redhat.com. Pulling the images
from a remote registry is the simplest method because the registry is already setup and all you require is
the URL and namespace of the image you aim to pull. However, during overcloud creation, the overcloud
nodes all pull images from the remote repository, which can congest your external connection. If that is a
problem, you can either:

Setup a local registry: Section 5.4, “Configuring the Overcloud to Use the Undercloud as a Local
Registry”

Host the images on Red Hat Satellite 6: Section 5.5, “Configuring a Satellite Server as an Image
Registry”

To pull the images directly from registry.access.redhat.com in your overcloud deployment, an
environment file is required to specify the image parameters. The following commands automatically
create this environment file:

1. Discover the tag for the latest images:

$ source ~/stackrc
(undercloud) $ sudo openstack overcloud container image tag discover
\
 --image registry.access.redhat.com/rhosp12/openstack-base:latest \
 --tag-from-label version-release

The result from this command is used below for the value of <TAG>

2. Create the environment file:

(undercloud) $ openstack overcloud container image prepare \
 --namespace=registry.access.redhat.com/rhosp12 \
 --prefix=openstack- \
 --tag=<TAG> \
 --output-env-file=/home/stack/templates/overcloud_images.yaml

Use the -e option to include any environment files for optional services. See Section 5.2,
“Adding Container Images for Additional Services” in Section 5.1, “Using the Container Image
Preparation Command”.

If using Ceph Storage, include the additional parameters from Ceph Storage in Section 5.1,
“Using the Container Image Preparation Command”.

3. This creates an overcloud_images.yaml environment file, which contains image locations,
on the undercloud. You include this file with your deployment.

The registry configuration is ready. Continue with the instructions in Chapter 6, Configuring a Basic
Overcloud with the CLI Tools.

Red Hat OpenStack Platform 12 Director Installation and Usage

44

5.4. CONFIGURING THE OVERCLOUD TO USE THE UNDERCLOUD AS
A LOCAL REGISTRY

You can configure a local registry on the undercloud to store overcloud container images. This method
involves the following:

The director pulls each image from the registry.access.redhat.com.

The director creates the overcloud.

During the overcloud creation, the nodes pull the relevant images from the undercloud.

This keeps network traffic for container images within your internal network, which does not congest your
external network connection and can speed the deployment process.

To pull the images from registry.access.redhat.com to our local registry, use the following
process:

1. Discover the tag for the latest images:

$ source ~/stackrc
(undercloud) $ sudo openstack overcloud container image tag discover
\
 --image registry.access.redhat.com/rhosp12/openstack-base:latest \
 --tag-from-label version-release

The result from this command is used below for the value of <TAG>.

2. Create a template to pull the images to the local registry:

(undercloud) $ openstack overcloud container image prepare \
 --namespace=registry.access.redhat.com/rhosp12 \
 --prefix=openstack- \
 --tag=<TAG> \
 --output-images-file /home/stack/local_registry_images.yaml

Use the -e option to include any environment files for optional services. See Section 5.2,
“Adding Container Images for Additional Services” in Section 5.1, “Using the Container Image
Preparation Command”.

If using Ceph Storage, include the additional parameters from Ceph Storage in Section 5.1,
“Using the Container Image Preparation Command”.

NOTE

This version of the openstack overcloud container image prepare
command targets the registry on the registry.access.redhat.com to
generate an image list to import into the undercloud. It uses different values than
the openstack overcloud container image prepare command used in
a later step.

3. This creates a file called local_registry_images.yaml with your container image
information. Pull the images using the local_registry_images.yaml file:

CHAPTER 5. CONFIGURING CONTAINER REGISTRY DETAILS

45

(undercloud) $ sudo openstack overcloud container image upload \
 --config-file /home/stack/local_registry_images.yaml \
 --verbose

Pulling the required images might take some time depending on the speed of your network and
your undercloud disk.

NOTE

The container images consume approximately 10 GB of disk space.

4. Find the namespace of the local images. The namespace uses the following pattern:

<REGISTRY IP ADDRESS>:8787/rhosp12

Use the IP address of your undercloud, which you previously set with the local_ip parameter
in your undercloud.conf file. Alternatively, you can also obtain the full namespace with the
following command:

(undercloud) $ docker images | grep -v redhat.com | grep -o
'^.*rhosp12' | sort -u

5. Create a template for using the images in our local registry on the undercloud. For example:

(undercloud) $ openstack overcloud container image prepare \
 --namespace=192.168.24.1:8787/rhosp12 \
 --prefix=openstack- \
 --tag=<TAG> \
 --output-env-file=/home/stack/templates/overcloud_images.yaml

Use the -e option to include any environment files for optional services. See Section 5.2,
“Adding Container Images for Additional Services” in Section 5.1, “Using the Container Image
Preparation Command”.

If using Ceph Storage, include the additional parameters from Ceph Storage in Section 5.1,
“Using the Container Image Preparation Command”.

NOTE

This version of the openstack overcloud container image prepare
command targets the registry on the undercloud and generates a list of images to
use for the overcloud. It uses different values than the openstack overcloud
container image prepare command used in a previous step.

6. This creates an overcloud_images.yaml environment file, which contains image locations on
the undercloud. You include this file with your deployment.

The registry configuration is ready. Continue with the instructions in Chapter 6, Configuring a Basic
Overcloud with the CLI Tools.

5.5. CONFIGURING A SATELLITE SERVER AS AN IMAGE REGISTRY

Red Hat OpenStack Platform 12 Director Installation and Usage

46

WARNING

A known issue exists in Red Hat Satellite 6 that prevents synchronizing container
images with names longer than 30 characters. A fix for the issue will be available in
an upcoming minor release of Satellite 6.2. A hotfix for this issue is currently
available (see BZ#1424689 for more information).

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple
images into a Satellite server and manage them as part of an application life cycle. The Satellite also
acts as a registry for other container-enabled systems to use. For more details information on managing
container images, see "Managing Container Images" in the Red Hat Satellite 6 Content Management
Guide.

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an
example organization called ACME. Substitute this organization for your own Satellite 6 organization.

To pull the images from registry.access.redhat.com to our local registry, use the following
process:

1. Create a template to pull images to the local registry:

$ source ~/stackrc
(undercloud) $ openstack overcloud container image prepare \
 --namespace=rhosp12 \
 --prefix=openstack- \
 --output-images-file /home/stack/satellite_images

Use the -e option to include any environment files for optional services. See Section 5.2,
“Adding Container Images for Additional Services” in Section 5.1, “Using the Container Image
Preparation Command”.

If using Ceph Storage, include the additional parameters from Ceph Storage in Section 5.1,
“Using the Container Image Preparation Command”.

NOTE

This version of the openstack overcloud container image prepare
command targets the registry on the registry.access.redhat.com to
generate an image list. It uses different values than the openstack overcloud
container image prepare command used in a later step.

2. This creates a file called satellite_images with your container image information. You will
use this file to synchronize container images to your Satellite 6 server.

3. Remove the YAML-specific information from the satellite_images file and convert it into a
flat file containing only the list of images. The following sed commands accomplish this:

(undercloud) $ sed -i "s/- imagename: //g" ~/satellite_images
(undercloud) $ sed -i "s/:.*//g" ~/satellite_images
(undercloud) $ sed -i "1d" ~/satellite_images

CHAPTER 5. CONFIGURING CONTAINER REGISTRY DETAILS

47

https://bugzilla.redhat.com/show_bug.cgi?id=1424689#c10
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html/content_management_guide/managing_container_images

This provides a list of images that you pull into the Satellite server.

4. Copy the satellite_images file to a system that contains the Satellite 6 hammer tool.
Alternatively, use the instructions in the Hammer CLI Guide to install the hammer tool to the
undercloud.

5. Run the following hammer command to create a new product (OSP12 Containers) to your
Satellite organization:

$ hammer product create \
 --organization "ACME" \
 --name "OSP12 Containers"

This custom product will contain our images.

6. Add the base container image to the product:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP12 Containers" \
 --content-type docker \
 --url https://registry.access.redhat.com \
 --docker-upstream-name rhosp12/openstack-base \
 --name base

7. Add the overcloud container images from the satellite_images file.

$ while read IMAGE; do \
 IMAGENAME=$(echo $IMAGE | cut -d"/" -f2 | sed "s/openstack-//g" |
sed "s/:.*//g") ; \
 hammer repository create \
 --organization "ACME" \
 --product "OSP12 Containers" \
 --content-type docker \
 --url https://registry.access.redhat.com \
 --docker-upstream-name $IMAGE \
 --name $IMAGENAME ; done < satellite_images

8. synchronize the container images:

$ hammer product synchronize \
 --organization "ACME" \
 --name "OSP12 Containers"

Wait for the Satellite server to complete synchronization.

NOTE

Depending on your configuration, hammer might ask for your Satellite server
username and password. You can configure hammer to automatically login using
a configuration file. See the "Authentication" section in the Hammer CLI Guide.

9. Check the tags available for the base image:

Red Hat OpenStack Platform 12 Director Installation and Usage

48

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html-single/hammer_cli_guide/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html-single/hammer_cli_guide/#sect-CLI_Guide-Authentication

$ hammer docker tag list --repository "base" \
 --organization "ACME" \
 --product "OSP12 Containers"

This displays tags for the OpenStack Platform container images. Select a tag and note it for a
later step.

10. Return to the undercloud and generate an environment file for the images on your Satellite
server. This uses the following data:

--namespace - The URL and port of the registry on the Satellite server. The default registry
port on Red Hat Satellite is 5000. For example, --
namespace=satellite6.example.com:5000.

--prefix= - The prefix is based on the Satellite 6 organization and product name that
hosts the containers. For example, if your organization name is ACME, the prefix would be
acme-osp12_containers-.

--tag=<TAG> - The OpenStack Platform container image tag you noted earlier.

-e - Use this option to include each environment file for additional services for your
overcloud. See Section 5.2, “Adding Container Images for Additional Services” in
Section 5.1, “Using the Container Image Preparation Command” for more information.
The following is an example command for generating the environment file:

(undercloud) $ openstack overcloud container image prepare \
 --namespace=satellite6.example.com:5000 \
 --prefix=acme-osp12_containers- \
 --tag=<TAG> \
 --output-env-file=/home/stack/templates/overcloud_images.yaml

Use the following additional parameters if using Ceph Storage:

--set ceph_namespace - The URL and port of the registry on the Satellite server for the
Ceph Storage image. This should be the same as --namespace.

--set ceph_image - The name of the Ceph Storage image on the Satellite server. This
follows the same convention as the OpenStack Platform images. For example: acme-
osp12_containers-rhceph-2-rhel7.

--set ceph_tag - The Ceph Storage container image tag. Set to latest.
See Ceph Storage in Section 5.1, “Using the Container Image Preparation Command” for
more information.

NOTE

This version of the openstack overcloud container image prepare
command targets the Satellite server. It uses different values than the
openstack overcloud container image prepare command used in
a previous step.

11. This creates an overcloud_images.yaml environment file, which contains the image
locations on the Satellite server. You include this file with your deployment.

CHAPTER 5. CONFIGURING CONTAINER REGISTRY DETAILS

49

The registry configuration is ready. Continue with the instructions in Chapter 6, Configuring a Basic
Overcloud with the CLI Tools.

[1] Except for OpenStack Networking (neutron), OpenStack Block Storage (cinder), and OpenStack Shared File
System (manila). These services are not deployed in containers for Red Hat OpenStack Platform 12 by default.
Containers are available for these services as a technology preview.

Red Hat OpenStack Platform 12 Director Installation and Usage

50

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE
CLI TOOLS

This chapter provides the basic configuration steps for an OpenStack Platform environment using the
CLI tools. An overcloud with a basic configuration contains no custom features. However, you can add
advanced configuration options to this basic overcloud and customize it to your specifications using the
instructions in the Advanced Overcloud Customization guide.

For the examples in this chapter, all nodes are bare metal systems using IPMI for power management.
For more supported power management types and their options, see Appendix B, Power Management
Drivers.

Workflow

1. Create a node definition template and register blank nodes in the director.

2. Inspect hardware of all nodes.

3. Tag nodes into roles.

4. Define additional node properties.

Requirements

The director node created in Chapter 4, Installing the Undercloud

A set of bare metal machines for your nodes. The number of node required depends on the type
of overcloud you intend to create (see Section 3.1, “Planning Node Deployment Roles” for
information on overcloud roles). These machines also must comply with the requirements set for
each node type. For these requirements, see Section 2.4, “Overcloud Requirements”. These
nodes do not require an operating system. The director copies a Red Hat Enterprise Linux 7
image to each node.

One network connection for the Provisioning network, which is configured as a native VLAN. All
nodes must connect to this network and comply with the requirements set in Section 2.3,
“Networking Requirements”. The examples in this chapter use 192.168.24.0/24 as the
Provisioning subnet with the following IP address assignments:

Table 6.1. Provisioning Network IP Assignments

Node Name IP Address MAC Address IPMI IP Address

Director 192.168.24.1 aa:aa:aa:aa:aa:aa None required

Controller DHCP defined bb:bb:bb:bb:bb:bb 192.168.24.205

Compute DHCP defined cc:cc:cc:cc:cc:cc 192.168.24.206

All other network types use the Provisioning network for OpenStack services. However, you can
create additional networks for other network traffic types.

A source for container images. See Chapter 5, Configuring Container Registry Details for
instructions on how to generate an environment file containing your container image source.

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

51

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/advanced_overcloud_customization/

6.1. REGISTERING NODES FOR THE OVERCLOUD

The director requires a node definition template, which you create manually. This file
(instackenv.json) uses the JSON format file, and contains the hardware and power management
details for your nodes. For example, a template for registering two nodes might look like this:

{
 "nodes":[
 {
 "mac":[
 "bb:bb:bb:bb:bb:bb"
],
 "name":"node01",
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.205"
 },
 {
 "mac":[
 "cc:cc:cc:cc:cc:cc"
],
 "name":"node02",
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.206"
 }
]
}

This template uses the following attributes:

name

The logical name for the node.

pm_type

The power management driver to use. This example uses the IPMI driver (pxe_ipmitool), which is
the preferred driver for power management.

pm_user; pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI device.

mac

Red Hat OpenStack Platform 12 Director Installation and Usage

52

(Optional) A list of MAC addresses for the network interfaces on the node. Use only the MAC address
for the Provisioning NIC of each system.

cpu

(Optional) The number of CPUs on the node.

memory

(Optional) The amount of memory in MB.

disk

(Optional) The size of the hard disk in GB.

arch

(Optional) The system architecture.

NOTE

IPMI is the preferred supported power management driver. For more supported power
management types and their options, see Appendix B, Power Management Drivers. If
these power management drivers do not work as expected, use IPMI for your power
management.

After creating the template, save the file to the stack user’s home directory
(/home/stack/instackenv.json), then import it into the director using the following commands:

$ source ~/stackrc
(undercloud) $ openstack overcloud node import ~/instackenv.json

This imports the template and registers each node from the template into the director.

After the node registration and configuration completes, view a list of these nodes in the CLI:

(undercloud) $ openstack baremetal node list

6.2. INSPECTING THE HARDWARE OF NODES

The director can run an introspection process on each node. This process causes each node to boot an
introspection agent over PXE. This agent collects hardware data from the node and sends it back to the
director. The director then stores this introspection data in the OpenStack Object Storage (swift) service
running on the director. The director uses hardware information for various purposes such as profile
tagging, benchmarking, and manual root disk assignment.

NOTE

You can also create policy files to automatically tag nodes into profiles immediately after
introspection. For more information on creating policy files and including them in the
introspection process, see Appendix E, Automatic Profile Tagging. Alternatively, you can
manually tag nodes into profiles as per the instructions in Section 6.4, “Tagging Nodes
into Profiles”.

Run the following command to inspect the hardware attributes of each node:

(undercloud) $ openstack overcloud node introspect --all-manageable --
provide

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

53

The --all-manageable option introspects only nodes in a managed state. In this example, it
is all of them.

The --provide option resets all nodes to an available state after introspection.

Monitor the progress of the introspection using the following command in a separate terminal window:

(undercloud) $ sudo journalctl -l -u openstack-ironic-inspector -u
openstack-ironic-inspector-dnsmasq -u openstack-ironic-conductor -f

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes for bare
metal nodes.

After the introspection completes, all nodes change to an available state.

Performing Individual Node Introspection

To perform a single introspection on an available node, set the node to management mode and
perform the introspection:

(undercloud) $ openstack baremetal node manage [NODE UUID]
(undercloud) $ openstack overcloud node introspect [NODE UUID] --provide

After the introspection completes, the nodes changes to an available state.

Performing Node Introspection after Initial Introspection

After an initial introspection, all nodes should enter an available state due to the --provide option.
To perform introspection on all nodes after the initial introspection, set all nodes to a manageable state
and run the bulk introspection command

(undercloud) $ for node in $(openstack baremetal node list --fields uuid -
f value) ; do openstack baremetal node manage $node ; done
(undercloud) $ openstack overcloud node introspect --all-manageable --
provide

After the introspection completes, all nodes change to an available state.

Performing Network Introspection for Interface Information

Network introspection retrieves link layer discovery protocol (LLDP) data from network switches. The
following commands show a subset of LLDP information for all interfaces on a node, or full information
for a particular node and interface. This can be useful for troubleshooting. The director enables LLDP
data collection by default.

To get a list of interfaces on a node:

(undercloud) $ openstack baremetal introspection interface list [NODE
UUID]

For example:

Red Hat OpenStack Platform 12 Director Installation and Usage

54

(undercloud) $ openstack baremetal introspection interface list c89397b7-
a326-41a0-907d-79f8b86c7cd9
+-----------+-------------------+------------------------+-------------
------+----------------+
| Interface | MAC Address | Switch Port VLAN IDs | Switch Chassis
ID | Switch Port ID |
+-----------+-------------------+------------------------+-------------
------+----------------+
| p2p2 | 00:0a:f7:79:93:19 | [103, 102, 18, 20, 42] |
64:64:9b:31:12:00 | 510 |
| p2p1 | 00:0a:f7:79:93:18 | [101] |
64:64:9b:31:12:00 | 507 |
| em1 | c8:1f:66:c7:e8:2f | [162] |
08:81:f4:a6:b3:80 | 515 |
| em2 | c8:1f:66:c7:e8:30 | [182, 183] |
08:81:f4:a6:b3:80 | 559 |
+-----------+-------------------+------------------------+-------------
------+----------------+

To see interface data and switch port information:

(undercloud) $ openstack baremetal introspection interface show [NODE
UUID] [INTERFACE]

For example:

(undercloud) $ openstack baremetal introspection interface show c89397b7-
a326-41a0-907d-79f8b86c7cd9 p2p1
+--------------------------------------+------------------------------
--
--------------------+
| Field | Value
|
+--------------------------------------+------------------------------
--
--------------------+
| interface | p2p1
|
| mac | 00:0a:f7:79:93:18
|
| node_ident | c89397b7-a326-41a0-907d-
79f8b86c7cd9
|
| switch_capabilities_enabled | [u'Bridge', u'Router']
|
| switch_capabilities_support | [u'Bridge', u'Router']
|
| switch_chassis_id | 64:64:9b:31:12:00
|
| switch_port_autonegotiation_enabled | True
|
| switch_port_autonegotiation_support | True
|
| switch_port_description | ge-0/0/2.0
|

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

55

| switch_port_id | 507
|
| switch_port_link_aggregation_enabled | False
|
| switch_port_link_aggregation_id | 0
|
| switch_port_link_aggregation_support | True
|
| switch_port_management_vlan_id | None
|
| switch_port_mau_type | Unknown
|
| switch_port_mtu | 1514
|
| switch_port_physical_capabilities | [u'1000BASE-T fdx', u'100BASE-TX
fdx', u'100BASE-TX hdx', u'10BASE-T fdx', u'10BASE-T hdx', u'Asym and Sym
PAUSE fdx'] |
| switch_port_protocol_vlan_enabled | None
|
| switch_port_protocol_vlan_ids | None
|
| switch_port_protocol_vlan_support | None
|
| switch_port_untagged_vlan_id | 101
|
| switch_port_vlan_ids | [101]
|
| switch_port_vlans | [{u'name': u'RHOS13-PXE', u'id':
101}]
|
| switch_protocol_identities | None
|
| switch_system_name | rhos-compute-node-sw1
|
+--------------------------------------+------------------------------
--
--------------------+

Retrieving Hardware Introspection Details

The Bare Metal service hardware inspection extras (inspection_extras) is enabled by default to retrieve
hardware details. You can use these hardware details to configure your overcloud. See Configuring the
Director for details on the inspection_extras parameter in the undercloud.conf file.

For example, the numa_topology collector is part of these hardware inspection extras and includes the
following information for each NUMA node:

RAM (in kilobytes)

Physical CPU cores and their sibling threads

NICs associated with the NUMA node

Use the openstack baremetal introspection data save _UUID_ | jq .numa_topology
command to retrieve this information, with the UUID of the bare-metal node.

The following example shows the retrieved NUMA information for a bare-metal node:

Red Hat OpenStack Platform 12 Director Installation and Usage

56

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/director_installation_and_usage/chap-installing_the_undercloud#sect-Configuring_the_Director

{
 "cpus": [
 {
 "cpu": 1,
 "thread_siblings": [
 1,
 17
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 10,
 26
],
 "numa_node": 1
 },
 {
 "cpu": 0,
 "thread_siblings": [
 0,
 16
],
 "numa_node": 0
 },
 {
 "cpu": 5,
 "thread_siblings": [
 13,
 29
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 15,
 31
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 7,
 23
],
 "numa_node": 0
 },
 {
 "cpu": 1,
 "thread_siblings": [
 9,
 25
],

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

57

 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 6,
 22
],
 "numa_node": 0
 },
 {
 "cpu": 3,
 "thread_siblings": [
 11,
 27
],
 "numa_node": 1
 },
 {
 "cpu": 5,
 "thread_siblings": [
 5,
 21
],
 "numa_node": 0
 },
 {
 "cpu": 4,
 "thread_siblings": [
 12,
 28
],
 "numa_node": 1
 },
 {
 "cpu": 4,
 "thread_siblings": [
 4,
 20
],
 "numa_node": 0
 },
 {
 "cpu": 0,
 "thread_siblings": [
 8,
 24
],
 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 14,
 30
],

Red Hat OpenStack Platform 12 Director Installation and Usage

58

 "numa_node": 1
 },
 {
 "cpu": 3,
 "thread_siblings": [
 3,
 19
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 2,
 18
],
 "numa_node": 0
 }
],
 "ram": [
 {
 "size_kb": 66980172,
 "numa_node": 0
 },
 {
 "size_kb": 67108864,
 "numa_node": 1
 }
],
 "nics": [
 {
 "name": "ens3f1",
 "numa_node": 1
 },
 {
 "name": "ens3f0",
 "numa_node": 1
 },
 {
 "name": "ens2f0",
 "numa_node": 0
 },
 {
 "name": "ens2f1",
 "numa_node": 0
 },
 {
 "name": "ens1f1",
 "numa_node": 0
 },
 {
 "name": "ens1f0",
 "numa_node": 0
 },
 {
 "name": "eno4",

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

59

 "numa_node": 0
 },
 {
 "name": "eno1",
 "numa_node": 0
 },
 {
 "name": "eno3",
 "numa_node": 0
 },
 {
 "name": "eno2",
 "numa_node": 0
 }
]
}

6.3. AUTOMATICALLY DISCOVER BARE METAL NODES

You can use auto-discovery to register undercloud nodes and generate their metadata, without first
having to create an instackenv.json file. This improvement can help reduce the time spent initially
collecting the node’s information, for example, removing the need to collate the IPMI IP addresses and
subsequently create the instackenv.json.

Requirements

All overcloud nodes must have their BMCs configured to be accessible to director through the
IPMI.

All overcloud nodes must be configured to PXE boot from the NIC connected to the undercloud
control plane network.

Enable Auto-discovery

1. Bare Metal auto-discovery is enabled in undercloud.conf:

enable_node_discovery = True
discovery_default_driver = pxe_ipmitool

enable_node_discovery - When enabled, any node that boots the introspection ramdisk
using PXE will be enrolled in ironic.

discovery_default_driver - Sets the driver to use for discovered nodes. For example,
pxe_ipmitool.

2. Add your IPMI credentials to ironic:

a. Add your IPMI credentials to a file named ipmi-credentials.json. You will need to
replace the username and password values in this example to suit your environment:

[
 {
 "description": "Set default IPMI credentials",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered",

Red Hat OpenStack Platform 12 Director Installation and Usage

60

"value": true}
],
 "actions": [
 {"action": "set-attribute", "path":
"driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path":
"driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path":
"driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 }
]

3. Import the IPMI credentials file into ironic:

$ openstack baremetal introspection rule import ipmi-
credentials.json

Test Auto-discovery

1. Power on the required nodes.

2. Run openstack baremetal node list. You should see the new nodes listed in an
enrolled state:

$ openstack baremetal node list
+--------------------------------------+------+---------------+--
-----------+--------------------+-------------+
| UUID | Name | Instance UUID |
Power State | Provisioning State | Maintenance |
+--------------------------------------+------+---------------+--
-----------+--------------------+-------------+
| c6e63aec-e5ba-4d63-8d37-bd57628258e8 | None | None |
power off | enroll | False |
| 0362b7b2-5b9c-4113-92e1-0b34a2535d9b | None | None |
power off | enroll | False |
+--------------------------------------+------+---------------+--
-----------+--------------------+-------------+

3. Set the resource class for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do
openstack baremetal node set $NODE --resource-class baremetal ; done

4. Configure the kernel and ramdisk for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do
openstack baremetal node manage $NODE ; done
$ openstack overcloud node configure --all-manageable

5. Set all nodes to available:

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

61

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do
openstack baremetal node provide $NODE ; done

Use Rules to Discover Different Vendor Hardware

If you have a heterogeneous hardware environment, you can use introspection rules to assign
credentials and remote management credentials. For example, you might want a separate discovery rule
to handle your Dell nodes that use DRAC:

1. Create a file named dell-drac-rules.json, with the following contents. You will need to
replace the username and password values in this example to suit your environment:

[
 {
 "description": "Set default IPMI credentials",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value":
true},
 {"op": "ne", "field":
"data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [
 {"action": "set-attribute", "path":
"driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path":
"driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path":
"driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 },
 {
 "description": "Set the vendor driver for Dell hardware",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value":
true},
 {"op": "eq", "field":
"data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [
 {"action": "set-attribute", "path": "driver", "value":
"idrac"},
 {"action": "set-attribute", "path":
"driver_info/drac_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path":
"driver_info/drac_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path":
"driver_info/drac_address",
 "value": "{data[inventory][bmc_address]}"}

Red Hat OpenStack Platform 12 Director Installation and Usage

62

]
 }
]

2. Import the rule into ironic:

$ openstack baremetal introspection rule import dell-drac-rules.json

6.4. TAGGING NODES INTO PROFILES

After registering and inspecting the hardware of each node, you will tag them into specific profiles. These
profile tags match your nodes to flavors, and in turn the flavors are assigned to a deployment role. The
following example shows the relationship across roles, flavors, profiles, and nodes for Controller nodes:

Type Description

Role The Controller role defines how to configure
controller nodes.

Flavor The control flavor defines the hardware profile for
nodes to use as controllers. You assign this flavor to
the Controller role so the director can decide
which nodes to use.

Profile The control profile is a tag you apply to the
control flavor. This defines the nodes that belong
to the flavor.

Node You also apply the control profile tag to individual
nodes, which groups them to the control flavor
and, as a result, the director configures them using
the Controller role.

Default profile flavors compute, control, swift-storage, ceph-storage, and block-storage
are created during undercloud installation and are usable without modification in most environments.

NOTE

For a large number of nodes, use automatic profile tagging. See Appendix E, Automatic
Profile Tagging for more details.

To tag a node into a specific profile, add a profile option to the properties/capabilities
parameter for each node. For example, to tag your nodes to use Controller and Compute profiles
respectively, use the following commands:

(undercloud) $ openstack baremetal node set --property
capabilities='profile:compute,boot_option:local' 58c3d07e-24f2-48a7-bbb6-
6843f0e8ee13
(undercloud) $ openstack baremetal node set --property
capabilities='profile:control,boot_option:local' 1a4e30da-b6dc-499d-ba87-
0bd8a3819bc0

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

63

The addition of the profile:compute and profile:control options tag the two nodes into each
respective profiles.

These commands also set the boot_option:local parameter, which defines how each node boots.
Depending on your hardware, you might also need to add the boot_mode parameter to uefi so that
nodes boot using UEFI instead of the default BIOS mode. For more information, see Section D.2, “UEFI
Boot Mode”.

After completing node tagging, check the assigned profiles or possible profiles:

(undercloud) $ openstack overcloud profiles list

Custom Role Profiles

If using custom roles, you might need to create additional flavors and profiles to accommodate these new
roles. For example, to create a new flavor for a Networker role, run the following command:

(undercloud) $ openstack flavor create --id auto --ram 4096 --disk 40 --
vcpus 1 networker
(undercloud) $ openstack flavor set --property "cpu_arch"="x86_64" --
property "capabilities:boot_option"="local" --property
"capabilities:profile"="networker" networker

Assign nodes with this new profile:

(undercloud) $ openstack baremetal node set --property
capabilities='profile:networker,boot_option:local' dad05b82-0c74-40bf-
9d12-193184bfc72d

6.5. DEFINING THE ROOT DISK FOR NODES

Some nodes might use multiple disks. This means the director needs to identify the disk to use for the
root disk during provisioning.

There are several properties you can use to help the director identify the root disk:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

Red Hat OpenStack Platform 12 Director Installation and Usage

64

name (String): The name of the device, for example: /dev/sdb1.

IMPORTANT

Only use name for devices with persistent names. Do not use name to set the root disk for
other device because this value can change when the node boots.

In this example, you specify the drive to deploy the overcloud image using the serial number of the disk
to determine the root device.

Check the disk information from each node’s hardware introspection. The following command displays
the disk information from a node:

(undercloud) $ openstack baremetal introspection data save 1a4e30da-b6dc-
499d-ba87-0bd8a3819bc0 | jq ".inventory.disks"

For example, the data for one node might show three disks:

[
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sda",
 "wwn_vendor_extension": "0x1ea4dcc412a9632b",
 "wwn_with_extension": "0x61866da04f3807001ea4dcc412a9632b",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380700",
 "serial": "61866da04f3807001ea4dcc412a9632b"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdb",
 "wwn_vendor_extension": "0x1ea4e13c12e36ad6",
 "wwn_with_extension": "0x61866da04f380d001ea4e13c12e36ad6",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380d00",
 "serial": "61866da04f380d001ea4e13c12e36ad6"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdc",
 "wwn_vendor_extension": "0x1ea4e31e121cfb45",
 "wwn_with_extension": "0x61866da04f37fc001ea4e31e121cfb45",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f37fc00",
 "serial": "61866da04f37fc001ea4e31e121cfb45"
 }
]

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

65

For this example, set the root device to disk 2, which has 61866da04f380d001ea4e13c12e36ad6 as
the serial number. This requires a change to the root_device parameter for the node definition:

(undercloud) $ openstack baremetal node set --property
root_device='{"serial": "61866da04f380d001ea4e13c12e36ad6"}' 1a4e30da-
b6dc-499d-ba87-0bd8a3819bc0

NOTE

Make sure to configure the BIOS of each node to include booting from the chosen root
disk. The recommended boot order is network boot, then root disk boot.

This helps the director identify the specific disk to use as the root disk. When we initiate our overcloud
creation, the director provisions this node and writes the overcloud image to this disk.

6.6. CONFIGURE OVERCLOUD NODES TO TRUST THE UNDERCLOUD
CA

You will need to follow the following procedure if your undercloud uses TLS, and the CA is not publicly
trusted. The undercloud operates its own Certificate Authority (CA) for SSL endpoint encryption; to make
the undercloud endpoints accessible to the rest of your deployment, you will need to configure your
overcloud nodes to trust the undercloud CA. This procedure is required for new Red Hat OpenStack
Platform 12 deployments, and for upgrades from 11 to 12.

NOTE

For this approach to work, your overcloud nodes need a network route to the undercloud’s
public endpoint. It is likely that deployments that rely on spine-leaf networking will need to
apply this configuration.

Understanding undercloud certificates

There are two types of custom certificates that can be used in the undercloud: user-provided certificates,
and automatically generated certificates.

User-provided certificates - This definition applies when you have provided your own certificate.
This could be from your own CA, or it might be self-signed. This is passed using the
undercloud_service_certificate option. In this case, you will need to either trust the
self-signed certificate, or the CA (depending on your deployment).

Auto-generated certificates - This definition applies when you use certmonger to generate the
certificate using its own local CA. This is enabled using the
generate_service_certificate option. In this case, there will be a CA certificate
(/etc/pki/ca-trust/source/anchors/cm-local-ca.pem), and there will be a server
certificate used by the undercloud’s HAProxy instance. To present this certificate to OpenStack,
you will need to add the CA certificate to the inject-trust-anchor-hiera.yaml file.

Use a custom certificate in the undercloud

This example uses a self-signed certificate located in /home/stack/ca.crt.pem. If you use auto-
generated certificates, you will need to use /etc/pki/ca-trust/source/anchors/cm-local-
ca.pem instead.

Red Hat OpenStack Platform 12 Director Installation and Usage

66

1. Open the certificate file and copy only the certificate portion. Do not include the key:

$ vi /home/stack/ca.crt.pem

The certificate portion you need will look similar to this shortened example:

 -----BEGIN CERTIFICATE-----

MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNV

BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmFsZWlnaDEQMA4GA1UECgwH

UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBAMMCzE5Mi4xNjguMC4yMB4XDTE3
 -----END CERTIFICATE-----

2. Create a new YAML file called /home/stack/inject-trust-anchor-hiera.yaml with the
following contents, and include the certificate you copied from the PEM file:

parameter_defaults:
 CAMap:
 overcloud-ca:
 content: |
 -----BEGIN CERTIFICATE-----

MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNV

BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmFsZWlnaDEQMA4GA1UECgwH

UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBAMMCzE5Mi4xNjguMC4yMB4XDTE3
 -----END CERTIFICATE-----
 undercloud-ca:
 content: |
 -----BEGIN CERTIFICATE-----

MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNV

BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmFsZWlnaDEQMA4GA1UECgwH

UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBAMMCzE5Mi4xNjguMC4yMB4XDTE3
 -----END CERTIFICATE-----

NOTE

The certificate string must follow the PEM format.

The CA certificate is copied to each overcloud node during the overcloud deployment, causing it to trust
the encryption presented by the undercloud’s SSL endpoints. For more information on including
environment files, see Section 6.9, “Including Environment Files in Overcloud Creation”.

6.7. CUSTOMIZING THE OVERCLOUD WITH ENVIRONMENT FILES

The undercloud includes a set of Heat templates that acts as a plan for your overcloud creation. You can
customize aspects of the overcloud using environment files, which are YAML-formatted files that override

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

67

parameters and resources in the core Heat template collection. You can include as many environment
files as necessary. However, the order of the environment files is important as the parameters and
resources defined in subsequent environment files take precedence. Use the following list as an
example of the environment file order:

The amount of nodes per each role and their flavors. It is vital to include this information for
overcloud creation.

The location of the container images for containerized OpenStack services. This is the file
created from one of the options in Chapter 5, Configuring Container Registry Details.

Any network isolation files, starting with the initialization file (environments/network-
isolation.yaml) from the heat template collection, then your custom NIC configuration file,
and finally any additional network configurations.

Any external load balancing environment files.

Any storage environment files such as Ceph Storage, NFS, iSCSI, etc.

Any environment files for Red Hat CDN or Satellite registration.

Any other custom environment files.

It is recommended to keep your custom environment files organized in a separate directory, such as the
templates directory.

You can customize advanced features for your overcloud using the Advanced Overcloud Customization
guide.

IMPORTANT

A basic overcloud uses local LVM storage for block storage, which is not a supported
configuration. It is recommended to use an external storage solution, such as Red Hat
Ceph Storage, for block storage.

6.8. CREATING THE OVERCLOUD WITH THE CLI TOOLS

The final stage in creating your OpenStack environment is to run the openstack overcloud deploy
command to create it. Before running this command, you should familiarize yourself with key options and
how to include custom environment files.

WARNING

Do not run openstack overcloud deploy as a background process. The
overcloud creation might hang in mid-deployment if started as a background
process.

Setting Overcloud Parameters

The following table lists the additional parameters when using the openstack overcloud deploy
command.

Red Hat OpenStack Platform 12 Director Installation and Usage

68

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/advanced_overcloud_customization/

Table 6.2. Deployment Parameters

Parameter Description

--templates [TEMPLATES] The directory containing the Heat templates to
deploy. If blank, the command uses the default
template location at /usr/share/openstack-
tripleo-heat-templates/

--stack STACK The name of the stack to create or update

-t [TIMEOUT], --timeout [TIMEOUT] Deployment timeout in minutes

--libvirt-type [LIBVIRT_TYPE] Virtualization type to use for hypervisors

--ntp-server [NTP_SERVER] Network Time Protocol (NTP) server to use to
synchronize time. You can also specify multiple NTP
servers in a comma-separated list, for example: --
ntp-server
0.centos.pool.org,1.centos.pool.org.
For a high availability cluster deployment, it is
essential that your controllers are consistently
referring to the same time source. Note that a typical
environment might already have a designated NTP
time source with established practices.

--no-proxy [NO_PROXY] Defines custom values for the environment variable
no_proxy, which excludes certain hostnames from
proxy communication.

--overcloud-ssh-user
OVERCLOUD_SSH_USER

Defines the SSH user to access the overcloud nodes.
Normally SSH access occurs through the heat-
admin user.

-e [EXTRA HEAT TEMPLATE], --extra-
template [EXTRA HEAT TEMPLATE]

Extra environment files to pass to the overcloud
deployment. Can be specified more than once. Note
that the order of environment files passed to the
openstack overcloud deploy command is
important. For example, parameters from each
sequential environment file override the same
parameters from earlier environment files.

--environment-directory The directory containing environment files to include
in deployment. The command processes these
environment files in numerical, then alphabetical
order.

--validation-errors-nonfatal The overcloud creation process performs a set of pre-
deployment checks. This option exits if any non-fatal
errors occur from the pre-deployment checks. It is
advisable to use this option as any errors can cause
your deployment to fail.

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

69

--validation-warnings-fatal The overcloud creation process performs a set of pre-
deployment checks. This option exits if any non-
critical warnings occur from the pre-deployment
checks.

--dry-run Performs validation check on the overcloud but does
not actually create the overcloud.

--skip-postconfig Skip the overcloud post-deployment configuration.

--force-postconfig Force the overcloud post-deployment configuration.

--skip-deploy-identifier Skip generation of a unique identifier for the
DeployIdentifier parameter. The software
configuration deployment steps only trigger if there is
an actual change to the configuration. Use this option
with caution and only if you are confident you do not
need to run the software configuration, such as
scaling out certain roles.

--answers-file ANSWERS_FILE Path to a YAML file with arguments and parameters.

--rhel-reg Register overcloud nodes to the Customer Portal or
Satellite 6.

--reg-method Registration method to use for the overcloud nodes.
satellite for Red Hat Satellite 6 or Red Hat
Satellite 5, portal for Customer Portal.

--reg-org [REG_ORG] Organization to use for registration.

--reg-force Register the system even if it is already registered.

--reg-sat-url [REG_SAT_URL] The base URL of the Satellite server to register
overcloud nodes. Use the Satellite’s HTTP URL and
not the HTTPS URL for this parameter. For example,
use http://satellite.example.com and not
https://satellite.example.com. The overcloud creation
process uses this URL to determine whether the
server is a Red Hat Satellite 5 or Red Hat Satellite 6
server. If a Red Hat Satellite 6 server, the overcloud
obtains the katello-ca-consumer-
latest.noarch.rpm file, registers with
subscription-manager, and installs
katello-agent. If a Red Hat Satellite 5 server,
the overcloud obtains the RHN-ORG-TRUSTED-
SSL-CERT file and registers with rhnreg_ks.

Parameter Description

Red Hat OpenStack Platform 12 Director Installation and Usage

70

http://satellite.example.com
https://satellite.example.com

--reg-activation-key
[REG_ACTIVATION_KEY]

Activation key to use for registration.

Parameter Description

Some command line parameters are outdated or deprecated in favor of using Heat template parameters,
which you include in the parameter_defaults section on an environment file. The following table
maps deprecated parameters to their Heat Template equivalents.

Table 6.3. Mapping Deprecated CLI Parameters to Heat Template Parameters

Parameter Description Heat Template Parameter

--control-scale The number of Controller nodes to
scale out

ControllerCount

--compute-scale The number of Compute nodes to
scale out

ComputeCount

--ceph-storage-scale The number of Ceph Storage
nodes to scale out

CephStorageCount

--block-storage-scale The number of Cinder nodes to
scale out

BlockStorageCount

--swift-storage-scale The number of Swift nodes to
scale out

ObjectStorageCount

--control-flavor The flavor to use for Controller
nodes

OvercloudControllerFlav
or

--compute-flavor The flavor to use for Compute
nodes

OvercloudComputeFlavor

--ceph-storage-flavor The flavor to use for Ceph
Storage nodes

OvercloudCephStorageFla
vor

--block-storage-flavor The flavor to use for Cinder nodes OvercloudBlockStorageFl
avor

--swift-storage-flavor The flavor to use for Swift storage
nodes

OvercloudSwiftStorageFl
avor

--neutron-flat-networks Defines the flat networks to
configure in neutron plugins.
Defaults to "datacentre" to permit
external network creation

NeutronFlatNetworks

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

71

--neutron-physical-
bridge

An Open vSwitch bridge to create
on each hypervisor. This defaults
to "br-ex". Typically, this should
not need to be changed

HypervisorNeutronPhysic
alBridge

--neutron-bridge-
mappings

The logical to physical bridge
mappings to use. Defaults to
mapping the external bridge on
hosts (br-ex) to a physical name
(datacentre). You would use this
for the default floating network

NeutronBridgeMappings

--neutron-public-
interface

Defines the interface to bridge
onto br-ex for network nodes

NeutronPublicInterface

--neutron-network-type The tenant network type for
Neutron

NeutronNetworkType

--neutron-tunnel-types The tunnel types for the Neutron
tenant network. To specify
multiple values, use a comma
separated string

NeutronTunnelTypes

--neutron-tunnel-id-
ranges

Ranges of GRE tunnel IDs to
make available for tenant network
allocation

NeutronTunnelIdRanges

--neutron-vni-ranges Ranges of VXLAN VNI IDs to
make available for tenant network
allocation

NeutronVniRanges

--neutron-network-vlan-
ranges

The Neutron ML2 and Open
vSwitch VLAN mapping range to
support. Defaults to permitting any
VLAN on the datacentre physical
network

NeutronNetworkVLANRange
s

--neutron-mechanism-
drivers

The mechanism drivers for the
neutron tenant network. Defaults
to "openvswitch". To specify
multiple values, use a comma-
separated string

NeutronMechanismDrivers

--neutron-disable-
tunneling

Disables tunneling in case you
aim to use a VLAN segmented
network or flat network with
Neutron

No parameter mapping.

Parameter Description Heat Template Parameter

Red Hat OpenStack Platform 12 Director Installation and Usage

72

--validation-errors-
fatal

The overcloud creation process
performs a set of pre-deployment
checks. This option exits if any
fatal errors occur from the pre-
deployment checks. It is advisable
to use this option as any errors
can cause your deployment to fail.

No parameter mapping

Parameter Description Heat Template Parameter

These parameters are scheduled for removal in a future version of Red Hat OpenStack Platform.

NOTE

Run the following command for a full list of options:

(undercloud) $ openstack help overcloud deploy

6.9. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION

The -e includes an environment file to customize your overcloud. You can include as many environment
files as necessary. However, the order of the environment files is important as the parameters and
resources defined in subsequent environment files take precedence. Use the following list as an
example of the environment file order:

The amount of nodes per each role and their flavors. It is vital to include this information for
overcloud creation.

The location of the container images for containerized OpenStack services. This is the file
created from one of the options in Chapter 5, Configuring Container Registry Details.

Any network isolation files, starting with the initialization file (environments/network-
isolation.yaml) from the heat template collection, then your custom NIC configuration file,
and finally any additional network configurations.

Any external load balancing environment files.

Any storage environment files such as Ceph Storage, NFS, iSCSI, etc.

Any environment files for Red Hat CDN or Satellite registration.

Any other custom environment files.

Any environment files added to the overcloud using the -e option become part of your overcloud’s stack
definition. The following command is an example of how to start the overcloud creation with custom
environment files included:

(undercloud) $ openstack overcloud deploy --templates \
 -e /home/stack/templates/node-info.yaml\
 -e /home/stack/templates/overcloud_images.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml \
 -e /home/stack/templates/network-environment.yaml \

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

73

 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-
ansible/ceph-ansible.yaml \
 -e /home/stack/templates/ceph-custom-config.yaml \
 -e /home/stack/inject-trust-anchor-hiera.yaml \
 --ntp-server pool.ntp.org \

This command contains the following additional options:

--templates

Creates the overcloud using the Heat template collection in /usr/share/openstack-tripleo-
heat-templates as a foundation

-e /home/stack/templates/node-info.yaml

Adds an environment file to define how many nodes and which flavors to use for each role. For
example:

parameter_defaults:
 OvercloudControllerFlavor: control
 OvercloudComputeFlavor: compute
 OvercloudCephStorageFlavor: ceph-storage
 ControllerCount: 3
 ComputeCount: 3
 CephStorageCount: 3

-e /home/stack/templates/overcloud_images.yaml

Adds an environment file containing the container image sources. See Chapter 5, Configuring
Container Registry Details for more information.

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml

Adds an environment file to initialize network isolation in the overcloud deployment.

NOTE

The network-isolation.j2.yaml is the Jinja2 version of this template. The
openstack overcloud deploy command renders Jinja2 templates into a plain
YAML files. This means you need to include the resulting rendered YAML file name (in
this case, network-isolation.yaml) when you run the openstack overcloud
deploy command.

-e /home/stack/templates/network-environment.yaml

Adds an environment file to customize network isolation.

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-ansible.yaml

Adds an environment file to enable Ceph Storage services.

-e /home/stack/templates/ceph-custom-config.yaml

Adds an environment file to customize our Ceph Storage configuration.

-e /home/stack/inject-trust-anchor-hiera.yaml

Adds an environment file to install a custom certificate in the undercloud.

--ntp-server pool.ntp.org

Use an NTP server for time synchronization. This is required for keeping the Controller node cluster
in synchronization.

Red Hat OpenStack Platform 12 Director Installation and Usage

74

The director requires these environment files for re-deployment and post-deployment functions in
Chapter 9, Performing Tasks after Overcloud Creation. Failure to include these files can result in
damage to your overcloud.

If you aim to later modify the overcloud configuration, you should:

1. Modify parameters in the custom environment files and Heat templates

2. Run the openstack overcloud deploy command again with the same environment files

Do not edit the overcloud configuration directly as such manual configuration gets overridden by the
director’s configuration when updating the overcloud stack with the director.

Including an Environment File Directory

You can add a whole directory containing environment files using the --environment-directory
option. The deployment command processes the environment files in this directory in numerical, then
alphabetical order. If using this method, it is recommended to use filenames with a numerical prefix to
order how they are processed. For example:

(undercloud) $ ls -1 ~/templates
00-node-info.yaml
10-network-isolation.yaml
20-network-environment.yaml
30-storage-environment.yaml
40-rhel-registration.yaml

Run the following deployment command to include the directory:

(undercloud) $ openstack overcloud deploy --templates --environment-
directory ~/templates

Using an Answers File

An answers file is a YAML format file that simplifies the inclusion of templates and environment files. The
answers file uses the following parameters:

templates

The core Heat template collection to use. This acts as a substitute for the --templates command
line option.

environments

A list of environment files to include. This acts as a substitute for the --environment-file (-e)
command line option.

For example, an answers file might contain the following:

templates: /usr/share/openstack-tripleo-heat-templates/
environments:
 - ~/templates/00-node-info.yaml
 - ~/templates/10-network-isolation.yaml
 - ~/templates/20-network-environment.yaml
 - ~/templates/30-storage-environment.yaml
 - ~/templates/40-rhel-registration.yaml

Run the following deployment command to include the answers file:

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

75

(undercloud) $ openstack overcloud deploy --answers-file ~/answers.yaml

6.10. MANAGING OVERCLOUD PLANS

As an alternative to using the openstack overcloud deploy command, the director can also
manage imported plans.

To create a new plan, run the following command as the stack user:

(undercloud) $ openstack overcloud plan create --templates
/usr/share/openstack-tripleo-heat-templates my-overcloud

This creates a plan from the core Heat template collection in /usr/share/openstack-tripleo-
heat-templates. The director names the plan based on your input. In this example, it is my-
overcloud. The director uses this name as a label for the object storage container, the workflow
environment, and overcloud stack names.

Add parameters from environment files using the following command:

(undercloud) $ openstack overcloud parameters set my-overcloud
~/templates/my-environment.yaml

Deploy your plans using the following command:

(undercloud) $ openstack overcloud plan deploy my-overcloud

Delete existing plans using the following command:

(undercloud) $ openstack overcloud plan delete my-overcloud

NOTE

The openstack overcloud deploy command essentially uses all of these commands
to remove the existing plan, upload a new plan with environment files, and deploy the
plan.

6.11. VALIDATING OVERCLOUD TEMPLATES AND PLANS

Before executing an overcloud creation or stack update, validate your Heat templates and environment
files for any errors.

Creating a Rendered Template

The core Heat templates for the overcloud are in a Jinja2 format. To validate your templates, render a
version without Jinja2 formatting using the following commands:

(undercloud) $ openstack overcloud plan create --templates
/usr/share/openstack-tripleo-heat-templates overcloud-validation
(undercloud) $ mkdir ~/overcloud-validation
(undercloud) $ cd ~/overcloud-validation
(undercloud) $ openstack container save overcloud-validation

Red Hat OpenStack Platform 12 Director Installation and Usage

76

Use the rendered template in ~/overcloud-validation for the validation tests that follow.

Validating Template Syntax

Use the following command to validate the template syntax:

(undercloud) $ openstack orchestration template validate --show-nested --
template ~/overcloud-validation/overcloud.yaml -e ~/overcloud-
validation/overcloud-resource-registry-puppet.yaml -e [ENVIRONMENT FILE] -
e [ENVIRONMENT FILE]

NOTE

The validation requires the overcloud-resource-registry-puppet.yaml
environment file to include overcloud-specific resources. Add any additional environment
files to this command with -e option. Also include the --show-nested option to resolve
parameters from nested templates.

This command identifies any syntax errors in the template. If the template syntax validates successfully,
the output shows a preview of the resulting overcloud template.

6.12. MONITORING THE OVERCLOUD CREATION

The overcloud creation process begins and the director provisions your nodes. This process takes some
time to complete. To view the status of the overcloud creation, open a separate terminal as the stack
user and run:

(undercloud) $ source ~/stackrc
(undercloud) $ openstack stack list --nested

The openstack stack list --nested command shows the current stage of the overcloud
creation.

6.13. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your overcloud from
the director host. The director saves this file, overcloudrc, in your stack user’s home director. Run
the following command to use this file:

(undercloud) $ source ~/overcloudrc

This loads the necessary environment variables to interact with your overcloud from the director host’s
CLI. The command prompt changes to indicate this:

(overcloud) $

To return to interacting with the director’s host, run the following command:

(overcloud) $ source ~/stackrc
(undercloud) $

CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS

77

Each node in the overcloud also contains a user called heat-admin. The stack user has SSH access
to this user on each node. To access a node over SSH, find the IP address of the desired node:

(undercloud) $ openstack server list

Then connect to the node using the heat-admin user and the node’s IP address:

(undercloud) $ ssh heat-admin@192.168.24.23

6.14. COMPLETING THE OVERCLOUD CREATION

This concludes the creation of the overcloud using the command line tools. For post-creation functions,
see Chapter 9, Performing Tasks after Overcloud Creation.

Red Hat OpenStack Platform 12 Director Installation and Usage

78

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE
WEB UI

This chapter provides the basic configuration steps for an OpenStack Platform environment using the
web UI. An overcloud with a basic configuration contains no custom features. However, you can add
advanced configuration options to this basic overcloud and customize it to your specifications using the
instructions in the Advanced Overcloud Customization guide.

For the examples in this chapter, all nodes are bare metal systems using IPMI for power management.
For more supported power management types and their options, see Appendix B, Power Management
Drivers.

Workflow

1. Register blank nodes using a node definition template and manual registration.

2. Inspect hardware of all nodes.

3. Upload an overcloud plan to the director.

4. Assign nodes into roles.

Requirements

The director node created in Chapter 4, Installing the Undercloud with the UI enabled

A set of bare metal machines for your nodes. The number of node required depends on the type
of overcloud you intend to create (see Section 3.1, “Planning Node Deployment Roles” for
information on overcloud roles). These machines also must comply with the requirements set for
each node type. For these requirements, see Section 2.4, “Overcloud Requirements”. These
nodes do not require an operating system. The director copies a Red Hat Enterprise Linux 7
image to each node.

One network connection for our Provisioning network, which is configured as a native VLAN. All
nodes must connect to this network and comply with the requirements set in Section 2.3,
“Networking Requirements”.

All other network types use the Provisioning network for OpenStack services. However, you can
create additional networks for other network traffic types.

7.1. ACCESSING THE WEB UI

Users access the director’s web UI through SSL. For example, if the IP address of your undercloud is
192.168.24.1, then the address to access the UI is https://192.168.24.1. The web UI initially
presents a login screen with fields for the following:

Username - The administration user for the director. The default is admin.

Password - The password for the administration user. Run sudo hiera admin_password as
the stack user on the undercloud host terminal to find out the password.

When logging in to the UI, the UI accesses the OpenStack Identity Public API and obtains the endpoints
for the other Public API services. These services include

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI

79

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/advanced_overcloud_customization/

Component UI Purpose

OpenStack Identity (keystone) For authentication to the UI and for endpoint
discovery of other services.

OpenStack Orchestration (heat) For the status of the deployment.

OpenStack Bare Metal (ironic) For control of nodes.

OpenStack Object Storage (swift) For storage of the Heat template collection or plan
used for the overcloud creation.

OpenStack Workflow (mistral) To access and execute director tasks.

OpenStack Messaging (zaqar) A websocket-based service to find the status of
certain tasks.

The UI interacts directly with these Public APIs, which is why your client system requires access to their
endpoints. The director exposes these endpoints through SSL/TLS encrypted paths on the Public VIP
(undercloud_public_host in your undercloud.conf file). Each path corresponds to the service.
For example, https://192.168.24.2:443/keystone maps to the OpenStack Identity Public API.

If you aim to change the endpoints or use a different IP for endpoint access, the director UI reads
settings from the /var/www/openstack-tripleo-ui/dist/tripleo_ui_config.js file. This file
uses the following parameters:

Parameter Description

keystone The Public API for the OpenStack Identity
(keystone) service. The UI automatically discovers
the endpoints for the other services through this
service, which means you only need to define this
parameter. However, you can define custom URLs
for the other endpoints if necessary.

heat The Public API for the OpenStack Orchestration
(heat) service.

ironic The Public API for the OpenStack Bare Metal
(ironic) service.

swift The Public API for the OpenStack Object Storage
(swift) service.

mistral The Public API for the OpenStack Workflow
(mistral) service.

zaqar-websocket The websocket for the OpenStack Messaging
(zaqar) service.

Red Hat OpenStack Platform 12 Director Installation and Usage

80

zaqar_default_queue The messaging queue to use for the OpenStack
Messaging (zaqar) service. The default is
tripleo.

excludedLanguages The UI has been translated in multiple languages,
whcih you can select either from the login screen or
within the UI. You can exclude certain languages
based on the ITEF Language codes. The following
language codes can be excluded: de, en-GB, es,
fr, id, ja, ko-KR, tr-TR, and zh-CN.

Parameter Description

The following is an example tripleo_ui_config.js file where 192.168.24.2 is the Public VIP for
the undercloud:

window.tripleOUiConfig = {
 'keystone': 'https://192.168.24.2:443/keystone/v2.0',
 'heat': 'https://192.168.24.2:443/heat/v1/%(tenant_id)s',
 'ironic': 'https://192.168.24.2:443/ironic',
 'mistral': 'https://192.168.24.2:443/mistral/v2',
 'swift': 'https://192.168.24.2:443/swift/v1/AUTH_%(tenant_id)s',
 'zaqar-websocket': 'wss://192.168.24.2:443/zaqar',
 "zaqar_default_queue": "tripleo",
 'excludedLanguages': [],
 'loggers': ["console","zaqar"]
};

7.2. NAVIGATING THE WEB UI

The UI provides three main sections:

Plans

A menu item at the top of the UI. This page acts as the main UI section and allows you to define the
plan to use for your overcloud creation, the nodes to assign to each role, and the status of the current
overcloud. This section also provides a deployment workflow to guide you through each step of the
overcloud creation process, including setting deployment parameters and assigning your nodes to
roles.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI

81

Nodes

A menu item at the top of the UI. This page acts as a node configuration section and provides
methods for registering new nodes and introspecting registered nodes. This section also shows
information such as the power state, introspection status, provision state, and hardware information.

Clicking on the overflow menu item (the triple dots) on the right of each node displays the disk
information for the chosen node.

Red Hat OpenStack Platform 12 Director Installation and Usage

82

Validations

A panel on the right side of the page. This section provides a set of system checks for:

Pre-deployment

Post-deployment

Pre-Introspection

Pre-Upgrade

Post-Upgrade

These validation tasks run automatically at certain points in the deployment. However, you can also run
them manually. Click the Play button for a validation task you want to run. Click the title of each
validation task to run it, or click a validation title to view more information about it.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI

83

7.3. IMPORTING AN OVERCLOUD PLAN IN THE WEB UI

The director UI requires a plan before configuring the overcloud. This plan is usually a Heat template
collection, like the one on your undercloud at /usr/share/openstack-tripleo-heat-templates.
In addition, you can customize the plan to suit your hardware and environment requirements. For more
information about customizing the overcloud, see the Advanced Overcloud Customization guide.

The plan displays four main steps to configuring your overcloud:

1. Prepare Hardware - Node registration and introspection.

2. Specify Deployment Configuration - Configuring overcloud parameters and defining the
environment files to include.

3. Configure Roles and Assign Nodes - Assign nodes to roles and modify role-specific
parameters.

4. Deploy - Launch the creation of your overcloud.

The undercloud installation and configuration automatically uploads a plan. You can also import multiple
plans in the web UI. Click on the All Plans breadcrumb on the Plan screen. This displays the current
Plans listing. Change between multiple plans by clicking on a card.

Red Hat OpenStack Platform 12 Director Installation and Usage

84

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/advanced_overcloud_customization/

Click Import Plan and a window appears asking you for the following information:

Plan Name - A plain text name for the plan. For example overcloud.

Upload Type - Choose whether to upload a Tar Archive (tar.gz) or a full Local Folder (Google
Chrome only).

Plan Files - Click browser to choose the plan on your local file system.

If you need to copy the director’s Heat template collection to a client machine, archive the files and copy
them:

$ cd /usr/share/openstack-tripleo-heat-templates/
$ tar -cf ~/overcloud.tar *
$ scp ~/overcloud.tar user@10.0.0.55:~/.

Once the director UI uploads the plan, the plan appears in the Plans listing and you can now configure it.
Click on the plan card of your choice.

7.4. REGISTERING NODES IN THE WEB UI

The first step in configuring the overcloud is to register your nodes. Start the node registration process
either through:

Clicking Register Nodes under 1 Prepare Hardware on the Plan screen.

Clicking Register Nodes on the Nodes screen.

This displays the Register Nodes window.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI

85

The director requires a list of nodes for registration, which you can supply using one of two methods:

1. Uploading a node definition template - This involves clicking the Upload from File button and
selecting a file. See Section 6.1, “Registering Nodes for the Overcloud” for the syntax of the
node definition template.

2. Manually registering each node - This involves clicking Add New and providing a set of
details for the node.

The details you need to provide for manual registration include the following:

Name

A plain text name for the node. Use only RFC3986 unreserved characters.

Driver

The power management driver to use. This example uses the IPMI driver (pxe_ipmitool) but other
drivers are available. See Appendix B, Power Management Drivers for available drivers.

IPMI IP Address

The IP address of the IPMI device.

IPMI Port

The port to access the IPMI device.

IPMI Username; IPMI Password

The IPMI username and password.

Architecture

Red Hat OpenStack Platform 12 Director Installation and Usage

86

(Optional) The system architecture.

CPU count

(Optional) The number of CPUs on the node.

Memory (MB)

(Optional) The amount of memory in MB.

Disk (GB)

(Optional) The size of the hard disk in GB.

NIC MAC Addresses

A list of MAC addresses for the network interfaces on the node. Use only the MAC address for the
Provisioning NIC of each system.

NOTE

The UI also allows for registration of nodes using Dell Remote Access Controller (DRAC)
power management. These nodes use the pxe_drac driver. For more information, see
Section B.1, “Dell Remote Access Controller (DRAC)”.

After entering your node information, click Register Nodes at the bottom of the window.

The director registers the nodes. Once complete, you can use the UI to perform introspection on the
nodes.

7.5. INSPECTING THE HARDWARE OF NODES IN THE WEB UI

The director UI can run an introspection process on each node. This process causes each node to boot
an introspection agent over PXE. This agent collects hardware data from the node and sends it back to
the director. The director then stores this introspection data in the OpenStack Object Storage (swift)
service running on the director. The director uses hardware information for various purposes such as
profile tagging, benchmarking, and manual root disk assignment.

NOTE

You can also create policy files to automatically tag nodes into profiles immediately after
introspection. For more information on creating policy files and including them in the
introspection process, see Appendix E, Automatic Profile Tagging. Alternatively, you can
tag nodes into profiles through the UI. See Section 7.8, “Assigning Nodes to Roles in the
Web UI” for details on manually tagging nodes.

To start the introspection process:

1. Navigate to the Nodes screen

2. Select all nodes you aim to introspect.

3. Click Introspect Nodes

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes for bare
metal nodes.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI

87

Once the introspection process completes, select all nodes with the Provision State set to manageable
then click the Provide Nodes button. Wait until the Provision State changes to available.

The nodes are now ready to tag and provision.

7.6. TAGGING NODES INTO PROFILES IN THE WEB UI

You can assign a set of profiles to each node. Each profile corresponds to a respective flavor and roles
(see Section 6.4, “Tagging Nodes into Profiles” for more information).

The Nodes screen includes an additional menu toggle that provides extra node management actions,
such as Tag Nodes.

To tag a set of nodes:

1. Select the nodes you want to tag using the check boxes.

2. Click the menu toggle.

3. Click Tag Nodes.

4. Select an existing profile. To create a new profile, select Specify Custom Profile and enter the
name in Custom Profile.

NOTE

If you create a custom profile, you must also assign the profile tag to a new flavor.
See Section 6.4, “Tagging Nodes into Profiles” for more information on creating
new flavors.

Red Hat OpenStack Platform 12 Director Installation and Usage

88

5. Click Confirm to tag the nodes.

7.7. EDITING OVERCLOUD PLAN PARAMETERS IN THE WEB UI

The Plan screen provides a method to customize your uploaded plan. Under 2 Specify Deployment
Configuration, click the Edit Configuration link to modify your base overcloud configuration.

A window appears with two main tabs:

Overall Settings

This provides a method to include different features from your overcloud. These features are defined
in the plan’s capabilities-map.yaml file with each feature using a different environment file. For
example, under Storage you can select Storage Environment, which the plan maps to the
environments/storage-environment.yaml file and allows you to configure NFS, iSCSI, or
Ceph settings for your overcloud. The Other tab contains any environment files detected in the plan
but not listed in the capabilities-map.yaml, which is useful for adding custom environment files
included in the plan. Once you have selected the features to include, click Save Changes.

Parameters

This includes various base-level and environment file parameters for your overcloud. Once you have
modified your parameters, click Save Changes.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI

89

7.8. ASSIGNING NODES TO ROLES IN THE WEB UI

After registering and inspecting the hardware of each node, you assign them into roles from your plan.

To assign nodes to a role, scroll to the 3 Configure Roles and Assign Nodes section on the Plan
screen. Each role uses a spinner widget to assign the number of nodes to a role. The available nodes per
roles are based on the tagged nodes in Section 7.6, “Tagging Nodes into Profiles in the Web UI” .

This changes the *Count parameter for each role. For example, if you change the number of nodes in
the Controller role to 3, this sets the ControllerCount parameter to 3. You can also view and edit
these count values in the Parameters tab of the deployment configuration. See Section 7.7, “Editing
Overcloud Plan Parameters in the Web UI” for more information.

7.9. EDITING ROLE PARAMETERS IN THE WEB UI

Red Hat OpenStack Platform 12 Director Installation and Usage

90

Each node role provides a method for configuring role-specific parameters. Scroll to 3 Configure Roles
and Assign Nodes roles on the Plan screen. Click the Edit Role Parameters icon (pencil icon) next to
the role name.

A window appears that shows two main tabs:

Parameters

This includes various role specific parameters. For example, if you are editing the controller role, you
can change the default flavor for the role using the OvercloudControlFlavor parameter. Once
you have modified your role specific parameters, click Save Changes.

Services

This defines the service-specific parameters for the chosen role. The left panel shows a list of
services that you select and modify. For example, to change the time zone, click the
OS::TripleO:Services:Timezone service and change the TimeZone parameter to your desired
time zone. Once you have modified your service-specific parameters, click Save Changes.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI

91

Network Configuration

This allows you to define an IP address or subnet range for various networks in your overcloud.

IMPORTANT

Although the role’s service parameters appear in the UI, some services might be disabled
by default. You can enable these services through the instructions in Section 7.7, “Editing
Overcloud Plan Parameters in the Web UI”. See also the Composable Roles section of
the Advanced Overcloud Customization guide for information on enabling these services.

7.10. STARTING THE OVERCLOUD CREATION IN THE WEB UI

Once the overcloud plan is configured, you can start the overcloud deployment. This involves scrolling to
the 4 Deploy section and clicking Validate and Deploy.

Red Hat OpenStack Platform 12 Director Installation and Usage

92

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/advanced_overcloud_customization/

If you have not run or passed all the validations for the undercloud, a warning message appears. Make
sure that your undercloud host satisfies the requirements before running a deployment.

When you are ready to deploy, click Deploy.

The UI regularly monitors the progress of the overcloud’s creation and display a progress bar indicating
the current percentage of progress. The View detailed information link displays a log of the current
OpenStack Orchestration stacks in your overcloud.

Wait until the overcloud deployment completes.

After the overcloud creation process completes, the 4 Deploy section displays the current overcloud
status and the following details:

IP address - The IP address for accessing your overcloud.

Password - The password for the OpenStack admin user on the overcloud.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI

93

Use this information to access your overcloud.

7.11. COMPLETING THE OVERCLOUD CREATION

This concludes the creation of the overcloud through the director’s UI. For post-creation functions, see
Chapter 9, Performing Tasks after Overcloud Creation.

Red Hat OpenStack Platform 12 Director Installation and Usage

94

CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING
PRE-PROVISIONED NODES

This chapter provides the basic configuration steps for using pre-provisioned nodes to configure an
OpenStack Platform environment. This scenario differs from the standard overcloud creation scenarios
in multiple ways:

You can provision nodes using an external tool and let the director control the overcloud
configuration only.

You can use nodes without relying on the director’s provisioning methods. This is useful if
creating an overcloud without power management control or using networks with DHCP/PXE
boot restrictions.

The director does not use OpenStack Compute (nova), OpenStack Bare Metal (ironic), or
OpenStack Image (glance) for managing nodes.

Pre-provisioned nodes use a custom partitioning layout.

This scenario provides basic configuration with no custom features. However, you can add advanced
configuration options to this basic overcloud and customize it to your specifications using the instructions
in the Advanced Overcloud Customization guide.

IMPORTANT

Mixing pre-provisioned nodes with director-provisioned nodes in an overcloud is not
supported.

Requirements

The director node created in Chapter 4, Installing the Undercloud.

A set of bare metal machines for your nodes. The number of nodes required depends on the
type of overcloud you intend to create (see Section 3.1, “Planning Node Deployment Roles” for
information on overcloud roles). These machines also must comply with the requirements set for
each node type. For these requirements, see Section 2.4, “Overcloud Requirements”. These
nodes require a Red Hat Enterprise Linux 7.3 operating system.

One network connection for managing the pre-provisioned nodes. This scenario requires
uninterrupted SSH access to the nodes for orchestration agent configuration.

One network connection for the Control Plane network. There are two main scenarios for this
network:

Using the Provisioning Network as the Control Plane, which is the default scenario. This
network is usually a layer-3 (L3) routable network connection from the pre-provisioned
nodes to the director. The examples for this scenario use following IP address assignments:

Table 8.1. Provisioning Network IP Assignments

Node Name IP Address

Director 192.168.24.1

CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

95

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/advanced_overcloud_customization/

Controller 192.168.24.2

Compute 192.168.24.3

Node Name IP Address

Using a separate network. In situations where the director’s Provisioning network is a private
non-routable network, you can define IP addresses for the nodes from any subnet and
communicate with the director over the Public API endpoint. There are certain caveats to
this scenario, which this chapter examines later in Section 8.6, “Using a Separate Network
for Overcloud Nodes”.

All other network types in this example also use the Control Plane network for OpenStack
services. However, you can create additional networks for other network traffic types.

8.1. CREATING A USER FOR CONFIGURING NODES

At a later stage in this process, the director requires SSH access to the overcloud nodes as the stack
user.

1. On each overcloud node, create the user named stack and set a password on each node. For
example, use the following on the Controller node:

[root@controller ~]# useradd stack
[root@controller ~]# passwd stack # specify a password

2. Disable password requirements for this user when using sudo:

[root@controller ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a
/etc/sudoers.d/stack
[root@controller ~]# chmod 0440 /etc/sudoers.d/stack

3. Once you have created and configured the stack user on all pre-provisioned nodes, copy the
stack user’s public SSH key from the director node to each overcloud node. For example, to
copy the director’s public SSH key to the Controller node:

[stack@director ~]$ ssh-copy-id stack@192.168.24.2

8.2. REGISTERING THE OPERATING SYSTEM FOR NODES

Each node requires access to a Red Hat subscription. The following procedure shows how to register
each node to the Red Hat Content Delivery Network. Perform these steps on each node:

1. Run the registration command and enter your Customer Portal user name and password when
prompted:

[root@controller ~]# sudo subscription-manager register

2. Find the entitlement pool for the Red Hat OpenStack Platform 12:

Red Hat OpenStack Platform 12 Director Installation and Usage

96

[root@controller ~]# sudo subscription-manager list --available --
all --matches="Red Hat OpenStack"

3. Use the pool ID located in the previous step to attach the Red Hat OpenStack Platform 12
entitlements:

[root@controller ~]# sudo subscription-manager attach --pool=pool_id

4. Disable all default repositories:

[root@controller ~]# sudo subscription-manager repos --disable=*

5. Enable the required Red Hat Enterprise Linux repositories.

a. For x86_64 systems, run:

[root@controller ~]# sudo subscription-manager repos --
enable=rhel-7-server-rpms --enable=rhel-7-server-extras-rpms --
enable=rhel-7-server-rh-common-rpms --enable=rhel-ha-for-rhel-7-
server-rpms --enable=rhel-7-server-openstack-12-rpms --
enable=rhel-7-server-rhceph-2-osd-rpms --enable=rhel-7-server-
rhceph-2-mon-rpms --enable=rhel-7-server-rhceph-2-tools-rpms

b. For POWER systems, run:

[root@controller ~]# sudo subscription-manager repos --
enable=rhel-7-for-power-le-rpms --enable=rhel-7-server-openstack-
12-for-power-le-rpms

IMPORTANT

Only enable the repositories listed in Section 2.5, “Repository Requirements”.
Additional repositories can cause package and software conflicts. Do not enable
any additional repositories.

6. Update your system to ensure sure you have the latest base system packages:

[root@controller ~]# sudo yum update -y
[root@controller ~]# sudo reboot

The node is now ready to use for your overcloud.

8.3. INSTALLING THE USER AGENT ON NODES

Each pre-provisioned node uses the OpenStack Orchestration (heat) agent to communicate with the
director. The agent on each node polls the director and obtains metadata tailored to each node. This
metadata allows the agent to configure each node.

Install the initial packages for the orchestration agent on each node:

[root@controller ~]# sudo yum -y install python-heat-agent*

CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

97

8.4. CONFIGURING SSL/TLS ACCESS TO THE DIRECTOR

If the director uses SSL/TLS, the pre-provisioned nodes require the certificate authority file used to sign
the director’s SSL/TLS certificates. If using your own certificate authority, perform the following on each
overcloud node:

1. Copy the certificate authority file to the /etc/pki/ca-trust/source/anchors/ directory on
each pre-provisioned node.

2. Run the following command on each overcloud node:

[root@controller ~]# sudo update-ca-trust extract

This ensures the overcloud nodes can access the director’s Public API over SSL/TLS.

8.5. CONFIGURING NETWORKING FOR THE CONTROL PLANE

The pre-provisioned overcloud nodes obtain metadata from the director using standard HTTP requests.
This means all overcloud nodes require L3 access to either:

The director’s Control Plane network, which is the subnet defined with the network_cidr
parameter from your undercloud.conf file. The nodes either requires direct access to this
subnet or routable access to the subnet.

The director’s Public API endpoint, specified as the undercloud_public_host parameter
from your undercloud.conf file. This option is available if either you do not have an L3 route
to the Control Plane or you aim to use SSL/TLS communication when polling the director for
metadata. See Section 8.6, “Using a Separate Network for Overcloud Nodes” for additional
steps for configuring your overcloud nodes to use the Public API endpoint.

The director uses a Control Plane network to manage and configure a standard overcloud. For an
overcloud with pre-provisioned nodes, your network configuration might require some modification to
accommodate how the director communicates with the pre-provisioned nodes.

Using Network Isolation

Network isolation allows you to group services to use specific networks, including the Control Plane.
There are multiple network isolation strategies contained in the The Advanced Overcloud Customization
guide. In addition, you can also define specific IP addresses for nodes on the control plane. For more
information on isolation networks and creating predictable node placement strategies, see the following
sections in the Advanced Overcloud Customizations guide:

"Isolating Networks"

"Controlling Node Placement"

NOTE

If using network isolation, make sure your NIC templates do not include the NIC used for
undercloud access. These template can reconfigure the NIC, which can lead to
connectivity and configuration problems during deployment.

Assigning IP Addresses

If not using network isolation, you can use a single Control Plane network to manage all services. This

Red Hat OpenStack Platform 12 Director Installation and Usage

98

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/advanced_overcloud_customization/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/advanced_overcloud_customization/sect-isolating_networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/advanced_overcloud_customization/sect-controlling_node_placement

requires manual configuration of the Control Plane NIC on each node to use an IP address within the
Control Plane network range. If using the director’s Provisioning network as the Control Plane, make
sure the chosen overcloud IP addresses fall outside of the DHCP ranges for both provisioning
(dhcp_start and dhcp_end) and introspection (inspection_iprange).

During standard overcloud creation, the director creates OpenStack Networking (neutron) ports to
automatically assigns IP addresses to the overcloud nodes on the Provisioning / Control Plane network.
However, this can cause the director to assign different IP addresses to the ones manually configured for
each node. In this situation, use a predictable IP address strategy to force the director to use the pre-
provisioned IP assignments on the Control Plane.

An example of a predictable IP strategy is to use an environment file (ctlplane-assignments.yaml)
with the following IP assignments:

resource_registry:
 OS::TripleO::DeployedServer::ControlPlanePort: /usr/share/openstack-
tripleo-heat-templates/deployed-server/deployed-neutron-port.yaml

parameter_defaults:
 DeployedServerPortMap:
 controller-ctlplane:
 fixed_ips:
 - ip_address: 192.168.24.2
 subnets:
 - cidr: 24
 compute-ctlplane:
 fixed_ips:
 - ip_address: 192.168.24.3
 subnets:
 - cidr: 24

In this example, the OS::TripleO::DeployedServer::ControlPlanePort resource passes a set
of parameters to the director and defines the IP assignments of our pre-provisioned nodes. The
DeployedServerPortMap parameter defines the IP addresses and subnet CIDRs that correspond to
each overcloud node. The mapping defines:

1. The name of the assignment, which follows the format <node_hostname>-<network>. For
example: controller-ctlplane and compute-ctlplane.

2. The IP assignments, which use the following parameter patterns:

fixed_ips/ip_address - Defines the fixed IP addresses for the control plane. Use
multiple ip_address parameters in a list to define multiple IP addresses.

subnets/cidr - Defines the CIDR value for the subnet.

A later step in this chapter uses the resulting environment file (ctlplane-assignments.yaml) as part
of the openstack overcloud deploy command.

8.6. USING A SEPARATE NETWORK FOR OVERCLOUD NODES

By default, the director uses the Provisioning network as the overcloud Control Plane. However, if this
network is isolated and non-routable, nodes cannot communicate with the director’s Internal API during
configuration. In this situation, you might need to define a separate network for the nodes and configure
them to communicate with the director over the Public API.

CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

99

There are several requirements for this scenario:

The overcloud nodes must accommodate the basic network configuration from Section 8.5,
“Configuring Networking for the Control Plane”.

You must enable SSL/TLS on the director for Public API endpoint usage. For more information,
see Section 4.6, “Configuring the Director” and Appendix A, SSL/TLS Certificate Configuration.

You must define an accessible fully qualified domain name (FQDN) for director. This FQDN
must resolve to a routable IP address for the director. Use the undercloud_public_host
parameter in the undercloud.conf file to set this FQDN.

The examples in this section use IP address assignments that differ from the main scenario:

Table 8.2. Provisioning Network IP Assignments

Node Name IP Address or FQDN

Director (Internal API) 192.168.24.1 (Provisioning Network and Control
Plane)

Director (Public API) 10.1.1.1 / director.example.com

Overcloud Virtual IP 192.168.100.1

Controller 192.168.100.2

Compute 192.168.100.3

The following sections provide additional configuration for situations that require a separate network for
overcloud nodes.

Orchestration Configuration

With SSL/TLS communication enabled on the undercloud, the director provides a Public API endpoint for
most services. However, OpenStack Orchestration (heat) uses the internal endpoint as a default provider
for metadata. This means the undercloud requires some modification so overcloud nodes can access
OpenStack Orchestration on public endpoints. This modification involves changing some Puppet
hieradata on the director.

The hieradata_override in your undercloud.conf allows you to specify additional Puppet
hieradata for undercloud configuration. Use the following steps to modify hieradata relevant to
OpenStack Orchestration:

1. If you are not using a hieradata_override file already, create a new one. This example uses
one located at /home/stack/hieradata.yaml.

2. Include the following hieradata in /home/stack/hieradata.yaml:

heat_clients_endpoint_type: public
heat::engine::default_deployment_signal_transport: TEMP_URL_SIGNAL

Red Hat OpenStack Platform 12 Director Installation and Usage

100

1

This changes the endpoint type from the default internal to public and changes the
signaling method to use TempURLs from OpenStack Object Storage (swift).

3. In your undercloud.conf, set the hieradata_override parameter to the path of the
hieradata file:

hieradata_override = /home/stack/hieradata.yaml

4. Rerun the openstack overcloud install command to implement the new configuration
options.

This switches the orchestration metadata server to use URLs on the director’s Public API.

IP Address Assignments

The method for IP assignments is similar to Section 8.5, “Configuring Networking for the Control Plane”.
However, since the Control Plane is not routable from the deployed servers, you use the
DeployedServerPortMap parameter to assign IP addresses from your chosen overcloud node subnet,
including the virtual IP address to access the Control Plane. The following is a modified version of the
ctlplane-assignments.yaml environment file from Section 8.5, “Configuring Networking for the
Control Plane” that accommodates this network architecture:

resource_registry:
 OS::TripleO::DeployedServer::ControlPlanePort: /usr/share/openstack-
tripleo-heat-templates/deployed-server/deployed-neutron-port.yaml
 OS::TripleO::Network::Ports::ControlPlaneVipPort: /usr/share/openstack-
tripleo-heat-templates/deployed-server/deployed-neutron-port.yaml
 OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-

heat-templates/network/ports/noop.yaml 1

parameter_defaults:
 NeutronPublicInterface: eth1

 EC2MetadataIp: 192.168.100.1 2
 ControlPlaneDefaultRoute: 192.168.100.1
 DeployedServerPortMap:
 control_virtual_ip:
 fixed_ips:
 - ip_address: 192.168.100.1
 subnets:
 - cidr: 24
 controller0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.100.2
 subnets:
 - cidr: 24
 compute0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.100.3
 subnets:
 - cidr: 24

The RedisVipPort resource is mapped to network/ports/noop.yaml. This mapping is
because the default Redis VIP address comes from the Control Plane. In this situation, we use a
noop to disable this Control Plane mapping.

CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

101

2 The EC2MetadataIp and ControlPlaneDefaultRoute parameters are set to the value of the
Control Plane virtual IP address. The default NIC configuration templates require these parameters
and you must set them to use a pingable IP address to pass the validations performed during
deployment. Alternatively, customize the NIC configuration so they do not require these
parameters.

8.7. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES

The overcloud deployment uses the standard CLI methods from Section 6.8, “Creating the Overcloud
with the CLI Tools”. For pre-provisioned nodes, the deployment command requires some additional
options and environment files from the core Heat template collection:

--disable-validations - Disables basic CLI validations for services not used with pre-
provisioned infrastructure, otherwise the deployment will fail.

environments/deployed-server-environment.yaml - Main environment file for creating
and configuring pre-provisioned infrastructure. This environment file substitutes the
OS::Nova::Server resources with OS::Heat::DeployedServer resources.

environments/deployed-server-bootstrap-environment-rhel.yaml - Environment
file to execute a bootstrap script on the pre-provisioned servers. This script installs additional
packages and provides basic configuration for overcloud nodes.

environments/deployed-server-pacemaker-environment.yaml - Environment file for
Pacemaker configuration on pre-provisioned Controller nodes. The namespace for the
resources registered in this file use the Controller role name from deployed-
server/deployed-server-roles-data.yaml, which is ControllerDeployedServer
by default.

deployed-server/deployed-server-roles-data.yaml - An example custom roles file.
This file replicates the default roles_data.yaml but also includes the
disable_constraints: True parameter for each role. This parameter disables
orchestration constraints in the generated role templates. These constraints are for services not
used with pre-provisioned infrastructure.
If using your own custom roles file, make sure to include the disable_constraints: True
parameter with each role. For example:

- name: ControllerDeployedServer
 disable_constraints: True
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephMon
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephRgw
 ...

The following is an example overcloud deployment command with the environment files specific to the
pre-provisioned architecture:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy \
 [other arguments] \

Red Hat OpenStack Platform 12 Director Installation and Usage

102

 --disable-validations \
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-
server-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-
server-bootstrap-environment-rhel.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-
server-pacemaker-environment.yaml \
 -r /usr/share/openstack-tripleo-heat-templates/deployed-server/deployed-
server-roles-data.yaml

This begins the overcloud configuration. However, the deployment stack pauses when the overcloud
node resources enter the CREATE_IN_PROGRESS stage:

2017-01-14 13:25:13Z [overcloud.Compute.0.Compute]: CREATE_IN_PROGRESS
state changed
2017-01-14 13:25:14Z [overcloud.Controller.0.Controller]:
CREATE_IN_PROGRESS state changed

This pause is due to the director waiting for the orchestration agent on the overcloud nodes to poll the
metadata server. The next section shows how to configure nodes to start polling the metadata server.

8.8. POLLING THE METADATA SERVER

The deployment is now in progress but paused at a CREATE_IN_PROGRESS stage. The next step is to
configure the orchestration agent on the overcloud nodes to poll the metadata server on the director.
There are two ways to accomplish this:

IMPORTANT

Only use automatic configuration for the initial deployment. Do not use automatic
configuration if scaling up your nodes.

Automatic Configuration

The director’s core Heat template collection contains a script that performs automatic configuration of the
Heat agent on the overcloud nodes. The script requires you to source the stackrc file as the stack
user to authenticate with the director and query the orchestration service:

[stack@director ~]$ source ~/stackrc

In addition, the script also requires some additional environment variables to define the nodes roles and
their IP addressess. These environment variables are:

OVERCLOUD_ROLES

A space-separated list of roles to configure. These roles correlate to roles defined in your roles data
file.

[ROLE]_hosts

Each role requires an environment variable with a space-separated list of IP addresses for nodes in
the role.

The following commands demonstrate how to set these environment variables:

(undercloud) $ export OVERCLOUD_ROLES="ControllerDeployedServer

CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

103

ComputeDeployedServer"
(undercloud) $ export ControllerDeployedServer_hosts="192.168.100.2"
(undercloud) $ export ComputeDeployedServer_hosts="192.168.100.3"

Run the script to configure the orchestration agent on each overcloud node:

(undercloud) $ /usr/share/openstack-tripleo-heat-templates/deployed-
server/scripts/get-occ-config.sh

NOTE

The script accesses the pre-provisioned nodes over SSH using the same user executing
the script. In this case, the script authenticates with the stack user.

The script accomplishes the following:

Queries the director’s orchestration services for the metadata URL for each node.

Accesses the node and configures the agent on each node with its specific metadata URL.

Restarts the orchestration agent service.

Once the script completes, the overcloud nodes start polling orchestration service on the director. The
stack deployment continues.

Manual configuration

If you prefer to manually configure the orchestration agent on the pre-provisioned nodes, use the
following command to query the orchestration service on the director for each node’s metadata URL:

[stack@director ~]$ source ~/stackrc
(undercloud) $ for STACK in $(openstack stack resource list -n5 --filter
name=deployed-server -c stack_name -f value overcloud) ; do STACKID=$(echo
$STACK | cut -d '-' -f2,4 --output-delimiter " ") ; echo "== Metadata URL
for $STACKID ==" ; openstack stack resource metadata $STACK deployed-
server | jq -r '.["os-collect-config"].request.metadata_url' ; echo ; done

This displays the stack name and metadata URL for each node:

== Metadata URL for ControllerDeployedServer 0 ==
http://192.168.24.1:8080/v1/AUTH_6fce4e6019264a5b8283e7125f05b764/ov-
edServer-ts6lr4tm5p44-deployed-server-td42md2tap4g/43d302fa-d4c2-40df-
b3ac-624d6075ef27?
temp_url_sig=58313e577a93de8f8d2367f8ce92dd7be7aac3a1&temp_url_expires=214
7483586

== Metadata URL for ComputeDeployedServer 0 ==
http://192.168.24.1:8080/v1/AUTH_6fce4e6019264a5b8283e7125f05b764/ov-
edServer-wdpk7upmz3eh-deployed-server-ghv7ptfikz2j/0a43e94b-fe02-427b-
9bfe-71d2b7bb3126?
temp_url_sig=8a50d8ed6502969f0063e79bb32592f4203a136e&temp_url_expires=214
7483586

On each overcloud node:

Red Hat OpenStack Platform 12 Director Installation and Usage

104

1. Remove the existing os-collect-config.conf template. This ensures the agent does not
override our manual changes:

$ sudo /bin/rm -f /usr/libexec/os-apply-config/templates/etc/os-
collect-config.conf

2. Configure the /etc/os-collect-config.conf file to use the corresponding metadata URL.
For example, the Controller node uses the following:

[DEFAULT]
collectors=request
command=os-refresh-config
polling_interval=30

[request]
metadata_url=http://192.168.24.1:8080/v1/AUTH_6fce4e6019264a5b8283e7
125f05b764/ov-edServer-ts6lr4tm5p44-deployed-server-
td42md2tap4g/43d302fa-d4c2-40df-b3ac-624d6075ef27?
temp_url_sig=58313e577a93de8f8d2367f8ce92dd7be7aac3a1&temp_url_expir
es=2147483586

3. Save the file.

4. Restart the os-collect-config service:

[stack@controller ~]$ sudo systemctl restart os-collect-config

After you have configured and restarted them, the orchestration agents poll the director’s orchestration
service for overcloud configuration. The deployment stack continues its creation and the stack for each
node eventually changes to CREATE_COMPLETE.

8.9. MONITORING THE OVERCLOUD CREATION

The overcloud configuration process begins. This process takes some time to complete. To view the
status of the overcloud creation, open a separate terminal as the stack user and run:

[stack@director ~]$ source ~/stackrc
(undercloud) $ heat stack-list --show-nested

The heat stack-list --show-nested command shows the current stage of the overcloud creation.

8.10. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your overcloud from
the director host. The director saves this file, overcloudrc, in your stack user’s home director. Run
the following command to use this file:

(undercloud) $ source ~/overcloudrc

This loads the necessary environment variables to interact with your overcloud from the director host’s
CLI. The command prompt changes to indicate this:

CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

105

(overcloud) $

To return to interacting with the director’s host, run the following command:

(overcloud) $ source ~/stackrc
(undercloud) $

8.11. SCALING PRE-PROVISIONED NODES

The process for scaling pre-provisioned nodes is similar to the standard scaling procedures in
Chapter 10, Scaling the Overcloud. However, the process for adding new pre-provisioned nodes differs
since pre-provisioned nodes do not use the standard registration and management process from
OpenStack Bare Metal (ironic) and OpenStack Compute (nova).

Scaling Up Pre-Provisioned Nodes

When scaling up the overcloud with pre-provisioned nodes, you need to configure the orchestration
agent on each node to correspond to the director’s node count.

The general process for scaling up the nodes is:

1. Prepare the new pre-provisioned nodes as per the Requirements.

2. Scale up the nodes. See Chapter 10, Scaling the Overcloud for these instructions.

3. After executing the deployment command, wait until the director creates the new node
resources. Manually configure the pre-provisioned nodes to poll the director’s orchestration
server metadata URL as per the instructions in Section 8.8, “Polling the Metadata Server”.

Scaling Down Pre-Provisioned Nodes

When scaling down the overcloud with pre-provisioned nodes, follow the scale down instructions as
normal as shown in Chapter 10, Scaling the Overcloud.

In most scaling operations, you need to obtain the UUID value of the node to pass to openstack
overcloud node delete. To obtain this UUID, list the resources for the specific role:

$ openstack stack resource list overcloud -c physical_resource_id -c
stack_name -n5 --filter type=OS::TripleO::<RoleName>Server

Replace <RoleName> in the above command with the actual name of the role that you are scaling down.
For example, for the ComputeDeployedServer role:

$ openstack stack resource list overcloud -c physical_resource_id -c
stack_name -n5 --filter type=OS::TripleO::ComputeDeployedServerServer

Use the stack_name column in the command output to identify the UUID associated with each node.
The stack_name includes the integer value of the index of the node in the Heat resource group. For
example, in the following sample output:

+------------------------------------+--------------------------------
--+
| physical_resource_id | stack_name
|

Red Hat OpenStack Platform 12 Director Installation and Usage

106

+------------------------------------+--------------------------------
--+
294d4e4d-66a6-4e4e-9a8b-	overcloud-ComputeDeployedServer-
03ec80beda41	no7yfgnh3z7e-1-ytfqdeclwvcg
d8de016d-	overcloud-ComputeDeployedServer-
8ff9-4f29-bc63-21884619abe5	no7yfgnh3z7e-0-p4vb3meacxwn
8c59f7b1-2675-42a9-ae2c-	overcloud-ComputeDeployedServer-
2de4a066f2a9	no7yfgnh3z7e-2-mmmaayxqnf3o
+------------------------------------+--------------------------------
--+

The indices 0, 1, or 2 in the stack_name column correspond to the node order in the Heat resource
group. Pass the corresponding UUID value from the physical_resource_id column to openstack
overcloud node delete command.

Once you have removed overcloud nodes from the stack, power off these nodes. Under a standard
deployment, the bare metal services on the director control this function. However, with pre-provisioned
nodes, you should either manually shutdown these nodes or use the power management control for
each physical system. If you do not power off the nodes after removing them from the stack, they might
remain operational and reconnect as part of the overcloud environment.

After powering down the removed nodes, reprovision them back to a base operating system
configuration so that they do not unintentionally join the overcloud in the future

NOTE

Do not attempt to reuse nodes previously removed from the overcloud without first
reprovisioning them with a fresh base operating system. The scale down process only
removes the node from the overcloud stack and does not uninstall any packages.

8.12. REMOVING A PRE-PROVISIONED OVERCLOUD

Removing an entire overcloud that uses pre-provisioned nodes uses the same procedure as a standard
overcloud. See Section 9.13, “Removing the Overcloud” for more details.

After removing the overcloud, power off all nodes and reprovision them back to a base operating system
configuration.

NOTE

Do not attempt to reuse nodes previously removed from the overcloud without first
reprovisioning them with a fresh base operating system. The removal process only deletes
the overcloud stack and does not uninstall any packages.

8.13. COMPLETING THE OVERCLOUD CREATION

This concludes the creation of the overcloud using pre-provisioned nodes. For post-creation functions,
see Chapter 9, Performing Tasks after Overcloud Creation.

CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES

107

CHAPTER 9. PERFORMING TASKS AFTER OVERCLOUD
CREATION

This chapter explores some of the functions you perform after creating your overcloud of choice.

9.1. MANAGING CONTAINERIZED SERVICES

The overcloud runs most OpenStack Platform services in containers. In certain situations, you might
need to control the individual services on a host. This section provides some common docker
commands you can run on an overcloud node to manage containerized services. For more
comprehensive information on using docker to manage containers, see "Working with Docker formatted
containers" in the Getting Started with Containers guide.

NOTE

Before running these commands, check that you are logged into an overcloud node and
not running these commands on the undercloud.

Listing containers and images

To list running containers:

$ sudo docker ps

To also list stopped or failed containers, add the --all option:

$ sudo docker ps --all

To list container images:

$ sudo docker images

Inspecting container properties

To view the properties of a container or container images, use the docker inspect command. For
example, to inspect the keystone container:

$ sudo docker inspect keystone

Managing basic container operations

To restart a containerized service, use the docker restart command. For example, to restart the
keystone container:

$ sudo docker restart keystone

To stop a containerized service, use the docker stop command. For example, to stop the keystone
container:

$ sudo docker stop keystone

To start a stopped containerized service, use the docker start command. For example, to start the

Red Hat OpenStack Platform 12 Director Installation and Usage

108

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/get_started_with_docker_formatted_container_images#working_with_docker_formatted_containers

keystone container:

$ sudo docker start keystone

NOTE

Any changes to the service configuration files within the container revert after restarting
the container. This is because the container regenerates the service configuration based
upon files on the node’s local file system in /var/lib/config-data/puppet-
generated/. For example, if you edit /etc/keystone/keystone.conf within the
keystone container and restart the container, the container regenerates the configuration
using /var/lib/config-data/puppet-
generated/keystone/etc/keystone/keystone.conf on the node’s local file
system, which overwrites any the changes made within the container before the restart.

Monitoring containers

To check the logs for a containerized service, use the docker logs command. For example, to view
the logs for the keystone container:

$ sudo docker logs keystone

Accessing containers

To enter the shell for a containerized service, use the docker exec command to launch /bin/bash.
For example, to enter the shell for the keystone container:

$ sudo docker exec -it keystone /bin/bash

To enter the shell for the keystone container as the root user:

$ sudo docker exec --user 0 -it <NAME OR ID> /bin/bash

To exit from the container:

exit

For information about troubleshooting OpenStack Platform containerized services, see Section 12.7.3,
“Containerized Service Failures”.

9.2. CREATING THE OVERCLOUD TENANT NETWORK

The overcloud requires a Tenant network for instances. Source the overcloud and create an initial
Tenant network in Neutron. For example:

$ source ~/overcloudrc
(overcloud) $ openstack network create default
(overcloud) $ openstack subnet create default --network default --gateway
172.20.1.1 --subnet-range 172.20.0.0/16

This creates a basic Neutron network called default. The overcloud automatically assigns IP
addresses from this network using an internal DHCP mechanism.

CHAPTER 9. PERFORMING TASKS AFTER OVERCLOUD CREATION

109

Confirm the created network:

(overcloud) $ openstack network list
+-----------------------+-------------+-------------------------------
-------+
| id | name | subnets
|
+-----------------------+-------------+-------------------------------
-------+
| 95fadaa1-5dda-4777... | default | 7e060813-35c5-462c-a56a-
1c6f8f4f332f |
+-----------------------+-------------+-------------------------------
-------+

9.3. CREATING THE OVERCLOUD EXTERNAL NETWORK

You need to create the External network on the overcloud so that you can assign floating IP addresses
to instances.

Using a Native VLAN

This procedure assumes a dedicated interface or native VLAN for the External network.

Source the overcloud and create an External network in Neutron. For example:

$ source ~/overcloudrc
(overcloud) $ openstack network create public --external --provider-
network-type flat --provider-physical-network datacentre
(overcloud) $ openstack subnet create public --network public --dhcp --
allocation-pool start=10.1.1.51,end=10.1.1.250 --gateway 10.1.1.1 --
subnet-range 10.1.1.0/24

In this example, you create a network with the name public. The overcloud requires this specific name
for the default floating IP pool. This is also important for the validation tests in Section 9.7, “Validating the
Overcloud”.

This command also maps the network to the datacentre physical network. As a default, datacentre
maps to the br-ex bridge. Leave this option as the default unless you have used custom neutron
settings during the overcloud creation.

Using a Non-Native VLAN

If not using the native VLAN, assign the network to a VLAN using the following commands:

$ source ~/overcloudrc
(overcloud) $ openstack network create public --external --provider-
network-type vlan --provider-physical-network datacentre --provider-
segment 104
(overcloud) $ openstack subnet create public --network public --dhcp --
allocation-pool start=10.1.1.51,end=10.1.1.250 --gateway 10.1.1.1 --
subnet-range 10.1.1.0/24

The provider:segmentation_id value defines the VLAN to use. In this case, you can use 104.

Confirm the created network:

Red Hat OpenStack Platform 12 Director Installation and Usage

110

(overcloud) $ openstack network list
+-----------------------+-------------+-------------------------------
-------+
| id | name | subnets
|
+-----------------------+-------------+-------------------------------
-------+
| d474fe1f-222d-4e32... | public | 01c5f621-1e0f-4b9d-9c30-
7dc59592a52f |
+-----------------------+-------------+-------------------------------
-------+

9.4. CREATING ADDITIONAL FLOATING IP NETWORKS

Floating IP networks can use any bridge, not just br-ex, as long as you meet the following conditions:

NeutronExternalNetworkBridge is set to "''" in your network environment file.

You have mapped the additional bridge during deployment. For example, to map a new bridge
called br-floating to the floating physical network, use the following in an environment
file:

parameter_defaults:
 NeutronBridgeMappings: "datacentre:br-ex,floating:br-floating"

Create the Floating IP network after creating the overcloud:

$ source ~/overcloudrc
(overcloud) $ openstack network create ext-net --external --provider-
physical-network floating --provider-network-type vlan --provider-segment
105
(overcloud) $ openstack subnet create ext-subnet --network ext-net --dhcp
--allocation-pool start=10.1.2.51,end=10.1.2.250 --gateway 10.1.2.1 --
subnet-range 10.1.2.0/24

9.5. CREATING THE OVERCLOUD PROVIDER NETWORK

A provider network is a network attached physically to a network existing outside of the deployed
overcloud. This can be an existing infrastructure network or a network that provides external access
directly to instances through routing instead of floating IPs.

When creating a provider network, you associate it with a physical network, which uses a bridge
mapping. This is similar to floating IP network creation. You add the provider network to both the
Controller and the Compute nodes because the Compute nodes attach VM virtual network interfaces
directly to the attached network interface.

For example, if the desired provider network is a VLAN on the br-ex bridge, use the following command
to add a provider network on VLAN 201:

$ source ~/overcloudrc
(overcloud) $ openstack network create provider_network --provider-
physical-network datacentre --provider-network-type vlan --provider-
segment 201 --share

CHAPTER 9. PERFORMING TASKS AFTER OVERCLOUD CREATION

111

This command creates a shared network. It is also possible to specify a tenant instead of specifying --
share. That network will only be available to the specified tenant. If you mark a provider network as
external, only the operator may create ports on that network.

Add a subnet to a provider network if you want neutron to provide DHCP services to the tenant
instances:

(overcloud) $ openstack subnet create provider-subnet --network
provider_network --dhcp --allocation-pool
start=10.9.101.50,end=10.9.101.100 --gateway 10.9.101.254 --subnet-range
10.9.101.0/24

Other networks might require access externally through the provider network. In this situation, create a
new router so that other networks can route traffic through the provider network:

(overcloud) $ openstack router create external
(overcloud) $ openstack router set --external-gateway provider_network
external

Attach other networks to this router. For example, if you had a subnet called subnet1, you can attach it
to the router with the following commands:

(overcloud) $ openstack router add subnet external subnet1

This adds subnet1 to the routing table and allows traffic using subnet1 to route to the provider
network.

9.6. CREATING A BASIC OVERCLOUD FLAVOR

Validation steps in this guide assume that your installation contains flavors. If you have not already
created at least one flavor, use the following commands to create a basic set of default flavors that have
a range of storage and processing capability:

$ openstack flavor create m1.tiny --ram 512 --disk 0 --vcpus 1
$ openstack flavor create m1.smaller --ram 1024 --disk 0 --vcpus 1
$ openstack flavor create m1.small --ram 2048 --disk 10 --vcpus 1
$ openstack flavor create m1.medium --ram 3072 --disk 10 --vcpus 2
$ openstack flavor create m1.large --ram 8192 --disk 10 --vcpus 4
$ openstack flavor create m1.xlarge --ram 8192 --disk 10 --vcpus 8

Command options

ram

Use the ram option to define the maximum RAM for the flavor.

disk

Use the disk option to define the hard disk space for the flavor.

vcpus

Use the vcpus option to define the quantity of virtual CPUs for the flavor.

Use $ openstack flavor create --help to learn more about the openstack flavor create
command.

Red Hat OpenStack Platform 12 Director Installation and Usage

112

9.7. VALIDATING THE OVERCLOUD

The overcloud uses the OpenStack Integration Test Suite (tempest) tool set to conduct a series of
integration tests. This section provides information on preparations for running the integration tests. For
full instruction on using the OpenStack Integration Test Suite, see the OpenStack Integration Test Suite
Guide.

Before Running the Integration Test Suite

If running this test from the undercloud, ensure that the undercloud host has access to the overcloud’s
Internal API network. For example, add a temporary VLAN on the undercloud host to access the Internal
API network (ID: 201) using the 172.16.0.201/24 address:

$ source ~/stackrc
(undercloud) $ sudo ovs-vsctl add-port br-ctlplane vlan201 tag=201 -- set
interface vlan201 type=internal
(undercloud) $ sudo ip l set dev vlan201 up; sudo ip addr add
172.16.0.201/24 dev vlan201

Before running the OpenStack Integration Test Suite, check that the heat_stack_owner role exists in
your overcloud:

$ source ~/overcloudrc
(overcloud) $ openstack role list
+----------------------------------+------------------+
| ID | Name |
+----------------------------------+------------------+
| 6226a517204846d1a26d15aae1af208f | swiftoperator |
| 7c7eb03955e545dd86bbfeb73692738b | heat_stack_owner |
+----------------------------------+------------------+

If the role does not exist, create it:

(overcloud) $ openstack role create heat_stack_owner

After Running the Integration Test Suite

After completing the validation, remove any temporary connections to the overcloud’s Internal API. In this
example, use the following commands to remove the previously created VLAN on the undercloud:

$ source ~/stackrc
(undercloud) $ sudo ovs-vsctl del-port vlan201

9.8. MODIFYING THE OVERCLOUD ENVIRONMENT

Sometimes you might intend to modify the overcloud to add additional features, or change the way it
operates. To modify the overcloud, make modifications to your custom environment files and Heat
templates, then rerun the openstack overcloud deploy command from your initial overcloud
creation. For example, if you created an overcloud using Section 6.8, “Creating the Overcloud with the
CLI Tools”, you would rerun the following command:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e ~/templates/node-info.yaml \

CHAPTER 9. PERFORMING TASKS AFTER OVERCLOUD CREATION

113

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/openstack_integration_test_suite_guide/

 -e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml \
 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 --ntp-server pool.ntp.org

The director checks the overcloud stack in heat, and then updates each item in the stack with the
environment files and heat templates. It does not recreate the overcloud, but rather changes the existing
overcloud.

If you aim to include a new environment file, add it to the openstack overcloud deploy command
with a -e option. For example:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e ~/templates/new-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml \
 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 -e ~/templates/node-info.yaml \
 --ntp-server pool.ntp.org

This includes the new parameters and resources from the environment file into the stack.

IMPORTANT

It is advisable not to make manual modifications to the overcloud’s configuration as the
director might overwrite these modifications later.

9.9. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD

Use the following procedure if you have an existing OpenStack environment and aim to migrate its virtual
machines to your Red Hat OpenStack Platform environment.

Create a new image by taking a snapshot of a running server and download the image.

$ source ~/overcloudrc
(overcloud) $ openstack server image create instance_name --name
image_name
(overcloud) $ openstack image save image_name --file exported_vm.qcow2

Upload the exported image into the overcloud and launch a new instance.

(overcloud) $ openstack image create imported_image --file
exported_vm.qcow2 --disk-format qcow2 --container-format bare
(overcloud) $ openstack server create imported_instance --key-name
default --flavor m1.demo --image imported_image --nic net-id=net_id

Red Hat OpenStack Platform 12 Director Installation and Usage

114

IMPORTANT

Each VM disk has to be copied from the existing OpenStack environment and into the new
Red Hat OpenStack Platform. Snapshots using QCOW will lose their original layering
system.

9.10. MIGRATING VMS FROM AN OVERCLOUD COMPUTE NODE

In some situations, you might perform maintenance on an overcloud Compute node. To prevent
downtime, migrate the VMs on the Compute node to another Compute node in the overcloud.

The director configures all Compute nodes to provide secure migration. All Compute nodes also require
a shared SSH key to provide each host’s nova user with access to other Compute nodes during the
migration process. The director creates this key using the OS::TripleO::Services::NovaCompute
composable service. This composable service is one of the main services included on all Compute roles
by default (see "Composable Services and Custom Roles" in Advanced Overcloud Customization).

To migrate an instance:

1. From the undercloud, select a Compute Node to reboot and disable it:

$ source ~/overcloudrc
(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service set [hostname] nova-compute
--disable

2. List all instances on the Compute node:

(overcloud) $ openstack server list --host [hostname] --all-projects

3. Use one of the following commands to migrate your instances:

a. Migrate the instance to a specific host of your choice:

(overcloud) $ openstack server migrate [instance-id] --live
[target-host]--wait

b. Let nova-scheduler automatically select the target host:

(overcloud) $ nova live-migration [instance-id]

c. Live migrate all instances at once:

$ nova host-evacuate-live [hostname]

NOTE

The nova command might cause some deprecation warnings, which are safe
to ignore.

4. Wait until migration completes.

5. Confirm the migration was successful:

CHAPTER 9. PERFORMING TASKS AFTER OVERCLOUD CREATION

115

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/advanced_overcloud_customization/roles

(overcloud) $ openstack server list --host [hostname] --all-projects

6. Continue migrating instances until none remain on the chosen Compute Node.

This migrates all instances from a Compute node. You can now perform maintenance on the node
without any instance downtime. To return the Compute node to an enabled state, run the following
command:

$ source ~/overcloudrc
(overcloud) $ openstack compute service set [hostname] nova-compute --
enable

9.11. RUNNING ANSIBLE AUTOMATION

The director provides the ability to run Ansible-based automation on your OpenStack Platform
environment. The director uses the tripleo-ansible-inventory command to generate a dynamic
inventory of nodes in your environment.

IMPORTANT

The dynamic inventory tool only includes the undercloud and the default controller
and compute overcloud nodes. Other roles are not supported.

To view a dynamic inventory of nodes, run the tripleo-ansible-inventory command after
sourcing stackrc:

$ source ~/stackrc
(undercloud) $ tripleo-ansible-inventory --list

The --list option provides details on all hosts.

This outputs the dynamic inventory in a JSON format:

{"overcloud": {"children": ["controller", "compute"], "vars":
{"ansible_ssh_user": "heat-admin"}}, "controller": ["192.168.24.2"],
"undercloud": {"hosts": ["localhost"], "vars": {"overcloud_horizon_url":
"http://192.168.24.4:80/dashboard", "overcloud_admin_password":
"abcdefghijklm12345678", "ansible_connection": "local"}}, "compute":
["192.168.24.3"]}

To execute Ansible playbooks on your environment, run the ansible command and include the full path
of the dynamic inventory tool using the -i option. For example:

(undercloud) $ ansible [HOSTS] -i /bin/tripleo-ansible-inventory [OTHER
OPTIONS]

Exchange [HOSTS] for the type of hosts to use. For example:

controller for all Controller nodes

compute for all Compute nodes

Red Hat OpenStack Platform 12 Director Installation and Usage

116

overcloud for all overcloud child nodes i.e. controller and compute

undercloud for the undercloud

"*" for all nodes

Exchange [OTHER OPTIONS] for the additional Ansible options. Some useful options include:

--ssh-extra-args='-o StrictHostKeyChecking=no' to bypasses confirmation on
host key checking.

-u [USER] to change the SSH user that executes the Ansible automation. The default SSH
user for the overcloud is automatically defined using the ansible_ssh_user parameter in
the dynamic inventory. The -u option overrides this parameter.

-m [MODULE] to use a specific Ansible module. The default is command, which executes
Linux commands.

-a [MODULE_ARGS] to define arguments for the chosen module.

IMPORTANT

Ansible automation on the overcloud falls outside the standard overcloud stack. This
means subsequent execution of the openstack overcloud deploy command might
override Ansible-based configuration for OpenStack Platform services on overcloud
nodes.

9.12. PROTECTING THE OVERCLOUD FROM REMOVAL

To avoid accidental removal of the overcloud with the heat stack-delete overcloud command,
Heat contains a set of policies to restrict certain actions. Edit the /etc/heat/policy.json and find
the following parameter:

"stacks:delete": "rule:deny_stack_user"

Change it to:

"stacks:delete": "rule:deny_everybody"

Save the file.

This prevents removal of the overcloud with the heat client. To allow removal of the overcloud, revert
the policy to the original value.

9.13. REMOVING THE OVERCLOUD

The whole overcloud can be removed when desired.

Delete any existing overcloud:

$ source ~/stackrc
(undercloud) $ openstack overcloud delete overcloud

CHAPTER 9. PERFORMING TASKS AFTER OVERCLOUD CREATION

117

Confirm the deletion of the overcloud:

(undercloud) $ openstack stack list

Deletion takes a few minutes.

Once the removal completes, follow the standard steps in the deployment scenarios to recreate your
overcloud.

9.14. REVIEW THE TOKEN FLUSH INTERVAL

The Identity Service (keystone) uses a token-based system for access control against the other
OpenStack services. After a certain period, the database will accumulate a large number of unused
tokens; a default cron job flushes the token table every day. It is recommended that you monitor your
environment and adjust the token flush interval as needed.

For the overcloud, you can adjust the interval using the KeystoneCronToken values. For more
information, see the Overcloud Parameters guide.

Red Hat OpenStack Platform 12 Director Installation and Usage

118

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/overcloud_parameters/identity_keystone_parameters

CHAPTER 10. SCALING THE OVERCLOUD

WARNING

Do not use openstack server delete to remove nodes from the overcloud.
Read the procedures defined in this section to properly remove and replace nodes.

There might be situations where you need to add or remove nodes after the creation of the overcloud.
For example, you might need to add more Compute nodes to the overcloud. This situation requires
updating the overcloud.

Use the following table to determine support for scaling each node type:

Table 10.1. Scale Support for Each Node Type

Node Type Scale Up? Scale Down? Notes

Controller N N

Compute Y Y

Ceph Storage Nodes Y N You must have at least 1
Ceph Storage node from
the initial overcloud
creation.

Block Storage Nodes N N

Object Storage Nodes Y Y Requires manual ring
management, which is
described in
Section 10.6, “Replacing
Object Storage Nodes”.

IMPORTANT

Make sure to leave at least 10 GB free space before scaling the overcloud. This free
space accommodates image conversion and caching during the node provisioning
process.

10.1. ADDING ADDITIONAL NODES

To add more nodes to the director’s node pool, create a new JSON file (for example, newnodes.json)
containing the new node details to register:

{
 "nodes":[

CHAPTER 10. SCALING THE OVERCLOUD

119

 {
 "mac":[
 "dd:dd:dd:dd:dd:dd"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.207"
 },
 {
 "mac":[
 "ee:ee:ee:ee:ee:ee"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.208"
 }
]
}

See Section 6.1, “Registering Nodes for the Overcloud” for an explanation of these parameters.

Run the following command to register these nodes:

$ source ~/stackrc
(undercloud) $ openstack overcloud node import newnodes.json

After registering the new nodes, launch the introspection process for them. Use the following commands
for each new node:

(undercloud) $ openstack baremetal node manage [NODE UUID]
(undercloud) $ openstack overcloud node introspect [NODE UUID] --provide

This detects and benchmarks the hardware properties of the nodes.

After the introspection process completes, tag each new node for its desired role. For example, for a
Compute node, use the following command:

(undercloud) $ openstack baremetal node set --property
capabilities='profile:compute,boot_option:local' [NODE UUID]

Scaling the overcloud requires running the openstack overcloud deploy again with the desired
number of nodes for a role. For example, to scale to 5 Compute nodes:

(undercloud) $ openstack overcloud deploy --templates --compute-scale 5
[OTHER_OPTIONS]

Red Hat OpenStack Platform 12 Director Installation and Usage

120

This updates the entire overcloud stack. Note that this only updates the stack. It does not delete the
overcloud and replace the stack.

IMPORTANT

Make sure to include all environment files and options from your initial overcloud creation.
This includes the same scale parameters for non-Compute nodes.

10.2. REMOVING COMPUTE NODES

There might be situations where you need to remove Compute nodes from the overcloud. For example,
you might need to replace a problematic Compute node.

IMPORTANT

Before removing a Compute node from the overcloud, migrate the workload from the node
to other Compute nodes. See Section 9.10, “Migrating VMs from an Overcloud Compute
Node” for more details.

Next, disable the node’s Compute service on the overcloud. This stops the node from scheduling new
instances.

$ source ~/overcloudrc
(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service set [hostname] nova-compute --
disable

Switch back to the undercloud:

(overcloud) $ source ~/stackrc

Removing overcloud nodes requires an update to the overcloud stack in the director using the local
template files. First identify the UUID of the overcloud stack:

(undercloud) $ openstack stack list

Identify the UUIDs of the nodes to delete:

(undercloud) $ openstack server list

Run the following command to delete the nodes from the stack and update the plan accordingly:

(undercloud) $ openstack overcloud node delete --stack [STACK_UUID] --
templates -e [ENVIRONMENT_FILE] [NODE1_UUID] [NODE2_UUID] [NODE3_UUID]

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass them
here again using the -e or --environment-file option to avoid making undesired
manual changes to the overcloud.

CHAPTER 10. SCALING THE OVERCLOUD

121

IMPORTANT

Make sure the openstack overcloud node delete command runs to completion
before you continue. Use the openstack stack list command and check the
overcloud stack has reached an UPDATE_COMPLETE status.

Finally, remove the node’s Compute service:

(undercloud) $ source ~/overcloudrc
(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service delete [service-id]

And remove the node’s Open vSwitch agent:

(overcloud) $ openstack network agent list
(overcloud) $ openstack network agent delete [openvswitch-agent-id]

You are now free to remove the node from the overcloud and re-provision it for other purposes.

10.3. REPLACING COMPUTE NODES

If a Compute node fails, you can replace the node with a working one. Replacing a Compute node uses
the following process:

Migrate workload off the existing Compute node and shutdown the node. See Section 9.10,
“Migrating VMs from an Overcloud Compute Node” for this process.

Remove the Compute node from the overcloud. See Section 10.2, “Removing Compute Nodes”
for this process.

Scale out the overcloud with a new Compute node. See Section 10.1, “Adding Additional Nodes”
for this process.

This process ensures that a node can be replaced without affecting the availability of any instances.

10.4. REPLACING CONTROLLER NODES

In certain circumstances a Controller node in a high availability cluster might fail. In these situations, you
must remove the node from the cluster and replace it with a new Controller node. This also includes
ensuring the node connects to the other nodes in the cluster.

This section provides instructions on how to replace a Controller node. The process involves running the
openstack overcloud deploy command to update the overcloud with a request to replace a
controller node. Note that this process is not completely automatic; during the overcloud stack update
process, the openstack overcloud deploy command will at some point report a failure and halt the
overcloud stack update. At this point, the process requires some manual intervention. Then the
openstack overcloud deploy process can continue.

IMPORTANT

The following procedure only applies to high availability environments. Do not use this
procedure if only using one Controller node.

Red Hat OpenStack Platform 12 Director Installation and Usage

122

10.4.1. Preliminary Checks

Before attempting to replace an overcloud Controller node, it is important to check the current state of
your Red Hat OpenStack Platform environment. Checking the current state can help avoid complications
during the Controller replacement process. Use the following list of preliminary checks to determine if it
is safe to perform a Controller node replacement. Run all commands for these checks on the undercloud.

1. Check the current status of the overcloud stack on the undercloud:

$ source stackrc
(undercloud) $ openstack stack list --nested

The overcloud stack and its subsequent child stacks should have either a CREATE_COMPLETE
or UPDATE_COMPLETE.

2. Perform a backup of the undercloud databases:

(undercloud) $ mkdir /home/stack/backup
(undercloud) $ sudo mysqldump --all-databases --quick --single-
transaction | gzip > /home/stack/backup/dump_db_undercloud.sql.gz

3. Check your undercloud contains 10 GB free storage to accommodate for image caching and
conversion when provisioning the new node.

4. Check the status of Pacemaker on the running Controller nodes. For example, if 192.168.0.47 is
the IP address of a running Controller node, use the following command to get the Pacemaker
status:

(undercloud) $ ssh heat-admin@192.168.0.47 'sudo pcs status'

The output should show all services running on the existing nodes and stopped on the failed
node.

5. Check the following parameters on each node of the overcloud’s MariaDB cluster:

wsrep_local_state_comment: Synced

wsrep_cluster_size: 2

Use the following command to check these parameters on each running Controller node
(respectively using 192.168.0.47 and 192.168.0.46 for IP addresses):

(undercloud) $ for i in 192.168.0.47 192.168.0.46 ; do echo "***
$i ***" ; ssh heat-admin@$i "sudo mysql -p\$(sudo hiera -c
/etc/puppet/hiera.yaml mysql::server::root_password) --
execute=\"SHOW STATUS LIKE 'wsrep_local_state_comment'; SHOW
STATUS LIKE 'wsrep_cluster_size';\""; done

6. Check the RabbitMQ status. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to get the status

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo docker exec \$(sudo
docker ps -f name=rabbitmq-bundle -q) rabbitmqctl cluster_status"

The running_nodes key should only show the two available nodes and not the failed node.

CHAPTER 10. SCALING THE OVERCLOUD

123

7. Disable fencing, if enabled. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to disable fencing:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs property set
stonith-enabled=false"

Check the fencing status with the following command:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs property show
stonith-enabled"

8. Check the nova-compute service on the director node:

(undercloud) $ sudo systemctl status openstack-nova-compute
(undercloud) $ openstack hypervisor list

The output should show all non-maintenance mode nodes as up.

9. Make sure all undercloud services are running:

(undercloud) $ sudo systemctl -t service

10.4.2. Removing a Ceph Monitor Daemon

This procedure removes a ceph-mon daemon from the storage cluster. If your Controller node is
running a Ceph monitor service, complete the following steps to remove the ceph-mon daemon. This
procedure assumes the Controller is reachable.

NOTE

A new Ceph monitor daemon will be added after a new Controller is added to the cluster.

1. Connect to the controller to be replaced and become root:

ssh heat-admin@192.168.0.47
sudo su -

NOTE

If the controller is unreachable, skip steps 1 and 2 and continue the procedure at
step 3 on any working controller node.

2. As root, stop the monitor:

systemctl stop ceph-mon@<monitor_hostname>

For example:

systemctl stop ceph-mon@overcloud-controller-2

3. Remove the monitor from the cluster:

Red Hat OpenStack Platform 12 Director Installation and Usage

124

ceph mon remove <mon_id>

4. On the Ceph monitor node, remove the monitor entry from /etc/ceph/ceph.conf. For
example, if you remove controller-2, then remove the IP and hostname for controller-2.
Before:

mon host = 172.18.0.21,172.18.0.22,172.18.0.24
mon initial members = overcloud-controller-2,overcloud-controller-
1,overcloud-controller-0

After:

mon host = 172.18.0.22,172.18.0.24
mon initial members = overcloud-controller-1,overcloud-controller-0

5. Apply the same change to /etc/ceph/ceph.conf on the other overcloud nodes.

NOTE

The ceph.conf file is updated on the relevant overcloud nodes by director when
the replacement controller node is added. Normally, this configuration file is
managed only by director and should not be manually edited, but it is edited in
this step to ensure consistency in case the other nodes restart before the new
node is added.

6. Optionally, archive the monitor data and save it on another server:

mv /var/lib/ceph/mon/<cluster>-<daemon_id>
/var/lib/ceph/mon/removed-<cluster>-<daemon_id>

10.4.3. Node Replacement

Identify the index of the node to remove. The node index is the suffix on the instance name from nova
list output.

(undercloud) $ openstack server list
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
861408be-4027-4f53-87a6-cd3cf206ba7a	overcloud-compute-0
0966e9ae-f553-447a-9929-c4232432f718	overcloud-compute-1
9c08fa65-b38c-4b2e-bd47-33870bff06c7	overcloud-compute-2
a7f0f5e1-e7ce-4513-ad2b-81146bc8c5af	overcloud-controller-0
cfefaf60-8311-4bc3-9416-6a824a40a9ae	overcloud-controller-1
97a055d4-aefd-481c-82b7-4a5f384036d2	overcloud-controller-2
+--------------------------------------+------------------------+

In this example, the aim is to remove the overcloud-controller-1 node and replace it with
overcloud-controller-3. First, set the node into maintenance mode so the director does not
reprovision the failed node. Correlate the instance ID from nova list with the node ID from
openstack baremetal node list

CHAPTER 10. SCALING THE OVERCLOUD

125

(undercloud) $ openstack baremetal node list
+--------------------------------------+------+-----------------------
---------------+
| UUID | Name | Instance UUID
|
+--------------------------------------+------+-----------------------
---------------+
| 36404147-7c8a-41e6-8c72-a6e90afc7584 | None | 7bee57cf-4a58-4eaf-b851-
2a8bf6620e48 |
| 91eb9ac5-7d52-453c-a017-c0e3d823efd0 | None | None
|
| 75b25e9a-948d-424a-9b3b-f0ef70a6eacf | None | None
|
| 038727da-6a5c-425f-bd45-fda2f4bd145b | None | 763bfec2-9354-466a-ae65-
2401c13e07e5 |
| dc2292e6-4056-46e0-8848-d6e96df1f55d | None | 2017b481-706f-44e1-852a-
2ee857c303c4 |
| c7eadcea-e377-4392-9fc3-cf2b02b7ec29 | None | 5f73c7d7-4826-49a5-b6be-
8bfd558f3b41 |
| da3a8d19-8a59-4e9d-923a-6a336fe10284 | None | cfefaf60-8311-4bc3-9416-
6a824a40a9ae |
| 807cb6ce-6b94-4cd1-9969-5c47560c2eee | None | c07c13e6-a845-4791-9628-
260110829c3a |
+--------------------------------------+------+-----------------------
---------------+

Set the node into maintenance mode:

(undercloud) $ openstack baremetal node maintenance set da3a8d19-8a59-
4e9d-923a-6a336fe10284

Tag the new node with the control profile.

(undercloud) $ openstack baremetal node set --property
capabilities='profile:control,boot_option:local' 75b25e9a-948d-424a-9b3b-
f0ef70a6eacf

The overcloud’s database must continue running during the replacement procedure. To ensure
Pacemaker does not stop Galera during this procedure, select a running Controller node and run the
following command on the undercloud using the Controller node’s IP address:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs resource unmanage
galera"

Create a YAML file (~/templates/remove-controller.yaml) that defines the node index to
remove:

parameters:
 ControllerRemovalPolicies:
 [{'resource_list': ['1']}]

Red Hat OpenStack Platform 12 Director Installation and Usage

126

NOTE

You can speed up the replacement process by reducing the number for tries for settle in
Corosync. Include the CorosyncSettleTries parameter in the
~/templates/remove-controller.yaml environment file:

parameter_defaults:
 CorosyncSettleTries: 5

After identifying the node index, redeploy the overcloud and include the remove-controller.yaml
environment file:

(undercloud) $ openstack overcloud deploy --templates --control-scale 3 -e
~/templates/remove-controller.yaml [OTHER OPTIONS]

If you passed any extra environment files or options when you created the overcloud, pass them again
here to avoid making undesired changes to the overcloud.

However, note that the -e ~/templates/remove-controller.yaml is only required once in this
instance.

The director removes the old node, creates a new one, and updates the overcloud stack. You can check
the status of the overcloud stack with the following command:

(undercloud) $ openstack stack list --nested

10.4.4. Manual Intervention

During the ControllerNodesPostDeployment stage, the overcloud stack update halts with an
UPDATE_FAILED error at ControllerDeployment_Step1. This is because some Puppet modules do
not support nodes replacement. This point in the process requires some manual intervention. Follow
these configuration steps:

1. Get a list of IP addresses for the Controller nodes. For example:

(undercloud) $ openstack server list -c Name -c Networks
+------------------------+-----------------------+
| Name | Networks |
+------------------------+-----------------------+
overcloud-compute-0	ctlplane=192.168.0.44
overcloud-controller-0	ctlplane=192.168.0.47
overcloud-controller-2	ctlplane=192.168.0.46
overcloud-controller-3	ctlplane=192.168.0.48
+------------------------+-----------------------+

2. Delete the failed node from the Corosync configuration on each node and restart Corosync. For
this example, log into overcloud-controller-0 and overcloud-controller-2 and run
the following commands:

(undercloud) $ for NAME in overcloud-controller-0 overcloud-
controller-2; do IP=$(openstack server list -c Networks -f value --
name $NAME | cut -d "=" -f 2) ; ssh heat-admin@$IP "sudo pcs cluster

CHAPTER 10. SCALING THE OVERCLOUD

127

localnode remove overcloud-controller-1; sudo pcs cluster reload
corosync"; done

3. Log into one of the remaining nodes and delete the node from the cluster with the crm_node
command:

(undercloud) $ ssh heat-admin@192.168.0.47
[heat-admin@overcloud-controller-0 ~]$ sudo crm_node -R overcloud-
controller-1 --force

Stay logged into this node.

4. Delete the failed node from the RabbitMQ cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo docker exec -it $(sudo
docker ps -f name=rabbitmq-bundle -q) rabbitmqctl
forget_cluster_node rabbit@overcloud-controller-1

5. Update list of nodes in the Galera cluster and refresh the cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource update
galera cluster_host_map="overcloud-controller-0:overcloud-
controller-0.internalapi.localdomain;overcloud-controller-
3:overcloud-controller-3.internalapi.localdomain;overcloud-
controller-2:overcloud-controller-2.internalapi.localdomain"
wsrep_cluster_address="gcomm://overcloud-controller-
0.internalapi.localdomain,overcloud-controller-
3.internalapi.localdomain,overcloud-controller-
2.internalapi.localdomain"
[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource cleanup
galera
[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource manage
galera

6. Add the new node to the cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster node add
overcloud-controller-3

7. Start the new Controller node:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster start
overcloud-controller-3

The manual configuration is complete. Stay logged into the Controller.

Open a new terminal and re-run the overcloud deployment command to continue the stack update:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates --control-scale 3
[OTHER OPTIONS]

Red Hat OpenStack Platform 12 Director Installation and Usage

128

IMPORTANT

If you passed any extra environment files or options when you created the overcloud,
pass them again here to avoid making undesired changes to the overcloud. However, note
that the remove-controller.yaml file is no longer needed.

10.4.5. Finalizing Overcloud Services

After the overcloud stack update completes, set the appropriate cluster node properties to allow
pacemaker to run controller services on the newly added controller node. On one of the existing
controller nodes (For example, overcloud-controller-0) run the following:

[heat-admin@overcloud-controller-0 ~]$ for i in $(sudo pcs property | grep
overcloud-controller-0: | cut -d' ' -f 3- | tr ' ' '\n' | grep role); do
sudo pcs property set --node overcloud-controller-3 $i; done

From that point onward, the services managed by pacemaker start on the newly added controller node.

Perform a final status check to make sure services are running correctly:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs status

NOTE

If any services have failed, use the pcs resource cleanup command to restart them
after resolving them.

Exit to the director

[heat-admin@overcloud-controller-0 ~]$ exit

10.4.6. Finalizing L3 Agent Router Hosting

Source the overcloudrc file so that you can interact with the overcloud. Check your routers to make
sure the L3 agents are properly hosting the routers in your overcloud environment. In this example, we
use a router with the name r1:

$ source ~/overcloudrc
(overcloud) $ neutron l3-agent-list-hosting-router r1

This list might still show the old node instead of the new node. To replace it, list the L3 network agents in
your environment:

(overcloud) $ neutron agent-list | grep "neutron-l3-agent"

Identify the UUID for the agents on the new node and the old node. Add the router to the agent on the
new node and remove the router from old node. For example:

(overcloud) $ neutron l3-agent-router-add fd6b3d6e-7d8c-4e1a-831a-
4ec1c9ebb965 r1
(overcloud) $ neutron l3-agent-router-remove b40020af-c6dd-4f7a-b426-
eba7bac9dbc2 r1

CHAPTER 10. SCALING THE OVERCLOUD

129

Perform a final check on the router and make all are active:

(overcloud) $ neutron l3-agent-list-hosting-router r1

Delete the existing Neutron agents that point to old Controller node. For example:

(overcloud) $ neutron agent-list -F id -F host | grep overcloud-
controller-1
| ddae8e46-3e8e-4a1b-a8b3-c87f13c294eb | overcloud-controller-
1.localdomain |
(overcloud) $ neutron agent-delete ddae8e46-3e8e-4a1b-a8b3-c87f13c294eb

10.4.7. Finalizing Compute Services

Compute services for the removed node still exist in the overcloud and require removal. Source the
overcloudrc file so that you can interact with the overcloud. Check the compute services for the
removed node:

[stack@director ~]$ source ~/overcloudrc
(overcloud) $ openstack compute service list --host overcloud-controller-
1.localdomain

Remove the compute services for the removed node:

(overcloud) $ for SERVICE in $(openstack compute service list --host
overcloud-controller-1.localdomain -f value -c ID) ; do openstack compute
service delete $SERVICE ; done

10.4.8. Conclusion

The failed Controller node and its related services are now replaced with a new node.

IMPORTANT

If you disabled automatic ring building for Object Storage, like in Section 10.6, “Replacing
Object Storage Nodes”, you need to manually build the Object Storage ring files for the
new node. See Section 10.6, “Replacing Object Storage Nodes” for more information on
manually building ring files.

10.5. REPLACING CEPH STORAGE NODES

The director provides a method to replace Ceph Storage nodes in a director-created cluster. You can
find these instructions in the Deploying an Overcloud with Containerized Red Hat Ceph guide.

10.6. REPLACING OBJECT STORAGE NODES

This section describes how to replace Object Storage nodes while maintaining the integrity of the cluster.
In this example, we have a two-node Object Storage cluster where the node overcloud-
objectstorage-1 needs to be replaced. Our aim is to add one more node, then remove overcloud-
objectstorage-1 (effectively replacing it).

Red Hat OpenStack Platform 12 Director Installation and Usage

130

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/

1. Create an environment file called ~/templates/swift-upscale.yaml with the following content:

parameter_defaults:
 ObjectStorageCount: 3

The ObjectStorageCount defines how many Object Storage nodes in our environment. In
this situation, we scale from 2 to 3 nodes.

2. Include the swift-upscale.yaml file with the rest of your overcloud’s environment files
(ENVIRONMENT_FILES) as part of the openstack overcloud deploy:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates
ENVIRONMENT_FILES -e swift-upscale.yaml

NOTE

Add swift-upscale.yaml to the end of the environment file list so its
parameters supersede previous environment file parameters.

After redeployment completes, the overcloud now contains an additional Object Storage node.

3. Data now needs to be replicated to the new node. Before removing a node (in this case,
overcloud-objectstorage-1) you should wait for a replication pass to finish on the new
node. You can check the replication pass progress in /var/log/swift/swift.log. When
the pass finishes, the Object Storage service should log entries similar to the following:

Mar 29 08:49:05 localhost object-server: Object replication
complete.
Mar 29 08:49:11 localhost container-server: Replication run OVER
Mar 29 08:49:13 localhost account-server: Replication run OVER

4. To remove the old node from the ring, reduce the ObjectStorageCount in swift-
upscale.yaml to the omit the old ring. In this case, we reduce it to 2:

parameter_defaults:
 ObjectStorageCount: 2

5. Create a new environment file named remove-object-node.yaml. This file will identify and
remove the specified Object Storage node. The following content specifies the removal of
overcloud-objectstorage-1:

parameter_defaults:
 ObjectStorageRemovalPolicies:
 [{'resource_list': ['1']}]

6. Include both environment files with the deployment command:

(undercloud) $ openstack overcloud deploy --templates
ENVIRONMENT_FILES -e swift-upscale.yaml -e remove-object-node.yaml
...

CHAPTER 10. SCALING THE OVERCLOUD

131

The director deletes the Object Storage node from the overcloud and updates the rest of the nodes on
the overcloud to accommodate the node removal.

10.7. BLACKLISTING NODES

You can exclude overcloud nodes from receiving an updated deployment. This is useful in scenarios
where you aim to scale new node while excluding existing nodes from receiving an updated set of
parameters and resources from the core Heat template collection. In other words, the blacklisted nodes
are isolated from the effects of the stack operation.

Use the DeploymentServerBlacklist parameter in an environment file to create a blacklist.

Setting the Blacklist

The DeploymentServerBlacklist parameter is a list of server names. Write a new environment file,
or add the parameter value to an existing custom environment file and pass the file to the deployment
command:

parameter_defaults:
 DeploymentServerBlacklist:
 - overcloud-compute-0
 - overcloud-compute-1
 - overcloud-compute-2

NOTE

The server names in the parameter value are the names according to OpenStack
Orchestration (heat), not the actual server hostnames.

Include this environment file with your openstack overcloud deploy command. For example:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e server-blacklist.yaml \
 [OTHER OPTIONS]

Heat blacklists any servers in the list from receiving updated Heat deployments. After the stack operation
completes, any blacklisted servers remain unchanged. You can also power off or stop the os-
collect-config agents during the operation.

Red Hat OpenStack Platform 12 Director Installation and Usage

132

WARNING

Exercise caution when blacklisting nodes. Only use a blacklist if you fully
understand how to apply the requested change with a blacklist in effect. It is
possible create a hung stack or configure the overcloud incorrectly using the
blacklist feature. For example, if a cluster configuration changes applies to
all members of a Pacemaker cluster, blacklisting a Pacemaker cluster
member during this change can cause the cluster to fail.

Do not use the blacklist during update or upgrade procedures. Those
procedures have their own methods for isolating changes to particular
servers. See the Upgrading Red Hat OpenStack Platform documentation for
more information.

When adding servers to the blacklist, further changes to those nodes are
not supported until the server is removed from the blacklist. This includes
updates, upgrades, scale up, scale down, and node replacement.

Clearing the Blacklist

To clear the blacklist for subsequent stack operations, edit the DeploymentServerBlacklist to use
an empty array:

parameter_defaults:
 DeploymentServerBlacklist: []

WARNING

Do not just omit the DeploymentServerBlacklist parameter. If you omit the
parameter, the overcloud deployment uses the previously saved value.

CHAPTER 10. SCALING THE OVERCLOUD

133

CHAPTER 11. REBOOTING NODES
Some situations require a reboot of nodes in the undercloud and overcloud. The following procedures
show how to reboot different node types. Be aware of the following notes:

If rebooting all nodes in one role, it is advisable to reboot each node individually. This helps
retain services for that role during the reboot.

If rebooting all nodes in your OpenStack Platform environment, use the following list to guide the
reboot order:

Recommended Node Reboot Order

1. Reboot the director

2. Reboot Controller nodes

3. Reboot Ceph Storage nodes

4. Reboot Compute nodes

5. Reboot object Storage nodes

11.1. REBOOTING THE DIRECTOR

To reboot the director node, follow this process:

1. Reboot the node:

$ sudo reboot

2. Wait until the node boots.

3. Check the status of all services:

$ sudo systemctl list-units "openstack*" "neutron*" "openvswitch*"

NOTE

It might take approximately 10 minutes for the openstack-nova-compute to
become active after a reboot.

4. Verify the existence of your overcloud and its nodes:

$ source ~/stackrc
$ openstack server list
$ openstack baremetal node list
$ openstack stack list

11.2. REBOOTING CONTROLLER NODES

To reboot the Controller nodes, follow this process:

Red Hat OpenStack Platform 12 Director Installation and Usage

134

1. Select a node to reboot. Log into it and stop the cluster before rebooting:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster stop

2. Reboot the cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo reboot

The remaining Controller Nodes in the cluster retain the high availability services during the
reboot.

3. Wait until the node boots.

4. Re-enable the cluster for the node:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster start

5. Log into the node and check the cluster status:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs status

The node rejoins the cluster.

NOTE

If any services fail after the reboot, run sudo pcs resource cleanup, which cleans the
errors and sets the state of each resource to Started. If any errors persist, contact Red
Hat and request guidance and assistance.

1. Check all containers on the Controller Node are active:

[heat-admin@overcloud-controller-0 ~]$ sudo docker ps

2. Log out of the node, select the next Controller Node to reboot, and repeat this procedure until
you have rebooted all Controller Nodes.

11.3. REBOOTING CEPH STORAGE NODES

To reboot the Ceph Storage nodes, follow this process:

1. Log into a Ceph MON or Controller node and disable Ceph Storage cluster rebalancing
temporarily:

$ sudo ceph osd set noout
$ sudo ceph osd set norebalance

2. Select the first Ceph Storage node to reboot and log into it.

3. Reboot the node:

$ sudo reboot

CHAPTER 11. REBOOTING NODES

135

4. Wait until the node boots.

5. Log into the node and check the cluster status:

$ sudo ceph -s

Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph storage nodes.

7. When complete, log into a Ceph MON or Controller node and enable cluster rebalancing again:

$ sudo ceph osd unset noout
$ sudo ceph osd unset norebalance

8. Perform a final status check to verify the cluster reports HEALTH_OK:

$ sudo ceph status

11.4. REBOOTING COMPUTE NODES

Reboot each Compute node individually and ensure zero downtime of instances in your OpenStack
Platform environment. This involves the following workflow:

1. Select a Compute node to reboot

2. Migrate its instances to another Compute node

3. Reboot the empty Compute node

List all Compute nodes and their UUIDs:

$ source ~/stackrc
(undercloud) $ openstack server list --name compute

Select a Compute node to reboot and first migrate its instances using the following process:

1. From the undercloud, select a Compute Node to reboot and disable it:

$ source ~/overcloudrc
(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service set [hostname] nova-compute
--disable

2. List all instances on the Compute node:

(overcloud) $ openstack server list --host [hostname] --all-projects

3. Use one of the following commands to migrate your instances:

a. Migrate the instance to a specific host of your choice:

Red Hat OpenStack Platform 12 Director Installation and Usage

136

(overcloud) $ openstack server migrate [instance-id] --live
[target-host]--wait

b. Let nova-scheduler automatically select the target host:

(overcloud) $ nova live-migration [instance-id]

c. Live migrate all instances at once:

$ nova host-evacuate-live [hostname]

NOTE

The nova command might cause some deprecation warnings, which are safe
to ignore.

4. Wait until migration completes.

5. Confirm the migration was successful:

(overcloud) $ openstack server list --host [hostname] --all-projects

6. Continue migrating instances until none remain on the chosen Compute Node.

IMPORTANT

For full instructions on configuring and migrating instances, see Section 9.10, “Migrating
VMs from an Overcloud Compute Node”.

Reboot the Compute node using the following process

1. Log into the Compute Node and reboot it:

[heat-admin@overcloud-compute-0 ~]$ sudo reboot

2. Wait until the node boots.

3. Enable the Compute Node again:

$ source ~/overcloudrc
(overcloud) $ openstack compute service set [hostname] nova-compute
--enable

4. Check whether the Compute node is enabled:

(overcloud) $ openstack compute service list

11.5. REBOOTING OBJECT STORAGE NODES

To reboot the Object Storage nodes, follow this process:

CHAPTER 11. REBOOTING NODES

137

1. Select a Object Storage node to reboot. Log into it and reboot it:

[heat-admin@overcloud-objectstorage-0 ~]$ sudo reboot

2. Wait until the node boots.

3. Log into the node and check the status of the containers:

[heat-admin@overcloud-objectstorage-0 ~]$ sudo docker ps

4. Log out of the node and repeat this process on the next Object Storage node.

Red Hat OpenStack Platform 12 Director Installation and Usage

138

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES
An error can occur at certain stages of the director’s processes. This section provides some information
for diagnosing common problems.

Note the common logs for the director’s components:

The /var/log directory contains logs for many common OpenStack Platform components as
well as logs for standard Red Hat Enterprise Linux applications.

The journald service provides logs for various components. Note that ironic uses two units:
openstack-ironic-api and openstack-ironic-conductor. Likewise, ironic-
inspector uses two units as well: openstack-ironic-inspector and openstack-
ironic-inspector-dnsmasq. Use both units for each respective component. For example:

$ source ~/stackrc
(undercloud) $ sudo journalctl -u openstack-ironic-inspector -u
openstack-ironic-inspector-dnsmasq

ironic-inspector also stores the ramdisk logs in /var/log/ironic-
inspector/ramdisk/ as gz-compressed tar files. Filenames contain date, time, and the IPMI
address of the node. Use these logs for diagnosing introspection issues.

12.1. TROUBLESHOOTING NODE REGISTRATION

Issues with node registration usually arise from issues with incorrect node details. In this case, use
ironic to fix problems with node data registered. Here are a few examples:

Find out the assigned port UUID:

$ source ~/stackrc
(undercloud) $ openstack baremetal port list --node [NODE UUID]

Update the MAC address:

(undercloud) $ openstack baremetal port set --address=[NEW MAC] [PORT
UUID]

Run the following command:

(undercloud) $ openstack baremetal node set --driver-info ipmi_address=[NEW
IPMI ADDRESS] [NODE UUID]

12.2. TROUBLESHOOTING HARDWARE INTROSPECTION

The introspection process must run to completion. However, ironic’s Discovery daemon (ironic-
inspector) times out after a default 1 hour period if the discovery ramdisk provides no response.
Sometimes this might indicate a bug in the discovery ramdisk but usually it happens due to an
environment misconfiguration, particularly BIOS boot settings.

Here are some common scenarios where environment misconfiguration occurs and advice on how to
diagnose and resolve them.

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

139

Errors with Starting Node Introspection

Normally the introspection process uses the openstack overcloud node introspect command.
However, if running the introspection directly with ironic-inspector, it might fail to discover nodes in
the AVAILABLE state, which is meant for deployment and not for discovery. Change the node status to
the MANAGEABLE state before discovery:

$ source ~/stackrc
(undercloud) $ openstack baremetal node manage [NODE UUID]

Then, when discovery completes, change back to AVAILABLE before provisioning:

(undercloud) $ openstack baremetal node provide [NODE UUID]

Stopping the Discovery Process

Stop the introspection process:

$ source ~/stackrc
(undercloud) $ openstack baremetal introspection abort [NODE UUID]

You can also wait until the process times out. If necessary, change the timeout setting in
/etc/ironic-inspector/inspector.conf to another period in minutes.

Accessing the Introspection Ramdisk

The introspection ramdisk uses a dynamic login element. This means you can provide either a temporary
password or an SSH key to access the node during introspection debugging. Use the following process
to set up ramdisk access:

1. Provide a temporary password to the openssl passwd -1 command to generate an MD5
hash. For example:

$ openssl passwd -1 mytestpassword
1enjRSyIw$/fYUpJwr6abFy/d.koRgQ/

2. Edit the /httpboot/inspector.ipxe file, find the line starting with kernel, and append the
rootpwd parameter and the MD5 hash. For example:

kernel http://192.2.0.1:8088/agent.kernel ipa-inspection-callback-
url=http://192.168.0.1:5050/v1/continue ipa-inspection-
collectors=default,extra-hardware,logs
systemd.journald.forward_to_console=yes BOOTIF=${mac} ipa-debug=1
ipa-inspection-benchmarks=cpu,mem,disk
rootpwd="1enjRSyIw$/fYUpJwr6abFy/d.koRgQ/" selinux=0

Alternatively, you can append the sshkey parameter with your public SSH key.

NOTE

Quotation marks are required for both the rootpwd and sshkey parameters.

3. Start the introspection and find the IP address from either the arp command or the DHCP logs:

Red Hat OpenStack Platform 12 Director Installation and Usage

140

$ arp
$ sudo journalctl -u openstack-ironic-inspector-dnsmasq

4. SSH as a root user with the temporary password or the SSH key.

$ ssh root@192.168.24.105

Checking Introspection Storage

The director uses OpenStack Object Storage (swift) to save the hardware data obtained during the
introspection process. If this service is not running, the introspection can fail. Check all services related
to OpenStack Object Storage to ensure the service is running:

$ sudo systemctl list-units openstack-swift*

12.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS

The OpenStack Workflow (mistral) service groups multiple OpenStack tasks into workflows. Red Hat
OpenStack Platform uses a set of these workflow to perform common functions across the CLI and web
UI. This includes bare metal node control, validations, plan management, and overcloud deployment.

For example, when running the openstack overcloud deploy command, the OpenStack Workflow
service executes two workflows. The first one uploads the deployment plan:

Removing the current plan files
Uploading new plan files
Started Mistral Workflow. Execution ID: aef1e8c6-a862-42de-8bce-
073744ed5e6b
Plan updated

The second one starts the overcloud deployment:

Deploying templates in the directory /tmp/tripleoclient-LhRlHX/tripleo-
heat-templates
Started Mistral Workflow. Execution ID: 97b64abe-d8fc-414a-837a-
1380631c764d
2016-11-28 06:29:26Z [overcloud]: CREATE_IN_PROGRESS Stack CREATE started
2016-11-28 06:29:26Z [overcloud.Networks]: CREATE_IN_PROGRESS state
changed
2016-11-28 06:29:26Z [overcloud.HeatAuthEncryptionKey]: CREATE_IN_PROGRESS
state changed
2016-11-28 06:29:26Z [overcloud.ServiceNetMap]: CREATE_IN_PROGRESS state
changed
...

Workflow Objects

OpenStack Workflow uses the following objects to keep track of the workflow:

Actions

A particular instruction that OpenStack performs once an associated task runs. Examples include
running shell scripts or performing HTTP requests. Some OpenStack components have in-built
actions that OpenStack Workflow uses.

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

141

Tasks

Defines the action to run and the result of running the action. These tasks usually have actions or
other workflows associated with them. Once a task completes, the workflow directs to another task,
usually depending on whether the task succeeded or failed.

Workflows

A set of tasks grouped together and executed in a specific order.

Executions

Defines a particular action, task, or workflow running.

Workflow Error Diagnosis

OpenStack Workflow also provides robust logging of executions, which help you identify issues with
certain command failures. For example, if a workflow execution fails, you can identify the point of failure.
List the workflow executions that have the failed state ERROR:

$ source ~/stackrc
(undercloud) $ openstack workflow execution list | grep "ERROR"

Get the UUID of the failed workflow execution (for example, dffa96b0-f679-4cd2-a490-4769a3825262)
and view the execution and its output:

(undercloud) $ openstack workflow execution show dffa96b0-f679-4cd2-a490-
4769a3825262
(undercloud) $ openstack workflow execution output show dffa96b0-f679-
4cd2-a490-4769a3825262

This provides information about the failed task in the execution. The openstack workflow
execution show also displays the workflow used for the execution (for example,
tripleo.plan_management.v1.publish_ui_logs_to_swift). You can view the full workflow
definition using the following command:

(undercloud) $ openstack workflow definition show
tripleo.plan_management.v1.publish_ui_logs_to_swift

This is useful for identifying where in the workflow a particular task occurs.

You can also view action executions and their results using a similar command syntax:

(undercloud) $ openstack action execution list
(undercloud) $ openstack action execution show 8a68eba3-0fec-4b2a-adc9-
5561b007e886
(undercloud) $ openstack action execution output show 8a68eba3-0fec-4b2a-
adc9-5561b007e886

This is useful for identifying a specific action causing issues.

12.4. TROUBLESHOOTING OVERCLOUD CREATION

There are three layers where the deployment can fail:

Orchestration (heat and nova services)

Red Hat OpenStack Platform 12 Director Installation and Usage

142

Bare Metal Provisioning (ironic service)

Post-Deployment Configuration (Puppet)

If an overcloud deployment has failed at any of these levels, use the OpenStack clients and service log
files to diagnose the failed deployment.

12.4.1. Orchestration

In most cases, Heat shows the failed overcloud stack after the overcloud creation fails:

$ source ~/stackrc
(undercloud) $ openstack stack list --nested --property status=FAILED
+-----------------------+------------+--------------------+------------
----------+
| id | stack_name | stack_status | creation_time
|
+-----------------------+------------+--------------------+------------
----------+
| 7e88af95-535c-4a55... | overcloud | CREATE_FAILED | 2015-04-
06T17:57:16Z |
+-----------------------+------------+--------------------+------------
----------+

If the stack list is empty, this indicates an issue with the initial Heat setup. Check your Heat templates
and configuration options, and check for any error messages that presented after running openstack
overcloud deploy.

12.4.2. Bare Metal Provisioning

Check ironic to see all registered nodes and their current status:

$ source ~/stackrc
(undercloud) $ openstack baremetal node list

+----------+------+---------------+-------------+-----------------+----
---------+
| UUID | Name | Instance UUID | Power State | Provision State |
Maintenance |
+----------+------+---------------+-------------+-----------------+----
---------+
| f1e261...| None | None | power off | available | False
|
| f0b8c1...| None | None | power off | available | False
|
+----------+------+---------------+-------------+-----------------+----
---------+

Here are some common issues that arise from the provisioning process.

Review the Provision State and Maintenance columns in the resulting table. Check for the
following:

An empty table, or fewer nodes than you expect

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

143

Maintenance is set to True

Provision State is set to manageable. This usually indicates an issue with the registration or
discovery processes. For example, if Maintenance sets itself to True automatically, the
nodes are usually using the wrong power management credentials.

If Provision State is available, then the problem occurred before bare metal deployment has
even started.

If Provision State is active and Power State is power on, the bare metal deployment has
finished successfully. This means that the problem occurred during the post-deployment
configuration step.

If Provision State is wait call-back for a node, the bare metal provisioning process has not
yet finished for this node. Wait until this status changes, otherwise, connect to the virtual console
of the failed node and check the output.

If Provision State is error or deploy failed, then bare metal provisioning has failed for this
node. Check the bare metal node’s details:

(undercloud) $ openstack baremetal node show [NODE UUID]

Look for last_error field, which contains error description. If the error message is vague, you
can use logs to clarify it:

(undercloud) $ sudo journalctl -u openstack-ironic-conductor -u
openstack-ironic-api

If you see wait timeout error and the node Power State is power on, connect to the
virtual console of the failed node and check the output.

12.4.3. Post-Deployment Configuration

Many things can occur during the configuration stage. For example, a particular Puppet module could fail
to complete due to an issue with the setup. This section provides a process to diagnose such issues.

List all the resources from the overcloud stack to see which one failed:

$ source ~/stackrc
(undercloud) $ openstack stack resource list overcloud --filter
status=FAILED

This shows a table of all failed resources.

Show the failed resource:

(undercloud) $ openstack stack resource show overcloud [FAILED RESOURCE]

Check for any information in the resource_status_reason field that can help your diagnosis.

Use the nova command to see the IP addresses of the overcloud nodes.

(undercloud) $ openstack server list

Red Hat OpenStack Platform 12 Director Installation and Usage

144

Log in as the heat-admin user to one of the deployed nodes. For example, if the stack’s resource list
shows the error occurred on a Controller node, log in to a Controller node. The heat-admin user has
sudo access.

(undercloud) $ ssh heat-admin@192.168.24.14

Check the os-collect-config log for a possible reason for the failure.

[heat-admin@overcloud-controller-0 ~]$ sudo journalctl -u os-collect-
config

In some cases, nova fails deploying the node in entirety. This situation would be indicated by a failed
OS::Heat::ResourceGroup for one of the overcloud role types. Use nova to see the failure in this
case.

(undercloud) $ openstack server list
(undercloud) $ openstack server show [SERVER ID]

The most common error shown will reference the error message No valid host was found. See
Section 12.6, “Troubleshooting "No Valid Host Found" Errors” for details on troubleshooting this error. In
other cases, look at the following log files for further troubleshooting:

/var/log/nova/*

/var/log/heat/*

/var/log/ironic/*

The post-deployment process for Controller nodes uses five main steps for the deployment. This
includes:

Table 12.1. Controller Node Configuration Steps

Step Description

ControllerDeployment_Step1 Initial load balancing software configuration, including
Pacemaker, RabbitMQ, Memcached, Redis, and
Galera.

ControllerDeployment_Step2 Initial cluster configuration, including Pacemaker
configuration, HAProxy, MongoDB, Galera, Ceph
Monitor, and database initialization for OpenStack
Platform services.

ControllerDeployment_Step3 Initial ring build for OpenStack Object Storage
(swift). Configuration of all OpenStack Platform
services (nova, neutron, cinder, sahara,
ceilometer, heat, horizon, aodh,
gnocchi).

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

145

ControllerDeployment_Step4 Configure service start up settings in Pacemaker,
including constraints to determine service start up
order and service start up parameters.

ControllerDeployment_Step5 Initial configuration of projects, roles, and users in
OpenStack Identity (keystone).

12.5. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE
PROVISIONING NETWORK

Discovery and deployment tasks will fail if the destination hosts are allocated an IP address which is
already in use. To avoid this issue, you can perform a port scan of the Provisioning network to determine
whether the discovery IP range and host IP range are free.

Perform the following steps from the undercloud host:

Install nmap:

$ sudo yum install nmap

Use nmap to scan the IP address range for active addresses. This example scans the 192.168.24.0/24
range, replace this with the IP subnet of the Provisioning network (using CIDR bitmask notation):

$ sudo nmap -sn 192.168.24.0/24

Review the output of the nmap scan:

For example, you should see the IP address(es) of the undercloud, and any other hosts that are present
on the subnet. If any of the active IP addresses conflict with the IP ranges in undercloud.conf, you will
need to either change the IP address ranges or free up the IP addresses before introspecting or
deploying the overcloud nodes.

$ sudo nmap -sn 192.168.24.0/24

Starting Nmap 6.40 (http://nmap.org) at 2015-10-02 15:14 EDT
Nmap scan report for 192.168.24.1
Host is up (0.00057s latency).
Nmap scan report for 192.168.24.2
Host is up (0.00048s latency).
Nmap scan report for 192.168.24.3
Host is up (0.00045s latency).
Nmap scan report for 192.168.24.5
Host is up (0.00040s latency).
Nmap scan report for 192.168.24.9
Host is up (0.00019s latency).
Nmap done: 256 IP addresses (5 hosts up) scanned in 2.45 seconds

12.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS

Sometimes the /var/log/nova/nova-conductor.log contains the following error:

Red Hat OpenStack Platform 12 Director Installation and Usage

146

NoValidHost: No valid host was found. There are not enough hosts
available.

This means the nova Scheduler could not find a bare metal node suitable for booting the new instance.
This in turn usually means a mismatch between resources that nova expects to find and resources that
ironic advertised to nova. Check the following in this case:

1. Make sure introspection succeeds for you. Otherwise check that each node contains the required
ironic node properties. For each node:

$ source ~/stackrc
(undercloud) $ openstack baremetal node show [NODE UUID]

Check the properties JSON field has valid values for keys cpus, cpu_arch, memory_mb
and local_gb.

2. Check that the nova flavor used does not exceed the ironic node properties above for a required
number of nodes:

(undercloud) $ openstack flavor show [FLAVOR NAME]

3. Check that sufficient nodes are in the available state according to openstack baremetal
node list. Nodes in manageable state usually mean a failed introspection.

4. Check the nodes are not in maintenance mode. Use openstack baremetal node list to
check. A node automatically changing to maintenance mode usually means incorrect power
credentials. Check them and then remove maintenance mode:

(undercloud) $ openstack baremetal node maintenance unset [NODE
UUID]

5. If you’re using the Automated Health Check (AHC) tools to perform automatic node tagging,
check that you have enough nodes corresponding to each flavor/profile. Check the
capabilities key in properties field for openstack baremetal node show. For
example, a node tagged for the Compute role should contain profile:compute.

6. It takes some time for node information to propagate from ironic to nova after introspection. The
director’s tool usually accounts for it. However, if you performed some steps manually, there
might be a short period of time when nodes are not available to nova. Use the following
command to check the total resources in your system:

(undercloud) $ openstack hypervisor stats show

12.7. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION

After creating your overcloud, you might want to perform certain overcloud operations in the future. For
example, you might aim to scale your available nodes, or replace faulty nodes. Certain issues might
arise when performing these operations. This section provides some advice to diagnose and
troubleshoot failed post-creation operations.

12.7.1. Overcloud Stack Modifications

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

147

Problems can occur when modifying the overcloud stack through the director. Example of stack
modifications include:

Scaling Nodes

Removing Nodes

Replacing Nodes

Modifying the stack is similar to the process of creating the stack, in that the director checks the
availability of the requested number of nodes, provisions additional or removes existing nodes, and then
applies the Puppet configuration. Here are some guidelines to follow in situations when modifying the
overcloud stack.

As an initial step, follow the advice set in Section 12.4.3, “Post-Deployment Configuration”. These same
steps can help diagnose problems with updating the overcloud heat stack. In particular, use the
following command to help identify problematic resources:

openstack stack list --show-nested

List all stacks. The --show-nested displays all child stacks and their respective parent stacks. This
command helps identify the point where a stack failed.

openstack stack resource list overcloud

List all resources in the overcloud stack and their current states. This helps identify which resource
is causing failures in the stack. You can trace this resource failure to its respective parameters and
configuration in the heat template collection and the Puppet modules.

openstack stack event list overcloud

List all events related to the overcloud stack in chronological order. This includes the initiation,
completion, and failure of all resources in the stack. This helps identify points of resource failure.

The next few sections provide advice to diagnose issues on specific node types.

12.7.2. Controller Service Failures

The overcloud Controller nodes contain the bulk of Red Hat OpenStack Platform services. Likewise, you
might use multiple Controller nodes in a high availability cluster. If a certain service on a node is faulty,
the high availability cluster provides a certain level of failover. However, it then becomes necessary to
diagnose the faulty service to ensure your overcloud operates at full capacity.

The Controller nodes use Pacemaker to manage the resources and services in the high availability
cluster. The Pacemaker Configuration System (pcs) command is a tool that manages a Pacemaker
cluster. Run this command on a Controller node in the cluster to perform configuration and monitoring
functions. Here are few commands to help troubleshoot overcloud services on a high availability cluster:

pcs status

Provides a status overview of the entire cluster including enabled resources, failed resources, and
online nodes.

pcs resource show

Shows a list of resources, and their respective nodes.

pcs resource disable [resource]

Stop a particular resource.

pcs resource enable [resource]

Red Hat OpenStack Platform 12 Director Installation and Usage

148

Start a particular resource.

pcs cluster standby [node]

Place a node in standby mode. The node is no longer available in the cluster. This is useful for
performing maintenance on a specific node without affecting the cluster.

pcs cluster unstandby [node]

Remove a node from standby mode. The node becomes available in the cluster again.

Use these Pacemaker commands to identify the faulty component and/or node. After identifying the
component, view the respective component log file in /var/log/.

12.7.3. Containerized Service Failures

If a containerized service fails during or after overcloud deployment, use the following recommendations
to determine the root cause for the failure:

NOTE

Before running these commands, check that you are logged into an overcloud node and
not running these commands on the undercloud.

Checking the container logs

Each container retains standard output from its main process. This output acts as a log to help
determine what actually occurs during a container run. For example, to view the log for the keystone
container, use the following command:

$ sudo docker logs keystone

In most cases, this log provides the cause of a container’s failure.

Inspecting the container

In some situations, you might need to verify information about a container. For example, use the
following command to view keystone container data:

$ sudo docker inspect keystone

This provides a JSON object containing low-level configuration data. You can pipe the output to the jq
command to parse specific data. For example, to view the container mounts for the keystone container,
run the following command:

$ sudo docker inspect keystone | jq .[0].Mounts

You can also use the --format option to parse data to a single line, which is useful for running
commands against sets of container data. For example, to recreate the options used to run the
keystone container, use the following inspect command with the --format option:

$ sudo docker inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}}
{{range .Mounts}} -v {{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}
{{end}}{{end}} -ti {{.Config.Image}}' keystone

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

149

NOTE

The --format option uses Go syntax to create queries.

Use these options in conjunction with the docker run command to recreate the container for
troubleshooting purposes:

$ OPTIONS=$(sudo docker inspect --format='{{range .Config.Env}} -e "
{{.}}" {{end}} {{range .Mounts}} -v {{.Source}}:{{.Destination}}{{if
.Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}' keystone)
$ sudo docker run --rm $OPTIONS /bin/bash

Running commands in the container

In some cases, you might need to obtain information from within a container through a specific Bash
command. In this situation, use the following docker command to execute commands within a running
container. For example, to run a command in the keystone container:

$ sudo docker exec -ti keystone <COMMAND>

NOTE

The -ti options run the command through an interactive pseudoterminal.

Replace <COMMAND> with your desired command. For example, each container has a health check script
to verify the service connection. You can run the health check script for keystone with the following
command:

$ sudo docker exec -ti keystone /openstack/healthcheck

To access the container’s shell, run docker exec using /bin/bash as the command:

$ sudo docker exec -ti keystone /bin/bash

Exporting a container

When a container fails, you might need to investigate the full contents of the file. In this case, you can
export the full file system of a container as a tar archive. For example, to export the keystone
container’s file system, run the following command:

$ sudo docker export keystone -o keystone.tar

This command create the keystone.tar archive, which you can extract and explore.

12.7.4. Compute Service Failures

Compute nodes use the Compute service to perform hypervisor-based operations. This means the main
diagnosis for Compute nodes revolves around this service. For example:

View the status of the container:

$ sudo docker ps -f name=nova_compute

Red Hat OpenStack Platform 12 Director Installation and Usage

150

The primary log file for Compute nodes is /var/log/containers/nova/nova-
compute.log. If issues occur with Compute node communication, this log file is usually a good
place to start a diagnosis.

If performing maintenance on the Compute node, migrate the existing instances from the host to
an operational Compute node, then disable the node. See Section 9.10, “Migrating VMs from an
Overcloud Compute Node” for more information on node migrations.

12.7.5. Ceph Storage Service Failures

For any issues that occur with Red Hat Ceph Storage clusters, see "Logging Configuration Reference" in
the Red Hat Ceph Storage Configuration Guide. This section provides information on diagnosing logs for
all Ceph storage services.

12.8. TUNING THE UNDERCLOUD

The advice in this section aims to help increase the performance of your undercloud. Implement the
recommendations as necessary.

The Identity Service (keystone) uses a token-based system for access control against the other
OpenStack services. After a certain period, the database will accumulate a large number of
unused tokens; a default cronjob flushes the token table every day. It is recommended that you
monitor your environment and adjust the token flush interval as needed. For the undercloud, you
can adjust the interval using crontab -u keystone -e. Note that this is a temporary change
and that openstack undercloud update will reset this cronjob back to its default.

Heat stores a copy of all template files in its database’s raw_template table each time you run
openstack overcloud deploy. The raw_template table retains all past templates and
grows in size. To remove unused templates in the raw_templates table, create a daily
cronjob that clears unused templates that exist in the database for longer than a day:

0 04 * * * /bin/heat-manage purge_deleted -g days 1

The openstack-heat-engine and openstack-heat-api services might consume too
many resources at times. If so, set max_resources_per_stack=-1 in
/etc/heat/heat.conf and restart the heat services:

$ sudo systemctl restart openstack-heat-engine openstack-heat-api

Sometimes the director might not have enough resources to perform concurrent node
provisioning. The default is 10 nodes at the same time. To reduce the number of concurrent
nodes, set the max_concurrent_builds parameter in /etc/nova/nova.conf to a value
less than 10 and restart the nova services:

$ sudo systemctl restart openstack-nova-api openstack-nova-scheduler

Edit the /etc/my.cnf.d/server.cnf file. Some recommended values to tune include:

max_connections

Number of simultaneous connections to the database. The recommended value is 4096.

innodb_additional_mem_pool_size

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

151

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/2/html/configuration_guide/logging_configuration_reference

The size in bytes of a memory pool the database uses to store data dictionary information
and other internal data structures. The default is usually 8M and an ideal value is 20M for the
undercloud.

innodb_buffer_pool_size

The size in bytes of the buffer pool, the memory area where the database caches table and
index data. The default is usually 128M and an ideal value is 1000M for the undercloud.

innodb_flush_log_at_trx_commit

Controls the balance between strict ACID compliance for commit operations, and higher
performance that is possible when commit-related I/O operations are rearranged and done in
batches. Set to 1.

innodb_lock_wait_timeout

The length of time in seconds a database transaction waits for a row lock before giving up.
Set to 50.

innodb_max_purge_lag

This variable controls how to delay INSERT, UPDATE, and DELETE operations when purge
operations are lagging. Set to 10000.

innodb_thread_concurrency

The limit of concurrent operating system threads. Ideally, provide at least two threads for
each CPU and disk resource. For example, if using a quad-core CPU and a single disk, use
10 threads.

Ensure that heat has enough workers to perform an overcloud creation. Usually, this depends on
how many CPUs the undercloud has. To manually set the number of workers, edit the
/etc/heat/heat.conf file, set the num_engine_workers parameter to the number of
workers you need (ideally 4), and restart the heat engine:

$ sudo systemctl restart openstack-heat-engine

12.9. CREATING AN SOSREPORT

If you need to contact Red Hat for support on OpenStack Platform, you might need to generate an
sosreport. See the following knowledgebase article for more information on how to create an
sosreport:

"How to collect all required logs for Red Hat Support to investigate an OpenStack issue"

12.10. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

Use the following logs to find out information about the undercloud and overcloud when troubleshooting.

Table 12.2. Important Logs for the Undercloud

Information Log Location

OpenStack Compute log /var/log/nova/nova-compute.log

OpenStack Compute API interactions /var/log/nova/nova-api.log

OpenStack Compute Conductor log /var/log/nova/nova-conductor.log

Red Hat OpenStack Platform 12 Director Installation and Usage

152

https://access.redhat.com/solutions/2055933

OpenStack Orchestration log heat-engine.log

OpenStack Orchestration API interactions heat-api.log

OpenStack Orchestration CloudFormations log /var/log/heat/heat-api-cfn.log

OpenStack Bare Metal Conductor log ironic-conductor.log

OpenStack Bare Metal API interactions ironic-api.log

Introspection /var/log/ironic-inspector/ironic-
inspector.log

OpenStack Workflow Engine log /var/log/mistral/engine.log

OpenStack Workflow Executor log /var/log/mistral/executor.log

OpenStack Workflow API interactions /var/log/mistral/api.log

Information Log Location

Table 12.3. Important Logs for the Overcloud

Information Log Location

Cloud-Init Log /var/log/cloud-init.log

Overcloud Configuration (Summary of Last Puppet
Run)

/var/lib/puppet/state/last_run_summa
ry.yaml

Overcloud Configuration (Report from Last Puppet
Run)

/var/lib/puppet/state/last_run_repor
t.yaml

Overcloud Configuration (All Puppet Reports) /var/lib/puppet/reports/overcloud-
/

Overcloud Configuration (stdout from each Puppet
Run)

/var/run/heat-config/deployed/*-
stdout.log

Overcloud Configuration (stderr from each Puppet
Run)

/var/run/heat-config/deployed/*-
stderr.log

High availability log /var/log/pacemaker.log

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

153

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
You can configure the undercloud to use SSL/TLS for communication over public endpoints. However, if
using a SSL certificate with your own certificate authority, the certificate requires the configuration steps
in the following section.

NOTE

For overcloud SSL/TLS certificate creation, see "Enabling SSL/TLS on Overcloud Public
Endpoints" in the Advanced Overcloud Customization guide.

A.1. INITIALIZING THE SIGNING HOST

The signing host is the host that generates new certificates and signs them with a certificate authority. If
you have never created SSL certificates on the chosen signing host, you might need to initialize the host
so that it can sign new certificates.

The /etc/pki/CA/index.txt file stores records of all signed certificates. Check if this file exists. If it
does not exist, create an empty file:

$ sudo touch /etc/pki/CA/index.txt

The /etc/pki/CA/serial file identifies the next serial number to use for the next certificate to sign.
Check if this file exists. If it does not exist, create a new file with a new starting value:

$ echo '1000' | sudo tee /etc/pki/CA/serial

A.2. CREATING A CERTIFICATE AUTHORITY

Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might aim to use your own certificate authority. For example, you might aim to have an internal-only
certificate authority.

For example, generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -
out ca.crt.pem

The openssl req command asks for certain details about your authority. Enter these details.

This creates a certificate authority file called ca.crt.pem.

A.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS

For any external clients aiming to communicate using SSL/TLS, copy the certificate authority file to each
client that requires access your Red Hat OpenStack Platform environment. Once copied to the client, run
the following command on the client to add it to the certificate authority trust bundle:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

Red Hat OpenStack Platform 12 Director Installation and Usage

154

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/advanced_overcloud_customization/

A.4. CREATING AN SSL/TLS KEY

Run the following commands to generate the SSL/TLS key (server.key.pem), which we use at
different points to generate our undercloud or overcloud certificates:

$ openssl genrsa -out server.key.pem 2048

A.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST

This next procedure creates a certificate signing request for either the undercloud or overcloud.

Copy the default OpenSSL configuration file for customization.

$ cp /etc/pki/tls/openssl.cnf .

Edit the custom openssl.cnf file and set SSL parameters to use for the director. An example of the
types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland
localityName = Locality Name (eg, city)
localityName_default = Brisbane
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat
commonName = Common Name
commonName_default = 192.168.0.1
commonName_max = 64

[v3_req]
Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
IP.1 = 192.168.0.1
DNS.1 = instack.localdomain
DNS.2 = vip.localdomain
DNS.3 = 192.168.0.1

Set the commonName_default to one of the following:

If using an IP address to access over SSL/TLS, use the undercloud_public_vip parameter
in undercloud.conf.

If using a fully qualified domain name to access over SSL/TLS, use the domain name instead.

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION

155

Edit the alt_names section to include the following entries:

IP - A list of IP addresses for clients to access the director over SSL.

DNS - A list of domain names for clients to access the director over SSL. Also include the Public
API IP address as a DNS entry at the end of the alt_names section.

For more information about openssl.cnf, run man openssl.cnf.

Run the following command to generate certificate signing request (server.csr.pem):

$ openssl req -config openssl.cnf -key server.key.pem -new -out
server.csr.pem

Make sure to include the SSL/TLS key you created in Section A.4, “Creating an SSL/TLS Key” for the -
key option.

Use the server.csr.pem file to create the SSL/TLS certificate in the next section.

A.6. CREATING THE SSL/TLS CERTIFICATE

The following command creates a certificate for your undercloud or overcloud:

$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in
server.csr.pem -out server.crt.pem -cert ca.crt.pem -keyfile ca.key.pem

This command uses:

The configuration file specifying the v3 extensions. Include this as the -config option.

The certificate signing request from Section A.5, “Creating an SSL/TLS Certificate Signing
Request” to generate the certificate and sign it throught a certificate authority. Include this as the
-in option.

The certificate authority you created in Section A.2, “Creating a Certificate Authority”, which
signs the certificate. Include this as the -cert option.

The certificate authority private key you created in Section A.2, “Creating a Certificate Authority”.
Include this as the -keyfile option.

This results in a certificate named server.crt.pem. Use this certificate in conjunction with the
SSL/TLS key from Section A.4, “Creating an SSL/TLS Key” to enable SSL/TLS.

A.7. USING THE CERTIFICATE WITH THE UNDERCLOUD

Run the following command to combine the certificate and key together:

$ cat server.crt.pem server.key.pem > undercloud.pem

This creates a undercloud.pem file. You specify the location of this file for the
undercloud_service_certificate option in your undercloud.conf file. This file also requires a
special SELinux context so that the HAProxy tool can read it. Use the following example as a guide:

Red Hat OpenStack Platform 12 Director Installation and Usage

156

$ sudo mkdir /etc/pki/instack-certs
$ sudo cp ~/undercloud.pem /etc/pki/instack-certs/.
$ sudo semanage fcontext -a -t etc_t "/etc/pki/instack-certs(/.*)?"
$ sudo restorecon -R /etc/pki/instack-certs

Add the undercloud.pem file location to the undercloud_service_certificate option in the
undercloud.conf file. For example:

undercloud_service_certificate = /etc/pki/instack-certs/undercloud.pem

In addition, make sure to add your certificate authority from Section A.2, “Creating a Certificate Authority”
to the undercloud’s list of trusted Certificate Authorities so that different services within the undercloud
have access to the certificate authority:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

Continue installing the undercloud as per the instructions in Section 4.6, “Configuring the Director”.

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION

157

APPENDIX B. POWER MANAGEMENT DRIVERS
Although IPMI is the main method the director uses for power management control, the director also
supports other power management types. This appendix provides a list of the supported power
management features. Use these power management settings for Section 6.1, “Registering Nodes for
the Overcloud”.

B.1. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features including power
management and server monitoring.

pm_type

Set this option to pxe_drac.

pm_user; pm_password

The DRAC username and password.

pm_addr

The IP address of the DRAC host.

To enable this driver, add pxe_drac to the enabled_drivers option in your
undercloud.conf file, then rerun openstack undercloud install command.

B.2. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring.

pm_type

Set this option to pxe_ilo.

pm_user; pm_password

The iLO username and password.

pm_addr

The IP address of the iLO interface.

To enable this driver, add pxe_ilo to the enabled_drivers option in your
undercloud.conf file, then rerun openstack undercloud install command.

The director also requires an additional set of utilities for iLo. Install the python-
proliantutils package and restart the openstack-ironic-conductor service:

$ sudo yum install python-proliantutils
$ sudo systemctl restart openstack-ironic-conductor.service

HP nodes must a 2015 firmware version for successful introspection. The director has been
successfully tested with nodes using firmware version 1.85 (May 13 2015).

Using a shared iLO port is not supported.

Red Hat OpenStack Platform 12 Director Installation and Usage

158

B.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)

UCS from Cisco is a data center platform that unites compute, network, storage access, and
virtualization resources. This driver focuses on the power management for bare metal systems
connected to the UCS.

pm_type

Set this option to pxe_ucs.

pm_user; pm_password

The UCS username and password.

pm_addr

The IP address of the UCS interface.

pm_service_profile

The UCS service profile to use. Usually takes the format of org-root/ls-
[service_profile_name]. For example:

"pm_service_profile": "org-root/ls-Nova-1"

To enable this driver, add pxe_ucs to the enabled_drivers option in your
undercloud.conf file, then rerun openstack undercloud install command.

The director also requires an additional set of utilities for UCS. Install the python-UcsSdk
package and restart the openstack-ironic-conductor service:

$ sudo yum install python-UcsSdk
$ sudo systemctl restart openstack-ironic-conductor.service

B.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER
(IRMC)

Fujitsu’s iRMC is a Baseboard Management Controller (BMC) with integrated LAN connection and
extended functionality. This driver focuses on the power management for bare metal systems connected
to the iRMC.

IMPORTANT

iRMC S4 or higher is required.

pm_type

Set this option to pxe_irmc.

pm_user; pm_password

The username and password for the iRMC interface.

pm_addr

The IP address of the iRMC interface.

pm_port (Optional)

The port to use for iRMC operations. The default is 443.

pm_auth_method (Optional)

APPENDIX B. POWER MANAGEMENT DRIVERS

159

The authentication method for iRMC operations. Use either basic or digest. The default is basic

pm_client_timeout (Optional)

Timeout (in seconds) for iRMC operations. The default is 60 seconds.

pm_sensor_method (Optional)

Sensor data retrieval method. Use either ipmitool or scci. The default is ipmitool.

To enable this driver, add pxe_irmc to the enabled_drivers option in your
undercloud.conf file, then rerun openstack undercloud install command.

The director also requires an additional set of utilities if you enabled SCCI as the sensor
method. Install the python-scciclient package and restart the openstack-ironic-
conductor service:

$ yum install python-scciclient
$ sudo systemctl restart openstack-ironic-conductor.service

B.5. VIRTUAL BASEBOARD MANAGEMENT CONTROLLER (VBMC)

The director can use virtual machines as nodes on a KVM host. It controls their power management
through emulated IPMI devices. This allows you to use the standard IPMI parameters from Section 6.1,
“Registering Nodes for the Overcloud” but for virtual nodes.

IMPORTANT

This option uses virtual machines instead of bare metal nodes. This means it is available
for testing and evaluation purposes only. It is not recommended for Red Hat OpenStack
Platform enterprise environments.

Configuring the KVM Host

On the KVM host, enable the OpenStack Platform repository and install the python-virtualbmc
package:

$ sudo subscription-manager repos --enable=rhel-7-server-openstack-12-rpms
$ sudo yum install -y python-virtualbmc

Create a virtual baseboard management controller (BMC) for each virtual machine using the vbmc
command. For example, if you aim to create a BMC for virtual machines named Node01 and Node02,
run the following commands:

$ vbmc add Node01 --port 6230 --username admin --password p455w0rd!
$ vbmc add Node02 --port 6231 --username admin --password p455w0rd!

This defines the port to access each BMC and sets each BMC’s authentication details.

NOTE

Use a different port for each virtual machine. Port numbers lower than 1025 require root
privileges in the system.

Red Hat OpenStack Platform 12 Director Installation and Usage

160

Start each BMC with the following commands:

$ vbmc start Node01
$ vbmc start Node02

NOTE

You must repeat this step after rebooting the KVM host.

Registering Nodes

Use the following parameters in your node registration file (/home/stack/instackenv.json):

pm_type

Set this option to pxe_ipmitool.

pm_user; pm_password

The IPMI username and password for the node’s virtual BMC device.

pm_addr

The IP address of the KVM host that contains the node.

pm_port

The port to access the specific node on the KVM host.

mac

A list of MAC addresses for the network interfaces on the node. Use only the MAC address for the
Provisioning NIC of each system.

For example:

{
 "nodes": [
 {
 "pm_type": "pxe_ipmitool",
 "mac": [
 "aa:aa:aa:aa:aa:aa"
],
 "pm_user": "admin",
 "pm_password": "p455w0rd!",
 "pm_addr": "192.168.0.1",
 "pm_port": "6230",
 "name": "Node01"
 },
 {
 "pm_type": "pxe_ipmitool",
 "mac": [
 "bb:bb:bb:bb:bb:bb"
],
 "pm_user": "admin",
 "pm_password": "p455w0rd!",
 "pm_addr": "192.168.0.1",
 "pm_port": "6231",
 "name": "Node02"

APPENDIX B. POWER MANAGEMENT DRIVERS

161

 }
]
}

Migrating Existing Nodes

You can migrate existing nodes from using the deprecated pxe_ssh driver to using the new virtual BMC
method. The following command is an example that sets a node to use the pxe_ipmitool driver and its
parameters:

openstack baremetal node set Node01 \
 --driver pxe_ipmitool \
 --driver-info ipmi_address=192.168.0.1 \
 --driver-info ipmi_port=6230 \
 --driver-info ipmi_username="admin" \
 --driver-info ipmi_password="p455w0rd!"

B.6. FAKE PXE DRIVER

This driver provides a method to use bare metal devices without power management. This means the
director does not control the registered bare metal devices and as such require manual control of power
at certain points in the introspect and deployment processes.

IMPORTANT

This option is available for testing and evaluation purposes only. It is not recommended for
Red Hat OpenStack Platform enterprise environments.

pm_type

Set this option to fake_pxe.

This driver does not use any authentication details because it does not control power
management.

To enable this driver, add fake_pxe to the enabled_drivers option in your
undercloud.conf file, then rerun openstack undercloud install command.

When performing introspection on nodes, manually power the nodes after running the
openstack overcloud node introspect command.

When performing overcloud deployment, check the node status with the ironic node-
list command. Wait until the node status changes from deploying to deploy wait-
callback and then manually power the nodes.

After the overcloud provisioning process completes, reboot the nodes. To check the
completion of provisioning, check the node status with the ironic node-list command,
wait until the node status changes to active, then manually reboot all overcloud nodes.

Red Hat OpenStack Platform 12 Director Installation and Usage

162

APPENDIX C. WHOLE DISK IMAGES
The main overcloud image is a flat partition image. This means it contains no partitioning information or
bootloader on the images itself. The director uses a separate kernel and ramdisk when booting and
creates a basic partitioning layout when writing the overcloud image to disk. However, you can create a
whole disk image, which includes a partitioning layout, bootloader, and hardened security.

IMPORTANT

The following process uses the director’s image building feature. Red Hat only supports
images built using the guidelines contained in this section. Custom images built outside of
these specifications are not supported.

A security hardened image includes extra security measures necessary for Red Hat OpenStack Platform
deployments where security is an important feature. Some of the recommendations for a secure image
are as follows:

The /tmp directory is mounted on a separate volume or partition and has the rw, nosuid,
nodev, noexec, and relatime flags

The /var, /var/log and the /var/log/audit directories are mounted on separate volumes
or partitions, with the rw ,relatime flags

The /home directory is mounted on a separate partition or volume and has the rw, nodev,
relatime flags

Include the following changes to the GRUB_CMDLINE_LINUX setting:

To enable auditing, include an extra kernel boot flag by adding audit=1

To disable the kernel support for USB using boot loader configuration by adding nousb

To remove the insecure boot flags by setting crashkernel=auto

Blacklist insecure modules (usb-storage, cramfs, freevxfs, jffs2, hfs, hfsplus,
squashfs, udf, vfat) and prevent them from being loaded.

Remove any insecure packages (kdump installed by kexec-tools and telnet) from the
image as they are installed by default

Add the new screen package necessary for security

To build a security hardened image, you need to:

1. Download a base Red Hat Enterprise Linux 7 image

2. Set the environment variables specific to registration

3. Customize the image by modifying the partition schema and the size

4. Create the image

5. Upload it to your deployment

The following sections detail the procedures to achieve these tasks.

APPENDIX C. WHOLE DISK IMAGES

163

C.1. DOWNLOADING THE BASE CLOUD IMAGE

Before building a whole disk image, you need to download an existing cloud image of Red Hat Enterprise
Linux to use as a basis. Navigate to the Red Hat Customer Portal and select the KVM Guest Image to
download. For example, the KVM Guest Image for Red Hat Enterprise Linux 7.4 is available on the
following page:

"Installers and Images for Red Hat Enterprise Linux Server (v. 7.4 for x86_64)"

C.2. SETTING THE ENVIRONMENT VARIABLES

As a part of the whole disk image building process, the director requires a base image and registration
details to obtain packages for the new overcloud image. You define these aspects using Linux
environment variables.

NOTE

The image building process temporarily registers the image with a Red Hat subscription
and unregisters the system once the image building process completes.

To build a security hardened whole disk image, set Linux environment variables that suit your
environment and requirements:

DIB_LOCAL_IMAGE

Sets the local image to use as your basis.

REG_ACTIVATION_KEY

Use an activation key instead as part of the registration process.

REG_AUTO_ATTACH

Defines whether or not to automatically attach the most compatible subscription.

REG_BASE_URL

The base URL of the content delivery server to pull packages. The default Customer Portal
Subscription Management process uses https://cdn.redhat.com. If using a Red Hat Satellite 6
server, this parameter should use the base URL of your Satellite server.

REG_ENVIRONMENT

Registers to an environment within an organization.

REG_METHOD

Sets the method of registration. Use portal to register a system to the Red Hat Customer Portal.
Use satellite to register a system with Red Hat Satellite 6.

REG_ORG

The organization to register the images.

REG_POOL_ID

The pool ID of the product subscription information.

REG_PASSWORD

Gives the password for the user account registering the image.

REG_REPOS

A string of repository names separated with commas (no spaces). Each repository in this string is
enabled through subscription-manager. Use the following repositories for a security hardened
whole disk image:

Red Hat OpenStack Platform 12 Director Installation and Usage

164

https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.4/x86_64/product-software

rhel-7-server-rpms

rhel-7-server-extras-rpms

rhel-ha-for-rhel-7-server-rpms

rhel-7-server-optional-rpms

rhel-7-server-openstack-12-rpms

REG_SERVER_URL

Gives the hostname of the subscription service to use. The default is for the Red Hat Customer Portal
at subscription.rhn.redhat.com. If using a Red Hat Satellite 6 server, this parameter should
use the hostname of your Satellite server.

REG_USER

Gives the user name for the account registering the image.

The following is an example set of commands to export a set of environment variables to temporarily
register a local QCOW2 image to the Red Hat Customer Portal:

$ export DIB_LOCAL_IMAGE=./rhel-server-7.4-x86_64-kvm.qcow2
$ export REG_METHOD=portal
$ export REG_USER="[your username]"
$ export REG_PASSWORD="[your password]"
$ export REG_REPOS="rhel-7-server-rpms \
 rhel-7-server-extras-rpms \
 rhel-ha-for-rhel-7-server-rpms \
 rhel-7-server-optional-rpms \
 rhel-7-server-openstack-12-rpms"

C.3. CUSTOMIZING THE DISK LAYOUT

The default security hardened image size is 20G and uses predefined partitioning sizes. However, some
modifications to the partitioning layout are required to accommodate overcloud container images:

Partition Old Size new Size

/ 6G 8G

/tmp 1G 1G

/var 7G 10G

/var/log 5G 5G

/var/log/audit 900M 900M

/home 100M 100M

Total 20G 25G

APPENDIX C. WHOLE DISK IMAGES

165

This increases the image size to 25G. You can also provide further modification to the partitioning layout
and disk size to suit your needs.

To modify the partitioning layout and disk size, perform the following steps:

Modify the partitioning schema using the DIB_BLOCK_DEVICE_CONFIG environment variable.

Modify the global size of the image by updating the DIB_IMAGE_SIZE environment variable.

C.3.1. Modifying the Partitioning Schema

You can modify the partitioning schema to alter the partitioning size, create new partitions, or remove
existing ones. You can define a new partitioning schema with the following environment variable:

$ export DIB_BLOCK_DEVICE_CONFIG='<yaml_schema_with_partitions>'

The following YAML structure represents the modified partitioning layout to accommodate enough space
to pull overcloud container images:

export DIB_BLOCK_DEVICE_CONFIG='''
- local_loop:
 name: image0
- partitioning:
 base: image0
 label: mbr
 partitions:
 - name: root
 flags: [boot,primary]
 size: 8G
 mkfs:
 type: xfs
 label: "img-rootfs"
 mount:
 mount_point: /
 fstab:
 options: "rw,relatime"
 fck-passno: 1
 - name: tmp
 size: 1G
 mkfs:
 type: xfs
 mount:
 mount_point: /tmp
 fstab:
 options: "rw,nosuid,nodev,noexec,relatime"
 - name: var
 size: 10G
 mkfs:
 type: xfs
 mount:
 mount_point: /var
 fstab:
 options: "rw,relatime"
 - name: log
 size: 5G

Red Hat OpenStack Platform 12 Director Installation and Usage

166

 mkfs:
 type: xfs
 mount:
 mount_point: /var/log
 fstab:
 options: "rw,relatime"
 - name: audit
 size: 900M
 mkfs:
 type: xfs
 mount:
 mount_point: /var/log/audit
 fstab:
 options: "rw,relatime"
 - name: home
 size: 100M
 mkfs:
 type: xfs
 mount:
 mount_point: /home
 fstab:
 options: "rw,nodev,relatime"
'''

Use this sample YAML content as a basis for your image’s partition schema. Modify the partition sizes
and layout to suit your needs.

NOTE

Define the right partition sizes for the image as you will not be able to resize them after
the deployment.

C.3.2. Modifying the Image Size

The global sum of the modified partitioning schema might exceed the default disk size (20G). In this
situation, you might need to modify the image size. To modify the image size, edit the configuration files
used to create the image.

Create a copy of the /usr/share/openstack-tripleo-common/image-yaml/overcloud-
hardened-images.yaml:

cp /usr/share/openstack-tripleo-common/image-yaml/overcloud-hardened-
images.yaml \
/home/stack/overcloud-hardened-images-custom.yaml

Edit the DIB_IMAGE_SIZE in the configuration file to adjust the values as necessary:

...

environment:
DIB_PYTHON_VERSION: '2'
DIB_MODPROBE_BLACKLIST: 'usb-storage cramfs freevxfs jffs2 hfs hfsplus
squashfs udf vfat bluetooth'
DIB_BOOTLOADER_DEFAULT_CMDLINE: 'nofb nomodeset vga=normal console=tty0

APPENDIX C. WHOLE DISK IMAGES

167

1

1

console=ttyS0,115200 audit=1 nousb'

DIB_IMAGE_SIZE: '25' 1
COMPRESS_IMAGE: '1'

Adjust this value to the new total disk size.

Save this file.

IMPORTANT

When the director deploys the overcloud, it creates a RAW version of the overcloud
image. This means your undercloud must have necessary free space to accommodate the
RAW image. For example, if you increase the security hardened image size to 40G, you
must have 40G of space available on the undercloud’s hard disk.

IMPORTANT

When the director eventually writes the image to the physical disk, the director creates a
64MB configuration drive primary partition at the end of the disk. When creating your
whole disk image, ensure it is less than the size of the physical disk to accommodate this
extra partition.

C.4. CREATING A SECURITY HARDENED WHOLE DISK IMAGE

After you have set the environment variables and customized the image, create the image using the
openstack overcloud image build command:

openstack overcloud image build \
--image-name overcloud-hardened-full \

--config-file /home/stack/overcloud-hardened-images-custom.yaml \ 1
--config-file /usr/share/openstack-tripleo-common/image-yaml/overcloud-
hardened-images-rhel7.yaml

This is the custom configuration file containing the new disk size from Section C.3.2, “Modifying the
Image Size”. If you are not using a different custom disk size, use the original
/usr/share/openstack-tripleo-common/image-yaml/overcloud-hardened-
images.yaml file instead.

This creates an image called overcloud-hardened-full.qcow2, which contains all the necessary
security features.

C.5. UPLOADING A SECURITY HARDENED WHOLE DISK IMAGE

Upload the image to the OpenStack Image (glance) service and start using it from the Red Hat
OpenStack Platform director. To upload a security hardened image, execute the following steps:

1. Rename the newly generated image and move it to your images directory:

mv overcloud-hardened-full.qcow2 ~/images/overcloud-full.qcow2

2. Remove all the old overcloud images:

Red Hat OpenStack Platform 12 Director Installation and Usage

168

openstack image delete overcloud-full
openstack image delete overcloud-full-initrd
openstack image delete overcloud-full-vmlinuz

3. Upload the new overcloud image:

openstack overcloud image upload --image-path /home/stack/images -
-whole-disk

If you want to replace an existing image with the security hardened image, use the --update-
existing flag. This will overwrite the original overcloud-full image with a new security hardened
image you generated.

APPENDIX C. WHOLE DISK IMAGES

169

APPENDIX D. ALTERNATIVE BOOT MODES
The default boot mode for nodes is BIOS over iPXE. The following sections outline some alternative boot
modes for the director to use when provisioning and inspecting nodes.

D.1. STANDARD PXE

The iPXE boot process uses HTTP to boot the introspection and deployment images. Older systems
might only support a standard PXE boot, which boots over TFTP.

To change from iPXE to PXE, edit the undercloud.conf file on the director host and set
ipxe_enabled to False:

ipxe_enabled = False

Save this file and run the undercloud installation:

$ openstack undercloud install

For more information on this process, see the article "Changing from iPXE to PXE in Red Hat OpenStack
Platform director".

D.2. UEFI BOOT MODE

The default boot mode is the legacy BIOS mode. Newer systems might require UEFI boot mode instead
of the legacy BIOS mode. In this situation, set the following in your undercloud.conf file:

ipxe_enabled = True
inspection_enable_uefi = True

Save this file and run the undercloud installation:

$ openstack undercloud install

Set the boot mode to uefi for each registered node. For example, to add or replace the existing
boot_mode parameters in the capabilities property:

$ NODE=<NODE NAME OR ID> ; openstack baremetal node set --property
capabilities="boot_mode:uefi,$(openstack baremetal node show $NODE -f json
-c properties | jq -r .properties.capabilities | sed "s/boot_mode:
[^,]*,//g")" $NODE

NOTE

Check that you have retained the profile and boot_option capabilities with this
command.

In addition, set the boot mode to uefi for each flavor. For example:

$ openstack flavor set --property capabilities:boot_mode='uefi' control

Red Hat OpenStack Platform 12 Director Installation and Usage

170

https://access.redhat.com/articles/2142881

APPENDIX E. AUTOMATIC PROFILE TAGGING
The introspection process performs a series of benchmark tests. The director saves the data from these
tests. You can create a set of policies that use this data in various ways. For example:

The policies can identify and isolate underperforming or unstable nodes from use in the
overcloud.

The policies can define whether to automatically tag nodes into specific profiles.

E.1. POLICY FILE SYNTAX

Policy files use a JSON format that contains a set of rules. Each rule defines a description, a condition,
and an action.

Description

This is a plain text description of the rule.

Example:

"description": "A new rule for my node tagging policy"

Conditions

A condition defines an evaluation using the following key-value pattern:

field

Defines the field to evaluate. For field types, see Section E.4, “Automatic Profile Tagging Properties”

op

Defines the operation to use for the evaluation. This includes the following:

eq - Equal to

ne - Not equal to

lt - Less than

gt - Greater than

le - Less than or equal to

ge - Greater than or equal to

in-net - Checks that an IP address is in a given network

matches - Requires a full match against a given regular expression

contains - Requires a value to contain a given regular expression;

is-empty - Checks that field is empty.

invert

Boolean value to define whether to invert the result of the evaluation.

APPENDIX E. AUTOMATIC PROFILE TAGGING

171

multiple

Defines the evaluation to use if multiple results exist. This includes:

any - Requires any result to match

all - Requires all results to match

first - Requires the first result to match

value

Defines the value in the evaluation. If the field and operation result in the value, the condition return a
true result. If not, the condition returns false.

Example:

"conditions": [
 {
 "field": "local_gb",
 "op": "ge",
 "value": 1024
 }
],

Actions

An action is performed if the condition returns as true. It uses the action key and additional keys
depending on the value of action:

fail - Fails the introspection. Requires a message parameter for the failure message.

set-attribute - Sets an attribute on an Ironic node. Requires a path field, which is the path
to an Ironic attribute (e.g. /driver_info/ipmi_address), and a value to set.

set-capability - Sets a capability on an Ironic node. Requires name and value fields, which
are the name and the value for a new capability accordingly. The existing value for this same
capability is replaced. For example, use this to define node profiles.

extend-attribute - The same as set-attribute but treats the existing value as a list and
appends value to it. If the optional unique parameter is set to True, nothing is added if the
given value is already in a list.

Example:

"actions": [
 {
 "action": "set-capability",
 "name": "profile",
 "value": "swift-storage"
 }
]

E.2. POLICY FILE EXAMPLE

The following is an example JSON file (rules.json) with the introspection rules to apply:

Red Hat OpenStack Platform 12 Director Installation and Usage

172

[
 {
 "description": "Fail introspection for unexpected nodes",
 "conditions": [
 {
 "op": "lt",
 "field": "memory_mb",
 "value": 4096
 }
],
 "actions": [
 {
 "action": "fail",
 "message": "Memory too low, expected at least 4 GiB"
 }
]
 },
 {
 "description": "Assign profile for object storage",
 "conditions": [
 {
 "op": "ge",
 "field": "local_gb",
 "value": 1024
 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "profile",
 "value": "swift-storage"
 }
]
 },
 {
 "description": "Assign possible profiles for compute and controller",
 "conditions": [
 {
 "op": "lt",
 "field": "local_gb",
 "value": 1024
 },
 {
 "op": "ge",
 "field": "local_gb",
 "value": 40
 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "compute_profile",
 "value": "1"
 },
 {
 "action": "set-capability",

APPENDIX E. AUTOMATIC PROFILE TAGGING

173

 "name": "control_profile",
 "value": "1"
 },
 {
 "action": "set-capability",
 "name": "profile",
 "value": null
 }
]
 }
]

This example consists of three rules:

Fail introspection if memory is lower than 4096 MiB. Such rules can be applied to exclude nodes
that should not become part of your cloud.

Nodes with a hard drive size 1 TiB and bigger are assigned the swift-storage profile
unconditionally.

Nodes with a hard drive less than 1 TiB but more than 40 GiB can be either Compute or
Controller nodes. We assign two capabilities (compute_profile and control_profile) so
that the openstack overcloud profiles match command can later make the final choice.
For that to work, we remove the existing profile capability, otherwise it will have priority.

Other nodes are not changed.

NOTE

Using introspection rules to assign the profile capability always overrides the existing
value. However, [PROFILE]_profile capabilities are ignored for nodes with an existing
profile capability.

E.3. IMPORTING POLICY FILES

Import the policy file into the director with the following command:

$ openstack baremetal introspection rule import rules.json

Then run the introspection process.

$ openstack overcloud node introspect --all-manageable

After introspection completes, check the nodes and their assigned profiles:

$ openstack overcloud profiles list

If you made a mistake in introspection rules, you can delete them all:

$ openstack baremetal introspection rule purge

E.4. AUTOMATIC PROFILE TAGGING PROPERTIES

Red Hat OpenStack Platform 12 Director Installation and Usage

174

Automatic Profile Tagging evaluates the following node properties for the field attribute for each
condition:

Property Description

memory_mb The amount of memory for the node in MB.

cpus The total number of cores for the node’s CPUs.

cpu_arch The architecture of the node’s CPUs.

local_gb The total storage space of the node’s root disk. See
Section 6.5, “Defining the Root Disk for Nodes” for
more information about setting the root disk for a
node.

APPENDIX E. AUTOMATIC PROFILE TAGGING

175

APPENDIX F. SECURITY ENHANCEMENTS
The following sections provide some suggestions to harden the security of your undercloud.

F.1. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

If you enabled SSL/TLS in the undercloud (see Section 4.6, “Configuring the Director”), you might want
to harden the SSL/TLS ciphers and rules used with the HAProxy configuration. This helps avoid SSL/TLS
vulnerabilities, such as the POODLE vulnerability.

Set the following hieradata using the hieradata_override undercloud configuration option:

tripleo::haproxy::ssl_cipher_suite

The cipher suite to use in HAProxy.

tripleo::haproxy::ssl_options

The SSL/TLS rules to use in HAProxy.

For example, you might aim to use the following cipher and rules:

Cipher: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-
ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-
GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-
RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-
SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-
SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA:ECDHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-AES256-SHA256:DHE-
RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-
DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-
SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS

Rules: no-sslv3 no-tls-tickets

Create a hieradata override file (haproxy-hiera-overrides.yaml) with the following content:

tripleo::haproxy::ssl_cipher_suite: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-
RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-
AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-
SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-
CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-
SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS
tripleo::haproxy::ssl_options: no-sslv3 no-tls-tickets

NOTE

The cipher collection is one continuous line.

Set the hieradata_override parameter in the undercloud.conf file to use the hieradata override
file you created before running openstack undercloud install:

Red Hat OpenStack Platform 12 Director Installation and Usage

176

https://access.redhat.com/solutions/1291123

[DEFAULT]
...
hieradata_override = haproxy-hiera-overrides.yaml
...

APPENDIX F. SECURITY ENHANCEMENTS

177

APPENDIX G. RED HAT OPENSTACK PLATFORM FOR
POWER (TECHNOLOGY PREVIEW)

IMPORTANT

This feature is available in this release as a Technology Preview, and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

For a fresh Red Hat OpenStack Platform installation, you can now deploy overcloud Compute nodes on
POWER (ppc64le) hardware. For the Compute node cluster, you can choose to use the same
architecture or have a mix of x86_64 and ppc64le systems. The undercloud, Controller nodes, Ceph
Storage nodes, and all other systems are supported only on x86_64 hardware.

Overview:

Deploy an undercloud on an x86_64 node.

Prepare x86_64 nodes to be used as overcloud Controller nodes and get the nodes ready for
provisioning.

Prepare pre-provisioned ppc64le nodes to be used as overcloud Compute nodes.

Generate a custom roles_data.yaml file to include the ComputeAlt role for ppc64le nodes.

Deploy the overcloud.

Poll the metadata server on the undercloud.

Verify that the overcloud deployment has successfully completed.

Deploying Red Hat OpenStack Platform with Compute nodes on IBM POWER:

1. Deploy an undercloud on an x86_64 node. Follow the instructions from Chapter 1, Introduction to
Chapter 5, Configuring Container Registry Details.

2. Prepare x86_64 nodes to be used as overcloud Controller nodes and get the nodes ready for
provisioning. A minimum of one node is required for the Controller node. Prepare additional
Controller nodes for high availability and additional x86_64 Compute nodes if required. Follow
the instructions from Chapter 6, Configuring a Basic Overcloud with the CLI Tools to Section 6.7,
“Customizing the Overcloud with Environment Files”.

3. Prepare pre-provisioned ppc64le nodes to be used as overcloud Compute nodes. A minimum of
one node is required for the Compute node. Prepare additional Compute nodes for high
availability if required. Follow the instructions from Chapter 8, Configuring a Basic Overcloud
using Pre-Provisioned Nodes to Section 8.5, “Configuring Networking for the Control Plane”.

4. On the director node, generate a custom roles_data.yaml file to include the ComputeAlt
role for ppc64le nodes. For example:

(undercloud) [stack@director ~]$ openstack overcloud roles generate
\
--roles-path /usr/share/openstack-tripleo-heat-templates/roles/ \

Red Hat OpenStack Platform 12 Director Installation and Usage

178

https://access.redhat.com/support/offerings/production/scope_moredetail

-o /home/stack/roles_data.yaml \
Controller Compute ComputeAlt BlockStorage ObjectStorage CephStorage

5. Deploy the overcloud. In addition to the standard environment files your environment requires,
specify the custom roles_data.yaml file, and the computealt.yaml environment file. For
example:

(undercloud) [stack@director ~]$ openstack overcloud deploy \
--templates /usr/share/openstack-tripleo-heat-templates \
-r /home/stack/roles_data.yaml \
--disable-validations \
--ntp-server pool.ntp.org \
-e /home/stack/templates/ctlplane-assignments.yaml \
-e /home/stack/templates/node-info.yaml \
-e /home/stack/templates/overcloud_images.yaml \
-e /usr/share/openstack-tripleo-heat-
templates/environments/computealt.yaml \
-e /usr/share/openstack-tripleo-heat-
templates/environments/deployed-server-bootstrap-environment-
rhel.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml \
-e /home/stack/templates/network-environment.yaml \
-e /home/stack/templates/storage-environment.yaml

This command contains the following options:

--templates

Creates the overcloud using the Heat template collection in /usr/share/openstack-
tripleo-heat-templates as a foundation

-r /home/stack/roles_data.yaml

Use the custom roles_data.yaml file for the role mapping information required for the
deployment.

--disable-validations

Disables basic CLI validations for services not used with pre-provisioned infrastructure,
otherwise the deployment will fail.

--ntp-server pool.ntp.org

Use an NTP server for time synchronization. This is required for keeping the overcloud node
cluster in synchronization.

-e /home/stack/templates/ctlplane-assignments.yaml

Adds an environment file configuring networking for the control plane. See Section 8.5,
“Configuring Networking for the Control Plane” for more information.

-e /home/stack/templates/node-info.yaml

Adds an environment file to define how many nodes and which flavors to use for each role.

-e /home/stack/templates/overcloud_images.yaml

Adds an environment file containing the container image sources. See Chapter 5, Configuring
Container Registry Details for more information.

-e /usr/share/openstack-tripleo-heat-templates/environments/computealt.yaml

Adds an environment file to define the ppc64le node.

APPENDIX G. RED HAT OPENSTACK PLATFORM FOR POWER (TECHNOLOGY PREVIEW)

179

-e /usr/share/openstack-tripleo-heat-templates/environments/deployed-server-bootstrap-
environment-rhel.yaml

Adds an environment file to execute a bootstrap script on the pre-provisioned servers. This
script installs additional packages and provides basic configuration for overcloud nodes.

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml

Adds an environment file to initialize network isolation in the overcloud deployment.

-e /home/stack/templates/network-environment.yaml

Adds an environment file to customize network isolation.

-e /home/stack/templates/storage-environment.yaml

Adds an environment file to initialize our storage configuration.

NOTE

The deployment stack pauses when the overcloud node resources enter the
CREATE_IN_PROGRESS stage. This pause is due to the director waiting for
the orchestration agent on the overcloud nodes to poll the metadata server.
Proceed to the next step to start polling the metadata server.

6. Poll the metadata server on the undercloud. See Section 8.8, “Polling the Metadata Server”.

7. Verify that the overcloud deployment has successfully completed. See Section 8.9, “Monitoring
the Overcloud Creation” and Section 8.10, “Accessing the Overcloud”. To list all Compute nodes
including the pre-provisioned ppc64le nodes and the director-provisioned x86_64 nodes, run
openstack hypervisor list.

Red Hat OpenStack Platform 12 Director Installation and Usage

180

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. UNDERCLOUD
	1.2. OVERCLOUD
	1.3. HIGH AVAILABILITY
	1.4. CEPH STORAGE

	CHAPTER 2. REQUIREMENTS
	2.1. ENVIRONMENT REQUIREMENTS
	2.2. UNDERCLOUD REQUIREMENTS
	2.2.1. Virtualization Support

	2.3. NETWORKING REQUIREMENTS
	2.4. OVERCLOUD REQUIREMENTS
	2.4.1. Compute Node Requirements
	2.4.2. Controller Node Requirements
	2.4.3. Ceph Storage Node Requirements
	2.4.4. Object Storage Node Requirements

	2.5. REPOSITORY REQUIREMENTS

	CHAPTER 3. PLANNING YOUR OVERCLOUD
	3.1. PLANNING NODE DEPLOYMENT ROLES
	3.2. PLANNING NETWORKS
	3.3. PLANNING STORAGE

	CHAPTER 4. INSTALLING THE UNDERCLOUD
	4.1. CREATING A DIRECTOR INSTALLATION USER
	4.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES
	4.3. SETTING THE HOSTNAME FOR THE SYSTEM
	4.4. REGISTERING YOUR SYSTEM
	4.5. INSTALLING THE DIRECTOR PACKAGES
	4.6. CONFIGURING THE DIRECTOR
	4.7. OBTAINING IMAGES FOR OVERCLOUD NODES
	4.8. SETTING A NAMESERVER ON THE UNDERCLOUD’S NEUTRON SUBNET
	4.9. BACKING UP THE UNDERCLOUD
	4.10. COMPLETING THE UNDERCLOUD CONFIGURATION

	CHAPTER 5. CONFIGURING CONTAINER REGISTRY DETAILS
	5.1. USING THE CONTAINER IMAGE PREPARATION COMMAND
	5.2. ADDING CONTAINER IMAGES FOR ADDITIONAL SERVICES
	5.3. CONFIGURING THE OVERCLOUD TO USE A REMOTE REGISTRY
	5.4. CONFIGURING THE OVERCLOUD TO USE THE UNDERCLOUD AS A LOCAL REGISTRY
	5.5. CONFIGURING A SATELLITE SERVER AS AN IMAGE REGISTRY

	CHAPTER 6. CONFIGURING A BASIC OVERCLOUD WITH THE CLI TOOLS
	6.1. REGISTERING NODES FOR THE OVERCLOUD
	6.2. INSPECTING THE HARDWARE OF NODES
	6.3. AUTOMATICALLY DISCOVER BARE METAL NODES
	6.4. TAGGING NODES INTO PROFILES
	6.5. DEFINING THE ROOT DISK FOR NODES
	6.6. CONFIGURE OVERCLOUD NODES TO TRUST THE UNDERCLOUD CA
	6.7. CUSTOMIZING THE OVERCLOUD WITH ENVIRONMENT FILES
	6.8. CREATING THE OVERCLOUD WITH THE CLI TOOLS
	6.9. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
	6.10. MANAGING OVERCLOUD PLANS
	6.11. VALIDATING OVERCLOUD TEMPLATES AND PLANS
	6.12. MONITORING THE OVERCLOUD CREATION
	6.13. ACCESSING THE OVERCLOUD
	6.14. COMPLETING THE OVERCLOUD CREATION

	CHAPTER 7. CONFIGURING A BASIC OVERCLOUD WITH THE WEB UI
	7.1. ACCESSING THE WEB UI
	7.2. NAVIGATING THE WEB UI
	7.3. IMPORTING AN OVERCLOUD PLAN IN THE WEB UI
	7.4. REGISTERING NODES IN THE WEB UI
	7.5. INSPECTING THE HARDWARE OF NODES IN THE WEB UI
	7.6. TAGGING NODES INTO PROFILES IN THE WEB UI
	7.7. EDITING OVERCLOUD PLAN PARAMETERS IN THE WEB UI
	7.8. ASSIGNING NODES TO ROLES IN THE WEB UI
	7.9. EDITING ROLE PARAMETERS IN THE WEB UI
	7.10. STARTING THE OVERCLOUD CREATION IN THE WEB UI
	7.11. COMPLETING THE OVERCLOUD CREATION

	CHAPTER 8. CONFIGURING A BASIC OVERCLOUD USING PRE-PROVISIONED NODES
	8.1. CREATING A USER FOR CONFIGURING NODES
	8.2. REGISTERING THE OPERATING SYSTEM FOR NODES
	8.3. INSTALLING THE USER AGENT ON NODES
	8.4. CONFIGURING SSL/TLS ACCESS TO THE DIRECTOR
	8.5. CONFIGURING NETWORKING FOR THE CONTROL PLANE
	8.6. USING A SEPARATE NETWORK FOR OVERCLOUD NODES
	8.7. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES
	8.8. POLLING THE METADATA SERVER
	8.9. MONITORING THE OVERCLOUD CREATION
	8.10. ACCESSING THE OVERCLOUD
	8.11. SCALING PRE-PROVISIONED NODES
	8.12. REMOVING A PRE-PROVISIONED OVERCLOUD
	8.13. COMPLETING THE OVERCLOUD CREATION

	CHAPTER 9. PERFORMING TASKS AFTER OVERCLOUD CREATION
	9.1. MANAGING CONTAINERIZED SERVICES
	9.2. CREATING THE OVERCLOUD TENANT NETWORK
	9.3. CREATING THE OVERCLOUD EXTERNAL NETWORK
	9.4. CREATING ADDITIONAL FLOATING IP NETWORKS
	9.5. CREATING THE OVERCLOUD PROVIDER NETWORK
	9.6. CREATING A BASIC OVERCLOUD FLAVOR
	9.7. VALIDATING THE OVERCLOUD
	9.8. MODIFYING THE OVERCLOUD ENVIRONMENT
	9.9. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
	9.10. MIGRATING VMS FROM AN OVERCLOUD COMPUTE NODE
	9.11. RUNNING ANSIBLE AUTOMATION
	9.12. PROTECTING THE OVERCLOUD FROM REMOVAL
	9.13. REMOVING THE OVERCLOUD
	9.14. REVIEW THE TOKEN FLUSH INTERVAL

	CHAPTER 10. SCALING THE OVERCLOUD
	10.1. ADDING ADDITIONAL NODES
	10.2. REMOVING COMPUTE NODES
	10.3. REPLACING COMPUTE NODES
	10.4. REPLACING CONTROLLER NODES
	10.4.1. Preliminary Checks
	10.4.2. Removing a Ceph Monitor Daemon
	10.4.3. Node Replacement
	10.4.4. Manual Intervention
	10.4.5. Finalizing Overcloud Services
	10.4.6. Finalizing L3 Agent Router Hosting
	10.4.7. Finalizing Compute Services
	10.4.8. Conclusion

	10.5. REPLACING CEPH STORAGE NODES
	10.6. REPLACING OBJECT STORAGE NODES
	10.7. BLACKLISTING NODES

	CHAPTER 11. REBOOTING NODES
	11.1. REBOOTING THE DIRECTOR
	11.2. REBOOTING CONTROLLER NODES
	11.3. REBOOTING CEPH STORAGE NODES
	11.4. REBOOTING COMPUTE NODES
	11.5. REBOOTING OBJECT STORAGE NODES

	CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES
	12.1. TROUBLESHOOTING NODE REGISTRATION
	12.2. TROUBLESHOOTING HARDWARE INTROSPECTION
	12.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS
	12.4. TROUBLESHOOTING OVERCLOUD CREATION
	12.4.1. Orchestration
	12.4.2. Bare Metal Provisioning
	12.4.3. Post-Deployment Configuration

	12.5. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
	12.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
	12.7. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION
	12.7.1. Overcloud Stack Modifications
	12.7.2. Controller Service Failures
	12.7.3. Containerized Service Failures
	12.7.4. Compute Service Failures
	12.7.5. Ceph Storage Service Failures

	12.8. TUNING THE UNDERCLOUD
	12.9. CREATING AN SOSREPORT
	12.10. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

	APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
	A.1. INITIALIZING THE SIGNING HOST
	A.2. CREATING A CERTIFICATE AUTHORITY
	A.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
	A.4. CREATING AN SSL/TLS KEY
	A.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
	A.6. CREATING THE SSL/TLS CERTIFICATE
	A.7. USING THE CERTIFICATE WITH THE UNDERCLOUD

	APPENDIX B. POWER MANAGEMENT DRIVERS
	B.1. DELL REMOTE ACCESS CONTROLLER (DRAC)
	B.2. INTEGRATED LIGHTS-OUT (ILO)
	B.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)
	B.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	B.5. VIRTUAL BASEBOARD MANAGEMENT CONTROLLER (VBMC)
	B.6. FAKE PXE DRIVER

	APPENDIX C. WHOLE DISK IMAGES
	C.1. DOWNLOADING THE BASE CLOUD IMAGE
	C.2. SETTING THE ENVIRONMENT VARIABLES
	C.3. CUSTOMIZING THE DISK LAYOUT
	C.3.1. Modifying the Partitioning Schema
	C.3.2. Modifying the Image Size

	C.4. CREATING A SECURITY HARDENED WHOLE DISK IMAGE
	C.5. UPLOADING A SECURITY HARDENED WHOLE DISK IMAGE

	APPENDIX D. ALTERNATIVE BOOT MODES
	D.1. STANDARD PXE
	D.2. UEFI BOOT MODE

	APPENDIX E. AUTOMATIC PROFILE TAGGING
	E.1. POLICY FILE SYNTAX
	E.2. POLICY FILE EXAMPLE
	E.3. IMPORTING POLICY FILES
	E.4. AUTOMATIC PROFILE TAGGING PROPERTIES

	APPENDIX F. SECURITY ENHANCEMENTS
	F.1. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

	APPENDIX G. RED HAT OPENSTACK PLATFORM FOR POWER (TECHNOLOGY PREVIEW)

